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Abstract
In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings
on hyperbolic surfaces of finite genus, possibly nonorientable, with boundary, and punctured.
More specifically, we generalize results on Delaney–Dress combinatorial tiling theory using
an extension ofmapping class groups to orbifolds, in turn using this to study tilings of covering
spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our
results can be used to extend the Delaney–Dress combinatorial encoding of a tiling to yield
a finite symbol encoding the complexity of an isotopy class of tilings. The results of this
paper provide the basis for a complete and unambiguous enumeration of isotopically distinct
tilings of hyperbolic surfaces.

Keywords Isotopic tiling theory · Delaney–Dress tiling theory · Mapping class groups ·
Orbifolds · Maps on surfaces · Hyperbolic tilings

Mathematics Subject Classification (2000) 05B45 · 05C30 · 52C20 · 57M07

1 Introduction

The enumerative approaches of Delaney–Dress tiling theory [16] in the two-dimensional
hyperbolic plane have facilitated a novel investigation of three-dimensional Euclidean net-
works, where hyperbolic tilings of triply-periodic minimal surfaces (TPMS) are used for
an enumeration of crystallographic nets in R

3 [9,40,51,57,61,62]. By relating in-surface
symmetries of the TPMS to ambient Euclidean symmetries [41,55], the problem of graph
enumeration and characterisation in R

3 is transformed to a two-dimensional problem in
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equivariant tiling theory. The idea is that tilings of the hyperbolic plane can be reticu-
lated over the surface to give a Euclidean geometry to the tile boundaries. This idea has
been explored in several contexts over the past 30 years, including standard hyperbolic
tilings by disk-like tiles with kaleidoscopic symmetry [39,57], infinite tiles with network-like
boundaries [20,21,37,38,43], and infinite tiles with geodesic boundaries [22]. Chemically,
the approach is motivated by the confluence of minimal surface geometry and the struc-
tural chemistry of zeolites and metal-organic frameworks [11,33,34,36]. In particular, this
approach has led to new insights into the structural properties of chemical frameworks in
R
3 [35].
The enumeration of hyperbolic tilings with a given symmetry group reduces down to a

problem of enumerating all embeddings of graphs on the orbifold associated to the sym-
metry group of a tiling, as well as a suitable notion of equivalence among different tilings.
Delaney–Dress tiling theory provides a systematic approach to the complete enumeration of
combinatorial equivalence classes of tilings in simply connected spaces. Computer imple-
mentations of algorithms based on Delaney–Dress tiling theory can exhaustively enumerate
the combinatorial types of equivariant tilings in simply connected spaces of constant sec-
tional curvature [32]. This gives us a description of all combinatorially distinct tilings of an
orbifold. For our purposes, we require an understanding of the distinct ways in which this
combinatorial structure can be embedded on the orbifold, which in turn represent isotopically
distinct tilings of the hyperbolic plane. For example, the Stellate orbifolds 2223 and 2224 can
be decorated by a simple combinatorial structure consisting of a single edge. However, this
simple structure can manifest as an infinite set of isotopically distinct embedded hyperbolic
tilings [21,22,53,54].

The classification of embedded combinatorial structures is precisely what this paper will
address. We will generalize Delaney–Dress tiling theory to classify all isotopically distinct
equivariant tilings of any hyperbolic surface of finite genus, possibly nonorientable, with
boundary, and punctured. By a hyperbolic surface, we always mean a complete finite-area
Riemannian surface with constant sectional curvature −1 and totally geodesic boundary.
We consider here the 2-dimensional case, however, the related classifications for higher
dimensional hyperbolic orbifolds is also briefly discussed. Our approach is constructive and
therefore allows, in theory, a complete enumeration of such classes of tilings.

Sincemany of the results we derive here aremotivated by the EPINETdatabase (Euclidean
patterns in non-Euclidean tilings) [17], we briefly explain the idea behind the enumerative
project. In essence, EPINET enumerates symmetric embeddings of graphs into hyperbolic
surfaces. The goal is to enumerate symmetric periodic graphs inR3 by embedding the under-
lying hyperbolic surfaces into R

3 in a periodic way and such that the symmetries of the
surface and hence the graph embedding correspond to symmetries in R

3. For this, triply-
periodic minimal surfaces are used. The graphs considered lift to tilings of the universal
covering space of the finite topology surface that embeds in the three-torus to produce the
triply-periodic minimal surface, which is the hyperbolic plane H2. The enumerative process
then works in the reverse direction, where finding a finite symbol encoding different tilings
of H2 allows the subsequent enumeration of periodic graphs in R

3. Figure 1 gives some
examples of the correspondence between the hyperbolic tilings and the tilings of the Gyroid
minimal surface in R

3.
Throughout this paper, we make heavy use of the notion of orbifolds [64] and mapping

class groups [23]. The connection of isotopic tiling theory andmapping class groups is novel,
however, there is a well-known connection between the Teichmüller space of Riemann sur-
faces of genus g and certain tilings of the hyperbolic plane with 4g sided geodesical polygons
that we will use as inspiration [23]. We will derive some algorithms to enumerate all equiv-
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Fig. 1 On the top row are shown three tilings of H2. The black lines show the tile boundaries, each enclosing
a tile. These tilings have symmetry 22222, using Conway’s orbifold notation. The bottom row shows the edge
graphs of the tilings projected onto the Gyroid triply-periodic minimal surface, where one periodic unit cell
is shown. The Gyroid is triangulated symmetrically in a way that respects the symmetry group of the surface.
Each tiling has the same abstract symmetry group in H

2, and corresponding symmetries in R3

ariant tilings on a hyperbolic Riemann surface in its uniformized metric. Note that this also
produces tilings for other Riemannian surfaces by uniformizing the metric within its con-
formal equivalence class. Indeed, it is well-known that any isometry group of a Riemannian
surface gives rise to a unique isometry group of the uniformized surface.

This paper is structured into six sections which cumulatively build the connection between
isotopic tiling theory and mapping class groups. We clarify several smaller questions along
the way, building intuition of previous results in a new context. We begin with Sect. 2
(Symmetry Groups of Tilings and Orbifolds), where we recapitulate the notion of two-
dimensional developable orbifolds and expand the framework to incorporate more general
classes of orbifolds with punctures and boundary. This is followed by Sect. 3 (Isotopic
Tiling Theory) where we generalize combinatorial Delaney–Dress tiling theory to encode
isotopically distinct tilings of surfaces in terms of generators of the symmetry group. In
the brief Sect. 4 (Outer Automorphisms) we will elucidate the connection between outer
automorphisms and the generators that encode isotopically distinct tilings. Then, having laid
all the groundwork, we will introduce the mapping class group (MCG) of orbifolds in Sect. 5
and prove fundamental results facilitating its applications to tiling theory. In Sect. 6, we
establish relations between the spaces of tilings of covering spaces and lastly, in Sect. 7,
we highlight how some of the algebraic properties of MCGs relate to the isotopy classes of
tilings they correspond to. In particular, we prove the Nielsen realization theorem in the case
of orbifolds and establish the importance of finite subgroups of MCGs for isotopy classes of
tilings.

This paper represents the theoretical foundation for an enumeration of isotopy classes of
tilings on surfaces. The implementation of these results will appear elsewhere and are of
inherent interest in the natural sciences. As a result, we make an effort to make the results
more accessible by explaining the intuition behind the main ideas.
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2 Symmetry groups of tilings and orbifolds

We begin with orbifolds [2,13,64]. Let X be a simply connected Riemannian manifold X
with constant sectional curvature. We only work with developable orbifolds, which means
that the orbifold O is the topologically the quotient space X/Γ , where Γ ⊂ Iso(X ) is a
discrete subgroup. The difference between X/Γ as a topological space and as an orbifold is
that for the orbifold structure, one retains the information concerning Γ and can reconstruct
the topological space X from X/Γ [58]. The group Γ is called the fundamental group of the
orbifold O. In the classical orbifold setting, Γ is required to act cocompactly. We will only
require the codomain to have finite area in its uniformized metric, i.e. the metric induced by
X .

In particular, we are interested in the case X = H
2, where Γ is a NEC group (non-

Euclidean crystallographic group), or a hyperbolic orbifold group.
Let O be a 2D orbifold. We can identify the symmetry groups using Conway’s orbifold

symbol, as described below, but extended by generators for the non-classical features our
orbifolds might have, i.e. hyperbolic transformations Hi ofH2, corresponding to non-mirror
boundary components ofO andparabolic transformations Pj corresponding to punctures. The
diffeomorphic structure of O [64] is determined by the Conway symbol for its fundamental
group Γ :=A · · · Hi · · · Pj · · · � abc · · · × · · · ◦ · · · . There are generators for the translations
associated to each handle, given by X and Y , and going around a handle in an oriented way
corresponds to the curve associated to the commutator α:=[X , Y ] = XY X−1Y−1. There
are also generators for each gyration point of order A, and for a curve γ going around the
gyration point once we have γ A = 1, where we interpret the curve as a deck transformation
[58]. For each mirror we have the usual Coxeter group relations, which depend on the angles
of the intersecting mirrors. However, in the case where the interior of the orbifold contains
nontrivial features, we need to choose one mirror per mirror boundary component that we
give two generators P and Q, ordered in positive orientation corresponding to its two mirror
halves and one generator λ for the curve that goes around this boundary component once in
positive orientation. In the literature, λ is known as the connecting generator for this mirror
boundary component. We then add the relation P = λ−1Qλ. Next, going around a crosscap
corresponds to a generator ω with Z2 = ω, where Z corresponds to the curve entering the
crosscap once. There is one global relation for an orbifold, namely, the product of all Greek
letters (plus the nonclassical elements) has to be trivial, i.e.

γ · · · Πi HiΠ j Pjλ · · · ω · · · α · · · = 1. (1)

We shall refer to this presentation as the standard presentation of the fundamental group
of O. To standardize notation, we can also assume that in the presence of a crosscap, all
handles are replaced by two crosscaps each [25]. In this paper, when we talk about geometric
generators of orbifold groups, we generally mean generators of the above form, with a fixed
cyclic order as in (1).

Note that there is a description of the deck transformations in Γ as homotopy classes
of curves on the orbifold O [13,58], which we already used above in the description of ω,
and which is important to us. We can think of each element in Γ as being represented by
a homotopy class in the orbifolds (labelled) underlying topological space O , introduced in
more detail in Sect. 5 below. For this to work, one only has to agree that a closed curve that
touches a mirror boundary in O transversally lifts to a curve that crosses over the boundary
in X . See also [13] for an illustration.

The elements of an orbifold fundamental group Γ can be assigned types according to their
algebraic properties and their action on the hyperbolic plane. Similar to [48], we define the
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type of an element in Γ as follows. Torsion elements that preserve the orientation of H2 are
the elliptic transformations of a given order.Mirrors represent torsion elements of order 2 that
reverse the orientation. Orbifold groups like Γ , when viewed as conformal transformations
of the upper half plane U ⊂ C, have an associated limit set Λ ⊂ R. The complement C
of Λ in R has more than one connected component if O has a boundary. The conjugates
of powers of the hyperbolic transformations associated to the boundary components of O
map some component of C to itself and are called boundary hyperbolic. There are also the
parabolic transformations corresponding to the punctures and the orientation preserving as
well as the reversing hyperbolic transformations associated to the genus of a surface. We
call an automorphism (or isomorphism) of Γ type-preserving if it preserves the types of all
elements in Γ . We note here that a homeomorphism of hyperbolic orbifolds with symmetry
groups G1 and G2, for our purposes, can be defined as a homeomorphism f of H2 that
satisfies f G1 f −1 = G2.

3 Isotopic tiling theory

Tesselations of H2 can be studied using combinatorial tiling theory [16,32]. Combinatorial
tiling theory classifies all possible equivariant combinatorial types of tilings on simply con-
nected metric spaces X of constant curvature. It deals with the case that each tile is a closed
and bounded disk and the symmetry group of the tiling acts cocompactly.

A locally finite1 set T of such topological disks inX is called a tiling if every point x ∈ X
belongs to some disk (tile) T ∈ T and if for every two tiles T1 and T2 of T , T 0

1 ∩ T 0
2 = ∅,

where S0 denotes the interior of a set S.

We call a point that is contained in at least 3 tiles a vertex, and the closures of connected
components of the boundary of a tile with the vertices removed edges. The only exception
to this are two-fold rotational centers of symmetry, which we also consider to be vertices,
depending on the context.

Definition 1 Let T be a tiling of X and Γ be a discrete subgroup of Iso(X ). If T =
γT :={γ T |t ∈ T } for all γ ∈ Γ , then we call the pair (T , Γ ) an equivariant tiling and
Γ its symmetry group.

We call two tiles T1, T2 ∈ T equivalent or symmetry-related if there exists γ ∈ Γ s.t.
γ T1 = T2. We call the subgroup of Γ that leaves invariant a particular tile T ∈ T the
stabilizer subgroupΓT .A tile is called fundamental ifΓT is trivial andwe call thewhole tiling
fundamental if this is true for all tiles. An equivariant tiling is called tile-, edge-, or vertex-
k-transitive, if the number of equivalence classes under the action of the symmetry group is
k. Note that the above definitions do not require Γ to be the maximal symmetry group for
the tiling T . A fundamental tile-1-transitive equivariant tiling (fundamental tiling for short)
(T , Γ ) has a single type of tile that is a fundamental domain for Γ and any fundamental
domain for Γ also gives rise to such a tiling. The following notion of equivalence among
equivariant tilings is central to combinatorial tiling theory.

Definition 2 Two equivariant tilings (T1, Γ1) and (T2, Γ2) of a simply connected space X
are equivariantly equivalent if there is a homeomorphism, φ, of X and a group isomorphism
h : Γ1 → Γ2, such that φ(T1) ∈ T2 for all T1 ∈ T1 and h(γ1)[(φ(T1)] = φ(γ1[T1]) for all
γ1 ∈ Γ1.

1 This is defined as meaning that any compact set in X meets only a finite number of tiles.
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Intuitively, this definition means that two equivalent tilings are the same after a change of
coordinates that maps the symmetries of one onto the other. We will also sometimes refer to
this notion of equivalence as combinatorially equivalence among equivariant tilings [45].

The mechanism behind combinatorial tiling theory that leads to a classification of equiv-
ariant equivalence classes of tilings is to consider a barycentric subdivision, invariant under
the symmetry group, of the tiles in an equivariant tiling. This subdivision gives rise to a sim-
plicial complex known as a chamber system. Keeping track of how chambers gets mapped to
one another by elements of the symmetry group of the tiling and subsequent tracking of the
combinatorics of the chamber system gives rise to a complete invariant of the combinatorial
class of the tiling [16,32].

To generalize the above framework to work with more general symmetry groups and also
non-simply connected spaces we detail a slightly different point of view using orbifolds and
a concrete realization of a symmetry group Γ in Iso(X ), where we particularly emphasize
the case X = H

2.
One can view tilings as combinatorial structures or classes of decorations on orbifolds.

This is based on the simple observation that any tesselation has the symmetry group of
a developable orbifold. The underlying topological space of O can be extracted from any
fundamental domain for Γ inH2, with appropriate edge identifications corresponding to the
action of generators of Γ on the fundamental domains boundary. The action of Γ also gives
rise to a fundamental transitive tiling. Each fundamental transitive tile can also be interpreted
as a (bordered) fundamental domain and can thus each be seen as a possible canvas, on which
we can draw any orbifold decoration (after getting rid of the boundary edges, if necessary). A
drawingon a fundamental domain corresponds to a piecewise linear embeddingof a graph into
the orbifold. In the language of Delaney–Dress tiling theory, each chamber system encoding
an equivariant tiling with symmetry group Γ essentially corresponds to a triangulation of
O = H

2/Γ .

When viewing tilings as combinatorial decorations on orbifolds, it becomes natural to
consider themore general situation of finite volumeorbifolds and thusmore general symmetry
groups for the tilings than for classical Delaney–Dress tiling theory. There are a number of
ways of approaching this problem. Section 4d in [16], includes a sketch of how to adapt
the statements made for the case of bounded tiles to work for an equivariant tiling theory
for symmetry groups with cusps. To incorporate punctures, one treats the cusps as marked
points belonging to the surface and analyses equivariant tilings in terms of chamber systems
and geometric cell complexes like in the original setting. As a triangulation of a 2D orbifold,
this means that there is a vertex of the chamber system that is placed on a puncture. When
embedding these into a manifold to obtain a tesselation, one needs to remove the cusps
before embedding. Geometrically, the idea corresponds to pushing the marked points to the
boundary of the unit circle in the Poincaré model for H2. Alternatively, a puncture in the
orbifold, corresponding to a parabolic transformation in H

2, can be seen as the limit of a
sequence of gyration points of increasing order, with order∞. This is in line with the Conway
notation for orbifolds. From this point of view, the tilings for finite volume orbifolds with
punctures are attained as limits of tilings for orbifolds where the puncture is a gyration point
of increasing order. We will therefore treat the cusped case essentially in the same way as
the classical case, but with order ∞ singular points.

The case of a surface with boundary can be treated similarly by simply assuming that the
boundary is covered by edges of the tiling for the barycentric subdivision and subsequently
treating the chambers along the boundary as neighbouring themselves.

For simply connected spaces and combinatorial classes of tilings, starting from the fun-
damental tilings, all other equivariant tilings with the same symmetry group are obtained by
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applying GLUE and SPLIT operations [15,32]. The different combinatorial types of a funda-
mental domain for a given classical orbifold were classified in [46]. Using the Delaney–Dress
(D)-symbol, one can give unique names to the combinatorial structures on 2-orbifolds that
represent tilings on X , which can be used for enumeration purposes [14]. We will subse-
quently focus on fundamental tilings.

Given the generators, described in Sect. 2, of a symmetry group G ⊂ Iso(H2), the D
symbol describes how the group acts on the associated chamber system of a tiling [16],
where the chambers are triangles in a triangulation of the orbifold. A fundamental tiling is
obtained from a fundamental domain for G, with the given generators acting on its boundary
edges. By the Poincaré theorem, a set of (geometric) generators of G all map part of the
fundamental tile’s boundary to itself to yield a presentation of the symmetry group, and the
D symbol tells us in which way. Note that even if we restrict to geodesically bordered tiles,
the D symbol only defines a tiling up to shearing the fundamental domain.

We now explain a fundamental observation that is one of the starting points of our
investigation. The Teichmüller space T (G) is the space of type-preserving, discrete faithful
representations in PGL(2,R) (for orientable orbifold groups, one restricts to PSL(2,R)) of
the abstract hyperbolic groupG with standard presentation, modulo conjugation by elements
in PGL(2,R). This space carries a natural topology, namely the subspace and subsequent
quotient topology of Hom(G,PGL(2,R)), which itself is endowed with the compact-open
topology. The topology ofG is the discrete one and PGL(2,R) carries the topology it inherits
from its usual structure as a Lie group.

As an aside, we comment on perhaps a more classical or standard definition of the Teich-
müller space of a (topological) surface S. Given a hyperbolic surface X , one can define a
hyperbolic structure on S by using a diffeomorphism ϕ : S → X , known as a marking. The
Teichmüller space is then defined as the space of hyperbolic structures modulo homotopy.
Here, two markings {ϕi : S → Xi }2i=1 are homotopic if there is an isometry I : X1 → X2

such that I ◦ ϕ1 is homotopic to ϕ2.
We sketch the equivalence of the two definitions of Teichmüller space for an orbifold

O. Any hyperbolic structure ϕ : O → X leads to a Riemannian covering π : H2 → O,
which defines a group of deck transformations up to conjugation by elements in Iso(H2).
The marking ϕ induces an isomorphism of G = π1(O) and π1(X) and thus of the deck
transformations of the covering by H2, see Sect. 5 below. Thus, we see that a marking gives
rise to a representation of G. For the converse, notice first that a representation ρ of G like
in the above definition induces a discrete group in Iso(H2) such that the quotient space has
the structure of a hyperbolic orbifold X , diffeomorphic to the original O. Now, ρ induces
an isomorphism of fundamental groups from G to π1(X). Any isomorphism of fundamental
groups of orbifolds is realized as a homeomorphism ofH2(see Sect. 5 below formore details),
which induces a homeomorphism between the orbifolds O and X , which is the sought-for
marking. The well-definedness is clear because a conjugate of ρ results in an isometric
orbifold X and thus homotopic markings.

Most proofs regarding the topological structure of T (G)make use of the second definition.
This is essentially because it allows the deconstruction of the surfaces in question into smaller,
easier building blocks such as pants or punctured disks. The proofs and ideas in [64] that
show that T (G) is (component-wise) homeomorphic to R

k for some k also work in our
setting with more general orbifolds, when we expand the collection of primitive orbifolds
with unique hyperbolic structures that assemble to produce more complicated orbifolds. For
this, [12] contains a description of all pieces that are needed for the decomposition if one also
allows boundaries. Also see [42] for a reference that includes a discussion of the Teichmüller
space of orbifolds with boundary components for classical surfaces and some of the subtleties
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involved. For punctures, one can take the pieces that account for rotational symmetries for
orbifolds with infinite order. Alternatively, one can view punctures as boundary components
with zero length.

The importance of the above is that it implies that two different sets of geometric generators
for G in Iso(H2) can be continuously deformed into one another in H

2. The small caveat
here is that for orientable G, there are two representations with opposite orientation (see
Sect. 4) in PGL(2,R), so the connectedness of T (G) is only true for representations of
the same orientation. During the process of continuously deforming one representation of
G into another, the combinatorial structure of the chamber system associated to the tiling
remains invariant. Therefore, perhaps somewhat surprisingly, there is a set of combinatorial
instructions for how to decorate the fundamental domain to produce a particular tiling from
the generators which is independent of the particular representation of G in PGL(2,R).
This set of instructions can be extracted from the D symbol, see Fig. 2 for an example.
Within a combinatorial class of fundamental tiles, we can interpret the other fundamental
tiles with different positions for the generators as obtained by shearing the original one. This
deformation can in fact be realized by a quasi-conformal mapping.

Another, more constructiveway of extracting a set of combinatorial instructions for how to
decorate the fundamental domain to produce a particular tiling from given generators which
is independent of the particular representation of G in PGL(2,R) is by first constructing the
dual tiling. For a fundamental tile transitive tiling with symmetry group G, there is a set of
so-called Wilkie generators for the symmetry group, corresponding to edge traversals of a
fixed copy of any tile [65]. Expressing these in terms of the given generators, one constructs
a tiling with one vertex orbit, dual to the original tiling.

Consider now the example of a fundamental 4g polygon of a closed hyperbolic Riemann
surface S of genus g with given hyperbolic metric. The construction of a tiling starts from a
given point x ∈ S which is the base point of the generating curves {γi }2gi=1 for the fundamental
group of S. Within each of the homotopy classes for the closed curves γi , there is a unique
geodesical representative.Cutting the surface along these geodesics produces a hyperbolic tile
and tesselation. While the homotopy classes of the γi determine the combinatorial structure
of the tiling, the choice of base point for the construction of a fundamental domain for
the generators produces a plethora of metrically distinct fundamental tilings, which are all
derived from the same point in T (G). What different types of fundamental tilings can we
create in this way? Any other tiling starts from a different point p ∈ S, and there is a path c
connecting x and p. The path gives rise to an isotopy of S by pushing the point x along c to p.
In this way, c uniquely determines a homeomorphism up to isotopies from (S, x) to (S, p),
following results relating to the point-push map in [23]. In particular, if one fixes a reference
set of generators of π1(S), the resulting isotopy only leaves the set of generators invariant on
S if the path c induces a trivial homeomorphism up to isotopy. This means that if we fix what
the generators {γi } map to in Iso(H2), there is only one isotopy class of tilings associated to
S and {γi }. The combinatorial information needed to produce the corresponding tiling is then
simply given by any base point needed to construct the associated fundamental domain. The
case p = x is of particular interest. For nontrivial curves c, the generators in Iso(H2) change,
but because the induced automorphism on π1(S) by any such curve c is always inner, by the
Dehn–Nielsen–Baer theorem [23], it corresponds to the isotopically trivial homeomorphism
of the surface and does not change the tiling in H2.

The same line of reasoning works for more general orbifolds O and their fundamental
groups G, possibly with repeated use of the above arguments for more than one randomly
chosen point, and explains why within a fixed set of generators for π1(O) ⊂ Iso(H2) and
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fundamental equivariant
tiling of H2 with symmetry
group 2224, generated by

rotations around the points
labelled 1 to 4.

fundamental equivariant
tiling of H2 with symmetry
group 2224, with positions

of generators as in (a).

(a) transitive, (b) Another transitive, (c)A A different placement of
generators, producing a
sheared version of the

fundamental tiling

Fig. 2 Fundamental tilings with symmetry group 2224, produced by constructng the convex hull of the
indicated points, whose position is fixed by the positions of a subset of them that correspond to generators of
2224. Repeated applications of these symmetires then generates the whole tiling

combinatorial type of fundamental tiling with the generators acting on its boundary, the
isotopy type of decoration does not depend on the choice of random points required in the
construction, up to inner automorphisms of the chosen generators. Note that this does not
mean that different sets of generators with the same combinatorial decorations never yield
the same isotopy class of fundamental tilings, because the decoration of an orbifold that gives
rise to a fundamental tiling is in general not sufficiently complicated to keep track of arbitrary
changes. Sufficiently complicated decorations where this cannot happen always exist, as we
shall see using more technical arguments below.

Generally, the edges of the fundamental tile can be given purely in terms of the generators,
as edges connecting symmetry points, or randomly chosen points. The random points show
up in the triangulation that is the chamber systemof the orbifoldwhen a vertex is not located at
an increased symmetry site. This situation can be read off the D symbol. Using this approach
to fundamental tilings from the chamber system related to the D-symbols gives a completely
algebraic/combinatorial way of producing the fundamental tilings from the generators of G.

In practice, this invariant description in terms of generators comes from simply producing
a combinatorial version of a tiling from the D-symbol and then placing the vertices in the
associated decoration accordingly, see Fig. 2. In doing so, the vertices have to be given in
terms of their positions relative to the generators.2

As an illustration, consider Fig. 2, which shows tilings with a realization of the hyperbolic
orbifold group G = 2224 as a group of isometries inH2. The placements of the generators in
H

2 is indicated in Fig. 2a(vertices 1 to 4 corresponding to the generators 2224, respectively)
and allows a fundamental tiling for the supergroup �2224 simply by considering the convex
hull in H

2 of the points 1 to 4. Now, there are two ways that a fundamental domain for
2224 can exhibit the symmetries of �2224. One is obtained by reflecting across the axis

2 This reasoning also works for higher dimensional hyperbolic orbifolds. However, as a result of Mostow’s
rigidity theorem for developable hyperbolic orbifolds (see [6,50,56]) there is only one set of generators for the
corresponding group and any way to produce all combinatorially distinct fundamental tilings works, without
the need to reference specific generators.
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through the points 1 and 4, as indicated in Fig. 2a. The other is obtained by doing the same
across the axis through points 2 and 3, as has been done in Fig. 2b. By the above discussion,
we can combinatorially give a description of the edges belonging to the fundamental tiling.
In Fig. 2a, consider the rotations corresponding to the generators r1, . . . , r4, with centers
c1, . . . , c4 ∈ H

2. Because the tiling is obtained by doubling the fundamental tiling of �2224,
it is straightforward to see that the corners/increased symmetry points on the polygon’s
boundary correspond clockwise, starting at c1, to the points c1, c2, c3, c4, r4(c3), r1(c2). This
procedure readily generalizes to arbitrary stellate orbifolds, i.e. those with only rotations for
generators. Given any generators r1, . . . , r4 in Iso(H2) for 2224, this description of edges
defines a fundamental tiling, in this case with geodesic edges, regardless of the generators
placement in H

2. Similarly, for the fundamental tiling of Fig. 2b, the edges are given by
hyperbolic lines connecting the points 1 to 6 in cyclic order, which correspond to the points
c1, c2, r2(c1), r

−1
3 (c4), c3, c4, respectively. Figure 2c illustrates that this relation for the edges

still holds in a sheared version of the fundamental tiling with symmetry group G. Here, the
sheared fundamental domain does not have the additional symmetries of the other two tilings.

Recall that we want to classify equivariant tilings of a hyperbolic Riemann surface S in its
uniformized metric, i.e. given a fundamental hyperbolic polygon of S inH2, we want to find
all ways of equivariantly tiling it, with fixed symmetry group G ⊂ Iso(S) ⊂ Iso(H2). The
above suggests an appropriate notion of equivalence for this is to consider equivariant tilings
with the same symmetry group that are isotopic in S equivalent. We will see below in Sect. 6
that two tilings being isotopic in this sense is equivalent to the more strong assumption that
two equivariant tilings are equivalent if there is an isotopy between them that preserves their
symmetries at every step, which we sum up as follows.

Definition 3 Two equivariant tilings with the same symmetry group are isotopically equiv-
alent if they are equivariantly equivalent such that there exists a homeomorphism as in the
definition of equivariant equivalence that is isotopic to the identity through a path of home-
omorphisms, each of which preserves the symmetry group at every step.

As far as isotopic tiling theory is concerned, it is not enough to consider just the abstract group
G and the associated D symbols in our more general setting. Instead, it is important to use
the method of producing fundamental tilings from D symbols along with specific generators
for G as outlined above. There is a way to carefully choose only those sets of ‘locations’
for generators for G that yield a priori different fundamental tilings of S (see Sects. 4 and 6
below).

Consider tiling the genus 3 fundamental polygon of the Riemann surface S in H
2 with

symmetry group �246. There are three different versions of the 22222 subgroup that are super-
groups of π1(S). By Hurwitz’ theorem, there is a smallest (area-wise) possible hyperbolic
group G0 that is a supergroup of π1(S) and all three versions of 22222 will be a subgroup of
G0 and we see that �246 = G0. Each version of 22222 now has to be treated independently
of the others when classifying all isotopy classes of equivariant tilings on S. Indeed, the fun-
damental tilings for every possible set of generators for each of these groups are non-isotopic
as tilings on S (see Sect. 6 below).

Before we go on to introduce new tools for tackling the new challenge of finding appro-
priate sets of generators for the symmetry groups of tilings, we would like to point out how
the GLUE and SPLIT operations work in this new setting. To define GLUE and SPLIT
for isotopy classes of tilings, we simply fix one way of implementing them as operations
on some representative tiling inductively. One could ask if two different sets of generators
S1, S2 for the same group that produce different fundamental tilings lead to the same tiling
of S after a sequence of such operations. If this were the case, then firstly the sequence of
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operations would be different since they are invertible. However, this would mean that these
two different sequences of operations, each applied only to tilings derived from S1 would
yield combinatorially equivalent tilings. These are equivalent in the classical Delaney–Dress
tilings theory, so no additional ambiguity emerges by us distinguishing between tilings asso-
ciated to different sets of generators for the symmetry groups. In particular, it is, in a way,
very natural to consider the isotopy classes of tilings w.r.t. a set of generators for the symme-
try group. Furthermore, this result is very important for enumerative isotopic tiling theory.
Note, though, that it is possible that two isotopically distinct tilings that are combinatorially
equivalent yield isotopically identical tilings after application of GLUE or SPLIT operations.
We summarize these observations.

Proposition 1 Let Γ be an orbifold group and L an exhaustive and unambiguous list of
GLUE and SPLIT operations that yield combinatorially distinct tilings from fundamental
tile-1-transitive equivariant equivalence classes of tilings with symmetry group isomorphic
to Γ . Then L applied to all isotopy classes of fundamental tile-1-transitive tilings produced
from all nonconjugate sets of geometric generators for Γ yields an exhaustive (but not
generally unambiguous) enumeration of isotopy classes of tilings with symmetry group Γ .

Whenever an automorphism of the graph in the orbifold quotient space O that gives rise to a
tiling is realized as a homeomorphism of O , then we have an ambiguity in the enumeration
using GLUE and SPLIT.With the results on the Nielsen realization problem in Sect. 7 below,
we have the result that whenever this is the case, there is a realization of the symmetry group
Γ of the tiling such that the ambiguities are a result of symmetries in a discrete supergroup of
Γ . In particular, such a situation can be identified from the D-symbol, as the symmetries of a
tiling that exist for some realization manifest as automorphisms of the D-symbol graph. As
a consequence, the isotopy theory of tilings described here can arguably be best described as
an isotopy theory of coloured tilings, where each edge of a tiling is given a different colour,
so that they are distinguishable. When the edges of a tiling are coloured, the enumeration of
isotopy classes of tilings using GLUE and SPLIT is unambiguous.

4 The group of outer automorphisms

Let G be a hyperbolic orbifold group. The group of all automorphisms of G is denoted
by Aut(G). For example, conjugation by any element g ∈ G induces an automorphism
cg(g̃):=gg̃g−1 for g̃ ∈ G . Such automorphisms are traditionally called inner automorphisms,
and the normal subgroup of all of them is denoted by Inn(G):={cg|g ∈ G}. Picturing G as
a discrete group of isometries of a Riemannian manifold M , roughly speaking, after having
chosen a fundamental domain D for G, we can reconstruct M by applying elements of G to
D, and M breaks up into copies of D. Under an inner automorphism of G, the elements of
G that are used to construct M from D translate to instead building M from the same pieces
in the same way, starting from another copy of D. In view of the previous section, any fixed
method of constructing a tiling from generators will reproduce the exact same tiling for any
set of conjugate generators. For this reason, we are actually interested in the group of outer
automorphisms Out(G):=Aut(G)/ Inn(G).

We fix a set of geometric generators G1 ⊂ Iso(H2) for G and consider subsets S of
the elements of G ⊂ Iso(H2). We are interested in the following question: When does S
constitute a set of geometric generators for G with the same relators? Interpreted within
the context of group automorphisms, any such set S gives rise to an automorphism α of G,
by associating corresponding generators via α. Since geometric generators satisfy the same
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relations, α has a well-defined extension to all of G, by expressing any g ∈ G as some word
in the generators and imposing the condition that α is a morphism of groups.

In this way, starting from G1, we see that for any other set of generators S, we have a
corresponding element of Out(G), where G1 corresponds to the identity morphism. Note,
however, thatwe are not interested in the full group of automorphisms. Instead,wewill restrict
our attention to the subgroup of type-preserving automorphisms, as defined in Sect. 2. This
restriction is exactly what is needed to ensure that the combinatorics of general tilings are
invariant when given as decorations of the associated orbifold (see Theorem 2 below).

Any tesselation with symmetry group G is clearly invariant under an inner automorphism
of G. The converse is also true - the inner automorphisms of G are the only orientable
automorphisms that leave invariant any decoration of fundamental domains for compact
orbifold groups G. We will prove a version of this statement in proposition 3 below. One
way to think about this is to look at the relation between orbifold group elements and curves
on the orbifold, which in turn can be interpreted as decorations lifted to the universal cover.
Thus, when a sufficiently complicated decoration of the fundamental domain is invariant
w.r.t. an (orientation preserving) homeomorphism of the underlying orbifold, the underlying
homeomorphism must be isotopically trivial in the orbifold because it fixes all curves and
therefore orbifold elements. This means that it corresponds to an inner automorphism ofG by
Theorem 2 below. In case of noncompact orbifolds, this statement is only true for geometric
automorphisms.

Definition 4 We call an automorphism α of an orbifold group Γ geometric, if there exists
a homeomorphism f of H2 that is Γ fiber-preserving w.r.t. the universal covering of the
orbifold by H

2 (or a totally geodesic subspace thereof in case of boundaries) and induces α

via α(γ ) = f γ f −1, where γ ∈ Γ ⊂ Iso(H2). Equivalently, an automorphism is geometric
if it is induced by a homeomorphism of the orbifold associated to Γ .

Any equivariant tiling corresponds to a decoration of an orbifold, and combinatorial equiv-
alence between tilings means that there is a homemomorphism of H2 that maps the tilings
to each other and induces a homeomorphism of the orbifolds. Such a homeomorphism must
map boundary components to boundary components, cone points to cone points of the same
order, mirror boundaries to similar mirror boundaries, and punctures to punctures. Therefore,
combinatorially equivalent tilings are never related by nongeometric automorphisms. It turns
out that type-preserving automorphisms are closely related to geometric automorphisms as
we shall see more precisely in Theorem 2.

Summarizing, we are not interested in the full group of outer automorphisms, because in
the general case of orbifolds with boundaries or punctures, the designation of the type of the
generator as a hyperbolic translation or a boundary hyperbolic transformation is important to
us. Note also that while orientation is a geometric notion, there is an algebraic analogue [66]
that captures the intuition of the geometric notion, so it makes sense for us to talk about the
orientation of automorphisms of an abstractly defined hyperbolic orbifold group, without
a specific realization of an orbifold as a group of isometries in H

2. Once expressions for
decorations in terms of geometric generators are known, the original surface decorating
problem reduces to the study of the group of outer automorphisms of a hyperbolic orbifold
symmetry group.

We are now prepared to formulate a result that highlights the importance of the 2D setting.
The Mostow rigidity theorem implies that the deformation space of finite volume hyperbolic
structures on an orbifold of dimension ≥ 3 is a singleton. In particular, Out(O) is trivial and
once we have chosen generators for the symmetry group, there is no way to obtain other
generating sets via a geometric automorphism. In effect, this means that the combinatorial
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tiling theory for such non-simply connected hyperbolic manifolds is the same as classical
combinatorial tiling theory, which does not take into account different sets of generators
and all possible isotopy classes of tilings can be attained by randomly choosing points w.r.t.
which one produces the Dirichlet fundamental domain.

5 Themapping class group of an orbifold

Our goal is to classify all sets of geometric generators for hyperbolic orbifold groupsπ1(O) ⊂
Iso(H2) that lead to different tilings when decorated in a fixed way, according to D-symbols.
Moreover, we want to investigate rigorously in what sense this construction of tilings from
generators gives rise to a unique tiling. We assume some working knowledge of MCGs of
classical surfaces [23]. We now introduce the mapping class group (MCG) of orbifolds and
prove fundamental results facilitating its applications to tiling theory.

Let O be a not necessarily orientable hyperbolic 2-orbifold, possibly with finitely many
punctures and some boundary components. Denote by O its underlying topological surface
with weighted marked points at conical singularities of order equal to the assigned weight.
Punctures can be treated as part of O by assigning the weight label ∞, see Sect. 2. Every
mirror inO represents part of a boundary component in O , corresponding to the set of points
in its singular locus. Now, similar to conical singularities, we label the mirror boundary
components according to their type, which is essentially given by its corresponding sub-
string of the Conway symbol for π1(O). This essentially corresponds to marking the corner
points of a miror with a label according to substrings of the Conway symbol. Given such a
substring of a symmetry group’s Conway symbol that designates a mirror boundary compo-
nent, it is possible to cyclically permute the numbers in the string and, moreover, to reverse
their cyclic ordering in the presence of a crosscap without changing π1(O). Even without a
crosscap in the symmetry group, one may reverse the cyclic orders for all mirror boundaries
simultaneously [13]. Given such an equivalence class of substrings of a Conway symbol with
representative �abc . . . d , place a pointmarked by an a on the boundary and continue inserting
the points bc . . . d counterclockwise on the boundary, producing a labelled boundary.

We call O together with its labels the labelled underlying surface of O. Let Σ be the
singular locus ofO, i.e. the (not necessarily isolated) branch point set of the coveringH2 →
H

2/π1(O) and denote O0:=O − Σ. Note that O and O0 are orientable if mirrors are the
only orientation reversing features of O. We can picture O0 as embedded in a surface with
usual boundary components in place of the mirror components.

We consider Hom(O), the group of homeomorphisms of O that leave invariant the fea-
tures of O , i.e. do not change the weight assigned to marked points, map punctures to
punctures, other boundary components to other boundary components and mirrors to mir-
rors of the same type, meaning that we require the homeomorphisms to map the marked
points on mirror boundaries to marked points on mirror boundaries with the same label,
which guarantees that the mirrors in-between them get mapped accordingly. We will assume
the homeomorphisms to preserve the orientation of an orientable orbifold and point out the
distinction only where there is ambiguity. Endowing Hom(O) with the compact-open topol-
ogy turns it into a topological group. Denoting by Hom0(O) the connected component of
the identity in Hom(O), we define the mapping class group (MCG) of the orbifold O as
Mod(O):=Hom(O)/Hom0(O). In other words, Mod(O) is the group of isotopy classes
of the homeomorphisms in Hom(O), where at every step of an allowed isotopy the cor-
responding map is in Hom(O). It is possible for an element of Hom(O) to map a mirror
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boundary component to itself in a nonisotopically trivial way. For example, when O has a
mirror boundary component labelled by �abcdabcd , then the homeomorphism that twists
the boundary half-way around itself is an element of Hom(O) − Hom0(O). For boundary
components that are not mirrors, in contrast to standard ways of defining theMCG, for which
homeomorphisms are required to fix boundaries pointwise [23], this means that all homeo-
morphisms and isotopies can twist around the boundary. For any [g] ∈ Mod(O) that does
not permute boundary components, there is thus always a representative f ∈ Hom(O) that
fixes the boundary pointwise if g is orientation preserving [18, Theorem 5.6]. There is thus
no difference in how nonmirror boundaries and punctures are treated topologically. There is
a well-known way to relate the two ways of defining MCGs for (orientable) surfaces with
boundaries [23, Proposition 3.19]. One of the advantages of defining MCGs that fix bound-
aries pointwise in other contexts is that MCGs of subsurfaces can be related more easily to
subgroups of the MCG of an ambient surface because one can extend homeomorphisms that
fix boundaries.

The following is based mainly on ideas from [48] and [27], whose results we generalize
and make precise. The MCG is usually defined using homotopies instead of isotopies. For
orientable O, [48, Lemma 2] shows that f ∈ Hom(O) is homotopic in O0 to the identity
if and only if it is isotopic in Hom(O) as defined above. Now, the arguments in the proof of
the lemma are based almost exclusively on results by Epstein in [18], whose results are also
proved for nonorientable surfaces and not necessarily hyperbolic ones. All ordinary boundary
components of O are disjoint from those with mirrors. Therefore, all homeomorphisms that
are homotopic to the identity on mirror boundary components are treated in the same way as
boundary components but disjointly and the proof remains correct word for word. Thus, we
have

Lemma 1 Let f , g ∈ Hom(O) be such that they are homotopic on mirror boundary compo-
nents. Then [ f ] = [g] ∈ Mod(O) if and only if f and g are homotopic in O0.

This lemma illustrates that mirror boundaries require a slightly different treatment from other
aspects of the MCG.

Let f be a representative of an element of Mod(O) that maps a single mirror boundary
component m to itself nontrivially but is otherwise isotopically trivial, i.e. is supported in
a neighborhood of m. By definition, m can be interpreted as a polygon with edges corre-
sponding to mirrors. Then, f corresponds to a finite number of Dehn twists around m and
possibly a reflection, acting on the constituent mirrors. In O0, m corresponds to a bound-
ary component, and we can talk about the orientation of this component, given locally in a
suitable neighbourhood of m. For example, a mirror with label �abccba admits a nontrivial
homeomorphism that corresponds to a reflection that reverses the orientation of the bound-
ary underlying m and therefore the orientation of the curve λ that goes around m once. In
particular, this homeomorphism of O is generally not supported in a small neighbourhood
of m, since such an orientation reversing homeomorphism maps the curve going around m
to the inverse curve in π1(O), which can only leave the global relation invariant if it also
changes other generators for sufficiently complicated orbifolds. The subgroups of orientation
preserving elements of any subgroup of the dihedral group are well-known to be cyclic. In
particular, there exists an element c of Hom(O) that is supported in a neighbourhoodU ⊂ O
of m that generates all nontrivial orientation preserving homeomorphisms of U that leave m
invariant as a set. All homeomorphisms that act trivially on m clearly commute with c.

It is easy to see that c is nontrivial when interpreted as an element in Mod(O). By consid-
ering curves that touch mirror boundary curves and lift to curves that cross the corresponding
mirror boundaries in the universal covering space,we also see that all powers of c are generally
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distinct in Mod(O). Note though, that there is a smallest3 integer k such that ck corresponds
to a Dehn twist Tλ around m. In particular, Tλ in Mod(O) generally depends on λ and it can
happen that Tλ has finite order, if λ does.

We refer to any element in the group generated by c associated to a mirror boundary as
a mirror twist. It is known that MCGs have solvable word problem and are finitely gener-
ated [23]. The proof, using Alexander’s method, that classical MCGs have solvable word
problem [23] generalizes to the case of orbifold MCGs.

Assume we are given a generating set containing all mirror twists associated to mirror
boundaries and only elements of Mod(O0) otherwise. Then we shall refer to any homeo-
morphism that can be expressed without mirror twists as not containing mirror twists. These
form a subgroup F .

As a consequence of Lemma 1, the subgroup of Mod(O) that corresponds to homeomor-
phisms that do not include the elements c for the mirror boundary components, but may
permute allowed boundaries, is a finite index subgroup of the classical MCG Mod(O0) of
O0. Note that Mod(O0) can permute all boundary components and punctures.

We choose base points on every mirror boundary component and a set of curves with one
curve for each mirror base point that bounces off the base point before going back to the
base point in the orbifold, encircling nothing else. Using these, we can detect whether or not
a homeomorphism that permutes boundary components includes twists or not by looking
at how these curves get mapped to similar curves, and how the base point changes. Now,
if an isotopy class of homeomorphisms f of O not containing mirror twists permutes the
boundary components m1 and m2, each with corresponding isotopy class of generators of
mirror twists c1 and c2 as above, then we see that f ◦ c1 = c2 ◦ f . This means that the
subgroup T of Mod(O) generated by mirror twists around the mirror boundaries, is normal
in Mod(O). Moreover, we find that the short exact sequence

1 → T → Mod(O) → Mod(O)/T → 1

splits, since clearly F ∩ T = {e} and Mod(O) = FT . Since the twists around the individual
boundaries commute, T is isomorphic to Z

s for some s and Mod(O) is a split extension of
a finite index subgroup of the mapping class group of O0.

Different versions of MCGs, including some classes of orbifolds, have received consider-
able attention in the literature. As far as we know, the above is the first instance of a discussion
of elements of the MCG of O that act nontrivially on mirror boundaries.

Let Γ = π1(O), with canonical projection map p : H
2 → O = H

2/Γ . Consider a
connected component Z ofH2 − p−1(Σ), where Σ, as above, denotes the singular locus of
O. Then p : Z → O0 is a non-branched and regular cover of connected topological spaces.
Furthermore, π1(O0) has generators Xi corresponding to curves around the isolated points
of the singular locus. Choose base points z0 and x0 for Z and O0 such that p(z0) = x0, so
we can talk about concrete subgroups of the fundamental groups involved.

By standard covering space theory [30, Proposition 1.39], the group of deck transforma-
tions Γ̃ of the regular cover p : Z → O0 and π1(O0) are related by Γ̃ = π1(O0)/π1(Z).
Here, we interpret π1(Z) as a (normal) subgroup of π1(O0) in the usual way, i.e. under the
push forward of p� as p�(π1(Z)). Clearly, π1(Z) equals the normal closure in π(O0) of the
elements Xoi

i , where the oi are the orders of the Xi inO, since these are exactly the relations
imposed on the generators of π1(Z) when passing over to π1(O0)with p. Let f ∈ Hom(O),

then, by definition, f : O0 → O0 preserves the order of branching of p. We therefore have

3 This is meant as having the smallest absolute value.
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that f�(X
oi
i ) ∈ π1(Z). This is exactly the criterion [30, prop. 1.33] for the map f ◦ p to lift

to a continuous map f1 : Z → Z . Similarly, we see that f1 is actually a homeomorphism.
We will check that f1 can be uniquely extended to the closure of Z in H

2 and then, if
necessary by reflections, to a map f ∗ on all of H2 (or a totally geodesic subspace thereof,
depending on whether O has a boundary). Take a sufficiently small neighbourhood U of
one of the punctures in Z . Then f1(U ) has infinite cyclic fundamental group, meaning it is
either a punctured disk or an annulus in H2. The case of the annulus cannot be true, because
Z\ f1(U ) = f1(Z\U ) is connected. Note for this that the annulus cannot have one boundary
component be equal to a boundary component of Z , by construction. Thus, f1 permutes the
punctures. Similarly, we see that f1 permutes the boundary components of Z and can thus
be extended to the closure of Z . Then, to obtain f ∗, we impose the reflections across the
boundaries of Z that correspond to mirrors. That this is well-defined follows from f1 being
restricted to preserve the types of mirrors. The extension is unique and the only ambiguity
here stems from lifting f to f1, but two such lifts are related by a deck transformation in Γ .

We obtain an automorphism α of Γ defined by α(γ ):= f ∗γ ( f ∗)−1. Note that α is defined
only up to conjugation by elements in Γ . By construction, f ∗ preserves the designated types
of elements of Γ , and is therefore type-preserving. The above construction of f ∗ is based on
the ideas of [48], pages 499 − 500.

Belowwewill need the following theorem,which is proved in [49] for orientable orbifolds.

Theorem 1 Suppose f ∈ Hom(O) and assume that f does not contain any mirror twists.
Then there is a lift f ∗ such that the induced automorphism α is the identity automorphism
of π1(O) if and only if f is homotopic in O0 to the identity mapping.

We will see below in the proof of Theorem 2 that mappings of O that are homotopic in O0

and onmirror boundaries yield the same automorphism of Γ , which deals with one direction.
The proof of the other direction requires careful study of the proof in [49]. The proof works in
exactly the same way as presented there, but we need to exchange one of the key ingredients.
The following lemma replaces Lemma 1 in [49].

Lemma 2 Suppose S is a Riemann surface (possibly obtained, like O0, from a surface with
features O) and g is a homeomorphism of S. Let α be a simple closed curve based at 0 that
is disjoint from the boundary. If there exists an arc c from a point 0 ∈ S to g(0) such that α
is homotopic to cg(α)c−1 for all such α, then g is homotopic in S to the identity.

In [3], the statement of Lemma 2 for orientable, closed surfaces is proved using hyperbolic
geometry of the surface in H

2. All of the arguments used there also work for the surfaces
with features that we study, as long as we keep in mind the following. First, the construction
of the lift of a map f in [3, p. 20] has to be replaced by the construction of f ∗ given above.
Secondly, the orbifold fundamental group π1(O) is generated by based simple closed curves
in O0, similar to the classical case. Note that by isotoping appropriately, we can assume that
the basepoint is fixed under homeomorphisms of O0. Lemma 1 then yields the statement of
Theorem 1.

Note also that using the arguments found in [66, p. 152], one can prove that one obtains
orientation-reversing automorphisms of a group by orientation-reversing lifts of orientation-
reversing homeomorphisms.

The MCG of a space is often studied by looking at the action of the homeomorphism
classes on isotopy classes of curves. For example, letO be an orbifold with symmetry group
G:=π1(O) = 2222a, with a ≥ 2, then Mod(O) is one of two different types of groups.
If a = 2, Mod(O) = Mod(S5), the usual MCG of the 5-punctured sphere with punctures
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p1, . . . , p5 corresponding to the fixed points of hyperbolic rotations r1, . . . , r5. If a > 2,
Mod(O) is the subgroup ofMod(S5) corresponding to those homeomorphism classes that fix
the conical singularity a. The set of elements of finite order inG is characterisic, i.e. preserved
as a set under automorphisms. If, moreover, an automorphism α : G → G is type-preserving
and orientation preserving (see below for an algebraic definition of orientation preserving),
α(ri ) = tr j t−1 for some t ∈ G [66]. It is impossible that this kind of transformation sends
an elliptic transformation to a nontrivial power of itself. Indeed, assume that rd = tr t−1 for
some d > 1. Then rd−1 = tr t−1r−1 = [t, r ] is elliptic. However, the commutator of an
elliptic transformation with any other transformation cannot be elliptic [26, pp. 191-193].
Therefore, mapping an elliptic transformation to a conjugate of a nontrivial power of itself
can never yield an automorphism of the whole orbifold group, even if it does yield one of the
local group. This generalizes an observation made in [21] and [22], and discussed in more
detail and illustrated with pictures in [19], whereby the placement of rotational centers for
generators in certain domains of H2 is prohibited.

As mentioned above, automorphisms of π1(O), whereO is an orientable orbifold, can be
assigned an orientation with the expected property that all orientation preserving automor-
phisms form a subgroup of index 2 in all automorphisms [66].Moreover, orientation reversing
automorphisms are exactly those automorphisms that change the left hand side of the global
relation (1) to a conjugate of its inverse, whereas orientation preserving automorphisms map
it to a conjugate of itself. We denote with Aut+(π1(O)) the subgroup of orientation and type-
preserving automorphisms, which contains all inner automorphisms, and with Out+(π1(O))

the corresponding subgroup of outer automorphisms. The well-known Dehn–Nielsen–Baer
Theorem [23, Theorem 8.1] can be generalized [48] to show that

Mod(O) ∼= Out+(π1(O)).

We will prove the following, in much the same way, by providing an explicit isomorphism.
We use the ideas outlined in a different context in a similar proof [27] as inspiration.

Theorem 2 Let O be a nonorientable hyperbolic orbifold, with nonorientable underlying
topological space. Then the MCG Mod(O) defined above is isomorphic to Outt (π1(O)),
the group of type-preserving outer automorphisms. If O is orientable, possibly containing
mirrors, then the orientable MCG Mod(O) is isomorphic to Out+(π1(O)), the group of
orientation and type-preserving automorphisms.

Proof The orientable case without mirrors has already been proven [48], so we focus on
the other cases. Define a morphism ϕ : Mod(O) → Outt (G) by ϕ( f )(γ ):= f ∗γ ( f ∗)−1 for
γ ∈ G:=π1(O), where f ∗ is the lift of f defined above. Notice that the ambiguity of f1 in
the construction of f ∗ means that ϕ is only defined up to inner automorphisms. Two isotopic
maps in Hom(O) yield the same image in Outt (G), so ϕ is well-defined on isotopy classes.
Indeed, assume that f is isotopic to the identity and fixes a point x0 ∈ O0. The idea is that an
isotopy of f gives rise to a path of homeomorphisms, which defines a path of automorphisms,
as follows. Consider the closed loop λ : [0, 1] → O based at x0 that corresponds to the path
that x0 takes under the given isotopy ϕt . Then, by mapping a closed loop l based at x0 to
the concatenation of first following λ until the point ϕt (x0), then going around the deformed
curve ϕt (l) and back to x0 along λ we see that because G and therefore its automorphism
group is discrete, the image in G must be constant, so the induced automorphism is inner.

For mirrors, note that mirror twists are isotopic if and only if they induce the same image
in Outt (G), because they are defined in terms of homotopy classes of simple closed curves
that touch the mirror boundaries. Indeed, firstly, [23, Sections 1.2.6 and 1.2.7] contains a

123



194 Geometriae Dedicata (2021) 212:177–204

discussion of how to upgrade homotopies of simple closed curves and arcs to isotopies.
These isotopies can be further upgraded to smooth isotopies [7], from which [31, Chapter 8,
Theorem 1.3] yields the result that we can extend such isotopies to isotopies of the whole
surface. Note also that mirror twists are supported in neighbourhoods of boundaries, and
can be applied appropriately after applying other homeomorphisms first without changing
the result. Note, moreover, that we can apply isotopies to all other homeomorphisms before
applying any isotopies to mirror twists, without changing the result. All in all, we have that
ϕ is indeed well-defined on isotopy classes of homeomorphisms, concluding, in particular,
the proof of the missing direction of Theorem 1.

In [47, Theorem 3], it is proved that any automorphism of a hyperbolic orbifold group
with compact codomain is realized geometrically, i.e. induced by a homeomorphism of H2.

The proof there can be extended to finite area orbifolds using the uniqueness and existence
of an extremal quasi-conformal mapping within an isotopy class of homeomorphisms of the
hyperbolic plane as given in [1, p. 59, Theorem 2]. The only difference in the proof then is
that instead of reducing to the case of a compact surface by passing over to a finite index
subgroup, by the positive resolution of the Fenchel conjecture in [8,10,24], we pass over to
the fundamental group of a possibly punctured and bordered orientable surface. This means
that instead of every automorphism being realized geometrically as in the compact case, we
obtain the statement that only the type preserving ones are realized, as this is the case for
surfaces with boundaries and punctures. This last statement, instead of using the original
Dehn-Nielsen–Baer theorem for compact surfaces, employs theorem 8.8 from [23] instead,
which on account of us allowing homeomorphisms that are not the identity on the boundary
holds for surfaces with boundary as well, as long as the automorphisms considered are type
preserving.

We thus conclude that all type preserving automorphisms of G are realised geometrically
and therefore ϕ is surjective.

For injectivity, assuming that f lifts to a homeomorphism f ∗ that induces an inner auto-
morphism, there is a lift of f ∗ that is the identity automorphism on G. Along with the above
discussion of mirror twists, Theorem 1 concludes the proof. �

While Theorem 2 is an important result, it is as of yet unclear how to use this isomorphism
in general for practical purposes. The same proof holds in the Euclidean case, where the
surjectivity of the homomorphism is true for the samebasic reasons that it is true for hyperbolic
orbifolds.4

From the proof of Theorem 2 and the fact that geometric automorphisms are type-
preserving, we also obtain the following.

Proposition 2 For a compact orbifold O without boundary hyperbolic elements and punc-
tures, every automorphism of π1(O) is realized geometrically, so the MCG Mod(O) is
isomorphic to either the group of all outer automorphisms of π1(O) or just the orienta-
tion preserving ones, depending on whether or not O is orientable.

Summarizing what this means for tiling theory, recall that we obtain tilings from a given
set of generators of the symmetry group with a fixed method by the previous Sect. 3. We now
know that two tilings produced in this way for a fixed method with a fixed set of generators
yield isotopic tilings. This is because the associated outer automorphism of the symmetry
group that fixes the set of generators must be trivial by Theorem 2. Moreover, if two sets of
generators yield the same tilings regardless of the fixedmethod for producing the tilings, they

4 The only difference is that the theorems on quasi-conformal maps in the proof of the theorem turn into
statements about affine maps.
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will be conjugate inΓ . The last statement follows simply because if two sets of generators are
distinct and not conjugate, then we can decorate the orbifold’s quotient space appropriately
with closed loops corresponding to generators and see that some of these must be changed
non-trivially when applying a non-trivial element of Mod(O).

Since combinatorial tiling theory is phrased in terms of equivariant tilings, with a pre-
scribed symmetry group, a natural question is how the isotopy classes of tilings symmetric
w.r.t. one symmetry group behave in relation to similar tilings that are symmetric w.r.t. to
another symmetry group. In particular, it is essential for our purposes to consider whether
it is possible that two isotopically distinct tilings on O yield isotopically distinct tilings of a
finite covering space. For EPINET, it is important to consider whether or not it is possible
that two isotopically distinct decorations of an orbifold yield isotopically equivalent tilings
of the TPMS. It turns out that this is impossible. In the next section we will study related
questions in some detail, by studying lifts of elements of the MCG to a covering space.

6 Lifts of mapping class groups

In an effort to relate theMCGs of some surfaces to theMCGs of covers of the surface, Birman-
Hilden theory was introduced [4,5]. The idea is the following. Given a coveringmap p : S →
X of surfaces, one may look at fiber-preserving homeomorphisms f : S → S that for all
x ∈ X map the fibers p−1(x) to p−1(y) for some y ∈ X . If this is the case, then f induces a
homeomorphism on X . Conversely, if a homeomorphism f on X lifts to a homeomorphism
f̃ on S, f̃ must be fiber-preserving. If for any two fiber-preserving homeomorphisms on S
that are homotopic as maps on S, there is a homotopy passing only through fiber-preserving
homeomorphisms, then we say that p has the Birman-Hilden property. The importance of
this notion is that the MCGs for surfaces are defined through homotopies and in order to
relate the MCGs of both spaces, it is useful to know when only isotopic homeomorphisms
of X lift to isotopic homeomorphisms of S.

As such, Birman-Hilden theory concerns itself with maps induced on X by isotopy classes
of maps on S. This leaves open the question of the existence of a lift of a representative
of an isotopy class of maps. We will also investigate the question of existence of lifts of
homeomorphisms of orbifolds to their covering spaces. It is known that if p is a finite-sheeted
branched regular covering map of orbifolds, then p has the Birman–Hilden property [67,
Theorem 11.1]. We will derive this result somewhat differently. The following discussion is
cast for hyperbolic orbifolds. For an assessment of the Euclidean case, refer to [67, §9].

Let p : O1 → O be a covering map of orbifolds. As usual, we present the hyperbolic
orbifold O, possibly with punctures and non-empty boundary, as the quotient of (a totally
geodesic subspace of) H2 by Γ , where Γ = π1(O) is a discrete subgroup of Iso(H2). We
have that H2 → H

2/Γ is a regular branched cover, where the branch locus is a (possibly
non-discrete) nowhere dense set in O. Similarly, we have O1 = H

2/Γ1 and we naturally
have Γ1 ⊂ Γ , with each of these groups acting as a group of deck transformations on the
universal cover, see also Sect. 2. We are only interested in finite covers, which translates to
Γ1 having finite index in Γ , equal to the degree of p. For closed orientable surfaces, it is
well-known that any finite index subgroup of the fundamental group is isomorphic to the
fundamental group of a covering surface, whereas any infinite index subgroup is free [63,
Sections 4.2.2 and 4.3.7].

We will start the subsequent discussion with results whose proofs do not, as far as we
know, appear in the literature but can be carried out with well-known methods in the field.
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Homeomorphisms of H2 satisfying f Γ f −1 = Γ yield geometric automorphisms of Γ ,
by definition. This is equivalent to f inducing a homeomorphism of the orbifold H2/Γ . On
the other hand, any homeomorphism f ∈ Hom(O) of the orbifoldO = H

2/Γ lifts to a home-
omorphism f̃ of the universal covering space p : H2 → H

2/Γ that is Γ fiber-preserving.
To see this, refer to the discussion in the previous section where we explicitly construct such
lifts. Recall, furthermore, that Theorem 2 implies that geometric automorphisms are exactly
those that are type-preserving.

Corollary 1 Ageometric automorphism of an orbifold groupΓ that induces an automorphism
on an orbifold subgroup S ⊂ Γ induces a geometric automorphism on S.

For the following theorem we will mostly follow the proof of Theorem 8.2 in [67], but
produce a stronger result.

Theorem 3 Let G be the symmetry group of a hyperbolic orbifoldO and G1 ⊂ G a subgroup
of finite index. Then a geometric automorphism α of G1 is induced by a G fiber-preserving
homeomorphism of H2 iff α is induced by an automorphism α̂ of G.

Proof If α is induced by a G fiber-preserving homeomorphism f , then f induces a homeo-
morphism on the orbifold H2/G as well as, by assumption, on H2/G1, and thus induces an
automorphism α̂ of G that stabilizes G1 in G, which proves one direction.

For the other direction, first consider the situation for the at most index 2 subgroup Ñ ⊂ G
that contains only orientation preserving elements. We further pass to a finite index normal
subgroup N ⊂ Ñ of G without torsion elements, which we can take to be the fundamental
group of a possibly punctured and bordered orientable surface [8,10,24].

Now let α be induced by a homeomorphism h of H2 such that α(n) = h ◦ n ◦ h−1 ∀n ∈
N , which w.l.o.g. can be chosen to be the uniquely determined extremal quasi-conformal
mapping of H2 satisfying this relation.

Now define for arbitrary g ∈ G

ϕ = α̂(g)hg−1.

For n ∈ N we obtain

ϕ(n) = α̂(g)hg−1(n) = α̂(g)h(g−1ng)g−1 = α̂(g)h(g−1ng)g−1

= α̂(g)α(g−1ng)hg−1 = α(n)α̂(g)hg−1 = α(n)ϕ.

The fourth equality uses g−1ng ∈ N , since N is normal. Now, α(n) and n act as isometries
on H

2, hence leave the dilatation of ϕ invariant, so by the uniqueness of extremal maps we
obtain ϕ = h and thus α̂(g) = h(g)h−1. Since g was arbitrary, h preserves G-fibers, which
proves the theorem. �

The next is a generalization of [48, Lemma 11].

Lemma 3 If some automorphism α of the hyperbolic orbifold group G induces an automor-
phism α|H of a finite index subgroup H ⊂ G, then there is only one extension of α|H to G,
i.e. if α|H = idH then α = idG .

Proof Let g ∈ G. As a finite index subgroup of G, H contains a finite index subgroup N
that is normal in G. Then for any n ∈ N we have gng−1 = α(gng−1) = α(g)nα(g)−1, i.e.
g−1α(g) commutes with every element of N . Since N is a hyperbolic orbifold group itself,
we have g = α(g), because a nontrivial element in G commutes only with elements of a
cyclic subgroup it is part of [26]. Since g was arbitrary, α = idG . �
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We now give a short proof of the Birman-Hilden property for general orbifold groups,
which is somewhat different than that in [67].

Proposition 3 Let S ⊂ G be a finite index subgroup of the hyperbolic orbifold group G. If
a G fiber-preserving homeomorphism ϕ of H2 is S-fiber isotopic to the identity, then ϕ is
G-fiber isotopic to the identity.

Proof By assumption,ϕ induces an automorphismα ofG, which induces idS on the subgroup
S, so by Lemma 3 α = idG , which by Theorem 2 implies that ϕ is G-fiber isotopic to the
identity. �

An important technical consequence of the Birman-Hilden property for isotopic tiling theory
is that two sufficiently complicated tilings that arise from decorations w.r.t. a non-conjugate
pair of sets of generators for the symmetry group Γ with orbifold O are never isotopic
in S, where S is any hyperbolic surface with symmetry group Γ . Indeed, two sufficiently
complicated decorations from a non-conjugate pair of sets of generators forΓ are isotopically
distinct in H

2/Γ , so by Theorem 2 the map in Mod(O) exchanging these decorations must
be non-trivial. Now, by proposition 3 above, as tilings of the Riemann surface S that finitely
covers H2/Γ , the two tilings, even if they are related by a homeomorphism of S, cannot be
related by an isotopy in S.

Let O1 → O2 be a finite covering of orbifolds, with fundamental groups G1 and G2

respectively, with G1 ⊂ G2. Then a geometric automorphism of G1, induced by a map f
such that f G1 f −1 = G1, is extendible to a geometric automorphism of G2, i.e. a home-
omorphism of O2, iff f satisfies f G2 f −1 = G2. Consider the subgroup L ⊂ Hom(O2)

of homeomorphisms of O2 that lift to homeomorphisms on O1 and set A:=Hom(O2)/L.

Two elements f L, gL ∈ A are equal iff f g−1 ∈ L. This implies that the induced automor-
phisms A f , Ag of G2 satisfy A f (G1) = Ag(G1). Said in another way, there are as many
equivalence classes in A as there are isomorphic versions of G1 in G2 that get exchanged by
automorphisms of G2. Now, A f (G1) has the same index in G2 for all f . Since G2 is finitely
generated, there are only a finite number of subgroups in G2 of a given index, so we obtain
the following.

Proposition 4 LetO1 → O2 be a finite covering of orbifolds and denote byL the subgroup of
homeomorphisms inHom(O2) that lift to homeomorphisms ofHom(O1). Then there are only
finitely many homeomorphism classes in Hom(O2)/L. In particular, there are only finitely
many topologically distinct symmetric graph embeddings into a surface.

Since there is only a finite number of groups that are possible symmetry groups of a given
hyperbolic surface, proposition 4 also proves that there are only finitely many topologically
distinct ways of symmetrically embedding any graph on a hyperbolic surface, which is a well
known statement.

The contents of this section open up possible investigations into more refined questions
relating to isotopic tiling theory on a hyperbolic Riemannian surface S. For example, by the
results of this section, in particular Theorem3 andLemma 3,we see that elements of theMCG
that are supported in a particular subsurface give rise to automorphisms that leave invariant
a subset of the generators. It is well-known that the MCG of any surface has generators that
are supported in subsurfaces [28].

The results furthermore add to the duality of the description of the MCG as a group of
geometric transformations and as a group of algebraic transformations. In particular, the
following important related questions can be examined from algebraic or geometric points
of view.
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– Which isotopically distinct tilings with the same symmetry group G are related by a
homeomorphism of S?

– Howdoes an element of theMCGof an orbifold relate to theMCGof a covering orbifold?

Note that in most cases these questions do not have a generic answer and depend on the set
up, i.e. the conformal structure5 on S and the tiling.

7 Finite subgroups of theMCG

In this section, we prove results on finite subgroups of the MCG of an orbifold. In particular,
we present a proof of theNielsen realization problem for orbifolds. Theorem2 implies that the
MCG essentially does not depend on the orders of the torsion elements of the orbifold group
and as a result, abstract results on MCGs are sometimes useful for applications. Note that
in our definition of the MCG, where homeomorphisms are allowed to change the boundary,
surfaces with boundary do not necessarily have torsion freeMCGs, in contrast to the classical
situation [23, Corollary 7.3].

An important technical aspect of the EPINET enumerative project is that some isotopically
distinct tilings of the embedded hyperbolic surface S in question are related by finite order
isometries of the surface that lift to symmetries of R3. When producing nets in R

3, one
often only wants one representative of these. A realization of O as a quotient space of H2

with symmetry group G:=π1(O) ⊂ Iso(H2) induces a metric and conformal structure onO.
Before discussing the most general results, we will first explain the set-up and problem.

A representative of f̂ ∈ Mod(O) lifts to a transformation f on H
2. Suppose f acts as

an isometry of H2. Clearly, f satisfies f g̃ f −1 ∈ G, ∀g̃ ∈ G so, since f is an isometry,
f ∈ N (G), the normalizer of G in Iso(H2). Now, suppose that f ∈ Iso(H2) acts trivially
by conjugation on G. Then, it would have to fix all of the fixed points on the unit circle at
infinity of the hyperbolic translations in G. Every hyperbolic orbifold sits inside a surface
with at least two independent translations and therefore, h fixes at least 4 points on the unit
circle, hence must be the identity. Therefore, we see thatN (G) injects into Aut(G),whereG
itself acts as inner automorphisms ofG. Now, f G f −1 ⊂ G implies that f preservesG orbits
and therefore f induces an (anti-)conformal automorphism of the quotient space H2/G. On
the other hand, every conformal automorphism of H2/G lifts to an isometry of H2 by the
definition of the conformal structure on H

2/G. Clearly, G itself acts trivially on the space
of its orbits. Therefore, we actually get an isomorphism of groups Iso(H2/G) ≡ N (G)/G.
In particular, we see that the normalizer N (G) is discrete, since Iso(H2/G) is. Moreover,
f can be interpreted as an element of a hyperbolic supergroup of G. Note, however, that
different conformal structures of H2/G can give rise to different towers of supergroups of
G. The condition that f acts as an isometry ofH2 depends solely on the conformal structure
induced by the realization of O.

Assumewe are given a finite subgroup H ⊂ Mod(O). A natural question is whether or not
there exists a finite group H̃ ⊂ Hom(O) so that the natural projection Hom(O) → Mod(O)

restricts to an isomorphism H̃ → H . This is known as the Nielsen realization problem in the
case where O is a classical surface. It turns out that the proofs of many special cases of the
Nielsen realization problem generalize directly to our more general setting. For example, [48,
Theorem 9] establishes the positive resolution of the problem for finite solvable subgroups
of orientable MCGs without mirrors, based entirely on the proof of the classical theorem.

5 Note that we explicitly allow local coordinate changes to be antiholomorphic.
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The idea of the proof is to find a point in Teichmüller space that is fixed by the induced
action of the periodic MCG element to show the existence of a metric on O such that f
acts as an isometry, in which case its lift to H

2 does too. To make sense of this idea, one
has to introduce a version of Teichmüller space to orbifolds in terms of complex structures,
see [12,64]. The proof actually shows more, namely that for a finite order element f of
the MCG, there is a conformal structure on O, or realization in H

2, such that f acts as a
conformal map and therefore as an isometry of H2 after lifting.

With the above in mind, we turn to the general Nielsen realization problem for a given
finite subgroup of Mod(O). The positive resolution of the Nielsen realization problem for
classical surfaces [42] includes a sketch of the proof for orientable orbifolds and also a
sketch for how to generalize the results from orientable surface to nonorientable ones, but it
is unclear how to interpret it because the paper does not include a definition of the MCG of
a general orbifold. We will present a different approach here that naturally follows from of
the results of this paper and gives a complete proof of the Nielsen realization problem for
our general hyperbolic orbifold groups.

Recall first that a characteristic subgroup C of G is a subgroup that is invariant under all
automorphisms of G. This means that ϕ(C) ⊂ C ∀ϕ ∈ Aut(G) and thus also ϕ−1(C) ⊂ C,

i.e. C ⊂ ϕ(C) so that any ϕ ∈ Aut(G) induces an element of Aut(C). It is well-known that
every finite index subgroup of a finitely presented group contains a finite index subgroup that
is characteristic.

Theorem 4 For a given finite subgroup H ⊂ Mod(O) of a hyperbolic orbifold O, there is a
hyperbolic metric on O s.t. H acts as isometries.

Proof There is a finite covering ofO by a classical surface S̃ [8,10,24]. We further pass over
to a finite index subgroup G of π1(S̃) that is characteristic in π1(O). Then, since G does
not contain torsion elements, it corresponds to the fundamental group of a classical, possibly
punctured surface S. By Lemma 3, we have an injective morphism ι from Aut(π1(O)) to
Aut(π1(S)). By Theorem 3, a geometric automorphism α of π1(S) is induced by a π1(O)

fiber-preserving homeomorphism of H2 if and only if α is induced by an automorphism α̂

of π1(O), so, by Corollary 1, the image of a geometric automorphism under ι is induced
by a π1(O) fiber-preserving homeomorphism of H2. Now, given a path of π1(O) fiber-
preserving homeomorphisms ofH2 to the identity, each homeomorphism in the path induces
the identity automorphism on π1(O) by Theorem 1 and the injectivity part of Theorem 2,
and thus defines a homeomorphism of S. Therefore, ι induces a well-defined morphism
ι : Mod(O) → Mod(S). By the Birman-Hilden property in proposition 3, ι is again injective
and we can interpret Mod(O) and therefore H as subgroups of Mod(S). In particular, every
element of H corresponds to aπ1(O) andπ1(S)fiber-preserving homeomorphism.Therefore,
the subgroup G̃ of Mod(S) generated by H and the group of deck transformation of the
covering S → O is finite. The resolution of the classical Nielsen realization problem [42]
yields that G̃ ⊂ Mod(S) is realized as a group of isometries of some hyperbolic metric on S.
By construction, this hyperbolic metric on S induces one on O that is invariant under H . �


We can also express Theorem 4 as follows. For a finite subgroup H of mapping classes of
an orbifoldO, there exists a hyperbolic metric g onO induced by some realization of π1(O)

as a group of isometries in Iso(H2) such that there is a subgroup H̃ ⊂ Hom(O) so that
the projection H̃ → H induced by Hom(O) → Mod(O) is an isomorphism. Moreover, H̃
acts as isometries on O with metric g. In particular, the elements of H can be interpreted as
elements of a discrete supergroup of π1(O) in Iso(H2).
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The above discussion is important for 3Dnet enumeration, since theTPMS that account for
physically interesting tilings have finite groups of symmetries that are induced by orientable
ambient isometries in R

3 and therefore yield the same 3D structures. In such applications,
the finite order elements of the MCG are the candidates for transformations one might be
interested in disregarding.

Proposition 5 The subgroup of Mod(O) that leaves invariant the isotopy class of an equiv-
ariant tiling (T , π1(O)) is finite.

Proof This is essentially an extension of the well-known Alexander’s trick [23, Lemma 2.1],
by which a homeomorphism of the closed disk that is isotopic to the identity on the boundary
is isotopic to the identity.

Now, an equivariant tiling of H2 corresponds to a 2-cell embedding of a graph on M , i.e.
an embedding of a graph G into M for which M − G consists entirely of components that
are homeomorphic to an open disk, where M is any surface covered by H

2. Assume there
was a tiling by disks with edge graph G̃ in M̃ that gives rise to a graph G in M such that
M − G had a component C that is not a disk. Let c be a noncontractible loop in C . Now, c
cannot be contractible in M because G in M is connected. Thus, c is noncontractible in M
and corresponds to a deck transformation which is a translation. Denote by c̃ a maximal lift
of c in the universal cover M̃ . Now, c̃ cuts H2 into two pieces and is entirely contained in a
component of H2 − G̃, where G̃ is the lifted graph of G, which contradicts the assumption
on the tiling in H

2.

Therefore, a homeomorphism that leaves invariant T up to isotopies can be interpreted as
a graph isomorphism of the decoration T onO, where every smallest cycle in T bounds a disk
in the underlying topological space O of O. Now, if a homeomorphism f leaves invariant
all edges of T as sets and does not change their orientations, then by the above Alexander’s
trick, f is isotopically trivial in every disk bounded by tile edges, and therefore, everywhere
on O . Note that by construction the isotopies within every tile leave every edge invariant as
a set and we easily see that the isotopies on the boundaries can be chosen inductively for
compatibility.

Therefore, the subgroup of all elements inMod(O) that leaveT invariant can be interpreted
as a group of graph automorphisms of the graph in O that gives rise to the tiling. �


By Theorem 4 above, every finite subgroup of a MCGMod(O) has an interpretation as a
supergroup of π1(O) and therefore leaves some tiling invariant. Conversely, if a tiling T is
invariant under a group GT of MCG elements, then GT is finite and there is a realization of
the equivariant equivalence class of T that is also invariant under the supergroup containing
the elements from GT .

As an example, consider the finite orders of elements of the orientable MCG Mn of an
n-times punctured sphere, which were studied in [29] and [44]. The result is that m is the
order of an element in the MCG if and only if m divides n, n − 1, or n − 2. There exists an
intricate connection between the MCG Mn and the braid group that shows that Mn can be
generated by the standard generators of the braid group [23]. Using these generators {σi }n−1

i=1 ,
any element of finite order in Mn is conjugate to one of the following [44, Theorem 4.4]:

(σ1σ2 · · · σn−1)
k, (σ1σ2 · · · σn−1σ1)

k, or (σ1σ2 · · · σn−2σ1)
k (2)

for some integer k. In fact, the expressions in (2) yield finite order elements for arbitrary
k [44, Comments following theorem 4.2]. For k = 1, these elements have orders n, n − 1,
and n − 2, respectively.

Using these observations, one can identify the possible additional symmetry groups of
tilings with rotational symmetries as subgroups of the MCG.
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8 Summary and implications for applications

We have developed a classification of all isotopically distinct equivariant tilings of a hyper-
bolic surface S of finite genus, possibly nonorientable, with boundary, and punctured. To
analyse the situation for a given hyperbolic surface S we take the following steps. First, we
find the smallest (in terms of area) possible symmetry group of S, which corresponds to
a symmetry group G0 of the hyperbolic fundamental polygon belonging to S. This small-
est symmetry group G0 exists as a consequence of generalizations of the classical Hurwitz
theorem [52]. There are finitely many possible symmetry groups G for tilings such that
G0 ⊂ G ⊂ π1(S) because orbifold groups are finitely generated. Given such a G, we choose
a set of geometric generators. From these generators, we obtain a set of fundamental tilings
with symmetry group G as a decoration of the associated orbifold O. The decoration is
specified up to isotopy by a combinatorial description from the Delaney–Dress symbol of
the tiling. The mapping class group Mod(O) ofO naturally acts on the set of sets of geomet-
ric generators. Thus, starting from the classical Delaney–Dress symbol for the fundamental
tilingwith the starting set of generators, one obtains all other isotopically distinct fundamental
equivariant tilings with symmetry group G by repeated applications of Mod(O). For each of
the resulting fundamental tilings, we independently apply the GLUE and SPLIT operations
exactly in the same way as in the classical setting to eventually produce all equivariant tilings
with symmetry group G.

One caveat here is that in some examples it is possible to find two different sets of
generators that are nonconjugate but whose fixed method of producing a tiling results in the
same isotopy class of tilings. In such situations, the isotopy class of tiling associated to a
decoration of the orbifold is left invariant by an element of the MCG. Such a situation of
ambiguity can only occur if the decoration corresponding to the tiling is too sparse to detect
the changes the generators undergo. By proposition 5, the set of elements of the MCG that
leaves invariant an isotopy class of tilings must be finite. Another consequence of the proof
of proposition 4 is that if we colour the edges of a classical tiling to distinguish edges, then
the MCG acts with trivial stabilizers.

While G0 is the smallest symmetry group commensurate with S, this group depends
entirely on the hyperbolic finite areametric on S.Without reference to any specific hyperbolic
structure, there are many possible chains of subgroups that yield potential symmetry groups
of S. For example, the group �2226 appears as the smallest fundamental domain of the H
surface in [60]. However, this group does not appear at all as a symmetry group of the P
surface in [59]. Both surfaces are of genus 3. Also, �246 has no hyperbolic supergroups, even
though �237 is smaller.

An essential ingredient in any assignment of MCG elements to the isotopy classes of
tilings comes from the fact that our MCGs have solvable word problem. This allows an
unambiguous and complete enumeration of all isotopy classes of tilings with coloured edges
on hyperbolic Riemann surfaces by an enumeration of MCG elements. We will leave such
an enumeration, including tilings without coloured edges, and an analysis of the situation
in Fig. 1c, where the tiling in H

2 is not by closed disks, and therefore is not dealt with in
classical combinatorial tiling theory, for future endeavours.
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