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From Hardy to Rellich inequalities on graphs

Matthias Keller, Yehuda Pinchover and Felix Pogorzelski

Abstract

We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs.
Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian
of the function in terms of weighted norms. These weights involve the Hardy weight and a function
which satisfies an eikonal inequality. The results are proven first for Laplacians and are extended
to Schrödinger operators afterwards.

Introduction

In the International Congress of Mathematicians held in 1954 in Amsterdam, Franz Rellich
presented his famous inequality for smooth functions ϕ of compact support in R

d, d �= 2, which
vanish at 0 and which reads as∫

Rd

|Δϕ(x)|2 dx � d2(d− 4)2

16

∫
Rd

|ϕ(x)|2
|x|4 dx.

The inequality was published in 1956 [22] after Rellich’s death. Since then various versions
of this inequality have been proven in various contexts. We refer to the monograph [2, 6] for
historical and further references.

In this paper we consider Schrödinger operators on infinite graphs and prove Rellich-type
inequalities when given a Hardy-type inequality. Hardy’s classical inequality was originally
proven in the case of the simplest graph arising from N0, see [20], and recently there is a rising
interest in discrete and nonlocal Hardy inequalities [10, 11, 15, 17]. In contrast there does
not seem to be a discrete counterpart for Rellich’s inequality.

Let us sketch the rough ideas and refer for details and definitions to the next section. Given
a graph over a discrete set X, assume that it satisfies the following Hardy inequality with a
weight w > 0 ∑

x∈X

|∇ϕ|2(x) �
∑
x∈X

w(x)ϕ(x)2

for all compactly supported, real-valued ϕ (for the definition of |∇ϕ|2 see the next section).
Then, using Green’s formula for the graph Laplacian Δ and the Cauchy–Schwarz inequality
we get ∑

x∈X

w(x)ϕ(x)2 �
∑
x∈X

|∇ϕ|2(x) =
∑
x∈X

ϕ(x)Δϕ(x)

�
(∑

x∈X

w(x)ϕ(x)2
)1/2(∑

x∈X

1
w(x)

(Δϕ(x))2
)1/2

,
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which yields a Rellich-type inequality for all compactly supported ϕ∑
x∈X

1
w(x)

(Δϕ(x))2 �
∑
x∈X

w(x)ϕ(x)2.

An analogous computation in the continuum brings us half way to Rellich’s classical inequality
as it is stated above. Specifically, one gets an inequality with the weight |x|2 on the left-hand
side and the weight |x|−2 on the right-hand side. To get a proper analogue (and, indeed, a
far more flexible statement) we replace ϕ by g1/2ϕ and prove (with somewhat more effort) a
Rellich-type inequality of the form∑

x∈X

g(x)
w(x)

(Δϕ(x))2 � (1 − γ)
∑
x∈X

g(x)w(x)ϕ(x)2

for all compactly supported ϕ, where 0 < γ < 1, and g > 0 is a function satisfying the eikonal
inequality

|∇g1/2|2
g

� γw .

To the best of our knowledge the connection of eikonal equalities and the study of Schrödinger
operators goes back to Rosen [24]; see also [1, 3, 12, 25]. Agmon [1] established for Schrödinger
operators satisfying a Hardy inequality in R

d, a Rellich-type inequality involving the Hardy
weight w and a positive function g solving the above eikonal inequality. A Rellich inequality for
Schrödinger operators on noncompact manifolds with optimal Hardy weights w and a function
g satisfying the eikonal equation |∇(g1/2)|2/g = γw was studied by Devyver/Fraas/Pinchover
in [7]. Recently, a particular case of Rellich’s inequality with g = w satisfying the eikonal
inequality was established by Robinson [23] in the context of strongly local Dirichlet forms.
Here, we derive such a theorem in the context of graphs as a corollary of our main result. These
results are presented in Section 1 and proven in Section 2.

In [17] the authors showed that using the supersolution construction, one obtains optimal
Hardy weights w associated to the Laplacian on graphs, with

w =
|∇u1/2|2

u
,

where u is a certain strictly positive superharmonic function. In the continuum, this approach
goes back to [7]. Given such a Hardy weight w arising from a strictly positive harmonic function
u, we prove in Section 3, a general criterion for a function θ such that g = (θ ◦ u1/2)2 satisfies the
above eikonal inequality which implies the corresponding Rellich inequality. Later in Section 4
we show that we can choose θ as fractional powers which leads to the choice of

g = uα

for 0 < α < 1. This allows us to establish a discrete analogue of the classical Rellich inequality
for Z

d, d � 5; see Example 4.5. Furthermore, in Section 5 we show that we can choose θ as a
logarithm which leads to

g = log2(u1/2 + 1).

It seems that this weight has not been considered in the continuum so far.
By virtue of the ground state transform, we extend the Rellich inequality from the Laplacian

Δ to weighted Schrödinger operators

H =
1
m

Δ + q,

with a potential q and a measure m in Section 6.
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Finally, in Section 7 we show how Rellich’s inequality can be applied to obtain a priori
estimates and existence of solutions for the nonhomogeneous equation

Hu = f.

1. An abstract Rellich inequality

Let X be a countably infinite set endowed with the discrete topology. We refer to the elements
of X as vertices.

We denote the space of real-valued function on X by C(X), and denote the subspace of
functions with finite support by Cc(X). Via continuation by zero, the spaces C(Y ) and Cc(Y )
are considered to be subspaces of C(X) and Cc(X) for subsets Y ⊆ X. For functions f ∈ C(X),
we denote ∑

X

f :=
∑
x∈X

f(x),

whenever the right-hand side converges absolutely which is obviously the case when f is in
Cc(X). For a function f , we denote the characteristic function of the support of f by

1f := 1supp f .

A measure of full support on X is given by a function m : X → (0,∞) which extends to sets
via additivity, that is, for A ⊆ X

m(A) :=
∑
x∈A

m(x).

This way we obtain the real Hilbert space

�2(X,m) := {f ∈ C(X) |
∑
X

mf2 < ∞}

with the associated norm ‖ · ‖m given by ‖f‖2
m :=

∑
X mf2. In the case m = 1, we denote the

corresponding Hilbert space and norm by �2(X) and ‖ · ‖.
A graph over X is a symmetric function b : X ×X → [0,∞) which vanishes at the diagonal

and satisfies ∑
y∈X

b(x, y) < ∞, x ∈ X.

We say x, y,∈ X are connected by an edge, and write x ∼ y, whenever b(x, y) > 0.
Next, we introduce the formal Laplace operator (or formal Laplacian) Δ which acts on the

subspace

F(X) := {f ∈ C(X) |
∑
y∈X

b(x, y)|f(y)| < ∞ for all x ∈ X},

by
Δf(x) :=

∑
y∈X

b(x, y)(f(x) − f(y)).

Clearly, Cc(X) ⊆ F . Moreover, it is easy to check that F(X) is an algebra with respect to
pointwise multiplication. Furthermore, if f > 0 is in F(X), then it can be easily seen by Hölder
inequality that fα ∈ F(X) for α ∈ (0, 1). Although we introduced a Hilbert space above we do
not consider any self-adjoint realizations of Δ on a Hilbert space within this paper.

We define

|∇f |2(x) :=
1
2

∑
y∈X

b(x, y)(f(x) − f(y))2,

and observe that it takes finite values for f ∈ F(X).
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A fundamental concept for this paper is the so-called Hardy-type inequalities.

Definition. We say that Δ satisfies on Y ⊆ X the Hardy inequality with respect to a
strictly positive Hardy weight w : Y → (0,∞) if for all ϕ ∈ Cc(Y )∑

X

|∇ϕ|2 � ‖ϕ‖2
w.

With this notation we can present one of the main results of the paper. It states that we
can deduce a Rellich-type inequality from a Hardy inequality under certain assumptions on
the Hardy weight.

Theorem 1.1 (Abstract Rellich-type inequality). Let b be a graph over X and suppose
that w is a strictly positive Hardy weight with respect to Δ on X. If there is a strictly positive
function g ∈ F(X) and 0 < γ < 1 such that g satisfies the (pointwise) eikonal inequality

|∇(
g1/2

)|2
g

� γw in X,

then for all ϕ ∈ Cc(X),

‖1ϕΔϕ‖ g
w
� (1 − γ)‖ϕ‖gw.

Remark 1.2. The factor 1ϕ on the left-hand side of the above inequality may seem technical,
but it is indeed needed for applications in Section 7. This stems from the fact that in the
nonlocal situations of graphs, the support of Δϕ is in general not included in the support of
ϕ. Here, the factor 1ϕ ensures that the weighted norm of ϕ is estimated only by the values of
Δϕ in the support of ϕ.

An immediate corollary of Theorem 1.1 is a version of a result of Robinson [23, Theorem 1.1]
who proved it in the realm of strongly local Dirichlet forms. This corollary can be seen as a
direct analogue of Rellich’s original inequality [22, Section 4].

Corollary 1.3 (Robinson theorem for graphs). Let b be a graph over X. Assume that w
is a strictly positive Hardy weight with respect of Δ on X such that w ∈ F(X). Furthermore,
assume that there is 0 < γ < 1 such that the following eikonal inequality is satisfied:

|∇(
w1/2

)|2
w

� γw in X.

Then, for all ϕ ∈ Cc(X),

‖1ϕΔϕ‖ � (1 − γ)‖ϕ‖w2 .

Proof of Corollary 1.3. Letting g = w, the statement follows directly from Theorem 1.1. �

The assumption of Robinson for strongly local Dirichlet forms is indeed a weak version of
the eikonal inequality which is slightly more technical. We discuss this more general version in
the next section where the main theorem is proven.

2. Proof of the abstract Rellich-type inequality

In order to streamline the notation of the proofs we introduce some additional notation. For
f ∈ C(X), let the function ∇f ∈ C(X ×X) be given by

∇f(x, y) := f(x) − f(y).
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For f, g ∈ C(X) let f ⊗ g ∈ C(X ×X) be given by

(f ⊗ g)(x, y) := f(x)g(y).

Finally, for f ∈ C(X) and g ∈ C(X ×X) we use the convention fg = (f ⊗ 1)g, that is,
(fg)(x, y) := f(x)g(x, y), which yields with the notation above∑

X×X

fg =
∑

x,y∈X

f(x)g(x, y),

whenever the right-hand side converges absolutely.
The following basic identity is fundamental for the proof of Theorem 1.1 (confer [23,

Lemma 2.2] and Ernst Wienholtz’ thesis (1958)).

Lemma 2.1. For ϕ ∈ Cc(X) and f ∈ F(X), one has∑
X

(f2ϕ)Δϕ =
∑
X

|∇(fϕ)|2 − 1
2

∑
X×X

b(ϕ⊗ ϕ)(∇f)2.

Remark 2.2. Recall that (∇f)2 is a function in C(X ×X) given by (∇f)2(x, y) =
(f(x) − f(y))2, while |∇f |2 is a function in C(X) which is defined as |∇f |2(x) =
1
2

∑
y∈X b(x, y)(∇f)2(x, y).

Proof of Lemma 2.1. Recall Green’s formula from [13, Lemma 4.7] for ϕ ∈ Cc(X) and
f ∈ F(X)

1
2

∑
X×X

b∇ϕ∇f =
∑
X

ϕΔf =
∑
X

fΔϕ,

where all of the sums converge absolutely. Furthermore, by a direct calculation, we have the
following Leibniz rule for the Laplacian

Δ(fϕ)(x) = f(x)(Δϕ)(x) + ϕ(x)(Δf)(x) −
∑
y∈X

b(x, y)(∇ϕ∇f)(x, y).

So, by the Leibniz rule and Green’s formula we obtain∑
X

(f2ϕ)Δϕ =
∑
X

fϕΔ(fϕ) −
∑
X

fϕ2Δf +
∑
X×X

fϕb∇ϕ∇f

=
∑
X

|∇(fϕ)|2 − 1
2

∑
X×X

b∇(fϕ2)∇f +
∑
X×X

fϕb∇ϕ∇f.

Applying the formula

∇(ϕ2f)(x, y) = ((fϕ)(x) + (fϕ)(y))∇ϕ(x, y) + ϕ(x)ϕ(y)∇f(x, y)

to the second term on the right-hand side readily yields the statement. �

We deduce the abstract Rellich-type inequality, Theorem 1.1, from a slightly more general
yet more technical result, Theorem 2.3. Observe that the weak eikonal inequality which replaces
the pointwise eikonal inequality is a precise analogue of assumption (II) in the work of Robinson
[23, Theorem 1.1].

Theorem 2.3. Let b be a graph over X, and suppose that w is a strictly positive Hardy
weight with respect of Δ on a subset Y ⊆ X. If there is a strictly positive function g ∈ F(Y )
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and 0 < γ < 1 such that g satisfies for some (respectively, all) ϕ ∈ Cc(Y ) the following weak
eikonal inequality

1
2

∑
X×X

b(ϕ⊗ ϕ)(∇g1/2)2 � γ‖ϕ‖2
gw,

then for such a (respectively, all) ϕ ∈ Cc(Y )

‖1ϕΔϕ‖ g
w
� (1 − γ)‖ϕ‖gw.

Proof. We use Lemma 2.1 with f = g1/2 (where g is taken from the assumption) together
with the Hardy inequality and the weak eikonal inequality from the theorem’s assumptions, to
obtain for ϕ ∈ Cc(Y )∑

X

(gϕ)Δϕ � ‖ϕg1/2‖2
w − 1

2

∑
X×X

b(ϕ⊗ ϕ)(∇g1/2)2 � (1 − γ)‖ϕ‖2
gw .

On the other hand, the Cauchy–Schwarz inequality gives∑
X

(gϕ)Δϕ =
∑
X

(gϕ1ϕ)Δϕ � ‖1ϕΔϕ‖ g
w
‖ϕ‖gw .

Combining these two estimates yields the statement of the theorem. �

Proof of Theorem 1.1. Assume g satisfies |∇g1/2|2 � γgw. Then, we obtain for all ϕ ∈ Cc(X)
by Young’s inequality, 2ϕ(x)ϕ(y) � ϕ2(x) + ϕ2(y),

1
2

∑
X×X

b(ϕ⊗ ϕ)(∇g1/2)2 �
∑
X

ϕ2|∇g1/2|2 � γ
∑
X

gwϕ2.

Thus, we can apply Theorem 2.3 and the statement follows. �

Remark 2.4. It is obvious from the proof that it is sufficient that g � 0 for the statement
of Theorem 2.3.

To end this section we present a corollary of Theorem 2.3 which allows us to restrict ourselves
to subsets Y ⊆ X. This will be used frequently in the subsequent sections.

Corollary 2.5. Let b be a graph over X and suppose that w is a strictly positive Hardy
weight with respect to Δ on a subset Y ⊆ X. If there is a strictly positive function g ∈ F(Y )
and 0 < γ < 1 such that g satisfies the eikonal inequality

1
2

∑
y∈Y

b(x, y)(g1/2(x) − g1/2(y))2 � γg(x)w(x), x ∈ Y,

then, for all ϕ ∈ Cc(Y ),
‖1ϕΔϕ‖ g

w
� (1 − γ)‖ϕ‖gw.

Proof. To check that for ϕ ∈ Cc(Y ) the weak eikonal inequality in the assumption of
Theorem 2.3 is satisfied, observe that by Young’s inequality

1
2

∑
X×X

b(ϕ⊗ ϕ)(∇g1/2)2 =
1
2

∑
Y×Y

b(ϕ⊗ ϕ)(∇g1/2)2

�1
2

∑
x∈Y

ϕ2(x)
∑
y∈Y

b(x, y)(g1/2(x) − g1/2(y))2.

Thus, the statement follows from our assumption and Theorem 2.3. �
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3. Rellich-type inequality via the supersolution construction

In the following we use the supersolution construction which produces Hardy weights on graphs.
To this end, we consider strictly positive superharmonic functions u : X → (0,∞). Here, a
function u ∈ F(X) is said to be (super)harmonic on Y ⊆ X if Δu = 0 (respectively, Δu � 0)
on Y .

Let u be a strictly positive superharmonic u which is not harmonic. Then the so-called
supersolution construction yields a positive function

w =
Δu

u
.

Thus, u is a positive solution of the equation

(Δ − w)v = 0.

By the Allegretto–Piepenbrink theorem [18, Theorem 4.2] (see also [4, 8, 9, 13, 21, 27] and
references therein), w is a Hardy weight for the Laplacian on X, that is, for all ϕ ∈ Cc(X)∑

X

|∇ϕ|2 �
∑
X

wϕ2.

It is not hard to check that for any strictly positive (super)harmonic u and 0 < α < 1, we have
Δuα � 0. Thus, we obtain the Hardy weight

w =
Δ(uα)
uα

,

and, especially, for α = 1/2 we have (see [17, Lemma 2.2])

w =
Δ(u1/2)
u1/2

=
1

2u1/2
Δu +

|∇u1/2|2
u

.

With some additional assumptions on u, one even gets optimality of this Hardy weight w [17,
Theorem 1.1]. Specifically, if u is proper (that is, the preimage of compact sets in (0, supu) ⊂
[0,∞) is finite), harmonic outside a finite set K, and satisfies the anti-oscillation condition

sup
x∼y

u(x)
u(y)

< ∞,

then,

• Δ − w is critical, that is, for all Hardy weights w′ with w′ � w we have w = w′.
• Δ − w is null-critical with respect to w, that is, u1/2, the ground state of Δ − w, is not in

�2(X,w).

We note that the above two properties imply that w is optimal at infinity, that is, if λw is a
Hardy weight on X \K for a finite set K and some λ > 0, then λ � 1. In what follows we will
see some versions of the anti-oscillation condition above.

Using the Hardy weights obtained by the supersolution construction, we can prove a Rellich-
type inequality for functions supported in a subgraph which arises from a strengthening of the
anti-oscillation condition above.

Recall that the Rellich-type inequality on a subgraph Y ⊂ X, Corollary 2.5, is built on the
assumption that there is some 0 < γ < 1 and some suitable function g ∈ F(Y ) with g > 0 such
that

|∇(g1/2)|2
g

� γw
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on Y . We will see in the present section that in some situations, we can work with g = (θ ◦
u1/2)2, where u is the strictly positive function used in the supersolution construction and
θ : [0,∞) → [0,∞) is a suitable function. This is based on the concept of admissible functions.

Definition. Let c � 0. A function θ : [c,∞) → [0,∞) is called ε-admissible for 0 < ε < 1
if there is some γ = γ(ε) ∈ [0, 1) such that

|θ(t) − θ(at)| � γ1/2|1 − a|θ(t),
for all t ∈ [c,∞), a ∈ [ε,∞) such that at � c. If θ is an ε-admissible function, then we call
γ = γ(ε) an admissible constant for ε.

Remark 3.1. In the next sections we will show that t → tα and t → log(t + 1) are admissible
functions for suitable intervals [c,∞). To get some intuition, let us discuss a consequence of
admissibility. Assuming that θ is strictly positive on [0,∞), then admissibility means that the
functions

θt : [ε,∞) → [0,∞), a → θ(at)
θ(t)

are γ1/2-Lipschitz continuous at a = 1 for all t ∈ [0,∞). On the other hand, if an ε-admissible
function θ satisfies θ(t0) = 0 for t0 > 0, then θ ≡ 0 on [εt0,∞) whenever εt0 � c and iteratively
on (c,∞).

Theorem 3.2 (Rellich-type inequality via the supersolution construction). Let b be a graph
over X. Let u be a strictly positive superharmonic function, and assume that the Hardy
weight w = Δ(u1/2)/u1/2 is strictly positive. Fix 0 < ε < 1 and let θ : [inf u1/2,∞) → [0,∞)
be ε-admissible with constant γ = γ(ε). Then,

‖1ϕΔϕ‖ (θ◦u1/2)2
w

� (1 − γ)‖ϕ‖(θ◦u1/2)2w

for all ϕ ∈ Cc(Xε), where

Xε :=
{
x ∈ X | inf

y∼x

u(y)
u(x)

� ε2

}
.

Proof. In view of the remark above θ is either zero or strictly positive on the range of
u1/2. Clearly, the statement is trivial for θ ≡ 0 and therefore we may assume that θ > 0 on
the range of u1/2. We apply the Rellich-type inequality given by Corollary 2.5 with Y = Xε,
g1/2 = (θ ◦ u1/2) and

w =
Δu1/2

u1/2
=

1
2u1/2

Δu +
|∇u1/2|2

u
� |∇u1/2|2

u

on Xε. Plugging t = u1/2 into the assumption of admissibility of θ yields that

|θ(u1/2(x)) − θ(u1/2(y))|
θ(u1/2(x))

� γ1/2 |u1/2(x) − u1/2(y)|
u(x)1/2

,

whenever u(y)/u(x) � ε2. Hence, we infer

|∇(θ ◦ u1/2)|2
(θ ◦ u1/2)2

� γ
|∇u1/2|2

u
� γw

on Xε. Thus, the function g = (θ ◦ u1/2)2 satisfies the eikonal inequality in Corollary 2.5 and
we conclude the result. �
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A graph is said to have standard weights if b maps X ×X into {0, 1}. This is the setting of
combinatorial graphs where all edges have the weight 1 and the vertex degree is the number
of edges emanating from a vertex. Note that the assumption

∑
y∈X b(x, y) < ∞ for all x ∈ X

implies that graphs with standard weights are locally finite, that is, there is a finite number of
vertices emanating from each vertex.

Theorem 3.3. Let b be a graph over X with standard weights and vertex degree
bounded by D. Let u be a function which is strictly positive and superharmonic on X \K
and vanishes on a set K ⊂ X. Assume that the Hardy weight w = Δ(u1/2)/u1/2 is strictly
positive on X \K. Suppose that there is an ε-admissible function θ : [inf u1/2,∞) → [0,∞)
for ε = D−1/2, and let 0 � γ < 1 be the corresponding admissibility constant. Then, for all
ϕ ∈ Cc(X \K),

‖1ϕΔϕ‖ (θ◦u1/2)2
w

� (1 − γ)‖ϕ‖(θ◦u1/2)2w.

Proof. Let D be the upper bound on the vertex degree and Y = X \K. It is easy to verify
that for a strictly positive superharmonic function u and x, y ∈ Y such that x ∼ y, we have
the local Harnack inequality

u(y)
u(x)

� 1
D

.

Hence, admissibility yields that for all x, y ∈ Y such that x ∼ y we have

(∇(θ ◦ u 1
2 ))2(x, y)

θ(u
1
2 (x))2

� γ
(∇(u

1
2 ))2(x, y)
u(x)

.

Summing about the neighbors of x in Y yields

1

2
(
θ(u

1
2 (x))

)2

∑
y∈Y

b(x, y)(θ(u
1
2 (x)) − θ(u

1
2 (y)))2 � γ

|∇(
u1/2(x)

)|2
u(x)

� γw(x).

Thus, the statement follows from Corollary 2.5 applied with g = (θ ◦ u 1
2 )2. �

Remark 3.4. Suppose that X is a weighted graph satisfying the uniform ellipticity
condition: There exists λ > 0 such that for every x, z ∈ X such that x ∼ z we have∑

y∈X

b(x, y) � λb(x, z).

By the same means as above, we get the assertion of Theorem 3.3 in the case of weighted
graphs with D replaced by λ. Indeed, the above ellipticity condition clearly implies the uniform
Harnack inequality: for any strictly positive superharmonic function u in X and x, y ∈ X such
that x ∼ y we have

u(y)
u(x)

� 1
λ
.

Hence, the proof of Theorem 3.3 can be applied verbatim.

4. The function θ(t) = tα

In the present section we show that for 0 < α < 1, the function θ : [0,∞) → [0,∞), θ(t) :=
tα is ε-admissible for 0 < ε < 1. Therefore, in view of Theorem 3.3, we get the following
corollary.
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Corollary 4.1. Let b be a graph over X with standard weights and vertex degree bounded
by D. Let u be a function which vanishes on a set K ⊂ X and is strictly positive and
superharmonic on X \K. Assume that the Hardy weight w = Δ(u1/2)/u1/2 is strictly positive
on X \K. Then, for all 0 < α < 1 and ϕ ∈ Cc(X \K),

‖1ϕΔϕ‖uα

w
� (1 − γ)‖ϕ‖wuα ,

where

γ =
(

1 −D−α/2

1 −D−1/2

)2

.

The proof of the above corollary rests on the following lemma.

Lemma 4.2. For 0 < α < 1, the function θ : [0,∞) → [0,∞), θ(t) = tα is ε-admissible for
0 < ε < 1 with admissible constant

γ(ε) =
(

1 − εα

1 − ε

)2

.

Proof. Fix 0 < α < 1. We define the function ϑ : [ε,∞) → R for t �= 1 as

ϑ(t) :=
(

1 − tα

1 − t

)2

,

and ϑ(1) = α2. Using L’Hôpital’s rule, we see that ϑ is a continuously differentiable function
on [ε,∞) whose derivative for t �= 1 is given by

ϑ′(t) =
2(tα − 1)
(t− 1)3

(
1 − tα − αtα−1(1 − t)

)
,

and ϑ′(1) = α2(α− 1). We claim that ϑ′(t) < 0 for all t ∈ [ε,∞). Since α < 1, this is clearly
true for t = 1. For t > 1, we use the mean value theorem in order to find some ξ ∈ (1, t) such
that

(1α − tα) = αξα−1(1 − t).

Now, since t > 1, ξ < t and α < 1, this yields

1 − tα − αtα−1(1 − t) < 0,

which clearly shows that ϑ′(t) < 0. For t < 1, we proceed in the same way in order to obtain
ϑ′(t) < 0 in this case as well.

In conclusion, we have shown that ϑ is strictly monotonically decreasing. This shows that
for all t ∈ [ε,∞) the inequality

(1 − tα)2 � γ(α, ε)(1 − t)2

is satisfied for

γ(α, ε) := ϑ(ε) =
(

1 − εα

1 − ε

)2

.

The observation that ϑ(ε) < ϑ(0) = 1 finishes the proof. �

Proof of Corollary 4.1. It follows from Lemma 4.2 that θ given by θ(t) = tα is ε-admissible
for 0 < ε < 1. Hence, we can apply Theorem 3.3 in order to obtain the claimed Rellich-type
inequality. Note that Lemma 4.2 also shows that γ is an admissible constant for ε = D−1/2. �
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We apply the above findings to the line graph, as well as to the standard graph on Z
d, where

d � 3.

Example 4.3. We consider the line graph on N0 := N ∪ {0} with standard weights where
k ∼ l if and only if |k − l| = 1. Then the function n : N0 → N0 given by n(k) = k is harmonic
in N. We apply Corollary 4.1 with K = {0} and D = 2. Therefore, for a given 0 < α < 1, we
get the validity of a Rellich-type inequality. Let us explicate all components of this inequality.
First, the Hardy weight

w : N → (0,∞), w =
Δ(n1/2)
n1/2

arising from the supersolution construction of n is optimal and can be explicitly computed
(confer [16]) to be

w(k) = 2 −
(

1 +
1
k

)1/2

−
(

1 − 1
k

)1/2

=
∞∑
l=1

(
4l
2l

)
1

(4l − 1)24l−1

1
k2l

>
1

4k2

for k � 2, and w(1) = 2 −√
2 > 1/4. Furthermore, Corollary 4.1 provides a constant for the

Rellich-type inequality by

γ =
(

1 −D−α/2

1 −D−1/2

)2

=
(

1 − 2−α/2

1 − 2−1/2

)2

.

It turns out that for any 0 < α < 1, we have 0 < γ < 1. We finally obtain the Rellich-type
inequality

‖1ϕΔϕ‖nα

w
� (1 − γ)‖ϕ‖wnα

for all ϕ ∈ Cc(N) which extend to N0 by ϕ(0) = 0, where n, γ and w are given above.
Using the basic estimate w(k) � (2k)−2, we get for any 0 � α < 1

N∑
k=1

kα+2(Δϕ)2(k) � (1 − γ)2

16

N∑
k=1

kα−2ϕ2(k),

where suppϕ ⊆ {1, . . . , N}. By the virtue of the mean value theorem one can further estimate
α2 < γ < α221−α < 1. In contrast, the classical case of the Dirichlet Laplacian on (0,∞) yields
a constant γ = α2, confer [7, Example 10.4].

Next, we give an explicit Rellich-type inequality for the standard graph on N
d
0 ⊆ Z

d, where
d � 2.

Example 4.4. For d � 2, consider the standard subgraph N
d
0 of Z

d, and let K := Z
d \ N

d.
Then, the function x : N

d
0 → [0,∞) given by x(k) = k1 · . . . · kd is harmonic in N

d and vanishes
on K. The supersolution construction yields a Hardy weight wd : N

d → (0,∞)

wd(k) :=
Δ(x(k)1/2)
x(k)1/2

= w(k1) + · · · + w(kd) >
1
4

(
1
k2
1

+ · · · + 1
k2
d

)
,

where w is the Hardy weight on N from Example 4.3. Since the vertex degree is 2d, we obtain
a Rellich inequality for 0 < α < 1 and all ϕ ∈ Cc(Nd)

‖1ϕΔϕ‖ xα

wd

�
(

1 −
(

1 − (2d)−α/2

1 − (2d)−1/2

)2
)
‖ϕ‖xαwd

.
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For kj → ∞ (leaving all other coordinates fixed) the asymptotics of the weights on both sides
of the inequality are kαj . On the other hand, letting k1 = · · · = kd = t the asymptotics are
4tαd+2/d on the left-hand side and dtαd−2/4 on the right-hand side.

We conclude the section with an explicit Rellich-type inequality for the standard graph on
the lattice X = Z

d, where d � 3.

Example 4.5. We consider the standard graph on the lattice X = Z
d, for d � 3, where two

elements k, l ∈ Z
d are connected via an edge if and only if |k − l| = 1. Let G : X ×X → (0,∞)

be the (positive minimal) Green function of the (standard) Laplacian on X which is given by

G(k, l) :=
∞∑

n=0

pn(k, l), k, l ∈ Z
d,

where pn(k, l) are the matrix elements of the nth power of the transition matrix given by
the matrix elements p1(k, l) = 1/2d if k ∼ l and 0 otherwise. Denote G(k) := G(k, 0). By the
supersolution construction it follows that

w =
ΔG1/2

G1/2

gives rise to a strictly positive Hardy weight for the Laplacian (which is in fact optimal [17]).
We derive the Rellich-type inequality, Corollary 4.1, for all ϕ ∈ Cc(Zd)

‖1suppϕΔϕ‖Gα

w
�

(
1 −

(
1 − (2d)−α/2

1 − (2d)−1/2

)2
)
‖ϕ‖Gαw,

where 0 < α < 1.
For the reader who is interested in the asymptotics, we mention the corresponding

asymptotics of w and G. Specifically, [17, Theorem 7.2] shows that w has the asymptotic
behavior

w(k) =
(d− 2)2

4
1

|k|2 + O(|k|−3
)

as |k| → ∞.

Furthermore, by [26, Theorem 2] one has

G(k) =
C1(d)
|k|d−2

+ C2(d)

((
d∑

i=1

(
ki
|k|

)4
)

− 3
d + 2

)
1

|k|d + O
(

1
|k|d+2

)
,

where C1(d) and C2(d) are positive constants depending only on d. For d � 5, we recover the
correct asymptotics of the weights with respect to the classical Rellich inequality. Specifically,
we can choose α = 2/(d− 2) < 1 for d � 5 and get

Gα/w � C and Gαw � C ′ 1
|k|4

as |k| → ∞ with positive constants C and C ′.

5. The function θ(t) = log(t + 1)

In the present section we show that for all c > 0 and 0 < ε < 1, the function

θ : [c,∞) → [0,∞), t → log(t + 1)
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is ε-admissible. As a consequence, one gets a Rellich-type inequality via the supersolution
construction if the corresponding positive supersolution u is bounded away from zero. This
leads to the following corollary of Theorem 3.3.

Corollary 5.1. Let b be a graph over X with standard weights, and vertex degree bounded
by D. Let u be a strictly positive superharmonic which is bounded from below by c > 0 on
X \K, and which vanishes on a set K ⊂ X. Assume that the Hardy weight w = Δ(u1/2)/u1/2

is strictly positive on X \K. Then for all ϕ ∈ Cc(X \K)

‖1ϕΔϕ‖ log2(u1/2+1)
w

� (1 − γ)‖ϕ‖w log2(u1/2+1) ,

where 0 < γ < 1 is given by

γ =

(
1 − log(c1/2D−1/2+1)

log(c1/2+1)

)2

(
1 −D−1/2

)2 .

Remark 5.2. Let u be a strictly positive superharmonic function.
Note that the function f : t → log(t1/2 + 1) used in the theorem above is concave and

increasing on (0,∞). Thus, f ◦ u is a positive superharmonic function which explains the
choice of the weight g in the theorem above.

Moreover, since the function t → tα is concave and increasing for 0 � α � 1 on [0,∞), the
function uα is superharmonic. Hence, the theorem above can be applied replacing u by uα

which leads to a weight log2(uα/2 + 1) and a Hardy weight w = Δ(uα/2)/uα/2. It is also not
hard to check that a corresponding Rellich-type inequality holds with the constant γ taken
from the proof independently of α.

In order to verify the above corollary, we prove the following lemma.

Lemma 5.3. The function θ : [c,∞) → [0,∞), θ(t) := log(t + 1) is admissible for every 0 <
ε < 1 and c > 0 with admissible constant

γ(ε) :=

(
1 − log(cε+1)

log(c+1)

)2

(1 − ε)2
.

Proof. We define the function ϑ : (0,∞) × (0,∞) → (0,∞)

ϑ(a, t) =

(
1 − log(at+1)

log(t+1)

)2

(1 − a)2
,

for a �= 1 and

ϑ(1, t) =
t2

(t + 1)2 log2(t + 1)
.

With this definition we have

(log(at + 1) − log(t + 1))2 = ϑ(a, t)(1 − a)2 log2(t + 1).

We show that ϑ is monotone decreasing in both parameters and strictly monotone decreasing
in the first one. Together with the fact lima→0 ϑ(a, c) = 1 this yields that θ is admissible with
admissible constant γ = ϑ(ε, c) as then

ϑ(a, t) � ϑ(ε, c) < 1

for a � ε and t � c. The monotonicity is proven by two claims.
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Claim 1. We have ∂tϑ � 0.

Proof of Claim 1. First of all observe that (1 − a)2ϑ(a, ·) = 0 at a = 1 so there is nothing
to show for a = 1. For a �= 1, one computes

∂tϑ(a, t) =
2

(1 − a)2

(
1 − log(at + 1)

log(t + 1)

)(
log(at + 1)

(t + 1) log2(t + 1)
− a

(at + 1) log(t + 1)

)
.

We distinguish the cases a > 1 and a < 1. So let a > 1. Clearly, in this case, the second factor
in the above expression is less than or equal to 0. So, we need to show that the third factor is
greater than or equal to 0. Indeed, the third factor can be expressed as

(at + 1) log(at + 1) − a(t + 1) log(t + 1)
(t + 1)(at + 1) log2(t + 1)

=
f(a) − af(1)

(t + 1)(at + 1) log2(t + 1)
,

with f(a) = (at + 1) log(at + 1). Hence, it suffices to show f(a) − af(1) � 0 for a > 1. We use
the basic estimate

f(a) � (a− 1) inf
b>1

f ′(b) + f(1),

together with

f ′(b) = t(1 + log(bt + 1)) � t(1 + log(t + 1)),

to estimate

f(a) − af(1) � (a− 1)t(1 + log(t + 1)) + (1 − a)(t + 1)(log(t + 1))

= (a− 1)(t− log(t + 1)) � 0.

This shows ∂tϑ(a, t) � 0 for a > 1.
The proof for a < 1 is similar. Indeed, the second term of ∂tϑ(a, t) is positive for a < 1. The

third term can be seen to be negative by the corresponding upper bound on f(a) − af(1) �
(a− 1)(t− log(t + 1)) � 0 for a < 1. This finishes the proof of Claim 1.

Next, we show that ϑ(·, t) is strictly monotonically decreasing for fixed t.

Claim 2. We have ∂aϑ < 0.

Proof Claim 2. One directly computes the derivative of ϑ for a �= 1

∂aϑ(a, t)=
2(log(t+1) − log(at+1))(t(a−1) + (at+1)(log(t+1) − log(at+1)))

(1 − a)3(at + 1) log2(t + 1)
,

and

∂aϑ(1, t) = − t3

(t + 1)3 log2(t + 1)
.

Clearly, ∂aϑ(1, t) < 0. Suppose that a > 1. Then, by the mean value theorem we obtain

log(t + 1) − log(at + 1) < − t(a− 1)
(at + 1)

.

Hence, the first factor of the enumerator in the expression of ∂aϑ(a, t) is negative and the
second factor is negative as well since

t(a− 1) + (at + 1)(log(t + 1) − log(at + 1)) < t(a− 1)
(

1 − (at + 1)
(at + 1)

)
= 0
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for a > 1. Moreover, the denominator is negative. The case a < 1 is proved in a similar way.
We conclude that ϑ(·, t) is strictly monotonically decreasing. This proves the Claim 2.

By the discussion above the proof is complete. �

Proof of Corollary 5.1. We denote the positive lower bound of u by c. It follows from
Lemma 5.3 that θ given by θ(t) = log(t + 1) is admissible on the interval [c1/2,∞). Hence, we
can apply Theorem 3.3 in order to obtain the Rellich-type inequality. �

Remark 5.4. Unlike the case where we dealt with the admissible function θ(t) = tα, for
θ(t) = log(t + 1) there is another parameter c (the lower bound of the superharmonic function
u in question) besides ε determining the admissibility constant γ; see Lemma 5.3.

As in the previous section, we apply the above theorem to the standard line graph in N.

Example 5.5. We return to the Example 4.3 for the standard line graph on N0 with the
Hardy weight w given by w = |∇(n1/2)|2/n arising from the harmonic function n(k) = k. With
D = 2 and c = 1, we define

γ :=

(
1 − log(2−1/2+1)

log 2

)2

(1 − 2−1/2)2
≈ 0.6083.

Hence, Corollary 5.1 with θ(t) = log(t + 1) leads to the Rellich-type inequality

‖1ϕ(Δϕ)‖ log2(n1/2+1)
w

� (1 − γ)‖ϕ‖log2(n1/2+1)w,

for all ϕ ∈ Cc(N0) with ϕ(0) = 0, where log(n1/2 + 1) takes the role of g1/2 = θ ◦ (n1/2).

Example 5.6. We revisit the quadrant of Example 4.4. So, we consider the subgraph N
d
0

of Z
d, the set K := Z

d \ N
d, the positive harmonic function x : N

d
0 → [0,∞) given by x(k) =

k1 · . . . · kd, and the Hardy weight wd arising from the positive supersolution x1/2. Hence,
wd(k) = w(k1) + · · · + w(kd), where w is the Hardy weight of N0 from Example 5.5. Thus, we
get a Rellich inequality

‖1ϕΔϕ‖ log2(x1/2+1)
wd

� (1 − γ)‖ϕ‖log2(x1/2+1)wd

for all ϕ ∈ Cc(Nd) with γ chosen according to Corollary 5.1.

6. Schrödinger operators on discrete measure spaces

In the present section we extend the Rellich inequalities obtained in the previous sections
for the Laplacian, to the more general setting of Schrödinger operators on discrete measure
spaces. Specifically, we allow for a measure on X and we add a potential to Δ. It turns out
that by the virtue of the ground state transform this case reduces to the case of the Laplacian
above.

We consider a graph b over X equipped with a measure m of full support, and let q : X → R

be a given potential. The Schrödinger operator H = 1
mΔ + q acts on F(X) as

Hf(x) :=
1

m(x)

∑
y∈X

b(x, y)(f(x) − f(y)) + q(x)f(x).
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With this definition we also have Green’s formula (confer [13, Lemma 4.7]) for ϕ ∈ Cc(X) and
f ∈ F(X)

1
2

∑
X×X

b∇ϕ∇f +
∑
X

mqϕf =
∑
X

mϕHf =
∑
X

mfHϕ.

We say that a Hardy inequality with Hardy weight w is satisfied for H on �2(X,m) if for all
ϕ ∈ Cc(X) ∑

X

(|∇ϕ|2 + mqϕ2) � ‖ϕ‖2
mw.

We prove the following theorem.

Theorem 6.1 (Abstract Rellich-type inequality for Schrödinger operators). Let b be a graph
over (X,m), and let q be a potential. Suppose there is a strictly positive Hardy weight w for
H on �2(X,m). If there is a strictly positive function g ∈ F(X) and 0 < γ < 1 such that g
satisfies the eikonal inequality

|∇(
g1/2

)|2
g

� γwm on X,

then the following Rellich inequality holds for all ϕ ∈ Cc(X)

‖1ϕHϕ‖ g
wm � (1 − γ)‖ϕ‖gwm.

Remark 6.2. In contrast to Theorem 2.3 and Corollary 2.5, we do not consider subsets
Y ⊆ X in the theorem above. The reason is that the case of subsets is implicitly included.
Assume that the assumptions of the theorem are fulfilled for a Schrödinger operator H =
1
mΔ + q only for a subset Y ⊆ X. Let bY be the restriction b of to Y × Y , and denote the
corresponding Laplacian of bY on F(Y ) by ΔY . Let qY and mY be the restrictions of q and m
to Y . Furthermore, let qDY : Y → [0,∞) be given by

qDY (x) :=
∑

y∈X\Y
b(x, y),

and define the Schrödinger operator HY = 1
mY

ΔY + qY + qDY on F(Y ) by

HY f(x) :=
1

mY (x)

∑
y∈Y

bY (x, y)(f(x) − f(y)) + (qY + qDY )(y)f(x).

Then, one can check by a direct computation that

H = HY on F(Y ).

As the theorem above applies to HY it follows directly for H on Y as well. In the proof of
Theorem 6.1 we use the ‘reverse’ construction.

In the next proposition, we show that we can deduce a Rellich inequality for operators
H = 1

mΔ from the more general version of the abstract Rellich inequality, Theorem 2.3.

Proposition 6.3 (q = 0). Let b be a graph over (X,m), and let q = 0. Suppose that there
exists a strictly positive Hardy weight w for H on �2(Y,m) with Y ⊆ X, and a strictly positive
function g ∈ F(Y ) and 0 < γ < 1 such that g satisfies the weak eikonal inequality for some
(respectively, all) ϕ ∈ Cc(Y )

1
2

∑
X×X

b(ϕ⊗ ϕ)
(
∇
(
g1/2

))2

� γ‖ϕ‖2
gwm.
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Then, for such a (respectively, all) ϕ ∈ Cc(Y ),

‖1ϕHϕ‖ g
wm � (1 − γ)‖ϕ‖gwm.

Proof. The aim is to reduce the case above to the setting of Theorem 2.3. If w is a Hardy
weight for H = 1

mΔ on �2(Y,m), then the function w′ = wm is a Hardy weight for Δ on �2(Y ) =
�2(Y, 1), Y ⊆ X. Hence, we get by the more general version of abstract Rellich inequality,
Theorem 2.3,

‖1ϕ 1
mΔϕ‖ g

wm = ‖1ϕΔϕ‖ g
w′ � (1 − γ)‖ϕ‖gw′ = (1 − γ)‖ϕ‖gwm.

This finishes the proof. �

Proof of Theorem 6.1. By the theorem’s assumptions H satisfies a Hardy inequality with
a positive Hardy weight and by the Allegretto–Piepenbrink theorem [18, Theorem 4.2], there
exists a strictly positive function u such that Hu � 0 on X. By the ground state transform
[18, Section 4.2] we have for all ϕ ∈ Cc(X)

1
2

∑
X×X

b(u⊗ u)(∇ϕ)2 +
∑
X

u2m

(
1
u
Hu

)
ϕ2 =

∑
X

(|∇(uϕ)|2 + mq(uϕ)2).

Hence, the Schrödinger operator with respect to the graph b(u⊗ u) and the potential 1
uHu

satisfies a Hardy inequality on �2(X,u2m) with respect to the Hardy weight w. We next
construct a supergraph of this graph on the set X∞ = X ∪ {∞} where ∞ is a new vertex. Let
b∞ : X∞ ×X∞ → [0,∞) be the graph given by b∞ = b(u⊗ u) on X ×X,

b∞(x,∞) = b∞(∞, x) = mu(x)(Hu)(x)

and b∞(∞,∞) = 0. Note that
∑

x∈X b(∞, x) is not necessarily finite, but this does not matter
as we will only consider functions which vanish at the vertex ∞. With this construction we
have using the Hardy inequality for H and all ϕ ∈ Cc(X)

1
2

∑
X∞×X∞

b∞(∇ϕ)2 =
∑
X

(|∇(uϕ)|2 + mq(uϕ)2) � ‖uϕ‖2
wm = ‖ϕ‖2

u2wm.

Thus, w is a Hardy weight on �2(X,u2m) for the operator H∞ associated to the graph b∞ over
(X∞,m∞), where we extend m to {∞} arbitrarily and the potential q∞ = 0. Furthermore,
from the assumption |∇g1/2|2 � γgwm and from Young’s inequality, 2((uϕ) ⊗ (uϕ))(x, y) �
(uϕ)2(x) + (uϕ)2(y), we deduce for ϕ ∈ Cc(X)

1
2

∑
X×X

b∞(ϕ⊗ ϕ)(∇g1/2)2 =
1
2

∑
X×X

b((uϕ) ⊗ (uϕ))(∇g1/2)2

�
∑
X

(uϕ)2|∇g1/2|2

� γ‖ϕ‖2
gwu2m.

Hence, we can apply Proposition 6.3 with X ⊆ X∞ playing the role of Y ⊆ X and H∞ playing
the role of H. Specifically, we obtain for any ϕ = uψ ∈ Cc(X)

‖1ϕHϕ‖ g
wm = ‖1ψH∞ψ‖ g

wu2m � (1 − γ)‖ψ‖gwu2m = (1 − γ)‖ϕ‖gwm.

This finishes the proof. �
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7. Application to solutions of the equation Hu = f

In this section we study solutions u ∈ F of the equation

Hu = f,

where f is a function and H = 1
mΔ + q is a Schrödinger operator associated to a graph b over

(X,m) and a potential q. We call a Schrödinger operator H nonnegative on (X,m) if for all
ϕ ∈ Cc(X) ∑

X

mϕHϕ =
∑
X

(|∇ϕ|2 + mqϕ2) � 0,

where the first equality is just Green’s formula. We call the graph b connected if for distinct
x, y ∈ X there are x0, . . . , xn ∈ X such that x = x0 ∼ · · · ∼ xn = y. Furthermore, we call a
subset K connected if b|K×K is a connected graph.

In general, solutions of the equation Hu = f do not need to exist. However, if H is a
nonnegative Schrödinger operator on a connected, locally finite graph, then H is surjective
as an operator from C(X) to C(X) [19, Theorem 2.2] (see also [5, 14]), where we have
F(X) = C(X) for locally finite graphs. Using the results of the previous section, we show the
existence of solutions of the above equation on not necessarily locally finite graphs under the
assumption of the validity of a Rellich inequality.

Theorem 7.1. Let H be a nonnegative Schrödinger operator for a connected graph over
an infinite set X. Let μ, μ′ be measures of full support over X such that the following Rellich
inequality holds

‖1ϕHϕ‖μ′ � ‖ϕ‖μ
for all ϕ ∈ Cc(X). Then, for any f ∈ �2(X,μ′), there exists a solution u ∈ F(X) to the equation
Hu = f such that

‖u‖μ � ‖f‖μ′ .

Remark 7.2. If there exists a nontrivial harmonic function h for H, then obviously, solutions
to Hu = f are not unique. In this situation also the inequality ‖v‖μ � ‖f‖μ′ is not satisfied
for solutions v of the form v = u + λh, at least for certain λ ∈ R.

Proof of Theorem 7.1. Assume first that f ∈ �2(X,μ′) satisfies f � 0, and let (Kk) be an
exhaustion of X with connected finite sets Kk, k ∈ N. We denote by fk = f1Kk

. Then, by the
nonnegativity of H, there exist solutions uk � 0 to

Huk = fk on Kk,

satisfying uk � uk+1 for k � 1; see [18, Lemmas 5.14 and 5.15, and Theorem 5.16]. By the
Rellich inequality, we infer that

‖uk‖μ � ‖1uk
Huk‖μ′ = ‖fk‖μ′ � ‖f‖μ′ .

Thus, (uk) converges monotonously to a function u � 0 which satisfies

‖u‖μ � ‖f‖μ′ .

Furthermore, by the monotone convergence we also deduce for all x ∈ X

Hu(x) = lim
k→∞

Huk(x) = lim
k→∞

fk(x) = f(x).

This yields the statement of the theorem for f ∈ �2(X,μ′) such that f � 0.
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For general f ∈ �2(X,μ′) we decompose f = f+ − f− into its positive and negative parts,
and let u(±) be the positive solutions of the equations Hu(±) = f± obtained above. Hence,
u = u(+) − u(−) satisfies

Hu = Hu(+) −Hu(−) = f+ − f− = f.

Since u2 = (u(+))2 + (u(−))2 − 2u(+)u(−) � (u(+))2 + (u(−))2, we have

‖u‖2
μ � ‖u(+)‖2

μ + ‖u(−)‖2
μ � ‖f+‖2

μ′ + ‖f−‖2
μ′ = ‖f‖2

μ′ .

This finishes the proof. �

Finally, we present a corollary which is a direct consequence of Theorem 6.1 and Theorem 7.1.

Theorem 7.3. Consider a graph b over (X,m), let q be a potential. Let w be a strictly
positive Hardy weight for H on �2(X,m). Assume there is a strictly positive function g ∈ F(X)
and 0 < γ < 1 such that g satisfies in X the eikonal inequality

|∇(
g1/2

)|2
g

� γwm.

Then, for all f ∈ �2(X, gm/w), there is a solution u to the equation Hu = f which satisfies

‖u‖gwm � (1 − γ)−1‖f‖ g
wm.
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