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Abstract

Concurrent observation technologies have made high-precision real-time data

available in large quantities. Data assimilation (DA) is concerned with how to

combine this data with physical models to produce accurate predictions. For

spatial–temporal models, the ensemble Kalman �lter with proper localisation

techniques is considered to be a state-of-the-art DA methodology. This article

proposes and investigates a localised ensembleKalmanBucy �lter for nonlinear

models with short-range interactions. We derive dimension-independent and

component-wise error bounds and show the long time path-wise error only has

logarithmic dependence on the time range. The theoretical results are veri�ed

through some simple numerical tests.

Keywords: data assimilation, stability and accuracy, dimension independent

bound, localisation, high dimensional, �lter, nonlinear,

Mathematics Subject Classi�cation numbers: 65P40, 65Z05, 62F15, 62L10.
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1. Introduction

With the advancement of technology, we now have access to vast amounts of high-precision

data in many areas of science. It is important to develop robust and ef�cient tools to combine
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the available data with re�ned large-scale physical models. This study is known as data assim-

ilation (DA) and typically the goal is to produce accurate real-time estimations of the current

state of the system.

In geophysical problems, the considered models often have vast spatial scales, therefore

millions of state variables are needed to store information at different locations. Such high

dimensionality poses a severe challenge to DA methodologies, since the associated computa-

tions are expensive and direct global uncertainty quanti�cation tends to be erroneous. Over the

last two decades, various computationally feasible approaches have been developed with prac-

tical success [7, 14, 24, 27]. One of the most popular algorithms among these is the ensemble

Kalman �lter (EnKF). It has been �rst derived in [7] and heavily advanced and employed in

the �eld of numerical weather prediction. To combat dimensionality issues arising due to the

extent of the spatial domain, the so called localisation techniques are often employed for the

EnKF [9, 26]. The key motivation behind localisation is that many systems exhibit a natural

decrease in spatial correlation. This can guide arti�cial tunings of the empirical covariance

matrix to avoid spurious correlations.

The empirical success of EnKF has aroused great interest in understanding the underlying

theoretical properties [1, 2, 15, 29]. EnKFs can be interpreted as Monte Carlo implementa-

tions of the Kalman �lter [8, 12, 13, 17] which is derived for linear prediction and observation

models. Therefore most theoretical studies of EnKFs assume a linear setting [4, 6, 21, 22, 28].

Existing analysis of EnKFs for nonlinearmodels concernmostly the boundedness of algorithm

outputs [15, 16, 29], which is not helpful in understandingEnKF performance. The only excep-

tion is a recent work [5], where accuracy and stability results have been derived assuming

abundant and accurate observations. However, the results there do not consider localisation,

and hence they require the sample size to be larger than the state dimension. This is infeasible

in practice.

This paper intends to close the aforementioned gaps, i.e. nonlinearity and high dimension-

ality in �lter performance analysis, by investigating a localised ensemble Kalman–Bucy �lter

(l-EnKBF). Following [5], we assume abundant and accurate observations are available. Since

most geophysical models are formulated through partial differential equations or their discreti-

sations, the associated prediction dynamics often have a short interaction range. This is often

paired with a short decorrelation length in the localisation technique to reduce the potential

spurious long-range correlations. Under these assumptions, we show that l-EnKBF estimation

error for each component is bounded independent of the overall dimension, both in the sense

of mean square and the moment generating function. Such result does not exist in literature

for DA analysis, based on our knowledge. Some related dimension-independent error analysis

can be found in [21, 28], but the error estimates are implicit and the models are assumed to be

linear. Moreover, we also show the long time path-wise error has a logarithmic dependence on

the time range, which is much weaker than the square root dependence in [5]. All these results

indicate l-EnKBF has stable and accurate estimation skills.

In section 2 the underlying setting is outlined and the considered l-EnKBF will be de�ned.

Upper and lower bounds for the empirical second moment are derived in section 3.1. Then

point-wise and path-wise bounds for the mean squared error and a Laplace type condition are

derived in section 3.2 in the l2 sense, and in section 3.3 in the component-wise sense. We

allocate the proofs of our results in the appendix. In section 4, the numerical sensitivity of

an implementation of the considered l-EnKBF with respect to the underlying assumptions is

tested for the Lorenz 96 system.
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Throughout the article we assume (‖ · ‖, 〈·, ·〉) denotes the l2-norm with its corresponding

inner product. Given a matrix A ∈ R
m×n the l2-operator norm is de�ned as

‖A‖ = max
‖x‖=1

‖Ax‖ =
√
λmax(A⊤A),

where λmax denotes the largest eigenvalue of a matrix. The following two matrix norms are

also useful to us:

‖A‖1 = max
16 j6n

m∑

i=1

|Ai, j|

‖A‖max = max
i j

|[A]i, j|

where both Ai,j and [A]i,j denote the entries of the matrix A. The bracket notation is necessary to

denotematrix entries such as [A−1]i, j or [AB]i,j. Given two symmetricmatricesA andB thenA �
B implies the matrix A− B is positive semide�nite, which is equivalent to vT(A− B)v > 0 for

all v ∈ R
n. Given a covariance matrix Γ the Mahalanobis norm is de�ned by ‖v‖2Γ = vTΓ−1v.

Lastly, in order to describe the smallness of certain quantities, we use the big theta notation. In

particular, a quantity aǫ is Θ(ǫp), if there is a ǫ-independent constant C > 0 and c > 0 so that

cǫp 6 aǫ 6 Cǫp.

2. Problem setup

In this paper, we consider a continuous-time �ltering problem, formulated by

dXt = f (Xt) dt +
√
2σdWt,

dYt = HXtdt + RdBt.
(1)

In (1), Xt ∈ R
Nx represents the system we try to recover. We assume its initial distribution

is given by X0 ∼ π0. Its dynamics is driven by a deterministic forcing described by a map

f : RNx → R
Nx and a stochastic forcing term

√
2σdWt. We assume linear noisy observations

Yt ∈ R
Ny of the system are available. In (1), the matrices σ and R are positive de�nite matrices,

andWt ∈ R
Nx and Bt ∈ R

Ny are independent Wiener processes.

In many spatial models, each model component is representing a state information at one

spatial location. This introduces a natural distance between two indices, which we will denote

as d. As a simple example, For example, if the indices are representing themself on the interval

[1, n], then d(i, j) can be taken as |i− j|. For another example, if the indices are representing

equally spaced points on a length n circle, then d(i, j) be taken as min{|i− j|, n− |i− j|}.
We will use xi(t) to denote the ith component of Xt, so Xt = [x1(t), . . . , xNx (t)]

T. We will

also use fi and wi(t) to denote the ith component of f andWt. For notational simplicity, we will

often write xi(t) as xi and wi(t) as wi, whenever their dependence on time is evident. Then the

SDE that xi follows is given by

dxi = fi(Xt)dt +
√
2σdwi. (2)

Note that different components are interacting through the drift term, as fi(Xt) could have

dependence on xj(t) for j 6= i. But in many physical processes, such interactions are of short

range, meaning the dependence of fi(Xt) on xj(t) decays with d(i, j). More generally, this can

be formulated as

Assumption 2.1 (short range interaction). There is a sequence of Lipschitz constants Fk,

such that for any X = [x1, . . . , xNx ] and X
′ = [x′1, . . . , x

′
Nx
], the following holds
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| fi(X)− fi(X
′)| 6

Nx∑

j=1

Fd(i, j)|x j − x′j|.

To have a single number controlling the overall stability of the system, we will consider the

largest row sum of these Lipschitz constants and de�ne

C f :=max
i

Nx∑

j=1

Fd(i, j). (3)

We will assume that Cf is a constant independent of the dimension Nx . This can be veri�ed if

Fk decays to zero exponentially with increasing k. In section 4, we demonstrate how to verify

assumption 2.1 on the Lorenz 96 model, assuming all components are bounded.

In computational models, assumption 2.1 often holds if the spatial resolution is at the same

scale of the spatial correlation length. A large Nx indicates that the spatial domain size is large.

It is worthwhile mentioning that, it is also possible to obtain a high dimensional model with a

moderate size spatial domain, if one use very small spatial resolution. But assumption 2.1 is

unlikely to hold in such a setting, and localisation techniques are notmeant to resolve such high

dimensionality. One should use dimension reduction techniques instead [21]. The difference

between these two high dimensional settings are discussed in [23, 30].

2.1. Localised ensemble Kalman–Bucy filter

Here we will consider a deterministic EnKBF �rst proposed in [2] that has been shown to

be the time limit of a broad class of ensemble square root �lters [18]. Let {Xit}i=1,...,M be the

ensemble of particles which describe the uncertainty of Xt. To run the considered algorithm,

each of the particle is initialised at a random location from π0 and then driven by the following

dynamics

dXit = f (Xit)dt + σ2P−1
t (Xit − Xt)dt −

1

2
PtH

T(RRT)−1(HXitdt + HXt dt − 2dY(t)).

(4)

In (4), the sample mean and covariance are de�ned by

Xt =
1

M

M∑

i=1

Xit , Pt =
1

M − 1

M∑

i=1

(Xit − Xt)(X
i
t − Xt)

T.

The posterior distribution of Xt conditioned on Ys6t is then approximated by the Gaussian

distribution N (Xt,Pt). It is important to mention that for a linear drift f the EnKBF in (4)

converges to the KBF forM→∞. Further a mean-�eld limit has been derived for the nonlinear

drift scenario [5]. Note that mean �eld limits of EnKFs for a nonlinear setting have also been

derived in [19].

When the dimension is high, EnKBF is in general ill-de�ned and it can perform poorly.

This is because of two reasons. First, the rank of Pt is at maximumM− 1. So ifM ≪ Nx , Pt is

singular and its numerical approximated inverse is usually unstable. Second, by randommatrix

theory, it is known that if Xit are i.i.d. samples from a Gaussian distributionN (0,P), in order for

the covariance sampler error in l2-norm ‖P− Pt‖ to be small, one needsM = O(Nx). In other

words, Pt is a very inaccurate approximation of the true posterior covariance when M≪ Nx

[28].

In practice, one popular way to resolve the issues mentioned above is to apply covari-

ance localisation. Mathematically, this operation can be formulated as replacing Pt in (4) with
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PL
t = Pt ◦ φ. Here ◦ denotes the component-wise product or Schur product, so the components

of PL
t are de�ned as

[PL
t ]i, j := [Pt]i, jφi, j. (5)

The symmetric matrix φ here is called a localisation matrix. Its components are nonnegative.

They are of value 1 at the diagonal, and decay to zero extremely fast along the off diagonal

direction. One popular choice takes the form of φi, j = ρ( d(i, j)
l
), where ρ is a function from

(4.10) in [9]

ρ(x) =






−1

4
x5 +

1

2
x4 +

5

8
x3 − 5

3
x2 + 1, |x| 6 1;

1

12
x5 − 1

2
x4 +

5

8
x3 +

5

3
x2 − 5x + 4− 2

3x
, 1 6 |x| 6 2;

0 2 6 |x|.

(6)

where l denotes the typical decorrelation length, which we assume to be independent of Nx .

We will consider again the largest row sum of φ, and de�ne

Cφ :=max
i

Nx∑

j=1

φi, j. (7)

Wewill assumeCφ is a constant independent of the dimensionNx . This is true formost practical

localisation matrices including (6).

When the true covariance matrix is spatially localised, PL
t is a much better covariance esti-

mator, because the localisation operation eliminates spurious long distance correlation errors

[3]. Moreover, the localisation operation improves the rank, so PL
t is often full rank and invert-

ible. But this is not guaranteed in general. So for the rigorousness of this exposition, we use

the following inversion

Definition 2.2. If all diagonal entries of Pt are nonzero, then its diagonal inverse (DI) is

given by

[P
†
t ]i,i = [Pt]

−1
i,i , [P

†
t ]i, j = 0, ∀i, j = 1, . . . , n, i 6= j.

Note that it satis�es the following for all i = 1, . . . , n

[P
†
tPt]i,i = [P

†
tPt]i,i = 1. (8)

In the original EnKBF formulation (4), we replacePt with P
L
t andP

−1
t with P

†
t and we obtain

the localised EnKBF (l-EnKBF):

dXit = f (Xit)dt + σ2P
†
t (X

i
t − Xt)dt −

1

2
PL
t H

T(RRT)−1(HXitdt + HXt dt − 2dYt).

(9)

As a remark, the using of P
†
t simpli�es the theoretical derivation in below, since we can verify

that P
†
t is well de�ned (see lemma 3.2 below). Meanwhile, it is an open question on how to

generalise our results to other versions of pseudo inverse for Pt.
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2.2. Abundant and accurate observations

When the observation sources are abundant, H in (1) can be assumed to be of rank Nx, and

there is an H− ∈ R
Nx×Ny such that H−H = INx . We can consider the following transformation

X̃t = σ−1Xt, f̃ (X) = σ−1 f (σX), Ỹ t = σ−1H−Yt, R̃ = σ−1H−R,

then X̃t and Ỹ t follow the SDE in below

dX̃t = σ−1dXt = f̃ (X̃t)dt +
√
2dWt,

dỸ t = σ−1H−dYt = σ−1Xt + σ−1H−RdBt = X̃tdt + R̃dBt.
(10)

If we apply l-EnKBF (9) to the transformed system (X̃t, Ỹ t), then the sample mean and

covariance matrices will follow

x̃t = σ−1Xt, P̃t = σ−2Pt, P̃Lt = σ−2PL
t ,

while P̃
†
t can be taken as σ

2P
†
t . Then the dynamics of each l-EnKBF particle will satisfy

dX̃it = f̃ (X̃it)dt + P̃
†
t (X̃

i
t − x̃t)dt −

1

2
P̃L
t (R̃R̃

T)−1(X̃itdt + x̃t dt − 2dỸ t)

= σ−1 f (Xit)dt + σP†
t (X

i
t − Xt)dt −

1

2
σ−1PL

t H
T(RRT)−1(HXitdt + HXt dt − 2dYt)

= σ−1dXit .

It is evident that the theoretical properties of Xit will be the same as the ones of X̃it.

Note that (10) corresponds to the original model (1) with σ = 1 and H = I. This is a much

simpli�ed parameter setting for followup discussion. And from the above derivation, there is

no sacri�ce of generality by focussing on it. Under this setting, the l-EnKBF formula will be

simpli�ed as

dXit = f (Xit)dt + P
†
t (X

i
t − Xt)dt −

1

2
PL
t ΩR(X

i
tdt + Xt dt − 2dYt), ΩR := (RRT)−1.

When the observations are accurate and independent, the observation noise covariance RRT is

a diagonal matrix with small components. We will use ǫ to describe their order. In summary,

we have made the following assumption

Assumption 2.3. Through a linear transformation, we assume (1) is transformed to

dXt = f (Xt) dt +
√
2dWt,

dYt = Xtdt + RdBt

Moreover we assume for an ǫ > 0 that Ω = ǫ(RRT)−1 is diagonal, and bounded by constants

ωminI � Ω � ωmaxI.

Note that assumption 2.3 implies that RRT = Θ(ǫ). In other words we assume that the

squared observation error covariance matrix is of order ǫ.
By replacing ΩR with ǫ

−1Ω, the l-EnKBF formula is written as

dXit = f (Xit)dt + P
†
t (X

i
t − Xt)dt −

1

2ǫ
PL
t Ω(X

i
tdt + Xt dt − 2dYt). (11)
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Since Xt =
1
M

∑M
i=1 X

i
t , the sample mean process follows the following dynamics

dXt = f tdt − ǫ−1PL
t Ω(Xt dt − dYt), f t :=

1

M

M∑

i=1

f (Xit). (12)

So if we denote∆Xit = Xit − Xt, it follows the ordinary differential equation (ODE)

d

dt
∆Xit = f (Xit)− f t + P

†
t∆X

i
t −

1

2ǫ
PL
t Ω∆X

i
t .

Because the sample covariance Pt =
1

M−1

∑M
i=1∆X

i
t(∆X

i
t)
T, we have

d

dt
Pt = (Ft + FT

t )+ (P
†
tPt + PtP

†
t )−

1

2ǫ
(PL

t ΩPt + PtΩP
L
t ) (13)

where Ft :=
1

M−1

∑
(Xit − Xt)( f (X

i
t)− f t)

T.

3. Main results

We present our main theoretical results for the l-EnKBF in (9) in this section. To keep the

discussion concise, we allocate the technical veri�cations to the appendix.

3.1. Wellposedness and stability

Before the accuracy of the �lter can be addressed it is crucial to check if the l-EnKBF can blow-

up or collapse. In other words, we will demonstrate that the �lter is stable, such that there are

upper and lower bounds for Pt. The upper bound is established by the following:

Lemma 3.1. Under assumptions 2.1 and 2.3, suppose PL
t evolving in time according to (13)

exists, the following holds

‖Pt‖max 6 λmax :=
2ǫ

ωmin

(√
C2
f +

3ωmin

ǫ

)
, ∀t > t′∗ :=

ωminǫ

λmax

.

And for all t > 0, ‖Pt‖max 6 max{‖P0‖max,λmax}. It is clear that when Cf and ωmin are

constants, λmax(ǫ) = Θ(
√
ǫ), t′∗ = Θ(

√
ǫ).

In [5] the bound depends explicitly onM (as the Frobenius norm is used to derive the bound).

Here a different route is taken which results in a bound independent ofM.

To ensure that the �lter does not collapse, it is crucial to have a lower bound on the

covariance. This comes as a reverse of lemma 3.1. For this purpose, we denote

‖Pt‖min = min{[Pt]i,i, i = 1, . . . , Nx}.

It should be noted that ‖Pt‖min is not a norm, and we choose this notation just for its symmetry

with ‖Pt‖max.
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Lemma 3.2. Under assumptions 2.1 and 2.3, suppose PL
t evolves in time according to (13),

the following holds for suf�ciently small ǫ > 0

‖Pt‖min > λmin :=
ǫ

3λmaxωmaxCφ
, ∀t > t∗ :=

ωminǫ

λmax

+ 3λmin.

‖Pt‖min > min

{
‖P0‖min,

ǫ

2ωminmax{‖P0‖max,λmax}

}
> 0, ∀t > 0.

It is clear that when Cf and ωmin are constants, λmin(ǫ) = Θ(
√
ǫ), t∗ = Θ(

√
ǫ).

Since P
†
t is well de�ned as long as ‖Pt‖min > 0, using the same proof as in theorem 2.3 of

[5], we can show that the l-EnKBF given by (9) has a strong solution:

Corollary 3.3. Suppose the initial ensemble is selected so that ‖P0‖min > 0. Then the l-

EnKBF �lter is well de�ned for all t > 0.

3.2. Error analysis in l2 norm

As the next step we consider the accuracy of l-EnKBF in terms of the l2 norm. Since the �lter

estimate with the ensemble mean, the error is its deviation from the truth, et = Xt − Xt. While

it has already been shown in [5] ‖et‖2 is of order Nx

√
ǫ through tail probability, our new result

extends this estimate to the Laplace transforms. Moreover we show the path-wise maximum

has the logarithm scaling with time, indicating the �lter is highly stable in terms of error.

Theorem 3.4. Let et = Xt − Xt be the �lter error of l-EnKBF (11). Under assumptions 2.1

and 2.3, if φ̃ :=φ− ρI � 0 for a constant ρ > 0, then for any �xed t0 > 0 there are strictly

positive constants ǫ0, c and C such that for every ǫ ∈ (0, ǫ0),

(1) When t > t0, E‖et‖2 6 C
√
ǫNx .

(2) For any 0 < λ < cǫ−1/2,

lim sup
t→∞

E exp(λ‖et‖2) 6 2 exp(4CλNx

√
ǫ).

(3) For any T > t0, the following holds

Et0

[
sup

t06t6T

‖et‖2
]
6 ‖et0‖2 + C

√
ǫNx + C

√
ǫ log(CT/

√
ǫ)

Here Et0 denotes conditional expectation with respect to information available at time

t0.

Note that the ǫ1/2 scaling is sharp. This can be understood best if one applies the

Kalman–Bucy �lter to (1) with f(X) = 0, H = INx and R =
√
ǫINx , the posterior covariance

Pt follows the ODE
d
dt
Pt = 2INx − ǫ−1P2

t . It is easy to show that Pt will converge to the limit

P∞ =
√
2ǫINx , which is of order ǫ

1/2 as well.

3.3. Analysis for component-wise error

While theorem 3.4 provides an estimate ‖et‖2, the estimate has a scaling of Nx because ‖et‖2
is the sum of Nx component errors. From theorem 3.4, it is impossible to indicate the error of
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one speci�c component, or whether this component’s error is independent of the dimension

Nx . This section shows that with a stronger structure assumption on the localisation matrix, we

can derive dimension-independent bounds for each individual component.

Assumption 3.5. The localisation matrix φ is diagonally dominant. In other words, there

is a q < 1 such that

∑

j6=i
φi, j 6 q.

Moreover, the interaction between components can be dominated by a constant CF -multiple

of the matrix structure φ:

Fd(i, j) 6 CFφi, j ∀i, j.
Since Fd usually decays to zero quickly in practice, so CF are likely to be found. Using

lemma A.1 it is easy to show φ satisfying assumption 3.5 will have φ � (1− q)I, meaning

φ̃ = φ− qI is positive semide�nite. In other words, assumption 3.5 is stronger than assumption

for φ imposed in theorem 3.4. In general,φ is not always diagonally domain. However, this can

hold if one choose small localisation length l. For example, for the Gaspari–Cohn [9] distance

matrix φ, it will be diagonally dominant if l 6 1.4. In other words, assumption 3.5 is likely to

hold if the components of model represent spatial information of distant apart.

With assumption 3.5, we can reproduce theorem3.4 type of result for individual component.

Theorem 3.6. Let et = Xt − Xt be the �lter error of l-EnKBF (11). Under assumptions 2.1,

2.3, and 3.5, for any �xed t0 > 0 there are constants c and C such that for suf�ciently small

ǫ > 0,

(1) When t > t0, for any index i, E[[et]
2
i ] 6 C

√
ǫ.

(2) For any 0 < λ < cǫ−1/2 and index i,

lim sup
t→∞

E exp(λ[et]
2
i ) 6 2 exp(4Cλ

√
ǫ).

(3) For any T > t0, the following holds for all i

Et0

[
sup

t06t6T

[et]
2
i

]
6 max

i
{[et0]2i }+ C

√
ǫ log(T/

√
ǫ).

Here Et0 denotes conditional expectation with respect to information available at time

t0.

(4) For any T > t0,

Et0

[
max
i

sup
t06t6T

[et]
2
i

]
6 max

i
{[et0]2i }+ C

√
ǫ log(NxT/

√
ǫ).

Remark. If Z1, . . . , Zn are i.i.d. samples of a Gaussian distribution, a rough estimate of

maxi{Zi} is of order logn. And when system has short range interaction, its components are

tend to be independent when they are far apart. Likewise, when a system is stationary, it is

close to independent with it self in a distance past. The �lter error process happens to have

both of these two properties. That is why we have the scaling of log(NxT) in claim (4).
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4. Numerical investigation

Lastly the theoretical �ndings are numerically veri�ed bymeans of the stochastically perturbed

Lorenz 96 system (L96) [20]. The evolution of each spatial component is given by

dxs(t) = fs(X(t))dt +
√
2dWs(t)

for s ∈ {1, . . . ,Nx}. Here

fs(X(t)) =
(
xs+1(t)− xs−2(t)

)
xs−1(t)− xs(t)+ 8, (14)

and spatial periodicity is assumed, i.e., x−1(t) = xNx−1(t), x0(t) = xN(t) and xNx+1(t) = x1(t).

Numerically generated trajectories of (14) are typically bounded in the l∞ norm, i.e.,

|xs(t)| 6 C = 40 (15)

for all s for the Lorenz 96 system. In other words, the solution of (14) is largely indifferent

from a soft-truncated version dXs(t) = f̂ s(X(t))dt +
√
2dWs(t), where

f̃ (xs(t)) = 1‖X(t)‖∞6C

(
xs+1(t)− xs−2(t)

)
xs−1(t)− xs(t). (16)

Then note that when ‖X(t)‖∞ > C, | f̃ s(X(t))− f̃ s(X
′(t))| = |x′s(t)− xs(t)|; when ‖X(t)‖∞ 6 C,

| f̃ s(X(t))− f̃ s(X
′(t))| = |

(

xs+1(t)− xs−2(t)
)

xs−1(t)− xs(t)− [
(

x′s+1(t)− x′s−2(t)
)

x′s−1(t)− x′s(t)]|

6 |(xs+1(t)− x′s+1(t))xs−1(t)|+ |(xs−1(t)− x′s−1(t))x
′
s+1(t)|

+ |(x′s−2(t)− xs−2(t))x
′
s−1(t)|+ |(x′s−1(t)− xs−1(t))xs−2(t)|+ |x′s(t)− xs(t)|

6 C|xs+1(t)− x′s+1(t)|+ C|xs−1(t)− x′s−1(t)|+ C|x′s−2(t)− xs−2(t)|

+ C|x′s−1(t)− xs−1(t)|+ |x′s(t)− xs(t)|.

Therefore, assumption 2.1 is ful�lled with Fd(i, j) = 0 for d(i, j) > 2 where d(i, j) = min{|i−
j|, |i+ n− j|, | j+ n− i|}, and (16) has only short range interactions. While we will only sim-

ulate (14) in below, we expect the associated �lter behaviour will be similar to the one in (16).

Further the entries of the localisation matrix φ are set to

φi, j = ρ

(
d(i, j)

l

)

using the Gaspari–Cohn function (5) for ρ and setting the localisation radius to l = 1.4. Note
that this choice of localisation radius ensures that φ is diagonally dominant, i.e., assumption

3.5 is ful�lled. It is important to note that this choice is not necessarily the optimal5 value for

the considered system yet the chosen value is suf�cient to obtain reasonable MSE values of

the expected order. Further we choose the model noise variance to be σ = 1 and the obser-

vation operator H to be the identity matrix which is in line with assumption 2.3. Three test

scenarios are considered to numerically verify the sensitivity of the l-EnKBF with respect to

the dimension Nx , time interval size T and the measurement error ǫ.

5Here optimality can for example be associated with the lowest MSE.
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Figure 1. Time-averaged MSE as a function of the measurement error variance ǫ is
displayed in the left panel. The right panel displays the estimated supt∈[0,T] et for varying
T.

4.1. Sensitivity with respect to ǫ

In the �rst test scheme, the expected �ltering error is approximated via a time-averaged MSE

for different measurement error values

ǫ ∈ {0.003 125, 0.006 25, 0.025, 0.05, 0.1}.

In order to emulate a continuous setting the steps size is chosen to be dt = 10−7 and the number

of steps 107. The dimension of the state space is set to be Nx = 40, which is a standard choice

of the Lorenz 96 model. The l-EnKBF is implemented with M = 10 ensemble members. The

results are displayed in the left panel of �gure 1. Note that the MSE is normalised with respect

to the dimension, i.e., is divided by Nx. The test run con�rms that the numerical growth rate

with respect to an increasing ǫ is in line with theoretical order of the expected error derived in
claim (1) of theorem 3.4.

4.2. High dimensional testcase

In the second test scheme, the robustness with respect to state space dimension is investigated.

In particular we consider the case where the number of ensemble membersM is comparatively

small and kept �xed for increasing dimensions. Thus the imbalance between ensemble size

and dimension of the state space grows with increasing Nx . More precisely we run the �lter

for Nx ∈ {40, 240, 440, 640, 840, 1040}with M = 10 and ǫ = 0.003 125. The resulting time-

averagedMSE after 106 steps with step size dt = 10−7 are displayed in the left panel of �gure 2.

As state in claim (1) of theorem 3.4 the error grows linearly with Nx . Further we numerically

verify that the time-averaged error of the individual components, i.e.,

1

T

T∑

t=1

[et]
2
i (t) (17)

are dimension independent (see right panel of �gure 2) as stated in claim (1) of theorem 3.6.

Note that we �xed the considered component of the state vector to be i = 11 while other index

choice produces largely the same results.
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Figure 2. Time-averaged MSE as a function of the state dimension Nx is displayed in
the left panel whereas the time-averaged MSE for one �xed component for increasing
Nx is shown in the right panel.

4.3. Uniform error for bounded time interval

In the �nal test scheme, we consider a setting with a growing number of steps 106 to 107 for

a �xed step size dt = 10−5 resulting in �lter runs for different time values T ∈ {10, . . . , 100}.
Note that the step size is set to be slightly larger than in the previous examples so that the range

of considered T values is more interesting. Further the measurement error variance is set to

ǫ = 0.01 and the dimension of the state space is Nx = 40. We simulate the �ltering process 30

times and record the �lter error e j(t), j = 1, . . . , 30, for each simulation. We plot the averaged

path-wise l2-square error up to T, which is

1

30

30∑

j=1

max
t∈[0,T]

‖e j(t)‖2

in the right panel of �gure 1. The dominating part6 C
√
ǫ log(CT/

√
ǫ) of the theoretical order

of claim (3) of theorem 3.4 is plotted as a reference slope.

Note that the numerically obtain error is in line with the theoretical order and thus is

verifying the logarithmic dependence of the uniform bound on time T.

5. Conclusion

In this paper, the earlier derived stability and accuracy results for the EnKBF are extended for

systems with Nx ≫ M via localisation. Further the upper bound for the covariance is inde-

pendent of the number of ensemble members M and the derived path-wise bounds have a

better scaling with respect to the time T. Moreover it is shown that the accuracy in the indi-

vidual components is independent of the state dimension Nx and a Laplace type condition is

obtained. Natural extensions include partially observed processes and misspeci�ed drift func-

tions f(xt,λ) with unknown parameter λ. Moreover the presented ideas can be used for the

analysis of properties of multilevel ensemble Kalman �lters [10, 11] or of consistent �lters,

6 For the considered Nx , ǫ and T, the other dominating component C
√
ǫNx is not large but can of course become

signi�cant for Nx ≫ 0.
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such as the ensemble transform particle �lter [25] or the feedback particle �lter [31], for �nite

number of ensemble members.
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Appendix A. Proof for filter wellposedness and stability

A.1. Matrix norms and Riccati equation

To start, we have several norm inequalities which are utilised in this paper.

Lemma A.1. For any N× N matrix A, the following holds

‖A‖max 6 ‖A‖, (18)

‖A‖ 6
√

‖A‖1‖AT‖1. (19)

Proof. Inequality (18) follows via

‖A‖max = max
i, j

|[A]i, j| = max
i, j

|[et]Ti Ae j| 6 ‖A‖,

where [et]i and ej are the ith and jth standard Euclidean basis vector. Inequality (19) follows

from [23] lemma B.2. �

Lemma A.2. Let P, Q and φ be positive, symmetric and semide�nite Nx × Nx matrices and

[φ]i,i = 1 for all i. Then

(1) For all i, [(P ◦ φ)Q]i,i = [P(Q ◦ φ)]i,i.
(2) If P � Q, then P ◦ φ � Q ◦ φ.
(3) ‖P ◦ φ‖max = ‖P‖max = maxi{[P]i,i}
(4) ‖P ◦ φ‖ 6 ‖P ◦ φ‖1 6 Cφ‖P‖max, where Cφ = maxi

∑
j|φi,j|.

Proof. claim (1). Just note that

[(P ◦ φ)Q]i,i =
∑

k

Pi,kφi,kQk,i =
∑

k

Pi,kφk,iQk,i = [P(Q ◦ φ)]i,i.

�

Proof. claim (2). Due to the linearity of the Schur product, it suf�ces to show that 0 � P ◦ φ.
This is known as the Schur product theorem,which can be veri�ed using the following identity,

which holds for all Nx-dimensional vectors u, with Du being the diagonal matrix where its

diagonal entries are the same as u:
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uT(P ◦ φ)u = tr(PDuφDu) = tr(P
1
2Duφ

1
2φ

1
2DuP

1
2 ) > 0.

�

Proof. claim (3). Since P is a positive semide�nite matrix for each i and j, it follows that

〈[et]i − e j,P([et]i − e j)〉 = 〈[et]i,P[et]i〉 − 2〈[et]i,Pe j〉+ 〈e j,Pe j〉 > 0,

where [et]i and ej are the i and jth standard Euclidean basis vector. This implies

2〈[et]i,Pe j〉 6 〈[et]i,P[et]i〉+ 〈e j,Pe j〉 6 2max
k

[P]k,k.

In otherwords in a positive semide�nitematrix themaximal values are reached on the diagonal.

Note that the Schur product P ◦ φ is a positive semide�nite as well, so it is maximal matrix

entries are also assumed on the diagonal. Since φ is set to [φ]i,i = 1 for all i the Schur product

does not alter the diagonal entries of P thus ‖P ◦ φ‖max = ‖P‖max.

�

Proof. claim (4). Recall that inequality (19) implies ‖A‖ 6 ‖A‖1 for any symmetric matrix

A which yields the �rst half of claim (4), since P ◦ φ is symmetric. The other half can be

obtained by

‖P ◦ φ‖ 6 ‖P ◦ φ‖1 = max
i

∣∣∣∣∣
∑

j

φi, jPi, j

∣∣∣∣∣ 6 max
i

∑

j

|φi, j|‖P‖max = Cφ‖P‖max.

�

In this paper, we often concern Riccati type of stochastic equation. In particular, we are

often interested in �nding bounds for the maximum entry of the solution. To do so, we employ

a comparison principle,which generates bounds by comparingwith anotherODE. In particular,

we have the following lemma.

Lemma A.3. Suppose Xt = [x1(t), . . . , xn(t)] jointly follows an ODE, d
dt
Xt = F(Xt). Let

mt = max16i6n′{xi(t)}, where n′ can be smaller than n. Let it be the smallest index i such
that xi(t) = mt. Suppose there is a continuous function g(x, t) such that for any t > 0,

d

dt
xit (t) 6 g(xit(t), t).

Suppose yt satis�es
d
dt
yt = g(yt, t)+ δ0 for a �xed δ0 > 0 and y0 > m0, then the following

hold

(1) For all t > 0, yt > mt.

(2) Suppose g(x, t) = g(x) = − c
ǫ x

2 + bx + a− δ0, where a, b, c are constants. Let

∆ǫ := 2

√
b2ǫ2

4c2
+
aǫ

c
= Θ(

√
ǫ).

If y0 > 0, then yt 6 max{∆ǫ, y0} for all t > 0. Moreover, when t > t∗ =
cǫ
∆ǫ

= Θ(
√
ǫ),

yt 6 ∆ǫ.
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(3) Suppose zt is a process such that 0 < zt < D for all t > 0, and zt 6 ∆ǫ for t > t∗, where
∆ǫ, t∗ are positive quantities of order Θ(

√
ǫ). Suppose g(x, t) = α

√−xzt − β
ǫ
xzt − γ −

δ0, where α, β, γ are all positive constants. Then if y0 < 0,

yt 6 −min

{
|y0|,

γ2

α2D
,
γǫ

2βD

}
, ∀t > 0.

Moreover |yt| > cǫ for all t > t∗ + 3cǫ
γ

= Θ(
√
ǫ), where

cǫ := min

{
γ2

9α2∆ǫ
,

γǫ

3β∆ǫ

}
= Θ(

√
ǫ).

Proof. claim (1). Let t1 = inf{t > 0, yt 6 mt}. By continuity of mt and yt, t1 > 0. Suppose

t1 is �nite, then yt1 = mt1 . Therefore

d

dt
xit1 (t1) 6 g(xit1 (t), t1) = g(yt1 , t1) =

d

dt
y(t1)− δ0.

This indicate for suf�ciently small δ > 0,

xit1 (t1 − δ) > xit1 (t1)− δg(xit1 (t), t1)−
1

2
δδ0 > y(t1)− δg(y(t1), t1)+

1

2
δδ0 > y(t1 − δ).

This contradicts with the de�nition of t1. Therefore t1 = ∞. �

Proof. claim (2). First we denote the root of g(x, t)+ δ0 = 0 as

y± = − bǫ

2c
±
√
b2ǫ2

4c2
+
aǫ

c
.

It is easy to check that y+ > 0 > y−, while∆ǫ = y+ − y−. Note that g(x)+ δ0 6 0 when yt >

∆ǫ > y+. So yt is decreasing when yt is above∆ǫ.

Next note that yt is the solution of a Riccati differential equation. The solution to the Riccati

ODE is given by has the explicit formulation

yt − y−
yt − y+

= exp
(c
ǫ
t(y+ − y−)

)( y0 − y−
y0 − y+

)
(20)

If y0 < y+, it is easy to check that (20) always take negative value, meaning yt < y+ < y+ −
y− = ∆ǫ for all t > 0. When y0 > y+ and t > t∗, from (20) leads to

yt − y−
yt − y+

> exp
(c
ǫ
t(y+ − y−)

)
> 2,

so yt 6 y+ − y− = 2

√
b2ǫ2

4c2
+ aǫ

c
= Θ(

√
ǫ). �
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Proof. claim (3). Note that g(x, t)+ δ0 < 0 when |x| < min
{

γ2

α2D
, γǫ
2βD

}
, so yt will be

decreasing if it is above−min
{

γ2

α2D
, γǫ
2βD

}
. This leads to the �rst part of the claim.

Next note that when 0 > x > −cǫ and t > t∗, g(x, t) 6 − γ
3
. So yt will be decreasing with

rate at least γ
3
when 0 > yt > −cǫ and t > t∗, this leads to our claim.

�

A.2. Upper bounds for sample covariance

Proof of lemma 3.1. Recall that Pt is positive semide�nite, therefore by lemma A.2

‖Pt‖max = max{[Pt]i,i, i = 1, . . . , Nx},

where the components of Pt follows an ODE (13). Therefore, in order to apply lemma A.3

claim (1), it suf�ces to investigate the ODE deriving the component with the maximal value.

Suppose at time t, [Pt]k,k = ‖Pt‖max for certain k. Considering the time evolution of [PL
t ]k,k

given by (13), it is given by

d

dt
[Pt]k,k = [Ft + FT

t ]k,k + [P
†
tPt + PtP

†
t ]k,k −

1

2ǫ
[PL

t ΩPt + PtΩP
L
t ]k,k. (21)

First note that [Ft]k,k =
1

M−1

∑
i(x

i
k − xk)( fk(X

i
t)− f k), where by assumption 2.1 we have

| fk(Xi)− f k| 6
1

M

M∑

j=1

| fk(Xit)− fk(X
j
t )| 6

1

M

M∑

j=1

Nx∑

l=1

Fd(k,l)|xil − x
j
l |.

This leads to

[Ft]k,k 6
1

M − 1

M∑

i=1

|xik − xk‖ fk(Xit)− f k|

6
1

(M − 1)M

∑

i, j,l,m

Fd(k,l)|xik − xmk ‖xil − x
j
l |

6

Nx∑

l=1

Fd(k,l)

√∑
i,m|xik − xmk |2
M(M − 1)

√∑
i, j|xil − x

j
l |2

M(M − 1)

6

Nx∑

l=1

Fd(k,l)[Pt]k,k 6 C f [Pt]k,k. (22)

Also, note that [P
†
tPt]k,k = [P

†
t ]k,k[Pt]k,k = 1 due to de�nition 2.2, so

[P
†
tPt]k,k = 1. (23)

Lastly, we have

[PL
t ΩPt]k,k =

Nx∑

i=1

[PLt ]k,iΩi,i[Pt]i,k =

Nx∑

i=1

[Pt]
2
k,iφi,kΩi,i > Ωk,k[Pt]

2
k,k > ωmin[Pt]

2
k,k.

(24)
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Insert (22)–(24) to (21), we �nd

d

dt
[Pt]k,k 6 2C f [Pt]k,k + 2− ωmin

ǫ
[Pt]

2
k,k.

Therefore lemma A.3 claim (1) applies with

g(x, t) = 2C f x + 2− ωmin

ǫ
x2.

Let δ0 = 1, lemma A.3 claim (2) yields the result of this lemma. �

A.3. Lower bounds for sample covariance

Proof of lemma 3.2. The proof is similar to the one of lemma 3.1, but we need to change

sign, because

−‖Pt‖min = max{−[Pt]i,i, i = 1, . . . , Nx}.

By lemma A.3 claim (1), we assume at time t, ‖Pt‖min = [Pt]k,k and investigate the ODE that

−[Pt]k,k follows. It is given by the inverse of (21). Following same procedures prior to (22),

we have

[Ft]k,k > −
Nx∑

l=1

Fd(k,l)

√∑
i,m|xik − xmk |2
M(M − 1)

√∑
i, j|xil − x

j
l |2

M(M − 1)
> −C f

√
[Pt]k,k‖Pt‖max (25)

(23) remains the same. Finally recall that in (24), we have

[PL
t ΩPt]k,k =

Nx∑

i=1

[Pt]
2
k,iφi,kΩi,i 6

Nx∑

i=1

ωmaxφi,k[Pt]k,k‖Pt‖max 6 ωmaxCφ[Pt]k,k‖Pt‖max. (26)

Insert (23), (25) and (26) into (21), we �nd

− d

dt
[Pt]k,k 6 2C f

√
−(−[Pt]k,k)‖Pt‖max +

ωmax

ǫ
Cφ‖Pt‖max[Pt]k,k − 2.

So we can apply lemma A.3 claim (3) with δ0 = 1 and

g(x, t) = 2C f

√
−x‖Pt‖max +

ωmax

ǫ
Cφx[Pt]k,k − 2.

This gives us the claimed result. �

Appendix B. Proof for filter error analysis in l2 norm

B.1. Evolution of component-wise error

Before we prove the statements of theorem 3.4 we consider the following auxiliary lemma

which will be used several times throughout the remainder of the paper.
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Lemma B.1. Let [et] j be the jth component of the �lter error et. Then the following holds

d[et]
2
j 6


−αt[et]

2
j − 2ǫ−1

j∑

i=1

[Pt ◦ φ̃] j,i[et]i[et] j +
∑

i 6= j

Fd(i, j)|[et]i|2 + βt


 dt + d[Mt] j.

(27)

In (27),Mt is a Nx dimensional martingale with components being

d[Mt] j = 2
√
2[et] jdW j − 2ǫ−1/2[et] j[P

L
t Ω

1/2dB] j.

In (27), αt and βt are two real valued processes given by

αt := 2ǫ−1ρ‖Pt‖min − C f − 1,

βt :=C2
f‖Pt‖max + 2+ ǫ−1C2

φωmax‖Pt‖2max.

By lemmas 3.1 and 3.2, the following holds for all t > 0

αt > α∗
= −C f − 1,

βt 6 β∗ :=C2
f max{‖P0‖max,λmax}+ 2+ ǫ−1C2

φωmaxmax{‖P0‖2max,λ
2
max} = Θ(ǫ−1).

When t > t∗, these bounds can be further improved to

αt > α∗ := 2ǫ−1ρλmin − C f − 1 = O(ǫ−
1
2 ),

βt 6 β∗ :=C2
fλmax + 2+ ǫ−1C2

φωmaxλ
2
max = Θ(1).

Proof. Recall the evolution of Xt and Xt are given by dXt = f (Xt)dt +
√
2dWt and

dXt = f tdt − ǫ−1PL
t Ω(Xt dt − dYt) = f tdt − ǫ−1PL

t Ω(Xt dt − Xt dt −
√
ǫΩ−1/2dBt).

The evolution of the error et = Xt − Xt is given by the difference between the two, namely

det = ( f (Xt)− f t − ǫ−1PL
t Ωet) dt +

√
2dWt − ǫ−1/2PL

t Ω
1/2dBt.

The jth component of this differential equation is given by

d[et] j = ( f j(Xt)− f j − ǫ−1[PL
t Ωet] j)dt +

√
2dW j − ǫ−1/2[PL

t Ω
1/2dB] j,

where f j denotes the jth component of f t. Ito’s formula implies that

4769



Nonlinearity 33 (2020) 4752 J de Wiljes and X T Tong

d[et]
2
j =
(
2( f j(Xt)− f j − ǫ−1[PL

t Ωet] j)[et] j + 2+ ǫ−1[PL
t ΩP

L
t ] j j
)
dt

+ 2
√
2[et] jdW j − ǫ−1/22[et] j[P

L
t Ω

1/2dB] j. (28)

To continue, note that

| f j(Xt)− f j‖[et] j| =
∣∣∣∣∣ f j(Xt)−

1

M

M∑

i=1

f j(X
i
t)

∣∣∣∣∣ |[et] j|

6
1

M

M∑

i=1

| f j(Xt)− f j(X
i
t)‖[et] j|

6
1

M

M∑

i=1

| f j(Xt)− f j(X
i
t)‖[et] j|+ | f j(Xt)− f j(Xt)‖[et] j|.

(29)

By assumption 2.1, the second part of (29) can be bounded easily by

| f j(Xt)− f j(Xt)‖[et] j| 6
Nx∑

i=1

Fd(i, j)|[Xt − Xt]i‖[et] j| =
Nx∑

i=1

Fd(i, j)|[et]i||[et] j|

6
1

2
C f |[et] j|2 +

1

2

∑

i 6= j

Fd(i, j)|[et]i|2. (30)

To bound the �rst part of (29), we note by assumption 2.1 and Cauchy Schwarz,

1

M

M∑

i=1

| f j(Xt)− f j(X
i
t)| 6

M,Nx∑

i,k=1

Fd(k, j)

M
|[Xit − Xt]k|

6

√√√√
Nx∑

k=1

Fd(k, j)

M2

M∑

i=1

|[Xit − Xt]k|2

6

√
1

M
C2
f (M − 1)[Pt]k,k 6 C f ‖Pt‖

1
2
max. (31)

Then multiplication with |[et] j| with (31) yields

1

M

M∑

i=1

| f j(Xt)− f j(X
i
t)‖[et] j| 6

1

2
(
1

M

M∑

i=1

| f j(Xt)− f j(X
i
t)|)2 +

1

2
|[et] j|2

6
1

2
C2
f‖Pt‖max +

1

2
|[et] j|2.

Plug these into (29), we �nd

| f j(Xt)− f j‖[et] j| 6
1

2
C2
f‖Pt‖max +

1

2
|[et] j|2 +

1

2
C f |[et] j|2 +

1

2

∑

i 6= j

Fd(i, j)|[et]i|2. (32)
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Next, we deal with [PL
t Ωet] j in (28). De�ne φ̃ :=φ− ρI and obtain the following equality

[PL
t Ωet] j =

Nx∑

i=1

[Pt ◦ φ] j,iΩi,i[et]i = ρ[Pt] j, jΩ j, j[et] j +

Nx∑

i=1

[Pt ◦ φ̃] j,iΩi,i[et]i. (33)

Also note that

[PL
t ΩP

L
t ] j, j =

∑

i

Ωi,iφ
2
i, j[Pt]

2
i, j 6 ‖Pt‖2maxωmax

∑

i

φ2
i, j 6 C2

φωmax‖Pt‖2max. (34)

Plug (32)–(34) into (28), we obtain

d[et]
2
j 6


(1+ C f − 2ǫ−1ρ‖Pt‖min)[et]

2
j − 2ǫ−1

Nx∑

i=1

[Pt ◦ φ̃] j,i[et]i[et] j

+
∑

i 6= j

Fd(i, j)|[et]i|2 + C2
f‖Pt‖max + 2+ ǫ−1C2

φωmax‖Pt‖2max


 dt

+ 2
√
2[et] jdW j − 2ǫ−1/2[et] j[P

L
t Ω

1/2dB] j. (35)

�

B.2. Two technical lemmas

Lemma B.2 (Grönwall’s inequality). Suppose a real value process ut satis�es the following

for t > t0 and constants α and β:

dut 6 (−αut + β)dt + dMt

for some martingale Mt. It follows that for any t > t0

Et0ut 6 ut0 exp(−α(t− t0))+
β

α
(1− exp(−α(t − t0))).

When α and β are both positive, we have further that

Et0ut 6 ut0 exp(−α(t− t0))+
β

α
.

Proof. Consider u′t = exp(α(t− t0))ut. Then its evolution follows

du′t = αut dt + exp(α(t − t0)) dut 6 exp(α(t − t0))β + exp(α(t− t0))dMt.

Integrating both hands from t0 to t, then take conditional expectation we have

Et0u
′
t = u′t0 +

β

α
(exp(α(t− t0))− 1).

This leads to our claim. �
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Lemma B.3. For a positive random variable X, if there are constants A > 2,B > 0 such

that P(X > M) 6 A exp(−λM)+ exp(λB− λM) holds for all M > 0, then

E[X] 6
1+ log 2A

λ
+ B.

Proof. Note that if we let C = 1
λ
log A+ B, which is the point the quantile upper bound

takes value 1,

E[X] =

∫ ∞

0

P(X > x) dx =

∫ ∞

C

P(X > x) dx +

∫ C

0

P(X > x) dx

6

∫ ∞

C

(A+ exp(λB)) exp(−λx)dx +

∫ C

0

1 dx

=
A+ exp(λB)

λ
exp(−λC)+ C =

1+ log(A+ exp(λB))

λ
.

Finally, since A 6 A exp(λB), exp(λB) 6 A exp(λB), so log(A+ exp(λB) 6 λB+ log 2A. �

B.3. Proof of theorem 3.4

Proof. claim (1). Note that φ̃ � 0 and thus
∑

i, j[Pt ◦ φ̃] j,i[et]i[et] j > 0, and
∑

iFd(i, j) 6 C f .

So utilising lemma B.1 and summing over all j on both sides of (27) yields

d‖et‖2 6
(
C f − αt

)
‖et‖2 dt + Nxβt dt + dM′

t, (36)

where the martingale is given by

dM′
t =

Nx∑

j=1

2
√
2[et] jdW j − 2r−1/2[et] j[P

L
sΩ

1/2dB] j = 2
√
2eTt dWt − 2r−1/2eTt P

L
t Ω

1/2dBt.

For t ∈ [0, t∗], (36) can be further upper-bounded by

d‖et‖2 6
(
C f − α∗) ‖et‖2 dt + Nxβ

∗ dt + dM′
t.

Employing Gronwall’s inequality, there is a constant D such that

E‖et∗‖2 6 exp((2C f + 1)t∗)E‖e0‖2 + Nxβ
∗ exp((2C f + 1)t∗)− 1

2C f + 1
= Θ(ǫ−1).

For t > t∗, (36) can be further upper-bounded by

d‖et‖2 6 −α′
∗‖et‖2 dt + Nxβ∗ dt + dM′

t.

Employing Gronwall’s inequality, we �nd that with α∗′ = α∗ − Cf,
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E‖et‖2 6 E‖et∗‖2 exp(−α′
∗(t − t∗))+

Nxβ∗
α′
∗

(1− exp(−α′
∗(t − t∗))). (37)

Since α∗′ = α∗ − Cf = Θ(ǫ−1/2), β∗ = O(1), and ǫ−1exp(−λǫ−1/2) = o(1) for any λ > 0, so

we have proved for claim (1). �

Proof. claim (2). First we note the quadratic variation of the martingale termM′
t is given by

d

dt
〈M′〉t = 8‖et‖2 + 4ǫ−1‖Ω1/2PL

t et‖2 6 (8+ 4ǫ−1ωmax‖PL
t ‖2)‖et‖2.

So by Ito’s formula on exp(λ‖et‖2), the following holds with αt
′ = αt − Cf,

d exp(λ‖et‖2) 6 ((−λα′
t‖et‖2+λβtNx)dt + λdM′

t) exp(λ‖et‖2)+
1

2
λ2 exp(λ‖et‖2)d〈M〉t dt

6 (−γt‖et‖2 + λβtNx) exp(λ‖et‖2)dt + λ exp(λ‖et‖2)dM′
t.

where

γt = λα′
t − 4λ2 − 2λ2ωmaxǫ

−1‖PL
t ‖2.

By lemmas 3.1 and 3.2, we have for all t > 0

−γt 6 γ∗
= λ(2C f + 1)+ 4λ2

+ 2λ2ωmaxC
2
φ max{‖P0‖2max,λ

2
max},

and for t > t∗

λ 6 λ∗ =
α′
∗

8+ 4ωmaxC
2
φλ

2
max

= Θ(ǫ−1/2).

γt > λα′
∗ − 4λ2 − 2λ2ωmaxC

2
φλ

2
max >

1

2
λα′

∗.

For t 6 t∗, by Gronwall’s inequality we have

E exp(λ‖et∗‖2) 6 exp((γ∗
+ λβ∗Nx)t∗) exp(λ‖e0‖2). (38)

And when t > t∗,

d exp(λ‖et‖2) 6 (λβ∗Nx −
1

2
λα′

∗‖et‖2) exp(λ‖et‖2)dt + λ exp(λ‖et‖2)dM′
t.

(39)

Note that when 1
4
λα′

∗‖et‖2 6 λβ∗Nx ,

exp(λ‖et‖2) 6 exp

(
4λNxβ∗

α′
∗

)
,

we obtain
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(λβ∗Nx −
1

2
λα′

∗‖et‖2) exp(λ‖et‖2) 6 −λβ∗Nx exp(λ‖et‖2)+ 2λβ∗Nx exp

(
4λNxβ∗

α′∗

)
.

Otherwise, when 1
4
λα′

∗‖et‖2 > λβ∗Nx , we have

(λβ∗Nx −
1

2
λα′

∗‖et‖2) exp(λ‖et‖2) 6 −1

4
λα′

∗‖et‖2 exp(λ‖et‖2) 6 −λβ∗Nx exp(λ‖et‖2).

In summary, we always have

(λβ∗Nx −
1

2
λα′

∗‖et‖2) exp(λ‖et‖2) 6 −λβ∗Nx exp(λ‖et‖2)+ 2λβ∗Nx exp

(
4λNxβ∗

α′
∗

)
.

(40)

Inserting (40) in (39) yields

d exp(λ‖et‖2) 6
[
−λβ∗Nx exp(λ‖et‖2)+ 2λβ∗Nx exp

(
4λNxβ∗

α′
∗

)]
dt + λ exp(λ‖et‖2)dM′

t.

After applying Grönwall’s inequality and (38) we obtain the following

E[exp(λ‖et‖2)] 6 exp(−λβ∗Nx(t − t∗))E[exp(λ‖et∗‖2)]+ 2 exp

(
4λNxβ∗

α∗

)

6 exp(−(γ∗ + λβ∗Nx)t∗ − λβ∗Nx(t− t∗))E[exp(λ‖e0‖2)]+ 2 exp

(
4λNxβ∗

α′∗

)
.

When t→∞, this leads to claim (2):

lim sup
t→∞

E exp(λ‖et‖2) 6 2 exp

(
4λNxβ∗

α′∗

)
.

�

Proof. claim (3). We consider function

g(x) = (λβ∗Nx −
1

2
λα′

∗x) exp(λx)

By �nding the critical point, it is easy to see

g(x) 6 g

(
2β∗Nx

α′
∗

− 1

λ

)
=

α′
∗

2e
exp

(
2λ∗βNx

α′
∗

)
= :G∗ = Θ(ǫ−1/2)

Combine this with (39), we �nd
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d exp(λ‖et‖2) 6 G∗dt + λ exp(λ‖et‖2)dM′
t, ∀t > t∗.

So by Dynkin’s formula, if we let τ = min{t : t > t0, ‖et‖2 > M}, then

Et0 exp(λ‖eT∧τ‖2) 6 exp(λ‖et0‖2)+ E

∫ T∧τ

t0

G∗ dt 6 exp(λ‖et0‖2)+ G∗T.

By Markov inequality we have

P( max
t06t6T

‖et‖2 > M) = Pt0(‖eT∧τ‖2 > M) 6
Et0 exp(λ‖eT∧τ‖2)

exp(λM)

6
α′
∗T

2e
exp

(
2λβ∗Nx

α′∗
− λM

)
+ exp(λ‖et0‖2 − λM).

Then by lemma B.3,

Et0 max
t06t6T

‖eT‖2 6
1

λ
+

2β∗Nx

α′∗
+

1

λ
log

(
α′
∗T

e

)
+

1

λ
+ ‖et0‖.

We take λ = λ∗ = Θ(ǫ−
1
2 ) to obtain our claimed result. �

Appendix C. Proof for component-wise filter error analysis

C.1. Component-wise Lyapunov weights

In order to bound [et]
2
i in long time, it is necessary to build a Lyapunov function for it. The

main challenge here is that dynamics of [et]
2
i is coupled with the error of other components.

The idea is here to �nd a weight vector vi so that Eit =
∑

j v
i
j[et]

2
j is a Lyapunov function. The

design of vi happens to relate to the structure of φ, and can be expressed as the Green function
of a Markov chain.

LemmaC.1. Under assumption 3.5. Let T be a randomvariable of geometric-q distribution,

that is

P(T = n) = (1− q)qn−1, n = 1, 2, . . . .

Consider a Markov chain Xt on the points {1, . . . ,Nx}. Its transition probability is given by

P(Xt+1 = j|Xt = i) =






1

q
φi, j j 6= i

1− 1

q

∑

j6=i
φi, j j = i.

Fix an index i ∈ {1, . . . ,Nx}. De�ne vector vi, where its components are given by

vij = E

(
T∑

k=1

1Xk=i

∣∣∣∣∣X1 = j

)
.
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Then vi satis�es the following properties

(1) vij > 0, ∀ j and in speci�c vii > 1− q.

(2) For all index j,
∑

l 6= jφ j,lv
i
l 6 vij.

(3)
∑Nx

j=1 v
i
j 6 1.

Proof. claim (1). Since
∑T

k=1 1Xk=i > 0 a.s., so vij > 0. Moreover,

vii = E

(
T∑

k=1

1Xk=i

∣∣∣∣∣X1 = i

)
> E

(
1T=1,X1=i|X1 = i

)
= 1− q.

�

Proof. claim (2). Next, by doing a �rst step analysis of Markov chain, we �nd that

vij = (1− q) · 1 j=i + q



1− 1

q

∑

l 6= j

φ j,l



 vij + q · 1
q

∑

l 6= j

φ j,lv
i
l . (41)

Since
∑

l 6=jφj,l 6 q < 1, we have

vij >
∑

l 6= j

φl, jv
i
l .

�

Proof. claim (3). We sum (41) over all j and obtain

Nx∑

j=1

vij = (1− q)+ q

Nx∑

j=1


1− 1

q

∑

l 6= j

φ j,l


 vij +

Nx∑

j=1

∑

l 6= j

φ j,lv
i
l

6 1− q+

Nx∑

j=1

∑

l 6= j

φ j,lv
i
l = 1− q+

Nx∑

l=1

vil



∑

j6=l
φ j,l


 .

Therefore we have

(1− q)

Nx∑

j=1

vij 6

Nx∑

j=1

(1−
∑

j6=l
φ j,l)v

i
j 6 1− q,

which leads to our claim. �

C.2. Proof of theorem 3.6

Proof. claim (1). Recall that lemma B.1 has shown that

d[et]
2
i 6


−αt[et]

2
i − 2ǫ−1

∑

j=1

[Pt ◦ φ̃]i, j[et]i[et] j +
∑

j6=i
Fd(i, j)|[et] j|2 + βt


 dt + d[Mt]i.

(42)
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Recall that φ̃ = φ− ρI. In the following, we use Pj,i to denote the ( j, i)-th component of Pt.

Then by Cauchy Schwartz and Young’s inequality

−2[Pt ◦ φ̃]i, j[et]i[et] j = −2φ j,iP j,i[et]i[et] j 6 −2φ j,i

√
P j, j[et] j

√
Pi,i[et]i

6 φi, j(P j, j[et]
2
j + Pi,i[et]

2
i ), for j 6= i.

Then note that

−2Pi,iφi,i[et]
2
i +

∑

i 6= j

φi, jPi,i[et]
2
i 6 (q− 2)Pi,i[et]

2
i < −Pi,i[et]2i ,

so (42) leads to

d[et]
2
i 6



∑

j6=i
(Fd(i, j) + ǫ−1φi, jP j, j)[et]

2
j − αt[et]

2
i − ǫ−1Pi,i[et]

2
i + βt


 dt + d[Mt]i. (43)

We denote the vector Et = [e21, e
2
2, . . . e

2
N]

T . Further we de�ne vector vi, of which the compo-

nent is given by lemma C.1. Denote

Eit = 〈vi,Et〉, Mi
t = 〈vi,Mt〉.

Then the SDE of Eit can be bounded by a linear combination of (43), which is

dEit 6

Nx∑

j=1


−αtv

i
j[et]

2
j − ǫ−1vij(P j, j[et]

2
j −
∑

l 6= j

φ j,lPl,le
2
l )+

∑

l 6= j

vijFd( j,l)e
2
l


+ βt + dMi

t

=

Nx∑

j=1


−αtv

i
j[et]

2
j − ǫ−1(vijP j, j[et]

2
j−
∑

l 6= j

vilφl, jP j, j[et]
2
j)+

∑

l 6= j

Fd( j,l)v
i
l[et]

2
j


+βt + dMi

t

6

Nx∑

j=1

(
−αtv

i
j[et]

2
jv
i
j + CFφ j,lv

i
l[et]

2
j

)
+ βt + dMi

t. (44)

6

Nx∑

j=1

(−αt + CF )v
i
j[et]

2
j + βt + dMi

t = (−αt + CF )E
i
t + βt + dMi

t. (45)

We have used claims (2) and (3) of lemma C.1 at (44) and (45).

Between time 0 and tǫ, recall the upper bound in lemma B.1, apply Gronwall’s inequality

EEitǫ 6 exp((CF − α∗)tǫ)

(
EEi0 +

β∗

CF − α∗

)
.

Then after tǫ, for any t, apply Gronwall’s inequality
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EEit 6 exp((CF − α∗)tǫ)EE
i
tǫ
+

β∗
α∗ − CF

6 exp(CF t − α∗tǫ − α∗(t− tǫ))

(
EEi0 +

β∗

CF − α∗

)
+

β∗
α∗ − CF

.

Recall that in lemma B.1, α∗ = Θ(ǫ−1/2), β∗ = Θ(ǫ−1),α∗ = β∗ = Θ(1). So if t > t0, for

certain constants c and C

−(CF t − α∗tǫ − α∗(t− tǫ)) > cǫ−1/2, EEi0 6 max
i
{|[et]i(0)|2}

∑

j

vij 6 C,

β∗

CF − α∗ 6 Cǫ−1,
β∗

α∗ − CF
6 Cǫ1/2.

Therefore when ǫ is small enough, EEit 6 2C
√
ǫ, which is our claim (1). �

Proof. claim (2). First recall the individual martingale driving Eit is given by

dMi
t =
∑

j

vij
√
8[et] jdW j − 2vijǫ

−1/2[et] j[P
L
t Ω

1/2dB] j.

The corresponding quadratic variation is bounded by

d

dt
〈Mi〉t = 8

Nx∑

j=1

[et]
2
j(v

i
j)
2
+ 4ǫ−1

Nx∑

j=1

(vij)
2[et]

2
j

Nx∑

l=1

[PLt ]
2
j,l[Ω]l,l

6 8

Nx∑

j=1

[et]
2
jv
i
j + 4ωmaxǫ

−1‖Pt‖2max

Nx∑

j=1

vij[et]
2
j 6 4βtE

i
t.

Denote α′
t = αt − CF , (which is slightly different from the one in the proof of theorem 3.4)

then recall from (45) we have

dEit 6 −α′
tE

i
t dt + βtdt + dMi

t.

By Ito’s formula on exp(λEit), we have

d exp(λEit) 6 (−1

2
λα′

tE
i
t + 4λβt)dt + λdMi

t) exp(λE
i
t)+

1

2
λ2 exp(λEit)d〈Mi〉t

6 (−1

2
(λα′

t − 4λ2βt)E
i
t + λβt) exp(λE

i
t)dt + λ exp(λEit)dMi

t. (46)

From time 0 to tǫ, by lemma B.1,

α′
t = αt − CF > α∗ − CF , βt 6 β∗,

by Gronwall’s inequality, for all i
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E exp(λEitǫ) 6 exp(tǫ(−
1

2
λ(α∗ − CF )+ 2λ2β∗

+
1

2
λβ∗)) exp(λmax

i
{|eit(0)|2}) < ∞. (47)

When t > tǫ, lemma B.1 further shows that

α′
t = αt − CF > α′

∗ :=α∗ − CF , βt 6 β∗.

Consider λ 6 λ∗ =
α′∗
8β∗

, then

−1

2
(λα∗ − 4λ2β∗) = −1

4
λα∗.

Then for t > tǫ and λ < λǫ, we have the following upper bound from (46)

d exp(λEit) 6

(
−1

4
λα′

∗E
i
t + λβ∗

)
exp(λEit)dt + λ exp(λEit)dMi

t. (48)

When ǫ is small enough, α′∗ > 0. Then if 1
8
λα′

∗E
i
t 6 λβ∗,

(
−1

4
λα′

∗E
i
t + λβ∗

)
exp(λEit)+

1

8
λα′

∗ exp(λEit) 6 2λβ∗ exp(8λβ∗/α
′
∗).

If 1
8
λα′

∗E
i
t > λβ∗,

(
−1

4
λα′

∗E
i
t + λβ∗

)
exp(λEit) 6 −1

8
λα′

∗ exp(λEit).

In summary, we always have

(
−1

4
λα′

∗E
i
t + λβ∗

)
exp(λEit) 6 −1

8
λα′

∗ exp(λEit)+ 2λβ∗ exp(8λβ∗/α
′
∗).

Plug this into (48), we have

d exp(λEit) 6

(
−1

8
λα′

∗ exp(λEit)+ 2λβ∗ exp(8λβ∗/α
′
∗)

)
dt + λ exp(λEit)dMi

t.

(49)

So Gronwall’s inequality and implies for t > tǫ

E exp(λEit) 6 exp

(
−1

8
λα′

∗(t − tǫ)

)
E exp(λEitǫ)+ 16

β∗
α′
∗
exp(8λβ∗/α

′
∗)

The �rst term on the right converges to zero as t→∞ because of bound (47).We have our claim

(2) because of β∗ = Θ(1), α′∗ = Θ(ǫ−1/2), moreoverEit > vii[et]
2
i > (1− q)[et]

2
i by lemma C.1

claim (1).

�

Proof. claim (3). We consider function

g(x) =

(
−1

4
λα′

∗x + λβ∗

)
exp(λx)
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and by �nding the critical point, it is easy to see

g(x) 6 g

(
4β∗
α′∗

− 1

λ

)
=

α∗
4e

exp

(
4λβ∗
α′∗

)
=: G∗.

Plug this into (48), we �nd for all t > t0,

d exp(λEit) 6 G∗dt + λ exp(λEit)dMi
t.

So by Dynkin’s formula, if we let τi = min{t : Eit > M}, then

Et0[exp(λE
i
T∧τ )] 6 exp(λEit0)+ Et0 [

∫ T∧τ

t0

G∗ dt] 6 exp(λEit0)+ G∗T.

Recall that Eit > vii[et]
2
i > (1− q)[et]

2
i . By Markov inequality

P

(
sup

t06t6T

{[et]2i } >
M

1− q

)
6 P

(
sup

t06t6T

Eit > M

)

6
E exp(λEiT∧τ )

exp(λM)

6
α∗T

4e
exp

(
4λβ∗
α′∗

− ((1− q)λ)
M

(1− q)

)

+ exp

(
λEit0 − ((1− q)λ)

M

(1− q)

)
.

Note that Eit0 =
∑Nx

j=1 v
i
j[et0]

2
j 6 max j[et0]

2
j .Then by lemma B.3, we have

E[ sup
t06t6T

{[et]2i }] 6
1

(1− q)λ
+

4β∗
α′
∗(1− q)

+
1

λ
log

(
α′
∗T

2e

)
+max

i
[et0]

2
j .

We have claim (3) because β∗ = Θ(1), α′∗ = Θ(ǫ−1/2) and taking λ = λǫ = Θ(ǫ−1/2). �

Proof. claim (4). We note

P

(
max
i

sup
t06t6T

{[et]2i } >
M

1− q

)
6

Nx∑

i=1

P

(
sup

t06t6T

{[et]2i } >
M

1− q

)

6

Nx∑

i=1

P

(
sup

t06t6T

Eit > M

)

6

Nx∑

i=1

E exp(λEiT∧τ )

exp(λM)

6
Nxα∗T

4e
exp

(
4λβ∗
α′
∗

− ((1− q)λ)
M

(1− q)

)

+ Nx exp

(
λEit0 − ((1− q)λ)

M

(1− q)

)
.
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Then by lemma B.3 and Eit0 6
∑Nx

j=1 v
i
j[et0]

2
j 6 max j{[et0]2j}

Et0 max
i

sup
t06t6T

{[et]2i } 6
1

(1− q)λ
+

4β∗
α∗(1− q)

+
1

λ
log

(
α∗NxT

e

)
+ log Nx +max

j
{[et0]2j}.

We take λ = λǫ = Θ(ǫ−
1
2 ) to obtain our claimed result. �
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