
DISSERTATION

PROOF THEORY AND ALGORITHMS
FOR ANSWER SET PROGRAMMING

VORGELEGT VON

MARTIN GEBSER

ZUR ERLANGUNG DES AKADEMISCHEN GRADES

DOKTOR DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
IN DER WISSENSCHAFTSDISZIPLIN

“WISSENSVERARBEITUNG UND INFORMATIONSSYSTEME”

EINGEREICHT AN DER

MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT

UNIVERSITÄT POTSDAM

ANGEFERTIGT AM

INSTITUT FÜR INFORMATIK

PROFESSUR FÜR WISSENSVERARBEITUNG UND INFORMATIONSSYSTEME

BETREUT VON

PROF. DR. TORSTEN SCHAUB

BEGUTACHTET VON

PROF. DR. GERHARD BREWKA

PROF. DR. TOMI JANHUNEN

PROF. DR. TORSTEN SCHAUB

POTSDAM, IM OKTOBER 2011

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2011/5542/
URN urn:nbn:de:kobv:517-opus-55425
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55425

Zusammenfassung

Antwortmengenprogrammierung (engl. Answer Set Programming; ASP) ist ein Para-
digma zum deklarativen Problemlösen, wobei Problemstellungen durch logische Pro-
gramme beschrieben werden, sodass bestimmte Modelle, Antwortmengen genannt, zu
Lösungen korrespondieren. Die zunehmenden praktischen Anwendungen von ASP ver-
langen nach performanten Werkzeugen zum Lösen komplexer Problemstellungen.

ASP integriert diverse Konzepte aus verwandten Bereichen. Insbesondere sind au-
tomatisierte Techniken für die Suche nach Antwortmengen durch Verfahren zum Lösen
des aussagenlogischen Erfüllbarkeitsproblems (engl. Boolean Satisfiability; SAT) inspi-
riert. Letztere beruhen auf soliden beweistheoretischen Grundlagen, wohingegen es für
ASP kaum formale Systeme gibt, um Lösungsmethoden einheitlich zu beschreiben und
miteinander zu vergleichen. Weiterhin basiert der Erfolg moderner Verfahren zum Lösen
von SAT entscheidend auf fortgeschrittenen Suchtechniken, die in gängigen Methoden
zur Antwortmengenberechnung nicht etabliert sind.

Diese Arbeit entwickelt beweistheoretische Grundlagen und fortgeschrittene Such-
techniken im Kontext der Antwortmengenberechnung. Unsere formalen Beweissysteme
ermöglichen die Charakterisierung, den Vergleich und die Analyse vorhandener Lösungs-
methoden für ASP. Außerdem entwerfen wir moderne Verfahren zum Lösen von ASP, die
fortgeschrittene Suchtechniken aus dem SAT-Bereich integrieren und erweitern. Damit
trägt diese Arbeit sowohl zum tieferen Verständnis von Lösungsmethoden für ASP und
ihrer Beziehungen untereinander als auch zu ihrer Verbesserung durch die Erschließung
fortgeschrittener Suchtechniken bei.

Die zentrale Idee unseres Ansatzes besteht darin, Atome und komposite Konstrukte
innerhalb von logischen Programmen gleichermaßen mit aussagenlogischen Variablen
zu assoziieren. Dies ermöglicht die Isolierung fundamentaler Inferenzschritte, die wir in
formalen Charakterisierungen von Lösungsmethoden für ASP selektiv miteinander kom-
binieren können. Darauf aufbauend zeigen wir, dass unterschiedliche Einschränkungen
von Fallunterscheidungen zwangsläufig zu exponentiellen Effizienzunterschieden zwi-
schen den charakterisierten Methoden führen. Wir generalisieren unseren beweistheo-
retischen Ansatz auf logische Programme mit erweiterten Sprachkonstrukten und weisen
analytisch nach, dass das Treffen bzw. Unterlassen von Fallunterscheidungen auf solchen
Konstrukten ebenfalls exponentielle Effizienzunterschiede bedingen kann.

Die zuvor beschriebenen fundamentalen Inferenzschritte nutzen wir zur Extraktion
inhärenter Bedingungen, denen Antwortmengen genügen müssen. Damit schaffen wir
eine Grundlage für den Entwurf moderner Lösungsmethoden für ASP, die fortgeschrit-
tene, ursprünglich für SAT konzipierte, Suchtechniken mit einschließen und darüber hin-
aus einen transparenten Technologietransfer zwischen Verfahren zum Lösen von ASP
und SAT erlauben. Neben der Suche nach einer Antwortmenge behandeln wir ihre Auf-
zählung, sowohl für gesamte Antwortmengen als auch für Projektionen auf ein Subvoka-
bular. Hierfür entwickeln wir neuartige Methoden, die wiederholungsfreies Aufzählen in
polynomiellem Platz ermöglichen, ohne die Suche zu beeinflussen und ggf. zu behindern,
bevor Antwortmengen berechnet wurden.

Abstract

Answer Set Programming (ASP) is an emerging paradigm for declarative programming,
in which a computational problem is specified by a logic program such that particular
models, called answer sets, match solutions. ASP faces a growing range of applications,
demanding for high-performance tools able to solve complex problems.

ASP integrates ideas from a variety of neighboring fields. In particular, automated
techniques to search for answer sets are inspired by Boolean Satisfiability (SAT) solving
approaches. While the latter have firm proof-theoretic foundations, ASP lacks formal
frameworks for characterizing and comparing solving methods. Furthermore, sophis-
ticated search patterns of modern SAT solvers, successfully applied in areas like, e.g.,
model checking and verification, are not yet established in ASP solving.

We address these deficiencies by, for one, providing proof-theoretic frameworks that
allow for characterizing, comparing, and analyzing approaches to answer set computa-
tion. For another, we devise modern ASP solving algorithms that integrate and extend
state-of-the-art techniques for Boolean constraint solving. We thus contribute to the un-
derstanding of existing ASP solving approaches and their interconnections as well as to
their enhancement by incorporating sophisticated search patterns.

The central idea of our approach is to identify atomic as well as composite con-
stituents of a propositional logic program with Boolean variables. This enables us to
describe fundamental inference steps, and to selectively combine them in proof-theoretic
characterizations of various ASP solving methods. In particular, we show that different
concepts of case analyses applied by existing ASP solvers implicate mutual exponential
separations regarding their best-case complexities. We also develop a generic proof-
theoretic framework amenable to language extensions, and we point out that exponential
separations can likewise be obtained due to case analyses on them.

We further exploit fundamental inference steps to derive Boolean constraints charac-
terizing answer sets. They enable the conception of ASP solving algorithms including
search patterns of modern SAT solvers, while also allowing for direct technology trans-
fers between the areas of ASP and SAT solving. Beyond the search for one answer set
of a logic program, we address the enumeration of answer sets and their projections to
a subvocabulary, respectively. The algorithms we develop enable repetition-free enu-
meration in polynomial space without being intrusive, i.e., they do not necessitate any
modifications of computations before an answer set is found.

Our approach to ASP solving is implemented in clasp, a state-of-the-art Boolean con-
straint solver that has successfully participated in recent solver competitions. Although
we do here not address the implementation techniques of clasp or all of its features, we
present the principles of its success in the context of ASP solving.

i

ii

Acknowledgments

Before I start to forget anyone, note that these acknowledgments are the last piece written
after improving parts of this thesis over and over again. The journey does not end here,
and certainly a lot of what is written may be done much simpler and elegant in a not so
far future. Therefore, I first of all thank the considerate reader for paying attention: for
you, I spent so much time and effort. Special thanks go to the external referees, Gerhard
Brewka and Tomi Janhunen, for accepting the charge to review a draft of this thesis and
for providing me with many constructive comments.

Moreover, I thank my supervisor, Torsten Schaub, for his constant support, patience,
and inspiration. We jointly made a stretch of way, and it is amazing to see how far we
came up to now, already. All this would not have been possible without the brilliant work
of current and former colleagues, including: Benjamin Andres, Sylvain Blachon, Chri-
stian Drescher, Steve Dworschak, Torsten Grote, Roland Kaminski, Benjamin Kaufmann,
Arne König, Thomas Linke, André Neumann, Max Ostrowski, Orkunt Sabuncu, Marius
Schneider, Sven Thiele, and Philippe Veber. Thanks for your invaluable contributions!

I also want to thank Chitta Baral, Martin Brain, François Coste, Marina De Vos,
Jim Delgrande, Thomas Eiter, Carito Guziolowski, Antti Hyvärinen, Tomi Janhunen,
Matti Järvisalo, Tommi Junttila, Thomas Krennwallner, Joohyung Lee, Yuliya Lierler,
Vladimir Lifschitz, Jacques Nicolas, Ilkka Niemelä, Johannes Oetsch, Emilia Oikarinen,
Jörg Pührer, Anne Siegel, Hans Tompits, and Stefan Woltran for giving me the chance to
visit them.

Last but not least, I thank my family and friends for being around and supporting me
all the time. Accomplishing this thesis would not have been possible without them.

The work on this thesis has been partially supported by the German Science Founda-
tion (DFG) under grants SCHA 550/8-1/2.

iii

iv

Contents

1 Introduction 1
1.1 Contributions of This Thesis . 4

1.1.1 Further Contributions . 5
1.2 Organization of This Thesis . 6

2 Background 9
2.1 Normal Logic Programs . 10
2.2 Boolean Assignments and Nogoods . 11
2.3 Unfounded Sets . 12

3 Tableaux for Answer Set Programming 17
3.1 Tableaux for Normal Logic Programs 18
3.2 Characterizing Existing ASP Solvers . 21

3.2.1 Fitting’s Operator and Well-Founded Operator 21
3.2.2 Traditional ASP Solvers . 23
3.2.3 SAT-Based and Conflict-Driven Learning ASP Solvers 26

3.3 Generic Tableaux for Composite Language Constructs 29
3.3.1 Answer Sets for Propositional Theories 30
3.3.2 Generic Tableau Rules . 32
3.3.3 Conjunctive Bodies . 36
3.3.4 Cardinality Constraints . 39
3.3.5 Disjunctive Heads . 43

3.4 Proof Complexity . 45
3.4.1 Tableaux for Normal Logic Programs 45
3.4.2 Generic Tableaux for Composite Language Constructs 48

3.5 Related Work . 51
3.6 Discussion . 53

4 Conflict-Driven Answer Set Solving 55
4.1 Nogoods of Normal Logic Programs . 56
4.2 Ordered Assignments and Unit Propagation 59
4.3 Decision Algorithm . 61

4.3.1 Conflict-Driven Nogood Learning 61
4.3.2 Nogood Propagation . 65
4.3.3 Unfounded Set Checking . 67
4.3.4 Conflict Analysis . 71
4.3.5 Soundness and Completeness 73

4.4 Enumeration Algorithms . 76

v

4.4.1 Solution Recording . 77
4.4.2 Solution Enumeration . 80
4.4.3 Solution Projection . 84
4.4.4 Soundness and Completeness 90

4.5 Experimental Results . 93
4.5.1 Experiments on Decision Algorithm 93
4.5.2 Experiments on Enumeration Algorithms 98
4.5.3 Experiments on Projection Algorithm 100

4.6 Related Work . 104
4.7 Discussion . 106

5 Conclusions 109

A Examples 113
A.1 Example 4.10 . 113
A.2 Example 4.11 . 117
A.3 Example 4.12 . 117

B Proofs 123
B.1 Chapter 2 . 123
B.2 Chapter 3 . 126

B.2.1 Section 3.2 . 126
B.2.2 Section 3.3 . 131
B.2.3 Section 3.4 . 147

B.3 Chapter 4 . 152
B.3.1 Section 4.1 . 153
B.3.2 Section 4.3 . 156
B.3.3 Section 4.4 . 163

List of Figures 173

List of Tables 175

List of Algorithms 177

Index 179

Bibliography 181

vi

Chapter 1

Introduction

Answer Set Programming (ASP) [12] is an emerging framework for knowledge represen-
tation and reasoning.1 It integrates ideas from the fields of Non-Monotonic Reasoning
(NMR) [31], Boolean Satisfiability (SAT) [21] and Constraint Programming (CP) [201],
Deductive Databases (Datalog) [1, 215], and Logic Programming (LP) [51, 172]. Origi-
nally conceived as a declarative semantics for logic programs including negation as fail-
ure [119, 120], ASP has developed into a declarative programming paradigm offering rich
yet easy modeling languages [82, 158, 211] along with powerful off-the-shelf reasoning
engines [3, 26, 52, 95, 123, 139, 140, 141, 154, 158, 160, 167, 168, 171, 209, 218].
It meanwhile has been used in numerous application areas, such as product configura-
tion [210], decision support for NASA shuttle controllers [190], compiler superoptimiza-
tion [25], composition of Renaissance music [22], knowledge management [129], syn-
thesis of multiprocessor systems [134], reasoning tools in systems biology [62, 80, 115],
and many more.2

Declarative programming in ASP follows the principal workflow shown in Figure 1.1.
A given computational problem is represented by a logic program such that particular
models of the program, called answer sets, match the problem’s solutions. ASP allows
for solving all computational problems contained in NP (and ΣP

2) in a uniform way [206],
offering more succinct problem representations than classical logic [136, 164]. To facil-
itate knowledge representation, problem modeling and answer set computation usually
consist of two parts each. As illustrated in Figure 1.2, a problem encoding represents do-
main knowledge in terms of (schematic) rules including universally quantified first-order
variables, while a problem instance is typically provided by facts. The first component
of an ASP system, a grounder, combines encoding and instance into a propositional logic
program, and the second component, a solver, searches for answer sets. Hence, for solv-
ing a problem in ASP, a user ought to provide an encoding of domain knowledge and
facts describing an instance, while a general-purpose ASP system performs remaining
computations.

For illustration, let us consider two examples from [82]: N -coloring and Hamiltonian
cycle. Both problems apply to graphs, like the one shown in Figure 1.3. This graph
embodies an instance that can be represented by the following facts (written in the input
language of ASP grounder gringo [82, 90, 91], adopting the shorthands “..” and “;”
from the input language of lparse [211] to bundle arguments of predicates):

1See also [5, 117, 118, 161, 176, 186] for introductions to the methodology of ASP.
2See also http://www.cs.uni-potsdam.de/˜torsten/asp for an overview of ASP’s appli-

cations.

2 Introduction

Problem

Logic Program

Solution(s)

Answer Set(s)
?

-

6

Modeling Interpretation

Computation

Figure 1.1: Declarative problem solving in answer set programming.

Problem
Instance

Problem
Encoding

�� �
Grounder
Propositional

Logic Program

�� �
Solver

Answer Set(s)
6

- --
?

Figure 1.2: Basic architecture of answer set programming systems.

% Vertices
vertex(1..6).
% (Directed) Edges
edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

Given such an instance, we need to provide encodings of domain knowledge.
In N -coloring, we require adjacent vertices to be colored differently. Using 3 colors,

in the input language of gringo, such domain knowledge can be represented as follows:

% Default
#const n = 3.
% Generate
1 { color(X,1..n) } 1 :- vertex(X).
% Test
:- edge(X,Y), color(X,C), color(Y,C).

The Generate rule expresses that exactly one color must be assigned to each ver-
tex, and the Test rule eliminates colorings assigning the same color to adjacent ver-
tices. The combination of encoding and instance yields an answer set containing the
atoms color(1,1), color(2,2), color(3,2), color(4,3), color(5,1),
and color(6,3). That is, vertices 1 and 5, 2 and 3, as well as 4 and 6 share a color.
Since these vertex pairs are not interconnected by any (directed) edge, the answer set
represents a solution of 3-coloring for the given graph.

In Hamiltonian cycle, we are interested in a closed path that visits each vertex exactly
once. In the input language of gringo, this knowledge can be represented as follows:

% Generate
1 { cycle(X,Y) : edge(X,Y) } 1 :- vertex(X).
1 { cycle(X,Y) : edge(X,Y) } 1 :- vertex(Y).

3

�
��
1

�
��
3

�
��
4

�
��
6

�
��
2

�
��
5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q
Q
Qk

?

z

-

@
@
@
@I

�
�
�
��

�

9

�
�
�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Figure 1.3: A directed graph with six vertices and seventeen edges.

% Define
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
% Test
:- vertex(Y), not reached(Y).

The Generate rules express that each vertex must have exactly one outgoing and ex-
actly one incoming edge. The Define rules determine the set of vertices that can be
reached from vertex 1 (w.l.o.g., assumed to exist in every graph for the sake of simplicity)
by following edges contributing to the cycle. Finally, the Test rule eliminates answer
set candidates such that some vertex is not reached (starting from 1). The combina-
tion of encoding and instance yields an answer set containing the atoms cycle(1,2),
cycle(2,6), cycle(6,5), cycle(5,3), cycle(3,4), and cycle(4,1).
These atoms represent the Hamiltonian cycle (1,2,6,5,3,4,1) of the given graph.

Although the input languages of ASP systems include first-order variables, this thesis
limits the attention to propositional logic programs and the solving component searching
for answer sets (cf. Figure 1.2).

At the propositional level, ASP can be viewed as a relative of SAT. The Davis-
Putnam-Logemann-Loveland procedure (DPLL) [42, 43], developed about 50 years ago,
constitutes a well-known traditional approach to SAT solving. The basic outline of DPLL
is as follows:

loop

propagate // compute deterministic consequences

if no conflict then

if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable
else

backtrack // undo assignments made after last decision
flip // assign complement of last decision literal

4 Introduction

The basic idea is to combine deterministic (unit) propagation with systematic backtrack-
ing, in case of a conflict flipping the last non-deterministically assigned literal.

The search pattern of modern (industrial) SAT solvers is referred to as Conflict-
Driven Clause Learning (CDCL) [56, 179, 185], whose basic outline is as follows:

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

The major difference between CDCL and DPLL lies in the lookback techniques utilized
to recover from conflicts: CDCL applies an analyze step that strengthens the input by
adding a conflict constraint, and it also performs a backjump to a point where the conflict
constraint is unit (yields some deterministic consequence by propagation). That is, CDCL
replaces systematic backtracking by backjumping, and flips of former decision literals by
inferences due to conflict constraints.

Both the traditional (DPLL) and the modern (CDCL) approach to SAT solving have
firm proof-theoretic foundations in propositional resolution [18, 19, 197]. While DPLL
amounts to a restricted form of resolution, called tree-like, CDCL (with restarts, deliber-
ately discarding an assignment at hand in order to start from scratch) has been shown to
be polynomially equivalent to strictly more powerful general resolution.

1.1 Contributions of This Thesis

In contrast to SAT, ASP lacks formal frameworks for describing inferences conducted
by solvers, which has led to large heterogeneity in the description of algorithms for ASP
solving, ranging over solver-specific operational [3, 32, 64, 154, 209] and procedural
[122, 123, 167, 168, 218] characterizations. This complicates identifying fundamental
properties of algorithms, such as soundness and completeness, as well as formal compar-
isons between them. Hence, one part of our work is motivated by the desire to converge
the various heterogeneous characterizations of current ASP solvers’ inferences by devel-
oping common proof-theoretic foundations. The proof-theoretic perspective allows us to
state results in a general, rather than a solver-specific, way and to study inferences by
their admissibility, rather than from an implementation point of view.

Despite the close relationship between ASP and SAT, state-of-the-art lookback tech-
niques exploited in CDCL, such as backjumping, conflict-driven learning, and restarts,
were not yet established in native ASP solvers. In fact, previous approaches to adopt such
techniques [168, 200, 218] are rather implementation-specific and lack generality. Hence,
our second goal is to devise modern ASP solving procedures that facilitate the integra-
tion of advanced lookback techniques. To this end, we show that all inferences in ASP

1.1 Contributions of This Thesis 5

can be reduced to unit propagation and provide a self-contained algorithmic framework
for conflict-driven ASP solving. Beyond the basic decision problem of answer set exis-
tence, we address enumeration in two settings: enumerating entire answer sets and their
projections to a subvocabulary, respectively. In both settings, we aim at non-intrusive
extensions of a decision procedure that enable repetition-free enumeration in polynomial
space. Our approach to conflict-driven ASP solving is implemented in clasp [95, 97, 99],
an award-winning3 Boolean constraint solver with ASP as its core area.

In summary, the main contributions of this thesis are as follows:

1. We provide tableau frameworks for the construction of answer sets of normal logic
programs, show that they allow for simulating a variety of existing ASP solving
approaches, and establish exponential separations w.r.t. different concepts of case
analyses.

2. We extend our tableau methods to logic programs with aggregates [67, 209], char-
acterize inferences on cardinality constraints and disjunctions, and demonstrate the
soundness and completeness of our approach w.r.t. an established general answer
set semantics [69].

3. We characterize the semantics of normal logic programs in terms of Boolean con-
straints, develop an algorithmic framework for ASP solving by means of advanced
lookback techniques, and elaborate upon its formal properties.

4. We provide an extension of CDCL-style decision procedures to repetition-free so-
lution enumeration in polynomial space, develop an algorithm maintaining these
properties in the enumeration of projections of solutions, and demonstrate the
soundness and completeness of our enumeration methods.

The work on tableau methods (first two items above) has been conducted jointly with
Torsten Schaub. Constraint-based semantic characterizations and algorithms (last two
items above) have been devised jointly with Benjamin Kaufmann and Torsten Schaub,
and André Neumann provided valuable support in algorithms’ implementation and em-
pirical evaluation. Theoretical foundations and formal elaboration of the contributions of
this thesis are original work by the author.

Part of the results presented in thesis have been published (or are accepted for publi-
cation) in [4, 94, 95, 98, 99, 111, 112, 113],4 coauthored by the author of this thesis.

1.1.1 Further Contributions

The author has contributed to research in declarative programming, mainly in the field of
ASP, also beyond what can be presented in this thesis. Investigated subjects include:

• semantic foundations of ASP and equivalence notions for logic programs [101,
102, 103, 109, 116], jointly with Joohyung Lee, Yuliya Lierler, Torsten Schaub,
Hans Tompits, and Stefan Woltran,

3Amongst others, clasp successfully participated in the 2009 ASP competition [47] (http://
dtai.cs.kuleuven.be/events/ASP-competition), the 2009 Pseudo-Boolean competition
(http://www.cril.univ-artois.fr/PB09), and the 2009 SAT competition (http://www.
satcompetition.org).

4[111] received the Best Paper Award of the 22nd International Conference on Logic Programming
(ICLP’06).

6 Introduction

• declarative debugging methodologies for logic programs [27, 28, 106], jointly with
Martin Brain, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan Woltran,

• ground instantiation of logic programs [82, 90, 91, 114], jointly with Roland
Kaminski, Benjamin Kaufmann, Arne König, Max Ostrowski, Torsten Schaub,
and Sven Thiele,

• advanced features of clasp [53, 84, 93, 96, 97], jointly with Christian Drescher,
Roland Kaminski, Benjamin Kaufmann, André Neumann, and Torsten Schaub,

• parallelization of clasp [59, 88, 207], jointly with Enrico Ellguth, Markus Gu-
sowski, Roland Kaminski, Benjamin Kaufmann, Stefan Liske, Torsten Schaub,
Lars Schneidenbach, and Bettina Schnor,

• extensions of clasp to disjunctive programs [52] and finite-domain variables [105],
jointly with Christian Drescher, Torsten Grote, Benjamin Kaufmann, Arne König,
Max Ostrowski, and Torsten Schaub,

• incremental ASP solving [83] along with applications to stream reasoning [78],
action languages [79], automated planning [89], and finite model computa-
tion [107, 108],5 jointly with Torsten Grote, Roland Kaminski, Benjamin Kauf-
mann, Murat Knecht, Max Ostrowski, Orkunt Sabuncu, Torsten Schaub, and Sven
Thiele,

• multi-criteria optimization methods [85] along with their application to Linux
package configuration [86] and meta-programming techniques implementing com-
plex optimization criteria in ASP [92], jointly with Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub,

• application of ASP to systems biology [80, 100, 115], jointly with Carito Guzio-
lowski, Mihail Ivanchev, Arne König, Torsten Schaub, Anne Siegel, Sven Thiele,
and Philippe Veber,

• application of ASP to multiprocessor system on chip synthesis [134, 135], jointly
with Christophe Bobda, Harold Ishebabi, Philipp Mahr, and Torsten Schaub, and

• assistance in ASP competitions in 2007 [104] and 2009 [47], jointly with Stephen
Bond, Marc Denecker, Lengning Liu, Gayathri Namasivayam, André Neumann,
Torsten Schaub, Mirosław Truszczyński, Joost Vennekens, and many more con-
tributors as well as participants.

1.2 Organization of This Thesis

The main part of this thesis is organized as follows.
Chapter 2 introduces the syntax and semantics of (propositional) normal logic pro-

grams, Boolean assignments along with constraints expressed by nogoods, and an adap-
tion of the traditional concept of an unfounded set [159, 216] to our setting.

5[107] was selected as one of the two papers of the 12th European Conference on Logics in Artificial
Intelligence (JELIA’10) to be delegated to the “Large Track of Best Papers from Sister Conferences” of the
22nd International Joint Conference on Artificial Intelligence (IJCAI’11).

1.2 Organization of This Thesis 7

In Chapter 3, we provide tableau frameworks for the construction of answer sets of
logic programs. We begin with inferences specialized to normal programs and show
that existing logic programming concepts as well as ASP solving approaches can be
characterized within our framework. We then generalize our methodology and apply it
to logic programs with aggregates: in particular, we show how cardinality constraints
and disjunctions can be accommodated in our approach. Moreover, we investigate the
proof complexity of tableau methods and establish exponential separations w.r.t. different
concepts of case analyses. Finally, we discuss related work as well as the achieved results.

In Chapter 4, we characterize answer sets of normal programs in terms of their in-
duced constraints. These constraints provide the basis for developing a self-contained
algorithmic framework for conflict-driven ASP solving, incorporating advanced look-
back techniques. After considering the basic decision problem of answer set existence,
we devise novel backtracking schemes allowing for the repetition-free enumeration of
answer sets and their projections to a subvocabulary, respectively, in polynomial space.
Importantly, our enumeration algorithms are designed to be non-intrusive in the sense
that they do not interfere with the underlying decision procedure a priori, but only af-
ter solutions have been obtained. The described algorithms are implemented in clasp,
and we present some experimental results demonstrating their effectiveness. Finally, we
discuss related work as well as the achieved results.

Chapter 5 concludes the main part of this thesis. Unabridged traces of the enumera-
tion algorithms presented in Section 4.4 are provided in Appendix A. Proofs of formal
results are given in Appendix B.

8 Introduction

Chapter 2

Background

This chapter introduces (propositional) normal logic programs under answer set seman-
tics, Boolean assignments and nogoods, and unfounded sets. The answer sets of logic
programs can be viewed as Boolean assignments satisfying constraints induced by a pro-
gram, and the concept of an unfounded set [216, 159] is useful to identify such con-
straints. Unfounded sets are linked to loops [167, 156], as they provide a syntactic char-
acterization of “interesting” unfounded sets.

The outline of this chapter is as follows. In Section 2.1, we introduce the formal syn-
tax and semantics of normal logic programs. Section 2.2 defines Boolean assignments
and nogoods, which provide us with a canonical framework to represent (Boolean) con-
straints and solutions for them. In Section 2.3, we adapt the concept of an unfounded set
to the setting of Boolean assignments, and we identify fundamental properties that are
exploited in later chapters.

The background presented in Section 2.1 and 2.2 can be viewed as common knowl-
edge. The unfounded set notion developed in Section 2.3 and its properties have in parts
been presented in [4, 99, 113], coauthored by the author of this thesis.

10 Background

2.1 Normal Logic Programs

Given a denumerable alphabet P , a (propositional) normal (logic) program is a finite set
of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (2.1)

where 0 ≤ m ≤ n and each pi ∈ P is an atom for 0 ≤ i ≤ n. A literal is an atom p or
its (default) negation not p. For a rule r as in (2.1), we define the following notations:

head(r) = p0

body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} (2.2)

Atom head(r) is the head of r, and the set body(r) of literals is the body of r. We
sometimes write a rule r as head(r)← body(r). For a set B of literals, let B+ = B ∩P
and B− = {p ∈ P | not p ∈ B}. Accordingly, for body(r) as in (2.2), we get:

body(r)+ = {p1, . . . , pm}
body(r)− = {pm+1, . . . , pn}

For a normal program Π and an atom p ∈ P , we define the following notations:

atom(Π) =
⋃
r∈Π

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(Π) = {body(r) | r ∈ Π}
bodyΠ(p) = {body(r) | r ∈ Π, head(r) = p}

That is, atom(Π) denotes the set of atoms occurring in Π, and body(Π) denotes the set
of bodies occurring in Π. Furthermore, bodyΠ(p) qualifies the set of all bodies B such
that a rule p← B belongs to Π.

The semantics of a normal program Π is given by the answer sets of Π, which can
be viewed as classical models of Π (identifying rules with implications, rule bodies with
conjunctions, and not with classical negation) such that all entailed atoms are necessarily
derived by the rules in Π. In the following, we represent an interpretation by the set of its
entailed atoms. Then, a set X of atoms is a model of Π if head(r) ∈ X , body(r)+ 6⊆ X ,
or body(r)− ∩ X 6= ∅ holds for every rule r ∈ Π. The definition of an answer set,
according to [119], builds on the concept of a reduct and its least model. The reduct,
denoted by ΠX , of Π w.r.t. a set X of atoms is the following program:

ΠX = {head(r)← body(r)+ | r ∈ Π, body(r)− ∩X = ∅}

Essentially, ΠX is obtained from Π by dropping all rules whose negative body parts are
not satisfied w.r.t. X and by removing the negative literals from bodies of the remaining
rules. Note that ΠX consists of definite clauses, so that there is a unique least model
of ΠX , denoted by Cn(ΠX). Given this, X is an answer set of Π if Cn(ΠX) = X .
Beyond this “traditional” characterization of answer sets, there are plenty alternative
ones [162]. We introduce three of them in Section 2.3, 3.2, and 3.3.

Example 2.1. Consider the following normal program:

Π1 =


r1 : a←
r2 : c← not b,not d
r3 : d← a,not c



2.2 Boolean Assignments and Nogoods 11

In view of body(r1)− = ∅, we have that r1 ∈ ΠX
1 and a ∈ Cn(ΠX

1) for any set X of
atoms; furthermore, bodyΠ1

(b) = ∅ implies that b /∈ Cn(ΠX
1). Hence, for any answer

set X of Π1, it holds that {a} ⊆ X ⊆ {a, c, d}. We obtain the following reducts w.r.t.
the four candidate sets:

Π
{a}
1 =


a←
c←
d← a


Π
{a,c}
1 =

{
a←
c←

}
Π
{a,d}
1 =

{
a←
d← a

}
Π
{a,c,d}
1 =

{
a←

}
We have that Cn(Π

{a}
1) = {a, c, d} 6= {a}, Cn(Π

{a,c}
1) = {a, c}, Cn(Π

{a,d}
1) = {a, d},

and Cn(Π
{a,c,d}
1) = {a} 6= {a, c, d}. That is, {a, c} and {a, d} are the two answer sets

of Π1.

2.2 Boolean Assignments and Nogoods

A (Boolean) assignment A over a domain, dom(A), is a sequence (σ1, . . . , σn) of en-
tries σi of the form T vi or F vi, where vi ∈ dom(A) for 1 ≤ i ≤ n. An entry T v
or F v expresses that v is true or false, respectively. We refer to the variable in an en-
try σ by var(σ) = v and denote the complement of σ by σ, that is, T v = F v and
F v = T v. We sometimes abuse notation and identify an assignment with the set of
its contained entries. Given this, we access the true and the false variables in A via
AT = {v ∈ dom(A) | T v ∈ A} and AF = {v ∈ dom(A) | F v ∈ A}. We say that A
is contradictory if AT ∩AF 6= ∅; otherwise, A is non-contradictory. Furthermore, A is
total if it is non-contradictory and AT ∪AF = dom(A). In order to accommodate our
proof-theoretic and constraint-based characterizations of answer sets in Chapter 3 and 4,
respectively, for a normal program Π, we fix dom(A) to atom(Π) ∪ body(Π) in the
sequel. For instance, with Π1 from Example 2.1, the (non-total) assignments (T ∅,F b)
and (F b,T ∅) map the empty body of rule r1 to true and the atom b to false, and the
assignment (F b,T ∅,T a,T c,F {a,not c},F d,T {not b,not d}) is total.

For representing constraints, we take advantage of the concept of a nogood (cf. [45,
201]). In our setting, a nogood is a set {σ1, . . . , σm} of entries, expressing that any
assignment containing σ1, . . . , σm is unintended. Accordingly, a total assignment A is a
solution for a set ∆ of nogoods if δ 6⊆ A for all δ ∈ ∆. For instance, given the domain
atom(Π1) ∪ body(Π1) = {a, b, c, d, ∅, {not b,not d}, {a,not c}}, the total assignment
(F b,T ∅,T a,T c,F {a,not c},F d,T {not b,not d}) is a solution for the following set
of nogoods:

∆ =



{T b}, {F ∅}, {F a,T ∅}, {T a,F ∅},
{F c,T {not b,not d}}, {T c,F {not b,not d}},
{F {not b,not d},F b,F d},
{T {not b,not d},T b}, {T {not b,not d},T d},
{F d,T {a,not c}}, {T d,F {a,not c}},
{F {a,not c},T a,F c}, {T {a,not c},F a}, {T {a,not c},T c}



12 Background

Since we deal with propositional logic programs, their answer sets can be characterized
in terms of solutions for suitable sets of nogoods. Such sets of nogoods are developed in
Section 4.1.

2.3 Unfounded Sets

Unfounded sets characterize atoms that cannot be derived from a logic program, so that
they do not belong to the least model of its reduct. We below reformulate the “tradi-
tional” unfounded set definition by Van Gelder, Ross, and Schlipf [216] on the basis of
assignments, then simplify it, and finally provide fundamental properties of our simpli-
fied unfounded set notion.

To begin with, for a normal program Π and a set U ⊆ atom(Π), we define the
external bodies of U for Π, denoted by EBΠ(U), as follows:

EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r)+ ∩ U = ∅}

Observe that an external body belongs to a rule r whose head is in U , and it does not
contain any element of U in its positive body part. Hence, if head(r) ← body(r)+

belongs to ΠX for some set X of atoms, it may justify the inclusion of an atom in U ,
namely, of head(r), in Cn(ΠX). In turn, if all elements of EBΠ(U) evaluate to false
w.r.t. a model X of Π, it follows that Cn(ΠX) ∩ U = ∅.

The impact of external bodies on the least model of a program’s reduct motivates the
following adaption of Definition 3.1 in [216] to our concept of an assignment.

Definition 2.1. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
Then, we define U as a GRS-unfounded set of Π w.r.t. A if EBΠ(U) ⊆

{B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅}.

Theorem 5.4 in [216] can then be adapted as follows.

Proposition 2.1. Let Π be a normal program and A a non-contradictory assignment.
If AT ∩ atom(Π) is a model of Π, then we have that AT ∩ atom(Π) is an answer

set of Π iff U ∩AT = ∅ holds for every GRS-unfounded set U of Π w.r.t. A.

Note that Definition 2.1 does not make use of bodies assigned by A. By considering
them, we can simplify GRS-unfounded sets in the following way.

Definition 2.2. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
Then, we define U as an unfounded set of Π w.r.t. A if EBΠ(U) ⊆ AF .

Unlike the GRS-unfounded set definition, which checks for some false literal in each
external body of an unfounded set, our simplification requires the external bodies to be
assigned to false.

Example 2.2. Consider the following normal program:

Π2 =



r1 : a← not b
r2 : b← not a
r3 : c← a
r4 : c← b, d
r5 : d← b, c
r6 : d← e
r7 : e← b,not a
r8 : e← c, d



2.3 Unfounded Sets 13

For U = {d, e}, we get EBΠ2(U) = {{b, c}, {b,not a}}. Hence, U is an unfounded
set of Π2 w.r.t. A = (F {b, c},F {b,not a}), but U is not a GRS-unfounded set of Π2

w.r.t. A. On the other hand, we have that U is a GRS-unfounded set of Π2 w.r.t. B =
(F b) because the positive body literal b in {b, c} and {b,not a} is false, but U is not an
unfounded set of Π2 w.r.t. B.

The differences between GRS-unfounded sets and our simplified unfounded set no-
tion are due to mismatches between assigned atoms and bodies. To enable a comparison,
we thus define properties that restrict such mismatches.

Definition 2.3. Let Π be a normal program and A an assignment.
Then, we define A as

1. body-saturated for Π if {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅} ⊆ AF ;

2. body-synchronized for Π if {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅} =
AF ∩ body(Π).

In words, body-saturation requires that bodies containing false literals must likewise
be assigned to false; if the converse holds as well, we have body-synchronization.

Based on these properties, we now formalize the relationships between GRS-
unfounded sets and our unfounded set notion.

Proposition 2.2. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π, then we have that U is an unfounded set of Π w.r.t. A

if U is a GRS-unfounded set of Π w.r.t. A.

Proposition 2.3. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π, then we have that U is an unfounded set of Π

w.r.t. A iff U is a GRS-unfounded set of Π w.r.t. A.

Proposition 2.2 shows that any GRS-unfounded set can be turned into an unfounded
set by adding entries for bodies containing false literals to an assignment, in this way
establishing body-saturation. The stronger condition of body-synchronization is required
in Proposition 2.3 to guarantee that an unfounded set is GRS-unfounded as well.

The following example illustrates that, in general, it is not straightforward to make
an assignment body-synchronized by adding entries.

Example 2.3. Reconsider Π2 and U = {d, e} from Example 2.2, and recall that
EBΠ2(U) = {{b, c}, {b,not a}}. Also recall that U is GRS-unfounded for Π2 w.r.t.
B = (F b), but not unfounded. The reason for this mismatch is that B is not body-
saturated for Π2. When we add entries for bodies that are false to B, we obtain the up to
the order of entries unique assignment B′ = (F b,F {b, d},F {b, c},F {b,not a}). Since
EBΠ2(U) ⊆ (B′)F , we have that U is an unfounded set of Π2 w.r.t. B′. On the other
hand, U is unfounded for Π2 w.r.t. A = (F {b, c},F {b,not a}), but not GRS-unfounded.
For turning U into a GRS-unfounded set, we could extend A by F b or both F c and T a.
Hence, there are several (minimal) body-synchronized extensions of A.

In view of Proposition 2.3, we immediately derive the following from Proposition 2.1.

Corollary 2.4. Let Π be a normal program and A a non-contradictory assignment.
If A is body-synchronized for Π and if AT ∩atom(Π) is a model of Π, then we have

that AT ∩ atom(Π) is an answer set of Π iff U ∩AT = ∅ holds for every unfounded
set U of Π w.r.t. A.

14 Background

Note that the (intended) total assignments characterized further in Chapter 3 and 4
are body-synchronized and correspond to models. Furthermore, if U is unfounded w.r.t.
an assignment A, it is clear from Definition 2.2 that U remains unfounded w.r.t. any total
extension A′ of A. Hence, the requirement that U ∩ (A′)T = ∅ tells us that all atoms
of U must be false in A′. That is, unfounded sets provide means to infer atoms that must
necessarily be false.

In principle, arbitrary unfounded sets can be used to identify necessarily false atoms.
However, there are simple (structural) properties of logic programs that allow for focusing
the consideration of unfounded sets to “interesting” ones. In the remainder of this section,
we provide such properties and apply them to our unfounded set notion.

The (positive) dependency graph of a normal program Π, denoted by DG(Π), is the
following directed graph:

DG(Π) =
(
atom(Π), {(head(r), p) | r ∈ Π, p ∈ body(r)+}

)
Such a graph allows us to identify circular positive dependencies between atoms. Accord-
ing to [167], a non-empty L ⊆ atom(Π) is a loop of Π if, for every pair p ∈ L, q ∈ L
(including p = q), there is a path of non-zero length from p to q in DG(Π) such that
all vertices in the path belong to L. We denote the set of all loops of Π by loop(Π).
The main interest of loops is that they can be unfounded even if each contained atom is
(circularly) supported by some rule with non-false body.

Example 2.4. The dependency graph DG(Π2) of Π2 from Example 2.2 looks as follows:

c eda

b

q
i

q
ii

� ��
��
�*

HH
HH

HY
6

Observe that {c, d}, {d, e}, and {c, d, e} are all non-empty sets of atoms such that their
elements reach one another via (loop-internal) paths of non-zero length. Hence, we have
that loop(Π2) = {{c, d}, {d, e}, {c, d, e}}.

We now begin with our consideration of structural properties of unfounded sets. Un-
der the assumption of body-saturation, we may eliminate false atoms from an unfounded
set in order to obtain an unfounded set of non-false atoms only.

Proposition 2.5. Let Π be a normal program, A an assignment, and U an unfounded set
of Π w.r.t. A.

If A is body-saturated for Π, then we have that U \ AF is an unfounded set of Π
w.r.t. A.

Example 2.5. For instance, U = {b, d, e} is an unfounded set of Π2 from Exam-
ple 2.2 w.r.t. the body-saturated assignment A = (F {not a},F b,F {b, d},F {b, c},
F {b,not a}). Proposition 2.5 tells us that U \AF = {d, e} remains unfounded for Π2

w.r.t. A. That is, we may limit the attention to unfounded sets containing exclusively
non-false atoms.

The following is an immediate consequence of Proposition 2.5.

Corollary 2.6. Let Π be a normal program, A an assignment, and U an unfounded set
of Π w.r.t. A.

If A is body-saturated for Π and ifU 6⊆ AF , then we have thatU\AF is a non-empty
unfounded set of Π w.r.t. A.

2.3 Unfounded Sets 15

In what follows, we exploit loops to confine the consideration of unfounded sets. To
accomplish this, we introduce atom-saturation as a property dual to body-saturation.

Definition 2.4. Let Π be a normal program and A an assignment.
Then, we define A as atom-saturated for Π if {p ∈ atom(Π) | bodyΠ(p) ⊆ AF } ⊆

AF .

In words, atom-saturation requires that atoms not supported by any rule with non-
false body must be assigned to false.

Given an atom-saturated assignment, we have that every non-empty unfounded set of
non-false atoms contains some unfounded loop.

Proposition 2.7. Let Π be a normal program, A an assignment, and U ⊆ atom(Π)\AF

a non-empty unfounded set of Π w.r.t. A.
If A is atom-saturated for Π, then we have that there is some unfounded set L ⊆ U

of Π w.r.t. A such that L ∈ loop(Π).

Example 2.6. For instance, U = {d, e} is an unfounded loop of Π2 from Exam-
ple 2.2 w.r.t. the atom-saturated assignment A = (F {not a},F b,F {b, d},F {b, c},
F {b,not a}). In contrast, the only non-empty unfounded set {a} of Π2 w.r.t. the as-
signment B = (F {not b}) is not a loop of Π2, but B is not atom-saturated for Π2.

Since a logic program may yield exponentially many loops, which can be unfounded
separately w.r.t. different assignments, it is impractical to identify (arbitrary) loops a pri-
ori. However, the non-trivial strongly connected components of a dependency graph limit
the atoms that can jointly belong to (unfounded) loops.1 The fact that the consideration
of unfounded sets can be confined to non-trivial strongly connected components is an
immediate consequence of Proposition 2.7.

Corollary 2.8. Let Π be a normal program, A an assignment, and U ⊆ atom(Π) \AF

a non-empty unfounded set of Π w.r.t. A.
If A is atom-saturated for Π, then we have that there is some non-empty unfounded

set U ′ ⊆ U of Π w.r.t. A such that all p ∈ U ′ belong to the same non-trivial strongly
connected component of DG(Π).

By combining Corollary 2.6 and Proposition 2.7, we obtain the following fundament
for unfounded set handling approaches described in Chapter 3 and 4.

Theorem 2.9. Let Π be a normal program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded setU of Π

w.r.t. A such that U 6⊆ AF , then we have that there is some unfounded set L ⊆ U \AF

of Π w.r.t. A such that L ∈ loop(Π).

Regarding strongly connected components, we immediately derive the following
from Theorem 2.9.

Corollary 2.10. Let Π be a normal program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U

of Π w.r.t. A such that U 6⊆ AF , then we have that there is some non-empty unfounded
set U ′ ⊆ U \ AF of Π w.r.t. A such that all p ∈ U ′ belong to the same non-trivial
strongly connected component of DG(Π).

1A strongly connected component of a directed graph is a maximal subgraph such that its vertices reach
one another via paths. A strongly connected component is non-trivial if it contains some edge. Strongly
connected components can be computed in linear time [212] and induce a partition of vertices.

16 Background

Example 2.7. Reconsider the dependency graph DG(Π2) shown in Example 2.4, and
observe that the subgraph induced by C = {c, d, e} is the only non-trivial strongly con-
nected component. As already noted in Example 2.5, we have that U = {b, d, e} is an
unfounded set of Π2 w.r.t. the atom- and body-saturated assignment A = (F {not a},
F b,F {b, d},F {b, c},F {b,not a}). In view of Corollary 2.10, we conclude that some
non-empty subset of U ∩C = {b, d, e}∩ {c, d, e} = {d, e} is unfounded for Π2 w.r.t. A.
Furthermore, Theorem 2.9 tells us that some unfounded subset of {d, e} is a loop of Π2.
Along with loop(Π2) = {{c, d}, {d, e}, {c, d, e}} (cf. Example 2.4), it directly follows
that {d, e} is the unfounded loop contained in U . Finally, note that the set C of all atoms
belonging to the non-trivial strongly connected component of DG(Π2) is not unfounded
for Π2 w.r.t. A because {a} ∈ EBΠ2(C) \AF .

The observation that a non-trivial strongly connected component may include an un-
founded loop even if the set of all atoms in the component is not unfounded emphasizes
that strongly connected components merely provide limits by which the consideration of
unfounded sets can be confined. The unfounded sets within a component can, however,
vary between assignments and must thus be considered individually.

Chapter 3

Tableaux for Answer Set
Programming

This chapter develops proof-theoretic foundations for the construction of answer sets of
logic programs. The basic idea is to generate a binary tree, called tableau [40], whose
branches consist of a logic program along with a Boolean assignment. To this end, de-
terministic and non-deterministic tableau rules admit to extend a branch by appending
entries, leading to a single or two extended branches, respectively. A tableau calculus
is a collection of tableau rules, characterizing all tableaux that can be generated from an
initial branch by applying the rules the calculus contains.

We mainly consider tableau calculi such that the leaves of their tableaux indicate suc-
cessful or unsuccessful attempts to construct an answer set of a given logic program, and
an entire tableau represents a traversal of the search space. Viewing that applications of
deterministic and non-deterministic tableau rules amount to propagation and case analy-
ses, respectively, tableau generation is closely related to computations with DPLL-style
procedures. This relationship allows us to tightly characterize existing ASP solvers by
associating particular tableau calculi with them, in the sense that computations of a solver
correspond to tableaux of an associated calculus. Since tableau calculi characterize all
tableaux constructible by applying their rules, they allow for analyzing the (best-case)
complexities of computations with ASP solvers.

The outline of this chapter is as follows. In Section 3.1, we introduce tableau rules
for constructing answer sets of normal programs. Section 3.2 relates particular tableau
calculi to existing ASP solving approaches. In Section 3.3, we generalize our approach
beyond the class of normal programs. The (best-case) complexities of tableaux con-
structible with particular calculi are analyzed in Section 3.4. Section 3.5 and 3.6 conclude
the chapter by surveying related work and discussing the achieved results, respectively.

Parts of this chapter have also been presented in [111, 112, 113], coauthored by the
author of this thesis.

18 Tableaux for Answer Set Programming

3.1 Tableaux for Normal Logic Programs

We describe calculi consisting of tableau rules for the construction of answer sets of logic
programs. A tableau for a logic program Π and an initial assignment A is a binary tree
with the rules of Π and the entries of A at its root.1 Further entries can be generated
by applying tableau rules in the following standard way [40]: given a tableau rule and a
branch in a tableau such that the prerequisites of the rule hold in the branch, the tableau
can be extended by appending entries to the end of the branch as specified by the rule.
Note that every branch corresponds to a pair (Π,A); we draw on this relationship for
identifying branches in the sequel. Moreover, as the tableau rules we present do not take
the order of entries into account, we write assignments A as sets of entries, rather than
sequences, throughout this chapter.

For some v ∈ dom(A), we say that T v or F v can be deduced by a set T of tableau
rules in a branch (Π,A) if the entry can be generated by applying some rule in T other
than Cut (see below). We let DT (Π,A) denote the set of entries deducible by T in
(Π,A); D∗T (Π,A) represents the set of entries in a smallest branch that extends (Π,A)
and is closed under T , that is, DT (Π, D∗T (Π,A)) ⊆ D∗T (Π,A). A branch (Π,A) is
contradictory if A is contradictory, and non-contradictory otherwise; (Π,A) is complete
(w.r.t. a tableau calculus T) if it is contradictory or if A is total and DT (Π,A) ⊆ A.
A tableau is complete if all of its branches are complete. A complete tableau for a logic
program and the empty assignment such that all branches are contradictory is called a
refutation for the program (meaning that the program has no answer set).

Our tableau rules for normal programs Π are shown in Figure 3.1. For convenience,
they make use of two conjugation functions, t and f . For a literal l, define:

tl =

{
T l if l ∈ dom(A)
F v if l = not v for v ∈ dom(A)

f l =

{
F l if l ∈ dom(A)
T v if l = not v for v ∈ dom(A)

In view of this, the FTB rule in (a) expresses that truth of a rule body can be deduced
if the body’s literals hold in a branch. Conversely, if the body is already assigned to
false and all but one literal hold, the remaining literal must necessarily be false; this
contrapositive argument is formalized by the BFB rule in (b). Likewise, the tableau rules
FTA and FFB in (c) and (e) capture straightforward conditions under which an atom
must be assigned to true and a body to false, respectively. Their contrapositives are given
by BFA and BTB in (d) and (f). The remaining tableau rules in (g)–(k) are subject to
provisos. For an application of FFA in (g), deducing an unsupported atom p to be false,
(§) stipulates thatB1, . . . , Bm comprise all bodies of rules with head p. Its contrapositive,
the BTA rule in (h), is also guided by (§). The outer structure of WFN[Ω] and WFJ[Ω]
in (i) and (j), aiming at unfounded sets, is similar to FFA and BTA, yet their proviso
(†[Ω]) requires a concerned atom p to belong to some set U ∈ Ω such that B1, . . . , Bm
comprise all external bodies of U for Π. We below investigate two alternative options
for Ω: Ω = 2atom(Π) and Ω = loop(Π). Finally, (][Γ]) guides applications of the Cut[Γ]
rule in (k) by restricting cut objects v to members of Γ. For a normal program Π, we
below consider different sets Γ ⊆ atom(Π)∪body(Π).2 Note that a Cut application adds

1We do not mark the immanent validity of rules in Π by T , as rules are not assigned by A.
2The Cut rule may, in principle, introduce more general entries; this would however necessitate additional

decomposition rules, leading to extended tableau calculi.

3.1 Tableaux for Normal Logic Programs 19

p← l1, . . . , ln
tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(a) Forward True Body (FTB) (b) Backward False Body (BFB)

p← l1, . . . , ln
T {l1, . . . , ln}

T p

p← l1, . . . , ln
F p

F {l1, . . . , ln}
(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

p← l1, . . . , li, . . . , ln
f li

F {l1, . . . , li, . . . , ln}
T {l1, . . . , li, . . . , ln}

tli

(e) Forward False Body (FFB) (f) Backward True Body (BTB)

FB1, . . . ,FBm (§)
F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm (§)

TBi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

FB1, . . . ,FBm (†[Ω])
F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm (†[Ω])

TBi

(i) Well-Founded Negation (WFN[Ω]) (j) Well-Founded Justification (WFJ[Ω])

(][Γ])
T v | F v

(k) Cut (Cut[Γ])

(§) : p ∈ atom(Π),bodyΠ(p) ⊆ {B1, . . . , Bm} ⊆ body(Π)
(†[Ω]) : p ∈ U,U ∈ Ω,EBΠ(U) ⊆ {B1, . . . , Bm} ⊆ body(Π)
(][Γ]) : v ∈ Γ

Figure 3.1: Tableau rules for normal programs.

20 Tableaux for Answer Set Programming


r1 : a←
r2 : c← not b,not d
r3 : d← a,not c


T ∅ (FTB)
T a (FTA)
F b (FFA)

T c F c
T {not b,not d} (BTA) F {not b,not d} (BFA)

F d (BTB) T d (BFB)
F {a,not c} (FFB) T {a,not c} (FTB)

(Cut[atom(Π1)])

Figure 3.2: Complete tableau of Tsmodels for Π1 from Example 2.1 and the empty assign-
ment.

entries T v and F v as the left and the right child to the end of a branch, thus reflecting non-
determinism in assigning v. With every other tableau rule, its consequent is appended to
a branch, i.e., applications are deterministic.

Note that all deterministic tableau rules in Figure 3.1 are answer set preserv-
ing; this also applies to the Cut rule when considering both resulting branches. Dif-
ferent tableau calculi, viz., particular rule sets, yield characteristic correspondences.
For instance, D∗{FTB,FTA,FFB,FFA}(Π,A) corresponds to Fitting’s operator [74], and
D∗{FTB,FTA,FFB,WFN[2atom(Π)]}(Π,A) amounts to the well-founded operator [216]. Simi-
larly, we show below that D∗{(a)–(h)}(Π,A) coincides with unit propagation on a pro-
gram’s completion [37, 6], and D∗{(a)–(h),WFN[2atom(Π)]}(Π,A) captures smodels’ propaga-
tion [209], that is, well-founded operator enhanced by backward propagation. Further-
more, the following tableau calculi are of particular interest:

Tcomp = {(a)–(h),Cut[atom(Π) ∪ body(Π)]}
Tsmodels = {(a)–(h),WFN[2atom(Π)],Cut[atom(Π)]}
Tnomore = {(a)–(h),WFN[2atom(Π)],Cut[body(Π)]}
Tnomore++ = {(a)–(h),WFN[2atom(Π)],Cut[atom(Π) ∪ body(Π)]}

Example 3.1. An exemplary complete tableau of Tsmodels is given in Figure 3.2, where
rule applications are indicated by rule names, e.g., (Cut[atom(Π1)]). Both branches in
Figure 3.2 are non-contradictory. They comprise Π1 along with total assignments: the
left branch represents answer set {a, c}, while the right one gives answer set {a, d}.

The tableau calculi that include WFN[2atom(Π)] to deal with unfounded sets are sound
and complete, which can be formalized as follows.

Theorem 3.1. Let Π be a normal program.
Then, we have that the following holds for tableau calculi Tsmodels, Tnomore, and

Tnomore++:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

3.2 Characterizing Existing ASP Solvers 21

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

In particular, note that each of Cut[atom(Π)], Cut[body(Π)], and Cut[atom(Π) ∪
body(Π)] is sufficient to complete tableaux for Π and ∅. However, we show in Sec-
tion 3.4 that different proof complexities are obtained w.r.t. such Cut variants. Moreover,
as each of Tsmodels, Tnomore, and Tnomore++ admits a (unique) non-contradictory complete
branch (Π,A) in some tableau iff (Π,A) belongs to every complete tableau for Π and ∅,
Theorem 3.1 remains valid when replacing “every” by “some” in the second and the third
item of its statement.

3.2 Characterizing Existing ASP Solvers

In this section, we discuss the relationships between the tableau rules in Figure 3.1 and
existing ASP solving approaches. As it turns out, our tableau rules are well-suited for de-
scribing the main principles of a variety of ASP solvers. We however start in Section 3.2.1
by showing correspondences with familiar logic programming operators: Fitting’s op-
erator [74] and the well-founded operator [216]. Section 3.2.2 then covers traditional
approaches to answer set computation for normal programs, including smodels [209],
dlv [158], nomore [154], and nomore++ [3]. Finally, we sketch in Section 3.2.3 how
tableau rules relate to propagation principles of SAT-based solvers assat [167], cmod-
els [123], and sag [168] as well as to the approaches of native conflict-driven learning
ASP solvers smodelscc [218] and clasp [95].

3.2.1 Fitting’s Operator and Well-Founded Operator

Given a normal program Π and an assignment A, the two operators in question can be
defined in terms of the following sets of atoms:

TΠ(A) = {head(r) | r ∈ Π, body(r)+ ⊆ AT , body(r)− ⊆ AF }
NΠ(A) = atom(Π) \ {head(r) | r ∈ Π,

(body(r)+ ∩AF) ∪ (body(r)− ∩AT) = ∅}
UΠ(A) =

⋃
U⊆atom(Π),EBΠ(U)⊆{body(r)|r∈Π,(body(r)+∩AF)∪(body(r)−∩AT)6=∅}U

TΠ(A) contains the head atoms of rules whose bodies hold w.r.t. A. In contrast, if an
atom of NΠ(A) occurs in the head of any rule, then the body of the rule is falsified by A.
Given that neither TΠ(A) nor NΠ(A) make use of any entry over body(Π), they can be
viewed as functions mapping partial interpretations over atoms. In fact, for A′ = {T p |
p ∈ AT ∩ atom(Π)} ∪ {F p | p ∈ AF ∩ atom(Π)}, we have that TΠ(A) = TΠ(A′)
and NΠ(A) = NΠ(A′). Similarly, it holds that UΠ(A) = UΠ(A′), where the idea is
to reflect the union of all GRS-unfounded sets of Π w.r.t. A or A′, respectively.3 Given
that, for every p ∈ NΠ(A), we have EBΠ({p}) ⊆ bodyΠ(p) ⊆ {body(r) | r ∈ Π,
(body(r)+∩AF)∪ (body(r)−∩AT) 6= ∅}, it is always the case that NΠ(A) ⊆ UΠ(A),
while the converse does not hold in general.

With the sets TΠ(A), NΠ(A), and UΠ(A) at hand, we can now make the partial
interpretations obtained by Fitting’s operator and the well-founded operator precise. The

3The union of all GRS-unfounded sets is also called “greatest unfounded set” [216].

22 Tableaux for Answer Set Programming

following assignment amounts to the result of an application of Fitting’s operator: {T p |
p ∈ TΠ(A)} ∪ {F p | p ∈ NΠ(A)}.4 The result of an application of the well-founded
operator is the assignment {T p | p ∈ TΠ(A)} ∪ {F p | p ∈ UΠ(A)}. While both
operators use TΠ(A) to infer true atoms, false atoms are obtained via either NΠ(A) or
UΠ(A). Since NΠ(A) ⊆ UΠ(A), the result of Fitting’s operator is always subsumed by
the one of the well-founded operator.

Example 3.2. Consider the following normal program:

Π3 =



r1 : a← not b
r2 : b← not a
r3 : c← b,not a
r4 : c← d
r5 : d← b,not a
r6 : d← c
r7 : e← c
r8 : e← d


For A = {T a,F b}, we get TΠ3(A) = {a}, NΠ3(A) = {b}, and UΠ3(A) =
{b, c, d, e}. That is, {T a,F b} is the result of applying Fitting’s operator to A, while
{T a,F b,F c,F d,F e} is obtained with the well-founded operator.

For linking the operators to tableau rules, the following result characterizes the sets
of inferred atoms in terms of FTB plus FTA, and by FFB along with either FFA or
WFN[2atom(Π)], respectively.

Proposition 3.2. Let Π be a normal program and A an assignment.
Then, we have that

1. TΠ(A) =
(
D{FTA}(Π, D{FTB}(Π,A))

)T ;

2. NΠ(A) =
(
D{FFA}(Π, D{FFB}(Π,A))

)F ;

3. UΠ(A) =
(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

On the right-hand sides, the application of either FTB or FFB serves as an intermedi-
ate step to propagate the truth of all or the falsity of some body literal to the body as such.
The valuations of bodies are then exploited by FTA, FFA, and WFN[2atom(Π)], which in
turn deduce atoms assigned to true and false, respectively, in an application of Fitting’s
operator or the well-founded operator.

Example 3.3. For Π3 from Example 3.2 and A = {T a,F b}, D{FTB}(Π3,A) =
{T {not b}} yields D{FTA}(Π3, D{FTB}(Π3,A)) = {T a}. Furthermore, we have that
D{FFB}(Π3,A) = {F {not a},F {b,not a}}, D{FFA}(Π3, D{FFB}(Π3,A)) = {F b},
and D{WFN[2atom(Π3)]}(Π3, D{FFB}(Π3,A)) = {F b,F c,F d,F e}. As stated in Proposi-
tion 3.2, these outcomes correspond to TΠ3(A) = {a}, NΠ3(A) = {b}, and UΠ3(A) =
{b, c, d, e}.

4Recall that, throughout this chapter, we write assignments as sets of entries, rather than sequences.

3.2 Characterizing Existing ASP Solvers 23

p← l1, . . . , ln
tl1, . . . , tln

T p
Forward Inference (FI)

f l1, . . . ,f lm (C)
F p

All Rules Canceled (ARC)

p′ ← l′1, . . . , l
′
i, . . . , l

′
n

T p,f l1, . . . ,f lm (B)
tl′i

Contraposition for True Heads (CTH)

p← l1, . . . , li−1, li, li+1, . . . , ln
F p, tl1, . . . , tli−1, tli+1, . . . , tln

f li
Contraposition for False Heads (CFH)

f l1, . . . ,f lm (♦)
F p

At Most (AM)

(C) : p ∈ atom(Π), {r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} = ∅
(B) : p ∈ atom(Π), {r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} ⊆ {p′ ← l′1, . . . , l

′
i, . . . , l

′
n}

(♦) : p ∈ U,U ⊆ atom(Π),EBΠ(U) ⊆ {body(r) | r ∈ Π, body(r) ∩ {l1, . . . , lm} 6= ∅}

Figure 3.3: Deterministic tableau rules for traditional (atom-based) ASP solvers.

Although we omit further details, we note that the correspondences established in
Proposition 3.2 carry forward to iterated applications and fixpoints of Fitting’s operator
and the well-founded operator, respectively. In particular, the entries over atom(Π) in
D∗{FTB,FTA,FFB,FFA}(Π, ∅) and D∗{FTB,FTA,FFB,WFN[2atom(Π)]}(Π, ∅) yield the least fixpoint of
Fitting’s operator and the well-founded operator, respectively; additional entries over
body(Π) make valuations of bodies explicit.

3.2.2 Traditional ASP Solvers

We start by investigating the relationship between smodels [209] (and dlv [158]) on the
one hand and our tableau rules on the other hand. After that, we extend these consider-
ations to the rule-based approach of nomore [154] as well as to the hybrid assignments
dealt with by nomore++ [3].

The atom-based approach of smodels (logically) works on assignments over atoms,
and its propagation (cf. [209, 218]) can be specified in terms of the tableau rules shown
in Figure 3.3.5 While FI expresses that the head of a rule whose body literals hold must

5The names of tableau rules in Figure 3.3 are aligned to the ones used for smodels’ propagation rules

24 Tableaux for Answer Set Programming

be true, its contrapositive, CFH, describes that a body literal of a rule must not hold if the
head is false and all other body literals hold already. Moreover, an unsupported atom p
must be false, and ARC reflects this by checking for the presence of some body literal
that does not hold in every rule with head p. Conversely, CTH expresses that the body
literals of a rule p′ ← l′1, . . . , l

′
i, . . . , l

′
n must hold if an atom p is true and any other

rule with head p contains some body literal that does not hold.6 Finally, AM formalizes
that any atom p belonging to some GRS-unfounded set U , in view of some false body
literal in every element of EBΠ(U), must be false. Note that Figure 3.3 does not show a
contrapositive of AM, as smodels’ propagation does not include such reasoning; it could
still be defined analogously to CTH, yet requiring the conditions p ∈ U , U ⊆ atom(Π),
and {r ∈ Π | head(r) ∈ U, body(r)+ ∩ U = ∅, body(r) ∩ {l1, . . . , lm} = ∅} ⊆
{p′ ← l′1, . . . , l

′
i, . . . , l

′
n} in the proviso (thus checking that every element of EBΠ(U) \

{{l′1, . . . , l′i, . . . , l′n}} contains some body literal that does not hold), while there is a true
atom p in U .

Example 3.4. Augmenting the tableau rules in Figure 3.3 with Cut[atom(Π1)], we can
generate the following tableau for Π1 from Example 2.1 and the empty assignment:

r1 : a←
r2 : c← not b,not d
r3 : d← a,not c


T a (FI)
F b (ARC)

T c F c
F d (CTH) T d (CFH)

(Cut [atom(Π1)])

This tableau is similar to the one of Tsmodels shown in Figure 3.2, yet it omits entries for
rule bodies.

The next result characterizes smodels’ propagation in terms of the tableau rules in
Figure 3.1.

Proposition 3.3. Let Π be a normal program and A an assignment.
Then, we have that

1. D{FI}(Π,A) = D{FTA}(Π, D{FTB}(Π,A));

2. D{ARC}(Π,A) = D{FFA}(Π, D{FFB}(Π,A));

3. D{CTH}(Π,A) = D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩
atom(Π)}));

4. D{CFH}(Π,A) = D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p |
p ∈ AF ∩ atom(Π)});

5. D{AM}(Π,A) = D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

in [218], and the tableau rules reflect smodels’ propagation rules by respective prerequisites and consequents.
6If p′ = p, then p′ ← l′1, . . . , l

′
i, . . . , l

′
n is the only remaining rule to support p; otherwise, the true

atom p is unsupported, and arbitrary body literals may be deduced in the face of a contradiction.

3.2 Characterizing Existing ASP Solvers 25

As in Proposition 3.2, FTB and FFB are used on the right-hand sides to reflect truth
or falsity of bodies w.r.t. their contained literals by corresponding entries. Also observe
that the characterizations of FI, ARC, and AM are similar to those of TΠ(A), NΠ(A),
and UΠ(A) in Proposition 3.2. In addition, backward propagation via CTH and CFH
is captured by means of BTA plus BTB and BFA plus BFB, respectively, deducing first
entries for bodies that need to be either true or false and then corresponding entries for
their contained literals.

In view of the fact that all tableau rules used on the right-hand sides in Proposition 3.3
are contained in tableau calculus Tsmodels (along with the observation that their application
conditions are monotonic w.r.t. assignments), we immediately conclude the following.

Corollary 3.4. Let Π be a normal program and A an assignment.
Then, we have that D∗{FI,ARC,CTH,CFH,AM}(Π,A) ⊆ D∗Tsmodels

(Π,A).

Example 3.5. To illustrate that the converse of Corollary 3.4 does not hold in general,
even if we limit the attention to entries over atoms, consider the following normal pro-
gram:

Π4 =


r1 : a← not b
r2 : b← not a
r3 : c← b,not a
r4 : d← b,not a


Given A = {F c}, we obtain D∗{FI,ARC,CTH,CFH,AM}(Π4,A) = {F c}, while
D∗Tsmodels

(Π4,A) = {F c,F {b,not a},F d}. Note that the falsity of atom c = head(r3)
necessitates the falsity of body(r3) = {b,not a} because c would be derived by r3 oth-
erwise. However, since there is more than one literal in {b,not a}, it is not immediately
clear which body literal ought to be false. Hence, an “atom-only” approach like the one
of smodels gets stuck. In contrast, when we assign the body {b,not a} to false, we see
that also the rule r4 with head d is inapplicable, which enables Tsmodels to deduce F d.

We note that, given the similarities between smodels and dlv on normal pro-
grams [122], the latter is also characterized by the tableau rules in Figure 3.3 (along
with Cut[atom(Π)]). Interestingly, both smodels and dlv use dedicated data structures in
their implementations for indicating (in)applicability of program rules: in smodels, a rule
with a false body is marked as “inactive” [208]; similarly, dlv determines truth values of
bodies from specific counters [64]. It is thus justified to describe the proceeding of atom-
based solvers by assignments and tableau rules that incorporate both atoms and bodies.7

Hence, for comparing atom-based to other ASP solving approaches, we in the following
refer to Tsmodels, rather than a calculus built from the tableau rules in Figure 3.3. As shown
in Example 3.5, Tsmodels slightly overestimates the propagation capacities of atom-based
solvers, so that lower bounds for its efficiency, considered in Section 3.4, also apply to
the real solvers, viz., smodels and dlv.

A similar analysis as in Proposition 3.3 is also possible for the rule-based approach
of nomore, amounting to assignments over rule bodies, and for the hybrid approach
of nomore++. By assigning truth values to atoms as well as bodies, the latter works
on the same basis as its associated tableau calculus Tnomore++. In fact, although we omit

7In [124], additional variables for bodies, one for each rule in a program, are explicitly introduced for
comparing smodels to DPLL, and the characterization of smodels’ propagation rules in terms of unit propa-
gation provided in [110] likewise shows that rule bodies serve as inherent structural variables.

26 Tableaux for Answer Set Programming

the details, it is not hard to verify that the propagation operators P , B, and U (cf. [3])
implemented by nomore++ match the deterministic tableau rules in Tnomore++. Further-
more, the choice operator C of nomore++ coincides with Cut[atom(Π) ∪ body(Π)]. On
the other hand, when we consider nomore augmented with backward propagation [169],
we obtain that its propagation is subsumed by Tnomore. As with Tsmodels and smodels, we
have that some entries deducible by Tnomore are not inferred by nomore.

The following example illustrates that assignments over rule bodies only may be less
informative than assignments that also include atoms.

Example 3.6. Consider the following normal program:

Π5 =


r1 : a← b
r2 : b← c
r3 : b← not c
r4 : c← a,not b


Given A = {T {b}}, since two rules, r2 and r3, have b as their head, nomore
cannot determine a unique program rule to derive b from, so that its propagation
cannot infer anything. In contrast, D∗Tnomore

(Π5,A) = {T {b},T a,T b,F {a,not b},
F c,F {c},T {not c}}. Here, the fact that the atom b must be true yields that the body
{a,not b} is necessarily false, from which Tnomore then deduces the remaining entries.

3.2.3 SAT-Based and Conflict-Driven Learning ASP Solvers

Lin and Zhao [167] showed that the answer sets of a normal program Π coincide with
the models of the completion of Π satisfying all loop formulas of Π. By introducing
auxiliary variables for rule bodies, as also used in [9] to avoid an exponential blow-up due
to clausification, the completion, Comp(Π), and loop formulas, LF (Π), of a program Π
can be defined as follows:

Comp(Π) = {pB ↔ (
∧
p∈B+p ∧

∧
q∈B−¬q) | B ∈ body(Π)}

∪ {p↔ (
∨
B∈bodyΠ(p)pB) | p ∈ atom(Π)}

LF (Π) = {(
∨
p∈Lp)→ (

∨
B∈EBΠ(L)pB) | L ∈ loop(Π)}

Given that a program Π may yield exponentially many (non-redundant) loop formu-
las [164], SAT-based ASP solvers assat [167], cmodels [123], and sag [168] do not
a priori construct LF (Π). Rather, they use some SAT solver to generate a model of
Comp(Π) and, afterwards, check whether the model contains a loop L of Π whose loop
formula is violated. If so, L is unfounded w.r.t. the model at hand, and adding the loop
formula for L eliminates the model as an answer set candidate.8

Regarding the generation of answer set candidates, the following analog of Theo-
rem 3.1 applies to Tcomp and models of Comp(Π).

Theorem 3.5. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

8While assat and cmodels apply sophisticated unfounded set checks only w.r.t. total answer set candi-
dates, sag can perform them also w.r.t. partial assignments generated by a SAT solver.

3.2 Characterizing Existing ASP Solvers 27

2. Comp(Π) has a model X iff every complete tableau for Π and ∅ has a unique
non-contradictory branch (Π,A) such that (AT ∩ atom(Π)) ∪ {pB | B ∈ AT ∩
body(Π)} = X .

3. Comp(Π) has no model iff every complete tableau for Π and ∅ is a refutation.

Theorem 3.5 shows that Tcomp captures exactly the models of Comp(Π) for a normal
program Π.9 Since Tcomp admits a non-contradictory complete branch (Π,A) in some
tableau iff (Π,A) belongs to every complete tableau for Π and ∅, Theorem 3.5 (like
Theorem 3.1) remains valid when replacing “every” by “some” in the second and the
third item of its statement.

By Theorem 3.1, adding WFN[2atom(Π)] to Tcomp leads to a tableau calculus charac-
terizing answer sets. However, SAT-based ASP solvers check for unfounded loops rather
than arbitrary unfounded sets, while atom-wise unfounded set handling is accomplished
via FFA (enclosed in Comp(Π)). Given that FFA is subsumed by WFN[2atom(Π)], but not
by WFN[loop(Π)], the next result, which shows that WFN[2atom(Π)] and WFN[loop(Π)]
plus FFA yield the same deductive closure (in combination with FFB, deducing the fal-
sity of bodies from body literals that do not hold), tells us that limiting WFN to loops
abolishes overlaps between tableau rules.

Proposition 3.6. Let Π be a normal program and A an assignment.
Then, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) = D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

Proposition 3.6 is obtained from Theorem 2.9, which showed that any unfounded
set containing some non-false atom also includes an unfounded loop of non-false atoms,
provided that the underlying assignment is both atom- and body-saturated. The following
auxiliary result states the fact that both properties hold w.r.t. any assignment closed under
FFB and FFA.

Lemma 3.7. Let Π be a normal program and A an assignment.
Then, we have that

1. A is body-saturated for Π iff D{FFB}(Π,A) ⊆ A;

2. A is atom-saturated for Π iff D{FFA}(Π,A) ⊆ A.

In view of Proposition 3.6, by adding the tableau rule WFN[loop(Π)] to Tcomp , we
characterize models of Comp(Π) ∪ LF (Π), which coincide with the answer sets of Π.

Theorem 3.8. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp∪{WFN[loop(Π)]}:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

As with Theorem 3.1 and 3.5, we have that Theorem 3.8 remains valid when replacing
“every” by “some” in the second and the third item of its statement.

9The models of the completion of a logic program Π are also called the “supported models” of Π [6].

28 Tableaux for Answer Set Programming

Example 3.7. Consider the following normal program:

Π6 =



r1 : a← not b
r2 : b← not a
r3 : c← a
r4 : c← d
r5 : d← c,not a
r6 : e← c
r7 : e← d


We have that loop(Π6) = {{c, d}} and EBΠ6({c, d}) = EBΠ6({c, d, e}) = {{a}}.
For A = {F {a}}, we thus get D{WFN[2atom(Π6)]}(Π6,A) = {F c,F d,F e}, while
D{WFN[loop(Π6)]}(Π6,A) = {F c,F d} does not include F e. As bodyΠ6

(e) =

{{c}, {d}} ⊆
(
D{FFB}(Π6, {F c,F d})

)F , F e ∈ D∗{FFB,FFA,WFN[loop(Π6)]}(Π6,A)

nonetheless holds. Hence, the combination of FFB, FFA, and WFN[loop(Π6)] allows
us to deduce the same entries as obtained with FFB and WFN[2atom(Π6)].

To see the relationship between the tableau rules in Figure 3.1 and (Boolean) con-
straints induced by Comp(Π) ∪ LF (Π), which are further investigated in Chapter 4,
note that a (deterministic) tableau rule with prerequisites σ1, . . . , σn and consequent σ
intrinsically expresses the fact that {σ1, . . . , σn, σ} is a nogood.

Example 3.8. For Π6 from Example 3.7 and the tableau rules in Tcomp , the following
set ∆ constitutes the union of (unsubsumed) nogoods given by tableau rules (other than
Cut[atom(Π6) ∪ body(Π6)]):

∆ =

{
{F {not b},F b}, {F {not a},F a}, {F {a},T a}, {F {d},T d},
{F {c},T c}, {F {c,not a},T c,F a}

}
(3.1)

∪
{
{T {not b},T b}, {T {not a},T a}, {T {a},F a}, {T {d},F d},
{T {c},F c}, {T {c,not a},F c}, {T {c,not a},T a}

}
(3.2)

∪
{
{F a,T {not b}}, {F b,T {not a}}, {F c,T {a}}, {F c,T {d}},
{F d,T {c,not a}}, {F e,T {c}}, {F e,T {d}}

}
(3.3)

∪
{
{T a,F {not b}}, {T b,F {not a}}, {T c,F {a},F {d}},
{T d,F {c,not a}}, {T e,F {c},F {d}}

}
(3.4)

The nogoods in (3.1) are obtained from tableau rule FTB, and likewise from its contra-
positive BFB. Similarly, the nogoods in (3.2), (3.3), and (3.4) result from FFB or BTB,
FTA or BFA, and FFA or BTA, respectively. Note that a solution A for the nogoods in ∆
coincides with the model (AT ∩atom(Π6))∪{pB | B ∈ AT ∩body(Π6)} of Comp(Π6).
Since the nogoods in (3.1)–(3.4) can easily be represented by clauses, e.g., a ∨ ¬p{not b}
for {F a,T {not b}}, the (deterministic) tableau rules in Tcomp can be used to derive the
input for a SAT solver, as engaged by assat, cmodels, and sag. In turn, clauses stemming
from completion (cf. [9]) represent nogoods similar to the ones in ∆.

Example 3.9. When we extract nogoods from tableau rule WFN[loop(Π6)], or likewise
from WFJ[loop(Π6)], we get the set Λ = {{T c,F {a}}, {T d,F {a}}} of nogoods. So-
lutions for Λ coincide with the models of LF (Π6) = {(c ∨ d) → p{a}}. Once clauses
representing Λ, such as ¬c ∨ p{a} and ¬d ∨ p{a}, have been added to those representing
∆ from Example 3.8 (in order to eliminate some invalid answer set candidate), they can
be used by a SAT solver.

3.3 Generic Tableaux for Composite Language Constructs 29

In native conflict-driven learning ASP solvers, such as smodelscc [218] and clasp [95],
the nogoods obtained from tableau rules contribute reasons for conflicts. For clasp, such
nogoods correspond to the sets ∆Π and ΛΠ (cf. [95]), which are developed in Section 4.1,
and the (implicit) constraints propagated by smodelscc , extracting reasons relative to
smodels’ propagation rules, are closely related to nogoods obtained from tableau rules
(cf. [124, 110, 122]). This indicates that the tableau rules in Figure 3.1 are well-suited to
characterize conditions for propagation as applied in both SAT-based and native conflict-
driven learning ASP solvers. Of course, our tableaux reflect neither preprocessing tech-
niques, such as the ones described in [9, 96], nor backjumping and learning schemes of
conflict-driven learning SAT and ASP solvers (see, e.g., [179, 219, 56, 21]). We note that
the calculus based on state transition graphs presented in [160] captures backjumping and
conflict-driven learning as performed by smodelscc ; in that work, the clauses attributed
to smodelscc avoid auxiliary variables for rule bodies in favor of (non-erasable) duplicate
literals. Unlike this, in Chapter 4, we devise algorithms that combine the propagation
conditions expressed by tableau rules with backjumping and conflict-driven learning.

Finally, let us comment on some particularities of unfounded set handling. On the one
hand, Proposition 3.6 shows that tableau rule WFN[2atom(Π)] can be replaced by more
restrictive rule WFN[loop(Π)] without sacrificing deducible entries. In fact, SAT-based
ASP solvers concentrate the consideration of positive recursion on loops, and native ASP
solvers like clasp, dlv, and smodels exploit strongly connected components of programs’
dependency graphs to achieve a similar effect. However, no existing ASP solver incor-
porates a contrapositive of WFN, that is, WFJ[2atom(Π)] or WFJ[loop(Π)], in its prop-
agation (unless loop formulas have been recorded). An approach to extend unfounded
set handling in this direction has been presented in [33, 34]. Unfortunately, it amounts
to failed-literal detection (cf. [76, 209]), whose high (polynomial) computational cost
makes its unrestricted application prohibitive in practice. It is still interesting that a result
similar to Proposition 3.6 cannot be obtained for WFJ[2atom(Π)] and WFJ[loop(Π)].

Example 3.10. For Π6 from Example 3.7, we have that WFJ[loop(Π6)] is strictly weaker
than WFJ[2atom(Π6)]. Given A = {T e}, since EBΠ6({c, d, e}) = {{a}}, we obtain
that T {a} ∈ D{WFJ[2atom(Π6)]}(Π6,A). On the other hand, since loop(Π6) = {{c, d}}
and bodyΠ6

(e) = {{c}, {d}}, neither WFJ[loop(Π6)] nor any of the tableau rules
(a)–(i) in Figure 3.1 (in particular, BTA) is applicable in the branch (Π6,A), that is,
D{(a)–(i),WFJ[loop(Π6)]}(Π6,A) = ∅.

Regarding the impact of not at all applying WFJ or restricting the sets of atoms to
which it can be applied to loops, in Section 3.4, we show that WFJ can be simulated by
means of Cut and WFN, using exactly the idea of failed-literal detection.

3.3 Generic Tableaux for Composite Language Constructs

In what follows, we generalize our approach and develop an extensible tableau frame-
work for logic programs incorporating composite language constructs, such as dlv’s ag-
gregates [67] or smodels’ cardinality and weight constraints [209]. To this end, we take
a more abstract perspective than before and view, e.g., conjunctions as (simple) Boolean
aggregates, which like atoms can be preceded by not . However, we also show below
that the dedicated tableau framework introduced in Section 3.1 and the generic approach
developed in the sequel coincide on the common language fragment of normal programs.

30 Tableaux for Answer Set Programming

The basic idea of our generic approach is to specify core tableau rules that, for one,
aim at establishing model conditions by propagating truth and falsity of entries along
program rules.

Example 3.11. Consider the rule 0{a, d}1 ← 1{b,not e}2, including two cardinality
constraints.10 If 1{b,not e}2 holds w.r.t. an assignment, we know that 0{a, d}1 must
hold as well; conversely, 1{b,not e}2 must not hold if it is known that 0{a, d}1 does not
hold. In our generic framework, such inferences are reflected by deducing T 0{a, d}1
from T 1{b,not e}2 or, conversely, F 1{b,not e}2 from F 0{a, d}1.

Notice that we associate truth values with cardinality constraints, and that matching
them to truth values of the cardinality constraints’ literals requires specific tableau rules.
Hence, when we below augment our framework with composite language constructs, we
also introduce such construct-specific tableau rules.

Regardless of concrete program syntax, an answer set must be a minimal model of the
reduct relative to itself, as in the case of normal programs (cf. Section 2.1). Our generic
tableau rules reflect this minimality requirement by investigating external supports of
sets of atoms. To this end, for a rule α ← β and an assignment A, we make use of
two predicates, ←−supA(α, S) and −→supA(β, S′), to check whether a set S of atoms can be
supported via α and whether β can hold independently of atoms in S′. Since our tableau
rules consider subsets S′ of S, viz., S′ = ∅ or S′ = S, the two predicates allow us to test
whether α← β provides an external support for S w.r.t. A. Of particular interest are the
cases where there is no external support for S, as it tells us that all atoms of S must be
false, or where there is exactly one external support α ← β for S. In the latter case, if
S contains some true atom, we know that β must hold, and additional entries might be
required too, for which we provide two sets, minA(α, S) and maxA(β, S′).

Example 3.12. If at least one of the entries T a and T b belongs to a given assignment A
and the rule 0{a, d}1 ← 1{b,not e}2 is the single external support for the set {a, b},
we get minA(0{a, d}1, {a, b}) = {F d} and maxA(1{b,not e}2, {a, b}) = {F e}. In
fact, if d was true, the upper bound 1 of 0{a, d}1 would be reached, so that no further
atom can be supported. Likewise, if the literal not e in 1{b,not e}2 was false, the lower
bound 1 of 1{b,not e}2 could only be achieved by making b true, so that the support is
not external to {a, b}.

Since the definitions of←−sup, −→sup, min , and max are specific to a language construct
at hand, we gradually extend them below when integrating composite language constructs
into our generic framework. To be more precise, after in Section 3.3.1 generalizing the
definitions from Section 2.1, we devise generic tableau rules in Section 3.3.2. These are
augmented with tableau rules for conjunctions, cardinality constraints, and disjunctions
in Section 3.3.3, 3.3.4, and 3.3.5, respectively.

3.3.1 Answer Sets for Propositional Theories

Among several proposals defining answer sets for logic programs accommodating par-
ticular language extensions (e.g., [209, 72, 65, 69, 171, 66]), we rely on the one by

10A cardinality constraint like 1{b,not e}2 resembles a linear inequality, viz., 1 ≤ b+ (1− e) ≤ 2, over
Boolean variables. By assigning each of the variables b and e to either 1 (true) or 0 (false), the inequality
evaluates to true or false, respectively. For instance, 1 ≤ 1 + (1 − 1) ≤ 2 holds with b = e = 1, while
1 ≤ 0 + (1− 1) ≤ 2, obtained with b = 0 and e = 1, does not hold.

3.3 Generic Tableaux for Composite Language Constructs 31

Ferraris [69], as it is general enough to deal with arbitrary (ground) aggregates and has a
firm basis in the logic of here-and-there [192, 163]. To achieve generality, this semantics
applies to propositional theories and identifies aggregates with propositional formulas.

Formally, a propositional theory is a finite set of propositional formulas, constructed
from atoms in a denumerable alphabet P and the connectives⊥, ∧, ∨, and→. Any other
connective is considered as an abbreviation, in particular, ¬φ stands for φ → ⊥. An
interpretation, represented by the setX of its entailed atoms, is a model of a propositional
theory Φ if X |= φ for all φ ∈ Φ, where |= is the standard satisfaction relation of
propositional logic. The reduct, denoted by ΦX , of Φ w.r.t. X is a propositional theory,
(recursively) defined as follows:

ΦX =
{
φX | φ ∈ Φ

}
φX =


⊥ if X 6|= φ
φ if φ ∈ X
φX1 ◦ φX2 if X |= φ and φ = φ1 ◦ φ2 for ◦ ∈ {∧,∨,→}

Intuitively, all (maximal) subformulas of Φ that are false in X are replaced by ⊥ in ΦX ,
while other subformulas of Φ stay intact. Hence, any model X of Φ is a model of ΦX as
well. Also note that all occurrences of negation, i.e., subformulas of the form φ→ ⊥, are
replaced by constants in ΦX , since either φ or φ→ ⊥ is false in X . An interpretation X
is an answer set of a propositional theory Φ if X is a minimal model of ΦX . In fact, an
answer set X of Φ is the unique least model of ΦX because all atoms occurring in ΦX

belong to X , but a least model of ΦX is, in general, not guaranteed to exist.

Example 3.13. Consider the following propositional theory:

Φ =
{
φ : a ∨ b

}
We obtain the following reducts of its single formula φ w.r.t. the four subsets of {a, b}:

φ∅ = ⊥
φ{a} = a ∨ ⊥
φ{b} = ⊥ ∨ b
φ{a,b} = a ∨ b

While ∅ is not a model of φ∅, the proper subsets {a} and {b} of {a, b} are models of
φ{a,b}. Hence, neither ∅ nor {a, b} is an answer set of Φ. On the other hand, {a} and
{b} are minimal models of φ{a} and φ{b}, respectively. That is, {a} and {b} are answer
sets of Φ. Furthermore, observe that a is the only atom occurring in φ{a}, and the same
applies to b and φ{b}.

In a general setting, we understand a (propositional) logic program Π over a denu-
merable alphabet P as a finite set of rules of the form α← β, where α and β are literals,
that is, expressions overP possibly preceded by not . As before, atom(Π) denotes the set
of atoms occurring in Π. In the following, we refine heads α and bodies β for obtaining
particular classes of logic programs. The semantics of a logic program is given by the
answer sets of an associated propositional theory, obtained via a translation τ described
below. However, the proof-theoretic characterizations we provide apply directly to logic
programs, without translating them to propositional theories.

32 Tableaux for Answer Set Programming

3.3.2 Generic Tableau Rules

We begin with a simple class of unary programs where rules α ← β are restricted to
atomic literals, that is, each of α and β is equal to either p or not p for an atom p ∈ P .11

The semantics of a unary program Π is given by the answer sets of a propositional theory,
τ [Π], (recursively) defined as follows:

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π} (3.5)

τ [π] =

{
¬τ [v] if π = not v
π if π ∈ P (3.6)

Example 3.14. Consider the following unary program:

Π7 =


r1 : a← not b
r2 : not a← c
r3 : b← c
r4 : c← b


The associated propositional theory is as follows:

τ [Π7] =


τ [r1] : ¬b→ a
τ [r2] : c→ ¬a
τ [r3] : c→ b
τ [r4] : b→ c


The sets {a} and {b, c} are models of τ [Π7], and their respective reducts are:

(τ [Π7]){a} =


(τ [r1]){a} : ¬⊥ → a

(τ [r2]){a} : ⊥ → ⊥
(τ [r3]){a} : ⊥ → ⊥
(τ [r4]){a} : ⊥ → ⊥


(τ [Π7]){b,c} =


(τ [r1]){b,c} : ⊥ → ⊥
(τ [r2]){b,c} : c→ ¬⊥
(τ [r3]){b,c} : c→ b

(τ [r4]){b,c} : b→ c


Clearly, {a} is the least model of (τ [Π7]){a}, so that {a} is an answer set of Π7. The
(unique) minimal model of (τ [Π7]){b,c} is ∅. Hence, {b, c} is not the least model of
(τ [Π7]){b,c} and thus not an answer set of Π7.

While the semantics is based on translation to propositional theories, our tableau
framework deals with logic programs as such. The global design, however, follows
the two semantic requirements for answer sets: modelhood w.r.t. a program and (non-
circular) support w.r.t. the reduct. In order to establish the latter, for a program Π, two
sets S ⊆ atom(Π), S′ ⊆ atom(Π), and an assignment A, we define:

supA(Π, S, S′) =
{

(α← β) ∈ Π | fβ /∈ A, ←−supA(α, S), −→supA(β, S′)
}

(3.7)

The purpose of supA(Π, S, S′) is to determine all rules of Π that can, w.r.t. A, provide
a support for the atoms in S that is external to S′. Of particular interest are the cases

11Our notion of a unary program is different from the one considered in [136]. The latter allows for one
positive and arbitrarily many negative body literals, but not for negative head literals.

3.3 Generic Tableaux for Composite Language Constructs 33

where supA(Π, S, S′) is empty or a singleton {α← β}. In the first case, the atoms in S
cannot be supported and are prone to be false, while the second case tells us that α← β
is the unique support for S external to S′. Since we below consider only situations where
S′ ⊆ S, viz., S′ = ∅ and S′ = S, supA(Π, S, S′) = {α← β} indicates that β must hold
to (non-circularly) support S.

Further investigating the definition of supA(Π, S, S′) in (3.7), we note that a rule
α← β such that fβ ∈ A cannot provide any support w.r.t. A. Otherwise, we check via
←−supA(α, S) that α can support S, and via −→supA(β, S′) that β does not (positively) rely
on S′. For the simple class of unary programs, these concepts are defined as follows:

←−supA(p, S) if p ∈ S (3.8)
−→supA(p, S′) if p ∈ P \ S′ (3.9)

−→supA(not v, S′) for every expression v (3.10)

The universal validity of (3.10) is because only positive dependencies are taken into ac-
count. Also note that a rule α ← β such that α = not v cannot support any set S of
atoms. (We further illustrate the above concepts below Theorem 3.9.)

The tableau rules constituting our primal generic calculus are shown in Figure 3.4.
Among them, I ↑ and I ↓ provide rule-based inferences, such as modus ponens and modus
tollens. The tableau rules N ↑ and N ↓ amount to negation and support for atoms, building
on similar principles as completion (of normal programs). Note that the derivability of an
atom p and thus the applicability of tableau rules N ↑ and N ↓, respectively, is determined
by supA(Π, {p}, ∅). In the general case, rule N ↓ makes use of two further concepts,
minA(α, S) and maxA(β, S′), used to determine entries that must necessarily be added
to A in order to support some atom in S via α ← β without positively relying on S′.
However, these concepts play no role in the setting of unary programs:

minA(p, S) = ∅ for p ∈ P (3.11)

maxA(p, S′) = ∅ for p ∈ P (3.12)

maxA(not v, S′) = ∅ for every expression v (3.13)

Furthermore, the tableau rules U ↑ and U ↓ take care of (non-empty) “unfounded sets,”
either by identifying atoms that cannot be non-circularly supported (U ↑) or by preventing
true atoms from becoming unfounded (U ↓). The applicability of U ↑ and U ↓ is deter-
mined by supA(Π, S, S) for a set S of atoms. Since supA(Π, S, S) ⊆ supA(Π, S, S′) for
every S′ ⊆ S (cf. (3.9)) and, in particular, for S′ = ∅, U ↑ and U ↓ subsume N ↑ and N ↓,
which rely on the weaker concept supA(Π, {p}, ∅). We nonetheless include N ↑ and N ↓
because their applicability is easy to determine, and thus they have counterparts in vir-
tually all ASP solvers. Also note that we do not parameterize U ↑ and U ↓ by Ω, which
has been included in corresponding tableau rules WFN[Ω] and WFJ[Ω] in Figure 3.1 on
Page 19 to reflect a possible restriction to loops. Albeit loops can also be identified in
propositional theories [70], the generalization is not straightforward and omitted here for
brevity. Finally, the Cut[Γ] rule, allowing for case analyses on the expressions in Γ, is
identical to its counterpart in Figure 3.1.

For a unary program Π, we fix the domain of assignments A as well as the cut objects
used by Cut[Γ] to dom(A) = Γ = atom(Π). Similar to Theorem 3.1 on Page 20
applying to normal programs, we can now characterize the answer sets of unary programs
in terms of generic tableaux.

34 Tableaux for Answer Set Programming

α← β
tβ

tα

α← β
fα

fβ

(a) Implication (I ↑) (b) Contraposition (I ↓)

Π,A
(p ∈ atom(Π), supA(Π, {p}, ∅) = ∅)

F p

(c) Negation (N ↑)

Π,A
(p ∈ AT ∩ atom(Π), supA(Π, {p}, ∅) = {α← β})

tβ,minA(α, {p}),maxA(β, ∅)
(d) Support (N ↓)

Π,A
(S ⊆ atom(Π), p ∈ S, supA(Π, S, S) = ∅)

F p

(e) Unfounded Set (U ↑)

Π,A
(S ⊆ atom(Π),AT ∩ S 6= ∅, supA(Π, S, S) = {α← β})

tβ,minA(α, S),maxA(β, S)

(f) Well-Founded Set (U ↓)

(v ∈ Γ)
T v | F v

(g) Cut (Cut[Γ])

Figure 3.4: Tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting (g).

Theorem 3.9. Let Π be a unary program.
Then, we have that the following holds for the tableau calculus consisting of the

tableau rules (a)–(g):

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

As with the tableau rules in Figure 3.1, we have that the generic calculus including the
tableau rules (a)–(g) admits a (unique) non-contradictory complete branch (Π,A) in some
tableau iff (Π,A) belongs to every complete tableau for Π and ∅. Hence, Theorem 3.9
as well as its generalizations to further language constructs provided in the sequel remain

3.3 Generic Tableaux for Composite Language Constructs 35

valid when replacing “every” by “some” in their second and their third item.12 Yet before
turning to extensions, let us illustrate the generic tableau rules in Figure 3.4 on a couple
of examples.

Example 3.15. Consider a tableau with {a ← not a} at its root. A cut on a yields
two branches, one with T a and another one with F a. The first branch can be closed
by deducing F a via N ↑. To see this, observe that sup{T a}({a ← not a}, {a}, ∅) = ∅
because fnot a = T a ∈ {T a}. That is, a must be false since all rules from which
it could be derived are inapplicable. The second branch can be closed by deducing
T a via I ↑, given that tnot a = F a ∈ {F a}. Hence, all branches of the tableau are
contradictory, indicating that the unary program {a← not a} has no answer set.

Example 3.16. For another example, consider the following unary program:

Π8 =


r1 : a← not b
r2 : b← not a
r3 : c← not a


Cutting on c results in branches with T c and F c, respectively. The first one can be
extended by tnot a = F a via N ↓. Indeed, sup{T c}(Π8, {c}, ∅) = {c ← not a} tells
us that r3 is the only rule that allows for deriving c, which necessitates a to be false.
To be more precise, we have that fnot a = T a /∈ {T c}, and both←−sup{T c}(c, {c}) and
−→sup{T c}(not a, ∅) are satisfied. This shows that the proviso of N ↓ is established, so that
we can deduce tnot a = F a. Given F a, we can further apply I ↑ or I ↓ to deduce T b and
to so obtain a non-contradictory complete branch. The second branch with F c can be
extended by fnot a = T a via I ↓. Given T a, we deduce F b, by N ↑ or N ↓, to obtain a
second non-contradictory complete branch. The two complete branches, consisting of Π8

along with {T c,F a,T b} and {F c,T a,F b}, respectively, tell us that {b, c} and {a} are
the two answer sets of Π8.

Example 3.17. Finally, consider the following unary program:

Π9 =


r1 : a← b
r2 : b← a
r3 : b← c
r4 : c← not d
r5 : d← not c


Let us further investigate the following two non-contradictory complete branches:

Π9

T d (Cut[atom(Π9)])
F c (N ↑,N ↓,U ↑,U ↓)
F a (U ↑)
F b (I ↓,N ↑,U ↑)

Π9

T a (Cut[atom(Π9)])
T b (I ↑,N ↓,U ↓)
T c (U ↓)
F d (N ↑,N ↓,U ↑,U ↓)

We have chosen these branches for illustrating the application of the unfounded set
rule (U ↑) and the well-founded set rule (U ↓), respectively. (Along branches, we in-
dicate in parentheses all possible rule applications leading to the same result.) We

12The uniqueness of branches stated in the second item of Theorem 3.9 is trivial for unary programs. It
becomes more interesting below when composite language constructs are assigned in addition to atoms.

36 Tableaux for Answer Set Programming

first inspect the deduction of F a by U ↑ in the left branch. Taking the set {a, b} (and
its element a) makes us check whether sup{T d,F c}(Π9, {a, b}, {a, b}) is empty. To this
end, we have to inspect all rules that allow for deriving an atom in {a, b} (as stip-
ulated via ←−sup{T d,F c}(α, {a, b})). In view of fc = F c ∈ {T d,F c}, we have that
r3 /∈ sup{T d,F c}(Π9, {a, b}, {a, b}), so that only r1 and r2 require further considera-
tion. Because of b ∈ {a, b} and a ∈ {a, b}, respectively, neither of these rules α ← β
satisfies −→sup{T d,F c}(β, {a, b}), which leaves us with sup{T d,F c}(Π9, {a, b}, {a, b}) = ∅.
After F a has been deduced, it follows that r2 /∈ sup{T d,F c,F a}(Π9, {b}, S′) and
r3 /∈ sup{T d,F c,F a}(Π9, {b}, S′) for S′ ⊆ {b}. Hence, we can deduce F b by N ↑
or U ↑, or alternatively by means of I ↓ in view of rule r1 and F a. On the other
hand, the well-founded set inference of T c in the right branch requires a set of atoms,
some of whose elements is true, such that only one rule can non-circularly support the
set. Taking again {a, b}, since −→sup{T a,T b}(b, {a, b}) and −→sup{T a,T b}(a, {a, b}) do not
hold, we get sup{T a,T b}(Π9, {a, b}, {a, b}) = {b ← c}. The membership of r3 is
justified by fc = F c /∈ {T a,T b} along with the fact that ←−sup{T a,T b}(b, {a, b}) and
−→sup{T a,T b}(c, {a, b}) hold. Since r3 is the only rule that can non-circularly support
{a, b}, the presence of T a and T b in the assignment necessitates tc = T c, as it is
deduced by means of U ↓. Finally, T c allows us to further deduce F d by N ↓ or U ↓ in
view of r4, or alternatively by N ↑ or U ↑ in view of r5.

3.3.3 Conjunctive Bodies

Having settled our constitutive generic framework, we now allow rule bodies to con-
tain conjunctions. While rule bodies are often considered to be conjunctions (as in Sec-
tion 3.1), we here take a slightly different perspective in viewing conjunctions as (simple)
Boolean aggregates, which like atoms can be preceded by not . This gives us some first in-
sights into the treatment of more sophisticated aggregates, such as cardinality constraints
to be dealt with afterwards.

A conjunction over a denumerable alphabet P is an expression of the
form {l1, . . . , ln}, where li is an atomic literal for 1 ≤ i ≤ n. We denote by conj (P)
the set of all conjunctions that can be constructed from atoms in P . A rule α ← β such
that α is an atomic literal and β is an atomic literal or a possibly negated conjunction
of atomic literals is a conjunctive rule. A logic program is a conjunctive program if it
consists of conjunctive rules. For defining the semantics of conjunctive programs, we
add the following case to translation τ [π] in (3.6):

τ [π] =
∧
l∈πτ [l] if π ∈ conj (P)

For accommodating conjunctions within the generic tableau rules in Figure 3.4, we
further extend the previous concepts in (3.8)–(3.13) in a straightforward way:

−→supA({l1, . . . , ln}, S′) if −→supA(l, S′) for every l ∈ {l1, . . . , ln}
maxA({l1, . . . , ln}, S′) =

⋃
l∈{l1,...,ln}maxA(l, S′)

Note that maxA({l1, . . . , ln}, S′) is still empty since maxA(l, S′) = ∅ for every atomic
literal l ∈ {l1, . . . , ln}. Thus, it has no effect yet, but this changes when adding cardinal-
ity constraints.

For a conjunctive program Π, we fix the domain of assignments A as well as the cut
objects used by Cut[Γ] to dom(A) = Γ = atom(Π)∪conj (Π), where conj (Π) is the set

3.3 Generic Tableaux for Composite Language Constructs 37

tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(h) True Conjunction (TC↑) (i) Falsify Conjunction (TC↓)

f li
F {l1, . . . , li, . . . , ln}

T {l1, . . . , ln}
tl1, . . . , tln

(j) False Conjunction (FC↑) (k) Justify Conjunction (FC↓)

Figure 3.5: Tableau rules for conjunctions.

of conjunctions occurring in Π. The additional tableau rules for handling conjunctions
are shown in Figure 3.5. Their purpose is to ensure that T {l1, . . . , ln} ∈ A iff AT ∩P |=
(τ [l1] ∧ · · · ∧ τ [ln]) holds for total assignments A. By augmenting our generic calculus
with the tableau rules in Figure 3.5, Theorem 3.9 extends to conjunctive programs.

Theorem 3.10. Let Π be a conjunctive program.
Then, we have that Statement 1, 2, and 3 given in Theorem 3.9 hold for the tableau

calculus consisting of the tableau rules (a)–(k).

It is interesting to note that conjunctive programs extend normal programs by ad-
mitting negative literals in heads of rules and rule bodies to be (default) negated con-
junctions. This implies that normal programs are conjunctive and can thus be treated
using the tableau rules (a)–(k).13 The naturally arising question is how generic tableau
rules relate to the ones in Figure 3.1 on Page 19, which were specialized to normal pro-
grams. To answer it, Table 3.1 shows the inherent correspondences between both kinds
of tableau rules. For instance, the tableau rule FTA, allowing for making derivable atoms
true, achieves the same effect as the generic implication rule I ↑. In fact, we obtain the
following correspondence result for normal programs.

Proposition 3.11. Let Π be a normal program, A an assignment, and F,G any pair
of a basic tableau rule F and a generic tableau rule G belonging to the same line in
Table 3.1.

Then, we have that

1. D{F}(Π,A) = D{G}(Π,A) if F /∈ {BTA,WFJ[2atom(Π)]};

2. D{BTA}(Π,A) ⊇ D{N↓}(Π,A) and, if D{BTA}(Π,A) 6= D{N↓}(Π,A), then A ∪
D{N↑}(Π,A) is contradictory;

3. D{WFJ[2atom(Π)]}(Π,A) ⊇ D{U↓}(Π,A) and, if TB ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then A ∪D{U↑}(Π,A ∪ {FB}) is contradictory.

This shows that similar entries are deducible by either kind of tableau rules. A tech-
nical difference, though, is that, if BTA is applicable because of some p ∈ AT ∩atom(Π)
such that bodyΠ(p) ⊆ AF , then N ↓ is not applicable to p since supA(Π, {p}, ∅) = ∅.

13Answer sets of τ [Π] match answer sets (as introduced in Section 2.1) of a normal program Π (cf. [162]).

38 Tableaux for Answer Set Programming

Basic Tableau Rule Generic Tableau Rule
(c) Forward True Atom FTA (a) Implication I ↑
(d) Backward False Atom BFA (b) Contraposition I ↓
(g) Forward False Atom FFA (c) Negation N ↑
(h) Backward True Atom BTA (d) Support N ↓
(i) Well-Founded Negation WFN[2atom(Π)] (e) Unfounded Set U ↑
(j) Well-Founded Justification WFJ[2atom(Π)] (f) Well-Founded Set U ↓
(a) Forward True Body FTB (h) True Conjunction TC↑
(b) Backward False Body BFB (i) Falsify Conjunction TC↓
(e) Forward False Body FFB (j) False Conjunction FC↑
(f) Backward True Body BTB (k) Justify Conjunction FC↓

Table 3.1: Correspondences between basic and generic tableau rules (for normal pro-
grams).

In such a case, a contradictory assignment is obtained by applying N ↑. Furthermore, if
TB is deduced by WFJ[2atom(Π)] in view of some S ⊆ atom(Π) such that AT ∩ S 6= ∅
and EBΠ(S) \AF ⊆ {B}, there may be none or multiple rules p ← B in Π for which
p ∈ S, so that |supA(Π, S, S)| = 1 is not guaranteed. In such a case, applying U ↑ w.r.t.
A∪{FB} yields a contradiction. That is, an entry TB deducible by WFJ[2atom(Π)] can
also be obtained with the generic calculus by means of cutting (on B or its body literals)
and closing branches with FB via U ↑, which yields TB in the single remaining branch.
Hence, differences between BTA and N ↓ as well as WFJ[2atom(Π)] and U ↓ are merely
technical, but not fundamental, discrepancies.

We further define the generic image of a basic calculus T as the generic calculus T ′
containing the Cut rules of T and the generic tableau rules associated with basic tableau
rules in T according to Table 3.1. Then, we obtain the following from Proposition 3.11.

Proposition 3.12. Let Π be a normal program, A an assignment, T a tableau calculus
containing any subset of the tableau rules in Figure 3.1 for Ω = 2atom(Π), and T ′ the
generic image of T .

If FFA ∈ T or BTA /∈ T and if WFJ[Ω] ∈ T implies that {FTB,FFB,WFN[Ω],
Cut[Γ]} ⊆ T for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ,
then we have that the following holds:

1. For every complete tableau of T for Π and A with n branches, there is a complete
tableau of T ′ for Π and A with the same non-contradictory branches and at most
(max{|atom(Π)|, |body(Π)|}+ 1) ∗ n branches overall.

2. Every tableau of T ′ for Π and A is a tableau of T for Π and A.

While every tableau of the generic image T ′ is likewise a tableau of T , in view of
Proposition 3.11, deductions by BTA or WFJ[Ω] may not be obtainable with N ↓ or U ↓,
respectively. Such deductions can still be simulated by means of other generic tableau
rules, possibly introducing a polynomial number of additional branches, for which the
approximation given in the first item of Proposition 3.12 provides an upper limit.

Example 3.18. To illustrate the correspondence between basic and generic tableau rules,
reconsider the normal program Π1 from Example 2.1. The tableau of Tsmodels for Π1

and the empty assignment shown in Figure 3.2 on Page 20 can also be generated by
the generic image of Tsmodels, consisting of the generic tableau rules (a)–(e), (h)–(k), and

3.3 Generic Tableaux for Composite Language Constructs 39


r1 : a←
r2 : c← not b,not d
r3 : d← a,not c


T ∅ (TC↑)
T a (I ↑)
F b (N ↑)

T c F c
T {not b,not d} (N ↓) F {not b,not d} (I ↓)

F d (FC↓) T d (TC↓)
F {a,not c} (FC↑) T {a,not c} (TC↑)

(Cut[atom(Π1)])

Figure 3.6: Complete tableau of the generic image of Tsmodels for Π1 and the empty
assignment.

Cut[atom(Π)]. (Note that, like Tsmodels, its generic image restricts cut objects to atoms,
and it does not include U ↓ because Tsmodels does not contain its associated basic tableau
rule WFJ[2atom(Π)].) The generic tableau resembling the one in Figure 3.2 is shown in
Figure 3.6.14 It is obtained by replacing the references to applied tableau rules ade-
quately based on the mapping in Table 3.1. Converse replacements of generic by basic
tableau rules are also possible, provided that a logic program at hand is normal.

3.3.4 Cardinality Constraints

We further extend our generic tableau framework to logic programs including cardinality
constraints [209]. The expressiveness of such programs, in terms of compact modeling,
goes well beyond the one of normal (and conjunctive) programs. Hence, the integration
of cardinality constraints sheds light on how to extend our generic framework to accom-
modate (sophisticated) aggregates.

A cardinality constraint over a denumerable alphabet P is an expression of the form
j{l1, . . . , ln}k, where li is an atomic literal for 1 ≤ i ≤ n and j, k are integers such that
0 ≤ j ≤ k ≤ n. We denote by card(P) the set of all cardinality constraints that can
be constructed from atoms in P . For v ∈ P ∪ card(P), we say that v and not v are
cardinality literals. A rule α← β such that α is a cardinality literal and β is a cardinality
literal or a possibly negated conjunction of cardinality literals is a cardinality rule. A
logic program is a cardinality program if it consists of cardinality rules.

For cardinality constraints in heads of rules, we adopt the approach of [209, 72, 171]
and interpret them as “choice constructs,” meaning that atoms are not minimized within
such cardinality constraints. To reflect the “lack of minimization,” cardinality constraints
in heads of rules necessitate an extended translation of cardinality programs to proposi-
tional theories.15 Hence, we let atom(j{l1, . . . , ln}k) = {l1, . . . , ln} ∩ P and replace
the definition of τ [Π] in (3.5) by the following translation:

14In Figure 3.6 and in the sequel, we skip set notation for conjunctions within bodies of rules, like ∅,
{not b,not d}, and {a,not c} in the bodies of rules in Π1.

15Interpreting aggregates in heads of rules as “choice constructs” avoids an increase of computational
complexity by one level in the polynomial time hierarchy. If derivable atoms were to be minimized, it would
be straightforward to embed disjunctive programs (considered in Section 3.3.5) into cardinality programs.

40 Tableaux for Answer Set Programming

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π, α /∈ card(P)} (3.14)

∪ {τ [β]→
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)
| (α← β) ∈ Π, α ∈ card(P)}

Note that conjuncts p ∨ ¬p are tautological and thus neutral as regards the (classical)
models of τ [Π]. Given an interpretation X , they however justify the truth of all p ∈
atom(α) ∩X in (τ [Π])X , in which ¬p is replaced by ⊥. We further add another case to
translation τ [π] in (3.6), which arises from the general aggregate semantics in [69]:

τ [π] =
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
if π = j{l1, . . . , ln}k ∈ card(P)

Since τ [j{l1, . . . , ln}k] inspects individual subsets of {l1, . . . , ln} (of cardinality below j
or beyond k), its size is, in general, exponential in n. Albeit the use of auxiliary atoms
admits a polynomial translation of cardinality constraints to normal rules as, e.g., de-
scribed in [209], compilation approaches incur a significant blow-up in space. Our proof-
theoretic characterizations given below apply directly to cardinality constraints and thus
avoid any such blow-up.

For a cardinality program Π, we fix the domain of assignments A as well as the
cut objects used by Cut[Γ] to dom(A) = Γ = atom(Π) ∪ conj (Π) ∪ card(Π), where
card(Π) is the set of cardinality constraints occurring in Π. Figure 3.7 shows the tableau
rules augmenting those in Figure 3.4 and 3.5 to additionally handle cardinality con-
straints. These rules match truth values of atoms occurring in a cardinality constraint to
the one assigned to the constraint as a whole, in order to ensure that T j{l1, . . . , ln}k ∈ A
iff AT ∩ P |= τ [j{l1, . . . , ln}k] holds for total assignments A.

Example 3.19. Consider the following cardinality constraint:

γ = 2{a, b, c,not d,not e}3

Cardinality constraint γ includes n = 5 literals, lower bound j = 2, and upper bound
k = 3. For an assignment A, tableau rule TLU ↑ allows for deducing T γ if at least
j = 2 literals l of γ hold (i.e., tl ∈ A) and at least n−k = 2 literals l of γ are false (i.e.,
f l ∈ A). This applies, for instance, to the assignment A1 = {T a,F b,T d,F e}; hence,
T γ can be deduced by TLU ↑. Indeed, the lower and the upper bound of γ are respected
in every non-contradictory assignment that extends A1, no matter whether T c or F c is
additionally included. Tableau rules TLU↓ and TLU ↓ are the contrapositives of TLU ↑,
ensuring that either the lower or the upper bound of γ is violated if F γ belongs to an
assignment. For instance, F c and T e can be deduced by TLU↓ w.r.t. the assignment
A2 = {F γ,T a,F b,T d}. Observe that the upper bound k = 3 cannot be violated
in non-contradictory extensions of A2, since n − k = 2 literals of γ are already false
w.r.t. A2, containing F b and T d. On the other hand, TLU ↓ allows for deducing T c and
F e w.r.t. {F γ,T a,F b,F d} in order to violate the upper bound k = 3; the lower bound
j = 2 cannot be violated because of T a and F d. The remaining four tableau rules in
Figure 3.7 allow for deducing F γ if its lower (FL↑) or upper (FU ↑) bound is violated,
or for making sure that the lower (FL↓) and the upper (FU ↓) bound are respected if T γ
belongs to an assignment. For instance, F γ can be deduced by FL↑ w.r.t. the assignment
{F b,F c,T d,T e}, and by FU ↑ w.r.t. {T b,T c,F d,F e}. Conversely, FL↓ allows for
deducing T a and F e w.r.t. {T γ,F b,F c,T d}, and FU ↓ allows for deducing F a and
T e w.r.t. {T γ,T b,T c,F d}.

3.3 Generic Tableaux for Composite Language Constructs 41

tl1, . . . , tlj ,f lk+1, . . . ,f ln
T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k

(l) True Bounds (TLU ↑)

F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlj−1,f lk+1, . . . ,f ln

f lj , . . . ,f lk

(m) Falsify Lower Bound (TLU↓)

F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k
tl1, . . . , tlj ,f lk+2, . . . ,f ln

tlj+1, . . . , tlk+1

(n) Falsify Upper Bound (TLU ↓)

f lj , . . . ,f ln
F j{l1, . . . , lj , . . . , ln}k

T j{l1, . . . , lj , lj+1, . . . , ln}k
f lj+1, . . . ,f ln
tl1, . . . , tlj

(o) False Lower Bound (FL↑) (p) Justify Lower Bound (FL↓)

tl1, . . . , tlk+1

F j{l1, . . . , lk+1, . . . , ln}k

T j{l1, . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlk

f lk+1, . . . ,f ln

(q) False Upper Bound (FU ↑) (r) Justify Upper Bound (FU ↓)

Figure 3.7: Tableau rules for cardinality constraints.

42 Tableaux for Answer Set Programming

To integrate cardinality constraints into the generic setting of the tableau rules in
Figure 3.4, we also need to extend the concepts in (3.8)–(3.13):

←−supA(j{l1, . . . , ln}k, S) if {l1, . . . , ln} ∩ S 6= ∅ and

|{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| < k
−→supA(j{l1, . . . , ln}k, S′) if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| ≥ j

minA(j{l1, . . . , ln}k, S) =


{f l | l ∈ {l1, . . . , ln} \ S, tl /∈ A}

if |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| = k − 1
∅ if |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| 6= k − 1

maxA(j{l1, . . . , ln}k, S′) =


{tl | l ∈ {l1, . . . , ln} \ S′, f l /∈ A}

if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| = j
∅ if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| 6= j

Recall that ←−supA(α, S) is used to determine whether a rule with head α can provide
support for the atoms in S. If α = j{l1, . . . , ln}k, then some atom of S must belong
to {l1, . . . , ln}. Furthermore, if {l1, . . . , ln} \ S already contains k (or more) literals
that hold w.r.t. A, then the addition of T p to A for p ∈ {l1, . . . , ln} ∩ S would violate
the upper bound k, so that the corresponding rule α ← β cannot support S. This also
explains the false literals in minA(j{l1, . . . , ln}k, S) that can be deduced if k− 1 literals
of {l1, . . . , ln} \ S hold already. In addition, −→supA(β, S′) is used to verify whether a
support via β is external to S′. If, for a rule α ← β, either β = j{l1, . . . , ln}k or β is
a conjunction such that j{l1, . . . , ln}k ∈ β, then there must be enough non-false literals
w.r.t. A in {l1, . . . , ln} \ S′ to achieve the lower bound j. If the number of such literals
is exactly j, then all of them must hold for providing a support that is external to S′. This
is expressed by maxA(j{l1, . . . , ln}k, S′).

Example 3.20. Consider the following cardinality program:

Π10 =


r1 : 0{c, d, e}3←
r2 : 1{a, b}2← c, d
r3 : 0{a, d}1← 1{b,not e}2
r4 : 1{b, d}2← 1{a, c}2
r5 : 1{a, d}2← b


Let A = {T a,F c,F {c, d}}, and note that tableau rule U ↓ (or N ↓) does not apply to the
set {a} since supA(Π10, {a}, {a}) = {r3, r5}. We further consider the set {a, b}. Given
that {c, d, e}∩{a, b} = ∅ and F {c, d} ∈ A, we have that r1 /∈ supA(Π10, {a, b}, {a, b})
and r2 /∈ supA(Π10, {a, b}, {a, b}). Regarding the body of r5, b ∈ {a, b} is the reason
for −→supA(b, {a, b}) not to hold. For the body of r4, we have that {a, c} \ {a, b} = {c}
and fc = F c ∈ A, so that there are no non-false literals in {a, c} \ {a, b}. That
is, the lower bound 1 of 1{a, c}2 cannot be achieved independently of {a, b}, and
thus −→supA(1{a, c}2, {a, b}) does not hold. We have now established that only r3 is
potentially contained in supA(Π10, {a, b}, {a, b}). As not e ∈ {b,not e} is a non-
false literal not belonging to {a, b}, −→supA(1{b,not e}2, {a, b}) holds. In addition,
←−supA(0{a, d}1, {a, b}) holds because {a, d} ∩ {a, b} 6= ∅ and td = T d /∈ A. This
shows that supA(Π10, {a, b}, {a, b}) = {r3}. As entries deducible by U ↓, we ob-
tain t1{b,not e}2 = T 1{b,not e}2, minA(0{a, d}1, {a, b}) = {fd} = {F d}, and
maxA(1{b,not e}2, {a, b}) = {tnot e} = {F e}. In fact, if T d or T e had been con-
tained in A, we would have obtained supA(Π10, {a, b}, {a, b}) = ∅, so that deducing F a

3.3 Generic Tableaux for Composite Language Constructs 43

by U ↑ would have led to a contradiction. Also note that the only answer set of Π10 com-
patible with both T a and F c, {a, b}, does not include d and e.

In view of the generalizations of ←−sup, −→sup, min , and max provided above, Theo-
rem 3.9 extends to cardinality programs.

Theorem 3.13. Let Π be a cardinality program.
Then, we have that Statement 1, 2, and 3 given in Theorem 3.9 hold for the tableau

calculus consisting of the tableau rules (a)–(r).

On the example of cardinality constraints, we have demonstrated the full granularity
of our generic tableau rules in Figure 3.4, making use of the extended definitions of←−sup,
−→sup, min , and max . Importantly, we have extended the domain of assignments (and cut
objects) to include cardinality constraints. As a matter of fact, this admits the addition of
the tableau rules in Figure 3.7, matching the truth value of a cardinality constraint to those
of its constituents, without any modification of tableau rules dealing with other language
constructs, like the ones for conjunctions in Figure 3.5. The same methodology could be
used to deal with logic programs further including smodels’ weight constraints [209] or
dlv’s aggregates [67]. Notably, the approach of clasp to incorporate extended language
constructs [84] is closely related: clasp extends assignments and unit propagation to
composite language constructs for keeping track of reasons for inferences, which can be
extracted from tableau rules by using the methodology described in Section 3.2.3.

3.3.5 Disjunctive Heads

The extension of normal programs’ syntax and semantics by allowing heads of rules to be
(proper) disjunctions of atoms is one of the earliest generalizations of answer set seman-
tics [120]. Due to admitting the (unrestricted) use of disjunction, the inherent computa-
tional complexity of important reasoning tasks increases from the first to the second level
of the polynomial time hierarchy [57, 158]. As we show in the following, it is nonethe-
less possible to extend our generic tableau framework by allowing (proper) disjunctions
in heads of rules, without imposing any restrictions on computational complexity.

A disjunction over a denumerable alphabet P is an expression of the form
{l1; . . . ; ln}, where li is an atomic literal for 1 ≤ i ≤ n. We denote by disj (P) the set of
all disjunctions that can be constructed from atoms in P . For v ∈ P∪card(P)∪disj (P),
v and not v are disjunctive literals. A rule α← β such that α is a disjunctive literal and β
is a cardinality literal or a possibly negated conjunction of cardinality literals is a disjunc-
tive rule. A logic program is a disjunctive program if it consists of disjunctive rules.

In contrast to cardinality constraints serving as “choice constructs,” the common se-
mantics for disjunctions relies on the minimization of derivable atoms. Hence, we adhere
to the definition of τ [Π] in (3.14) and just add another case to τ [π] in (3.6):

τ [π] =
∨
l∈{l1,...,ln}τ [l] if π = {l1; . . . ; ln} ∈ disj (P)

We further extend the concepts in (3.8)–(3.13) to disjunctive heads:

←−supA({l1; . . . ; ln}, S) if {l1, . . . , ln} ∩ S 6= ∅ and

{l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅
minA({l1; . . . ; ln}, S) = {f l | l ∈ {l1, . . . , ln} \ S}

44 Tableaux for Answer Set Programming

tli
T {l1; . . . ; li; . . . ; ln}

F {l1; . . . ; ln}
f l1, . . . ,f ln

(s) True Disjunction (TD↑) (t) Falsify Disjunction (TD↓)

f l1, . . . ,f ln
F {l1; . . . ; ln}

T {l1; . . . ; li−1; li; li+1; . . . ; ln}
f l1, . . . ,f li−1,f li+1, . . . ,f ln

tli

(u) False Disjunction (FD↑) (v) Justify Disjunction (FD↓)

Figure 3.8: Tableau rules for disjunctions.

Observe that the notion of support,←−supA({l1; . . . ; ln}, S), is closely related to, yet sim-
pler than, the corresponding concept for cardinality constraints, given that disjunctions
do not possess an upper bound k. Rather, support requires all literals of {l1, . . . , ln} \ S
to be false; this condition can be established by means of minA({l1; . . . ; ln}, S), used by
generic tableau rules N ↓ and U ↓.

For a disjunctive program Π, we fix the domain of assignments A as well as the cut
objects used by Cut[Γ] to dom(A) = Γ = atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π),
where disj (Π) is the set of disjunctions occurring in Π. The additional tableau rules
for handling disjunctions are shown in Figure 3.8. Their purpose is to ensure that
T {l1; . . . ; ln} ∈ A iff AT ∩P |= (τ [l1]∨· · ·∨τ [ln]) holds for total assignments A. The
tableau calculus for disjunctive programs is obtained by adding the rules in Figure 3.8 to
the ones in Figure 3.4, 3.5, and 3.7. Then, Theorem 3.9 extends to disjunctive programs.

Theorem 3.14. Let Π be a disjunctive program.
Then, we have that Statement 1, 2, and 3 given in Theorem 3.9 hold for the tableau

calculus consisting of the tableau rules (a)–(v).

As with conjunctive programs that are slightly more general than normal ones, we
have a parallel relationship between our and the traditional concept of a disjunctive pro-
gram [120], given that we admit (default) negation in front of and within a disjunction.16

However, as the equivalences discussed in [165] show, rules with negative formulas in
the head can be rewritten such that occurrences of negation are limited to rule bodies. In
our setting, the generic tableau rules in Figure 3.4 tolerate negative literals in heads of
rules, so that they can be admitted without difficulties. Given this, the class of disjunctive
programs we consider here is expressive enough to represent any nested program [165]
(in which heads and bodies of rules are allowed to be formulas).

As regards computational complexity of reasoning tasks, e.g., answer set existence,
which can increase due to disjunctions in heads of rules, it does not impose any extra
difficulties in specifying tableau rules. Rather, elevated complexity manifests itself in the
hardness of verifying the application conditions of tableau rules, namely, the ones of U ↑
and U ↓ dealing with unfounded sets. While such conditions can be checked in polyno-
mial time for cardinality programs (cf. [209]), determining a (non-empty) unfounded set
is NP-complete for disjunctive programs (cf. [159]). However, it is interesting to note

16Unlike [120], we do not consider classical negation, but it could be handled easily by compilation.

3.4 Proof Complexity 45

that the condition supA(Π, S, S) = ∅, checked in the proviso of U ↑, along with The-
orem 3.14 contribute a definition of unfounded sets for disjunctive programs including
cardinality constraints. Restricting A to entries over atoms only also yields a counterpart
of GRS-unfounded sets (cf. Definition 2.1 on Page 12) for such disjunctive programs.
(It merely requires replacing the support condition fβ /∈ A in (3.7) by an evaluation
of β w.r.t. assigned atoms.) To our knowledge, there is no direct unfounded set definition
(not relying on compilation to basic language constructs) for the class of disjunctive pro-
grams considered here,17 yet soundness and completeness results (like Theorem 3.14) in
the presence of U ↑ inherently contribute unfounded set definitions for extended classes
of logic programs.

3.4 Proof Complexity

In Section 3.2, we have seen that native ASP solvers largely coincide on their propaga-
tion rules and differ primarily in the usage of Cut. In this section, we analyze the relative
efficiency of tableau calculi w.r.t. different Cut rules. We start by taking Tsmodels, Tnomore,
and Tnomore++ (defined on Page 20) into account, all using the deterministic tableau rules
(a)–(i) in Figure 3.1 on Page 19 but applying Cut to either atom(Π), body(Π), or both of
them. These three calculi are of particular interest as they closely characterize strategies
of existing ASP solvers, viz., smodels (and dlv), nomore, and nomore++. After in Sec-
tion 3.4.1 dealing with calculi aiming at normal programs, in Section 3.4.2, we extend
our analysis to generic calculi and the impact of Cut w.r.t. extended language constructs.

For comparing tableau calculi, we use the concept of proof complexity [39] and eval-
uate the relative efficiency of calculi on unsatisfiable logic programs (having no answer
set) in terms of minimal refutations. The size of a tableau is determined in the standard
way by the number of its nodes (program rules and entries).18 A tableau calculus T is
not polynomially simulated [19, 144] by another calculus T ′ if there is an infinite (wit-
nessing) family {Πn} of unsatisfiable logic programs such that the asymptotic size of
minimal refutations of T ′ for Π is exponentially greater than the asymptotic size of mini-
mal refutations of T for Π. A tableau calculus T is exponentially stronger than a tableau
calculus T ′ if T ′ is polynomially simulated by T (for refutations of T ′, there are refuta-
tions of T of up to a polynomial same asymptotic size), but not vice versa. Two tableau
calculi are efficiency-incomparable if neither one is polynomially simulated by the other.

3.4.1 Tableaux for Normal Logic Programs

In what follows, we provide infinite families of unsatisfiable normal programs witnessing
that neither Tnomore is polynomially simulated by Tsmodels, nor vice versa. This means that,
on certain normal programs, restricting Cut to only either atoms or bodies leads to expo-
nentially greater (optimal) search space traversals of atom- or rule-based ASP solvers in

17In [65, 66], occurrences of aggregates are limited to rule bodies. Furthermore, the semantics proposed
there is not based on the logic of here-and-there, since (default) negated aggregates like not 0{a}0 are
treated differently. Hence, important properties that can be verified in the logic of here-and-there (e.g.,
strong equivalence [163]) do not carry forward to the semantics proposed in [65, 66].

18The determining factor for the asymptotic size of minimal refutations is the number of required Cut
applications, that is, the number of branches that need to be investigated, because the depth of each branch is
bounded by the input size. Also note that proof complexity says nothing about the difficulty of finding mini-
mal refutations; rather, it provides a lower bound on the efficiency of proof-finding procedures, independent
of heuristic influences.

46 Tableaux for Answer Set Programming

Πn
a =


x← not x
x← a1, b1

...
x← an, bn

 Πn
b =


y ← c1, . . . , cn,not y
c1 ← not a1 c1 ← not b1

...
...

cn ← not an cn ← not bn

 Πn
c =



a1 ← not b1
b1 ← not a1

...
an ← not bn
bn ← not an


Figure 3.9: Families {Πn

a}, {Πn
b }, and {Πn

c } of normal programs.

comparison to their counterparts, no matter the applied heuristics. The following results
state the existence of witnessing families.

Proposition 3.15. There is an infinite family {Πn} of normal programs such that

1. the size of minimal refutations of Tnomore for Πn is asymptotically linear in n;

2. the size of minimal refutations of Tsmodels for Πn is asymptotically exponential in n.

Proposition 3.16. There is an infinite family {Πn} of normal programs such that

1. the size of minimal refutations of Tsmodels for Πn is asymptotically linear in n;

2. the size of minimal refutations of Tnomore for Πn is asymptotically exponential in n.

Family {Πn
a ∪ Πn

c } witnesses Proposition 3.15, and {Πn
b ∪ Πn

c } witnesses Proposi-
tion 3.16 (see Figure 3.9). The reason why Tsmodels does not admit compact refutations for
Πn
a ∪ Πn

c is that its proofs must exhaustively investigate symmetric alternatives obtained
by cutting on atoms ai or bi. In fact, minimal refutations of Tsmodels for Πn

a∪Πn
c are of the

shape sketched in Figure 3.10. While an initial cut on x yields an immediate contradiction
in the branch with Fx, branches with Tx can only be completed after adding n − 1 en-
tries of the form F {ai, bi} for 1 ≤ i ≤ n. However, Cut[atom(Πn

a ∪Πn
c)] does not allow

for introducing such entries, so that they must be deduced indirectly, extending branches
obtained by cutting on atoms ai or bi. But cascaded applications of Cut[atom(Πn

a ∪Πn
c)]

yield a subtableau with 2n−1 branches below Tx (and F {not x}), whose leaves are indi-
cated at the bottom of Figure 3.10. Given that exponentially many branches are required,
the size of minimal refutations of Tsmodels for Πn

a ∪Πn
c is asymptotically exponential in n.

Unlike this, the use of Cut[body(Πn
a ∪ Πn

c)] admits linear refutations for Πn
a ∪ Πn

c with
Tnomore, like the one sketched in Figure 3.11. In such a refutation, cuts on {not x} or
{ai, bi} for 1 ≤ i ≤ n yield immediate contradictions in branches with T {not x} or
T {ai, bi}, respectively. In fact, only n applications of Cut[body(Πn

a ∪ Πn
c)] are required

in total, so that there are linear refutations with n+ 1 branches overall.
The situation that Tnomore dominates Tsmodels is reversed with programs of the family

{Πn
b ∪ Πn

c }, where Figure 3.12 sketches a minimal refutation of Tnomore for Πn
b ∪ Πn

c .
In this refutation, only the initial cut on {c1, . . . , cn,not y} yields an immediate contra-
diction in the branch with T {c1, . . . , cn,not y}. Then, cuts on rule bodies {not ai} (or,
alternatively, {not bi}) must be cascaded to deduce T ci in each of the resulting branches.
Only after n − 1 entries of the form T ci for 1 ≤ i ≤ n have been generated, the leaves
indicated at the bottom of Figure 3.12 are obtained. In view of symmetry, the subtableau
below F {c1, . . . , cn,not y} (and F y) necessarily includes 2n−1 branches, so that the
size of minimal refutations of Tnomore for Πn

b ∪ Πn
c is asymptotically exponential in n.

Unlike this, cuts on ci, admitted with Tsmodels, yield immediate contradictions in branches
with F ci, and the same applies to a branch with T y. Thus, the refutation of Tsmodels for

3.4 Proof Complexity 47

x← not x
x← a1, b1 a1 ← not b1 b1 ← not a1

x← a2, b2 a2 ← not b2 b2 ← not a2
...

...
...

x← an−1, bn−1 an−1 ← not bn−1 bn−1 ← not an−1

x← an, bn an ← not bn bn ← not an


Tx

F {not x} (FFB)
T a1

T {not b1} (BTA)
F b1 (BTB)

F {a1, b1} (FFB)

F a1

|
|

F {a1, b1} (FFB)
T a2

T {not b2} (BTA)
F b2 (BTB)

F {a2, b2} (FFB)︷︸︸︷. . .

F a2

|
|

F {a2, b2} (FFB)︷︸︸︷. . .

T a2

T {not b2} (BTA)
F b2 (BTB)

F {a2, b2} (FFB)︷︸︸︷. . .

F a2

|
|

F {a2, b2} (FFB)︷︸︸︷. . .
. . .︸︷︷︸

T an−1

T {not bn−1} (BTA)
F bn−1 (BTB)

F {an−1, bn−1} (FFB)
T {an, bn} (BTA)

T an (BTB)
T {not bn} (BTA)

T bn (BTB)
F bn (BTB)

F an−1

|
|

F {an−1, bn−1} (FFB)
T {an, bn} (BTA)

T an (BTB)
T {not bn} (BTA)

T bn (BTB)
F bn (BTB)

Fx
T {not x} (FTB)
F {not x} (BFA)

Figure 3.10: A minimal refutation of Tsmodels for Πn
a ∪Πn

c , using Cut[atom(Πn
a ∪Πn

c)].

Πn
b ∪ Πn

c sketched in Figure 3.13 involves only n applications of Cut[atom(Πn
b ∪ Πn

c)]
in total, so that there are linear refutations with n+ 1 branches overall.

Notably, empirical evidence for divergent proof complexities of Tsmodels and Tnomore

has been given in [2], and [110] shows that conflict resolution as performed by smodels-
based ASP solver smodelscc is unable to compensate for the exponential proof complexity
of Tsmodels on family {Πn

a∪Πn
c }. In view of mutual exponential separations, the next result

is immediately obtained from Proposition 3.15 and 3.16.

Corollary 3.17. Tableau calculi Tsmodels and Tnomore are efficiency-incomparable.

Given that refutations of Tsmodels and Tnomore are refutations of Tnomore++ as well, we
have that Tsmodels and Tnomore are both polynomially simulated by Tnomore++. Hence, the
following is an immediate consequence of Corollary 3.17.

Corollary 3.18. Tableau calculus Tnomore++ is exponentially stronger than both Tsmodels
and Tnomore.

The major implication of Corollary 3.18 is that, on certain normal programs, a priori
restricting Cut to only either atoms or bodies necessitates exponentially greater search

48 Tableaux for Answer Set Programming

x← not x
x← a1, b1 a1 ← not b1 b1 ← not a1

x← a2, b2 a2 ← not b2 b2 ← not a2
...

...
...

x← an−1, bn−1 an−1 ← not bn−1 bn−1 ← not an−1

x← an, bn an ← not bn bn ← not an


T {not x}

Fx (BTB)
Tx (FTA)

F {not x}
Tx (BFB)

T {a1, b1}
T a1 (BTB)

T {not b1} (BTA)
T b1 (BTB)
F b1 (BTB)

F {a1, b1}
T {a2, b2}

T a2 (BTB)
T {not b2} (BTA)

T b2 (BTB)
F b2 (BTB)

F {a2, b2}
. . .

F {an−1, bn−1}
T {an, bn} (BTA)

T an (BTB)
T {not bn} (BTA)

T bn (BTB)
F bn (BTB)

Figure 3.11: A minimal refutation of Tnomore for Πn
a ∪Πn

c , using Cut[body(Πn
a ∪Πn

c)].

space traversals than unrestricted Cut. Note that the phenomenon of exponentially greater
proof complexity in comparison to Tnomore++ does not, depending on the program family,
apply to one of Tsmodels or Tnomore alone. Rather, the infinite family{

(Πn
a \ {x← not x}) ∪ (Πn

b \ {y ← c1, . . . , cn,not y}) ∪
{y ← c1, . . . , cn,not x,not y} ∪Πn

c

}
is such that the asymptotic size of minimal refutations of both Tsmodels and Tnomore is ex-
ponential in n, while Tnomore++ still admits refutations of linear size. Here, with Tsmodels,
it is easy to prove that x needs to be true, while checking that this cannot be the case
requires investigating symmetric alternatives by cutting on atoms ai or bi. On the other
hand, with Tnomore, it is easy to verify that x and y need to be false, but recognizing that
c1, . . . , cn must be true, so that the rule y ← c1, . . . , cn,not x,not y is unsatisfied, re-
quires exhaustive cutting on rule bodies {not ai} or {not bi}. Unlike this, with Tnomore++,
it is easy to refute c1, . . . , cn to be false as well as x and y to be true, which in turn yields
y ← c1, . . . , cn,not x,not y as unsatisfied rule. Hence, Tnomore++, but neither Tsmodels
nor Tnomore, admits linear refutations for members of the above family.

Note that our proof complexity results are unimpaired by failed-literal detection [76]
as, e.g., applied by smodels. In fact, failed-literal detection can be mimicked by means
of Cut, so that proof complexity, already assuming an optimal heuristic, stays unaffected.
In view of Corollary 3.4 on Page 25 and similarities between smodels and dlv on normal
programs [122], the proof complexity of tableau calculus Tsmodels indeed provides a lower
bound on the efficiency of smodels and dlv (when applied to normal programs).

3.4.2 Generic Tableaux for Composite Language Constructs

After considering normal programs and tableau calculi for them, we now turn to the
generic calculus (cf. Figure 3.4 on Page 34) and extensions thereof. In view of Proposi-

3.4 Proof Complexity 49

y ← c1, . . . , cn,not y
c1 ← not a1 c1 ← not b1 a1 ← not b1 b1 ← not a1

c2 ← not a2 c2 ← not b2 a2 ← not b2 b2 ← not a2
...

...
...

...
cn−1 ← not an−1 cn−1 ← not bn−1 an−1 ← not bn−1 bn−1 ← not an−1

cn ← not an cn ← not bn an ← not bn bn ← not an


T {c1, . . . , cn,not y}

T y (FTA)
F y (BTB)

F {c1, . . . , cn,not y}
F y (FFA)

T {not a1}
|
|

T c1 (FTA)

F {not a1}
T a1 (BFB)

T {not b1} (BTA)
T c1 (FTA)

T {not a2}
|
|

T c2 (FTA)︷︸︸︷. . .

F {not a2}
T a2 (BFB)

T {not b2} (BTA)
T c2 (FTA)︷︸︸︷. . .

T {not a2}
|
|

T c2 (FTA)︷︸︸︷. . .

F {not a2}
T a2 (BFB)

T {not b2} (BTA)
T c2 (FTA)︷︸︸︷. . .

. . .︸︷︷︸
T {not an−1}

|
|

T cn−1 (FTA)
F cn (BFB)

F {not an} (BFA)
F {not bn} (BFA)

T an (BFB)
F an (FFA)

F {not an−1}
T an−1 (BFB)

T {not bn−1} (BTA)
T cn−1 (FTA)
F cn (BFB)

F {not an} (BFA)
F {not bn} (BFA)

T an (BFB)
F an (FFA)

Figure 3.12: A minimal refutation of Tnomore for Πn
b ∪Πn

c , using Cut[body(Πn
b ∪Πn

c)].

tion 3.12 on Page 38, the results in Section 3.4.1 (and the fact that minimal refutations of
Tsmodels and Tnomore for members of {Πn

a ∪ Πn
c } or {Πn

b ∪ Πn
c }, respectively, are not sig-

nificantly reduced when adding WFJ[2atom(Π)]) allow us to immediately conclude that,
for conjunctive programs, the generic calculi {(a)–(f), (h)–(k),Cut[atom(Π)]} and {(a)–(f),
(h)–(k),Cut[conj (Π)]} are efficiency-incomparable, while {(a)–(f), (h)–(k),Cut[atom(Π)∪
conj (Π)]} is exponentially stronger than both of them. We below extend the analysis of
relative efficiency w.r.t. different Cut rules to more general logic programs, addressing the
question whether cutting on further language constructs, namely, cardinality constraints
and disjunctions, leads to more powerful tableau calculi. Beforehand, note that cutting
on atoms is sufficient for obtaining complete calculi even in the presence of language ex-
tensions, given that the truth values of composite constructs can be deduced from atomic
literals by (deterministic) tableau rules. For cardinality constraints and disjunctions, this
is possible using the tableau rules in Figure 3.7 and 3.8 on Page 41 and 44, respectively.

For cardinality programs Π, we consider Tcard = {(a)–(f), (h)–(r),Cut[atom(Π) ∪
conj (Π)∪card(Π)]} and Tconj = {(a)–(f), (h)–(r),Cut[atom(Π)∪conj (Π)]}. Both calculi
contain all deterministic tableau rules dealing with cardinality programs; the difference
is that cutting on cardinality constraints is allowed with Tcard , but not with Tconj . As

50 Tableaux for Answer Set Programming

y ← c1, . . . , cn,not y
c1 ← not a1 c1 ← not b1 a1 ← not b1 b1 ← not a1

c2 ← not a2 c2 ← not b2 a2 ← not b2 b2 ← not a2
...

...
...

...
cn−1 ← not an−1 cn−1 ← not bn−1 an−1 ← not bn−1 bn−1 ← not an−1

cn ← not an cn ← not bn an ← not bn bn ← not an


T y

T {c1, . . . , cn,not y} (BTA)
F {c1, . . . , cn,not y} (FFB)

F y
F {c1, . . . , cn,not y} (BFA)

T c1

T c2

. . .

T cn−1

F cn (BFB)
F {not an} (BFA)
F {not bn} (BFA)

T an (BFB)
F an (FFA)

F c2

F {not a2} (BFA)
F {not b2} (BFA)

T a2 (BFB)
F a2 (FFA)

F c1

F {not a1} (BFA)
F {not b1} (BFA)

T a1 (BFB)
F a1 (FFA)

Figure 3.13: A minimal refutation of Tsmodels for Πn
b ∪Πn

c , using Cut[atom(Πn
b ∪Πn

c)].

every tableau of Tconj is a tableau of Tcard as well, it is clear that Tconj is polynomially
simulated by Tcard . The following result states that the converse does not hold.

Proposition 3.19. Tableau calculus Tcard is exponentially stronger than Tconj .

Proposition 3.19 is witnessed by the infinite family {Πn
c ∪ Πn

d} of unsatisfiable car-
dinality programs, where Πn

c is shown in Figure 3.9 and Πn
d is as follows:

Πn
d = {z ← 1{a1, b1}2, . . . , 1{an, bn}2,not z}

For Πn
c ∪ Πn

d , a branch containing F 1{ai, bi}2 is easy to refute because F ai and F bi
can be deduced by tableau rule TLU↓ (cf. Figure 3.7 on Page 41), yielding an imme-
diate contradiction since ai and bi cannot jointly be false (cf. Πn

c in Figure 3.9). The
unrestricted Cut rule of Tcard can be used to exploit this by cutting on 1{ai, bi}2 for
1 ≤ i ≤ n, so that the resulting minimal refutations are of asymptotically linear size
in n. In fact, when replacing cuts on y and ci by cuts on z and 1{ai, bi}2, respec-
tively, minimal refutations of Tcard for Πn

c ∪Πn
d are of the shape sketched in Figure 3.13

(also assuming that applications of BFA to deduce F {not ai} and F {not bi} are re-
placed by TLU↓, deducing F ai as well as F bi, and that T ai is deduced by I ↓ instead
of BFB). In contrast, with Tconj , Cut must be applied to atoms ai or bi (or to bodies
{not ai} or {not bi}), while deducing T 1{ai, bi}2 in each of the resulting branches.
Such refutations are of the same shape as the one sketched in Figure 3.12: an initial cut
on {1{a1, b1}2, . . . , 1{an, bn}2,not z} (or z) yields an immediate contradiction in the
branch with T {1{a1, b1}2, . . . , 1{an, bn}2,not z} (or T z) as well as a subtableau with
2n−1 branches below F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z).

The practical consequence of Proposition 3.19 is that ASP solvers dealing with cardi-
nality constraints can gain significant speed-ups by branching on them. Notably, the com-
pilation of rules with cardinality constraints to so-called “basic constraint rules” [209], as

3.5 Related Work 51

done by grounders like lparse [211] and gringo [90], introduces auxiliary atoms abbrevi-
ating cardinality constraints. This allows ASP solvers to (implicitly) branch on cardinal-
ity constraints, even if case analyses are restricted to atoms as, e.g., in smodels. Unlike
this, our tableau framework does not rely on any compilation and considers cardinality
constraints as structural entities that can be used deliberately for branching.

Regarding disjunctive programs, we have that occurrences of disjunctions are limited
to heads of rules (to avoid involved definitions of −→sup and max). If this restriction were
dropped, program Πn

d could be rewritten using disjunctions {ai; bi} rather than 1{ai, bi}2
for 1 ≤ i ≤ n. This would yield the same exponential separation w.r.t. Cut rules with and
without disjunctions, respectively, as observed on cardinality constraints. However, with
disjunctions {l1; . . . ; ln} limited to heads of rules, the difficulty is that the information
gained in the case of T {l1; . . . ; ln} is weak: it is exploited by tableau rule FD↓ (cf. Fig-
ure 3.8 on Page 44) only if all but one of the literals l1, . . . , ln have already been assigned
to false. In view of this, it is complicated (if at all possible) to come up with an infi-
nite family of unsatisfiable disjunctive programs such that cutting on disjunctions is the
source of an exponential separation. Hence, we leave the question open whether cutting
on disjunctive heads admits exponentially smaller refutations than obtainable without it.

As noted in Section 3.2, existing ASP solvers, such as smodels, nomore, and
nomore++, lack backward propagation for unfounded sets. Their associated tableau cal-
culi reflect this by not including any variant of tableau rule WFJ[Ω] (cf. Figure 3.1 on
Page 19) or U ↓ (cf. Figure 3.4 on Page 34), respectively. On the other hand, SAT-
based and native conflict-driven learning ASP solvers, such as assat, clasp, cmodels,
sag, and smodelscc , are able to perform this kind of propagation relative to recorded
loop formulas. This brings our attention to the question whether omitting some infer-
ences deteriorates proof complexity. In what follows, we denote by R↑ and R↓ the
forward and backward variant, respectively, of any of the (deterministic) tableau rules
in Figure 3.4, 3.5, 3.7, and 3.8. For a tableau calculus T , we say that T ′ ⊆ T is an
approximation of T if T \ T ′ ⊆ {R↓ | R↑ ∈ T ′}. (We assume that TLU ↑ ∈ T ′ if
{TLU↓,TLU ↓}∩(T \T ′) 6= ∅, given that TLU ↑ has two backward counterparts.) That
is, if T contains both R↑ and R↓, an approximation T ′ of T is allowed to drop R↓. It is
clear that every approximation T ′ of T is polynomially simulated by T . Assuming Cut
to be sufficiently powerful, the next result shows that the converse holds as well.

Proposition 3.20. Let Π be a disjunctive program, T a tableau calculus containing any
subset of the tableau rules (a)–(v), and T ′ an approximation of T .

If Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ, then we have that T
is polynomially simulated by T ′.

In fact, an inference due to R↓ can be mimicked by cutting on the consequent of R↓.
Then, one of the two resulting branches becomes contradictory when applying R↑. But
recall that proof complexity assumes an optimal heuristic, determining the “right” objects
to cut on. As an optimal heuristic is inaccessible in practice, it is certainly advantageous
to implement R↓ within an ASP solver whenever it can be done efficiently.

3.5 Related Work

Our work is inspired by the one of Järvisalo, Junttila, and Niemelä [144], who use tableau
methods for investigating Boolean circuit satisfiability checking. Although their target is

52 Tableaux for Answer Set Programming

different from ours, both approaches have aspects in common. First, both use tableau
methods for characterizing DPLL-style search. Second, they analyze proof complexity
w.r.t. cut rules characterizing different concepts of case analyses.

As pointed out in [131], DPLL is very similar to the propositional version of the
KE tableau calculus; both are closely related to weak connection tableaux with atomic
cut. Tableau-based characterizations of logic programming are elaborated upon in [73].
Pearce, de Guzmán, and Valverde [193] provide a tableau calculus for automated theorem
proving in equilibrium logic. Further tableau approaches to non-monotonic reasoning are
summarized in [191] and [49].

General investigations into propositional proof complexity [39], in particular, the one
of (UN)SAT, can be found in [19]. Notably, recent results on CDCL [18, 197], the state-
of-the-art complete algorithm for SAT solving, indicate its strong correlation to general
resolution. Although DPLL amounts to a weaker form of resolution, called tree-like
(cf. [19]), Järvisalo and Oikarinen [145] show that an extension of our basic tableau
framework is as powerful as extended resolution (under standard translations between
ASP and SAT, viz., completion and the reduction in [186]). The complexity considera-
tions in [122] also build on the proximity of traditional ASP solving methods to DPLL.

Regarding inference systems for ASP, Bonatti [23] describes a resolution method
for skeptical reasoning. Unlike our approach, it is based on query-oriented top-down
evaluation, as also performed in SLDNF resolution (cf. [172]). Similarly, the proof
schemes investigated by Marek and Remmel [173] are closely related to SLDNF res-
olution. Operator-based characterizations of propagation and choice techniques of ASP
solvers can be found in [64, 209, 154, 3, 32]. They are more coarse-grained than our
tableau rules, which aim at characterizing fundamental inference steps. Although SAT-
based and native conflict-driven learning ASP solvers are usually described in terms of
algorithms [167, 218, 123, 168, 95], the fact that they identify reasons for conflicts yields
a close relationship to our tableau-based approach. In principle, (immediate) reasons can
easily be extracted from tableau rules, albeit our tableau frameworks do not incorporate
conflict-driven learning. The state-based calculus by Lierler [160], inspired by a similar
approach [189] to Satisfiability Modulo Theories (SMT) [15], allows for characterizing
several atom-based ASP solvers that incorporate conflict-driven learning.

A major issue in ASP solving is the treatment of unfounded sets [216, 159], which can
be captured by loop formulas [167, 156]. As the number of (non-redundant) loop formu-
las may be exponential [164],19 ASP solvers use dedicated procedures to check [209, 32]
and possibly also extract [167, 123, 168, 4, 102, 52] (violated) loop formulas relative to
assignments. To our knowledge, no existing ASP solver implements backward inference
via tableau rule WFJ, unless loop formulas have been recorded. Unfortunately, the ap-
proach in this direction suggested in [33, 34] is computationally too complex (quadratic)
to be beneficial in practice. Our generic tableau framework does not distinguish loops
(in tableau rules U ↑ and U ↓), which could however be done based on loops for proposi-
tional theories [70]. Loops and loop formulas for first-order normal programs have been
defined in [35, 157]. There are also direct characterizations (not referring to grounding)
of answer sets or stable models, respectively, for first-order theories [194, 71]. To our
knowledge, they have not yet been used as a basis for proof-theoretic frameworks.

19Lifschitz and Razborov [164] show that, under widely accepted assumptions in complexity theory, any
semantics-preserving polynomial translation of normal programs to propositional theories must extend the
input vocabulary. For instance, lp2sat [139] implements a sub-quadratic translation based on a binary repre-
sentation of level mappings [136, 187] (which are considered w.r.t. “non-tight” programs).

3.6 Discussion 53

3.6 Discussion

In contrast to the area of SAT, where the proof-theoretic foundations of SAT solvers are
well-understood (cf. [19, 18, 197]), the literature on ASP solvers is generally too specific
in terms of procedures or particular solving strategies. We addressed this deficiency by
proposing tableau frameworks that provide us with formal means for characterizing and
analyzing computations of ASP solvers. This is accomplished by associating specific
tableau calculi with the approaches of ASP solvers, rather than their solving procedures.
In fact, tableau calculi abstract from implementation details and admit identifying infer-
ence patterns. The latter can, in principle, be exploited to precisely render the constraints
propagated by a solver in order to use them, e.g., for conflict-driven learning.

The explicit representation of rule bodies and further composite language constructs,
such as cardinality constraints and disjunctions, in assignments has several benefits. For
one, it allows us to characterize SAT-based and also native atom- or rule-based ASP
solving approaches in a closer fashion. In fact, even in atom-based solvers, such as dlv,
smodels, and smodelscc , which (logically) work on assignments over atoms only, infer-
ences rely on the valuations of rule bodies (cf. Section 3.2). Hence, the decision of
whether or not to include composite language constructs in assignments mainly affects
the available cut objects. In this respect, the consideration of atoms as well as rule bodies
may lead to exponentially smaller (best-case) complexity than obtained with restricted
approaches. This also applies to cardinality constraints in logic programs, while it is
open whether branching on disjunctive heads can be the source of an exponential separa-
tion. The potential of exponential proof complexity decreases due to extending the range
of cut objects is also confirmed by several related investigations (cf. [144, 145, 143]).
However, it is well-known that uncontrolled cut applications are prone to inefficiency,
and restricting them to (sub)formulas occurring in the input showed to be an effective
way to “tame” the cut [40]. Our tableau calculi adopt such input restrictions, which is in
line with the fact that current ASP solvers do not “invent” new cut objects.

The simple class of normal programs is, in principle, sufficient to represent all NP-
problems in ASP [175], and it can be regarded as the core language shared by virtually
all ASP solvers. On the other hand, practical experience shows that language exten-
sions, such as dlv’s aggregates [67] or smodels’ cardinality and weight constraints [209],
are important for effective modeling (cf. [214]). Hence, we presented a generic tableau
framework and illustrated its extension to composite language constructs on two exam-
ples: cardinality constraints and disjunctive heads. Independently of the construct under
consideration, inference rules follow two major objectives: first, characterizing models
of logic programs and, second, verifying that true atoms are non-circularly supported.
Different notions of support are possible. For instance, atoms derived via composite lan-
guage constructs in heads of rules may be subject to minimization, as with disjunctions,
or not, as with cardinality constraints allowing for “choices.” Such issues need to be
settled in order to devise appropriate inference patterns.20

For conflict-driven learning ASP solvers, it is not only important to know valid infer-
ences, but also how the propagated constraints look like. Our generic tableau framework
provides means to study such aspects of composite language constructs in the course of
specifying tableau rules for them, and it also provides a ready-to-use basis for check-

20The available language constructs also affect computational complexity; for instance, it increases by one
level in the polynomial time hierarchy with disjunctive heads or negative weights within weight constraints
(cf. [69]).

54 Tableaux for Answer Set Programming

ing the soundness and completeness of sophisticated inference patterns. Interestingly,
conditions allowing for the falsification of atoms that cannot be non-circularly supported
inherently characterize unfounded sets for extended classes of logic programs. In partic-
ular, we are unaware of any pre-existing direct unfounded set definition (not relying on
compilation to basic language constructs) for disjunctive programs admitting cardinal-
ity constraints in heads as well as bodies of rules, while the proviso of generic tableau
rule U ↑ provides such a definition in view of Theorem 3.14. Based on our methodology,
the consideration of unfounded sets could be extended to further composite language
constructs.

Chapter 4

Conflict-Driven Answer Set Solving

Modern industrial SAT solvers utilize sophisticated lookback techniques (cf. [21]). Ex-
cept for some early approaches [17, 179], lookback techniques obliging to the “First-UIP”
scheme [219, 203, 48, 7, 197] have become consensus and are exploited by virtually all
state-of-the-art SAT solvers based on CDCL [179, 185, 56].

In ASP, we distinguish between two kinds of solvers: native ones, such as clasp [95],
dlv [158], nomore++ [3], smodels [209], and smodelscc [218], and SAT-based solvers,
such as assat [167], cmodels [123], and sag [168]. The latter apply SAT solvers to com-
pute models of a logic program’s completion [37, 6] and perform separate checks for
unfounded sets [216, 159], whereas native ASP solvers internalize unfounded set check-
ing as part of their propagation. Among them, traditional ASP solvers like dlv, nomore++,
and smodels perform DPLL-style search, while the lookback techniques driving CDCL
are supported by clasp and smodelscc . To this end, smodelscc extends smodels’ algorithm
in specific ways, so that clasp remains as the first (and currently still the only) native ASP
solver genuinely developed for conflict-driven ASP solving.

In this chapter, we present the logical fundament of clasp as well as its algorithmic
foundations. The key idea is to view all inferences from logic programs as unit propaga-
tion on nogoods, stemming from completion and unfounded sets. This provides us with
a uniform setting serving as the basis for conflict-driven ASP solving. However, nogoods
stemming from unfounded sets are tested via a dedicated unfounded set checking routine
and expatiated only “on demand.” Beyond a CDCL-like procedure for deciding answer
set existence, we devise novel algorithms for the enumeration of entire answer sets as
well as their projections to a subset of “output” atoms. By virtue of dedicated backtrack-
ing, enumeration integrates with lookback techniques according to the First-UIP scheme,
while still running in polynomial space.

The outline of this chapter is as follows. In Section 4.1, we characterize answer
sets of normal programs as solutions for Boolean constraints. Section 4.2 introduces
ordered assignments and unit propagation; these concepts are exploited by the algorithms
provided in the sequel. In Section 4.3, we present our decision procedure for conflict-
driven ASP solving along with its subroutines for propagation, unfounded set checking,
and conflict analysis. Enumeration algorithms for answer sets as well as their projections
are developed in Section 4.4. In Section 4.5, we present experimental results illustrating
the effectiveness of our techniques in practice. Section 4.6 and 4.7 conclude the chapter
by surveying related work and discussing the achieved results, respectively.

Parts of this chapter have also been presented in [94, 95, 98, 99], coauthored by the
author of this thesis.

56 Conflict-Driven Answer Set Solving

4.1 Nogoods of Normal Logic Programs

As already noted in Section 3.2.3, (deterministic) tableau rules like the ones in Figure 3.1
on Page 19 inherently induce nogoods (defined in Section 2.2), given that such a rule
expresses the fact that its prerequisites necessarily imply its consequent. Investigating all
instances of deterministic tableau rules w.r.t. a logic program Π thus allows for extracting
a set ∆ of nogoods such that any solution A for ∆ belongs to a non-contradictory com-
plete branch (Π,A) in a tableau (and vice versa). Importantly, nogoods provide us with
reasons explaining why entries must (not) belong to a solution, and lookback techniques
can be used to analyze and recombine inherent reasons for conflicts.

The specification of Boolean constraints given below adheres to the distinction made
in Section 3.2.3 between the completion, Comp(Π), and the loop formulas, LF (Π),
of a normal program Π. As established in Theorem 3.5, models of Comp(Π) match
non-contradictory complete branches in tableaux of Tcomp , containing the deterministic
tableau rules (a)–(h) in Figure 3.1. Furthermore, Theorem 3.1 and 3.8 have established
that Tcomp augmented with either WFN[2atom(Π)] or WFN[loop(Π)] characterizes models
of Comp(Π)∪LF (Π), as Lin and Zhao [167] showed that they coincide with the answer
sets of Π. The major difference between Comp(Π) and LF (Π) is that the former captures
local conditions that apply to individual atoms and rule bodies, while LF (Π) aims at the
more global conditions related to unfounded sets (cf. Section 2.3). Given that there may
be exponentially many (non-redundant) loop formulas [164], ASP solvers do not a priori
construct all of them explicitly, but check [209, 32] and possibly extract [167, 123, 168,
4, 102, 52] particular ones during answer set computation. The algorithms presented in
later sections also pursue this approach.

In the following, we specify nogoods such that their solutions correspond to answer
sets. To begin with, for a normal program Π, the set of completion nogoods of Π, denoted
by ∆Π, is as follows:

∆Π =
⋃
B∈body(Π),B={l1,...,ln}

{
{FB, tl1, . . . , tln},
{TB,f l1}, . . . , {TB,f ln}

}
∪

⋃
p∈atom(Π),bodyΠ(p)={B1,...,Bk}

{
{T p,FB1, . . . ,FBk},
{F p,TB1}, . . . , {F p,TBk}

}
As discussed in Section 3.2.3, ∆Π can, for instance, be obtained by syntactically con-
verting the tableau rules (a)–(h) in Figure 3.1 into nogoods. To be more precise, the
nogood {FB, tl1, . . . , tln} expresses the fact that a bodyB must not be assigned to false
if all of its literals hold; the same exclusion is achieved by tableau rule FTB (or BFB,
provided that B 6= ∅). The nogoods {TB,f l1}, . . . , {TB,f ln}, representing that B
cannot hold if some of its literals is false, comply with tableau rule FFB or, alterna-
tively, BTB; if B is empty, i.e., if n = 0, there are no nogoods of this kind, and the
corresponding tableau rules are likewise inapplicable. Turning to an atom p, the nogood
{T p,FB1, . . . ,FBk} stipulates p to be false if all of its supporting bodies are assigned
to false; tableau rule FFA (or BTA, provided that bodyΠ(p) 6= ∅) expresses the same.
Finally, the nogoods {F p,TB1}, . . . , {F p,TBk} view program rules as implications,
complying with tableau rule FTA or, alternatively, BFA; if p has no supporting rule, i.e., if
k = 0, there are no nogoods of this kind, and the corresponding tableau rules are likewise
inapplicable.

4.1 Nogoods of Normal Logic Programs 57

Tableau Rules Nogoods in ∆Π6

FTB, {F {not b},F b}, {F {not a},F a}, {F {a},T a}, {F {d},T d},
BFB {F {c},T c}, {F {c,not a},T c,F a}
FFB, {T {not b},T b}, {T {not a},T a}, {T {a},F a}, {T {d},F d},
BTB {T {c},F c}, {T {c,not a},F c}, {T {c,not a},T a}
FTA, {F a,T {not b}}, {F b,T {not a}}, {F c,T {a}}, {F c,T {d}},
BFA {F d,T {c,not a}}, {F e,T {c}}, {F e,T {d}}
FFA, {T a,F {not b}}, {T b,F {not a}}, {T c,F {a},F {d}},
BTA {T d,F {c,not a}}, {T e,F {c},F {d}}

Table 4.1: Set ∆Π6 of nogoods and associated tableau rules of Tcomp for Π6.

Example 4.1. Reconsider Π6 from Example 3.7:

Π6 =



r1 : a← not b
r2 : b← not a
r3 : c← a
r4 : c← d
r5 : d← c,not a
r6 : e← c
r7 : e← d


We have that atom(Π6) = {a, b, c, d, e}, body(Π6) = {{not b}, {not a}, {a}, {d}, {c},
{c,not a}}, and the tableau rules (a)–(h) in Figure 3.1 correspond to nogoods in ∆Π6

as shown in Table 4.1. Since each body occurring in Π6 is non-empty and each atom has
a supporting rule, every nogood in ∆Π6 reflects exactly one forward- and one backward-
oriented tableau rule. As already illustrated in Example 3.8 on Page 28, the nogoods
in ∆Π6 can be derived syntactically by considering potential applications of the tableau
rules (a)–(h) in Figure 3.1 for each target v ∈ atom(Π6) ∪ body(Π6).

In view of the syntactic relationship between the tableau rules in Figure 3.1 and ∆Π,
we derive the following counterpart of Theorem 3.5 on Page 26 in terms of nogoods.1

Proposition 4.1. Let Π be a normal program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model

of Comp(Π) iff {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \ X} is a solu-
tion for ∆Π.

Example 4.2. Reconsider Π6 and its associated nogoods ∆Π6 , shown in Example 4.1
and Table 4.1, respectively. The completion Comp(Π6) is as follows:

Comp(Π6) =



a↔ p{not b} p{not b} ↔ ¬b
b↔ p{not a} p{not a} ↔ ¬a
c↔ p{a}∨ p{d} p{a} ↔ a

p{d} ↔ d

d↔ p{c,not a} p{c,not a} ↔ c ∧ ¬a
e↔ p{c}∨ p{d} p{c} ↔ c


The models of Comp(Π6) and corresponding solutions for ∆Π6 are shown in Table 4.2.

1In the following, we sometimes write solutions as sets of entries, rather than sequences.

58 Conflict-Driven Answer Set Solving

Model of Comp(Π6) Solution for ∆Π6

{a, c, e} ∪ {T a,F b,T c,F d,T e} ∪
{p{not b}, p{a}, p{c}} {T {not b},F {not a},T {a},F {d},

T {c},F {c,not a}}
{b} ∪ {F a,T b,F c,F d,F e} ∪
{p{not a}} {F {not b},T {not a},F {a},F {d},

F {c},F {c,not a}}
{b, c, d, e} ∪ {F a,T b,T c,T d,T e} ∪
{p{not a}, p{d}, p{c}, p{c,not a}} {F {not b},T {not a},F {a},T {d},

T {c},T {c,not a}}

Table 4.2: Models of Comp(Π6) and corresponding solutions for ∆Π6 .

Since the completion of a program Π defines propositions standing for bodies in
terms of atoms (and atoms in terms of propositions for bodies), we have that bodies’
truth values are unambiguously determined if all atoms are assigned. In fact, solutions
for the subset of ∆Π defining bodies can be described as follows.

Lemma 4.2. Let Π be a normal program and X ⊆ atom(Π).
Then, we have that

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for⋃
B∈body(Π),B={l1,...,ln} {{FB, tl1, . . . , tln}, {TB,f l1}, . . . , {TB,f ln}} ⊆ ∆Π

such that AT ∩ atom(Π) = X .

An important subclass of logic programs, called “tight” [8, 60], consists of programs
without positive recursion among atoms. We say that a normal program Π is tight if
loop(Π) = ∅. For such programs, it is well-known [68] that answer sets coincide with
models of the completion. By combining Theorem 3.5 on Page 26 and Theorem 3.8 on
Page 27 with Proposition 4.1 and Lemma 4.2, we can reformulate this result in terms of
solutions for ∆Π.

Theorem 4.3. Let Π be a tight program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for ∆Π such that AT ∩ atom(Π) = X .

Example 4.3. Program Π6, shown in Example 4.1, is non-tight, given that loop(Π6) =
{{c, d}} in view of r4 and r5. However, Π6 \ {r4} is tight, and one can check that the
first two (but not the third) models of Comp(Π6), as shown in Table 4.2, are models of
Comp(Π6 \ {r4}) as well. By Theorem 4.3, the corresponding solutions for ∆Π6\{r4}
(the first two solutions shown in Table 4.2) comprise the answer sets {a, c, e} and {b}
of Π6 \ {r4}.

4.2 Ordered Assignments and Unit Propagation 59

In order to characterize also the answer sets of non-tight programs Π by solutions
for nogoods, we need to reflect tableau rule WFN[loop(Π)] or WFN[2atom(Π)] (cf. Fig-
ure 3.1). To this end, we define the set of loop nogoods of Π, denoted by ΛΠ, as follows:

ΛΠ =
⋃
U⊆atom(Π),EBΠ(U)={B1,...,Bk} {{T p,FB1, . . . ,FBk} | p ∈ U}

The nogoods in ΛΠ express that an atom p must not be assigned to true if it belongs to
an unfounded set U ; the same exclusion is achieved by tableau rule WFN[2atom(Π)] (or
WFJ[2atom(Π)], provided that EBΠ(U) 6= ∅).

In view of the correspondence between (deterministic) tableau rules in, e.g., Tnomore++

(defined in Section 3.1) and ∆Π ∪ ΛΠ, along with Lemma 4.2, we derive the following
counterpart of Theorem 3.1 on Page 20 in terms of nogoods.

Theorem 4.4. Let Π be a normal program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

Example 4.4. Reconsider Π6, shown in Example 4.1, and the solutions for ∆Π6 , as
shown in Table 4.2. One can check that the first two of these solutions satisfy also the
loop nogoods in ΛΠ6 . Hence, by Theorem 4.4, the sets of their true atoms, {a, c, e} and
{b}, respectively, are answer sets of Π6. Unlike this, the loop nogoods {T c,F {a}} and
{T d,F {a}}, obtained for U = {c, d} in view of EBΠ6({c, d}) = {{a}}, are (amongst
others) violated by the third solution for ∆Π6 . This tells us that the set of atoms true in
the third solution for ∆Π6 , {b, c, d, e}, is not an answer set of Π6.

By Theorem 4.4, the nogoods in ∆Π ∪ ΛΠ describe a set of constraints that need
to be checked for identifying answer sets. However, while the size of ∆Π is linear in
the size of Π, the one of ΛΠ is, in general, exponential. As shown by Lifschitz and
Razborov [164], the latter is not a defect in the construction of ΛΠ, but an implication of
widely accepted assumptions in complexity theory. Hence, most answer set solvers work
on logic programs as succinct representations of loop nogoods (or formulas, respectively)
and check them efficiently by determining unfounded sets relative to assignments. To this
end, program structure, namely, (elementary) loops [167, 156, 109, 103], can be used to
confine unfounded set checking to necessary parts. In fact, the algorithms presented
below exploit such program structure, making use of the results in Section 2.3.

4.2 Ordered Assignments and Unit Propagation

While the order of entries in a Boolean assignment does not affect its semantics, it is cru-
cial for algorithms analyzing the entries’ interdependencies. Hence, we in the following
assume that, for an assignment A = (σ1, . . . , σi−1, σi, . . . , σn), each entry σi ∈ A for
1 ≤ i ≤ n has an associated decision level, a non-negative integer denoted by dlevel(σi).
Furthermore, we let A[σi] = (σ1, . . . , σi−1) denote the prefix of A relative to σi, while
defining A[σ] = A if σ /∈ A. Given this, we call A = (σ1, . . . , σn) an ordered (Boolean)
assignment if, for every 1 ≤ i ≤ n, it holds that

60 Conflict-Driven Answer Set Solving

1. var(σi) /∈ {var(σ) | σ ∈ A[σi]} and

2. max({dlevel(σ) | σ ∈ A[σi]} ∪ {0}) ≤ dlevel(σi).

The first condition stipulates distinct entries in A to assign distinct variables, which im-
plies that ordered assignments are non-contradictory. The second condition requires de-
cision levels to be monotonically increasing along the sequence of entries in A.

For an ordered assignment A = (σ1, . . . , σi−1, σi, . . . , σn) and an entry σ with an
associated decision level, dlevel(σ), we denote the insertion of σ into A by A ◦ σ =
(σ1, . . . , σi−1, σ, σi, . . . , σn), where

1. max({dlevel(σ1), . . . , dlevel(σi−1)} ∪ {0}) ≤ dlevel(σ) and

2. min({dlevel(σi), . . . , dlevel(σn)} ∪ {dlevel(σ) + 1}) = dlevel(σ) + 1.

That is, A ◦ σ contains σ as the last entry with decision level smaller than dlevel(σ) + 1.
For instance, inserting F d into A = (T a,F b,T c,T e,F f) yields A ◦ F d = (T a,F b,
T c,F d,T e,F f) when dlevel(T a) = 0, dlevel(F b) = dlevel(T c) = dlevel(F d) = 1,
and dlevel(T e) = dlevel(F f) = 2. In Section 4.3 and 4.4.1, insertions always append
entries to the end of assignments, while they can also be inserted into assignments’ middle
parts with the enumeration algorithms presented in Section 4.4.2 and 4.4.3.

Given a nogood δ and an assignment A, an entry σ is unit-resulting for δ w.r.t. A if

1. δ \A = {σ} and

2. σ /∈ A.

The first condition stipulates σ to be the only entry of δ not contained in A, which im-
plies that a violated nogood does not have any unit-resulting entry. The second condition
precludes duplicates: if A already contains σ, then it cannot be unit-resulting. For in-
stance, F d is unit-resulting for the nogood {F b,T d} w.r.t. the assignment (T a,F b,
T c), but neither w.r.t. (T a,F b,T c,T d) nor (T a,F b,T c,F d). Note that the notion of a
unit-resulting entry is closely related to unit clauses considered in SAT solving (cf. [21]).
Along the lines of SAT, we call the iterated process of extending an assignment by unit-
resulting entries unit propagation. An algorithm performing unit propagation on nogoods
induced by a normal program is presented in Section 4.3.2.

For an ordered assignment A and an entry σ, we call a nogood δ an antecedent of σ
w.r.t. A if σ is unit-resulting for δ w.r.t. A[σ]. Furthermore, for a set ∆ of nogoods, we
say that σ is implied by ∆ w.r.t. A if ∆ contains some antecedent of σ w.r.t. A. We extend
this notion to a decision level dl in the following way: dl is implied by ∆ w.r.t. A if every
entry σ ∈ A such that max({dlevel(ρ) | ρ ∈ A[σ]}∪ {0}) = dlevel(σ) = dl is implied
by ∆ w.r.t. A. The concept of being implied identifies entries that must necessarily be
included in A because the complement of any of them would immediately yield some
violated nogood (an antecedent). When considering decision levels, all but the first entry
at a level dl need to be implied for dl being implied; if dl = 0, any first entry σ ∈ A
such that dlevel(σ) = 0 must be implied as well. Implied entries and decision levels are
crucial for the meaningful application of conflict analysis, described in Section 4.3.4.

Note that assignments constructed by means of the decision procedure described next
are such that all decision levels are implied, while the enumeration algorithms in Sec-
tion 4.4.2 and 4.4.3 admit exceptions to this. When given a normal program Π, through-
out this chapter, we assume that all variables occurring in an associated set of nogoods
belong to atom(Π)∪ body(Π); in particular, this applies to dynamic nogoods, which are
below denoted by∇.

4.3 Decision Algorithm 61

4.3 Decision Algorithm

Given the specification of answer sets in terms of nogoods provided in Section 4.1, we can
make use of sophisticated lookback techniques from SAT solving (cf. [21]) for develop-
ing equally advanced ASP solving procedures. But while SAT deals with plain nogoods,
represented by clauses, our algorithms work on logic programs, inducing several kinds
of nogoods. In fact, the nogoods in Section 4.1 provide semantic conditions (clauses
are syntactic representations), and we do not assume any particular syntactic represen-
tation here. However, note that the exponentially many loop nogoods stemming from
unfounded sets are succinctly given by a logic program, and the algorithms devised be-
low determine individual ones only when used for unfounded set falsification. The main
purpose of associating nogoods with a logic program is to provide reasons for entries
derived by (unit) propagation. This puts ASP solving on the same logical fundament as
SAT solving, so that similar reasoning strategies can be applied, while neither relying on
a translation to SAT nor any proprietary techniques (apart from unfounded set checking).

In Section 4.3.1, we introduce our main conflict-driven ASP solving procedure. Sec-
tion 4.3.2 details its subroutine for propagation. Our algorithm for unfounded set de-
tection, which is the main particularity of ASP (compared to SAT), is presented in Sec-
tion 4.3.3. Section 4.3.4 describes resolution-based conflict analysis in our setting. Fi-
nally, in Section 4.3.5, we outline the derivation of soundness and completeness results.

4.3.1 Conflict-Driven Nogood Learning

Our main procedure for deciding whether a normal program has an answer set is similar
to CDCL with First-UIP scheme (cf. [179, 219, 56, 21]). In fact, clauses can be viewed as
particular syntactic representations of nogoods, but other representations (e.g., gates, in-
equalities, rules, etc.) can be used as well. Hence, to abstract from syntax, we present our
conflict-driven learning algorithm for deciding answer set existence in terms of nogoods
and, in the following, call it Conflict-Driven Nogood Learning for ASP (CDNL-ASP).

Given a normal program Π, CDNL-ASP, shown in Algorithm 4.1, starts from an
empty assignment A and an empty set∇ of recorded nogoods over atom(Π)∪ body(Π).
The latter set is used to accumulate conflict and loop nogoods, which along with the
completion nogoods in ∆Π are exploited for (unit) propagation and conflict analysis.
Moreover, by means of the decision level dl , initialized with 0, we count the number of
decision entries in A. Such entries are heuristically selected (in Line 14), while entries
derived by propagation (in Line 5) are implied by ∆Π ∪∇ w.r.t. A.

For computing an answer set of Π or reporting that there is none, the main loop in
Line 4–16 of Algorithm 4.1 follows the standard proceeding of CDCL. First, NOGOOD-
PROPAGATION (detailed in Section 4.3.2) deterministically extends A in Line 5, and
possibly also records loop nogoods from ΛΠ in ∇. Afterwards, one of the following
cases applies:

Conflict. If propagation led to the violation of some nogood ε ∈ ∆Π ∪ ∇, as checked
in Line 6, there are two possibilities. Either the conflict occurred independently of any
previous decision, meaning that the input program Π has no answer set, or CONFLICT-
ANALYSIS (detailed in Section 4.3.4) is performed in Line 8 to determine a conflict
nogood δ, recorded in ∇ in Line 9, along with a decision level dl to jump back to.
Note that we assume δ to be asserting, i.e., some entry must be unit-resulting for δ after

62 Conflict-Driven Answer Set Solving

Algorithm 4.1: CDNL-ASP

Input : A normal program Π.
Output : An answer set of Π or “no answer set.”

A := ∅ // ordered assignment over atom(Π) ∪ body(Π)1
∇ := ∅ // set of recorded nogoods2
dl := 0 // decision level3

loop4
(A,∇) := NOGOODPROPAGATION(Π,∇,A)5

if ε ⊆ A for some ε ∈ ∆Π ∪∇ then // conflict6
if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no answer set7
(δ, dl) := CONFLICTANALYSIS(ε,Π,∇,A)8
∇ := ∇∪ {δ} // (temporarily) record conflict nogood9
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping10

else if AT ∪AF = atom(Π) ∪ body(Π) then // answer set11
return AT ∩ atom(Π)12

else13
σd := SELECT(Π,∇,A) // decision14
dlevel(σd) := dl := dl + 115
A := A ◦ σd16

backjumping in Line 10. This condition, which is guaranteed by CONFLICTANALYSIS,
makes sure that, after backjumping, CDNL-ASP traverses the search space differently
from before (without explicitly flipping any decision entry).

Solution. If propagation led to a total assignment A (not violating any nogood in
∆Π ∪ ∇), as checked in Line 11, the atoms that are true in A belong to an answer
set of Π, which is returned in Line 12.

Decision. If neither of the previous cases applies, A is partial, and a decision entry σd
is selected according to some heuristic in Line 14. We do not make any particular as-
sumptions about the heuristic used, but require that var(σd) ∈ (atom(Π) ∪ body(Π)) \
(AT ∪AF). That is, the variable in σd must be unassigned and occur in the input pro-
gram Π. Also note that dlevel(σd) is set to the increment of dl in Line 15,2 so that σd is
appended to the end of A in Line 16.

Example 4.5. Reconsider Π2 from Example 2.2:

Π2 =



r1 : a← not b
r2 : b← not a
r3 : c← a
r4 : c← b, d
r5 : d← b, c
r6 : d← e
r7 : e← b,not a
r8 : e← c, d


2Notations of the form “x1 := · · · := xn := v” mean that a value v is assigned to each of x1, . . . , xn.

4.3 Decision Algorithm 63

Although we have not yet detailed the subroutines used in Algorithm 4.1, let us consider
a full-fledged computation of the answer set {b, c, d, e} of Π2. To this end, Table 4.3
shows the current assignment A at different stages of CDNL-ASP(Π2), where columns
provide the value of dl , viz., the current decision level, and the line of Algorithm 4.1 at
which particular contents of A and/or some nogood δ are inspected. The entries inserted
into A in Line 16 of Algorithm 4.1 are decision entries. Unlike them, each entry inserted
into A in Line 5, that is, in an execution of NOGOODPROPAGATION, is unit-resulting for
some nogood δ ∈ ∆Π2 ∪∇; the info column displays which group of nogoods includes δ.
Furthermore, we indicate successes of the test for a violated nogood performed in Line 6,
and we show the nogood δ to be recorded in ∇ along with the decision level dl to jump
back to (as info) as they are returned by CONFLICTANALYSIS when invoked in Line 8.

In detail, a computation of CDNL-ASP(Π2) can start by successively picking de-
cision entries T d, F {b,not a}, T c, and F {not a} at levels 1, 2, 3, and 4, respectively.
Observe that there is exactly one decision entry per level, and each decision is immedi-
ately followed by a propagation step, performed before making the next decision. At the
start, propagation cannot derive any entry at decision levels 1 and 2, and thus assign-
ment A stays partial. After the third decision, the entries shown below the horizontal
(single) line are unit-resulting for respective nogoods δ ∈ ∆Π2 w.r.t. A. Hence, they are
inserted into A at decision level 3. Since A is still partial, decision entry F {not a} is
picked at level 4. The following propagation step yields a total assignment, which is a so-
lution for ∆Π2 . However, we have that {d, e} is unfounded for Π2 w.r.t. A, that is, the cor-
responding loop nogoods {T d,F {b, c},F {b,not a}} and {T e,F {b, c},F {b,not a}}
are violated. Such violations are detected within NOGOODPROPAGATION and lead to
the recording of some loop nogood from ΛΠ2 in ∇. In Table 4.3, we assume that
{T d,F {b, c},F {b,not a}} is recorded, so that a conflict is encountered in Line 6 of
Algorithm 4.1. Note that F {b, c} is the single entry of the nogood assigned at deci-
sion level 4. Hence, {T d,F {b, c},F {b,not a}} is instantly asserting and returned by
CONFLICTANALYSIS in Line 8; the smallest decision level such that, after backjump-
ing, T {b, c} is unit-resulting for {T d,F {b, c},F {b,not a}} is 2. The peculiarity that
CONFLICTANALYSIS may be launched with an asserting (loop) nogood results from the
“unidirectional” propagation of loop nogoods in current ASP solvers: as discussed in
Section 3.2.3, ASP solvers implement tableau rule WFN, but not its contrapositive WFJ,
although both tableau rules are logically based on loop nogoods. (We further comment
on this phenomenon in Section 4.3.4.)

Upon backjumping to decision level 2, all entries inserted into A at levels 3 and 4
are retracted, and only the (decision) entries T d and F {b,not a} assigned at levels 1
and 2 are retained. In the sequel, the asserting nogood {T d,F {b, c},F {b,not a}}
in ∇ enables the derivation of further entries by unit propagation, which results in an-
other conflict, this time on the completion nogood {T {not a},T a}. Starting from it,
CONFLICTANALYSIS determines the asserting nogood {F {b,not a},T d}. As a conse-
quence, CDNL-ASP(Π2) returns to decision level 1, where T {b,not a} is unit-resulting
for {F {b,not a},T d}. A final propagation step leads to a total assignment not violating
any nogood in ∆Π2 ∪∇. (Notably, the nogoods in ΛΠ2 are left implicit and merely tested
within NOGOODPROPAGATION via an unfounded set checking subroutine.) Entries in the
obtained solution that comprise true atoms are underlined in Table 4.3. The associated
answer set of Π2, {b, c, d, e}, is returned as the result of CDNL-ASP(Π2).

64 Conflict-Driven Answer Set Solving

dl A δ Info Line
1 T d 16
2 F {b,not a} 16
3 T c 16

T {c, d} {F {c, d},T c,T d} ∆Π2 5
T e {F e,T {c, d}} ∆Π2 5
T {e} {F {e},T e} ∆Π2 5

4 F {not a} 16
T a {F {not a},F a} ∆Π2 5
T {a} {F {a},T a} ∆Π2 5
T {not b} {T a,F {not b}} ∆Π2 5
F b {T b,F {not a}} ∆Π2 5
F {b, c} {T {b, c},F b} ∆Π2 5
F {b, d} {T {b, d},F b} ∆Π2 5

{T d,F {b, c},F {b,not a}} ΛΠ2 6
{T d,F {b, c},F {b,not a}} dl=2 8

2 F {b,not a}
T {b, c} {T d,F {b, c},F {b,not a}} ∇ 5
T b {T {b, c},F b} ∆Π2 5
T a {F {b,not a},T b,F a} ∆Π2 5
T {not a} {T b,F {not a}} ∆Π2 5

{T {not a},T a} ∆Π2 6
{F {b,not a},T d} dl=1 8

1 T d

T {b,not a} {F {b,not a},T d} ∇ 5
T b {T {b,not a},F b} ∆Π2 5
F a {T {b,not a},T a} ∆Π2 5
T {not a} {T b,F {not a}} ∆Π2 5
F {not b} {T {not b},T b} ∆Π2 5
F {a} {T {a},F a} ∆Π2 5
T e {F e,T {b,not a}} ∆Π2 5
T {e} {F {e},T e} ∆Π2 5
T {b, d} {F {b, d},T b,T d} ∆Π2 5
T c {F c,T {b, d}} ∆Π2 5
T {b, c} {F {b, c},T b,T c} ∆Π2 5
T {c, d} {F {c, d},T c,T d} ∆Π2 5

Table 4.3: A computation of answer set {b, c, d, e} with CDNL-ASP(Π2).

4.3 Decision Algorithm 65

Algorithm 4.2: NOGOODPROPAGATION

Input : A normal program Π, a set∇ of nogoods, and an ordered assignment A.
Output : An extended ordered assignment and set of nogoods.

U := ∅ // unfounded set1

loop2
repeat3

if δ ⊆ A for some δ ∈ ∆Π ∪∇ then return (A,∇) // conflict4
Σ := {δ ∈ ∆Π ∪∇ | δ \A = {σ}, σ /∈ A} // unit-resulting nogoods5
if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in6

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})7
A := A ◦ σ8

until Σ = ∅9

if loop(Π) = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF10

U := U \AF11
if U = ∅ then U := UNFOUNDEDSET(Π,A)12

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF13
let p ∈ U in14
∇ := ∇∪ {{T p} ∪ {FB | B ∈ EBΠ(U)}} // (temporarily) record loop nogood15

4.3.2 Nogood Propagation

The subroutine for deterministically extending an (ordered) assignment A, NOGOOD-
PROPAGATION, is shown in Algorithm 4.2. It combines unit propagation on completion
nogoods in ∆Π and recorded nogoods in ∇ (Line 3–9) with unfounded set checking
(Line 10–15). While unit propagation is always run to a fixpoint (or a conflict), sophis-
ticated unfounded set checks are performed only if the input program Π is non-tight.
Otherwise, if Π is tight, Theorem 2.9 on Page 15 applies and, in view of loop(Π) = ∅,
tells us that all unfounded sets U are already falsified, i.e., U ⊆ AF holds. In fact, when
finishing the loop in Line 3–9, an assignment A at hand is both atom- and body-saturated
for Π (cf. Definition 2.3 and 2.4 on Page 13 and 15, respectively), so that the results in
Section 2.3 serve as a basis for demand-driven unfounded set checking via the subroutine
UNFOUNDEDSET (detailed in Section 4.3.3). Also note that, by the construction of Σ in
Line 5, we have that var(σ) is unassigned before inserting an entry σ into A in Line 8.
Along with the fact that dlevel(σ) is set appropriately in Line 7, this makes sure that the
(extended) assignment A computed by NOGOODPROPAGATION is ordered and that all
newly assigned entries σ are implied by ∆Π ∪∇ w.r.t. A.

Example 4.6. The main idea of integrating unfounded set checking with unit propagation
is to trigger the successive falsification of unfounded atoms by recording loop nogoods
from ΛΠ in∇. To see this, consider a normal program Π containing the following rules:

x← y, z
y ← x
z ← y

Let A be an atom-saturated assignment such that U = {x, y, z} is unfounded for Π
w.r.t. A and U ∩ (AT ∪AF) = ∅. Then, we have that EBΠ(U) ⊆ AF , so that Fx, F y,
and F z are unit-resulting for loop nogoods {T p,FB1, . . . ,FBk} in ΛΠ, where p ∈ U

66 Conflict-Driven Answer Set Solving

and EBΠ(U) = {B1, . . . , Bk}. While neither Fx, F y, nor F z may be unit-resulting for
any completion nogood in ∆Π, all of them (along with F {x}, F {y}, and F {y, z}) are
derived by unit propagation when given ∆Π ∪ {{Tx,FB1, . . . ,FBk}}. That is, when
adding only one loop nogood from ΛΠ to ∇, the whole unfounded set U is falsified by
unit propagation. However, whether the addition of a single loop nogood is sufficient
to falsify a whole unfounded set depends on the structure of Π. For instance, when we
augment Π with y ← z, the derivation of F y and F z by unit propagation is no longer
certain because the (circular) supports y ← z and z ← y may not be eliminated by
assigning x to false. We still derive F {x}, i.e., the rule y ← x becomes inapplicable, so
that EBΠ({y, z}) ⊆ (A ∪ {Fx,F {x}})F . This shows that U \(A ∪ {Fx,F {x}})F =
{x, y, z} \ {x} = {y, z} remains as a smaller unfounded set.

The observations made in Example 4.6 motivate the strategy of Algorithm 4.2 to
successively falsify the elements of an unfounded set U . At the start, no (non-empty) un-
founded set has been determined, and so U is initialized to be empty in Line 1. Provided
that the loop in Line 3–9 finishes without conflict and that Π is non-tight, we remove all
false atoms from U in Line 11. In the first iteration of the outer loop in Line 2–15, U
stays empty, and our subroutine for unfounded set detection (detailed in Section 4.3.3) is
queried in Line 12. The crucial assumption made here is that UNFOUNDEDSET(Π,A)
returns an unfounded set U ⊆ atom(Π) \ AF such that U is non-empty if some non-
empty subset of atom(Π) \AF is unfounded. Then, if a non-empty U is returned, the
addition of a loop nogood {T p} ∪ {FB | B ∈ EBΠ(U)} to ∇ for an arbitrary p ∈ U ,
done in Line 15, yields either a conflict or the unit-resulting entry F p in the next iteration
of the loop in Line 2–15. In the latter case, further elements of U may be falsified by
unit propagation within the loop in Line 3–9. When we afterwards reconsider the previ-
ously determined unfounded set U , the removal of false atoms in Line 11 is guaranteed
to result in another (smaller) unfounded set U \ AF . Hence, if U \ AF is non-empty
(checked in Line 12 before computing any new unfounded set), NOGOODPROPAGATION

proceeds by adding the next loop nogood to ∇, which as before yields either a conflict
or a unit-resulting entry. In this way, once a non-empty unfounded set U has been de-
tected, it is falsified element by element; only after expending all elements of U , a new
unfounded set is to be computed. All in all, NOGOODPROPAGATION terminates as soon
as a conflict is encountered (in Line 4) or with an assignment such that no non-empty
subset of atom(Π) \ AF is unfounded. If Π is tight, the latter is immediately verified
in Line 10. Otherwise, the subroutine UNFOUNDEDSET, queried in Line 12, failed to
detect a non-empty unfounded set (of non-false atoms) before finishing in Line 13.

Example 4.7. To illustrate how NOGOODPROPAGATION utilizes nogoods, reconsider
the computation of CDNL-ASP(Π2) shown in Table 4.3. All implied entries, that is,
the ones assigned below any (single) line at a decision level dl , are unit-resulting for
nogoods in ∆Π2 ∪ ∇ and successively derived by unit propagation. In particular, at
decision level 4, the implied entries σ have antecedents δ ∈ ∆Π2 such that all entries
of δ except for σ are already contained in A when σ is inserted into A. The impact of
loop nogoods in ΛΠ2 can be observed on the conflict encountered at decision level 4.
Here, we have that U = {d, e} ⊆ AT is unfounded, so that A violates each of the loop
nogoods {T d,F {b, c},F {b,not a}} and {T e,F {b, c},F {b,not a}}. After detecting
the unfounded set U and recording {T d,F {b, c},F {b,not a}} in ∇, its violation gives
rise to leaving NOGOODPROPAGATION in Line 4 of Algorithm 4.2.

4.3 Decision Algorithm 67

In summary, our subroutine for propagation interleaves unit propagation with the
recording of loop nogoods. The latter is done only if the input program is non-tight
and if the falsity of unfounded atoms cannot be derived by unit propagation via other
available nogoods. Clearly, our approach favors unit propagation over unfounded set
computations, which can be motivated as follows. For one, unit propagation does not
contribute new dynamic nogoods to ∇, so that it is more “economic” than unfounded
set checking. For another, although unfounded set detection algorithms (like the one
provided below) are of linear time complexity, they need to analyze a logic program in a
global fashion and may get stuck half-way, inspecting significant program parts without
eventually detecting any non-empty unfounded set (of non-false atoms). But given that
unfounded set checking (w.r.t. total assignments) is mandatory for soundness and (w.r.t.
partial assignments) also helps to detect inherent conflicts early, the respective subroutine
described next is nonetheless an integral part of NOGOODPROPAGATION.

4.3.3 Unfounded Set Checking

The subroutine for unfounded set detection, UNFOUNDEDSET, is invoked on a non-tight
program Π when unit propagation reaches a fixpoint without any conflict nor extant un-
falsified unfounded atoms (cf. Algorithm 4.2). As a matter of fact, a fixpoint of unit
propagation is both atom- and body-saturated for Π. Hence, Corollary 2.10 on Page 15
applies and allows us to focus on unfounded sets of non-false atoms contained in non-
trivial strongly connected components of DG(Π) (the dependency graph of Π, defined
in Section 2.3). To this end, for any p ∈ atom(Π), let scc(p) denote the set of all atoms
belonging to the same strongly connected component as p in DG(Π). We say that p is
cyclic if its strongly connected component of DG(Π) is non-trivial (that is, if there is
some rule r ∈ Π such that head(r) ∈ scc(p) and body(r)+ ∩ scc(p) 6= ∅), and acyclic
otherwise. In view of the results in Section 2.3, unfounded set checking can concentrate
exclusively on cyclic atoms, since only they can belong to (unfounded) loops.3

Beyond static information about strongly connected components, UNFOUNDEDSET

makes use of source pointers [209] to indicate non-circular supports of atoms. Given a
normal program Π, the idea is to associate every (cyclic) p ∈ atom(Π) with an element
of bodyΠ(p) (or one of the special-purpose symbols ⊥ and >), denoted by source(p),
pointing to a chain of rules witnessing that p cannot be unfounded. Hence, as long
as source(p) remains “intact,” p can be excluded from unfounded set checks. In this
way, source pointers enable lazy, incremental unfounded set checking relative to recent
changes of an assignment. To make sure that still no unfounded set is missed, the follow-
ing invariants need to be guaranteed:

1. For every cyclic p ∈ atom(Π), we require that source(p) ∈ bodyΠ(p) ∪ {⊥}.

2. The subgraph of DG(Π) containing every cyclic p ∈ atom(Π) along with edges
(p, q) for all q ∈ source(p)+ ∩ scc(p) must be acyclic.4

For a normal program Π, we call the collection of links source(p) for all p ∈
atom(Π) a source pointer configuration. We say that a source pointer configuration

3Strongly connected components of dependency graphs are also exploited by other unfounded set detec-
tion procedures [209, 32, 4] of native ASP solvers. We further discuss relationships to them in Section 4.6.

4For the special-purpose symbols ⊥ and >, we let ⊥+ = >+ = ∅.

68 Conflict-Driven Answer Set Solving

Algorithm 4.3: UNFOUNDEDSET

Input : A normal program Π and an ordered assignment A.
Output : An unfounded set of Π w.r.t. A.

S := {p ∈ atom(Π) \AF | source(p) ∈ AF ∪ {⊥}} // initialize scope S1
repeat2

T := {p ∈ atom(Π) \ (AF ∪ S) | source(p)
+ ∩ (scc(p) ∩ S) 6= ∅}3

S := S ∪ T // extend scope S4
until T = ∅5

while S 6= ∅ do let p ∈ S in // select starting point p6
U := {p}7
repeat8

if EBΠ(U) ⊆ AF then return U // unfounded set ∅ ⊂ U ⊆ atom(Π) \AF9

let B ∈ EBΠ(U) \AF in10
if B+ ∩ (scc(p) ∩ S) = ∅ then // shrink U11

foreach q ∈ U such that B ∈ bodyΠ(q) do12
source(q) := B13
U := U \ {q}14
S := S \ {q}15

else U := U ∪ (B+ ∩ (scc(p) ∩ S)) // extend U16

until U = ∅17

return ∅ // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF18

is valid if it satisfies the aforementioned invariants. For an appropriate initialization, we
define the initial source pointer configuration for Π by:

source(p) =

{
⊥ if p ∈ atom(Π) is cyclic
> if p ∈ atom(Π) is acyclic

While > expresses that an acyclic atom p does not need to be linked to any element of
bodyΠ(p), ⊥ indicates that a non-circular support for a cyclic atom p still needs to be de-
termined. We assume that the initial source pointer configuration for Π, which is valid by
definition, is in place upon an invocation of CDNL-ASP(Π) (or one of the enumeration
algorithms in Section 4.4). Moreover, in Section 4.3.5, we argue that UNFOUNDEDSET

maintains the validity of source pointer configurations, which is crucial for completeness.
Given a normal program Π and an (ordered) assignment A, UNFOUNDEDSET, shown

in Algorithm 4.3, starts by collecting non-false (cyclic) atoms p whose source pointers
are false (source(p) ∈ AF) or yet undetermined (source(p) = ⊥) in Line 1, as the
possibility of non-circularly supporting such atoms is in question. In Line 2–5, this set is
successively extended by adding atoms whose source pointers (positively) rely on it, thus
providing the scope S for the second part of unfounded set checking. In fact, the loop
in Line 6–17 aims at reestablishing source pointers for the atoms in S via rules whose
bodies do not (positively) rely on S, so that these rules can provide non-circular support.
Conversely, if source pointers cannot be reestablished, an unfounded set is detected.

In more detail, as long as the scope S is non-empty, an arbitrary atom p ∈ S is picked
in Line 6 of Algorithm 4.3 as starting point for the construction of a non-empty unfounded
set U . If EBΠ(U) ⊆ AF holds in Line 9, the unfounded set U is immediately returned,
so that NOGOODPROPAGATION can successively falsify its atoms by unit propagation
(cf. Algorithm 4.2). Otherwise, some external body B ∈ EBΠ(U) \AF is selected in

4.3 Decision Algorithm 69

Line 10 for further investigation. If B+ contains atoms in the scope S that belong to
the same strongly connected component of DG(Π) as the starting point p (checked in
Line 11), we add them to U in Line 16, which makes B non-external w.r.t. the extended
set U . On the other hand, if such atoms do not exist in B+, it means that B can non-
circularly support all of its associated head atoms q ∈ U . Then, in Line 12–15, the
source pointers of such atoms q are set to B, and the atoms q are removed from both the
unfounded set U under construction and the scope S. The described process continues
until either U becomes empty (checked in Line 17), in which case the remaining atoms
of S are investigated, or a (non-empty) unfounded set U is detected and returned in
Line 9. Finally, if the scope S runs empty, source pointers could be reestablished for all
atoms that had been contained in S, and UNFOUNDEDSET returns the empty unfounded
set in Line 18.

In order to provide further intuitions, let us stress some major design principles of
our unfounded set detection algorithm:

1. At each stage of the loop in Line 6–17, all atoms of U belong to scc(p), where p is
an atom added first to U (in Line 7). This is because further atoms, added to U in
Line 16, are elements of scc(p). (However, U ⊆ scc(p) does not necessarily imply
p ∈ U for a (non-empty) unfounded set U returned in Line 9.)

2. At each stage of the loop in Line 6–17, we have thatU ⊆ S, as all atoms added toU
in either Line 7 or 16 belong to S. Hence, it holds that q ∈ S whenever source(q)
is set to an (external) bodyB ∈ bodyΠ(q) in Line 13, whileB+∩(scc(p)∩S) = ∅
has been checked before (in Line 11). This makes sure that setting source(q) to B
does not introduce any cycles via source pointers.

3. Once detected, a (non-empty) unfounded set U is immediately returned in Line 9,
and NOGOODPROPAGATION takes care of falsifying all elements of U before
checking for any further unfounded set (cf. Algorithm 4.2). This reduces over-
laps with unit propagation on the completion nogoods in ∆Π, as it already handles
unsupported atoms, i.e., singleton unfounded sets (and bodies relying on them).

4. The source pointer of an atom q in some unfounded set U returned in Line 9 needs
not and is not reset to⊥. (In fact, source(q) is only set in Line 13 when reestablish-
ing a potential non-circular support for q.) Rather, we admit source(q) ∈ AF as
long as q ∈ AF , derived within NOGOODPROPAGATION upon falsifying U . Thus,
when q becomes unassigned later on (after backjumping), source(q) still allows
for lazy unfounded set checking.

Example 4.8. Let us illustrate Algorithm 4.3 on some invocations of UNFOUNDED-
SET(Π2,A) made upon the computation of the answer set {b, c, d, e} of Π2 described
in Example 4.5. To this end, in Table 4.4, we indicate internal states of UNFOUNDED-
SET(Π2,A) when queried w.r.t. fixpoints A of unit propagation at decision levels 0,
2, and 4, respectively. Beforehand, note that scc(c) = scc(d) = scc(e) = {c, d, e},
while a and b are acyclic. Hence, before the first invocation of UNFOUNDEDSET(Π2,A)
at decision level 0, we have that source(a) = source(b) = > and source(c) =
source(d) = source(e) = ⊥. In view of Line 1 of Algorithm 4.3, we thus obtain the scope
S = {c, d, e}. Then, assume that atom e is picked in Line 6 and added to U in Line 7, and
that {c, d} ∈ EBΠ2({e}) is selected in Line 10. Since {c, d}∩(scc(e)∩S) = {c, d}, this

70 Conflict-Driven Answer Set Solving

dl source(p) S U B ∈ EBΠ2(U) \AF Line
0 {c, d, e} 1

{c, d, e} {e} 7
{c, d, e} {c, d, e} {c, d} 16

source(e) {c, d} {c, d} {b,not a} 13
source(d) {c} {c} {e} 13
source(c) ∅ ∅ {b, d} 13

2 F {b,not a} {e} 1
{e} {d, e} 4
{b, d} {c, d, e} 4

{c, d, e} {d} 7
{c, d, e} {c, d} {b, c} 16

source(c) {d, e} {d} {a} 13
source(d) {e} ∅ {b, c} 13

{e} {e} 7
source(e) ∅ ∅ {c, d} 13

4 F {b, c} {d} 1
{c, d} {d, e} 4

{d, e} {e} 7
{d, e} {d, e} {c, d} 16

Table 4.4: Runs of UNFOUNDEDSET(Π2,A) upon a computation of answer set
{b, c, d, e}.

makes us augment U with both c and d in Line 16, resulting in an intermediate state such
that U = {c, d, e}. Further assume that {b,not a} ∈ EBΠ2({c, d, e}) is selected next in
Line 10, for which {b} ∩ (scc(e) ∩ S) = ∅ holds in Line 11. Hence, source(e) is set to
{b,not a} in Line 13, and e is removed from U and S in Line 14 and 15, respectively. In
the same manner, source(d) and source(c) can in the following iterations of the loop in
Line 8–17 be set to {e} and {b, d}, respectively. Afterwards, we have that U = S = ∅, so
that the empty unfounded set, surrounded by a box in Table 4.4, is returned (in Line 18).
Given that there is no non-empty unfounded set, no entry is derived by unit propagation
at decision level 0, as also indicated by omitting this level in Table 4.3.

The invocation of UNFOUNDEDSET(Π2, (T d)) at decision level 1 is not shown
in Table 4.4, as it yields an empty scope S. Unlike this, with UNFOUNDEDSET(Π2,
(T d,F {b,not a})) at decision level 2, we have that source(e) = {b,not a} ∈ AF , so
that S = {e} is obtained in Line 1 of Algorithm 4.3. In Line 2–5, we successively add d
and c to S because source(d)+ ∩ S = {e} ∩ {e} 6= ∅ and source(c)+ ∩ (S ∪ {d}) =
{b, d} ∩ {d, e} 6= ∅. Afterwards, assume that d is added first to U in Line 7, and that
selecting {b, c} ∈ EBΠ2({d}) in Line 10 leads to U = {d} ∪ ({b, c} ∩ (scc(d) ∩ S)) =
{c, d}. When investigating {a} ∈ EBΠ2({c, d}) and again {b, c} ∈ EBΠ2({d}) in the
next two iterations of the loop in Line 8–17, we set source(c) to {a} and source(d) to
{b, c}, while obtaining U = ∅ and S = {e}. Since S 6= ∅, another iteration of the loop
in Line 6–17 adds e to U and then removes it from U and S along with setting source(e)
to {c, d}. Given U = S = ∅, we get the empty unfounded set (again surrounded by a
box) as result.

4.3 Decision Algorithm 71

At decision level 3, unfounded set checking is without effect because, as shown in
Table 4.3, no rule body and, in particular, no source pointer is falsified. However, at
decision level 4, we have that source(d) = {b, c} ∈ AF , and thus we get S = {d}
in Line 1 of Algorithm 4.3. In an iteration of the loop in Line 2–5, we further add e
to S because source(e)+ ∩ S = {c, d} ∩ {d} 6= ∅, while c stays unaffected in view of
source(c) = {a} /∈ AF . After adding e to U in Line 7, U is further extended to {d, e}
in Line 16, given that {c, d} ∈ EBΠ2({e}) and {c, d} ∩ (scc(e) ∩ S) = {d}. We have
now obtained U = {d, e}, and it holds that EBΠ2({d, e}) = {{b, c}, {b,not a}} ⊆ AF .
That is, the termination condition in Line 9 applies, and UNFOUNDEDSET(Π2,A) re-
turns the (non-empty) unfounded set {d, e}.

To conclude the example, in Table 4.3, we observe that adding the loop nogood {T d,
F {b, c},F {b,not a}} to ∇ leads to a conflict at decision level 4. After backjump-
ing to decision level 2, NOGOODPROPAGATION encounters a conflict before invoking
UNFOUNDEDSET(Π2,A). Hence, UNFOUNDEDSET(Π2,A) is only queried again w.r.t.
the total assignment A derived by unit propagation after returning to decision level 1.
In view of source(c) = {a} ∈ AF , this final invocation (not shown in Table 4.4) makes
us reset source pointers as follows: source(e) = {b,not a}, source(d) = {e}, and
source(c) = {b, d} (like at decision level 0). As this yields only the empty unfounded set
(of non-false atoms), NOGOODPROPAGATION terminates without conflict, and CDNL-
ASP(Π2) returns the answer set {b, c, d, e} of Π2.

4.3.4 Conflict Analysis

The purpose of the subroutine for conflict analysis is to determine an asserting nogood, so
that some entry is unit-resulting after backjumping. To this end, a violated nogood δ ⊆ A
is resolved against antecedents ε of implied entries σ ∈ δ (i.e., nogoods ε such that
ε \ A[σ] = {σ}) for obtaining a new violated nogood (δ \ {σ}) ∪ (ε \ {σ}). Iterated
resolution proceeds in inverse order of assigned entries, resolving first over the entry
σ ∈ δ assigned last in A (i.e., δ\A[σ] = {σ}), and stops as soon as δ contains exactly one
entry, called Unique Implication Point (UIP) [179], assigned at the decision level where
the conflict is encountered. The success of this approach, referred to as First-UIP scheme
(cf. [219, 56, 178]), has in the area of SAT been proven both empirically [219, 203, 48]
and analytically [7, 197]. Despite small peculiarities (discussed below), the First-UIP
scheme can be applied unaltered in conflict-driven ASP solving. However, identifying
antecedents of implied entries is less straightforward than with clauses. For instance,
note that our subroutine for propagation in Algorithm 4.2 records a priori implicit loop
nogoods from ΛΠ to make sure that every implied entry has some antecedent in ∆Π ∪∇.

Conflict resolution according to the First-UIP scheme is performed by CONFLICT-
ANALYSIS, shown in Algorithm 4.4. In fact, the loop in Line 1–7 proceeds by resolving
over the entry σ of the violated nogood δ assigned last in A (given that δ \A[σ] = {σ} is
required in Line 2) until the assertion level [41], that is, the greatest level dlevel(ρ) asso-
ciated with entries ρ ∈ δ \{σ}, is different from (and actually smaller than) dlevel(σ). If
so, the nogood δ and the assertion level k (determined in Line 3) are returned in Line 7;
since δ ⊆ A, we have that σ is unit-resulting for δ after backjumping to decision level k.
Otherwise, if k = dlevel(σ), σ is an implied entry, so that some antecedent ε ∈ ∆Π ∪∇
of σ can be chosen in Line 5 and used for resolution against δ in Line 6. Note that there
may be several antecedents of σ in ∆Π ∪ ∇, and thus the choice of ε in Line 5 is, in
general, non-deterministic (cf. [53]). Regarding the termination of Algorithm 4.4, note

72 Conflict-Driven Answer Set Solving

Algorithm 4.4: CONFLICTANALYSIS

Input : A non-empty violated nogood δ, a normal program Π, a set ∇ of nogoods, and
an ordered assignment A.

Output : A derived nogood and a decision level.

loop1
let σ ∈ δ such that δ \A[σ] = {σ} in2

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})3
if k = dlevel(σ) then4

let ε ∈ ∆Π ∪∇ such that ε \A[σ] = {σ} in5
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution6

else return (δ, k)7

δ ε{
T {not a} ,T a

} {
T b, F {not a}

}
{
T a ,T b

} {
F {b,not a},T b, F a

}
{
T b ,F {b,not a}

} {
T {b, c}, F b

}
{
T {b, c} ,F {b,not a}

} {
T d, F {b, c} ,F {b,not a}

}
{
F {b,not a} ,T d

}
Table 4.5: Run of CONFLICTANALYSIS({T {not a},T a},Π2,∇,A) at decision level 2.

that a decision entry σd (cf. Algorithm 4.1) is the first entry in A at its (positive) level
dlevel(σd), and σd is also the only entry at dlevel(σd) that is not implied. Given that
CONFLICTANALYSIS is only applied to nogoods violated at decision levels beyond 0, all
conflict resolution steps are well-defined and stop at latest at a decision entry σd. How-
ever, resolving up to σd can be regarded as the worst case, given that the First-UIP scheme
aims at few resolution steps to obtain a nogood that is “close” to a conflict at hand.

Example 4.9. To illustrate Algorithm 4.4, let us inspect the resolution steps shown in
Table 4.5. They are applied when resolving the violated nogood {T {not a},T a} against
the antecedents shown in Table 4.3, upon analyzing the conflict encountered at decision
level 2 in the computation of CDNL-ASP(Π2) described in Example 4.5. The entry σ
of δ assigned last in A as well as its complement σ in an antecedent ε of σ are surrounded
by a box in Table 4.5, and further entries assigned at decision level 2 are underlined. The
result of iterated resolution, {F {b,not a},T d}, contains F {b,not a} as the single entry
assigned at decision level 2, while T d has been assigned at the assertion level 1. In this
example, the (first) UIP, F {b,not a}, happens to be the decision entry at level 2.

In general, a first UIP is not necessarily a decision entry, which can, for instance,
be observed on the UIP F {b, c} in the asserting nogood {T d,F {b, c},F {b,not a}}
returned by CONFLICTANALYSIS at decision level 4 in Example 4.5. Also recall that
{T d,F {b, c},F {b,not a}} served as the starting point for CONFLICTANALYSIS, con-
taining a (first) UIP without requiring any resolution step. This phenomenon is due to

4.3 Decision Algorithm 73

“unidirectional” propagation of loop nogoods, given that unfounded set checks (cf. Al-
gorithm 4.3) merely identify unfounded atoms, but not rule bodies that must necessarily
hold for (non-circularly) supporting some true atom. In Example 4.5, the fact that T {b, c}
is required from decision level 2 on is only recognized at level 4, where assigning F {b, c}
leads to a conflict. In view of this, Algorithm 4.3 can be understood as a checking routine
guaranteeing the soundness of CDNL-ASP, while its inference capabilities do not match
(full) unit propagation on loop nogoods. Similar observations have already been made
in [111, 110], but more powerful yet efficient reasoning mechanisms for unfounded set
handling seem to be difficult to develop; for instance, the approach suggested in [33, 34]
is computationally too complex (quadratic) to be beneficial in practice.

Despite of the fact that conflict resolution in ASP can be done in the same fashion
as in SAT, the input format of logic programs makes it less predetermined. For one,
the completion nogoods in ∆Π contain rule bodies as structural variables for the sake of
a compact representation. For another, the number of (relevant) inherent loop nogoods
in ΛΠ may be exponential [164]. Fortunately, the satisfaction of ΛΠ can be checked in lin-
ear time (e.g., via Algorithm 4.3), so that an explicit representation of its elements is not
required. However, NOGOODPROPAGATION (cf. Algorithm 4.2) records loop nogoods
from ΛΠ that are antecedents to make them easily accessible in CONFLICTANALYSIS.

Alternatives in the representation of constraints induced by a logic program become
apparent when considering traditional ASP solvers, such as dlv [158] and smodels [209],
where assignments are (logically) identified with interpretations over atoms. In order to
augment smodels with conflict-driven learning, smodelscc [218] pursues an algorithmic
approach to extract antecedents (over atoms) relative to smodels’ propagation rules (de-
scribed in Section 3.2.2). In our setting, one may restrict heuristic decisions in Line 14
of Algorithm 4.1 to mimic an “atom-only” approach, in which truth values of bodies
are determined by their literals. However, if CONFLICTANALYSIS remains unaltered, its
(asserting) nogoods may still enable unit propagation to derive the falsity of rule bodies
without (known) false body literals (or associated false head atoms), a state that cannot
occur with atom-based approaches. To ultimately avoid such states, one would need to
unconditionally eliminate entries over bodies from conflict nogoods by resolution against
their antecedents, which is possible when heuristic decisions are restricted to atoms. This
idea comes close to the conflict-driven learning technique of smodelscc , breaking deriva-
tions relying on bodies down to their contained literals. While such “body elimination”
admits the integration of conflict-driven learning into atom-based approaches, it may still
go along with exponentially increased (best-case) complexity (cf. Section 3.4.1), which
is independent of and thus irreparable by conflict-driven learning [110].

4.3.5 Soundness and Completeness

In the following, we elaborate upon the formal properties of the algorithms presented in
the previous sections. Generally speaking, soundness w.r.t. the decision problem of an-
swer set existence is obtained from the fact that the subroutines NOGOODPROPAGATION

and CONFLICTANALYSIS exploit and possibly tighten available knowledge, but do not
draw incorrect conclusions. In the course of this, UNFOUNDEDSET performs a sufficient
amount of work to distinguish answer sets from (inadmissible) circularly supported mod-
els. The completeness of CDNL-ASP follows from the observation that its subroutines
cannot loop infinitely along with the fact that conflict-driven assertions relocate variables
to smaller decision levels than before, which guarantees termination (cf. [220, 203]).

74 Conflict-Driven Answer Set Solving

To begin with, we consider crucial properties of UNFOUNDEDSET in Algorithm 4.3.
First, we have that (positive) dependencies through source pointers are inherently acyclic.

Lemma 4.5. Let Π be a normal program and A an assignment that is body-saturated
for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that the source pointer configuration remains valid throughout the execution of
UNFOUNDEDSET(Π,A).

This property holds because potential non-circular supports for atoms in B+ must
already be established before a source pointer can be set to a body B in Line 13 of
Algorithm 4.3, which precludes the introduction of cycles. In particular, the atoms ofB+

belonging to an investigated strongly connected component of DG(Π) must not be in
the scope S, containing potentially unfounded atoms. In fact, the following result shows
that all “interesting” unfounded sets, namely, unfounded loops, are part of S; conversely,
atoms outside S cannot belong to an unfounded loop.

Lemma 4.6. Let Π be a normal program and A an assignment that is atom-saturated
for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that every unfounded set U ⊆ atom(Π) \AF of Π w.r.t. A such that all p ∈ U
belong to the same strongly connected component of DG(Π) is contained in S whenever
Line 6 of Algorithm 4.3 is entered.

The previous lemmas along with Corollary 2.10 on Page 15 can now be combined to,
essentially, establish the completeness of Algorithm 4.3.5

Theorem 4.7. Let Π be a normal program and A an assignment that is both atom- and
body-saturated for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that UNFOUNDEDSET(Π,A) returns an unfounded set U ⊆ atom(Π) \ AF

of Π w.r.t. A, where U = ∅ iff there is no unfounded set U ′ of Π w.r.t. A such that
U ′ 6⊆ AF .

After considering unfounded set detection, we now turn to NOGOODPROPAGATION

in Algorithm 4.2. The next lemma is straightforward yet helpful, as it assures the prereq-
uisites of demand-driven unfounded set checking, mainly focusing on unfounded loops.

Lemma 4.8. Let Π be a normal program,∇′ a set of nogoods, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of

Algorithm 4.2 is entered in an execution of NOGOODPROPAGATION(Π,∇′,A′).

The following properties are essential for CONFLICTANALYSIS to be well-defined as
well as the soundness and completeness of CDNL-ASP.

Lemma 4.9. Let Π be a normal program, ∇′ a set of nogoods, and A′ an ordered as-
signment.

If NOGOODPROPAGATION(Π,∇′,A′) is invoked on a valid source pointer config-
uration, then we have that NOGOODPROPAGATION(Π,∇′,A′) returns a pair (A,∇)
such that

5Soundness, viz., the property that every set U returned by UNFOUNDEDSET is indeed unfounded, is
obvious in view of the test in Line 9 of Algorithm 4.3 and the fact that ∅, which can be returned in Line 18,
is trivially unfounded.

4.3 Decision Algorithm 75

1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ;

2. A is an ordered assignment such that A′ ⊆ A and every σ ∈ A \A′ is implied by
∆Π ∪∇ w.r.t. A;

3. δ ⊆ A for some δ ∈ ∆Π ∪∇ if ε ⊆ A for some ε ∈ ΛΠ.

The first item expresses that only loop nogoods can possibly be added by NOGOOD-
PROPAGATION, viz., in Line 15 of Algorithm 4.2 (provided that Π is non-tight). In view
of Theorem 4.4 on Page 59, this makes sure that the recorded nogoods do not eliminate
any answer set of Π. The second item brings forward that any entry derived by NOGOOD-
PROPAGATION has some antecedent, which can (later on) be used for conflict resolution.
Finally, the third item exploits Theorem 4.7 and Lemma 4.8 to establish that violations
of (loop) nogoods cannot stay undetected.

Regarding CONFLICTANALYSIS in Algorithm 4.4, the next lemma states that its de-
rived nogoods are asserting and entailed by the nogoods that are already given.

Lemma 4.10. Let Π be a normal program,∇ a set of nogoods, A an ordered assignment,
and δ′ ⊆ A such that m = max({dlevel(ρ) | ρ ∈ δ′} ∪ {0}) 6= 0.

If m is implied by ∆Π ∪ ∇ w.r.t. A, then we have that CONFLICT-
ANALYSIS(δ′,Π,∇,A) returns a pair (δ, k) such that

1. δ ⊆ A;

2. |{σ ∈ δ | 0 ≤ k < dlevel(σ)}| = 1;

3. δ 6⊆ B for any solution B for ∆Π ∪∇ ∪ {δ′}.

The above prerequisites regarding∇, A, and δ′ stipulate the existence of antecedents
for all but the first entry assigned at the decision level m > 0. These conditions are guar-
anteed by CDNL-ASP, as it introduces a new decision level in Line 15 of Algorithm 4.1
before assigning a decision entry (without antecedent) in Line 16, and as conflicts are
only analyzed if they are encountered beyond decision level 0.

After inspecting the subroutines of CDNL-ASP, important invariants of assignments
and nogoods generated by CDNL-ASP can be summarized as follows.

Lemma 4.11. Let Π be a normal program.
Then, we have that the following holds whenever Line 5 of Algorithm 4.1 is entered

in an execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ;

2. A is an ordered assignment such that all decision levels are implied by ∆Π ∪ ∇
w.r.t. A.

Given that only the (implied) entries belonging to the current assignment A require
antecedents for the second invariant to hold, dynamic nogoods in ∇ that are not an-
tecedents may optionally be deleted. This yields polynomial space complexity of CDNL-
ASP because the number of (required) antecedents is bounded by the number of entries,

76 Conflict-Driven Answer Set Solving

viz., by |atom(Π) ∪ body(Π)|.6 In practice, nogood deletion (cf. [127, 56]) is an impor-
tant technique preventing conflict-driven learning solvers from blowing up in space.

In order to capture the notion of completeness also in the case of unsatisfiability, i.e.,
for logic programs having no answer set, we introduce the following terminology: an
algorithm is called terminating if it finishes in finitely many steps. By combining the
previous results, we can now establish the soundness and completeness of CDNL-ASP.

Theorem 4.12. Let Π be a normal program.
Then, we have that CDNL-ASP(Π) is terminating, and it returns an answer set of Π

iff Π has some answer set.

Soundness w.r.t. the decision problem of answer set existence follows from the ob-
servations made above, namely, that violations of (loop) nogoods are detected and that
nogoods added by NOGOODPROPAGATION or derived by CONFLICTANALYSIS are en-
tailed. The completeness of CDNL-ASP, i.e., the fact that it is a decision proce-
dure, is due to its termination. Notably, the arguments for the termination of CDCL
(cf. [220, 203]) also apply to CDNL-ASP, given that both search procedures make use
of conflict-driven assertions, which exclude repetitions of assignments.

4.4 Enumeration Algorithms

The CDNL-ASP algorithm presented in Section 4.3.1 solves the decision problem of
answer set existence for normal programs, thereby, making use of state-of-the-art look-
back techniques like conflict-driven learning and backjumping according to the First-UIP
scheme. Unlike with DPLL-style procedures performing systematic backtracking, the
transition from computing a single solution to computing multiple or all of them is non-
trivial in the context of state-of-the-art lookback techniques. Some methods developed in
the area of SAT utilize “blocking clauses” (cf. [151, 146, 184]) to remember previously
found solutions for excluding their repetition; such approaches incur significant blow-up
in space.7 This could be avoided by deleting non-asserting blocking clauses, thereby, still
guaranteeing termination but risking the repetition of solutions [155]. Further methods
are devised particularly for #SAT (see [128] for an overview), the problem of counting
the models of a propositional theory; the ones among them that include conflict-driven
learning and backjumping according to the First-UIP scheme incur significant computa-
tional overhead a priori. In contrast to the aforementioned proposals, our goal is to devise
algorithms for the enumeration of answer sets that

1. harness conflict-driven learning and backjumping according to the First-UIP
scheme,

6The total number and the individual size of antecedents in ∇ that must not be deleted (as some
decision level would not be implied by ∆Π ∪ ∇ w.r.t. A otherwise) are both linearly bounded by
|atom(Π) ∪ body(Π)|. Hence, the space complexity of CDNL-ASP is at most quadratic in the size of Π.
Similar considerations are applicable to CDCL w.r.t. the number of propositional variables occurring in a
set of clauses. However, the author is unaware of any precise estimation of the space needed to store (re-
quired) antecedents, comparing their size to the size of input clauses in terms of occurrences of propositional
variables.

7The enumeration approach of relsat [17, 16] works without blocking clauses, but relsat’s lookback
techniques rely on the “Last-UIP” scheme (cf. [219]). The “Important First Decision Procedure” proposed
in [130] also avoids the use of blocking clauses, but it interferes with decision heuristics and backjumping;
we further compare our approach to it in Section 4.6.

4.4 Enumeration Algorithms 77

2. do not incur computational overhead a priori, that is, before any answer set is
found,

3. are applicable to the counting problem by determining an exact number of (distinct)
solutions, and

4. run in polynomial space, provided that unrequired conflict and loop nogoods are
deleted.

Although it does not comply with our objective, in Section 4.4.1, we first describe
a straightforward enumeration algorithm based on solution recording. It serves as a
starting point for the development of more sophisticated algorithms applying dedicated
backtracking schemes instead of space-consuming solution recording. Such algorithms,
aiming at the enumeration of entire solutions and projections to a subset of variables,
respectively, are presented in Section 4.4.2 and 4.4.3. Finally, Section 4.4.4 outlines the
derivation of soundness and completeness results for the devised enumeration algorithms.

4.4.1 Solution Recording

The main enumeration algorithm based on solution recording, CDNL-RECORDING, is
shown in Algorithm 4.5. It extends CDNL-ASP in Algorithm 4.1 on Page 62 by taking
as second argument a (maximum) number s of answer sets to enumerate; all answer sets
of a normal program Π can be computed by letting s be 0. CDNL-ASP and CDNL-
RECORDING use the same subroutines and are in most parts identical, yet their behaviors
differ when an answer set is found (Line 11–12 in Algorithm 4.1 and Line 11–15 in Algo-
rithm 4.5). Unlike CDNL-ASP, which terminates immediately after finding an answer
set, CDNL-RECORDING prints the answer set in Line 12, decrements the number s of
answer sets to enumerate in Line 13, and checks in Line 14 whether more answer sets are
requested. If so, in Line 15, it adds the set of all entries σp ∈ A over atom(Π) to ∇ for
prohibiting a repetition of the corresponding answer set in the sequel. In fact, when such
a nogood is added to ∇ in Line 15, it is violated by A and thus triggers a conflict in the
next iteration of the loop in Line 4–19.

Unlike conflict and loop nogoods, which are entailed by the input and may option-
ally be deleted when they are no longer required as antecedents (cf. Section 4.3.5), the
nogoods added to ∇ in Line 15 must not be deleted. Hence, Algorithm 4.5 is prone to
blow up in space. We note that there are approaches to represent the set of enumerated
solutions more compactly (cf. [146, 184]), but we do not make use of them because it
is not our goal to improve persistent solution recording. Rather, we aim at enumeration
algorithms that cope without such recording, presented here for comparison only. We
also do not exploit the “antichain property” satisfied by the answer sets of a normal pro-
gram (cf. [120]) and still include entries of the form F p for p ∈ atom(Π) in a nogood
added to ∇ in Line 15. In fact, the (antichain) property that two distinct answer sets are
incomparable w.r.t. inclusion does not hold in syntactically richer settings, e.g., it is not
guaranteed by the answer sets of a nested program [165].

Example 4.10. Consider the following normal program:

Π11 =


r1 : a← x r3 : b← x r5 : c← x,not z
r2 : a← not x r4 : b← not c r6 : c← not b

r7 : x← b, c r9 : y ← x,not b r11 : z ← x,not c
r8 : x← not y,not z r10 : y ← not x,not z r12 : z ← not x,not y



78 Conflict-Driven Answer Set Solving

Algorithm 4.5: CDNL-RECORDING

Input : A normal program Π and a number s of answer sets to enumerate.

A := ∅ // ordered assignment over atom(Π) ∪ body(Π)1
∇ := ∅ // set of recorded nogoods2
dl := 0 // decision level3

loop4
(A,∇) := NOGOODPROPAGATION(Π,∇,A)5

if ε ⊆ A for some ε ∈ ∆Π ∪∇ then // conflict6
if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then exit7
(δ, dl) := CONFLICTANALYSIS(ε,Π,∇,A)8
∇ := ∇∪ {δ} // (temporarily) record conflict nogood9
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping10

else if AT ∪AF = atom(Π) ∪ body(Π) then // answer set11
print AT ∩ atom(Π)12
s := s− 113
if s = 0 then exit14
∇ := ∇∪ {{σp ∈ A | var(σp) ∈ atom(Π)}} // (persistently) record solution15

else16
σd := SELECT(Π,∇,A) // decision17
dlevel(σd) := dl := dl + 118
A := A ◦ σd19

Let us examine a computation of all answer sets of Π11 with CDNL-
RECORDING(Π11, 0), whose main steps are shown in Table 4.6. As in Table 4.3, the
columns provide the value of dl , viz., the current decision level, and the line of Algo-
rithm 4.5 at which particular contents of A and/or some nogood δ are inspected. The
info column displays additional information about printed answer sets, nogoods, and as-
sertion levels, respectively. The entries inserted into A in Line 19 of Algorithm 4.5 are
decision entries. Unlike them, each entry inserted into A in Line 5, that is, in an execution
of NOGOODPROPAGATION, is unit-resulting for some nogood δ ∈ ∆Π11 ∪∇. We merely
indicate by “. . . ” that some entries are derived by unit propagation but, for brevity, omit
listing individual entries. However, Table 4.6 displays successes of the test for a violated
nogood performed in Line 6, and it provides the nogood δ to be recorded in ∇ along
with the assertion level dl (as info) as they are returned by CONFLICTANALYSIS when
invoked in Line 8. In addition, the info column shows answer sets (underlined) when they
are printed in Line 12. In the following, we describe the macroscopic steps of CDNL-
RECORDING(Π11, 0); an unabridged trace is provided in Appendix A.1.

Assume that, at the start of the computation, T y, T a, and Tx are picked as decision
entries at levels 1, 2, and 3, respectively. This leads to the violation of the completion
nogood {F {x},Tx} by unit propagation, and the derived conflict nogood, {Tx,T y}, is
asserting at decision level 1. Similar to CDNL-ASP, this makes CDNL-RECORDING

backjump to decision level 1, where Fx and further entries are afterwards derived by unit
propagation. As a consequence of picking T b as the new decision entry at level 2, the first
solution is obtained. Its true entries over atoms provide us with an answer set of Π11,
{y, a, b}, which is printed in Line 12 of Algorithm 4.5. The associated set of entries over
atoms is {T y,Fx,F z,T a,T b,F c}. Since s is decremented to −1 in Line 13, CDNL-

4.4 Enumeration Algorithms 79

dl A δ Info Line
1 T y 19

. . . 5
2 T a 19
3 Tx 19

. . . 5
{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 8

1 T y
. . . 5

2 T b 19
. . . 5

{y, a, b} 12
{T y,Fx,F z,T a,T b,F c} ∇ 6
{T y,Fx,F z,T a,T b,F {x}} dl=1 8

1 T y
. . . 5

{y, a, c} 12
{T y,Fx,F z,T a,F b,T c} ∇ 6
{T y} dl=0 8

0 F y {T y} ∇ 5
. . . 5

1 T b 19
. . . 5

2 T c 19
. . . 5

{x, a, b, c} 12
{F y,T b,T c,T a,Tx,F z} ∇ 6
{F y,T b,T c,F {not b}} dl=1 8

0 F y {T y} ∇
. . .

1 T b
. . . 5

2 F a 19
. . . 5

{F {not x},Fx} ∆Π11 6
{F a} dl=0 8

0 F y {T y} ∇
. . . 5

1 F z 19
. . . 5

{F y,T b,T c,T a,Tx,F z} ∇ 6
{F y,T a,F z} dl=0 8

0 F y {T y} ∇
. . . 5

1 T b 19
. . . 5

{z, a, b} 12
{F y,T a,T z,T b,F c,Fx} ∇ 6
{F y,T a,T z,T b,F {not y,not z},F {x,not z}} dl=0 8

0 F y {T y} ∇
. . . 5

{z, a, c} 12
{F y,T a,T z,F b,T c,Fx} ∇ 6

Table 4.6: Main steps in a computation of all answer sets with CDNL-
RECORDING(Π11, 0).

80 Conflict-Driven Answer Set Solving

RECORDING does not exit in Line 14 and proceeds by recording the aforementioned set
of entries over atoms persistently in ∇ as a nogood. This triggers a conflict in the next
iteration of the loop in Line 4–19, so that CONFLICTANALYSIS in Line 8 determines
an asserting nogood along with an assertion level, as in the case of a nogood violated
upon propagation. In our example, the asserting nogood {T y,Fx,F z,T a,T b,F {x}}
leads to a second solution after returning to decision level 1 and performing unit propa-
gation. The corresponding answer set of Π11, {y, a, c}, is then excluded by persistently
recording {T y,Fx,F z,T a,F b,T c} in∇. As a consequence, CONFLICTANALYSIS in
Line 8 yields the asserting nogood {T y}, whose assertion level is 0. This shows that all
solutions for ∆Π11 ∪ ΛΠ11 containing T y (that is, all answer sets of Π11 containing y)
have been enumerated.

After backjumping, the fact that F y is derived by unit propagation at decision level 0
is highlighted by writing 0 in Table 4.6. Note that the violation of a nogood such that
all entries are assigned at decision level 0 is the termination condition of Algorithm 4.5,
which must eventually apply in Line 7 if 0 is provided for the second argument s; hence,
entries derived at decision level 0 are of particular significance. To summarize the re-
maining part of the computation, three more solutions, corresponding to the answer sets
{x, a, b, c}, {z, a, b}, and {z, a, c} of Π11, are obtained and excluded by persistently
recording associated nogoods in ∇ before the last such nogood is violated at decision
level 0. In the course of this, it is noteworthy to mention that one of the recorded conflict
nogoods, {F a}, implies the entry T a after backjumping to decision level 0. The resulting
partial assignment has already been contained in the previously enumerated solution with
{F y,T b,T c,T a,Tx,F z} as its set of entries over atoms. Due to persistently recording
this set of entries as a nogood, a repetition of the previous solution is suppressed, as it
can be observed on the second last conflict encountered at decision level 1. In fact, by a
posteriori turning solutions into nogoods, CDNL-RECORDING successively strengthens
∆Π11 ∪ ΛΠ11 until unsatisfiability certifies that no unenumerated solution is left.

4.4.2 Solution Enumeration

After presenting a straightforward yet space-exploding approach to enumeration for com-
parison, we now turn to our actual objective to devise an enumeration algorithm that
complies with the design goals postulated at the beginning of Section 4.4.

Our main algorithm for enumeration via a dedicated backtracking scheme, CDNL-
ENUMERATION, is shown in Algorithm 4.6. Its arguments, a normal program Π and a
(maximum) number s of answer sets to enumerate, are similar to Algorithm 4.5. The
additional key ingredient of Algorithm 4.6 is a backtracking level, denoted by bl , used
in addition to the decision level dl . At any stage of the computation, bl provides the
greatest level such that some enumerated solution contains all decision entries assigned
at levels up to bl . Since these entries (along with all further entries assigned at decision
levels smaller than bl) belong to a solution, any conflict-driven assertion (assigning a
unit-resulting entry for an asserting nogood after backjumping) at a decision level smaller
than bl must reestablish some entry of an already enumerated solution. To avoid repeti-
tions, we thus have to make sure that backjumping does not retract bl , but only leads to
the insertion of a unit-resulting entry (of an already enumerated solution) into A at the de-
cision level where it is implied. Exactly this is accomplished in Line 11 of Algorithm 4.6
by taking the maximum of the assertion level k, as returned by CONFLICTANALYSIS in
Line 9, and bl as the decision level dl to resume from after backjumping in Line 12.

4.4 Enumeration Algorithms 81

Algorithm 4.6: CDNL-ENUMERATION

Input : A normal program Π and a number s of answer sets to enumerate.

A := ∅ // ordered assignment over atom(Π) ∪ body(Π)1
∇ := ∅ // set of recorded nogoods2
bl := dl := 0 // (systematic) backtracking and decision level3

loop4
(A,∇) := NOGOODPROPAGATION(Π,∇,A)5

if ε ⊆ A for some ε ∈ ∆Π ∪∇ then // conflict6
if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then exit7
if bl < max{dlevel(σ) | σ ∈ ε} then8

(δ, k) := CONFLICTANALYSIS(ε,Π,∇,A)9
∇ := ∇∪ {δ} // (temporarily) record conflict nogood10
dl := max{k, bl}11
A := A \ {σ ∈ A | dl < dlevel(σ)} // (bounded) backjumping12

else13
σd := decision(bl)14
dlevel(σd) := bl := dl := bl − 115
A := A \ {σ ∈ A | bl < dlevel(σ)} // backtracking16
A := A ◦ σd // flipping17

else if AT ∪AF = atom(Π) ∪ body(Π) then // answer set18
print AT ∩ atom(Π)19
s := s− 120
if s = 0 or dl = 0 then exit21
σd := decision(dl)22
dlevel(σd) := bl := dl := dl − 123
A := A \ {σ ∈ A | bl < dlevel(σ)} // backtracking24
A := A ◦ σd // flipping25

else26
σd := SELECT(Π,∇,A) // decision27
dlevel(σd) := dl := dl + 128
decision(dl) := σd29
A := A ◦ σd30

Furthermore, before invoking CONFLICTANALYSIS in Line 9, the test in Line 8
checks whether a violated nogood contains some entry assigned at a decision level be-
yond bl . This is important for guaranteeing conflict resolution to be well-defined be-
cause Algorithm 4.6 performs systematic (chronological) backtracking instead of solu-
tion recording. In fact, the decision entry σd at a level dl is retained in decision(dl)
in Line 29 (before assigning σd in Line 30), and its complement σd is in Line 17 or 25
assigned at decision level bl − 1 or dl − 1 upon encountering a conflict at bl8 (Line 14–
17) or a solution at dl (Line 18–25), respectively. In either case, σd is assigned at the
new backtracking level bl (set in Line 15 or 23) without being implied by any nogood
in ∆Π ∪ ∇. At levels up to bl , such backtracking (without solution recording) tolerates
entries that are neither decisions nor implied (but deliberately flipped in view of search

8Since all entries of A assigned at decision levels smaller than bl belong to a previously enumer-
ated solution that is not excluded by any nogood, bl > max{dlevel(σ) | σ ∈ ε} cannot hold and
bl = max{dlevel(σ) | σ ∈ ε} must be the case if the test in Line 8 of Algorithm 4.6 fails.

82 Conflict-Driven Answer Set Solving

space exhaustion). Hence, conflict resolution is not well-defined at decision levels up
to bl , and the test in Line 8 precludes undefined behavior.

Compared to CDNL-RECORDING in Algorithm 4.5, where backjumping is always
accompanied by a conflict-driven assertion, CDNL-ENUMERATION applies systematic
backtracking to proceed after encountering a solution or a conflict resulting from flipped
entries. In order to avoid repetitions, CDNL-ENUMERATION also bounds backjumping
not to retract flipped decision entries of already enumerated solutions. As it does not rely
on persistent solution recording, the backtracking scheme of CDNL-ENUMERATION

allows for enumerating all answer sets of a logic program in polynomial space (once
printed, answer sets need not be remembered) because only the dynamic nogoods that
serve as antecedents must be kept, while all others are “redundant” and may thus be
deleted. In fact, CDNL-ENUMERATION preserves the space complexity of CDNL-ASP
(in Algorithm 4.1 on Page 62), the basic decision procedure it extends.

Example 4.11. The main steps in a computation of all answer sets of Π11 from Exam-
ple 4.10 with CDNL-ENUMERATION(Π11, 0) are shown in Table 4.7, which indicates
the macroscopic steps of CDNL-ENUMERATION(Π11, 0) in the same fashion as Ta-
ble 4.6 for CDNL-RECORDING(Π11, 0). In fact, we below mainly focus on describing
the differences between dedicated backtracking-based enumeration and enumeration via
solution recording; an unabridged trace of CDNL-ENUMERATION(Π11, 0) is provided
in Appendix A.2.

At the start (on the left-hand side of Table 4.7), the computation of CDNL-
ENUMERATION proceeds like CDNL-RECORDING, encountering a conflict after picking
T y, T a, and Tx as the first three decision entries and, as a consequence of backjump-
ing to decision level 1 and picking T b as decision entry at level 2, obtaining {y, a, b},
printed in Line 19 of Algorithm 4.6, as the first answer set of Π11. Then, the test in
Line 21 fails because s is decremented to −1 in Line 20 and the current value of dl
is 2, so that CDNL-ENUMERATION does not exit. Unlike CDNL-RECORDING, where
solutions are turned into nogoods, CDNL-ENUMERATION proceeds in Line 22–25 by
setting the backtracking level bl to the second greatest decision level of entries in A, viz.,
to 1, and by inserting the complement F b of the formerly last decision entry T b into A
after backtracking to bl . (The value of bl is highlighted by writing 1 in Table 4.7.) Due
to flipping T b to F b, we obtain {y, a, c} as the second answer set of Π11. Given that
the current decision level is 1, continuing as after the first answer set yields 0 as the new
backtracking level bl , at which the complement F y of the former decision entry T y is as-
signed. The same partial assignment has also been generated with CDNL-RECORDING

(cf. Table 4.6), but there F y is implied by a conflict nogood derived from recorded so-
lutions. Unlike this, CDNL-ENUMERATION assigns F y at decision level 0 because its
backtracking scheme makes sure that all solutions containing T y have been enumerated,
so that the value of y can be flipped independently of nogoods.

Given F y at decision level 0, two further decisions on T b and T c yield {x, a, b, c}
as the third answer set of Π11. Then, the backtracking level bl is increased to 1, and F c
is assigned at level 1 (on the right-hand side of Table 4.7), analogously to the previous
two solutions. After picking F a as decision entry at level 2, we encounter a conflict from
which the nogood {F a} is derived; this tells us that every solution must contain T a,
independently of decisions. In fact, CONFLICTANALYSIS in Line 9 of Algorithm 4.6 re-
turns {F a} along with k = 0. Since the backtracking level bl is 1, it is in Line 11 taken as
the decision level dl to resume from after backjumping. That is, the backjump that would

4.4 Enumeration Algorithms 83

dl A δ Info Line
1 T y 30

. . . 5
2 T a 30
3 Tx 30

. . . 5
{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 9

1 T y
. . .
Fx {Tx,T y} ∇ 5
. . . 5

2 T b 30
. . . 5

{y, a, b} 19

1 T y
. . .
Fx {Tx,T y} ∇
. . .
F b 25
. . . 5

{y, a, c} 19

0 F y 25
. . . 5

1 T b 30
. . . 5

2 T c 30
. . . 5

{x, a, b, c} 19

dl A δ Info Line
0 F y

. . .

1 T b
. . .
F c 25
. . . 5

2 F a 30
. . . 5

{F {not x},Fx} ∆Π11 6
{F a} dl=1 9

0 F y
. . .
T a {F a} ∇ 5

1 T b
. . .
F c
. . .

2 Fx 30
. . . 5

{z, a, b} 19

0 F y
. . .
T a {F a} ∇

1 T b
. . .
F c
. . .
Tx 25
. . . 5

{T {not y,not z},T z} ∆Π11 6
0 F y

. . .
T a {F a} ∇
F b 17
. . . 5

{z, a, c} 19

Table 4.7: Main steps in a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0).

84 Conflict-Driven Answer Set Solving

in CDNL-ASP and CDNL-RECORDING lead to assertion level 0 is here bounded by the
backtracking level. This is because all formerly enumerated solutions have contained T a
(a has been included in the corresponding answer sets), and sacrificing the state infor-
mation accumulated at backtracking level 1 would readmit already enumerated solutions
(such as the one corresponding to the answer set {x, a, b, c}). Hence, it is sensible to
maintain the entries at the backtracking level, in particular, the flipped former decision
entry F c, while T a is still inserted into A at decision level 0 (within NOGOODPROPA-
GATION) after returning to backtracking level 1.

In the sequel, picking Fx as decision entry at level 2 yields {z, a, b} as the fourth
answer set of Π11. Like with previous solutions, we backtrack to level 1 and then as-
sign Tx. This however leads to a conflict at the backtracking level. In view of the test
in Line 8 of Algorithm 4.6, the conflict is not analyzed, but backtracking in Line 14–17
proceeds in the same fashion as in the case of a solution (Line 22–25). That is, we decre-
ment the backtracking level to 0 and further assign the complement F b of the former
decision entry T b. Under these prerequisites, we obtain {z, a, c} as the fifth answer set
of Π11. Since the current value of dl is 0, there is no decision entry left to flip, and
CDNL-ENUMERATION finishes in Line 21.

The fact that CDNL-ENUMERATION uses a backtracking level to keep track of enu-
merated as well as yet uninvestigated solutions abolishes the need of recording solutions,
so that enumeration can be accomplished in polynomial space. As the backtracking level
(partially) suppresses conflict-driven learning (according to the First-UIP scheme) and
bounds backjumping (as well as restarts; cf. Section 4.5.2) only after solutions have been
obtained, it does neither interfere with search nor incur any computational overhead a
priori. Hence, CDNL-ENUMERATION is as effective as CDNL-ASP, the basic decision
procedure it extends, on unsatisfiable normal programs (having no answer set). As shown
in Section 4.4.4, CDNL-ENUMERATION is complete and does not repeat answer sets, so
that it can be applied to count answer sets. We have thus achieved the design goals for
enumeration algorithms postulated at the beginning of Section 4.4. To our knowledge,
CDNL-ENUMERATION is the first method that jointly complies with all of these design
goals.

4.4.3 Solution Projection

After considering the enumeration of entire solutions, we now shift our focus to the prob-
lem of enumerating solutions distinct on a certain subset of relevant variables or atoms,
respectively. For instance, Π11 from Example 4.10 has five answer sets: {x, a, b, c},
{y, a, b}, {y, a, c}, {z, a, b}, and {z, a, c}. If we limit the attention to the set {a, b, c} as
relevant atoms (as it can also be done in solution correspondence checking [58]), we are
left with only three distinguishable answer sets: {a, b, c}, {a, b}, and {a, c}. Such sce-
narios occur frequently in real-world applications, e.g., in model checking (see [130] and
references therein) and systems biology [115]. The requirements of such applications,
in which output-irrelevant variables have their proper combinatorics, are not properly
addressed by approaches exhaustively enumerating entire solutions.9

While solution recording as in CDNL-RECORDING can easily be adapted to enumer-
ating solutions distinct on a set P of relevant atoms, simply by replacing the condition

9For instance, with the application in [115], the output-irrelevant variables are not functionally dependent
from relevant variables, and ambiguities cannot be eliminated by means of symmetry breaking (cf. [205]).
As a consequence, plenty solutions may turn out to be indistinguishable.

4.4 Enumeration Algorithms 85

var(σp) ∈ atom(Π) in Line 15 of Algorithm 4.5 by var(σp) ∈ P , it is not straightfor-
ward with backtracking-based enumeration methods, in particular, if we do not restrict
decision heuristics a priori. The latter is done, e.g., in the “Important First Decision Pro-
cedure” [130] and in OPTSAT [125] (which uses a decision heuristic preferring minimal
elements of a partially ordered set for computing optimal solutions). Unlike them, we
do not make any particular assumptions about the heuristic used and, as required in Sec-
tion 4.3.1, merely assume the variable in a selected entry to be unassigned and occur in
the input.

In the following, we let AP = {σp ∈ A | var(σp) ∈ P} denote the projection of an
assignment A (or a set A of entries) to a set P of atoms.10 The major particularities of
enumerating projections are described next.

First, two distinct solutions A and B for a set ∆ of nogoods can be such that they
agree on relevant variables in P and differ only on irrelevant variables outside P (impli-
cating a different decision on some variable outside P):

1. For a solution A for a set ∆ of nogoods such that A contains {σ1, . . . , σj} as
decision entries, it is possible that AP ⊆ B and {σ1, . . . , σj} ∩ B 6= ∅ hold for
some distinct solution B for ∆. Then, if σi ∈ B for 1 ≤ i ≤ j, we have that
var(σi) /∈ P . From this, we conclude that flipping some entry in {σi | 1 ≤ i ≤ j,
var(σi) /∈ P} may be insufficient to exclude repetitions of AP .

Second, two solutions A and B for a set ∆ of nogoods can be such that they differ
on relevant variables in P but agree on decision entries over P (implicating a different
decision on some variable outside P):

2. For a solution A for a set ∆ of nogoods such that A contains {σ1, . . . , σj} as
decision entries, it is possible that AP 6⊆ B and {σ1, . . . , σj}P ⊆ B hold for some
distinct solution B for ∆. Then, B includes all decision entries over P from A
but still differs from A on relevant variables in P . From this, we conclude that
flipping some entry in {σ1, . . . , σj}P may eliminate a distinguishable and thus
non-redundant solution.

Combining the above observations, we note that flipping decision entries over vari-
ables outside P may tolerate indistinguishable solutions, while flipping decision entries
over P might sacrifice distinguishable ones. Hence, with a decision heuristic selecting
freely among unassigned variables, we cannot know which decision entry of a solution
ought to be flipped in order to perform enumeration. This obscurity could be avoided by
deciding variables in P before those outside P , as proposed in [130]. On unsatisfiable
inputs, such approaches however suffer from a negative proof complexity result:

3. Any decision heuristic that selects an entry σd such that var(σd) /∈ P only w.r.t.
assignments A such that⋃

δ∈∆,∀σ∈δ:σ/∈A{σp ∈ δ \A | var(σp) ∈ P} = ∅ (4.1)

(that is, var(σ) /∈ P holds for all unassigned entries σ occurring in nogoods δ
of ∆ not yet excluded by A), on certain inputs, incurs exponentially less efficient
best-case computations than an unrestricted decision heuristic.

10For an answer set X of a normal program Π, we sometimes call the intersection X ∩ P the projection
of X to P , given that X ∩ P and ({T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X})P are directly correlated.

86 Conflict-Driven Answer Set Solving

This handicap follows from Lemma 3 in [143], showing that CDCL with decisions
restricted to variables P acting as input gates of a Boolean circuit has exponen-
tially greater minimum-length proofs of unsatisfiability than DPLL on the infinite
family {EPHPn+1

n } of constrained Boolean circuits. A circuit of this family in-
duces a set ∆ of nogoods such that every assignment A satisfying (4.1) yields an
immediate conflict by unit propagation. Hence, any restricted decision heuristic is
doomed to select only entries σd such that var(σd) ∈ P , and thus it deteriorates
search in the sense of Lemma 3 in [143].

The previous observation tells us that performing enumeration of solutions distinct
on a set of relevant atoms by altering SELECT in Line 27 of Algorithm 4.6 would dras-
tically degrade the (theoretic) power of search. This motivates us not to apply any such
modification inside CDNL-ENUMERATION but to instead devise a dedicated algorithm
for the enumeration of answer sets projected to certain relevant atoms.

Our main procedure for enumerating projections of answer sets to a set P of “out-
put” atoms, CDNL-PROJECTION, is shown in Algorithm 4.7. Similar to CDNL-
ENUMERATION in Algorithm 4.6, it uses a backtracking level bl to indicate entries that
must not be retracted upon backjumping. In fact, the outline of CDNL-PROJECTION

partially matches the one of CDNL-ENUMERATION, and the following table displays
correspondences between particular cases handled in their algorithms:

No. Case Algorithm 4.6 Algorithm 4.7
1 Backjumping from conflict Line 9–12 Line 9–12
2 Backtracking from conflict/solution Line 14–17 and 22–25 Line 14–18 and 24–28
3 Backtracking level introduction — Line 30–37
4 Decision Line 27–30 Line 39–41

The cases in which both algorithms differ significantly and the corresponding lines
of Algorithm 4.7 are highlighted in bold face in the above table. To begin with, we note
that Case 1, backjumping from conflict, is handled identically in Algorithm 4.6 and 4.7 by
taking the maximum of the assertion level k, returned by CONFLICTANALYSIS in Line 9,
and bl as the decision level dl to resume from after backjumping in Line 12. A minor
difference in Case 4, (heuristic) decision, is that Algorithm 4.6 retains a selected entry σd
in decision(dl) (Line 29 of Algorithm 4.6), which is omitted in Algorithm 4.7. Rather
than recalling (arbitrary) decision entries for later on flipping them upon backtracking,
Algorithm 4.7 includes Case 3 for the introduction of backtracking levels. This case,
having no counterpart in Algorithm 4.6, is detailed next.

As mentioned above, the difficulty arising with an a priori unrestricted decision
heuristic is that we can, in general, not be sure whether flipping decision entries in a
solution A preserves distinguishable solutions and at the same time excludes repetitions
of AP . The central idea to cope with this is to a posteriori fix an entry σp ∈ A such that
var(σp) ∈ P in order to perform systematic backtracking on it. In fact, if Line 30–37 of
Algorithm 4.7 are executed after printing the true atoms of AP in Line 20, then the tests
in Line 22 and 23, made beforehand, check that the set {σp ∈ AP | bl < dlevel(σp)}
is non-empty. Hence, an entry σd from this set can be picked as a (fake) decision in
Line 34 to reassign it in Line 37. Given this reassignment, AP is in Line 32 temporarily
recorded in ∇ as nogood(bl), a nogood associated with the new backtracking level bl
(obtained by incrementation in Line 30) that denies assignments containing AP . In fact,
after backtracking in Line 33 and establishing σd as decision entry at bl in Line 35–37,

4.4 Enumeration Algorithms 87

Algorithm 4.7: CDNL-PROJECTION

Input : A normal program Π, a set P of atoms, and a number s of projected answer sets to
enumerate.

A := ∅ // ordered assignment over atom(Π) ∪ body(Π)1
∇ := ∅ // set of recorded nogoods2
bl := dl := 0 // (systematic) backtracking and decision level3

loop4
(A,∇) := NOGOODPROPAGATION(Π,∇,A)5

if ε ⊆ A for some ε ∈ ∆Π ∪∇ then // conflict6
if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then exit7
if bl < max{dlevel(σ) | σ ∈ ε} then8

(δ, k) := CONFLICTANALYSIS(ε,Π,∇,A)9
∇ := ∇∪ {δ} // (temporarily) record conflict nogood10
dl := max{k, bl}11
A := A \ {σ ∈ A | dl < dlevel(σ)} // (bounded) backjumping12

else13
∇ := ∇ \ {nogood(bl)} // delete for polynomial space complexity14
σd := decision(bl)15
dlevel(σd) := bl := dl := bl − 116
A := A \ {σ ∈ A | bl < dlevel(σ)} // backtracking17
A := A ◦ σd // flipping18

else if AT ∪AF = atom(Π) ∪ body(Π) then // answer set19
print AT ∩ P20
s := s− 121
if s = 0 or max({dlevel(σp) | σp ∈ AP } ∪ {0}) = 0 then exit22
if max{dlevel(σp) | σp ∈ AP } = bl then23
∇ := ∇ \ {nogood(bl)} // delete for polynomial space complexity24
σd := decision(bl)25
dlevel(σd) := bl := dl := bl − 126
A := A \ {σ ∈ A | bl < dlevel(σ)} // backtracking27
A := A ◦ σd // flipping28

else29
bl := bl + 130
nogood(bl) := AP31
∇ := ∇∪ {nogood(bl)} // (temporarily) record projection32
A := A \ {σ ∈ A | bl ≤ dlevel(σ)} // backtracking33
let σd ∈ nogood(bl) \A in // (fake) decision34

dlevel(σd) := dl := bl35
decision(bl) := σd36
A := A ◦ σd37

else38
σd := SELECT(Π,∇,A) // decision39
dlevel(σd) := dl := dl + 140
A := A ◦ σd41

the presence of nogood(bl) in ∇ excludes a repetition of AP . On the other hand, since
no (decision) entry of the solution A has yet been flipped, distinguishable solutions not
containing AP are not eliminated, neither by nogood(bl) nor due to (rash) backtracking.

Finally, we describe Case 2, backtracking from a conflict/solution, upon which the de-
cision entry at a backtracking level is flipped. Backtracking is triggered either if solely the
entries assigned at decision levels up to bl (along with the temporarily recorded nogoods

88 Conflict-Driven Answer Set Solving

associated with such levels) cause a conflict, i.e., if the test in Line 8 of Algorithm 4.7
fails, or if the entries in the projection of a solution are all assigned at levels up to bl , as
checked in Line 23. In either case, the search space for projections that include all entries
assigned at levels up to bl is exhausted, so that some decision entry needs to be flipped.
Albeit the flipping of decision(bl) performed in Line 15–18 or 25–28, respectively, is like
in CDNL-ENUMERATION (Line 14–17 or 22–25 of Algorithm 4.6), it is noteworthy to
mention that decision(bl) here belongs to an explicitly introduced backtracking level and
that var(decision(bl)) is contained in P . As the same applies to all decision entries at
levels smaller than bl , the temporarily recorded nogood associated with bl , nogood(bl),
does not exclude any assignment constructible in the sequel. Hence, nogood(bl) can
safely be deleted from∇ without risking the repetition of some already enumerated pro-
jection. This deletion on backtracking, done in Line 14 or 24, respectively, distinguishes
CDNL-PROJECTION from CDNL-RECORDING in Algorithm 4.5: while the latter is
prone to blow up in space, this is not the case with CDNL-PROJECTION because the
number of backtracking levels and temporarily recorded nogoods associated with them is
tightly bounded by |P ∩atom(Π)|. Since the number of entries in a temporarily recorded
projection is likewise bounded by |P ∩ atom(Π)|, it follows that CDNL-PROJECTION

can be run in polynomial space; in view of the considerations in Section 4.3.5, the space
complexity of CDNL-PROJECTION is (at most) quadratic in the size of Π.

Example 4.12. The main steps in a computation of all projections of answer sets of Π11

from Example 4.10 to {a, b, c} with CDNL-PROJECTION(Π11, {a, b, c}, 0) are shown in
Table 4.8, which indicates macroscopic steps in the same fashion as Table 4.6 and 4.7
for CDNL-RECORDING(Π11, 0) and CDNL-ENUMERATION(Π11, 0), respectively. We
below mainly focus on describing the differences between the dedicated computation
of projected answer sets and algorithms enumerating (non-projected) answer sets; an
unabridged trace of CDNL-PROJECTION(Π11, {a, b, c}, 0) is provided in Appendix A.3.

At the start, the computation of CDNL-PROJECTION proceeds like CDNL-
RECORDING and CDNL-ENUMERATION, encountering a conflict after picking T y, T a,
and Tx as the first three decision entries and, as a consequence of backjumping to de-
cision level 1 and picking T b as decision entry at level 2, obtaining {y, a, b} as the first
answer set of Π11. Its projection to {a, b, c}, viz., {a, b}, is printed in Line 20 of Al-
gorithm 4.7. Furthermore, the tests in Line 22 and 23 fail because s is decremented
to −1 in Line 21 and the output-relevant atom b (as well as c) is assigned at decision
level 2. Hence, CDNL-PROJECTION does not exit in Line 22 and proceeds in Line 30–
32 by temporarily recording {T a,T b,F c} in ∇ as nogood(1), associated with the new
backtracking level bl = 1. (The value of bl is highlighted by writing 1 in Table 4.8.)
Afterwards, all entries are retracted in Line 33, given that none of them has been as-
signed at decision level 0, and decision(1) = T b is picked to be reassigned in Line 37
as decision entry at bl = 1.

After picking F a as decision entry at level 2, we encounter a conflict such that
CONFLICTANALYSIS in Line 9 of Algorithm 4.7 returns {F a} along with k = 0. Since
the backtracking level bl is 1, it is in Line 11 taken as the decision level dl to resume
from after backjumping. That is, the backjump that would in CDNL-ASP and CDNL-
RECORDING lead to assertion level 0 is, as with CDNL-ENUMERATION, bounded by
the backtracking level. However, after inserting T a into the assignment at decision
level 0 (within NOGOODPROPAGATION), T c becomes unit-resulting for the temporar-
ily recorded nogood {T a,T b,F c}, reflecting that the projected answer set {a, b} ought

4.4 Enumeration Algorithms 89

dl A δ Info Line
1 T y 41

. . . 5
2 T a 41
3 Tx 41

. . . 5
{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 9

1 T y
. . .
Fx {Tx,T y} ∇ 5
. . . 5
T a {F a,T {not x}} ∆Π11 5

2 T b 41
. . . 5
F c {T {not c},T c} ∆Π11 5

{a, b} 20
{T a,T b,F c} nogood(1) 32

1 T b decision(1) 37
. . . 5

2 F a 41
. . . 5

{F {not x},Fx} ∆Π11 6
{F a} dl=1 9

0 T a {F a} ∇ 5
1 T b

. . .
T c {T a,T b,F c} nogood(1) 5
. . . 5

{a, b, c} 20

(((
(((({T a,T b,F c} nogood(1) 24

0 T a {F a} ∇
F b 28
. . . 5
T c {F {not c},F c} ∆Π11 5
. . . 5

1 T y 41
. . . 5

{a, c} 20

Table 4.8: Main steps in a computation of all projected answer sets with CDNL-
PROJECTION(Π11, {a, b, c}, 0).

90 Conflict-Driven Answer Set Solving

not be repeated. Under these prerequisites, we obtain {x, a, b, c} as the next answer set
of Π11. After printing its projection to {a, b, c}, viz., {a, b, c}, in Line 20, the test in
Line 22 fails, while the one in Line 23 succeeds because all (output) atoms are assigned
up to backtracking level 1. Hence, nogood(1) = {T a,T b,F c} is deleted from ∇ in
Line 24, and the complement F b of decision(1) = T b is assigned in Line 28 at the
decremented backtracking level 0.

In the sequel, NOGOODPROPAGATION derives T c at decision level 0. A final de-
cision on T y leads to the answer set {y, a, c} of Π11. After printing its projection to
{a, b, c}, viz., {a, c}, in Line 20, the test in Line 22 succeeds because all output atoms, a,
b, and c, are assigned at decision level 0. This shows that flipping T y cannot lead to any
answer set differing from already enumerated ones on output-relevant atoms. Hence, Al-
gorithm 4.7 finishes in Line 22 without investigating the alternative of flipping T y to F y.
Overall, {a, b}, {a, b, c}, and {a, c} are obtained as the three projections to {a, b, c} of
the five answer sets of Π11: {x, a, b, c}, {y, a, b}, {y, a, c}, {z, a, b}, and {z, a, c}.

In summary, we note that CDNL-PROJECTION combines the principles of the three
main algorithms introduced before, CDNL-ASP, CDNL-RECORDING, and CDNL-
ENUMERATION. It parallels CDNL-ASP when applied to the decision problem of an-
swer set existence (providing 1 for the third argument s) because it does neither interfere
with search nor incur any computational overhead a priori. In particular, the fact that
decision heuristics (SELECT in Line 39 of Algorithm 4.7) remain uninfluenced keeps
CDNL-PROJECTION out of the realm of a negative proof complexity result in [143].
With CDNL-RECORDING, it has the usage of solution-suppressing nogoods in com-
mon. But since such nogoods are only temporarily recorded, CDNL-PROJECTION can
still be run in polynomial space. Space requirements are limited by, similar to CDNL-
ENUMERATION, performing systematic backtracking in order to keep track of enumer-
ated as well as yet uninvestigated (projections of) solutions. As shown in the next sec-
tion, CDNL-PROJECTION is complete and does not repeat projected answer sets, pro-
vided that a nogood associated with a backtracking level is not deleted before the level
is retracted. Since the latter is easy to grant, we have achieved the design goals for
enumeration algorithms postulated at the beginning of Section 4.4. To our knowledge,
CDNL-PROJECTION is the first method to enumerate projections of solutions that jointly
complies with all of these design goals.

4.4.4 Soundness and Completeness

In the following, we investigate properties of the introduced enumeration algorithms.
Since their intentions are partially different, enumerating entire answer sets versus pro-
jections of them, the following concepts of soundness, completeness, and redundancy-
freeness take the “visibility” of atoms (also considered, e.g., in [58, 136]) into account.

Definition 4.1. Let Π be a normal program and P a set of atoms.
Then, we define an enumeration algorithm as

1. sound w.r.t. P if, for every printed set Y of atoms, some answer setX of Π satisfies
X ∩ P = Y ;

2. complete w.r.t. P if, for every answer set X of Π, some printed set Y of atoms
satisfies Y = X ∩ P ;

4.4 Enumeration Algorithms 91

3. redundancy-free w.r.t. P if every pair Y1, Y2 of sets of atoms printed one after the
other satisfies Y1 ∩ P 6= Y2 ∩ P .

Starting with the simplest approach to answer set enumeration, CDNL-RECORDING,
its invariants resemble those of CDNL-ASP stated in Lemma 4.11 on Page 75.

Lemma 4.13. Let Π be a normal program and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.5 is entered

in an execution of CDNL-RECORDING(Π, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not yet been printed;

2. A is an ordered assignment such that all decision levels are implied by ∆Π ∪ ∇
w.r.t. A.

In view of the fact that enumerated solutions are suppressed by persistently recorded
nogoods, the first item applies only to solutions that have not yet been enumerated (given
that their true atoms have not yet been printed). Also note that the number of solutions
(i.e., answer sets) may be exponential in the size of Π, so that ∇ can blow up signifi-
cantly before the residual problem turns out to be unsatisfiable, meaning that there is no
unenumerated solution left.

From Lemma 4.13, we derive the following main result for CDNL-RECORDING.

Theorem 4.14. Let Π be a normal program.
Then, we have that CDNL-RECORDING(Π, 0) is terminating as well as sound, com-

plete, and redundancy-free w.r.t. atom(Π).

Unlike CDNL-RECORDING (presented only for comparison), our primary algorithm
for enumerating entire answer sets, CDNL-ENUMERATION, applies a dedicated back-
tracking scheme and can thus be run in polynomial space. Its important invariants can be
summarized as follows.

Lemma 4.15. Let Π be a normal program and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.6 is entered

in an execution of CDNL-ENUMERATION(Π, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ;

2. A is an ordered assignment such that all decision levels greater than bl are implied
by ∆Π ∪∇ w.r.t. A;

3. if A 6⊆ B for any solution B for ∆Π∪ΛΠ such that BT ∩atom(Π) has not yet been
printed, then 0 < min{dlevel(σ) | σ ∈ A \ B} and decision(min{dlevel(σ) |
σ ∈ A \B}) /∈ B.

Note that the first item is similar to Lemma 4.11 applying to CDNL-ASP: none of
the dynamic nogoods in∇ ever eliminates an answer set of Π, no matter whether a corre-
sponding solution has already been enumerated. In fact, the repetition of an enumerated
solution is suppressed by successively flipping its decision entries, where complements
are assigned at the backtracking level bl . Such deliberate flips introduce non-decision en-
tries lacking antecedents, so that only the decision levels beyond bl are implied, as stated

92 Conflict-Driven Answer Set Solving

in the second item. Finally, the third item tells us that any first entry σd on which the
current assignment A differs from a not yet enumerated solution B must be a decision
entry, so that enumerating B is made possible when flipping σd to σd.

From Lemma 4.15, we derive the following main result for CDNL-ENUMERATION.

Theorem 4.16. Let Π be a normal program.
Then, we have that CDNL-ENUMERATION(Π, 0) is terminating as well as sound,

complete, and redundancy-free w.r.t. atom(Π).

Regarding CDNL-PROJECTION, aiming at the enumeration of projected answer sets,
important invariants can be summarized as follows.

Lemma 4.17. Let Π be a normal program, P a set of atoms, and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.7 is entered

in an execution of CDNL-PROJECTION(Π, P, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ such that BT ∩ P has not yet been printed;

2. A is an ordered assignment such that all decision levels greater than bl are implied
by ∆Π ∪∇ w.r.t. A;

3. if A 6⊆ B for any solution B for ∆Π ∪ ΛΠ such that BT ∩ P has not yet been
printed, then 0 < min{dlevel(σ) | σ ∈ A \B};

4. if A 6⊆ B and min{dlevel(σ) | σ ∈ A \B} ≤ bl for any solution B for ∆Π ∪ΛΠ

such that BT ∩ P has not yet been printed, then decision(min{dlevel(σ) | σ ∈
A \B}) ∈ (A \B)P .

The invariants in Lemma 4.17 can be viewed as a combination of those stated in
Lemma 4.13 and 4.15. Similar to Lemma 4.13, the first item applies only to solutions
such that their projections to P have not yet been enumerated. However, the solution-
suppressing nogoods utilized by CDNL-PROJECTION are only temporarily recorded and
deleted upon backtracking. Since backtracking is accompanied by deliberately flipping
some decision entry, like in Lemma 4.15, the second item applies only to decision levels
beyond bl . Still paralleling Lemma 4.15, any first entry σd on which the current assign-
ment A differs from a solution B whose projection to P has not yet been enumerated
must be assigned at a decision level greater than 0. In addition, if dlevel(σd) ≤ bl ,
the fourth item tells us that σd is a decision entry such that var(σd) ∈ P . As with
CDNL-ENUMERATION, this makes sure that enumerating the projection of B to P is
made possible when flipping σd to σd.

From Lemma 4.17, we derive the following main result for CDNL-PROJECTION.

Theorem 4.18. Let Π be a normal program and P a set of atoms.
Then, we have that CDNL-PROJECTION(Π, P, 0) is terminating as well as sound,

complete, and redundancy-free w.r.t. P .

We have thus established the desired formal properties, soundness, completeness,
and redundancy-freeness (as well as termination), for the three enumeration algorithms
devised in this section. Notably, the enumeration algorithms are not intrusive a priori: be-
fore the first answer set is found, they run similar to CDNL-ASP, the decision algorithm

4.5 Experimental Results 93

they are based on. To the best of our knowledge, CDNL-ENUMERATION and CDNL-
PROJECTION are the first enumeration algorithms combining conflict-driven learning and
backjumping according to the First-UIP scheme with dedicated backtracking to meet all
of the design goals postulated at the beginning of Section 4.4.

4.5 Experimental Results

Our approach to conflict-driven ASP solving is implemented in clasp [95, 97, 99], an
award-winning11 state-of-the-art Boolean constraint solver with ASP as its core area.
The clasp system integrates and extends the fundamental algorithms presented in Sec-
tion 4.3 and 4.4. To mention only the most salient features, clasp offers advanced prepro-
cessing techniques [96], reasoning modes like optimization and computation of brave or
cautious consequences [97], lookback-based decision heuristics like VSIDS [185], Berk-
Min [127], and VMTF [203], various restart policies [133, 20, 204], progress (or phase)
saving [195], lazy data structures [185, 56, 203, 20], failed-literal detection [76, 209], and
native treatment of extended rules [209, 72, 84] (including choice constructs in heads of
rules as well as cardinality and weight constraints in rule bodies). The efficiency, robust-
ness, and versatility of clasp are outstanding in ASP solving and, most likely, the area
of Boolean constraint solving in general. The clasp system constitutes a central com-
ponent of Potassco [81], the Potsdam Answer Set Solving Collection bundling tools for
ASP developed at the University of Potsdam; it is implemented (primarily) by Benjamin
Kaufmann and freely available as an open source package at [198].12

The experimental results in Section 4.5.1, 4.5.2, and 4.5.3 are borrowed from [99],
[94], and [98], respectively, coauthored by the author of this thesis, and are included here
to illustrate the effectiveness of the algorithms presented in the previous sections.13

4.5.1 Experiments on Decision Algorithm

Our first series of experiments demonstrates the aptitude of CDNL-ASP in Algo-
rithm 4.1 on Page 62 for deciding answer set existence on problems in the “NP De-
cision” category of the 2009 ASP competition [47]. Our comparison considers clasp
(version 1.3.1) in its default setting as well as a setting better suited for the benchmarks
in focus. The latter, denoted by clasp+, invokes clasp with the options --sat-prepro
and --trans-ext=dynamic, using SatELite-like preprocessing [54] on nogoods as
well as a context-dependent handling of extended rules, excluding “small” extended rules
from native treatment (cf. [84]) and rather transforming them into normal rules.

For comparison, we also consider cmodels (version 3.79) with minisat (version 2.0),
smodels (version 2.34 with the option -restart), as well as lp2sat (version 1.13 plus
further preprocessing tools14) with minisat (version 2.0) or clasp (version 1.3.1) as un-

11Amongst others, clasp successfully participated in the 2009 ASP competition [47] (http://
dtai.cs.kuleuven.be/events/ASP-competition), the 2009 Pseudo-Boolean competition
(http://www.cril.univ-artois.fr/PB09), and the 2009 SAT competition (http://www.
satcompetition.org).

12The author is deeply grateful to Benjamin Kaufmann and all other contributors for doing excellent and
invaluable work in developing and constantly improving clasp.

13The experiments were conducted by Benjamin Kaufmann [99, 94, 98] and André Neumann [94]. Bench-
marks as well as extended results are available at [38].

14See http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/
LP2SATMINISAT.shtml for details.

94 Conflict-Driven Answer Set Solving

derlying SAT solver. For cmodels and lp2sat, we below indicate the use of either minisat
or clasp as underlying SAT solver by adding “[m]” or “[c],” respectively, and the acti-
vation of restarts with smodels is indicated by writing smodelsr. The experiments were
run under Linux on an Intel Quad-Core Xeon E5520 machine equipped with 2.27GHz
processors. Every benchmark instance was run three times per solver, each run restricted
to 600 seconds time and 2GB RAM. A run finished when the solver found an answer set,
reported unsatisfiability (no answer set), or exceeded the time or memory limit.

The SAT-based solver cmodels [123] converts the completion of a logic program into
propositional clauses and delegates the search for a model to a SAT solver. Except for the
treatment of extended rules (see below), on tight programs, this approach is comparable
to the one of clasp. In the non-tight case, cmodels delays (sophisticated) unfounded set
checks until an assignment is total, while clasp and smodels integrate them into their
propagation. In fact, smodels [209] is a traditional ASP solver combining DPLL-style
search with an unfounded set checking routine identifying greatest unfounded sets [216].
Finally, lp2sat [139] like cmodels converts a logic programs into propositional clauses
and delegates the search for a model to some SAT solver. On tight programs, lp2sat’s
translation amounts to completion, while level mappings [136, 187] are used to capture
acyclic derivability of atoms from non-tight programs.

Our experimental results are summarized in Table 4.9–4.11, giving average runtimes
in seconds and numbers of timed-out runs (in parentheses) for every solver on each
benchmark class, with timeouts taken as 600 seconds. While Table 4.9 considers all
benchmarks, divided into tight and non-tight ones, Table 4.10 and 4.11 analogously re-
port results restricted to satisfiable and unsatisfiable instances, respectively. Each table
gives the number of instances per benchmark class in the column headed by “#.” In
addition, Table 4.9 provides the respective partition into satisfiable and unsatisfiable in-
stances in parentheses. The last column amounts to the virtual best solver, composed
of the smallest average runtime and the smallest number of timeouts observed on each
benchmark class. The rows marked with “∅(∅)” average runtimes and timeouts over a
collection of benchmark classes under consideration.15 The following row gives the Eu-
clidean distance (in an n-dimensional space, where n is the number of benchmark classes
and a point is a column of n average runtimes) of every solver to the virtual best one on
the respective collection in focus; the quadratic distance calculation scheme punishes
imbalanced and rewards consistent performance more than averaging. Some benchmark
classes make heavy use of extended rules, so that their different treatments, e.g., in clasp+

and cmodels, have a significant impact on the observed performances; such benchmark
classes are marked with “∗” in Table 4.9–4.11.

Considering the results on tight benchmarks in the upper part of Table 4.9, we note
that traditional ASP solver smodelsr is consistently outperformed by systems exploiting
conflict-driven learning. For instance, smodelsr times out on all (satisfiable) instances of
15Puzzle, which are rather unproblematic for the other solvers. In fact, occasional vary-
ing performances of the latter on tight programs are due to different treatments of ex-
tended rules and/or determinizations of inherent non-determinisms in minisat and clasp,
respectively. Any such differences may turn out to be advantageous the one or the other
way around; e.g., clasp+ and lp2sat[c] have an edge on other solvers on GraphColour-
ing, clasp in its default setting is fastest on SchurNumbers, while lp2sat[m] yields the
fewest timeouts on WeightBoundedDomSet.

15We provide averages (rather than sums) for balancing diverse numbers of instances per benchmark class.

4.5 Experimental Results 95

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s r
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
15

P
uz

zl
e

16
(1

6/
0)

33
.0

1
(0

)
20

.1
8

(0
)

31
.3

6
(0

)
60

0.
00

(4
8)

22
.2

1
(0

)
15

.1
3

(0
)

15
.1

3
(0

)
B

lo
ck

ed
N

Q
ue

en
s

29
(1

5/
14

)
5.

09
(0

)
4.

91
(0

)
9.

04
(0

)
29

.3
7

(0
)

13
.1

9
(0

)
5.

22
(0

)
4.

91
(0

)
C

ha
nn

el
R

ou
tin

g
10

(6
/4

)
12

0.
13

(6
)

12
0.

14
(6

)
12

0.
58

(6
)

12
0.

90
(6

)
12

1.
34

(6
)

12
1.

08
(6

)
12

0.
13

(6
)

E
dg

eM
at

ch
in

g
29

(2
9/

0)
0.

23
(0

)
0.

41
(0

)
59

.3
2

(0
)

60
.3

2
(0

)
13

.0
5

(0
)

5.
58

(0
)

0.
23

(0
)

Fa
st

fo
od
∗

29
(1

0/
19

)
1.

17
(0

)
0.

90
(0

)
29

.2
2

(0
)

83
.9

3
(3

)
46

.8
5

(0
)

24
.9

5
(0

)
0.

90
(0

)
G

ra
ph

C
ol

ou
ri

ng
29

(9
/2

0)
42

1.
55

(6
0)

35
7.

88
(3

9)
42

2.
66

(5
7)

45
3.

77
(6

3)
40

9.
70

(5
1)

35
7.

57
(3

9)
35

7.
57

(3
9)

H
an

oi
15

(1
5/

0)
11

.7
6

(0
)

3.
97

(0
)

2.
92

(0
)

52
3.

77
(3

9)
3.

81
(0

)
5.

36
(0

)
2.

92
(0

)
H

ie
ra

rc
hi

ca
lC

lu
st

er
in

g∗
12

(8
/4

)
0.

16
(0

)
0.

17
(0

)
0.

76
(0

)
1.

56
(0

)
0.

94
(0

)
0.

86
(0

)
0.

16
(0

)
Sc

hu
rN

um
be

rs
29

(1
3/

16
)

17
.4

4
(0

)
49

.6
0

(0
)

75
.7

0
(0

)
50

4.
17

(7
2)

90
.8

8
(6

)
36

.9
3

(0
)

17
.4

4
(0

)
So

lit
ai

re
27

(2
2/

5)
20

4.
78

(2
7)

16
2.

82
(2

1)
17

5.
69

(2
1)

31
6.

96
(3

6)
22

2.
60

(2
7)

21
0.

14
(2

7)
16

2.
82

(2
1)

Su
do

ku
10

(1
0/

0)
0.

15
(0

)
0.

16
(0

)
2.

55
(0

)
0.

25
(0

)
0.

87
(0

)
0.

82
(0

)
0.

15
(0

)
W

ei
gh

tB
ou

nd
ed

D
om

Se
t∗

29
(2

9/
0)

12
3.

13
(1

5)
10

2.
18

(1
2)

30
0.

26
(3

6)
40

0.
84

(5
1)

17
9.

56
(9

)
14

3.
87

(1
2)

10
2.

18
(9

)
∅

(∅
)

(t
ig

ht
)

26
4

(1
82

/8
2)

78
.2

2
(9

.0
0)

68
.6

1
(6

.5
0)

10
2.

50
(1

0.
00

)
25

7.
99

(2
6.

50
)

93
.7

5
(8

.2
5)

77
.2

9
(7

.0
0)

65
.3

8
(6

.2
5)

E
uc

l.
di

st
.

(t
ig

ht
)

81
.8

0
32

.5
8

22
7.

19
99

1.
76

14
1.

67
70

.5
1

0.
00

C
on

ne
ct

ed
D

om
Se

t∗
21

(1
0/

11
)

40
.4

2
(3

)
36

.1
1

(3
)

7.
46

(0
)

18
3.

76
(1

5)
13

.4
3

(0
)

13
.6

2
(0

)
7.

46
(0

)
G

en
er

al
iz

ed
Sl

ith
er

lin
k∗

29
(2

9/
0)

0.
10

(0
)

0.
22

(0
)

1.
92

(0
)

0.
16

(0
)

5.
05

(0
)

12
.9

0
(0

)
0.

10
(0

)
G

ra
ph

Pa
rt

iti
on

in
g∗

13
(6

/7
)

9.
27

(0
)

7.
98

(0
)

20
.1

9
(0

)
92

.1
0

(3
)

36
5.

18
(2

1)
34

4.
39

(2
1)

7.
98

(0
)

H
am

ilt
on

ia
nP

at
h

29
(2

9/
0)

0.
07

(0
)

0.
06

(0
)

0.
21

(0
)

2.
22

(0
)

3.
45

(0
)

15
.6

8
(0

)
0.

06
(0

)
K

ni
gh

tT
ou

r
10

(1
0/

0)
12

4.
29

(6
)

91
.8

0
(3

)
24

2.
48

(1
2)

15
0.

55
(3

)
54

5.
42

(2
7)

48
7.

61
(2

4)
91

.8
0

(3
)

La
by

ri
nt

h
29

(2
9/

0)
12

3.
82

(1
2)

82
.9

2
(6

)
14

2.
24

(6
)

59
4.

10
(8

1)
28

2.
23

(2
7)

53
4.

62
(7

5)
82

.9
2

(6
)

M
az

eG
en

er
at

io
n

29
(1

0/
19

)
91

.1
7

(1
2)

89
.8

9
(1

2)
90

.4
1

(1
2)

29
3.

62
(4

2)
12

5.
94

(9
)

85
.5

7
(6

)
85

.5
7

(6
)

So
ko

ba
n

29
(9

/2
0)

0.
73

(0
)

0.
80

(0
)

3.
39

(0
)

17
6.

01
(1

5)
6.

11
(0

)
3.

99
(0

)
0.

73
(0

)
Tr

av
el

lin
gS

al
es

pe
rs

on
∗

29
(2

9/
0)

0.
05

(0
)

0.
06

(0
)

31
7.

82
(7

)
0.

22
(0

)
44

1.
68

(5
5)

19
8.

34
(9

)
0.

05
(0

)
W

ir
eR

ou
tin

g
23

(1
2/

11
)

42
.8

1
(3

)
36

.3
6

(3
)

17
5.

73
(1

2)
44

8.
32

(4
5)

46
0.

89
(4

8)
45

9.
97

(5
1)

36
.3

6
(3

)
∅

(∅
)

(n
on

-t
ig

ht
)

24
1

(1
73

/6
8)

43
.2

7
(3

.6
0)

34
.6

2
(2

.7
0)

10
0.

19
(4

.9
0)

19
4.

11
(2

0.
40

)
22

4.
94

(1
8.

70
)

21
5.

67
(1

8.
60

)
31

.3
0

(1
.8

0)
E

uc
l.

di
st

.
(n

on
-t

ig
ht

)
62

.3
7

28
.9

7
38

3.
16

73
9.

35
86

6.
08

83
2.

52
0.

00
∅

(∅
)

50
5

(3
55

/1
50

)
62

.3
3

(6
.5

5)
53

.1
6

(4
.7

7)
10

1.
45

(7
.6

8)
22

8.
95

(2
3.

73
)

15
3.

38
(1

3.
00

)
14

0.
19

(1
2.

27
)

49
.8

9
(4

.2
3)

E
uc

l.
di

st
.

10
2.

86
43

.5
9

44
5.

45
12

37
.0

2
87

7.
59

83
5.

50
0.

00

Table 4.9: Average runtimes on benchmarks of the 2009 ASP competition.

96 Conflict-Driven Answer Set Solving

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s r
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
15

P
uz

zl
e

16
33

.0
1

(0
)

20
.1

8
(0

)
31

.3
6

(0
)

60
0.

00
(4

8)
22

.2
1

(0
)

15
.1

3
(0

)
15

.1
3

(0
)

B
lo

ck
ed

N
Q

ue
en

s
15

3.
48

(0
)

4.
93

(0
)

7.
52

(0
)

22
.1

3
(0

)
13

.9
9

(0
)

4.
16

(0
)

3.
48

(0
)

C
ha

nn
el

R
ou

tin
g

6
0.

16
(0

)
0.

17
(0

)
0.

67
(0

)
1.

35
(0

)
1.

63
(0

)
1.

37
(0

)
0.

16
(0

)
E

dg
eM

at
ch

in
g

29
0.

23
(0

)
0.

41
(0

)
59

.3
2

(0
)

60
.3

2
(0

)
13

.0
5

(0
)

5.
58

(0
)

0.
23

(0
)

Fa
st

fo
od
∗

10
0.

12
(0

)
0.

49
(0

)
9.

26
(0

)
82

.4
4

(0
)

45
.3

3
(0

)
18

.5
4

(0
)

0.
12

(0
)

G
ra

ph
C

ol
ou

ri
ng

9
24

.9
9

(0
)

32
.6

6
(0

)
98

.6
4

(3
)

12
8.

80
(3

)
57

.9
3

(0
)

31
.2

7
(0

)
24

.9
9

(0
)

H
an

oi
15

11
.7

6
(0

)
3.

97
(0

)
2.

92
(0

)
52

3.
77

(3
9)

3.
81

(0
)

5.
36

(0
)

2.
92

(0
)

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g∗

8
0.

14
(0

)
0.

13
(0

)
1.

02
(0

)
1.

52
(0

)
1.

20
(0

)
1.

03
(0

)
0.

13
(0

)
Sc

hu
rN

um
be

rs
13

37
.2

5
(0

)
10

9.
13

(0
)

16
6.

77
(0

)
60

0.
00

(3
9)

20
0.

49
(6

)
80

.4
0

(0
)

37
.2

5
(0

)
So

lit
ai

re
22

11
4.

96
(1

2)
63

.4
6

(6
)

79
.2

5
(6

)
25

2.
63

(2
1)

13
6.

82
(1

2)
12

1.
54

(1
2)

63
.4

6
(6

)
Su

do
ku

10
0.

15
(0

)
0.

16
(0

)
2.

55
(0

)
0.

25
(0

)
0.

87
(0

)
0.

82
(0

)
0.

15
(0

)
W

ei
gh

tB
ou

nd
ed

D
om

Se
t∗

29
12

3.
13

(1
5)

10
2.

18
(1

2)
30

0.
26

(3
6)

40
0.

84
(5

1)
17

9.
56

(9
)

14
3.

87
(1

2)
10

2.
18

(9
)

∅
(∅

)
(t

ig
ht

,s
at

)
18

2
29

.1
1

(2
.2

5)
28

.1
6

(1
.5

0)
63

.2
9

(3
.7

5)
22

2.
84

(1
6.

75
)

56
.4

1
(2

.2
5)

35
.7

6
(2

.0
0)

20
.8

5
(1

.2
5)

E
uc

l.
di

st
.

(t
ig

ht
,s

at
)

59
.0

7
72

.4
8

25
6.

02
10

37
.5

6
20

3.
65

85
.9

6
0.

00
C

on
ne

ct
ed

D
om

Se
t∗

10
9.

28
(0

)
1.

74
(0

)
12

.0
6

(0
)

13
5.

10
(6

)
17

.5
7

(0
)

12
.3

6
(0

)
1.

74
(0

)
G

en
er

al
iz

ed
Sl

ith
er

lin
k∗

29
0.

10
(0

)
0.

22
(0

)
1.

92
(0

)
0.

16
(0

)
5.

05
(0

)
12

.9
0

(0
)

0.
10

(0
)

G
ra

ph
Pa

rt
iti

on
in

g∗
6

0.
11

(0
)

0.
14

(0
)

4.
52

(0
)

0.
56

(0
)

11
4.

21
(3

)
11

8.
25

(3
)

0.
11

(0
)

H
am

ilt
on

ia
nP

at
h

29
0.

07
(0

)
0.

06
(0

)
0.

21
(0

)
2.

22
(0

)
3.

45
(0

)
15

.6
8

(0
)

0.
06

(0
)

K
ni

gh
tT

ou
r

10
12

4.
29

(6
)

91
.8

0
(3

)
24

2.
48

(1
2)

15
0.

55
(3

)
54

5.
42

(2
7)

48
7.

61
(2

4)
91

.8
0

(3
)

La
by

ri
nt

h
29

12
3.

82
(1

2)
82

.9
2

(6
)

14
2.

24
(6

)
59

4.
10

(8
1)

28
2.

23
(2

7)
53

4.
62

(7
5)

82
.9

2
(6

)
M

az
eG

en
er

at
io

n
10

0.
07

(0
)

0.
08

(0
)

0.
08

(0
)

0.
15

(0
)

11
4.

32
(0

)
10

.9
2

(0
)

0.
07

(0
)

So
ko

ba
n

9
0.

63
(0

)
0.

78
(0

)
5.

40
(0

)
32

0.
54

(9
)

10
.7

7
(0

)
4.

34
(0

)
0.

63
(0

)
Tr

av
el

lin
gS

al
es

pe
rs

on
∗

29
0.

05
(0

)
0.

06
(0

)
31

7.
82

(7
)

0.
22

(0
)

44
1.

68
(5

5)
19

8.
34

(9
)

0.
05

(0
)

W
ir

eR
ou

tin
g

12
74

.0
0

(3
)

62
.6

3
(3

)
13

4.
94

(3
)

40
7.

44
(1

8)
51

3.
20

(3
0)

51
9.

94
(3

0)
62

.6
3

(3
)

∅
(∅

)
(n

on
-t

ig
ht

,s
at

)
17

3
33

.2
4

(2
.1

0)
24

.0
4

(1
.2

0)
86

.1
7

(2
.8

0)
16

1.
10

(1
1.

70
)

20
4.

79
(1

4.
20

)
19

1.
49

(1
4.

10
)

24
.0

1
(1

.2
0)

E
uc

l.
di

st
.(

no
n-

tig
ht

,s
at

)
53

.9
9

0.
20

36
4.

12
70

9.
78

81
8.

54
78

9.
78

0.
00

∅
(∅

)
(s

at
)

35
5

30
.9

9
(2

.1
8)

26
.2

9
(1

.3
6)

73
.6

9
(3

.3
2)

19
4.

78
(1

4.
45

)
12

3.
85

(7
.6

8)
10

6.
55

(7
.5

0)
22

.2
9

(1
.2

3)
E

uc
l.

di
st

.
(s

at
)

80
.0

2
72

.4
8

44
5.

12
12

57
.1

1
84

3.
49

79
4.

44
0.

00

Table 4.10: Average runtimes on satisfiable benchmarks of the 2009 ASP competition.

4.5 Experimental Results 97

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s r
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
B

lo
ck

ed
N

Q
ue

en
s

14
6.

82
(0

)
4.

88
(0

)
10

.6
8

(0
)

37
.1

4
(0

)
12

.3
3

(0
)

6.
35

(0
)

4.
88

(0
)

C
ha

nn
el

R
ou

tin
g

4
30

0.
10

(6
)

30
0.

10
(6

)
30

0.
44

(6
)

30
0.

23
(6

)
30

0.
90

(6
)

30
0.

66
(6

)
30

0.
10

(6
)

Fa
st

fo
od
∗

19
1.

72
(0

)
1.

11
(0

)
39

.7
2

(0
)

84
.7

1
(3

)
47

.6
6

(0
)

28
.3

2
(0

)
1.

11
(0

)
G

ra
ph

C
ol

ou
ri

ng
20

60
0.

00
(6

0)
50

4.
24

(3
9)

56
8.

48
(5

4)
60

0.
00

(6
0)

56
7.

99
(5

1)
50

4.
40

(3
9)

50
4.

24
(3

9)
H

ie
ra

rc
hi

ca
lC

lu
st

er
in

g∗
4

0.
21

(0
)

0.
24

(0
)

0.
24

(0
)

1.
63

(0
)

0.
42

(0
)

0.
50

(0
)

0.
21

(0
)

Sc
hu

rN
um

be
rs

16
1.

34
(0

)
1.

24
(0

)
1.

70
(0

)
42

6.
30

(3
3)

1.
82

(0
)

1.
61

(0
)

1.
24

(0
)

So
lit

ai
re

5
60

0.
00

(1
5)

60
0.

00
(1

5)
60

0.
00

(1
5)

60
0.

00
(1

5)
60

0.
00

(1
5)

60
0.

00
(1

5)
60

0.
00

(1
5)

∅
(∅

)
(t

ig
ht

,u
ns

at
)

82
21

5.
74

(1
1.

57
)

20
1.

69
(8

.5
7)

21
7.

32
(1

0.
71

)
29

2.
86

(1
6.

71
)

21
8.

73
(1

0.
29

)
20

5.
98

(8
.5

7)
20

1.
68

(8
.5

7)
E

uc
l.

di
st

.
(t

ig
ht

,u
ns

at
)

95
.7

9
0.

03
75

.1
8

44
4.

84
79

.3
0

27
.2

6
0.

00
C

on
ne

ct
ed

D
om

Se
t∗

11
68

.7
3

(3
)

67
.3

5
(3

)
3.

28
(0

)
22

7.
99

(9
)

9.
67

(0
)

14
.7

7
(0

)
3.

28
(0

)
G

ra
ph

Pa
rt

iti
on

in
g∗

7
17

.1
2

(0
)

14
.7

0
(0

)
33

.6
2

(0
)

17
0.

56
(3

)
58

0.
29

(1
8)

53
8.

22
(1

8)
14

.7
0

(0
)

M
az

eG
en

er
at

io
n

19
13

9.
12

(1
2)

13
7.

16
(1

2)
13

7.
95

(1
2)

44
8.

09
(4

2)
13

2.
06

(9
)

12
4.

86
(6

)
12

4.
86

(6
)

So
ko

ba
n

20
0.

78
(0

)
0.

81
(0

)
2.

49
(0

)
11

0.
97

(6
)

4.
01

(0
)

3.
83

(0
)

0.
78

(0
)

W
ir

eR
ou

tin
g

11
8.

78
(0

)
7.

70
(0

)
22

0.
23

(9
)

49
2.

92
(2

7)
40

3.
83

(1
8)

39
4.

56
(2

1)
7.

70
(0

)
∅

(∅
)

(n
on

-t
ig

ht
,u

ns
at

)
68

46
.9

1
(3

.0
0)

45
.5

4
(3

.0
0)

79
.5

1
(4

.2
0)

29
0.

10
(1

7.
40

)
22

5.
97

(9
.0

0)
21

5.
25

(9
.0

0)
30

.2
7

(1
.2

0)
E

uc
l.

di
st

.(
no

n-
tig

ht
,u

ns
at

)
67

.0
3

65
.2

4
21

3.
78

65
3.

33
69

0.
59

65
1.

05
0.

00
∅

(∅
)

(u
ns

at
)

15
0

14
5.

39
(8

.0
0)

13
6.

63
(6

.2
5)

15
9.

90
(8

.0
0)

29
1.

71
(1

7.
00

)
22

1.
75

(9
.7

5)
20

9.
84

(8
.7

5)
13

0.
26

(5
.5

0)
E

uc
l.

di
st

.
(u

ns
at

)
11

6.
91

65
.2

4
22

6.
62

79
0.

39
69

5.
13

65
1.

62
0.

00

Table 4.11: Average runtimes on unsatisfiable benchmarks of the 2009 ASP competition.

98 Conflict-Driven Answer Set Solving

On non-tight benchmarks, we observe that the problem representation overhead in-
curred by lp2sat’s translational approach is a major handicap, though minisat and clasp
may react more or less sensitively (cf. Labyrinth and TravellingSalesperson). Except for
MazeGeneration, the strategy of cmodels to verify candidate models found by minisat
already improves on eager translation by lp2sat. However, integrating unfounded set
checking into propagation is usually even more effective, as it can be observed when com-
paring clasp and clasp+ to cmodels on KnightTour and WireRouting. Beyond (non-)tight-
ness, the treatment of extended rules is a crucial factor on some of the considered bench-
mark classes. Their transformation into normal rules, as done by cmodels and lp2sat,
turns out to be helpful on ConnectedDomSet, while it drastically blows up problem rep-
resentations and thus deteriorates performance on TravellingSalesperson.

Focusing on either satisfiable or unsatisfiable instances in Table 4.10 and 4.11, re-
spectively, sheds some light on the distribution of hardness within benchmark classes,
yet without exhibiting any overwhelming impact regarding relative solver performances.
In fact, a look into Table 4.10, especially at cmodels and smodelsr, reveals that the satis-
fiable instances of ChannelRouting, GraphPartitioning, and MazeGeneration are rather
easy. Interestingly, both lp2sat variants still have difficulties with the non-tight bench-
marks, viz., GraphPartitioning and MazeGeneration, indicating that an eager translation
of logic programs may diminish search performance. On the other hand, all solvers per-
form worse on the satisfiable instances of SchurNumbers than on the unsatisfiable ones,
and the same also applies to clasp, clasp+, and lp2sat on WireRouting. Looking at these
two classes in Table 4.11, we observe that the unsatisfiable instances of SchurNumbers
are trivial for all solvers but smodelsr, while only clasp and clasp+ complete all of the
unsatisfiable WireRouting instances. The latter suggests that such instances are not inher-
ently hard but that lacking either conflict-driven learning (smodelsr) or native unfounded
set checking (cmodels and lp2sat) renders them more difficult.

Unlike with SchurNumbers and WireRouting, some of the unsatisfiable instances of
ChannelRouting, GraphColouring, Solitaire, and MazeGeneration turn out to be much
harder than their satisfiable counterparts (at least for the considered solvers). Notably,
lp2sat[c], running clasp as SAT solver, completes more unsatisfiable MazeGeneration
instances than clasp and clasp+ themselves, which contrasts with the behavior observed
on satisfiable instances (cf. MazeGeneration in Table 4.10 and 4.11). A similar shift of
behaviors is due to one unsatisfiable instance of ConnectedDomSet, which poses a prob-
lem to the native treatment of extended rules in clasp and clasp+, while cmodels and
lp2sat do not have any such difficulties. In view of this, we think that the dynamic selec-
tion among possible handlings of extended rules (native treatment and/or transformation)
is interesting future work.

4.5.2 Experiments on Enumeration Algorithms

Our second series of experiments compares the performances of enumeration algorithms
on logic programs having many answer sets. To this end, we consider clasp (version RC4)
in two different modes, running either CDNL-ENUMERATION in Algorithm 4.6 on
Page 81 (denoted by claspa) or CDNL-RECORDING in Algorithm 4.5 on Page 78 (de-
noted by claspb). Note that claspb implements a slightly optimized form of solution
recording: instead of recording the set of all entries over atoms as a nogood, it includes
only the decision entries used for constructing a solution. The same strategy is pursued
by smodelscc [218], but with decisions restricted to atoms. Unlike this, cmodels pro-

4.5 Experimental Results 99

No. Instance #Sol claspa claspa
r claspb claspb

r smodels smodelsr smodelscc cmodels

1 hc 19 104 7.2 7.2 7.7 7.2 • • • •
2 hc 19 105 71.4 77.1 83.5 91.2 • • • •
3 hc 20 104 9.3 9.5 10.9 9.5 • • • •
4 hc 20 105 103.4 117.2 115.8 109.9 • • • •
5 mutex3IDFD 105 1.4 1.4 35.4 35.9 5.5 5.8 240.6 •
6 mutex3IDFD 106 14.0 13.9 • • 55.9 52.8 • •
7 mutex4IDFD 104 20.8 27.4 43.8 37.0 44.7 574.7 47.5 •
8 mutex4IDFD 105 52.2 63.2 596.7 585.7 273.4 • • •
9 pigeon 15 105 2.7 2.7 4.0 3.9 7.1 8.6 126.7 •

10 pigeon 15 106 26.1 26.5 53.0 54.7 71.8 73.6 • •
11 pigeon 15 107 260.7 262.8 • • • • • •
12 pigeon 16 105 3.2 3.1 4.4 4.6 7.8 9.9 175.2 •
13 pigeon 16 106 30.1 30.5 57.7 59.6 78.5 80.9 • •
14 pigeon 16 107 303.0 304.5 • • • • • •
15 queens 19 104 14.4 17.1 13.1 15.1 47.1 115.0 49.0 427.5
16 queens 19 105 141.5 143.8 135.9 162.7 265.1 358.1 • •
17 queens 20 104 14.1 15.8 13.1 15.3 127.0 172.1 48.3 569.2
18 queens 20 105 147.2 170.5 149.6 178.6 380.3 • • •
19 schur-n29-m44 104 22.4 26.4 19.8 22.7 17.4 49.4 15.6 •
20 schur-n29-m44 105 203.1 212.5 177.2 246.4 132.4 175.9 353.2 •
21 schur-n29-m45 104 24.7 21.8 21.5 24.6 17.2 50.2 16.1 •
22 schur-n29-m45 105 231.6 265.6 190.7 199.9 133.3 176.0 397.3 •

Table 4.12: Experiments enumerating answer sets.

vides whole answer sets as blocking clauses to an underlying (conflict-driven learning)
SAT solver [123]. While restarts are disabled in claspa and claspb, we also consider both
variants augmented with bounded and unbounded restarts (indicated by an additional sub-
script “r”), respectively. The bounded restart variant, claspa

r , is allowed to resume search
from the backtracking level (cf. Algorithm 4.6), while claspb

r can perform unrestricted
restarts even after finding an answer set.

For comparison, our experiments additionally incorporate smodels (version 2.32) and
the variant smodelsr with activated -restart option, smodelscc (version 1.08) with
the option -nolookahead, as recommended by the developers,16 and cmodels (ver-
sion 3.67) with zchaff (version 2004.11.15). The experiments were run on a 2.2GHz PC
under Linux. We report runtimes in seconds, taking the average over ten runs per solver
and benchmark instance, each run restricted to 600 seconds time and 512MB RAM.

Table 4.12 displays runtimes taken to enumerate answer sets. The instances stem
from the areas of Hamiltonian cycles in complete graphs (No. 1–4), bounded model
checking (No. 5–8), pigeon-hole (No. 9–14), n-queens (No. 15–18), and Schur numbers
(No. 19–22). We have chosen these combinatorial benchmarks because they admit many
answer sets. This allows us to observe the performances of enumeration approaches w.r.t.
increasing numbers of answer sets. The number of requested (and successfully enumer-
ated by some solvers) answer sets per run is given in the third column. Timeouts (in all
ten runs of a solver) are indicated by “•.”

Comparing the variants of clasp, we observe that claspa and claspa
r scale better than

claspb and claspb
r . This is most intelligible on the benchmarks from bounded model

checking (No. 5–8) and the pigeon-hole instances (No. 9–14). Solutions for the former
contain many decision entries, so that the large nogoods recorded by claspb and claspb

r

16See http://www.nku.edu/˜wardj1/Research/smodels_cc.html.

100 Conflict-Driven Answer Set Solving

slow them down. The pigeon-hole instances are structurally simple, so that all decisions
yield solutions; since the amount of easy-to-compute solutions is enormous, the sheer
number of recorded nogoods overwhelms claspb and claspb

r . Also note that smodels’
efforts on failed-literal detection are unprofitable on the pigeon-hole instances.

On Hamiltonian cycles (No. 1–4), n-queens (No. 15–18), and Schur numbers
(No. 19–22), the picture is rather indifferent. That is, the time spent on search tends
to dominate enumeration time, and recorded solution-suppressing nogoods are not as
critical as with the aforementioned benchmarks. Notably, smodels is very effective on
Schur numbers. We verified that all clasp variants make the same number of decisions as
smodels; hence, we conjecture that runtime gaps are due to implementation differences
(e.g., counter-based propagation in smodels versus watched literals in clasp). Regarding
the other systems, we observe that smodelscc usually enumerates slower than smodels,
but it is sometimes faster when search plays a role (No. 17); the enumeration approach of
cmodels, recording answer sets, is clearly outperformed. Finally, we note that different
restart policies of clasp, i.e., claspa versus claspa

r and claspb versus claspb
r , have little

effect on the benchmarks in Table 4.12; this indifference does not apply to smodels and
smodelsr, where restarts turn out to be counterproductive on the considered benchmarks.

4.5.3 Experiments on Projection Algorithm

Our third series of experiments illustrates the impact of computational strategies for enu-
merating projected answer sets. We consider clasp (version 1.2.0-RC3) using four differ-
ent enumeration approaches. Two of them have already been investigated in the previous
section, claspa running CDNL-ENUMERATION in Algorithm 4.6 on Page 81 and claspb

r
running CDNL-RECORDING in Algorithm 4.5 on Page 78,17 and are included here for
comparison. The third mode (denoted by claspc

r) is also based on Algorithm 4.5 but
records projections of solutions rather than entire solutions (as discussed at the beginning
of Section 4.4.3). The fourth mode (denoted by claspd) runs CDNL-PROJECTION in Al-
gorithm 4.7 on Page 87 to enumerate projected answer sets via a dedicated backtracking
scheme. As with enumeration algorithms for entire solutions, restarts after the first solu-
tion are by default disabled with backtracking-based enumeration of projections (claspd),
and uninfluenced when recording projections of solutions (claspc

r).
We also consider refinements of CDNL-PROJECTION differing in the way decisions

are made in Line 34 and 39 of Algorithm 4.7, respectively. The variant claspd[h] uses
clasp’s BerkMin-like decision heuristic to select σd in Line 34 (without sign selection);
otherwise, an arbitrary unassigned entry of nogood(bl) is picked. The variant claspd[p]
utilizes the --save-progress option of clasp to direct the choice of σd in Line 39.
Progress (or phase) saving [195] enforces sign selection for a picked variable according
to the previously assigned truth value (if available) and thus guides search into similar
directions as investigated earlier. Finally, the variant claspd[hp] combines the described
features. The experiments were run on a 3.4GHz PC under Linux, each run restricted to
1000 seconds time and 1GB RAM.

We refrained from running other solvers than clasp because, to our knowledge, no
other ASP solver supports dedicated enumeration of projected answer sets, and claspa

as well as claspb
r already represent non-projecting enumeration approaches.18 We also

17After finding a solution, (bounded) restarts are by default disabled with claspa, performing enumeration
via backtracking, while claspb, recording solutions, sticks to its restart policy, as indicated by writing claspb

r .
18Any projecting or non-projecting enumeration approach can however be applied to the inputs used in

4.5 Experimental Results 101

#Var #Sol claspa claspb
r claspc

r claspd claspd[h] claspd[p] claspd[hp]
1 11 100.38 >1000 0.01 0.01 0.01 0.01 0.01
2 110 100.38 >1000 0.01 0.01 0.01 0.01 0.01
3 990 100.38 >1000 0.05 0.07 0.06 0.07 0.07
4 7,920 100.38 >1000 0.60 0.35 0.34 0.35 0.35
5 55,440 100.38 >1000 9.08 1.67 1.68 1.61 1.67
6 332,640 100.38 >1000 281.05 6.34 6.32 6.50 6.34
7 1,663,200 100.38 >1000 >1000 20.63 20.17 21.04 20.39
8 6,652,800 100.38 >1000 >1000 49.97 51.20 50.10 49.18
9 19,958,400 100.38 >1000 >1000 88.77 88.73 89.63 91.18

10 39,916,800 100.38 >1000 >1000 114.17 119.36 119.12 114.82
11 39,916,800 100.38 >1000 >1000 114.30 113.92 116.80 118.83

∅ 100.38 >1000 480.98 36.03 36.53 36.84 36.62

Table 4.13: Experiments enumerating projected answer sets: 11/11-pigeon-hole.

omitted trying decision heuristics preferably selecting output-relevant atoms (as used in
the “Important First Decision Procedure” [130]) since such heuristics would require cus-
tomizations of clasp offending the design goals postulated at the beginning of Section 4.4.

In Table 4.13 and 4.14, we investigate enumeration approaches relative to the pro-
portion of atoms projected on. To this end, we consider two highly combinatorial bench-
marks, the 11/11-pigeon-hole “problem” and the 15-queens puzzle. For both of them,
we gradually increase the number of output-relevant atoms (in columns “#Var”), viz.,
the number of monitored pigeons or queens, respectively. The resulting numbers of pro-
jected answer sets are given in columns “#Sol”; the two rows above one marked with “∅”
(displaying average runtimes of clasp variants) provide the total number of (unprojected)
answer sets. We report runtimes in seconds; “>1000” stands for timeout, taken as 1000
seconds within averages. Note that the values in #Var and #Sol columns do not affect
claspa and claspb

r , which always (attempt to) enumerate all (unprojected) answer sets.
On the 11/11-pigeon-hole problem in Table 4.13, it is apparent that claspb

r and claspc
r ,

persistently recording entire solutions or projected answer sets, respectively, do not scale.
For the last instance solved by claspc

r , projecting on 6 out of 11 pigeons, the ratio of all
answer sets to projections is 120. Furthermore, all variants of claspd are faster than
claspa, enumerating all answer sets, up to 9 out of 11 pigeons, at which point there
are twice as many answer sets as distinct projections. For 10 and 11 pigeons, claspa

is slightly faster than claspd. In fact, claspa saves some overhead by not distinguishing
whether atoms in answer sets are output-relevant or not. However, there are no significant
differences between the variants of claspd, given that the 11/11-pigeon-hole problem is
fully symmetric and thus unaffected by heuristics.

On the 15-queens puzzle in Table 4.14, search becomes more important than on (sat-
isfiable) pigeon-hole problems. Due to the reduced number of solutions, claspb

r now
completes in less than 1000 seconds, but it is still slower than backtracking-based enu-
meration schemes without persistent solution recording. We also note that claspc

r , record-
ing projected answer sets, is the worst approach. In fact, its recorded projections consist
of #Var entries each, while claspb

r stores decision entries whose number decreases the

our experiments, given that “output” atoms are configured via the #hide and #show directives available in
the input languages of ASP grounders like gringo [82, 91, 90] and lparse [211]. The observable difference
between the enumeration of either entire answer sets or projections consists in how often subsets of (one or
more) answer sets are produced, and in the runtime required to complete their enumeration.

102 Conflict-Driven Answer Set Solving

#Var #Sol claspa claspb
r claspc

r claspd claspd[h] claspd[p] claspd[hp]
1 15 243.14 773.57 0.01 0.02 0.01 0.02 0.01
2 182 243.14 773.57 0.08 0.08 0.08 0.14 0.12
3 1,764 243.14 773.57 0.79 0.63 0.66 1.47 1.37
4 13,958 243.14 773.57 11.69 5.79 6.08 10.91 11.51
5 86,360 243.14 773.57 158.40 40.71 43.71 63.76 69.88
6 369,280 243.14 773.57 454.33 153.49 168.46 219.87 226.75
7 916,096 243.14 773.57 >1000 331.42 357.31 444.69 437.23
8 1,444,304 243.14 773.57 >1000 463.46 461.78 584.59 542.46
9 1,795,094 243.14 773.57 >1000 512.19 523.86 652.37 577.66

10 2,006,186 243.14 773.57 >1000 528.36 436.70 647.49 478.34
11 2,133,060 243.14 773.57 >1000 525.23 407.40 616.43 450.80
12 2,210,862 243.14 773.57 >1000 516.56 357.22 552.67 384.30
13 2,254,854 243.14 773.57 >1000 462.83 322.50 496.17 356.18
14 2,279,184 243.14 773.57 >1000 413.72 283.82 432.62 327.35
15 2,279,184 243.14 773.57 >1000 250.13 250.06 245.97 249.11

∅ 243.14 773.57 641.69 280.31 241.31 331.28 274.20

Table 4.14: Experiments enumerating projected answer sets: 15-queens.

more solutions have been enumerated. Regarding the variants of claspd, we observe that
the number of queens projected on and the resulting number of distinct projections do
not affect their runtimes much beyond 7 queens. Rather, heuristic aspects of the search
start to gain importance, and the variant claspd[h], which aims at placing the most criti-
cal queens first, has an edge. In contrast, stand-alone progress saving tends to misdirect
search, as witnessed by claspd[p]. Furthermore, claspa, enumerating all 2,279,184 an-
swer sets, becomes more efficient than the variants of claspd from 7 queens on, where the
ratio of all answer sets to projections is about 2.5. As on the 11/11-pigeon-hole problem,
the reason is less overhead; in particular, claspa does not even temporarily record any
nogood for excluding repetitions. The reconvergence between claspa and the variants of
claspd at 15 queens is by virtue of an implementation “trick”: if the decision entry at level
bl +1 in a solution (cf. Line 30–37 of Algorithm 4.7 on Page 87) involves a variable in P ,
then claspd simply increments bl and backtracks to the greatest decision level at which
some atom of P has been assigned; this shortcut permits unassigning fewer variables.

After inspecting two purely combinatorial problems, we now turn to more realistic
benchmarks belonging to three different classes (cf. Table 4.15). The first one, Clumpy,
deals with finding Hamiltonian cycles in clumpy graphs containing n clumps of n vertices
each. For each value of n, we average over eleven randomly generated instances. Note
that, due to high connectivity within clumps, clumpy graphs typically allow for a vast
number of Hamiltonian cycles, but finding one is still difficult for systematic (chrono-
logical) backtracking methods (cf. [218]). In our experiments, we project Hamiltonian
cycles to the edges connecting distinct clumps, thus reducing the number of distinguish-
able solutions by several orders of magnitude. The second class, Repair, stems from
consistency checking of biological networks [80, 115]. Five categories, each containing
thirty randomly generated instances, are distinguished by the number n, where 100 ∗ n
vertices are in a network. The task is to reestablish consistency by flipping observed
variations (increase or decrease) of vertices. Solutions are then projected to the vertices
whose variations are flipped in a repair, while discarding witnesses for consistency w.r.t.
the repair. Given that there often are plenty witnesses, the number of distinct projections

4.5 Experimental Results 103

Benchmark n claspa claspb
r claspc

r claspd claspd[h] claspd[p] claspd[hp]
Clumpy 08 204.50 (2) 468.48 (5) 0.02 (0) 0.02 (0) 0.02 (0) 0.02 (0) 0.02 (0)

18 >1000 (11) >1000 (11) 99.65 (1) 104.43 (1) 105.18 (1) 81.31 (0) 79.72 (0)
20 >1000 (11) >1000 (11) 255.04 (2) 254.80 (2) 313.22 (1) 219.05 (1) 118.95 (0)
21 >1000 (11) >1000 (11) 603.74 (6) 612.33 (6) 619.37 (6) 396.47 (4) 318.04 (3)
22 >1000 (11) >1000 (11) 144.64 (1) 266.72 (2) 275.54 (2) 410.98 (4) 321.07 (3)

∅ (Σ) 840.90 (46) 893.70 (49) 220.62 (10) 247.66 (11) 262.67 (10) 221.57 (9) 167.56 (6)
Repair 20 >1000 (30) >1000 (30) 126.81 (0) 118.43 (0) 118.69 (0) 113.04 (0) 112.79 (0)

25 >1000 (30) >1000 (30) 232.57 (2) 223.07 (2) 223.37 (2) 217.17 (2) 216.22 (2)
30 >1000 (30) >1000 (30) 404.75 (6) 386.70 (5) 387.39 (5) 377.74 (5) 378.18 (5)
35 >1000 (30) >1000 (30) 322.10 (6) 312.76 (6) 312.72 (6) 306.93 (6) 306.67 (6)
40 >1000 (30) >1000 (30) 424.23 (7) 409.50 (7) 409.84 (7) 400.44 (7) 399.78 (7)

∅ (Σ) >1000 (150) >1000 (150) 302.09 (21) 290.09 (20) 290.40 (20) 283.06 (20) 282.73 (20)
Labyrinth 16 52.49 (0) 58.46 (1) 59.69 (1) 61.72 (1) 59.03 (1) 61.54 (1) 59.11 (1)

17 165.15 (2) 162.60 (2) 198.32 (2) 220.13 (2) 196.83 (3) 220.26 (3) 198.25 (3)
18 212.59 (2) 218.90 (2) 289.84 (4) 298.56 (3) 253.06 (3) 286.05 (3) 257.38 (3)
19 238.24 (4) 241.26 (4) 260.63 (4) 266.96 (5) 245.83 (4) 264.68 (5) 250.90 (4)
20 319.67 (5) 324.43 (5) 355.48 (6) 359.51 (7) 343.47 (6) 360.33 (7) 346.13 (6)

∅ (Σ) 197.63 (13) 201.13 (14) 232.79 (17) 241.38 (18) 219.64 (17) 238.57 (19) 222.35 (17)
∅ (Σ) 708.24 (209) 718.91 (213) 264.68 (48) 266.47 (49) 262.20 (47) 257.39 (48) 242.17 (43)

Table 4.15: Experiments enumerating projected answer sets: Clumpy, Repair, Labyrinth.

is several orders of magnitude smaller than the number of all answer sets. The third class,
Labyrinth, considers a variation of Ravensburger’s Labyrinth game on quadratic boards
with n rows and n columns, each size n comprising twenty randomly generated configu-
rations. The idea is that an avatar is guided from a starting to a goal position by moving
the rows and columns of the board as well as the avatar itself, and projections disregard
the moves of the avatar. It turns out that Labyrinth instances are pretty difficult to solve,
and usually there are not many more answer sets than projections.

Table 4.15 shows average runtimes and numbers of timeouts (in parentheses) for
Clumpy, Repair, and Labyrinth benchmarks. The rows marked with “∅(Σ)” provide the
average runtime and sum of timeouts for each clasp variant over all instances of a bench-
mark class and in total (with benchmark classes weighted by their numbers of instances),
respectively. For Clumpy and Repair, there are far too many answer sets to enumerate
all of them with either claspa or claspb

r . Already on the smallest category of Clumpy, the
approaches of the former cause timeouts, while enumerating projections with claspc

r or
claspd is still unproblematic. On larger Clumpy categories, there is no clear winner among
claspc

r and the variants of claspd, taking also into account that difficulty and number of
projections vary significantly over instances. However, it appears that progress saving in
claspd[p] and its combination with decision heuristic in claspd[hp] can be advantageous.
On Repair, there are hardly any differences between the variants of claspd, and claspc

r ,
recording projected answer sets, is competitive too. Finally, on Labyrinth, claspa and
claspb

r , both enumerating (unprojected) answer sets, have an edge on projecting enumer-
ation approaches. This is unsurprising because there are not many more answer sets than
projections for Labyrinth instances, and the disadvantages of enumerating projections
are less dramatic than the advantages on other benchmarks. Regarding the variants of
claspd, the use of a decision heuristic slightly promotes claspd[h] and claspd[hp], while
stand-alone progress saving in claspd[p] does not help much on Labyrinth.

The summary given in the last row of Table 4.15 yields that the projecting enumer-
ation approaches are close to each other, albeit claspd[hp] has a small advantage. The

104 Conflict-Driven Answer Set Solving

latter suggests that enumeration may benefit from the incorporation of search techniques,
such as a decision heuristic or progress saving. Their usefulness, however, depends on
a problem at hand, and thus fine-tuning is needed. Importantly, the enumeration of all
projections is sometimes still possible when there are far too many (unprojected) answer
sets to enumerate all of them, which may be crucial for the feasibility of applications.

4.6 Related Work

Our algorithms for conflict-driven ASP solving borrow and extend state-of-the-art tech-
niques from the area of SAT solving [21]. Their global search pattern is similar to
CDCL with First-UIP scheme, developed around a decade ago [179, 185, 219] and nowa-
days quasi standard for industrial SAT solving (cf. [56, 203, 183, 48, 20, 7, 41, 178]).
While classical DPLL-style procedures are polynomially equivalent to tree-like resolu-
tion (cf. [19]), CDCL (with unlimited restarts) amounts to general resolution [18, 197]
and is thus strictly more powerful than DPLL.

Beyond the basic decision procedure in Section 4.3, we have presented algorithms
for the enumeration of answer sets that harness conflict-driven learning and backjumping
according to the First-UIP scheme. Solution recording, as described in Section 4.4.1, is
closely related to blocking clauses [151, 146, 184, 155], recorded in conflict-driven enu-
meration procedures for (classical) models of propositional theories. Approaches aiming
at the compaction of (enumerated) solutions’ representation can be found in [146, 184].
Unlike this, our enumeration algorithms in Section 4.4.2 and 4.4.3 apply dedicated back-
tracking schemes to abolish the need of (persistently) recording solutions. Moreover,
dedicated backtracking precludes the enumeration of duplicates, while the deletion of
non-asserting blocking clauses proposed in [155] risks the repetition of solutions. Appli-
cations of enumeration (with and without projection) arise, e.g., in combinatorial math-
ematics [147], itemset mining [142], model checking [130], predicate abstraction [155],
probabilistic reasoning [10], and systems biology [115].

SAT-based enumerators utilizing conflict-driven learning, but not blocking clauses,
include relsat [17, 16], which relies on the Last-UIP scheme (cf. [219]), and the “Impor-
tant First Decision Procedure” [130]. Like our enumeration algorithm for projected an-
swer sets, CDNL-PROJECTION, the “Important First Decision Procedure” mainly aims
at enumerating projections of solutions, including projection via identity as a special case.
The major difference between both approaches is that the “Important First Decision Pro-
cedure” restricts decision heuristics a priori, which deteriorates proof complexity [143],
while CDNL-PROJECTION reorganizes decisions a posteriori after solutions have been
obtained. Furthermore, the “Important First Decision Procedure” restricts backjumping
according to the First-UIP scheme to “non-important” variables and, otherwise, applies
a conflict resolution and backjumping scheme similar to the one of relsat; it also records
non-asserting conflict clauses, which can be retrieved in the presence of flipped decision
entries lacking antecedents. Our enumeration algorithms preclude the latter, given that
they do not analyze conflicts due to flipped decision entries and rather apply system-
atic backtracking to recover from them. Also note that our enumeration algorithms are
devised not to incur any computational overhead (in comparison to the basic decision
procedure they extend) a priori, that is, before any answer set is found, which distin-
guishes them from #SAT methods that utilize conflict-driven learning and backjumping
according to the First-UIP scheme (cf. [128]).

4.6 Related Work 105

Given that answer sets are determined by atoms, native ASP solvers dlv [158], smod-
els [209], and smodelscc [218] are (logically) restricted to assignments over atoms. As
shown in Section 3.4, this yields an exponential separation, already on tight programs,
to solvers that in addition assign and make decisions on rule bodies. To our knowledge,
clasp [95] and nomore++ [3] are the only ASP solvers deliberately including rule bodies
in assignments. Interestingly, Conjunctive Normal Form (CNF) conversions applied by
SAT-based ASP solvers like assat [167], cmodels [123], and sag [168] also introduce aux-
iliary variables for rule bodies to prevent an exponential blow-up (cf. [9]). Although such
variables can then be exploited by underlying SAT solvers, their motivation is more by
need than by design. As there is not yet a consensus on how to represent the constraints
induced by a logic program, in Section 4.1, we have used nogoods to express conditions
for (unit) propagation, thus separating semantics from syntactic representations.

Like clasp, SAT-based ASP solvers may exploit conflict-driven learning in the search
for answer set candidates (cf. Section 3.2.3), accomplished by underlying SAT solvers.
However, their integration of unfounded set checking is much more loose than in our
approach, where it is part of propagation and extracted loop nogoods serve as an-
tecedents, as described in Section 4.3.2. The eager translations offered by lp2sat [139]
and lp2diff [141] embed unfounded set handling into SAT or difference logic [188],
respectively, by encoding level mappings [136, 187] w.r.t. non-tight programs, in sub-
quadratic (lp2sat) or even linear (lp2diff) space. To our knowledge, the only native ASP
solver other than clasp that implements conflict-driven learning is smodelscc ,19 while tra-
ditional ASP solvers like dlv, smodels, and nomore++ perform DPLL-style search. For
enabling conflict resolution, smodelscc takes an algorithmic approach, monitoring appli-
cations of smodels’ propagation rules (cf. Section 3.2.2) to on-the-fly build an implica-
tion graph [179, 219, 18] as a representation of antecedents. In contrast to smodelscc , our
semantic framework allows us to view deterministic inferences as unit propagation on
nogoods, which directly provide antecedents.

Unlike SAT-based ASP solvers, native ones tightly integrate unfounded set check-
ing into their propagation routines, and virtually all ASP solvers exploit strongly con-
nected components of dependency graphs to confine work to necessary parts. While the
unfounded set detection procedures of dlv [32] and smodels [209] identify greatest un-
founded sets [216], those of clasp, detailed in Section 4.3.3, and nomore++ [4] aim at
identifying small (non-empty) unfounded sets and return them as soon as they are de-
tected. The main motive for this is to reduce overlaps between (unit) propagation and un-
founded set checking. Another difference between unfounded set detection procedures is
that dlv and nomore++ use a flag “must-be-true” to indicate (logically true) atoms whose
acyclic derivability is uncertain, for which purpose smodels and clasp exploit source
pointers [209]. The advantage of source pointers is that they need not be updated upon
backtracking or backjumping, respectively, while “true” may have to be turned back into
“must-be-true.” Thus, source pointers can be regarded as the unfounded set detection
counterpart of watched literals [185, 56, 203, 20], a data structure for implementing unit
propagation lazily, popular due to invariance under backtracking/backjumping and eco-
nomic cache utilization.

While several approaches [167, 123, 168, 4, 102] admit limiting the consideration of
unfounded sets to loops, clasp does not make sure that a detected non-empty unfounded

19The solver minisat(id) [177] supports inductive definitions on top of propositional theories. Inductive
definitions are closely related to logic programs, yet involve a “totality” condition not shared by the latter.

106 Conflict-Driven Answer Set Solving

set is a loop (yet it contains one), and it is an interesting open question whether a strict
limitation to loops would be advantageous. Furthermore, we note that the “unidirec-
tional” unfounded set handling in native ASP solvers, not realizing full unit propagation
via loop formulas (cf. Section 3.2), has also been recognized in [111, 110]. As dis-
cussed in Section 4.3.4, this may lead to “trivial” (First-)UIPs without performing any
conflict resolution step. Unfortunately, the approach to remedy this peculiarity suggested
in [33, 34] is computationally too complex (quadratic) to be beneficial in practice, and it
is open whether the same effect can be achieved by more economic techniques.

In addition to its fundamental algorithms, which have been presented here, clasp sup-
ports various extended functionalities (cf. [97]). It offers advanced preprocessing of logic
programs [96] and their induced constraints [54]. Techniques for the native treatment of
extended rules [209] are presented in [84], including an unfounded set detection proce-
dure extending the one in Algorithm 4.3. Several systems implement particular features
on top of clasp: the disjunctive ASP solver claspD [52] internally couples two clasp
engines, clingcon [105] embeds the gecode constraint library20 into clasp’s propagation
routine to deal with non-Boolean variables, iclingo [83] exploits clasp’s incremental in-
terface to solve series of problems over increasing horizons [36, 55], and the parallel
ASP solver claspar [59, 207, 88] augments clasp with a communication module to en-
able message passing between distributed solver instances.

4.7 Discussion

We have provided a uniform approach to conflict-driven ASP solving based on nogoods,
utilized to express constraints induced by a normal program. While Chapter 3 has laid
proof-theoretic foundations by providing inference rules, the corresponding nogoods now
allow us to view deterministic inferences as applications of unit propagation. This bridges
the semantic gap between ASP and SAT solving and enables direct technology transfers
between both areas, without the need of translation. In fact, certain features of computa-
tional (search) problems, such as least fixpoints, recursion, and transitivity, are inherently
supported by the semantics of ASP and can be represented succinctly by logic programs
(cf. [206, 176, 186, 136, 164]). In order to keep this succinctness, we did not defer to
CNF conversions of logic programs and SAT solving, but devised modern ASP solving
procedures that integrate and extend state-of-the-art techniques from SAT solving.

In contrast to SAT, where nogoods are expatiated by clauses, logic programs induce
further implicit constraints, given by loop nogoods. Though inherently present, these
nogoods need only be inspected when they are antecedents or violated. Based on this
perception, we have developed a conflict-driven approach to ASP solving in which loop
nogoods are tested via a dedicated unfounded set checking routine. However, our ap-
proach favors unit propagation on nogoods stemming from completion or previous con-
flicts over unfounded set computations. This makes sure that inspected loop nogoods are
“1-empowering” [196] and supplement the available constraints.

Beyond a decision procedure, we have presented dedicated backtracking-based al-
gorithms for the repetition-free enumeration of answer sets and their projections to a
subvocabulary, respectively, in polynomial space. Our enumeration algorithms harness
conflict-driven learning and backjumping according to the First-UIP scheme, and they do
not incur computational overhead a priori, that is, before any answer set is found. Ex-

20Available at http://www.gecode.org.

4.7 Discussion 107

tending modern ASP (or SAT) solving procedures to repetition-free enumeration, while
still running in polynomial space, is non-trivial: to the best of our knowledge, the algo-
rithms presented here are the first non-intrusive extensions. That is, our algorithms can
be utilized by solvers that aim at combining high performance on decision problems with
the flexibility to also handle applications relying on enumeration.

Our approach is implemented in the award-winning Boolean constraint solver
clasp, which augments the fundamental algorithms presented here with many addi-
tional functionalities (cf. Section 4.5). Its attractiveness is witnessed by an increasing
number of applications relying on clasp or its derivatives as reasoning engines, e.g.,
[182, 22, 134, 152, 213, 115]. Although we have confined ourselves to the presentation
of principles and omitted details on extended rules (cf. [84]) or the actual implementation
of clasp, we believe that a comprehensive overview of the mechanisms underlying clasp
may be useful for an audience interested in the design and operation of modern ASP
solvers. Last but not least, let us note that clasp is freely available as an open source
package at [198], and thus it is instantly accessible for users as well as contributors.

108 Conflict-Driven Answer Set Solving

Chapter 5

Conclusions

This thesis provided semantic, proof-theoretic, and algorithmic foundations for mod-
ern ASP solving approaches. In Chapter 2, we extended the concept of an unfounded
set [216] to assignments over atoms as well as rule bodies occurring in a normal logic
program. Tableau rules working on such twofold assignments have been presented in
Chapter 3. We have seen that they allow us to characterize a variety of familiar logic
programming concepts as well as existing ASP solvers in a uniform setting. Notably, ex-
ponential separations are obtained when case analyses are restricted to only either atoms
or rules bodies. We extended our approach to the richer setting of logic programs with
aggregates by also including them in assignments, and we demonstrated that exponential
separations due to case analyses are also possible for aggregates. The constraint-based
approach pursued in Chapter 4 benefits from assignments including rule bodies, as they
admit compact characterizations of answer sets in terms of nogoods and of deterministic
inferences by unit propagation. On this basis, we developed conflict-driven procedures
for the decision problem of answer set existence as well as solution enumeration. The
main particularity of answer set computation is the detection of unfounded sets, for which
purpose we provided an elaborate algorithm exploiting source pointers [209]. Finally, our
enumeration algorithms combine conflict-driven learning and backjumping according to
the First-UIP scheme [179, 219] with dedicated backtracking in a non-intrusive way,
admitting the repetition-free enumeration of answer sets as well as their projections in
polynomial space.

In more detail, the tableau rules presented in Chapter 3 focus on fundamental in-
ference steps w.r.t. the syntax of logic programs. Our framework makes more involved
characterizations (like the ones in [3, 32, 64, 122, 154, 169, 209, 218]) obsolete, as they
are subsumed by particular tableau calculi. In fact, our tableaux provide a uniform view
on different ASP solving approaches; this also includes the inferences of SAT-based ASP
solvers [123, 167, 168]. In accord with unfounded set checking techniques (w.r.t. total
assignments) of the latter, we have presented sound and complete tableau calculi that
limit (sophisticated) unfounded set checks to loops [167], already w.r.t. partial assign-
ments. It would even be possible to go beyond this by considering elementary loops
[101, 102, 103, 109] only (which has been omitted here for brevity). In the context of
logic programs with aggregates, for which there is no agreed unfounded set definition,1

our concept supA(Π, S, S), exploited by the generic tableau rules U ↑ and U ↓, intrinsi-
cally characterizes unfounded sets. As this characterization does not rely on translation

1The unfounded set concept proposed in [65] fails to reproduce the general aggregate semantics in [69].

110 Conclusions

to propositional theories [70] and is not limited to particular aggregates [170], direct def-
initions of unfounded sets, loops, and loop formulas for logic programs with aggregates
may be oriented at our methodology.

The algorithms presented in Chapter 4 integrate ASP-specific inferences with modern
conflict-driven search patterns [41, 178]. To this end, we provided a constraint-oriented
semantic framework in which all inferences from logic programs are characterized by
unit propagation. Importantly, our choice to express constraints in terms of nogoods does
not aim at suggesting any particular syntactic representation of the constraints induced
by a logic program. This especially applies to loop nogoods justifying inferences due to
unfounded sets, as their succinct representation given by a logic program avoids an ex-
ponential blow-up, faced when expatiating such conditions by clauses [164]. Rather, we
devised a dedicated unfounded set detection algorithm that determines loop nogoods on
demand, that is, when they are antecedents or violated; such “applicable” loop nogoods
are then (temporarily) recorded to make them easily accessible for conflict resolution.
Note that our constraint-based characterization of answer sets in terms of nogoods puts
search in ASP on the same foundation as in neighboring areas, most directly, SAT [21]
and Pseudo-Boolean (PB) [50, 202] satisfiability. In fact, unfounded set checking in ASP
solving can be viewed as a particular form of theory propagation, as performed in solvers
for Satisfiability Modulo Theories (SMT) [15].

The success and versatility of our methodology are demonstrated by clasp, the current
state-of-the-art ASP solver that implements the approach presented here, winning first
places in the 2009 competitions for ASP2 [47], SAT3, and PB4. To our knowledge, clasp
is still the only ASP solver that has been genuinely developed for conflict-driven ASP
solving, thus going beyond SAT-based approaches [123, 167, 168]. Indeed, the elaborate
features of clasp, such as preprocessing [96], native treatment of extended rules [84],
and dedicated backtracking schemes for enumeration [94, 98], are outstanding. In this
regard, we would like to stress that starting from scratch in developing both the theoret-
ical fundament and the practical implementation5 of a modern Boolean constraint solver
for ASP was indispensable to achieve the results obtained so far. Notably, the rich yet
easy modeling languages of ASP [82, 158, 211] facilitate the formulation of application
problems, which can then be solved by using clasp (or other ASP solvers). For the future,
it would be desirable that modeling capacities were combined with broader solver devel-
opment efforts, e.g., by extending high-performance SAT solvers to ASP solving rather
than distorting logic programs to fit the needs of plain SAT solvers.

This thesis (and previous work it is based on) abolished preexisting barriers between
separate areas of Boolean constraint solving by demonstrating how conflict-driven learn-
ing can be extended transparently from SAT to ASP. We thus made a step towards com-
bining elevated expressiveness (of ASP) with powerful search techniques (from SAT) in
order to likewise model and solve computationally complex problems effectively. How-
ever, most of the way along this road is still unexplored, and only the future can tell how
it continues. To give an idea, though, we note that ongoing work meanwhile includes the
auto-configuration of clasp [87], its application to optimization problems [85, 86], paral-
lelization [59, 88, 207], and conceptual extensions for solving logic programs capturing

2See http://dtai.cs.kuleuven.be/events/ASP-competition.
3See http://www.satcompetition.org.
4See http://www.cril.univ-artois.fr/PB09.
5As already mentioned, the author is deeply grateful to Benjamin Kaufmann and all other contributors

for doing excellent and invaluable work in developing and constantly improving clasp.

111

problems located at the second level of the polynomial time hierarchy (prototypically
performed in claspD [52]).

As a further step, integrations of ASP and Constraint Programming (CP) [201] or
SMT, respectively, have recently been proposed [11, 105, 137, 181] for dealing with
non-Boolean variables and sophisticated constraints. Up to now, however, such hy-
brid frameworks are usually conceived as Boolean constraint solving augmented with
separate components, rather than instances of a general approach with a specialized
Boolean core. A plausible explanation could be that, to our knowledge, the success
of conflict-driven learning was so far largely limited to propositional (two-valued) for-
malisms (cf. [149, 150]), and comparably effective extensions are still lacking. How-
ever, we speculate that viewing different constraint languages from a unified perspective
might allow for overcoming such difficulties in the future. Ultimately, (largely) auto-
mated problem solving likewise requires expressive knowledge representation capacities
and powerful solving methods. Although an “omnipotent” paradigm for modeling and
solving any kind of computationally complex problem appears to be science fiction, com-
bined efforts and cross-fertilizations between diverse areas of declarative programming
may foster steady steps towards this superordinate goal.

112 Conclusions

Appendix A

Examples

This appendix provides detailed traces of the enumeration algorithms in Section 4.4,
separately for examples.

A.1 Example 4.10

Table A.1, A.2, and A.3 show the complete trace of a computation of all answer sets
of Π11 from Example 4.10 with CDNL-RECORDING(Π11, 0). The first column gives
the value of dl , viz., the current decision level, at which particular instructions are per-
formed. Concerned entries and nogoods are shown in the columns headed by A and δ,
respectively. The “Info” column displays additional information about answer sets or
nogoods, and “Line” indicates at which line of Algorithm 4.5 particular contents of A
and/or some nogood δ are inspected.

The reading of Table A.1, A.2, and A.3 is as follows. A block starting with a par-
ticular value of dl (1, 2, 3, . . .) remains intact, i.e., the entries σ in A remain assigned at
dlevel(σ) = dl until a new block with the same value of dl begins. When such a new
block overrides a previous one with the same value of dl , entries σ that stay assigned
at dlevel(σ) = dl are repeated without indicating any line of Algorithm 4.5, while a
line is given for each newly assigned entry. Regarding the meanings of line numbers, 19
indicates that a decision entry is assigned, and 5 that an implied entry is inserted into A,
whose antecedent δ belongs to the set of nogoods reported as info. (Implied entries are
assigned in “random order,” as the existence of some antecedent δ is sufficient for conflict
resolution to be well-defined.) A conflict, viz., a nogood contained in A, is encountered
in Line 6, and the result of CONFLICTANALYSIS in Line 8, a nogood δ to be recorded
in ∇ and an assertion level dl , is provided in this case. The set of true atoms in a so-
lution for ∆Π11 ∪ ΛΠ11 , printed in Line 12, is an answer set of Π11, which is shown
underlined (as info); we also indicate the respective entries via underlining when a par-
tial assignment is extended to a solution. An associated solution-suppressing nogood,
recorded in ∇, gives rise to a conflict in the row below an answer set. Finally, note that
decision level 0 is highlighted in bold face since a conflict at decision level 0 provides the
termination condition in Line 7 of Algorithm 4.5.

Overall, Table A.1, A.2, and A.3 show how the answer sets {y, a, b},
{y, a, c}, {x, a, b, c}, {z, a, b}, and {z, a, c} of Π11 are enumerated with CDNL-
RECORDING(Π11, 0).

114 Examples

dl A δ Info Line
1 T y 19

F {not y,not z} {T {not y,not z},T y} ∆Π11 5
F {not x,not y} {T {not x,not y},T y} ∆Π11 5

2 T a 19
3 Tx 19

F {not x,not z} {T {not x,not z},Tx} ∆Π11 5
T {x,not b} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
F b {T {x,not b},T b} ∆Π11 5
F {x} {F b,T {x}} ∆Π11 5

{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 8

1 T y

F {not y,not z} {T {not y,not z},T y} ∆Π11

F {not x,not y} {T {not x,not y},T y} ∆Π11

Fx {Tx,T y} ∇ 5
F {b, c} {Fx,T {b, c}} ∆Π11 5
F {x} {T {x},Fx} ∆Π11 5
F {x,not b} {T {x,not b},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
F {x,not z} {T {x,not z},Fx} ∆Π11 5
F z {T z,F {x,not c},F {not x,not y}} ∆Π11 5
T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T a {F a,T {not x}} ∆Π11 5

2 T b 19
T {not c} {T b,F {x},F {not c}} ∆Π11 5
F {not b} {T {not b},T b} ∆Π11 5
F c {T {not c},T c} ∆Π11 5

{y, a, b} 12
{T y,Fx,F z,T a,T b,F c} ∇ 6
{T y,Fx,F z,T a,T b,F {x}} dl=1 8

1 T y

F {not y,not z} {T {not y,not z},T y} ∆Π11

F {not x,not y} {T {not x,not y},T y} ∆Π11

Fx {Tx,T y} ∇
F {b, c} {Fx,T {b, c}} ∆Π11

F {x} {T {x},Fx} ∆Π11

F {x,not b} {T {x,not b},Fx} ∆Π11

F {x,not c} {T {x,not c},Fx} ∆Π11

F {x,not z} {T {x,not z},Fx} ∆Π11

F z {T z,F {x,not c},F {not x,not y}} ∆Π11

T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11

T {not x} {F {not x},Fx} ∆Π11

T a {F a,T {not x}} ∆Π11

F b {T y,Fx,F z,T a,T b,F {x}} ∇ 5
F {not c} {F b,T {not c}} ∆Π11 5
T {not b} {F {not b},F b} ∆Π11 5
T c {F {not c},F c} ∆Π11 5

{y, a, c} 12
{T y,Fx,F z,T a,F b,T c} ∇ 6
{T y} dl=0 8

Table A.1: First part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0).

A.1 Example 4.10 115

dl A δ Info Line
0 F y {T y} ∇ 5

F {x,not b} {F y,T {x,not b}} ∆Π11 5
F {not x,not z} {F y,T {not x,not z}} ∆Π11 5

1 T b 19
F {not b} {T {not b},T b} ∆Π11 5

2 T c 19
F {not c} {T {not c},T c} ∆Π11 5
F {x,not c} {T {x,not c},T c} ∆Π11 5
T {b, c} {F {b, c},T b,T c} ∆Π11 5
T {x} {T b,F {x},F {not c}} ∆Π11 5
T {x,not z} {T c,F {x,not z},F {not b}} ∆Π11 5
T a {F a,T {x}} ∆Π11 5
Tx {Fx,T {b, c}} ∆Π11 5
F {not x} {T {not x},Tx} ∆Π11 5
F {not x,not y} {T {not x,not y},Tx} ∆Π11 5
F z {T {x,not z},T z} ∆Π11 5
T {not y,not z} {F {not y,not z},F y,F z} ∆Π11 5

{x, a, b, c} 12
{F y,T b,T c,T a,Tx,F z} ∇ 6
{F y,T b,T c,F {not b}} dl=1 8

1 T b

F {not b} {T {not b},T b} ∆Π11

F c {F y,T b,T c,F {not b}} ∇ 5
T {not c} {F {not c},F c} ∆Π11 5
F {b, c} {T {b, c},F c} ∆Π11 5
F {x,not z} {F c,T {x,not z}} ∆Π11 5

2 F a 19
F {x} {F a,T {x}} ∆Π11 5
F {not x} {F a,T {not x}} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5

{F {not x},Fx} ∆Π11 6
{F a} dl=0 8

0 F y {T y} ∇
F {x,not b} {F y,T {x,not b}} ∆Π11

F {not x,not z} {F y,T {not x,not z}} ∆Π11

T a {F a} ∇ 5
1 F z 19

T {not y,not z} {F {not y,not z},F y,F z} ∆Π11 5
Tx {Fx,T {not y,not z}} ∆Π11 5
T {x} {F {x},Tx} ∆Π11 5
T {x,not z} {F {x,not z},Tx,F z} ∆Π11 5
T b {F b,T {x}} ∆Π11 5
T c {F c,T {x,not z}} ∆Π11 5

{F y,T b,T c,T a,Tx,F z} ∇ 6
{F y,T a,F z} dl=0 8

Table A.2: Second part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0).

116 Examples

dl A δ Info Line
0 F y {T y} ∇

F {x,not b} {F y,T {x,not b}} ∆Π11

F {not x,not z} {F y,T {not x,not z}} ∆Π11

T a {F a} ∇
T z {F y,T a,F z} ∇ 5
F {not y,not z} {T {not y,not z},T z} ∆Π11 5
F {x,not z} {T {x,not z},T z} ∆Π11 5

1 T b 19
F {not b} {T {not b},T b} ∆Π11 5
F c {T c,F {x,not z},F {not b}} ∆Π11 5
T {not c} {F {not c},F c} ∆Π11 5
F {b, c} {T {b, c},F c} ∆Π11 5
Fx {Tx,F {b, c},F {not y,not z}} ∆Π11 5
F {x} {T {x},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T {not x,not y} {F {not x,not y},Fx,F y} ∆Π11 5

{z, a, b} 12
{F y,T a,T z,T b,F c,Fx} ∇ 6
{F y,T a,T z,T b,F {not y,not z},F {x,not z}} dl=0 8

0 F y {T y} ∇
F {x,not b} {F y,T {x,not b}} ∆Π11

F {not x,not z} {F y,T {not x,not z}} ∆Π11

T a {F a} ∇
T z {F y,T a,F z} ∇
F {not y,not z} {T {not y,not z},T z} ∆Π11

F {x,not z} {T {x,not z},T z} ∆Π11

F b {F y,T a,T z,T b,F {not y,not z},F {x,not z}} ∇ 5
F {b, c} {T {b, c},F b} ∆Π11 5
T {not b} {F {not b},F b} ∆Π11 5
T c {F c,T {not b}} ∆Π11 5
F {not c} {F b,T {not c}} ∆Π11 5
F {x} {F b,T {x}} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T {not x,not y} {F {not x,not y},Fx,F y} ∆Π11 5

{z, a, c} 12
{F y,T a,T z,F b,T c,Fx} ∇ 6

Table A.3: Third part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0).

A.2 Example 4.11 117

A.2 Example 4.11

Table A.4, A.5, and A.6 show the complete trace of a computation of all answer sets
of Π11 from Example 4.10 with CDNL-ENUMERATION(Π11, 0). The structure and
reading of theses tables are as explained in Appendix A.1, except for the following dif-
ferences:

• Decision entries are inserted into A in Line 30 (not in Line 19) of Algorithm 4.6.

• A result of CONFLICTANALYSIS is obtained in Line 9 (not in Line 8) of Algo-
rithm 4.6.

• The set of true atoms in a solution for ∆Π11 ∪ ΛΠ11 is printed in Line 19 (not in
Line 12) of Algorithm 4.6.

• After encountering a solution for ∆Π11 ∪ ΛΠ11 , the complement of a former deci-
sion entry is assigned in Line 25 of Algorithm 4.6, and we highlight the backtrack-
ing level bl in bold face.

• In reaction to a conflict at the backtracking level (beyond 0), its decision entry is
flipped in Line 17 of Algorithm 4.6, while CONFLICTANALYSIS is not invoked.

A.3 Example 4.12

Table A.7 and A.8 show the complete trace of a computation of all projections of answer
sets of Π11 from Example 4.10 to {a, b, c} with CDNL-PROJECTION(Π11, {a, b, c}, 0).
The structure and reading of theses tables are as explained in Appendix A.1, except for
the following differences:

• Decision entries are inserted into A in Line 41 (not in Line 19) of Algorithm 4.7.

• A result of CONFLICTANALYSIS is obtained in Line 9 (not in Line 8) of Algo-
rithm 4.7.

• The set of true atoms in the projection of a solution for ∆Π11 ∪ ΛΠ11 to {a, b, c}
is printed in Line 20 (not in Line 12) of Algorithm 4.7. Furthermore, only the
true entries over the “output” atoms {a, b, c} are indicated via underlining when a
partial assignment is extended to a solution.

• The projection of a solution may be (temporarily) recorded in ∇ as nogood(bl)
in Line 32 of Algorithm 4.7, in which case some of its entries is reassigned as
decision(bl) in Line 37, and we highlight the backtracking level bl in bold face.

• A solution-suppressing nogood, nogood(bl), may be deleted in Line 24 (or 14) of
Algorithm 4.7, which is indicated by striking the respective nogood. The associ-
ated flipping of a former decision entry is performed in Line 28 (or 18).

118 Examples

dl A δ Info Line
1 T y 30

F {not y,not z} {T {not y,not z},T y} ∆Π11 5
F {not x,not y} {T {not x,not y},T y} ∆Π11 5

2 T a 30
3 Tx 30

F {not x,not z} {T {not x,not z},Tx} ∆Π11 5
T {x,not b} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
F b {T {x,not b},T b} ∆Π11 5
F {x} {F b,T {x}} ∆Π11 5

{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 9

1 T y

F {not y,not z} {T {not y,not z},T y} ∆Π11

F {not x,not y} {T {not x,not y},T y} ∆Π11

Fx {Tx,T y} ∇ 5
F {b, c} {Fx,T {b, c}} ∆Π11 5
F {x} {T {x},Fx} ∆Π11 5
F {x,not b} {T {x,not b},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
F {x,not z} {T {x,not z},Fx} ∆Π11 5
F z {T z,F {x,not c},F {not x,not y}} ∆Π11 5
T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T a {F a,T {not x}} ∆Π11 5

2 T b 30
T {not c} {T b,F {x},F {not c}} ∆Π11 5
F {not b} {T {not b},T b} ∆Π11 5
F c {T {not c},T c} ∆Π11 5

{y, a, b} 19

1 T y

F {not y,not z} {T {not y,not z},T y} ∆Π11

F {not x,not y} {T {not x,not y},T y} ∆Π11

Fx {Tx,T y} ∇
F {b, c} {Fx,T {b, c}} ∆Π11

F {x} {T {x},Fx} ∆Π11

F {x,not b} {T {x,not b},Fx} ∆Π11

F {x,not c} {T {x,not c},Fx} ∆Π11

F {x,not z} {T {x,not z},Fx} ∆Π11

F z {T z,F {x,not c},F {not x,not y}} ∆Π11

T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11

T {not x} {F {not x},Fx} ∆Π11

T a {F a,T {not x}} ∆Π11

F b 25
F {not c} {F b,T {not c}} ∆Π11 5
T {not b} {F {not b},F b} ∆Π11 5
T c {F {not c},F c} ∆Π11 5

{y, a, c} 19

Table A.4: First part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0).

A.3 Example 4.12 119

dl A δ Info Line
0 F y 25

F {x,not b} {F y,T {x,not b}} ∆Π11 5
F {not x,not z} {F y,T {not x,not z}} ∆Π11 5

1 T b 30
F {not b} {T {not b},T b} ∆Π11 5

2 T c 30
F {not c} {T {not c},T c} ∆Π11 5
F {x,not c} {T {x,not c},T c} ∆Π11 5
T {b, c} {F {b, c},T b,T c} ∆Π11 5
T {x} {T b,F {x},F {not c}} ∆Π11 5
T {x,not z} {T c,F {x,not z},F {not b}} ∆Π11 5
T a {F a,T {x}} ∆Π11 5
Tx {Fx,T {b, c}} ∆Π11 5
F {not x} {T {not x},Tx} ∆Π11 5
F {not x,not y} {T {not x,not y},Tx} ∆Π11 5
F z {T {x,not z},T z} ∆Π11 5
T {not y,not z} {F {not y,not z},F y,F z} ∆Π11 5

{x, a, b, c} 19

1 T b

F {not b} {T {not b},T b} ∆Π11

F c 25
T {not c} {F {not c},F c} ∆Π11 5
F {b, c} {T {b, c},F c} ∆Π11 5
F {x,not z} {F c,T {x,not z}} ∆Π11 5

2 F a 30
F {x} {F a,T {x}} ∆Π11 5
F {not x} {F a,T {not x}} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5

{F {not x},Fx} ∆Π11 6
{F a} dl=1 9

0 F y
F {x,not b} {F y,T {x,not b}} ∆Π11

F {not x,not z} {F y,T {not x,not z}} ∆Π11

T a {F a} ∇ 5
1 T b

F {not b} {T {not b},T b} ∆Π11

F c
T {not c} {F {not c},F c} ∆Π11

F {b, c} {T {b, c},F c} ∆Π11

F {x,not z} {F c,T {x,not z}} ∆Π11

2 Fx 30
F {not y,not z} {Fx,T {not y,not z}} ∆Π11 5
F {x} {T {x},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T {not x,not y} {F {not x,not y},Fx,F y} ∆Π11 5
T z {F {not x,not z},Fx,F z} ∆Π11 5

{z, a, b} 19

Table A.5: Second part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0).

120 Examples

dl A δ Info Line
1 T b

F {not b} {T {not b},T b} ∆Π11

F c
T {not c} {F {not c},F c} ∆Π11

F {b, c} {T {b, c},F c} ∆Π11

F {x,not z} {F c,T {x,not z}} ∆Π11

Tx 25
T z {F {x,not z},Tx,F z} ∆Π11 5
T {not y,not z} {Tx,F {b, c},F {not y,not z}} ∆Π11 5

{T {not y,not z},T z} ∆Π11 6
0 F y

F {x,not b} {F y,T {x,not b}} ∆Π11

F {not x,not z} {F y,T {not x,not z}} ∆Π11

T a {F a} ∇
F b 17
F {b, c} {T {b, c},F b} ∆Π11 5
T {not b} {F {not b},F b} ∆Π11 5
F {not c} {F b,T {not c}} ∆Π11 5
F {x} {F b,T {x}} ∆Π11 5
T c {F c,T {not b}} ∆Π11 5
F {x,not c} {T {x,not c},T c} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5
F {not y,not z} {Fx,T {not y,not z}} ∆Π11 5
F {x,not z} {T {x,not z},Fx} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T {not x,not y} {F {not x,not y},Fx,F y} ∆Π11 5
T z {F {not x,not z},Fx,F z} ∆Π11 5

{z, a, c} 19

Table A.6: Third part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0).

A.3 Example 4.12 121

dl A δ Info Line
1 T y 41

F {not y,not z} {T {not y,not z},T y} ∆Π11 5
F {not x,not y} {T {not x,not y},T y} ∆Π11 5

2 T a 41
3 Tx 41

F {not x,not z} {T {not x,not z},Tx} ∆Π11 5
T {x,not b} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
F b {T {x,not b},T b} ∆Π11 5
F {x} {F b,T {x}} ∆Π11 5

{F {x},Tx} ∆Π11 6
{Tx,T y} dl=1 9

1 T y

F {not y,not z} {T {not y,not z},T y} ∆Π11

F {not x,not y} {T {not x,not y},T y} ∆Π11

Fx {Tx,T y} ∇ 5
F {b, c} {Fx,T {b, c}} ∆Π11 5
F {x} {T {x},Fx} ∆Π11 5
F {x,not b} {T {x,not b},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
F {x,not z} {T {x,not z},Fx} ∆Π11 5
F z {T z,F {x,not c},F {not x,not y}} ∆Π11 5
T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
T {not x} {F {not x},Fx} ∆Π11 5
T a {F a,T {not x}} ∆Π11 5

2 T b 41
T {not c} {T b,F {x},F {not c}} ∆Π11 5
F {not b} {T {not b},T b} ∆Π11 5
F c {T {not c},T c} ∆Π11 5

{a, b} 20
{T a,T b,F c} nogood(1) 32

1 T b decision(1) 37
F {not b} {T {not b},T b} ∆Π11 5
F {x,not b} {T {x,not b},T b} ∆Π11 5

2 F a 41
F {x} {F a,T {x}} ∆Π11 5
F {not x} {F a,T {not x}} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5

{F {not x},Fx} ∆Π11 6
{F a} dl=1 9

Table A.7: First part of a computation of all projected answer sets with CDNL-
PROJECTION(Π11, {a, b, c}, 0).

122 Examples

dl A δ Info Line
0 T a {F a} ∇ 5
1 T b

F {not b} {T {not b},T b} ∆Π11

F {x,not b} {T {x,not b},T b} ∆Π11

T c {T a,T b,F c} nogood(1) 5
T {b, c} {F {b, c},T b,T c} ∆Π11 5
F {not c} {T {not c},T c} ∆Π11 5
F {x,not c} {T {x,not c},T c} ∆Π11 5
T {x} {T b,F {x},F {not c}} ∆Π11 5
T {x,not z} {T c,F {x,not z},F {not b}} ∆Π11 5
Tx {Fx,T {b, c}} ∆Π11 5
F {not x} {T {not x},Tx} ∆Π11 5
F {not x,not y} {T {not x,not y},Tx} ∆Π11 5
F {not x,not z} {T {not x,not z},Tx} ∆Π11 5
F z {T {x,not z},T z} ∆Π11 5
F y {T y,F {x,not b},F {not x,not z}} ∆Π11 5
T {not y,not z} {F {not y,not z},F y,F z} ∆Π11 5

{a, b, c} 20

((((
(({T a,T b,F c} nogood(1) 24

0 T a {F a} ∇
F b 28
F {x} {F b,T {x}} ∆Π11 5
F {not c} {F b,T {not c}} ∆Π11 5
F {b, c} {T {b, c},F b} ∆Π11 5
T {not b} {F {not b},F b} ∆Π11 5
Fx {F {x},Tx} ∆Π11 5
T c {F {not c},F c} ∆Π11 5
T {not x} {T a,F {x},F {not x}} ∆Π11 5
F {not y,not z} {Fx,T {not y,not z}} ∆Π11 5
F {x,not b} {T {x,not b},Fx} ∆Π11 5
F {x,not c} {T {x,not c},Fx} ∆Π11 5
F {x,not z} {T {x,not z},Fx} ∆Π11 5

1 T y 41
T {not x,not z} {T y,F {x,not b},F {not x,not z}} ∆Π11 5
F {not x,not y} {T {not x,not y},T y} ∆Π11 5
F z {T {not x,not z},T z} ∆Π11 5

{a, c} 20

Table A.8: Second part of a computation of all projected answer sets with CDNL-
PROJECTION(Π11, {a, b, c}, 0).

Appendix B

Proofs

This appendix provides proofs of formal results in the thesis, structured by chapters.

B.1 Chapter 2

The results in Chapter 2 concentrate on properties of unfounded sets, and also compare
our unfounded set notion with an adaption of the traditional concept [216], referred to by
GRS-unfounded sets.

The first result parallels Theorem 5.4 in [216] and Theorem 4.6 in [159] by showing
that a model of a normal program Π is an answer set of Π exactly if its intersection with
each GRS-unfounded set is empty.

Proposition 2.1. Let Π be a normal program and A a non-contradictory assignment.
If AT ∩ atom(Π) is a model of Π, then we have that AT ∩ atom(Π) is an answer

set of Π iff U ∩AT = ∅ holds for every GRS-unfounded set U of Π w.r.t. A.

Proof. Assume that X = AT ∩ atom(Π) is a model of Π. Then, X is a model of ΠX as
well, so that Cn(ΠX) ⊆ X . Furthermore, one of the following cases applies:

(Cn(ΠX) = X) We have that X is an answer set of Π. Furthermore, for any U ⊆
atom(Π) such that U ∩AT 6= ∅, it holds that U ∩ X 6= ∅, so that X \ U is not
a model of ΠX . That is, there is a rule r ∈ Π such that head(r) ∈ U ∩ X ,
body(r)+ ⊆ X \ U , and body(r)− ∩ X = ∅. From head(r) ∈ U ∩ X ,
body(r)+ ⊆ X \ U , and the prerequisite that A is non-contradictory, we con-
clude that body(r) ∈ EBΠ(U),1 body(r)+ ⊆ AT , and body(r)+ ∩ AF = ∅.
Since body(r)− ∩ X = ∅, we also have that body(r)− ∩ AT = ∅. This shows
that EBΠ(U) 6⊆ {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅}, so that U is
not a GRS-unfounded set of Π w.r.t. A. In turn, every GRS-unfounded set U of Π
w.r.t. A is such that U ∩AT = ∅.

(Cn(ΠX) ⊂ X) We have that X is not an answer set of Π. Furthermore, for U =
atom(Π)\Cn(ΠX) and every rule r ∈ Π, it holds that head(r) /∈ U , body(r)+ 6⊆
Cn(ΠX), or body(r)− ∩X 6= ∅. Since body(r)+ 6⊆ Cn(ΠX) implies body(r)+ ∩
U 6= ∅, for every B ∈ EBΠ(U), we have that B− ∩ X = B− ∩AT 6= ∅. This
shows that EBΠ(U) ⊆ {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅}, so that
U is a GRS-unfounded set of Π w.r.t. A such that U ∩AT = U ∩X 6= ∅.

1Recall that EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r)+ ∩ U = ∅}.

124 Proofs

The above cases show that, if X = AT ∩ atom(Π) is a model of Π, then X is an answer
set of Π iff U ∩AT = ∅ holds for every GRS-unfounded set U of Π w.r.t. A.

The next result links GRS-unfounded sets to unfounded sets by showing that, w.r.t. a
body-saturated assignment, every GRS-unfounded set is an unfounded set as well.

Proposition 2.2. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π, then we have that U is an unfounded set of Π w.r.t. A

if U is a GRS-unfounded set of Π w.r.t. A.

Proof. Assume that A is body-saturated for Π. Then, for every B ∈ body(Π), (B+ ∩
AF) ∪ (B− ∩ AT) 6= ∅ implies B ∈ AF . Hence, if U is a GRS-unfounded set of Π
w.r.t. A, then EBΠ(U) ⊆ {B ∈ body(Π) | (B+ ∩ AF) ∪ (B− ∩ AT) 6= ∅} implies
EBΠ(U) ⊆ AF , so that U is an unfounded set of Π w.r.t. A.

Further considering the relationships between unfounded set concepts, unfounded
sets and GRS-unfounded sets coincide w.r.t. body-synchronized assignments.

Proposition 2.3. Let Π be a normal program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π, then we have that U is an unfounded set of Π

w.r.t. A iff U is a GRS-unfounded set of Π w.r.t. A.

Proof. Assume that A is body-synchronized for Π. Then, A is body-saturated for Π
according to Definition 2.3, and by Proposition 2.2, U is an unfounded set of Π w.r.t. A
if U is a GRS-unfounded set of Π w.r.t. A. It remains to show that the converse holds as
well. Since A is body-synchronized for Π, for every B ∈ body(Π), B ∈ AF implies
(B+ ∩ AF) ∪ (B− ∩ AT) 6= ∅. Hence, if U is an unfounded set of Π w.r.t. A, then
EBΠ(U) ⊆ AF implies EBΠ(U) ⊆ {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅},
so that U is a GRS-unfounded set of Π w.r.t. A.

In view of Proposition 2.3, Proposition 2.1 can be reformulated as follows.

Corollary 2.4. Let Π be a normal program and A a non-contradictory assignment.
If A is body-synchronized for Π and if AT ∩atom(Π) is a model of Π, then we have

that AT ∩ atom(Π) is an answer set of Π iff U ∩AT = ∅ holds for every unfounded
set U of Π w.r.t. A.

Proof. This result follows immediately from Proposition 2.1 and 2.3, since GRS-
unfounded sets match unfounded sets w.r.t. a body-synchronized assignment A.

In what follows, we show crucial properties of unfounded sets. To begin with, false
atoms of an unfounded set may be removed, while still maintaining unfoundedness, if the
assignment at hand is body-saturated.

Proposition 2.5. Let Π be a normal program, A an assignment, and U an unfounded set
of Π w.r.t. A.

If A is body-saturated for Π, then we have that U \ AF is an unfounded set of Π
w.r.t. A.

Proof. Assume that A is body-saturated for Π. Then, for every B ∈ EBΠ(U \AF) \
EBΠ(U), the fact that B+ ∩ (U ∩AF) 6= ∅ implies B ∈ AF . Along with EBΠ(U) ⊆
AF , we conclude that EBΠ(U \AF) ⊆ AF , so that U \AF is an unfounded set of Π
w.r.t. A.

B.1 Chapter 2 125

Corollary 2.6. Let Π be a normal program, A an assignment, and U an unfounded set
of Π w.r.t. A.

If A is body-saturated for Π and ifU 6⊆ AF , then we have thatU\AF is a non-empty
unfounded set of Π w.r.t. A.

Proof. This result follows immediately from Proposition 2.5 and the fact that U 6⊆ AF

implies U \AF 6= ∅.

The following auxiliary result shows that, w.r.t. an atom-saturated assignment, any
non-empty unfounded set of non-false atoms that is not a loop contains in turn a non-
empty proper subset that is unfounded.

Lemma B.1. Let Π be a normal program, A an assignment, and U ⊆ atom(Π) \AF a
non-empty unfounded set of Π w.r.t. A.

If A is atom-saturated for Π and if U /∈ loop(Π), then we have that there is some
non-empty unfounded set U ′ ⊂ U of Π w.r.t. A.

Proof. Assume that A is atom-saturated for Π and that U /∈ loop(Π). Then, for ev-
ery p ∈ U , the prerequisite that U ⊆ atom(Π) \ AF implies bodyΠ(p) 6⊆ AF , while
EBΠ(U) ⊆ AF yields bodyΠ(p) ∩ EBΠ(U) ⊆ AF . That is, for every p ∈ U , there
is some B ∈ bodyΠ(p) \ AF , and B+ ∩ U 6= ∅ holds for each B ∈ bodyΠ(p) \ AF .
Hence, every atom of U has some successor belonging to U in DG(Π) = (atom(Π),
{(head(r), p) | r ∈ Π, p ∈ body(r)+}). However, since U /∈ loop(Π), we have
that the subgraph of DG(Π) induced by U is not strongly connected. Along with the
fact that U is finite, we conclude that there is some strongly connected component of
(U, {(head(r), p) | r ∈ Π, head(r) ∈ U, p ∈ body(r)+ ∩ U}) such that its vertices C
are not reached from atoms in U \ C.2 The latter means that B+ ∩ C = ∅ holds for
every B ∈ EBΠ(U \ C), so that EBΠ(U \ C) ⊆ EBΠ(U). Since ∅ ⊂ C ⊂ U and
EBΠ(U) ⊆ AF , this shows that U ′ = U \C is a non-empty unfounded set of Π w.r.t. A
such that U ′ ⊂ U .

The previous lemma allows us to conclude that, w.r.t. an atom-saturated assignment,
every non-empty unfounded set of non-false must contain an unfounded loop.

Proposition 2.7. Let Π be a normal program, A an assignment, and U ⊆ atom(Π)\AF

a non-empty unfounded set of Π w.r.t. A.
If A is atom-saturated for Π, then we have that there is some unfounded set L ⊆ U

of Π w.r.t. A such that L ∈ loop(Π).

Proof. Assume that A is atom-saturated for Π. Then, since U ⊆ atom(Π) \ AF is a
non-empty unfounded set of Π w.r.t. A, there is some non-empty unfounded set L ⊆ U
of Π w.r.t. A such that ∅ and L are all unfounded sets of Π w.r.t. A contained in L. For
each such L ⊆ U , by Lemma B.1, we conclude that L ∈ loop(Π).

Corollary 2.8. Let Π be a normal program, A an assignment, and U ⊆ atom(Π) \AF

a non-empty unfounded set of Π w.r.t. A.
If A is atom-saturated for Π, then we have that there is some non-empty unfounded

set U ′ ⊆ U of Π w.r.t. A such that all p ∈ U ′ belong to the same non-trivial strongly
connected component of DG(Π).

2Note that the “condensation” of (U, {(head(r), p) | r ∈ Π, head(r) ∈ U, p ∈ body(r)+ ∩ U}),
obtained by contracting each strongly connected component to a single vertex, is a directed acyclic graph
(cf. [199]).

126 Proofs

Proof. This result follows immediately from Proposition 2.7, since all atoms of some
L ∈ loop(Π) belong to the same strongly connected component of DG(Π), which must
be non-trivial by the definition of a loop.

Finally, we combine Corollary 2.6 and Proposition 2.7 to show that, w.r.t. an assign-
ment that is both atom- and body-saturated, any unfounded set that includes non-false
atoms must contain an unfounded loop of non-false atoms.

Theorem 2.9. Let Π be a normal program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded setU of Π

w.r.t. A such that U 6⊆ AF , then we have that there is some unfounded set L ⊆ U \AF

of Π w.r.t. A such that L ∈ loop(Π).

Proof. Assume that A is both atom- and body-saturated for Π and that there is some
unfounded set U of Π w.r.t. A such that U 6⊆ AF . Then, by Corollary 2.6, we have that
U \ AF is a non-empty unfounded set of Π w.r.t. A. Furthermore, by Proposition 2.7,
there is some unfounded set L ⊆ U \AF of Π w.r.t. A such that L ∈ loop(Π).

Corollary 2.10. Let Π be a normal program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U

of Π w.r.t. A such that U 6⊆ AF , then we have that there is some non-empty unfounded
set U ′ ⊆ U \ AF of Π w.r.t. A such that all p ∈ U ′ belong to the same non-trivial
strongly connected component of DG(Π).

Proof. This result follows immediately from Theorem 2.9, since all atoms of some
L ∈ loop(Π) belong to the same strongly connected component of DG(Π), which must
be non-trivial by the definition of a loop.

We have thus proven all formal results presented in Chapter 2.

B.2 Chapter 3

We present proofs of results by sections. Proofs of Theorem 3.1 from Section 3.1 and
Theorem 3.8 from Section 3.2 are postponed to Appendix B.2.2, where they can be de-
rived as consequences of more general results.

B.2.1 Section 3.2

To begin with, we show Proposition 3.2 and 3.3 on correspondences between tableau
rules and logic programming operators as well as smodels’ propagation.

Proposition 3.2. Let Π be a normal program and A an assignment.
Then, we have that

1. TΠ(A) =
(
D{FTA}(Π, D{FTB}(Π,A))

)T ;

2. NΠ(A) =
(
D{FFA}(Π, D{FFB}(Π,A))

)F ;

3. UΠ(A) =
(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

Proof. We separately consider the items of the statement:

B.2 Chapter 3 127

1. We have that p ∈ TΠ(A) iff p = head(r) for some r ∈ Π such that
body(r)+ ⊆ AT and body(r)− ⊆ AF iff p = head(r) for some r ∈ Π such
that T body(r) ∈ D{FTB}(Π,A), so that p ∈

(
D{FTA}(Π, D{FTB}(Π,A))

)T .

2. We have that p ∈ NΠ(A) iff p ∈ atom(Π) such that head(r) 6= p or
(body(r)+ ∩ AF) ∪ (body(r)− ∩ AT) 6= ∅ for every r ∈ Π iff p ∈ atom(Π)
such that FB ∈ D{FFB}(Π,A) for every B ∈ bodyΠ(p), so that p ∈(
D{FFA}(Π, D{FFB}(Π,A))

)F .

3. We have that p ∈ UΠ(A) iff p ∈ U for some U ⊆ atom(Π) such that (B+ ∩
AF) ∪ (B− ∩ AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some U ⊆
atom(Π) such that FB ∈ D{FFB}(Π,A) for every B ∈ EBΠ(U), so that p ∈(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

We have thus shown that all items of the statement hold.

Proposition 3.3. Let Π be a normal program and A an assignment.
Then, we have that

1. D{FI}(Π,A) = D{FTA}(Π, D{FTB}(Π,A));

2. D{ARC}(Π,A) = D{FFA}(Π, D{FFB}(Π,A));

3. D{CTH}(Π,A) = D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩
atom(Π)}));

4. D{CFH}(Π,A) = D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p |
p ∈ AF ∩ atom(Π)});

5. D{AM}(Π,A) = D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

Proof. We separately consider the items of the statement:

1. We have that T p ∈ D{FI}(Π,A) iff p = head(r) for some r ∈ Π such that
body(r)+ ⊆ AT and body(r)− ⊆ AF iff p = head(r) for some r ∈ Π such that
T body(r) ∈ D{FTB}(Π,A), so that T p ∈ D{FTA}(Π, D{FTB}(Π,A)).

2. We have that F p ∈ D{ARC}(Π,A) iff p ∈ atom(Π) such that (B+ ∩ AF) ∪
(B− ∩ AT) 6= ∅ for every B ∈ bodyΠ(p) iff p ∈ atom(Π) such that FB ∈
D{FFB}(Π,A) for every B ∈ bodyΠ(p), so that F p ∈ D{FFA}(Π, D{FFB}(Π,A)).

3. We have that tl ∈ D{CTH}(Π,A) iff p ∈ AT ∩ atom(Π) and l ∈ body(r)

for some r ∈ Π such that (B+ ∩ AF) ∪ (B− ∩ AT) 6= ∅ for every B ∈
bodyΠ(p)\{body(r)} iff p ∈ AT ∩atom(Π) and l ∈ body(r) for some r ∈ Π such
that {FB | B ∈ bodyΠ(p) \ {body(r)}} ⊆ D{FFB}(Π,A), so that T body(r) ∈
D{BTA}(Π, D{FFB}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}) and {tl | l ∈ body(r)} ⊆
D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩ atom(Π)})).

4. We have that f l ∈ D{CFH}(Π,A) iff l ∈ body(r) for some r ∈ Π such that
F head(r) ∈ A and tl′ ∈ A for every l′ ∈ body(r) \ {l} iff F body(r) ∈
D{BFA}(Π,A) and {tl′ | l′ ∈ body(r) \ {l}} ⊆ {T p | p ∈ AT ∩ atom(Π)} ∪

128 Proofs

{F p | p ∈ AF ∩ atom(Π)} for some r ∈ Π and l ∈ body(r), so that
f l ∈ D{BFB}(Π, D{BFA}(Π,A) ∪ {T p | p ∈ AT ∩ atom(Π)} ∪ {F p | p ∈
AF ∩ atom(Π)}).

5. We have that F p ∈ D{AM}(Π,A) iff p ∈ U for some U ⊆ atom(Π) such that
(B+ ∩ AF) ∪ (B− ∩ AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some
U ⊆ atom(Π) such that FB ∈ D{FFB}(Π,A) for every B ∈ EBΠ(U), so that
F p ∈ D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

We have thus shown that all items of the statement hold.

In view of Proposition 3.3, we derive the following relationship between tableau cal-
culi using the deterministic tableau rules in Figure 3.1 or 3.3, respectively.

Corollary 3.4. Let Π be a normal program and A an assignment.
Then, we have that D∗{FI,ARC,CTH,CFH,AM}(Π,A) ⊆ D∗Tsmodels

(Π,A).

Proof. This result follows immediately from Proposition 3.3, since any entry deducible
by some of the tableau rules in {FI,ARC,CTH,CFH,AM} can likewise be deduced by
iterated applications of the tableau rules (a)–(h) and WFN[2atom(Π)] in Figure 3.1, which
are the deterministic tableau rules contained in Tsmodels.

Next, we show the one-to-one correspondence between models of Comp(Π) and
non-contradictory complete branches in tableaux of Tcomp , stated in Theorem 3.5. To this
end, we provide Lemma B.2, derived from Proposition 4.1 in Section 4.1. Lemma B.2
is applied only in the proof of Theorem 3.5, which itself is not used to prove any of the
other results in this thesis.

Lemma B.2. Let Π be a normal program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model

of Comp(Π) iff D{(a)–(h)}(Π,A) ⊆ {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π)∪ body(Π)) \
X} for every assignment A ⊆ {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π)∪ body(Π)) \X}.

Proof. By Proposition 4.1, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is
a model of Comp(Π) iff A = {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \X}
is a solution for ∆Π. We make use of this relationship in the following consideration of
the implications of the statement:

(⇒) Assume that A′ ⊆ A but D{(a)–(h)}(Π,A
′) 6⊆ A. Then, some of the following

cases applies:

(D{FTB,BFB}(Π,A
′) 6⊆ A) We have that {F {l1, . . . , ln}, tl1, . . . , tln} ⊆ A for some

{l1, . . . , ln} ∈ body(Π). Since {F {l1, . . . , ln}, tl1, . . . , tln} ∈ ∆Π, this shows
that A is not a solution for ∆Π.

(D{FFB,BTB}(Π,A
′) 6⊆ A) We have that {T {l1, . . . , li, . . . , ln},f li} ⊆ A for some

{l1, . . . , li, . . . , ln} ∈ body(Π). Since {T {l1, . . . , li, . . . , ln},f li} ∈ ∆Π, this
shows that A is not a solution for ∆Π.

(D{FTA,BFA}(Π,A
′) 6⊆ A) We have that {F p,TB} ⊆ A for some p ∈ atom(Π) and

B ∈ bodyΠ(p). Since {F p,TB} ∈ ∆Π, this shows that A is not a solution
for ∆Π.

B.2 Chapter 3 129

(D{FFA,BTA}(Π,A
′) 6⊆ A) We have that {T p,FB1, . . . ,FBk} ⊆ A for some p ∈

atom(Π) and bodyΠ(p) = {B1, . . . , Bk}. Since {T p,FB1, . . . ,FBk} ∈ ∆Π,
this shows that A is not a solution for ∆Π.

In each of the above cases, A is not a solution for ∆Π, so that (X ∩ atom(Π)) ∪ {pB |
B ∈ X ∩ body(Π)} is not a model of Comp(Π).

(⇐) Assume that A is not a solution for ∆Π. Then, some of the following cases applies:

({F {l1, . . . , ln}, tl1, . . . , tln} ⊆ A for some {l1, . . . , ln} ∈ body(Π)) We have that
T {l1, . . . , ln} ∈ D{FTB}(Π,A), so that D{(a)–(h)}(Π,A) 6⊆ A.

({T {l1, . . . , li, . . . , ln},f li} ⊆ A for some {l1, . . . , li, . . . , ln} ∈ body(Π)) We have
that F {l1, . . . , li, . . . , ln} ∈ D{FFB}(Π,A), so that D{(a)–(h)}(Π,A) 6⊆ A.

({F p,TB} ⊆ A for some p ∈ atom(Π) and B ∈ bodyΠ(p)) We have that T p ∈
D{FTA}(Π,A), so that D{(a)–(h)}(Π,A) 6⊆ A.

({T p,FB1, . . . ,FBk} ⊆ A for some p ∈ atom(Π) and bodyΠ(p) = {B1, . . . , Bk})
We have that F p ∈ D{FFA}(Π,A), so that D{(a)–(h)}(Π,A) 6⊆ A.

In each of the above cases, we have that D{(a)–(h)}(Π,A) 6⊆ A, where A ⊆ A trivially
holds.

Theorem 3.5. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Comp(Π) has a model X iff every complete tableau for Π and ∅ has a unique
non-contradictory branch (Π,A) such that (AT ∩ atom(Π)) ∪ {pB | B ∈ AT ∩
body(Π)} = X .

3. Comp(Π) has no model iff every complete tableau for Π and ∅ is a refutation.

Proof. We separately consider the items of the statement:

1. By applying Cut[atom(Π) ∪ body(Π)], an incomplete branch in a tableau for Π
and ∅ can be extended to a subtableau such that, for every branch (Π,A) in it,
we have that atom(Π) ∪ body(Π) ⊆ AT ∪ AF . Furthermore, if (Π,A) is not
complete, thenD{(a)–(h)}(Π,A) 6⊆ A, so that the application of some of the tableau
rules (a)–(h) in Tcomp yields a contradictory and thus complete branch.

2. We separately show the implications of the second item:

(⇒) Assume that X ⊆ atom(Π)∪{pB | B ∈ body(Π)} is a model of Comp(Π),
and consider the following assignment:

A = {T p | p ∈ X ∩ atom(Π)} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), pB ∈ X} ∪ {FB | B ∈ body(Π), pB /∈ X}

Then, by Lemma B.2, D{(a)–(h)}(Π,A
′) ⊆ A for every assignment A′ ⊆ A.

Since either A′ ∪ {T v} ⊆ A or A′ ∪ {F v} ⊆ A for any application of

130 Proofs

Cut[atom(Π) ∪ body(Π)] on a branch (Π,A′) such that A′ ⊆ A, we have
that the assignment in exactly one of the resulting branches is contained in A.
Along with ∅ ⊆ A, it follows that every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that (AT ∩ atom(Π))∪ {pB |
B ∈ AT ∩ body(Π)} = X .

(⇐) Assume that (Π,A) is a non-contradictory complete branch, that is, AT ∪
AF = atom(Π)∪body(Π) andD{(a)–(h)}(Π,A) ⊆ A. Then, by Lemma B.2
(along with the fact that D{(a)–(h)}(Π,A

′) ⊆ D{(a)–(h)}(Π,A) for every
A′ ⊆ A), we have that X = (AT ∩atom(Π))∪{pB | B ∈ AT ∩ body(Π)}
is a model of Comp(Π).

3. From the second item, if Comp(Π) has a model, then every complete tableau for Π
and ∅ has a non-contradictory branch; by the first item, there is some complete
tableau for Π and ∅, so that some complete tableau for Π and ∅ is not a refutation.
Conversely, if some complete tableau for Π and ∅ is not a refutation, it has a non-
contradictory branch (Π,A), and (AT ∩ atom(Π))∪ {pB | B ∈ AT ∩ body(Π)}
is a model of Comp(Π), as shown in the proof of the second item.

We have thus shown that all items of the statement hold.

For proving Proposition 3.6, stating that tableau rule WFN[2atom(Π)] is as powerful as
the iterated application of more restrictive tableau rules FFA and WFN[loop(Π)] (along
with FFB), we make use of Lemma 3.7 and B.3, the latter relying on Theorem 2.9.

Lemma 3.7. Let Π be a normal program and A an assignment.
Then, we have that

1. A is body-saturated for Π iff D{FFB}(Π,A) ⊆ A;

2. A is atom-saturated for Π iff D{FFA}(Π,A) ⊆ A.

Proof. We separately consider the items of the statement:

1. We have that FB ∈ D{FFB}(Π,A) iffB ∈ body(Π) such that (B+∩AF)∪(B−∩
AT) 6= ∅. Hence, D{FFB}(Π,A) ⊆ A holds iff {B ∈ body(Π) | (B+ ∩AF) ∪
(B−∩AT) 6= ∅} ⊆ AF iff A is body-saturated for Π according to Definition 2.3.

2. We have that F p ∈ D{FFA}(Π,A) iff p ∈ atom(Π) such that bodyΠ(p) ⊆ AF .
Hence, D{FFA}(Π,A) ⊆ A holds iff {p ∈ atom(Π) | bodyΠ(p) ⊆ AF } ⊆ AF

iff A is atom-saturated for Π according to Definition 2.4.

We have thus shown that the items of the statement hold.

Lemma B.3. Let Π be a normal program and A an assignment.
Then, we have that D{FFB,WFN[2atom(Π)]}(Π,A) ⊆ A iff

D{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ A.

Proof. We separately show the implications of the statement:

B.2 Chapter 3 131

(⇒) Assume that D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Otherwise, if D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A, there
is some p ∈ atom(Π) \ AF such that EBΠ({p}) ⊆ bodyΠ(p) ⊆ AF or p ∈ L for
an L ∈ loop(Π) satisfying EBΠ(L) ⊆ AF . Given that {{p} | p ∈ atom(Π)} ∪
loop(Π) ⊆ 2atom(Π), we conclude that there is some p ∈ atom(Π) \ AF such that
F p ∈ D{WFN[2atom(Π)]}(Π,A), so that D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A.

(⇐) Assume that D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{WFN[2atom(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Otherwise, if D{WFN[2atom(Π)]}(Π,A) 6⊆ A, there
is some U ⊆ atom(Π) such that U 6⊆ AF and EBΠ(U) ⊆ AF , that is, U is an un-
founded set of Π w.r.t. A such that U 6⊆ AF . Since D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A
if D{FFB,FFA}(Π,A) 6⊆ A, assume that D{FFB,FFA}(Π,A) ⊆ A. Then, by Lemma 3.7,
we have that A is both atom- and body-saturated for Π. Along with Theorem 2.9, we
conclude that there is some L ∈ loop(Π) such that L 6⊆ AF and EBΠ(L) ⊆ AF , so that
D{WFN[loop(Π)]}(Π,A) 6⊆ A and D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A.

Proposition 3.6. Let Π be a normal program and A an assignment.
Then, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) = D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

Proof. By Lemma B.3, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) is closed under
{FFB,FFA,WFN[loop(Π)]} and that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) is closed under

{FFB,WFN[2atom(Π)]}. Along with the fact that D∗{FFB,WFN[2atom(Π)]}(Π,A) and
D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) are the unique smallest branches that extend (Π,A) and

are closed under {FFB,WFN[2atom(Π)]} or {FFB,FFA,WFN[loop(Π)]}, respectively,
we conclude that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ D∗{FFB,WFN[2atom(Π)]}(Π,A) and that
D∗{FFB,WFN[2atom(Π)]}(Π,A) ⊆ D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

We have thus proven the formal results presented in Section 3.2, except for Theo-
rem 3.8, whose proof is provided at the end of Appendix B.2.2.

B.2.2 Section 3.3

For proving the soundness and completeness of our generic tableau method relative to
the language constructs considered in Section 3.3, we first provide some lemmas. The
correspondences between generic tableau rules and the basic ones for normal programs,
as introduced in Section 3.1, then allow us to derive Theorem 3.1 and 3.8 as consequences
of more general results.

Lemmas on Soundness

The first two lemmas provide properties of non-contradictory complete branches that
hold in view of the generic tableau rules in Figure 3.4 on Page 34.

Lemma B.4. Let Π be a disjunctive program and T a tableau calculus such that
{I ↑, I ↓} ∩ T 6= ∅.

Then, for every non-contradictory complete branch (Π,A) and every (α← β) ∈ Π,
we have that tβ /∈ A or fα /∈ A.

132 Proofs

Proof. Consider any (α ← β) ∈ Π and any branch (Π,A) such that tβ ∈ A and
fα ∈ A. Then, we have that tα ∈ D{I↑}(Π,A) and fβ ∈ D{I↓}(Π,A). Since
{I ↑, I ↓} ∩ T 6= ∅, this shows that (Π,A) cannot be (extended to) a non-contradictory
complete branch.

Lemma B.5. Let Π be a disjunctive program and T a tableau calculus such that
U ↑ ∈ T .

Then, for every non-contradictory complete branch (Π,A) and every S ⊆ atom(Π),
we have that supA(Π, S, S) 6= ∅ or AT ∩ S = ∅.

Proof. Consider any S ⊆ atom(Π) and any branch (Π,A) such that supA(Π, S, S) = ∅
and AT ∩ S 6= ∅. Then, there is some p ∈ AT ∩ S such that F p ∈ D{U↑}(Π,A). Since
U ↑ ∈ T , this shows that (Π,A) cannot be (extended to) a non-contradictory complete
branch.

For non-contradictory complete branches (Π,A), the next lemmas show that the truth
value of a variable v ∈ atom(Π)∪conj (Π)∪card(Π)∪disj (Π) matches the valuation of
τ [v] w.r.t. AT ∩ atom(Π), provided the inclusion of appropriate tableau rules, presented
in Figure 3.5, 3.7, and 3.8 on Page 37, 41, and 44, respectively, in a calculus.

Lemma B.6. Let Π be a disjunctive program and A a total assignment.
Then, for every p ∈ atom(Π), we have that

1. tp ∈ A iff AT ∩ atom(Π) |= τ [p];

2. tnot p ∈ A iff AT ∩ atom(Π) |= τ [not p];

3. fp ∈ A iff AT ∩ atom(Π) 6|= τ [p];

4. fnot p ∈ A iff AT ∩ atom(Π) 6|= τ [not p].

Proof. We have that τ [p] = p and τ [not p] = ¬τ [p] = ¬p, and the following holds:

1. tp ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= p;

2. tnot p ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= ¬p;

3. fp ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= p;

4. fnot p ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= ¬p.

We have thus shown that all items of the statement hold.

Lemma B.7. Let Π be a disjunctive program and T a tableau calculus such that
{TLU ↑,FL↑,FU ↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ card(Π),
we have that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

Proof. Consider any v = j{l1, . . . , ln}k ∈ card(Π) and any non-contradictory complete
branch (Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for
some p ∈ atom(Π). By Lemma B.6, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A
iff AT ∩ atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A,
respectively:

B.2 Chapter 3 133

1. If T v ∈ A, then F v /∈ D{FL↑,FU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} |
f l ∈ A}| ≤ n − j and |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k. In view
of |{l ∈ {l1, . . . , ln} | tl ∈ A}| + |{l ∈ {l1, . . . , ln} | f l ∈ A}| = n,
|{l ∈ {l1, . . . , ln} | f l ∈ A}| ≤ n − j yields j ≤ |{l ∈ {l1, . . . , ln} | tl ∈ A}|.
We have thus shown that j ≤ |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k. Hence, for
any L ⊆ {l1, . . . , ln} such that |L| < j, it holds that {l ∈ {l1, . . . , ln} \ L |
tl ∈ A} 6= ∅, so that AT ∩ atom(Π) |= (

∨
l∈{l1,...,ln}\Lτ [l]). Moreover, for any

L ⊆ {l1, . . . , ln} such that k < |L|, it holds that {l ∈ L | f l ∈ A} 6= ∅, so that
AT ∩ atom(Π) 6|= (

∧
l∈Lτ [l]). Combining the cases for |L| < j and k < |L|

yields that

AT ∩ atom(Π) |=
∧
L⊆{l1,...,ln},
|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

2. If F v ∈ A, then T v /∈ D{TLU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} | tl ∈ A}| <
j or |{l ∈ {l1, . . . , ln} | f l ∈ A}| < n − k. In view of |{l ∈ {l1, . . . , ln} |
tl ∈ A}| + |{l ∈ {l1, . . . , ln} | f l ∈ A}| = n, |{l ∈ {l1, . . . , ln} | f l ∈ A}| <
n − k yields k < |{l ∈ {l1, . . . , ln} | tl ∈ A}|. For L′ = {l ∈ {l1, . . . , ln} |
tl ∈ A}, we have thus shown that |L′| < j or k < |L′|. Since AT ∩ atom(Π) 6|=(
(
∧
l∈L′τ [l])→ (

∨
l∈{l1,...,ln}\L′τ [l])

)
, we conclude that

AT ∩ atom(Π) 6|=
∧
L⊆{l1,...,ln},
|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and
AT ∩ atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

Lemma B.8. Let Π be a disjunctive program and T a tableau calculus such that
{TC↑,FC↑} ⊆ T .

If card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T , then for every non-contradictory com-
plete branch (Π,A) and every v ∈ conj (Π), we have that T v ∈ A iff AT ∩atom(Π) |=
τ [v].

Proof. Consider any v = {l1, . . . , ln} ∈ conj (Π) and any non-contradictory complete
branch (Π,A), and assume that card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T . For every
l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π)∪card(Π) or l = not π and τ [l] = ¬τ [π] for
some π ∈ atom(Π) ∪ card(Π). By Lemma B.6 and B.7, tl ∈ A iff AT ∩ atom(Π) |=
τ [l], and f l ∈ A iff AT ∩ atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A
and F v ∈ A, respectively:

1. If T v ∈ A, then F v /∈ D{FC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} = ∅
and {l ∈ {l1, . . . , ln} | tl ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) |=
(τ [l1] ∧ · · · ∧ τ [ln]).

2. If F v ∈ A, then T v /∈ D{TC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} 6=
{l1, . . . , ln} and {l ∈ {l1, . . . , ln} | f l ∈ A} 6= ∅, so that AT ∩ atom(Π) 6|=
(τ [l1] ∧ · · · ∧ τ [ln]).

134 Proofs

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and
AT ∩ atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

Lemma B.9. Let Π be a disjunctive program and T a tableau calculus such that
{TD↑,FD↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ disj (Π),
we have that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

Proof. Consider any v = {l1; . . . ; ln} ∈ disj (Π) and any non-contradictory complete
branch (Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for
some p ∈ atom(Π). By Lemma B.6, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A
iff AT ∩ atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A,
respectively:

1. If T v ∈ A, then F v /∈ D{FD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} 6=
{l1, . . . , ln} and {l ∈ {l1, . . . , ln} | tl ∈ A} 6= ∅, so that AT ∩ atom(Π) |=
(τ [l1] ∨ · · · ∨ τ [ln]).

2. If F v ∈ A, then T v /∈ D{TD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} = ∅
and {l ∈ {l1, . . . , ln} | f l ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) 6|=
(τ [l1] ∨ · · · ∨ τ [ln]).

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and
AT ∩ atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

Lemmas on Completeness

In order to abstract from the language constructs admitted in a program, the following
definition formulates conditions under which we call ←−sup, −→sup, min , and max , respec-
tively, well-behaved. We then proceed by showing that these four concepts are well-
behaved for disjunctive programs.

Definition B.1. Let α be a literal.
Then, we define←−sup, −→sup, min , and max , respectively, as well-behaved for α if, for

every S ⊆ P and every assignment A, we have that

1. if←−supA(α, S) holds, then←−supA′(α, S) holds for every A′ ⊆ A;

2. if −→supA(α, S) holds, then −→supA′(α, S′) holds for every A′ ⊆ A and every S′ ⊆ S;

3. if σ ∈ minA(α, S), then←−supA∪{σ}(α, S) does not hold;

4. if σ ∈ maxA(α, S), then −→supA∪{σ}(α, S) does not hold.

Lemma B.10. Let α be a disjunctive literal and β a cardinality literal or a possibly
negated conjunction of cardinality literals.

Then, we have that←−sup and min are well-behaved for α and that −→sup and max are
well-behaved for β.

Proof. Let S ⊆ P and A an arbitrary assignment.
We first consider the possible cases such that←−supA(α, S) holds:

1. If α ∈ S, we have that←−supA′(α, S) holds for every assignment A′.

B.2 Chapter 3 135

2. If α = j{l1, . . . , ln}k ∈ card(P), then {l1, . . . , ln} ∩ S 6= ∅ and |{l ∈
{l1, . . . , ln} \ S | tl ∈ A}| < k. Since for every A′ ⊆ A, we have that
|{l ∈ {l1, . . . , ln} \ S | tl ∈ A′}| ≤ |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| < k,
we conclude that←−supA′(α, S) holds.

3. If α = {l1; . . . ; ln} ∈ disj (P), then {l1, . . . , ln}∩S 6= ∅ and {l ∈ {l1, . . . , ln}\S |
tl ∈ A} = ∅. Since for every A′ ⊆ A, we have that {l ∈ {l1, . . . , ln} \ S | tl ∈
A′} ⊆ {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, we conclude that←−supA′(α, S) holds.

We next consider the possible cases such that σ ∈ minA(α, S):

1. If α = j{l1, . . . , ln}k ∈ card(P) and σ ∈ minA(α, S) = {f l | l ∈
{l1, . . . , ln} \ S, tl /∈ A}, then |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| = k − 1.
That is, σ = tl /∈ A for some l ∈ {l1, . . . , ln} \ S, so that |{l ∈ {l1, . . . , ln} \ S |
tl ∈ A ∪ {σ}}| = |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| + 1 = k, which means that
←−supA∪{σ}(α, S) does not hold.

2. If α = {l1; . . . ; ln} ∈ disj (P) and σ ∈ minA(α, S) = {f l | l ∈ {l1, . . . , ln}\S},
then σ = tl for some l ∈ {l1, . . . , ln}\S. We conclude that {l ∈ {l1, . . . , ln}\S |
tl ∈ A ∪ {σ}} 6= ∅, which means that←−supA∪{σ}(α, S) does not hold.

We now come to the possible cases such that −→supA(β, S) holds:

1. If β = not v, where v ∈ P ∪ card(P)∪ conj (P), we have that−→supA′(β, S′) holds
for every assignment A′ and every S′ ⊆ P .

2. If β ∈ P \ S, then β ∈ P \ S′ for every S′ ⊆ S, so that −→supA′(β, S′) holds for
every assignment A′ and every S′ ⊆ S.

3. If β = j{l1, . . . , ln}k ∈ card(P), then |{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| ≥ j.
Since for every A′ ⊆ A and every S′ ⊆ S, we have that |{l ∈ {l1, . . . , ln} \ S′ |
f l /∈ A′}| ≥ |{l ∈ {l1, . . . , ln}\S | f l /∈ A}| ≥ j, we conclude that−→supA′(β, S′)
holds.

4. If β = {l1, . . . , ln} ∈ conj (P), then −→supA(l, S) holds for every l ∈ {l1, . . . , ln}.
Furthermore, since one of the first three cases applies to each l ∈ {l1, . . . , ln},
we have that −→supA′(l, S′) holds for every A′ ⊆ A and every S′ ⊆ S, so that
−→supA′(β, S′) holds as well.

Finally, we consider the possible cases such that σ ∈ maxA(β, S):

1. If β = j{l1, . . . , ln}k ∈ card(P) and σ ∈ maxA(β, S) = {tl | l ∈
{l1, . . . , ln} \ S,f l /∈ A}, then |{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| = j. That
is, σ = f l /∈ A for some l ∈ {l1, . . . , ln} \ S, so that |{l ∈ {l1, . . . , ln} \ S |
f l /∈ A ∪ {σ}}| = |{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| − 1 = j − 1, which means
that −→supA∪{σ}(β, S) does not hold.

2. If β = {l1, . . . , ln} ∈ conj (P) and σ ∈ maxA(β, S) =
⋃
l∈{l1,...,ln}maxA(l, S),

then σ ∈ maxA(l, S) for some l ∈ {l1, . . . , ln} ∩ card(P). That is, the previous
case applies to l, so that −→supA∪{σ}(l, S) and −→supA∪{σ}(β, S) do not hold.

We have thus, for S ⊆ P and an arbitrary assignment A, considered all possible cases
and shown that ←−sup and min are well-behaved for α and that −→sup and max are well-
behaved for β.

136 Proofs

The concept of well-behavedness allows us to identify the property that
supA(Π, S, T) is anti-monotone w.r.t. both A and T .

Lemma B.11. Let Π be a disjunctive program, S ⊆ P , T ⊆ P , and A an assignment.
If ←−sup and −→sup are well-behaved for all literals in {α | (α ← β) ∈ Π} and {β |

(α ← β) ∈ Π}, respectively, then we have that supA(Π, S, T) ⊆ supA′(Π, S, T
′) for

every A′ ⊆ A and every T ′ ⊆ T .

Proof. Assume that←−sup and −→sup are well-behaved for all literals in {α | (α← β) ∈ Π}
and {β | (α ← β) ∈ Π}, respectively, and consider any (α ← β) ∈ supA(Π, S, T) =
{(α← β) ∈ Π | fβ /∈ A,←−supA(α, S),−→supA(β, T)}. In view of Definition B.1, for every
A′ ⊆ A and every T ′ ⊆ T , we have that←−supA(α, S) and −→supA(β, T) imply←−supA′(α, S)
and −→supA′(β, T ′), respectively, and fβ /∈ A′ follows immediately from fβ /∈ A. From
this, we conclude that (α ← β) ∈ supA′(Π, S, T

′) = {(α ← β) ∈ Π | fβ /∈ A′,
←−supA′(α, S),−→supA′(β, T ′)}.

We are now ready to prove that, for a total assignment A such that the deterministic
tableau rules in Figure 3.4 on Page 34 do not yield a contradiction, the entries of A are
preserved when applying these tableau rules w.r.t. any assignment contained in A.

Lemma B.12. Let Π be a disjunctive program and A a total assignment such that tβ /∈
A or fα /∈ A for every (α← β) ∈ Π and supA(Π, S, S) 6= ∅ or AT ∩ S = ∅ for every
S ⊆ atom(Π).

If←−sup and min are well-behaved for all literals in {α | (α ← β) ∈ Π} and if −→sup
and max are well-behaved for all literals in {β | (α← β) ∈ Π}, then for every A′ ⊆ A,
we have that D{(a)–(f)}(Π,A

′) ⊆ A.

Proof. Assume that←−sup and min are well-behaved for all literals in {α | (α← β) ∈ Π}
and that −→sup and max are well-behaved for all literals in {β | (α ← β) ∈ Π}, and
consider any A′ ⊆ A. We show that any entry deducible by I ↑, I ↓, N ↑, N ↓, U ↑, or U ↓
in (Π,A′) belongs to A:

(I ↑) If tα ∈ D{I↑}(Π,A
′), we have that tβ ∈ A′ for some (α ← β) ∈ Π. Since

tβ ∈ A, it holds that fα /∈ A, which yields tα ∈ A because A is total.

(I ↓) If fβ ∈ D{I↓}(Π,A
′), we have that fα ∈ A′ for some (α ← β) ∈ Π. Since

fα ∈ A, it holds that tβ /∈ A, which yields fβ ∈ A because A is total.

(N ↑) If F p ∈ D{N↑}(Π,A
′), we have that p ∈ atom(Π) and supA′(Π, {p}, ∅) = ∅.

By Lemma B.11, we conclude that supA(Π, {p}, {p}) = ∅. Thus, it holds that
T p /∈ A, which yields F p ∈ A because A is total.

(N ↓) If σ ∈ D{N↓}(Π,A
′), we have that σ ∈ {tβ} ∪ minA′(α, {p}) ∪ maxA′(β, ∅)

for some p ∈ (A′)T ∩ atom(Π) such that supA′(Π, {p}, ∅) = {α ← β}.
Since p ∈ AT ∩ atom(Π), it holds that supA(Π, {p}, {p}) 6= ∅. How-
ever, given that min and max are well-behaved for α and β, respectively, we
also have that (α ← β) /∈ supA′∪{σ}(Π, {p}, ∅). By Lemma B.11, we con-
clude that supA∪{σ}(Π, {p}, {p}) ⊆ supA′∪{σ}(Π, {p}, ∅) ⊆ supA′(Π, {p}, ∅) \
{α ← β} = ∅. That is, supA∪{σ}(Π, {p}, {p}) = ∅ 6= supA(Π, {p}, {p}), which
yields σ /∈ A. Finally, since A is total, σ /∈ A implies σ ∈ A.

B.2 Chapter 3 137

(U ↑) If F p ∈ D{U↑}(Π,A
′), we have that p ∈ S for some S ⊆ atom(Π) such that

supA′(Π, S, S) = ∅. By Lemma B.11, we conclude that supA(Π, S, S) = ∅.
Thus, it holds that T p /∈ A, which yields F p ∈ A because A is total.

(U ↓) If σ ∈ D{U↓}(Π,A
′), we have that σ ∈ {tβ} ∪ minA′(α, S) ∪ maxA′(β, S)

for some S ⊆ atom(Π) such that (A′)T ∩ S 6= ∅ and supA′(Π, S, S) =
{α ← β}. Since AT ∩ S 6= ∅, it holds that supA(Π, S, S) 6= ∅. However,
given that min and max are well-behaved for α and β, respectively, we also
have that (α ← β) /∈ supA′∪{σ}(Π, S, S). By Lemma B.11, we conclude that
supA∪{σ}(Π, S, S) ⊆ supA′∪{σ}(Π, S, S) ⊆ supA′(Π, S, S) \ {α ← β} = ∅.
That is, supA∪{σ}(Π, S, S) = ∅ 6= supA(Π, S, S), which yields σ /∈ A. Finally,
since A is total, σ /∈ A implies σ ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible
by I ↑, I ↓, N ↑, N ↓, U ↑, or U ↓ belongs to A, so that D{(a)–(f)}(Π,A

′) ⊆ A.

Finally, the next two lemmas show that, for a total assignment A such that the truth
values of variables v ∈ atom(Π)∪ conj (Π)∪ card(Π)∪ disj (Π) match the valuation of
τ [v] w.r.t. AT ∩ atom(Π), the language-specific tableau rules in Figure 3.5, 3.7, and 3.8
on Page 37, 41, and 44, respectively, preserve the entries of A when applied w.r.t. any
assignment contained in A.

Lemma B.13. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), we have that

1. tv ∈ A iff X |= τ [v];

2. tnot v ∈ A iff X |= τ [not v];

3. fv ∈ A iff X 6|= τ [v];

4. fnot v ∈ A iff X 6|= τ [not v].

Proof. By the definition of A, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π):

1. tv ∈ A iff T v ∈ A iff X |= τ [v];

2. tnot v ∈ A iff F v ∈ A iff X 6|= τ [v] iff X |= ¬τ [v] iff X |= τ [not v];

3. fv ∈ A iff F v ∈ A iff X 6|= τ [v];

4. fnot v ∈ A iff T v ∈ A iff X |= τ [v] iff X 6|= ¬τ [v] iff X 6|= τ [not v].

We have thus shown that all items of the statement hold.

Lemma B.14. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every A′ ⊆ A, we have that D{(h)–(v)}(Π,A
′) ⊆ A.

138 Proofs

Proof. By Lemma B.13, for every literal l = v or l = not v, where v ∈ atom(Π) ∪
conj (Π)∪card(Π)∪disj (Π), we have that tl ∈ A iffX |= τ [l], and that f l ∈ A iffX 6|=
τ [l]. Hence, we can treat such conditions as synonyms in the following consideration of
some A′ ⊆ A and the tableau rules (h)–(v):

(TC↑) If {l1, . . . , ln} ∈ conj (Π) such that {tl1, . . . , tln} ⊆ A′, we have that X |=
τ [l1], . . . , X |= τ [ln]. That is,X |= (τ [l1]∧· · ·∧τ [ln]), so that T {l1, . . . , ln} ∈ A.

(TC↓) If {l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π) such that
{F {l1, . . . , li−1, li, li+1, . . . , ln}, tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A′, we
have that X |= τ [l1], . . . , X |= τ [li−1], X |= τ [li+1], . . . , X |= τ [ln] but
X 6|= (τ [l1] ∧ · · · ∧ τ [li−1] ∧ τ [li] ∧ τ [li+1] ∧ · · · ∧ τ [ln]). That is, X 6|= τ [li], so
that f li ∈ A.

(FC↑) If {l1, . . . , li, . . . , ln} ∈ conj (Π) such that f li ∈ A′, we have that X 6|= τ [li].
That is, X 6|= (τ [l1] ∧ · · · ∧ τ [li] ∧ · · · ∧ τ [ln]), so that F {l1, . . . , li, . . . , ln} ∈ A.

(FC↓) If {l1, . . . , ln} ∈ conj (Π) such that T {l1, . . . , ln} ∈ A′, we have that X |=
(τ [l1]∧· · ·∧τ [ln]). That is,X |= τ [l1], . . . , X |= τ [ln], so that {tl1, . . . , tln} ⊆ A.

(TLU ↑) If j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlj ,
f lk+1, . . . ,f ln} ⊆ A′, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have
that {l1, . . . , lj} 6⊆ L, that is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any

L ⊆ {l1, . . . , ln} such that k < |L|, we have that L ∩ {lk+1, . . . , ln} 6= ∅, that is,
X 6|= (

∧
l∈Lτ [l]). We obtain that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ A.

(TLU↓) If j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k, tl1, . . . , tlj−1,f lk+1, . . . ,f ln} ⊆
A′, we have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

However, for any L ⊆ {l1, . . . , ln} such that k < |L|, we have that
L ∩ {lk+1, . . . , ln} 6= ∅, that is, X 6|= (

∧
l∈Lτ [l]). Furthermore, for any

L ⊆ {l1, . . . , ln} such that |L| < j and L 6= {l1, . . . , lj−1}, we have that
{l1, . . . , lj−1} 6⊆ L, that is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). We obtain that

X |=
∧
L⊆{l1,...,ln},
(|L|<j and L6={l1,...,lj−1}) or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is, X 6|=
(
(τ [l1]∧· · ·∧τ [lj−1])→ (τ [lj]∨· · ·∨τ [lk]∨τ [lk+1]∨· · ·∨τ [ln])

)
,

so that X 6|= τ [lj], . . . , X 6|= τ [lk] and {f lj , . . . ,f lk} ⊆ A.

(TLU ↓) If j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k, tl1, . . . , tlj ,f lk+2, . . . ,f ln} ⊆
A′, we have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

B.2 Chapter 3 139

However, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that
{l1, . . . , lj} 6⊆ L, that is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any

L ⊆ {l1, . . . , ln} such that k < |L| and L 6= {l1, . . . , lk+1}, we have that
L ∩ {lk+2, . . . , ln} 6= ∅, that is, X 6|= (

∧
l∈Lτ [l]). We obtain that

X |=
∧
L⊆{l1,...,ln},
|L|<j or (k<|L| and L6={l1,...,lk+1})

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is,X 6|=
(
(τ [l1]∧· · ·∧τ [lj]∧τ [lj+1]∧· · ·∧τ [lk+1])→ (τ [lk+2]∨· · ·∨τ [ln])

)
,

so that X |= τ [lj+1], . . . , X |= τ [lk+1] and {tlj+1, . . . , tlk+1} ⊆ A.

(FL↑) If j{l1, . . . , lj , . . . , ln}k ∈ card(Π) such that {f lj , . . . ,f ln} ⊆ A′, for L′ =
{l ∈ {l1, . . . , ln} | X |= τ [l]}, we have that L′ ⊆ {l1, . . . , lj−1} and |L′| < j,
while X 6|= τ [l] for all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l]) →

(
∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lj , . . . , ln}k ∈ A.

(FL↓) If j{l1, . . . , lj , lj+1, . . . , ln}k ∈ card(Π) such that
{T j{l1, . . . , lj , lj+1, . . . , ln}k,f lj+1, . . . ,f ln} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

In particular, for every 1 ≤ i ≤ j and Li = {l ∈ {l1, . . . , ln} \ {li} | X |= τ [l]},
we have that Li ⊆ {l1, . . . , lj} \ {li} and |Li| < j, while X 6|= τ [l] for every
l ∈ {l1, . . . , ln} \ (Li ∪ {li}). Hence, X |=

(
(
∧
l∈Liτ [l])→ (

∨
l∈{l1,...,ln}\Liτ [l])

)
but X 6|=

(
(
∧
l∈Liτ [l]) → (

∨
l∈{l1,...,ln}\(Li∪{li})τ [l])

)
. That is, X |= τ [li] for

every 1 ≤ i ≤ j, so that {tl1, . . . , tlj} ⊆ A.

(FU ↑) If j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlk+1} ⊆ A′, for L′ =
{l ∈ {l1, . . . , ln} | X |= τ [l]}, we have that {l1, . . . , lk+1} ⊆ L′ and k < |L′|,
while X 6|= τ [l] for all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l]) →

(
∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lk+1, . . . , ln}k ∈ A.

(FU ↓) If j{l1, . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that
{T j{l1, . . . , lk, lk+1, . . . , ln}k, tl1, . . . , tlk} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

In particular, for every k < i ≤ n and Li = {l ∈ {l1, . . . , ln} | X |= τ [l]} ∪ {li},
we have that {l1, . . . , lk} ∪ {li} ⊆ Li and k < |Li|, while X 6|= τ [l] for every
l ∈ {l1, . . . , ln} \ Li. Hence, X |=

(
(
∧
l∈Liτ [l]) → (

∨
l∈{l1,...,ln}\Liτ [l])

)
but

X 6|=
(
(
∧
l∈Li\{li}τ [l]) → (

∨
l∈{l1,...,ln}\Liτ [l])

)
. That is, X 6|= τ [li] for every

k < i ≤ n, so that {f lk+1, . . . ,f ln} ⊆ A.

140 Proofs

(TD↑) If {l1; . . . ; li; . . . ; ln} ∈ disj (Π) such that tli ∈ A′, we have that X |= τ [li].
That is, X |= (τ [l1] ∨ · · · ∨ τ [li] ∨ · · · ∨ τ [ln]), so that T {l1; . . . ; li; . . . ; ln} ∈ A.

(TD↓) If {l1; . . . ; ln} ∈ disj (Π) such that F {l1; . . . ; ln} ∈ A′, we have that
X 6|= (τ [l1] ∨ · · · ∨ τ [ln]). That is, X 6|= τ [l1], . . . , X 6|= τ [ln], so that
{f l1, . . . ,f ln} ⊆ A.

(FD↑) If {l1; . . . ; ln} ∈ disj (Π) such that {f l1, . . . ,f ln} ⊆ A′, we have that X 6|=
τ [l1], . . . , X 6|= τ [ln]. That is,X 6|= (τ [l1]∨· · ·∨τ [ln]), so that F {l1; . . . ; ln} ∈ A.

(FD↓) If {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π) such that
{T {l1; . . . ; li−1; li; li+1; . . . ; ln},f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆ A′, we
have that X 6|= τ [l1], . . . , X 6|= τ [li−1], X 6|= τ [li+1], . . . , X 6|= τ [ln] but
X |= (τ [l1] ∨ · · · ∨ τ [li−1] ∨ τ [li] ∨ τ [li+1] ∨ · · · ∨ τ [ln]). That is, X |= τ [li], so
that tli ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible
by some of the tableau rules (h)–(v) belongs to A, so that D{(h)–(v)}(Π,A

′) ⊆ A.

Proofs of Soundness and Completeness

The following theorem characterizes the answer sets of a disjunctive program in terms of
total assignments A such that the generic tableau rules in Figure 3.4 on Page 34 do not
yield a contradiction and the entries in A match the valuations of propositional formulas
associated with their variables.

Theorem B.15. Let Π be a disjunctive program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α ← β) ∈ Π and supA(Π, S, S) 6= ∅ or
AT ∩ S = ∅ for every S ⊆ atom(Π).

Proof. By Lemma B.13, for every literal l = v or l = not v, where v ∈ atom(Π) ∪
conj (Π)∪card(Π)∪disj (Π), we have that tl ∈ A iffX |= τ [l], and that f l ∈ A iffX 6|=
τ [l]. Hence, we can treat such conditions as synonyms in the following consideration of
the implications of the statement:

(⇒) Assume that X is an answer set of Π. Then, for every (α← β) ∈ Π, we have that
X |=

(
τ [β] → τ [α]

)
if α /∈ card(Π), and that X |=

(
τ [β] →

(
τ [α] ∧

∧
p∈atom(α)(p ∨

¬p)
))

if α ∈ card(Π). This implies that X 6|= τ [β] or X |= τ [α], from which we
conclude that tβ /∈ A or fα /∈ A. Furthermore, for any S ⊆ atom(Π) such that
AT ∩ S = X ∩ S 6= ∅, we have that Y = X \ S ⊂ X is not a model of (τ [Π])X .
That is, Y 6|= φX for some φ ∈ τ [Π], where φ =

(
τ [β] → τ [α]

)
if α /∈ card(Π) or

φ =
(
τ [β]→

(
τ [α]∧

∧
p∈atom(α)(p∨¬p)

))
if α ∈ card(Π) for some (α← β) ∈ Π. In

view of X |= φ but Y 6|= φX , we conclude that φX 6= ⊥, Y |= (τ [β])X , X |= τ [β], and
X |= τ [α]. Furthermore, from X |= τ [β], we immediately obtain fβ /∈ A.

Given Y |= (τ [β])X , we first show that −→supA(β, S) holds. The following cases are
possible:

B.2 Chapter 3 141

1. β = not v for some v ∈ atom(Π)∪conj (Π)∪card(Π), so that−→supA(β, S) holds.

2. β ∈ Y = X \ S, so that β ∈ atom(Π) \ S and −→supA(β, S) hold.

3. β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

Since Y |= (τ [β])X , for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that
{l ∈ L | f l ∈ A} 6= ∅, L ∩ S 6= ∅, or {l ∈ {l1, . . . , ln} \ L | f l /∈ A} 6⊆ S.
However, regarding L′ = {l ∈ {l1, . . . , ln} \ S | f l /∈ A}, it holds that {l ∈ L′ |
f l ∈ A} = ∅, L′ ∩ S = ∅, and {l ∈ {l1, . . . , ln} \ L′ | f l /∈ A} ⊆ S. It follows
that |L′| ≥ j, so that −→supA(β, S) holds.

4. β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =∧

l∈{l1,...,ln}(τ [l])X . Since Y |= (τ [β])X , we conclude that Y |= (τ [l])X

for every l ∈ {l1, . . . , ln}. Given this, one of the first three cases applies to
each l ∈ {l1, . . . , ln}, from which we conclude that −→supA(l, S) holds, so that
−→supA(β, S) holds as well.

We have thus shown that −→supA(β, S) holds.
We now turn to proving that←−supA(α, S) holds. For this, note that, if α /∈ card(Π),

X |= τ [α] but Y 6|= (τ [α])X yield α ∈ atom(Π) ∪ disj (Π). Hence, the following cases
are possible:

1. α ∈ S, so that←−supA(α, S) holds.

2. α = {l1; . . . ; ln} ∈ disj (Π) and ∅ 6= {l ∈ {l1, . . . , ln} | tl ∈ A} ⊆ S. That is,
{l1, . . . , ln} ∩ S 6= ∅ and {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, so that←−supA(α, S)
holds.

3. α = j{l1, . . . , ln}k ∈ card(Π) and ({l1, . . . , ln} ∩ X) ∩ S 6= ∅ because X |=
τ [α] but Y 6|=

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X .3 Furthermore, X |= τ [α] implies
|{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k. Along with ({l1, . . . , ln} ∩X) ∩ S 6= ∅, that
is, {l ∈ {l1, . . . , ln} ∩ S | tl ∈ A} 6= ∅, we conclude that |{l ∈ {l1, . . . , ln} \ S |
tl ∈ A}| < k, so that←−supA(α, S) holds.

We have thus shown that ←−supA(α, S) holds. Along with the previous observations that
fβ /∈ A and that −→supA(β, S) holds, we conclude that (α ← β) ∈ supA(Π, S, S), so
that supA(Π, S, S) 6= ∅. Since the choice of S ⊆ atom(Π) such that AT ∩ S 6= ∅ was
arbitrary, this establishes that supA(Π, S, S) 6= ∅ or AT ∩S = ∅ for every S ⊆ atom(Π).

(⇐) Assume that X is not an answer set of Π. Then, there is either some (α← β) ∈ Π
such that X |= τ [β] and X 6|= τ [α] or some Y ⊂ X such that Y |= (τ [Π])X . In the
former case, we have that tβ ∈ A and fα ∈ A for some (α ← β) ∈ Π. In the latter
case, let S = X \ Y . Then, it holds that ∅ 6= AT ∩S = S. For the sake of contradiction,
assume that supA(Π, S, S) 6= ∅, that is, (α ← β) ∈ Π such that fβ /∈ A,←−supA(α, S),
and −→supA(β, S) hold.

In view of←−supA(α, S), the following cases are possible:

3Note that all atoms occurring in
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X belong to {l1, . . . , ln} ∩X .

142 Proofs

1. α ∈ S, (τ [α])X = α, and so

Y 6|= (τ [α])X .

2. α = {l1; . . . ; ln} ∈ disj (Π), {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, (τ [α])X ≡∨
l∈{l1,...,ln}∩Sτ [l] =

∨
p∈{l1,...,ln}∩Sp, and so

Y 6|= (τ [α])X .

3. α = j{l1, . . . , ln}k ∈ card(Π), {l1, . . . , ln} ∩ S = atom(α) ∩ S 6= ∅, and so

Y 6|=
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X .

We have thus shown that Y 6|= (τ [α])X if α /∈ card(Π), and that Y 6|=
(
τ [α] ∧∧

p∈atom(α)(p ∨ ¬p)
)X if α ∈ card(Π).

We now turn to β, for which fβ /∈ A implies tβ ∈ A, that is, X |= τ [β]. Further-
more, we have that −→supA(β, S) holds, and the following cases are possible:

1. β = not v for some v ∈ atom(Π) ∪ conj (Π) ∪ card(Π), (τ [β])X = ¬⊥, and so

Y |= (τ [β])X .

2. β ∈ atom(Π) \ S, (τ [β])X = β ∈ Y , and so

Y |= (τ [β])X .

3. β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

For any L ⊆ {l1, . . . , ln} such that k < |L|, X |= τ [β] implies (
∧
l∈Lτ [l])X = ⊥,

so that Y 6|= (
∧
l∈Lτ [l])X . Furthermore, since −→supA(β, S) holds, we have that

|{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| ≥ j. Hence, for any L ⊆ {l1, . . . , ln}
such that |L| < j, it holds that {l ∈ {l1, . . . , ln} \ S | f l /∈ A} = {l ∈
{l1, . . . , ln} \ S | tl ∈ A} 6⊆ L and {l ∈ {l1, . . . , ln} \ L | tl ∈ A} 6⊆ S,
so that Y |= (

∨
l∈{l1,...,ln}\Lτ [l])X . Combining the cases for |L| < j and k < |L|

yields that

Y |= (τ [β])X .

4. β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =∧

l∈{l1,...,ln}(τ [l])X . For every l ∈ {l1, . . . , ln}, X |= τ [β] and −→supA(β, S) im-
ply X |= τ [l] and −→supA(l, S). Given this, one of the first three cases applies to
each l ∈ {l1, . . . , ln}, from which we conclude that Y |= (τ [l])X , and so

Y |= (τ [β])X .

B.2 Chapter 3 143

We have thus shown that Y |= (τ [β])X . Along with Y 6|= (τ [α])X if α /∈ card(Π)

and Y 6|=
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X if α ∈ card(Π), we further conclude that

Y 6|=
(
τ [β]→ τ [α]

)X ifα /∈ card(Π) and Y 6|=
(
τ [β]→

(
τ [α]∧

∧
p∈atom(α)(p∨¬p)

))X
if α ∈ card(Π). That is, Y 6|= (τ [Π])X , which is a contradiction to our initial assumption.
This shows that supA(Π, S, S) 6= ∅ cannot be the case, so that supA(Π, S, S) = ∅ must
hold. In addition, ∅ 6= AT ∩ S = S holds by the choice of S = X \ Y .

We are now ready to show Theorem 3.9, 3.10, 3.13, and 3.14, stating the soundness
and completeness of tableau calculi for unary, conjunctive, cardinality, and disjunctive
programs, respectively. Since disjunctive programs include unary, conjunctive, and car-
dinality programs, it is sufficient to prove Theorem 3.14.

Theorem 3.14. Let Π be a disjunctive program.
Then, we have that the following holds for the tableau calculus consisting of the

tableau rules (a)–(v):

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

Proof. We separately consider the items of the statement:

1. By applying Cut[atom(Π)∪conj (Π)∪card(Π)∪disj (Π)], an incomplete branch
in a tableau for Π and ∅ can be extended to a subtableau such that, for every branch
(Π,A) in it, we have that atom(Π)∪ conj (Π)∪ card(Π)∪ disj (Π) ⊆ AT ∪AF .
Furthermore, if (Π,A) is not complete, thenD{(a)–(f),(h)–(v)}(Π,A) 6⊆ A, so that the
application of some of the tableau rules (a)–(f) in Figure 3.4 or (h)–(v) in Figure 3.5,
3.7, and 3.8 yields a contradictory and thus complete branch.

2. By Theorem B.15, for every X ⊆ atom(Π), we have that X is an answer set of Π
iff the total assignment

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α ← β) ∈ Π and supA(Π, S, S) 6= ∅
or AT ∩ S = ∅ for every S ⊆ atom(Π). Given this, we separately show the
implications of the second item:

(⇒) Assume that X is an answer set of Π. Then, Lemma B.10, B.12, and B.14
establish that D{(a)–(f),(h)–(v)}(Π,A

′) ⊆ A for every A′ ⊆ A. Furthermore,
for any application of Cut[atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π)] on a
branch (Π,A′) such that A′ ⊆ A, we have that the assignment in exactly one
of the resulting branches is contained in A. Along with ∅ ⊆ A, it follows that
every complete tableau for Π and ∅ has a non-contradictory branch (Π,A)
such that AT ∩ atom(Π) = X . By Lemma B.7, B.8, and B.9, we also
have that (Π,A) is the unique non-contradictory complete branch such that
AT ∩ atom(Π) = X .

144 Proofs

(⇐) Assume that (Π,A) is a non-contradictory complete branch. Then, for every
v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), Lemma B.7, B.8, and B.9
establish that T v ∈ A iff AT ∩ atom(Π) |= τ [v]. Furthermore, Lemma B.4
and B.5 show that tβ /∈ A or fα /∈ A for every (α ← β) ∈ Π and that
supA(Π, S, S) 6= ∅ or AT ∩ S = ∅ for every S ⊆ atom(Π). By Theo-
rem B.15, we conclude that X = AT ∩ atom(Π) is an answer set of Π.

3. From the second item, if Π has an answer set, then every complete tableau for Π
and ∅ has a non-contradictory branch; by the first item, there is some complete
tableau for Π and ∅, so that some complete tableau for Π and ∅ is not a refutation.
Conversely, if some complete tableau for Π and ∅ is not a refutation, it has a non-
contradictory branch (Π,A), and AT ∩ atom(Π) is an answer set of Π, as shown
in the proof of the second item.

We have thus shown that all items of the statement hold.

Proofs of Correspondences on Normal Programs

We now show the correspondences stated in Proposition 3.11 and 3.12 between the basic
tableau rules in Figure 3.1 on Page 19 and the (generic) tableau rules in Figure 3.4 and 3.5
on Page 34 and 37, respectively, on the common class of normal programs.

Proposition 3.11. Let Π be a normal program, A an assignment, and F,G any pair
of a basic tableau rule F and a generic tableau rule G belonging to the same line in
Table 3.1.

Then, we have that

1. D{F}(Π,A) = D{G}(Π,A) if F /∈ {BTA,WFJ[2atom(Π)]};

2. D{BTA}(Π,A) ⊇ D{N↓}(Π,A) and, if D{BTA}(Π,A) 6= D{N↓}(Π,A), then A ∪
D{N↑}(Π,A) is contradictory;

3. D{WFJ[2atom(Π)]}(Π,A) ⊇ D{U↓}(Π,A) and, if TB ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then A ∪D{U↑}(Π,A ∪ {FB}) is contradictory.

Proof. The correspondences are obvious for the pairs (c), (a), (d), (b), (a), (h), (b), (i),
(e), (j), and (f), (k). It remains to show the statement for the pairs FFA,N ↑, BTA,N ↓,
WFN[2atom(Π)],U ↑, and WFJ[2atom(Π)],U ↓:

(FFA,N ↑) We have that F p ∈ D{FFA}(Π,A) iff p ∈ atom(Π) such that bodyΠ(p) ⊆
AF iff p ∈ atom(Π) such that supA(Π, {p}, ∅) = ∅ iff F p ∈ D{N↑}(Π,A).

(BTA,N ↓) If TB ∈ D{N↓}(Π,A), then supA(Π, {p}, ∅) = {p ← B} for some
p ∈ AT ∩atom(Π), so that α 6= p or Fβ ∈ A for every (α← β) ∈ Π\{p← B}.
From this, we conclude that bodyΠ(p) \AF = {B}, so that TB ∈ D{BTA}(Π,A).
Furthermore, if TB′ ∈ D{BTA}(Π,A) \ D{N↓}(Π,A), then bodyΠ(p′) \ AF ⊆
{B′} for some B′ ∈ body(Π) and p′ ∈ AT ∩ atom(Π), which implies that
supA(Π, {p′}, ∅) ⊆ {p′ ← B′}. However, TB′ /∈ D{N↓}(Π,A) yields that
(p′ ← B′) /∈ supA(Π, {p′}, ∅). Hence, we have that supA(Π, {p′}, ∅) = ∅, and
A ∪D{N↑}(Π,A) is contradictory because p′ ∈ AT ∩ atom(Π).

B.2 Chapter 3 145

(WFN[2atom(Π)],U ↑) We have that F p ∈ D{WFN[2atom(Π)]}(Π,A) iff p ∈ S for some
S ⊆ atom(Π) such that EBΠ(S) ⊆ AF iff p ∈ S for some S ⊆ atom(Π) such
that supA(Π, S, S) = ∅ iff F p ∈ D{U↑}(Π,A).

(WFJ[2atom(Π)],U ↓) If TB ∈ D{U↓}(Π,A), then supA(Π, S, S) = {p ← B}, where
p ∈ S for some S ⊆ atom(Π) such that AT ∩ S 6= ∅. From this, we conclude
that EBΠ(S) \AF = {B}, so that TB ∈ D{WFJ[2atom(Π)]}(Π,A). Furthermore, if
TB′ ∈ D{WFJ[2atom(Π)]}(Π,A) \D{U↓}(Π,A), then EBΠ(S′) \AF ⊆ {B′} for
some B′ ∈ body(Π) and S′ ⊆ atom(Π) such that AT ∩ S′ 6= ∅, which implies
that supA(Π, S′, S′) ⊆ {p′ ← B′ | p′ ∈ S′}. In view of Lemma B.10 and B.11,
we have that supA∪{FB′}(Π, S

′, S′) = ∅, and A ∪ D{U↑}(Π,A ∪ {FB′}) is
contradictory because AT ∩ S′ 6= ∅.

We have thus shown that the stated correspondences according to Table 3.1 hold.

Proposition 3.12. Let Π be a normal program, A an assignment, T a tableau calculus
containing any subset of the tableau rules in Figure 3.1 for Ω = 2atom(Π), and T ′ the
generic image of T .

If FFA ∈ T or BTA /∈ T and if WFJ[Ω] ∈ T implies that {FTB,FFB,WFN[Ω],
Cut[Γ]} ⊆ T for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ,
then we have that the following holds:

1. For every complete tableau of T for Π and A with n branches, there is a complete
tableau of T ′ for Π and A with the same non-contradictory branches and at most
(max{|atom(Π)|, |body(Π)|}+ 1) ∗ n branches overall.

2. Every tableau of T ′ for Π and A is a tableau of T for Π and A.

Proof. Assume that FFA ∈ T or BTA /∈ T and that WFJ[Ω] ∈ T implies that {FTB,
FFB,WFN[Ω],Cut[Γ]} ⊆ T for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ
or body(Π) ⊆ Γ. By Proposition 3.11, we immediately conclude that every tableau
of T ′ for Π and A is a tableau of T for Π and A as well. Furthermore, in view of
the first two items in the statement of Proposition 3.11, we have that any application of
a tableau rule in T other than WFJ[Ω] on a branch (Π,A′) extending (Π,A) leads to
the same result, in terms of deduced entries or a contradiction, respectively, by applying
a corresponding tableau rule in T ′. Hence, it is sufficient to show that, if there is some
TB ∈ D{WFJ[Ω]}(Π,A

′)\(A′∪D{TC↑,U↓}(Π,A
′)), there is a corresponding subtableau

of T ′ that introduces at most |(B+ ∪ B−) \ ((A′)T ∪ (A′)F)| contradictory branches,
while a single remaining branch includes TB (and possibly further entries belonging to
any non-contradictory branch extending (Π,A′∪{TB}) in a complete tableau of T for Π
and A). To this end, assume that TB ∈ D{WFJ[Ω]}(Π,A

′) \ (A′ ∪D{TC↑,U↓}(Π,A
′)).

Then, EBΠ(S) \ (A′)F ⊆ {B} for some S ⊆ atom(Π) such that (A′)T ∩ S 6= ∅,
supA′(Π, S, S) ⊆ {p← B | p ∈ S}, and |supA′(Π, S, S)| 6= 1. Furthermore, one of the
following cases applies:

(supA′(Π, S, S) = ∅) We have that F p ∈ D{U↑}(Π,A
′) for every p ∈ S. Given that

(A′)T ∩S 6= ∅, we conclude that (Π,A′) can be extended to a contradictory branch
by an application of U ↑.

146 Proofs

(supA′(Π, S, S) 6= ∅) In view of Lemma B.10 and B.11, we have that
supA′∪{FB}(Π, S, S) = ∅, so that an application of U ↑ is sufficient to contradict
any extension of (Π,A′) including FB. In particular, if FB ∈ D{FC↑}(Π,A′),
we can extend (Π,A′) to a contradictory branch without cutting. Otherwise, if
Cut[Γ] ∈ T such that body(Π) ⊆ Γ, we can cut on B, contradict the branch for
FB by applying U ↑, and proceed with the branch (Π,A′ ∪ {TB}), also obtained
by applying WFJ[Ω]. Alternatively, if Cut[Γ] ∈ T such that atom(Π) ⊆ Γ, we can
successively cut on atoms in (B+∪B−)\((A′)T ∪(A′)F) and contradict a branch
for f l, where l ∈ B, by applying FC↑ and U ↑. Provided that B+ ∩ B− = ∅,4
this strategy yields a single branch (Π,A′ ∪ {tl | l ∈ B}), which can be
further extended to (Π,A′ ∪ {tl | l ∈ B} ∪ {TB}) by an application of TC↑.
Given that FFB ∈ T , we also have that any non-contradictory branch extending
(Π,A′ ∪ {TB}) in a complete tableau of T for Π and A contains tl for all l ∈ B.

We have thus shown that an entry TB ∈ D{WFJ[Ω]}(Π,A
′) \ (A′ ∪D{TC↑,U↓}(Π,A

′))
can also be generated in the single (if any) non-contradictory branch in a subtableau
of T ′ extending (Π,A′) and admitting the same non-contradictory extensions as
(Π,A′ ∪ {TB}) in a complete tableau of T for Π and A, while introducing at most
max{|atom(Π)|, |body(Π)|} contradictory branches overall along each branch in a com-
plete tableau of T for Π and A.

The previous results allow us to derive Theorem 3.1 as a consequence of Theo-
rem 3.10 (i.e., Theorem 3.14 restricted to the class of conjunctive programs).

Theorem 3.1. Let Π be a normal program.
Then, we have that the following holds for tableau calculi Tsmodels, Tnomore, and

Tnomore++:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

Proof. By Proposition 3.11, Tsmodels, Tnomore, and Tnomore++ admit the same non-
contradictory complete branches as the tableau calculus consisting of the tableau rules
(a)–(k) in Figure 3.4 and 3.5; in particular, if TB ∈ D{U↓}(Π,A) for a branch (Π,A),
we have that TB ∈ D{WFJ[2atom(Π)]}(Π,A), so that A∪D{WFN[2atom(Π)]}(Π,A∪{FB})
is contradictory (cf. Figure 3.1).5 Hence, from Theorem 3.10 and the fact that answer sets
of τ [Π] match answer sets (as introduced in Section 2.1) of Π (cf. [162]), the result fol-
lows immediately for Tnomore++. Moreover, for Tsmodels and Tnomore, using Cut[atom(Π)]

4If B+ ∩ B− 6= ∅, all branches in a subtableau of T ′ obtained by successively cutting on atoms in
(B+∪B−)\((A′)T ∪(A′)

F
) and contradicting branches for f l, where l ∈ B, are contradictory. Given that

FFB ∈ T , any branch extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π and A is contradictory
too.

5Every non-contradictory complete branch has exactly one occurrence in any complete tableau of the
tableau calculus containing (a)–(k), Tsmodels, Tnomore, or Tnomore++ for Π and ∅. For the former, this is estab-
lished by Lemma B.4, B.5, B.8, B.10, B.12, and B.14 (along with the fact that Cut applications preserve non-
contradictory complete branches). For Tsmodels, Tnomore, and Tnomore++, it follows from the observation that
D{(a)–(h),WFN[2atom(Π)]}(Π,A

′) ⊆ D{(a)–(h),WFN[2atom(Π)]}(Π,A) for every assignment A and every A′ ⊆ A.

B.2 Chapter 3 147

and Cut[body(Π)], respectively, in place of Cut[atom(Π) ∪ body(Π)], it is sufficient to
show that the first item of the statement holds. Regarding Tsmodels, note that, for ev-
ery B ∈ body(Π), either TB ∈ D{FTB}(Π,A) or FB ∈ D{FFB}(Π,A) for any non-
contradictory assignment A such that atom(Π) ⊆ AT ∪ AF , so that the first item
of the statement holds for Tsmodels. Regarding Tnomore, for every p ∈ atom(Π), either
T p ∈ D{FTA}(Π,A) or F p ∈ D{FFA}(Π,A) for any non-contradictory assignment A
such that body(Π) ⊆ AT ∪AF , so that the first item of the statement holds for Tnomore

as well.

Along with Lemma B.3 on different variants of tableau rule WFN, Theorem 3.1 yields
Theorem 3.8.

Theorem 3.8. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp∪{WFN[loop(Π)]}:

1. Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π
and ∅.

2. Program Π has an answer set X iff every complete tableau for Π and ∅ has a
unique non-contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

3. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

Proof. By Lemma B.3, Tnomore++ and Tcomp ∪ {WFN[loop(Π)]} admit the same non-
contradictory complete branches. Hence, the result follows immediately from Theo-
rem 3.1.

We have thus proven the formal results presented in Section 3.3, and also demon-
strated Theorem 3.1 and 3.8.

B.2.3 Section 3.4

We below consider minimal refutations of tableau calculi Tnomore, Tsmodels, Tcard , and
Tconj for particular families of logic programs, thus showing exponential separations
between Tnomore and Tsmodels as well as between Tcard and Tconj .

Proposition 3.15. There is an infinite family {Πn} of normal programs such that

1. the size of minimal refutations of Tnomore for Πn is asymptotically linear in n;

2. the size of minimal refutations of Tsmodels for Πn is asymptotically exponential in n.

Proof. Consider the following family {Πn
a ∪Πn

c } of normal programs for n ≥ 1:

Πn
a ∪Πn

c = {x← not x} ∪
⋃

1≤i≤n


x← ai, bi
ai ← not bi
bi ← not ai


The domain of assignments A is dom(A) = {x, {not x}} ∪

⋃
1≤i≤n{ai, bi, {not ai},

{not bi}, {ai, bi}}. We separately investigate minimal refutations of Tnomore and Tsmodels
for members of {Πn

a ∪Πn
c }:

(Tnomore) An optimal strategy to construct a refutation of Tnomore for Πn
a ∪ Πn

c (cf. Fig-
ure 3.11 on Page 48) is as follows:

148 Proofs

1. Cut on {not x}, complete the branch for T {not x}, using the deterministic
tableau rules BTB and FTA, and deduce Tx in the branch for F {not x},
using the deterministic tableau rule BFB.

2. Complete the branch containing Tx (and F {not x}), but none of T {ai, bi}
for 1 ≤ i ≤ n, if it contains n − 1 entries of the form F {ai, bi}, using the
deterministic tableau rules BTA and BTB. Otherwise, if there are less than
n − 1 entries of the form F {ai, bi} in the branch, cut on some unassigned
{ai, bi} for 1 ≤ i ≤ n and complete the branch for T {ai, bi}, using the
deterministic tableau rules BTA and BTB.

In a nutshell, a refutation constructed in this way makes use of immediate contra-
dictions obtained when assigning any of the bodies {ai, bi} to true, so that each
application of Cut[body(Πn

a ∪ Πn
c)] yields one branch that is completed without

cutting any further. Hence, such a refutation of Tnomore for Πn
a ∪Πn

c is of size linear
in n.

(Tsmodels) An optimal strategy to construct a refutation of Tsmodels for Πn
a ∪ Πn

c (cf. Fig-
ure 3.10 on Page 47) is as follows:

1. Cut on x, complete the branch for Fx, using the deterministic tableau rules
FTB and BFA, and deduce F {not x} in the branch for Tx, using the deter-
ministic tableau rule FFB.

2. Complete any of the branches containing Tx (and F {not x}) if the branch
contains n − 1 entries of the form F {ai, bi} for 1 ≤ i ≤ n, using the deter-
ministic tableau rules BTA and BTB. Otherwise, if there are less than n − 1
entries of the form F {ai, bi} in a branch, cut on some unassigned ai for
1 ≤ i ≤ n and deduce F {ai, bi} in the branch for T ai as well as in the
branch for F ai, using the deterministic tableau rules BTA, BTB, and FFB.

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric
alternatives, since F {ai, bi} is deduced in each of the resulting branches. That is,
except for the initial cut on x, applications of Cut[atom(Πn

a ∪ Πn
c)] do not admit

immediate contradictions and must thus be cascaded to form a perfect binary tree.
Hence, a minimal refutation of Tsmodels for Πn

a ∪Πn
c is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tnomore

and Tsmodels for Πn
a ∪ Πn

c are O(n) and O(2n), respectively. Hence, Tnomore is not poly-
nomially simulated by Tsmodels.

Proposition 3.16. There is an infinite family {Πn} of normal programs such that

1. the size of minimal refutations of Tsmodels for Πn is asymptotically linear in n;

2. the size of minimal refutations of Tnomore for Πn is asymptotically exponential in n.

Proof. Consider the following family {Πn
b ∪Πn

c } of normal programs for n ≥ 1:

Πn
b ∪Πn

c = {y ← c1, . . . , cn,not y} ∪
⋃

1≤i≤n


ci ← not ai
ci ← not bi
ai ← not bi
bi ← not ai



B.2 Chapter 3 149

The domain of assignments A is dom(A) = {y, {c1, . . . , cn,not y}} ∪
⋃

1≤i≤n{ai, bi,
ci, {not ai}, {not bi}}. We separately investigate minimal refutations of Tsmodels and
Tnomore for members of {Πn

b ∪Πn
c }:

(Tsmodels) An optimal strategy to construct a refutation of Tsmodels for Πn
b ∪ Πn

c (cf. Fig-
ure 3.13 on Page 50) is as follows:

1. Cut on y, complete the branch for T y, using the deterministic tableau rules
BTA and FFB, and deduce F {c1, . . . , cn,not y} in the branch for F y, using
the deterministic tableau rule BFA.

2. Complete the branch containing F {c1, . . . , cn,not y} (and F y), but none of
F ci for 1 ≤ i ≤ n, if it contains n − 1 entries of the form T ci, using the
deterministic tableau rules BFB, BFA, and FFA. Otherwise, if there are less
than n − 1 entries of the form T ci in the branch, cut on some unassigned
ci for 1 ≤ i ≤ n and complete the branch for F ci, using the deterministic
tableau rules BFB, BFA, and FFA.

In a nutshell, a refutation constructed in this way makes use of immediate contra-
dictions obtained when assigning any of the atoms ci to false, so that each applica-
tion of Cut[atom(Πn

b ∪ Πn
c)] yields one branch that is completed without cutting

any further. Hence, such a refutation of Tsmodels for Πn
b ∪Πn

c is of size linear in n.

(Tnomore) An optimal strategy to construct a refutation of Tnomore for Πn
b ∪ Πn

c (cf. Fig-
ure 3.12 on Page 49) is as follows:

1. Cut on {c1, . . . , cn,not y}, complete the branch for T {c1, . . . , cn,not y},
using the deterministic tableau rules FTA and BTB, and deduce F y in the
branch for F {c1, . . . , cn,not y}, using the deterministic tableau rule FFA.

2. Complete any of the branches containing F {c1, . . . , cn,not y} (and F y) if
the branch contains n − 1 entries of the form T ci for 1 ≤ i ≤ n, using
the deterministic tableau rules BFB, BFA, and FFA. Otherwise, if there are
less than n − 1 entries of the form T ci in a branch, cut on some unassigned
{not ai} for 1 ≤ i ≤ n and deduce T ci in the branch for T {not ai} as well
as in the branch for F {not ai}, using the deterministic tableau rules FTA,
BFB, and BTA.

As the second step shows, cuts on bodies {not ai} (or {not bi}) for 1 ≤
i ≤ n yield symmetric alternatives, since T ci is deduced in each of the result-
ing branches. That is, except for the initial cut on {c1, . . . , cn,not y}, applications
of Cut[body(Πn

b ∪ Πn
c)] do not admit immediate contradictions and must thus be

cascaded to form a perfect binary tree. Hence, a minimal refutation of Tnomore for
Πn
b ∪Πn

c is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tsmodels
and Tnomore for Πn

b ∪ Πn
c are O(n) and O(2n), respectively. Hence, Tsmodels is not poly-

nomially simulated by Tnomore.

Corollary 3.17. Tableau calculi Tsmodels and Tnomore are efficiency-incomparable.

Proof. This result follows immediately from Proposition 3.15 and 3.16, since they show
that neither Tnomore is polynomially simulated by Tsmodels, nor vice versa.

150 Proofs

Corollary 3.18. Tableau calculus Tnomore++ is exponentially stronger than both Tsmodels
and Tnomore.

Proof. This result follows immediately from Corollary 3.17, since Tnomore and Tsmodels are
both polynomially simulated by Tnomore++ (any tableau of Tnomore or Tsmodels is a tableau
of Tnomore++ as well), while Tnomore and Tsmodels are not polynomially simulated by one
another.

Proposition 3.19. Tableau calculus Tcard is exponentially stronger than Tconj .

Proof. Consider the following family {Πn
c ∪Πn

d} of cardinality programs for n ≥ 1:

Πn
c ∪Πn

d = {z ← 1{a1, b1}2, . . . , 1{an, bn}2,not z} ∪
⋃

1≤i≤n

{
ai ← not bi
bi ← not ai

}
The domain of assignments A is dom(A) = {z, {1{a1, b1}2, . . . , 1{an, bn}2,not z}}∪⋃

1≤i≤n{ai, bi, 1{ai, bi}2}.6 We separately investigate minimal refutations of Tcard and
Tconj for members of {Πn

c ∪Πn
d}:

(Tcard) An optimal strategy to construct a refutation of Tcard for Πn
c ∪Πn

d is as follows:

1. Cut on z, complete the branch for T z, using the deterministic tableau
rules N ↓ and FC↑, and deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the
branch for F z, using the deterministic tableau rule I ↓.

2. Complete the branch containing F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and
F z), but none of F 1{ai, bi}2 for 1 ≤ i ≤ n, if it contains n−1 entries of the
form T 1{ai, bi}2, using the deterministic tableau rules TC↓, TLU↓, and I ↓.
Otherwise, if there are less than n− 1 entries of the form T 1{ai, bi}2 in the
branch, cut on some unassigned 1{ai, bi}2 for 1 ≤ i ≤ n and complete the
branch for F 1{ai, bi}2, using the deterministic tableau rules TLU↓ and I ↓.

In a nutshell, a refutation constructed in this way makes use of immediate con-
tradictions obtained when assigning any of the cardinality constraints 1{ai, bi}2 to
false, so that each application of Cut[atom(Πn

c ∪Πn
d)∪conj (Πn

c ∪Πn
d)∪card(Πn

c ∪
Πn
d)] yields one branch that is completed without cutting any further. Hence, such

a refutation of Tcard for Πn
c ∪Πn

d is of size linear in n.

(Tconj) An optimal strategy to construct a refutation of Tconj for Πn
c ∪Πn

d is as follows:

1. Cut on z, complete the branch for T z, using the deterministic tableau
rules N ↓ and FC↑, and deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the
branch for F z, using the deterministic tableau rule I ↓.

2. Complete any of the branches containing
F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z) if the branch contains
n − 1 entries of the form T 1{ai, bi}2, using the deterministic tableau rules
TC↓, TLU↓, and I ↓. Otherwise, if there are less than n − 1 entries of the
form T 1{ai, bi}2 in a branch, cut on some unassigned ai for 1 ≤ i ≤ n and
deduce T 1{ai, bi}2 in the branch for T ai as well as in the branch for F ai,
using the deterministic tableau rules TLU ↑ and I ↓.

6For convenience, we take not ai and not bi to be atomic literals, rather than elements of a (singleton)
conjunction. The latter would also be possible and, in view of the deterministic tableau rules in Figure 3.5
on Page 37, not affect proof complexity.

B.2 Chapter 3 151

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric
alternatives, since T 1{ai, bi}2 is deduced in each of the resulting branches. That is,
except for the initial cut on z, applications of Cut[atom(Πn

c ∪Πn
d)∪conj (Πn

c ∪Πn
d)]

do not admit immediate contradictions and must thus be cascaded to form a perfect
binary tree. Hence, a minimal refutation of Tconj for Πn

c ∪Πn
d is of size exponential

in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tcard and Tconj
for Πn

c ∪Πn
d are O(n) and O(2n), respectively. Since Tconj is polynomially simulated by

Tcard , this shows that Tcard is exponentially stronger than Tconj .

Finally, we case by case show that the application of a tableau rule R↓ can be simu-
lated by means of Cut and R↑, so that the inclusion or exclusion of R↓ cannot (alone) be
responsible for an exponential separation between tableau calculi.

Proposition 3.20. Let Π be a disjunctive program, T a tableau calculus containing any
subset of the tableau rules (a)–(v), and T ′ an approximation of T .

If Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ, then we have that T
is polynomially simulated by T ′.

Proof. Assume that Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ. Then,
we show that deducing an entry σ by a tableau rule R↓ can be simulated by cutting on
var(σ) and completing the branch for σ by an application of R↑. To demonstrate this,
we consider all tableau rules R↓ and show that A∪D{R↑}(Π,A∪ {σ}) is contradictory
if σ ∈ D{R↓}(Π,A):

(I ↓) If fβ ∈ D{I↓}(Π,A), we have that fα ∈ A. Since tα ∈ D{I↑}(Π,A ∪ {tβ}), it
holds that A ∪D{I↑}(Π,A ∪ {tβ}) is contradictory.

(N ↓) If σ ∈ D{N↓}(Π,A), we have that σ ∈ {tβ} ∪ minA(α, {p}) ∪ maxA(β, ∅)
for some p ∈ AT ∩ atom(Π) such that supA(Π, {p}, ∅) = {α ← β}.
For σ = tβ, we get that (α ← β) /∈ supA∪{fβ}(Π, {p}, ∅) =
{(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},←−supA∪{fβ}(α′, {p}),−→supA∪{fβ}(β′, ∅)}. For
σ ∈ minA(α, {p}) or σ ∈ maxA(β, ∅), Lemma B.10 yields that←−supA∪{σ}(α, {p})
or −→supA∪{σ}(β, ∅), respectively, does not hold, which as with σ = tβ implies
that (α ← β) /∈ supA∪{σ}(Π, {p}, ∅). By Lemma B.11, we further conclude
that supA∪{σ}(Π, {p}, ∅) ⊆ supA(Π, {p}, ∅) \ {α ← β} = ∅. That is, F p ∈
D{N↑}(Π,A∪{σ}) for some p ∈ AT ∩atom(Π), so that A∪D{N↑}(Π,A∪{σ})
is contradictory.

(U ↓) If σ ∈ D{U↓}(Π,A), we have that σ ∈ {tβ} ∪ minA(α, S) ∪ maxA(β, S)

for some S ⊆ atom(Π) such that AT ∩ S 6= ∅ and supA(Π, S, S) =
{α ← β}. For σ = tβ, we get that (α ← β) /∈ supA∪{fβ}(Π, S, S) =
{(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},←−supA∪{fβ}(α′, S),−→supA∪{fβ}(β′, S)}. For
σ ∈ minA(α, S) or σ ∈ maxA(β, S), Lemma B.10 yields that ←−supA∪{σ}(α, S)
or −→supA∪{σ}(β, S), respectively, does not hold, which as with σ = tβ implies
that (α ← β) /∈ supA∪{σ}(Π, S, S). By Lemma B.11, we further conclude
that supA∪{σ}(Π, S, S) ⊆ supA(Π, S, S) \ {α ← β} = ∅. That is, F p ∈
D{U↑}(Π,A∪{σ}) for some p ∈ AT ∩atom(Π), so that A∪D{U↑}(Π,A∪{σ})
is contradictory.

152 Proofs

(TC↓) If f li ∈ D{TC↓}(Π,A), we have that {FC, tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A
for C = {l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π). Since TC ∈ D{TC↑}(Π,A ∪
{tli}), it holds that A ∪D{TC↑}(Π,A ∪ {tli}) is contradictory.

(FC↓) If tli ∈ D{FC↓}(Π,A), we have that TC ∈ A for C = {l1, . . . , li, . . . , ln} ∈
conj (Π). Since FC ∈ D{FC↑}(Π,A ∪ {f li}), it holds that A ∪D{FC↑}(Π,A ∪
{f li}) is contradictory.

(TLU↓) If f lj ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj−1,
f lk+1, . . . ,f ln} ⊆ A for B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π).
Since TB ∈ D{TLU↑}(Π,A ∪ {tlj}), it holds that A ∪D{TLU↑}(Π,A ∪ {tlj})
is contradictory.

(TLU ↓) If tlk+1 ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj ,
f lk+2, . . . ,f ln} ⊆ A for B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π). Since
TB ∈ D{TLU↑}(Π,A ∪ {f lk+1}), it holds that A ∪D{TLU↑}(Π,A ∪ {f lk+1})
is contradictory.

(FL↓) If tlj ∈ D{FL↓}(Π,A), we have that {TB,f lj+1, . . . ,f ln} ⊆ A for B =
j{l1, . . . , lj , . . . , ln}k ∈ card(Π). Since FB ∈ D{FL↑}(Π,A ∪ {f lj}), it holds
that A ∪D{FL↑}(Π,A ∪ {f lj}) is contradictory.

(FU ↓) If f lk+1 ∈ D{FU↓}(Π,A), we have that {TB, tl1, . . . , tlk} ⊆ A for B =
j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π). Since FB ∈ D{FU↑}(Π,A ∪ {tlk+1}), it
holds that A ∪D{FU↑}(Π,A ∪ {tlk+1}) is contradictory.

(TD↓) If f li ∈ D{TD↓}(Π,A), we have that FD ∈ A for D = {l1; . . . ; li; . . . ; ln} ∈
disj (Π). Since TD ∈ D{TD↑}(Π,A ∪ {tli}), it holds that A ∪D{TD↑}(Π,A ∪
{tli}) is contradictory.

(FD↓) If tli ∈ D{FD↓}(Π,A), we have that {TD,f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆
A for D = {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π). Since FD ∈
D{FD↑}(Π,A∪ {f li}), it holds that A∪D{FD↑}(Π,A∪ {f li}) is contradictory.

We have thus shown that deducing σ by a tableau rule R↓ can be simulated by means of
applying Cut and R↑. As each such simulation introduces only two additional entries, σ
and the complement of some entry belonging to the branch at hand, every tableau of T
can be transformed into a tableau of T ′ having approximately similar size, provided that
the Cut applications needed for simulations are admitted by T ′. In fact, the variable of
an entry deducible by a tableau rule R↓ cannot be a disjunction, so that all simulations
are possible if Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ.

We have thus proven all formal results presented in Chapter 3.

B.3 Chapter 4

We present proofs of results by sections, dealing with a characterization of answer sets
in terms of nogoods, a decision algorithm for answer set existence, and enumeration
algorithms for answer sets and their projections to a subvocabulary, respectively.

B.3 Chapter 4 153

B.3.1 Section 4.1

To begin with, we show Proposition 4.1 on the correspondence between models of
Comp(Π) and solutions for ∆Π.

Proposition 4.1. Let Π be a normal program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model

of Comp(Π) iff {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \ X} is a solu-
tion for ∆Π.

Proof. We separately show the implications of the statement:

(⇒) Assume that M = (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model
of Comp(Π), and let A = {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \X}.

Then, for every p ∈ atom(Π) and bodyΠ(p) = {B1, . . . , Bk},

M |= p↔ (pB1 ∨ · · · ∨ pBk)

yields that p ∈ X iff {B1, . . . , Bk} ∩ X 6= ∅, which in turn implies that
{T p,FB1, . . . ,FBk} 6⊆ A, {F p,TB1} 6⊆ A, . . . , {F p,TBk} 6⊆ A.

Furthermore, for every B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π),

M |= pB ↔ (p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn)

yields that B ∈ X iff {p1, . . . , pm, pm+1, . . . , pn} ∩ X = {p1, . . . , pm}, which in
turn implies that {FB,T p1, . . . ,T pm,F pm+1, . . . ,F pn} 6⊆ A, {TB,F p1} 6⊆ A, . . . ,
{TB,F pm} 6⊆ A, {TB,T pm+1} 6⊆ A, . . . , {TB,T pn} 6⊆ A.

We have thus shown that none of the nogoods in ∆Π is contained in A, so that A is
a solution for ∆Π.

(⇐) Assume that A = {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \X} is a
solution for ∆Π, and let M = (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)}.

Then, for every p ∈ atom(Π) and bodyΠ(p) = {B1, . . . , Bk}, the fact that
{T p,FB1, . . . ,FBk} 6⊆ A yields that p /∈ X if {B1, . . . , Bk}∩X = ∅. Moreover, since
{F p,TB1} 6⊆ A, . . . , {F p,TBk} 6⊆ A, we have that p ∈ X if {B1, . . . , Bk} ∩X 6= ∅.
From this, we conclude that p ∈ X iff {B1, . . . , Bk} ∩X 6= ∅, so that

M |= p↔ (pB1 ∨ · · · ∨ pBk).

Furthermore, for every B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π),
the fact that {FB,T p1, . . . ,T pm,F pm+1, . . . ,F pn} 6⊆ A yields that B ∈ X if
{p1, . . . , pm, pm+1, . . . , pn} ∩ X = {p1, . . . , pm}. Moreover, since {TB,F p1} 6⊆ A,
. . . , {TB,F pm} 6⊆ A, {TB,T pm+1} 6⊆ A, . . . , {TB,T pn} 6⊆ A, we have that
B /∈ X if {p1, . . . , pm, pm+1, . . . , pn} ∩ X 6= {p1, . . . , pm}. From this, we conclude
that B ∈ X iff {p1, . . . , pm, pm+1, . . . , pn} ∩X = {p1, . . . , pm}, so that

M |= pB ↔ (p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn).

We have thus shown that M satisfies all formulas of Comp(Π), so that M is a model
of Comp(Π).

For proving Theorem 4.3 on the one-to-one correspondence between answer sets of
a tight program Π and solutions for ∆Π, we make use of Lemma 4.2, establishing that
any solution for ∆Π is uniquely determined by its entries over atoms.

154 Proofs

Lemma 4.2. Let Π be a normal program and X ⊆ atom(Π).
Then, we have that

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for⋃
B∈body(Π),B={l1,...,ln} {{FB, tl1, . . . , tln}, {TB,f l1}, . . . , {TB,f ln}} ⊆ ∆Π

such that AT ∩ atom(Π) = X .

Proof. For every B = {l1, . . . , ln} ∈ body(Π), one of the following cases applies:

(B+ ⊆ X and B− ∩X = ∅) We have that {tl1, . . . , tln} = {T p | p ∈ B+} ∪ {F p |
p ∈ B−} ⊆ A. Since {f l1, . . . ,f ln} ∩ A = ∅, it holds that {TB,f l1} 6⊆ A,
. . . , {TB,f ln} 6⊆ A. Furthermore, TB ∈ A and FB /∈ A make sure that
{FB, tl1, . . . , tln} 6⊆ A, where {FB, tl1, . . . , tln} \A = {FB}.

((B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅) We have that {f l1, . . . ,f ln}∩A = ({F p |
p ∈ B+} ∪ {T p | p ∈ B−}) ∩A 6= ∅. Since {tl1, . . . , tln} 6⊆ A, it holds that
{FB, tl1, . . . , tln} 6⊆ A. Furthermore, FB ∈ A and TB /∈ A make sure that
{TB,f l1} 6⊆ A, . . . , {TB,f ln} 6⊆ A, where {TB,f li} \A = {TB} for some
1 ≤ i ≤ n.

The above cases show that, for every B = {l1, . . . , ln} ∈ body(Π), none of
the nogoods {FB, tl1, . . . , tln}, {TB,f l1}, . . . , {TB,f ln} is contained in A, so
that A is a solution for

⋃
B∈body(Π),B={l1,...,ln}{{FB, tl1, . . . , tln}, {TB,f l1}, . . . ,

{TB,f ln}} ⊆ ∆Π. On the other hand, for each B = {l1, . . . , ln} ∈ body(Π),
there is some δ ∈ {{FB, tl1, . . . , tln}, {TB,f l1}, . . . , {TB,f ln}} such that δ \A =
{FB} or δ \ A = {TB}, respectively. Hence, there is no solution B 6= A for⋃
B∈body(Π),B={l1,...,ln}{{FB, tl1, . . . , tln}, {TB,f l1}, . . . , {TB,f ln}} ⊆ ∆Π such

that BT ∩ atom(Π) = X .

Theorem 4.3. Let Π be a tight program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for ∆Π such that AT ∩ atom(Π) = X .

Proof. By Lemma 4.2, there is a subset of ∆Π for which A is the unique solution
such that AT ∩ atom(Π) = X . Along with Proposition 4.1, we conclude that
M ∩atom(Π) = X for some model M of Comp(Π) iff A is the unique solution for ∆Π

such that AT ∩ atom(Π) = X . Finally, by Theorem 3.2 in [68], showing that models of
Comp(Π) coincide with answer sets of Π if Π is tight,7 we conclude that X is an answer
set of Π iff A is the unique solution for ∆Π such that AT ∩ atom(Π) = X .

7Note that Comp(Π) defines the propositions standing for bodies in terms of atoms. Hence, Comp(Π)
is a conservative extension of the completion of Π, originally described without propositions for bodies [37].

B.3 Chapter 4 155

In order to extend the above correspondence result to non-tight programs Π and solu-
tions for ∆Π ∪ΛΠ, we first provide Lemma B.16, linking unfounded sets to the nogoods
in ΛΠ. The proof of Theorem 4.4 makes use of this connection by exploiting the charac-
terization of answer set in terms of unfounded sets given in Corollary 2.4.

Lemma B.16. Let Π be a normal program and A an assignment.
Then, we have that δ ⊆ A for some δ ∈ ΛΠ iff there is an unfounded set U of Π

w.r.t. A such that U ∩AT 6= ∅.

Proof. Every δ ∈ ΛΠ is of the form {T p,FB1, . . . ,FBk}, where p ∈ U for some
U ⊆ atom(Π) such that EBΠ(U) = {B1, . . . , Bk}. Hence, we have that δ ⊆ A for
some δ ∈ ΛΠ iff there is some U ⊆ atom(Π) such that {T p,FB1, . . . ,FBk} ⊆ A for
p ∈ U and EBΠ(U) = {B1, . . . , Bk} iff there is an unfounded set U of Π w.r.t. A such
that U ∩AT 6= ∅.

Theorem 4.4. Let Π be a normal program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T p | p ∈ X} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), B+ ⊆ X,B− ∩X = ∅}
∪ {FB | B ∈ body(Π), (B+ ∩ (atom(Π) \X)) ∪ (B− ∩X) 6= ∅}

is the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

Proof. By Lemma 4.2, there is a subset of ∆Π for which A is the unique solution
such that AT ∩ atom(Π) = X . Along with Proposition 4.1, we conclude that
M ∩ atom(Π) = X for some model M of Comp(Π) iff A is the unique solution
for ∆Π such that AT ∩ atom(Π) = X . For any model M of Comp(Π), it is clear
that M ∩ atom(Π) is a model of Π, that is, head(r) ∈ M , body(r)+ 6⊆ M , or
body(r)− ∩ M 6= ∅ holds for every rule r ∈ Π. Hence, if A is the unique solution
for ∆Π such that AT ∩ atom(Π) = X , then AT ∩ atom(Π) is a model of Π. In ad-
dition, we have that A is body-synchronized for Π according to Definition 2.3 because
AF ∩ body(Π) = {B ∈ body(Π) | (B+ ∩ (atom(Π) \ X)) ∪ (B− ∩ X) 6= ∅} =
{B ∈ body(Π) | (B+ ∩ AF) ∪ (B− ∩ AT) 6= ∅}. We exploit these properties for
showing the implications of the statement:

(⇒) Assume that X is an answer set of Π. Then, by Corollary 1 in [174], we have that
M ∩ atom(Π) = X for some model M of Comp(Π). (See Footnote 7 on Page 154 for
remarks on the role of propositions standing for bodies in Comp(Π).) That is, A is the
unique solution for ∆Π such that AT ∩ atom(Π) = X . Since A is body-synchronized
for Π and AT ∩atom(Π) is a model of Π, by Corollary 2.4, we conclude thatU∩AT = ∅
holds for every unfounded set U of Π w.r.t. A. Hence, by Lemma B.16, A is a solution
for ΛΠ and the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

(⇐) Assume that A is the unique solution for ∆Π∪ΛΠ such that AT ∩atom(Π) = X .
Then, by Lemma B.16, we have that U ∩AT = ∅ holds for every unfounded set U of Π
w.r.t. A. Since A is body-synchronized for Π and AT ∩ atom(Π) is a model of Π, by
Corollary 2.4, we conclude that X is an answer set of Π.

We have thus proven the formal results presented in Section 4.1.

156 Proofs

B.3.2 Section 4.3

We start by showing fundamental properties of UNFOUNDEDSET in Algorithm 4.3 on
Page 68, where Lemma 4.5 and 4.6 establish invariants that are crucial for its soundness
and completeness, stated in Theorem 4.7.

Lemma 4.5. Let Π be a normal program and A an assignment that is body-saturated
for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that the source pointer configuration remains valid throughout the execution of
UNFOUNDEDSET(Π,A).

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer con-
figuration. Then, an invalid source pointer configuration could in principle be obtained
only in Line 13 of Algorithm 4.3, where source(q) is set for some (cyclic) q ∈ atom(Π).
However, by induction on executions of Line 13, we show that the source pointer config-
uration remains valid:

(Base case) Since the given source pointer configuration is valid and A is body-saturated
for Π,8 after finishing the loop in Line 2–5 of Algorithm 4.3, we have that
source(p) ∈ bodyΠ(p) \ AF and source(p)+ ∩ (AF ∪ (scc(p) ∩ S)) = ∅
hold for every cyclic p ∈ atom(Π) \ (AF ∪ S). For the atoms C of
any non-trivial strongly connected component of DG(Π), this implies that⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S). In words, the source point-

ers of atoms in C that are neither false in A nor in the scope S do not contain any
atom of C that is false in A or in the scope S.

(Induction step) Let q ∈ U be any cyclic atom such that the condition in Line 12 of
Algorithm 4.3 applies to q, and let C = scc(q). Then, in view of the choice
of some p ∈ S in Line 6 along with Line 7 and 14–16, manipulating the con-
tents of U and S, respectively, we have that U ⊆ C ∩ S, which yields that q ∈
C ∩ S. Furthermore, assume that the source pointer configuration is valid and that⋃
p∈C\(AF∪S)(source(p)+∩C) ⊆ C \(AF ∪S) holds before setting source(q) to

someB ∈ bodyΠ(q) in Line 13. In terms of the subgraph of DG(Π) containing ev-
ery cyclic p ∈ atom(Π) along with edges (p, p′) for all p′ ∈ source(p)+ ∩ scc(p),⋃
p∈C\(AF∪S)(source(p)+∩C) ⊆ C\(AF ∪S) means that it does not contain any

edge from an atom in C \ (AF ∪S) to an atom in C∩ (AF ∪S). ForB, since A is
body-saturated for Π, the conditionB ∈ EBΠ(U)\AF in Line 10 makes sure that
B+ ∩AF = ∅, and B+ ∩ (C ∩ S) = ∅ is verified in Line 11. Hence, we have that
B+∩C ⊆ C\(AF ∪S), so that, for all edges (q, p) from q to atoms p ∈ B+∩C, it
holds that p ∈ C \ (AF ∪S). As we have seen above that q ∈ C ∩S is not reached
from atoms in C \ (AF ∪S), we conclude that the subgraph of DG(Π) containing
every cyclic p ∈ atom(Π) along with edges (p, p′) for all p′ ∈ source(p)+∩scc(p)
remains acyclic after setting source(q) to B in Line 13. This shows that the source
pointer configuration obtained by executing Line 13 is in turn valid. Finally, we
have that the induction hypothesis still holds for S\{q} constructed in Line 15, that
is,
⋃
p∈C\(AF∪(S\{q}))(source(p)+ ∩ C) =

(⋃
p∈C\(AF∪S)(source(p)+ ∩ C)

)
∪

(B+ ∩ C) ⊆ C \ (AF ∪ S) ⊆ C \ (AF ∪ (S \ {q})).

8Recall that A is body-saturated for Π if {B ∈ body(Π) | (B+ ∩AF) ∪ (B− ∩AT) 6= ∅} ⊆ AF .

B.3 Chapter 4 157

We have thus shown that a valid source pointer configuration cannot be invalidated when
invoking UNFOUNDEDSET(Π,A) with an assignment A that is body-saturated for Π.

Lemma 4.6. Let Π be a normal program and A an assignment that is atom-saturated
for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that every unfounded set U ⊆ atom(Π) \AF of Π w.r.t. A such that all p ∈ U
belong to the same strongly connected component of DG(Π) is contained in S whenever
Line 6 of Algorithm 4.3 is entered.

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer con-
figuration. Then, let U ⊆ atom(Π) \ AF be any unfounded set of Π w.r.t. A such
that all p ∈ U belong to the same strongly connected component of DG(Π). Since
U ∩AF = ∅ and A is atom-saturated for Π,9 we have that bodyΠ(p) 6⊆ AF for every
p ∈ U , while EBΠ(U) ⊆ AF implies that B+ ∩ U 6= ∅ for each B ∈ bodyΠ(p) \AF .
That is, all p ∈ U are cyclic, and source(p) ∈ bodyΠ(p) ∪ {⊥} holds because the given
source pointer configuration is valid. By induction on executions of the test in Line 6 of
Algorithm 4.3, we show that U 6⊆ S is impossible whenever Line 6 is entered:

(Base case) For the sake of contradiction, assume that U 6⊆ S after finishing the loop
in Line 2–5 of Algorithm 4.3. Then, due to Line 1 of Algorithm 4.3, for each
p ∈ U \ S, we have that source(p) /∈ AF ∪ {⊥}, which further implies that
source(p) ∈ bodyΠ(p) \AF and source(p)+ ∩ U 6= ∅. Moreover, the condition
source(p)+∩(scc(p)∩S) 6= ∅ in Line 3 does not apply to source(p), which yields
that source(p)+∩(U ∩S) = ∅ and source(p)+∩(U \S) 6= ∅. Since U \S is finite
and each atom of U \ S has some successor belonging to U \ S in the subgraph
of DG(Π) containing every cyclic p ∈ atom(Π) along with edges (p, q) for all
q ∈ source(p)+ ∩ scc(p), we conclude that this subgraph cannot be acyclic, which
is a contradiction to the assumption that UNFOUNDEDSET(Π,A) is invoked on a
valid source pointer configuration.

(Induction step) For the sake of contradiction, assume that U ⊆ S at the beginning of
an iteration of the loop in Line 6–17 of Algorithm 4.3, but U 6⊆ S when Line 6
is reentered after finishing the iteration. In this iteration, the elements of U \ S
must have (successively) been removed from S in Line 15. In particular, some
q ∈ U \ S has been removed from S before any other atom of U . To achieve this,
the condition in Line 11 must have applied to some B ∈ bodyΠ(q) \AF , which
yields that B+ ∩ (scc(q)∩U ′) = ∅ for some superset U ′ of U . Since U ⊆ scc(q),
this implies that B+ ∩ U = ∅, which is a contradiction to the assumption that U is
an unfounded set of Π w.r.t. A.

We have thus shown that, if UNFOUNDEDSET(Π,A) is invoked on a valid source pointer
configuration with an assignment A that is atom-saturated for Π, every unfounded set
U ⊆ atom(Π) \AF of Π w.r.t. A such that all p ∈ U belong to the same strongly con-
nected component of DG(Π) must be contained in S whenever Line 6 of Algorithm 4.3
is entered. If any such unfounded set U is non-empty, this invariant excludes the termi-
nation of Algorithm 4.3 by returning ∅ in Line 18.

9Recall that A is atom-saturated for Π if {p ∈ atom(Π) | bodyΠ(p) ⊆ AF } ⊆ AF .

158 Proofs

Theorem 4.7. Let Π be a normal program and A an assignment that is both atom- and
body-saturated for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then
we have that UNFOUNDEDSET(Π,A) returns an unfounded set U ⊆ atom(Π) \ AF

of Π w.r.t. A, where U = ∅ iff there is no unfounded set U ′ of Π w.r.t. A such that
U ′ 6⊆ AF .

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer con-
figuration. Then, in view of the condition EBΠ(U) ⊆ AF in Line 9 of Algorithm 4.3 and
the fact that ∅, which can be returned in Line 18, is a (trivial) unfounded set of Π w.r.t. A,
we have that UNFOUNDEDSET(Π,A) can only return an unfounded set of Π w.r.t. A.
By Corollary 2.10, the existence of some non-empty unfounded set U ′ of Π w.r.t. A such
thatU ′ 6⊆ AF implies that there is a non-empty unfounded setU ⊆ U ′\AF of Π w.r.t. A
such that all p ∈ U belong to the same strongly connected component of DG(Π). Fur-
thermore, by Lemma 4.6, any such unfounded set U of Π w.r.t. A is contained in the
scope S whenever Line 6 is entered. This shows that UNFOUNDEDSET(Π,A) cannot
return ∅ in Line 18 if there is some non-empty unfounded set U ′ of Π w.r.t. A such that
U ′ 6⊆ AF .

It only remains to show that UNFOUNDEDSET(Π,A) is terminating. To this end,
note that the scope S is increasing over iterations of the loop in Line 2–5 of Algorithm 4.3,
and strictly decreasing over iterations of the loop in Line 6–17. For U handled in the loop
in Line 8–17, we observe that it is strictly increasing when U is extended in Line 16, and
strictly decreasing when an element q is removed from U in Line 14, where q cannot be
added back later on because it is also removed from S in Line 15. Since atom(Π) is finite
andU ⊆ S ⊆ atom(Π)\AF , we conclude that none of the loops in Algorithm 4.3 can be
iterated infinitely. Rather, any atom can be added to and removed from S and U , respec-
tively, at most once, which yields that the time complexity of UNFOUNDEDSET(Π,A)
is linear in the size of Π.

Next, we show properties of NOGOODPROPAGATION in Algorithm 4.2 on Page 65.
Lemma 4.8 essentially establishes the applicability of Theorem 4.7 whenever an un-
founded set check is initiated in Line 12 of Algorithm 4.2, and Lemma 4.9 provides
properties crucial for the soundness and completeness of conflict-driven ASP solving.

Lemma 4.8. Let Π be a normal program,∇′ a set of nogoods, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of

Algorithm 4.2 is entered in an execution of NOGOODPROPAGATION(Π,∇′,A′).

Proof. For the sake of contradiction, assume that Line 10 of Algorithm 4.2 is entered
in an execution of NOGOODPROPAGATION(Π,∇′,A′), while the current assignment A
is not atom-saturated or not body-saturated for Π. Then, some of the following cases
applies:

(bodyΠ(p) ⊆ AF but F p /∈ A for some p ∈ atom(Π)) The nogood δ = {T p,FB1,
. . . ,FBk} ∈ ∆Π, where bodyΠ(p) = {B1, . . . , Bk}, is such that δ \A ⊆ {T p}.
In view of the condition in Line 4 of Algorithm 4.2, tested in the previous iteration
of the loop in Line 3–9, we have that T p /∈ A and δ \A = {T p}. But this implies
that F p is unit-resulting for δ w.r.t. A, so that the condition Σ = ∅ cannot hold in
Line 9, which contradicts that Line 10 of Algorithm 4.2 is entered with A being
the current assignment.

B.3 Chapter 4 159

((B+ ∩AF) ∪ (B− ∩AT) 6= ∅ but FB /∈ A for some B ∈ body(Π)) Some nogood
δ = {TB,f l} ∈ ∆Π, where l ∈ B, is such that δ \A ⊆ {TB}. In view of the
condition in Line 4 of Algorithm 4.2, tested in the previous iteration of the loop
in Line 3–9, we have that TB /∈ A and δ \ A = {TB}. But this implies that
FB is unit-resulting for δ w.r.t. A, so that the condition Σ = ∅ cannot hold in
Line 9, which contradicts that Line 10 of Algorithm 4.2 is entered with A being
the current assignment.

Since each of the above cases yields a contradiction, we conclude that A is both atom-
and body-saturated for Π whenever Line 10 of Algorithm 4.2 is entered.

Lemma 4.9. Let Π be a normal program, ∇′ a set of nogoods, and A′ an ordered as-
signment.

If NOGOODPROPAGATION(Π,∇′,A′) is invoked on a valid source pointer config-
uration, then we have that NOGOODPROPAGATION(Π,∇′,A′) returns a pair (A,∇)
such that

1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ;

2. A is an ordered assignment such that A′ ⊆ A and every σ ∈ A \A′ is implied by
∆Π ∪∇ w.r.t. A;

3. δ ⊆ A for some δ ∈ ∆Π ∪∇ if ε ⊆ A for some ε ∈ ΛΠ.

Proof. Assume that NOGOODPROPAGATION(Π,∇′,A′) is invoked on a valid source
pointer configuration. Then, we start by showing that the items of the statement hold if
NOGOODPROPAGATION(Π,∇′,A′) returns a pair (A,∇):

1. Since∇′ can be augmented only with elements of ΛΠ in Line 15 of Algorithm 4.2,
we have that∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ.

2. In view of Line 5 of Algorithm 4.2, for each entry σ inserted into an assignment B
such that A′ ⊆ B ⊂ A, we have that var(σ) /∈ BT ∪ BF and that there is an
antecedent δ ∈ ∆Π ∪ ∇ of σ w.r.t. B. Since dlevel(σ) is set to max({dlevel(ρ) |
ρ ∈ δ \ {σ}} ∪ {0}) in Line 7, we conclude that B ◦ σ constructed in Line 8 is an
ordered assignment such that σ is implied by ∆Π ∪∇ w.r.t. B ◦ σ.

3. For the sake of contradiction, assume that δ 6⊆ A for all δ ∈ ∆Π ∪ ∇ and
ε ⊆ A for some ε ∈ ΛΠ. Then, there is some unfounded set U of Π w.r.t. A
such that U 6⊆ AF . Furthermore, (A,∇) must be returned in Line 10 or 13 of
Algorithm 4.2, and Lemma 4.8 tells us that A is both atom- and body-saturated
for Π. By Theorem 2.9, we conclude that some L ∈ loop(Π) is unfounded for Π
w.r.t. A, so that Π is not tight. Hence, (A,∇) must be returned in Line 13 af-
ter obtaining ∅ as the result of UNFOUNDEDSET(Π,A) in Line 12. However, by
Lemma 4.8 and 4.5, we have that Theorem 4.7 is applicable, which contradicts that
∅ is obtained as the result of UNFOUNDEDSET(Π,A) in Line 12.

It remains to show that NOGOODPROPAGATION(Π,∇′,A′) is terminating. To this end,
note that an assignment B such that A′ ⊆ B is increasing over iterations of the loop in
Line 3–9 of Algorithm 4.2, as shown in the proof of the second item. Furthermore, by
Theorem 4.7 (along with Lemma 4.8 and 4.5), any invocation of UNFOUNDEDSET(Π,B)

160 Proofs

in Line 12 terminates with an unfounded set U ⊆ atom(Π) \BF of Π w.r.t. B. Hence,
we have that U = ∅ or {T p,FB1, . . . ,FBk} \ B ⊆ {T p} for each p ∈ U , where
EBΠ(U) = {B1, . . . , Bk}; by Lemma 4.8 and Proposition 2.5, the same applies to
U \ BF determined in Line 11. Thus, any execution of Line 11–12 is followed by the
termination of Algorithm 4.2 in Line 13 or, in view of Line 14–15, by the termination
in Line 4 or the insertion of an entry F p (for p ∈ atom(Π) \ (BT ∪ BF)) into B
in Line 8 in the next iteration of the loop in Line 2–15. Since atom(Π) ∪ body(Π) is
finite, there cannot be infinitely many entries added to A′ over iterations of the loops in
Line 2–15 and 3–9, respectively, so that NOGOODPROPAGATION(Π,∇′,A′) terminates
by returning a pair (A,∇).

The following lemma, dealing with CONFLICTANALYSIS in Algorithm 4.4 on
Page 72, expresses that an asserting nogood is returned when given a nogood violated
at an implied decision level greater than zero.

Lemma 4.10. Let Π be a normal program,∇ a set of nogoods, A an ordered assignment,
and δ′ ⊆ A such that m = max({dlevel(ρ) | ρ ∈ δ′} ∪ {0}) 6= 0.

If m is implied by ∆Π ∪ ∇ w.r.t. A, then we have that CONFLICT-
ANALYSIS(δ′,Π,∇,A) returns a pair (δ, k) such that

1. δ ⊆ A;

2. |{σ ∈ δ | 0 ≤ k < dlevel(σ)}| = 1;

3. δ 6⊆ B for any solution B for ∆Π ∪∇ ∪ {δ′}.

Proof. Assume thatm is implied by ∆Π∪∇w.r.t. A. Since A is ordered andm 6= 0, ev-
ery ε′ ⊆ A such that max({dlevel(ρ) | ρ ∈ ε′}∪{0}) = m contains an entry σ such that
ε′ \A[σ] = {σ} and dlevel(σ) = m. (Such entries σ are determined in Line 2 of Algo-
rithm 4.4.) Then, by induction on iterations of the loop in Line 1–7 of Algorithm 4.4, we
show that the items of the statement hold if CONFLICTANALYSIS(δ′,Π,∇,A) returns a
pair (δ, k):

(Base case) Let δ ⊆ A be some set of entries such that max({dlevel(ρ) | ρ ∈ δ} ∪
{0}) = m and δ 6⊆ B for any solution B for ∆Π ∪ ∇ ∪ {δ′}. For the entry
σ ∈ δ determined in Line 2 of Algorithm 4.4, if the test in Line 4 yields that
k = max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) 6= m, then |{ρ ∈ δ | 0 ≤ k <
dlevel(ρ)}| = |{σ}| = 1, and (δ, k) is returned in Line 7.

(Induction step) Let ε′ ⊆ A be some set of entries such that max({dlevel(ρ) | ρ ∈ ε′}∪
{0}) = m and ε′ 6⊆ B for any solution B for ∆Π ∪ ∇ ∪ {δ′}. For the en-
try σ ∈ ε′ determined in Line 2 of Algorithm 4.4, if the test in Line 4 yields that
max({dlevel(ρ) | ρ ∈ ε′ \ {σ}} ∪ {0}) = m, there is some ρ ∈ A[σ] such that
dlevel(ρ) = dlevel(σ) = m. Given thatm is implied by ∆Π∪∇ w.r.t. A, ∆Π∪∇
contains an antecedent of σ w.r.t. A, and some such ε is selected in Line 5. Since
ε′ \ {σ} ⊆ A[σ] ⊆ A and ε \ {σ} ⊆ A[σ] ⊆ A, for (ε′ \ {σ}) ∪ (ε \ {σ})
constructed in Line 6, it holds that (ε′ \ {σ}) ∪ (ε \ {σ}) ⊆ A[σ] ⊆ A. Further-
more, max({dlevel(ρ) | ρ ∈ ε′ \ {σ}} ∪ {0}) = m implies that max({dlevel(ρ) |
ρ ∈ (ε′ \ {σ}) ∪ (ε \ {σ})} ∪ {0}) = m. Finally, since any solution B for
∆Π ∪ ∇ ∪ {δ′} contains either σ or σ, while ε′ 6⊆ B and ε 6⊆ B, we have that
(ε′ \ {σ}) ∪ (ε \ {σ}) 6⊆ B.

B.3 Chapter 4 161

It remains to show that CONFLICTANALYSIS(δ′,Π,∇,A) is terminating, i.e., that the
base case of the induction eventually applies. To this end, note that the prerequisite that
A is ordered implies that A does not include duplicate entries and must thus be finite.
Furthermore, in the induction step above, we have that (ε′\{σ})∪(ε\{σ}) ⊆ A[σ] ⊆ A,
i.e., all entries ρ ∈ (ε′ \ {σ}) ∪ (ε \ {σ}) precede σ in A. From this, we conclude that
there cannot be infinitely many applications of the induction step over iterations of the
loop in Line 1–7 of Algorithm 4.4, so that CONFLICTANALYSIS(δ′,Π,∇,A) terminates
by returning a pair (δ, k).

We now turn to CDNL-ASP in Algorithm 4.1 on Page 62 for deciding whether a
normal program has an answer set, where Lemma 4.11 establishes invariants that are
crucial for the main soundness and completeness result, stated in Theorem 4.12.

Lemma 4.11. Let Π be a normal program.
Then, we have that the following holds whenever Line 5 of Algorithm 4.1 is entered

in an execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ;

2. A is an ordered assignment such that all decision levels are implied by ∆Π ∪ ∇
w.r.t. A.

Proof. By induction on iterations of the loop in Line 4–16 of Algorithm 4.1, we show
that the items of the statement hold whenever Line 5 is entered in an execution of CDNL-
ASP(Π):

(Base case) Before the first iteration, in view of Line 1–3 of Algorithm 4.1, we have that
A = ∅ and∇ = ∅, for which the items of the statement trivially hold, and also that
max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl = 0.

(Induction step) At the beginning of an iteration of the loop in Line 4–16 of Algo-
rithm 4.1, let ∇′ and A′ be such that the items (1 and 2) of the statement are sat-
isfied w.r.t. them, and assume that (a) max({dlevel(σ) | σ ∈ A′} ∪ {0}) ≤ dl .10

Then, by Lemma 4.9 (along with Lemma 4.5 and 4.8), we have that NOGOOD-
PROPAGATION(Π,∇′,A′) invoked in Line 5 returns a pair (A,∇) such that the
items of the statement still hold for∇ and A, respectively. Furthermore, in view of
Line 7–8 of Algorithm 4.2, we have that max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl .
Afterwards, one of the following cases applies w.r.t.∇ and A:

(ε ⊆ A for some ε ∈ ∆Π ∪∇) If the condition in Line 7 of Algorithm 4.1 ap-
plies, CDNL-ASP(Π) immediately terminates by returning “no answer set.”
Otherwise, by Lemma 4.10, CONFLICTANALYSIS(ε,Π,∇,A) returns a pair
(δ, k) such that δ 6⊆ B for any solution B for ∆Π ∪ ∇. Since any solu-
tion B for ∆Π ∪ ΛΠ is a solution for ∆Π ∪∇ as well, it follows that δ 6⊆ B,
so that (1) B is a solution for ∆Π ∪ (∇ ∪ {δ}), where ∇ ∪ {δ} is con-
structed in Line 9. Furthermore, Ak = A \ {σ ∈ A | k < dlevel(σ)}

10We below indicate derivations of our induction hypotheses by (1) and (2), standing for the first and the
second item of the statement, respectively, as well as by (a), expressing that max({dlevel(σ) | σ ∈ A} ∪
{0}) ≤ dl holds for an assignment A and the current value of dl .

162 Proofs

constructed in Line 10 is an ordered assignment such that (2) all decision
levels are implied by ∆Π ∪ (∇ ∪ {δ}) w.r.t. Ak. Finally, 0 ≤ k holds
in view of the second item in the statement of Lemma 4.10, so that (a)
max({dlevel(σ) | σ ∈ Ak} ∪ {0}) ≤ k, where dl is set to k in Line 8.
That is, the induction hypotheses still apply w.r.t.∇∪ {δ} and Ak.

(ε 6⊆ A for all ε ∈ ∆Π ∪∇) If the condition in Line 11 of Algorithm 4.1 applies,
CDNL-ASP(Π) terminates in Line 12 by returning AT ∩ atom(Π). Other-
wise, some entry σd such that var(σd) ∈ (atom(Π)∪body(Π))\(AT ∪AF),
as required in Section 4.3.1, is returned by SELECT(Π,∇,A) in Line 14.
Let dl be the increment of the former decision level, as set in Line 15.
Since dlevel(σd) is set to dl in Line 15, we have that Aσd = A ◦ σd con-
structed in Line 16 is an ordered assignment such that (a) max({dlevel(σ) |
σ ∈ Aσd} ∪ {0}) = dl and (2) all decision levels are implied by ∆Π ∪ ∇
w.r.t. Aσd . Finally, we note that (1) ∇ is not altered. That is, the induction
hypotheses still apply w.r.t.∇ and Aσd .

We have thus shown that the items of the statement hold whenever Line 5 of Algo-
rithm 4.1 is entered.

Theorem 4.12. Let Π be a normal program.
Then, we have that CDNL-ASP(Π) is terminating, and it returns an answer set of Π

iff Π has some answer set.

Proof. If AT ∩ atom(Π) is returned in Line 12 of Algorithm 4.1, then the test in Line 6
and the third item in the statement of Lemma 4.9 establish that A is a solution for ∆Π ∪
ΛΠ. Furthermore, by Lemma 4.2, we have that there is no solution B 6= A for ∆Π ∪ ΛΠ

such that BT ∩ atom(Π) = AT ∩ atom(Π). Hence, by Theorem 4.4, we conclude that
AT ∩ atom(Π) is an answer set of Π. On the other hand, if CDNL-ASP(Π) returns
“no answer set” in Line 7, we have that max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 for some
ε ∈ ∆Π ∪ ∇ such that ε ⊆ A. By the second item in the statement of Lemma 4.11, for
every σ ∈ A such that dlevel(σ) = 0, there is some antecedent of σ w.r.t. A in ∆Π ∪∇,
so that there cannot be any solution for ∆Π∪∇. Along with the first item in the statement
of Lemma 4.11, it follows that there is no solution for ∆Π∪ΛΠ. Hence, by Theorem 4.4,
we conclude that Π has no answer set.

It remains to show that CDNL-ASP(Π) is terminating. In view of the second item in
the statement of Lemma 4.11 and the condition in Line 7 of Algorithm 4.1, we have that
Lemma 4.10 applies whenever CONFLICTANALYSIS(ε,Π,∇,A) is invoked in Line 8.
Hence, it returns a pair (δ, k) such that some entry ρ is unit-resulting for δ w.r.t. A \
{σ ∈ A | k < dlevel(σ)}. As a consequence, ρ will be inserted into A \ {σ ∈ A |
k < dlevel(σ)} in Line 5 in the next iteration of the loop in Line 4–16. That is, after
every backjump in Line 10, some element of atom(Π)∪body(Π) is assigned at a smaller
(non-negative) decision level than before. Since atom(Π)∪body(Π) is finite, this implies
that CDNL-ASP(Π) admits only finitely many backjumps.11 Along with the fact that

11See, e.g., [220, 203] for detailed arguments for the fact that the search pattern combining backjumping
with conflict-driven assertions is complete for (UN)SAT. In a nutshell, such arguments work by ranking
assignments according to the numbers of variables assigned per decision level and by verifying that the
sequence of assignments generated during search is strictly monotonic. Since the total number of variables is
finite, every such sequence must be finite as well (yet its length depends on heuristics). Note that this does not
necessitate keeping all recorded conflict (or loop) nogoods. Rather, only the antecedents of assigned entries
are ultimately needed (for conflict resolution), and their number is bounded by the number of variables.

B.3 Chapter 4 163

A is strictly extended in Line 16, so that either a backjump or termination in Line 12 is
inevitable within a linear number of iterations of the loop in Line 4–16, we conclude that
CDNL-ASP(Π) eventually terminates in Line 7 or 12 of Algorithm 4.1.

We have thus proven the formal results presented in Section 4.3.

B.3.3 Section 4.4

In what follows, we show that the enumeration algorithms presented in Section 4.4 are
sound, complete, and redundancy-free (w.r.t. “output” atoms) according to Definition 4.1.

To begin with, Lemma 4.13 establishes invariants used to derive the main result in
Theorem 4.14 for CDNL-RECORDING in Algorithm 4.5 on Page 78.

Lemma 4.13. Let Π be a normal program and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.5 is entered

in an execution of CDNL-RECORDING(Π, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not yet been printed;

2. A is an ordered assignment such that all decision levels are implied by ∆Π ∪ ∇
w.r.t. A.

Proof. By induction on iterations of the loop in Line 4–19 of Algorithm 4.5, we show
that the items of the statement hold whenever Line 5 is entered in an execution of CDNL-
RECORDING(Π, s):

(Base case) Before the first iteration, in view of Line 1–3 of Algorithm 4.5, we have that
A = ∅ and∇ = ∅, for which the items of the statement trivially hold, and also that
max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl = 0.

(Induction step) At the beginning of an iteration of the loop in Line 4–19 of Algo-
rithm 4.5, let ∇′ and A′ be such that the items (1 and 2) of the statement are
satisfied w.r.t. them, and assume that (a) max({dlevel(σ) | σ ∈ A′} ∪ {0}) ≤ dl .
(We below indicate derivations of our induction hypotheses by (1), (2), and (a), re-
spectively, as explained in Footnote 10 on Page 161.) Then, by Lemma 4.9 (along
with Lemma 4.5 and 4.8), we have that NOGOODPROPAGATION(Π,∇′,A′) in-
voked in Line 5 returns a pair (A,∇) such that the items of the statement still hold
for ∇ and A, respectively. Furthermore, in view of Line 7–8 of Algorithm 4.2,
we have that max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl . Afterwards, one of the
following cases applies w.r.t.∇ and A:

(ε ⊆ A for some ε ∈ ∆Π ∪∇) If the condition in Line 7 of Algorithm 4.5 ap-
plies, CDNL-RECORDING(Π, s) immediately terminates. Otherwise, by
Lemma 4.10, CONFLICTANALYSIS(ε,Π,∇,A) returns a pair (δ, k) such
that δ 6⊆ B for any solution B for ∆Π ∪ ∇. Since any solution B for
∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not yet been printed is a solution
for ∆Π ∪ ∇ as well, it follows that δ 6⊆ B, so that (1) B is a solution for
∆Π ∪ (∇ ∪ {δ}), where ∇ ∪ {δ} is constructed in Line 9. Furthermore,
Ak = A \ {σ ∈ A | k < dlevel(σ)} constructed in Line 10 is an ordered
assignment such that (2) all decision levels are implied by ∆Π ∪ (∇ ∪ {δ})

164 Proofs

w.r.t. Ak. Finally, 0 ≤ k holds in view of the second item in the statement of
Lemma 4.10, so that (a) max({dlevel(σ) | σ ∈ Ak}∪{0}) ≤ k, where dl is
set to k in Line 8. That is, the induction hypotheses still apply w.r.t.∇∪ {δ}
and Ak.

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF = atom(Π) ∪ body(Π)) If the condi-
tion in Line 14 of Algorithm 4.5 applies after printing AT ∩ atom(Π) in
Line 12, CDNL-RECORDING(Π, s) immediately terminates. Otherwise, by
Lemma 4.2, the nogood δ = {σp ∈ A | var(σp) ∈ atom(Π)} is not con-
tained in any solution B for ∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not yet
been printed, so that (1) B is a solution for ∆Π∪(∇∪{δ}), where∇∪{δ} is
constructed in Line 15. Finally, we note that (2) A and (a) dl are not altered.
That is, the induction hypotheses still apply w.r.t.∇∪ {δ} and A.

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF 6= atom(Π) ∪ body(Π)) Some en-
try σd such that var(σd) ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF), as
required in Section 4.3.1, is returned by SELECT(Π,∇,A) in Line 17 of
Algorithm 4.5. Let dl be the increment of the former decision level, as
set in Line 18. Since dlevel(σd) is set to dl in Line 18, we have that
Aσd = A ◦ σd constructed in Line 19 is an ordered assignment such that
(a) max({dlevel(σ) | σ ∈ Aσd} ∪ {0}) = dl and (2) all decision levels are
implied by ∆Π ∪ ∇ w.r.t. Aσd . Finally, we note that (1) ∇ is not altered.
That is, the induction hypotheses still apply w.r.t.∇ and Aσd .

We have thus shown that the items of the statement hold whenever Line 5 of Algo-
rithm 4.5 is entered.

Theorem 4.14. Let Π be a normal program.
Then, we have that CDNL-RECORDING(Π, 0) is terminating as well as sound, com-

plete, and redundancy-free w.r.t. atom(Π).

Proof. By the same argument as in the proof of Theorem 4.12, we have that AT ∩
atom(Π) is an answer set of Π if it is printed in Line 12 of Algorithm 4.5, so that CDNL-
RECORDING(Π, 0) is sound w.r.t. atom(Π). In addition, since {σp ∈ A | var(σp) ∈
atom(Π)} is persistently recorded in ∇ in Line 15, the condition in Line 6 makes sure
that no solution B for ∆Π ∪ ∇ such that BT ∩ atom(Π) = AT ∩ atom(Π) is enu-
merated later on, so that CDNL-RECORDING(Π, 0) is redundancy-free w.r.t. atom(Π).
On the other hand, if CDNL-RECORDING(Π, 0) terminates in Line 7, we have that
max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 for some ε ∈ ∆Π ∪ ∇ such that ε ⊆ A. By the
second item in the statement of Lemma 4.13, for every σ ∈ A such that dlevel(σ) = 0,
there is some antecedent of σ w.r.t. A in ∆Π ∪ ∇, so that there cannot be any solution
for ∆Π ∪∇. Along with the first item in the statement of Lemma 4.13 (and Lemma 4.2),
it follows that all solutions for ∆Π ∪ ΛΠ have been enumerated. By Theorem 4.4, for
every answer set X of Π, the enumerated solutions for ∆Π ∪ ΛΠ include some B such
that BT ∩ atom(Π) = X . Hence, from the property that CDNL-RECORDING(Π, 0) is
terminating, we can conclude that it is complete w.r.t. atom(Π).

It remains to show that CDNL-RECORDING(Π, 0) is terminating. By the same argu-
ment as in the proof of Theorem 4.12, we have that CDNL-RECORDING(Π, 0) admits
only finitely many backjumps in Line 10 of Algorithm 4.5. Furthermore, when a solu-
tion B for ∆Π ∪ ∇ is enumerated, the persistent recording of {σp ∈ B | var(σp) ∈

B.3 Chapter 4 165

atom(Π)} in Line 15 leads to either termination in Line 7 or a backjump in Line 10
in the next iteration of the loop in Line 4–19. Along with the fact that A is strictly
extended in Line 19, so that either a backjump or a solution for ∆Π ∪ ∇ is inevitable
within a linear number of iterations of the loop in Line 4–19, we conclude that CDNL-
RECORDING(Π, 0) eventually terminates in Line 7 of Algorithm 4.5.

We now turn to CDNL-ENUMERATION in Algorithm 4.6 on Page 81, where
Lemma 4.15 establishes invariants used to derive the main result in Theorem 4.16.

Lemma 4.15. Let Π be a normal program and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.6 is entered

in an execution of CDNL-ENUMERATION(Π, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ;

2. A is an ordered assignment such that all decision levels greater than bl are implied
by ∆Π ∪∇ w.r.t. A;

3. if A 6⊆ B for any solution B for ∆Π∪ΛΠ such that BT ∩atom(Π) has not yet been
printed, then 0 < min{dlevel(σ) | σ ∈ A \ B} and decision(min{dlevel(σ) |
σ ∈ A \B}) /∈ B.

Proof. By induction on iterations of the loop in Line 4–30 of Algorithm 4.6, we show
that the items of the statement hold whenever Line 5 is entered in an execution of CDNL-
ENUMERATION(Π, s):

(Base case) Before the first iteration, in view of Line 1–3 of Algorithm 4.6, we have that
A = ∅ and∇ = ∅, for which the items of the statement trivially hold, and also that
0 = bl ≤ max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl = 0.

(Induction step) At the beginning of an iteration of the loop in Line 4–30 of Algo-
rithm 4.6, let∇′ and A′ be such that the items (1, 2, and 3) of the statement are sat-
isfied w.r.t. them, and assume that (a) bl ≤ max({dlevel(σ) | σ ∈ A′}∪{0}) ≤ dl
and (b) decision(i) ∈ A′ for all 1 ≤ i ≤ dl .12 Then, by Lemma 4.9 (along
with Lemma 4.5 and 4.8), we have that NOGOODPROPAGATION(Π,∇′,A′) in-
voked in Line 5 returns a pair (A,∇) such that the items of the statement still
hold for ∇ and A, respectively. In particular, for any solution B for ∆Π ∪ ΛΠ

such that BT ∩ atom(Π) has not yet been printed and any σ ∈ A \ (A′ ∪ B),
there is some antecedent δ ∈ ∆Π ∪ ∇ of σ w.r.t. A, which implies that
A[σ] 6⊆ B because σ ∈ B yet δ 6⊆ B. Hence, if A 6⊆ B, we conclude that
0 < min{dlevel(σ) | σ ∈ A \ B} = min{dlevel(σ) | σ ∈ A′ \ B}, so that
decision(min{dlevel(σ) | σ ∈ A \B}) /∈ B. Furthermore, in view of Line 7–8
of Algorithm 4.2, we have that bl ≤ max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl .
Afterwards, one of the following cases applies w.r.t.∇ and A:

12We below indicate derivations of our induction hypotheses by (1), (2), and (3), standing for the first,
the second, and the third item of the statement, respectively, as well as by (a) and (b), expressing that
bl ≤ max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl or, respectively, that decision(i) ∈ A for all 1 ≤ i ≤ dl
holds for an assignment A and the current values of bl and dl .

166 Proofs

(ε ⊆ A for some ε ∈ ∆Π ∪∇) If the condition in Line 7 of Algorithm 4.6 ap-
plies, CDNL-ENUMERATION(Π, s) immediately terminates. Otherwise, one
of the following subcases applies:

(bl < max{dlevel(σ) | σ ∈ ε}) By Lemma 4.10, CONFLICT-
ANALYSIS(ε,Π,∇,A) returns a pair (δ, k) such that δ 6⊆ B
for any solution B for ∆Π ∪ ∇. Since any solution B for
∆Π ∪ ΛΠ is a solution for ∆Π ∪ ∇ as well, it follows that
δ 6⊆ B, so that (1) B is a solution for ∆Π ∪ (∇ ∪ {δ}), where
∇ ∪ {δ} is constructed in Line 10 of Algorithm 4.6. Furthermore,
Amax = A \ {σ ∈ A | max{k, bl} < dlevel(σ)} constructed in
Line 12 is an ordered assignment such that (2) all decision levels greater
than bl are implied by ∆Π ∪ (∇ ∪ {δ}) w.r.t. Amax. In addition, if
Amax 6⊆ B for any solution B for ∆Π ∪ ΛΠ such that BT ∩ atom(Π)
has not yet been printed, then (3) 0 < min{dlevel(σ) | σ ∈ Amax \B}
and decision(min{dlevel(σ) | σ ∈ Amax \ B}) /∈ B. Finally,
0 ≤ k < dl holds in view of the first two items in the state-
ment of Lemma 4.10, so that (b) decision(i) ∈ Amax for all
1 ≤ i ≤ max{k, bl}, where dl is set to max{k, bl} in Line 11, and (a)
bl ≤ max({dlevel(σ) | σ ∈ Amax} ∪ {0}) ≤ max{k, bl}. That is, the
induction hypotheses still apply w.r.t.∇∪ {δ} and Amax.

(max{dlevel(σ) | σ ∈ ε} ≤ bl) In view of Line 28–29 of Algorithm 4.6, we
have that dlevel(σd) = bl for σd = decision(bl) determined in Line 14,
so that Aσd = (A \ {σ ∈ A | bl − 1 < dlevel(σ)}) ◦ σd constructed in
Line 16–17 is an ordered assignment. As dlevel(σd), bl , and dl are set to
the decrement of bl in Line 15, it also holds that (a) max({dlevel(σ) |
σ ∈ Aσd} ∪ {0}) = bl − 1, (b) decision(i) ∈ Aσd for all 1 ≤ i ≤
bl−1, and (2) all decision levels greater than bl−1 are (trivially) implied
by ∆Π ∪ ∇ w.r.t. Aσd . Furthermore, for any solution B for ∆Π ∪ ΛΠ

such that BT ∩ atom(Π) has not yet been printed, ε 6⊆ B yields that
A 6⊆ B, 0 < m = min{dlevel(σ) | σ ∈ A \ B} ≤ max{dlevel(σ) |
σ ∈ ε} ≤ bl , and decision(m) /∈ B. Hence, if m = bl , we have that
σd /∈ B, σd ∈ B, and Aσd ⊆ B, while (3) 0 < min{dlevel(σ) | σ ∈
Aσd \ B} = m and decision(min{dlevel(σ) | σ ∈ Aσd \ B}) /∈ B
hold otherwise. Finally, we note that (1) ∇ is not altered. That is, the
induction hypotheses still apply w.r.t.∇ and Aσd .

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF = atom(Π) ∪ body(Π)) If the condi-
tion in Line 21 of Algorithm 4.6 applies after printing AT ∩ atom(Π) in
Line 19, CDNL-ENUMERATION(Π, s) immediately terminates. Otherwise,
in view of Line 28–29, we have that dlevel(σd) = dl for σd = decision(dl)
determined in Line 22, so that Aσd = (A \ {σ ∈ A | dl − 1 <
dlevel(σ)}) ◦ σd constructed in Line 24–25 is an ordered assignment. As
dlevel(σd), bl , and dl are set to the decrement of dl in Line 23, it also holds
that (a) max({dlevel(σ) | σ ∈ Aσd}∪{0}) = dl−1, (b) decision(i) ∈ Aσd

for all 1 ≤ i ≤ dl − 1, and (2) all decision levels greater than dl − 1
are (trivially) implied by ∆Π ∪ ∇ w.r.t. Aσd . Furthermore, for any solu-
tion B for ∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not yet been printed,
A 6⊆ B yields that 0 < m = min{dlevel(σ) | σ ∈ A \ B} ≤ dl and

B.3 Chapter 4 167

decision(m) /∈ B. Hence, if m = dl , we have that σd /∈ B, σd ∈ B,
and Aσd ⊆ B, while (3) 0 < min{dlevel(σ) | σ ∈ Aσd \ B} = m and
decision(min{dlevel(σ) | σ ∈ Aσd \B}) /∈ B hold otherwise. Finally, we
note that (1) ∇ is not altered. That is, the induction hypotheses still apply
w.r.t.∇ and Aσd .

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF 6= atom(Π) ∪ body(Π)) Some en-
try σd such that var(σd) ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF), as
required in Section 4.3.1, is returned by SELECT(Π,∇,A) in Line 27
of Algorithm 4.6. Let dl be the increment of the former decision
level, as set in Line 28. Since dlevel(σd) is set to dl in Line 28, we
have that Aσd = A ◦ σd constructed in Line 30 is an ordered assign-
ment such that (a) bl < max({dlevel(σ) | σ ∈ Aσd} ∪ {0}) = dl
and (2) all decision levels greater than bl are implied by ∆Π ∪ ∇
w.r.t. Aσd . As decision(dl) is set to σd in Line 29, we also have that
(b) decision(i) ∈ Aσd for all 1 ≤ i ≤ dl . Furthermore, if Aσd 6⊆ B
for any solution B for ∆Π ∪ ΛΠ such that BT ∩ atom(Π) has not
yet been printed, then (3) 0 < min{dlevel(σ) | σ ∈ Aσd \ B} and
decision(min{dlevel(σ) | σ ∈ Aσd \B}) /∈ B. Finally, we note that (1) ∇
is not altered. That is, the induction hypotheses still apply w.r.t.∇ and Aσd .

We have thus shown that the items of the statement hold whenever Line 5 of Algo-
rithm 4.6 is entered.

Theorem 4.16. Let Π be a normal program.
Then, we have that CDNL-ENUMERATION(Π, 0) is terminating as well as sound,

complete, and redundancy-free w.r.t. atom(Π).

Proof. By the same argument as in the proof of Theorem 4.12, we have that AT ∩
atom(Π) is an answer set of Π if it is printed in Line 19 of Algorithm 4.6, so that
CDNL-ENUMERATION(Π, 0) is sound w.r.t. atom(Π). For an enumerated solution A
for ∆Π ∪ΛΠ, entries of A can be retracted only in Line 16 or 24, where the complement
σd of a former decision entry σd ∈ A is assigned immediately afterwards, that is, in
Line 17 or 25, respectively. Hence, any solution B for ∆Π ∪ΛΠ enumerated after A sat-
isfies B 6= A. By Lemma 4.2, this implies that BT ∩atom(Π) 6= AT ∩atom(Π), so that
CDNL-ENUMERATION(Π, 0) is redundancy-free w.r.t. atom(Π). On the other hand, by
the first and the third item in the statement of Lemma 4.15 (along with Lemma 4.2), we
have that neither of the termination conditions in Line 7 and 21 can apply as long as there
is a not yet enumerated solution B for ∆Π ∪ ΛΠ.13 By Theorem 4.4, for every answer
set X of Π, the solutions for ∆Π ∪ ΛΠ include some B such that BT ∩ atom(Π) = X .
Hence, from the property that CDNL-ENUMERATION(Π, 0) is terminating, we can con-
clude that it is complete w.r.t. atom(Π).

It remains to show that CDNL-ENUMERATION(Π, 0) is terminating. In view of the
second item in the statement of Lemma 4.15 and the conditions in Line 7 and 8 of Algo-
rithm 4.6, we have that Lemma 4.10 applies whenever CONFLICTANALYSIS(ε,Π,∇,A)
is invoked in Line 9. Hence, it returns a pair (δ, k) such that some entry ρ is unit-resulting

13Regarding the condition dl = 0, tested in Line 21, the fact that max({dlevel(σ) | σ ∈ A}∪{0}) ≤ dl
has been demonstrated in the proof of Lemma 4.15.

168 Proofs

for δ w.r.t. A \ {σ ∈ A | max{k, bl} < dlevel(σ)}.14 As a consequence, ρ will be in-
serted into A \ {σ ∈ A | max{k, bl} < dlevel(σ)} in Line 5 in the next iteration
of the loop in Line 4–30. That is, after every backjump in Line 12, some element of
atom(Π) ∪ body(Π) is assigned at a smaller (non-negative) decision level than before.
Similarly, if backtracking takes place in Line 16 or 24, the complement σd of a former de-
cision entry σd ∈ A is assigned immediately afterwards, that is, in Line 17 or 25, respec-
tively, and dlevel(σd) = dlevel(σd)− 1 holds in view of Line 28–29, 14–15, and 22–23.
Since atom(Π) ∪ body(Π) is finite, this implies that CDNL-ENUMERATION(Π, 0) ad-
mits only finitely many backjumps or backtracks, respectively. Along with the fact that
A is strictly extended in Line 30, so that either a backjump (in Line 12) or a backtrack
(in Line 24) is inevitable within a linear number of iterations of the loop in Line 4–30,
we conclude that CDNL-ENUMERATION(Π, 0) eventually terminates in Line 7 or 21 of
Algorithm 4.6.

Finally, we investigate CDNL-PROJECTION in Algorithm 4.7 on Page 87, where
Lemma 4.17 establishes invariants used to derive the main result in Theorem 4.18.

Lemma 4.17. Let Π be a normal program, P a set of atoms, and s an integer.
Then, we have that the following holds whenever Line 5 of Algorithm 4.7 is entered

in an execution of CDNL-PROJECTION(Π, P, s):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for
∆Π ∪ ΛΠ such that BT ∩ P has not yet been printed;

2. A is an ordered assignment such that all decision levels greater than bl are implied
by ∆Π ∪∇ w.r.t. A;

3. if A 6⊆ B for any solution B for ∆Π ∪ ΛΠ such that BT ∩ P has not yet been
printed, then 0 < min{dlevel(σ) | σ ∈ A \B};

4. if A 6⊆ B and min{dlevel(σ) | σ ∈ A \B} ≤ bl for any solution B for ∆Π ∪ΛΠ

such that BT ∩ P has not yet been printed, then decision(min{dlevel(σ) | σ ∈
A \B}) ∈ (A \B)P .

Proof. By induction on iterations of the loop in Line 4–41 of Algorithm 4.7, we show
that the items of the statement hold whenever Line 5 is entered in an execution of CDNL-
PROJECTION(Π, P, s):

(Base case) Before the first iteration, in view of Line 1–3 of Algorithm 4.7, we have that
A = ∅ and∇ = ∅, for which the items of the statement trivially hold, and also that
0 = bl ≤ max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl = 0.

(Induction step) At the beginning of an iteration of the loop in Line 4–41 of Algo-
rithm 4.7, let ∇′ and A′ be such that the items (1, 2, 3, and 4) of the statement are
satisfied w.r.t. them, and assume that (a) max({dlevel(σ) | σ ∈ A′} ∪ {0}) ≤ dl ,
(b) decision(i) ∈ (A′)P for all 1 ≤ i ≤ bl , and (c) nogood(i) ∈ ∇′ for all

14Regarding bl < max{dlevel(σ) | σ ∈ δ}, the fact that max{dlevel(σ) | σ ∈ δ} = max{dlevel(σ) |
σ ∈ ε} has been demonstrated in the proof of Lemma 4.10.

B.3 Chapter 4 169

1 ≤ i ≤ bl .15 Then, by Lemma 4.9 (along with Lemma 4.5 and 4.8), we have that
NOGOODPROPAGATION(Π,∇′,A′) invoked in Line 5 returns a pair (A,∇) such
that the items of the statement still hold for ∇ and A, respectively. In particular,
for any solution B for ∆Π ∪ ΛΠ such that BT ∩ P has not yet been printed and
any σ ∈ A \ (A′ ∪B), there is some antecedent δ ∈ ∆Π ∪∇ of σ w.r.t. A, which
implies that A[σ] 6⊆ B because σ ∈ B yet δ 6⊆ B. Hence, if A 6⊆ B, we conclude
that 0 < min{dlevel(σ) | σ ∈ A \B} = min{dlevel(σ) | σ ∈ A′ \B}. Further-
more, in view of Line 7–8 of Algorithm 4.2, we have that max({dlevel(σ) | σ ∈
A} ∪ {0}) ≤ dl . Afterwards, one of the following cases applies w.r.t.∇ and A:

(ε ⊆ A for some ε ∈ ∆Π ∪∇) If the condition in Line 7 of Algorithm 4.7 applies,
CDNL-PROJECTION(Π, P, s) immediately terminates. Otherwise, one of
the following subcases applies:

(bl < max{dlevel(σ) | σ ∈ ε}) By Lemma 4.10, CONFLICT-
ANALYSIS(ε,Π,∇,A) returns a pair (δ, k) such that δ 6⊆ B for
any solution B for ∆Π ∪ ∇. Since any solution B for ∆Π ∪ ΛΠ such
that BT ∩ P has not yet been printed is a solution for ∆Π ∪ ∇ as well,
it follows that δ 6⊆ B, so that (1) B is a solution for ∆Π ∪ (∇ ∪ {δ}),
where∇∪{δ} is constructed in Line 10 of Algorithm 4.7. Furthermore,
Amax = A \ {σ ∈ A | max{k, bl} < dlevel(σ)} constructed in
Line 12 is an ordered assignment such that (2) all decision levels greater
than bl are implied by ∆Π ∪ (∇ ∪ {δ}) w.r.t. Amax. In addition, if
Amax 6⊆ B for any solution B for ∆Π ∪ ΛΠ such that BT ∩ P has
not yet been printed, then (3) 0 < min{dlevel(σ) | σ ∈ Amax \ B}
and (4) decision(min{dlevel(σ) | σ ∈ Amax \ B}) ∈ (Amax \ B)P

if min{dlevel(σ) | σ ∈ Amax \ B} ≤ bl ≤ max{k, bl}. Also,
for all 1 ≤ i ≤ bl , we have that (b) decision(i) ∈ AP

max

and (c) nogood(i) ∈ ∇ ∪ {δ}. Finally, 0 ≤ k holds in view
of the second item in the statement of Lemma 4.10, so that (a)
max({dlevel(σ) | σ ∈ Amax} ∪ {0}) ≤ max{k, bl}, where dl is set
to max{k, bl} in Line 11. That is, the induction hypotheses still apply
w.r.t. ∇∪ {δ} and Amax.

(max{dlevel(σ) | σ ∈ ε} ≤ bl) In view of Line 35–36 of Algorithm 4.7, we
have that dlevel(σd) = bl for σd = decision(bl) determined in Line 15,
so that Aσd = (A \ {σ ∈ A | bl − 1 < dlevel(σ)}) ◦ σd constructed in
Line 17–18 is an ordered assignment. As dlevel(σd), bl , and dl are set to
the decrement of bl in Line 16, it also holds that (a) max({dlevel(σ) |
σ ∈ Aσd} ∪ {0}) = bl − 1 and (b) decision(i) ∈ AP

σd
for all 1 ≤

i ≤ bl − 1. In addition, (c) nogood(i) ∈ ∇ \ {nogood(bl)} for all 1 ≤
i ≤ bl − 1,16 and (2) all decision levels greater than bl − 1 are (trivially)
implied by ∆Π∪(∇\{nogood(bl)}) w.r.t. Aσd , where∇\{nogood(bl)}
is constructed in Line 14. Furthermore, for any solution B for ∆Π ∪ΛΠ

15We below indicate derivations of our induction hypotheses by (1), (2), (3), and (4), standing for the
first, the second, the third, and the fourth item of the statement, respectively, as well as by (a), (b), and (c),
expressing that max({dlevel(σ) | σ ∈ A} ∪ {0}) ≤ dl , decision(i) ∈ AP for all 1 ≤ i ≤ bl , or,
respectively, that nogood(i) ∈ ∇ for all 1 ≤ i ≤ bl holds for an assignment A, a set∇ of nogoods, and the
current values of bl and dl .

16For every 1 ≤ i ≤ bl − 1, nogood(i) 6= nogood(bl) holds in view of the condition in Line 6, tested
before nogood(bl) can be introduced in Line 32.

170 Proofs

such that BT ∩ P has not yet been printed, ε 6⊆ B yields that A 6⊆ B,
0 < m = min{dlevel(σ) | σ ∈ A \B} ≤ max{dlevel(σ) | σ ∈ ε} ≤
bl , and decision(m) ∈ (A \ B)P . Hence, if m = bl , we have that
σd /∈ B, σd ∈ B, and Aσd ⊆ B, while (3) 0 < min{dlevel(σ) |
σ ∈ Aσd \B} = m and (4) decision(min{dlevel(σ) | σ ∈ Aσd \B}) ∈
(Aσd \ B)P hold otherwise. Finally, we note that (1) δ 6⊆ B for every
δ ∈ ∇\{nogood(bl)}. That is, the induction hypotheses still apply w.r.t.
∇ \ {nogood(bl)} and Aσd .

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF = atom(Π) ∪ body(Π)) If the condi-
tion in Line 22 of Algorithm 4.7 applies after printing AT ∩ P in Line 20,
CDNL-PROJECTION(Π, P, s) immediately terminates. Otherwise, one of
the following subcases applies:

(max{dlevel(σp) | σp ∈ AP } = bl) In view of Line 35–36 of Algo-
rithm 4.7, we have that dlevel(σd) = bl for σd = decision(bl) deter-
mined in Line 25, so that Aσd = (A\{σ ∈ A | bl−1 < dlevel(σ)})◦σd
constructed in Line 27–28 is an ordered assignment. As dlevel(σd), bl ,
and dl are set to the decrement of bl in Line 26, it also holds that (a)
max({dlevel(σ) | σ ∈ Aσd}∪{0}) = bl−1 and (b) decision(i) ∈ AP

σd
for all 1 ≤ i ≤ bl − 1. In addition, (c) nogood(i) ∈ ∇ \ {nogood(bl)}
for all 1 ≤ i ≤ bl − 1, and (2) all decision levels greater than bl − 1
are (trivially) implied by ∆Π ∪ (∇ \ {nogood(bl)}) w.r.t. Aσd , where
∇ \ {nogood(bl)} is constructed in Line 24. Furthermore, for any so-
lution B for ∆Π ∪ ΛΠ such that BT ∩ P has not yet been printed,
AP 6⊆ B yields that 0 < m = min{dlevel(σ) | σ ∈ A \ B} ≤ bl
and decision(m) ∈ (A \ B)P . Hence, if m = bl , we have that
σd /∈ B, σd ∈ B, and Aσd ⊆ B, while (3) 0 < min{dlevel(σ) |
σ ∈ Aσd \B} = m and (4) decision(min{dlevel(σ) | σ ∈ Aσd \B}) ∈
(Aσd \ B)P hold otherwise. Finally, we note that (1) δ 6⊆ B for every
δ ∈ ∇\{nogood(bl)}. That is, the induction hypotheses still apply w.r.t.
∇ \ {nogood(bl)} and Aσd .

(max{dlevel(σp) | σp ∈ AP } 6= bl) As nogood(bl + 1) is set to AP in
Line 31 of Algorithm 4.7, we have that (c) nogood(i) ∈ ∇ ∪
{nogood(bl + 1)} for all 1 ≤ i ≤ bl + 1, where bl is incremented
in Line 30 and ∇ ∪ {nogood(bl + 1)} is constructed in Line 32. Given
that the conditions in Line 7–8 and 22–23, tested before bl can be decre-
mented in Line 16 or 26, respectively, make sure that bl is non-negative,
along with decision(i) ∈ AP and dlevel(decision(i)) = i (in view of
Line 35–36) for all 1 ≤ i ≤ bl , it holds that 0 ≤ bl < max{dlevel(σp) |
σp ∈ AP }. Since some entry σd ∈ nogood(bl + 1) such that bl <
dlevel(σd) is selected in Line 34 and dlevel(σd) as well as dl are set to
the increment of bl in Line 35, Aσd = (A\{σ ∈ A | bl < dlevel(σ)})◦
σd constructed in Line 33 and 37 is an ordered assignment such that (a)
max({dlevel(σ) | σ ∈ Aσd} ∪ {0}) = bl + 1 and (2) all decision levels
greater than bl+1 are (trivially) implied by ∆Π∪(∇∪{nogood(bl+1)})
w.r.t. Aσd . Furthermore, as decision(bl + 1) is set to σd in Line 36, we
have that (b) decision(i) ∈ AP

σd
for all 1 ≤ i ≤ bl + 1. For any solu-

tion B for ∆Π ∪ ΛΠ such that BT ∩ P has not yet been printed, since

B.3 Chapter 4 171

AP 6⊆ B, it holds that (1) δ 6⊆ B for every δ ∈ ∇ ∪ {nogood(bl + 1)}.
Finally, if Aσd 6⊆ B, then (3) 0 < min{dlevel(σ) | σ ∈ Aσd \B} and
(4) decision(min{dlevel(σ) | σ ∈ Aσd \B}) ∈ (Aσd \B)P . That is,
the induction hypotheses still apply w.r.t.∇∪{nogood(bl+1)} and Aσd .

(ε 6⊆ A for all ε ∈ ∆Π ∪∇ and AT ∪AF 6= atom(Π) ∪ body(Π)) Some en-
try σd such that var(σd) ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF), as
required in Section 4.3.1, is returned by SELECT(Π,∇,A) in Line 39
of Algorithm 4.7. Let dl be the increment of the former decision
level, as set in Line 40. Since dlevel(σd) is set to dl in Line 40, we
have that Aσd = A ◦ σd constructed in Line 41 is an ordered as-
signment such that (a) max({dlevel(σ) | σ ∈ Aσd} ∪ {0}) = dl
and (2) all decision levels greater than bl are implied by ∆Π ∪ ∇
w.r.t. Aσd . As bl and (1) ∇ are not altered, for all 1 ≤ i ≤ bl < dl ,
we have that (b) decision(i) ∈ AP

σd
and (c) nogood(i) ∈ ∇. Finally,

if Aσd 6⊆ B for any solution B for ∆Π ∪ ΛΠ such that BT ∩ P has
not yet been printed, then (3) 0 < min{dlevel(σ) | σ ∈ Aσd \ B}
and (4) decision(min{dlevel(σ) | σ ∈ Aσd \ B}) ∈ (Aσd \ B)P if
min{dlevel(σ) | σ ∈ Aσd \B} ≤ bl . That is, the induction hypotheses still
apply w.r.t.∇ and Aσd .

We have thus shown that the items of the statement hold whenever Line 5 of Algo-
rithm 4.7 is entered.

Theorem 4.18. Let Π be a normal program and P a set of atoms.
Then, we have that CDNL-PROJECTION(Π, P, 0) is terminating as well as sound,

complete, and redundancy-free w.r.t. P .

Proof. By the same argument as in the proof of Theorem 4.12, we have that AT ∩
atom(Π) is an answer set of Π if AT ∩ P is printed in Line 20 of Algorithm 4.7, so
that CDNL-PROJECTION(Π, P, 0) is sound w.r.t. P . For an enumerated solution A for
∆Π ∪ ΛΠ, (fake) decision entries σd ∈ AP such that dlevel(σd) ≤ bl (bl and σd may
be obtained by incrementation in Line 30 along with reassignment in Line 37) can be
retracted only in Line 17 or 27, where the complement σd of σd is assigned immedi-
ately afterwards, that is, in Line 18 or 28, respectively. Until then, nogood(bl) = AP ,
(possibly) recorded in ∇ in Line 32 (and deleted from ∇ in Line 14 or 24, respectively),
excludes all assignments B such that AP ⊆ B as solutions for ∆Π ∪∇, so that CDNL-
PROJECTION(Π, P, 0) is redundancy-free w.r.t. P . On the other hand, by the first and
the third item in the statement of Lemma 4.17, we have that neither of the termination
conditions in Line 7 and 22 can apply as long as there is a solution B for ∆Π ∪ ΛΠ such
that BT ∩ P has not yet been printed. By Theorem 4.4, for every answer set X of Π,
the solutions for ∆Π ∪ ΛΠ include some B such that BT ∩ P = X ∩ P . Hence, from
the property that CDNL-PROJECTION(Π, P, 0) is terminating, we can conclude that it is
complete w.r.t. P .

It remains to show that CDNL-PROJECTION(Π, P, 0) is terminating. By the same
argument as in the proof of Theorem 4.16, we have that CDNL-PROJECTION(Π, P, 0)
admits only finitely many backjumps in Line 12 of Algorithm 4.7. Likewise, only finitely
many backtracks can be performed in Line 17 or 27 because the complement σd of a for-
mer (fake) decision entry σd ∈ AP is assigned immediately afterwards, that is, in Line 18
or 28, respectively, and dlevel(σd) = dlevel(σd)−1 holds in view of Line 35–36, 15–16,

172 Proofs

and 25–26. Furthermore, if an enumerated solution A for ∆Π ∪ ΛΠ does not immedi-
ately lead to either termination in Line 22 or a backtrack in Line 27, after incrementing
bl in Line 30, an entry σd ∈ AP such that dlevel(σd) = bl is reassigned in Line 37, so
that only |P ∩ atom(Π)| many solutions can be enumerated in a row without decreas-
ing bl upon backtracking. Along with the fact that A is strictly extended in Line 41,
so that either a backjump (in Line 12) or a backtrack (in Line 17 or 27, provided that
the termination condition in Line 22 does not apply beforehand) is inevitable within
a quadratic number of iterations of the loop in Line 4–41, we conclude that CDNL-
PROJECTION(Π, P, 0) eventually terminates in Line 7 or 22 of Algorithm 4.7.

We have thus proven all formal results presented in Chapter 4.

List of Figures

1.1 Declarative problem solving in answer set programming. 2
1.2 Basic architecture of answer set programming systems. 2
1.3 A directed graph with six vertices and seventeen edges. 3

3.1 Tableau rules for normal programs. 19
3.2 Complete tableau of Tsmodels for Π1 from Example 2.1 and the empty

assignment. 20
3.3 Deterministic tableau rules for traditional (atom-based) ASP solvers. . . . 23
3.4 Tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting

(g). 34
3.5 Tableau rules for conjunctions. 37
3.6 Complete tableau of the generic image of Tsmodels for Π1 and the empty

assignment. 39
3.7 Tableau rules for cardinality constraints. 41
3.8 Tableau rules for disjunctions. 44
3.9 Families {Πn

a}, {Πn
b }, and {Πn

c } of normal programs. 46
3.10 A minimal refutation of Tsmodels for Πn

a ∪Πn
c , using Cut[atom(Πn

a ∪Πn
c)]. 47

3.11 A minimal refutation of Tnomore for Πn
a ∪Πn

c , using Cut[body(Πn
a ∪Πn

c)]. 48
3.12 A minimal refutation of Tnomore for Πn

b ∪Πn
c , using Cut[body(Πn

b ∪Πn
c)]. 49

3.13 A minimal refutation of Tsmodels for Πn
b ∪Πn

c , using Cut[atom(Πn
b ∪Πn

c)]. 50

173

174

List of Tables

3.1 Correspondences between basic and generic tableau rules (for normal
programs). 38

4.1 Set ∆Π6 of nogoods and associated tableau rules of Tcomp for Π6. 57
4.2 Models of Comp(Π6) and corresponding solutions for ∆Π6 58
4.3 A computation of answer set {b, c, d, e} with CDNL-ASP(Π2). 64
4.4 Runs of UNFOUNDEDSET(Π2,A) upon a computation of answer set

{b, c, d, e}. 70
4.5 Run of CONFLICTANALYSIS({T {not a},T a},Π2,∇,A) at decision

level 2. 72
4.6 Main steps in a computation of all answer sets with CDNL-

RECORDING(Π11, 0). 79
4.7 Main steps in a computation of all answer sets with CDNL-

ENUMERATION(Π11, 0). 83
4.8 Main steps in a computation of all projected answer sets with CDNL-

PROJECTION(Π11, {a, b, c}, 0). 89
4.9 Average runtimes on benchmarks of the 2009 ASP competition. 95
4.10 Average runtimes on satisfiable benchmarks of the 2009 ASP competition. 96
4.11 Average runtimes on unsatisfiable benchmarks of the 2009 ASP compe-

tition. 97
4.12 Experiments enumerating answer sets. 99
4.13 Experiments enumerating projected answer sets: 11/11-pigeon-hole. . . . 101
4.14 Experiments enumerating projected answer sets: 15-queens. 102
4.15 Experiments enumerating projected answer sets: Clumpy, Repair,

Labyrinth. 103

A.1 First part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0). 114

A.2 Second part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0). 115

A.3 Third part of a computation of all answer sets with CDNL-
RECORDING(Π11, 0). 116

A.4 First part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0). 118

A.5 Second part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0). 119

A.6 Third part of a computation of all answer sets with CDNL-
ENUMERATION(Π11, 0). 120

175

A.7 First part of a computation of all projected answer sets with CDNL-
PROJECTION(Π11, {a, b, c}, 0). 121

A.8 Second part of a computation of all projected answer sets with CDNL-
PROJECTION(Π11, {a, b, c}, 0). 122

176

List of Algorithms

4.1 CDNL-ASP . 62
4.2 NOGOODPROPAGATION . 65
4.3 UNFOUNDEDSET . 68
4.4 CONFLICTANALYSIS . 72
4.5 CDNL-RECORDING . 78
4.6 CDNL-ENUMERATION . 81
4.7 CDNL-PROJECTION . 87

177

178

Index

algorithm
CDNL-ASP, 62
CONFLICTANALYSIS, 72

assertion level, 71
First-UIP scheme, 71

CDNL-ENUMERATION, 81
backtracking level, 80

CDNL-PROJECTION, 87
backtracking level, 86
projection, 85

NOGOODPROPAGATION, 65
CDNL-RECORDING, 78
UNFOUNDEDSET, 68

(a)cyclic atoms, 67
initial source pointer configuration,

68
scope, 68
source pointer configuration, 67
source pointers, 67
valid source pointer configuration,

68
Conflict-Driven Clause Learning

(CDCL), 4
Davis-Putnam-Logemann-Loveland

(DPLL), 3
enumeration, 76

completeness, 90
redundancy-freeness, 90
soundness, 90

terminating, 76
Answer Set Programming (ASP), 1

N -coloring, 2
Hamiltonian cycle, 2

Boolean assignment, 11
atom-saturated, 15
body-saturated, 13
body-synchronized, 13
contradictory, 11
decision level, 59

implied, 60
domain, 11
entry, 11

complement, 11
conjugation, 18
decision, 61
implied, 60
insertion, 60
Unique Implication Point (UIP), 71
unit-resulting, 60
variable, 11

nogood, 11
antecedent, 60
asserting, 61
assertion level, 71
completion, 56
loop, 59

ordered, 59
prefix, 59
projection, 85
solution, 11
total, 11
unit propagation, 60

logic program, 10
cardinality, 39

constraint, 39
external support, 42
literal, 39
propositional theory, 40
tableau rules, 41

conjunctive, 36
external support, 36
propositional theory, 36
tableau rules, 37

disjunctive, 43
external support, 43
literal, 43
propositional theory, 43
tableau rules, 44

179

general, 31
external support, 32
literal, 31
propositional theory, 31
tableau rules, 34

normal, 10
(positive) dependency graph, 14
answer set, 10
completion, 26
completion nogoods, 56
Fitting’s operator, 22
literal, 10
loop, 14
loop formulas, 26
loop nogoods, 59
model, 10
reduct, 10
tableau rules, 19
tight, 58
unfounded set, 12
well-founded operator, 22

unary, 32
(atomic) literal, 32
external support, 33
propositional theory, 32
tableau rules, 34

propositional theory, 31
answer set, 31
logic program, 31

cardinality, 40
conjunctive, 36
disjunctive, 43
unary, 32

reduct, 31

tableau, 18
branch, 18

complete, 18
contradictory, 18
deducible entries, 18

calculus, 18
Tcard , 49
Tcomp , 20
Tnomore, 20
Tnomore++, 20
Tconj , 49
Tsmodels, 20

approximation, 51
generic image, 38

complete, 18
proof complexity, 45

(not) polynomially simulated, 45
efficiency-incomparable, 45
exponentially stronger, 45

refutation, 18
minimal, 45

rules, 18
cardinality constraints, 41
conjunctions, 37
disjunctions, 44
generic, 34
normal programs, 19
traditional ASP solvers, 23
well-behaved, 134

unfounded set, 12
(a)cyclic atoms, 67
(positive) dependency graph, 14

loop, 14
loop formula, 26
strongly connected component, 15
tight, 58

external bodies, 12
source pointers, 67

configuration, 67
initial configuration, 68
valid configuration, 68

Van Gelder-Ross-Schlipf (GRS), 12

180

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] C. Anger, M. Gebser, T. Janhunen, and T. Schaub. What’s a head without a body?
In Brewka et al. [29], pages 769–770.

[3] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The nomore++
approach to answer set solving. In G. Sutcliffe and A. Voronkov, editors, Proceed-
ings of the Twelfth International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture Notes in Artificial
Intelligence, pages 95–109. Springer-Verlag, 2005.

[4] C. Anger, M. Gebser, and T. Schaub. Approaching the core of unfounded sets.
In J. Dix and A. Hunter, editors, Proceedings of the Eleventh International Work-
shop on Nonmonotonic Reasoning (NMR’06), number IFI-06-04 in Institute for
Informatics, Clausthal University of Technology, Technical Report Series, pages
58–66, 2006.

[5] C. Anger, K. Konczak, T. Linke, and T. Schaub. A glimpse of answer set program-
ming. Künstliche Intelligenz, 19(1):12–17, 2005.

[6] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
chapter 2, pages 89–148. Morgan Kaufmann Publishers, 1987.

[7] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In Boutilier [24], pages 399–404.

[8] Y. Babovich, E. Erdem, and V. Lifschitz. Fages’ theorem and answer set pro-
gramming. In C. Baral and M. Truszczyński, editors, Proceedings of the Eighth
International Workshop on Nonmonotonic Reasoning (NMR’00), 2000.

[9] Y. Babovich and V. Lifschitz. Computing answer sets using program
completion. http://www.cs.utexas.edu/users/tag/cmodels/
cmodels-1.ps, 2003. Unpublished draft.

[10] F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian inference
with backtracking search. Journal of Artificial Intelligence Research, 34:391–442,
2009.

[11] M. Balduccini. Industrial-size scheduling with ASP+CP. In Delgrande and Faber
[46], pages 284–296.

181

[12] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, 2003.

[13] C. Baral, G. Brewka, and J. Schlipf, editors. Proceedings of the Ninth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[14] C. Baral, G. Greco, N. Leone, and G. Terracina, editors. Proceedings of the Eighth
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’05), volume 3662 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 2005.

[15] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories.
In Biere et al. [21], chapter 26, pages 825–885.

[16] R. Bayardo and J. Pehoushek. Counting models using connected components.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI’00), pages 157–162. AAAI Press/MIT Press, 2000.

[17] R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI’97), pages 203–208. AAAI Press/MIT Press, 1997.

[18] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–
351, 2004.

[19] P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future.
Bulletin of the European Association for Theoretical Computer Science, 65:66–89,
1998.

[20] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4:75–97, 2008.

[21] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2009.

[22] G. Boenn, M. Brain, M. De Vos, and J. Fitch. Automatic composition of melodic
and harmonic music by answer set programming. In Garcia de la Banda and Pon-
telli [77], pages 160–174.

[23] P. Bonatti. Resolution for skeptical stable model semantics. Journal of Automated
Reasoning, 27(4):391–421, 2001.

[24] C. Boutilier, editor. Proceedings of the Twenty-first International Joint Conference
on Artificial Intelligence (IJCAI’09). AAAI Press/MIT Press, 2009.

[25] M. Brain, T. Crick, M. De Vos, and J. Fitch. TOAST: Applying answer set pro-
gramming to superoptimisation. In Etalle and Truszczyński [63], pages 270–284.

[26] M. Brain and M. De Vos. The significance of memory costs in answer set solver
implementation. Journal of Logic and Computation, 19(4):615–641, 2009.

182

[27] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. Debugging
ASP programs by means of ASP. In Baral et al. [13], pages 31–43.

[28] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. That is
illogical captain! — the debugging support tool spock for answer-set programs:
System description. In De Vos and Schaub [44], pages 71–85.

[29] G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors. Proceedings of the
Seventeenth European Conference on Artificial Intelligence (ECAI’06). IOS Press,
2006.

[30] G. Brewka and J. Lang, editors. Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’08). AAAI
Press, 2008.

[31] G. Brewka, I. Niemelä, and M. Truszczyński. Nonmonotonic reasoning. In Lif-
schitz et al. [166], chapter 6, pages 239–284.

[32] F. Calimeri, W. Faber, G. Pfeifer, and N. Leone. Pruning operators for disjunctive
logic programming systems. Fundamenta Informaticae, 71(2-3):183–214, 2006.

[33] X. Chen, J. Ji, and F. Lin. Computing loops with at most one external support rule.
In Brewka and Lang [30], pages 401–410.

[34] X. Chen, J. Ji, and F. Lin. Computing loops with at most one external support rule
for disjunctive logic programs. In Erdem et al. [61], pages 130–144.

[35] Y. Chen, F. Lin, Y. Wang, and M. Zhang. First-order loop formulas for normal
logic programs. In P. Doherty, J. Mylopoulos, and C. Welty, editors, Proceedings
of the Tenth International Conference on Principles of Knowledge Representation
and Reasoning (KR’06), pages 298–307. AAAI Press, 2006.

[36] K. Claessen and N. Sörensson. New techniques that improve MACE-style fi-
nite model finding. In P. Baumgartner and C. Fermüller, editors, Proceedings
of the Workshop on Model Computation — Principles, Algorithms, Applications
(MODEL’03), 2003.

[37] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, 1978.

[38] Clasp. http://www.cs.uni-potsdam.de/clasp.

[39] S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, 1979.

[40] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of
Tableau Methods. Kluwer Academic Publishers, 1999.

[41] A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Biere et al. [21],
chapter 3, pages 99–130.

[42] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

183

[43] M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7:201–215, 1960.

[44] M. De Vos and T. Schaub, editors. Proceedings of the First Workshop on Software
Engineering for Answer Set Programming (SEA’07), number CSBU-2007-05 in
Department of Computer Science, University of Bath, Technical Report Series,
2007.

[45] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[46] J. Delgrande and W. Faber, editors. Proceedings of the Eleventh International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
volume 6645 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2011.

[47] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second
answer set programming competition. In Erdem et al. [61], pages 637–654.

[48] N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better understanding of the
functionality of a conflict-driven SAT solver. In Marques-Silva and Sakallah [180],
pages 287–293.

[49] J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: Towards efficient
calculi and implementations. In J. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, pages 1241–1354. Elsevier and MIT Press, 2001.

[50] H. Dixon, M. Ginsberg, and A. Parkes. Generalizing Boolean satisfiability I: Back-
ground and survey of existing work. Journal of Artificial Intelligence Research,
21:193–243, 2004.

[51] A. Dovier and E. Pontelli, editors. A 25-Year Perspective on Logic Programming,
volume 6125 of Lecture Notes in Computer Science. Springer-Verlag, 2010.

[52] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Ostrowski, and
T. Schaub. Conflict-driven disjunctive answer set solving. In Brewka and Lang
[30], pages 422–432.

[53] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub. Heuristics in conflict res-
olution. In M. Pagnucco and M. Thielscher, editors, Proceedings of the Twelfth
International Workshop on Nonmonotonic Reasoning (NMR’08), number UNSW-
CSE-TR-0819 in School of Computer Science and Engineering, University of New
South Wales, Technical Report Series, pages 141–149, 2008.

[54] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In F. Bacchus and T. Walsh, editors, Proceedings of the Eigth Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT’05),
volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer-
Verlag, 2005.

[55] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Elec-
tronic Notes in Theoretical Computer Science, 89(4), 2003.

[56] N. Eén and N. Sörensson. An extensible SAT-solver. In Giunchiglia and Tacchella
[126], pages 502–518.

184

[57] T. Eiter and G. Gottlob. On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Artificial Intelligence, 15(3-
4):289–323, 1995.

[58] T. Eiter, H. Tompits, and S. Woltran. On solution correspondences in answer set
programming. In Kaelbling and Saffiotti [148], pages 97–102.

[59] E. Ellguth, M. Gebser, M. Gusowski, R. Kaminski, B. Kaufmann, S. Liske,
T. Schaub, L. Schneidenbach, and B. Schnor. A simple distributed conflict-driven
answer set solver. In Erdem et al. [61], pages 490–495.

[60] E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic
Programming, 3(4-5):499–518, 2003.

[61] E. Erdem, F. Lin, and T. Schaub, editors. Proceedings of the Tenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
volume 5753 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2009.

[62] E. Erdem and F. Türe. Efficient haplotype inference with answer set programming.
In Fox and Gomes [75], pages 436–441.

[63] S. Etalle and M. Truszczyński, editors. Proceedings of the Twenty-second Inter-
national Conference on Logic Programming (ICLP’06), volume 4079 of Lecture
Notes in Computer Science. Springer-Verlag, 2006.

[64] W. Faber. Enhancing Efficiency and Expressiveness in Answer Set Programming
Systems. Dissertation, Technische Universität Wien, 2002.

[65] W. Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In Baral et al. [14], pages 40–52.

[66] W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

[67] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, and G. Ielpa. Design and implemen-
tation of aggregate functions in the DLV system. Theory and Practice of Logic
Programming, 8(5-6):545–580, 2008.

[68] F. Fages. Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[69] P. Ferraris. Answer sets for propositional theories. In Baral et al. [14], pages
119–131.

[70] P. Ferraris, J. Lee, and V. Lifschitz. A generalization of the Lin-Zhao theorem.
Annals of Mathematics and Artificial Intelligence, 47(1-2):79–101, 2006.

[71] P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In Veloso
[217], pages 372–379.

[72] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. Theory and
Practice of Logic Programming, 5(1-2):45–74, 2005.

185

[73] M. Fitting. Tableaux for logic programming. Journal of Automated Reasoning,
13(2):175–188, 1994.

[74] M. Fitting. Fixpoint semantics for logic programming: A survey. Theoretical
Computer Science, 278(1-2):25–51, 2002.

[75] D. Fox and C. Gomes, editors. Proceedings of the Twenty-third National Confer-
ence on Artificial Intelligence (AAAI’08). AAAI Press, 2008.

[76] J. Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD
thesis, University of Pennsylvania, 1995.

[77] M. Garcia de la Banda and E. Pontelli, editors. Proceedings of the Twenty-fourth
International Conference on Logic Programming (ICLP’08), volume 5366 of Lec-
ture Notes in Computer Science. Springer-Verlag, 2008.

[78] M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive answer set program-
ming. In Delgrande and Faber [46], pages 54–66.

[79] M. Gebser, T. Grote, and T. Schaub. Coala: A compiler from action languages to
ASP. In Janhunen and Niemelä [138], pages 360–364.

[80] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and
P. Veber. Repair and prediction (under inconsistency) in large biological networks
with answer set programming. In F. Lin and U. Sattler, editors, Proceedings of the
Twelfth International Conference on Principles of Knowledge Representation and
Reasoning (KR’10), pages 497–507. AAAI Press, 2010.

[81] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schnei-
der. Potassco: The Potsdam answer set solving collection. AI Communications,
24(2):105–124, 2011.

[82] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo. [198]

[83] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
Engineering an incremental ASP solver. In Garcia de la Banda and Pontelli [77],
pages 190–205.

[84] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of
weight constraint rules in conflict-driven ASP solvers. In Hill and Warren [132],
pages 250–264.

[85] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimiza-
tion in answer set programming. In J. Gallagher and M. Gelfond, editors, Tech-
nical Communications of the Twenty-seventh International Conference on Logic
Programming (ICLP’11), volume 11 of Leibniz International Proceedings in In-
formatics, pages 1–10. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

[86] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimization
in ASP and its application to Linux package configuration. In D. Le Berre and
A. Van Gelder, editors, Proceedings of the Second Workshop on Pragmatics of
SAT (PoS’11), 2011. Submitted for post-proceedings.

186

[87] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller.
A portfolio solver for answer set programming: Preliminary report. In Delgrande
and Faber [46], pages 352–357.

[88] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, and B. Schnor. Cluster-based
ASP solving with claspar. In Delgrande and Faber [46], pages 364–369.

[89] M. Gebser, R. Kaminski, M. Knecht, and T. Schaub. plasp: A prototype for PDDL-
based planning in ASP. In Delgrande and Faber [46], pages 358–363.

[90] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3.
In Delgrande and Faber [46], pages 345–351.

[91] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele. On the input
language of ASP grounder gringo. In Erdem et al. [61], pages 502–508.

[92] M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming, Twenty-seventh Interna-
tional Conference on Logic Programming (ICLP’11) Special Issue, 11(4-5):821–
839, 2011.

[93] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven
answer set solver. In Baral et al. [13], pages 260–265.

[94] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set
enumeration. In Baral et al. [13], pages 136–148.

[95] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set
solving. In Veloso [217], pages 386–392.

[96] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocess-
ing for answer set solving. In M. Ghallab, C. Spyropoulos, N. Fakotakis, and
N. Avouris, editors, Proceedings of the Eighteenth European Conference on Arti-
ficial Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[97] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver
clasp: Progress report. In Erdem et al. [61], pages 509–514.

[98] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected
Boolean search problems. In W. van Hoeve and J. Hooker, editors, Proceedings of
the Sixth International Conference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR’09),
volume 5547 of Lecture Notes in Computer Science, pages 71–86. Springer-
Verlag, 2009.

[99] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence. To appear.

[100] M. Gebser, A. König, T. Schaub, S. Thiele, and P. Veber. The BioASP library:
ASP solutions for systems biology. In E. Grégoire, editor, Proceedings of the
Twenty-second IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’10), pages 383–389. IEEE Computer Society, 2010.

187

[101] M. Gebser, J. Lee, and Y. Lierler. Elementary sets for logic programs. In Gil and
Mooney [121], pages 244–249.

[102] M. Gebser, J. Lee, and Y. Lierler. Head-elementary-set-free logic programs. In
Baral et al. [13], pages 149–161.

[103] M. Gebser, J. Lee, and Y. Lierler. On elementary loops of logic programs. Theory
and Practice of Logic Programming. To appear.

[104] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and
M. Truszczyński. The first answer set programming system competition. In Baral
et al. [13], pages 3–17.

[105] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Hill
and Warren [132], pages 235–249.

[106] M. Gebser, J. Pührer, T. Schaub, and H. Tompits. A meta-programming technique
for debugging answer-set programs. In Fox and Gomes [75], pages 448–453.

[107] M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer set programming
based system for finite model computation. In Janhunen and Niemelä [138], pages
169–181.

[108] M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer set programming
based system for finite model computation. AI Communications, 24(2):195–212,
2011.

[109] M. Gebser and T. Schaub. Loops: Relevant or redundant? In Baral et al. [14],
pages 53–65.

[110] M. Gebser and T. Schaub. Characterizing ASP inferences by unit propagation. In
E. Giunchiglia, V. Marek, D. Mitchell, and E. Ternovska, editors, Proceedings of
the First International Workshop on Search and Logic: Answer Set Programming
and SAT (LaSh’06), pages 41–56, 2006.

[111] M. Gebser and T. Schaub. Tableau calculi for answer set programming. In Etalle
and Truszczyński [63], pages 11–25.

[112] M. Gebser and T. Schaub. Generic tableaux for answer set programming. In
V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third International
Conference on Logic Programming (ICLP’07), volume 4670 of Lecture Notes in
Computer Science, pages 119–133. Springer-Verlag, 2007.

[113] M. Gebser and T. Schaub. Tableau calculi for logic programs under answer set
semantics. ACM Transactions on Computational Logic. To appear.

[114] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set
programming. In Baral et al. [13], pages 266–271.

[115] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting inconsistencies in large
biological networks with answer set programming. Theory and Practice of Logic
Programming, 11(2-3):323–360, 2011.

188

[116] M. Gebser, T. Schaub, H. Tompits, and S. Woltran. Alternative characteriza-
tions for program equivalence under answer-set semantics based on unfounded
sets. In S. Hartmann and G. Kern-Isberner, editors, Proceedings of the Fifth In-
ternational Symposium on Foundations of Information and Knowledge Systems
(FoIKS’08), volume 4932 of Lecture Notes in Computer Science, pages 24–41.
Springer-Verlag, 2008.

[117] M. Gelfond. Answer sets. In Lifschitz et al. [166], chapter 7, pages 285–316.

[118] M. Gelfond and N. Leone. Logic programming and knowledge representation —
the A-Prolog perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

[119] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth International Con-
ference and Symposium of Logic Programming (ICLP’88), pages 1070–1080. MIT
Press, 1988.

[120] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[121] Y. Gil and R. Mooney, editors. Proceedings of the Twenty-first National Confer-
ence on Artificial Intelligence (AAAI’06). AAAI Press, 2006.

[122] E. Giunchiglia, N. Leone, and M. Maratea. On the relation among answer set
solvers. Annals of Mathematics and Artificial Intelligence, 53(1-4):169–204, 2008.

[123] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based
on propositional satisfiability. Journal of Automated Reasoning, 36(4):345–377,
2006.

[124] E. Giunchiglia and M. Maratea. On the relation between answer set and SAT
procedures (or, between cmodels and smodels). In M. Gabbrielli and G. Gupta,
editors, Proceedings of the Twenty-first International Conference on Logic Pro-
gramming (ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
37–51. Springer-Verlag, 2005.

[125] E. Giunchiglia and M. Maratea. Solving optimization problems with DLL. In
Brewka et al. [29], pages 377–381.

[126] E. Giunchiglia and A. Tacchella, editors. Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT’03), volume
2919 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

[127] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Proceed-
ings of the Fifth Conference on Design, Automation and Test in Europe (DATE’02),
pages 142–149. IEEE Computer Society, 2002.

[128] C. Gomes, A. Sabharwal, and B. Selman. Model counting. In Biere et al. [21],
chapter 20, pages 633–654.

[129] G. Grasso, S. Iiritano, N. Leone, and F. Ricca. Some DLV applications for knowl-
edge management. In Erdem et al. [61], pages 591–597.

189

[130] O. Grumberg, A. Schuster, and A. Yadgar. Memory efficient all-solutions SAT
solver and its application for reachability analysis. In A. Hu and A. Martin, ed-
itors, Proceedings of the Fifth International Conference on Formal Methods in
Computer-Aided Design (FMCAD’04), volume 3312 of Lecture Notes in Com-
puter Science, pages 275–289. Springer-Verlag, 2004.

[131] R. Hähnle. Tableaux and related methods. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, pages 100–178. Elsevier and MIT
Press, 2001.

[132] P. Hill and D. Warren, editors. Proceedings of the Twenty-fifth International Con-
ference on Logic Programming (ICLP’09), volume 5649 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2009.

[133] J. Huang. The effect of restarts on the efficiency of clause learning. In Veloso
[217], pages 2318–2323.

[134] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Answer set vs integer
linear programming for automatic synthesis of multiprocessor systems from real-
time parallel programs. Journal of Reconfigurable Computing, 2009. Article ID
863630.

[135] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Application of ASP
for automatic synthesis of flexible multiprocessor systems from parallel programs.
In Erdem et al. [61], pages 598–603.

[136] T. Janhunen. Some (in)translatability results for normal logic programs and propo-
sitional theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

[137] T. Janhunen, G. Liu, and I. Niemelä. Tight integration of non-ground answer
set programming and satisfiability modulo theories. In P. Cabalar, D. Mitchell,
D. Pearce, and E. Ternovska, editors, Proceedings of the First Workshop on
Grounding and Transformation for Theories with Variables (GTTV’11), pages 1–
13, 2011.

[138] T. Janhunen and I. Niemelä, editors. Proceedings of the Twelfth European Con-
ference on Logics in Artificial Intelligence (JELIA’10), volume 6341 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2010.

[139] T. Janhunen and I. Niemelä. Compact translations of non-disjunctive answer set
programs to propositional clauses. In M. Balduccini and T. Son, editors, Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays
Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, volume 6565
of Lecture Notes in Computer Science, pages 111–130. Springer-Verlag, 2011.

[140] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational
Logic, 7(1):1–37, 2006.

[141] T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reductions
to difference logic. In Erdem et al. [61], pages 142–154.

190

[142] M. Järvisalo. Itemset mining as a challenge application for answer set enumera-
tion. In Delgrande and Faber [46], pages 304–310.

[143] M. Järvisalo and T. Junttila. Limitations of restricted branching in clause learning.
Constraints, 14(3):325–356, 2009.

[144] M. Järvisalo, T. Junttila, and I. Niemelä. Unrestricted vs restricted cut in a tableau
method for Boolean circuits. Annals of Mathematics and Artificial Intelligence,
44(4):373–399, 2005.

[145] M. Järvisalo and E. Oikarinen. Extended ASP tableaux and rule redundancy in
normal logic programs. Theory and Practice of Logic Programming, 8(5-6):691–
716, 2008.

[146] H. Jin, H. Han, and F. Somenzi. Efficient conflict analysis for finding all satisfying
assignments of a Boolean circuit. In N. Halbwachs and L. Zuck, editors, Pro-
ceedings of the Eleventh International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’05), volume 3440 of Lecture
Notes in Computer Science, pages 287–300. Springer-Verlag, 2005.

[147] T. Junttila and P. Kaski. Exact cover via satisfiability: An empirical study. In
D. Cohen, editor, Proceedings of the Sixteenth International Conference on Prin-
ciples and Practice of Constraint Programming (CP’10), volume 6308 of Lecture
Notes in Computer Science, pages 297–304. Springer-Verlag, 2010.

[148] L. Kaelbling and A. Saffiotti, editors. Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI’05). Professional Book Center,
2005.

[149] G. Katsirelos. Nogood Processing in CSPs. PhD thesis, University of Toronto,
2008.

[150] G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In M. Veloso and
S. Kambhampati, editors, Proceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI’05), pages 390–396. AAAI Press, 2005.

[151] S. Khurshid, D. Marinov, I. Shlyakhter, and D. Jackson. A case for efficient solu-
tion enumeration. In Giunchiglia and Tacchella [126], pages 272–286.

[152] T. Kim, J. Lee, and R. Palla. Circumscriptive event calculus as answer set pro-
gramming. In Boutilier [24], pages 823–829.

[153] H. Kleine Büning and X. Zhao, editors. Proceedings of the Eleventh International
Conference on Theory and Applications of Satisfiability Testing (SAT’08), volume
4996 of Lecture Notes in Computer Science. Springer-Verlag, 2008.

[154] K. Konczak, T. Linke, and T. Schaub. Graphs and colorings for answer set pro-
gramming. Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[155] S. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate
abstraction. In T. Ball and R. Jones, editors, Proceedings of the Eighteenth Inter-
national Conference on Computer Aided Verification (CAV’06), volume 4144 of
Lecture Notes in Computer Science, pages 424–437. Springer-Verlag, 2006.

191

[156] J. Lee. A model-theoretic counterpart of loop formulas. In Kaelbling and Saffiotti
[148], pages 503–508.

[157] J. Lee and Y. Meng. On loop formulas with variables. In Brewka and Lang [30],
pages 444–453.

[158] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The
DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic, 7(3):499–562, 2006.

[159] N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded sets,
fixpoint semantics, and computation. Information and Computation, 135(2):69–
112, 1997.

[160] Y. Lierler. Abstract answer set solvers with learning. Theory and Practice of Logic
Programming. To appear.

[161] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138(1-2):39–54, 2002.

[162] V. Lifschitz. Twelve definitions of a stable model. In Garcia de la Banda and
Pontelli [77], pages 37–51.

[163] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

[164] V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM
Transactions on Computational Logic, 7(2):261–268, 2006.

[165] V. Lifschitz, L. Tang, and H. Turner. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

[166] V. Lifschitz, F. van Harmelen, and B. Porter, editors. Handbook of Knowledge
Representation. Elsevier, 2008.

[167] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[168] Z. Lin, Y. Zhang, and H. Hernandez. Fast SAT-based answer set solver. In Gil and
Mooney [121], pages 92–97.

[169] T. Linke, C. Anger, and K. Konczak. More on nomore. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the Eighth European Conference
on Logics in Artificial Intelligence (JELIA’02), volume 2424 of Lecture Notes in
Computer Science, pages 468–480. Springer-Verlag, 2002.

[170] G. Liu and J. You. Level mapping induced loop formulas for weight constraint
and aggregate logic programs. Fundamenta Informaticae, 101(3):237–255, 2010.

[171] L. Liu and M. Truszczyński. Properties and applications of programs with mono-
tone and convex constraints. Journal of Artificial Intelligence Research, 27:299–
334, 2006.

[172] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

192

[173] V. Marek and J. Remmel. On the continuity of Gelfond-Lifschitz operator and
other applications of proof-theory in ASP. In Garcia de la Banda and Pontelli
[77], pages 223–237.

[174] V. Marek and V. Subrahmanian. The relationship between stable, supported, de-
fault and autoepistemic semantics for general logic programs. Theoretical Com-
puter Science, 103(2):365–386, 1992.

[175] V. Marek and M. Truszczyński. Autoepistemic logic. Journal of the ACM,
38(3):588–619, 1991.

[176] V. Marek and M. Truszczyński. Stable models and an alternative logic program-
ming paradigm. In K. Apt, W. Marek, M. Truszczyński, and D. Warren, edi-
tors, The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[177] M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe. SAT(ID): Satisfiability
of propositional logic extended with inductive definitions. In Kleine Büning and
Zhao [153], pages 211–224.

[178] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT
solvers. In Biere et al. [21], chapter 4, pages 131–153.

[179] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[180] J. Marques-Silva and K. Sakallah, editors. Proceedings of the Tenth International
Conference on Theory and Applications of Satisfiability Testing (SAT’07), volume
4501 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[181] V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence,
53(1-4):251–287, 2008.

[182] A. Mileo, D. Merico, and R. Bisiani. A logic programming approach to home
monitoring for risk prevention in assisted living. In Garcia de la Banda and Pontelli
[77], pages 145–159.

[183] D. Mitchell. A SAT solver primer. Bulletin of the European Association for The-
oretical Computer Science, 85:112–133, 2005.

[184] A. Morgado and J. Marques-Silva. Good learning and implicit model enumeration.
In Proceedings of the Seventeenth IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’05), pages 131–136. IEEE Computer Society, 2005.

[185] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[186] I. Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–
273, 1999.

193

[187] I. Niemelä. Stable models and difference logic. Annals of Mathematics and Arti-
ficial Intelligence, 53(1-4):313–329, 2008.

[188] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation
and its application to difference logic. In K. Etessami and S. Rajamani, editors,
Proceedings of the Seventeenth International Conference on Computer Aided Ver-
ification (CAV’05), volume 3576 of Lecture Notes in Computer Science, pages
321–334. Springer-Verlag, 2005.

[189] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[190] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog
decision support system for the space shuttle. In I. Ramakrishnan, editor, Pro-
ceedings of the Third International Symposium on Practical Aspects of Declara-
tive Languages (PADL’01), volume 1990 of Lecture Notes in Computer Science,
pages 169–183. Springer-Verlag, 2001.

[191] N. Olivetti. Tableaux for nonmonotonic logics. In D’Agostino et al. [40], pages
469–528.

[192] D. Pearce. A new logical characterisation of stable models and answer sets. In
J. Dix, L. Pereira, and T. Przymusinski, editors, Proceedings of the Sixth Workshop
on Non-Monotonic Extensions of Logic Programming (NMELP’96), volume 1216
of Lecture Notes in Computer Science, pages 57–70. Springer-Verlag, 1996.

[193] D. Pearce, I. de Guzmán, and A. Valverde. A tableau calculus for equilibrium
entailment. In R. Dyckhoff, editor, Proceedings of the Ninth International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’00), volume 1847 of Lecture Notes in Computer Science, pages 352–
367. Springer-Verlag, 2000.

[194] D. Pearce and A. Valverde. A first order nonmonotonic extension of constructive
logic. Studia Logica, 30(2-3):321–346, 2005.

[195] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for
satisfiability solvers. In Marques-Silva and Sakallah [180], pages 294–299.

[196] K. Pipatsrisawat and A. Darwiche. A new clause learning scheme for efficient
unsatisfiability proofs. In Fox and Gomes [75], pages 1481–1484.

[197] K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers
as resolution engines. Artificial Intelligence, 175(2):512–525, 2011.

[198] Potassco. http://potassco.sourceforge.net.

[199] P. Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10:76–94,
1970.

[200] F. Ricca, W. Faber, and N. Leone. A backjumping technique for disjunctive logic
programming. AI Communications, 19(2):155–172, 2006.

194

[201] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Program-
ming. Elsevier, 2006.

[202] O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In
Biere et al. [21], chapter 22, pages 695–733.

[203] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

[204] V. Ryvchin and O. Strichman. Local restarts. In Kleine Büning and Zhao [153],
pages 271–276.

[205] K. Sakallah. Symmetry and satisfiability. In Biere et al. [21], chapter 10, pages
289–338.

[206] J. Schlipf. The expressive powers of the logic programming semantics. Journal of
Computer and System Sciences, 51:64–86, 1995.

[207] L. Schneidenbach, B. Schnor, M. Gebser, R. Kaminski, B. Kaufmann, and
T. Schaub. Experiences running a parallel answer set solver on Blue Gene. In
M. Ropo, J. Westerholm, and J. Dongarra, editors, Proceedings of the Sixteenth
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface (PVM/MPI’09), volume 5759 of Lecture
Notes in Computer Science, pages 64–72. Springer-Verlag, 2009.

[208] P. Simons. Extending and Implementing the Stable Model Semantics. Dissertation,
Helsinki University of Technology, 2000.

[209] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[210] T. Soininen and I. Niemelä. Developing a declarative rule language for applica-
tions in product configuration. In G. Gupta, editor, Proceedings of the First In-
ternational Workshop on Practical Aspects of Declarative Languages (PADL’99),
volume 1551 of Lecture Notes in Computer Science, pages 305–319. Springer-
Verlag, 1999.

[211] T. Syrjänen. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/
Software/smodels/lparse.ps.gz.

[212] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[213] M. Thielscher. Answer set programming for single-player games in general game
playing. In Hill and Warren [132], pages 327–341.

[214] M. Truszczyński. Comments on modeling languages for answer-set programming.
In De Vos and Schaub [44], pages 3–11.

[215] J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Sci-
ence Press, 1988.

[216] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

195

[217] M. Veloso, editor. Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI Press/MIT Press, 2007.

[218] J. Ward and J. Schlipf. Answer set programming with clause learning. In V. Lif-
schitz and I. Niemelä, editors, Proceedings of the Seventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’04), volume
2923 of Lecture Notes in Artificial Intelligence, pages 302–313. Springer-Verlag,
2004.

[219] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD’01), pages 279–285, 2001.

[220] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In Proceedings
of the Sixth Conference on Design, Automation and Test in Europe (DATE’03),
pages 10880–10885. IEEE Computer Society, 2003.

196

	Title
	Imprint

	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	1.1 Contributions of This Thesis
	1.1.1 Further Contributions

	1.2 Organization of This Thesis

	2 Background
	2.1 Normal Logic Programs
	2.2 Boolean Assignments and Nogoods
	2.3 Unfounded Sets

	3 Tableaux for Answer Set Programming
	3.1 Tableaux for Normal Logic Programs
	3.2 Characterizing Existing ASP Solvers
	3.2.1 Fitting’s Operator and Well-Founded Operator
	3.2.2 Traditional ASP Solvers
	3.2.3 SAT-Based and Conflict-Driven Learning ASP Solvers

	3.3 Generic Tableaux for Composite Language Constructs
	3.3.1 Answer Sets for Propositional Theories
	3.3.2 Generic Tableau Rules
	3.3.3 Conjunctive Bodies
	3.3.4 Cardinality Constraints
	3.3.5 Disjunctive Heads

	3.4 Proof Complexity
	3.4.1 Tableaux for Normal Logic Programs
	3.4.2 Generic Tableaux for Composite Language Constructs

	3.5 Related Work
	3.6 Discussion

	4 Conflict-Driven Answer Set Solving
	4.1 Nogoods of Normal Logic Programs
	4.2 Ordered Assignments and Unit Propagation
	4.3 Decision Algorithm
	4.3.1 Conflict-Driven Nogood Learning
	4.3.2 Nogood Propagation
	4.3.3 Unfounded Set Checking
	4.3.4 Conflict Analysis
	4.3.5 Soundness and Completeness

	4.4 Enumeration Algorithms
	4.4.1 Solution Recording
	4.4.2 Solution Enumeration
	4.4.3 Solution Projection
	4.4.4 Soundness and Completeness

	4.5 Experimental Results
	4.5.1 Experiments on Decision Algorithm
	4.5.2 Experiments on Enumeration Algorithms
	4.5.3 Experiments on Projection Algorithm

	4.6 Related Work
	4.7 Discussion

	5 Conclusions
	Appendix
	A Examples
	A.1 Example 4.10
	A.2 Example 4.11
	A.3 Example 4.12

	B Proofs
	B.1 Chapter 2
	B.2 Chapter 3
	B.2.1 Section 3.2
	B.2.2 Section 3.3
	B.2.3 Section 3.4

	B.3 Chapter 4
	B.3.1 Section 4.1
	B.3.2 Section 4.3
	B.3.3 Section 4.4

	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography

