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SUMMARY: The rapidly growing amount and diversity of data are confronting us more than ever with the need to make informed
predictions under uncertainty. The adverse impacts of climate change and natural hazards also motivate our search for reliable
predictions. The range of statistical techniques that geomorphologists use to tackle this challenge has been growing, but rarely
involves Bayesian methods. Instead, many geomorphic models rely on estimated averages that largely miss out on the variability
of form and process. Yet seemingly fixed estimates of channel heads, sediment rating curves or glacier equilibrium lines, for example,
are all prone to uncertainties. Neighbouring scientific disciplines such as physics, hydrology or ecology have readily embraced
Bayesian methods to fully capture and better explain such uncertainties, as the necessary computational tools have advanced
greatly. The aim of this article is to introduce the Bayesian toolkit to scientists concerned with Earth surface processes and landforms,
and to show how geomorphic models might benefit from probabilistic concepts. I briefly review the use of Bayesian reasoning
in geomorphology, and outline the corresponding variants of regression and classification in several worked examples. © 2020
The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
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Acknowledging Uncertainty in
Geomorphology
Geomorphology, like any other science, is much about learn-
ing. We learn by collecting data and thus reducing, step by
step, our uncertainties about the shapes and dynamics of
landscapes that surround us. Bayesian theory offers the tools
to measure these uncertainties, and this article intends to
introduce some of the underlying concepts. Fields such as
ecology, hydrology, meteorology or seismology have been
embracing Bayesian methods for some time now (Dose and
Menzel, 2004; Seidou et al. 2006; Silva et al. 2015; Jo et al.
2016), although geomorphologists have invested somewhat
less in this approach. Yet rarely do we encounter data, prob-
lems or predictions that are free of uncertainty. Often enough,
we phrase our uncertainty in questions. ’How do bedform pat-
terns arise?’, ’Time to abandon the Manning equation?’ or
’Long‐term river meandering as a part of chaotic dynamics?’
are among nearly 60 other questions that serve as titles of
articles published in Earth Surface Processes and Landforms in
the past 10 years. Any rhetorical intentions aside, the authors
of these studies may have wished to communicate some
struggle with their data or their possible interpretation. Anyone
who has mapped landforms in the field or from air photos will
acknowledge that some ambiguity is always part of the process;
the same goes for inferring how the thickness of soil or
sediment varies between a handful of pits, trenches or

outcrops. The field of geostatistics has grown largely from this
necessity of interpolating between point measurements in
landscapes, and modern interpolation models are designed to
predict both in space and time (Cressie and Wikle, 2011).
The theory of fuzzy logic admits that the quantity we wish to
learn may be partly imprecise (Zadeh, 2006), and provides a
mathematical context for visualizing uncertainty on maps
(Wheaton et al. 2010).

In the early 21st century, data are ubiquitous and information
has become a powerful currency. The field of geomorphology
is experiencing a steep rise in the amount and diversity of freely
available data, let alone the many new technologies to use
them. To take advantage of this development, we need the tools
and skills to handle, understand and interpret these data. A host
of new trends such as big data, machine learning, data science
and Bayesian reasoning have adopted concepts from both sta-
tistical and computational science, and now offer myriad algo-
rithms and solutions to the problem of using data to predict
under uncertainty (Witten et al. 2011; Barber, 2012). On the flip
side, this uncertainty also means dealing with sparse, inhomo-
geneous or inaccurate data, a situation that geomorphologists
often face. Bayesian reasoning offers a formal and consistent
way to learn from data – regardless of whether information is
sparse or abundant – while measuring explicitly what we have
learned compared to our previous knowledge. Bayesian data
analysis uses probability distributions to fully document and
gauge this learning process. This approach sets Bayesian
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methods apart from machine learning algorithms such as gradi-
ent boosting, random forests or artificial neural networks that
can perform extremely well, though at the cost of remaining
black boxes with little insight into how they arrived at their
results (Breiman, 2001; LeCun et al. 2015). Arguably, Bayes’
rule might be one of the most influential scientific theorems
of the 21st century (Efron, 2013), given that computational
power is now sufficient to apply probabilistic reasoning to
real‐world problems with large datasets and many parameters.
This development is important to us, because as geomorpholo-
gists we wish to make predictions, be it whether or how a land-
form develops, or when or how the rate of a process changes.
In looking back, a large body of work deals with predicting

geomorphic processes at all levels from theoretical concept to
applied physics (Dottori et al. 2013; George and Iverson, 2014;
Beven, 2015). Here prediction means making informed and
objective statements about unobserved quantities. By this
definition, prediction can refer to present or past events. Unob-
servedmeans that we lack data on the desired quantity. We can
thus predict past or unrecorded events or those that happen
right now, though beyond our sensory or instrumental reach.
Many case studies have tested how varying data quality, resolu-
tion and the history of past landscape changes can affect pre-
dictions in geomorphology (Claessens et al. 2005; Stefanescu
et al. 2012; Shikakura, 2014). One common strategy is to check
how varying input values modulate the outputs of physically
motivated or empirically calibrated models. This strategy is
essential where predictions need to inform mitigation options
against natural hazards (Ferreira et al. 2014; Beven et al.
2018a). In this context, bootstrapping and Monte Carlo
simulations are popular methods to check whether model pre-
dictions are robust, and to propagate explicitly errors where we
lack simple or closed analytical solutions (Rustomji and
Wilkinson, 2008; Strenk and Wartman, 2011; Schwanghart
et al. 2016). Hydrological research, for example, has been
influenced heavily by Monte Carlo methods that aim at identi-
fying models accepted as behavioural (Beven and Binley,
2014). Most studies of landslide susceptibility also make heavy
use of probabilistic simulation (Guzzetti et al. 2005) in what is a
classification problem: does a given set of terrain properties
qualify a patch of hillslope as ‘failure‐prone’ or ‘stable’, assum-
ing that this distinction is mutually exclusive. Most of the clas-
sifiers used in these studies are based on probabilistic concepts;
some have Bayesian roots (Mondini et al. 2013; Budimir et al.
2015). For example, Naive Bayes has become a popular alter-
native to logistic regression (Heiser et al. 2015; Kern et al.
2017). The term ‘naive’ alludes to a simplified use of Bayes’
rule for what is an effective method for classifying data. Jensen
et al. (2006) showed some simple applications of Bayes’ rule for
detecting rare geological events or quantities, especially for
cases where the observations involve errors. Bayesian
weights‐of‐evidence and variants thereof also feature in many
studies of landslide susceptibility (Regmi et al. 2010; Berti
et al. 2012), and use reasoning that is conceptually grounded
in probabilistic inference. Many diagnostic statistics are based
on Bayes’ rule without necessarily being full Bayesian models.
Charbonnier et al. (2018) showed one such example of how to
use Bayesian reasoning for validating numerically simulated
lahar runout with field measurements.
Still, many predictions that we use in geomorphology boil

down to averages that we estimate from regression or classifica-
tion models. While convenient, this reliance on mean estimates
neglects variability of form and process. Probability distribu-
tions can conveniently encode this variability beyond a limited
size of samples. Many phenomena like avalanche areas, flood
discharge or the run‐up heights of tsunamis appear to follow
heavy‐tailed distributions (Burroughs and Tebbens, 2005;

Molnar et al. 2006), whereas the storage times of floodplain
sediments, for example, appear to be exponentially distributed
(Bradley and Tucker, 2013). Identifying suitable – and ideally
physically relevant – distributions is key to forecasting the size,
recurrence or patterns of form and process. This use of proba-
bility distribution paves the way for inferring, for example, the
patterns of soil depths or permafrost (Boeckli et al. 2012).
Probability distributions also form the pool from which to draw
random samples that we input into mechanistic models. Her-
bert Einstein pioneered this approach in the 1940s by develop-
ing a probabilistic model of sediment transport in rivers
(Dey, 2014). Turbulence in moving fluids remains a major chal-
lenge for predicting flow properties, and many mechanistic
models resort to time‐ or depth‐averaged approaches that carry
some of the uncertainty by probabilistic measures of flow
(Raffaele et al. 2018). Processes such as landsliding, sediment
transport and soil perturbation can thus be treated probabilisti-
cally or tagged as stochastic (Benda and Dunne, 1997; Miller
and Burnett, 2008; Bennett et al. 2014; Turowski and
Hodge, 2017; Furbish et al. 2018). Still, these processes are
bound to the laws of physics: it is our uncertainty – or incom-
plete knowledge – about these processes that motivates us to
treat them as probabilistic.

In short, probability has been part of many geomorphic stud-
ies, measuring uncertainty in different nuances. This observa-
tion alone should motivate the use of a consistent and
overarching framework for putting probability to good use in
geomorphic prediction. In the following we explore how
Bayesian reasoning can provide such a framework.

What Is Bayesian?

Why should we care about ‘Bayesian’ geomorphology? If any-
thing, we should be curious about a way of thinking that has
changed the way how scientists deal with data, models and
interpretations (Efron, 2013). Bayesian reasoning is concerned
with learning something new from data and existing knowl-
edge. The way this reasoning works is that it combines both
the known and the unknown by using probabilities. In this con-
text, probability is a measure of uncertainty (Kadane, 2011).
Broadly speaking, probability maps the (un)certainty about a
given outcome to the unit interval, where 0 refers to the impos-
sible, and 1 refers to the certain outcome. Regardless of this
numerical constraint, two major, but different, interpretations
of probability have fuelled a debate that may have made you
reluctant to use Bayesian statistics (Gelman et al. 2004).

The conventional way of interpreting probability is that it
represents the limit of an expected outcome based on an infi-
nite number of repeat experiments. Much of classical statistical
theory is built on this frequentist interpretation. In this theory,
probability is an objective metric of a random variable that
we have to study long enough to obtain better knowledge
about its outcomes. If we had the chance (and endurance) to
repeat scientific experiments endlessly, we would be able to
approach with perfect precision (and accuracy) the probability
of a given outcome. An alternative way is to interpret probabil-
ity subjectively: it measures how uncertain you are about a
quantity. Texts on Bayesian data analysis use ‘believable’ or
‘credible’ instead of the traditional ‘statistically significant’ to
emphasize this view (Kruschke, 2015). Although we might try
and minimize subjective elements in our research, they are part
of learning and science. Fitting a line by eye to data points,
discarding inverted radiocarbon ages as outliers, or preferring
a power law over several other, equally plausible, models for
sediment rating curves are just a few examples of subjective
decisions in geomorphology.
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The Bayesian approach requires us to express these subjec-
tive beliefs mathematically, and further recognizes that carrying
out an infinite number of experiments is beside the point. In
some cases, we may be limited to a single experiment. Con-
sider doing fieldwork below an unstable rock cliff. What is
the probability of being injured or even killed by a rock tum-
bling off the cliff face? The frequentist interpretation of proba-
bility might suggest you try out as many times as possible to
find out. Clearly, it is undesirable to do this experiment more
times than is necessary, if at all; a large number of trials is hard
to achieve. Intuitively, we might think that it is unsafe to work
beneath that cliff edge. Bayesian data analysis is geared to
explicitly measure and account for this intuition (or any other
relevant previous scientific knowledge) in a dedicated probabi-
listic term. Some interpretations go as far as to measure the
degree of subjective belief with probability distributions. It is
easy to see that this approach has met substantial critique given
that we wish to do science objectively (Lavine, 2019). Yet
Bayes’ rule meets exactly that demand by requiring us to
express our subjectivity in a mathematical, reproducible form.
We can thus trace and reproduce any effects of our subjective
beliefs on our results. Being wrong about an erosion rate, the
age of a river terrace or the roughness of a channel bed is also
part of geomorphic research. Probability distributions of our
estimates can tell us how wrong we are likely to be.

Bayesian reasoning explicitly handles uncertainty and thus
forms some of the essential building blocks of many algorithms
and models currently used in machine learning or data science.
The adjective ‘Bayesian’ acknowledges this root in the wider
sense; a stricter view refers to methods that use Bayes’ rule con-
sistently throughout the entire process of data analysis. We start
off with some basics of Bayes’ rule. Consider a sandy beach on
a tropical atoll littered by coral boulders from the nearby fring-
ing reef. Without any rock cliffs, beach rock or uplifted fossil
reefs anywhere in sight, we can safely assume that large waves
pushed the boulders onto the beach. Assume that we know
from earlier studies that 2% of boulders were moved onshore
by tsunami waves. We can encode this prior knowledge as
probability PðT Þ ¼ 0:02. Now consider a new method M that
uses the geometry and material properties of a boulder to
reconstruct whether it is a tsunami deposit. This new method
claims that it is 95% reliable. What is the probability P(T|M)
that a given boulder that you tested positively with this new
method was dumped onto the beach by a tsunami? We read
the ‘|’ symbol as ‘given’ or ‘conditional on’, and answer this
question by applying Bayes’ rule. It is useful to keep in mind
that this rule is firmly rooted in the axioms of probability theory
and results directly from the definition of a conditional proba-
bility (Gelman et al. 2004):

PðT jMÞ ¼ PðMjT ÞPðT Þ
PðMÞ ¼ likelihood� prior

evidence
¼ PðT ; MÞ

PðMÞ
(1)

where P(T|M) is the posterior probability of inferring the out-
come of T (‘was it a tsunami?’) given that we already know
the outcome of M (‘a positive test result’). Thus the state of M
is free of any randomness or uncertainty in P(T|M) because

we rely explicitly on knowing the result ofM. Note that the pos-
terior probability P(T|M), or any other conditional probability, is
completely neutral about which outcome happened first or
whether one caused the other. The term posterior stands for
what we learn about P(T) after having updated our knowledge
with respect to the known outcome of our test method M.
The twist in Bayes’ rule is that we can express the posterior
P(T|M) by its inversion P(M|T), which is known as the likeli-
hood. Think of the likelihood as a function that expresses
how plausible you would expect an observation to be given a
range of possible scenarios. Assuming that we knew that a tsu-
nami moved our boulder, what are the chances that the method
would detect that? If we were less sure about the tsunami ori-
gin, we should also admit a different origin. Accordingly, we
call P(T) the priorprobability, and interpret this as our knowl-
edge about the tsunami origin regardless of – or before seeing
– test outcome M. The product of the likelihood and the prior
is the joint probability of observing both T and M and denoted
by P(T,M). Finally, P(M) is variably known as the evidence,mar-
ginal likelihood, or average likelihood. Whichever term you
prefer, it remains a constant with respect to the posterior
because this is conditional on the already known outcome of
M (‘a positive test result’).

Having digested this theory, we can now use Bayes’ rule to
find that

In plain words, the posterior probability with which we
believe that a tsunami deposited this particular boulder, given
that we tested the new method on it positively, is about 28%.
This result can be surprising at first. The posterior probability
is higher than the original 2%, because we obtained data by
applying the new method to the boulder. However, the poste-
rior probability is much lower than the 95% likelihood that
the method is accurate, because tsunami boulders are rare on
our beach. The posterior probability reconciles our prior
knowledge and the likelihood by multiplication, and thus pro-
duces an updated compromise between the two. Having
obtained a positive test result for a given boulder, we learn that
our posterior belief about a tsunami source is now more than
tenfold compared to our initial belief. We also see how prior
knowledge adjusts or penalizes the likelihood by imposing
weights in the form of a probability.

This simple example is instructive and perhaps counterintui-
tive at first, but it has limited scope (Figure 1). Bayes’ rule offers
more interesting and practical applications if we plug in proba-
bility distributions instead of discrete probabilities, and refer to
the data D that we observe:

pðκjDÞ ¼ pðDjκÞpðκÞ
pðDÞ ∝ pðDjκÞpðκÞ (3)

where κ is the quantity that we wish to learn, and p(·) identifies
probability distributions (instead of discrete probabilities as in
Equation (2)). Here κ stands for either

• the parameter(s) θ of a probability distribution or model that
we assume has generated our data D;

• unobserved outcomes ŷ predicted by the model that we
learned from D;

• a modelM that we believe to have generated the dataD; or

PðT jMÞ ¼ PðMjT ÞPðT Þ
PðMÞ ¼ 0:95� 0:02

0:95� 0:02þ ð1 � 0:95Þ � ð1 � 0:02Þ ¼ 0:279… (2)
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• a hypothesis H that we might find more credible than com-
peting ones.

The posterior distribution pðκjDÞ shows what we learned
about κ after having updated our previous knowledge p(κ) with
new data D. The posterior is a probability distribution that is
conditioned on the data, and hence also hinges on all assump-
tions and uncertainties that these data contain. In short, Bayes’
rule links the unknown with the known in a convenient math-
ematical form that allows easily using past posteriors as new
priors. Regardless of which quantity κ we wish to learn, the
denominator in Equation (3), pðDÞ, is a constant that normal-
izes the product of likelihood and prior, and guarantees that
the posterior is a proper probability distribution. In practice,
we often compute the posterior from the product of likelihood
and prior, and then re‐normalize to obtain pðκjDÞ .
Re‐normalizing means that we rescale the weights of all poste-
rior outcomes such that they form a proper probability
distribution.
Equation (3) states that we need to specify the joint dis-

tribution pðκ; DÞ, which we obtain from the product of the like-
lihood function(s) and the prior distribution(s). While the
likelihood depends on both D and the assumed
data‐generating parameter(s), the prior expresses what we
know already without any notion aboutD. One useful applica-
tion of this reasoning concerns the Bayesian calibration of
radiocarbon ages by including prior knowledge about the
stratigraphic context of the samples (Ramsey, 2009). The

principles of stratigraphy tell us that organic samples taken from
lower layers of a given section should be older than those from
upper layers in general. Including this prior assumption into
the calibration of many samples from a single section offers a
consistent and logical way of eliminating spurious peaks in
the multimodal probability distribution of calendar years.
These peaks arise from local spikes of the calibration curve
based on dated tree rings. We can thus achieve more
consistent age models that take advantage of mapped
stratigraphy and add value to detailed field observations
(Blaauw et al. 2018).

To learn most effectively from the data, the prior should
invite informed or expert knowledge (Nolde and Joe, 2013).
We can gather initial information from experience or a synthe-
sis of data in the literature. Packing this prior knowledge into a
suitable probability distribution requires care if there are sev-
eral, similarly adequate, options or if models consist of multiple
levels (Gelman, 2006). Even experts may concede some uncer-
tainty in their assessment or be prone to bias, so that eliciting
prior knowledge and encoding it as a distribution systemati-
cally can be an iterative and demanding process (O’Hagan
and Oakley, 2004; Kadane, 2011; Hassall et al. 2019). How
to deal best with this process remains debated, though the pro-
cess should recognize issues with few, missing, incomplete,
inaccurate or non‐stationary data (Beven et al. 2018b). In geo-
morphology we are often interested in learning about parame-
ters that have physical limits, and we mostly have an idea
about the shape of the distribution between these limits when

Figure 1. (A) Is that a fault line on this photo? A Bayesian geomorphologist might rephrase this question and wish to learn more specifically the prob-
ability of seeing a fault given the somewhat linear trace in the landscape, P(fault|line). (B) By definition, the joint probability of observing both fault
and line P(fault, line) is the probability of observing a fault given the recognized line P(fault|line) times the probability of observing lines in any case,
P(line); some lines in the photo can also be vehicle tracks. In this graph the bubbles are random variables, and arrows point from the conditioning to
the conditional variable. (C) We can compute the same joint probability using P(line|fault) instead. Setting the right‐hand sides of the equations in B
and C equal, and solving for a given conditional probability gives Bayes’ rule. Both P(line) and P(fault) may depend on your training as a geomorphol-
ogist or palaeoseismologist, and on how reliably you detect lineaments or faults independently of this particular setting (Bolnay Fault, Mongolia; vehi-
cle and tents for scale). [Colour figure can be viewed at wileyonlinelibrary.com]
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specifying priors. In the following I present some worked exam-
ples that adopt a Bayesian viewpoint, drawing on several prac-
tical problems in geomorphology (Figure 2).

Worked Examples

Trends in landslide size: Bayesian linear regression

In simple linear regression we want to predict a continuous tar-

get variable y ¼ fy1; …; yngT from a single, continuous predic-

tor variable x ¼ fx1; …; xngT, for which we have n data pairs.
In most computer programs we store these variables in column
vectors, printed here in bold font and using a transpose symbol.
We are interested in fitting a straight line of the form yðxÞ ¼
w0 þw1x to these data. Here w0 is the regression intercept,
w1 is the regression slope and index i identifies a single data
point. Never do we encounter perfect straight line fits, so it is
reasonable to assume that each observation yi has some noise
because of measurement errors or some natural variability (or
both). This definition of noise, however, is contingent on the
chosen model, and may exclude other aspects of data quality.
In simple linear regression we assume that this noise is Gauss-
ian with zero mean and variance σ2. We further assume that
this variance is known and fixed for all data points that we
assume to be free of observation errors:

yi ¼ w0 þw1xi þNð0; σ2Þ
or

yi ∼ Nðw0 þw1xi ; σ2Þ
(4)

These equivalent formulations state that each point on the
regression line is a local mean estimate of yi conditional on a
linear combination of xi. The Gaussian noise term concedes
that our observed measurements are sprinkled either side of
the regression line, though more likely closer than farther away.
You can read ‘∼’ as ‘is distributed as’. The parameters that we
wish to learn here are the regression coefficients. In the
frequentist view, we can estimate the optimal values of w0

and w1 by ordinary least squares or maximum likelihood. In
the Bayesian view, we can express this problem as

pðwjDÞ ¼ pðDjwÞpðwÞ
pðDÞ (5)

where w is a column vector containing the regression weights
w0 and w1, and D represents all observed data pairs of xi and
yi. The vector notation allows for easily expanding the model
to multiple predictors. The likelihood of observing the target
data y from the straight‐line model with Gaussian noise
(Equation (4)) thus depends on the input data x, the regression
weights w, and the noise σ2, and is

pðyjx; w; σ2Þ ¼ ∏
n

i¼1
Nðyi jw0 þw1xi ; σ2Þ

¼ ∏
n

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
1

2σ2 yi � w0 � w1xið Þ2
(6)

The product (the ∏ symbol) arises from the assumption that
the data points are independently generated from the same
(identical) probability distribution, a property abbreviated as i.
i.d. Recall that we can multiply probabilities that are indepen-
dent of each other to obtain their joint probability. The expo-
nential term is tied to the definition of the Gaussian
probability density; note how the exponent contains the
squared difference between each target data point and the
straight‐line equation. The likelihood in Equation (6) states
how plausibly any set of w produces the observed values y
based on the predictor values x and σ2 (Figure 3A). The global
maximum of this function identifies the set of parameters that
are most likely to have generated the data; hence the termmax-
imum likelihood.

We specify the Bayesian model by multiplying this likelihood
function with a prior distribution of w. This prior essentially
assigns weights to the regression parameters based on what
we already know or believe about them without even looking
at the data D. The posterior distribution is then

pðwjy; x; σ2Þ ∝ pðyjx; w; σ2ÞpðwÞ (7)

Note that this posterior is two‐dimensional because we wish
to learn the joint probability distribution of w0 and w1; recall

Figure 2. Schematic workflow adopted for the Bayesian model examples featured in this study. Terms in red are the main ingredients of Bayesian
inference discussed in the text. Given a set of observations, we first need to decide which quantities we wish to learn from these dataD. We can learn
parameters θ of a model that we assume to have generated the data (detailed here); hypothesesH regarding the data; model alternativesM or simply
predictions of data ŷ at unobserved locations. Existing information independent of the data together with assumptions about any measurement errors
enter as prior knowledge, which needs thorough scrutiny before applying Bayes’ rule. Similarly, the resulting posterior knowledge also needs thor-
ough checks. [Colour figure can be viewed at wileyonlinelibrary.com]
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that we treat σ2 as fixed and known. It is convenient to compute
the log posterior, because multiplying many small numbers can
generate underflow errors on computers (McElreath, 2016).
The log‐transformed product of likelihood and prior is equal
to the sum of the log likelihood and the log prior. We can inter-
pret this sum more easily, because the maximum of the poste-
rior distribution retains its location:

ln pðwjy; x; βÞ
¼ �β

2
∑
n

i¼1
ðyi � w0 � w1xiÞ2 þ n

2
ln

β
2π

þ ln pðwÞþk
(8)

Here we define the precision β ¼ σ�2 as the inverse of the
variance, while k is a constant representing the log evidence
and ensuring that the posterior distribution is properly normal-
ized. We notice that the log posterior distribution depends on
several terms. The first term is the sum of squared residuals that
we measure as the vertical distances of each data point yi from
its model mean yi ¼ w0 þw1xi. The further the data points are
away from this straight line, the less plausible are specific
choices of regression weights w, if we hold every other term
in Equation (8) constant. The smaller the sum of squared resid-
uals, the less the shape of the posterior deviates from that of the
prior: the data strongly support our initial knowledge about the
regression parameters. Note how the log of precision β scaled
by 2π in the second term can introduce either negative or pos-
itive effects of sample size. Equation (8) also shows that many
data points increasingly override the influence of the log prior.
Which distribution should we assign to p(w) to characterize

our prior knowledge about the regression parameters? In the
simplest and least informed case, both w0 and w1 could be
any real number, and we could assign equal probabilities to
each. This choice would be an improper prior because

integrating all probable outcomes over infinite bounds is infea-
sible. Hence a uniform probability distribution requires a lower
and upper bound. If these bounds are spaced sufficiently far
apart, the resulting flat prior on w is essentially a constant in
Equation (8), and the shape of the posterior is fully determined
by that of the likelihood function. The concept behind a prior,
however, is that we do know at least something about the
regression parameters.

One example of a weakly informative prior is a Gaussian dis-
tribution on the regression coefficients. Specifying a prior distri-
bution w1 ∼ Nð0;1Þ, for example, means that we expect the
slope of the regression line to be in the interval [�2,2] with
about 95% probability, or within two unit standard deviations
of the zero mean. We can apply this Gaussian prior to both
intercept and slope and use the same precision α for their prior
distributions, hence w0 ∼ Nð0; α�1Þ and w1 ∼ Nð0; α�1Þ .
Keep in mind that such a weakly informed prior should ideally
be replaced by more knowledge about the parameter(s), if
available. To keep things simple, we assume that these two
priors are independent from each other. With both the
likelihood and prior being Gaussian, their product is also
Gaussian (after the necessary re‐normalization) and hence the
log posterior is

ln pðwjy; x; α; βÞ
¼ �β

2
∑
n

i¼1
ðyi � w0 � w1xiÞ2 � α

2
ðw2

0 þw2
1Þþz

(9)

where z is a constant ensuring that the posterior distribution is
properly normalized. We see how very low or very high values
of w0 and w1 will penalize the posterior. The prior acts as if we
added an extra data point that represents the influence of
regression weights on the sum of squared residuals. Equation (9)

Figure 3. (A) Structure of a Bayesian simple linear regression (see text). The Gaussian distributed outcome yi is estimated from a linear combination
of an intercept w0 and a predictor xi weighted by w1. Both components of this linear model have Gaussian priors. (B) Structure of a Bayesian robust
multivariate logistic regression. The binary outcome yi is estimated by a Bernoulli likelihood with a probability of success determined by a logistic
linear model with interceptw0, predictor weightswj, and predictor values xji. Index i refers to an individual data point, while index j can refer to either
(a) different predictors or (b) one predictor with groups in the data, for example catchments or mountain ranges. The regression intercept has a Gauss-
ian prior, and the regression weights have a robust, Student’s t distributed prior with ν degrees of freedom. In a multilevel (or hierarchical) model the
weight prior has three priors itself (termed hyperpriors) that encode how the means, spreads and ν of the weights vary across groups j. For example,
data from the same catchment or mountain belt may have more similar regression parameters. Grey (black) arrows stand for ‘is distributed as’ (‘is equal
to’). Modified from Blöthe et al. (2019). [Colour figure can be viewed at wileyonlinelibrary.com]
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is the Bayesian equivalent of ridge regression in frequentist sta-
tistics, where it is used to penalize unduly extreme regression
coefficients. We can expand on Equation (9) in many ways.
For example, we could also learn the noise σ2 (or precision β)
from the data. We could consider that the noise differs for each
data point. We could include measurement errors in the data
by replacing single data points by distributions. In all these
cases we would have to specify prior distributions for the quan-
tities that we wish to learn. For example, if we knew initially
from physical constraints that the regression coefficients are
positive only and more likely close to zero than not, we could
use lognormal or exponential priors on w.
We now apply this model to real data. In a study on 24 rock

avalanches in southeast Alaska, Coe et al. (2018) reported that
both size and mobility of these slope failures have been
increasing between 1984 and 2016. Most of these landslides
detached during periods of exceptionally high winter and
spring air temperatures from areas modelled to have mountain
permafrost. The authors excluded that any of the rock ava-
lanches were triggered by earthquakes, but mentioned that
accumulating deformation in the rock mass, glacier melt or
changes in precipitation might also reduce the stability of rock
slopes in the region.
Here we focus on the apparent increases in the size and

mobility of rock avalanches, and use linear regression of
these variables against time as a first trend analysis. We mea-
sure the size of a rock avalanche by its combined footprint of
the scar, runout and deposit areas, A. The mobility of each
landslide is expressed by the ratio of its total drop height over
its runout, H/L. Besides these two response variables, we use
the approximate time of slope failure, t, as the predictor var-
iable. Coe et al. (2018) used satellite imagery to track the first
occurrence of rock avalanches and were able to narrow
down the failure times to several months. We use the original
data and assign a timestamp t to each landslide by taking the
date of the earliest image that the landslide appeared on. We
assume that all errors in t are negligible compared to the
study period of 32 years. If the time of each landslide has
an uncertainty of half a year because of unavailable, cloudy
or otherwise noisy images, the error in t would be 1.5% of
the study period. Before conducting our Bayesian analysis,
we standardize the data for better comparison and higher
computational efficiency (Kruschke, 2015), so that target
and predictor values have zero mean and unit variance. We
tag standardized parameters with an asterisk.
We start by computing the log likelihood function to see how

it depends on the regression intercept w0 and slope w1 (Equa-
tion (9); Figure 4A). The maximum (log) likelihood is identical
to the mean parameter estimates that an ordinary least squares
regression returns, withw∗

0 ¼ �9:716� 10�16 andw∗
1 ¼ 0:295

(we use rounded numbers here). Following the reasoning
above, our prior is a two‐dimensional isotropic Gaussian distri-
bution with a maximum at w∗

0 ¼ 0 and w∗
1 ¼ 0, and unit preci-

sion by design. This encodes that we believe that the regression
parameters are independent of each other, and more likely
have smaller rather than larger absolute values. The log poste-
rior is the sum of the log likelihood and the log prior and thus
combines contributions of both. We see that the log likelihood
(and especially its maximum) is largely uninfluenced by our
choice of prior, as the maximum a posteriori (MAP) estimate
is very close to the maximum likelihood (Figure 4A). Yet the
posterior has more closely spaced contours than the likelihood
and thus attracts more probability mass or certainty towards its
maximum. By definition, the posterior is a weighted compro-
mise between the likelihood and the prior. The 24 data points
are already sufficient to let the posterior inherit most of the
shape of the likelihood, whereas the shape of the prior matters

less. The contour values are arbitrary and need to be adjusted if
re‐normalizing the log posterior to its original scale.

Let us have a closer look at the posterior estimates, starting
with a Bayesian linear regression of rock‐avalanche area over
time. Imagine a line that is parallel to the w∗

1‐axis and slicing
through Figure 4A. This cross‐section of the posterior gives us
the probability of w∗

1 conditional on that value of w∗
0 where

our line intersects the w∗
0‐axis. By stacking such vertical lines

for all values ofw∗
0 and re‐normalizing, we obtain the marginal

posterior ofw∗
1 that is independent ofw

∗
0. These marginal distri-

butions inform us about how credible the regression parameters
are (Figure 4C). Yet how we summarize the posterior is up to us.
Using simple point estimates such as the MAP ignores the
wealth of information that a Bayesian analysis offers. Instead,
we can describe the shape of the posterior using intervals.
One choice is the highest density interval (HDI) that we obtain
by slicing the posterior distribution with a horizontal line such
that most of the probability mass lies above the line. We need
to choose the fraction of probability mass, and thus the level
of credibility of our inference. For example, the 95% HDI of
the standardized intercept w∗

0 is [�0.401,0.411], meaning that
w∗

0 is in that interval with 95% probability. This interpretation is
more intuitive compared to the classic confidence interval in
frequentist statistics: the 95% confidence interval contains the
true parameter value in 95% of infinitely many regression
experiments. In this frequentist definition ‘true’ and fixed
parameter values generated the data at hand randomly. In the
Bayesian view the data are fixed; together with our prior knowl-
edge, they are all we have. Instead, the parameters are uncer-
tain and expressed by probability distributions. We
sequentially update these distributions as new data become
available, so that the posterior of one analysis becomes the
prior of the next analysis and so on.

We see that the posterior ofw∗
0 contains zero with 95% prob-

ability, and therefore remains ambiguous about whether the
intercept is negative or positive (Figure 4C). The same applies
to the standardized regression slope; while it has a posterior
average of w1∗ ¼ 0:285, its 95% HDI contains zero and also
negative values. We infer a lack in credible trend of
rock‐avalanche area with time, contrary to what Coe
et al. (2018) proposed. Even ordinary least squares regression
of the data returns a slope that is statistically indistinguishable
from zero withw∗

1 ¼ 0:295 ± 0:204(±1 standard error), depend-
ing on which significance level we might adopt. Retransforming
the posterior regression slope to its original scale, we obtain that
�0.050 < w1 < 0.267 with 95% probability. Despite this ambi-
guity, our posterior regression weights are narrower than those
from our priors. We have reduced our uncertainty about both
the intercept and the slope by learning from the data.

We can now use these marginal posteriors to plot credible
regression lines superimposed on the data (Figure 4D). A quick
look might suggest that rock avalanches become larger with
time, especially if taking into account the four large landslides
since 2010. Yet we have seen that both Bayesian and classical
linear regression are unsupportive of this idea, though only if
fully acknowledging the associated uncertainties about the
mean predictions. We could, however, narrow down the inter-
val of posterior credibility. For example, being content with an
80% HDI, our posterior estimate would be 0.009< w1 < 0.210
and thus credibly different from zero. Put differently, we would
have a 20% probability of erroneously believing that average
rock‐avalanche size had increased over time linearly, based
on the 24 cases reported and our original knowledge. Hence
the choice of summarizing the posterior can be more flexible
than deciding on a fixed significance level in frequentist
models. Using a posterior mean, median or MAP collapses
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the information contained in the distribution to a point esti-
mate. All these point estimates have their justification, but
reveal nothing about the shape of the posterior.

In checking for a trend in rock‐avalanche mobility, we see a
similar, though more pronounced, effect when plotting the like-
lihood, prior and posterior (Figure 4C). The posterior intercept is

Figure 4. Bayesian linear regression of the size and mobility of 24 Alaskan rock avalanches over time; data are from Coe et al. (2018). (A) Contour
plots of the log likelihood, log prior and log posterior as a function of the standardised intercept w∗

0 and slope w∗
1. Red crosses indicate the maxima

(Equation (9)), and MAP is themaximum a posteriori estimate; top (bottom) row refers to size (mobility). The prior precision (or inverse variance) of the
Gaussian data noise is fixed at β ¼ σ�2 ¼ 1, and so is the precision of the standard Gaussian priors onw∗

0 and slopew∗
1; that is, α ¼ 1. (B) The 2014 La

Perouse rock avalanche, St Elias mountains, Alaska, had a total area of 5.46 km2 and a mobility of H=L ¼ 0:24. Photo courtesy of M. Geertsema. (C)
Marginal posterior distributions (light blue) of the intercept w∗

0 and slope w∗
1, both of which have standard Gaussian priors, Nð0;1Þ. The y‐axes are

omitted for clarity; it is the shape of the posterior that matters. (D) Orange lines are credible regression models based on the marginal posteriors. The
red line is the linear model obtained by ordinary least squares regression. [Colour figure can be viewed at wileyonlinelibrary.com]
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without a direct physical interpretation, but we obtain a credible
negative posterior trend in H/L with a 95% HDI of [�0.0086,
� 0.0007] for w1. This result supports the notion that rock ava-
lanches in southeast Alaska have become more mobile on aver-
age over the past three decades (Coe et al. 2018). We learned
that H/L of those 24 landslides decreased credibly by 0.005
per year on average in the past decades. Note the spread of cred-
ible models in both regressions: for a given failure date, the esti-
mated average fits vary by more than a standard deviation in the
response variable. The abrupt vertical cuts to the credible regres-
sion lines at the margins of Figure 4D are intentional reminders
that this model is an optimal fit to the data, but a step short from
a Bayesian prediction for new, unobserved data.
So far we have been learning the model parameters from the

data. Yet in many cases we wish to go beyond and predict out-
comes ŷ i for unobserved input values xi. We achieve this by
acknowledging the posterior weights of all possible values of
w. In essence, we integrate out the posterior regression weights
(and drop index i for clarity):

pðŷ jy; x; α; βÞ ¼ ∫pðŷ jx; w; βÞpðwjy; x; α; βÞdw (10)

Thus we obtain for each new unobserved input a posterior
predictive distribution of the outcome ŷ , weighted by the
learned model parameters. Equation (10) states that more cred-
ible combinations of model parameters get more weight in
predicting new outcomes. The first distribution under the inte-
gral is the model that presumably generates both observed
and new data: in the case of simple linear regression this is
the likelihood in Equation (6). The second distribution under
the integral is the weight posterior that we learned from the data
(Equation (5)). If both the data‐generating model and the weight
posterior are Gaussian, then the predictive distribution will also
be Gaussian. If the prior and posterior have the same functional
form as is the case here, we speak of a conjugate prior. Most
other cases require numerical sampling to approximate the pre-
dictive distribution.

Where glaciers originate: Bayesian logistic
regression

Many problems in geomorphology require us to classify
(Figure 1). In the field, for example, we might ask whether a
river is running through bedrock; whether a sand sheet was
deposited by wind; or whether a gully is man‐made. We can
decide better about all these questions if we are informed by
some diagnostics, perhaps fluvial potholes, well‐sorted sands
or historic maps. In statistical learning, this problem of deciding
under uncertainty is known as classification, and the diagnos-
tics are known as predictors. One of the most basic classifiers
is logistic regression. It is part of the family of generalized linear
models and therefore builds on much of the theory of linear
regression outlined above. We consider here more than one
predictor and hence deal with multiple logistic regression.
One goal of logistic regression is to predict a bivariate outcome
yi from m continuous predictors that store several properties of
our data. We store these data in what we call a design matrix X
with each row indexing an observation, and each column
indexing a predictor. We include an additional first column of
ones for the regression intercept, such that the ith matrix row
is xi ¼ f1; xi; 1; …; xi;mg.
The outcome of yi can be ‘true’ versus ‘false’; ‘bedrock’ ver-

sus ‘sediment’; ‘channel’ versus ‘hillslope’ or any other pair of
mutually exclusive classes. In its basic design, logistic regres-
sion uses classes ‘0’ and ‘1’, and assumes that data are labelled

as such and hence are free of noise. The model uses the

sigmoid function, SðxÞ ¼ ð1þ e�xÞ�1 , to map a linear
combination of predictors to the interval [0,1] that we interpret
as the probability of belonging to class ‘1’ for a given
data point:

Pðyi ¼ 1jxi ; wÞ
¼ 1

1þ e�w0 � w1xi; 1 � w2xi; 2 � …�wmxi; m
¼ 1

1þ e�wTxi

(11)

In analogy to Equation (4), the vector w holds the regression
weights, while the scalar productwTxi is a compact notation for
the linear model passed to the sigmoid function. We interpret
the output of the model,Pðyi ¼ 1jxi ; wÞ, as the probability with
which we attribute a data point xi to class ‘1’. The probability of
classifying that point as part of class ‘0’ is the inverse probabil-
ity, Pðyi ¼ 0jxi ; wÞ ¼ 1 � Pðyi ¼ 1jxi ; wÞ . Bayes’ rule offers
another interpretation of logistic regression. The posterior prob-
ability of a data point belonging to class ‘1’ given the predictors
xi is:

Pðy ¼ 1jxÞ
¼ Pðxjy ¼ 1ÞPðy ¼ 1Þ

Pðxjy ¼ 1ÞPðy ¼ 1ÞþPðxjy ¼ 0ÞPðy ¼ 0Þ
(12)

Note that we dropped the index i here without loss of gener-
ality. Dividing Equation (12) by its numerator, we obtain:

Pðy ¼ 1jxÞ ¼ 1

1þ Pðxjy ¼ 0ÞPðy ¼ 0Þ
Pðxjy ¼ 1ÞPðy ¼ 1Þ

¼ 1
1þ e�a

(13)

where

a ¼ ln
Pðxjy ¼ 1ÞPðy ¼ 1Þ
Pðxjy ¼ 0ÞPðy ¼ 0Þ ¼ ln

Pðy ¼ 1jxÞ
Pðy ¼ 0jxÞ (14)

is the log‐odds ratio. By setting a ¼ wTx (and adding index i
again), we recover the logistic regression model (Equation (11)).
We see that the linear combination of weights and predictors
expresses the log ratio of class‐membership probabilities. Equa-
tion (14) shows that positive weights increase the probability of
a data point belonging to class ‘1’, whereas negative weights do
the opposite. For wTxi ¼ 0 we obtain Pðyi jxiÞ ¼ 0:5, meaning
that both classes are equally likely for this point: it lies on the
decision boundary. Logistic regression thus compares directly
how the weight of each (standardized) predictor contributes
to the probability of membership in class ‘1’. This is a good
example of how Bayes’ rule connects to a statistical inference
without necessarily being ‘Bayesian’. The fully Bayesian variant
of logistic regression, however, needs priors on the weights as
in our example of linear regression above. The main differences
from the linear regression example are that the classification
lacks noise in yi and that we need to consider a different likeli-
hood function. The bivariate outcome of yi requires that we use
a Bernoulli likelihood instead.

Logistic regression is one of the many Bayesian problems
without an analytical solution. Such problems call for simpli-
fied or approximate methods, and a number of recipes are
available (Caers and Hoffman, 2006). For example, Denlinger
et al. (2012) show some of the common analytical approxi-
mations to estimate the posterior distributions applied to the
heights and concentrations of volcanic ash clouds in the
wake of the 2010 eruption of Eyjafjallajökull volcano,
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Iceland. A widespread approach, besides analytical approxi-
mations, is to use random sampling algorithms that estimate
the shape of the posterior distribution. Pioneering software
such as BUGS or JAGS has been superseded by probabilistic
programming languages such as STAN (https://mc-stan.org/)
or Pyro (https://pyro.ai/) that cater to hierarchical models,
custom prior distributions and efficient approximations of
posterior distributions. If our model is simple (Figure 4), we
could estimate its posterior over a dense grid in parameter
space. Setting up 1000 grid points for a model intercept w0

and a single coefficient w1 each takes one million computa-
tions to estimate the posterior. For poorly known parameters
with a wider numerical range, this choice of grid resolution
might be too coarse and call for more points. Many
real‐world Bayesian problems have dozens of parameters,
so that the computational costs quickly reach practical limits.
For example, Anderson and Poland (2016) learned 25 param-
eters from a physical volcano model, involving quantities
such as magma density, sulphur content, eruption rate and
its change over time, or located deformation. Now a grid
containing 1000 points for each of these parameters would
require 1075 computations!
Hence the idea is to sample more efficiently from the poste-

rior distributions, and several algorithms based on Markov
Chain Monte Carlo (MCMC) or Hamiltonian Monte Carlo
(HMC) are now implemented in many software packages.
Gallagher et al. (2009) offered a thorough introduction to this
sampling approach of solving Bayesian problems from the per-
spective of Earth scientists, and showcased examples of
unmixing thermochronometric age distributions and sequence
stratigraphy. Das et al. (2012) used MCMC sampling to classify
landslide susceptibility along a Himalayan highway in northern
India. They selected 18 predictors to classify whether a given

pixel in their study area had a landslide or not. The predictors
all had the same Gaussian priors with very low precision and
included local slope inclination, rock type, land cover, soil
depth, weathering, slope aspect and the density of streams,
roads and geological lineaments. Pánek et al. (2016) used
MCMC for a robust form of logistic regression to characterize
whether several hundreds of very large (>107 m3) landslides
in the dried‐out parts of the Caspian Sea basin were of terres-
trial or submarine origin. Many of these giant slope failures
intersect with cliffs and shorelines marking former lake levels.
Both landslide volume and mobility H/L were credible predic-
tors of whether the landslides had detached from above or
below the lake level.

To illustrate how logistic regression works, we use data on
Central and South Asian glaciers from the GLIMS Randolph
Glacier Inventory version 6.0 (https://www.glims.org/RGI/
rgi60_dl.html, last accessed 10 April 2019). This inventory
contains data on the location, size and elevation of more than
95000 glaciers between the Tien Shan and the Himalayas
(Pfeffer et al. 2017). These glaciers become smaller and less
elevated on average in a poleward direction, reflecting mainly
effects of insolation and topography. Can we invert this obser-
vation? Can we infer from the size and location of a given
glacier whether it originates above some specified elevation,
perhaps a former equilibrium line altitude? Consider a sce-
nario in which we are unable to correctly identify glacier
source areas above this (or any other) elevation because of
cloud cover or poor image quality. Glacier areas also change
through time, but let us assume, for the sake of clarity, that
this variability is small in our sample. Now, given the geo-
graphic latitude and area of any of these glaciers, what is
the probability that it originated above 5000 m above sea
level, for example?

Figure 5. Bayesian logistic regression of two random samples of the maximum (top) and minimum (bottom) elevations of randomly selected Central
and South Asian glaciers from the Randolph Glacier Inventory (Pfeffer et al. 2017) as a function of geographic latitude and glacier area (bubble size
scaled to log10‐transformed glacier area). Dark (light) blue bubbles are glaciers originating above (below) an arbitrarily chosen level of 5000 m asl in
the top panel; the lower panel shows glaciers terminating above (light blue) and below (dark blue) 4000 m asl. Both classes have equal sample size.
Orange (red) lines are (mean) posterior probabilities of a glacier originating above 5000 m asl (top) or terminating below 4000 m asl (bottom), given its
latitude and area. For both samples, the credible decision boundaries are at about 37–38° N. [Colour figure can be viewed at wileyonlinelibrary.com]
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Bayesian logistic regression can answer this question by
including prior information that we encode as an isotropic
Gaussian on all regression weights w (Figure 5). For a
random sample of more than 6000 glaciers we obtain
a mean posterior estimate of w∗Tx∗i ¼ 16:522þ0:777

�0:810 �
0:439þ0:220

�0:200x
∗
1 þ 0:571þ0:117

�0:115log10x
∗
2 , where x∗1 is standardized

geographic latitude and x∗2 is standardized glacier area; the
errors enclose the 95% HDI. At this level all weights are credi-
bly different from zero, while the negative weight of latitude
means that the probability of glaciers originating above
5000 m above sea level (asl) decreases in a poleward direction.
The standardized regression weights tell us that geographic lat-
itude contributes less to the classification than does glacier area
on average. We can use the area under the operator receiving
characteristic curve (AUROC or simply AUC) to assess how
the model performed. The AUC is a widely used metric for
logistic regression and summarizes the true positive rates versus
the false positive rates for variable decision boundaries (Witten
et al. 2011). The mean posterior AUC of 88.4% indicates a
good performance of this classification.

Similarly, we can learn from the data the probability that a
glacier of known latitude and size is terminating below a spec-
ified elevation, for example 4000m asl.Without any other infor-
mation besides latitude and glacier area, how sure can you be
that a given glacier has advanced below that (or any other) ele-
vation? Some glacier snouts might be debris covered and thus
difficult to discern from the surrounding valley floor. Alterna-
tively, assume that we observe a glacier that has advanced
conspicuously far down valley, more than most others in the
region. How likely is that? By estimating the posterior probabil-
ity of terminating below a specified elevation, we have an
objective reference. To this end, we conduct another logistic
regression, using another random sample. We obtain w∗Tx∗i ¼
�22:637þ1:471

�1:431 þ 0:601þ0:038
�0:038x

∗
1 þ 0:96þ0:179

�0:175log10x
∗
2; which

means that more poleward and larger glaciers have a higher
probability of terminating below 4000 m asl (Figure 5).
Again, the standardized weights show that latitude has a
lower mean influence on the classification than glacier area.
The posterior mean AUC of 93.6% indicates a very good
classification, although this may result partly from correlated
predictors. One way to avoid collinearity leading to an over-
confident classification is to reduce a large set of predictors
to fewer principal components. Blöthe et al. (2019) extracted
eight principal components from 76 original candidate pre-
dictors for a robust logistic regression to predict whether rock
glaciers of known size and toe elevation blocked streams in
mountain ranges of Central and South Asia (Figure 3B). Sim-
ilar to that study, our example demonstrates that logistic
regression can help to estimate elevations of glacier snouts
or their equilibrium line altitudes.

Linear and logistic regression are templates for many more
sophisticated applications. A straightforward extension is to
include interactions between the predictors. We can also easily
introduce basis functions on the predictors to cater for polyno-
mial or other nonlinear inputs: we have done so by log10 ‐
transforming glacier area in our logistic regression example.
We can also use noise other than Gaussian; a Student
t‐distributed noise would make our regression more robust
against outliers (Figure 3B). With mixed distributions we can
learn from data the contributions that come from different
pools. One example is to infer different sources of sediment.
State‐of‐the‐art hierarchical Bayesian modelling frameworks
allow the unmixing and fingerprinting of river sediments while
considering catchment‐wide uncertainties of tracer materials or
geochemical properties (Abban et al. 2016; Cooper and
Krueger, 2017). We can also expand Bayesian regression

models to detect distinct breaks in data trends, and the follow-
ing example deals with this task.

Where channels begin: Bayesian piecewise
regression

We consider a classic question in geomorphology by
Montgomery and Dietrich (1988): where do channels begin?
This may seem obvious in many field settings. In gridded digital
elevation models, however, defining stream channel heads
requires us to choose a minimum supporting drainage area to
derive a stream network. This choice is arbitrary and depends
on the grid resolution. Yet the location of channel heads influ-
ences many landscape metrics, including estimates of how
local slope [m m�1] changes with upstream contributing catch-
ment area [km2], and hence of channel steepness and concav-
ity. Estimates of channel concavity, in particular, rely on the
regression of slope versus catchment area (Tucker, 2004). Here
we invert the problem: suppose we are interested in how reli-
ably we can detect channel heads objectively from intention-

ally unlabelled measurements of slope S ¼ fS1; …; SngT and

their corresponding upstream catchment areas A ¼
fA1; …; AngT that were taken from both hillslopes and chan-
nels. The underlying rationale is that trends of local slope ver-
sus catchment area should differ between hillslopes and
channels; we avoid being biased and use randomly sampled
data points from the catchment. This approach differs from
one that decides beforehand on which data are parts of a hill-
slope or a channel and then looks for an optimal separation
between the two.

Our example is Corner Creek, a 3.2 km2 mountainous catch-
ment on the South Wellington coast, New Zealand. We use
data from a 1 m digital surface model derived from airborne
LiDAR measurements in 2003 (https://www.linz.govt.nz). The
regression is based on a random sample of 2000 slope‐area
data points to minimize effects of spatial autocorrelation that
could compromise our independence assumptions about the
likelihood (Figure 6A). We see the characteristic order‐of‐
magnitude scatter and clustering in the log10‐transformed data.
We consider a piecewise regression of slope versus area that
joins two linear models at a connecting change point that
marks the channel head. To reduce the effect of outliers we
choose a robust linear piecewise regression with likelihood

pðSjA; xc ; w; σ2; νÞ
¼ ∏

n

i¼1
T½Si jw0 þw1Ai þw2ðAi � xcÞ IðAi ≥ xcÞ; σ2; ν�

(15)

where IðAÞ is the indicator function that returns either 0 if state-
ment A is false, or 1 otherwise. We define xc as the change
point (where channels begin) that links the two trend lines with
slope w1 for Ai < xc, and slope w2 for Ai ≥ xc. We use a Student
t‐distributed noise, Tð · j · Þ, with zero mean, scale σ2 > 0 and
ν ¼ 5 degrees of freedom. This choice means that the two trend
lines that connect at xc are much less affected by data outliers
than trends assuming a Gaussian noise. It is useful to keep in
mind that, for a given mean and scale, a Gaussian distribution
is equivalent to a Student t distribution with ν ¼ ∞. Low values
of ν instead put more weight on the tails of the distribution and
make extreme values more likely.

We now need to specify prior distributions on all parameters
of interest. Following our examples above, we assume that w0,
w1 and w2 are distributed asNð0;1Þ each. We treat these priors
as independent of each other and formulate them with respect
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to standardized inputs of log‐transformed values of A. We
do this because slope–area plots commonly have
log‐transformed axes. We keep σ2 independent of the channel-
ization threshold, so that hillslope and channel data share the
same noise. If our prior knowledge was contrary to this assump-
tion, we would have to specify two separate priors for the two
domains in slope–area space. We further assume that σ2 is
half‐Cauchy distributed, following recommendations by
Gelman (2006). We also need to specify our prior knowledge
about the channel head xc. We assume that x∗c is Gaussian dis-
tributed and by choosing Nð0; 0:5Þ we encode our belief that
the channel head is within one standard deviation of the mean
catchment area with 95% probability.
The Bayesian piecewise linear regression yields posterior

trends ofw1 ¼ 0:003þ0:010
�0:010 for the hillslope data, and a concav-

ity of�w2 ¼ 0:25þ0:042
�0:035 for the channel data (units are arbitrary;

Figure 6B). The nearly horizontal regression line for the hill-
slope data is devoid of a credible trend. This invariance of slope
with respect to contributing catchment area may indicate
threshold hillslopes that are inclined around a modal value.
We also see that the spread of credible model slopes is much
wider in the channels, owing to the fewer data. Recall that
the variance σ2 of the data with respect to the trend lines is
assumed constant throughout. The posterior distribution of the
change‐point location shows credible channel heads that sepa-
rate hillslopes from the drainage network. The channel head
has a posterior mean of xc ¼ 0:002þ0:004

�0:001 km2. This 95% HDI

expresses our uncertainty about the channelization threshold
given these particular 2000 data points. Similar to the logistic
regression discussed above, we can assign probabilities to each
DEM cell specifying whether we are more likely dealing with a
hillslope or channel cell, given its upstream catchment area
and posterior probability of being a channel head.

We can customize this model in several ways. For example,
Stock and Dietrich (2003) suggested that slope–area data
from mountainous catchments follow a curved trend instead
of a power law where debris flows frequently erode into
bedrock channels. They argued that debris‐flow erosion might
influence more than half of the length and relief of mountain
river networks and proposed an empirical fit to slope–area data
of the form

S ¼ S0
1þ a1A

a2 (16)

where S0 [m m�1] is the slope where hillslopes give way
to debris flow‐dominated channels (a location Stock and
Dietrich, 2003, called ‘valley head’), a1 is a coefficient [km
�2a2 ], and a2 is the asymptotic power‐law exponent for large
values of A and equivalent to the channel concavity in the flu-
vial domain. Originally, this model was meant to replace the
two different trends of slope–area data for hillslope and chan-
nels by the single curve described by Equation (16). Here we
keep the hillslope trend and use Equation (16) to learn where,

Figure 6. (A) Bayesian robust piecewise linear regression of 2000 randomly sampled slope–area data from a 1 m LiDAR model of Corner Creek,
Wellington coast, New Zealand (Equation (15)). Orange (light‐blue) lines are credible mean trends for hillslope (channel) grid cells. Grey probability
density is the posterior of the channel head xc linking the two trend lines. (B) Marginal posterior distributions with 95% HDIs (dark‐blue horizontal
bars) of intercept w0 and slope w1 for hillslopes, channel head xc and the corresponding slope threshold S0; �w2 is channel concavity. (C) Alternative
robust linear–curvilinear model for learning the transition from hillslopes to debris flow‐dominated channels (Stock and Dietrich, 2003)
(Equation (17)). The red line connects pointwise posterior means; dashed red lines are ± 2 σ about the means. The grey line (shade) is the median
(95% HDI) of posterior xc. (D) Marginal posterior distributions of model parameters as in part B; a1 is the amplitude of the curved model segment char-
acterizing the debris‐flow domain, and a2 is the asymptotic channel concavity for large catchment areas. Interpreting the marginal posteriors of w0

(and a1) makes little sense here, as their units depend on w1 (and a2). [Colour figure can be viewed at wileyonlinelibrary.com]
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in terms of catchment area, hillslopes grade into debris‐flow
dominated channels (Nyman et al. 2015). We plug this equa-
tion into our Bayesian change‐point model to learn the param-
eters from slope–area data. For the original, untransformed
values of slope and area we specify likelihood functions either
side of the change point:

Lh ¼ pðSjA; xc ; w; σ2; νÞ
¼ ∏

n1

i¼1
TðSi jw0A

w1
i ; σ2; νÞ forAi < xc

ðhillslopesÞ
and

Ld ¼ pðSjA; xc ; w; a; σ2; νÞ
¼ ∏

n2

i¼1
TðSi j w0xw1

c

1þ a1A
a2
i

; σ2; νÞ forAi ≥ xcðdebris flowsÞ

(17)

where n1 is the number of data points in the hillslope domain
and n2 is the number of data points in the debris‐flow domain;
we recycle index i for each domain. The likelihood under the
model is the product of the two domain‐specific likelihoods,
LhLd . By setting S0 ¼ w0xw1

c we ensure that the power‐law
model for slope–area data of hillslopes joins with the curved
relationship for the debris‐flow domain. Note that this model
is now nonlinear in the parameters (Equation (17)).

We encode several suitable assumptions in our priors on w
and xc. Without any data, we believe initially that all regression
parameters w0, w1, a1 and a2 are positive. Hence the power
trend for S and A in the hillslope domain is positive, and the
curved trend for the debris‐flow domain is convex upward. To
enforce that w0 and w1 are positive, we use lognormal priors,
assuming that lnw0 ∼ Nð0;1Þ and lnw1 ∼ Nð0; 1Þ . We use
the data on 54 catchments outside of New Zealand (Stock
and Dietrich, 2003) to inform our priors in more detail. We
assign lna1 ∼ Nð1;1Þ and lna2 ∼ Nð�0:25;0:25Þ, as these dis-
tributions reasonably characterize these published data. Thus
we explicitly and systematically use previous work to encode
our prior knowledge about the regression parameters. Finally,
we assume that the channel head is within the range of our
catchment‐area data, and distributed as lnxc ∼ Nð�1;1Þ.
We obtain a posterior distribution that, in several ways, is

similar to that of the simpler piecewise linear regression (Figure
6C). We learn that the posterior slope–area trend for the hill-
slope data is w1 ¼ 0:009þ0:007

�0:006, whereas the posterior channel

concavity is a2 ¼ 0:500þ0:135
�0:131 (Figure 6D). We observe that hill-

slope inclinations increase minutely, but credibly, with catch-
ment area. This positive trend reflects the choice of our
lognormal prior that enforces that w1 is positive, meaning that
hillslopes become steeper towards their toes. If we believed
instead that negative trends could also be plausible, we should
exchange the prior for a distribution to admit also negative
values. This is a good example of how the choice of the support
(or the range of input values) of the prior distribution influences
the support of the posterior distribution. From the model we
also learn that channels are more concave than in the piece-
wise linear model. The posterior valley‐head location spans
more than an order of magnitude of catchment area with xc ¼
0:004þ0:009

�0:003 km2. We can translate this catchment position to a

critical slope of S0 ¼ 0:851þ0:029
�0:029. Note that it makes little sense

to interpret the marginal posterior of w0 (and a1), as its unit
varies with the value ofw1 (and a2). The shape of these distribu-
tions would remain, however, if we normalized A by a refer-

ence area, for example Aref ¼ 1km2 . Another desirable side
effect of the Bayesian regression is the smooth transition

between the two model segments across the uncertain
valley head location. We could now use the median posterior
probability of xc to distinguish between the hillslope and
debris‐flow domains and put this threshold onto a map. More
properly, we should compute the predictive posterior first by
integrating over all possible model parameters (Equation (10)),
and thus obtain a predictive distribution for each map pixel
(Figure 7A).

In essence, we learned these change‐point models in one
single step and used slope–area data without discriminating,
subjectively binning, or removing outliers. We are now able
to measure our uncertainty about both channel‐head locations
and channel concavities in a given catchment, and move
beyond the simplistic assumption of a fixed threshold of con-
tributing catchment area by admitting and estimating the vari-
ance of this threshold (Istanbulluoglu et al. 2002). Capturing
this variability gives us a data‐driven appraisal of where chan-
nels begin; for example, we can inform the search for channel
heads in the field by identifying the most likely reaches instead
of single points. Moreover, we specified explicitly how well we
were informed about the model originally. For example, we
expected a negative sign for the slope–area trend in channel
data. We also expected the locations of the channel or valley
heads to be within the range of sampled data. Regardless of
these or possible other prior choices, we have learned up to
half a dozen model parameters (excluding the data noise σ2)
in a single and probabilistically consistent model, and avoided
using incremental methods that depend on the maximized
goodness‐of‐fit to varying subsets of the data (Stock and
Dietrich, 2003). Our example model remains flexible still. We
can further expand it by adding a second change point that
marks the transition from the debris‐flow domain to that of flu-
vial channels. The amount to which the posterior locations of
these two change points overlap can tell us something about
how credibly we can make out two distinct breaks in the
slope–area data (Figure 7B). We close this example by noting
that a range of diagnostics are available to compare between,
and select from, these different models; examples include
the widely applicable information criterion (WAIC) or leave‐
one‐out cross‐validation (LOO) (Vehtari et al. 2017). While this
topic is beyond the scope of our example here, we have seen
some ways of how we can use Bayesian analysis to learn more
from existing statistical, empirical or physics‐based models.

How channels widen: Bayesian Gaussian process
regression

Many geomorphic problems require that we interpolate or
extrapolate between a number of point measurements.
Straight‐line fits may be too simple and uninformative for this
task. For example, we may need to create a digital elevation
model from a LiDAR point cloud, derive ice‐flow velocities
from tracked pixels on a glacier surface, or estimate trends in
channel hydraulics from surveyed cross‐sections. In interpolat-
ing we assume, often tacitly, that measurements that are
located closer together are more similar. ‘Closer’ can refer to
space or time (or both) and is based on the idea that we sample
from a continuum. Pick any landscape and you will find that
points sufficiently close together will have similar elevations.
The farther your measurements are apart, the less likely will
the elevations be similar. Eventually, this correlation becomes
negligible beyond a large enough distance. Hence a useful
interpolation technique should take advantage of how the cor-
relation between measured target values varies with their coor-
dinates. If chosen suitably, this distance‐dependent correlation
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function fits and predicts data points based on the weighted
contributions of all data points. Note how we now relax the
assumption of i.i.d. data by acknowledging that the data are
dependent. Ignoring instead any (auto‐)correlation in data can
lead to severe misestimates of variances and confidence inter-
vals (Cressie and Wikle, 2011).
We now deal with this interpolation method from a Bayesian

perspective in a framework variably known as Gaussian
process regression, kriging or optimal spatial prediction
(Rasmussen and Williams, 2006). We can think of a Gaussian
process as a prior distribution of mathematical functions that
are of a specific type. The linear regression we used earlier is
one such type of function. A prior distribution of functions
means that we have infinitely many choices of functions to start
with, though without being limited to straight lines (Figure 8A).

By fitting a Gaussian process to data, however, we require that
all these functions pass through our data points. From this
constraint we obtain a posterior distribution of functions condi-
tioned on our data. Gaussian processes are powerful, yet com-
putationally expensive, tools for dealing with autocorrelated
data (Rasmussen and Williams, 2006). The method is flexible
and mathematically well explored and has many links to linear
dynamic systems, stochastic differential equations, smoothing
splines, Fourier transforms, Kalman filters, artificial neural net-
works and deep learning. More formally, a Gaussian process is
a set of random variables that defines functions with input x
and output f(x). Note that the vector notation here refers to the
number of input dimensions D, where x ¼ fx1; …; xDg ∈ ℝD .
We specify a Gaussian process by a mean function m(x) and a
covariance function K(x,x′):

Figure 7. (A) Orthophoto detail of Corner Creek, South Wellington Coast, New Zealand (image BQ32‐5K‐0706; https://www.linz.govt.nz). Channel
network as overlay is colour‐coded with posterior probability of change‐point location between debris‐flow (purple to orange) and fluvial channels
(white) outlined in Figure 6. (B) Bayesian robust piecewise linear regression of 2000 randomly sampled slope–area data from LiDAR‐derived 1 m dig-
ital elevation model of Corner Creek, Wellington coast, New Zealand. This model is a variant of that shown in Figure 6 with two change points mark-
ing the transitions between hillslopes and debris‐flow dominated channels (a) and debris‐flow dominated channels and fluvial channels (b). Symbols
and colours are the same as in Figure 6; note the overlap (c) of the 95% HDIs for both change‐point locations. This overlap indicates that the two
change points may be indistinguishable from each other for this range of catchment areas. Colour schemes in parts A and B are unrelated. [Colour
figure can be viewed at wileyonlinelibrary.com]
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f ðxÞ ∼ GP mðxÞ; Kðx; x0 Þ
h i

(18)

where the input values x and x ′ differ in their index, which can
be a coordinate or timestamp, for example. The key defining
characteristic is that any finite set of outputs f (x) in Equation (18)
is jointly Gaussian distributed. This means we deal with a mul-
tivariate Gaussian with mean function m(x) and covariance
function K(x,x ′). We can picture a Gaussian process as a mul-
tivariate Gaussian that is generalized to an infinite number of
continuous random variables. In practice, we work with finite
data, so that each observed data point adds a conditional con-
straint to the distribution. Therefore, if we condition the prior
of functions that Equation (18) describes on observed data, we

obtain a posterior prediction p½f̂ ðxÞjf ðxÞ� that requires the func-
tions to pass through each data point. To avoid potentially spuri-
ous interpolation we can consider error‐prone outputs by
adding a Gaussian noise σ2 as we did in the linear regression
example (Equation (4)).

The functions that Gaussian processes describe are non‐
parametric, but we still have to decide on a mean function
and a covariance function. In the most convenient case, we
consider a zero mean function. This choice is useful for stan-
dardized or otherwise detrended data. However, any covari-
ance function that we choose requires hyperparameters. If
desired, these hyperparameters can encode the similarity of
the outputs as a function of the distance between any two
inputs x and x′. One common textbook example is the expo-
nential quadratic covariance function, which uses the
Euclidean distance ‖x�x′‖2:

Kðx; x0 Þ ¼ a2exp �‖x � x
0
‖2

2ρ2

" #
(19)

where hyperparameter a is the amplitude and hyperparameter ρ
is a correlation length scale. In the case of noisy data, we would
have to add σ2 to Equation (19) at all locations where

‖x � x
0
‖2 ¼ 0. You can visualize K(x,x′) as a symmetric matrix

with as many rows and columns as we have data points. Each

Figure 8. (A) One hundred samples (blue curves) from a Gaussian process prior with zero mean function (red line) and exponential quadratic covari-
ance function of a single input variable x (Equation (19)). Here, a = 2.3 is the amplitude or marginal standard deviation of noiseless output f (x) and
marked by the grey shade; ρ = 1.1 is the length scale describing by how much we need to move along the x‐axis to make the corresponding values
of f (x) sufficiently uncorrelated. By design, each curve oscillates around the zero mean and crosses this level upwards (2π ρ)�1 times on average in the
unit interval. Bayesian Gaussian process regression learns the posterior distribution of a and ρ such that the blue curves pass through all given data
pairs D ¼ fx; f ðxÞg; these data are absent here as in any other prior. (B) Covariance and semivariogram both depend on the distance between any
two input locations of each function shown in part A. Together with the zero‐mean function, this single covariance function specifies, or acts a a prior

over, all these functions. A local noise term σ (excluded here for clarity) adds to the contribution of a for each f (x) at jx � x
0 j ¼ 0. [Colour figure can

be viewed at wileyonlinelibrary.com]
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entry in this matrix specifies the covariance between a given
pair of points. Equation (19) states that function values f (x) are
more similar if they have inputs separated by shorter distances.
If the inputs are farther apart instead, we expect a lower corre-
lation between the corresponding outputs. Many landscapes
and landforms have this property, which is why we can use
Gaussian processes for regression and classification problems
of topographic data. We can thus interpolate at unobserved

locations by obtaining a posterior distribution p½f̂ ðxÞjf ðxÞ� for
each input value. Put differently, we seek to summarize the
(auto‐)correlation structure of the data by learning the posterior
distribution of the hyperparameters. Predictions at points where
data are less (more) dense will have higher (lower) uncer-
tainties: this property is very useful for tracking how reliable
our interpolation is locally.

How do we choose a meaningful covariance function and
how do we specify its hyperparameters? The standard way to
do this is to maximize themarginal likelihood to obtain the opti-
mal hyperparameter values (Rasmussen and Williams, 2006;
Beuzen et al. 2019). In many geostatistical studies, this proce-
dure is part of what is known as ordinary kriging and built
around a semivariogram, which is closely related to the covari-
ance function (Figure 8B). One practical issue of traditional
kriging is the need to estimate an empirical semivariogram from
a sample of the data that often are assumed to be free of noise
(Cressie and Wikle, 2011). These estimates can be biased,
especially if the values of the hyperparameters depend on
trial‐and‐error tuning. For likelihood functions with multiple
local maxima in particular, overfitting becomes an issue for
kriging methods that seek a global optimum. Yet local maxima
may stand for viable alternatives or hypotheses concerning
combinations of parameters that could describe the data nearly
as well. A full Bayesian model of Gaussian processes instead
offers a natural penalization of the marginal likelihood by spec-
ifying prior distributions over the hyperparameters. Hence the
posterior distributions may highlight more than one credible
way to find structure in the data.

We briefly look at Gaussian process regression to predict
downstream variations in the width of river channels. How
channels gradually widen in a downstream direction is an
important question in estimating hydraulic geometry, flood fre-
quency and stream power. Kriging can reveal both trends and
local variations of channel geometry from limited survey data
(Legleiter and Kyriakidis, 2008). The data we use here are active
channel widths of Río Rayas, a medium‐size gravel‐bed river
that drains the flanks of the Chaitén and Michinmahuida volca-
noes of south‐central Chile (Figure 9A). The active river bed
runs through dense temperate rainforests, and raised its level fol-
lowing input by pyroclastic sediments from the 2008 eruption of
Chaitén (Ulloa et al.2015). Contrasts in colour and brightness
between the forest and the unvegetated river bed allow auto-
mated measurements of approximate channel width. We do this
by thresholding the normalized difference vegetation index
(NDVI) in a 10 m resolution Sentinel‐2 image of low‐flow con-
ditions (https://scihub.copernicus.eu/dhus/#/home). Our exam-
ple data are 1275 pairs of thus measured channel widths and
relative downstream location along a 20 km long reach. We
use 20% of these data to train our model, and the remaining
80% to estimate the prediction error.

For a Gaussian process we need to decide on a covariance
function. To keep things simple, we choose the exponential
quadratic covariance function introduced in Equation (19).
One useful property of this particular covariance function is
that, for univariate inputs xi, the expected number of times that
outputs f (xi) change from negative to positive in the unit inter-
val is (2π ρ)�1. You can picture this metric as an expected

‘wavelength’, although we deal with functions other than peri-
odic here. For a given range of data inputs (the length of our
study reach), the functions we fit and predict from can be
monotone or oscillating, depending on the length scale ρ
(Figure 8). Note that we earn this flexibility from a single
covariance function. Now the aim is to learn from the data,
and supported by some prior knowledge, the posterior distri-
butions of hyperparameters a and ρ, and the noise σ. We
assume that the Gaussian process is an acceptable model of
how the mean channel width changes downstream, and add
a fixed Gaussian noise σ to model local variations. Like in
all Bayesian models, we need to set priors. What do we know
about variations in channel width before having seen any par-
ticular data? For one, we might assume that channels become
wider the more we go downstream. Yet if our study reach is
too short, any trend of downstream widening might be elusive.
Moreover, we might expect many local variations, where bed-
rock bluffs, woody debris, bank erosion or sedimentation can
make the channel narrower or wider than on average. In terms
of hyperparameters, we need to state what we know initially
about how much active channel widths oscillate around the
mean (represented by a), and how much of this is local noise
(represented by σ2). We also need to encode what we know
about the length scale of changing channel widths down-
stream. Putting more prior weight on smaller values of ρ
means that we believe that the channel narrows and widens
frequently in our study reach. Putting instead more weight
on high values of ρ means that we believe that much of the
changes in channel width are a noisy deviation from a broader
trend. The more we emphasize higher values of ρ, the more
we believe in an essentially linear model of channel width
versus downstream distance in our study reach. Given that
we standardize our data, we choose standard Gaussian distri-
butions for the amplitude prior and noise prior, i.e.
a ∼ Nð0;1Þ and σ2 ∼ Nð0; 1Þ, and an inverse gamma distribu-
tion on the length‐scale prior, i.e. ρ∼IG(2,1). The choice of
inverse gamma prior for standardized ρ follows the recom-
mendation of the Stan Development Team (2019; https://mc-
stan.org/docs/2_23/stan-users-guide-2_23.pdf), and considers
that ρ should exceed the minimum average spacing of mea-
surements. Again, these choices are open to refinement
according to what we know before analysing the data.

The results are instructive in several ways (Figure 9B). We see
that Gaussian process regression captures and predicts much of
the downstream variability of channel width, although using
only one fifth of the data for training our model. The root mean
squared prediction error is 16.2 m. This result is remarkable in
that it hinges only on three hyperparameters (Figure 10A). Note
how the uncertainties of the predicted channel widths, approx-
imated by pointwise 95% HDIs, are highest where the density
of training data is lowest. The posterior of 2πρ ¼ 805þ105

�105 m
shows what we learn about the length scale of downstream var-
iations in channel width: we expect that the channel widens
above its reach average about every 800 m. This autocor-
relation aids our interpolation over shorter distances. Note that
a ¼ 69:3þ10:3

�9:5 m (95% HDI) quantifies the variability of
the mean prediction of the Gaussian process model, whereas
σ ¼ 6:2þ1:6

�1:6 m quantifies the local noise on top of that. Beyond
being able to characterize active channel width at the reach
scale with these few parameters, we now also have a model
to predict the posterior distribution of channel width at any
location in our study reach.

We can extend this model by admitting that channel width
might increase downstream in a linear manner. We thus com-
bine a linear regression that models the downstream trend with
a zero‐mean Gaussian process that models the residuals. This
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method is also known as universal kriging. We can interpret this
setup as a random effects model of local variation on top of a
broader trend (Lombardo et al. 2019). It can be shown that this
combination returns yet another, additive Gaussian process
(Rasmussen and Williams, 2006). Running this model with
the same priors and standard Gaussian priors on the slope
and intercept of the linear model, we obtain posterior estimates
of a ¼ 66:1þ9:5

�9:1 m, 2πρ ¼ 757þ90
�80 m, and σ ¼ 6:3þ1:5

�1:4 m (Figure

10B, C). The posterior slope of the linear trend is b1 ¼
0:009þ0:013

�0:009 and credibly different from zero judging from the
95% HDI. We learn that the active channel widens by about
9 mkm�1 downstream on average on top of all other variations.
Two caveats deserve mention here before concluding this

example. First, the exponential quadratic covariance function
is very smooth and other covariance functions may reflect bet-
ter the variability of channel width. A more rigorous analysis
would need to compare alternative covariance functions, ide-
ally supported by some physical reasoning. Second, the
hyperparameters a and ρ are rarely identifiable as both contrib-
ute to the total variance in the data; the ratio of these
hyperparameters is usually more informative. Regardless, we
can use Gaussian processes as highly flexible components of
models that also handle physical formulations. For example,

Beuzen et al. (2019) coupled a Gaussian process predictor of
wave runup with a morphodynamic model of coastal dune
erosion in New South Wales, Australia. Fully Bayesian
implementations of Gaussian processes like our example on
channel width, however, are still rare in geomorphology.

Other applications

The examples presented above are building blocks that we can
extend to formulate Bayesian variants of more sophisticated
regression and classification problems in geomorphology.
One obvious extension to these examples is to query the qual-
ity of the data. We could accommodate measurement errors in
both response and predictor variables as additional prior infor-
mation by replacing individual data values with distributions
that express the spread around observed means (Figure 2).
Our posterior would thus also include an update of our original
assumptions about the data quality. In Bayesian analysis, even
small sample sizes are informative. If time and cost rule out
large sample numbers, for example in geochronological or
thermochronometric studies, we can resort to Bayesian models
to learn about variables that govern exhumation and erosion
rates averaged over millions of years (Avdeev et al. 2011).

Figure 9. Bayesian prediction of channel widths of Río Rayas, south‐central Chile. (A) Upstream view of active channel; this gravel‐bed river is
flanked by dense temperate rainforest. (B) Along‐stream changes in channel width along a 20 km reach, estimated from distinct breaks in the normal-
ized difference vegetation index (NDVI) of a Sentinel‐2 image taken in April 2017. (B) Training data make up one fifth of n ¼ 1275 measurements
(large bubbles in upper panel); downstream distance has arbitrary origin. Posterior predictive distribution of Gaussian process regression using an
exponential quadratic covariance function (lower panel; Equation (19)). The red line is the mean prediction; training data are excluded for visual clar-
ity. [Colour figure can be viewed at wileyonlinelibrary.com]
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Many standard statistical tests also have Bayesian counterparts
in which hypothesis testing always compares alternative
models, using approaches such as the Bayes factor, various
information criteria, cross‐validation or mixture models
(Gelman et al. 2004; Kruschke, 2015; McElreath, 2016). The
theoretical framework for some of these models was developed
decades ago but now affords practical applications thanks to
the available computing power that supports efficient random
sampling from high‐dimensional joint probability distributions
(Carpenter et al. 2017; Bingham et al. 2019). Most other statis-
tical techniques may be expanded in this way. Hence we can
also use Bayesian reasoning to learn from time series data in
ways that are very similar to that which we have seen for spatial

data; both types of data are generated by processes in the statis-
tical sense (Cressie and Wikle, 2011). In one such study, Bailer‐
Jones (2011) used Bayesian periodograms – plots that show
how likelihood varies with frequency – to explore whether
and how the rate of large (>5 km) terrestrial impact cratering
had varied in the past 400 million years. Blanchet and
Davison (2012) proposed a Bayesian hierarchical approach to
predict from borehole data the time series of ground tempera-
tures in mountain permafrost at various depths. Their model
learns the temporal pattern of posterior ground temperature
from a stochastic treatment of the heat equation and additional
hyperparameters. This study showcases how to combine
Bayesian inference with a widely used differential equation,

Figure 10. Posterior distributions of the parameters of two regression models using Bayesian Gaussian processes (or kriging) to predict active chan-
nel width from its downstream location, Rio Rayas, south‐central Chile. (A) Bayesian ordinary kriging using squared exponential covariance function
(Equation (19)); where a is the amplitude of channel width; 2πρ is the number of upward zero crossings per unit interval or a mean ‘wavelength’; and σ
is an added local noise (Figure 9B). (B) Bayesian universal kriging using the same squared exponential covariance function plus a linear covariance
function and the local noise term. Parameters are the same as in part A except for b1, which is the trend of the linear model contribution estimating the
downstream rate of change in channel width; dashed vertical line marks zero. In classical kriging, we only get point estimates for each of these param-
eters instead of entire posterior distributions. (C) Sketch highlighting how these metrics are relevant to downstream channel widening. [Colour figure
can be viewed at wileyonlinelibrary.com]
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and shares several similarities with our Bayesian kriging exam-
ple above. We can express the idea behind this and other hier-
archical models by equipping Bayes’ rule (Equation (3)) with
data D , the underlying data‐generating process P and the
parameters θ that describe this process:

pðP; θjDÞ ∝ pðD; P; θÞ ¼ pðDjP; θÞpðPjθÞpðθÞ (20)

In Bayesian hierarchical models the posterior distribution is
proportional to the product of a data modelpðDjP; θÞ, a pro-
cess model pðPjθÞ and a parameter model p(θ). In plain words,
we can learn both process and parameters from the data in a
single model (Cressie and Wikle, 2011).
Bayesian reasoning can also be useful when studying the

recurrence of rare events. Many models in extreme‐value statis-
tics require a sufficient sample size, and can thus benefit from a
Bayesian treatment if measurements are few. Extreme‐value
theory can be appropriate to infer the recurrence of infrequent
rock avalanches as in our example above. Nolde and
Joe (2013) illustrate how to learn the posterior return periods
of debris flows by using a peak‐over‐threshold approach and
eliciting expert knowledge. Their study used data on only 12
debris flows, a sample size that is prone to misestimates when
fitting extreme‐value distributions with classical methods. The
Bayesian treatment addresses these issues by adding prior infor-
mation and fully documenting uncertainty in a disciplined way.
Cooley et al. (2006) used a Bayesian generalized extreme value
distribution to model diameters of the largest lichens growing
on moraine debris to infer the approximate colonization age
of the substrate. Their hierarchical model included different
lichen‐growth curves and also spatial covariates that expressed
that ages of moraines of the same glaciers covary more strongly
than those of different glaciers. Bayesian inference helped
Wolpert et al. (2016) to learn the durations of lava‐dome erup-
tions by fitting a generalized Pareto distribution (a more flexible
form of the ‘inverse power law’) to sample data from different
volcanoes. Silva et al. (2015) applied a Bayesian peak‐over‐
threshold model to estimate return periods of floods and how
these might vary in response to upstream control structures
and the El Niño Southern Oscillation. Similarly, Veh
et al. (2020) inferred the 100‐year peak discharge of outburst
floods from moraine‐dammed lakes in the Himalayas and
neighbouring mountain ranges. The authors coupled a
semi‐empirical outburst model with data on lake size and sim-
ulated dam‐breach rates. They further chose an exponential
prior for the average yearly rate of outburst floods, thus empha-
sizing that most years were without any reported incidence.
For models with many predictor variables we can resort to

Bayesian networks or belief networks, which are graph‐based
models of joint probability distributions (see Figure 1B,C for a
most basic representation). The structure of these networks
expresses conditionally dependent probabilities between these
variables, which need to be discretized beforehand; we can
also learn this network structure directly from the data (Vogel
et al. 2014). Bayesian networks help in expressing visually
how variables are conditioned on others and how we can sub-
stitute information if we miss out on measurements of some var-
iables. For example, Hapke and Plant (2010) and Gutierrez
et al. (2011) followed similar strategies of building Bayesian
networks to predict yearly average trends of erosion along sec-
tions of the US coast, drawing on inputs such as local rates of
sea‐level rise, wave climate and coastal geomorphology.
Giardino et al.(2019) also used a Bayesian network to model
coastal erosion and beach nourishment in the Netherlands.
The nodes in their network included variables such as nourish-
ment type and volume, and rates of change in coastline posi-
tion and dunes. The Bayesian network predicted the fraction

of landward displacement as a function of various beach nour-
ishment strategies. Aalders et al. (2011) explored a Bayesian
network of some 20 factors that potentially influence peat ero-
sion in Scotland. Most of these factors and their interactions
were derived jointly during a workshop with experts. Causal
links can also be encoded as conditional probabilities in Bayes-
ian networks, and Peng and Zhang (2012) explored this prop-
erty for analysing risk from dam‐break floods and included
various factors such as flood severity, warning times and evac-
uation to estimate the expected loss of lives. Essentially all the
worked examples above can also be expressed as Bayesian net-
works, because Bayes’ rule requires us to specify the joint prob-
ability distribution of all variables involved. Trees are special
types of networks and offer probabilistic models for simulating
sequential processes such as those that may occur during vol-
canic eruptions. Marzocchi et al. (2004) proposed a Bayesian
event tree for Mount Vesuvius, Italy, to learn posterior probabil-
ities of eruptions, their type and size, and their potential conse-
quences for people living nearby. One advantage of trees and
networks is that their structure may illustrate the relationships
between variables more intuitively than the underlying mathe-
matical formulations.

Outlook

What makes the case for encouraging more use of Bayesian
reasoning in geomorphology? The learning curve can be steep
and the choice of prior probability distributions may seem too
arbitrary or even pointless when facing large amounts of data.
In many cases, the average output of Bayesian models may
seem to be hardly different from that of frequentist models
(Gelman et al. 2004). This is reassuring, so why bother? Many
concepts of frequentist statistics have a Bayesian analogue,
and deciding which variant is ‘better’ may be pointless. How-
ever, taking a Bayesian viewpoint can be more appropriate
and satisfying for many geomorphic problems. We are invited
to look at these problems – and our model solutions to them
– in a different light. Inversion is at the heart of Bayesian think-
ing and can offer instructive views of learning by combining
logic and inference. The worked examples above may have
motivated you to look at seeming trends in landslide size or
glacier‐snout elevations in a fresh way. The concept of channel
heads or debris flow‐dominated channels has become richer
and less static by admitting variability that we fully learn from
our data within a single model. Finally, we saw how to predict
credible reach‐scale and local variations of downstream chan-
nel widening from only a fraction of sample measurements. All
that we learned about the model parameters is cast into proba-
bility distributions that allow us to predict mean channel width
and its variability at new locations, all formal analysis of errors
and their propagation conveniently included. Many other pos-
sible applications are to be charted still. If we wish to apply
geomorphology to aid decisions in society, dealing with uncer-
tainty becomes a must. Consider natural hazard and risk
appraisals that are concerned with potentially adverse impacts
of geomorphic processes. Such applications call for communi-
cating uncertainties clearly (Beven et al. 2018a). A Bayesian
approach fully and consistently treats these uncertainties,
starting with our prior assumptions or knowledge and express-
ing uncertainty in the reproducible format of probability distri-
butions. Posteriors are strictly conditional on observational
evidence, and hence directly point at data quality and any
assumptions about the data‐generating process. By putting hard
numbers on the unknown, Bayesian thinking encourages us to
be more objective and constructive about uncertainty rather
than fear it as an impediment in scientific peer review. The
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Bayesian approach also obviates ad hoc methods of estimating
errors and how they propagate, and offers an attractive alterna-
tive to many current black‐box models in machine learning
such as artificial neural networks (LeCun et al. 2015).
Formulating a Bayesian model forces us to spell out clearly

the most important controls in a given problem. What is more,
we need to acknowledge the quantities tied to these controls as
intrinsically uncertain. We are required to formally encode
these uncertainties as probability distributions that interact
within a joint distribution. Thus one highly educational aspect
of Bayes’ rule is that we have to think about our model before
seeing the data. It is a compelling way of testing and expressing
objectively our prior knowledge about the quantity that we
wish to learn more about before becoming possibly biased by
the data. Seen this way, Bayes’ rule is a good reality check that
tracks each iteration in our learning process by quantifying how
our prior knowledge is being refined in the light of new data.
Bayesian reasoning can be challenging but also rewarding. It
allows us to revise our original beliefs about a problem with
the data at hand, thus encouraging us to go beyond a simple
reliance on just analysing data: we need to document, and
build on, what we knew before explicitly in a distribution of
possible outcomes. Seen from the reverse, the new insight that
the posterior provides is explicitly conditional on the data, so
that we can directly measure our gain of knowledge by com-
paring it to our prior. Bayesian reasoning produces probabilistic
predictions about the unobserved, and can be especially useful
if observations are few. Simpson (2017) demonstrates this core
principle of Bayes’ rule in the context of (exo‐)planetary geo-
morphology by estimating the abundance of waterworlds,
using our planet’s conditions as a prior.
Specifying prior knowledge in terms of a probability distribu-

tion can be challenging, or even problematic, but encourages
us to document objectively what we know about a given phe-
nomenon. Even if we know very little beforehand, we can often
find a suitable prior to characterize this minute knowledge.
Physical, chemical and biological problems have lower and
upper bounds on the quantities that we wish to learn. We can
seamlessly couple existing physical models in geomorphology
with Bayesian reasoning, especially if we are interested in
expressing uncertainties or if we wish to invert a given problem
(Gomes et al. 2016; Laloy et al. 2017). Whether this solution is
the optimal one is a different story and depends a lot on our ini-
tial choice of models and whether we think that choice is
appropriate. It may turn out that mixtures or ensembles of
models can be more useful than any single model, regardless
of whether it has frequentist or Bayesian origins (Lavine, 2019).
Either way, it seems that geomorphologists will need to under-
stand the rapidly growing volume and diversity of data more
than ever. The choice of toolkit is up to us.
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