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Abstract

In our daily life, recurrence plays an important role on many spatial and temporal scales
and in different contexts. It is the foundation of learning, be it in an evolutionary or in a
neural context. It therefore seems natural that recurrence is also a fundamental concept in
theoretical dynamical systems science. The way in which states of a system recur or develop
in a similar way from similar initial states makes it possible to infer information about the
underlying dynamics of the system. The mathematical space in which we define the state of
a system (state space) is often high dimensional, especially in complex systems that can also
exhibit chaotic dynamics. The recurrence plot (RP) enables us to visualize the recurrences of
any high-dimensional systems in a two-dimensional, binary representation. Certain patterns
in RPs can be related to physical properties of the underlying system, making the qualitative
and quantitative analysis of RPs an integral part of nonlinear systems science. The presented
work has a methodological focus and further develops recurrence analysis (RA) by addressing
current research questions related to an increasing amount of available data and advances in
machine learning techniques. By automatizing a central step in RA, namely the reconstruction
of the state space from measured experimental time series, and by investigating the impact of
important free parameters this thesis aims to make RA more accessible to researchers outside
of physics.

The first part of this dissertation is concerned with the reconstruction of the state space
from time series. To this end, a novel idea is proposed which automates the reconstruction
problem in the sense that there is no need to preprocesse the data or estimate parameters a
priori. The key idea is that the goodness of a reconstruction can be evaluated by a suitable
objective function and that this function is minimized in the embedding process. In addition,
the new method can process multivariate time series input data. This is particularly important
because multi-channel sensor-based observations are ubiquitous in many research areas and
continue to increase. Building on this, the described minimization problem of the objective
function is then processed using a machine learning approach.
In the second part technical and methodological aspects of RA are discussed. First, we

mathematically justify the idea of setting the most influential free parameter in RA, the
recurrence threshold ε, in relation to the distribution of all pairwise distances in the data. This
is especially important when comparing different RPs and their quantification statistics and
is fundamental to any comparative study. Second, some aspects of recurrence quantification
analysis (RQA) are examined. As correction schemes for biased RQA statistics, which are
based on diagonal lines, we propose a simple method for dealing with border effects of an
RP in RQA and a skeletonization algorithm for RPs. This results in less biased (diagonal
line based) RQA statistics for flow-like data. Third, a novel type of RQA characteristic is
developed, which can be viewed as a generalized non-linear powerspectrum of high dimensional
systems. The spike powerspectrum transforms a spike-train like signal into its frequency
domain. When transforming the diagonal line-dependent recurrence rate (τ -RR) of a RP in
this way, characteristic periods, which can be seen in the state space representation of the
system can be unraveled. This is not the case, when Fourier transforming τ -RR.

Finally, RA and RQA are applied to climate science in the third part and neuroscience in
the fourth part. To the best of our knowledge, this is the first time RPs and RQA have been
used to analyze lake sediment data in a paleoclimate context. Therefore, we first elaborate
on the basic formalism and the interpretation of visually visible patterns in RPs in relation
to the underlying proxy data. We show that these patterns can be used to classify certain
types of variability and transitions in the Potassium record from six short (< 17m) sediment
cores collected during the Chew Bahir Drilling Project. Building on this, the long core (∼
m composite) from the same site is analyzed and two types of variability and transitions are
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identified and compared with ODP Site  wetness index from the eastern Mediterranean.
Type  variability likely reflects the influence of precessional forcing in the lower latitudes at
times of maximum values of the long eccentricity cycle ( kyr) of the earth’s orbit around
the sun, with a tendency towards extreme events. Type  variability appears to be related to
the minimum values of this cycle and corresponds to fairly rapid transitions between relatively
dry and relatively wet conditions.
In contrast, RQA has been applied in the neuroscientific context for almost two decades.

In the final part, RQA statistics are used to quantify the complexity in a specific frequency
band of multivariate EEG (electroencephalography) data. By analyzing experimental data, it
can be shown that the complexity of the signal measured in this way across the sensorimotor
cortex decreases as motor tasks are performed. The results are consistent with and comple-
ment the well known concepts of motor-related brain processes. We assume that the thus
discovered features of neuronal dynamics in the sensorimotor cortex together with the robust
RQA methods for identifying and classifying these contribute to the non-invasive EEG-based
development of brain-computer interfaces (BCI) for motor control and rehabilitation.

The present work is an important step towards a robust analysis of complex systems based
on recurrence.
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Zusammenfassung

In unserem täglichen Leben spielt die Rekurrenz auf vielen räumlichen und zeitlichen Skalen
und in verschiedenen Kontexten eine bedeutende Rolle. Es ist die Grundlage des Lernens, sei
es in einem evolutionären oder in einem neuronalen Kontext. Es erscheint daher selbstverständ-
lich, dass Rekurrenz auch ein grundlegendes Konzept in der dynamischen Systemwissenschaft
ist. In diesem Zusammenhang ermöglicht die Art und Weise, wie sich Zustände eines Systems
wiederholen oder sich auf ähnliche Weise aus ähnlichen Anfangszuständen entwickeln, Infor-
mationen über die zugrunde liegende Dynamik des Systems abzuleiten. Der mathematische
Raum, in dem wir den Zustand eines Systems definieren (Zustandsraum), ist häufig hoch-
dimensional, insbesondere in komplexen Systemen, die darüberhinaus auch eine chaotische
Dynamik aufweisen können. Der Rekurrenzplot (RP) ermöglicht es uns, die Rekurrenzen
beliebiger hochdimensionaler Systeme in einer zweidimensionalen, binären Darstellung zu
visualisieren. Bestimmte Muster in RPs können mit physikalischen Eigenschaften des zugrunde
liegenden Systems in Beziehung gesetzt werden, wodurch die qualitative und quantitative
Analyse von RPs ein integraler Bestandteil der nichtlinearen Systemwissenschaft wird. Die
vorgestellte Arbeit hat einen methodischen Schwerpunkt und entwickelt die Rekurrenzsana-
lyse (RA) weiter, indem sie sich mit aktuellen Forschungsfragen befasst, die sich auf eine
zunehmende Menge verfügbarer Daten und Fortschritte beim maschinellen Lernen beziehen.
Durch die Automatisierung eines zentralen Schritts in der RA, nämlich der Rekonstruktion
des Zustandsraums aus gemessenen experimentellen Zeitreihen, und durch die Untersuchung
der Auswirkungen wichtiger freier Parameter soll die RA für Forscher außerhalb der Physik
zugänglicher gemacht werden.

Der erste Teil dieser Dissertation befasst sich mit der Rekonstruktion des Zustandsraums
aus Zeitreihen. Hierzu wird eine neue Idee vorgeschlagen, die das Rekonstruktionsproblem
so automatisiert, dass weder die Daten vorverarbeitet noch a priori Parameter geschätzt
werden müssen. Die Schlüsselidee ist, dass die Güte einer Rekonstruktion durch eine geeignete
Kostenfunktion evaluiert werden kann und diese Funktion im Einbettungsprozess minimiert
wird. Darüber hinaus kann die neue Methode multivariate Zeitreihen-Eingabedaten verarbei-
ten. Das ist insbesondere deshalb von großer Bedeutung, da mehrkanalige sensorgestützte
Beobachtungen in vielen Forschungsbereichen allgegenwärtig sind und weiterhin zunehmen.
Darauf aufbauend wird dann das beschriebene Minimierungsproblem der Kostenfunktion mit
einem Ansatz des maschinellen Lernens bearbeitet.
Im zweiten Teil werden einige technische und methodische Aspekte der RA erörtert. Zu-

nächst begründen wir mathematisch die Idee, den einflussreichsten freien Parameter in der
RA, den Rekurrenzgrenzwert ε, in Bezug auf die Verteilung aller paarweisen Abstände in
den Daten festzulegen. Dies ist insbesondere dann wichtig, wenn verschiedene RPs und
ihre Quantifizierungsstatistiken verglichen werden, und ist für jede vergleichende Studie von
grundlegender Bedeutung. Zweitens werden einige Aspekte der Rekurrenzquantifizierungs-
analyse (RQA) untersucht. Als Korrekturschemata für verzerrte RQA-Statistiken, welche
auf diagonalen Linien basierenden, schlagen wir eine einfache Methode zum Umgang mit
Randeffekten von RPs in der RQA und einen Skeletonisierungsalgorithmus für RPs vor. Dies
sorgt in der Folge zu weniger verzerrten (auf diagonalen Linien basierenden) RQA-Statistiken
für hoch abgetastete Daten. Drittens wird eine neuartige RQA-Charakteristik entwickelt, die
als verallgemeinertes, nichtlineares Leistungsspektrum hochdimensionaler Systeme angesehen
werden kann. Das Spike-Powerspectrum transformiert ein Spike-train-ähnliches Signal in
seinen Frequenzbereich. Wenn die diagonallinienabhängige Rekurrenzsrate (τ -RR) eines RP
auf diese Weise transformiert wird, können charakteristische Perioden, die in der Zustands-
raumdarstellung des Systems erkennbar sind, entschlüsselt werden. Dies ist nicht der Fall,
wenn die τ -RR Fourier-transformiert wird.
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Schließlich werden RA und RQA im dritten Teil auf Paläoklima-Seesedimentdaten und im
vierten Teil auf EEG-Daten (Elektroenzephalographie) angewendet. Nach unserem besten
Wissen ist dies das erste Mal, dass RPs und RQA für die Analyse von Seesedimentdaten in
einem Paläoklima-Kontext verwendet wurden. Daher wird zunächst an dem grundlegenden
Formalismus und der Interpretation visuell sichtbarer Muster in RPs in Bezug auf die zugrunde
liegenden Proxy-Daten gearbeitet. Wir zeigen, dass diese Muster verwendet werden können, um
bestimmte Arten von Variabilität und Übergängen im Kaliumdatensatz von sechs kurzen (<
17m) Sedimentkernen zu klassifizieren, die während des Chew Bahir-Bohrprojekts gesammelt
wurden. Darauf aufbauend wird der lange Kern (∼ m composite) desselben Standorts
analysiert und zwei Arten von Variabilität und Übergängen werden identifiziert und mit dem
Feuchtigkeitsindex des ODP-Standorts  aus dem östlichen Mittelmeerraum verglichen. Die
Variabilität vom Typ  spiegelt wahrscheinlich den Einfluss des Präzessionsantriebs in den
unteren Breiten zu Zeiten mit Maximalwerten des langen Exzentrizitätszyklus ( kyr) der
Erdumlaufbahn um die Sonne wider, wobei die Tendenz zu extremen Ereignissen besteht.
Die Variabilität vom Typ  scheint mit den lokalen Minima dieses Zyklus verbunden zu sein
und entspricht ziemlich schnellen Übergängen zwischen relativ trockenen und relativ nassen
Bedingungen.

Im Gegensatz dazu wird RQA seit fast zwei Jahrzehnten im neurowissenschaftlichen Kontext
angewendet. Im letzten Teil werden RQA-Statistiken zur Quantifizierung der Komplexität in
einem bestimmten Frequenzband multivariater EEG-Daten verwendet. Durch die Analyse
experimenteller Daten kann gezeigt werden, dass die Komplexität des auf diese Weise über den
sensomotorischen Kortex gemessenen Signals abnimmt, wenn motorische Aufgaben ausgeführt
werden. Die Ergebnisse stimmen mit den bekannten Konzepten motorischer Gehirnprozesse
überein und ergänzen diese. Wir nehmen an, dass die so entdeckten Merkmale der neuronalen
Dynamik im sensomotorischen Kortex zusammen mit den robusten RQA-Methoden zur
Identifizierung und Klassifizierung dieser zu der nicht-invasiven EEG-basierten Entwicklung
von Gehirn-Computer-Schnittstellen (BCI) und zur motorischen Steuerung und Rehabilitation
beitragen werden.

Die vorliegende Arbeit ist ein wichtiger Schritt zu einer robusten Analyse komplexer Systeme
basierend auf Rekurrenz.
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from the first minimum of the corresponding auto-mutual information. The
possible decrease of the L-statistic for this hypothetical embedding cycle with the
chosen τ is simply ∆L(TM ) = Lorange(TM )− Lblue(TM ). When ∆L(TM ) < 0
(shaded areas) the additional reconstruction vector component does increase the
quality of the reconstruction, whereas when ∆L(TM ) > 0 ∀ TM a further
embedding is not beneficial. As expected that is the case for the stochastic signal
in panel C. The Algorithm  automatically picks the first minimum ∆L over all
TM , which has also been the global minimum with respect to all TM throughout
all examples we have considered so far. . . . . . . . . . . . . . . . . . . . . . . . . 

. (Relative) deviation of reconstruction by standard time delay embedding (TDE),
the Garcia & Almeida (G&A), Nichkawde’s (MDOP), and PECUZAL methods,
comparing the accordance of the RPs of the reconstructed attractor and the
reference attractor (JRRF), mutual false nearest neighbors (MFNN), ∆L-statistic,
as well as the recurrence quantifiers determinism (DET), diagonal line length
entropy (ENTR), and the recurrence time entropy (RTE). A Univariate case using
the y-component of the numerically integrated Rössler system (Appendix B.) and
B multivariate case using the x- and y-values of the Rössler system. Since TDE
cannot handle multivariate input we take the values from the univariate case here
for illustrative reasons, which result in different relative values in case of MFNN
and the ∆L-statistic. For these measures we plot the - relative deviations to the
best score, which increases in the multivariate case. For the other statistics we plot
- relative deviations to the reference score, i.e. the closer to unity the value gets,
the better the accordance to the reference or the best achieved value is. . . . . . . 

. Same as Fig. ., here for the Duffing system (Appendix B.). . . . . . . . . . . . 
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. Reconstructions of the Fooling dataset I (see text for details). In case of the
MDOP method (panel B), we plot the first three components of the -dimensional
trajectory. While G&A and MDOP methods mix time series from different
systems, leading to nonsensical reconstructions (panels A and B), our proposed
method (panel C) sticks to time series from one system (Lorenz in this case). . . 

. A Entire z-standardized and down-sampled time series from electrochemical
oscillations of length N = 50, 000 and B a sub-sample of length N̂ = 2, 500. C
The relative deviation of the medians of the distributions of the RQA-quantifiers
ENTR, LAM, RTE and T obtained from RPs of 1, 000 sub-samples to their
reference values obtained from RPs of the entire time series for the four
reconstruction methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. All possible embeddings of a time series visualized by a tree. Each leaf of the tree
symbolizes one embedding cycle Dd using one selected time series sid from the
multivariate data set and delay τd. Marked in orange is one chosen full embedding. 

. Visualization of the expand step of the MCDTS algorithm. Here we exemplary use
the continuity statistic 〈ε?〉(τ) as the delay pre-selection statistic Λτ and the
∆L-statistic [] as the objective function Γ, as it has been utilized in the
recently proposed PECUZAL algorithm [], Chapter . . . . . . . . . . . . . . 

. Schematic visualization of the data analysis for the Lorenz  system, Eq. (.)
(see text for details). In case of the univariate approach the x2(t)-time series gets
embedded by all considered reconstruction methods, for the multivariate approach,
three time series (x2(t), x4(t) and x7(t)) are passed to the reconstruction
algorithms. From the reconstructed attractors we obtain a recurrence plot and
quantify it (RQA) by using ten different quantifiers. The same is done for the
reference trajectory gained from all  time series from the numerical integration.
Repeating the analysis for time series corresponding to varying values of the
control parameter F of the system, we finally obtain time series of the
RQA-quantifiers for each reconstruction method as well as for the true trajectory. 

. Results of the analysis of the Lorenz  system with varying control parameter
and for all considered reconstruction approaches (see Table . for notations).
Shown is the pairwise comparison of the normalized mean squared error of all
considered ten RQA-quantifiers with respect to the truth RQA-time series (see
text for details). For instance, a value of % in the table indicates that for seven
out of the ten considered RQA-quantifiers the normalized mean squared error for
the reconstruction method displayed on the y-axis is lower than for the
reconstruction method displayed on the x-axis. . . . . . . . . . . . . . . . . . . . 

. A Normalized root-mean-square prediction errors (RMS ) for the Hénon x-time
series and for selected reconstruction methods (see Fig. D. for all mentioned
approaches and Table .) as a function of the prediction time. Shown are mean
values of a distribution of 100 trials with different initial conditions. For the
prediction we used a one step ahead zeroth-order approximation on the nearest
neighbor of the last point of the reconstructed trajectory and iteratively repeated
that procedure  times in order to obtain a prediction of  samples in total for
each trial. B Same as in A but with % additive white noise. . . . . . . . . . . . 
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. A Mean normalized root mean square prediction error for four selected
reconstruction methods on the δ13C CENOGRID record. B Prediction error for all
 trials for the classic TDE method of Hegger and Kantz [] (yellow line in
panel A). C Prediction error for all  trials for the MCDTS-R-MSE (m) method
(purple line in panel A). The forecasts based on this method are significantly
better than for all three classic TDE methods (up to  prediction time steps under
a significance level α = 0.01 and up to  prediction time steps under a significance
level α = 0.05). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. A Linear correlation coefficient of convergent cross mapping (CCM) heat release
→ pressure as a function of the considered time series length for Cao’s embedding
method (gray) and the proposed MCDTS embedding (blue) exemplary shown for
on one out of  drawn sub-samples of length N = 5, 000 from the entire time
series (Fig. D., c.f. Table . for abbreviations). While the dashed black lines
show the linear trend for both CCM correlations, the dashed red line shows the
Pearson linear correlation between the heat release and the pressure time series,
indicating no influence. We ensured convergence of the cross mapping, and, thus,
a true causal relationship, if there was a positive trend in the CCM-correlation
over increasing time series length (slope of the dashed black lines) and when the
last point of the CCM-correlation (i.e., longest considered time series length)
exceeded a value of . (in the shown case Cao’s method did not detect a causal
influence of the heat release to the pressure). We tested this on all  sub-samples
for both causal directions. B True classified causal relationships as a fraction of all
sub-samples based on the embedding of each time series using Cao’s method and
our proposed MCDTS method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Average pointwise difference of the CCM-correlation coefficients for the direction
heat release → pressure and vice versa for both underlying reconstruction
approaches. For a better visualization we sorted these values here separately for
both methods. A positive value indicates that the heat release has a stronger
causal influence on pressure than vice versa, which is the expectation value.
Diamonds indicate cases, where we could not deduce a causal relationship for both
directions in one sample. As also shown in the right panel of Fig. .B,
MCDTS-C-CCM was able to correctly detect a mutual causal relationship in %
of all considered samples (only  % marked with blue diamonds in this Figure),
whereas in the case of Cao’s reconstruction approach, we could only detect this in
% of all cases ( % marked with gray diamonds in this Figure). . . . . . . . . 

. Selected histograms of the L2 (A,C,E) and L∞ (B,D,F) distances of N = 1, 500
independent random numbers with uniform A+B and Gaussian C+D distribution
as well as E+F for the y component of the Lorenz- system (Eq. (B.),
N = 6, 000, see Section .) with control parameters σ = 10, β = 8/3 and r
linearly increasing from  (chaotic regime) to  (periodic regime), for different
embedding dimensions m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. Time-dependence of RTE (ensemble means and two-sided % confidence intervals
from , independent realizations) based on the y component of the
non-stationary Lorenz- system (see text for details) using the L2 norm. The
blue lines show the results for time-delay embedding with different embedding
dimensions (m = 3, . . . , 10) and for four different methods to select the recurrence
threshold according to A a certain percentile of the distance distribution and some
percentage of the B maximum, C mean and D median distance between state
vectors on the reconstructed attractor. The actual threshold values (4th
percentile, 8%, 24% and 24%, respectively) have been chosen such that the global
recurrence rate of approximately 4% is achieved for each method in the embedding
scenario with m = 3. The red line shows the reference time series gained from
, independent realizations of the non-stationary Lorenz- system by
randomly choosing initial conditions and using all three components as state
variables. Shaded areas (gray and red) indicate the two-sided 90% confidence
intervals estimated from the respective ensembles. . . . . . . . . . . . . . . . . . . 

. Parallel and close parts of a phase space trajectory A correspond to diagonal lines
of length ` in an RP B. Diagonal lines can be cut by the border of the RP (green
circles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. RPs of A standard normal Gaussian random numbers, B time-delay embedded
sinusoidal with an oscillation period T = 100 time units (m = 2, τ = T/4), and C
the Rössler system (a = 0.15, b = 0.2, c = 10) (only subsets shown). RPs were
constructed from time series of , samples (in case of the Rössler system we
removed transients) using a constant global recurrence rate of % with a fixed
threshold and Euclidean norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Diagonal line length distributions of the different systems types described in
Fig. ., gained from the conventional line counting. . . . . . . . . . . . . . . . . 

. Diagonal line length histograms of the conventional line length computation A and
of the presented correction schemes B-E for a monochromatic time-delay
embedded sinusoidal with an oscillation period T = 100 time units (m = 2,
τ = T/4, same as in Figs. .B and .B). An enlargement of the histograms from
panels A to D, focusing on the shorter line lengths, is presented in panel F. A
corresponding enlargement of panel E does qualitatively look the same, but with
reduced frequencies, due to the smaller effective window size (see text for details).
For a better visibility we enlarged single bars in panels B to E and limited the
view to a frequency range [0 3] in panels A to E (in F the full range is used). . . 

. Blue shaded alternative window shape with edge length s of a w × w recurrence
plot. s and w imply the number of RP matrix elements covered by the window
shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. A Tangential motion, i.e., points of a trajectory preceding and succeeding a
(recurring) state (gray), cause thickening of diagonal lines in the RP B, C. The
thickening of diagonal lines can vary, e.g., as in this example of the Rössler system
(noise free case in B and additive noise in C). The diagonal lines are more thick at
the beginning and become less thick with time. A diagonal line in an RP (B, C)
denotes a range of distances in the distance matrix falling under a the recurrence
threshold ε. Panels D and E show three “distance ranges” (we call such a range D
in the text) corresponding to the three lines in B, C respectively. Shown is a
color-coded, thresholded distance matrix with reversed z-axis for a better visibility
(increasing distances from top to bottom). The colormap encodes zero distance as
black and the distance corresponding to the recurrence threshold as grey. . . . . . 

. Different approaches for avoiding the effect of tangential motion in a recurrence
plot (RP), exemplary shown for the Rössler system (with parameters a = 0.15,
b = 0.2, c = 10, sampling time ∆t = 0.2). A Normal RP with fixed recurrence
threshold ensuring % global recurrence rate as a basis to all other RPs shown in
this figure. B Perpendicular RP with angle threshold ϕ = 15°, C isodirectional RP
with T = 5 [sampling units] and ε2 = ε/2, D true recurrence point RP (TRP)
with Tmin = 5 [sampling units], which coincides with the first minimum of the
mutual information, E thresholded local minima approach with two parameters
(LMP) and τm = 5, and F diagonal RP. . . . . . . . . . . . . . . . . . . . . . . . 

. Diagonal line length entropy of the proposed diagonal recurrence plot R↗ (cf.
Section ..) of the Rössler system (reddish) and the Logistic map (bluish) in a
regular limit cycle regime (bright) as well as in a chaotic regime (dark). Shown are
medians of the diagonal line length entropies gained from , realizations of the
Logistic map and  realizations of the Rössler example, respectively, for the
different line counting correction schemes described in Section .. Errorbars
indicate two standard deviations of these distributions. Black stars show medians
of ensembles of , analytically computed values derived from Eq. (.) (its
errorbars, as two standard deviations of the ensemble distribution, are barely
visible and smaller than markers used). Firstly, RPs were obtained with a fixed
recurrence threshold corresponding to % recurrence rate in case of the Rössler
examples and a fixed recurrence threshold corresponding to 1/10 of the range of
the underlying time series in case of the Logistic map examples (for noise free map
data the ε-adjustment with respect to the global recurrence rate does not work
properly). Then our proposed, parameter free correction scheme leading to the
diagonal recurrence plot R↗ was applied. Results for a range of recurrence
thresholds and for all tangential motion RP-correction schemes are shown in
Fig. F. and Fig. F. in the Appendix F. . . . . . . . . . . . . . . . . . . . . . . . 
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. Diagonal line length entropy based on the proposed line counting correction
scheme kelo (cf. Section ..) for the Rössler system (reddish) and the Logistic
map (bluish) in a regular limit cycle regime (bright) as well as in a chaotic regime
(dark). Shown are medians of the diagonal line length entropies gained from ,
realizations of the Logistic map and  realizations of the Rössler example,
respectively, for all the different tangential motion correction schemes described in
Section ., but the perpendicular recurrence plot R⊥. Errorbars indicate two
standard deviations of these distributions. Black stars show medians of ensembles
of , analytically computed values derived from Eq. (.) (its errorbars, as
two standard deviations of the ensemble distribution, are barely visible and
smaller than markers used). The normal RP with a fixed recurrence threshold
corresponding to % recurrence rate in case of the Rössler examples and a fixed
recurrence threshold corresponding to 1/10 of the range of the underlying time
series in case of the Logistic map examples (for noise free map data the
ε-adjustment with respect to the global recurrence rate does not work properly)
serves as a basis for the RP correction schemes shown here. Results for a range of
recurrence thresholds and for all tangential motion RP-correction schemes are
shown in Fig. F. and Fig. F. in the Appendix F. . . . . . . . . . . . . . . . . . 

. Cut outs of A+D the perpendicular recurrence plot R⊥, B+E normal RP, and
C+F the diagonal recurrence plot R↗ of the highly sampled Rössler system in
chaotic regime (see text for details). Top panels A-C show noise free cases, bottom
panels D-F show their noise contaminated counterparts. Computations have been
carried out by using a fixed recurrence threshold corresponding to % recurrence
rate and an angle threshold ϕ = 15◦ for R⊥. . . . . . . . . . . . . . . . . . . . . . 

. Normalized diagonal line length entropy estimates for all described correction
schemes for counting diagonal lines (Section .) based on the diagonal recurrence
plot R↗ (Section ..) of the high sampled Rössler system as a function of the
chosen minimal line length `min. The top panels (A - chaotic motion , B - regular
motion) show the noisefree case and in the bottom panels (C - chaotic motion, D -
regular motion) the results for noise corrupted data are shown. We added noise
from an auto-regressive (AR) process of second order as % of the mean standard
deviation of the multivariate signal gained from the numerical integration (cf.
Eq. (.)). The underlying RPs for obtaining R↗ were computed using a fixed
recurrence threshold corresponding to % recurrence rate. The grey shaded areas
show medians of ensembles of , analytically computed reference values for K1
± two standard deviations of these distributions transformed by using Eq. (.). 

. Schematic illustration of a τ -recurrence rate based spectrum. A x-component time
series of the Lorenz-System (Eq. (B.)) and B its corresponding Fourier power
spectrum. C Reconstructed state space portrait from the time series shown in A
using PECUZAL time-delay embedding []. D Subset of the recurrence plot and
the corresponding τ -recurrence rate obtained from the state space trajectory in C.
The shaded interval in the time series in A corresponds to the shown subset. E
Fourier Power spectrum obtained from the τ -recurrence (subset shown in panel D)
[]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. The transformation of a Dirac comb (series of Dirac delta functions) with a single
inter-spike period Tis = 100 (=̂f = 0.01) into the frequency domain. A Dirac
Comb (DC) with equal amplitudes and B its FFT-based powerspectrum. C
Proposed inter spike spectrum of the signal in A showing a single frequency, which
corresponds to the inter-spike period Tis (f = 0.01). D DC with randomly chosen
amplitudes and same Tis as in A, and E its FFT-based powerspectrum. F
Proposed inter spike spectrum of the signal in D showing a single frequency, which
corresponds to the expected inter-spike period Tis (f = 0.01). . . . . . . . . . . . 

. Example for a set of basis functions for an input signal of length N = 5, aligned in
the matrix X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Inter spike spectra of the τ -RR of the Rössler system in three different dynamical
regimes with parameters b = 2, c = 4. Trajectory of the system in a A period-
(parameter a = 0.36), B in a period- (parameter a = 0.41) and C in a chaotic
regime (parameter a = 0.428). D, E, F The corresponding RPs, obtained by using
a recurrence threshold corresponding to a % global recurrence rate for D & E
and % for F. G, H, I τ -RR’s of the shown RPs. J, K, L The proposed inter spike
spectra of the τ -RR’s shown in panels G, H, I. The distance ratio of the peaks
reflect the limit cycle dynamic. M, N, P Fourier power spectra of the τ -RR’s
shown in panels G, H, I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. A Lyapunov exponent of the Logistic map as a function of the control parameter
r. B Number of significant peaks (α = 0.05) in the inter spike spectrum of the
τ -RR, random surrogates. C Same as B, but for iterative Amplitude Adjusted
Fourier Transform (iAAFT) surrogates [, ]. . . . . . . . . . . . . . . . . . 

. A δ13C and B δ18O isotope records and their corresponding RPs (C+D), obtained
from the non-embedded time series under a fixed recurrence threshold
corresponding to % global RR. These plots were used by Westerhold et al. []
to classify the major climate states Hothouse, Warmhouse, Cold- and Icehouse. . 

. Evolutionary spectrograms based on A FFT powerspectra of the detrended δ18O
time series and B on the inter spike powerspectra of the τ -RR of the PECUZAL
embedded δ18O record. The spectrograms were computed with a
w = 1, 000(=̂ -Myr) window and a step ws = 1. We used the embedding
computed in Chapter  (Section .., see Table D.) and a recurrence threshold
fixed to % global RR, in order to ensure comparability within the different
windows [] (Chapter ). Dashed red horizontal lines indicate major climate
transitions according to Westerhold et al. []. . . . . . . . . . . . . . . . . . . 

. Same as in Figure ., but for the detrended δ13C isotope record. . . . . . . . . 

. A Topographic map of the Chew Bahir basin, showing the outline of the
catchment, the drainage network, the locations of the short cores in the pilot study
(, ), and the  HSPDP-CHB drill site. B Geologic map of the Chew
Bahir basin, showing the three generalized rock types: Cenozoic rift sediments,
Cenozoic rift volcanics, and Proterozoic basement. Compilation based on Omo
River Project Map [], Geology of the Sabarei Area, Geology of the Yabello Area,
and Geology of the Agere Maryam Area. Maps are modified versions of the ones
previously published in Trauth et al. [] and Foerster et al. [] . . . . . . . . . 
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. Recurrence plots (RPs) and recurrence quantification analysis (RQA) measures for
synthetic data representing common types of dynamic behavior: A
normally-distributed (Gaussian) noise. B Composite signal comprising two sine
waves and a positive trend in the mean. C Composite signal comprising a sine
wave and Gaussian noise with decreasing signal-to-noise ratio from left to right. D
Composite signal comprising two sine waves and a trend in the frequencies. E
Abrupt transition from a composite signal comprising two sine waves to a signal
with only one sine wave. F Normally-distributed (Gaussian) noise with a stepwise
transition in the mean and a change in the auto-correlation prior to this
transition. The examples display the time series (upper panel), the RP (middle
panel) and the RQA measures (lower panel). Parameter abbreviations are m =
embedding dimension, τ = time delay, ε = recurrence threshold, w = window size,
ws = window moving steps, norm = vector norm, thei = size of Theiler window,
lmin = minimum line length, RQA measures RR = recurrence rate and DET =
determinism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Recurrence plot (RP) and recurrence quantification analysis (RQA) measures of
the complete record (−45, 358 to 0 yrs BP) from the Chew Bahir basin: time
series (upper panel), the RP (middle panel) and the RQA measures (lower panel)
of moving windows determined either by A calculating the RQA measures for
windows moving along a single (global) RP and B by calculating individual RPs
for windows moving along the entire time series. See previous figure for the
meaning of the abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Recurrence plot (RP) and recurrence quantification analysis (RQA) measures for
the Chew Bahir basin covering of the time interval between  and  kyr BP: time
series (upper panel), the RP (middle panel) and the RQA measures (lower panel)
of moving windows determined by calculating individual RPs for windows moving
along the entire time series. See previous figure for the meaning of the abbreviations.

. Recurrence plot (RP) and recurrence quantification analysis (RQA) measures for
the Chew Bahir basin covering of the time interval between  and  kyr BP: time
series (upper panel), the RP (middle panel) and the RQA measures (lower panel)
of moving windows determined by calculating individual RPs for windows moving
along the entire time series. See previous figure for the meaning of the abbreviations.

. Recurrence plot (RP) and recurrence quantification analysis (RQA) measures for
the Chew Bahir basin of the time interval between  and  kyr BP: time series
(upper panel), the recurrence plot (middle panel) and the RQA measures (lower
panel) of moving windows determined by calculating individual RPs for windows
moving along the time series. See previous figure for the meaning of the
abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. Map of northeastern Africa and adjacent areas showing the location of the Chew
Bahir basin (°’."N °’."E, ∼500 m above sea level), the ODP Leg
 Site  in the eastern Mediterranean Sea (°’"N °’"E, ∼2, 254 m
water depth), and the river Nile with its two tributaries the White and Blue Niles
connecting both regions. Coastline and river polygons from the Global
Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) [].
Topography from the  arc-minute global relief model of the Earth’s surface
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. A Time dependence of ∆DETRL and ∆RTERL, derived from EEG data of the
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of the Rössler system (Appendix B.) for TDE, Garcia & Almeida’s, MDOP, and
PECUZAL method. Ensembles of function calls for each considered time series
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Chapter 

Introduction

"Everything goes, everything comes back; eternally rolls the wheel of being.
Everything dies, everything blossoms again; eternally runs the year of being.

Everything breaks, everything is joined anew; eternally the same House of Being is built.
Everything parts, everything greets every other thing again;

eternally the ring of being remains faithful to itself."

Friedrich Nietzsche

. Background and motivation

The cyclic understanding of time is a basic concept which constituted many ideas in Friedrich
Nietzsches philosophy (“Ewige Wiederkunft”). Not only does recurrence influence philosophers,
it is an ubiquitous phenomenon in our daily life. Obviously, day and night are recurrent. But
also states of complex chaotic systems like the weather or more abstract things like a collective
mood on a festival with thousands of people seem to recur. Life on earth, and probably elsewhere,
has developed under recurrent external conditions. This type of regularity is fundamental to
learning, be it in an evolutionary or in a neural context associated with living beings. Some
situations occur over and over again, and other situations do not occur in exactly the same
way, but rather are similar in their course to previously observed situations. Both phenomena
allow to make predictions of the future based on past observations. This applies both to regular
deterministic systems such as the motion of the earth in the orbit of the sun, which obeys
Newton’s laws of gravity, and to deterministic chaotic systems like a current in a river, which
follows the Navier-Stokes equation. The difference is the time scale of the prediction horizon
and the observation time needed for a certain prediction accuracy [, ]. Nonlinear, complex
systems often exhibit chaotic behavior and long term predictions will fail due to the sensitivity to
initial conditions. But even then short-term predictions are possible []. The common feature
is their deterministic structure, reflected in the governing equations. These (partial nonlinear)
differential equations describe the dynamical evolution of the systems they describe and, hence,
their recurring features.

Recurrence is indeed a fundamental property of many dynamical systems. Mathematically, this
is formalized in the Poincaré recurrence theorem, which states that an autonomous, Hamiltonian
and bounded system “recurs infinitely many times as close as one wishes to its initial state”


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[]. This statement seems to contradict the second law of thermodynamics, which postulates
that the thermodynamic Boltzmann entropy is a monotonic function in closed systems. Ernst
Zermelo argued that a function (the entropy as a function of time) can not be both, recurrent
and monotonic []. This led Ludwig Boltzmann to respond in a rather statistical, probabilistic
view of the second law, which eventually incorporates the anthropic principle. On a cosmological
scale Carroll and Chen [] argued that the system universe is not bounded and, thus, Poincaré’s
recurrence theorem would not be applicable. Despite these (ongoing) discussions on a cosmological
scale, the assumptions can be fulfilled for a wide range of problems.

Due to its fundamental nature, recurrence can be used in the description, analysis and modeling
of systems [, ]. Within the emerging field of chaos and complexity science in the last third of
the past century, recurrence analysis (RA) occupied a niche in nonlinear physics and time series
analysis. Applications of RA can be found in various fields of research ranging from Astrophysics,
Engineering, Geo- and Earthscience to Neuroscience, Biology or Economics. It has been used for
classification tasks, testing stationarity, prediction, detection of causality and synchronization and
for chaos control. However, RA is not a trivial tool to use in any arbitrary statistical analysis.
Recall that Poincaré’s recurrence theorem only holds for Hamiltonian systems, which implies
an appropriate representation of a system in its phase or state space. This is typically not what
experimenters measure directly. Moreover, for most systems this state space is high dimensional,
which raises the question of how to keep track of recurrences occurring in that space.

Lorenz attractor

y

z

x

 Recurrence Plot (RP)

time

tim
e

A B

Figure .: A The famous “Butterfly ” Lorenz attractor (Eq. (B.) with σ = 10, ρ = 28, β = 8/3)
in state space and B its recurrence plot representation ( % global recurrence rate).

Recurrence plots (RPs), introduced by Eckmann et al. [], provide a versatile tool for visualizing
and quantitatively analyzing the succession of dynamically similar states of a system. Even
complex and chaotic systems can be transformed into such a -dimensional representation as
shown in Figure . for the famous Lorenz butterfly. RPs are the foundation of RA, which is
typically concerned with their analysis. This can be a visual inspection of the encoded structures

A comprehensive and profound overview of published articles related to RA can be found at http://www.
recurrence-plot.tk/bibliography.php


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or a quantification of those, the so called Recurrence Quantification Analysis (RQA). By recalling
the above described fundamental nature of recurrence and the idea of plotting recurrences in a
simple, binary way it seems natural to ask the following questions:

• Can RA be used for any sort of system we want to analyze? In particular, can the state
space of the system be obtained from only one or a few measurement time series?

• Can complex systems such as the earth’s climate or the human brain be better understood
by using RA?

• Is it possible to physically interpret structures and patterns in a recurrence plot? Is there
some sort of recipe that relates these patterns to the properties of the underlying state
space trajectory or time series?

The answers to these questions are clearly Yes and No. RA is an active field of research and this
dissertation seeks to answer some of the many open questions that arise from these questions.
A non-negligible point that motivated me to further explore RA is the fact that even extremely
complicated-looking time series can be embedded in a RP, which impresses with its simplicity
and beauty with a wealth of information at the same time. The question of how the topology of
occasional high dimensional state spaces is encoded in quantifiable patterns in a RP is especially
appealing to me.

This work focuses on the methodological aspect of RA, which I will elaborate on in the following
section and which will eventually lead to the formulation of the guiding research questions of
this thesis in Section .. Yet, it is also interdisciplinary and motivated by direct applications in
Paleoclimatology (the Chew Bahir Drilling Project), Engineering and Neuroscience. Emerging
questions from applications in these fields have strongly influenced and steered the methods
developed in the framework presented here.

. The basics

In order to visualize similar states of a system one has to define what similarity actually means in
this context. For this purpose, dynamical similarity is measured in terms of some metric distance
di,j = ‖~xi − ~xj‖ defined in the underlying system’s d-dimensional state space. The vector time
series {~xi}Ni=1 (with ~xi = ~x(ti)) can be obtained from direct measurements of the system under
study or from embedding a measured subset of observables.

Based on the resulting distance matrix d = (di,j), a recurrence matrix R = (Ri,j) is defined by
thresholding d such that its entries assume values of , if the distance between the two associated
state vectors is smaller than or equal to a threshold ε, and  otherwise. It is, thus, a binary,
square matrix:

Ri,j(ε) =
{

1 : di,j ≤ ε
0 : di,j > ε,

i, j = 1, ..., N (.)

Equivalently, we can write

Ri,j(ε) = Θ (ε− ‖~xi − ~xj‖)
= Θ(ε− di,j), i, j = 1, ..., N, ~x ∈ Rd, (.)


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Figure .: Principle of recurrence plot. One way to untangle the dynamics of a multi-dimensional system
from a one-dimensional time series s(t) (panel A) is by time-delay embedding. The embedding of
the time series s(t) in a three-dimensional coordinate system for example (a reconstructed state
or phase space), means that three successive values s(t), s(t+ τ) and s(t+ 2τ) with a temporal
separation of τ are represented by a single point ~v(t) within the phase space [, ] (panel B).
We picked a three dimensional embedding here for didactic and visualization reasons. Estimating
the correct embedding dimension is an active research topic. Recurrence plots (RPs, panel D),
first introduced by Eckmann et al. [], are graphic displays of recurring states within a system,
computed from the distance (e.g. the Euclidean distance d, shown in panel C) between all pairs
of phase space vectors ~v(ti) and ~v(tj), below a threshold value ε (also shown in panel C) [].

where Θ(·) is the Heaviside function. In this definition, the threshold ε is fixed with respect to all
pairwise distances contained in d. An alternative definition of the recurrence matrix [, ]
replaces the global, fixed recurrence threshold ε applied to all state vectors ~xi by an adaptive
local one. Here the idea is that the number of recurrences (i.e., close state vectors) is the same
for each ~xi (fixed amount of nearest neighbors - FAN), which leads to a constant local (each
column) and global (whole RP) recurrence rate. This procedure is useful, when there are severe
differences in the density of points in state space. In this case lower dense populated areas in the
state space are not well resolved in the RP, when ε is not adaptively chosen. Of course, this can
be simply a result of under-sampling the system. On the other hand, strong density variations
in phase space can be a meaningful information or it is necessary to ensure a fixed threshold,
when comparing RPs stemming from different systems, or from the same system, but at different
dynamics. The research question and the quality of the data decides whether to use an adaptive
recurrence threshold (e.g., Chapters , ) or a fixed one (e.g., Chapter ).

In many, if not most, real world cases the vector time series ~x describing the system’s trajectory
in state space is not directly measurable and there is only access to one measured variable. The
most common way to untangle the dynamics of a multi-dimensional system from a one-dimensional


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time series s(t) is by time-delay embedding, where the key idea is to use lagged values of the
available time series as components of the reconstruction vector ~v(t).

~v(t) = (s(t+ τ1), s(t+ τ2), . . . , s(t+ τm)). (.)

For sufficient choices of the parameters τ1,...,m this representation preserves the dynamic
characteristics of the true, but unknown system [] (Fig. .). The reason why an entire system
needs to be reconstructed from a single variable is that information about the system and the
factors affecting its state variables is contained in a one-dimensional time series, due to the coupling
of the ordinary differential equations describing the system. The embedding of the time series
s(t) in a three-dimensional coordinate system (a reconstructed phase or state space), for example,
means that three successive values s(t), s(t+ τ) and s(t+ 2τ) with a temporal separation of τ are
represented by a single point within the state space (Fig. .). The geometric representation of
the embedded time series of observations as trajectories ~v(t) within the reconstructed phase space
is called a phase portrait. The reconstructed state space is not exactly the same as the original
phase space, but its topological properties are preserved provided the embedding dimension is
sufficiently large [, ].

. Scope and objectives

The briefly discussed basics in the previous section together with the general questions related to
the method of Recurrence Analysis raised in Section . define the scope of the current research
presented in this thesis. We investigate the following research questions:

(R) Are the existing approaches to state space reconstruction, using delayed shifted versions of
the time series, robust, extendable to multivariate input and automatable?

(R) Can we better understand abrupt transitions and regime changes to provide measures for
early warning by using Recurrence Analysis (RA)?

(R) How can results from recurrence quantification analysis (RQA) be evaluated from a statistical
point of view and how can we ensure comparability when using RQA on different samples/
systems?

(R) Can RA be used for classifying climate states, and therefore also climate transitions?

(R) Can RA be used for classifying neuronal activity related to certain motor tasks?

Obviously, these five research questions are strongly interwoven and imply many related
questions. Therefore, they will also be commonly addressed in the parts and chapters of this
work.

. Organization of the thesis

The main contribution of this thesis is based on eight articles, which make up the single chapters.
Five articles are published, one is accepted and two are about to be submitted. Each article is a
stand-alone contribution with an introduction, a methods-, results- and conclusion part. Different
from the published versions of the articles, common definitions are summarized and presented in


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Appendix A, the formatting and design were adjusted to the style of this thesis and a common
bibliography has been compiled. The work is divided into four main parts, which consist of the
mentioned articles (P)-(P) as chapters, illustrated in Figure ., and a summarizing part at the
end.

Part I focuses on the problem of state space reconstruction from observable time series, (R).
In Chapter  a novel approach is presented, the PECUZAL algorithm, which automates the
reconstruction problem in the sense that neither the data has to be pre-processed nor parameters
have to be estimated a priori. The key idea is that the “goodness” of a reconstruction can
be assessed by an appropriate objective function and this function is minimized through the
embedding process. In addition, it can handle multivariate time series input data, which we
consider a valuable feature as multi-channel sensor-based observations are ubiquitous in many
research areas. In Chapter  we take up the PECUZAL idea directly and tackle the minimization
problem of the objective function with a machine learning approach. While PECUZAL can get
stuck in a local minimum of the objective function, the embedding problem is formalized as a
Monte Carlo Decision Tree Search, in order to reach the global minimum.

In Part II some technical and methodological aspects of Recurrence Analysis are discussed,
in order to shed light to (R) and (R). Chapter  mathematically justifies the idea of fixing
the recurrence threshold ε with respect to the distribution of all pairwise distances in the data.
This is especially important, when comparing different RPs and their quantification statistics, as
was done in an application presented in Chapter . This way of selecting the most important
free parameter in Recurrence Analysis is fundamental for any comparative study. However, the
concrete value of ε, i.e. the percentile of the distance distribution, depends on the research
question. Chapter  and  are concerned with some aspects of RQA. While correction schemes
for the biased diagonal line based RQA statistics are presented in Chapter , a new type of
powerspectrum, the spike powerspectrum, is introduced in Chapter . As correction schemes
we propose a simple way of dealing with border effects of an RP in RQA and a skeletonization
algorithm for RPs, which leads to less biased (diagonal line based-) RQA statistics for flow-like
data. The spike powerspectrum, on the other hand, adequately transforms a spike-train like
signal into its frequency domain. When transforming the diagonal line dependent recurrence
rate (τ -RR) of a RP in that way, characteristic periods that are apparent in the state space
representation of the system can be unraveled. Hence, it can be regarded as a generalized,
non-linear powerspectrum based on a system’s state space trajectory. This is not the case, when
Fourier transforming τ -RR. Consequently, the spike powerspectrum of a system’s τ -RR can be
utilized for the detection of transitions and bifurcations.

Recurrence Analysis and RQA are applied to paleoclimate lake sediment data in Part III and
face (R). To our best knowledge this is the first time RPs and RQA have been used for the
analysis of lake sediment data in a paleoclimate context. Therefore Chapter  can be seen as an
introductory paper discussing the basic formalism and the interpretation of visually apparent
patterns in RPs with respect to the underlying proxy data (which is a Potassium time series in
this case). We have shown that these patterns can be used to classify certain types of variability
and transitions in the Potassium record from six short (< 17m) sediment cores collected during
the Chew Bahir Drilling Project. Building on that, the long (∼ m composite) core from


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Figure .: Overview of the sub-projects in this thesis divided into the three main parts State space recon-
struction (left column), RP/RQA methodology (middle column) and Application (right column,
divided into Climate Science and Neuroscience).
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the same site is analyzed in Chapter . Two types of variability and transitions have been dis-
tinguished and were compared to the ODP Site  wetness index from the eastern Mediterranean.

In contrast, RQA has been applied in the neuroscientific context for almost two decades. In
Chapter  of Part IV RQA statistics have been used for quantifying complexity in a certain
frequency band of multivariate EEG-data (electroencephalography) and therefore able to classify
motor-related brain processes. The active experiment setup allowed for addressing (R) and (R)
simultaneously.

In Part V, Chapter  summarizes the main contributions of this thesis and discusses several
open issues that have arisen in the conduct of this research. The Appendix (Part VI) includes a
short overview of Recurrence Analysis and RQA (Appendix A), the models used in the different
Chapters (Appendix B) as well as supplementary material (Appendices C, D, E, F, G H).
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Chapter 

A unified an automated approach to attractor
reconstruction

Kraemer, K. H., Datseris, G., Kurths, J., Kiss, I. Z., Ocampo-Espindola, J. L. and Marwan,
N. (). A unified and automated approach to attractor reconstruction. New Journal of Physics
(), . doi: ./-/abe. []

Abstract

We present a fully automated method for the optimal state space reconstruction from
univariate and multivariate time series. The proposed methodology generalizes the time delay
embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-
uniform delays allows the successful reconstruction of systems inheriting different time scales.
In contrast to the established methods, the minimization of an appropriate cost function
determines the embedding dimension without using a threshold parameter. Moreover, the
method is capable of detecting stochastic time series and, thus, can handle noise contaminated
input without adjusting parameters. The superiority of the proposed method is shown on
some paradigmatic models and experimental data from chaotic chemical oscillators.

. Introduction

State space reconstruction from observational time series often marks the first and basic step
in nonlinear time series analysis. Several methods addressed the reconstruction problem, but
none of them allow for a fully automatized and reliable way of embedding a uni- or multivariate
set of observed time series with no, or at least very few, free parameters. The aim of this
Chapter is to provide such a technique. The embedding theorems of Whitney [], Mañé [],
and Takens [] among with their extension by Sauer et al. [] allow several approaches to
tackle the reconstruction problem. Among using derivative coordinates [, ], PCA [] or
Legendre coordinates [], uniform- and nonuniform time delay embedding [] is by far the
most commonly used technique, due to its appealing simplicity. However, since Takens’ theorem
[] is based on noise-free and infinitely long data, it does not give any guidance to choose
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Unknown dynamical system

Time series

Time delay
embedding

Figure .: Schematic representation of the embedding/reconstruction procedure. See the text for details.
This figure is inspired by Casdagli et al. [] and Uzal et al. [].

the proper time delay(s) τ in practice. Together with the unknown box-counting dimension
DB of the observed, but unknown system, which is needed to fulfill the embedding dimension
criterion m > 2DB + 1, the majority of the published articles propose ideas to infer estimates
for τ and the reconstruction dimension m from data, usually a univariate time series (univariate
embedding). The reconstruction problem starts with the unknown system ~u(t) with a mapping
f : RDB → RDB , which is observed via a measurement function h and lead to M observational
time series {si(t)|i = 1, . . . ,M} (Fig. .). There can be different measurement functions h′

forming the multivariate dataset si(t) and the combination of Whitney’s and Takens’ embedding
theorems allow for constructing ~u(t) from more than one time series (multivariate embedding) [,
]. One then tries to find optimal embedding parameters m and τ ’s (the delays can be integer
multiple of some constant, uniform time delay embedding UTDE, or different for each embedding
dimension, non-uniform time delay embedding NUTDE ) in order to build reconstruction vectors
~v(t) and, thus, a mapping F : Rm → Rm. These can be furthermore transformed by Ψ into ~v′(t)
and F ′, preserving the diffeomorphism to ~u(t). For a detailed introduction into the reconstruction
problem we refer to Casdagli et al. [], Gibson et al. [], Uzal et al. [] or Nichkawde [].
In time delay embedding the key idea is to use lagged values of the available time series as

components of the reconstruction vector

~v(t) = (si1(t− τ1), si2(t− τ2), . . . , sim(t− τm)). (.)


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Here the delays τj , j = 1, . . . ,m are multiples of the sampling time ∆t and the indices
i1, i2, . . . , im each denote the time series index i ∈ [1, . . . ,M ], which has been chosen in the
1st, 2nd, . . . , mth embedding cycle. The delays τj and the corresponding time series sij should
be chosen, such that the resulting components of the vectors forming the reconstructed state
space ~v(t) are as independent as possible [, ], but at the same time preserve the correlation
structure of the system to a certain extent. These two competing objectives are also known as the
problems of redundancy (delays should not be too small) and irrelevance (delays should not be
too large) [, , , ] and its optimization is the goal to any proposed time delay embedding
procedure.
Despite of its lack of a sound theoretical foundation for higher dimensional reconstructions

(m > 2) [, , ], in a univariate scenario (i.e., si1 = . . . = sim = s(t) in Eq. (.)), the
approach to choose τ2 from the first minimum of the auto-mutual information [, ] is most
common. τ1 is usually set to zero, i.e. the unlagged time series constitutes the first component of
the reconstruction vectors. The embedding dimension m is then separately determined, usually by
a false nearest neighbor approach [, , , , ] or some other neighborhood-preserving-
idea [, ] and all delays up to τm are simply integer multiples of τ2 (UTDE). Other approaches
for an appropriate choice of τ2 are possible [, , , , , , , ]. We refer to this as
standard time delay embedding (TDE) in the following. More sophisticated ideas [–, ,
, , , , , , , ], some including non-uniform delays and the extension to
multivariate input data [, , , , , , ] have been presented [, ], but it
seems their use is rather limited and not very popular. This could be due to their occasionally very
complex nature and the lack of high quality open source implementation in the most commonly
used programming languages. Another reason could be the fact that standard TDE performs
surprisingly well in a range of examples; but still, its limitations should not be neglected, in
particular when it comes to noisy time series, systems exhibiting multi-time scale behavior, or
multivariate input data. The latter are becoming of increasing interest in the near future, since
acquisition costs for sensors and data collection decrease rapidly. Moreover, the application of
complex systems approaches and nonlinear dynamics in different scientific disciplines receives
increasing popularity.
Here we propose a fully automated method for an appropriate state space reconstruction of

uni- or multivariate time series input, which utilizes two concepts, the continuity statistic []
and the L-statistic []. We briefly review the basic ideas we will use in our proposed method
(Section .) in order to illustrate their specific utilization in the algorithm (Section .), before
applying it to simulated and experimental data (Section .).

. Review of used concepts

In order to ensure comprehensibility of our proposed method in Section . we explain the two
main concepts of it in the following. In Section .. we review the continuity statistic []
rather detailed, while the L-statistic is described only briefly in Section .. and extensively in
the Appendix C..

.. Continuity statistic by Pecora et al.

In the continuity statistic, the problem of finding an optimal state space reconstruction with
respect to redundancy and irrelevance is addressed by a statistical determination of functional
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Points in d-dimensional
state space
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those points

(1-dimensional)

δ-ball ε-interval

Figure .: Fiducial point (blue) and its k = 4 nearest neighbors (green) in the d-dimensional δ-ball (left
panel). Arrows indicate the mapping f : Rd → R1 (right panel), which is the potential (d+ 1)th
component of each of the points in the left panel (according to a specific delay τd+1 and time
series sjd+1), Eq. (.). To decide whether this ε-interval size accepts or rejects the null hypothesis
on a significance level α the cumulative binomial distribution for getting at least l = 3 points in
the ε-interval with probability p is used (modified after Pecora et al. []).

independence among the components of the reconstruction vector []. Let {si(t)|i = 1, . . . ,M}
be a multivariate dataset consisting ofM time series, equally sampled at time instants t = 1, . . . , N .
Suppose we have already chosen some delays τk to build our temporal reconstruction vector ~v(t)
of dimension d. This is, ~v(t) = (sj1(t + τ1), sj2(t + τ2), . . . , sjd(t + τd)), with jk ∈ {1, . . . ,M}
being the choices of the different time series and τk the according delays, which can be – and most
often are – different. Then for a new potential component of ~v(t) we ask if this new potential
component can be expressed as a function of the existing components. Mathematically speaking,
the equality

sjd+1(t+ τd+1) ?= f (sj1(t+ τ1), sj2(t+ τ2), . . . , sjd(t+ τd)) (.)

needs to be tested in an appropriate way, i.e., a sensible choice for f : Rd → R1 has to be made.
This choice can be based on the property of continuity [].

The practical implementation of Eq. (.) would start with mapping k nearest neighbors, ~vk(t),
of a fiducial point ~vfid(t) from Rd → R1, as illustrated in Fig. .. That is, for each of the (k + 1)
d -dimensional points in the left panel a potential (d+1)th component sjd+1(t+τd+1) is considered
and drawn onto the number line (right panel). The continuity statistic now asks whether these
k+1 points on the -dimensional number line fall within a certain ε-interval size by chance, or due
to the fact that there is a functional relationship between the d and the (d+ 1)th component of a
potential reconstruction vector ~v(t). The according null hypothesis is that l of the k + 1 points
landed in the ε-interval by chance, with probability p on the basis of the binomial distribution.
When the number of observed neighbors, which are mapped into the ε-interval, is larger than
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the expected number from the binomial distribution for a selected α, i.e. l points, then the null
can be rejected and, thus, a functional relationship can be assumed. The number of considered
nearest neighbors k (i.e., the size of the δ-ball in Fig. .) also determines the acceptable number
of k + 1− l points falling outside the chosen ε-interval for a given probability parameter p of the
binomial distribution and a given α. For each candidate delay τd+1 and each time series sjd+1 for
each k (at a given p and α) there is a minimal spatial scale ε?′ for which the null hypothesis can
be rejected, i.e., a minimal size of the ε-interval in the right panel of Fig. .. For the sake of
avoiding redundancy while choosing the right delay, an ε?′ for each potential τd+1 has to be found.
This is simply the distance from the fiducial point to its lth-nearest neighbor. By averaging over
a range of fiducial points we eventually get the final continuity statistic 〈ε?〉(τ) as a function of
considered delay values τ (Fig. .).

The final idea for achieving an optimal embedding is a sequential one. For each embedding cycle
Dd, i.e. for trying to find an appropriate additional component to build a reconstruction vector ~v(t)
of dimension d+ 1, initially starting with a -dimensional time series ~v(t) = {si(t)|i = 1, . . . ,M},
the 〈ε?〉(τ) values for a range of possible delay values τ and for each time series si(t) gets
computed. The τ of the highest relative maximum of 〈ε?〉(τ) is selected as the optimal delay for
this embedding dimension d. This delay is used to build up the temporal reconstruction vectors
~v(t) with the according time series. From here the next embedding cycle Dd+1 gets executed
and the process gets repeated until some break criterion terminates the procedure, i.e., when a
sufficiently high embedding dimension m is reached.
Even though the idea of the continuity statistic is indeed promising, in this approach several

unanswered questions remain, making the proposed idea not suitable for a fully automated
embedding approach.
i) The choice of p = 0.5 has been made plausible and also our tests support this idea, while

α = 0.05 or α = 0.01 is standard in science (see Figs. C., C., C. in Appendix C.), so we can
safely fix them to these values. What is not so clear, but highly relevant for the method, is how to
choose the optimal delay τ from the continuity statistic. Specifically, we might ask what “relative
maximum” exactly means and if there is any objective criteria for that choice. Moreover, it is
also not clear how to obtain the continuity statistic in the first place with respect to the size of
the neighborhood, i.e. the size of the δ-ball in Fig. .. We propose to vary k from k = 8 to some
higher value, like k = 14, for each considered delay τ and take the minimum of all trials ε?′ (and
finally average over all fiducial points in order to obtain 〈ε?〉). This is allowed, because there is
no preferred choice of k, but a lower bound (see Table  in Pecora et al. []), and generally the
choice depends on the amount of available data and its sampling rate.
ii) In the original study, it was proposed that the continuity statistic on its own provides a

breaking criterion for the method, namely, when “〈ε?〉 remains small out to large τ , we do not need
to add more components.” [] However, this is no objective criterion and introduces a statistic,
which would quantify small, and also a threshold, which determines when small is small enough.
Due to folding and stretching of the attractor for high delay values τ , especially in case of chaotic
systems, we expect 〈ε?〉 to increase with higher τ , anyway. For these cases a (computationally
intensive) irrelevance measure, the undersampling statistic, has been proposed []. Nevertheless,
even though the undersampling statistic prevents the choice of irrelevant delays, it does not tell
which of the local maxima of the continuity statistic we should pick and when to stop adding
more components to the reconstruction vectors . As an alternative to assess the irrelevance,

Implicitly the undersampling statistic could be used as a break criterion, when all of the considered delays (local
maxima in the continuity statistic) are above the chosen significance level β in the corresponding undersampling
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the L-statistic has been suggested [] which will be later used for our automated approach to
attractor reconstruction.

.. L-statistic by Uzal et al.

The L-statistic is an objective cost function, which quantifies the goodness of a reconstruction,
independent of the reconstruction method []. It has two free parameters, k and TM . The
approach uses ideas of noise amplification and minimization of the complexity of the reconstruction,
which lead to a variable σ, and combines it with an irrelevance measure α. Specifically, the
method estimates the conditional variance of neighborhoods consisting of k nearest neighbors
as the relative dispersal of these neighborhood points with respect to the center of mass of that
neighborhood T time steps ahead. Eventually this conditional variance estimate gets averaged
over a range of prediction horizons T up to a maximum value TM and is normalized with respect
to the original neighborhood size, thus defining σ. The irrelevance measure α is basically the
averaged inter-point distance, which depends on the sampling. The final statistic is then defined
as

Lk = log10(αkσk), (.)

where the index k indicates the dependence on the chosen number of nearest neighbors. A detailed
description can be found in Appendix C.. The authors showed, that the L-statistic converges
for any k ≥ 3. Our analysis (Fig. C. in Appendix C.) supports this assumption and, thus,
we can fix k = 3. However, the second free parameter TM will alter the resulting L-statistic at
any value. Particularly in the way we want to utilize the concept of this cost function in our
automated embedding scheme, we need to tackle this parameter dependency (see Section .). It
is worth mentioning that the L-statistic inherits the minimization of a mean squared prediction
error (MSE) (here computed using a local constant model based on the first k neighbors) and the
FNN-statistic proposed by Kennel et al. [] (when k = 1 and TM = τ).

. New reconstruction method

The L-statistic (Section .., Appendix C.) on its own could guide the reconstruction problem
on finding the optimal delay values and a sufficiently high embedding dimension, when used in a
brute-force-approach, i.e., scanning all possible delay values of all available time series in every
single possible combination. It is not clear a priori how to set the parameter TM for obtaining
the L-statistic, so the described procedure has to be repeated for a range of values for TM . In
most cases, this is not computationally feasible and, therefore, not suitable for a fully automated
embedding approach. We propose to combine the continuity statistic (Section ..) and the
L-statistic (Section ..). The continuity statistic 〈ε?〉 guides the preselection of potential delays
τ and time series {si(t)|i = 1, . . . ,M} in each embedding cycle Dd, whereas the L-statistic decides
which one to pick.

This algorithm works recursively. An embedding cycle Dd determines the optimal time delay
and its corresponding time series and enables us to build the actual reconstruction vectors ~vact

statistic. But this will not hold for non-chaotic systems and leads to very high embedding dimensions in these
cases.
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from this, having dimension d+ 1. Algorithm  and Fig. . explains the method in detail, which
we refer to as “PECUZAL” algorithm in honour of its roots.
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Figure .: Illustration of the proposed embedding procedure for a univariate case, using the y-component
of the Lorenz system (Appendix B.). A Blue, yellow, and green lines represent the continuity
statistics 〈ε?〉 for the three embedding cycles the Algorithm  computes. Triangles identify the
τ values corresponding to local maxima of 〈ε?〉. Then, the local maximum which corresponds
to the maximum decrease of the L-statistic with respect to the actual reconstruction vectors
~vact, denoted as ∆L (orange triangle) is chosen as a delay time in each embedding cycle. In the
third embedding cycle the cost-function cannot be minimized any further, i.e. all peaks lead to a
non-negative ∆L. In this case no delay value is chosen and the algorithm breaks. B We end up
with a -dimensional embedding and lags τ1 = 0, τ2 = 10, τ3 = 5.

() For the actual reconstruction vectors ~vact, in each embedding cycle Dd, 〈ε?〉i(τ) is computed
for all available M time series si(t). We comment on the procedure in the first embedding
cycle D1 further below.

() We consider all those delays τj for each 〈ε?〉i(τ), which correspond to local maxima τ̂j
in 〈ε?〉i(τ). These delays τj (and their corresponding time series sij (t)) are used to build
temporary reconstruction vectors ~vtemp(τj , sij ), by concatenating ~vact with the τj-lagged
time series sij (t).

() For each ~vtemp(τj , sij ) and the actual reconstruction vectors ~vact the L-statistic is si-
multaneous computed for many parameters TM (c.f. Fig. .), and we denote them as
L~vtemp(τj ,sij )(TM ) and L~vact(TM ). We compute the maximum L-decrease for ~vtemp(τj , sij )
with respect to ~vact as ∆Ltemp(τj ,sij ) = min

TM
[L~vtemp(τj ,sij )(TM )− L~vact(TM )]. This way TM

is not a free parameter anymore.
() The delay-time series combination (τj′ , sij′ (t)), which yields the minimum ∆L value will

be picked for this embedding cycle Dd, if ∆L < 0, and is used to construct the actual
reconstruction vectors ~vact = ~vtemp(τj′ , sij′ ) of dimension d+ 1

() ~vact is passed into the next embedding cycle Dd+1.
() We repeat steps () to () until we cannot minimize the L-statistic any further, i.e. when each

considered potential embedding ~vtemp will yield a positive ∆L. In this case the reconstruction
cannot get any better and we stop. ~vact constitutes the final reconstruction. Thus, the
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L-statistic provides a break criterion, without the introduction of any threshold parameter.
Each embedding cycle ensures the maximum possible decrease of the cost-function.

Algorithm  Pecuzal Embedding
: Input: A uni- or multivariate dataset consisting of M time series si with same length and

sampling and a range of possible delay values τ = 0 : τmax
: Normalize all M time series to zero mean and unit variance
: Set ∆Lmin = −inf
: while ∆Lmin < 0 do
: if st embedding cycle D1 then
: Compute 〈ε?〉ik(τ) for all M2 pairwise combinations of si, sk for the given τ ’s
: for each peak τ̂j in each 〈ε?〉ik(τ) do
: Create ~vtemp by appending the time series si with the τk-lagged time series sk
: Compute the L-statistics for ~vtemp and si for a range of parameter values

TM = 2 : τmax, denote them as Ltemp(TM ) and Lsi(TM )
: Compute ∆Ltemp = min

TM
[Ltemp(TM )− Lsi(TM )]

: end for
: From all ∆Ltempj take the τj , which corresp. to the peak with minimum ∆L, ∆Lmin
: Save ∆Lmin and ~vtemp
: else if Dd then
: Compute 〈ε?〉i(τ) for ~vact and all si for the given τ ’s
: for each peak τ̂j in each 〈ε?〉i(τ) do
: Create ~vtemp by appending ~vact with the τi-lagged time series si
: Compute the L-statistics for ~vtemp and ~vact for a range of parameter values

TM = 2 : τmax, denote them as Ltemp(TM ) and Lact(TM )
: Compute ∆Ltemp = min

TM
[Ltemp(TM )− Lact(TM )]

: end for
: From all ∆Ltempj take the τj , which corresp. to the peak with minimum ∆L, ∆Lmin
: Save ∆Lmin and ~vtemp
: end if
: if ∆Lmin < 0 then
: Set ~vact = ~vtemp
: end if
: end while
: Set ~vfinal = ~vact
: Output: The final reconstruction vectors ~vfinal

We give some remarks on the proposed idea:
i) In case of the very first embedding cycle the actual reconstruction vectors ~vact are not yet

defined. Roughly speaking, the algorithm needs to find a time series to start with and which
can act as the first component of the final reconstruction vectors. As explained in Algorithm ,
each of the available time series serves as ~vact in the first run and consequently M2 continuity
statistics get computed in the first step, i.e., for each combination (i, k) of the given time series
si(t). Note that we always use the unlagged available time series si(t), which will constitute
the first component of the reconstruction vectors, i.e. we set τ1 = 0. The continuity statistic
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reveals the correlation structure of its input, meaning that a lagged initial time series would lead
to different consecutive delay values. However, the difference of the finally chosen delay values
as well as the total time window of the reconstruction Tw= max(τ1, τ2, . . .) would be identical,
because the correlation structure does not change, at least in case of infinite data. Practically,
any τ1 6= 0 only reduces the amount of data available and searching for the optimal τ1 in the
sense of a minimal ∆L for the first embedding cycle D1 would increase the computation time
tremendously.

ii) The L-statistic can not serve as an absolute measure, due to its dependence on the parameter
TM . Consider a time series and a potential -dimensional embedding consisting of this time series
and a τ -lagged version of it. This corresponds to the first embedding cycle D1 in Algorithm .
Figure . shows the L-statistic for a range of parameters TM for the single time series and for
the potential -dimensional reconstruction for two deterministic systems (panels A, B) and in
case of the time series being uniformly distributed random numbers (panel C). Whenever the
L-statistic of the -dimensional reconstruction (orange graph) is lower than the one from the
single time series (blue graph) an embedding would be beneficial (gray shaded areas in Fig. .).
But this is not always the case throughout the course of TM (see panel B). The conclusion is,
that it is not meaningful to judge a reconstruction on a single L-value, gained from a fixed TM .
A reconstruction is always related to a function L(TM ) of the parameter TM and it is sensible
to look at relative L-discrepancies between two consecutive embedding cycles, namely ∆L. It
turns out that some stochastic signals will yield a negative ∆L for TM = 1. In panel C of Fig. .
this is not the case, but the proximity of the two curves only for TM = 1 is decernible. This
is comprehensible by recalling that the L-statistic inherits the mean squared prediction error
(see Eq. (C.)), and a one-sample-prediction horizon is simply too short, to properly distinguish
deterministic from stochastic sources. As a consequence we compute the L-statistics in each
embedding cycle for TM -values starting with TM = 2. Thus, for any embedding cycle each peak
of the continuity statistic does not receive a certain absolute L-value, but rather a maximum
possible decrease of L, ∆L, with respect to the actual embedding (Fig. .). Then one simply
picks the peak, which yields the largest decrease. We can not rule out the possibility that we
could obtain a lower overall decrease in L for all embedding cycles by taking a different “path”,
i.e. not go for the maximum decrease of L in each embedding cycle. This would correspond to
achieving a local minimum of the cost function in the parameter and embedding cycle space.
iii) We propose to stop the embedding process, when ∆L > 0 for all considered temporary

reconstruction vectors ~vtemp. One could think about incorporating a threshold, a small negative
number, e.g. ∆L > −0.05, to avoid only tiny decreases of the cost function encountered in an
embedding cycle. Throughout all our computations this has not been necessary and, therefore,
we dispense on such an additional parameter.

iv) The continuity statistic 〈ε?〉 itself contains information about the correlation structure of
the data (cf. Section ..), which makes it valuable in the context of an automated embedding
procedure as proposed here, especially for multivariate input. Not only that the first maximum
most often coincides with the value we would obtain from the first minimum of the mutual
information, but the continuity statistic of two time series “levels off” at a certain value range.
The absolute value of 〈ε?〉 represents the correlation structure of the data we are looking at and
quantifies the independence from each other for a specific time lag. This fact allows our method
to pick only time series from a multivariate set, which belong together, and, consequently, in
combination with the corresponding decrease of the L-statistic, ∆L, avoid stochastic signals (cf.
Fig .C, Table .).





Chapter  A unified an automated approach to attractor reconstruction

Figure .: Illustration of the determination of ∆L within the embedding procedure for the first embedding
cycle in a univariate case, using A the y-component of the Lorenz system (Appendix B.), B the
time series of the second node of a N = 8 Lorenz  setup (Appendix B.) and C , uniformly
distributed random numbers. Shown are the L-statistics for the single time series (blue graphs)
and a -dimensional embedding with a τ -lagged version of itself (orange graphs) for a range of
parameter values TM . We set the number of nearest neighbors, which constitute a neighborhood,
necessary for computing the L-statistic, to k = 3 and estimate τ from the first minimum of
the corresponding auto-mutual information. The possible decrease of the L-statistic for this
hypothetical embedding cycle with the chosen τ is simply ∆L(TM ) = Lorange(TM )− Lblue(TM ).
When ∆L(TM ) < 0 (shaded areas) the additional reconstruction vector component does increase
the quality of the reconstruction, whereas when ∆L(TM ) > 0 ∀ TM a further embedding is not
beneficial. As expected that is the case for the stochastic signal in panel C. The Algorithm 
automatically picks the first minimum ∆L over all TM , which has also been the global minimum
with respect to all TM throughout all examples we have considered so far.

v) The time complexity of the proposed method is O(N logN) as illustrated in Fig. C.
(Appendix C.).
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. Application, comparison & results

We apply the proposed method to a range of different systems, artificial and experimental data,
exemplifying its advantage over established methods. Specifically, we compare our method to the
standard time delay embedding (TDE). We estimate the uniform delay τ by means of the first
minimum of the auto-mutual information [] and estimate the appropriate embedding dimension
by using Cao’s method []. Specifically, we automatically select the appropriate embedding
dimension, when the E1-statistic reaches the saturation value within a given threshold of the
slope (we picked a slope of < 0.05). We also look at two more sophisticated methods, which
can also handle multivariate input, namely the method proposed by Garcia & Almeida (G&A)
[, ] and Nichkawde’s method (MDOP) []. The latter mentioned methods do not come
with a predefined way to terminate the embedding process. In order to terminate them we use
Hegger’s [] method of obtaining the optimal embedding dimension. Specifically, we set a
FNN-threshold of ., i.e., the algorithm breaks when the normalized fraction of FNN’s fall
below this threshold in order to allow the algorithm to give meaningful results in the presence
of noise. The threshold for the tolerable relative increase of the distance between the nearest
neighbors, when increasing the embedding dimension is set to , as suggested in [, ]. The
threshold, which defines the factor of tolerable stretching for the dE1-statistic in case of G&A’s
method is set to , as suggested by the authors. We estimate the decorrelation time by using
the first minimum of the auto-mutual information and use it as the Theiler window [] in all
approaches. In the multivariate input cases, we pick the maximum from all first minima of all
auto-mutual information statistics. For distance computation, the Euclidean norm is used.

.. Reconstruction evaluation statistics

In order to compare our approach with the established methods we need to quantify the goodness
of the embedding. For this, we will consider six statistics. In addition to the overall decrease
of the L-statistic, that is ∆L =

∑m−1
i=1 ∆Li, where m is the embedding dimension and ∆Li the

corresponding L-decreases in the encountered embedding cycles, we use two other statistics, which
also reflect the neighborhood relations of the reconstruction compared to the reference. One is the
mutual false nearest neighbor statistic (MFNN) []. Instead of estimating the coupling strength/
degree of synchrony of two coupled oscillators, we use the statistic for assessing the similarity
between the reference (time series gained from numerical integration) and the reconstruction:

MFNN = 1
N

N∑
i=1

∑K
k=1|~vi − ~viref

k

|∑K
k=1|~ui − ~uiref

k

|

∑K
k=1|~ui − ~uireck |∑K
k=1|~vi − ~vireck |

, (.)

Note that we were not able to reproduce the results shown in the papers from Garcia & Almeida[, ]. Two
of the authors, K.H.K and N.M as well as another experienced researcher independently implemented this
method and got the exact same results. An email to Prof. Garcia explaining this issues and seeking for help
remains unanswered. We improved the method to be at least capable of producing acceptable results. First
we implemented a Theiler window, which has not been discussed by the authors. Second we introduced the
forward time step in order to produce the dE2 statistic as a free parameter. The authors only discuss the case
of a forward time step of . Throughout all our computations we set this parameter to the same value as the
Theiler window, i.e. the value of the first minimum of the auto-mutualinformation. In the multivariate input
cases, we picked the maximum from all first minima of all auto-mutualinformation. The reader is welcome to
follow the implementation process on https://github.com/JuliaDynamics/DelayEmbeddings.jl/pull/.
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where ~ui are the vectors of the reference/original system, ~vi, i = 1, . . . , N the reconstruction
vectors, irefk the indices of the K-nearest neighbors of index i in the original system and ireck , k =
1, . . . ,K the corresponding indices measured in the reconstruction. We propose the comparison
of K nearest neighbors instead of just focusing on the first nearest neighbor, in order to receive
more robust results in the presence of noise. By sampling the data sufficiently high we allow the
precise determination of quite large neighborhoods of a fiducial point, so we set K = 10 in our
computations. The results vary in their absolute values with different choices of K, but the order
of rank for the different test methods and their relative difference remain approximately constant.
MFNN = 1 corresponds to an ideal Afraimovich diffeomorphism [, ], higher values mark
worse reconstructions. The other strict criterion we propose quantifies the degree of neighborhood-
relation conservation: the Joint Recurrence Rate Fraction (JRRF). It is based on the concept
of a recurrence plot (RP), which is a -dimensional representation of a dynamical system as a
binary matrix [, ] (Appendix A, Eqs. (.), (.)). JRRF measures the accordance of the
recurrence plot of the reference system, Rref, and the RP of the reconstruction, Rrec.

JRRF =
∑N
i,j JRi,j∑N
i,j R

ref
i,j

, JRRF ∈ [0 1] (.)

JR = Rref ◦Rrec. (.)

We compute both, Rref and Rrec, by fixing the recurrence threshold corresponding to a global
recurrence rate of %. This is also to ensure comparability of the recurrence quantifiers described
below []. Results are fairly similar for a wide range of choices of the recurrence rate we tried
and the particular choice (in our case %) is not so important, since we apply them to all RP’s
we compare. It is, of course, also possible to compare different recurrence plot quantifiers gained
from Rrec to the ones derived from Rref []. We here choose the determinism (DET), Eq. (A.),
the diagonal line length entropy (ENTR), Eq. (A.), and the recurrence time entropy (RTE),
Eq. (A.) (Appendix A). The latter two are related to the Kolmogorov-Sinai-Entropy [, ],
but do not serve as straight forward estimators, when necessary corrections on the RP and its
quantifiers are ignored [].

.. Paradigmatic examples

We investigate three paradigmatic chaotic systems, the Rössler system in the funnel regime (Ap-
pendix B.), a driven Duffing oscillator in regular motion (Appendix B.) and the Mackey-Glass
delay equation (Appendix B.). For all systems we compare the mean values of the evalua-
tion statistics from ensembles of , trajectories with different initial conditions. Table C. in
Appendix C. summarizes all results, also including uncertainties and results for % additive mea-
surement noise. In order to easily compare the evaluation statistics, we use the relative deviation
from the reference (e.g., |DETrec −DETref|

/
DETref ), except for the MFNN and the ∆L-statistic,

where we use the relative deviation from the best score (i.e., |MFNNrec −MFNNbest|
/
MFNNbest ),

For a concise visual presentation we use spider plots in the following and plot  - rel. deviation,
i.e. the closer to unity the value gets, the better the accordance to the reference or the best
achieved value is.

(i) For the chaotic Rössler system, we reconstruct the state space for the univariate case (using
the y-component, in order to allow TDE having the best chances []) and for the multivariate
case (using the x- and y-component). An overview over the results are shown in Figure .. For
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Figure .: (Relative) deviation of reconstruction by standard time delay embedding (TDE), the Garcia &
Almeida (G&A), Nichkawde’s (MDOP), and PECUZAL methods, comparing the accordance of
the RPs of the reconstructed attractor and the reference attractor (JRRF), mutual false nearest
neighbors (MFNN), ∆L-statistic, as well as the recurrence quantifiers determinism (DET), diagonal
line length entropy (ENTR), and the recurrence time entropy (RTE). A Univariate case using the
y-component of the numerically integrated Rössler system (Appendix B.) and B multivariate
case using the x- and y-values of the Rössler system. Since TDE cannot handle multivariate input
we take the values from the univariate case here for illustrative reasons, which result in different
relative values in case of MFNN and the ∆L-statistic. For these measures we plot the - relative
deviations to the best score, which increases in the multivariate case. For the other statistics we
plot - relative deviations to the reference score, i.e. the closer to unity the value gets, the better
the accordance to the reference or the best achieved value is.

TDE in the multivariate case we take the results from the univariate example, because TDE
cannot handle multivariate input. Note that this leads to different relative values for MFNN and
∆L, since we plot the deviation to the best score in these cases. The PECUZAL method performs
best in the univariate as well as in the multivariate scenario, with improved outcomes for the
multivariate one, as expected. This also holds in case of applied measurement noise, where our
method even expands its lead for most measures (Table C.). Surprisingly, TDE also provides
very good results in the univariate case and in the multivariate setup Garcia & Almeida’s method
yields an overall larger decrease of the L-statistic than PECUZAL, but only in the noise free case
(see Table C.). This lower ∆L is not reflected in better performance of the other evaluation
statistics. Specifically, the diagonal line length entropy values differ from the true reference value
in the double-digit percentage range for G&A’s method.

(ii) The overall rating also holds for the driven Duffing oscillator (Fig. .), but there are severe
differences. In contrast to the chaotic Rössler system here it seems that the additional given time
series for the multivariate scenario do not improve the reconstructions significantly. The JRRF do
not get better and remain on a quite high level of % (G&A) up to % (PECUZAL) accordance
with the reference recurrence plot Rref. This is also reflected in the ∆L statistic, which also
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Figure .: Same as Fig. ., here for the Duffing system (Appendix B.).

does not improve in the multivariate case for G&A and MDOP, and only slightly decreases for
PECUZAL. The same story is told by looking at the other evaluation statistics summarized in
Table C.. It is important to note that under noise our proposed method outperforms the others in
almost all cases, but in principle we notice that the signal to noise ratio seems to be very low and
biases the results of all methods more than in case of the Rössler example. Specifically in case of
RTE deviations to the true reference value increase from the low single digit percentage range up
to % in the noisy case. The reason is that in regular motion we expect a near zero value of RTE
and noise easily blurs the diagonal lines in the recurrence plot, leading to a broader distribution
of recurrence times and, thus, to randomly elevated RTE values. The very same problem make
the ENTR values deteriorate for all methods, here already apparent in the noise free case. In
a regular motion system ENTR is biased the most when no correction of the diagonal lines is
performed, which has been shown by Kraemer and Marwan [] (Chapter ). The proposed
skeletonizaton of the recurrence plots for the purpose of reducing the bias in the diagonal line
based recurrence plot quantifiers, such as ENTR and RTE, lead to way better results in the one
digit percentage range even for noise, as expected. Due to the computational complexity of the
skeletonization algorithm [] we did not apply this correction scheme to all of the , runs in
this experiment, but rather tried it on small samples not shown here, in order to understand the
bad performances for all methods in case of ENTR and RTE.
(iii) In contrast to the above systems, the Mackey-Glass system (Appendix B.) is infinite

dimensional and we have do deal with a univariate time series from the numerical integration,
which is why we do not have a “reference” value we could base our computations on. Therefore,
we can only use the ∆L-statistic (Table C.). The proposed PECUZAL method performs
significantly better than the other methods with Garcia & Almeida’s method coming second,
especially in the presence of noise. Here all methods but the proposed one yield reconstructions
with corresponding positive ∆L-values, i.e. the suggested embeddings do not decrease the overall
L-statistic. Admittedly, PECUZAL also comes with a very small negative ∆L value, with  falling
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within the 1σ-interval. This finding indicates a too low signal to noise ratio, which we comment
on below. Farmer [] conjectured a linear relation between the delay chosen in the Mackey-Glass
equation and the corresponding dimensionality of the attractor (c.f. Table I in []). A linear fit
to the data of that table suggests an attractor-dimension of dA ≈ 5.3 with the % confidence
interval being between ≈ 2.1773 and ≈ 8.2888. The studied methods give 5± 0 (6.7± .5) (TDE),
3± 0 (4.6± 1) (G&A), 4± 0 (2± 0) (MDOP) and 7± 0 (2.2± 1.7) (PECUZAL). The bracketed
values correspond to the case of % additive noise. While all methods meet Farmer’s conjecture
in the noise free scenario, this does not hold for the MDOP method an the proposed method in
the noisy case. Both methods suggest too low embedding dimensions. This is due to the fact that
the signal to noise ratio is apparently too low and PECUZAL treats the signal as a stochastic
source for some realizations where it does not embed the data at all, while it did not do it in
case of the Rössler and Duffing system, despite the same variance of the white Gaussian noise.
Results from G&A and TDE do fall in the % confidence interval, which is large, because of
the weak data basis given in Ref.[] and the resulting uncertain fit. We find the time window
of the embedding, i.e., the total time span covered by a reconstruction vector, decreasing with
increasing noise level throughout our experiments. This is very much in line with the findings of
Ragwitz and Kantz [].

We finally look at two made up, ill-defined multivariate datasets, in order to see how the G&A,
MDOP, and the PECUZAL method cope with redundant data and with stochastic signals.
(i) First we construct a dataset consisting of six time series (Fooling dataset I ). The first two

time series are the x- and y-component of the Rössler system (Appendix B.), the third and fourth
time series are the x- and y-component of the Lorenz system (Appendix B.), the fifth time series
corresponds to x2

Rössler + yRössler, whereas the sixth time series is set to xLorenz · yLorenz + yLorenz.
Our proposed method does not mix time series from both systems and sticks to one system (Lorenz
in this case), as shown in Table. .. It suggests a -dimensional embedding and also does not need
the redundant information stored in the fifth and the sixth time series of the input dataset. In
contrast, G&A and MDOP fail here, suggesting a -dimensional and a -dimensional embedding,
respectively, mixing up the different systems yielding a useless reconstruction (Fig. .).
(ii) The second made-up dataset (Fooling dataset II ) consists of three time series of length

,, with the first one being an auto-regressive process of order  with parameters (, .)
and initial condition u0 = 0.2, to mimic colored noise. The second and third time series are
Gaussian and uniform random numbers. While G&A and MDOP embed the non-deterministic
time series, our proposed algorithm suggests no embedding and throws an error (Tab. .). The
reason is, that the L-statistic is a monotonically increasing function of the embedding dimension
for stochastic data for any prediction horizon parameter TM , i.e., the algorithm cannot minimize
L already in the first embedding cycle. For the sake of completeness we have to stress that this
particular example should not be read as a claim of a generalizable behavior of our proposed
method to deal with auto-regressive processes of arbitrary order p. In the case of higher-order
AR processes, PECUZAL often suggests an embedding with a dimension that corresponds to
the order of the AR process, as we would expect it theoretically. We have noticed, however, that
the embedding depends heavily on the length of the time series used, which is in line with the
findings of Holstein and Kantz [], but also of the choice of the particular AR-parameters and
the order of the AR process under study. A systematic consideration of PECUZAL’s embedding
suggestions for this class of processes is beyond the scope of the work presented here.
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Garcia & Almeida
delays: [0  1  1]

ts: [1  4  1]

MDOP
delays: [0  20  16  20   0  23]

ts: [6  2  1  3  3  4]

PECUZAL
delays: [0  3  0]
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A B C

Figure .: Reconstructions of the Fooling dataset I (see text for details). In case of the MDOP method
(panel B), we plot the first three components of the -dimensional trajectory. While G&A and
MDOP methods mix time series from different systems, leading to nonsensical reconstructions
(panels A and B), our proposed method (panel C) sticks to time series from one system (Lorenz
in this case).

Table .: Embedding dimension, the accordingly chosen time series and corresponding time lags for the
fooling datasets, mimicking mixed deterministic data from different systems and redundant time
series as well as stochastic time series. We compare Garcia & Almeida’s (G&A), Nichkawde’s
(MDOP), and our proposed PECUZAL method.

m chosen time series Delay’s

System G&A MDOP PECUZAL G&A MDOP PECUZAL G&A MDOP PECUZAL

Fooling dataset I    , ,  , , , , ,  , ,  , ,  , , , , ,  , , 

Fooling dataset II   — , , , , ,  , , , , ,  — , , , , ,  , , , , ,  -

.. Experimental data

We will now utilize the PECUZAL embedding method on experimental data. Specifically, we
look at a chaotic time series from electrochemical oscillations. The experiment was performed
with the chaotic electrodissolution of nickel in sulfuric acid []. A standard three-electrode
electrochemical cell was used with a -mm diameter nickel wire as working, a Pt counter, and
a Hg/Hg2SO4/sat. K2SO4 reference electrode. The electrolyte was . M H2SO4 at °C. The
nickel wire was connected to the working point of the potentiostat through an individual resistance
(Rind), and a potentiostat (Gill AC, ACM Instruments) applied a constant circuit potential (V0,
with respect to the reference electrode). At a given circuit potential, the rate of the metal
dissolution, measured as the current, can exhibit chaotic oscillations due the hidden negative
differential resistance and additional nonlinear processes related to the passivation kinetics [].
About  current oscillations were recorded at a data acquisition rate of Hz, which corresponds
to about  points per cycle and a time series length of N = 100, 000. There are two primary
bifurcation parameters in the experiment: the individual resistance, which affects the charging
time constant of the electrical double layer, and the circuit potential, which drives the dissolution.
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We consider a setting with Rind = . kΩ and V0 = , mV.

Figure .: A Entire z-standardized and down-sampled time series from electrochemical oscillations of length
N = 50, 000 and B a sub-sample of length N̂ = 2, 500. C The relative deviation of the medians
of the distributions of the RQA-quantifiers ENTR, LAM, RTE and T obtained from RPs of 1, 000
sub-samples to their reference values obtained from RPs of the entire time series for the four
reconstruction methods.

We demonstrate the ability of the proposed embedding method to cope with rather small to
intermediate sized experimental datasets. We first down-sample the time series to N = 50, 000
(Fig. .A). Reconstructions for the four methods (TDE, G&A, MDOP, PECUZAL) are then
computed from which we obtain RPs (with a fixed recurrence rate of %, in order to guarantee
comparability) and the corresponding RQA-quantifiers diagonal line length entropy (ENTR),
the laminarity (LAM), the recurrence time entropy (RTE) and the recurrence network measure
transitivity (T ), see Appendix A. We denote each of these values for each of the reconstruction
method as its reference values. We then repeat the described procedure for 1, 000 sub-samples of
length N̂ = 2, 500 drawn from the time series at random (shown exemplary in Fig. .B), i.e. for
each of the 1, 000 sub-samples we compute the reconstruction for each of the four methods, its
corresponding RP and the RQA-quantifiers. This will result in distributions for ENTR, LAM,
RTE and T for each reconstruction method. Finally we compare the medians of these distributions

to their reference values and plot the relative deviation
|RQAmedian(distr.)−RQAref |

RQAref

in Fig. .C.

The capability of the four methods to allow for satisfying estimates from short time series samples
differs strongly for the different RQA-quantifiers. The largest discrepancies to the reference can
be noted for TDE in case of T and RTE. For LAM all methods estimate the reference very well
from the sub-samples. While our proposed method slightly comes last in case of ENTR, it yields
the best results for T and LAM and is performing well in case of RTE. The example shown here
can not be generalized, but it underpins our claim that PECUZAL provides robust state space
reconstructions for a very broad range of processes under different conditions, which are often
better, but always at least equally well than the ones obtained from the established methods.
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. Conclusions

A fully automated approach for state space reconstruction from uni- or even multivariate time
series has been proposed and compared to established methods. The algorithm works iteratively
and appends the reconstruction vectors in each embedding cycle with an appropriate time
delay and an according time series until a cost function cannot be minimized further. Its core
functionality is based on identifying potential time delays and its corresponding time series in
each embedding cycle by using the continuity statistic. For each of those delays, temporary
reconstruction vectors are build and the cost function is computed. The delay value, which yields
the maximum decrease of the cost function is selected. If none of the considered delay values
yields a decrease of the cost function the reconstruction can not get any better and the final
embedding is obtained without the need of setting any threshold parameter. Usually the time
delays chosen that way are not simply multiples of each other, but rather reflect even complex
correlation structures within the data. This is why the algorithm is also able to detect time
series stemming from a stochastic source, which it will not embed. Except from computing the
decorrelation time of the data for providing a valid Theiler window for the nearest neighbor
search, and providing a range of possible delay values the algorithm shall encounter, there are
neither any data preprocessing steps necessary, nor any free parameters need to be adjusted before
using the proposed routine. The approach has been demonstrated on a variety of exemplary
systems as well as on experimental data stemming from chaotic chemical oscillators. We find that
it provides often better, but always at least equally well reconstructions than the established
methods. It is furthermore capable of providing meaningful reconstructions for rather short time
series, which particularly holds for the case of multivariate input. The additional computational
effort in comparison to standard time delay embedding is manageable and justified. Since the
proposed method works automatically, is basically parameter free, and can handle multivariate
input without mixing data originating from different systems, we can think of a wide range of
potential applications. This is especially true for scenarios, where multiple sensors or channels of
a detector monitor real world processes, which are not isolated observables, i.e., in engineering,
earth- and life science contexts. The provided software (Appendix C.) in three common coding
languages will facilitate the use of the presented method.
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Optimal state space reconstruction via Monte
Carlo Decision Tree Search

Kraemer, K. H., Gelbrecht, M., Pavithran, I., Sujith, R. I. and Marwan, N. (). Optimal
state space reconstruction via Monte Carlo Decision Tree Search. (accepted for Nonlinear Dynam-
ics) []

Abstract

A novel idea for an optimal time delay state space reconstruction from uni- and multivariate
time series is presented. The entire embedding process is considered as a game, in which
each move corresponds to an embedding cycle and is subject to an evaluation through an
objective function. This way the embedding procedure can be modeled as a tree, in which
each leaf holds a specific value of the objective function. By using a Monte Carlo ansatz
the proposed algorithm populates the tree with many leafs by computing different possible
embedding paths and the final embedding is chosen as that particular path, which ends
at the leaf with the lowest achieved value of the objective function. The method aims to
prevent getting stuck in a local minimum of the objective function and can be used in a
modular way, enabling practitioners to choose a statistic for possible delays in each embedding
cycle as well as a suitable objective function themselves. The proposed method guarantees
the optimization of the chosen objective function over the parameter space of the delay
embedding as long as the tree is sampled sufficiently. As a proof of concept, we demonstrate
the superiority of the proposed method over the classical time delay embedding methods
using a variety of application examples. We compare recurrence plot based statistics inferred
from reconstructions of a Lorenz- system and highlight an improved forecast accuracy for
map-like model data as well as for palaeoclimate isotope time series. Finally we utilize state
space reconstruction for the detection of causality and its strength between observables of a
gas turbine type thermoacoustic combustor.

. Introduction

The famous embedding theorems of Whitney [], Mañé [], and Takens [] together with
their enhancement by Sauer et al. [] allow a high dimensional state space reconstruction from
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(observed) uni- or multivariate time series. Computing dynamical invariants [, , , ,
] from the observed system, making meaningful predictions even for chaotic or stochastic
systems [, , , , , , ], detecting causal interactions [, , ] or non-linear
noise reduction algorithms [, ] all rely explicitly or implicitly on (time delay) embedding
[] the data into a reconstructed state space. Other ideas rather than time delay embedding
(TDE) are also possible [, , , , , ], but due to its simple use and its proficient
outcomes in a range of situations, TDE is by far the most common reconstruction technique.
Suppose there is a multivariate dataset consisting of M time series si(t), i = 1, . . . ,M . The basic
idea is to use lagged values of the available time series as components of the reconstruction vector

~v(t) = (si1(t− τ1), si2(t− τ2), . . . , sim(t− τm)). (.)

Here the delays τj are multiples of the sampling time ∆t and the indices i1, i2, . . . , im each denote
the time series index i ∈ [1, . . . ,M ], which has been chosen in the 1st, 2nd, . . . , mth embedding
cycle. The total number of delays τj , j = [1, . . . ,m], i.e., the embedding dimension m, its
values and the corresponding time series sij , ij ∈ [1, . . . ,M ] need to fulfill certain criteria to
guarantee the equivalence to the unknown true attractor, e.g., the embedding dimension must
suffice m > 2DB + 1, with DB being the unknown box-counting dimension (see Casdagli et al.
[], Gibson et al. [], Uzal et al. [] or Nichkawde [] for a profound overview of the
problem). Picking optimal embedding parameters τj and m comes down to make the resulting
components of the reconstruction vectors ~v(t) as independent as possible [, ], but at the
same time not too independent, in order to keep sufficient information of the correlation structure
of the data [, , , , ]. Besides some unified approaches [–, , , , ,
, , , ], which tackle the estimation of the delays τj and the embedding dimension m
simultaneously, most researchers use two different methods to perform the reconstruction.

() A statistic determines the delays τj , we call it Λτ throughout this paper. Usually τ1 = 0,
i.e., the first component of ~v(t) is the unlagged time series si1 in Eq. (.). For embedding a
univariate time series, si1 = . . . = sim = s(t), the approach to choose τ2 from the first minimum
of the auto-mutual information [, ] is most common. All consecutive delays are then simply
integer multiples of τ2. Other ideas based on different statistics like the auto-correlation function
of the time series have been suggested [, , , , , , , ]. However, by setting τj , j > 2
to multiples of τ2, one ignores the fact that this “measure” of independence strictly holds only for
the first two components of reconstruction vectors (m = 2) [, ], even though in practice it
works fine for most cases. More sophisticated ideas, like high-dimensional conditional mutual
information [, ] and other statistics [, , , , , ], some of which include
non-uniform delays and the extension to multivariate input data [, , , –, ,
, , , ], have been presented.

() A statistic, we call it Γ throughout this Section, which serves as an objective function
and quantifies the goodness of a reconstruction, given that delays τj have been estimated. The
embedding process is thought of as an iterative process, starting with an unlagged (given) time
series si1 , i.e., τ1 = 0. In each embedding cycle Dd, [d = 1, . . . ,m] a time series sid lagged
by τd, gets appended to obtain the actual reconstruction vectors ~vd(t) ∈ Rd+1 and these are
compared to the reconstruction vectors ~vd−1(t) of the former embedding cycle (if d = 1, ~vd−1(t) is
simply the time series si1). This “comparison” is usually achieved by the amount of false nearest
neighbors (FNN) [, , , , ], some other neighborhood-preserving-idea [, ], or
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more ambitious ideas [, ].
We have recently proposed an algorithm [] (Algorithm  in Section .), which minimizes the

L-statistic [] (the objective function, Appendix C.) in each embedding cycle Dd over possible
delay values in this embedding cycle determined by a continuity statistic [] (Section ..).
Nichkawde [] minimizes the FNN-statistic in each embedding cycle over time delays given by a
statistic, which maximizes directional derivatives of the actual reconstruction vectors. However, it
cannot be ruled out that these approaches result in achieving a local minimum of the corresponding
objective function, rather than attaining the global minimum.

Here we propose a Monte Carlo Decision Tree Search (MCDTS) idea to ensure the reach of a
global minimum of a freely selectable objective function Γ, e.g., the L- or FNN-statistic or any
other suitable statistic, which evaluates the goodness of the reconstruction with respect to the task.
A statistic Λτ , which guides the pre-selection of potential delay values in each embedding cycle
(such as the continuity statistic, described in Section .., or conditional mutual information) is
also freely selectable and can be tailored to the research task. This modular construction might be
useful for practitioners, since it has been pointed out that optimal embedding parameters – thus
also the used statistics to approximate them – depend on the research question, e.g., computing
dynamical invariants or prediction [, , , , ]. Thus, the proposed method is neither
restricted to the auto-mutual information, in order to measure the independence of consecutive
reconstruction vector components, nor does it necessarily rely on the ubiquitous false nearest
neighbor statistic. Independently from the chosen statistic for potential time delays and from
the chosen objective function, the proposed method computes different embedding pathways in
a randomized manner and structures these paths as a tree. Consequently it is able to reveal
paths through that tree – if there are any – which lead to a lower value of the objective function
than paths, which strictly minimize the costs in each embedding cycle. Given a sufficiently high
number of samplings, MCDTS guarantees to optimize the chosen objective function Γ over the
(delay embedding-) parameter space. In Section . we describe this method before we apply it to
paradigmatic examples in Section ., which include Recurrence Analysis, nearest-neighbor-based
time series prediction and causal analysis based on convergent cross mapping.

. Method

When embedding a time series, in each embedding cycle a suitable delay, and for multivariate
data a suitable time series, has to be chosen. While the final embedding vector is invariant to
the order of chosen components, the embedding process, and the used statistics and methods
to suggest suitable delays, generally depend on all the previous embedding cycles . It seems
therefore natural to visualize all possible embedding cycles in a tree-like hierarchical data structure
as shown in Figure .. The initial time series si1 with delay τ1 = 0 forms the root of the tree
and each possible embedding cycle Dd is a leaf or node of the tree. With the large amount
of possible delays and time series to choose from, this decision tree becomes too large to fully
compute it. At the same time, aforementioned statistics like the continuity statistic or conditional
mutual information can guide us in pre-selecting potentially suitable delay values and an objective
function like the L- or FNN-statistic can pick the most suitable delay value of the pre-selection by
quantifying the quality of the reconstruction in each embedding cycle. Throughout this paper we

The contiunity statistic 〈ε?〉(τ) is one example for such a statistic that depends on all previous embedding cycles.
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Figure .: All possible embeddings of a time series visualized by a tree. Each leaf of the tree symbolizes one
embedding cycle Dd using one selected time series sid from the multivariate data set and delay τd.
Marked in orange is one chosen full embedding.

denote a statistic, which pre-selects potential delay values as Λτ and the objective function as Γ.
The task to embed a time series can then be interpreted as minimizing Γ(i1, i2, .., im, τ1, τ2, ..., τm).
Visualizing this with a tree as in Fig. ., we actually perform a tree search to minimize Γ.
However, always choosing the leaf of the tree that decreases Γ the most, might lead only to a
local minimum.

As we strive to find a global minimum and cannot compute the full embedding tree, we proceed
by sampling the tree. This approach is inspired by the Monte Carlo Tree Search algorithms that
were originally envisioned to master the game of Go []. Ultimately computer programs based
on these algorithms were able to beat a reigning world champion, a feat that was long thought
to be impossible for computer programs []. Adapting this idea to the embedding problem
we proceed as follows. We randomly sample the full tree, for each embedding cycle we compute
the change in the objective function Γ and pick for the next embedding cycle preferably those
delays that decrease Γ further. Each node Nd of the tree encodes one possible embedding cycle
and holds the time series used [si1 , . . . , sid ], the delays used until this node [τ1, . . . , τd], i.e., the
current path through the tree up to node Nd, and a value of the objective function Γd. We sample
the tree Ntrial-times in a two-step procedure:

• Expand: Starting from the root, for each embedding cycle Dd, possible next steps (sij , τj ,Γj)
are either computed using suitable statistics Λτ and Γ or, if there were already previously
computed ones, they are looked up from the tree. We consider the first embedding cycle D2
and use the continuity statistic 〈ε?〉(τ) for Λτ . Then, for each time series si the corresponding
local maxima of all 〈ε?〉(τ) (for a univariate time series there will only be one 〈ε?〉(τ)) that
determines the set of possible delay values τ2 (see the rows in Figs. ., . corresponding to
D2). Then, one of the possible τ2’s is randomly chosen with probabilities computed with a
softmax of the corresponding values of Γj . Due to its normalization, the softmax function is
able to convert all possible values of Γj to probabilities with pj = exp(−βΓj)/

∑
k exp(−βΓk).
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This procedure is repeated (consecutive rows for D3 . . . etc. in Figs. ., .) until the very
last computed embedding cycle Dm+1. This is, when the objective function Γm+1 cannot
be further decreased for any of the τm+1-candidates. Figure . visualizes this procedure.

• Backpropagation: After the tree is expanded, the final value Γm is backpropagated through
the taken path of this trial, i.e., to all leafs (previous embedding cycles d), that were visited
during this expand, updating their Γd values to that of the final embedding cycle.

With this two-step procedure, we iteratively build up the part of the tree that leads to embedding
with the smallest values for the objective function. The following two refinements are made to
improve this general strategy: in case of multivariate time series input, the probabilities are
chosen uniformly random in the zeroth embedding cycle D1. This ensures an even sampling over
the given time series, which can all serve as a valid 1st component of the final reconstruction
vectors. Additionally, as soon as a Γj is found that is smaller than the previous global minimum,
this embedding cycle is directly chosen and not randomized via the softmax function. This also
means that for the very first trial always the smallest value of Γj is chosen, resulting in a good
starting point for the further Monte Carlo search of the tree. In case the continuity statistic
〈ε?〉(τ) is used as the delay pre-selection statistic Λτ and the ∆L-statistic [] as the objective
function Γ, the first sample thus is identical to the PECUZAL algorithms [] and every further
sample improves upon this embedding further minimizing ∆L. Aside from the choice of Λτ and
Γ, the two hyperparameters of the method are the number of trials Ntrials and the β parameter
of the probability distribution chosing the next delay value. The parameter β governs how likely
it is that the minimum of all Γi is chosen, i.e. in the extreme cases for β = 0 the possible delay
times are chosen uniformly random and for β →∞ always the smallest Γi is chosen. For the tree
search algorithms this means that β governs how "wide" the tree search is, larger β values search
the tree more along the already found previously found minima, whereas for smaller values the
tree search will stress previously unvisted paths through tree stronger. The default value for β
which is used in all shown results is β = 2.

The computational complexity of this algorithm obviously scales with the number of trials
Ntrials, even though already computed embedding cycles are not computed again in later trials.
When sampling the tree many times, the path through the tree of the first few embedding
cycles will likely often be the same as that of previous trials. In these cases computing the
delay-preselection and objective function will be identical to that of previous trials. All the
values of possible delays and values of the objective function that are computed in previous trials
are saved during the tree search, and are reused when the same embedding cycle needs to be
computed again.
Otherwise the complexity depends on the chosen delay pre-selection function Λτ and the

objective function Γ. It has to be clear that the algorithm is computationally much more
demanding than a classical TDE. However, once an embedding is computed for a specified system
it can be reused in later applications.
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Figure .: Visualization of the expand step of the MCDTS algorithm. Here we exemplary use the continuity
statistic 〈ε?〉(τ) as the delay pre-selection statistic Λτ and the ∆L-statistic [] as the objective
function Γ, as it has been utilized in the recently proposed PECUZAL algorithm [], Chapter .

Table .: The different implementations of the MCDTS algorithm used in this chapter and their choice of
delay-preselection and objective function, which is minimized through the tree search. Here the
abbreviations CS: continuity statistic and KLD: Kullback-Leibler divergence are used.

Notation delay pre-selection method Λτ objective function Γ

MCDTS-C-FNN maxima of CS [, ] FNN [, , ]

MCDTS-C-L maxima of CS L/∆L-statistic [, ]

MCDTS-C-MSE maxima of CS mean squared prediction error

MCDTS-C-MSE-KL maxima of CS mean KLD of true and predicted

MCDTS-C-CCM maxima of CS negative CCM-correlation coefficient []

MCDTS-R-MSE-KL given range of delay values mean KLD of true and predicted

MCDTS-R-MSE given range of delay values mean squared prediction error
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. Applications

In this section, we present the potential of the proposed MCDTS method by various applications.
Here, we aim to provide suggestions and show that there are a number of state-space based
applications that directly benefit from our method or provide better results than with the state
of the art embedding techniques. A variety of applications are presented to support the fact that
different research questions elicit different embedding behavior and that our proposed method
is able to optimize the embedding with respect to different study objectives. In particular, we
investigate the influence of the state space reconstruction parameters on a recurrence analysis of
the chaotic Lorenz- system (Section ..), a nearest-neighbor time series prediction for the
chaotic Hénon map and for a palaeoclimate dataset (Sections .., ..), and last but not least,
a causal analysis of two physical observables of a combustion process (Section ..). The selected
applications cover many areas of nonlinear time series analysis and it is not our intention here to
propose new techniques for prediction or causal analysis which are necessarily superior to other,
alternative approaches. We rather chose well established state-space based methods and use them
to show how our proposed method optimizes results with respect to the chosen embedding.

.. Recurrence properties of the Lorenz- system

At first, we consider a potentially higher dimensional nonlinear dynamical system and compare
the recurrence properties of its dynamics as derived from the original set of system variables with
such by applying the different embedding approaches. We utilize the Lorenz- system [], a
set of N ordinary first-order differential equations

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, (.)

with xi being the state of the system of node i = 1, . . . , N and it is assumed that the total
number of nodes is N ≥ 4. We can think of this system as a ring-like structure of N coupled
oscillators – each representing some atmospheric quantity – all connected to the same forcing.
The forcing constant F serves as the control parameter. Here we vary F from F = 3.7 to 4.0 in
steps of 0.002 covering limit cycle dynamics as well as chaos. We set N = 8, randomly choose the
initial condition to u0 = [0.590; 0.766; 0.566; 0.460; 0.794; 0.854; 0.200; 0.298], and use a sampling
time of ∆t = 0.1. By discarding the first , points of the integration as transients, we get
time series consisting of , samples for each of the encountered values of F . We focus on two
scenarios: () only the time series of the 2nd node (univariate embedding) and () three time
series of nodes , , and  are used to mimic a uni- and a multivariate embedding case. For
each of these time series we perform an embedding, using three classic time delay approaches
as proposed by Kennel et al. [] (%-threshold), Cao [] (slope threshold of .), and Hegger
and Kantz [] (%-threshold) with a uniform delay value estimated as the first minimum of
the auto mutual information (only applicable to the univariate case) and the recently proposed
PECUZAL algorithm [], Chapter . For our proposed MCDTS approach we embedd the data
using the continuity statistic 〈ε?〉(τ) as the delay pre-selection statistic Λτ . For the objective
function Γ we try two different approaches, namely the ∆L-statistic [] (MCDTS-C-L) as well
as the FNN-statistic [] (MCDTS-C-FNN). In all approaches we discard serially correlated
points from the nearest neighbor search by setting a Theiler window [] to the first minimum
of the mutual information. An overview over all MCDTS implementations and abbreviations is
given in Table ..
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Figure .: Schematic visualization of the data analysis for the Lorenz  system, Eq. (.) (see text for
details). In case of the univariate approach the x2(t)-time series gets embedded by all considered
reconstruction methods, for the multivariate approach, three time series (x2(t), x4(t) and x7(t))
are passed to the reconstruction algorithms. From the reconstructed attractors we obtain a
recurrence plot and quantify it (RQA) by using ten different quantifiers. The same is done for the
reference trajectory gained from all  time series from the numerical integration. Repeating the
analysis for time series corresponding to varying values of the control parameter F of the system,
we finally obtain time series of the RQA-quantifiers for each reconstruction method as well as for
the true trajectory.

By varying the control parameter F , the system varies its dynamics which is well represented by
a change in the recurrence behaviour []. In previous work we have demonstrated that recurrence
quantification analysis (RQA) can be used to qualitatively characterize the typical dynamical
properties of the Lorenz- system such as chaotic or periodic dynamics []. We, therefore,
compare the recurrence properties of all reconstructed trajectories to recurrence properties of
the true trajectory (obtained from the numerical integration) by using recurrence quantification
analysis (RQA). For a sound definition of the used RQA statistics see Appendix A.
For our purpose of comparing different aspects of recurrence properties of original and recon-

structed trajectories, we use the transitivity (TRANS, Eq. (A.)) of the ε-RN, the determinism
(DET, Eq. (A.)), the mean diagonal line length (`mean, Eq. (A.)), the the maximal diagonal
line length (`max) and its reciprocal (DIV , Eq. (A.)), the entropy of diagonal line lengths
(ENTR, Eq. (A.)), the TREND (Eq.() in []), mean recurrence time (MRT, Eq. (A.)),
the recurrence time entropy (RTE, Eq. (A.)) and the joint recurrence rate fraction (JRRF,
Eq. (.)). As already utilized in Chapter , JRRF measures the accordance of the recurrence plot
of the (true) reference system, Rref with the RP of the reconstruction, Rrec. We compute both,
Rref and Rrec, by fixing the recurrence threshold corresponding to a global recurrence rate (RR)
of % in order to ensure comparability [] (Chapter ). Although the quantification measures
depend crucially on the chosen recurrence threshold, the particular choice we make here is not so
important, since we apply it to all RPs we compare. RR = 5% ensures a proper resolution of the
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inherent structures to be quantified by the ten aforementioned measures.
The described procedure is schematically illustrated in Figure .. For each reconstruction

method and for each of the ten RQA-statistics the mean squared error (MSE) with respect to
the RQA-statistics of the true reference trajectory is computed (normalized to the reference
RQA-values). The pairwise comparison of the MSEs is evaluated as the percentage of the ten
RQA-MSEs, which take a lower MSE (Fig. .). For instance, a value of % in the table indicates
that for seven out of the ten considered RQA-quantifiers the normalized mean squared error for
the reconstruction method displayed on the y-axis is lower than for the reconstruction method
displayed on the x-axis. The m-notation indicates the multivariate embedding approach, where
three instead of one time series have been passed to the reconstruction methods (x2(t), x4(t),
and x7(t), see Fig. .). Since the classic TDE algorithms from Cao, Kennel et al., and Hegger
& Kantz are not able to handle multivariate input data, only PECUZAL and the proposed
MCDTS-idea combined with the L-statistic and with the FNN-statistic are considered in the
multivariate scenario. The superiority over the three classic TDE methods is discernible in values
> 50% for PECUZAL and MCDTS in the first three columns. While we would expect a better
reconstruction for the multivariate cases – because we simply provide more information – our
proposed method also performs better in the univariate case when the FNN-statistic is used as
an objective function. When using MCDTS with the L-statistic, there is hardly any improvement
discernible, while the computational costs are magnitudes higher. Here PECUZAL reveals better
results, even though it uses the same statistics. However, combined with the FNN-statistic our
proposed idea performs very well in the univariate case and reveals excellent results for the
multivariate case.

.. Short time prediction of the Hénon map time series

In the following, a state space reconstruction ~v(t) of a single time series s(t) is used to further
predict its course. Besides a very recent idea [] to train neural ordinary differential equations
on a reconstructed trajectory, which then allows prediction, several attempts have been published
[, , , , , , ] which more or less rely on the same basic idea. For the last vector
of the reconstructed trajectory, denoted with a time-index l, ~v(tl), a nearest neighbor search is
performed. Then these neighbors are used to predict the future value of this point T time steps
ahead, ~v(tl+T ). Knowledge of the used embedding, which led to the reconstruction vectors ~v(t),
then allows to read the prediction of the time series s(tl + T ) from the predicted reconstruction
vector ~v(tl+T ). Usually T = 1, i.e., the forecast is iteratively build by appending ~v(tl+T ) to the
trajectory ~v(ti), i = 1, . . . , l, and this procedure is repeated N times, in order to obtain an N -step
prediction. The aforementioned approaches differ from the way they construct a local model of the
dynamics based on the nearest neighbors. For instance, Farmer and Sidorowich [] proposed a
linear approximation, i.e., a linear polynomial is fitted to the pairs (~v(tnni), ~v(tnni+T )), where nni
denotes the ith nearest neighbor time-index. Sugihara and May [] used a simplex with minimum
diameter to select the nearest neighbor indices nni and projected this simplex T steps into the
future. The prediction is then being made by computing the location of the original predictee ~v(tl)
within the range of the projected simplex, “giving exponential weight to its original distances from
the relevant neighbors”. Here a much simpler idea is considered: a zeroth-order approximation
of the local dynamics. The prediction is simply the projection of the nearest neighbor of ~v(tl),
denoted by the index nn1, ~v(tl+T ) = ~v(tnn1+T ). It is clear that the performance of all prediction
approaches based on an approximation of the local dynamics by making use of nearest neighbors
will crucially depend on the length of the training set. By training set we mean the time series
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Figure .: Results of the analysis of the Lorenz  system with varying control parameter and for all considered
reconstruction approaches (see Table . for notations). Shown is the pairwise comparison of
the normalized mean squared error of all considered ten RQA-quantifiers with respect to the
truth RQA-time series (see text for details). For instance, a value of % in the table indicates
that for seven out of the ten considered RQA-quantifiers the normalized mean squared error for
the reconstruction method displayed on the y-axis is lower than for the reconstruction method
displayed on the x-axis.

s(t), which has been used to construct the trajectory ~v(t). We hypothesize that the accuracy of
such a prediction will also depend on the reconstruction method, especially when the training set
is rather short (Small and Tse [] and also Bradley and Kantz []). In particular, Garland
and Bradley [] have shown that accurate predictions can be achieved with the aforementioned
zeroth-order approximation when using an incomplete embedding of the data, i.e., reconstruc-
tions that do not satisfy the theoretical requirements on the embedding dimension in Takens’ sense.

As a proof of concept we now use the described nearest-neighbor prediction method to predict
the x-time series of the Hénon map [], even though other simple models like low order
polynomial models might be superior for such noise-free and pure deterministic dynamics (we
provide a more challenging example in Section ..). The time series xi+1 = yi + 1− ax2

i and
yi+1 = bxi, with standard parameters a = 1.4, b = 0.3 and 100 randomly chosen different initial
conditions are used. For each of those 100 samples x- and y-time series of length N = 10, 030 are
obtained (transients removed). The first 10, 000 points of the time series are used for state space
reconstruction (both time series for the multivariate cases, only the x-time series in the univariate
case), while the last 30 points are the prediction test set (only the x-time series is predicted). The
same reconstruction methods as in Section .. are used, but for MCDTS we try two different
delay pre-selection statistics Λτ . Rather than only considering the continuity-statistic (denoted as
C in the model description) we also look at a whole range of delay values τ = 0, . . . , 50 (denoted
as R in the model description).
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For the objective function Γ we try

• the ∆L-statistic (denoted as L in the model description),

• the FNN-statistic (denoted as FNN in the model description),

• the root mean squared in-sample one-step prediction error on the first component of the
reconstruction vectors, i.e., the x-time series (denoted as MSE in the model description),
and finally

• the mean Kullback-Leibler-distance of the in-sample one-step prediction and the “true”
trajectory points (denoted as MSE-KL in the model description).

By “in-sample” we mean the training set, which is used for the reconstruction. For all MCDTS
implementations and abbreviations see again Table .. The accuracy of the prediction is evaluated
by the normalized root-mean-square forecast error (RMS ),

erms(T ) =

√〈
[xpred(T )− xtrue(T )]2

〉
√〈

[xtrue(T )− 〈xtrue(T )〉]2
〉

with index true denoting the test set values. This way erms(T ) = 0 indicates a perfect prediction,
whereas erms(T ) ≈ 1 means that the prediction is not better than a constant mean-predictor
of the test set. Figure . shows the mean forecast accuracy for the traditional TDE methods
(Cao, Kennel et al., Hegger & Kantz) and two selected MCDTS approaches as a function of
the prediction time. The largest Lyapunov exponent is estimated to λ1 ≈ 0.419 and we display
Lyapunov times on the x-axis, i.e., units of 1/λ1. As in Section .., m indicates the multivariate
case, in which both, x- and y-time series are fed into the reconstruction algorithms. The results
for all discussed reconstruction methods can be found in Appendix D. (Fig. D.). As expected,
the forecast accuracy is worse in case of added white noise (Fig. .B) and the predictions based
on multivariate reconstructions perform slightly better. The MCDTS-based forecasts perform
significantly better than the forecasts based on the traditional TDE methods. Even though the
continuity statistic constitutes a reasonable delay pre-selection statistic with a clear physical
meaning, when utilized in our MCDTS approach (MCDTS-C-) it performs not as good as if we
would not pre-select delays on the basis of some statistic, but try delays in a whole range of values
(τ ∈ [0, 50], MCDTS-R-). At least this statement holds for this example of the Hénon map time
series.
A Wilcoxon rank sum test is applied to underpin the better performance of the MCDTS-

approaches in comparison to the classical time delay methods. Therefore we define a threshold
ζ = 0.1 and compute the prediction times for which erms(T ) first exceeds ζ for all trials and for all
considered reconstruction methods. These distributions of prediction times for each method are
used for the statistical test with the null hypothesis that two considered distributions have equal
medians. The tests complement the visual analysis of Figs. . and D.. A significantly better
forecast performance (α=.) than the classic time delay embedding methods for PECUZAL
and all considered MCDTS-based approaches, but the ones combined with the FNN-statistic
(MCDTS-FNN), can be verified for the noise free case. In the case of the noise corrupted time
series PECUZAL (m), all MCDTS-MSE-approaches and MCDTS-C-L (m) achieve a significantly
better prediction performance than the classical time delay methods.
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Figure .: A Normalized root-mean-square prediction errors (RMS) for the Hénon x-time series and for
selected reconstruction methods (see Fig. D. for all mentioned approaches and Table .) as a
function of the prediction time. Shown are mean values of a distribution of 100 trials with different
initial conditions. For the prediction we used a one step ahead zeroth-order approximation on the
nearest neighbor of the last point of the reconstructed trajectory and iteratively repeated that
procedure  times in order to obtain a prediction of  samples in total for each trial. B Same as
in A but with % additive white noise.

Some remarks: Together with PECUZAL (m) and MCDTS-R-MSE (m), MCDTS-C-L (m)
achieves the overall best results (Fig. D.). The choice of the threshold ζ is obviously subjective,
but a range of thresholds gave similar results and the “grouping” of the results according to the
different techniques is clearly discernible already when looking at the mean (Figs. ., D.). We
have to mention that we could not achieve results as shown here for continuous systems like the
Lorenz- or the Rössler model. In those cases the difference in the prediction accuracy was
not as clear as it is in the Hénon example and not significant, for both, noise-free and noise
corrupted time series. We also investigated the influence of the time series length of the training
sets, but the results did not change much. All reconstruction methods gave similar prediction
results. We could, however, observe that simple and incomplete embeddings, i.e., a too low
embedding dimension, often – but not always – led to similarly good prediction results, when
compared to “full” embeddings. This was true for the continuous examples (not shown in this
work), but this also holds for the Hénon example shown here, where the MCDTS-C-L approach
does not yield the best results in the univariate case, although it targets the total minimum of
the L-objective-function, which the authors consider to be a suitable cost-function for a good/full
embedding. These observations are in line with the findings of Garland and Bradley [] and the
fact that our reconstruction methods tend to suggest higher dimensional embeddings with smaller
delays in the presence of noise support the findings of Small and Tse []. The FNN-statistic
does not seem to be useful in the prediction application shown here, since all approaches which
make use of it (including classic TDE) perform clearly worse compared to the other methods
used.
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.. Improved short time predictions for CENOGRID

To demonstrate that the prediction procedure from the preceding section works for real, noisy data,
we apply it to the recently published CENOzoic Global Reference benthic foraminifer carbon and
oxygen Isotope Dataset (CENOGRID) []. The temperature-dependent fractionation of carbon
and oxygen isotopes in benthic foraminifera is an important means to reconstruct past global
temperatures and environmental conditions. Moreover, the Cenozoic is interesting, because it
provides an analogue of future greenhouse climate and how and which regime shifts in large-scale
atmospheric and ocean circulation can be expected in the future warming climate. Predicting
these data may be unrealistic and not motivated by an actual research question. However, this
task shall serve as a proof of concept. The non-stationarity and noise level of CENOGRID make
prediction particularly difficult.
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Figure .: A Mean normalized root mean square prediction error for four selected reconstruction methods
on the δ13C CENOGRID record. B Prediction error for all  trials for the classic TDE method
of Hegger and Kantz [] (yellow line in panel A). C Prediction error for all  trials for the
MCDTS-R-MSE (m) method (purple line in panel A). The forecasts based on this method are
significantly better than for all three classic TDE methods (up to  prediction time steps under a
significance level α = 0.01 and up to  prediction time steps under a significance level α = 0.05).

The dataset consists of a detrended δ18O and a detrended δ13C isotope record with a total
length of N = 13, 421 samples and a sampling period of ∆t = 5, 000yrs (Figure D. in Appendix
D.). Here we made predictions on the δ13C isotope record. The first 13, 311 samples have been
used as a training set, from which state space reconstructions were obtained. The remaining 110
samples of the δ13C record acted as the test set. For 100 different starting points in the test set
we have made -step-ahead predictions for each reconstruction method by using the embedding
parameters gained from the training and with the iterative zeroth-order approximation prediction
procedure described in Section ... This way we have simulated different initial conditions for
the prediction and obtained a distribution of forecasts for each reconstruction method. We again
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used a Wilcoxon rank sum test on these distributions in order to see whether predictions based
on some reconstruction method are significantly better than the predictions obtained from classic
TDE (Cao, Kennel et al., Hegger & Kantz). Only one of the applied reconstruction methods (listed
in Table .), MCDTS-R-MSE (m), scored significantly better predictions (highly significant for
prediction horizons up to ∆t and significant for prediction horizon up to ∆t). Figure .A
shows the mean normalized root mean square prediction error gained from the  predictions for
the classic TDE and the mentioned MCDTS-R-MSE (m). The distribution of all prediction trials
for the best performing classic TDE method (Hegger & Kantz) and for MCDTS-R-MSE (m) are
shown in panels B, C. Even though the multivariate approach MCDTS-R-MSE (m) could have
been used both, the δ18O and the δ13C time series for the reconstruction, it only used δ13C lagged
by  and  samples in a -dimensional reconstruction. The classic TDE methods and all other
reconstruction methods (listed in Table ., not shown in Fig. D.) yielded higher dimensional
embeddings (Table D.). Yet, all these higher dimensional reconstructions gave poor prediction
results, except for MCDTS-C-MSE-KL (m), which gave significant better predictions (α = 0.05)
than the classic TDE methods at least for the one-step-ahead prediction.

.. Estimating causal relationship of observables of a thermoacoustic system

As a final proof of concept we utilize state space reconstruction for detecting causality between
observables X and Y in a turbulent combustion flow in a gas turbine. It is possible to infer a
causal relationship between two (or more) time series x(t) and y(t) via convergent cross mapping
(CCM) [, , ], which – in contrast to Granger causality [] – also works for time series
stemming from non separable systems, i.e., deterministic dynamical systems. The CCM method
“tests for causation by measuring the extent to which the historical record of Y values can reliably
estimate states of X. This happens only if X is causally influencing Y .”[] This also incorporates
the embedding theorems [, , ] in a sense that a state space reconstruction based on x(t)
is diffeomorphic to a reconstruction of y(t), if x(t) and y(t) describe the same dynamical system
and the embedding parameters have been chosen correctly. To check for a causal relationship
from X → Y , a state space reconstruction of y(t) yields a trajectory ~vy(t) ∈ Rm, with m denoting
the embedding dimension, which is then used for estimating values of x(t), namely x̂(t). It is
said that ~vy(t) cross-maps x(t), in order to get estimates x̂(t). Technically, this is done by first
searching for m+ 1 nearest neighbors of a point corresponding to a time index t′ ∈ t, i.e., find the
m+ 1 time indices t′NNi , i = 1, . . . ,m+ 1 of the nearest neighbors of ~vy(t′). Further, these time
indices t′NNi are used to “identify points (neighbors) in X (a putative neighborhood) to estimate
x(t′) from a locally weighted mean of the m+ 1 x(t′NNi) values”[]:

x̂(t′) =
∑

wix(t′NNi), i = 1, . . . ,m+ 1, (.)

with the weighting wi based on the nearest neighbor distance to ~vy(t′).

wi = ui/
∑

uj , j = 1, . . . ,m+ 1 (.)

ui = exp
[
−‖~vy(t′)− ~vy(t′NNi)‖ / ‖~vy(t

′)− ~vy(t′NN1)‖
]

(.)

with ‖·‖ a norm (we used Euclidean distances). Finally, the agreement of the cross-mapped
estimates x̂(t′) with the true values x(t′) is quantified for all considered t′ ∈ t, e.g., by computing
a linear Pearson correlation ρCCM, which has been done in this study. The clou is that the
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Figure .: A Linear correlation coefficient of convergent cross mapping (CCM) heat release → pressure as a
function of the considered time series length for Cao’s embedding method (gray) and the proposed
MCDTS embedding (blue) exemplary shown for on one out of  drawn sub-samples of length
N = 5, 000 from the entire time series (Fig. D., c.f. Table . for abbreviations). While the
dashed black lines show the linear trend for both CCM correlations, the dashed red line shows
the Pearson linear correlation between the heat release and the pressure time series, indicating no
influence. We ensured convergence of the cross mapping, and, thus, a true causal relationship, if
there was a positive trend in the CCM-correlation over increasing time series length (slope of the
dashed black lines) and when the last point of the CCM-correlation (i.e., longest considered time
series length) exceeded a value of . (in the shown case Cao’s method did not detect a causal
influence of the heat release to the pressure). We tested this on all  sub-samples for both causal
directions. B True classified causal relationships as a fraction of all sub-samples based on the
embedding of each time series using Cao’s method and our proposed MCDTS method.

estimation skill, here represented by ρCCM, increases with the considered amount of data used, if
X indeed causally influences Y . This is because the attractor – represented by the reconstruction
vectors ~vy(t) – gets resolved better with increasing time series length, resulting in closer nearest
neighbors and therefore a better concordance of x̂(t) and x(t), i.e., an increase of ρCCM with
increasing time series length. This convergence of the estimation skill based on cross-mapping is
a necessary condition for causation, not only a high value of ρCCM itself (Fig. .A). Although
the embedding process is key to a successful application of CCM to data, its influence has not
been discussed by Sugihara et al. []. However, Schiecke et al. [] discussed the impact of the
embedding parameters on CCM briefly and we hypothesize that the embedding method can play
a crucial role, when analyzing real world data. Therefore, we utilize the MCDTS framework in
the following way. As a delay pre-selection method Λτ , we use the reliable continuity statistic
〈ε?〉(τ) [, ]. As a suitable objective function Γ, we use the negative of the corresponding
ρCCM, i.e., MCDTS optimizes the embedding with respect to maximizing ρCCM of two given time
series. According to our abbreviation-scheme given in Table . we will refer to this approach as
MCDTS-C-CCM.
We apply the CCM-method to time series data that spans the different dynamical regimes

of a thermoacoustic system. Here, we investigate the mutual causal influence of two recorded
variables of the thermoacoustic system, namely the pressure and the heat release rate fluctuations
(Fig. D.). The original experiments were performed on a turbulent combustor with a rectangular
combustion chamber (length  mm, cross-section  mm ×  mm, Fig. D.). In such a
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combustion experiment, a fixed vane swirler is used to stabilize the flame and a central shaft
that supports the swirler injects the fuel through four radial injection holes. The fuel used is
liquefied petroleum gas (% butane and % propane). The airflow enters through the inlet to
the combustion chamber. The partially premixed reactant mixture is ignited using a spark plug.
Once the flame is established in the combustor, we continuously varied the control parameter
(mass flow rate of air, which, in turn, varies the Reynolds number and the equivalence ratio) to
observe the dynamical transitions in the system. Acoustic pressure fluctuations were measured
using a piezoelectric transducer (PCBB) and heat release rate using a photomultiplier tube
(Hamamatsu H-) at a sampling rate of  kHz.

The interactions between the turbulent flow, the unsteady fluctuations of the flame due and
the acoustic field of the chamber lead to different dynamical states. As the airflow rate increases,
the system transitions from a state of stable operation (which comprises high dimensional chaos
having low amplitude []) to intermittency, a state that comprises bursts of periodic oscillations
amid epochs of aperiodicity [], and then to limit cycle []. The self-sustained limit cycle
oscillations represent a state of oscillatory instability, known as thermoacoustic instability [].
When the flow rate of air is further increased, the flame loses its stability inside a combustor
and blows out. The pressure and heat release rate data capture the transition through all these
dynamical states in sequence. In the many different dynamical regimes recorded in the time
series, we expect the strength of causal interference between the heat release and the pressure
to vary. But in all dynamics we expect a mutual causal interaction between heat release and
pressure. Moreover, since a possible asymmetric bi-directional coupling between heat release and
pressure has been discovered in a stationary setup of a very similar experiment [] we would also
expect that the heat release rate has a slightly stronger causal influence on pressure than vice versa.

In short, the goal here is twofold:

. Prove the expected mutual causal relationship between heat release rate and pressure as
well as

. the hypothesized asymmetry in its strengths by applying MCDTS-C-CCM on a range of
time series, sampled from the entire record (Fig. D.).

We compare it to results obtained from using the CCM method with the classical embedding
approach of Cao []. Specifically, we set up the following workflow for this analysis:

.  time indices t′ ∈ t are drawn randomly, where t covers the entire record.

. For each of these indices t′, time series of length N = 5, 000 for pressure and heat release
are obtained and standardized to zero mean and unit variance (Fig D.).

. Both time series samples (of full length N = 5, 000) each are embedded using Cao’s method
as a classical reference and our proposed framework MCDTS-C-CCM with  trials (Table
.). Based on the obtained reconstructions ρCCM-Cao and ρCCM-MCDTS are computed
for both directions as a function of increasing time series length as exemplary shown in
Fig. .A.

Reynolds number is ρUD
µ

, where ρ is the density, U is a characteristic velocity, D is a characteristic dimension
(the diameter) and µ is the viscosity.

Equivalence ratio is the ratio between the actual fuel-air ratio to the stoichiometric fuel-air ratio.





. Applications

samples
–0.5

0

0.5

av
rg

. r
es

id
ua

ls

CCM-ρ difference of both causal directions (heat release    pressure & pressure    heat release)

Cao MCDTS-C-CCM No causality detected based on CCM-ρ for both directions

heat release stronger 
influences pressure

pressure stronger 
influences heat release

Figure .: Average pointwise difference of the CCM-correlation coefficients for the direction heat release →
pressure and vice versa for both underlying reconstruction approaches. For a better visualization
we sorted these values here separately for both methods. A positive value indicates that the heat
release has a stronger causal influence on pressure than vice versa, which is the expectation value.
Diamonds indicate cases, where we could not deduce a causal relationship for both directions in
one sample. As also shown in the right panel of Fig. .B, MCDTS-C-CCM was able to correctly
detect a mutual causal relationship in % of all considered samples (only  % marked with blue
diamonds in this Figure), whereas in the case of Cao’s reconstruction approach, we could only
detect this in % of all cases ( % marked with gray diamonds in this Figure).

. To ensure convergence in the CCM-sense we fit a linear model to ρCCM (dashed black lines
in Fig. .A) and whenever that model gives a positive slope and the last value of ρCCM
(i.e., for the longest considered time series of length N = 5, 000) exceeds a value of ., we
infer a true causal relationship.

. When we can detect a causal relation simultaneously in both directions, we compute the
average of the pointwise difference ρCCM heat→pressure − ρCCM pressure→heat

The minimum considered value of . for ρCCM is an arbitrary and subjective choice and we
could have made other choices. But since this procedure is applied to ρCCM-Cao and ρCCM-MCDTS
at the same time, we think this is reasonable and it prevents samples to be accounted for as
“true causal” when there is near- ρCCM, but a positive linear trend. Results do only change
slightly when varying this value in some interval [. .]. Figure .B summarizes the results
obtained for both considered embedding methods. Shown are the classification results for correctly
deducing a causal influence of pressure on heat release (left panel) and of heat release on pressure
(middle panel) based on our definition (item  in the list above). Thus, in this first step, we do
not measure the strength of the causal relationship, but rather test whether such a relationship
actually exists. While MCDTS-C-CCM maintains a correct classification in % of all cases
considered ( samples) for pressure → heat release and % for heat release → pressure, Cao’s
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method is only able to correctly classify % and %, respectively. These results themselves
already demonstrate a clear advantage of our proposed method, but recall that we expect a causal
relationship between heat release and pressure simultaneously for each sample. The right panel
of Figure .B reveals that in % of all cases considered, MCDTS-C-CCM is able to detect a
mutual causal relationship, while Cao’s method managed to do so in only % of the cases.

Furthermore we try to validate a hypothesis made by Godavarthi et al. [] that heat release
has a stronger effect on pressure than vice versa for most of the considered dynamics. The
problem of measuring the strength of a causal relationship is two-fold: First, the experiment
considered here exhibits a number of different dynamics due to the continuously changing control
parameter. The hypothesis of an asymmetry in the strength of the interaction was made for
stationary cases and four considered dynamics the authors investigated. Second, in describing
the CCM method, Sugihara et al. [] merely described that in the case of a stronger causal
effect of X on Y , cross-mapping X with ~vy converges faster than the other way around. Thus,
we would have to define what faster means with respect to our experimental curves like the
ones shown in Figure .A. That would mean introducing some parameters on which the results
would depend too much. Here we pursue a simpler idea in order to detect the strength of a
causal interaction. For samples where a causal relation in both directions has been detected,
we compute the average of the pointwise difference of the CCM-correlation coefficients, i.e.,
∆ρCCM = ρCCM Heat→pressure − ρCCM pressure→heat. When this difference is positive, we claim
that heat release stronger effects pressure in a causal sense than vice versa. Our analysis reveals
that the proposed method is able to reflect the hypothesized stronger causal effect of the heat
release on pressure data. Figure . shows that for  of the  samples (∼ 58%) ∆ρCCM is indeed
positive. Using the Cao method, we were able to derive such a result in only ∼ 26% of all samples.
In this case, however, only ∼ 28% of the samples were found to be mutually causally related at all
(cf. Fig. .B). Within the group of mutually causally related samples the assumed asymmetry is
reflected very well ( of  mutually causally related samples had a positive ∆ρCCM).

The proposed MCDTS reconstruction approach shows a clear advantage when using it together
with the CCM method. Not only is the general classification ability remarkable, but the MCDTS
reconstructions also allow verification of an assumed asymmetric causal interaction, which would
be limited by the classical time delay method.

. Conclusions

A novel perspective of the embedding process has been proposed, in which the state space
reconstruction from single time series can be treated as a game, in which each move corresponds
to an embedding cycle and is subject to an evaluation through an objective function. It is possible
to model different embeddings, i.e., different choices of delay values and time series (if there are
multivariate data at hand) in the embedding cycles, in a tree like structure. Consequently our
approach randomly samples this tree, in order to ensure the finding of a global minimum of the
chosen objective function. We leave it to practitioners which state space evaluation statistic, i.e.,
objective function, they use, since different research questions require different reconstruction
approaches. There is also a free choice of a delay pre-selection method for each embedding cycle,
e.g., using the minima of the auto-mutual information statistic. We recommend the combination
of the continuity statistic of Pecora et al. [] as a delay pre-selection method together with
the L-statistic of Uzal et al. [] as an objective function as a very good “all-rounder” for many
research questions in nonlinear time series analysis, as already shown by Kraemer et al. []
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(PECUZAL algorithm), Chapter . Since the sampling of the tree is a random procedure the
proposed idea only yields converging embedding parameters for a sufficient sampling size Ntrial.
In our numerical investigations, Ntrial = 50 usually led to satisfying results for univariate cases
and Ntrial = 80 for multivariate embedding scenarios. Our proposed method initializes in a local
minimum of the objective function, which is achieved by minimizing the objective function in each
embedding cycle to the maximum extend. So in practice, even setting Ntrial too low would lead
to similar – but never worse – results as the state of the art methods. Moreover, the proposed
method is not limited to delay pre-selection and objective functions that take into account certain
physical constraints. It would also optimize the reconstruction vectors of the state space for
research questions such as classification, where we could speak of a feature or latent space instead
of the state or phase space notation associated with statistical physics. We exemplified the use of
such a modular algorithm by combining different objective- and delay pre-selection functions. Its
superiority to classical time delay embedding methods has been demonstrated for a recurrence
analysis of the Lorenz- system, a prediction of the x-time series of the chaotic Hénon map and
the δ13C CENOGRID record as well as on studying causal interactions between variables in a
combustion process.

With these applications we showed the advantage MCDTS brings for any kind of method that
utilizes an embedding such as recurrence analysis, embedding-based predictions of time series,
or causal analysis with convergent cross mapping. It, thus, has potential in many applications
and disciplines, everywhere where such phase space based approaches are used but an automatic
phase space reconstruction is required. The latter is of increasing interest, e.g., for big data
analysis, analysis with highly reliable requirements (e.g., in medical applications), and also for
deep learning based frameworks.
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Recurrence threshold selection for obtaining
robust recurrence characteristics in different
embedding dimensions

Kraemer, K. H., Donner, R. V., Heitzig, J. and Marwan, N. (). Recurrence threshold
selection for obtaining robust recurrence characteristics in different embedding dimensions. Chaos:
An Interdisciplinary Journal of Nonlinear Science,  (), . doi: ./., with
the permission of AIP Publishing []

Abstract

The appropriate selection of recurrence thresholds is a key problem in applications of
recurrence quantification analysis (RQA) and related methods across disciplines. Here, we
discuss the distribution of pairwise distances between state vectors in the studied system’s
state space reconstructed by means of time-delay embedding as the key characteristic that
should guide the corresponding choice for obtaining an adequate resolution of a recurrence
plot. Specifically, we present an empirical description of the distance distribution, focusing on
characteristic changes of its shape with increasing embedding dimension. Our results suggest
that selecting the recurrence threshold according to a fixed percentile of this distribution
reduces the dependence of recurrence characteristics on the embedding dimension in com-
parison with other commonly used threshold selection methods. Numerical investigations on
some paradigmatic model system with time-dependent parameters support these empirical
findings.

. Introduction

Recurrence plots (RPs) provide an intuitive tool for visualizing the (potentially multi-dimensional)
trajectory of a dynamical system in state space. In case only univariate observations of the
system’s overall state are available, time-delay embedding has become a standard procedure for
qualitatively reconstructing the dynamics in state space. The selection of a threshold distance ε,
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which distinguishes close from distant pairs of (reconstructed) state vectors, is known to have a
substantial impact on the recurrence plot and its quantitative characteristics, but its corresponding
interplay with the embedding dimension has not yet been explicitly addressed. Here, we point
out that the results of RQA and related methods are qualitatively robust under changes of the
(sufficiently high) embedding dimension only if the full distribution of pairwise distances between
state vectors is considered for selecting ε, which is achieved by consideration of a fixed recurrence
rate.

A vector time series {~xi}Ni=1 (with ~xi = ~x(ti)) provides an approximation of a specific trajectory
of a given dynamical system in finite-time and (for time-continuous dynamical systems) finite-
resolution. In many real-world applications, however, inferring complete dynamical information
from observations is hampered by the fact that only some of the dynamically relevant variables
are directly observable. In such cases, it has been demonstrated [] that it is possible to
qualitatively reconstruct representations of the unobserved components of a higher-dimensional
system by means of embedding techniques applied to a suitably chosen individual component
[]. Specifically, time-delay embedding has become a widely utilized method in nonlinear
time series analysis, where a series of univariate observations {xi} (the actual time series at
hand) is unfolded into a sequence of m-dimensional state vectors {~xi} [, ] defined as
~xi = (xi, xi−τ , . . . , xi−(m−1)τ )T , where m and τ denote the chosen embedding dimension and
embedding delay, respectively. There are more sophisticated methods for reconstructing the state
space, which can also handle multivariate time series input. An overview is given in Section ..
According to the definition of a RP (Eq. (.)), for a given time series the recurrence matrix

depends on the chosen recurrence threshold ε together with the selected norm ‖·‖ used for defining
pairwise distances between the state vectors. In this work, we will restrict ourselves to two of
the most commonly used norms: the Euclidean (L2) and maximum (L∞, supremum, Chebychev)
norms. Specifically, we will study how the distributions of pairwise L2 and L∞ distances depend
on the embedding dimension.
Previous studies have provided various complementary suggestions for (i) selecting the right

method of determining the recurrence threshold and (ii) choosing its actual value in some automatic
way based on the specific properties of the system under study. Corresponding approaches include
the spatial extent of the trajectory in the (reconstructed) state space [, ], signal to noise ratio
[, , , ], the specific dynamical system underlying the time series under investigation
[, ], or properties of the associated recurrence network [, ] with adjacency matrix
Ai,j = Ri,j − δi,j (with δi,j being the Kronecker symbol) like the percolation threshold [, ],
second smallest eigenvalue of the graph’s Laplacian [], breakdown of ε−1 scaling of the average
path length [], or information-theoretic characteristics []. In practice, the appropriate choice
of the method for determining the recurrence threshold, as well as its resulting value itself, can
depend on the specific problem under study and take any of the above criteria or even some
multiple-objective considerations based on different criteria into account. To this end, a general
solution to the second problem of selecting a specific value of ε has not yet been obtained, and
we will also not address this problem specifically in the course of this Chapter. Instead, we are
attempting to provide some further insights into the first, more conceptual problem setting, i.e.,
which type of approach for selecting recurrence thresholds should be taken in case of varying
situations such as different embedding dimensions [, , , ].
As we will further detail in the course of this chapter, some previously suggested approaches

[, , , ] to link a recurrence threshold to a certain percentage of the maximal or mean
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Figure .: Selected histograms of the L2 (A,C,E) and L∞ (B,D,F) distances of N = 1, 500 independent
random numbers with uniform A+B and Gaussian C+D distribution as well as E+F for the
y component of the Lorenz- system (Eq. (B.), N = 6, 000, see Section .) with control
parameters σ = 10, β = 8/3 and r linearly increasing from  (chaotic regime) to  (periodic
regime), for different embedding dimensions m.
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distance of all pairwise distances of state vectors (i.e., a given fraction of the attractor’s diameter in
the reconstructed state space) cause the resulting recurrence characteristics to strongly depend on
the embedding dimension. The reason for this behavior is that in addition to a general increase of
distances – depending on the chosen norm – [, ], the shape of the distance distribution also
changes with increasing embedding dimension (see Fig. . and further discussions in Section .).
It should be noted that embedding a time series with m ∼ O(101) or even larger can become

necessary when the correlation dimension D2 of the attractor is rather large. This is due to
the fact that Takens’ theorem (and several extensions thereof) guarantee the existence of a
diffeomorphism between the original and the reconstructed attractor if m satisfies m > 2D2 + 1
[, , ]. Hegger et al. [] emphasize that it is also advisable to choose a rather high
value of m when dealing with time series originating from a D-dimensional deterministic system
that is driven by P slowly time dependent parameters. An appropriate yet conservative choice for
m then fulfills m > 2(D + P ). Concerning practical applications of nonlinear time series analysis,
one commonly deals with signals originating from complex, non-stationary systems and, therefore,
high embedding dimensions can become necessary, requiring threshold selection methods which
lead to robust results of RQA and related state space based techniques that are robust under
different choices of the embedding dimension.
In the following Section ., we study the influence of an increasing embedding dimension

on the shape of the distance distribution in more detail. We deduce that, in order to avoid
problems arising due to an unfavorable fixed recurrence threshold when varying m, we could
choose ε as a certain percentile of the distance distribution rather than a certain percentage of the
maximum or mean phase space diameter. Successively, Section . presents a numerical example
of a classical Lorenz- system with a time-dependent parameter, illustrating that the changes in
some recurrence characteristics with varying embedding dimension are particularly small under a
fixed recurrence rate in comparison with other strategies. Finally, the main results of this study
are summarized in Section ..

. Influence of embedding dimension on the distance distribution

Let us consider a univariate time series {xi} of length N . As an overarching question, we study
the effect of time-delay embedding on the distribution of all pairwise distances of its reconstructed
state vectors. The variation of this distribution with increasing embedding dimension m is
expected to depend on the chosen norm used for the calculation of distances. Note that the
effective number of state vectors Neff(m) = N − (m− 1)τ available for estimating the probability
distribution of distances in m dimensions will decrease with m. In order to avoid sample size
effects in comparing the results for different m, we therefore choose N sufficiently large so that
1−Neff(mf )/N � 1, where mf is the largest considered embedding dimension.

.. Maximum norm

Numerical results for different types of systems demonstrate (see Appendix E.) that the largest
of all pairwise L∞ distances, d(∞)

max, stays constant with increasing embedding dimension, whereas
the mean of all pairwise L∞ distances, d(∞)

mean, monotonically increases with m (Fig. E.). In order
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to understand this observation, recall that the L∞ distance between two embedded state vectors
~xi = (xi,1, xi,2, . . . , xi,m)T and ~xj = (xj,1, xj,2, . . . , xj,m)T is

‖~xi − ~xj‖∞= max
k=1,...,m

|xi,k − xj,k| = d
(∞)
i,j (m) (.)

For m = 1 (i.e., no embedding), the distance between two observations at times ti and tj therefore
is simply d(∞)

i,j (1) = |xi − xj |. For m = 2, we find

d
(∞)
i,j (2) = max{|xi − xj | , |xi+τ − xj+τ |}

= max
{
d

(∞)
i,j (1), |xi+τ − xj+τ |

}
> d(∞)

i,j (1). (.)

By induction, we can easily show that

d
(∞)
i,j (m) = max

{
d

(∞)
i,j (m− 1),

∣∣∣xi−(m−1)τ − xj−(m−1)τ

∣∣∣}
and therefore

d
(∞)
i,j (m) > d(∞)

i,j (m− 1) ∀ m > 1. (.)

Hence, considering all possible pairs of state vectors (~xi, ~xj) from the time series, the largest L∞
distance

d(∞)
max(1) = max

i,j
[d(∞)
i,j (1)] = max

i,j
[d(∞)
i,j (m)] = d(∞)

max(m), ∀ m

cannot change with m, since the largest maximum distance will already appear for m = 1. The
mean distance

d(∞)
mean(m) = 1

N2
eff(m)

Neff(m)∑
i,j=1

d
(∞)
i,j (m),

however, necessarily increases with m or stays at most constant. More specifically, as m increases,
smaller distances systematically disappear, so that the entire distribution is systematically shifted
towards its (constant) maximum, thereby becoming narrower and exhibiting an increasing mean
along with decreasing variance. We conjecture that, for large m, the distribution of d(∞)(m) will
converge to a limiting distribution (see below) possibly depending on the embedding delay τ .

.. Euclidean norm

In case of the L2 (Euclidean) norm, both mean and maximum of all pairwise distances (d(2)
mean(m)

and d(2)
max(m), respectively) monotonically increase with rising m (Appendix E., Fig. E.B). This

can be understood as follows: The L2 distance between two points in an m-dimensional state
space, ~xi and ~xj , is given as

‖~xi − ~xj‖2=
( m∑
k=1
|xi,k − xj,k|2

) 1
2 = d

(2)
i,j (m) (.)
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For the squared L2 distance, this implies:[
d

(2)
i,j (1)

]2
= (xi − xj)2[

d
(2)
i,j (2)

]2
= (xi − xj)2 + (xi−τ − xj−τ )2

=
[
d

(2)
i,j (1)

]2
+ (xi−τ − xj−τ )2

>
[
d

(2)
i,j (1)

]2
(.)

...[
d

(2)
i,j (m+ 1)

]2
>
[
d

(2)
i,j (m)

]2
> . . . >

[
d

(2)
i,j (1)

]2
, (.)

which explains the observed behavior of both mean and maximum distance using the L2 norm.
Specifically, unlike for L∞, the maximum L2 distance between two points is not bound by the
largest pairwise distance in one dimension.
In a similar way, we may argue for all Lp distances (p ∈ (0,∞)) defined as

‖~xi − ~xj‖p=
( m∑
k=1
|xi,k − xj,k|p

) 1
p = d

(p)
i,j (m) (.)

that, by the same argument as above,[
d

(p)
i,j (m+ 1)

]p
>
[
d

(p)
i,j (m)

]p
, (.)

implying again a monotonic increase of mean and maximum distances with rising embedding
dimension (recall the positive semi-definiteness of distances and p).

.. Changing shape of distance distribution with increasing embedding dimension

Building upon our previous considerations and numerical results, a mathematically more specific
yet challenging question is how exactly an increasing embedding dimension m is affecting the
shape of the distribution of all pairwise distances rather than just its central tendency (mean).
For the maximum norm, one may argue that the individual components of each embedded

state vector are commonly constructed such that they are as independent as possible [].
Accordingly, for a system without serial correlations (i.e., uncorrelated noise), the absolute
differences d = d(∞)(1) between the components of two state vectors are also independent,
identically distributed (i.i.d.) and lie within the interval [0, dmax]. In such case, for sufficiently
large m, the pairwise L∞ distance between two state vectors can be interpreted as the maximum
of m i.i.d. variables that are bounded from above, which should follow a reversed Weibull
distribution according to the Fisher-Tippett-Gnedenko theorem from extreme value statistics.
Note, however, that this expectation is valid only if m is sufficiently large and the i.i.d. assumption
is (approximately) fulfilled, both of which do not necessarily have to be the case for real-world
time series. Moreover, it is not guaranteed that the given distance distribution in one dimension
lies within the domain of attraction of the reversed Weibull class [], which calls for further
theoretical investigation in each specific case.
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For other Lp norms including the Euclidean norm, the aforementioned considerations do not
apply. Instead, for any Lp norm with p <∞,

• the pairwise distances dp are of the form (
∑
i z
p
i )1/p (i = 1, ...,m) as given in Eq. (.) with

approximately i.i.d. variables zi.

• From the central limit theorem it follows that the distribution of dp is approximately a
normal distribution with mean and standard deviation growing proportionally with m and√
m, respectively, for large m.

• The coefficient of variation of dp thus declines approximately as ∼ 1/
√
m.

• For large m, also d = (dp)1/p is approximately normally distributed with mean and standard
deviation growing approximately as ∼ m1/p and ∼

√
mdz1/p

dz |z=m∼
√
mm1/p−1 = m1/p−1/2.

• The coefficient of variation of d thus behaves approximately as ∼ m1/p−1/2/m1/p = 1/
√
m,

just as for dp.

• As a consequence, the relative variability of d narrows in the same fashion for all p <∞ as
m grows, and only the growth of the absolute scale of d with m depends on p (“curse of
dimensionality” []).

The considerations made above do explain the numerical results in Fig. ., showing histograms
of the distances of three different time series for selected values of the embedding dimension m
and for the L2 and L∞ norms. In addition to time series fulfilling the i.i.d. assumption (Fig. .
A,B,C,D), here we are also interested in deterministic systems. As an illustrative example, we
choose the Lorenz- system (Eq. (B.), Fig. . E,F) in some non-stationary (drifting parameter)
setting, which will be further studied in Section ..

In this regard, it is confirmed that the expectation value of the distance distribution takes higher
values with increasing m. The probability to find small distances therefore decreases. In case of
the L∞ norm (Fig. . B,D,F), this growth is bounded and we can identify a convergence of the
distribution, in some cases eventually towards the aforementioned reversed Weibull distribution.
In turn, for the L2 norm (Fig. . A,C,E) the convergence towards a normal distribution is
discernible. Considering the Lorenz- time series (Fig. . E,F), the empirical expectations are
approximately met by the observations, even though the distribution of L∞ distances exhibits a
slightly more complex (i.e., less symmetric) shape than for the two noise series. Specifically, for
the L2 norm the resulting distance distribution is left-skewed with a pronounced lower tail (see
Fig. . E), whereas for the L∞ norm we observe a disturbed Weibull-like shape. Notably, the
i.i.d. assumption is violated when dealing with such a deterministic dynamical system. For a more
detailed characterization of the shape of the empirically observed pairwise distance distributions
shown in Fig. ., see Appendix E..

In general, we emphasize that it is not straightforward to analytically describe the shape of the
distance distribution of an embedded time series stemming from an arbitrary dynamical system
with potentially nontrivial serial correlations. Regarding our overarching question how we could
automatically choose a recurrence threshold such that the resulting recurrence characteristics are
as independent as possible of the embedding dimension and chosen norm, we need to consider
both,

(i) the general increase of distances together with their successive concentration and
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(ii) the varying shape of the distribution of distances

with increasing embedding dimension. The first aspect could be accounted for by relating the
threshold selection to the spatial extent of the state space object (attractor), similar as, for
instance, suggested by Abarbanel [] in the context of the false nearest neighbor algorithm.
However, our findings suggest that accounting for the second point is key to an appropriate
recurrence threshold selection method that relieves the effects of the embedding dimension on
the recurrence properties as much as possible. As a simple possible solution, we recommend to
use a numerical estimate of a certain (sufficiently low) percentile of the distance distribution as
threshold [, , , ]. This approach considers both above mentioned effects and leads to a
constant global recurrence rate (which equals the chosen percentile). As a result, the recurrence
properties become much less dependent on the embedding dimension and chosen norm than when
using other methods, as we will exemplify in the following section.
We emphasize that in addition, by conserving the recurrence rate, possible dependencies of

RQA characteristics on the density of recurrences for different m are omitted, and corresponding
residual changes of these measures upon varying m could rather point to either insufficiently
low embedding dimension (missing essential factors contributing to the system’s dynamics, in a
similar spirit as, e.g., for the false nearest neighbor method) or spurious recurrence structures
arising from over-embedding []. These ideas should be further studied in future work.

. Numerical example

In this section, we will demonstrate the effect of the varying shape of the distance distribution
with increasing embedding dimension on different threshold selection approaches working with a
globally fixed value of ε. In order to mimic a practically relevant test case of a non-stationary low-
dimensional dynamical system, where we should use some higher embedding dimension (following
Hegger et al. []) instead of a more moderate choice, we consider the classical Lorenz- system,
Eq. (B.). Depending on the parameters σ, β and r, the system exhibits either regular or chaotic
dynamics. Here, we consider a transitory setting, where the parameter r gradually increases from
 to  while keeping β = 8/3 and σ = 10 fixed. In this case, the system undergoes a transition
from a chaotic regime into a regular (limit cycle) phase as r rises before it exhibits again a chaotic
behavior. Note again that instead of studying the stationary Lorenz- system for different values
of r, we intentionally employ a gradual parameter change leading to a non-stationary system
which calls for a systematic over-embedding when performing nonlinear time series analysis [].
Specifically, we implement a linear variation of r as

r(tis) = 180 + 2.5 · 10−2tis. (.)

For numerically solving this system of equations, we use a fourth-order Runge-Kutta integrator
with an integration step of tis = 0.001 and a total of ,, iterations. Therefore, we simulate
the system’s evolution over , time units (t.u.). By using a sampling interval of δt = 0.2
t.u. we obtain , samples forming our time series for the three components x, y and z. We
remove the first  points (=̂100 t.u.) that could be affected by transient dynamics and retain
the remaining , points (=̂1200 t.u.) of the y component for further analysis.
We integrate the Lorenz- equations, Eq. (B.), with the linear parameter change, Eq. (.),

, times with randomly chosen initial conditions, embed the y component time series using a
delay τ = 4, consistent with the first local minimum of the mutual information [], and assess the
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resulting RPs. For each of these , RPs, we use a running window along their main diagonal
with a window size of w = 400 and mutual shift of ws = 40 data points, i.e., % overlap between
consecutive windows, to quantitatively study the time-dependence of the resulting recurrence
characteristics. We repeat this procedure for embedding dimensions ranging from m = 3 to
m = 10 and for four different threshold selection methods: (i) a fixed percentile of the distance
distribution (as recommended by our theoretical considerations in Section .) as well as some
fixed percentage of the (ii) maximum, (iii) mean and (iv) median pairwise distances between all
state vectors in the reconstructed state space, respectively.
Since we are aiming to study the change of recurrence properties associated with a transition

between chaotic and periodic dynamics and vice versa, we choose the recurrence time entropy
(RTE), Eq. (A.) in Appendix A. We choose the actual recurrence threshold for each threshold
selection method (i)-(iv) such that a global recurrence rate of RR ≈ 4% is achieved in all four
cases for m = 3. Therefore, for each embedding dimension we obtain a distribution of 1, 000
RTE time series and show the mean (blue lines in Fig. .) together with the two-sided %
confidence interval ([5%, 95%], gray shaded areas). In order to put these time dependent RTE
estimates of the non-stationary Lorenz- system into a context, we consider a reference reflecting
the time-dependent RTE values directly computed from the true three-dimensional state vectors
without embedding, using otherwise the same analysis strategy (window size and overlap) as for
the embedding scenario. Thus, for each point in time we obtain , reference measurements
and consider the mean (red line) and the two-sided % confidence interval (red shaded area in
Fig. .).

The robustness of the observed time-dependence of RTE with respect to the chosen embedding
dimension when using a fixed percentile of the distance distribution (i.e., a fixed recurrence
rate) is shown in Fig. .A (here we used the L2 norm, but the results are similar when using
the L∞ norm). For any embedding dimension larger than m = 4, the variations of the RTE
estimates originating from the embedding procedures match the red reference time series within
its uncertainties for times t & 200. For adequately revealing the chaotic regime in the first part
until t ≈ 160, an embedding dimension larger than m = 7 seems to be inevitable, whereas results
from any embedding dimension coincide with the reference estimate within its uncertainties at the
limit cycle regime (1, 000 ≤ t ≤ 1, 080). In case of not using the recommended threshold selection
method, this robustness is clearly lost (Fig. .B,C,D), and only the limit cycle regime (plus some
shorter sections before) are properly revealed by the estimates obtained in the reconstructed state
space.
Considering the results of Section ., the reason for the failure of the methods based on

individual location parameters (maximum, mean, median) of the pairwise distance distribution
between state vectors for higher embedding dimensions is the change in the shape of that
distribution beyond its characteristic location and range parameters. Appendix E. demonstrates
this effect on the RPs in some more detail. Hence, we argue that selecting the recurrence threshold
at some percentile of the distance distribution is to be preferred if we aim to obtain stable results
for a broad range of embedding dimensions, which is the case if we wish to automatically choose
fixed recurrence thresholds for the analysis of arbitrary complex systems.

We note that the presented example has focused on a recurrence characteristic that is particularly
well suited for detecting transitions between chaotic and periodic dynamics and is linked to a
dynamical invariant. Other recurrence characteristics, like classical RQA measures or recurrence
network characteristics, have been found to exhibit less stable variations with changing embedding
dimension (not shown) and are therefore not further discussed here. Clarifying the reasons for the
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Figure .: Time-dependence of RTE (ensemble means and two-sided % confidence intervals from ,
independent realizations) based on the y component of the non-stationary Lorenz- system (see
text for details) using the L2 norm. The blue lines show the results for time-delay embedding
with different embedding dimensions (m = 3, . . . , 10) and for four different methods to select
the recurrence threshold according to A a certain percentile of the distance distribution and
some percentage of the B maximum, C mean and D median distance between state vectors
on the reconstructed attractor. The actual threshold values (4th percentile, 8%, 24% and 24%,
respectively) have been chosen such that the global recurrence rate of approximately 4% is achieved
for each method in the embedding scenario with m = 3. The red line shows the reference time
series gained from , independent realizations of the non-stationary Lorenz- system by
randomly choosing initial conditions and using all three components as state variables. Shaded
areas (gray and red) indicate the two-sided 90% confidence intervals estimated from the respective
ensembles.

different behaviors of different recurrence characteristics will be an important subject of future
work.

. Conclusions

We have discussed the changing shape of the distribution of pairwise distances between state vectors
obtained by time delay embedding with increasing embedding dimension and its implications
for different methods for selecting temporally fixed recurrence thresholds. While specific values
of the recurrence threshold should always be chosen based upon a multitude of criteria ranging
from time series length to different topological and/or geometric characteristics of the associated
trajectory, we have provided both empirical arguments and numerical indications that selecting
the recurrence threshold at a prescribed percentile of the distance distribution (i.e., conserving
the global recurrence rate) results in quantitative recurrence characteristics that are more stable


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under changes of the embedding dimension than when using alternative approaches. In the latter
context, we have demonstrated that measures from RQA and related frameworks may exhibit a
crucial dependence on the embedding dimension when selecting the recurrence threshold according
to a certain percentage of the mean or maximum state space diameter, as sometimes suggested in
other works [, ]. This also indicates that some alternative approaches, such as normalizing
the time series and applying a uniform threshold independent of the embedding dimension and
the considered norm [], are not likely to perform well for any kind of data, when neglecting
the effect on the distance distribution with increasing embedding dimension.

At the conceptual level, our general discussion of the changing shape of distance distributions
with embedding dimension has led to some interesting follow-up questions associated with the
convergence properties of these distributions at high embedding dimensions, which should be
further addressed in future studies. Notably, the relationship between the distribution of L∞
distances and extreme value statistics clearly deserves further investigations to fully understand the
emerging shape of the distributions as the embedding dimension becomes large. As a cautionary
note, we emphasize that the considerations presented in this work relate exclusively to the concept
of time delay embedding as the most widely applied embedding technique, but not necessarily to
methodological alternatives like derivative embedding [], for which the metric properties of
different components of the embedding vector cannot be easily related to each other.

Taken together, the results presented in this work are important for automatizing the problem
of data-adaptive recurrence threshold selection, which is key for further widening the scope of
applications of recurrence plots, recurrence quantification analysis and related techniques across
scientific disciplines. Especially in the context of long time series originating from non-stationary
systems, which frequently appear in many fields of science, a generally applicable approach is
crucial for obtaining reliable and easily interpretable results.
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Border effect corrections for diagonal line based
recurrence quantification analysis measures

Kraemer, K. H. and Marwan, N. (). Border effect corrections for diagonal line based
recurrence quantification analysis measures. Physics Letters A,  (), ,
doi: ./j.physleta.. []

Abstract

Recurrence Quantification Analysis (RQA) defines a number of quantifiers, which base upon
diagonal line structures in the recurrence plot (RP). Due to the finite size of an RP, these lines
can be cut by the borders of the RP and, thus, bias the length distribution of diagonal lines
and, consequently, the line based RQA measures. In this chapter we investigate the impact
of the mentioned border effects and of the thickening of diagonal lines in an RP (caused by
tangential motion) on the estimation of the diagonal line length distribution, quantified by
its entropy. Although a relation to the Lyapunov spectrum is theoretically expected, the
mentioned entropy yields contradictory results in many studies. Here we summarize correction
schemes for both, the border effects and the tangential motion and systematically compare
them to methods from the literature. We show that these corrections lead to the expected
behavior of the diagonal line length entropy, in particular meaning zero values in case of a
regular motion and positive values for chaotic motion. Moreover, we test these methods under
noisy conditions, in order to supply practical tools for applied statistical research.

. Introduction

Recurrence quantification analysis (RQA) is a powerful tool for the identification of characteristic
dynamics and regime changes [, ]. This approach is successfully applied in many scientific
disciplines [, , , , , , , , , , ]. Several measures of complexity
are defined on geometric features (such as diagonal and vertical lines) in the recurrence plot
(RP), which represents time points j when a state ~xi at time i recurs [, , , ]. These
line structures represent typical dynamical behavior and are related to certain properties of the
dynamical system, e.g., chaotic or periodic dynamics. Therefore, their quantitative study by
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the RQA measures within sliding windows is a frequently used task for the detection of regime
changes [, , , ]. However, as some RQA measures rely on the probability distribution
of the lengths of the diagonal lines in an RP, the artificial alteration of these lines due to border
effects [, ], insufficient embedding [, ], or a certain sampling setting [, ] can have
significant impact on these measures. A few ideas have been suggested to overcome such problems
[, , ]. Here we review these ideas, propose novel correction schemes, and systematically
compare them.

. Recurrence quantification analysis and border effects

A recurrence plot R (Eq. (.)) consists of small-scale structures, such as single points and diagonal
and vertical lines, which characterize important dynamical properties of the system. A diagonal
line is a sequence of pairs of time points L := {(i, j), (i+ 1, j+ 1), . . . , (i+ `− 1, j+ `− 1)} where
Ri,j ≡ 1 for all index pairs in L. Diagonal lines in the RP represent the temporal duration that
two distinct parts of the phase space trajectory run parallel (Figs. . and .). The histogram
P (`) of the lengths of diagonal lines (Fig. .) characterizes the dynamics [, , ] and can
be and has been used to quantitatively distinguish between RPs, the underlying dynamics, or to
identify regime transitions [, , , , ].
For uncorrelated noise, the probability to find a line L of exact length ` decays exponentially

[] (Fig. .A), i.e., the RP consists only of very short diagonal lines, if there are any lines
at all (Fig. .A). In contrast, for chaotic dynamics, the RP contains diagonal lines of different
lengths (Fig. .C), resulting in a broad distribution P (`) (Fig. .C). The RP for a periodic
system contains continuous, non-interrupted diagonal lines, virtually of infinite length (Fig. .B).
In principal, we would expect a discrete line length distribution with a peak at line length infinity.
However, the lines are cut at the begin and end of the RP, such that an uncorrected conventional
line length measurement results in a discrete distribution P (`) with uniform characteristics
(Fig. .B).

The RP is a discrete matrix. Therefore, the creation of the histogram P (`) appears to be
trivial. But it is not as simple as it looks at the first glance. Diagonal lines can be quite long and
– as already mentioned – can exceed the finite size of the RP. In practice, this is a very common
problem, particularly when a sliding window method is applied. How to count such diagonal
lines? As we will see later, for some measures, it can be important to have the correct length of
the lines, for other measures it does not play any role. In the original definition, the lines are also
counted even if they were cut by the RP border [, , ].

Several quantification measures for RP analysis have been introduced which use P (`) (see also
Appendix A). The firstly introduced measure was the determinism DET (Eq. (A.)) []. This
measure is defined as the fraction of recurrence points that form diagonal lines and considers
lines which have at least length `min, which in principle is a free parameter, but often set to .
Nevertheless the choice of the minimal line length can be crucial for the correct estimation of
some RQA measures and we come back to that in Section ... More details about this can be
found in Marwan et al. []. Since RPs of uncorrelated noise have mainly single points and only
few and short diagonal lines, for such dynamics DET has rather low values (although embedding
can result in artificially high DET values, see discussion in [, ]). In contrast, RPs for
deterministic dynamics contain many diagonal lines, resulting in elevated values of DET, with the
special case of DET= 1 for periodic and quasi-periodic dynamics. As this measure only quantifies
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Figure .: Parallel and close parts of a phase space trajectory A correspond to diagonal lines of length ` in
an RP B. Diagonal lines can be cut by the border of the RP (green circles).

whether a recurrence point is on a diagonal line or not, the actual length of a diagonal line is not
important (i.e., whether the line crosses the RP border or not).

Another idea is to look at the average and maximal length of the detected diagonal lines (related
to prediction time and Lyapunov exponent, resp.[]). The average, of course, depends on the
actual line lengths and will be biased when diagonal lines cross the RP borders.

Because the shape of P (`) differs for different dynamics, the Shannon entropy of the probability
distribution p(`) = P (`)/

∑
` P (`) to find a diagonal line of exact length ` was suggested (Eq. (A.))

[]. In the following we denote this entropy as ENTR. This measure was introduced in a
pragmatic way to quantify the visual line structures in the RP and has been interpreted as the
“information content of the trajectories” []. Here, the choice of the minimal line length `min
has a significant effect, since it discards parts of the line length histogram and therefore alters its
shape. For uncorrelated noise, ENTR has low values, because p(`) is exponentially decaying. For
chaotic dynamics, p(`) is a broad distribution, resulting in relatively large ENTR values. However,
for periodic signals p(`) has more similarity with a uniform distribution if the mentioned border
effects are not accounted for. Therefore, ENTR is not low for periodic signals, although we would
expect it, but rather large, even larger than for chaotic dynamics. Here, the effect of the sliced
lines at the RP border has the strongest and remarkable effect, which is why we focus on this
measure only in this chapter.
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Figure .: RPs of A standard normal Gaussian random numbers, B time-delay embedded sinusoidal with an
oscillation period T = 100 time units (m = 2, τ = T/4), and C the Rössler system (a = 0.15,
b = 0.2, c = 10) (only subsets shown). RPs were constructed from time series of , samples
(in case of the Rössler system we removed transients) using a constant global recurrence rate of
% with a fixed threshold and Euclidean norm.
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Figure .: Diagonal line length distributions of the different systems types described in Fig. ., gained from
the conventional line counting.

. Correction schemes for counting diagonal lines

In this section we show two ways of overcoming the problem of biased diagonal line based measures
due to the border effect. Either we manipulate the histogram of the diagonal lines (Section ..)
or we change the shape of the RP in order to avoid a bias in the first place (Section ..).

.. Alternative ways of counting line lengths

Let R be a N × N recurrence matrix, Eq. (.), and P (`) the histogram of the diagonal lines
contained in R. We now substantiate the definition of a diagonal line in an RP from Section ..
A diagonal line L of length ` is a set of ` index tupels (·, ·)k=1,..,`:

L` := {(i+ k, j + k) |∀k = 0, ..., `− 1 : (1−Ri−1,j−1) (1−Ri+`,j+`)Ri+k,j+k ≡ 1}. (.)

The length ` of a line is usually the cardinality of this set |L|.
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We denote any diagonal line which starts and ends at the border of R as a border diagonal,
e.g., in case of the lower triangle of the RP, when starting at (i, 1) in the first column and ending
at (N,N − i+ 1) in the last row:

Lborder :={(i+ k, 1 + k) | ∀ k = 0, . . . , N − i : Ri+k,1+k ≡ 1 ∨
(1 + k, j + k) | ∀ k = 0, . . . , N − j : R1+k,j+k ≡ 1}. (.)

Any diagonal of length `, which starts or ends at the border of R and has an end or start point
within the recurrence matrix, we call semi border diagonal :

Lsemi border := {(i+ k, j + k) | ∀k = 0, . . . , `− 1 ∧ (j = 1 ∨ i+ `− 1 = N) : Ri+k,j+k ≡ 1 ∨
(i+ k, j + k) | ∀k = 0, . . . , `− 1 ∧ (i = 1 ∨ j + `− 1 = N) : Ri+k,j+k ≡ 1}.

(.)

Discard border diagonals from histogram (dibo correction)

The real length of the border diagonals is unknown. Therefore, we are not able to assign their
true length to them and, hence, one option to deal with the missing length regarding the line
length histogram is setting their length to zero. That is, we simply discard all (semi-)border
diagonals from P (`) and, thus, avoid the broad line length distribution as exemplary shown in
Fig. .B. As desired, this results in a lowered entropy value, but also has some drawbacks. In
case of a perfectly sampled stationary periodic signal (without any noise contamination) this
method would empty the histogram P (`) completely, leaving an undefined entropy (Figs. ., F.,
F.) and a mean and maximum line length of zero. In the following, we refer to this approach as
dibo correction (DIscard BOrder diagonals).

Assign maximum line length to all border diagonals (Censi correction)

To avoid an empty diagonal line histogram Censi et al. [] suggested to assign all border diagonals
the length of the main diagonal of the RP (line of identity). Sticking to the aforementioned
example of a perfectly sampled and uncontaminated stationary periodic signal, this modification
results in a delta peak in P (`) (Fig. .C), and therefore a sound defined entropy value of zero as
well as meaningful mean and maximal line length estimate (Figs. ., F., F.). For deterministic
chaotic processes this correction scheme could underestimate the entropy, if the RP is smaller
than the average length scale of the diagonal lines. Especially in a running window approach,
this effect is assumed to be significant. We refer to this approach as Censi correction.

Keeping just the longest border diagonal (kelo correction)

In alternative to the correction in Section .., all (semi-)border diagonals from P (`) are discarded,
but the longest one. This approach would also avoid the broad line length distribution shown
in Fig. .B, but would leave a valid definition of the entropy, since P (`) is not an empty set
(cf. Figs. ., F., F.). The resulting entropy for the aforementioned example would be low. In
contrast to the Censi correction, this approach would avoid the bias for deterministic chaotic
processes when a windowing approach is applied. In the following, we refer to this approach as
kelo correction (KEeping the LOngest border diagonal).
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Figure .: Diagonal line length histograms of the conventional line length computation A and of the presented
correction schemes B-E for a monochromatic time-delay embedded sinusoidal with an oscillation
period T = 100 time units (m = 2, τ = T/4, same as in Figs. .B and .B). An enlargement
of the histograms from panels A to D, focusing on the shorter line lengths, is presented in panel
F. A corresponding enlargement of panel E does qualitatively look the same, but with reduced
frequencies, due to the smaller effective window size (see text for details). For a better visibility
we enlarged single bars in panels B to E and limited the view to a frequency range [0 3] in panels
A to E (in F the full range is used).

.. Alternative RP window shapes (window masking)

The origin of the border diagonals is related to geometric difference between the RP and the
diagonals. Therefore, a further approach to avoid the length bias of border diagonals is to apply
a specific window to the RP which has the same geometric orientation as the diagonals. One
realization of such a window is a ° rotated cutout from the original RP with an edge length s
(Fig. .). Conventionally counting the lines of this cutout preserves a delta peak distribution in
P (`) for a periodic signal (Fig. .E). However, with this shape we loose w2−2s2 = w2− 1

2w
2 = 1

2w
2

data points with respect to the original RP. Note that s and w in Fig. . imply a number of data
points, meaning hypotenuse and catheti of an isosceles triangle have the same length (w = s

2). We
argue that this approach could be rather useful in a running window approach over a global RP,
where the size of the alternative shape could be chosen such that it contains as many data points
as the classic, non-rotated, window. We refer to this approach as window masking. Another
alternative would be a parallelogram with the top and bottom sides having the ° direction [].
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Figure .: Blue shaded alternative window shape with edge length
s of a w×w recurrence plot. s and w imply the number
of RP matrix elements covered by the window shapes.

. Tangential motion in recurrence quantification analysis

Even though the considerations made in the preceding sections are valid and useful, the correction
schemes presented in Section . most likely do not give the expected correction for the entropy
of diagonal line lengths for experimental data, unless the data has been properly preprocessed.
There are three reasons why the correction of the border diagonals in the diagonal line histogram
P (`) is not sufficient: (i) temporal correlations in the data, especially when highly sampled flow
data is used, (ii) noise, and (iii) insufficient embedding of the time series at hand (if needed)
combined with the effect of discretization and an inadequate choice of parameters needed to
construct the RP (recurrence threshold method, recurrence threshold size, norm).
Temporal correlation means that states ~xj preceding or succeeding a state ~xi (or a recurring

state ~xk of ~xi), are very similar to this one and, hence, falling into the neighborhood of ~xi
(or ~xk) and to be considered as recurrences, i.e., Ri,j := 1 for j = [i − m, . . . , i + n] or for
j = [k−m, . . . , k+n] when Ri,k := 1 (Fig. .A). This results in vertically extended sequences in
the RP, i.e., thickening its diagonal lines. The thickening leads to an artificially enlarged number
of diagonal lines, thus effecting the distribution P (`), and is often referred to as tangential motion
[, ]. Moreover, the thickening is not evenly distributed along a diagonal line (Fig. .B).
For border diagonals, this means that there are not only additional border diagonals (which could
be handled by applying correction schemes as described in Section .), but additional shorter
diagonal lines, again leading to a broadening of the line length distribution P (`) and an elevated
entropy ENTR.

Additive noise causes the already thickened lines in the RP to appear more diffus (Fig. .C,E).
Technically speaking, the noise alters the phase space trajectory, causing the pairwise distances to
randomly scatter about their true/noise-free values and, thus, the histogram P (`) gets enriched
with small line lengths (cf. Fig. .F, []). This eventually biases the RQA measures discussed
in Section ..





Chapter  Border effect and tangential motion correction for RQA

i i+1i−1

xi

i−2 i+2

60 65 70 75
60

65

70

75

Time

Ti
m

e

60 65 70 75
60

65

70

75

Time

Ti
m

e

75

4

70

2

Time
75

di
st

an
ce

65 70
Time

0

65
60 60

75

4

70

2

Time
75

di
st

an
ce

65 70
Time

0

65
60 60

A B C

D E

Figure .: A Tangential motion, i.e., points of a trajectory preceding and succeeding a (recurring) state
(gray), cause thickening of diagonal lines in the RP B, C. The thickening of diagonal lines can vary,
e.g., as in this example of the Rössler system (noise free case in B and additive noise in C). The
diagonal lines are more thick at the beginning and become less thick with time. A diagonal line in
an RP (B, C) denotes a range of distances in the distance matrix falling under a the recurrence
threshold ε. Panels D and E show three “distance ranges” (we call such a range D in the text)
corresponding to the three lines in B, C respectively. Shown is a color-coded, thresholded distance
matrix with reversed z-axis for a better visibility (increasing distances from top to bottom). The
colormap encodes zero distance as black and the distance corresponding to the recurrence threshold
as grey.

. Correction schemes for reducing the effects of tangential motion

.. Perpendicular RP

A straightforward way to reduce the thickening of the diagonal lines from a theoretical perspective
is the perpendicular RP, suggested by Choi et al. []

R⊥i,j(ε) = Θ (ε− ‖~xi − ~xj‖) · δ
(
~̇xi · (~xi − ~xj)

)
, ~x ∈ Rd. (.)

This RP contains only those points ~xj that fall into the neighborhood of ~xi and lie in the (d−1)-
dimensional subspace of Rd that is perpendicular to the phase space trajectory at ~xi. Although
theoretically there is no need for an additional parameter in order to construct a perpendicular
RP, in practical situations almost no points in Rd phase space end up on the mentioned (d− 1)-
dimensional subspace of ~xi (Poincaré section), due to limited resolution (discretization) of the
data. Hence, it is reasonable to introduce an additional threshold parameter ϕ, which allows
points ~xj to be considered as perpendicular to ~xi, if

arccos ~̇xi · (~xi − ~xj)
|~̇xi|·|(~xi − ~xj)|

∈
[(
π

2 − ϕ
)
,

(
π

2 + ϕ

)]
. (.)
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Thus, Eq. (.) transforms to

R⊥i,j(ε, ϕ) = Θ (ε− ‖~xi − ~xj‖) ·Θ
(
ϕ−

∣∣∣arccos ~̇xi · (~xi − ~xj)
|~̇xi|·|(~xi − ~xj)|

∣∣∣−π2
)
, ~x ∈ Rd. (.)

Figure .B shows a perpendicular RP for a Rössler system (with parameters a = 0.15, b = 0.2,
c = 10, transients removed). For the estimation of the tangential at each point in phase space we
used the reference point, its predecessor and its successor. We set the angle threshold to ϕ = π

12
(= 15°).

.. Isodirectional RP

Requiring less computational effort, the iso-directional RP suggested by Horai et al. [] also
promises to cope with the tangential motion, but also inherits two additional parameters T and
ε2 (Fig. .C). In this approach two points in phase space are denoted recurrent, if their mutual
distance falls within the recurrence threshold ε and the distance of their trajectories throughout
T consecutive time steps falls within a recurrence threshold ε2

R⇒i,j(ε, ε2, T ) = Θ(ε− ‖~xi − ~xj‖) ·Θ(ε2 − ‖(~xi+T − ~xi)− (~xj+T − ~xj)‖), ~x ∈ Rd. (.)

We achieved reasonable results when choosing T in the size of the decorrelation time (e.g., first
minimum of the mutual information) and the second recurrence threshold as half of the size of
the recurrence threshold ε, which determines the parent RP.

.. True recurrence point RP (TRP)

Inspired by the work of Gao [], Ahlstrom et al. [] compute a normal RP, Eq. (.), but only
accept those points to be recurrent, which “first” enter the ε-neighborhood shown in Fig. .A. To
ensure this, they first identify all points which fall into an ε-neighborhood of a certain point ~xi

ζi ≡ {~xj1 , ~xj2 , ... |Ri,jk := 1}, (.)

i.e., all points jk in column i of the RP. The time difference of two consecutive recurrence
points ~xjk , ~xjk+1 is {T (1)

k = jk+1 − jk}k∈N in units of the sampling time (recurrence times of first
type, []) and these correspond to the vertical distances between these points in column i of
the RP. They now discard all points from the RP, whose vertical distance to its neighboring point
in a column is  and leaving all points with recurrence time larger than ,

ζ∗i ≡ {~xj1 , ~xj2 , . . . |Ri,jk := 1, T (1)
k > Tmin}, Tmin = 1. (.)

The authors call this modified RP a true recurrence point recurrence plot (TRP). This is
different than simply discarding all points from the computations of Eq. (.) which fall within a
certain time range wTheiler of the reference point (Theiler window, [])

Ri,j(ε) = Θ (ε− ‖~xi − ~xj‖) , |i− j|> wTheiler, ~x ∈ Rd. (.)

To obtain a TRP, we suggest to discard all recurrence points with recurrence times greater
than wTheiler, i.e., Tmin = wTheiler in Eq. (.). The Theiler window should be set in the order of
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Figure .: Different approaches for avoiding the effect of tangential motion in a recurrence plot (RP),

exemplary shown for the Rössler system (with parameters a = 0.15, b = 0.2, c = 10, sampling
time ∆t = 0.2). A Normal RP with fixed recurrence threshold ensuring % global recurrence rate
as a basis to all other RPs shown in this figure. B Perpendicular RP with angle threshold ϕ = 15°,
C isodirectional RP with T = 5 [sampling units] and ε2 = ε/2, D true recurrence point RP (TRP)
with Tmin = 5 [sampling units], which coincides with the first minimum of the mutual information,
E thresholded local minima approach with two parameters (LMP) and τm = 5, and F diagonal
RP.

the decorrelation time or the delay, if time delay embedding is used for reconstructing the phase
space vectors from time series.
However, the TRP most often leads to disjoint, deviated diagonal line structures (Fig. .D),

which correspond to the white embraced lines in Fig. .D, E.
An alternative would be to use the mid-points of the recurrence sequences. This would also

correspond to recurrence times as discussed in Ngamga et al. []. In Subsection .., we will
develop another correction scheme which is motivated by these mid-point based “true recurrences”.

.. RP by means of local minima

Another approach for reducing the effect of tangential motion which shares the basic idea from the
TRP approach was introduced by Schultz et al. [], who track the local minima of the distance
matrix (corresponding to the maxima in Fig. .D, E). Wendi and Marwan [] then extended
this idea in order to make the method more robust against noise. However, such local-minima
based RP can contain bended or disrupted diagonal line structures. The key idea is to look
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. Correction schemes for reducing the effects of tangential motion

for local minima in each column of the distance matrix, illustrated as an orange cross section
in Fig. .D, E. If such a local minimum is smaller than the recurrence threshold, then it is a
recurrence (LocalMinimaThresholded, LMT). In the two-parameter approach (LMP) [] shown
in Fig. .E, there is an additional constraint for two consecutive local minima to be displaced by
at least τm time steps.

.. Diagonal RP

We now propose an additional approach to cope with the tangential motion, which does not need
any additional parameters and leads to an RP of straight, unbended diagonal line structures
(Fig. .F). We call this approach the diagonal RP, since it generates an RP with only diagonal
line structures that are just one point thick.

A diagonal line in a RP corresponds to a connected region in the distance matrix with distances
smaller than the recurrence threshold ε (Fig. .D, E, white embraced region). We call such
region a “distance range” D. Typically, the larger ε the larger the Di’s in the RP. Moreover,
tangential motion, noise and insufficient embedding affect the shape and width of the Di’s. For
the diagonal line based RQA measures we are interested in these ranges to be represented by
single, connected diagonal lines in the corresponding RP. We choose the longest line of each Di to
be its adequate representative in the RP. We define the “distance ranges” Di of an RP recursively
as a set of adjacent diagonal lines L(m)

`m
of length `m (cf. Eq. (.)), initializing with the longest

line L(k)
`k

, for which `k = max(` : P (`) > 0).

Di := {L(k)
`k
,L(m)

`m
| L(m)

`m
x L(m−1)

`m−1
x L(m−2)

`m−2
x ... x L(k)

`k
∨

L(m)
`m

y L(m−1)
`m−1

y L(m−2)
`m−2

y ... y L(k)
`k
} (.)

with the line-neighbor-relations x and y defined by

∃p ∈ [1, ..., `m] ∃q ∈ [1, ..., `k] :

(im, jm)p :=

(ik + 1, jk)q ∨ (ik, jk + 1)q, if L(m)
`m

x L(k)
`k

(ik − 1, jk)q ∨ (ik, jk − 1)q, if L(m)
`m

y L(k)
`k

(.)

where (im, jm)p=[1,...,`m] denote the index tuples corresponding to lines L(m)
`m

and (ik, jk)q=[1,...,`k]

denote the index tuples corresponding to the longest line L(k)
`k

. We then delete all lines contained

in Di from the histogram P (`) and define the next distance range Di+1 with a new L(k′)
`k′

from
the histogram and so on until P (`) is an empty set.
We construct the new RP by keeping the longest line of each Di (all the L(k)

`k
’s). Denote the

set of index tuples (i, j) corresponding to the set of longest lines gained from the Di’s as S, then

R↗i,j =
{

1, if (i, j) ∈ S

0, otherwise
(.)

Note that this algorithm constricts clusters of adjacent recurrence points to a single diagonal
line, representing this “distance range” D (skeletonization). Although this method impresses
with the absence of additional parameters, caution in its use is advised concerning the choice
of the embedding parameters and the recurrence threshold. A wrong setup, specifically a too
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high recurrence threshold and/or a “wrong” time delay, could lead to an overall connected RP,
which in turn would cause a diagonal RP consisting of just one single line in each triangle (if the
main diagonal is discarded). However, concerning the sensitivity to the choice of the recurrence
threshold, our numerical investigations suggest a rather low risk of this special case and a broad
range of threshold values, which do work well (cf. Section ., Appendix. F and figures therein).

. Results: Efficiency of correction schemes

We now apply the correction schemes for counting diagonal lines (Section .) and suppressing
tangential motion (Section .) on a time-discrete as well as time-continuous example, in order
to test their ability to give valid estimates for the entropy of diagonal line lengths, Eq. (A.) in
Appendix A. In case of the former we choose the Logistic map xn+1 = rxn(1− xn) with control
parameter r = 3.5, leading to regular limit cycle behavior, and control parameter r = 3.8, where
a chaotic regime is obtained. For the latter we show diagonal line length entropies of RPs of the
Rössler system (Eq. (B.)) in two parameter configurations, also leading to regular limit cycle
behavior (a = 0.15, b = c = 10) and chaotic motion (a = 0.15, b = 0.2, c = 10) []. The results
shown in this section are based on ensembles of  realizations of each parameter setting for the
Rössler system and on ensembles of , realizations of each parameter setting for the Logistic
map, gained from randomly chosen initial conditions out of a uniformly distributed interval
x0 ∈ [0, 0.5] (Logistic map), x(0), y(0), z(0) ∈ [0, 2] (Rössler system). We numerically integrate
the Rössler equations using the explicit Runge-Kutta (,) formalism (Dormand-Prince pair) as
provided by the ode-solver in MATLAB [] with a fixed sampling time of ∆t = 0.2. For both
systems we discard the first , data points as transients, keeping , (Logistic map) and ,
(Rössler) data points as the time series we base our further computations on. For estimating the
entropy, we use the Maximum-Likelihood-estimator p(`) =̂ p̂(`) = #number of lines of length `

#number of all lines in the RP
for the probabilities.

Generally, we expect (near-)zero entropy values for the regular regime setups and high(er) values
for the chaotic regime setups for both considered examples in the noise free case (Section .).
Moreover, we expect the correction schemes for counting diagonal lines (Section .) to perform
well in case of the Logistic map examples, due to the absence of tangential motion. For the flow
data in the Rössler examples, we expect a combination of these correction schemes with the
correction schemes for tangential motion described in Section . to give reasonable results. In
order to validate our results, we compute the diagonal line length entropy analytically for the
mentioned cases. March et al. [] gave an expression for this:

ENTRtheoretical = K2

(1
γ
− 1

)
− ln γ , (.)

with γ = (1− e−K2) and K2 the correlation entropy. Practically we compute the largest Lya-
punov exponent for our experimental settings [] and use Pesin’s identity to get the Kolmogorov
entropy. Because the correlation entropy is a lower bound for the Kolmogorov entropy [], the
reference values computed from Eq. (.) should be slightly overestimated.

The results confirm our expectations (Fig. .). While the conventional way of counting diagonal
lines, where border effects are not taken into consideration, lead to counterintuitive behavior, all
the described correction schemes are able to distinguish chaotic from regular regimes in both
exemplary systems. In this laboratory, noise free conditions, the entropy estimates in case of
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Figure .: Diagonal line length entropy of the proposed diagonal recurrence plot R↗ (cf. Section ..)
of the Rössler system (reddish) and the Logistic map (bluish) in a regular limit cycle regime
(bright) as well as in a chaotic regime (dark). Shown are medians of the diagonal line length
entropies gained from , realizations of the Logistic map and  realizations of the Rössler
example, respectively, for the different line counting correction schemes described in Section ..
Errorbars indicate two standard deviations of these distributions. Black stars show medians of
ensembles of , analytically computed values derived from Eq. (.) (its errorbars, as two
standard deviations of the ensemble distribution, are barely visible and smaller than markers used).
Firstly, RPs were obtained with a fixed recurrence threshold corresponding to % recurrence
rate in case of the Rössler examples and a fixed recurrence threshold corresponding to 1/10 of
the range of the underlying time series in case of the Logistic map examples (for noise free map
data the ε-adjustment with respect to the global recurrence rate does not work properly). Then
our proposed, parameter free correction scheme leading to the diagonal recurrence plot R↗ was
applied. Results for a range of recurrence thresholds and for all tangential motion RP-correction
schemes are shown in Fig. F. and Fig. F. in the Appendix F.

the regular limit cycle regimes are zero (or in case of the dibo-correction scheme not defined,
due to the absence of any diagonal line). For dibo and kelo the estimated values for the chaotic
Rössler regime fall within the two standard deviation margin of the theoretical values, whereas
Censi’s correction scheme comes very close and the windowshape correction scheme misses it by
approx. %. Again, we have to stress that we expect the expectation values to be underestimated,
i.e. we assume Censi’s method and the window masking do also perform well. Let us stick to
the kelo correction scheme for now and look how the different correction schemes for tangential
motion perform (Fig. .). First of all we have to mention that we were not able to produce any
kind of reasonable estimates while using the perpendicular recurrence plot R⊥, regardless of the
angle threshold parameter. This straightforward approach is extremely sensitive to any kind of
noise and to the sampling time of the system under observation. It needs a fairly high density of
state space points, in order to yield a non empty RP and, thus, any meaningful diagonal line
length entropy estimate. Hence, we skip this approach in our further analysis, especially the
dependence of the shown results to the choice of the recurrence threshold and additive noise,
but will discuss the performance of the perpendicular RP for a high sampled Rössler setup in
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Figure .: Diagonal line length entropy based on the proposed line counting correction scheme kelo (cf.
Section ..) for the Rössler system (reddish) and the Logistic map (bluish) in a regular limit
cycle regime (bright) as well as in a chaotic regime (dark). Shown are medians of the diagonal
line length entropies gained from , realizations of the Logistic map and  realizations of the
Rössler example, respectively, for all the different tangential motion correction schemes described in
Section ., but the perpendicular recurrence plot R⊥. Errorbars indicate two standard deviations
of these distributions. Black stars show medians of ensembles of , analytically computed values
derived from Eq. (.) (its errorbars, as two standard deviations of the ensemble distribution, are
barely visible and smaller than markers used). The normal RP with a fixed recurrence threshold
corresponding to % recurrence rate in case of the Rössler examples and a fixed recurrence
threshold corresponding to 1/10 of the range of the underlying time series in case of the Logistic
map examples (for noise free map data the ε-adjustment with respect to the global recurrence rate
does not work properly) serves as a basis for the RP correction schemes shown here. Results for a
range of recurrence thresholds and for all tangential motion RP-correction schemes are shown in
Fig. F. and Fig. F. in the Appendix F.

the next subsection. For a general use, we cannot recommend the application of perpendicular
RPs. Coming back to the results (Fig. .), solely the LMP approach and the diagonal RP
perform as expected (zero-values in case of the regular regime setups and higher values for the
chaotic regimes, clearly distinguishable). Only the proposed diagonal RP is able to give estimates
within the errorbars of the theoretical values (which is why only this approach was selected for
Fig. .). Note that the reference values slightly underestimate the “true” value and we cannot
quantitatively correct for this bias. As in Fig. ., we set the parameters T , Tmin and τm to the
corresponding first minimum of the auto mutual information and the second recurrence threshold
for the isodirectional RP was again set to ε2 = ε/2, but we tried many parameter configurations.

.. Results for highly sampled data and the effect of noise

For the sake of completeness and in order to investigate the behavior of our proposed methods
under more realistic conditions, we now look at the noise corrupted Rössler system in the two
dynamical regimes (Section .), but with an increased sampling frequency (sampling time
∆t = 0.08) and with total lengths of the three numerically integrated time series of ,
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Figure .: Cut outs of A+D the perpendicular recurrence plot R⊥, B+E normal RP, and C+F the
diagonal recurrence plot R↗ of the highly sampled Rössler system in chaotic regime (see
text for details). Top panels A-C show noise free cases, bottom panels D-F show their noise
contaminated counterparts. Computations have been carried out by using a fixed recurrence
threshold corresponding to % recurrence rate and an angle threshold ϕ = 15◦ for R⊥.

(transients already removed). In this setup the perpendicular recurrence plot R⊥ (Section ..)
yields meaningful results (Fig. .), and we compare its utility with respect to the estimation of
the diagonal line length entropy to the normal RP and the novel diagonal recurrence plot R↗

(Section ..).
Figure . illustrates the capability of R↗ to cope with tangential motion, especially under

noise. Due to a too high computational effort we did not compute an ensemble in this case as we
did in the lower sampled cases, so the errorbars are missing. Here we added an auto regressive
(AR) process of second order with an amplitude corresponding to % of the mean standard
deviation of the multivariate signal.

xt = a1xt−1 + a2xt−2 + εt , (.)

with parameters a1 = 0.7, a2 = 0.15 and εt denotes a white noise process with zero mean and
constant variance of unity. Outcomes for the normal RP and the perpendicular recurrence plot
R⊥ can be found in the Appendix (Figs. F., F.). Additive white noise of the same magnitude
gave similar results to the ones discussed here.
As expected from the examples in the last section, the diagonal RP approach performs well

under noise free conditions and all, but the conventional line counting algorithms yield zero-value
entropy estimates for the regular regime (panel B) and clearly non-zero entropies in case of the
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Figure .: Normalized diagonal line length entropy estimates for all described correction schemes for counting
diagonal lines (Section .) based on the diagonal recurrence plot R↗ (Section ..) of the high
sampled Rössler system as a function of the chosen minimal line length `min. The top panels
(A - chaotic motion , B - regular motion) show the noisefree case and in the bottom panels
(C - chaotic motion, D - regular motion) the results for noise corrupted data are shown. We
added noise from an auto-regressive (AR) process of second order as % of the mean standard
deviation of the multivariate signal gained from the numerical integration (cf. Eq. (.)). The
underlying RPs for obtaining R↗ were computed using a fixed recurrence threshold corresponding
to % recurrence rate. The grey shaded areas show medians of ensembles of , analytically
computed reference values for K1 ± two standard deviations of these distributions transformed
by using Eq. (.).
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. Conclusion

chaotic regime (panel A) close to the underestimated reference values. The perpendicular RP
also performs well in noise free conditions (Fig. F.). Even the conventional line length counting
leads to the desired zero entropy estimates in case of regular motion. In the presence of noise,
however, R⊥ is not able to distinguish regular from chaotic behavior (Fig. F.), whereas R↗

still performs well, giving almost the same results as in the noise free setup. The explanation
can be found in considering the RPs (Fig. .). For this noiselevel our proposed skeletonization
approach (Fig. .F) leaves small lines of maximum length  after its application to the noisy
normal recurrence plot (Fig. .E) as noise-leftovers. The appearance of these lines is not a
result of the dynamics itself. Noise enriches the RP and its corresponding diagonal line histogram
with small line lengths depending on the noiselevel ([], Fig. ., Fig. .A, Fig. .A). By
increasing the minimum line length one gradually discards the majority of the lines contained
in the histogram and, thus, increases the prominence of larger line lengths for the computation
of the entropy. For a regular regime, the distribution of lines of intermediate length is broader
for all the correction schemes, but the diagonal RP. Therefore an increasing minimal line length
increases the entropy in the presence of noise for all the correction schemes, but the diagonal RP
(cf. Fig. F.). In case of a chaotic regime the distribution of diagonals due to the dynamics is
broader anyway (Fig. .C, Fig. .C) leading to the same effect.

When increasing the minimal line length for the diagonal RP, the entropy estimates stay more
or less constant after a certain, sufficiently high, minimum line length, which depends on the
noiselevel (Fig. .C, D). The offset to the underestimated reference value for the chaotic case
grows for increasing noiselevels. Note that the effect of additive noise is harder to tackle for the
tangential motion correction schemes for high sampled data like in this case, than it is for lower
sampled examples as discussed in Section .. The higher the sampling, the finer the ramification
of distance ranges Di (thickened diagonal lines). Results for all correction schemes for a wide
range of the recurrence thresholds and under the influence of white noise for the lower sampled
situation can be found in the Appendix (Figs. F. and F.).

. Conclusion

In this chapter we investigated the effect of the finite size of a recurrence plot on its diagonal line
length based quantification. Specifically, we showed how these border effects influence the diagonal
line length entropy and proposed three new line length counting correction schemes, which take
these effects into account (cf. Sections .., .., ..) and systematically compared them to an
already proposed correction by Censi et al. [] (Section ..). It turned out that for noise free
or slightly noise corrupted map data all these correction methods solve the problem of the biased
diagonal line length entropy due to lines cut by the borders of the RP. However, for flow data the
effect of tangential motion has a much bigger influence on the entropy bias than the border effects.
Therefore, we systematically compared already proposed ideas to handle tangential motion and
proposed a new, parameter free method, the diagonal RP (cf. Section ..). It can properly
tackle the tangential motion effects and yield, in combination with the border effect correction
schemes, meaningful estimates for the diagonal line length entropy. We have to emphasize that
this method, in contrast to other suggested ideas, also works for noise contaminated data, is not
sensitive to the particular choice of the recurrence threshold, does not introduce any additional
parameter, and is, therefore, easy to use. In case of a noise corrupted flow-like signal the diagonal
line length entropy approaches its constant expectation value for sufficiently high choices of the
minimal line length, when the diagonal RP together with Censi’s or our propsed border effect
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correction schemes is used. Fairly high recurrence thresholds (>% recurrence rate) favour the
diagonal RP method for intermediate or high noise levels.

Code availability

We offer a MATLAB® implementation of the proposed algorithms at https://zenodo.org/record/
/files/hkraemer/Border-effect-corrections-for-diagonal-line-based-recurrence-quantification-
analysis-measures-..zip?download= []
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Recurrence powerspectra

Kraemer, K. H., Hellmann, F., Kurths, J. and Marwan, N. (). Recurrence powerspectra
(in prep.)

Abstract

A novel kind of power spectrum is constructed, the inter spike spectrum, which transforms
spike-train-like signals into their frequency domain. This method clearly shows the apparent
cycles in the data and overcomes the problems when using the obvious idea of Fourier-
transforming it. We invent this instructive approach with the idea of transforming the
τ -recurrence rate of a recurrence plot (RP), which often has a spiky appearance. The τ -
recurrence rate is the density of recurrence points along diagonals of the RP, which are parallel
to the main diagonal with a distance of τ . In this context the inter spike spectrum can be
interpreted as a nonlinear power spectrum of a potentially high dimensional system which
constitutes the RP. The proposed measure is simple to compute, robust to noise and is able to
detect bifurcations inducing regular-regular, regular-chaos as well as chaos-chaos transitions.

. Introduction

Recurrence Plots (RPs) provide a vivid representation of complex dynamics stemming from
potentially high dimensional systems, Eq. (.). The simple idea to track recurring states of the
d-dimensional trajectory ~xi of the system under study not only allows for a beneficial visualization
of the dynamics, but also for its quantification, using certain structures in the RP, such as diagonal
or vertical lines [] (see Appendix A). Some of these recurrence quantification measures, the
entropy of diagonal lines and the entropy of recurrence times, can be related to the Kolmogorov-
Sinai entropy [, ]. However, these quantifiers have a free parameter, the minimal considered
line length, and are usually biased, due to the finite size of the RP and thickened diagonal lines,
which needs to be corrected [] (Chapter ). Moreover, the mentioned statistics cannot account
for changing regular (non-chaotic) dynamics, such as period-doubling bifurcations.
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Figure .: Schematic illustration of a τ -recurrence rate based spectrum. A x-component time series of the
Lorenz-System (Eq. (B.)) and B its corresponding Fourier power spectrum. C Reconstructed
state space portrait from the time series shown in A using PECUZAL time-delay embedding [].
D Subset of the recurrence plot and the corresponding τ -recurrence rate obtained from the state
space trajectory in C. The shaded interval in the time series in A corresponds to the shown subset.
E Fourier Power spectrum obtained from the τ -recurrence (subset shown in panel D) [].

A rather simple idea is to look at the τ -recurrence rate of the RP (τ -RR, Eq. .) [, ].
This is the density of recurrence points along the diagonals of the recurrence matrix, as a function
of the distance τ (sampling units) to the main diagonal:

τ -RR(ε) = RR(τ, ε) = 1
N − τ

N−τ∑
i=1

Ri,i+τ . (.)

τ -RR serves as an estimator for the probability that the system recurs after time τ∆t, with ∆t
being the sampling time of the trajectory ~xi = ~x(∆t · i), i = 1, . . . , N . Zbilut and Marwan []
pointed out that τ -RR could be used as a plugin value for the auto-correlation function C(τ) and,
hence, via the Wiener-Khinchim theorem a “generalized” powerspectrum can be obtained. This is
reasonable, since the average distances for a given lag τ

D(τ) = 1
N − τ

N−τ∑
i=1

Di,i+τ (.)

can be directly read from the distance matrix D and is also preserved in its thresholded version τ -
RR. There are clear advantages for a recurrence-derived powerspectrum, i.e., Fourier transforming
(FT) τ -RR (Fig. .D), instead of C(τ) (Fig. .C): There are no assumptions for stationarity or
sampling, when constructing a RP. Furthermore, the correlation structures of higher dimensional
spaces can be resolved in the recurrence-derived Fourier-spectrum.

However, there is a drawback to this approach. Whenever τ -RR is a spike-train-like signal,
which it is in most cases (see Fig. .) especially for map-data (low-resolution data), a FT of such
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a signal leads to a spike-train-like image in the frequency domain (e.g. [, ], see Fig. .D).
Thus, it is not intuitive how to extract meaningful information about dominant frequencies of the
systems’ state space trajectory.

For clarification, consider the signal we would like to analyze (e.g. the τ -RR of a system) to be
a Dirac comb (DC) with inter-spike period Tis:

DCis(t) =
∞∑

k=−∞
δ(t− kTis), (.)

i.e., a series of Dirac delta functions for a period Tis. There is only one single period – Tis – in this
signal (Fig. .A, D), so in principle we would strive for a single peak in the frequency domain
of this signal at a frequency f = 1/Tis. Surprisingly the Fourier spectrum does not meet this
expectation and instead of a single frequency, there are exceptionally many frequencies excited
(Fig. .B, E). This is, because the Fourier components add constructively for every frequency
1/Tis and therefore DCis(t) coincides with its own Fourier transform up to a factor 1/Tis.
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Figure .: The transformation of a Dirac comb (series of Dirac delta functions) with a single inter-spike period
Tis = 100 (=̂f = 0.01) into the frequency domain. A Dirac Comb (DC) with equal amplitudes and
B its FFT-based powerspectrum. C Proposed inter spike spectrum of the signal in A showing a
single frequency, which corresponds to the inter-spike period Tis (f = 0.01). D DC with randomly
chosen amplitudes and same Tis as in A, and E its FFT-based powerspectrum. F Proposed inter
spike spectrum of the signal in D showing a single frequency, which corresponds to the expected
inter-spike period Tis (f = 0.01).

In this chapter we propose a new way of transforming a spike-train-like signal into its frequency
domain. This novel inter spike spectrum does not show resonance behavior of the signal’s
inherent inter-spike frequencies (Fig. .C, F). Section . explains the idea, which can be used
to decompose any arbitrary signal and is not restricted to the τ -RR, which we exemplify here.
However, the more spiky the signal is, the more outstanding our new approach is compared to a
FT. In Section . we exemplify its use when transforming the τ -RR of a system under study.
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In this case, the inter spike spectrum can unravel characteristic time scales of high dimensional
systems, which is not possible when using a FT.

. Method

The idea is as simple as it is obvious. The signal, which we would like to transform – we focus
on τ -RR in this chapter, but this can be applied to any sort of signal – is decomposed into a
set of appropriate basis functions. Instead of using trigonometric functions, as it is the idea in
the Fourier decomposition, we use Dirac combs (DC) with different inter-spike periods as basis
functions, Eq. (.). Let s(ti) be the normalized signal we want to transform with length N
and ti = i ·∆t, i = 1, . . . , N , where ∆t denotes the sampling time and s(ti) ∈ [0, 1] ∀ i. In the
following we label this time series as a (1×N)-dimensional vector s. First, N different DC’s of
length N are constructed with inter-spike periods Tis ∈ [1, . . . , N ]. Second, in order to account
for possible phase shifts of these basis functions occurring in s, each of these N different DC’s
also need to be shifted one step further Tis − 1 times. This leaves us with a total number of
M =

∑N
i=1 i basis functions which we can arrange as rows of a (M ×N)-sized matrix X (Fig. .

illustrates the described procedure)

Xi,j =
N∑
k=0

δ (j − 1− kT (i)− i+ T (i)) , (.)

T (i) = n ,∀n : n(n− 1)
2 + 1 ≤ i < n(n+ 1)

2 + 1, n ∈ N+. (.)

Due to the shifting of each of the basis functions of inter-spike period Tis, X is not linear
independent anymore. Thus, an under-determined linear system

XTβ = s (.)

has to be solved for β, a (M × 1)-sized vector carrying the loadings we are interested in. Along
a variety of algorithms, which can solve this problem, we are particularly interested in those
solutions, which promote sparsity in β, since our goal is to decompose the signal s into a minimal
number of basis functions (for an excellent overview of the topic we refer to Brunton and Kutz
[]). Therefore, we here choose the least absolute shrinkage and selection operator (LASSO
regression) []. Finally, we group loadings which correspond to basis functions having the same
period Tis into βf and obtain the inter spike spectrum by simply plotting βf as a function of the
frequency f = T−1

is (Fig. .C, F).
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N = 5, aligned in the matrix X.

. Application

We exemplify the use of the inter spike spectrum in combination with the τ -RR as outlined in
Section . on several interesting research questions. The procedure is the following:

() Compute a RP of the trajectory of the system, Eq. (.).
() Compute the τ -RR of that RP, Eq. (.).
() Transform the τ -RR into the proposed inter spike spectrum, see Section ..

.. Period estimation for different dynamics in the Rössler system

First, we consider the Rössler system (Eq. (B.) in Appendix B.) in three different dynamical
setups. We use the proposed inter spike spectrum to identify the type of dynamics. We set the
parameters b = 2, c = 4 and analyze period- limit cycle dynamics (a = 0.36, Fig. .A, D, G, J),
period- limit cycle dynamics (a = 0.41, Fig. .B, E, H, K) and chaotic dynamics (a = 0.428,
Fig. .C, F, I, L).

The inter spike spectra unravel the specific dynamics, which are also apparent in the state space
portraits (Fig. .A, B, C) and in the τ -RRs (Fig. .G, H, I). The proposed idea is also robust
to noise (see Fig. G. in the Appendix). This is because the peaks of the τ -RR are insensitive to
noise. While the peak shape does change in the presence of noise, its position does not, and this
is what the inter spike spectrum encrypts after all.

.. Bifurcations in the Logistic map

We consider the Logistic map xn+1 = r · xn (1− xn) for changing control parameter r. We vary r
from r = 3.4 to r = 4 in steps of 0.001. For each setting of r

() a time series of length N = 201 is computed with a random initial condition u0 ∈ [0, 1],
neglecting the first 1, 000 samples as transients,

() 100 iterative Amplitude Adjusted Fourier Transform (iAAFT) surrogates [, ] are
computed,

() the time series and its iAAFT surrogates are embedded in a -dimensional state space using
a time delay of unity,
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Figure .: Inter spike spectra of the τ -RR of the Rössler system in three different dynamical regimes with
parameters b = 2, c = 4. Trajectory of the system in a A period- (parameter a = 0.36), B in
a period- (parameter a = 0.41) and C in a chaotic regime (parameter a = 0.428). D, E, F
The corresponding RPs, obtained by using a recurrence threshold corresponding to a % global
recurrence rate for D & E and % for F. G, H, I τ -RR’s of the shown RPs. J, K, L The proposed
inter spike spectra of the τ -RR’s shown in panels G, H, I. The distance ratio of the peaks reflect
the limit cycle dynamic. M, N, P Fourier power spectra of the τ -RR’s shown in panels G, H, I.
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() from the -dimensional trajectories RPs, Eq. (.), are computed under a threshold ε = 0.05,
() τ -RR, Eq. (.), is computed from the RP of the signal and from the RPs of the surrogates,
() spike powerspectra are obtained from τ -RR of the signal and from the τ -RRs of the

surrogates, see Section ., and finally,
() from the distribution of the surrogate spike powerspectra the 95th percentile is computed.

The peaks of the inter spike spectrum of the signal which exceed this percentile are counted.

In this example, the according null hypothesis is that the data stems from a process which yields
the same auto-correlation, hence the same Fourier powerspectrum, and the same amplitude
distribution. We consider the number of significant peaks in the inter spike spectrum with
respect to the control parameter in order to distinguish the corresponding dynamics (Fig. .C).
A correlation with the positive Lyapunov exponent (Fig. .A) is discernible (ρPearson = 0.88).
Moreover, this analysis can tackle period-doubling, since it “measures” the dominant cycles via
the inter spike spectrum.
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Figure .: A Lyapunov exponent of the Logistic map as a function of the control parameter r. B Number of
significant peaks (α = 0.05) in the inter spike spectrum of the τ -RR, random surrogates. C Same
as B, but for iterative Amplitude Adjusted Fourier Transform (iAAFT) surrogates [, ].

A less computationally intensive approach is to compute surrogates for the τ -RR analytically,
rather than computing a RP and its τ -RR for each iAAFT surrogate of the time series. This
translates into a null hypothesis that the τ -RR and its corresponding inter spike spectrum stems
from a RP of a random signal. In this case the probability of finding a black point in the RP can
be obtained from a binomial distribution with probability parameter p set to the recurrence rate
of the RP of the signal. This way 100 surrogate τ -RRs are computed in step (). The results are
similar to the ones obtained from the iAAFT surrogates and nearly as good (Fig. .B). The first
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period doubling at r ≈ 3.458 cannot be detected, while the correlation to the positive Lyapunov
exponent is only slightly worse (ρPearson = 0.84).

The described procedure does work well for map data, because most often the τ -RR for those
kind of data reveals a “spiky enough” nature. On the contrary, highly sampled (flow-) data often
yield not as spiky τ -RR’s and, thus, the number of significant peaks in the inter spike spectrum
may not be sensitive enough to detect period-doubling bifurcations. Nevertheless the according
spike powerspectra is still revealing important information (Fig. .) and practitioners can design
appropriate quantifying statistics based on these spectra, which suit the research task.

.. Evolutionary spike spectrogram of CENOGRID isotope time series

We again utilize the CENOzoic Global Reference benthic foraminifer carbon and oxygen Isotope
Dataset (CENOGRID) [] (c.f. Chapter , Section ..). The time series have a total length
of N = 13, 421 samples and a sampling period of ∆t = 5, 000yrs. The records and their
corresponding RPs are shown in Figure . together with remarkable climate transitions in the
Cenozoic (detrended time series in Fig. D. in Appendix D.). Among other things, the large-scale
patterns in the RPs shown were used by Westerhold et al. [] to classify major climate states:
Hothouse, Warmhouse, Coldhouse and Icehouse.
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Figure .: A δ13C and B δ18O isotope records and their corresponding RPs (C+D), obtained from the
non-embedded time series under a fixed recurrence threshold corresponding to % global RR.
These plots were used by Westerhold et al. [] to classify the major climate states Hothouse,
Warmhouse, Cold- and Icehouse.
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Figure .: Evolutionary spectrograms based on A FFT powerspectra of the detrended δ18O time series and
B on the inter spike powerspectra of the τ -RR of the PECUZAL embedded δ18O record. The
spectrograms were computed with a w = 1, 000(=̂ -Myr) window and a step ws = 1. We
used the embedding computed in Chapter  (Section .., see Table D.) and a recurrence
threshold fixed to % global RR, in order to ensure comparability within the different windows
[] (Chapter ). Dashed red horizontal lines indicate major climate transitions according to
Westerhold et al. [].

While in Chapter , Section .. predictions were made for the detrended δ13C record, here
the focus is on the analysis of the characteristic time scales in both, the detrended δ18O and the
detrended δ13C isotope records. Specifically, we have computed inter spike spectra of the τ -RR
windowed over each record. Figures ., . show that major features of their linear counterparts,
namely ordinary FFT spectrograms (A panels), are also present in these spike spectrograms. But
there is additional information in the spike spectrograms (B panels). Firstly, overall there seem
to be less frequencies excited than in the FFT spectrograms, but these excited frequencies are
therefore more pronounced. This is especially apparent in the oxygen isotope record spectrogram
(Fig. .), in which the obliquity-related time scale (∼ kyrs) is very prominent from - Mio
yrs BP in the inter spike spectrogram (panel B). Our inter spike spectrograms also support
the general conclusion given by Westerhold et al. [] that “in the Hothouse and Warmhouse
climate states, as well as the first Coolhouse phase, eccentricity-related cycles (∼ & ∼ kyrs)
dominate the CENOGRID records, while after the increasing influence of highlatitude cooling
and ice growth during the second Coolhouse phase, the obliquity-band response steadily increases
after . Mio yrs BP (middle Miocene climate transition) before dominating climate dynamics
by ∼ Mio yrs BP (late Miocene–early Pliocene)”. The inter spike spectrograms indicate a strong
obliquity influence already from  Mio yrs BP (the onset of the Miocene Climate optimum).
Moreover, in the carbon isotope record based inter spike spectrogram (Fig. .B) there is a strong
influence of the -kyr-eccentricity cycle in the first Warmhouse phase from ∼- Mio yrs BP,
which is not represented in the FFT-based spectrogram (panel A).
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Figure .: Same as in Figure ., but for the detrended δ13C isotope record.

The shown inter spike spectrograms in Figs. ., . are based on the τ -RR of the respective
records, which have been time delay embedded by using the PECUZAL algorithm [] (Chapter
). By construction, we would expect different inter spike spectrograms, when different embeddings
are used. This is indeed the case as shown in Figures G., G., G., G. (Appendix G.), which
also show inter spike spectrograms, but for an embedding using MCDTS-R-MSE (Chapter , see
Table D.) and for the non-embedded time series. Even though differences are discernible, the
mentioned overall conclusion given by Westerhold et al. [] also holds for these cases.

. Conclusion

A novel type of powerspectrum, the inter spike spectrum, has been proposed. The method
decomposes any arbitrary signal into basis functions which consist of (lagged) Dirac combs
(DC) of different inter-spike period. The loading for each period is obtained by a regularized
regression, which promotes sparsity in its solution (we chose LASSO). Since there are M =

∑N
i=1 i

basis functions for a signal of length N the regression can get computationally intensive for
N > 1, 000. When plotting the computed loadings as a function of the frequency (or period) the
inter spike spectrum is obtained. This novel powerspectrum is superior to an ordinary FFT-based
powerspectrum, when the signal has a spike-train-like appearance. The invention of the proposed
method has been motivated by the idea of transforming τ -recurrence rate signals (τ -RR’s) into
their frequency domain. This general idea [] allows for a frequency analysis of high dimensional
systems, because the RP is a representation of the system’s state space trajectory. The τ -RR
of a recurrence plot (RP) usually has a spiky shape, especially for map-like data, and the inter
spike spectrum can reliably reveal the system’s dominant frequencies, which is not possible when
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Fourier transforming the τ -RR or the underlying signal itself. Since the position of the peaks in
the τ -RR are not sensitive to noise, the corresponding inter spike spectrum also yields robust
results in the presence of noise. We have successfully used the idea of transforming the τ -RR
for the detection of bifurcations in the Logistic map. By constructing appropriate surrogates of
the inter spike spectra, and thus a null model, the number of significant peaks in the inter spike
spectrum correlated well with the positive Lyapunov exponent. This measure was also able to
resolve period-doubling bifurcations. We could further demonstrate that characteristic frequencies
in the CENOGRID dataset revealed by FFT-spectrograms are also apparent in the corresponding
inter spike spectrograms of the τ -RR of the signals.

We could think of a broad range of applications of the proposed idea. The inter spike spectrum
itself can serve as a valuable tool for the analysis of any sort of spike-train-like data. On the
other hand, the inter spike spectrum of the τ -RR of a signal can serve as a generalized, nonlinear
frequency analysis tool for complex systems. Uncovering the main frequencies of high-dimensional
systems could be particularly advantageous for chaos control applications in an engineering context.
When there is only a subset of state variables available, the state space has to be reconstructed as
a pre-processing step. Recent findings [] show that this reconstruction process can be reliably
automated and applied to multivariate data as well. This would allow for a “running window”
approach, in order to detect transitions. Due to the mentioned computational constraints of our
proposed method, a window size w ≤ 1, 000 would possibly suffice for most data, especially when
it is map-like, i.e., not highly sampled.
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Chapter 

Classifying past climate change in the Chew
Bahir basin, southern Ethiopia, using recur-
rence quantification analysis

Trauth, M. H., Asrat, A., Duesing, W., Foerster, V., Kraemer, K. H., Marwan, N., Maslin,
M. A., Schaebitz, F. (). Classifying past climate change in the Chew Bahir basin, southern
Ethiopia, using recurrence quantification analysis. Climate Dynamics (), –, doi:
./s--- []

Abstract

The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and
evolution in Africa through the analysis of sediment cores that have recorded environmental
changes in the Chew Bahir basin. In this statistical project we consider the Chew Bahir
paleolake to be a dynamical system consisting of interactions between its different components,
such as the waterbody, the sediment beneath lake, and the organisms living within and around
the lake. Recurrence is a common feature of such dynamical systems, with recurring patterns in
the state of the system reflecting typical influences. Identifying and defining these influences
contributes significantly to our understanding of the dynamics of the system. Different
recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin
could result in similar (but not identical) conditions in the lake (e.g., depth and area of the
lake, alkalinity and salinity of the lake water, species assemblages in the water body, and
diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recurring
states within a system. Measures of complexity were subsequently introduced to complement
the visual inspection of recurrence plots, and provide quantitative descriptions for use in
recurrence quantification analysis (RQA). We present and discuss herein results from an
RQA on the environmental record from six short (<  m) sediment cores collected during
the CBDP, spanning the last  kyrs. The different types of variability and transitions in
these records were classified to improve our understanding of the response of the biosphere to
climate change, and especially the response of humans in the area.
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. Introduction

The development by humans of settlement systems, artistic representations, and hunting strategies
during the last – kyrs marks a “human revolution” and the emergence of behaviorally
modern humans in Africa ([, ]). These behaviorally modern humans may have adapted
to environmental changes and extreme climatic oscillations through technological, behavioral,
cultural and cognitive innovation rather than through physical adaptation ([, , ]).
Determining the nature and pace of changes in the environment of early modern humans is crucial
to understanding the factors that influenced this human revolution. For example, different types
of climate variability would have resulted in different types of climatic stress and changes to
environmental boundaries ([, , ]).
There are currently ongoing discussions concerning global and regional climate fluctuations

that had an effect on human habitats (e.g. [, , , , , , ]) and which did
not, either because these fluctuations had little or no effect on the African climate (e.g. [])
or because their effect was buffered by the environmental system (e.g. []). Among the most
debated episodes of African climate (including their onset, termination, and internal variability)
are the Dansgaard-Oeschger (DO) cycles and Heinrich Events (HEs) (∼– kyr BP, e.g. [,
, , , , ]), the marine isotope stage  (MIS ) aridification (∼ kyr BP, e.g. []),
the Last Glacial Maximum (LGM, .– kyr BP, e.g. [, , ]), and the African Humid
Period (AHP, – kyr BP, e.g. [, , , ]). Such global (DO cycles, HEs, LGM) and
regional (AHP) episodes may have affected the availability of water and food, spatial retreats and
shelter, and migration corridors, over variable periods of time (e.g. [, , , , , , ]).

Time-series analysis provides a number of tools with which to characterize past climate change,
which can be random, clustered, cyclic, or chaotic (e.g. [, , ]). The most popular
methods for characterizing variations are based on Fourier or wavelet transforms, decomposing
time series into a linear combination of sinusoids (e.g. [] and references therein). Past climate
change is, however, often nonlinear (i.e. there is no simple proportional relation between cause and
effect) and techniques to describe nonlinear behavior have therefore become increasingly popular
in recent decades, defining the scaling laws and fractal dimensions of natural processes ([, ,
]) and detecting nonlinear interrelationships using methods such as transfer entropies, graphic
models, and recurrence plots ([, , , , , , , , ]). The availability of long
time series in the Earth sciences in recent times (for example from multi-sensor core logger and
micro X-ray fluorescence results) facilitates the use of these methods and increases the reliability
of the results obtained.
In this chapter we present a classification of past climate variability in the Chew Bahir basin

of southern Ethiopia over approximately the last  kyrs using recurrence plots, which provide
a graphic display of recurring states in the environmental system ([, ]). Quantitative
descriptions (measures of complexity) have been developed to complement visual inspection of
recurrence plots (RPs) and for recurrence quantification analysis (RQA) (e.g. [, , ]).
We previously used RPs to identify past climate transitions during the Plio-Pleistocene in Africa,
the Middle East, and East Asia (e.g. [, ]). Such plots enable us to detect nonlinear patterns
in past climate change, helping to improve our understanding of the underlying process of climate
transitions in the Chew Bahir basin by statistically describing the dynamical characteristics of
the environment ([, , , , ]). We first used the method on prototypical data in order
to assess its performance with typical paleoclimate transitions. We then performed an RQA on
the Late Quaternary climate record from Chew Bahir cores CB– because it provides one
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. Regional setting

Figure .: A Topographic map of the Chew Bahir basin, showing the outline of the catchment, the drainage
network, the locations of the short cores in the pilot study (, ), and the  HSPDP-CHB
drill site. B Geologic map of the Chew Bahir basin, showing the three generalized rock types:
Cenozoic rift sediments, Cenozoic rift volcanics, and Proterozoic basement. Compilation based
on Omo River Project Map [], Geology of the Sabarei Area, Geology of the Yabello Area, and
Geology of the Agere Maryam Area. Maps are modified versions of the ones previously published
in Trauth et al. [] and Foerster et al. []

of the most detailed records of climate change available from the vicinity of important sites for
modern human fossil ([–, , ]).

. Regional setting

The sediment cores described herein were recovered from the Chew Bahir basin in the southern
Ethiopian Rift (.–.°N, .–.°E; Figs. ., .) (see details in []). Chew Bahir is a closed
basin, separated from the Turkana Basin to the west by the Hammar Range. The western part of
the , km2 catchment, drained by the perennial Segen and Weyto rivers, is mostly formed by
Late Proterozoic gneisses, whereas the eastern part is dominated by Miocene basalts [, ].
Rainfall in the area is associated with the seasonal migration of the Intertropical Convergence
Zone (ITCZ), resulting in two rainy seasons in March–May and October–November []. Rainfall
intensity strongly depends on Atlantic and Indian Ocean sea-surface temperature (SST) variations
caused by the Indian Ocean Dipole (IOD) and the El Niño-Southern Oscillation (ENSO), also
explaining the recent reduction of rainfall intensities over the last decades [, , , , ].
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. Methods

.. The Late Pleistocene–Holocene record of the Chew Bahir basin

We reconstructed climate fluctuations in the Chew Bahir from six short (< m) sediment cores
(CB–), collected along a ∼ km transect from Northwest to Southeast in the basin (Fig. .).
These six cores were collected in a pilot study for the Hominin Sites and Paleolakes Drilling Project
(HSPDP; HSPDP-CHB deep coring site in Fig. .) [, ] and the Collaborative Research
Center CRC- at the University of Cologne, and were described in detail in earlier publications
(e.g. [, , ]). We used the potassium (K) concentrations of the sediment, determined by
micro X-ray fluorescence (µXRF) scanning, as a proxy of aridity [, , ]. Dynamic time
warping (DTW) was employed for aligning the K records from the six cores CB– []. The
composite age model of Trauth et al. [], based on  AMS 14C ages derived from biogenic
carbonate, fossilized charcoal and organic sediment, resulting in a very solid chronology for lake
record spanning the last ∼ kyr, was then used to convert composite core depths into ages.
A principal component analysis (PCA) helped us to separate the mixed regional and local

environmental signals in the K records from the six aligned cores. The first principal component
(PC) contains more than % of the variance of the data and was therefore interpreted to best
represent regional climate. The temporal resolution of the climate proxy record in CB, with
, original measurements, has a calculated mean spacing of ∼ yrs, ranging from ∼ yrs in the
upper part of the core to almost  kyrs in the deeper part of the core [, , ]. The K record
(following DTW alignment of cores CB to CB and PCA-based unmixing) runs from .
to  kyr BP with a mean resolution of  yrs (ranging from . to . yrs) and the record has
therefore been interpolated to an evenly-spaced time axis running from . to  kyr BP at 
year intervals, which is close to the mean intervals of the original data (∼ yrs, ranging from ∼
yrs to  kyrs) and in the aligned and unmixed data (∼ yrs, ranging from . to . yrs) [].

.. Principles of recurrence plots (RPs) and recurrence quantification analysis (RQA)

We considered the Chew Bahir paleolake to represent a complex system of interacting components,
such as the waterbody, the sediment beneath the lake, and the organisms living within and around
the lake. Systems with properties that change over time, such as the Chew Bahir paleolake with
its slowly changing geomorphologic features, much more rapidly varying climatic factors, and the
possible (very recent) influence of human activities, are known as dynamical systems. The Chew
Bahir multi-dimensional paleolake system has been affected by a number of factors (identified as
state variables of the system) such as precipitation (with higher rainfall resulting in increased
weathering and erosion within the catchment, and hence more potassium washed into the lake),
evaporation (with increased evaporation producing more extreme hydrochemical conditions that
enhance potassium fixation in the sediment through authigenic clay-mineral alterations, [,
]) and wind speed (with higher wind speeds and reduced vegetation cover resulting in more
potassium-rich particles being blown into the lake).
Analysis of temporal variations in the true, but unknown, state variables of the Chew Bahir

paleolake would require a record of the variables influencing those state variables over a relevant
time period. Since the state variables of the Chew Bahir system (e.g., the hypothesized precipi-
tation, evaporation and wind speed) cannot be measured directly, we used indirect indicators
(known as climate proxies) measured from natural archives of environmental change such as the
sediments of the Chew Bahir basin, sampled by coring. A proxy record of a multi-dimensional
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dynamical system obtained by sampling a single variable is equivalent to projecting the dynamics
of a complex system onto a single axis [] (c.f. Chapter ). In our case the sampled variable is
the series s(t) of potassium concentrations s along a lake sediment core, which provides a natural
archive of past influences on the Chew Bahir lake system, with sediment depth d converted into
time t using the age model from Trauth et al. [].
We used time-delay embedding to reconstruct the state space from the observable s(t), see

Section . and Fig. . as well as Section . for a more detailed view on the topic. Since
the potassium concentration in the Chew Bahir sediments has been the result of a complex
interplay between unknown amplitudes of different environmental (or state-) variables (such as
precipitation, evaporation, and wind velocity), an analysis of the temporal variations in this
environmental proxy will help us to understand the state variables of the Chew Bahir paleolake
and the time-varying interactions between its different components.

A common feature of dynamical systems is the property of recurrence []. Recurring patterns
in the state of a system are a reflection of typical characteristics of the dynamical system. Defining
these patterns can contribute significantly to our understanding of the system’s dynamics. Changes
in environmental (or state-) variables (such as precipitation, evaporation, and wind velocity)
often follow characteristic courses (represented as trajectories ~v(t) in phase space, Fig. .B+C)
that could lead to similar (but not identical) lake characteristics (e.g. depth and area of the lake,
alkalinity and salinity of the lake, species assemblage in the waterbody, or formation of authigenic
minerals in the sediment). Recurrence plots (RPs), see Chapter  and Appendix A, are graphic
displays of such recurring states within a system have been shown to be successfully applied on
even non-stationary paleoclimate data [, ] (Figs. ., .).
RP analysis is complicated by trends in the mean and variance (i.e. nonstationarity and

long-term variations), which have a marked effect on the recurrence rate (RR), i.e. on the density
of dots in RPs, Eq. (A.) (Appendix A). If the long-scale variations are not of interest, the RQA
characteristics can be used to reveal undesired fluctuations that do not reflect the more rapid
variations in the dynamics of the system. We therefore use an adaptive recurrence threshold
instead of a fixed value, which is determined in such a way that all points in the state space have
the same number of neighbors (fixed amount of neighbors). Thus, the RR is globally and locally
fixed. This means, we expect a time-dependent behavior of RR, when performing a windowed
analysis over the entire RP and a constant RR with respect to the whole RP (see description
below). The corresponding more homogeneous RPs make it easier to detect rapid changes of
the system dynamics at a particular point, while long-term changes can be observed at other
points. Another possible problem in analyzing paleoclimate records, which typically have very
low signal-to-noise ratios, is the disruption of patterns in the RP (such as diagonal lines) by noise,
gaps and other disturbances.
The RQA can be carried out using moving windows in order to detect changes in the system

dynamics, represented by a change in the RQA measures, () by developing a single RP and
calculating the RQA measures for windows moving along this RP, or () by developing multiple
RPs of individual windows from the time series and calculating the RQA measures for these RPs.
If nonstationarities (e.g. trends) are not the main focus of the analysis, then approach () makes
it easier to find transitions while ignoring any nonstationarities. However, if the detection of
overall changes is of interest (e.g. to test for nonstationarity), the recurrence conditions should be
kept constant over time (thus taking into account the RP of the entire time series) and approach
() will be more appropriate []. A window size needs to be chosen that is small enough to
ensure good temporal resolution but large enough to cover typical variations (e.g. the number of
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cycles) in order to be able to detect recurrences. Since our data shows a very dominant long-term
trend, we first performed the RQA on the original data and then on a high-pass filtered (and
hence detrended) version of the data.

.. Synthetic examples of a recurrence quantification analysis

The investigation of synthetic data using RPs and the RQA measures described above and in
Appendix A, which are then used to analyze real data, has proven to be particularly advantageous
when the methods are complex and the results not immediately obvious (e.g. [, ] (Fig. .).
The use of conceptual models that mimic typical system changes helps us to understand the
typical changes seen in RPs and to assign them to one or other of those changes. The first example
investigated was of normally-distributed (Gaussian) noise, for which an RP and RQA measures
were derived (Fig. .A). The RP shows randomly distributed points, each representing times
when the system randomly returned to a similar state. Similar states frequently recur in random
noise but without any regularity except the states represented by the main diagonal line, the line
of identity. The RR is therefore more or less constant with very low values. Since there is no
systematic pattern (e.g. cyclically recurring states), the RP does not show any linear patterns
and the DET is therefore very low.

The second example investigated was a composite signal of two sine waves, for which an RP and
RQA measures were again derived. In the interval between −1, 400 and - there is a positive
trend in the mean (Fig. .B). The RP shows long diagonal lines, diagnostic of cyclicity in time
series, with shorter lines in between. The horizontal distances between these lines corresponds
to the periods of the two sine waves (T1 = 50 and T2 = 200). Since the higher frequency is a
harmonic of the lower frequency, the corresponding diagonal lines appear thicker in the RP. The
RP clearly shows the effect of the trend in the mean as the diagonal lines disappear towards the
upper left and lower right corners of the RP due to the trend-induced increase in the distance,
leaving a blocky pattern in the middle of the RP. Because the dynamic itself does not change,
neither do the DET values; instead they persist at their maximum values, which are unaffected
by the trend. The RR is however affected, as shown by the lower density of black dots in the RP,
indicating cyclic variations with a period of the same order as the dominant period in the signal
(T2 = 200).

The synthetic data in the third example comprised a sine wave and Gaussian noise with a
signal-to-noise ratio that decreases from left to right (Fig. .C). As a result the continuity of
the diagonal lines decreases to the right, as do both the DET and the RR values. The synthetic
data in the fourth example investigated comprised a composite signal from two sine waves with
distinct trends in their frequencies (Fig. .D). The distances between diagonal lines decrease as
a result of increasing signal compression with time. The convergence of the lines and their degree
of curvature depend on the function describing the signal compression. The increase in frequency
with time results in reductions in the DET because the higher-frequency cycles seen on the right
of the plot are no longer adequately resolved. Recurrence points in between diagonal lines are
scarce due to the fact that the time delay τ chosen for the plot no longer suits the increased
frequency. A higher sampling rate eliminates this phenomenon.

The results of the fifth example revealed how RPs and RQAs respond to an abrupt transition
from a composite signal consisting of two sine waves (T1 = 300, T2 = 50) to a signal with only one
sine wave (T3 = 60) (Fig. .E). As before, the oscillations of the signal produce diagonal lines in
the RP, with horizontal distances between the lines corresponding to the periods of the signals.
Two sets of diagonal lines in the lower-left corner of the RP correspond to the two frequencies
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lmin = 4

m = 5
τ = 2
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w = 100
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Figure .: Recurrence plots (RPs) and re-
currence quantification analy-
sis (RQA) measures for syn-
thetic data representing com-
mon types of dynamic behavior:
A normally-distributed (Gaus-
sian) noise. B Composite signal
comprising two sine waves and
a positive trend in the mean.
C Composite signal compris-
ing a sine wave and Gaussian
noise with decreasing signal-to-
noise ratio from left to right.
D Composite signal compris-
ing two sine waves and a trend
in the frequencies. E Abrupt
transition from a composite sig-
nal comprising two sine waves
to a signal with only one sine
wave. F Normally-distributed
(Gaussian) noise with a stepwise
transition in the mean and a
change in the auto-correlation
prior to this transition. The ex-
amples display the time series
(upper panel), the RP (middle
panel) and the RQA measures
(lower panel). Parameter ab-
breviations are m = embedding
dimension, τ = time delay, ε =
recurrence threshold, w = win-
dow size, ws = window moving
steps, norm = vector norm, thei
= size of Theiler window, lmin
= minimum line length, RQA
measures RR = recurrence rate
and DET = determinism.
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of the sine waves, while there is only one set of diagonals in the upper right corner. During the
transition we also let the amplitude of the signal decrease. Both the change from two sine waves
to a single sine wave and the decrease in variance during the transition are clearly visible in the
RP, as well as in the RQA measures. The single period oscillation has more recurrences than the
two-period signal and therefore a higher RR, peaking at the transition because the lower signal
variance produces a blocky pattern in the RP.

Because of the two different time scales of the two-period signal it has a more complicated
phase-space trajectory on the left-hand side of the RP than the one-period signal. Trajectory
segments are therefore only parallel at particular times, resulting in long diagonals for the long
period signal (because T2 is a harmonic of T1, as in the second example above), but interrupted
diagonals (and lines that are curved at times) for the short period signal. This results in slightly
lower DET values before the transition to a one-period signal than after it. An effect similar
to that seen in our third example is observed in the interval between t = −1200 and t = −1050
(where the actual transition from a two period signal to a one period signal occurs), which is why
the DET decreases here before again increasing due to the blocky pattern in the RP, which also
causes the RR to increase, as mentioned previously.
The synthetic data in the sixth example investigated was of Gaussian noise with a stepwise

transition in the mean and a change in the auto-correlation prior to this transition (Fig. .F). It
is important to note that neither the mean nor the variances change in the pre-transition section,
so this change cannot be recognized using conventional methods. The two blocky features in
the RP before and after the transition look very similar to those in the RP of the first example
above. However, the interval between −1, 200 and −1, 000 clearly shows distinctive patterns
within the RP that are different from those typically occurring in RPs of pure noise. White
vertical lines help to define blocky features that represent episodes with different dynamics. The
RQA characteristics look similar to those in the Gaussian noise example except for a section with
higher auto-correlation, which is reflected in the higher density of black dots, clear diagonal lines,
and a change in the dynamics of the system. This fact can be used to detect such a change in
auto-correlation as a precursor to a tipping point and to ultimately predict the tipping point
itself.

. Results

We have used recurrence plots (RPs), complemented by a recurrence quantification analysis
(RQA), to characterize past climate change in the Chew Bahir basin over approximately the last
45 kyrs. We selected the RR and DET measures because they describe fundamental properties
of the complex Chew Bahir system dynamics, while keeping the theoretical complexity within
reasonable limits to facilitate interpretations. The RP and RQA approach was applied to the
record of K concentrations in the sediment cores (following DTW-based alignment and linear
unmixing using a PCA), which has previously been shown to be a reliable proxy for aridity
in the Chew Bahir basin [, , , ]. The K record was embedded in state spaces with
dimensions varying from m = 5 to m = 6 and time delays varying from τ = 3 to τ = 10 data
points, equivalent to 3× 10 yrs = 30 yrs and 10× 10 yrs = 100 yrs, where  yrs is the resolution
of the time series following interpolation. These choices of the embedding parameters were the
results of the corresponding first minimum of the auto-mutual information (for the time lag τ)
[] and a zero (or global minimum) of the false nearest neighbors statistic (for the embedding
dimension m) []. The RPs were calculated using a Euclidean norm, a Theiler window of thei=
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m = 6
τ = 10
ε = 0.08 (adaptive) 
w = 200
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norm = euc
theiler = 1
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ws = 20
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theiler = 1
lmin = 3

Figure .: Recurrence plot (RP) and recurrence quantification analysis (RQA) measures of the complete
record (−45, 358 to 0 yrs BP) from the Chew Bahir basin: time series (upper panel), the RP
(middle panel) and the RQA measures (lower panel) of moving windows determined either by A
calculating the RQA measures for windows moving along a single (global) RP and B by calculating
individual RPs for windows moving along the entire time series. See previous figure for the meaning
of the abbreviations

data point, a minimum length of lmin= for the lines used to calculate DET, and an adaptive
recurrence threshold value (FAN) set to a corresponding RR of %. The size w and the step size
ws of the moving window depend on the period of time investigated and the number of data
points contained therein.
In order to compare different climatic conditions we first looked at the RP of the complete,

unfiltered time series documenting the long-term variations in the Chew Bahir system (Fig. .).
This RP reveals a clear division of the time series into sections of different lengths, indicated by
square blocky features in the RP separated by white vertical lines (see also Figs. .B, E and
F). The first cluster of recurrence points occurs between . and  kyr BP, comprising both
connected and isolated points. This interval is characterized by both vertical and horizontal lines,
representing episodes of stability (both wet and dry) interrupted by a series of extremely wet
events, indicated by white vertical lines in the RP. We observe low but gradually increasing DET
values in this episode, suggesting increasing predictability in the system.

A second, very obvious, cluster of recurrence points occurs between  and  kyr BP, which
includes the time intervals in which the Dansgaard-Oeschger (DO) cycles (∼– kyr BP), the
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m = 5
τ = 5
ε = 0.08 (adaptive) 
w = 100
ws = 10
norm = euc
theiler = 1
lmin = 3

Figure .: Recurrence plot (RP) and re-
currence quantification analysis
(RQA) measures for the Chew
Bahir basin covering of the time
interval between  and  kyr
BP: time series (upper panel),
the RP (middle panel) and the
RQA measures (lower panel) of
moving windows determined by
calculating individual RPs for
windows moving along the en-
tire time series. See previous
figure for the meaning of the
abbreviations.

Heinrich Events (HE, ∼– kyr BP) and the Last Glacial Maximum (LGM, .– kyr BP)
affected the climate further to the north. The RQA reveals consistently high DET values until
about  kyr BP, exceeding those of the previously described cluster and suggesting a much higher
predictability in the system during that time. The recurrence plot for the time interval from  to
 kyr BP includes the African Humid Period (AHP, ∼– kyr BP). This interval is characterized
by three large clusters of recurrence points, interrupted by both white vertical and horizontal
lines, together with fluctuating RR values and a long-term trend towards lower DET values. The
white vertical lines again help to define blocky features marking episodes with different dynamics.

To analyze the dynamics of these individual sections, the time series was high-pass filtered
with a cutoff frequency of . yrs−1 in order to remove any long-term trends (Figs. ., .,
.). An RP was constructed and an RQA performed using a sliding window (w = 100, ws = 10)
over the entire RP, assuming stationarity within the intervals. The interval between  and
 kyr BP is remarkable for numerous short, slightly curved diagonal lines, suggesting a cyclic
recurrence of wetter episodes in the Chew Bahir basin within a period that had a generally dry
climate (Fig. .). The oscillating climatic conditions are reflected in higher DET values, while
the low RR values suggest a low probability of recurring states occurring within the system over
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m = 5
τ = 3
ε = 0.08 (adaptive) 
w = 100
ws = 10
norm = euc
theiler = 1
lmin = 3

Figure .: Recurrence plot (RP) and re-
currence quantification analysis
(RQA) measures for the Chew
Bahir basin covering of the time
interval between  and  kyr
BP: time series (upper panel),
the RP (middle panel) and the
RQA measures (lower panel) of
moving windows determined by
calculating individual RPs for
windows moving along the en-
tire time series. See previous
figure for the meaning of the
abbreviations.

a particular time period [].
The RP for the time interval from  to  kyr BP includes the AHP (∼– kyr BP) (Fig. .).

As before, having used moving windows with a length of w = 100 (, yrs) and a step size of
ws = 10 ( yrs) the obtained RP reveals a series of blocky recurrence point patterns, interrupted
by a series of white vertical lines. These patterns suggest distinct episodes of relative stability,
both wet and dry, separated by abrupt transitions at ∼. kyr BP, ∼. kyr BP, ∼. kyr
BP, ∼. kyr BP, and ∼. kyr BP. The overall appearance of the RP (and of the time series
itself) reflects dynamics characterized by a period of higher variability followed by a period of
low variability between . and  kyr BP, and dynamics dominated by a high-frequency cyclicity
between  and  kyr BP, which is roughly similar to the fifth synthetic example above (see
Fig. .E). In addition to these patterns, the RP for the interval from  to  kyr BP also shows
numerous short diagonal lines, suggesting a weak cyclicity. The diagonal lines, however, are very
different from each other in width and in the number present. The RR values are very low except
for an interval of relative stability between  and  kyr BP, which has a high probability of
recurring states. The DET values document a general trend towards lower predictability in the
system dynamics, but this decline exhibits a very complicated and somewhat cyclical pattern,
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m = 5
τ = 4
ε = 0.08 (adaptive) 
w = 50
ws = 5
norm = euc
theiler = 1
lmin = 3

Figure .: Recurrence plot (RP) and re-
currence quantification analysis
(RQA) measures for the Chew
Bahir basin of the time inter-
val between  and  kyr BP:
time series (upper panel), the
recurrence plot (middle panel)
and the RQA measures (lower
panel) of moving windows deter-
mined by calculating individual
RPs for windows moving along
the time series. See previous
figure for the meaning of the
abbreviations.

rather than a simple linear trend.
In contrast to the RP for the first half of the time interval from  to  kyr BP, the RP for

the period between  and  kyr BP contains numerous spotty diagonals following two blocky
features at about  and  kyr BP (Fig. .). These blocky features indicate a slowing-down of
the system dynamics and therefore a higher predictability, as also indicated by high DET values
(similar to the synthetic example shown in Figs. .E+F). The RR values are very low, except for
one interval of relative stability. The distinctive diagonal lines after about . kyr BP suggest a
marked cyclic recurrence of droughts approximately every – yrs, which lasted until stable
conditions returned following the termination of the AHP. The relatively low DET values (∼.)
and therefore low predictability during this interval, however, reflects the discontinuity in the
diagonal lines and the dispersion of cycles (i.e. the variability in distances between the diagonal
lines, similar to the synthetic example shown in Figs. .C+D), suggesting that a stochastic
process is superimposed on the cyclicity. The DET values during the wet-dry transition at the
end of the AHP remain moderately high in the high-pass filtered time series until stable dry
conditions are established. The interval between  and  kyr BP with very low DET values
(< 0.5) reflects a predominantly stochastic process.
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Age (kyr) 45–37 37–20 20–16 16–10 10–8 8–4 4–now

Main climate intermediate dry intermediate wet, with YD
dry event wet wet dry

Environmental conditions wet-dry trend 1500 yrs
cycles

Long-term sinusoidal dry-wet-dry trend due to
20 kyr precession cycle

stable with
160 yrs cycles

stable, wet at
the end

RP appearance irregular regular regular irregular regular regular regular

Recurrence rate (RR) low intermediate intermediate high, with low
YD event high high intermediate

Determinism (DET) low high high intermediate intermediate intermediate low

Extreme events random wet wet-dry none YD dry event possibly 8.2
kyr dry event

approx. 14 dry
events, 20–80

yrs long

very arid,
possibly wet
a�er 2 kyr BP

Human habitat
extreme

radom wet
events

wet-dry cycles stable threshold
stable, except

for 8.2 kyr
event

threshold and
cycles aridity

Table .: Compilation of the most important time periods in the Chew Bahir sediment cores, classified
according to main climate, environmental conditions, recurrence plot appearance, recurrence rate
RR, determinism DET, occurrence of extreme events and human habitat

. Discussion

A section-by-section analysis of the RPs of the time series together with an examination of the
temporal course of the RQA measures allowed us to identify and eventually classify different types
of variability and transitions (Table .). The classification of variability and transitions can help
to improve our understanding of the response of the biosphere (including humans) to climate
changes (e.g. [, , , , ]). There is a general consensus among anthropologists that
both long-term trends and severe, abrupt changes resulted in significant changes to the social
and socio-economic behavior of early humans [, , , ]. The response to a changing
habitat, both subtle or dramatic, accompanied by changes in essential resources such as food
and water, could be either expansion, decease, migration, or adaption. In this process, the
nature of the adaptation is a function of the adaptability and the time scale (e.g. [, ]. Of
particular interest is how the adaptability of humans has enabled them to deal with such diverse
and profound environmental changes since  kyrs BP through behavioral changes, and what
level of environmental change met the limit of resilience (e.g. [, , , ]). Furthermore,
the different types of variability and transitions, and the corresponding response of the biosphere
(including humans), will help to detect similar types of changes in the long (∼ m) sediment
cores recently collected in the Chew Bahir basin within the Hominin Sites and Paleolakes Drilling
Project (HSPDP) and to investigate whether or not these types are typical for and exclusive to
the basin, as well as the response of the biosphere to these changes (see Chapter ).

Our analysis clearly showed a number of different types of variability in the K record, separated
by either gradual or rapid transitions. The first type of variability occurs between the beginning
of the record ( kyr BP) and about  kyr BP. Within this interval we observed a relatively
low but gradually increasing predictability during times of relative stability (both wet and dry),
interrupted by a series of extremely wet events. There is no apparent cyclicity in this interval
but rather an irregular pattern of different types of variability. Both the extreme events and the
rapid transitions between episodes of relative (wet and dry) stability will certainly have had an
impact on humans in the area, leaving them with a range of possible responses (adapt, migrate,
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starve) to a dramatically changing environment.
The second type of variability occurs between  and  kyr BP, with slightly different dynamics

before and after  kyr BP. This interval is characterized by a millennial-scale climate variations
during the last glacial cycle, which includes the time intervals in which the Dansgaard-Oeschger
(DO) cycles (∼– kyr BP), the Heinrich Events (HE, ∼– kyr BP) and the Last Glacial
Maximum (LGM, .– kyr BP) affected the climate further to the north. This millennial-scale
climate fluctuations are cyclic with minor variations in the period, as indicated by the slight
curvature of the diagonals in the RP (see synthetic example shown in Fig. .D), although this
curvature could also suggest inaccuracies in the age model, rather than real variations in the
cyclicity. The pronounced cyclicity is reflected in the RP and in the RQA measures by a very high
predictability, but on time scales that are certainly not relevant to humans, because it is orders
of magnitude longer than the lifetime of individual humans. However, the transitions between
the dry and wet episodes were very rapid which has probably caused significant stress to human
populations.
The third type of variability occurs between  and  kyr BP, including parts of the AHP

(∼– kyr BP). During this interval we found episodes of relative stability, both wet and dry,
separated by abrupt transitions at ∼. kyr BP and ∼. kyr BP. There is also evidence of a
weak cyclicity with a general (but complicated) trend towards lower predictability. The onset
of the AHP in the Chew Bahir area was relatively rapid (covering ∼ yrs, [], which is in
agreement with similar records from elsewhere, as a result of large-scale deglacial forcings (i.e.
changes of Atlantic sea-surface temperatures causing meridional shifts of the African easterly jet
and the monsoon belt, and changes in the atmospheric concentration of greenhouse gases causing
changes in atmospheric temperatures, []). The onset and termination of the dry episode during
the Younger Dryas (YD) were also rapid transitions (over less than  yrs, []), again very
similar to other sites in N and NE Africa.

The climate variability within the AHP and the long-term transition that it represents clearly
affected human communities and has fueled massive changes in the population size and structure
such as the profound socio-economic transformations that have been documented for N and NE
Africa (e.g. [, , , ]). A well-studied example is provided by demographic reconstructions
that have been made for the Saharan Holocene. These reconstructions show a temporal delay
between the onset of humid conditions (based on sedimentary dust flux records) and human
reoccupation of former desert areas, with associated societal changes seen as a response to the
environmental changes [, , ].
Having adapted to the wet climate of the AHP, humans certainly had to cope with the very

rapid transition towards extreme dryness at the onset of the YD dry episode. Highly mobile groups
of hunter-gatherers responded to short-term arid pulses by vertical migration as documented by
the settlement patterns in what are assumed to have been refuge areas such as the SW Ethiopian
Highlands (e.g. []). The YD is followed by a short interval of relative stability between  and
 kyr BP, followed by a dry episode centered around . kyr BP. This event, which is synchronous
with the prolonged pause in the Green Sahara conditions  kyrs ago (within the uncertainty of
our age model, see []), coincides with a temporary abandonment of sites previously occupied
by Neolithic humans [].
The fourth type of variability occurs between  and  kyr BP. This interval includes the

transition from the humid climate of the AHP to the subsequent dry climate. The termination
of the AHP was a result of weaker, insolation-driven forcing (and hence more complex and
time-transgressive responses) than that which produced the DO cycles, the onset of the AHP,
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or the onset/termination of the YD dry episode []. This was nevertheless compared to those
produced by more subtle changes in orbital forcing, but certainly not abrupt compared to human
time scales, i.e. human lifespan or a little more, as it continued for approximately  years
[]. The termination of the AHP occurred at different times in other areas, suggesting a strong
influence of Indian Ocean SSTs on the East African climate []. Most of the transition at the
end of the AHP is characterized by wet conditions, interrupted by ∼ dry events that have
recurred every 160 ± 40 years and lasted – years []. Compared to the low-frequency
cyclicity of climate variability during the DO cycles, this type of cyclicity occured on time scales
equivalent to a few human generations. In other words, it is very likely (albeit speculative) that
people were conscious of these changes and adapted their lifestyles to the consequent changes in
water and food availability [].

An interesting aspect of this variability is the nature of the transitions close to the threshold
in the system response, and how the environment switches from one stable mode to another.
A rapid change of climate in response to a relatively modest change in forcing appears to be
typical of tipping points in complex systems such as the Chew Bahir basin [, ]. If this is the
case then the  dry events at the end of the AHP could represent precursors of an imminent
tipping point that would have allowed a prediction of climate change in the Chew Bahir basin at
that time. A deeper analysis of our data is however required to understand whether the wet-dry
climate transition in the area was due to a saddle-node bifurcation in the structural stability of
the climate, or whether it was induced by a stochastic fluctuation. The time interval after the
termination of the AHP (< 4 kyr BP) leads into present-day conditions in the Chew Bahir basin.

. Conclusion

We have used a recurrence quantification analysis (RQA) on environmental records from short
cores collected during a pilot study within the Chew Bahir basin to characterize the Chew Bahir
paleolake as a dynamical system composed of interacting components. The different types of
variability and transitions in these records were classified to improve our understanding of the
response of the biosphere to climate change, and especially the response of humans in the area.
This classification and the corresponding responses of the biosphere will enable the detection of
similar types of variability and transitions in the long (∼ m) ICDP core collected in the Chew
Bahir basin within the Hominin Sites and Paleolakes Drilling Project (HSPDP), see Chapter ,
and allow us to investigate whether or not these types are typical for and exclusive to the basin.

Code availability

The MATLAB® code to calculate the RPs and to perform the RQA is available at http://mres.uni-
potsdam.de and on request from the corresponding author.
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Chapter 

Recurring types of variability and transitions
in the ∼ kyr record of climate change from
the Chew Bahir basin, southern Ethiopia

Trauth, M. H., Asrat, A., Duesing, W., Cohen, A. S., Foerster, V., Kaboth-Bahr, S., Kraemer, K.
H., Lamb, H. F., Marwan, N., Maslin, M. A., Schaebitz, F. (). Recurring types of variability
and transitions in the ∼ kyr record of climate change from the Chew Bahir basin, southern
Ethiopia. Quaternary Science Reviews , , doi: ./j.quascirev... []

Abstract

The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate
and hominin evolution in Africa through the analysis of sediment cores that have recorded
environmental changes in the Chew Bahir basin (CHB). In this statistical project we used
recurrence plots (RPs) together with a recurrence quantification analysis (RQA) to distinguish
two types of variability and transitions in the Chew Bahir aridity record and compare them
with the ODP Site  wetness index from the eastern Mediterranean. The first type of
variability is one of slow variations with cycles of ∼20 kyr, reminiscent of the Earth’s precession
cycle, and subharmonics of this orbital cycle. In addition to these cyclical wet-dry fluctuations
in the area, extreme events often occur, i.e. short wet or dry episodes, lasting for several
centuries or even millennia, and rapid transitions between these wet and dry episodes. The
second type of variability is characterized by relatively low variation on orbital time scales,
but significant century-millennium-scale variations with progressively increasing frequencies.
Within this type of variability there are extremely fast transitions between dry and wet
within a few decades or years, in contrast to those within Type  with transitions over several
hundreds of years. Type  variability probably reflects the influence of precessional forcing in
the lower latitudes at times with maximum values of the long (400 kyr) eccentricity cycle
of the Earth’s orbit around the sun, with the tendency towards extreme events. Type 
variability seems to be linked with minimum values of this cycle. There does not seem to
be a systematic correlation between Type  or Type  variability with atmospheric CO2
concentration. The different types of variability and the transitions between those types had
important effects on the availability of water, and could have transformed eastern Africa’s





Chapter  Recurring types of paleoclimate in southern Ethiopia

environment considerably, which would have had important implications for the shaping of
the habitat of H. sapiens and the direct ancestors of this species.

. Introduction

Some hypotheses about the relationship of climate and human evolution suggest that episodes
of increased climate variability (e.g. [, , ]) or prominent transitions (e.g. []) may
have enhanced rates of speciation, dispersal and technological innovation. Examples on long time
scales are the termination of the permanent El Niño/establishment of the modern Walker/Hadley
circulation between .-. Ma, possibly linked to the closure of the Indonesian sea way [, ,
]), and the intensification of the Northern Hemisphere Glaciation at . Ma (e.g., [, ]),
both being subject to lively discussions during the last four decades [, , , , , ,
, ]). As the most recent example of a major climate shift in the tropics, in particular in
Africa, the termination of the African Humid Period (AHP, ∼- kyr BP) has also been intensely
investigated, in particular the extent to which it was abrupt or gradual ([, , , ]),
which is important for potential migration scenarios within and across the Sahara and cultural
transformations [].
Revived by these debates, statistical methods have recently been used to make quantitative

statements about the degree of variability and character of transitions. According to their analysis,
the most important transition during the long-term trend towards a more arid climate was
at ∼. Ma, at about the time of the establishment of the modern Walker/Hadley circulation
[, ], and not, as suggested earlier by deMenocal [, ] during the intensification of the
Northern Hemisphere Glaciation (INHG). Similarly, the termination of the AHP at ∼5 kyr BP
was tested for its relative abruptness comparing observed and theoretical probability distributions
of paleoclimate time series from multiple locations in and around Africa []. According to
their analysis, the wet-dry transition occurred within centuries, which agrees with the results of
Trauth et al. [] using a change point analysis to determine a ∼ yr interval within which
this important climate shift occurred.
More sophisticated approaches to classifying variability and transitions were used by Trauth

et al. [] with recurrence plots together with a recurrence quantification analysis on six short
(< 17 m) sediment cores collected during the Chew Bahir Drilling Project (CBDP) from the Chew
Bahir basin (CHB) in southern Ethiopia, reaching back to ∼ kyr BP. Recurrence plots (RPs)
are graphic displays of recurring states in the environmental system. Quantitative descriptions
(measures of complexity) have been developed to complement visual inspection of RPs and for
recurrence quantification analysis (RQA) (see Chapter  & Appendix A). Trauth et al. []
presented and discussed results from such an RQA on the environmental record of the CHB short
cores. The different types of variability and transitions in these records were classified to shed
light on our understanding of the response of the biosphere to climate change, particularly the
response of humans in the area.
One of the most interesting transitions examined with the RP/RQA was once again the

termination of the African Humid period [, ]. The rapid (∼ yr) change of climate in
response to a relatively modest change in orbital forcing appears to be typical of tipping points
in complex systems such as the Chew Bahir basin [, ]. If this is the case then  dry
events at the end of the AHP, each of them – yrs long and recurring every 160± 40 yrs as
documented in the Chew Bahir cores could represent precursors of an imminent tipping point
which, if properly interpreted, would allow predictions to be made of future climate change in
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the Chew Bahir basin [, ]. Compared to the low-frequency cyclicity of climate variability
before and after the termination of the AHP, this type of cyclicity occurs on time scales equivalent
to a few human generations. In other words, it is very likely (albeit speculative) that people
were conscious of these changes and adapted their lifestyles to the consequent changes in water
and food availability. A deeper analysis of our data is however required to understand whether
the wet-dry climate transition in the area was due to a saddle-node bifurcation in the structural
stability of the climate, or whether it was induced by a stochastic fluctuation.
Here we present a RP/RQA-based analysis of two long (∼ m) cores collected in  in

the Chew Bahir basin (°’."N  °’."E), spanning the time from ∼ kyr to present
(Figs. ., .). The Chew Bahir basin is situated in a transition zone between the Main Ethiopian
Rift and the Omo-Turkana basin, adjacent to the Lower Omo Basin, where some of the oldest
known fossils of anatomically modern humans were found []. According to recent archeological
findings, the adjoining highlands in the area may have been a refuge area for groups of H. sapiens
during times of climatic stress [, , ].
We compared the Chew Bahir record of environmental change during the past ∼ kyr

with the wetness index for the wider northeastern Saharan/North Africa from Ocean Drilling
Program (ODP) Site  [] (Fig. .). The site was drilled during ODP Leg  in the
eastern Mediterranean (°N, °E, 2, 252 m water depth), where Saharan and North African
dust and Nile riverine input are the primary contributors of sediment. The ODP Site 
wetness index is a combined run-off and dust signal in a single metric, reflecting the effects of
both strengthening/northward migration (increased run-off) and weakening/southward retreat
(increased dust) of the northern and northeastern African monsoon []. The catchment of the
Nile River with its two tributaries, the White Nile and the Blue Nile, extends from southeastern
Africa to parts of the northwestern Ethiopian highlands. In the very wet phases, the Lakes Abaya-
Chamo-Chew Bahir-Turkana system with its connecting rivers drained into the Nile catchment
[]. Therefore, both the upper Nile catchment and the Chew Bahir catchments are in spatial
proximity and are most likely exposed to similar climate fluctuations and their causes. Humid
conditions, recorded in both ODP Site  and CHB cores, could indicate the regional significance
of a wet phase. Similar patterns in the types of variability and transitions could be indicative of
the effect of a similar climate dynamic.

As a contribution to the reconstruction of environmental conditions for eastern Africa based on
long terrestrial sediment records, our CHB record is firstly used to classify variability down core in
order to identify recurring episodes of stable wet or dry, of cyclic or more complex but deterministic
variability, and of random variability. Second, we classified types of transitions, including episodes
with no change, linear/gradual shifts with different rates of change, as well as different types of
rapid transitions such as tipping points. As soon as a classification of variability and transitions is
available, one can discuss possible reasons for the similarity, e.g. similar boundary conditions such
as global ice volume, local insolation, atmospheric CO2 levels and ocean sea-surface temperatures.
Finally, we hypothesize which types of variability and transitions may have affected the biosphere
including hominins.
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Figure .: Map of northeastern Africa and
adjacent areas showing the lo-
cation of the Chew Bahir basin
(°’."N °’."E,
∼500 m above sea level), the
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model of the Earth’s surface
(ETOPO).

. Materials & methods

.. The Middle Pleistocene–Holocene paleoclimate record of the Chew Bahir basin

The sediment cores described herein were collected in the western part of the Chew Bahir basin
in the southern Ethiopian Rift (.–.°N, .–.°E, ∼ above sea level; Fig. .). Chew
Bahir is a tectonic basin, separated from the Lower Omo basin to the west by the Hammar Range,
which is the source of most of the sediments at the coring site. This range to the west and the
highlands to the north and north-east consist of Late Proterozoic granitic and mafic gneisses,
whereas the eastern part of the catchment is dominated by Miocene basaltic lava flows. Oligocene
basalt flows with subordinate rhyolites, trachytes, tuffs and ignimbrites cover the Precambrian
basement units in the distal north-eastern, northern, and north-western parts of the catchment
[, ]. Being a closed basin, Chew Bahir forms a terminal sink for weathering products from
its 32, 400 km2 catchment.
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The present-day climate in eastern and northeastern Africa is influenced by a number of
major air streams and convergence zones, with their effects superimposed on regional influences
associated with topography, large lakes, and the oceans []. Rainfall in the Chew Bahir
catchment is associated with the passage of the tropical rain belt, resulting in a strongly bimodal
annual cycle. Most of the moisture reaching the Ethiopian highlands in June–August comes from
the Mediterranean and Red Sea (%), and from the Indian Ocean (%) []. Short-term
(annual to decadal) fluctuations in the intensity of precipitation relate to E-W adjustments in the
zonal Walker circulation associated with the El Niño-Southern Oscillation (ENSO) and the Indian
Ocean Dipole (IOD), possibly as a direct response to sea-surface temperature (SST) variations in
the Indian and Atlantic Oceans, which are in turn affected by the ENSO and the IOD [].
The paleoclimate of Chew Bahir was first reconstructed using six short cores, up to ∼ m

long and collectively spanning ∼ kyr, which were collected in – [, , –]. In
the context of the Hominin Sites and Paleolakes Drilling Project (HSPDP) to drill at key fossil
hominin and archeological sites [, ], we collected parallel, duplicate cores: HSPDP-CHB
A (°’."N °’."E) and B (°’."N °’."E) in the Chew Bahir basin,
266.38 and 278.58 m long, respectively, in Nov–Dec . A 292.87 m long composite core of
the Chew Bahir Drilling Project (CBDP) with more than % recovery was created from the
duplicate cores.

The composite core was developed by merging the two parallel cores A and B by core-to-core
correlation using MSCL logs, core images, lithological description and XRF data sets. Radiometric
age constraints were based on 14C dating of ostracodes, optically stimulated luminescence (OSL)
dating of fine-silt sized quartz grains, and single-crystal total-fusion (SCTF) Ar/Ar dating of
feldspars from tuffaceous zones within the core. In addition, a volcanic ash layer identified in
the core has been correlated on the basis of major and minor element geochemistry to a dated
tephra found in the outcrop at Konso, in the southern Main Ethiopian Rift, namely the Silver
Tuff []). The ages generated are stratigraphically consistent, and Bayesian age-depth modeling
incorporating 14C, OSL and Ar/Ar ages, and tephrochronological data has been used to build
an age model for the Chew Bahir cores (age model RRMay, Roberts et al. []). The σ
confidence intervals increase with increasing depth, ranging from < 10 kyr in the uppermost  m
(corresponding to ∼ kyr BP) and - kyr below  m composite depth (∼- kyr) [].

We analyzed the potassium (K) concentrations of the sediment, determined by micro X-ray
fluorescence (µXRF) scanning which was previously shown to be a reliable proxy for aridity in the
Chew Bahir basin [, , ]. The most likely process linking climate with K concentrations
is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the
closed-basin lake resulting from a drier climate []. After processing the µXRF data to remove
coring and scanning artifacts, the data were corrected for outliers and jumps, before we applied
various types of normalizations and standardizations of the data [].

Micro XRF scanning was carried out with a resolution of  mm, corresponding to a mean time
resolution of ∼ yrs, ranging from ∼– yrs [, ]. The K record has been interpolated to
an evenly-spaced time axis with a resolution of  yrs, corresponding to a ∼ mm (– mm)
spatial resolution, using a piecewise cubic Hermite interpolating polynomial []. This resolution
avoids the effects of the scanner’s beam width as well as the effects of bioturbation on the signal
(e.g. []), with the exception of large, discrete burrows, which we (as well as other disturbances
of the core) have tracked down with the help of core photos and excluded from the interpretation.
On the other hand the centennial resolution allows us to investigate the effect of millennium-scale
or orbital-scale climatic fluctuations on environmental conditions as well as transitions over several
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hundreds or thousands of years.

. Results

Analogue to the approach in Trauth et al. [] (see Chapter , Section ..) recurrence plots
(RPs), together with a recurrence quantification analysis (RQA), were used to describe different
types of environmental variability and transitions in the Chew Bahir (Tab. ., Fig. . and
Suppl. Figs. H., H., H., H.) From the available RQA measures we have selected RR and
DET because they describe important properties of the dynamic Chew Bahir system but are very
descriptive compared to other RQA measures [, ] (see Appendix A). We compared the
RPs and RQA measures of the Chew Bahir record with those of the wetness index for the wider
northeastern Saharan/North African record from ODP Site  [] (Fig. .).

Table .: Summary of the RP/RQA results to describe different types of environmental variability and
transitions in the Chew Bahir.

Type  Type 

Occurrence/Time (kyr BP) - -

- -

- -

-

-

RP Texture sparse recurrences dense recurrences

longer diagonal lines with larger spacing (, - kyr) block-like structures, short diagonal lines with smaller spacing (- kyr)

Recurrence Quantification RR low RR intermediate to high

DET low to intermediate (except for the oldest part, where DET is also high) DET high

The embedding parameters m and τ have been selected by an improved false nearest neighbors
approach [] and mutual information [] (see Figure H.). Before embedding, it is often helpful
to filter the time series to improve the signal-to-noise ratio. Here we used a simple nonlinear
noise reduction method that is based on state space averaging []. We have, thus, used noise
filtered K as a proxy for aridity, as the dominant process linking climate with K concentrations
is the authigenic illitization of smectites during episodes of higher alkalinity and salinity in the
closed-basin lake resulting from a drier climate []. For the analysis of the ∼ kyr record the
K record was embedded in a state space with a dimension of m = 6 and temporal distances of
τ = 10 (Suppl. Fig. H.), equivalent to 10× 0.1 kyr = 1.0 kyr, where . kyr is the resolution of
the time series following a piecewise cubic Hermite interpolating polynomial []. We used the
window size w = 500 and the step size ws = 50 data points of the moving window to calculate
the RQA measures (Fig. .). The size w of the window corresponds to 500× 0.1 kyr = 50 kyr
and the step size is 50× 0.1 kyr = 5 kyr. We used a minimum length of  points to compute
DET and an adaptive recurrence threshold (fixed amount of neighbours, see Chapter ), which
corresponds to a local and global recurrence rate of 8%. To compare the RP/RQA based dynamics
in the Chew Bahir record of aridity with the wetness index of ODP Site , we interpolated the
marine record to the same time axis. Then the same embedding parameters (Suppl. Fig. H.)
and recurrence threshold selection method and size were used to obtain the RPs and ensure
comparability. For the computation of the RQA measures the same window size has been selected
(Fig. .). Similarities in the texture of the recurrence plots of both proxy records show that the
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Figure .: Recurrence plot (RP) and
recurrence quantification
analysis (RQA) measures of the
potassium (K) concentrations
of the sediment in Chew
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to age model (); B the
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as follows: m=embedding
dimension, τ=time delay,
ε=recurrence threshold,
w=window size, ws=window
moving steps, norm=vector
norm, thei=size of Theiler
window, lmin=minimum
line length, RQA measures
RR=recurrence rate and
DET=determinism. See text
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recurrence threshold selection and the embedding procedure provides comparable results with
these parameter values.
The first series of four clusters of recurrence points occurs between  and  kyr BP

in the Chew Bahir record, with the largest cluster between  and  kyr BP, then three
very weak clusters at –, –, and – kyr BP (Fig. .). These clusters are
structured by a series of partly s-shaped diagonal lines or they represent rather compact blocks
with high recurrence rates centered at ,  and  kyr, which mark – kyr long episodes of
relative stability. The diagonal lines are – kyr apart, reflecting a series of wet-dry episodes
recurring with approximately half-precession cyclicity, initiated and terminated by relatively
abrupt transitions, marked by white vertical lines. As the result of the cyclic recurrence of wet
and dry conditions, the DET values are relatively high, whereas RR has moderate, but declining
values. Two extremely dry episodes centered at ∼ and ∼ kyr BP are reflected in two clusters
of recurrence points and high DET values within the – kyr BP interval, separated by white
vertical lines and slightly lower DET values. Zooming into the interval between  and  kyr
BP with higher (. kyr) resolution the diagonal lines become blurred, are separated by a few
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Figure .: Recurrence plot (RP) and re-
currence quantification analysis
(RQA) measures of the ODP
Site  wetness index accord-
ing to Grant et al. [] from
the eastern Mediterranean: A
the time series; B the recur-
rence plot and C the RQA mea-
sures of moving windows (lower
panel). See previous figure for
the meaning of the parameter
abbreviations (Fig. .).

thousand years (up to  kyr), and the RP is dominated by several small (< 10 kyr) blocks that
are connected by black horizontal and vertical lines (Suppl. Fig. H.A). This suggests that, at
time scales of < 10 kyr, the system oscillates between shorter stable states, each – kyr long,
with rapid transitions between them. Within the blocks, we observe diagonal lines indicating
high-frequency (< 1 kyr) cyclicities. The large-scale block and line separation is dominated by ,
 and  kyr cycles. In the ODP Site  wetness index we find a similar type of variability in
the time before  kyr, although in comparison diagonal structures are much less pronounced or
even absent (Fig. .). The RR values are at similar values to those in the Chew Bahir, except
for a significant anticorrelation at ∼ kyr (Fig. .). The DET values are generally lower but
increase after ∼ kyr BP up to similar values as in the Chew Bahir record.
This interval ends with a rapid transition at ∼ kyr BP from dry to wet conditions. This

transition is followed by two dense clusters of recurrence points between  and  kyr BP,
indicating episodes of a stable wet climate with extreme RR and DET values (Fig. .). The two
clusters reflect relatively stable humid conditions, with the humidity level in the first cluster being
higher than in the second cluster and hence the two clusters are separated by a transition towards
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a slightly less wet climate at around  kyr BP. The second cluster is interrupted by a distinctive
dry event at around  kyr BP. Interestingly, both clusters show an irregular pattern of diagonal
lines, partly slightly curved, suggesting recurrent dry events, but with slightly variable cyclicity.
Zooming into the interval between  and  kyr BP with higher (. kyr) resolution we
observe blurred diagonal lines with – kyr distances in the earlier part before ∼ kyr, with
– kyr in the younger part, indicating a weak cyclicity on millennium time scales even within
the otherwise quite stable wet episodes (Suppl. Fig. H.B). The interval between  and 
kyr BP is terminated by gradual (∼ kyr) transition towards slightly more humid and more
variable conditions after ∼ kyr BP. The ODP Site  wetness index indicates similar wet
conditions during this episode, also with relatively low variability (Fig. .). As a consequence,
the RR values are relatively high but decreasing whereas the DET values are also at high level
but relatively low compared to before and after the event.
The next cluster of recurrence points between  and  kyr BP is marked by a series of

blocks with weak internal structure and separated by white vertical lines (Fig. .). This structure
reflects a series of relatively stable wet conditions, interrupted by several thousand-year long dry
episodes, some of which are bounded by relatively rapid transitions from wet to dry and back.
The occasional appearance of diagonal lines, though rarely parallel to the main diagonal, indicates
weak cyclic behavior. Within this interval the RR values are constantly low, whereas the DET
values start at high values and decline until about  kyr BP before they remain at low values.
Zooming into the interval between  and  kyr BP with higher (. kyr) resolution confirms
the observation of small blocks connected with black horizontal and vertical lines in the RP, as a
result of a rapid change between relatively stable dry and wet conditions, with the exception of
the block between  and  kyr BP. This block is merely the result of a gap that was closed
by interpolation (Suppl. Fig. H.A). The blocks themselves have little internal structure, with
the exception of very weak diagonal lines with a spacing of – kyr. The interval between 
and  kyr BP is terminated by a very rapid transition from wet to dry conditions at ∼ kyr.
The ODP Site  wetness index shows a similar variability type during this episode, but with
higher DET values remaining at high levels compared to those of the Chew Bahir (Fig. .).

Between  and  kyr BP, we observe another dense cluster of recurrence points (Fig. .).
The internal structure of this block is reminiscent of similar structures of the clusters at ∼
and ∼ kyr BP, whereas the system state based on the difference in the DET values does not
support this conclusion. The interval again shows very weak diagonal lines. As a result of this
cyclicity, the RR and DET values are at moderate levels, with DET at a local maximum. This
pattern suggests that the climate was relatively stable, but fluctuations between humid and dry
occur in cycles. These changes occur more and more frequently over time, until the climate finally
quickly changes to generally humid conditions at around  kyr BP. Zooming into the interval
between  and  kyr BP with higher (. kyr) resolution reveals that the curved diagonal
lines are rather a sequence of short, laterally offset diagonal pieces. In the younger section of the
block, the diagonal lines disappear (Suppl. Fig. H.B). Considering the course of the time series
it can be seen that the diagonals reflect increasingly shorter wet phases, and until after about
 kyr quite stable, relatively dry conditions prevail in the Chew Bahir. The ODP Site 
wetness index shows similar climate fluctuations during this episode, but these are too unclear
to be described with a different type of variability (Fig. .). The RR values are low, similar to
those in the Chew Bahir, whereas the DET values rise sharply, probably because of subsequent
long-wave cyclicities, in contrast to the Chew Bahir.
The episode between  and  kyr BP mirrors the earlier ones between  and  kyr
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BP and between  and  kyr BP, whereby in the second interval also the state of the
environmental system also recurs. The episode is unfortunately followed by two gaps due to core
loss between ∼ and  kyr BP, which are filled by the interpolation with curves, so we get a
high RR at this point that we cannot interpret (Fig. .). Zooming into the interval between
 and  kyr BP with higher (. kyr) resolution reveals many small blocks surrounded
by s-shaped curved structures rather than continuous diagonal lines which mark short (< 5 kyr)
wet phases which begin and end gradually (Suppl. Fig. H.A). Besides that, we observe longer
(– kyr) wet episodes with rapid onset and termination, internally structured by converging
diagonals, structurally similar to the ones in the interval between  and  kyr BP, but with a
different system state based on the RR and DET values. This interval is terminated by ∼ kyr
long gaps after  kyr BP. During this episode, the ODP Site  wetness index shows a type of
variability that is more similar to the episode of  and  kyr BP, rather than the one after
 kyr BP (Fig. .). The course of the RR values is similar to the one of Chew Bahir in the
first half of the interval, but seems to be anticorrelated in the second half. The DET values show
a very similar pattern to those of the Chew Bahir, although at higher levels. The increasing DET
values at the beginning of the interval are about  kyr later for ODP Site , then they vary in
a very similar way even including a minimum at about  kyr, and then decline at the end of
this interval (Fig. .).
Between  and  kyr BP, we find a very complex phase with fast changes between stable

humid, very variable humid and very dry conditions, each separated by fast transitions (Fig. . and
Suppl. Fig. H.B). After a very dramatic transition we observe very regular climate fluctuations
between ∼ kyr BP and about  kyr BP, when it became relatively stable dry. This interval
is again characterized by a cluster of dense recurrence points, slightly converging diagonal lines
which indicate increasing recurrence rates (i.e. shorter wet-dry cycles), before we see a black block
of recurrence points as the result of very stable dry conditions. The last ∼ kyr are characterized
by very wet conditions, interrupted with a short, about ∼ kyr long dry intervals and terminated
by a transition towards a dry climate. The distinct cyclic alternation of wet and dry conditions,
each of which are ∼ kyr long, results in high RR and DET values. The last ∼ kyr BP are
preserved at higher resolution in the short cores from the same basin, also examined with the
method of RP/RQA []. Here we found very similar patterns as on the long time scale, with
alternating appearances of blocky structures and diagonal lines, with different transitions between
episodes. The ODP Site  wetness index here shows a similar variability with long-periodic,
high amplitude fluctuations between wet and dry between ∼ and  kyr BP, followed by
an episode without such variations (Fig. .). The time interval between  and  kyr BP is
relatively stable, as compared with the high-frequency variability observed in the Chew Bahir,
before we observe two long wet cycles, out of which the second one is also seen in the Chew Bahir
record.

. Discussion

We applied a detailed analysis of the RPs together with a RQA to distinguish between different
types of climate variability, and transitions in the Chew Bahir basin [] (Fig. .). Here, climate
is inferred from our key proxy, the potassium concentration of the sediment representing the
relative aridity in the Chew Bahir Basin []. Our statistical analyses herein are a contribution to
an accurate picture of environmental change in eastern Africa during the last ∼ kyr and thereby
provide a quantitative, high resolution climatic component useful for investigating human-climate
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interactions. The fossil and archaeological record of eastern Africa is still too limited to draw
definitive conclusions with respect to current hypotheses on the relationship between climate and
evolutionary patterns in humans and other animals. However, our results do allow for some initial
comparisons and hypotheses (e.g. [, , ]).

Our analysis clearly shows a number of different types of variability in the K record that overlay
a long-term trend towards greater aridity and variability (Figs. . and .). These types of
variability are separated by transitions, which are of varying types of durations and structures.
Many of these types, both variability and transitions, occur multiple times during the last ∼
kyr, so it is interesting to investigate them more closely to see if they are characteristic of the
Chew Bahir Basin or possibly occur even beyond the region. In addition, it is important to
examine whether these types are linked to certain regional or global boundary conditions (e.g.
global ice volume, atmospheric CO2 levels, ocean sea-surface temperatures, Fig. .).
We observe two basic types of variability that do not mix, but each form a series of variants.

The first type of variability, occurring at – kyr BP, – kyr BP, – kyr BP,
and (after a period with no data) – kyr BP, are slow variations with cycles of ∼ kyr and
subharmonics of this cycle, as indicated by the occurrence of diagonal lines with  kyr,  kyr,
and  kyr spacing (Figs. . and .). In addition to these cyclical wet-dry fluctuations in the
area, extreme events often occur, i.e. short wet or dry episodes, lasting for several centuries or
even millennia, and rapid transitions between wet and dry episodes. This type of variability
probably reflects the influence of precessional forcing in the lower latitudes at times of increased
eccentricity, with a tendency towards extreme events. This also shows in comparatively low RR
and DET values, suggesting a lower determinism of climate variations for this type of variability.
This type of variability correlates with maximum values of the long ( kyr) eccentricity cycle,
and hence maximum variability in the precession frequency band. There does not seem to be a
systematic correlation with atmospheric CO2 concentration within this type of variability.

The second type of variability, occurring at – kyr BP, – kyr BP, and – kyr BP,
is characterized by relatively low variation on orbital time scales. Instead, we observe significant
century-millennium-scale variations with increasing frequency in the course of an episode with
Type  variability, as block-like pattern with thin diagonal lines of short spacing suggest (Figs. .
and .). The very prominent cycles in the frequency band lead to very high DET and partly
high RR values, which indicate a higher deterministic regime of climate change, much higher than
at times of Type . Within this type of variability there are extremely fast transitions between dry
and wet within a few decades or years, in contrast to those within Type  with transitions that
last several hundreds of years. Type  variability seems to be linked with minimum values of the
long ( kyr) eccentricity cycle, and again there does not seem to be a link with atmospheric CO2
levels. The first episode with Type  variability occurs in an interval with maximum eccentricity
in the  kyr frequency band when the atmospheric CO2 was quite high. The other two episodes
occur during minimal eccentricity in this frequency band, with low CO2 levels at the same time.

The ODP Site  wetness index shows a very similar type of variability, with RR values that
highly resemble the variations in the Chew Bahir record, except for the prominent anti-correlation
at ∼ and ∼ kyr BP (Fig. .). The DET values fluctuating in a smaller range compared
to those of the Chew Bahir, but the temporal variations of DET show obvious similarities at
both sites, in particular during the last ∼ kyr. Since the age models of both sites have large
uncertainties, it is not possible at this point to judge conclusively whether time shifts in the DET
curves are the result of poor age control or actual differences in climate dynamics recorded in
the two locations. Comparing the temporal occurrence of the different types of variability in
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Figure .: Comparison of the complex dynamics of variations in aridity in southern Ethiopia with strengthen-
ing/northward migration and weakening/southward retreat of the North African monsoon. A+B
Earth’s eccentricity and precession cycle []; C Antarctica EPICA Dome C atmospheric CO2
according to Bereiter et al. []; D ODP Site  wetness index according to Grant et al. []; E
Chew Bahir aridity derived from the potassium (K) concentrations of the sediment in Chew Bahir
using age model RRMHT [], note the reverse y-axis; F+G comparison of RQA measures
determinism (DET) and recurrence rate (RR) of the recurrence plots (RP) of the Chew Bahir
aridity record (in red) and ODP Site  wetness index (in blue). DET is a measure of the
determinism of the system and RR describes the probability of recurring states of the system in a
particular time period.





. Discussion

both localities, the ODP Site  wetness index shows a Type  variability approximately during
the first and third episode of Type  variability in the Chew Bahir record, but not during the
second episode of Type  variability in the Chew Bahir. Instead we find a Type  variability
between ∼ and  kyr BP in the ODP Site  wetness index, all with high DET and RR
values. The different types of variability, very obvious in the RPs, but differing slightly in the
RQA measures, could also indicate actual differences in dynamics, but also the influence of the
spline interpolation on the temporal auto-correlation.
Overall, the K curve shows a clear trend towards a drier and more variable climate, most

prominently during the last  kyr, which is also reflected in the reducing DET and RR values
(Fig. .). The three episodes with Type  variability are about the same length (– kyr) but
have (according to the long-term trend) decreasing average humidity levels. The first episode
is characterized by a very humid climate, while the two later episodes were rather dry. In
particular, the DET values show several stepwise declines over the entire time series, which
are not compensated by corresponding increases. The most striking declines are centered at
approximately  kyr BP,  kyr BP,  kyr BP,  kyr BP,  kyr BP and  kyr BP. The
most dramatic increases in DET are centered at approximately  kyr BP,  kyr BP,  kyr
BP,  kyr BP,  kyr BP and  kyr BP. The variability also increased, especially if a few
larger fluctuations between - kyr, at ∼ kyr BP and at ∼ kyr BP are disregarded. In
addition, the frequency of rapid transitions from dry to wet and back increases over time. The
ODP Site  record shows similar trends on long time scales, whereas there are large differences
on shorter time scales, especially in the degree of variability.
The different types of variability and the transitions between these types have important

implications for our understanding of the availability of water. Different modes of variability
would have transformed eastern Africa’s environment considerably, including its vegetation and
fauna, and would have shaped the habitat of hominins, including archaic and modern H. sapiens,
in that part of the continent. The central question, however, is to what extent the different
types of fluctuations observed in the environmental record of the Chew Bahir have actually had
an impact on living conditions of hominins. Overall, long-term changes (> 1 kyrs) would have
formed the living environment of hominins on a time-scale that responds to human evolution
and corresponds to a time window that is long enough to facilitate large-scale dispersal. The
short-term fluctuations (< 1 kyrs) may have had dramatic consequences for populations including
differential mortality/fertility of H. sapiens down to the level of individuals, and thus short-term
changes in behavior, including evasive movements to more favorable habitats (e.g. []).
To assess the impact of climate variability on people, it is worth using a well-studied younger

analogue of hydroclimatic transformation in eastern Africa. The most recent example of a wet-to-
dry transition within Type  was the time-progressive termination of the African Humid Period
(AHP, – kyr BP), which lasted several hundred years in most areas [, ]. At this time, a
previously green, then yellow Sahara was largely depopulated, but this happened quite slowly and
due to the time-transgressive termination rather in the form of people slowly following favorable
living conditions [, , ]. During this gradual transition, climate deterioration could have
fostered an important socio-economic transition, including the transition from hunter-gatherer to
pastoralism [, ].
In contrast, the most recent example of a wet-to-dry transition within Type  is the onset of

pronounced arid conditions during the Younger Dryas chronozone (YD, ∼.–. kyr BP) that
occurred within ∼ yr at Chew Bahir []. Most importantly, millennial-scale transitions such
as the YD happened everywhere at the same time, unlike the orbital-controlled slow changes
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[, ]. It is implausible that such relatively rapid transitions triggered a fundamental societal
transformation, similar to the one during the termination of the AHP. Instead, climate shifts of
this rapidity would allow response patterns that are implementable within (less than) a life-time
span, such as short-term migration towards proximal more favorable living conditions. Examples
of this are movements from hot dry low-lands into still vegetation-rich high altitudes, or even
the complete disappearance of entire local human populations due to scarcity of resources [].
The possible alternative response to environmental extremes and too fast transformation is
extinction/extirpation, because living conditions deteriorated so quickly that neither physical nor
cultural adaptation was possible. However, short-term and short-distance mobility depends (a)
on a number of socio-cultural conditions (= how flexible, how adaptable are groups, how are they
organized?) and (b) mode of climatic change (= pulsed, rapid, parallel with other areas).

. Conclusion

We find two types of variability in the Chew Bahir record, () Type  probably reflecting the
influence of a precessional forcing in the lower latitudes at times of increased eccentricity, with
the tendency towards extreme events, and () Type  with significant century-millennium-scale
variations with increasing frequency. Within Type  of variability there are extremely fast
transitions between dry and wet within a few decades or years that would have exerted a high
level of climatic stress on the biosphere including humans, in contrast to those within Type  with
transitions within several hundreds of years. As the body of archaeological evidence, including
fossils and diagnostic tools, continues to increase in the future, it will be exciting to compare
potential response patterns to our prosed Type  phases of high climatic stress and see whether
changes in settlement activities, cultural innovation, or even the emergence or disappearance of
populations/occupancy can be correlated with the climatic dimension of the complex framework
in human-climate interactions.

Code availability

The Chew Bahir potassium record and all MATLAB® scripts are available at http://mres.uni-
potsdam.de.
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Motor execution reduces EEG signals complex-
ity: recurrence quantification analysis study

Pitsik, E., Frolov, N., Kraemer, K. H., Grubov, V., Maksimenko, V., Kurths, J. and Hramov, A.
(). Motor execution reduces EEG signals complexity: recurrence quantification analysis study.
Chaos: An Interdisciplinary Journal of Nonlinear Science, , . doi: ./.,
with the permission of AIP Publishing []

Abstract

The development of new approaches to detect motor-related brain activity is key in many
aspects of science, especially in brain-computer interface (BCI) applications. Even though some
well-known features of motor-related electroencephalograms (EEGs) have been revealed using
traditionally applied methods, they still lack a robust classification of motor-related patterns.
Here we introduce new features of motor-related brain activity and uncover hidden mechanisms
of the underlying neuronal dynamics by considering event-related desynchronization (ERD)
of µ-rhythm in the sensorimotor cortex, i.e. tracking the decrease of the power spectral
density in the corresponding frequency band. We hypothesize that motor-related ERD is
associated with the suppression of random fluctuations of µ-band neuronal activity. This is
due to a lowering of the number of active neuronal populations involved in the corresponding
oscillation mode. In this case we expect more regular dynamics and a decrease in complexity
of the EEG signal recorded over the sensorimotor cortex. In order to support this theses we
apply measures of signal complexity by means of recurrence quantification analysis (RQA). In
particular, we demonstrate that certain RQA quantifiers are very useful to detect the moment
of movement onset and therefore are able to classify the laterality of executed movements.

. Introduction

The study of motor-related brain activity for noninvasive EEG-based brain-computer interfaces is
a challenging task at the intersection of neuroscience, medicine, nonlinear physics and engineering.
One active research area is, for example, neurorehabilitation in post-stroke patients with motor
and cognitive impairment []. Another branch of actual research demanding brain motor-related
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activity decryption is a mental control of robotic systems, prosthetic devises and vehicles [].
By translating recorded signals of brain activity into control commands, brain-computer interfaces
(BCIs) can provide a communication channel between the human and the external device [, ,
]. Recently a considerable progress has been achieved in invasive BCIs for motor control. This
is due to the principles of the invasive interfaces operation, which rely on the firing properties of
individual neurons or small groups of neighboring neurons modulating their activity according to
the motor tasks []. In this case motor-related neuronal activity patterns are pronounced and
well reproduced, which allows to develop precise schemes for motor control [, ]. Invasive BCIs
have an outstanding ability for an accurate detection and translation of brain motor commands.
However, its application can pose severe challenges to patients and surgeons, since it requires
complex brain surgery. It is therefore only carried out in rare cases of urgent need and is not
suitable for daily purposes.
On the contrary, noninvasive BCIs are easy to apply and much more convenient in terms of

usability. Among a variety of neuroimaging methods, electroencephalography (EEG) appears
to be one of the most suitable ones for routine BCI applications []. A comprehensive review
on the current state, future perspectives and remaining challenges of sensorimotor EEG-based
interfaces was given by Yuan and He []. Methods of spatial filtering [, ], machine learning
[, ] and time-frequency analysis [, ] are the core algorithms for feature extraction
in this context. EEG simultaneously records electrical activity of a large group of neuronal
populations located close to the measuring sensor []. Generally, distinct neuronal ensembles do
not behave in coherency. Therefore, EEG signals represent a complex mixture of local neuronal
activity components. The latter determines inherent critical properties of EEG signals, such as
a poor signal-to-noise ratio and nonstationarity. Traditionally used methods for motor-related
feature extraction, such as spatial filtering and time-frequency analysis, allow to associate motor
actions with event-related desynchronization (ERD) of µ-band oscillations (- Hz) over the
sensorimotor cortex. However, these features (e.g. location of brain activity sources, amplitudes
of spectral components) are of strong inter- and intra-subject variability [, , , ]. The
aforementioned inherent nonstationarity and a poor signal-to-noise ratios of EEG signals strongly
complicate the detection and classification of motor-related patterns in single trials. Hence, it is of
high interest to find relevant features and methods that will withstand the discussed weaknesses
of EEG recordings.

It is known that motor tasks block ongoing activity in the µ-band (–Hz) of a EEG record,
i.e. ERD takes place []. Motor-related ERD implies a time-locked decrease in the number
of active neurons involved in µ-oscillations []. We hypothesize that this is equivalent to a
suppression of spontaneous fluctuation of neuronal activity in the corresponding frequency band
compared to the preceding background activity. Thus, we expect that motor-related neuronal
dynamics should be reflected in EEG recordings by the signal’s complexity reduction.

In order to find new features of the motor-related brain activity we explore EEG signals from
the viewpoint of signal complexity. Complexity of EEG signals was assessed and quantified
with recurrence quantification analysis (RQA). RQA is a nonlinear method, which describes the
recurrence structure of a system by several quantifiers, in order to examine its complexity and
uncover hidden underlying phenomena [, ]. It is a well known and powerful tool for the
analysis of biological signals, specifically heart rate variability [, ], muscle activity [, ],
sleep [, , ] and pathological EEGs [, ]. Early RQA studies that focused on EEG
analysis demonstrated the ability of RQA measures to quantify N event-related potentials
(ERPs) in single trials (e.g. []), which emphasizes the robustness of the RQA approach in the
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context of the current study.

In summary, this work intends to further contribute to the non-invasive BCI research. New
findings of features of motor-related brain activity support our hypothesis of a reduction of
EEG signal’s complexity in the µ-band when motor-tasks are performed. We test our hypoth-
esis on the upper limb motor execution tasks and apply RQA to quantify changes of signal
complexity caused by the motor task accomplishment. We seek to demonstrate that certain
RQA quantifiers, namely determinism and recurrence time entropy, are sensitive to the transi-
tion from background to motor-related brain activity. This, in turn, reveals differences between
left and right upper limb movements, which is valuable in the context of potential BCI applications.

This chapter is organized as follows. Section . describes the details of the experimental study,
the data pre-/postprocessing and briefly the RQA method. Section . is devoted to the analysis
of the time-dependent RQA measures and the inference of task vs. background differences along
with differences between left and right limb movements. Finally, we summarize our results and
discuss them in context of BCI development in Section ..

. Methods

.. Participants

Participants were recruited among the employees and students of the Innopolis University. Ten
subjects ( male,  female) were selected according to the following checklist: healthy, aged –,
right-handed, never participated in this or similar experiments before and no history of brain
tumors, trauma or stroke-related medical conditions. All the participants were pre-informed
about the goals and design of the experiment ans signed consent. The experimental study was
performed in accordance with the Declaration of Helsinki and approved by the local research
Ethics Committee of Innopolis University.

.. Data acquisition

EEG signals along with electromiograms (EMGs) from both hands were recorded using non-
invasive EEG/EMG system “Encephalan-EEGR-/” (Medicom MTD company, Taganrog,
Russian Federation). Electrocardiogram (ECG) and electro-oculogram (EOG) were also recorded
for further removal of cardiac and eye-movement artifacts. All recorded signals were amplified
and digitized at the sampling rate of  Hz. In order to record motor brain activity we used 
EEG Ag/AgCl electrodes Fc, Fcz, Fc, C, Cz, C, Cp, Cpz, Cp located over the motor cortex
according to the international “-” system proposed by the American Electroencephalographic
Society. To capture hand movements execution we placed  EMG electrodes as follows:  reference
on the wrist and  on the forearm muscle for each hand.

.. Experimental setup

The session started with a -min recording of background brain activity, during which the
participants were instructed to relax and listen to classical music. They were also asked not to
think about anything special and to make no hand movements. During the active phase of the
experiment each participant performed two types of motor actions according to the experimental
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Figure .: Schematic representation of the experimen-
tal procedure. A Subjects were sitting com-
fortably in the chair while performing motor
actions of left and right hands on audio sig-
nal command. B Experimental sequence.
Time intervals between the signals were
chosen randomly in ranges – seconds be-
tween first and second signals for one task
and – seconds from second signal of pre-
vious and first signals of the next task. C
Examples of recorded µ-band-pass filtered
EEG and EMG signals (LHM = left hand
movement, RHM = right hand movement).

protocol, i.e. movements for the left and right hands (Fig. .A). Each hand movement implied
squeezing the hand into a fist after the first signal, holding it down to the second signal and then
relaxing it. The time interval between the first and the second signals was randomly chosen for
each motor task in the range – s and the time interval between the second signal of the current
task and the first signal of the next task (resting period) was randomly chosen in the range – s
(Fig. .B). The active phase of the experiment consisted of  repetitions of each type of motor
task ( total) and the overall duration of the experimental procedure was approximately 
minutes per participant, including background activity recording.

.. Data preprocessing

The following preprocessing steps were carried out to prepare raw EEG and EMG recordings
for further analysis. First, cardiac and eye-movement artifacts were removed using recorded
ECG and EOG signals via artifact removal method based on Gram-Schmidt process []. A
Notch filter around  Hz was applied to EEG and EMG data to exclude power line effects.
Second, we applied a th-order Butterworth band-pass filter in the range –Hz to the 
minute multichannel EEG signals in order to extract µ-band neuronal oscillations associated





. Methods

Fc4

C4

Cp4

-6 4 80 6 10-2-4 12, s2

DET

RTE

0.7

0.5

0.3

5

4.6

4.2

-100
-50

0
-50 -100

0
50

100

-50

100
75
50
25
0
-25
-50
-75

xCp4

xC4

xFc4

0-4.5 4.5

A

B

C D

100 mV

9, s

0-4.5 4.5 9, s

0-4.5 4.5 9, s

Fc4

C4

Cp4

Fcz

Cz

Cpz

Fcz

C3

Cp3

Figure .: Step-by-step visualization of the EEG signal analysis. A EEG electrodes, located at the sensorimotor
area, forming a multivariate set X(t): right hemisphere (subset XR(t), blue area), left hemisphere
(subset XL(t), orange area), and longitudinal fissure (subset XF (t), green area). B Example of a
motor-related EEG trial from XR(t) (left hand movement). Vertical dashed lines correspond to
the first and second audio signal at  s and  s, respectively. C Representation of the current trial
from XR(t) as a trajectory in D phase space. D Illustrative scheme of the movement execution
accessed from a EMG signal (top panel) and corresponding time-dependent measures of DET
(middle panel) and RTE (bottom panel).

with motor-related brain activity. EMG recordings were also band-pass filtered (–Hz) to
capture pronounced high-frequency fluctuations of muscle activity caused by muscle tension during
movement execution (Fig. .C). The latter allows to determine exact times for the beginning and
the end of movement executions and to study the motor-related brain activity at these specific
intervals. Finally, the bandpass filtered time series (both EEG and EMG) were split into  trials,
each lasting  seconds ( seconds before and  seconds after the command, totaling  data
points), i.e.  attempts for the left and right hand.
The considered EEG trials represent -dimensional multivariate sets X(t) = (xCp4(t), xC4(t),

xFc4(t), xCpz(t), xCz(t), xFcz(t), xCp3(t), xC3(t), xF3(t))T composed of EEG signals recorded
over the sensorimotor brain area (Fig. .A). To describe brain dynamics in three areas of interest
we separated X into three D subsets, according to their location on the scalp (Fig. .B):

. left hemisphere (LH): XL(t) = (xCp4(t), xC4(t), xFc4(t))T;

. right hemisphere (RH): XR(t) = (xCp3(t), xC3(t), xFc3(t))T;

. longitudinal fissure (F): XF (t) = (xCpz(t), xCz(t), xFcz(t))T.

Consequently, from a physical perspective, each brain area is represented by a three dimensional
trajectory, treating the constitutive time series as state variables (Fig. .C). Since the chosen
time series forming these trajectories can possibly carry redundant information, we constructed
subsets of linearly independent components X′L(t), X′R(t) and X′F (t) by using principal component
analysis (PCA) on XL(t), XR(t) and XF (t). This way of state space trajectory construction
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is convenient in the context of multivariate EEG analysis and circumvents the single variable
embedding problem [, , , ].

Particularly noteworthy is the fact that the further analysis dealt with EEG recordings at the
sensor level. This has been done in order to exclude EEG pre-pocessing steps related with source
reconstruction and capture general effects of motor-related activity from the viewpoint of an
overall decrease of complexity of the underlying neuronal processes in the sensorimotor cortex.
The advantages and limitations of such an approach will be discussed in Section ..

.. Recurrence quantification analysis

Being a fundamental property of most dynamical systems, recurrence implies that the system’s
state repeats itself in time []. It is represented as neighboring points (states) of the system’s
trajectory in its state space. A common way of visualizing the system’s repeating states is the
recurrence plot (RP), Eq. (.), which can show structures such as diagonal and horizontal/vertical
lines and areas of different recurrence densities []. Certain structures are related to the
system’s complexity and recurrence quantification analysis (RQA) was introduced to analyze
them numerically, using various measures of complexity [] (c.f. Appendix A).

To analyze the recurrence structures in the selected brain areas, using the multivariate set X of
length N = 4500 (Section ..), we created a binary recurrence matrix. The recurrence threshold
ε determines the size of the neighborhood in state space in which states being considered as
recurring [], see also Chapter . When analyzing an RP one should take into account that
the obtained results can crucially depend on the choice of this threshold. To provide a robust
representation of the RP and ensuring comparability within the samples, i.e. data from different
participants, we determined the value of the threshold ε for each sample as the 3rd percentile of
the pairwise distance distribution, following Kraemer et al. [], Chapter .

To access time-dependence of the estimated RQA quantifiers we used a running window along
the main diagonal line of each RP with a window size of w = 750 data points ( s) and a shift
δw = 20 data points (. s).

In the current study we want to quantify regularity and complexity of EEG signals affected by
motor tasks execution. Therefore we picked two suitable RQA quantifiers, namely the determinism
(DET ), Eq. (A.), and the recurrence time entropy (RTE ), Eq. (A.) (see Appendix A). The
presence of diagonal lines in the RP is an important indicator of a deterministic process, since
in this case, trajectories at different points in time evolve in a similar manner. More correlated
and regularized processes are characterized by longer diagonal lines and less isolated points, i.e.
higher DET values.
Along with DET, we estimated RTE, which is a complexity measure based on the “white”

(non-recurrent) vertical lines in a RP, which indicate recurrence times. RTE is well suited for
capturing the transitions between periodic and chaotic dynamics (and vice versa), because it
is related to the Kolmogorov-Sinai entropy []. A regular process results in low RTE values,
whereas a chaotic process increases the number of different recurrence times, thus, increases its
distribution and consequently increases the corresponding RTE value.

Typical single trial time series of DET and RTE are shown in Fig .D. The increase of DET
and the decrease of RTE associated with two motor actions following the corresponding audio
signal are clearly discernible. A detailed discussion of RQA results will be given based on the
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between-subject analysis in Section .. For each participant, we averaged the RQA time series
over the trials and excluded the baseline level ( s prior the first audio signal):

∆DET (t) = DET (t)−DETbckg,
∆RTE(t) = RTE(t)−RTEbckg,

(.)

where DET bckg and RTE bckg are mean values of DET and RTE  s prior the first audio signal.
All RQA related computations were performed using the DynamicalSystems.jl software library

for Julia programming language [].

.. Statistical test

The motor-related changes of the RQA measures calculated at the different (area, time)-pairs have
been treated as different aspects of the data with respect to which the experimental conditions
(motor-task vs baseline and left vs right limb movement) will be compared. Each (area, time)-pair
is tested via statistical t-test. Since we do not know exactly the locus of the possible differences
in the (area,time)-domain, the multiple comparisons problem (MCP) takes place. To control
family-wise error rate (FWER) and address MCP we used a non-parametric statistical test based
on random partitions following Maris and Oostenveld [].

. Results and discussion

To address the main research question of the current study, namely the quantification of an
expected reduction in the complexity and randomness of neuronal processes in the sensorimotor
cortex in the execution of motor tasks, we considered general cross-subject effects of motor-related
changes in the corresponding RQA time series.

First, we analyzed the transition from (random) background neuronal activity to brain activity
in the accomplishment of motor tasks. Figure . shows the results of DET and RTE, averaged
over the subjects and along with the standard error, for the movements of right (A, B) and left
(C, D) hands. As noted in Section .., we were particularly interested in differences in results
regarding the right hemisphere (XR, blue), the left hemisphere (XL, orange) and the longitudinal
fissure (XF , green). These results indicate that motion execution is associated with an increase in
DET (Fig. . A,C). In addition, DET takes local maxima near start (approximately  s after the
first audio command) and end (approximately  s after the first command) of the motion execution.
The positions of the local maxima can be associated with the hand flex and hand relaxation that
are performed after the first and second audio commands, while the DET values decrease when
holding the hands in a compressed state. The execution of motor tasks in this experimental setup
is thus characterized by the pronounced local increase of DET. In fact, the growth of DET implies
a predictable or regular motor neuronal activity. This finding is consistent with our hypothesis
that motor action is associated with the suppression of random µ-band fluctuations in the EEG
that are inherent in background activity. Local peaks of DET are accompanied by a decrease of
RTE (Fig. . B,D). This also shows that the underlying motor neuronal activity recorded by the
EEG becomes less chaotic and complex.

Second, we applied a non-parametric statistical test in the (area,time)-domain (cf. Section ..),
which revealed that the described motor changes of the RQA quantifiers compared to the
background activity are significant (p < 0.05) for all three considered areas during the duration of
the motor task execution. The occurrence of significant changes about . s before and after the
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Figure .: Time dependence of ∆DET and ∆RTE
averaged over all subjects (±SE) for the
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(A, B) and left hand movements (C, D),
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val of movement execution obtained from
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execution of the motor task was related to the half width of the selected window size of w = 3 s.
It is noteworthy that the RQA measurements returned to the background level after the end of
the movement, which is a clear indication of the backward transition of the neuronal dynamics
into the background mode.
The RQA time series for the right and left hands had a similar qualitative time course (two

maxima/minima associated with hand flexion and relaxation) but took on different absolute
values. It can also be seen that the changes of RTE and DET were more pronounced for the
right hand in the considered brain regions (see Fig. .). The movement of the right hand almost
equally affected all areas of the sensorimotor cortex without visible contralateral effects. In
contrast, left hand movement reduced the complexity of neural dynamics in the right hemisphere
more (blue curve in Fig. . C,D), which coincides with the known contralaterality of the brain’s
motor-related activity. These results may be biased by the specificity of the participant sample,
as only right-handed subjects were selected to participate in the experiments. For right-handed
participants, we presume that the right-hand movement is accompanied by a greater neural
response compared to left-hand movement.

This leads to the following effects at right-hand movement trials: (i) greater changes in estimated
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Figure .: A Time dependence of ∆DETRL and ∆RTERL, derived from EEG data of the right and left
hemispheres (Eq. (.), see text for details). Measures are averaged over the subjects and displayed
as mean±SE. Shaded areas mark the areas with significant differences between the time series
corresponding to left and right hand movements (p < 0.05, MCP corrected via non-parametric
statistical test) and the red boxes indicate the movement execution interval determined from
averaged EMGs. B Exemplary representation of motor-related EEG samples analysis on an
individual test level using ∆DETRL and ∆RTERL. EEG experiments are arranged as follows:
left-hand movements (trials -, highlighted in blue) and right-hand movements (trials -,
highlighted in orange).

RQA measures in terms of absolute value and (ii) less pronounced interhemispheric asymmetry
due to the volume conduction/field spread effect, which is critical for non-invasive measurements
[]. The latter effect may also be due to the fact that the RQA was performed in the EEG at
the sensor level without additional preprocessing, which is aimed either at the reconstruction of
the source or at the spatial filtering. Despite these limitations, our results suggest that analyzing
the complexity of neuronal dynamics using RQA makes it possible to distinguish between the
further discussed lateral types of motor actions.

Finally, we take a closer look at the differences in brain dynamics during right and left hand
movements with respect to contralateral effects. For this analysis we only used the XR and XL

records and introduced a measure of asymmetry as the differences between RQA measures in the
right and left hemisphere for both hands:

∆DETRL(t) = ∆DETR(t)−∆DETL(t)
∆RTERL(t) = ∆RTER(t)−∆RTEL(t),

(.)

where superscripts R and L indicate right and left hemispheres, respectively. Figure . A
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shows the course of ∆DETRL(t) and ∆RTERL(t) during the motion execution, averaged over all
subjects and along with the standard error. Here, the first audio signal corresponds to the time
t = 0. In addition to the previous results, Fig. . shows that the reduction of the complexity of the
neural dynamics during the execution of left and right hand movements is different. A comparison
of ∆DETRL and ∆RTERL for left- and right-hand movements using a non-parametric statistical
test showed that both measures reflect significant differences between the types of movement
(α=., Section ..). Specifically, reducing the complexity of the underlying neuronal dynamics
results in pronounced interlateral asymmetry during left-hand movement, which is reflected in a
maximum at DET and a minimum at RTE. The movement of the right hand is in turn linked to
the interlateral symmetry – both ∆DETRL and ∆RTERL fluctuate around zero-level. Note that
there is a broader time interval of significant differences of right- and left-hand motion related
∆DETRL time series than it is for the ∆RTERL time series (Fig. .A). In the case of the
former, the brain dynamics associated with left and right hand movement may be discriminated
based on a statistical test (cf. Section ..) at an interval that approximately covers the motion
execution (.– s after the first audio signal). Using ∆RTERL, this happens at a much narrower
interval (– s after the first audio signal). Therefore, the determinism regarding the properties
of the interlateral asymmetry seems to be more sensitive than the recurrence time entropy and
thus represents a better classification measure. In fact, the disclosed properties of motor-related
EEG samples associated with contralateral asymmetry are suitable for a single-trial analysis and
classification. Figure . B shows the exemplary representation of RQA applied to individual
EEG experiments collected from a randomly selected subject. It can be seen, that the chosen
RQA quantifiers are able to clearly distinguish between left- and right-hand movements: the
former are characterized by the positive ∆DETRL(t) and simultaneously negative ∆RTERL(t)
values and vice versa for the latter.

Our results indicate that the discussed features of motor neuronal activity detected by EEG
signals at the sensor level through RQA complexity measurements are clearly observed and well
reproduced in the experimental group under consideration. More importantly, the generality of
the cross-subject analysis also applied to the single trial analysis (see exemplary illustration in
Fig. .E). The latter, together with the low computational cost of RQA algorithms, offers the
prospect of their application in EEG-based BCIs for motion control and assessment.

. Conclusion

We have used RQA to study features of motor-related neuronal processes that have been measured
by non-invasive EEG. Our study focused on the consideration of time-dependent RQA quantifiers
based on diagonal lines (determinism, DET ) and non-recurrent vertical lines (recurrence time
entropy, RTE ). These measures have been shown to be suitable for detecting transitions between
regular (periodic) and irregular (chaotic) dynamics and for quantifying the complexity of the
system under study. Both quantifiers clearly showed that the direct execution of motor tasks
is associated with a large increase in the regularity of the EEG signals, i.e. a reduction in the
complexity of underlying motor-related neuronal processes. In other words, RQA has shown
that µ-band ERD causes a reduction in random fluctuations in neuronal activity inherent in
background brain activity, leading to more regular behavior of the EEG signal during motor
task execution. In addition to the detection of an increase in motor-related regularity of brain
dynamics, DET and RTE measurements proofed to be sensitive to indicate the difference between
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two lateral types of motion due to the inherent differences in neuronal response in the group
of right-handed participants. Specifically, we observed a much greater increase in regularity
with right-hand movements, which was distributed almost equally across the sensorimotor areas
compared to movements with the left hand. Despite the limitations of EEG analysis at the sensor
level, such as volume conduction/field spreading effect, interhemispheric asymmetry was identified
in left hand movements in the right-handed group of participants, which was also supported by
significant differences between two types of performed movements. In the latter context, it is
important to mention that the DET measure allowed a much clearer distinction between brain
activity associated with left and right hand movements. The limitations of the used RQA are
the free parameters for constructing the RP (recurrence threshold) and its quantifying statistics
(minimal considered line length), as well as a robust state space reconstruction of the data.
Because we used the RQA measures as relative statistics, the particular choice of the recurrence
threshold was not so important, since we ensured that the same threshold selection method
has been used for obtaining the corresponding RPs and the same minimal line length has been
considered for the different trials (c.f. Chapter ). In this study we circumvented the problem of
state space reconstruction by treating single EEG-channels as state variables. However, recent
studies indicate that the optimal state space reconstruction can be robustly achieved in an au-
tomated fashion [] (Chapter ), which would further reduce the effort of pre-processing the data.

Overall, the current results are consistent with and complement the well known concepts of
motor-related brain processes. We suppose that the discovered features of neuronal dynamics
in the sensorimotor cortex and the robust RQA methods of identification and classification will
contribute to the study of non-invasive EEG-based BCI development for motor control and
rehabilitation [, , , ].
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Chapter 

Synthesis, conclusion and outlook

This dissertation was concerned with the further development of Recurrence Analysis (RA). The
goal of the work was the automation of state space reconstruction, which is fundamental for
RA, the development of correction schemes for biased RQA statistics as well as their further
development and application in climate and neuroscience.

. How everything fits together

The way this thesis is structured and how each article contributes to this framework are part of
the main work flow in (nonlinear) time series analysis (Figure .). Typically there is some data
related to one or more research questions and there is a variety of statistical tools the practitioner
can use, in order to answer these questions (application). Occasionally, however, established
methods cannot provide a satisfactory answer to the relevant research questions. In this case,
appropriate methods need to be developed (methodology) and communicated. This process is
reflected in the presented work, which focuses on the methodological aspect.

In the following a synthesis of the different articles ((P)-(P), Fig. .) is drawn along with
their relations to the overarching research questions (R)-(R) raised in Section .. A dense
conclusion is then given in Section .. A discussion on remaining open questions and an outlook
to further work concludes the thesis in Section ..

Together with other preprocessing steps like noise-/ frequency-filtering, interpolation etc., state
space reconstruction most often marks the very first step in nonlinear time series analysis [, ].
This abstract representation of the data is key to a subsequent Recurrence Analysis (RA) and
potentially affects its results. Its investigation accompanied me during the entire phase of my
doctoral research and therefore it constitutes Part I of this thesis. During the years I repeatedly
asked myself: When there is a lot of information from experiments, for instance, datasets stemming
from micro X-ray fluorescence scanning of a drilling core (Chapters , ) or a multi-sensor EEG
(Chapter ) or several sensors on an aircraft turbine measuring different physical variables, why
should I not include these information in my state space model of the data? Of course, Takens’
theorem guarantees that this is not necessary for infinitely long, noise free data, but apparently
this is not what the researchers and engineers I met were facing. Additionally, when using the
traditional embedding methods two free parameters need to be adjusted, the uniform time delay
and a threshold for the false nearest neighbor statistic (respectively a slope-threshold in case
of Cao’s method). Please recall that for clean noise free data acting on a single fundamental
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Figure .: Synthesis of the major parts in this thesis. The chapters that make up the parts formulate the
interactions shown (see also Fig. .).

timescale, or on timescales which are integer multiples of it, the threshold for the FNN statistic
is simply zero and the time lag estimates converge for the many different approaches. In all
other cases, I found it advantageous to develop a method that works almost autonomously (P,
Chapter ). One of the aims was to enable researchers from other scientific disciplines who had
never heard of the concept of state or phase space nor of any false nearest neighbor statistics
to use state space related analysis tools such as RA. In contrast to the established methods of
estimating a single delay and using multiples of it for the the reconstruction, I was firstly looking
for a statistic, which was able to quantify the functional dependence between -dimensional time
series (the potential component in the reconstruction vectors) and higher dimensional time series
(the actual reconstruction vectors). The quasi-independence of consecutive components in the
reconstruction vectors is essentially what matters in the embedding process, because redundancy
and irrelevance should be avoided. This way an embedding incorporating multiple time series
could be included and one could account for different timescales by choosing different delay values.
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. How everything fits together

The continuity-statistic by Pecora et al. [] was the most promising candidate (Section ..).
We addressed relevant open questions, i.e. parameter pre-selection and the question which peak
to pick from the statistic, inter alia by incorporating an evaluation statistic, which was able to
quantify the goodness of a reconstruction. We picked the L-statistic by Uzal et al. [], because
it is a generalization of the famous FNN statistic, which is undoubtedly a very good concept.
Summarizing, our proposed PECUZAL algorithm (P) could answer research question (R) and
supports near-automatic state space reconstruction from multivariate data. The implementation
of the algorithm in three common coding languages (Appendix C.) shall further contribute to its
use beyond the physicist community.
(P) in Chapter  is a straightforward generalization of the findings in (P). We used the

machine learning concept of randomly sampling a decision tree and translated the embedding
problem into that framework (Figs. ., .). Specifically, the aim was to ensure that the objective
function used for the embedding, which is the L-statistic in the PECUZAL algorithm, would
certainly reach a global minimum in the parameter space. In this concept the different delays
and time series for each embedding cycle act as parameters. In this regard we generalized the
whole PECUZAL idea and allowed for different delay pre-selection statistics (in the PECUZAL
algorithm this is the mentioned continuity statistic) and different objective functions. We find this
modular concept very tempting, particularly because it allows to choose the mentioned statistics
according to the research question (e.g., prediction). Our research is in line with findings of
other researchers and underpins the need for a state space reconstruction tailored to the specific
research question. Hence, (P) further contributes to answer research question (R) in the sense
that a complete automation of the embedding process independent from the research question is
not meaningful.

The recurrence threshold ε is the most important and influential parameter in RA. Consequently,
(P) in Chapter  investigated the different methods of setting a fixed size recurrence threshold.
There are two ways of setting ε: Either ε is a fixed distance, which is applied to all pairwise
distances in the distance matrix or ε varies for each point on the state space trajectory. That is,
for each column in the distance matrix ε takes a different value, such that the number of recurrence
points in each column is constant (adaptive threshold selection, fixed amount of neighbors - FAN).
In the former case several ideas had been published which relate the way of setting the fixed
threshold to some property of the data, e.g. to the diameter of the state space trajectory. In
(P) we elaborated on – and mathematically substantiated – why it makes sense to set ε to some
percentile of the distribution of the pairwise distances (Section ., Fig. .). In contrast to the
established approaches which can yield meaningless results for highly embedded data this works
well independent of the embedding dimension. Thus, the finding of (P) clearly justifies why
practitioners should either use the suggested approach or the adaptive FAN threshold selection.
A fixed threshold accentuates transitions in the RP, while the FAN method balances density
fluctuations of points in state space. The appropriate method and the specific percentile to
actually choose (or number of nearest neighbors, respectively) depends on the research question.
Moreover, both methods ensure comparability of different RPs, since the global RR is fixed. This
is of utterly importance in many RQA applications (e.g. Chapter ) and helps to answer the
questions whether RA can be used for the classification of climate states or neuronal activity
related to motor task accomplishments, (R) and (R). It is also necessary for any meaningful
RQA statistic and is therefore crucial for answering (R).
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For a better understanding of abrupt transitions and regime changes via RA (R) it is inevitably
necessary to gain knowledge of the physical meaning of the various established RQA measures.
Some of them are purely heuristic, for others relationships to dynamical invariants have been
shown. In Chapter  (P) we focused on a deeper understanding of diagonal line based RQA
statistics and examined their biases, which originate from the finite size of the considered RP and
tangential motion. Tangential motion means the thickening of diagonal lines in a RP, which often
occurs in highly sampled flow-data (Fig. .). We proposed three novel correction schemes for the
finite size correction and a more sophisticated parameter free skeletonization scheme for RPs, in
order to tackle the tangential motion problem. A systematic comparison of these new approaches
with ideas from the literature revealed the efficiency of the proposed correction schemes. Coming
back to the interpretation of RQA statistics, we showed that the entropy of diagonal lines (ENTR)
behaves in the expected manner only when the proposed correction schemes were applied. In
particular, ENTR approached zero values for regular limit-cycle dynamics and non-zero values for
chaotic dynamics (Figs. ., .). As a by-product the minimal line length for which ENTR ap-
proaches zero values in regular dynamics is an indicator of the noise level of the system under study.

To further address (R), a novel idea based on an existing RQA characteristic, namely the
diagonal-wise recurrence rate of a RP (τ -RR), has been developed in (P). The idea of trans-
forming the τ -RR into its frequency domain and consequently obtaining a generalized, nonlinear
frequency analysis of a complex, potentially high dimensional system had been published already
in  []. In that work the idea was to Fourier transform (FT) τ -RR, which seemed to be
a straight forward idea. The problem with this approach arises due to the usually spike-train
like appearance of τ -RR, for which the FT also yields a spike-train like frequency portrait with
many frequencies excited (Figs. .D, .B, E). To overcome this problem we developed a novel
way of transforming any arbitrary signal into its frequency domain. Instead of decomposing a
signal into trigonometric basis functions as it is done in the FT, we decomposed the signal into
a set of basis functions, which are spike-trains (Dirac-combs) with different inter-spike periods.
Unlike in the FT-case, this set of basis functions is not linearly independent and thus we had to
solve an under-determined linear system, which we have done by applying a common machine
learning regression technique (LASSO). Independently from the actual idea to transform the
τ -RR of a system, we have developed a novel frequency representation for arbitrary signals. This
novel idea, the spike powerspectrum, is superior to the FT in case the signal has a spike-train
like shape. The spike powerspectrum gives a sparse representation of the excited frequencies
in state space (Figs. .C, F, .J, K, L). Despite its computational limitation we think this
technique by itself could be beneficial for researchers, which commonly face spiky signals (e.g.
in the Neuroscience or when analyzing event-data in Hydroscience). When applied to the τ -RR
of a system, this novel frequency representation showed its true potential. Single, dominant
frequencies in state space can be represented in a spike powerspectrum, which is not the case
when simply FT the underlying time series. We also presented the idea of incorporating surrogate
τ -RRs, which enabled us to judge peaks in the obtained spike powerspectrum by a statistical
test and answers (R), see Figure .. Also (R) seems to be addressed in this work, because
different dynamical regimes operate on different characteristic state space frequencies. This can
also be inferred from the presented spike spectrograms (Figs. ., .). These share similar dom-
inant frequencies in similar periods as the FT-based spectrograms, but give additional information.
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. Conclusion

The question whether RA can be used for classifying climate states and therefore also climate
transitions (R), is investigated in (P) and (P) (Chapters , ). In these projects drill core data
from lake sediments in the Chew Bahir basin, Ethiopia, were analyzed. (P) matters, because
it acts as an introductory paper discussing RA in the paleoclimate context and analyzed proxy
data of six short test sediment cores. (P) then extended the RA-based climate classification
from (P), see Table ., in the analysis of the long sediment core from the same site. Two
types of variability and transitions have been distinguished on the basis of visual appearance
of the corresponding RPs and their RQA, see Table .. Hence, (R) can be answered by (P)
and (P). Remarkably, this procedure is underpinned by a very similar approach in a recent
publication on the Cenozoic Global Reference benthic foraminifer carbon and oxygen Isotope
Dataset (CENOGRID) [] (Fig. .). I have to emphasize that the analysis of the Chew Bahir
drill core data mainly motivated the research in (P), (P) and (P). The development of a
quantitative, yet intuitive, classifying RQA statistic related to frequency analysis seemed long
overdue.

Last but not least, (P) in Chapter  illustrates another application to real data. Here the
results from RQA have been evaluated from a statistical point of view in an active neuroscientific
experiment and address (R) and (R). Motor-task experiments were carried out and the ac-
cording EEG-data were analyzed by using RA. By comparing the distributions of RQA statistics
from the participants it could be shown that the complexity of the signal measured this way via
the sensorimotor cortex significantly decreased when motor-tasks were performed (Figs. ., .).
The results are consistent with and complement the well known concepts of motor-related brain
processes. We suppose that the discovered features of neuronal dynamics in the sensorimotor
cortex and the robust RQA methods of identification and classification will contribute to the
study of non-invasive EEG-based brain-computer-interface development for motor control and
rehabilitation. Hence, we showed that RA can be used for classifying neuronal activity related to
certain motor tasks in a non-invasive experimental setup (R).

In summary, the overarching research questions (R)-(R) could be answered. Response
limitations are noted for (R) and (R). It was not possible to define early warning signatures
on RA basis and to develop robust surrogates for recurrence plots, which would allow general
significance statements of RQA statistics. In this regard, reference is made to Section ..

. Conclusion

This thesis entitled “Towards a robust framework for Recurrence Analysis: automated state space
reconstruction, optimal parameter selection and correction schemes” holds six main advances to
the science of non linear time series analysis.

. It fosters an automated state space reconstruction from observable time series, which is
capable of including multivariate data.

. It emphasizes the importance of an optimal state space reconstruction tailored to the
research question at hand.

. It sheds light on biases of recurrence threshold selection methods and diagonal line based
recurrence quantifiers.
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. It uncovers dominant frequencies of (potentially) high dimensional (chaotic) systems.

. It paves the way for a wider application of Recurrence Analysis in (Paleo-)Climatology,
Neuroscience and Engineering.

. Last but not least it helps practitioners from various scientific disciplines to leverage the
extensive methodological toolbox that nonlinear time series analysis has to offer by avoiding
the caveats of sub-optimal state space reconstruction, biased recurrence quantifiers and the
limitation to linear frequency analysis.

While the thesis, by its methodological nature, could make a contribution to the broader
scientific society, it also raises related fundamental methodological questions, which are addressed
in the next section. However, this work underscores the importance of an adequate state space
reconstruction for a variety of nonlinear analysis tools even beyond those discussed here. In
addition, it gives an insight into the power of Recurrence Analysis regarding very different research
questions, from inferring causal relationships in complex systems to prediction or to feature-based
classification.

. Open questions & outlook

The preceding sections highlighted the advances made in this thesis and their ability to answer
the overarching research questions (R)-(R). Now we highlight the limitations of our findings
and give outlooks for future work.

.. The embedding problem

Although the findings in (P) suggest that the optimal embedding varies according to the research
question, the PECUZAL algorithm (P) occasionally gives contradictory embedding suggestions.
For example, the Logistic map is clearly a deterministic system and therefore the L-statistic
should recommend an embedding with dimension m > 1. When analyzed in a chaotic regime,
PECUZAL suggest no embedding and treats the input as a stochastic signal, which it does not
embed. For other maps, e.g. the Ikeda or Hénon map, this is not the case. Furthermore, this
does not seem to be a L-statistic or PECUZAL related problem. When running the “stochastic
indicator” proposed by Cao [], it also values the chaotic Logistic map as a stochastic source
and does not suggest any embedding. A similar problem arises when analyzing map-like data
in the geoscientific context. These time series are often interpolated and despite their inherent
non-stationarity one could try to embed small pieces with approximately constant parameters. In
many cases, ranging from drill core data under a certain age model to climate index data such as
the Southern Oscillation Index (SOI) and to Earth system models of intermediate complexity
(EMICs), PECUZAL does not suggest any embedding and also other stochastic indicators would
treat the signals as stochastic. We formulate the following research questions which should be
addressed in future work:

• How does interpolation affect the estimation of the embedding parameters?

• How does the sampling affect the estimation of the embedding parameters (flow-like vs.
map-like data)?
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• Countless real world processes can be described by a Langevin Equation. Yet, to my best
knowledge there is no study which systematically investigates the embedding of systems
described by such a stochastic differential equation.

• For a Markov process of order p an optimal embedding for prediction should yield a > p-
dimensional embedding. A first try I made with the PECUZAL algorithm showed that
the suggested embedding dimension varies with the time series length and the transition
probabilities, i.e. the auto-correlation. Future work should be concerned with the embedding
of such processes when using PECUZAL or an MCDTS-ansatz (Chapter ). A comparison
of the suggested embedding dimension with the ones obtained from the Akaike information
criterion (AIC) [] and from the optimal encoding description length minimization []
would be desirable.

• Related to the last point is the question whether an optimal embedding in the PECUZAL-
or MCDTS-sense could lead to improved forecasts for stochastic systems [] (e.g. in the
way Ragwitz and Kantz [] addressed this problem).

• Since PECUZAL and the MCDTS framework allow the embedding of multivariate data,
one could think of an application, which detects synchronization. The idea could be to
feed all available time series from two (or more) systems to the algorithm(s). Then the
time series used for embedding should differ in different states of synchronicity, because
redundancy is avoided. I would expect a multivariate embedding including more available
time series in case of non-synchronicity and less included time series for phase- or generalized
synchronization.

• The impact of the embedding on state-space-based causality measures such as convergent
cross mapping [] and its extensions has not been investigated yet.

.. Recurrence analysis

The question of how to select the optimal recurrence threshold is still not answered satisfactorily.
Concerning (P), the question is which percentile to choose for a certain research question. Yet, in
this problem there are almost no objective methods for any sort of research question, but very many
heuristic ideas do exist. A very recent publication by Prado et al. [] is indeed very promising.
The authors estimate the optimal threshold by maximizing the diversity of structures/patterns in
the RP. In this framework structures are estimated via recurrence microstates (small subbatches
of a RP) and the diversity is assessed by maximizing the entropy of their distribution gained from
sampling an entire RP. Building on this, the following idea could be addressed in future work:

• Similar to the approach of using the maximum entropy of microstates for selecting the
optimal recurrence threshold, one could think of utilizing our proposed skeletonization
scheme (Section ..) for that purpose. For an increasing threshold one counts the number
of diagonal lines contained in the corresponding skeletonized RP. If the threshold is too high,
distinct lines (distance ranges in the jargon of Chapter ) merge and the skeletonization
algorithm will reduce these merged distance ranges to a single diagonal line. Therefore, the
optimal threshold would maximize the number of diagonal lines.

As shown in (P) Fig. ., the analytically derived relation between the diagonal line length
entropy (ENTR, Eq. (A.)) and the correlation entropy given by March et al. [], Eq. (.),
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does not seem to hold. Neither for the uncorrected, nor for the corrected ENTR. In experiments
that I have done that are not shown in this thesis, I have not been able to verify the proposed
relation regardless of the many different systems and many different parameter settings that I
have tried.

• A thorough study on the impact of the correction schemes in (P) on the estimation of
dynamical invariants by using line based RQA characteristics is needed, in order to make
advances in transition and bifurcation detection as well as classifying regimes.

• Furthermore, the impact of the correction schemes in (P) on the τ -RR and its corresponding
spike powerspectrum (P) should be investigated.

In Chapter  we were able to make statements about the significance of the results, because
the experimental design allowed the acquisition of distributions of RQA characteristics. In most
passive experiment setups, as it is most often the case in Geoscience, this is not possible. It
would, thus, be beneficial to construct surrogates of state space trajectories in order to obtain
distributions of corresponding RQA statistics, which could then be used for statistical testing.
Thiel et al. [] proposed the method of twin surrogates, which constructs surrogates from )
identifying twins in the state space trajectory (=points which share the same neighborhood)
and ) randomly jump to one of the possible futures of the existing twins. The drawback is of
course, that for proper statistical testing one would seek around 1, 000 surrogates or more and
in the described method this number is determined by the total number of twins, which is a
property of the data. Another idea for line based RQA statistics has been proposed by Marwan
et al. [] for running window approaches. To estimate the unknown variance of the diagonal
line length distribution of a RP, they bootstrapped surrogate line length distributions from the
cumulative line length distribution of all windows. This idea is very promising, but the resulting
confidence intervals seem to be extremely sensitive to the number of lines one bootstraps. There
is no objective way to determine this number and thus there remains quite some ambiguity in this
method. The novel RQA statistic proposed in (P), the spike powerspectrum of the τ -RR, would
also benefit from robust RP-surrogates. However, since it is based on the τ -RR we were able to
construct RP-surrogates for a simple Null-model (=system is completely random), because in
this case recurrent points in the RP follow a binomial distribution, with parameter p being the
global recurrence rate of the RP.

• There is an urgent need for a robust method, that constructs RP-surrogates, which preserves
basic properties (correlation structure) of the RP and/or the underlying state space trajectory.
This would affect all existing RQA measures and would allow to make statements about
the statistical relevance a measured RQA statistic has, even in passive experiments with
single runs.

In a more general sense, the following statements could lead to research questions in future work:

• The findings from (P), (P), (P) and (P) should be applied in Climatology, Neuroscience
& Engineering. In particular, Fourier based frequency analysis is common in all of these
fields. The spike powerspectra and spectrograms of the τ -RR from (P) could offer an
intuitive additional source of valuable information.

• In the Climate context the findings from (P) & (P) would allow to make state space
models from various available proxy data, which potentially describe the same system. In
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the Neuroscience context one could think about constructing a state space model from
various EEG-channels. Both ideas need to be investigated and compared to the established
methods.

• The coincidence of the same dominant frequencies in the powerspectra of the τ -RR of two
(or more) coupled chaotic systems should be a sign of phase-, generalized- and complete
synchronization [, , ].

Final remarks

The previous section supports George Bernard Shaw’s view that “Science never solves a problem
without creating ten more”. Nevertheless, in the larger context my dissertation improved the
recurrence analysis framework. I hope it helps to make RA more accessible to researchers outside
of physics and I am extremely curious to see how this interesting and active field of research will
develop in the future.
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Appendix A

The recurrence plot and its quantification mea-
sures

In the following we extend the brief introduction to recurrence plots (RPs) given in Chapter 
to a more technical consideration. Introduced by Eckmann et al. [], RPs provide a versatile
tool for visualizing and quantitatively analyzing the succession of dynamically similar states in a
time series (e.g., Figs. ., ., .). For this purpose, dynamical similarity is measured in terms
of some metric distance di,j = ‖~xi − ~xj‖ defined in the underlying system’s d-dimensional state
space. The vector time series {~xi}Ni=1 (with ~xi = ~x(ti)) can be obtained from direct measurements
of the system under study or from embedding a measured subset of observables (c.f. Chapters ,
).

Based on the resulting distance matrix d = (di,j), a recurrence matrix R = (Ri,j) is defined as
a thresholded version such that its entries assume values of , if the distance between the two
associated state vectors is smaller than or equal to a threshold ε, and  otherwise. It is, thus, a
binary, square matrix:

Ri,j(ε) =
{

1 : di,j ≤ ε
0 : di,j > ε,

i, j = 1, ..., N (A.)

Equivalently, we can write

Ri,j(ε) = Θ (ε− ‖~xi − ~xj‖) (A.)

= Θ(ε− di,j), i, j = 1, ..., N, ~x ∈ Rd, (A.)

where Θ(·) is the Heaviside function. In this definition, the threshold ε is fixed with respect to all
pairwise distances contained in d. Chapter  addresses the question how to select this threshold,
in order to obtain robust recurrence characteristics for arbitrary systems. An alternative definition
of the recurrence matrix [, ] replaces the global, fixed recurrence threshold ε applied to all
state vectors ~xi by an adaptive local one that is defined such that the number of recurrences (i.e.,
close state vectors) is the same for each ~xi (fixed amount of nearest neighbors - FAN), leading
to a constant local and global recurrence rate. This procedure is useful, when there are severe
differences in the density of points in state space. In this case lower dense populated areas in the
state space are not well resolved in the RP, when ε is not adaptively chosen. Of course, this can
be simply a result of under-sampling the system. On the other hand, strong density variations
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in phase space can be a meaningful information or it is necessary to ensure a fixed threshold,
when comparing RPs stemming from different systems, or from the same system, but at different
dynamics. The research question and the quality of the data decides whether to use a fixed
recurrence threshold (e.g., Chapter ) or an adaptive one (e.g., Chapters , ).

Some additional approaches of defining a recurrence plot other than Eqs. (.), (.) have been
proposed. The main purpose of these alternative definitions is to avoid “tangential motion”, i.e.
a thickening of diagonal lines in the recurrence plot, due to oversampling in flow-like data. We
review these ideas in detail in Chapter , Section ..

There are several ways to quantify the structures and dynamics encoded in R, the so called
recurrence quantification analysis (RQA). The measures can be grouped by their underlying
geometrical structure, i.e. the number of points in the RP, diagonal line structures as well as
vertical line structures (see Marwan et al. [] for a detailed overview). Here we limit ourselves
to a selection of quantifiers, which are used in this thesis.
The most straightforward idea is to look at the density of recurrences, the recurrence rate

RR = 1
N2

N∑
i,j=1

Ri,j , (A.)

which is nothing else than the probability of a state to occur in a certain time frame, which is
covered by the RP. In a mathematical sense this only holds in the limit N → ∞. A natural
extension would be to look at the τ -recurrence rate of the RP [, ], which is the density of
recurrence points along the diagonals of the recurrence matrix, as a function of the distance τ
(sampling units) to the main diagonal:

τ -RR(ε) = RR(τ, ε) = 1
N − τ

N−τ∑
i=1

Ri,i+τ . (A.)

τ -RR serves as an estimator for the probability that the system recurs after time τ∆t, with ∆t
being the sampling time of the trajectory ~xi = ~x(∆t · i), i = 1, . . . , N .
Diagonal lines typically occur in recurrence plots when one segment of the trajectory runs

almost parallel to another segment (e.g. within the recurrence threshold ε) representing an earlier
episode in the history of the system within the state space, Fig. .. Diagonal lines in recurrence
plots are therefore diagnostic of cyclicity in state space; such cyclicity detected using recurrence
plots is not restricted to sinusoidal structures in the underlying time series, in contrast to cyclicity
in Fourier-based time-series analysis. There are many ideas of measures based on diagonal lines,
which heavily vary in their physical interpretation. For example we can look at the determinism
[], which is the fraction of recurrence points that form diagonal lines of length `

DET =
∑`max
`=`min

`P (`)∑`max
`=1 `P (`)

, (A.)

with P (`) being the histogram of all diagonal line lengths ` in R, `min the considered minimal line
length (set to , if not specified differently) and `max the longest line found in the RP. Although
deterministic dynamics does not automatically mean that the dynamics is predictable (e.g., for
chaotic systems), a predictable system, however, means that the system is deterministic. Moreover,
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this definition of determinism is not a strict mathematical one, but more from a heuristic point of
view. Two related heuristics for estimating the predictability are the mean diagonal line length

`mean =
∑`max
`=`min

`P (`)∑`max
`=`min

P (`)
(A.)

and the Divergence

DIV = `−1
max. (A.)

Another quantifier is the Shannon entropy of the probability distribution p(`) = P (`)/
∑
` P (`)

to find a diagonal line of exact length `

ENTR = −
`max∑
`=`min

p(`) ln p(`), (A.)

which is related to the Kolmogorov-Sinai-entropy []. However, it turns out that the distribution
of diagonal lines, and thus, p(`), is biased by the finite size of R and by “thickened lines” due
to tangential motion. Among all the line based recurrence quantifiers, ENTR seems to respond
most strongly to the biased p(`) and, in turn, shows counter intuitive behavior for paradigmatic
examples. In Chapter  we investigate this fact and propose correction schemes.

It is also possible to look at the Shannon entropy of the length distribution of the white vertical
lines `w, which correspond to recurrence times. In general, such recurrence times can be estimated
directly from the RP in different ways [], among which the vertical non-recurrence lines offer a
particularly simple estimator. The entropy of the distribution of recurrence times, referred to as
the recurrence period density entropy [] or recurrence time entropy and originally introduced
without any direct link to RPs, is given as

RTE = −
`wmax∑
`w=1

p(`w) ln p(`w). (A.)

Often it is useful to normalize this measure with respect to the largest recurrence time `wmax (the
same can be done in case of ENTR, Eq. (A.))

RTE = − 1
ln `wmax

`wmax∑
`w=1

p(`w) ln p(`w) ∈ [0, 1]. (A.)

The estimate p(`w) can be derived from the histogram of recurrence times, P (`w), similar to
the procedure for the black diagonal lines, as p(`w) = P (`w)

/∑
`w P (`w) , i.e., as the probability

to find a white vertical line of exactly length `w in the RP. It can be shown that RTE is closely
linked to the Kolmogorov-Sinai (KS) entropy of the system under study []. It is also possible to
look at the mean recurrence time MRT, in order to unravel the characteristic time scale in the
underlying RP

MRT =

∑`w,max
`w=`w,min

`wP (`w)∑`w,max
`w=`w,min

P (`w)
. (A.)
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Appendix A The recurrence plot and its quantification measures

Analogue to the definition of the determinism, the laminarity is the fraction of recurrence
points that form vertical lines

LAM =
∑N
`v=`v,min

`vP (`v)∑N
`v=1 `vP (`v)

, (A.)

with `v the length of a vertical line, P (`v) the histogram of all vertical lines in R and `v,min the
considered minimal line length (set to , if not specified differently). It is assumed that LAM
quantifies the presence of laminar states in intermittent regimes and can be used for the detection
of chaos–chaos transitions [].
Finally, the RP can be considered as the adjacency matrix of an ε-recurrence network [],

A = R − 1 and the transitivity [] can be defined as

T =
∑N
i,j,k=1AjkAijAik∑N

i,j,k=1AijAik(1− δjk)
, (A.)

which is a measure characterizing the geometric structure of the state space attractor [].
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Appendix B

Numerical models

B. Lorenz system

The classical Lorenz- system [] is defined as

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz.

(B.)

In Chapter  we set the initial condition to u0 = [1.0, 1.0, 50.0], used a sampling time of
∆t = 0.01 and discarded the first , points of the integration as transients. For producing
Fig. . we set the parameters to σ = 10, β = 8/3, ρ = 60 and used a time series consisting of
, samples. In Figs. ., C., C., C. and the redundancy fooling-dataset in Section .. we
use the standard parameter values σ = 10, β = 8/3, ρ = 28 and also a time series consisting of
, samples.

B. Lorenz  system

The Lorenz  system [] is defined as

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (B.)

with xi the state of the system for nodes i = 1, . . . , N and it is assumed that the total number of
nodes is N ≥ 4. One can think of this system as a ring-like structure of N coupled oscillators –
each representing some atmospheric quantity – all connected to the same forcing. The forcing
constant F serves as the control parameter. In Chapter  we set N = 8, F = 4.472 and the initial
condition to u0 = [0.590; 0.766; 0.566; 0.460; 0.794; 0.854; 0.200; 0.298], used a sampling time of
∆t = 0.1 and discarded the first , points of the integration as transients leaving us with a
time series consisting of , samples. The same setup is being used in Chapter , but with the
control parameter F varying from F = 3.7 to 4.0.
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Appendix B Numerical models

B. Rössler system

The Rössler system [] is defined as

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c).

(B.)

In Chapter  we randomly chose the initial conditions uniformly from an interval [0, 2] and
discarded the first , points of the integration as transients working with time series of length
N = 10, 000 (for Fig. C. we set N = 20, 000). The parameters were set to a = 0.2925, b =
0.1, c = 8.5 (funnel regime) for the experiment in Section .., where the sampling time was set
to ∆t = 0.03 and a = 0.2, b = 0.2, c = 5.7 with a sampling time of ∆t = 0.02 elsewhere.
For producing Figs. G., . in Chapter  the initial condition for producing panels A &

B was set to u0 = [.7,−1, 0.4] with a sampling time of dt = 0.05 and in case of panel C
u0 = [−0.1242,−2.5415, 0.2772] with a sampling time of dt = 0.1. The first 5, 000 samples were
discarded as transients and trajectories of length N = 5, 000 were obtained from which we
computed the RPs and the corresponding τ -RR’s. For the spike powerspectra only the first 1, 000
values of the τ -RR’s were considered.

B. Driven Duffing oscillator

The driven Duffing/Van der Pol oscillator [, ] is defined as

ẋ = y

ẏ = µ(1− x2)y − αx− βx3 + z

ż = γ · ω · cos(ω · t),

(B.)

with µ = 0.1, α = 1, β = 0, γ = 0.5, and ω = 2 [] resulting in a regular, quasi periodic motion.
In Chapter  we randomly chose the initial conditions x0, y0, z0 uniformly from the interval
[0, 0.2], used a sampling time of ∆t = 0.1 and discarded the first , points of the integration
as transients, resulting in time series of length N = 5, 000.

B. Mackey-Glass equation

The Mackey-Glass equation [] is the nonlinear time delay differential equation

ẋ = β
xτ

1 + xn
− γx,

with the lag τ = 44, and the parameters n = 10, β = 0.2, and γ = 0.1. xτ represents the value of
x at time t-τ . In Chapter  we randomly chose the initial conditions uniformly from an interval
[0, 1.5], used a sampling time of ∆t = 0.5 and discarded the first , points of the integration
as transients, resulting in time series of length N = 10, 000.
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Appendix C

Supplementary material for Chapter : Auto-
mated attractor reconstruction

C. Implementation and code availability

The study that we present here is available as a fully reproducible code base []. In addi-
tion, we have implemented performant versions of the embedding algorithms, as well as the
automated pipeline for optimal embedding. A single package is provided for Python []
(https://pypi.org/project/pecuzal-embedding/) and a toolbox for MATLAB® [],
(https://de.mathworks.com/matlabcentral/fileexchange/-pecuzal-embedding-algorithm-for-
matlab) while for the Julia language we have integrated the PECUZAL algorithm into the library
DynamicalSystems.jl [] (the other methods “TDE, Garcia& Almedia, MDOP” were already part
of the library). The automated pipeline for optimal embedding has been further refined for better
user experience and is also part of DynamicalSystems.jl.

2500 5000 7500 10000 12500 15000 17500 20000
time series length N

103

104

105

ti
m

e 
[

s]

  Median computation time 
 of reconstruction methods

TDE
G&A
MDOP
PECUZAL
N log(N)

Figure C.: Median time complexity for
the state space reconstruction
from the y-component of the
Rössler system (Appendix B.)
for TDE, Garcia & Almeida’s,
MDOP, and PECUZAL method.
Ensembles of function calls
for each considered time series
length N are computed and
the median values are shown
(implemented in Benchmark-
Tools.jl []). A Theiler win-
dow is set as the first minimum
of the auto-mutualinformation
and the maximum encountered
time delay is set to four times
the Theiler window for TDE,
G&A, and PECUZAL.

The Julia versions of the algorithms have been heavily optimized and are the most perfor-
mant ones by orders of magnitude in parts, when compared to the Python (and MATLAB®)
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Appendix C Supplementary material for Chapter 

implementation. Due to the nearest neighbor tree search, all compared methods have O(N logN)
time complexity (Fig. C.). Our proposed method is slightly (but consistently) slower than
the established methods, with standard time delay embedding performing best (Cao’s method).
Worth mentioning is the fact that in the MDOP case the most computational effort is put on the
estimation of the maximum considered delay value and not on the computation of their β-statistic.
Considering that an optimal embedding is a one-time operation, we believe that all methods
shown here are practically useful with respect to their computational complexity.

C. Numerical results

Chaotic Rössler system, driven Duffing oscillator in regular motion, and nonlinear time-delay
Mackey-Glass equation are used to evaluate the performance of the different embedding approaches
(TDE, G&A, MDOP, and PECUZAL). We consider univariate and multivariate embedding (Rössler
and Duffing). The y-component of the Rössler system and the x-component of the Duffing system
are used for the univariate embedding, wheres the x- and y-values of the corresponding systems
are used for the multivariate embedding. For the TDE only univariate embedding is possible and,
thus, there are no results for the multivariate case.
Ensembles of , trajectories using different initial conditions are used. Additionally, we

consider additive noise with an amplitude of % of the standard deviation of the corresponding
signal. All RPs are computed using a fixed recurrence rate of % and a minimum line length of .

C. Dependency on parameters

We investigate the impact of different parameter settings on the resulting reconstruction of our
proposed method for the x-component of the Lorenz system (Appendix B.). In particular,
Figure C.) shows the sensitivity of the L-statistic value and the chosen delays with respect
to the number of nearest neighbors kNN for a fixed parameter TM = 20 (panels A, B) and
also the dependence on the continuity statistic parameters δ-Neighborhoodsize (panels C, D),
the (binomial) probability p (panels E, F) and significance-level α (panels G, H). The critical
dependence of the L-statistic on the parameter TM is discussed in Section . and Fig. .. The
results show very little impact on the reconstruction quality and, thus, confirm our choice of fixed
parameter values for the algorithm. Specifically, the crucial qualitative course of the continuity
statistic, i.e., the position of the local maxima, remains unchanged for relevant choices of α and
in the vicinity of p = 0.5, which is the proposed fixed value (Figs. C. and C.).


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L-statistics Chosen delays

k-NN k-NN

δ-Neighbourhoodsize δ-Neighbourhoodsize

(binomial-)p (binomial-)p

(binomial-)α (binomial-)α

1st embedding cycle 2nd embedding cycle τ1, 1st embedding cycle τ2, 2nd embedding cycle τ3, 3rd embedding cycle

Figure C.: L-statistic (left panels) and chosen delays (right panels) for a variety of choices of parameters for
embedding the Lorenz system, relevant for the PECUZAL method. See text for details. When
not varied, the other parameters were fixed to δ-neighborhoodsize= 14, p = 0.5, α = 0.05 and
kNN = 3, as we propose.
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Figure C.: Impact of different significance-level choices α on the continuity statistic. The other parameters
for obtaining the continuity statistic were fixed to δ-neighborhoodsize= 14 and p = 0.5.





C. Details of the L-statistic
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Figure C.: Impact of different choices of the binomial probability parameter p on the continuity statistic. The
other parameters for obtaining the continuity statistic were fixed to δ-neighborhoodsize= 14 and
α = 0.05.

C. Details of the L-statistic

The concept of quantifying noise amplification in the context of the validation of an attractor
reconstruction has been proposed in []. The reconstruction process is considered in the presence
of noise and the finite data availability as a modeling problem, introducing a noise amplification
and estimation/prediction error for any measures on the reconstructed attractor. The variance of
the conditional probability density function is a “natural criterion for assessing predictability” []
and is used as the noise amplification for a fiducial point ~vfid(t) at a given noise level ε on the
reconstructed attractor

σε(T,~vfid(t)) = 1
ε

√
V ar(~v(t+ T )|Bε(~vfid(t))), (C.)

with V ar(~v(t+ T )|Bε(~vfid(t))) being the conditional variance of ~v(t+ T ) for ~vfid(t) in a radius ε
ball Bε(~vfid(t)) for a prediction horizon T . Finally, the noise amplification σ

σ(T,~vfid(t)) = lim
ε→0

σε(T,~vfid(t)) (C.)

averaged over all fiducial points on the attractor (and squared), 〈σ(T )〉2, serves as a measure of
the predictive power, with respect to the time horizon T , the reconstruction vectors ~v allow for
(for details see Casdagli et al. []). Broadly speaking a low conditional variance, and thus, a
low value of 〈σ(T )〉2 is achieved for sufficiently unfolded attractors, because in this case noise
distortions of the true trajectory are not likely to result in mixing states, which are far away
from each other in true state space and consequently preserve the neighborhood relations on the
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reconstructed attractor.
Uzal et al. [] reinterpret Eqs. (C.), (C.) and give an approximation-recipe for the conditional

variance. The authors redefine the mentioned equations as

σ2
ε(~vfid(t)) = 1

TM

∫ TM

0
σ2
ε(T,~vfid(t))dT (C.)

and consider the limit

σ(~vfid(t)) = lim
ε→0

σε(~vfid(t)) (C.)

where ε is not related to any observational noise level anymore. The ε-ball Bε(~vfid(t)) is simply a
tool for determining certain neighborhood relations of a fiducial point ~vfid(t) and their changes
when mapped to future states by the reconstruction function F/ F ′ (Fig. .). It is possible to
approximate the conditional variance in Eq. (C.) by

E2
k(T,~vfid) ≡ 1

k + 1
∑

~v′∈Bk(~vfid)
(~v′(t+ T )− uk(T,~vfid))2 (C.)

where Bk(~vfid) estimates Bε(~vfid(t)) by the fiducial point itself and its k nearest neighbors,
respecting a Theiler window (i.e., avoid temporal correlations in the neighbor-searching) [].
The center of mass with respect to the chosen time horizon T and the fiducial point ~vfid is defined
as

uk(T,~vfid) ≡ 1
k + 1

∑
~v′∈Bk(~vfid)

~v′(t+ T ). (C.)

The size of the k-neighborhood of ~vfid, Bk(~vfid) is estimated as

ε2k(~vfid) ≡ 2
k(k + 1)

∑
~v′,~v′′∈Bk(~vfid)

~v′ 6=~v′′

‖~v′ − ~v′′‖2, (C.)

where ‖·‖ is a norm used for the distance computation. Finally, E2
k(T,~vfid) (Eq. (C.)) is averaged

over a range of T ’s in [0, TM ] and the noise amplification estimated from k nearest neighbors is

σ2
k(~vfid) ≡ E2

k(~vfid)
ε2k(~vfid)

, (C.)

which needs to averaged over all considered fiducial points N ′ on the reconstructed attractor to
obtain

σ2
k =

N ′∑
i∈{~vfid}

σ2
k(~vi). (C.)

Since the reinterpretation of ε with the related k now acts as a neighborhood size parameter
(Eqs. C.,C.,C.,C.,C.,C.), σ2

k can be normalized with respect to the averaged inter-point
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distance, which depends on the sampling rate and the scale of the input data []. The
normalization factor is

α2
k = 1

N ′∑
i∈{~vfid}

ε−2
k (~vi)

(C.)

with ε2k from Eq. (C.). In this way, the final statistic will be able to compare attractor
reconstructions stemming from different input data and also serves as an irrelevance measure,
because large delays will result in large ε2k’s.
Finally, Eqs. (C.),(C.) define the L-statistic

Lk = log10(αkσk), (C.)

which has a free parameter k and another implicit parameter TM (Eq. (C.)).







Appendix D

Supplementary material for Chapter : MCDTS
for optimal embedding

D. Forecast of Hénon map time series
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Figure D.: A Normalized root-mean-square prediction errors (RMS) for the Hénon x-time series for all
discussed reconstruction methods as a function of the prediction time. Shown are mean values of
a distribution of 100 trials with different initial conditions. For the prediction we used a one step
ahead zeroth-order approximation on the nearest neighbor of the last point of the reconstructed
trajectory and iteratively repeated that procedure  times in order to obtain a prediction of 
samples in total for each trial. B Same as in A but with % additive white noise.
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D. CENOGRID prediction
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Figure D.: A Detrended δ13C and B δ18O time series of a total length of N = 13, 421 samples and a
sampling period of ∆t = 5, 000yrs [].

Table D.: Obtained embedding parameters for the different reconstruction methods. Time series index 1
in the third column corresponds to the detrended δ13C and time series index 2 to the detrended
δ18O record shown in Fig. D.. For a description of the reconstruction methods see Table ..
The sequence of the delays (center column) and time series (right column) are a result of the
embedding cycles which have been passed through in the corresponding reconstruction methods,
which is why they are not necessarily ordered. For a reconstruction based on these embedding
parameters it would make no difference whether delays and corresponding time series were sorted
beforehand.

Reconstruction method chosen delays [in index values] chosen time series
Cao [] ,,,,,, ,,,,,,
Kennel et al. [] ,,,,, ,,,,,
Hegger and Kantz [] ,,,,,,, ,,,,,,,
PECUZAL [] ,,,,,,,,,,,, ,,,,,,,,,,,,
PECUZAL (m) [] ,,,,,,,,,,,, ,,,,,,,,,,,,
MCDTS-C-FNN ,,,,,,,,,, ,,,,,,,,,,
MCDTS-C-FNN (m) ,,,,,,,,,, ,,,,,,,,,,
MCDTS-C-MSE-KL ,,,, ,,,,
MCDTS-C-MSE-KL (m) ,,,,,,,, ,,,,,,,,
MCDTS-R-MSE-KL ,,,,, ,,,,,
MCDTS-R-MSE-KL (m) ,,,,, ,,,,,
MCDTS-R-MSE ,,, ,,,
MCDTS-R-MSE (m) ,, ,,
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Figure D.: Entire time series of length N ′ = 400, 000 of A turbine pressure (measured in V) and B combustion
heat release (measured in mV). This is a non-stationary setup with a linearly varying control
parameter (air flow rate) leading to bifurcations and different dynamics. For the calculations in
Section .. we sampled both time series  times in subsamples of length N = 5, 000. Panels
C, D show one sample for both cases. Each sample has been normalized to zero mean and unit
variance before we applied the embedding and the CCM.

Figure D.: Schematic experimental setup of the combustion experiment, see main text for details.
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rence threshold selection

E. Influence of embedding dimension on the variations in the maximum
and mean pairwise distances

As discussed in Section ., we show some numerical results illustrating the general behavior
of mean and maximum L∞ and L2 distances for different types of systems in Fig. E.. For
a theoretical explanation of the observed changes with increasing embedding dimension, see
Section ..
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Figure E.: A Mean d(∞)
mean and maximum d

(∞)
max L∞ distance between all pairs of state vectors as a function of

the embedding dimension m for different types of time series: polychromatic harmonic oscillation
with periods ,  and ; auto-regressive processes of first and second order with parameters
ϕ1 = 0.5, ϕ2 = 0.3; random numbers of standard Gaussian (zero mean and unit variance) and
uniform (unit variance) distributions, and y component of the Lorenz- system (Eq. (B.), see
Section .) with control parameters σ = 10, β = 8/3 and r linearly increasing from  (chaotic
regime) to  (periodic regime) as a function of the embedding dimension m. B Same as in
panel A, but for L2 distances.
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E. Empirical shape parameters of the distance distributions for different
systems

In order to further characterize the shape of the empirically observed pairwise distance distributions
shown in Fig. . in more detail, we consider two standard characteristics from descriptive statistics.
On the one hand, the skewness

ŝ =
1
Nd

∑Nd
i=1(di − d̄)3(√

1
Nd

∑Nd
i=1(di − d̄)2

)3 (E.)

of the distribution measures its asymmetry around the sample mean distance d̄. On the other
hand, we study the associated Shannon entropy

ĥ = −
Nb∑
j=1

pj
log(pj)
log(Nb)

(E.)

providing an integral measure of the heterogeneity of the distribution of d. Here, j enumerates
the bins of a histogram of the values of d with Nb bins and relative frequencies pj , and Nd is
the number of pairwise distances in the sample (i.e., the number of independent entries of the
distance matrix d, Nd = Neff(Neff − 1)/2). The bin width has been selected by first computing
the optimum value according to the Freedman-Diaconis rule [] for each embedding dimension
m and then averaging over all corresponding values and taking the resulting mean to keep Nb

fixed for each considered setting. Specifically, for the time series drawn from the Gaussian and
uniform distributions, Nb,L2 = 355 and Nb,L∞ = 286, while for the Lorenz system, Nb,L2 = 701
and Nb,L∞ = 771.
According to the corresponding normalization, ĥ assumes its maximum of one in case of a

uniform distribution (since then, pj = 1/Nb ∀ j = 1, ..., Nb, i.e., for each (binned) distance
within [dmin, dmax]). In turn, the more heterogeneous (e.g., spiky or generally asymmetric) the
distribution of distances gets, the lower ĥ.

Figure E. shows the resulting behavior of both characteristics for the L2 (panels A,C,E) and
L∞ (panels B,D,F) distances obtained from uniform and Gaussian distributed noise as well as for
the non-stationary Lorenz- system (Eq. (B.), see Section .) in dependence on the embedding
dimension. The results complement the qualitative description based on a visual inspection of
Fig. . as given in Section .. In case of the L2 norm and time series drawn from uniform
and Gaussian distributions (Fig. E. A,C) we observe the skewness converging towards zero
(symmetric Gaussian distribution) and the entropy reflecting this convergence towards a normal
distribution by a downward trend until the skewness approaches zero as m further increases.
Although the theoretically predicted Gaussian shape for high m is visually apparent in case of the
time series from the Lorenz- system (see Fig. . E), the skewness takes clearly non-zero negative
values while the entropy constantly decreases with increasing m, indicating an asymmetric shape
(Fig. E. E). In case of the L∞ norm, the considered maximum embedding dimension appears
not suited for observing convergence of both shape parameters.
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Figure E.: Skewness (red) and Shannon entropy (blue) of the L2 (A,C,E) and L∞ (B,D,F) distances of
N = 1, 500 independent random numbers with uniform A+B and Gaussian C+D distribution and
E+F the y component of the Lorenz- system (Eq. (B.), N = 6, 000, see Section .) with
control parameters σ = 10, β = 8/3 and r linearly increasing from  (chaotic regime) to 
(periodic regime) as a function of the embedding dimension m. For the two noise series, box
plots show the variability estimated from , independent realizations for each data set, using a
random number generator. In case of the Lorenz- system the variability is estimated from 
independent realizations of the non-stationary Lorenz- equations with randomly chosen initial
conditions.
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E. RP’s and RQA for one realization of the non-stationary Lorenz system

For further illustrating the RPs resulting from the time-dependent Lorenz- system discussed in
Section ., we show here the results for just one example trajectory corresponding to a set of
randomly chosen initial conditions x(0) = 0.9649, y(0) = 0.1576, z(0) = 0.9706. As before, we
embed the y component time series and study the RP for each previously discussed threshold
selection method. Then, we use a running window over each (global) RP with a window size of
w = 400 and mutual shift of ws = 40 data points, i.e., % overlap between consecutive windows.
The RPs and the associated time-dependent recurrence characteristic RTE (Eq. (A.)) for

a “normal” three-dimensional embedding with time delay τ = 4, consistent with the first local
minimum of the mutual information [], are shown in Fig. E., using the Euclidean norm. We
compare the results for four different threshold selection methods but similar effective threshold
values (corresponding to a global recurrence rate of RR ≈ 4%), which are thus expected to give
comparable results. The left panel corresponds to the recommended method of taking a certain
percentile of the distance distribution, while the other three panels are based on thresholds selected
according to some percentage of the maximum, mean and median distance of state vectors on the
attractor in the reconstructed state space. Comparing the different panels, as expected there are
hardly any marked differences in the RPs or the temporal changes of RTE. The transition from a
chaotic regime into a periodic one is well reflected by a constantly decreasing RTE, which takes
its minimum for the limit cycle behavior between t1 ≈ 1, 000 and t2 ≈ 1, 080.

However, if choosing a higher-dimensional embedding (e.g., m = 10) motivated by the nonsta-
tionarity of the system, the RP becomes almost completely white if the recurrence threshold is
chosen based upon the same percentages of the maximum, mean or median state space distances
as used before (Fig. E.). In this case the RTE is still able to detect the transitory limit cycle
regime, but one looses information about the chaotic regime before. In contrast, we retain the
same density of recurrences and, hence, resolution of the RP as for m = 3 when fixing the
threshold according to the whole distance distribution (left panel in Fig. E.). Here, the overall
behavior of RTE from the lower-dimensional (m = 3) case is qualitatively retained, although the
periodic regime is less well expressed than in the former case.
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Figure E.: RPs, according time series (blue), time-dependence of the control parameter r (red) and recurrence
characteristic RTE (green) based on the y component of the non-stationary Lorenz- system
(see text for details), using the L2 norm. Shown are the results for low-dimensional embedding
(m = 3) and for four different methods to select the recurrence threshold according to a certain
percentile of the distance distribution and some percentage of the maximum, mean or median
distances of state vectors on the reconstructed attractor (from left to right). The actual threshold
values (4th percentile, 8%, 24% and 24%, respectively) have again been chosen such that the
global recurrence rate for each method in this embedding scenario is ≈ 4%.
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Figure E.: Same as in Fig. E., but for ten-dimensional embedding. In comparison to Fig. E., three of the
four methods lead to a marked drop in the global recurrence rate and a resulting change in the
RTE values. Only for a recurrence threshold corresponding to the same percentile of the distance
distribution, the results are qualitatively stable over the full considered time evolution.
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Figure F.: Diagonal line length entropy
estimates as a function of the
recurrence threshold ε. Shown
are results for all described
correction schemes for count-
ing diagonal lines (Section .)
and suppressing tangential mo-
tion (Section .), except the
perpendicular recurrence plot
R⊥. In the top panel A me-
dian diagonal line length en-
tropy values gained from 
realizations of the noise free
regular limit cycle regime of
the Rössler system are shown,
whereas the bottom panel B
shows its chaotic regime coun-
terpart, see text in Section .
for details. The grey-shaded
surface denotes the theoreti-
cal expectation value (median)
computed from Eq. (.). Re-
sults for the diagonal RP and
the kelo correction scheme are
shown in the bottom right sub-
plot, which is a cutout of the
orange bars in the bottom cen-
ter subplot, here including er-
rorbars as two standard devi-
ations from the computed en-
semble.
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Figure F.: Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are
results for all described correction schemes for counting diagonal lines (Section .) and suppressing
tangential motion (Section .), except the perpendicular recurrence plot R⊥. In the top panel
A median diagonal line length entropy values gained from , realizations of the noise free
regular limit cycle regime of the Logistic map are shown, whereas the bottom panel B shows its
chaotic regime counterpart, see text in Section . for details. The grey-shaded surface denotes
the theoretical expectation value (median) computed from Eq. (.). Results for the diagonal
RP and the kelo correction scheme are shown in the bottom right subplot, which is a cutout of
the orange bars in the bottom center subplot, here including errorbars as two standard deviations
from the computed ensemble.
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Figure F.: Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are
results for all described correction schemes for counting diagonal lines (Section .) and suppressing
tangential motion (Section .), except the perpendicular recurrence plot R⊥. In the top panel
A median diagonal line length entropy values gained from  realizations of the additive noise
contaminated regular limit cycle regime of the Rössler system are shown, whereas the bottom
panel B shows its chaotic regime counterpart, see text in Section .. for details. Here, we added
noise as % of the mean standard deviation of the multivariate signal gained from the numerical
integration. The grey-shaded surface denotes the theoretical expectation value (median) computed
from Eq. (.). Results for the diagonal RP and the kelo correction scheme are shown in the
bottom right subplot, which is a cutout of the orange bars in the bottom center subplot, here
including errorbars as two standard deviations from the computed ensemble.
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Figure F.: Diagonal line length entropy estimates as a function of the recurrence threshold ε. Shown are
results for all described correction schemes for counting diagonal lines (Section .) and suppressing
tangential motion (Section .), except the perpendicular recurrence plot R⊥. In the top panel A
median diagonal line length entropy values gained from , realizations of the additive noise
contaminated regular limit cycle regime of the Logistic map are shown, whereas the bottom panel
B shows its chaotic regime counterpart, see text in Section .. for details. Here, we added
additive noise as % of the standard deviation of the time series. The grey-shaded surface denotes
the theoretical expectation value (median) computed from Eq. (.). Results for the diagonal
RP and the kelo correction scheme are shown in the bottom right subplot, which is a cutout of
the orange bars in the bottom center subplot, here including errorbars as two standard deviations
from the computed ensemble.
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F. Sensitivity of the results to noise

Figure F.: Normalized diagonal line length entropy estimates as a function of the minimum line length `min
for noisefree data from the high sampled Rössler system (cf. Section ..). In the left panels
(A, C, E) the underlying system exhibits chaotic dynamics, whereas the right panels (B, D, F)
show their regular counterparts. The normal RPs (A, B) and the perpendicular RPs (E, F) were
constructed using a fixed recurrence threshold corresponding to % recurrence rate. The normal
RPs served as input for obtaining the diagonal RPs R↗ (C, D) and for the computation of the
perpendicular RPs R⊥ we used an angle threshold ϕ = 15°. The grey shaded areas show medians
of ensembles of , analytically computed reference values for K1 ± two standard deviations of
these distributions transformed by using Eq. (.).
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Figure F.: Normalized diagonal line length entropy estimates as a function of the minimum line length `min
for noise corrupted data from the high sampled Rössler system (cf. Section ..). We added
noise from an auto-regressive (AR) process of second order as % of the mean standard deviation
of the multivariate signal gained from the numerical integration (cf. Eq. (.)). In the left panels
(A, C, E) the underlying system exhibits chaotic dynamics, whereas the right panels (B, D, F)
show their regular counterparts. The normal RPs (A, B) and the perpendicular RPs (E, F) were
constructed using a fixed recurrence threshold corresponding to % recurrence rate. The normal
RPs served as input for obtaining the diagonal RPs R↗ (C, D) and for the computation of the
perpendicular RPs R⊥ we used an angle threshold ϕ = 15°. The grey shaded areas show medians
of ensembles of , analytically computed reference values for K1 ± two standard deviations of
these distributions transformed by using Eq. (.).
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Figure G.: Same as in Fig. ., but here with % additive Gaussian white noise. The appearance of the inter
spike spectra in J, K, L and the Fourier spectra in M, N, P are unaffected by the additive noise
noise.
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G. Evolutionary spike spectrograms for CENOGRID

104

105

Pe
rio

d 
[y

rs
] 

18O (evolutionary FFT spectrogram)

102030405060
time [Mio yrs BP]

104

105

Pe
rio

d 
[y

rs
] 

18O (evolutionary ISS - MCDTS)

405

100

   41

   21

405

100

   41

   21

Warmhouse
Hothouse

Coolhouse
Icehouse Embedding delays, τ's = [0,1,2]

A

B

Figure G.: Evolutionary spectrograms based on A FFT powerspectra of the detrended δ18O time series and
B on the inter spike spectra of the τ -RR of the MCDTS-R-MSE embedded δ18O record. The
spectrograms were computed with a w = 1, 000(=̂ -Myr) window and a step ws = 1. We
used the embedding computed in Chapter  (Section .., see Table D.) and a recurrence
threshold fixed to % global RR, in order to ensure comparability within the different windows
[] (Chapter ). Dashed red horizontal lines indicate major climate transitions according to
Westerhold et al. [].
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Figure G.: Same as in Figure G., but for the detrended δ13C isotope record.
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Figure G.: Evolutionary spectrograms based on A FFT powerspectra of the detrended δ18O time series and
B on the inter spike spectra of the τ -RR of the non-embedded δ18O record. The spectrograms
were computed with a w = 1, 000(=̂ -Myr) window and a step ws = 1. We used a recurrence
threshold fixed to % global RR, in order to ensure comparability within the different windows
[] (Chapter ). Dashed red horizontal lines indicate major climate transitions according to
Westerhold et al. [].
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Figure G.: Same as in Figure G., but for the detrended δ13C isotope record.
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Figure H.: Top panels: Fraction of false nearest neighbours vs. increasing embedding dimension using the
method by Hegger and Kantz []. The embedding dimension is chosen in such a way that the
fraction of the false nearest neighbors vanishes, which in our example occurs at m = 6. Bottom
panels: Mutual information. The time delay is chosen at the point where the steep decline in
mutual information changes into a flatter decline, which happens at τ = 10.
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Figure H.: Recurrence plot (RP) and recurrence quantification analysis (RQA) measures of the high resolution
(. kyr) potassium (K) concentrations of the sediment in Chew Bahir in southern Ethiopia:
the time series according to age model () (upper panel), the recurrence plot (middle panel)
and the RQA measures RR (blue) and DET (red) of moving windows (lower panel). Embedding
parameters m=embedding dimension, τ=time delay, ε=threshold, w=window size, ws=window
moving steps, norm=vector norm, thei=size of Theiler window, lmin=minimum line length, RQA
measures RR=recurrence rate and DET=determinism.
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Figure H.: Same as in Fig. H., but for different time intervals. The obvious block after  kyr BP is caused
by the constant values in the time series at this point of time, which is the result of interpolating
a larger gap in the original time series.
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Figure H.: Same as in Fig. H., but for different time intervals.
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Code and data availability

All proposed algorithms are OpenSource and can be found and downloaded at https://github.
com/hkraemer/ [, , , ]. The code for the data analysis and modeling presented
in this thesis is available from the author upon request and the references can be found in the
corresponding Chapters. Please do not hesitate to contact me in case of any questions.
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