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Summary

The motivation for this work was the question of reliability and robustness of seismic
tomography. The problem is that many earth models exist which can describe the un-
derlying ground motion records equally well. Most algorithms for reconstructing earth
models provide a solution, but rarely quantify their variability. If there is no way to verify
the imaged structures, an interpretation is hardly reliable. The initial idea was to explore
the space of equivalent earth models using Bayesian inference. However, it quickly be-
came apparent that the rigorous quantification of tomographic uncertainties could not be
accomplished within the scope of a dissertation.

In order to maintain the fundamental concept of statistical inference, less complex
problems from the geosciences are treated instead. This dissertation aims to anchor
Bayesian inference more deeply in the geosciences and to transfer knowledge from applied
mathematics. The underlying idea is to use well-known methods and techniques from
statistics to quantify the uncertainties of inverse problems in the geosciences. This work
is divided into three parts:

Part I introduces the necessary mathematics and should be understood as a kind of
toolbox. With a physical application in mind, this section provides a compact summary
of all methods and techniques used. The introduction of Bayesian inference makes the
beginning. Then, as a special case, the focus is on regression with Gaussian processes
under linear transformations. The chapters on the derivation of covariance functions and
the approximation of non-linearities are discussed in more detail.

Part II presents two proof of concept studies in the field of seismology. The aim is to
present the conceptual application of the introduced methods and techniques with moder-
ate complexity. The example about traveltime tomography applies the approximation of
non-linear relationships. The derivation of a covariance function using the wave equation
is shown in the example of a damped vibrating string. With these two synthetic appli-
cations, a consistent concept for the quantification of modeling uncertainties has been
developed.

Part III presents the reconstruction of the Earth’s archeomagnetic field. This appli-
cation uses the whole toolbox presented in Part I and is correspondingly complex. The
modeling of the past 1000 years is based on real data and reliably quantifies the spatial
modeling uncertainties. The statistical model presented is widely used and is under active
development.

The three applications mentioned are intentionally kept flexible to allow transferability
to similar problems. The entire work focuses on the non-uniqueness of inverse problems
in the geosciences. It is intended to be of relevance to those interested in the concepts of
Bayesian inference.
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Zusammenfassung

Die Motivation für diese Arbeit war die Frage nach Verlässlichkeit und Belastbarkeit der
seismischen Tomographie. Das Problem besteht darin, dass sehr viele Erdmodelle exis-
tieren welche die zugrundeliegenden seismischen Aufzeichnungen gleich gut beschreiben
können. Die meisten Algorithmen zur Rekonstruktion von Erdmodellen liefern zwar eine
Lösung, quantifizierten jedoch kaum deren Variabilität. Wenn es keine Möglichkeit gibt
die abgebildeten Strukturen zu verifizieren, so ist eine Interpretation kaum verlässlich.
Der ursprüngliche Gedanke war den Raum äquivalenter Erdmodelle mithilfe Bayesiani-
sche Inferenz zu erkunden. Es stellte sich jedoch schnell heraus, dass die vollständige
Quantifizierung tomographischer Unsicherheiten im Rahmen einer Promotion nicht zu
bewältigen ist.

Um das wesentliche Konzept der statistischen Inferenz beizubehalten werden statt-
dessen weniger komplexe Problemstellungen aus den Geowissenschaften behandelt. Die-
se Dissertation hat das Ziel die Bayesianische Inferenz tiefer in den Geowissenschaften
zu verankern und Wissen aus der angewandten Mathematik zu transferieren. Die zu-
grundeliegende Idee besteht darin auf bekannte Methoden und Techniken der Statistik
zurückzugreifen um die Unsicherheiten inverser Probleme in den Geowissenschaften zu
quantifizieren. Diese Arbeit gliedert sich in drei Teile:

Teil I führt die notwendige Mathematik ein und soll als eine Art Werkzeugkasten ver-
standen werden. In Hinblick auf eine physikalische Anwendung bietet dieser Abschnitt
eine kompakte Zusammenfassung aller eingesetzter Methoden und Techniken. Den An-
fang macht die Einführung der Bayesianische Inferenz. Danach steht als Spezialfall die
Regression mit Gauß-Prozessen unter linearen Transformationen im Vordergrund. Die
Kapitel zur Herleitung von Kovarianzfunktionen und die Approximation von Nichtlinea-
ritäten gehen etwas weiter in die Tiefe.

Teil II präsentiert zwei Konzeptstudien aus dem Bereich der Seismologie. Ziel ist es
bei moderater Komplexität die prinzipielle Anwendung der eingeführten Methoden und
Techniken zu präsentieren. Das Beispiel zur Laufzeittomographie wendet die Näherungs-
methoden für nichtlineare Zusammenhänge an. Die Herleitung einer Kovarianzfunktion
mithilfe der Wellengleichung ist am Beispiel der gedämpften Saitenschwingung gezeigt.
Mit diesen beiden synthetischen Anwendungen wurde ein konsistentes Konzept zur Quan-
tifizierung von Modellierungsunsicherheiten erarbeitet.

Teil III präsentiert die Rekonstruktion des archeomagnetischen Feldes unserer Erde.
Diese Anwendung nutzt den gesamten Werkzeugkasten aus Teil I und ist entsprechend
umfangreich. Die Modellierung der vergangenen 1000 Jahre basiert auf echten Daten
und quantifiziert zuverlässig die räumlichen Modellierungsunsicherheiten. Das präsentierte
statistische Modell findet breite Anwendung und wird aktiv weiter entwickelt.

Die drei genannten Anwendungen sind bewusst flexibel gehalten um die Übertragbarkeit
auf ähnliche Problemstellungen zu ermöglichen. Die gesamte Arbeit legt den Fokus auf
die nicht-Eindeutigkeit inverser Probleme in den Geowissenschaften. Sie will für all Jene
von Relevanz sein, die sich für die Konzepte der Bayesianischen Inferenz interessieren.
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Part I.

Theory

The following three chapters may be understood as a toolbox providing
a brief recap of methods and techniques used in later applications. For
further reading an overview on references and literature are provided.

Chapter 1 introduces Bayesian inversion and Gaussian process regres-
sion. The discussion is completed by easy to digest examples and leads
to what is known as the linear Gaussian model.

Chapter 2 gives a brief review on methods that are closely related
to Gaussian process regression. It presents a functional analytic point
of view how to systematically derive a covariance function from first
principles.

Chapter 3 deals with the treatment of non-linear likelihood functions.
The limits of Bayesian inference are identified and selected algorithms
for approximate Bayesian inference are presented.
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1. Bayesian Inference

This Chapter is a very concise recap of a systematic approach in solving inverse problems
using statistical techniques. The reader is assumed to have a fair degree of familiarity with
basic probability theory. A light version on the fundamentals may be found at Calvetti
and Somersalo [2007, Sec. 1.2]. As for any Bayesian approach, the conditional probability
is the corner stone on which the theory is built upon. Rather than arguing the foundation
of statistics, I deliberately pass on the abstract theory of probability spaces and present
selected concepts and results. For a rigorous discussion the reader shall refer any standard
text-book on probability theory e.g. Schmidt [2011].

To introduce the notations I am going to adopt throughout, a summary of the basic
mathematics of Bayesian inference is presented. Only continuous real-valued random vari-
ables (RV) with corresponding probability density function (PDF) are considered. From
a physical point of view this may be understood as the restriction to classical mechanics
where phenomena are modeled in the continuous domain ignoring the microscopic scale.
References on applied Bayesian inference that I used are Bui-Thanh [2012], Gelman et al.
[2013, Chp. 1], Calvetti and Somersalo [2007, Chp. 2] and Bolstad [2007].

Statistical inference is the process of deducing properties of an underlying distribution
by analysis of data [Cook, 2008]. According to Calvetti and Somersalo [2007] the problem
of statistical inference may be phrased as follows:

Determine the underlying distribution which gives rise for realizations.

In other words, we are looking for a RV X compatible with realizations Y = y. To
formalize statistical inference, let X and Y denote continuous random variables with
joint PDF pXY and according marginal PDFs pX and pY . The conditional distribution of
X given the realization Y = y can be written as

pX|Y (x | y) =
pXY (x, y)

pY (y)
. (1.1)

By symmetry considerations, the conditional PDF of X under Y = y is given by

pY |X(y | x)pX(x) = pXY (x, y) = pX|Y (x | y)pY (y) (1.2)

which is known as the general product rule, permitting to calculate joint PDFs. Therefrom
the well-known Bayes formula follows

Theorem 1 (Bayes’ law). The PDF of X knowing the realization y of Y is

pX|Y (x | y) =
pY |X(y | x) pX(x)

pY (y)

and is referred to as the posterior distribution.
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1. Bayesian Inference

The PDF pX|Y (x|y) – in words, the distribution of X knowing that Y got the value y
assigned – is the solution of the Bayesian inverse problem. That simple formula encapsu-
lates the technical core of Bayesian inference. Because of their importance the PDFs on
the right hand side of Theorem 1 got special names assigned:

pY (y) is called the prior predictive distribution. Prior because it is not conditional
on a previous realization and predictive because it is the distribution for a quantity
that is observable. It may be understood as a normalizing constant as it does not
depend on X.

pY |X(y | x) is typically considered as a function in x and dubbed likelihood function
L(x|y). Regarded as a function in x it is no longer a density. The likelihood function
describes how the noisy realizations deviate from the underlying idealized model.
The realization y affects the posterior PDF only through the likelihood function.

pX(x) is called the prior distribution. It can be quite approximate and expresses the
belief about X before making an inference. In other words, the prior PDF encodes
our knowledge on X in beforehand, regardless of any realization y of Y . There is no
universal rule constructing a prior PDF, however, the more realistic the prior the
better. On the other hand, if we are data-rich the effect of the prior distribution
will be small and data will swap out vague a priori assumptions.

The posterior distribution summarizes our prior believes after incorporating the evidence
and may be interpreted as a compromise between data and prior knowledge. It combines
the likelihood and the prior, and captures everything we know. However, it is subjective
to the chosen model and the a priori assumption does not necessarily represent reality.
The difficulty and primary task of any application of Bayes’ law is to develop appropriate
statistical models for X and Y , to determine the afore mentioned three PDFs and finally
to perform computations.

1.1. Model, Data and Prediction

The introduction of Bayesian inference with RVs X and Y is rather abstract. In the
interest of application, the following gives a more physical interpretation and translates
Bayes’ law into the notion of observations and predictions subject to an underlying system.
Typically the aforementioned realization y is identified with measurements whereas X
denotes the quantity of interest.

Consider some physical system that relates observations and predictions. An example
– that is addressed in Chapter 5 – is to infer the action that let a string vibrate. Let
m̃ denote reality, the true system we do not know. Measurements d = (d1, . . . , dn) are
recorded to learn about the system. An observable is described by a synthetic formula
the so-called observational functional f [·] representing our physical understanding of mea-
surements [Parker, 1994, Sec. 1.04 and p. 32]. In fact, observations are not deterministic
but corrupted by measurement noise. Measurements are realizations of the noise model
conditional to reality

d ∼ D|m̃ = f [m̃] + E (1.3)

4



1.1. Model, Data and Prediction

still m̃ represents the real but unknown model and E a to be know error distribution.
Throughout, mutually independent and purely additive noise models are considered 1.
Notice that the actual values measured are denoted by d whereas D = (D1, . . . Dn) refers
to the according RV.

Within the Bayesian paradigm, randomness is used to express the lack of information.
Therefore, the system is considered a random quantity m̃→M describing our ignorance.
The a priori distribution pM encodes our belief about possible values of the system before
taking a look at the data. In fact, construction of the a priori distribution is subject to
each individual problem. Again, the observed data must not have any influence on the
choice of the prior distribution [Bolstad, 2007, Chp. 8]. Incorporating our ignorance about
the system, the stochastic data model reads

Di = fi[M ] + Ei (1.4)

with to be known error model E. The understanding of physics may be partial and/or
uncertain and the noise-level will not exclusively account for the inaccuracy in observations
but also for the incompleteness of theory. Therefore, E is also called residual term and is
typically not identified with the measurement’s bare error model. Since E also accounts
for those parts of theory we do not know, E and M become dependent. To simplify
matters, in the following any correlations amongst E and M are neglected.

As measurements may be performed at will, non-observable properties are typically the
quantities in question. In other words, the intention is to predict quantities we did not
and/or cannot measure. Let G = {G1, . . . , Gk} denote the to be predicted quantity. In
analogy to observations, predictions are assumed as functionals in M

Gj = hj[M ]. (1.5)

Although it might appear natural to directly model G, introducing the system M often
allows a convenient formulation of the statistical model. Another reason for introducing
predictive functionals is that it might be easier making a priori assumptions about M .

Having a consent on the physical setting Bayes’ law shall be applied and we are con-
fronted to determine the prior density pG, the prior predictive density pD and the likelihood
function L(g|d).

Likelihood Retrieving the likelihood is relatively easy since the error model is assumed
to be known. As we assume additive noise and keep G = g fixed we have

pD|G(d | h[m]) = pf [M ]+E|M(d | m) = pf [m]+E(d) = pE(d− f [m]) (1.6)

where the relation pX+a(x) = ∂xP[X + a < x] = ∂xP[X < x − a] = pX(x − a) was used.
Remember, h[·] is a function in M ; if the RV G = g is considered fixed this actually means
to fix the underlying system M = m.

1Although it is common to assume independence of M and E, in general this is neither necessary nor
easily justified. Kaipio and Somersalo [2005, Sec. 3.2.1 and 3.2.2] give a discussion on dependent noise
and other explicit noise models.
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1. Bayesian Inference

Prior distribution To determine the prior distribution pG – i.e. the transformation of
M by h – is in general challenging. Even simple transformations of variables with simple
distributions can lead to variables with complex distributions [Siegrist, 2015, Sec. 2.7].
The prior distribution of M is known through its PDF pM and similarly we would like to
find the PDF ph[M ]. If h is of good-nature there is a formula for pG:

Theorem 2 (Change of Variables). Let M be a continuous distribution and G = h[M ]
a locally injective transformation h : U ⊂ Rk → Rk. Branches of the inverse {Ci}i∈I
are disjoint intervals such that the restriction h|Ci is continuous and differentiable with
h|Ci ′ 6= 0 and P(R \∑Ci) = 0. Then G’s density is given by

pG(g) = ph[M ](g) =
∑
i

pM
(
h|−1
Ci

(g)
) ∣∣∣ detJh|−1

Ci

(g)
∣∣∣1{h(Ci)}(g)

where J denotes the Jacobian matrix and 1{·} the indicator function.

A profound discussion including proofs may be found in Schmidt [2011, Secs. 12 and 13].
Notice, the map in Theorem 2 demands equality in dimensions. Predictions h[M ] and the
model M will certainly not share same dimensions. A way around that limitation is, to
add dummy arguments to achieve same dimensionality and marginalize subsequently.

Prior predictive distribution Since we assume M and E independent, the density of
their sum is given by a convolution 2 and we have

pD(d) = p(f [M ]+E)(d) = (pf [M ] ∗ pE)(d) (1.7)

see Grinstead and Snell [1998, Thm. 7.1]. The difficulty to find the PDF of f [M ] remains.
There is a way around transforming M by f . As we already derived the distribution of
G, marginalizing the joint PDF pDG helps. Using the product rule (Eq. 1.2) yields

pD(d) =

∫
pDG(d, g) dg =

∫
pD|G(d | g)pG(g) dg =

∫
pE(d− f [m])pG(h[m]) dm (1.8)

requiring an integration which is not much of a relief. Depending on the prior chosen,
there may not necessarily exist a closed form solution.

If those three PDFs are at hand, the density of G posterior to a set observations d is
given by Bayes’ law

pG|D(g | d) =
pD|G(d | g) pG(g)

pD(d)
. (1.9)

If G is uni- or bivariate, visualising the posterior PDF is simple and the interpretation is
intuitive. In case of high dimensional predictions a direct visualization of a posterior PDF
with several variates is no longer possible. For interpretation, typically characteristics such
as marginals and/or moments are requested. However – in most applications – calculating
moments and/or marginals calls for multidimensional numeric integration.

To conclude, the outlined theory on Bayesian inverse problem is rather universal but
the solution is quite demanding. In general the posterior density and its characteristics
do not possess a solution of closed form. Various techniques and methods have been

2For a general discussion of sums of dependent random variables see e.g. Schmidt [2011, Sec. 13.5].
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1.2. Gaussian Process Regression
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Figure 1.1.: A GP of mean µX(t) = t cos(t) ( ) and SE covariance (see Eq. 1.14 and Fig. 1.2).
The gray shaded area illustrates half, once and twice the standard deviation. At equally space
locations, realizations ( , , ) are drawn from the corresponding MVN distribution.

developed determining posterior distributions, all suffering either from excessive sampling
and/or numeric integration [Liu, 2008]. Nonetheless, with rigorous simplifications we can
facilitate the Bayesian inverse problem. In order to find an algebraic solution, let surrender
universality by making the following three assumptions: The setting is restricted to normal
distributed errors, a normal distributed system and affine transformations.

1.2. Gaussian Process Regression

This section introduces distributions over functions. Although it might seem difficult to
represent a distribution over a function, within a setting that preserves normality it turns
out that the distribution needs to be known only at a finite, but arbitrary, set of points.

In many applications collections of RVs are of interest and inference shall take place
directly in the space of functions – e.g. a system evolving over time. Thus, we are interested
in a statistical distribution over functions{

X(t) : t ∈ T
}

(1.10)

dependent on an index set T . The dependent variable t will typically denote a point in
time, or space, or time and space. Based on their properties, stochastic processes can be
divided into various categories. The class of Gaussian processes is one of the most widely
used families of stochastic processes for modeling dependent data [Davis, 2014].

Roughly speaking, a Gaussian process (GP) may be understood as the infinite di-
mensional generalization of the Gaussian distribution. Each point within the potentially
continuous input space is associated with a normal distributed random variable. This idea
has already been used for a long time under the name Kriging in spatial interpolation,
although it seems having ignored the generality of that method [Williams, 1997]. Histor-
ically, the dependent variable of a GP is time t whereas the extension of GPs to higher
dimensions – e.g. R3 – is often referred to as a Gaussian random field (GRF). Nowadays,
most authors are using the terms GP and GRF interchangeably. The following brief re-
cap of GPs is based upon Gelman et al. [2013, Chp. 21], Rasmussen and Williams [2006,
Chp. 2] and Murphy [2012, Chp. 15] from an applied point of view whereas Abrahamsen
[1997] provides the background theory.
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1. Bayesian Inference

|t− t′|
0

1

K

1
e

`

Figure 1.2.: The Gaussian kernel (Eq. 1.14) plotted as a function of distance.

Definition 1 (Gaussian Process). A time continuous stochastic process X(t) is Gaussian
if for every finite set of points t1, . . . , tn in the index set T(

X(t1), . . . , X(tn)
)

is a multivariate normal distributed RV.

This is equivalent to saying any finite linear combination is normal distributed. The
notation

X ∼ GP(µX , KX) (1.11)

means that the random function X(t) is distributed as a GP with mean function and
covariance function

E[X(t)] = µX(t) (1.12)

Cov[X(t), X(t′)] = KX(t, t′) (1.13)

and we obviously require KX to be a positive definite function (see Def. 3). The popularity
of GPs stems primarily from the property that a GP is completely determined by its
functions of first and second moment.

The key factor that controls the properties of a GP is the covariance function. It may
be understood as a measure of how much two RVs change together and specifys the cor-
relation between pairs of random variables. The smoothness of realizations of the GP and
the shrinkage towards the mean is determined by the covariance function [Gelman et al.,
2013, Sec. 21.1]. Selections of covariance functions, together with particular properties are
discussed in Genton [2002], Murphy [2012, Chp. 14] or Rasmussen and Williams [2006,
Chp. 4].

Example 1.1. A widely used covariance function is the squared exponential (SE) kernel

K(s, t) = exp

{
−|s− t|

2

`2

}
(1.14)

of characteristic length-scale `; also known as Gaussian kernel. Figure 1.2 illustrates K
as a function of distance. An example GP is presented in Figure 1.1 . C

The definition of GPs implies that theorems on multivariate normal (MVN) distribu-
tions translate into the notion of GPs. References for MVN distributions are e.g. Gelman
et al. [2013, p. 580] or Lindgren et al. [2013, A. 2] and in great depth Rao [1973, Ch. 8a],
Muirhead [2005, Ch. 1] or Anderson [2003, Ch. 2].

Two properties that are reducing the dimensionality are of particular interest:
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1.2. Gaussian Process Regression
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Figure 1.3.: Comparison of marginal and conditional densities for a centered bivariate normal
distribution with variances σ2

X = 3, σ2
Y = 1 and covariance σXY = 1. Marginal densities are

indicated by whereas conditional densities X | Y = −1 and Y | X = 2 are depicted by
and . The surface plot is superelevated by factor 2.

Corollary 3 (Marginal). Let X ∼ GP(µX , KX). If X is evaluated at a finite set of points
t1, . . . , tn, the resulting random vector is MVN distributed

X =
(
X(t1), . . . , X(tn)

)
∼ Nn(µ,Σ)

with mean µ =
(
µX(t1), . . . , µX(tn)

)
and covariance matrix Σ = {KX(ti, tj)}i,j=1,...,n.

Marginalizing a GP is automatically implied by its definition. The conditional of a GP
is the analog to the conditional of a MVN RV.

Corollary 4 (Conditional). Let X ∼ GP(µX , KX). For a realization X(s) = xs, the
conditional distribution is a GP, as well. Mean and covariance read

E[X(r) | xs] = µX(r) +KX(r, s)K−1
X (s, s)

(
xs − µX(s)

)
Cov[X(r), X(t) | xs] = KX(r, t)−KX(r, s)K−1

X (s, s)KX(s, t) .

A proof may be found in any of the aforementioned references. The conditional may be
interpreted as a slice whereas the marginal is an average. The illustration of that interpre-
tation is shown in Figure 1.3 comparing conditional and marginal densities. Speaking in
terms of functions, the conditional distribution sorts out all those incompatible with the
realization. Conditioning a GP is going to form the cornerstone of the modeling approach
introduced in the following section that gives a Bayesian interpretation to Corollary 4.

1.2.1. Inference

In the following we discuss a method to perform Bayesian inference over functions them-
selves. The intention is to give a Bayesian interpretation to Corollary 4 i.e. the posterior

9



1. Bayesian Inference

distribution of a GP. In the Bayesian formalism a prior distribution is specified, expressing
our beliefs. Therefore, a GP is used to describe a distribution over functions

X ∼ GP(µX , KX) (1.15)

with a priori mean function µX(t) and assumed covariance function KX(t, t′). As evidence
consider a finite set of realizations

xs =
{

(x1, s1), . . . , (xn, sn)
}

(1.16)

with values xi at times si, i = 1, . . . , n. The knowledge that realizations provide about the
function shall be incorporated to predict on the process at some test point r. According
to the prior, the joint distribution of realizations and test points reads(

X(s)
X(r)

)
∼ N

((
µX(s)
µX(r)

)
,

[
KX(s, s) KX(s, r)
KX(r, s) KX(r, r)

])
(1.17)

with s = (s1, . . . , sn). To get the posterior distribution we need to restrict the joint prior
distribution to solely contain those functions which are in agreement with realizations xs.
The posterior distribution is given by the conditional

X(r) | X(s) = xs (1.18)

and according to Corollary 4 the posterior is a GP as well. Conditional mean and covari-
ance are given by

E[µX(r) | xs] = µX(r) +KX(r, s)KX(s, s)−1(xs − µX(s)
)

(1.19)

Cov[µX(r), µX(r′) | xs] = KX(r, r′)−KX(r, s)KX(s, s)−1KX(s, r′) . (1.20)

The posterior GP represents all those functions that are in agreement with the evidence
xs. This means that the modeling approach is precise at training points and satisfies
the general interpolation problem. The prior mean function and covariance function
are forming the basis of rules for interpolating values at points for which there are no
observations. Interestingly, the posterior covariance does only depend on locations s but
not on drawn values. That fact gives a powerful tool for survey design at hand. Further
details on GP-regression may be found in Rasmussen and Williams [2006, Sec. 2.2 and 2.7]
and – in the light of conjugate distributions – in Gelman et al. [2013, Chp. 21].

Example 1.2. The GP presented in Figure 1.1 serves to demonstrate inference using a
single measurement. At location s = −1 the value recorded is

xs = s cos(s) = − cos(−1) . (1.21)

The covariance of choice is the SE kernel (Eq. 1.14) with ` =
√

2. The a priori guess for
the mean function reads

µX(t) = −t . (1.22)

According to Equations 1.19 and 1.20, the posterior process is given through

E[X(r) | xs] = −r + exp
{
−1

2
(r + 1)2

} (
− cos(−1)− 1

)
(1.23)

Cov[X(r), X(r′) | xs] = exp
{
−1

2
(r − r′)2

}
− exp

{
−(1 + r)2

}
. (1.24)
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Figure 1.4.: The actual function t cos t ( ) is estimated by a posterior GP based upon precise
evidence ( ). The top panel considers single evidence s1 = −1 whereas s2 = 1 is added in the
bottom panel. A priori parameters are mean µX(t) = −t ( ) and the SE kernel as covariance.
The black solid line ( ) indicates the posterior mean and the shaded gray area represent the
38%, 68% and 95% pointwise posterior credibility intervals.

The top panel of Figure 1.4 depicts the posterior process. At location r = −1, the
prediction is precise. The standard deviation increases for input values that are distant
from the record. The kernel’s characteristic length scale determines the necking pattern.
Apart from the data, the prior mean and standard deviation are reflected. C

Example 1.3. As a next step, let extend Example 1.2 by incorporating a second mea-
surement at location s2 = 1. The additional record to be worked in is

x2 = s2 cos(s2) = cos(1) . (1.25)

The a priori mean vector is determined by the prior mean function (Eq. 1.22)

µX(s) =

(
µX(s1)
µX(s2)

)
=

(
−s1

−s2

)
=

(
1
−1

)
. (1.26)

Evaluating the SE kernel (Eq. 1.14) at combinations of s1 and s2 results in

KX(s, s) =

[
KX(s1, s1) KX(s1, s2)
KX(s2, s1) KX(s2, s2)

]
=

[
1 e−2

e−2 1

]
(1.27)

and the correlations amongst design point r and records s are

KX(r, s) =

[
KX(r, s1)
KX(r, s2)

]
=

[
exp
{
−1

2
(r + 1)2

}
exp
{
−1

2
(r − 1)2

}] . (1.28)
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1. Bayesian Inference

According to Equations 1.19 and 1.20, the posterior mean and covariance are given by

E[X(r)|xs] = −r +

[
KX(r,−1)
KX(r, 1)

] [
1 e−2

e−2 1

]−1(− cos(−1)− 1
cos(1) + 1

)
(1.29)

Cov[X(r), X(r′)|xs] = KX(r, r′)−
[
KX(r,−1)
KX(r, 1)

] [
1 e−2

e−2 1

]−1 [
KX(r,−1)
KX(r, 1)

]>
. (1.30)

The bottom panel of Figure 1.4 depicts the posterior process. In analogy with Example 1.2
the pointwise posterior standard deviation shows a second constriction at s2. C

The difficulty to perform regression with GPs is to determine a suitable covariance func-
tion. In many applications heuristics is addressed since the covariance may be considered
as a rule for interpolation. As an application, Chapter 4 demonstrates how the SE kernel
may be used for travel-time tomography. The theory for a systematic alternative that
derives covariance functions from first principles is presented in Chapter 2. An example is
the inference of the driving force of a vibrating string that is shown in Chapter 5 where the
equation of motion serves to derive the covariance function. An apprlication is presented
in Chapter 6 that addresses the modeling of the Earth’s magnetic field with a covariance
function derived from generalized geomagnetic energies.

1.3. Gaussian Linear Model

During the discussion of Bayesian inference several difficulties arose mainly due to the
algebra and transformation of RVs. At the cost of loosing generality, these difficulties can
be merged by normality assumptions and the restriction to affine transformations. The
restriction to GPs and affine maps is an excessive limitation, however, comes with the
advantage that computations required for inference are significantly lightened [Calvetti
and Somersalo, 2007, Sec. 1.3].

Normal distributions and GPs are perhaps the most important distributions in proba-
bility and mathematical statistics, primarily because of the central limit theorem. Gaus-
sian distributions are widely used to model physical measurements of all types that are
subject to small, random errors [Siegrist, 2015, Sec. 2.7]. The central limit theorem jus-
tifies in many circumstances the use of Gaussian approximations which is why normally
distributed RVs play a special role in statistics [Calvetti and Somersalo, 2007, Sec. 1.3].

The linear Gaussian model is the concept performing regression with GPs in combina-
tion with affine maps. The analog to affine transformations of normal RVs reads:

Corollary 5. Let X ∼ GP(µX , KX) and f an affine map. The transformation

Y = f [X] ∼ GP(µY , KY )

is Gaussian with mean function and covariance function

µY = fµX , KY = f̃KX f̃
†

where f ’s linear part 3 is denoted by f̃ and the †-superscript indicates that the functional
acts to the left i.e. with respect to the second entry of KX .

3An affine map is composed of a linear and a translational part. When calculating the co-variance of
an affine map the translational part drops out.
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1.3. Gaussian Linear Model

In other words, if a GP is passed through an affine transformation, the output is a GP
as well. The prove may be found in Abrahamsen [1997]. Still, consider X a GP with
mean µX and covariance KX . Just to name three, examples for affine maps of GPs are:

Example 1.4 (Gradient). Let f [X] = ∇X. Then ∇X ∼ GP
(
∇µX , ∇KX∇†

)
where ∇†

acts on the second argument i.e. ∇KX∇†(t, t′) = ∇t∇t′KX(t, t′). C

Example 1.5 (Integration). Let f [X] =
∫ b
a
X dt. Then f [X] is normal distributed with

mean µf =
∫ b
a
µX(t) dt and co-variance Kf =

∫∫
KX(t, t′) dt dt′. A typical cases of appli-

cation are inner products and the expansion w.r.t. some basis. C

Example 1.6 (Indicator). Let f [X] = 1A[X] considered as an operator in X. Then, the
resulting mean is µf = 1A[µX ] and the covariance Kf = 1AKX 1†A. An application is the
restriction to a compact domain. C

Let us come back to the physical setting introduced in Section 1.1. The concept of
Gaussian process regression and the idea making predictions with an underlying system
subject to observations shall be brought together. To do so, we have to restricting our-
selves to affine maps and normality assumptions. To calculate the posterior distribution,
five quantities are to be determined. Given an a priori model, these are: The data’s prior
mean vector and covariance matrix, correlations amongst predictions and observations
and the predictive prior mean and covariance.

As we do not know the underlying model, it is considered a random quantity. A priori,
the underlying system M is assumed a GP

M ∼ GP(µM , KM) (1.31)

with a priori mean function µM expressing the knowledge we already have without looking
at the data and to be known covariance function KM . Except for the error model, M is
the actual random quantity we are looking at whereas measurements D and predictions
G are borrowing their statistics through affine transformations.

Measurements are described through an affine map f [·], the observational functional.
Recorded data are corrupted by measurement noise and the data model reads

D = f [M ] + E . (1.32)

Measurement errors E are assumed to be zero mean Gaussian with co-variance ΣE. Due
to Corollary 5, f [M ] is normal. Since linear combinations of independent Gaussian RVs
are normal, the data distribution reads

D ∼ N
(
fµM , f̃KM f̃

† + ΣE

)
(1.33)

where f̃ refers to the linear part of the affine map. Typically a set of n measurements is
recorded and the data distribution is given by its mean vector and covariance matrix

E[D] =

f1µM
...

fnµM

 , V[D] =

f̃1KM f̃
†
1 . . . f̃1KM f̃

†
n

...
. . .

...

f̃nKM f̃
†
1 . . . f̃nKM f̃

†
n

+ ΣE . (1.34)
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1. Bayesian Inference

Measurement errors do not have to be independent and/or homoscedastic. Nonetheless,
the independence of f [M ] and E is still assumed 4.

Predictions are treated similarly to measurements. The predictive functional h[·] is
restricted to affine transformations. Due to Corollary 5, predictions G = h[M ] are normal
distributed with mean and co-variance

E[G] = hµM and V[G] = h̃KM h̃
† (1.35)

where h̃ again refers to the linear part of h. In case of multiple predictions – say k – the
mean vector and covariance matrix construct analogously to Equation 1.34 (except for
the error term).

To adopt inference with GPs (see Sec. 1.2.1) correlations amongst predictions and
observations need to be known. Predictions G and observations D are correlated through

Cov[h[M ], f [M ]] = h̃KM f̃
† =

h̃1KM f̃
†
1 . . . h̃1KM f̃

†
n

...
. . .

...

h̃kKM f̃
†
1 . . . h̃kKM f̃

†
n

 (1.36)

a k × n cross-covariance matrix. Again, k refers to the number of predictions and n to
the number of measurements. Any dependence amongst system and measurement noise
is neglected although the residual term potentially accounts for incompleteness of theory.

The posterior distribution of G knowing d is normal. According to Equations 1.19
and 1.20 the conditional mean and covariance are given by

E[G | d] = hµM + h̃KM f̃
†
[
f̃KM f̃

† + ΣE

]−1 (
d− fµM

)
(1.37)

V[G | d] = h̃KM h̃
† − h̃KM f̃

†
[
f̃KM f̃

† + ΣE

]−1

f̃KM h̃
† . (1.38)

The posterior distribution in the linear Gaussian model possesses particularly nice prop-
erties. Due to measurement noise, the model is not required to perfectly interpolate
the data. The posterior model will be smooth modulo error-level and kernel regular-
ity. In contrast to Equation 1.9, not only the posterior PDF is right at hand but also
first and second moment, given by algebraic equations. Marginalization is straightfor-
ward by considering sub-vectors and sub-matrices of conditional mean and covariance. If
Equations 1.37 and 1.38 are implemented through Cholesky factorization the solution is
backward stable at the machine’s precision [Trefethen and Bau, 1997, Thm. 23.3]. The
computational complexity of commonly used algorithms is O(n3) where n is the size of the
data’s covariance matrix [Rasmussen and Williams, 2006, Alg. 2.1]. This is inexpensive
compared to high dimensional numeric integration showing exponential complexity in the
widest sense (see Fig. 3.3).

Example 1.7. Let us revisit Example 1.2 . Still, the true, to be modeled function is

m̃(t) = t cos t . (1.39)

The a priori guess for mean function remains

µM(t) = −t (1.40)

4Although joint normality of M and E were sufficient.
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Figure 1.5.: GP regression with observational and predictive functionals. Observations are indi-
cated by in the top panel. A priori assumptions are shown by (mean ± standard deviation)
whereas actual curves are plotted by . The posterior mean is depicted by and the gray
shaded area represents the 38%, 68% and 95% pointwise confidence intervals.

and the SE kernel serves as covariance. In contrast, m̃ is not directly acquired but the
pointwise derivative is recorded. The n = 8 records are corrupted by centered normal
noise. With the observational functional f [M ] = ∂tM the data model becomes

Di = ∂tM(t)
∣∣
ti

+ E , i = 1, . . . , n (1.41)

with independent zero mean normal noise of standard deviation σE = 0.20. The data’s
a priori mean vector and covariance matrix are

f [µM ] =
{
∂tµM(ti) = −1

∣∣ t ∈ T} (1.42)

fKMf
† =

{
∂s∂tKM(s, t) = KM(s, t)

(
1− (s− t)2

) ∣∣ t, s ∈ T}+ Iσ2
E . (1.43)

The evidence considered is depicted in the top panel of Figure 1.5 . On purpose, locations
T are arranged unevenly.

To demonstrate the flexibility of the method, we predict on the three different quantities.
First of all, let us have a look at the gradient of the model. Thus, the predictive functional
reads

h[M ] = ∂tM(t) (1.44)

Correlations as well as the a priori covariance are given by Equation 1.43 . Conditional
mean and covariance are given by Equations 1.37 and 1.38. The reconstruction of the
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1. Bayesian Inference

gradient is depicted in the top panel of Figure 1.5 . For comparison, the actual derivative

h[m̃](t) = ∂t
(
t cos t

)
= cos t− t sin t (1.45)

is shown as well. The choice of a constant prior mean is pathetic as we a priori neglect
any dynamics of the system. It is clear that the posterior distribution will be poor distant
from evidence. Nonetheless, in a close neighbourhood to measurements reconstruction is
reasonable, provided the assumed covariance is appropriate for interpolation.

As a next step we predict on the underlying model at its own. The predictive function
is basically point evaluation

h[M ] = M(s) . (1.46)

Correlations amongst observations and predictions are given by

hKMf
† = ∂tKM(s, t) = (s− t)KM(s, t) (1.47)

and we explicitly know all quantities needed to calculate the posterior distribution of M
(again Eqs. 1.37 and 1.38). The mid panel of Figure 1.5 shows the reconstruction of M .
For comparison the true function (Eq. 1.39) is shown as well. The characteristic necking of
the reconstruction is less prominent which is due to the (s− t) term in Equation 1.47 . In
other words, precisely at points of observation the kernel does not feature any correlations.
Nonetheless, a clear reduction of the prior variance in the neighbourhood of observations
is apparent. A noteworthy effect when observing derivatives is that any constant offset
drops out. If observations were either clustered to the left or right of the origin the
reconstruction will show an offset.

Finally, the predictive functional will be a definite integral and reads

h[M ] =

∫ s

0

M(s′) ds′ (1.48)

considered as a function in s, the upper integration bound. The antiderivative of M ’s
a priori mean is

µh[M ](t) =

∫ t

0

−t′ dt′ = −1
2
t2 . (1.49)

Correlations amongst predictions and observations calculate as follows

hKMf
† =

∫ s

0

∂tKM(s′, t) ds′ = −
∫ s

0

∂sKM(s′, t) ds′ = KM(0, t)−KM(s, t) (1.50)

and the covariance for the predictive functional reads

hKMh
† =

√
π

2

[∫ s

0

erf

(
s′√
2

)
ds′ −

∫ s

0

erf

(
s′ − t√

2

)
ds′
]

=

=
√

π
2

[
s erf

(
s√
2

)
+ t erf

(
t√
2

)
− (s− t) erf

(
s−t√

2

)]
+KM(s, 0)+KM(0, t)−1−KM(s, t)

(1.51)

where erf(·) refers to the error-function. Ingredients for the calculus – the antiderivatives
of SE kernel and error function – may be found in Bronstein et al. [2000, Eqs. 8.100a
and 8.100d]. All quantities to calculate the posterior distribution are explicit and again
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1.3. Gaussian Linear Model

conditional mean and covariance are given through Equations 1.37 and 1.38. The bot-
tom panel of Figure 1.5 presents the reconstruction of h[M ]. For comparison the actual
function

h[m̃] = cos(t) + t sin(t)− 1 (1.52)

is shown as well. Evaluated at the origin (s = 0) the predictive functional is certainly
zero. Even with a record at t = 0 there is no uncertainty as the predictive functional
is precise at that location. The evidence we have is shifting the posterior mean towards
m̃, however, off the origin no significant reduction of uncertainty occurs. Furthermore,
it is clear that there is no necking close to observations any more. Any offset in M will
be passed through the integral with consequences suffering from a quadratic effect and
predictions will be totally off. C

Although, the restriction to affine maps is severe the Linear Gaussian model provides
a powerful and flexible tool for uncertainty assessment. To obtain a reasonable posterior
distribution there are two contradicting cases: Either the inversion is driven by strong
data swapping vague prior assumptions. Or weak data are supported by particularly good
a priori assumptions. A typically application will show something in between. Motivated
by the central limit theorem, the Gaussian assumption is of moderate concern. Nonethe-
less, a restriction to affine maps is hardly satisfying. Section 3 is about approximations
of non-linear functionals trying to increase generality while preserving the computational
convenience.
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2. Reproducing Kernel Hilbert Spaces

Until here inference with GPs was introduced from a purely statistical point of view.
During the discussion, the covariance function remained vague and was only required
to be symmetric and positive definite. However, the discussion left out the selection
of covariance functions and attributed characteristics. The objective of the following is
to establish a link between GP regression and the theory of reproducing kernel Hilbert
spaces (RKHS). This connection will serve to either derive covariance functions from first
principles or at least to analyze implied regularity. Changing the perspective from GP
regression to RKHSs is beneficial as a proper Hilbert space defines structures relevant for
solving inverse problems.

The following is a partial and brief review on RKHS theory summarizing key properties
and consequences. To keep matters concise, technical details – such as existence, com-
pleteness and separability – are omitted. If provided, any proofs are just roughly sketched.
A rigorous discussion may be found in e.g. Aronszajn [1950], Wahba [1990], Berlinet and
Thomas-Agnan [2004] and Steinwart and Christmann [2008] in exhaustive depth. The
reader is assumed to know basic facts about Hilbert space theory and functional analysis
such as the Riesz lemma and the notion of bounded linear functionals. This background
may be found in numerous books, e.g. Reed and Simon [1981].

Defined on a continuous index set T , consider a potentially infinite dimensional Hilbert
space H of functions equipped with inner product 〈·, ·〉 and introduced norm ‖ · ‖. For
the following, all functions and RVs are assumed real valued. Hilbert spaces that satisfy
certain additional properties are known as RKHSs.

Definition 2 (RKHS). HK is called a RKHS if there exists a function K : T × T → R
with the following properties:

1. For every t, Kt = K(t, ·) belongs to HK.

2. K has the reproducing property f(t) = 〈f,Kt〉K.

K is called the reproducing kernel (RK) belonging to HK.

Since Ks, Kt ∈ HK we have K(s, t) = 〈Ks, Kt〉K which is where the RK takes its name
from. Having a single definition covering both RKHS and RK is pragmatic to shorten
matters. Most authors, however, are using Theorem 7 as the defining property.

Theorem 6. The RK that belongs to a RKHS is unique.

If there were two RKs K and R, then 0 = f(t) − f(t) = 〈f,Kt〉 − 〈f,Rt〉, ∀f and ∀t.
Choosing f = Kt −Rt yields ‖Kx −Rx‖ = 0 and thus K = R.

Evaluation functionals play a crucial role in RKHS theory.

Theorem 7. H has a RK if and only if all evaluation functionals are linear and bounded.
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2. Reproducing Kernel Hilbert Spaces

f(x) = 〈f,Kx〉
HK

H

Figure 2.1.: Continuous evaluation can be interpreted as the restriction of a general Hilbert space
with the additional condition of pointwise evaluation.

If H has a RK, the linearity of evaluation is governed by the linearity of the inner product
and by the Cauchy-Schwarz inequality

|f(t)| = |〈f,Kt〉| ≤ ‖f‖‖Kt‖ (2.1)

evaluation is bounded. Conversely, according to Riesz’s lemma we have

f(t) = 〈f, Lt〉 (2.2)

since evaluation is a bounded and linear functional. Defining K(s, t) = δs[Lt] = 〈Ls, Lt〉K
is sufficient for the defining properties.

Continuous evaluation – as we will see in Example 2.1 – does not hold for Hilbert spaces
in general. In the smoother RKHSs the kernel itself is the representer of evaluation and
is an element of the RKHS.

Theorem 8. Norm convergence in HK implies pointwise convergence.

If a series fn converges to f in the RKHS norm, then

|fn(t)− f(t)| = |〈fn − f,Kt〉| ≤ |‖ft − f‖K‖Kt‖|K → 0 . (2.3)

In other words, when two functions are identical in the RHKS norm, they agree at every
point. It is remarkable that norm convergence – as a global property – unveils local
behavior.

Example 2.1. The Hilbert space L2 of square integrable functions is not a RKHS. In L2

the Dirac delta is the representer of evaluation. The Dirac delta is not an element of L2

and evaluation is not continuous since

lim
n→∞

δx[fn] 6= δx[ lim
n→∞

fn] . (2.4)

The elements of L2 are equivalent classes. Loosely speaking, there are elements f, f̃ such
that f 6= f̃ but ‖f‖L2 = ‖f̃‖L2 . The condition of square-integrability is not strong enough
to make L2 a RKHS. C

In RKHS theory kernels are the analogue to what the Dirac delta is for the L2. A
RKHS has properties which make it well behaved relative to a general Hilbert space. The
characteristic property of a RKHS is that functions are pointwise defined and evaluation
is represented by the kernel. In Definition 2, however, it remained vague what a RK is.
The most important property is positive definiteness:
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Definition 3 (Positive definite function). A symmetric function K : T ×T → R is called
a positive definite (PD) function if∑

ciK(xi, xj)cj ≥ 0

holds for any n ∈ N, x1, · · · , xn ∈ T and c1, · · · , cn ∈ R.

The concept of PD functions is closely related to positive semi-definite matrices.

Theorem 9. Every RK belonging to a RKHS is a PD function.

To check if the bi-linear form associated with Definition 3 is an inner product is an often
used method to proof positive definiteness. Let K denote the RK, then∑

ciK(xi, xj)cj = 〈∑ ciKxi ,
∑
cjKxj〉K ≥ 0 . (2.5)

Example 2.2. In the same way it can be shown that

K(s, t) = min(s, t) (2.6)

defined on s, t ∈ R+ is PD. A plot of Ks(t) is shown in the mid panel of Figure 2.2. For
the derivative we have ∂tK(s, t) = 10≤t≤s(t). The kernel may be expressed in terms of an
inner product

K(s, t) =

∫
R+

K̇s(u)K̇t(u) du =

∫
R+

1{0≤u≤s}(u) 10≤u≤t(u) du (2.7)

which is easily confirmed by standard calculus. This kernel is known to be the covariance
of the Wiener process, a model for Brownian motion [Rios et al., 2012, Sec. 6.3]. C

The covariance being a PD function too, establishes a first link with GPs. For now,
this connection remains just as a coincidence. Section 2.2, however, is going to introduce
a duality between GPs and RKHSs.

Compared with Theorem 9 the following theorem goes in the other direction and con-
structs a RKHS from a given PD function:

Theorem 10 (Moore-Aronszajn). To every PD function P there corresponds a unique
RKHS with RK P .

The proof – details including uniqueness may be found in Berlinet and Thomas-Agnan
[2004, Sec. 1.3] – is based on what is known under the term kernel map construction. Let
P be a PD function and consider the space of all kernel expansions defined by

HP =
{
f(s) =

∑
aiP (s, ti)

∣∣∣ ti ∈ T, ai ∈ R
}
. (2.8)

Endowed with the inner product

〈f, g〉P =
∑
i,j

aiP (ti, tj)aj (2.9)
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2. Reproducing Kernel Hilbert Spaces

and by adjoining the limits of all Cauchy sequences,HP forms a Hilbert space. Condition 1
of Definition 2 – P (ti, ·) ∈ HP – is clearly fulfilled under the kernel map construction.
Condition 2 – the reproducing property – is checked by

〈f, Pt〉P = 〈∑fiPi, Pt〉P =
∑

fi P (si, t) =
∑

fi P (si, t) = f(t) (2.10)

and boundedness directly follows from the Cauchy-Schwarz inequality. Thus, HP is the
RKHS and elements may be expressed in terms of a kernel expansion. In other words,
there is only one PD function namely the RK and the notions of PD functions and RKs
are in fact the same.

Since RKs are just PD functions it is intuitive that new RKs can be formed by combining
existing PD functions. The simplest operation is scaling by positive scalars. Sums of PD
functions are RKs, too. The difference of RKs is, however, not necessarily a RK since it
may happen that K1(t, t)−K2(t, t) < 0. Products of PD functions are also RKs. Further
details are given in the aforementioned textbooks.

Example 2.3 (Polynomial kernels). Consider the space of polynomials of degree at most
n with some basis

(
b0(x), . . . , bn(x)

)
not necessarily an ONB. Equipped with the inner

product defined by

〈g, h〉 =
∑

gihi , (2.11)

where gi and hi are the coefficient w.r.t. bi(x), this is a RKHS and the RK is given by

K(x, y) =
∑

bi(x) bi(y) , (2.12)

called a polynomial kernel. For any x fixed, it is clear that Kx = K(x, ·) is a polynomial
with coefficients bi(x) and belongs to the space. The reproducing property follows since

〈f,Kx〉 =
∑

fibi(x) = f(x) (2.13)

where the fi are again the coefficients w.r.t bi(x) and holds for any polynomial f .
It is noteworthy that the space of polynomials is spanned by various bases, e.g. monomials
xi or a Taylor basis about zero xi

i!
. However, the RKs that are constructed according to

Equation 2.12 and according inner product are in general not identical. To see this, for a
polynomial f let mi be coefficients w.r.t. the monomials. Then ti = i!fi are the coefficients
w.r.t the Taylor type basis. The RKHS norms are not identical ‖f‖M =

∑
m2
i whereas

‖f‖T =
∑
t2i =

∑
(i!mi)

2. C

From the above example (Ex. 2.3) we can deduce that every finite dimensional Hilbert
space possesses a RK.

Example 2.4 (Exponential kernels). The polynomial kernels presented in Example 2.3
may be understood as the sum of individual RKs. Interpreted as a power series with
appropriate scaling gives raise to the exponential kernel∑ sk√

k!

tk√
k!
→ exp{st} (2.14)

and also scaling of the arguments is straight forward. C
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With the same arguments given in Examples 2.3 and 2.4, kernels may be formed from
all functions which have a Taylor series of non-negative coefficients [Steinwart and Christ-
mann, 2008, Lma. 4.8]. Although a sufficient condition, the following example shows that
non-negative Taylor coefficients are not necessary.

Example 2.5 (SE Kernel). The squared exponential kernel (Ex. 1.1) can be constructed
with the above principles. Taking the product of exponential kernels (Ex. 2.4) with scaled
arguments, the SE kernel is formed by

KSE(s, t) = exp{−σs2} exp{−σt2} exp{2σst} = exp{−σ(s− t)2} (2.15)

and the Taylor series coefficients are not strictly positive but alternating. C

Since it is possible to form all sorts of different kernels, the question that raises is
which properties do the according RKHS possess? An additional view of RKHSs may be
obtained by characterizing the RK in terms of an integral operator and Mercer’s theorem.
Therefore, regard the kernel K as a bounded and linear integral operator

TK [f ](·) =

∫
K(·, s)f(s) dµ(s) (2.16)

and assume f real-valued potentially ranging through L2. Since TK is a linear and
bounded operator, by the spectral calculus the notion of eigenvalues and eigenfunctions
are at hand. A function φi that obeys the integral equation

TK [φi](t) = 〈Kt, φi〉2 = λiφi(t) (2.17)

is called an eigenfunction of the kernel K with eigenvalue λi. The eigenfunctions are
orthogonal with respect to the measure and are normalized such that 〈φi, φj〉2 = δij.
Mercer’s theorem states that the spectral decomposition of the integral operator TK

yields a series representation of K in terms of TK ’s eigenvalues and eigenfunctions.

Theorem 11 (Mercer). Let (T, µ) be a finite measure space and K be a continuous PD
function. Then there exists a sequence of eigenvalues λi > 0 and normalized eigenfunc-
tions φi of TK such that

K(s, t) =
∑

λiφi(x)φi(y)

and the series convergence is absolute and uniform.

Mercer’s theorem establishes a link between the RKHS inner product and the L2 inner
product. Consider a RK K with an eigenfunction expansion according to Theorem 11.
Construct a Hilbert space comprised of linear combinations of the eigenfunctions{

f ∈ L2

∣∣∣∣ ∑ 〈f, φi〉2
λi

<∞
}

(2.18)

with inner product

〈f, g〉 =
∑ 〈f, φi〉2〈g, φi〉2

λi
. (2.19)
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2. Reproducing Kernel Hilbert Spaces

This Hilbert space is the RKHS corresponding to the RK. To see this, both conditions of
Definition 2 must be met. Since λiφi(t) are the coefficients for Kt we have

〈f,Kt〉 =
∑ 〈f, φi〉2〈Kt, φi〉2

λi
= f(t) (2.20)

〈Ks, Kt〉 =
∑ λiφi(t)λiφi(t)

λi
= K(s, t) (2.21)

where Equation 2.17 was used. Due to uniqueness of the RK, this Hilbert space is in fact
the RKHS. As already pointed out in Example 2.1, L2 is not a RKHS in general, but for
many kernels it contains the RKHS as subspace (see Figure 2.1).

Until here two particular bases of a RKHS were introduced. Any f ∈ HK may be
expressed through eigenfunctions of the RK as well as kernel expansion

f(t) =
∑

fiK(si, t) =
∑

f̃iφi(t) . (2.22)

In case of a kernel expansion the RKHS norm reads

‖f‖2
K =

∑
fiK(xi, xj)fj = . . . (2.23)

whereas as an expansion in eigenfunctions the norm takes the form

. . . =
∑ f̃ 2

i

λi
. (2.24)

For ‖f‖K being finite, the sequence of coefficients f̃i = 〈f, φi〉2 must decay at a sufficient
rate. The rougher a function the slower their eigenvalue spectrum decays. In other words,
the rate of decay of the eigenvalues imposes a smoothness condition on the space. It is
important to distinguish clearly between the two inner products. While ‖ ·‖2 refers to the
distance with respect to some measure µ, the RKHS norm is a measure of the roughness
of a function. For example, the eigenfunctions have ‖φi‖2 = 1, but ‖φi‖K = λ

−1/2
i is

becoming increasingly rough.
Compared with the n-dimensional quadratic form f>K−1

n f that appears in the MVN
density, the squared norm ‖ · ‖2

K in the RKHS formalism can be thought of as a gener-
alization to functions. Mercer’s theorem may be understood as the infinite-dimensional
extension of an eigenvalue decomposition. To see this, suppose that Kn is a symmetric and
positive definite n× n matrix. Then there exists an orthonormal basis ei with according
eigenvalues λi that diagonalizes Kn. This means that Kn = UΛU> with unitary matrix
U = [e1, . . . , en] and diagonal matrix Λ = diag(λ1, . . . , λn). If this is multiplied out it
simply reads Kn =

∑
λieie

>
i , which is exactly like Mercer’s theorem. If Kn is expressed

in terms of the eigenvectors ei then the quadratic form becomes (Uf)>Λ−1(Uf), which is
in analogy to the inner product (see Equation 2.19). Compared with RKHSs, eigenvectors
ei become functions φi(t) as opposed to simple vectors.

Example 2.6. Let us revisit Example 2.2 – the Wiener process – and calculate the Mercer
decomposition of

K(s, t) = min(s, t) (2.25)

defined on s, t ∈ [0, T ]. The eigenvalue problem (Eq. 2.17) follows to read

TK [φ](s) =

∫ s

0

tφ(t) dt+ s

∫ T

s

φ(t) dt = λφ(s) . (2.26)
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Figure 2.2.: Mercer decomposition of min(s, t) for s = 2 (see Ex. 2.6). The left panel illustrates
the eigenfunctions for degrees 0, 1, 2, 3. A comparison of min(s, t) with the expansion up to degree
n ≤ 3 is shown in the mid panel. The right panel depicts the spectrum of the eigenvalues.

For s = 0 the boundary condition φn(0) = 0 is clear. Differentiating once yields

sφ(s) +

∫ T

s

φ(t) dt− sφ(s) = λφ̇(s) (2.27)

and for s = T we find another boundary condition φ̇n(T ) = 0. A further differentiation
brings up a well known ODE

λφ̈(s) = −φ(s) (2.28)

and the solution is of the form

φ(s) = a sin

(
s√
λ

)
+ b cos

(
s√
λ

)
. (2.29)

Imposing both boundary conditions yields

b = 0 and cos

(
T√
λ

)
= 0 (2.30)

and the eigenvalues and normalized eigenfunctions are going to read

λn =
T 2

π2
(

1
2

+ n
)2 and φn(t) =

√
2

T
sin

(
t√
λn

)
. (2.31)

Figure 2.2 illustrates the Mercer decomposition. C

Mercer’s theorem may be generalized towards a continuous spectrum. This requires the
restriction to stationary kernels that are RKs depending only on the lag τ = s − t. The
following theorem – quoted from Berlinet and Thomas-Agnan [2004, sec. 7.1] – establishes
a link with the Fourier domain:

Theorem 12 (Bochner). The Fourier transform of a bounded positive measure on Rd is
a continuous function of positive type. Conversely, any function of positive type is the
Fourier transform of a bounded positive measure.
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2. Reproducing Kernel Hilbert Spaces

Further details and a poof may also be found in Berlinet and Thomas-Agnan [2004,
sec. 7.1]. If the positive measure has a spectral density λ(ξ) then the stationary kernel
and the spectral density are forming a Fourier pair. Considering the shift property of the
Fourier transform yields

K(s, t) = K(s− t) =

∫
λ(ξ) exp{2iπξs} exp{−2iπξt} dξ (2.32)

and the complex exponentials may be see as the eigenfunctions. That interpretation draws
an analogy to Mercer’s theorem where the sum is replaced by an integral. Expressed in
terms of the lag, Equation 2.32 is also known as the Wiener-Khinchin theorem.

Example 2.6 already suggests that differentiability takes a significant role in construct-
ing kernels that feature a certain regularity. The fundamental principle is to penalizes a
function f in terms of variability. The following is a condensed from of what is detailed
in Rasmussen and Williams [2006, sec. 6.2.1]. Define a norm that takes the derivatives
up to order M into account

‖f‖K =
M∑
m=0

am

∫
(∂mx f(x))2 dx (2.33)

and all coefficients are assumed positive1, i.e. am > 0. This norm imposes a regular-
ity constraint similar to the principles already known for the kernel map construction.
Equation 2.33 is transformed into the Fourier domain

‖f‖K =

∫ (∑
am(2πξ)2m

) ∣∣∣f̂(ξ)
∣∣∣2 dξ (2.34)

which turns the derivatives into an algebraic equation. The key is to recognize that the
complex exponentials exp{2iπξ·} are eigenfunctions of the derivative and the kernel’s
positive spectral density can directly be read off. The associated RK is determined with
the help of Bochner’s theorem. The kernel is given through an inverse Fourier transform

K(s, t) = K(τ) =

∫
1∑

am(2πξ)2m
exp{2iπξτ} dξ (2.35)

which follows from a comparison with Equation 2.32. As a consequence, the Fourier
transformation is a powerful tool to analyse properties of a given kernel.

Example 2.7. It was confirmed in Example 2.5 that the SE covariance is a RK. However,
neither an explicit form for the inner product nor the smothness of the RKHS are known.
Since the SE kernel is stationary, the shift property of the Fourier transform yields

K(x, y) =

∫
K̂(ξ) exp{2iπξx} exp{−2iπξy} dξ . (2.36)

Using the Fourier pair exp{−x2/a} ↔ √πa exp{−(πξ)2a}, the spectral density is given by

K̂(ξ) =
√

2π` exp
{
−2(πξ`)2

}
. (2.37)

1Vanishing coefficients are spanning a null space that needs separate treatment. An exhaustive discussion
about Spline models may be found in Wahba [1990] and Rasmussen and Williams [2006, sec. 6.3]
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The reproducing property becomes apparent through the insertion of K̂

K̂
. Then, Equa-

tion 2.36 takes the form of an inner product

K(x, y) =

∫
K̂−1(ξ) K̂x(ξ)K̂y(ξ) dξ . (2.38)

Consequently – within the Fourier domain – the inner product of the RKHS is given by

〈g, h〉K =

∫
ĝ(ξ)ĥ(ξ) K̂−1(ξ) dξ . (2.39)

The spectral density K̂ gives information about the smoothness of the RKHS. A function
f belongs to a RKHS if the according norm is finite. Roughly speaking this means that
f̂ has to converge to zero at a rate faster than K̂1/2.
An expression in the original domain may be found by using the series expansion of the
exponential function. Expanding by an imaginary unit and factoring out constants yields

K(x, y) =
1√
2π`

∑
n

`2n

n!2n

∫
(2iπξ)nK̂x(ξ)(−2iπξ)nK̂y(ξ) dξ . (2.40)

Making use of the Plancherel theorem and identify the Fourier pair ∂nx ↔ (2iπξ)n yields

K(x, y) =
1√
2π`

∑ `2n

n!2n

∫
∂nz K̂x(z) ∂nzKy(z) dz . (2.41)

Then – w.r.t the original domain – the inner product that corresponds with the SE kernel
is given as a series expansion

〈g, h〉 =
1√
2π`

∑ `2n

n!2n

∫
(∂nz g(z)) (∂nz h(z)) dz . (2.42)

Consequently, elements of the according RKHS are very smooth. It is not enough to
require all derivatives to exists. In addition, every derivative has to satisfy the condition
of square integrability. And on top of that the series has to converge. Although the SE
covariance is probably the most widely-used kernel function, in case of an application it
should be ensured that such a strong smoothness assumption is appropriate. C

A slightly different approach to obtain the kernel implied by a differential operator is
to address Green’s function. The following example illustrates how to find the kernel
corresponding to a given regularity assumption.

Example 2.8. For the domain [0, T ], determine the RK according to

〈g, h〉K =

∫
ġ(z), ḣ(z) dz (2.43)

with zero initial conditions, i.e. f(0) = 0. The key is that a Green’s function for the
differential operator ∂t is the Heaviside step function and the kernel results to be K(x, y) =
min(x, y) i.e. the Wiener process. C

Chapter 5 details the approach via Green’s function in greater depth using the example
of a damped vibrating string.
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2. Reproducing Kernel Hilbert Spaces

2.1. Regularized Least Squares

A viewpoint closely related to RKHS theory is regularization. Without additional infor-
mation, fitting a curve onto a set of points is ill posed because the associated optimization
problem has infinitely many solutions. To uniquely determine such a solution it is neces-
sary to introduce further constraints. The intuition behind finding a regularized solution
is to specify a curve that is a trade-off (compromise) between a data-fit term and a norm of
that function. For reference, the following discussion may be found in a number of sources,
e.g. Rasmussen and Williams [2006, Sec. 6.2] or Steinwart and Christmann [2008].

Based on linear mixed models, the function f to be fitted is apportioned such that

f(t) = g(t) + h(t) (2.44)

where g is adjustable and h is known i.e. a non-random effect. We wish to find a curve f
that is a good estimate for a set of n training pairs

(y1, x1), · · · , (yn, xn) (2.45)

with pointwise observations yi at locations xi. The discrepancy between the prediction
f(xi) and observations yi is measured by the least squares loss, distinguishing between
good and bad. Since f is an arbitrary function – in most applications the search domain
will be an infinite-dimensional subspace of L2 – an additional constraint penalizing the
complexity of the function is needed. This is accomplished by considering functions within
a RKHS and the additional cost is chosen to be the RKHS norm. Using the empiric risk,
the objective functional is of the form

J [f ] =
∑(

yi − f(xi)
)2

+ λ‖g‖K (2.46)

leading to the regularized minimization problem

f̂ ∈ arg min
g∈HK

{
J [f ]

}
. (2.47)

The scaling parameter λ controls the trade-off between function smoothness (fidelity) and
fitting error also known as the residual sum of squares. The smoothness assumptions on
f are encoded by the RKHS and the data-fit term assesses the quality of the prediction.
In general it is difficult to determine a value for λ. Section 2.3 mentions techniques how
to choose λ.

Provided a value for λ is known, the representer theorem stats that the solution of
minimization problem is given by a finite kernel expansion:

Theorem 13 (Representer). Given a RK K and a training set of n pairs
{

(yi, xi)
}n
i=1

.
Any minimizer

ĝ ∈ arg min
g∈HK

{∑(
yi − g(xi)

)2
+ λ‖g‖K

}
admits a representation of the form

ĝ(·) =
n∑
i=1

âiK(·, yi)

with âi ∈ R.
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2.1. Regularized Least Squares

Remarkable about that theorem is that the representation of ĝ reduces the infinite-
dimensional optimization problem to minimize the coefficients â1, · · · , ân, a finite dimen-
sional optimization problem. Theorem 13 is a particular example of a family of results
that are collectively referred to as representer theorems. Generalizations that may be
found in the aforementioned references include: The representer theorem keeps its form
considering an arbitrary but convex error function rather than the residual sum of squares.
Instead of having a pointwise training set general observational functionals are possible.
The regularizing parameter may be replaced by strictly monotonically increasing function
of the RKHS norm.

Coming back to the residual sum of squares, the solution to the optimization problem
(Eq. 2.47) is explicit. To keep equations concise vector/matrix notations are introduced:

y = (y1, · · · , yn)> (2.48)

a = (a1, · · · , an)> (2.49)

hx = (h(x1), · · · , h(xn))> (2.50)

kzx = (K(z, x1), · · · , K(z, xn)) (2.51)

Kxx = {K(xi, xj)}i,j=1,··· ,n . (2.52)

Substituting f by a finite kernel expansion and using the reproducing property yields

J [a] = (y −Kxxa)2 + λa>Kxxa (2.53)

and the optimization problem reads

â ∈ arg min
a∈Rn

{J [a]} . (2.54)

Differentiating and solving yields the minimizing coefficients

â = [(Kxx + λI) Kxx]
−1 Kxx (y − hx) , (2.55)

a form that is well known from Tikhonov regularization and ordinary least squares. If
Kxx is of full rank, the prediction that minimizes Equation 2.47 is given by

f̂(z) = h(z) + kzx(Kxx + λI)−1 (y − hx) . (2.56)

Compared with GP regression the form of f̂ is similar to the conditional mean (see
Eq. 1.19). If pointwise observations corrupted by homoscedastic centered Gaussian noise
of variance λ are assumed, the conditional mean and f̂ are even identical. Section 2.2
demonstrates that this is no coincidence. An extension to bounded linear observational
functionals is not far to seek and may be found in Wahba [1990].

Various data fitting methods may be unified as an optimization problem in a RKHS
setting. Although most of them will not be mentioned here, the following three examples
are intended to demonstrate the variety of methods regularization and RKHS theory are
bridging across.

Example 2.9 (Polynomial Interpolation). Let us proceed with the ongoing example
where the signal is assumed to be

f̃(x) = x cos(x) (2.57)
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2. Reproducing Kernel Hilbert Spaces
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Figure 2.3.: The actual signal is shown by , the error bars are indicating the noise level
and refers to the training set. The top panel shows the interpolating polynomial (see Ex. 2.9).
The smoothing effect of the regularizer on the least squares solution is depicted in the mid
panel (see Ex. 2.10). The bottom panels illustrates the effect of the degrees of freedom on the
reconstruction (see Ex. 2.11).

although this is not a polynomial. A training set of n = 10 records is acquired from f̃ ,
corrupted by centered normal noise of standard deviation σ = 0.2 . Finding the polynomial
of degree at most n with coefficients a0, . . . , an−1 that passes through points

f(xi) =
n−1∑
j=0

ajxi
j = yi (2.58)

is known as polynomial interpolation. Since the number of observations equals the number
of coefficients this linear system of equations has a unique solution. Thus, there is no need
to regularize – i.e. λ = 0. The interpolating polynomial is equivalent to the solution of
the optimization problem given by Equation 2.56. The top panel of Figure 2.3 shows the
interpolating polynomial, obtained using the kernel

K(x, y) =
n−1∑
j=0

(xy)i

i!
. (2.59)

Any other kernel built off a polynomial basis of degree at most n (see Eq. 2.12) yields
identical solutions, e.g. K(x, y) = (xy + c)n or K(x, y) =

∑
(xy)i. C

In statistical applications one is generally more interested in smoothing rather than
interpolating data. The following example establishes a link to least squares techniques
and illustrates the effect of the regularizing parameter.
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2.2. Duality GP and RKHS

Example 2.10 (Ordinary Least Squares & Ridge Regression). Example 2.9 is modified
such that there are more training points than degrees of freedom. The same kernel as
in the previous example is used, with the difference that a polynomial of degree at most
n − 1 shall be found. In other words, the polynomial can not pass through all training
points at the same time. That means the system of equations is overdetermined and the
matrix Kxx becomes rank deficient. To compute the inverse, a non-zero λ is necessary.
The smallest λ is determined through the condition number and the machine precision.
The mid panel of Figure 2.3 illustrates varying λ through scales. It can clearly be seen
that values close to the machine’s precision are affected by numerical instabilities. On the
other hand, the larger λ the smoother the reconstruction. C

Ordinary least squares regression, however, is not defined when the degrees of freedom
exceed the number of observations. That limitation is solved by using a kernel based
approach. Even passing to the limit of infinitely many degrees of freedom is possible.

Example 2.11. Still, we proceed with the setting introduced in Example 2.9. The aim
of that example is to demonstrate the effect the kernel has on the reconstruction. This is
best understood considering fewer data that degrees of freedom. In that case the matrix
Kxx is of full rank and we set λ = 0. The kernel offers the opportunity passing to the
infinite-dimensional case (see Ex 2.4). The bottom panel of Figure 2.3 illustrates the
Kernel’s effect by varying the degrees of freedom. The interpretation may be seen in
the light of the usual Fourier transform: With growing polynomial degree there are more
high-frequency contributions. Consequently, the fidelity of the reconstruction grows with
the polynomial degree. C

Although the regularized solution gives only half the Gaussian process solution, the sim-
ilarity between the conditional mean and the regularized solution motivates establishing
a formal link between GPs and RKHSs.

2.2. Duality GP and RKHS

In this section the connection between GPs and RKHSs is described. Despite RKHSs
being function spaces and sample paths being functions, a RKHS structure is not given
to the space of all possible sample paths [Manton and Amblard, 2015, Sec. 7.2]. It is the
covariance function of a GP that can be identified with the RK of a RKHS.

In order to establish this connection an auxiliary Hilbert Space is needed. Let X(t) be
a GP. The Hilbert space HX generated by a process is the collection of RVs of the form

U =
∑

uiX(ti) (2.60)

equipped with the inner product

〈U, V 〉X = E[UV ] (2.61)

and with all the mean square limits adjoined. In other words, HX represents all RVs
attainable by linear operations, including limits.

The RKHS HK is a representation of the GP due to the following theorem:
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2. Reproducing Kernel Hilbert Spaces

HX HK

Z =
∑
ziX(ti) z(·) =

∑
ziK(ti, ·)

X(t) Kt

ψ

Figure 2.4.: The correspondence between GPs and RKHSs.

Theorem 14 (Loève). The Hilbert Space HX generated by the GP X(t) with covariance
K is isometrically isomorphic to the RKHS HK with RK K.

In other words, each RV inHX gets a function inHK assigned. To see this correspondence,
let ψ denote the map from HX to HK defined by

ψ
(∑

uiX(ti)
)

=
∑

uiK(ti, ·) . (2.62)

This is an isometry since it preserves the linear structure of the inner products

〈X(s), X(t)〉X = E[X(s)X(t)] = K(s, t) = 〈Ks, Kt〉K . (2.63)

The notion of HX and HK being isometrically isomorphic means that although the two
Hilbert spaces consist of different elements (RVs vs. functions) they still share the same
geometric structure. Figure 2.4 illustrates that one to one correspondence.

Once the isometric isomorphism is established, problems related to GPs can be trans-
lated into functional ones and vice versa. It is customary to use whichever of the spaces is
more convenient for the problem. Inference is typically performed adopting a statistical
point of view, whereas, functional analysis is addressed for deriving RKs.

For all g, h ∈ HK , consequences of Theorem 14 are

〈ψ−1(g), ψ−1(h)〉X = 〈g, h〉K (2.64)

〈ψ−1(g), X(t)〉X = g(t) (2.65)

E
[
ψ−1(g)

]
= 〈g,E[X]〉K (2.66)

due to linearity and continuity. This can further be generalized. According to Riesz
theorem, any bounded linear functional L has a representer η ∈ HK . By duality there is
also a RV Z that corresponds to η and we have

〈Z,X(t)〉X = E[ZX(t)] = 〈η,Kt〉K = η(t) = LKt . (2.67)

Examples for such functionals are e.g. integrals, derivative or limiting sequences.
An application of the duality principle in combination with the Mercer decomposition

leads to an important series representation of GPs:

Theorem 15 (Karhunen-Loève). Let X(t) be a centered GP with continuous covariance
K that possesses a Mercer decomposition (Thm. 11) of eigenfunctions φi and eigenvalues
λi. Then, X(t) admits a representation of the form

X(t) =
∑√

λiUiφi(t)

32



2.3. Kernel Parameters

with Ui independent standard normal RVs and the convergence is uniform with respect to
t and in quadratic mean.

To show this result both the duality and Mercer’s theorem are used. Through the isometry
ψ the GP is connected to the function

φ
(
X(t)

)
= K(t, ·) =

∑
λnφn(t)φn(·) . (2.68)

Conversely, the RV χn = ψ−1(
√
λnφn(t)) is identified. Using Equations 2.66 and 2.19,

first and second moments are given by

E[χn] = 〈
√
λnφn,E[X(t)]〉K = 0 (2.69)

E[χmχn] =
√
λm〈φm, φn〉K

√
λn = 1 (2.70)

and χn is identical to Ui. The general case of a non-zero mean process can be brought
back to the case of a centered process by additively splitting off the mean.

The advantage of the Karhunen-Loève expansion is that it separates the dependence
upon t and the randomness. The process is decorrelated in the sense that eigenfunctions
φi are orthogonal and RVs Ui are independent. The division into functions and random
contributions offers a way to analyse the RKHS norm of sample paths, yielding

‖X(t)‖2
K =

∑
i,j

√
λiUi〈φi(t), φj(t)〉KUj

√
λj =

∑
U2
i . (2.71)

That result indicates that the duality between GP and RKHS has its limitations. Follow-
ing the heuristic argument given by Wahba [1990, p. 5] we have

E
[
‖X(t)‖2

K

]
=
∑

E
[
U2
i

]
=
∑

i→∞ . (2.72)

In other words, for more than a finite number of non-zero eigenvalues sample paths are
not in HK almost surely. Further details may be found in the afore mentioned references.
Typically, the following example is given to demonstrate that the trajectories of a GP
have a lower regularity than the associated RKHS.

Example 2.12. According to Example 2.8, the RKHS that corresponds to Brownian
motion is the Sobolev space H1(0, T ). Unlike elements of this Sobolev space, it is well
known that sample paths of the Wiener process are almost surely not differentiable.

2.3. Kernel Parameters

For a selected kernel function, the predictive performance of GP regression depends ex-
clusively on that covariance. However, in many applications, it is possible to only specify
the structure of the covariance. The kernel still depends on unknown parameters whose
values need to be determined. In order to bring GP regression into practice, techniques
determining kernel parameters are essential. For the following discussion, references in
use are Murphy [2012, Sec. 15.2.4] and Rasmussen and Williams [2006, Sec. 5.4].

Typically there is only vague information about kernel parameters. Therefore an em-
pirical Bayesian approach is considered. Modulo a normalizing constant the parameter’s
posterior density is given by

p(θ|d) ∝ p(d|θ)p(θ) (2.73)
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Figure 2.5.: Posterior density for parameters ` and τ of the SE kernel. A priori ` and τ are
assumed uninformative. By the MAP estimate is indicated. The grid refers to collation points
used to integrate out kernel parameters.

where kernel parameters are denoted by θ and d refers to the data. Let adopt the Gaussian
linear model i.e. linear observations with normal error model (see Sec. 1.3). Within that
setting and for θ fix, the marginal likelihood (a.k. prior predictive distribution) is normal

p(d|θ) = N (µθ, Kθ) . (2.74)

with a priori mean µθ and covariance Kθ.

Using a point estimate is a simplistic approach to tune kernel parameters. In order to
optimize θ across a parameter space Θ, maximize the Bayesian posterior density

θMAP ∈ arg max
Θ
{p(d|θ)p(θ)} (2.75)

i.e. the maximum a posteriori (MAP) estimate. The derivative with respect to θ is
tractable [Murphy, 2012, Eq. 15.24] and continuous optimization techniques may be used
for estimation such as the differential evolution algorithm. The main argument against
using a point estimate is that the actual inference does not take the parameters’ uncertain-
ties into account. Three more difficulties are worth mentioning: 2) In higher dimensions,
optimization suffers from the curse of dimensionality. 3) Local minima may be a problem
as the objective is not convex. 4) Computing K−1

θ may be numerically expensive.

Example 2.13. The SE kernel (Eq. 1.14) depends upon two parameters, length scale `
and overall variance τ . The simplest approach to find a point estimate is to use an exhaus-
tive search over a discrete grid. A priori, ` and τ are assumed positive but uninformative.
The true signal in use and the measurement geometry with to be known error level are
shown in Figure 2.6. Figure 2.5 shows the parameters’ posterior density also indicating
the MAP estimate

`MAP = 0.3 τMAP = 0.39 . (2.76)

Having only 8 data points is not enough to decide about the kernel parameters with
confidence. Nonetheless, the top panel of Figure 2.6 shows the according posterior GP. C
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2.3. Kernel Parameters

If the parameter’s posterior density is diffuse, a point estimate is not truly satisfying.
Although not of particular interest, the variabilities of kernel parameters should be taken
into account. Performing GP regression based on θMAP certainly does not propagate
parameter uncertainties. If the dimensionality of θ is small enough to perform numeric
integration a hierarchical Bayesian approach is feasible. Therefore, kernel parameters are
taking the role of a latent RV. The compound distribution is the result of marginalizing
over the latent variable

p(f |d) =

∫
p(f |d, θ)p(θ|d) dθ . (2.77)

integrating out any dependence on kernel parameters. The integrand is a product of two
densities. For a certain choice of parameters, p(f |d, θ) is normal and obtained through
GP regression. To keep track of p(θ|d) we add a hierarchical stage introduced above
(Eq. 2.73). However, the mixing distribution p(θ|d) has no particular form and the integral
must be evaluated by numerical methods. To compute the compound density requires two
numeric integrations: First the actual marginalization and a second quadrature to suitably
normalize. Although the compound distribution is not normal, calculating higher-order
moments is one of its potentials. Mean and co-variance are given by

E[f |d] =

∫
p(θ|d) E[f |d, θ] dθ (2.78)

V[f |d] =

∫
p(θ|d)

(
E[f |d, θ]2 + V[f |d, θ]

)
dθ − E[f |d]2 . (2.79)

To calculate the Gaussian moment matching proxy three numeric integrations are neces-
sary. In any case, the resulting variance is greater or equal than for any point estimate.
If the parameter space is of moderate dimensionality, standard methods for numeric inte-
gration may be used. Nevertheless, the numerical costs may be enormous. One difficulty
that arises is to explore and discretize the parameter space. The method called Integrated
Nested Laplace Approximation (INLA) Rue et al. [2017] is known to be suited well to
perform inference with latent Gaussian models.

Example 2.14. The setting and the prior over the kernel parameter ` and τ remain
as in Example 2.13. In contrast – rather than using the MAP estimate – the SE ker-
nel parameters are integrated out. The compound density is approximated by numeric
integration

p(f |d) ≈
∑

p(f |d, θi)p(θi|d)∆θi (2.80)

where Simpson’s rule specifies the wights ∆θi. The coarse grid shown in Figure 2.5 refers
to the 63 collocation points specified. The same numeric integration is in use to compute
conditional mean (Eq. 2.78) and standard deviation (Eq. 2.79). In Figure 2.6 the bottom
panel shows the moment matching Gaussian proxy with model parameters marginalized.
In comparison with the reconstruction that is based on the MAP estimate (top panel) it
can clearly be seen that the moment matching proxy deviates and features significantly
larger uncertainties. C
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Figure 2.6.: The true signal is shown by , error bars are referring to the noise level and refers
to the training set in use. The top panel shows the reconstruction using the MAP parameter
estimate (Eq. 2.75). In the bottom panel kernel parameters are marginalized and the moment
matching proxy is shown. The posterior mean is depicted by and the gray shaded area
represents the 38%, 68% and 95% pointwise confidence intervals.
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3. Non-Gaussian Likelihoods

The Gaussian linear model is attractive because of its algebraic convenience. On the
contrary, the restriction to normal distributions and affine maps is not truly satisfying.
Reality is unlikely to be captured well by such a simple statistical model. Many principles
in physics show non-linear relations and measurement noise is not necessarily additive and
normal distributed. However – at the time of writing – computing power is not sufficient
to numerically solve the multidimensional integrals that are required to perform inference
with non-Gaussian likelihoods. This motivates the consideration of approximate Bayesian
inference that offers a more versatile modeling concept – e.g. accommodation of non-linear
functionals – while preserving the algebraic convenience of the linear Gaussian model.
Indeed, this is not possible in general but under certain circumstances an approximation
may be valuable as guideline.

As motivation, assume X to be normally distributed. In general, non-linear maps
will turn Gaussian RVs into non-Gaussian RVs. There are two well known strategies to
approximate PDFs by normal densities. Let Y = f(X), where f is a non-linear function.
1) Use a first-order approximation of f to preserve normality. 2) Project f(X) onto the
space of Gaussians by moment matching. The intuition behind both approaches shall be
outlined by an example:

Example 3.1. Consider the quadratic function f(x) = x2 and let X ∼ N (µX , σ
2
X).

According to Theorem 2, the density of Y = X2 is given by

pY (y) =
pX(−√y) + pX(

√
y)

2
√
y

for y ∈ (0,∞) (3.1)

since X2 has values at the positive real line, only. First and second moment are given by

E[Y ] = µ2
X + σ2

X V[Y ] = 2σ4
X + 4µ2

Xσ
2
X . (3.2)

We aim to approximate pY by a normal density. The moment matching proxy is given by a
normal density of mean E[Y ] and variance V[Y ]. The 1st order approximation – linearised
about x̃ – is given by f(x) ≈ f(x̃) + 2x̃(x − x̃). Choosing µX as point of expansion, the
approximate mean and variance read

E[Y ] ≈ µ2
X V[Y ] ≈ 4µ2

Xσ
2
X . (3.3)

Figure 3.1 illustrates the idea and compares the proxy densities. C

That introductory example already unveiled three major difficulties. (1) The moment
matching strategy is easy to understand. However, depending on the map, calculating
first and second moment may be exceedingly hard. (2) In contrast, computations to carry
out a Taylor expansion are easy. Although mean and variance are right at hand, it is
not apparent which point of expansion to favour. (3) There are arbitrary many normal
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Figure 3.1.: Quadratic transformation of a Gaussian RV. At the bottom, the original PDF is
shown. The top right panel indicates the non-linear map and its linearization. The moment
matching ( ) and linearised ( ) proxy PDFs are shown in the top left panel together with
the transformed PDF ( ).

approximations. How to quantify the goodness of the approximation if the true density
is not known. In the following, these difficulties and their consequences are repeatedly
addressed and illustrated.

Besides Gaussian approximations, there exist a variety of methods dealing with non-
linear inference. While Markov-Chain-Monte-Carlo techniques are maybe the most ad-
vanced and widely used class of approximate inference techniques it is not without prob-
lems such as convergence, the independence of samples and computational time [Seeger,
2004, Bishop, 2006, Rue et al., 2009]. Just to name few, complementary methods are
particle filtering, unscented filters and the Expectation Maximization algorithm [Ghahra-
mani, 2004, Sec. 5]. A whole class of alternatives are so-called variational techniques used
for approximating intractable integrals arising in Bayesian inference [Murphy, 2012].

3.1. Bayesian Posterior

Before introducing approximations the exact Bayesian posterior is analysed to outline
the setting and to point at difficulties arising. Still, the underlying a priori model M(s) is
assumed a Gaussian process (GP) with mean µM(s) and covariance KM(s, t). In contrast,
the likelihood function is no longer assumed Gaussian. For a training set d with known
error model, theoretically, the posterior process is given by

pM |D(m|d) =
pD|M(d|m)pM(m)

pD(d)
(3.4)

where m refers to trajectories i.e. a function m(s). Although appropriate as a concept,
ranging through a space of functions is in most applications analytically not tractable.
On top of that, computers of finite-memory and finite-precision do not admit to range
through an infinite-dimensional function space. This means that further assumptions have
to be made for a numerical implementation.
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Figure 3.2.: The pseudo color plot refers to the pointwise posterior density according to Exam-
ple 3.2. To improve the perception, a semi-logarithmic colormap is used. The range of the
a priori density is linearly mapped from white to yellow. Values exceeding that range are shown
at a logarithmic scale from yellow through red to black. The true signal is indicated by .
The a priori mean is shown by whereas refers to ± standard deviation. Vertical lines
are referring to locations where observations are acquired.

In contrast to previous sections measurements are restricted to pointwise observations.
The training set of n records d = (d1, · · · , dn) is acquired at points t = (ti, · · · , tn). The
likelihood depends on the process only via a finite set M(t1), · · · ,M(tn) and reads

pD|M(d|m) = pD|M(d|mt) . (3.5)

where mt is a shortcut for m(t1), · · · ,m(tn). The error model remains free of choice and
the functions putting the a priori process and observations in relation may be non-linear
but pointwise. The difficulty compared to GP regression is that the likelihood – regarded
as a function in mt – is not Gaussian shaped anymore.

Pointwise posterior predictions of the process are facilitated by assigning a latent role
to the training points. Predictions at points of observation Mt|d may be seen as parame-
ters that carry dependencies along and are marginalized subsequently [Rios et al., 2012,
Chp. 2]. The predictive distribution at a design point s (distinct from training points t)
is given by integrating out the latent variables

pM |D
(
m(s)

∣∣d) =

∫
pM |D

(
m(s),mt

∣∣d) dmt ∝
∫
pD|M(d|mt)pM

(
m(s),mt

)
dmt . (3.6)

except for normalization. Since the posterior is no longer a distribution over functions,
a numerical implementation is conceivable. However, two extremely costly integrals have
to be calculated: The marginalization and the normalization constant. Marginalizing the
training set is one of the key problems. In the vast majority of cases the n-dimensional
integrals are analytically not tractable.

The following toy example – numerically assessing the exact Bayesian posterior density
– shall illustrate the enormous computational costs and will serve as reference for later
comparison with approximations.

Example 3.2 (Exact Bayesian Inference). As in the early examples the same true signal
m̃(t) = t cos t is used. In contrast n = 4 pseudo records are generated off from its square.
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3. Non-Gaussian Likelihoods

Observations are assumed to be conditionally independent and the data model reads

Di|m̃ ∼ Γ(ki, θi) (3.7)

i.e. measurement errors are Gamma distributed. The error model is chosen such that by
average the square of the signal is recorded at an error level of ε = 10%. In other words,
the larger the value recorded the bigger the potential corruption. The parameters of the
error model are given by

ki = ε−2 and θi = ε2m(ti)
2 (3.8)

which corresponds to a Gamma distribution that is scaled by the square of the signal.
The according likelihood as a function in mt reads

p(d|mt) =
∏
i

dki−1
i e

− di
θi

Γ(ki)θ
ki
i

. (3.9)

The a priori GP remains as in the previous examples. The covariance is chosen to be
the SE Kernel (Eq. 1.14) and the prior mean is kept a falling straight line (Eq. 1.22).
Numerical integration is addressed to calculate the normalizing constant and to perform
the marginalization 1. SciPy’s nested, general purpose adaptive quadrature is used to ease
the implementation [Virtanen et al., 2020]. Figure 3.2 presents the resulting pointwise
posterior density. Multimodality is clearly visible if records are acquired near the origin.
The posterior distribution features two branches per record. This complexity is chosen
on purpose to challenge the approximations discussed in the following. C

The computational complexity is dominated by the number of observations. Numeric
integration suffers from the curse of dimensionality scaling computational costs at an
untold rate [Bishop, 2006, sec. 1.4]. A training set that exceeds only a handful of records
renders numerical integration utterly inconceivable. For multiple design points the effort
further increases as the marginalization has to be performed for every individual point.

Example 3.3 (Computational Costs). At the time of writing, it took an ordinary work-
station featuring 8 parallel threads 3 d and 14 h to explore the posterior density shown
in Figure 3.2 . To evaluate the density of the regular gird of size 200 × 100, every grid-
point requires to solve a 4-dimensional integral plus one for the normalizing constant.
The adaptive quadrature scheme causes the computational costs to scale exponentially
w.r.t. number of records 2. Figure 3.3 illustrates how computational times blow up for
calculating the normalization constant. By just Adding one more record, the computing
time of Example 3.2 would have increased to about 258 d. C

The above example demonstrates that for large datasets the computational costs to
directly solve Bayesian inference are prohibitive. Because the normalizing constant needs
to be calculated only once, marginalizing the latent variables requires priority. Since GPs
are the only precesses where marginalization is straight forward, a GP approximation
appears to be a promising strategy.

1 The conjugacy of Gaussian and Gamma distribution gives chance for further analytic steps. Because θ
and m are sharing a quadratic relation further simplifications are not apparent. Howsoever, particular
solutions are not the main interest.

2Although a fixed point quadrature scheme is less demanding, improved numerics can not evade the
curse of dimensionality.
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Figure 3.3.: Illustration of the computational costs depending on the number of observations.
Computational costs of a nested general purpose adaptive quadrature scheme grow exponentially.
The logarithmic scale ranges from a millisecond to one week.

3.2. Gaussian Process Approximation

The aim of this section is to approximate the Bayesian posterior distribution by a GP.
A GP approximation is a reasonable approach since GPs are one of the few processes
with which it is feasible to deal analytically. However, to find such an approximation
a measure is required that quantifies the similarity of two distributions. One way to
measure how a probability distribution is different from a reference distribution is defined
as follows [Rasmussen and Williams, 2006, A. 5]:

Definition 4 (Kullback-Leibler Divergence). For distributions P and Q with densities
p(x) and q(x),

KL(P‖Q) =

∫
p(x) log

(
p(x)

q(x)

)
dx

is called the Kullback-Leibler (KL) divergence.

The KL divergence is non-negative but asymmetric and, thus, not a distance. A KL
divergence of zero indicates that two distributions are identical. In the context of infor-
mation theory, P represents the true distribution while Q refers to an approximation of
P . An interpretation of the KL divergence is the amount of information lost when Q is
used instead of P . The more the distributions differ the bigger the KL divergence.

The normal distribution Q – with mean µ̃ and covariance Σ̃ – that is closest to some
general distribution P may be found by optimizing the KL divergence 3. The minimizing
parameters are determined by differentiating KL(P‖Q) w.r.t. µ̃ and Σ̃ and setting the
expressions to zero. The resulting optimal parameters are given by

∂µ̃KL(P‖Q) := 0  µ̃ = E[P ] and ∂Σ̃KL(P‖Q) := 0  Σ̃ = V[P ] , (3.10)

the so-called moment matching Gaussian proxy [Rasmussen and Williams, 2006, A. 5].

To approximate the exact Bayesian posterior by its moment matching Gaussian requires
to calculate posterior mean and covariance. Although, E[M |d] and V[M |d] are assumed

3An alternative is variational Bayesian inference where reference and proxy distributions of the KL
divergence are reversed [Murphy, 2012, Chp. 21]. However, this work focuses mainly on distributional
proxies rather than modal approximations.
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3. Non-Gaussian Likelihoods

intractable, taking advantage of the a priori process being Gaussian provides insight into
the overall structure of the approximation: It is not necessary to inspect every design
point individually. Assigning a latent role to the locations of observation is sufficient 4.
The a priori mean and covariance functions determine the behaviour in between.

To calculate mean and covariance it is beneficial to express the posterior density by

p(ms|d) =

∫
p(mt|d) p(ms|mt) dmt (3.11)

which is obtained by conditioning the a priori GP to mt. Let assume mean E[Mt|d)] and
covariance V[Mt|d] of the latent variables were numerically accessible. Then, for arbitrary
design points s the posterior mean takes the familiar form

E[M(s)|d] = µM(s) +KM(s, t)KM(t, t)−1 (E[Mt|d)]− µM(t)) (3.12)

since a priori the conditional mean E[M(s)|mt] is linear w.r.t. mt. The conditional co-
variance Cov[M(r),M(s)|mt] does only depend on the locations t but not on the actual
values mt and, thus, the posterior covariance follows to read

Cov[M(r),M(s)|d] = KM(r, s)−
−KM(r, t)KM(t, t)−1

[
KM(t, t)− V[Mt|d]

]
KM(t, t)−1KM(t, s) , (3.13)

an algebraic form that is not entirely unknown. These formulae are similar but not
identical to those known from GP regression 5.

The object of central importance are posterior mean and co-variance of the latent
variables. Although the posterior mean and covariance of the training set are assumed
intractable in most applications, it is noteworthy that knowing E[Mt|d] and V[Mt|d]
arrives at a convenient algebraic form similar to the one known from GP regression.
In other words, the benefit is that it is not necessary to use numeric integration for
computing posterior mean and covariance at every individual design point. However,
moment matching proxies are known to over-estimate the support if the posterior is multi
modal or heavily tailed [Murphy, 2012, Sec. 21.2.2]. That effect is illustrated by revisiting
the toy example:

Example 3.4 (Moment Matiching Proxy). The setting remains as in the previous ex-
ample (Ex. 3.2) with n = 4 records. In contrast, only mean and covariance of the latent
variables are calculated. SciPy’s general purpose adaptive quadrature scheme is again
used for numerical integration. That requires a single n-dimensional quadrature to cal-
culate the normalizing constant pD(d). Calculating the posterior mean E[Mt|d] requires
to carry out n times a n-dimensional integral. The covariance matrix V[Mt|d] consist of
1
2
n(n + 1) independent entries, each requiring to evaluate a n-dimensional integral. In

total, the computational complexity is even worse but, fortunately, independent of the
number of design points. In comparison with Example 3.2 the time spent for numerical

4This raises the question whether it is necessary for latent variables and locations of observation to
coincide? Conversely, asked: Is it possible to project the information held by the latent variables onto
other locations e.g. a regular gird?

5Less effective, so-called sparse approximations lead to a form that one-to-one translates into the equa-
tions known from GP regression.
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Figure 3.4.: Comparison of Gaussian approximations. The true posterior mean and pointwise
standard deviation are indicated by . For the Laplace approximation, that is expanded
around the MAP estimate, mean and standard deviation are shown by . It can be clearly
seen that uncertainties are underestimated and the mean aligns with one of the branches. In
contrast, with the mixture approach ( ) no deviations are apparent by a visual inspection.

integration only adds up to a fraction because solely the latent variables have to be taken
into account. Figure 3.4 presents the pointwise posterior mean and standard deviation.
The posterior mean does not align with the most prominent mode of the Bayesian poste-
rior. Instead, it lies in between of the modes, enclosed by a standard deviation that is large
compared with the support of the individual branches. From Example 3.3, adressing the
computational costs, it is clear that calculating mean and covariance becomes intractable
when exceeding a hand full of records. C

The Gaussian moment matching proxy centers itself such that the coverage of the exact
posterior is high. As presented in the above example, this is particularly evident in case
of multimodality. This is because the forward KL divergence does not favour the proxy
to feature high probability mass where the exact posterior does.

Although the moment matching GP proxy is optimal w.r.t. the KL divergence, this
approach is ineffective since in most applications calculating first and second moment
of the latent variables is not possible. Nonetheless, the general form of any kind of
Gaussian approximation is given by Equations 3.12 and 3.13 [Seeger, 2004, Sec. 4]. These
two equations are forming the foundation for less conserving but numerically tractable
approximations. The subsequent sections resort to practical algorithms for approximative
inference that scale well also for large scale applications.

3.3. Laplace Approximation

Laplace’ method is an empirical but widely used approach, providing little control over
optimality [e.g. Bishop, 2006, Murphy, 2012]. It replaces the high-dimensional integral by
an optimization problem which may be easier to solve. This approximation can be used
if the likelihood function is well peaked and concentrated to a small area.

The basic idea behind Laplace’ method is to perform a second order Taylor series
expansion of the log posterior PDF. A second order approximation fully captures the
a priori GP. Therefore it is sufficient to expand the negative log likelihood function –
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denoted by `(d|mt) – in the latent variable mt about some point m̂t. The gradient and
Hessian are abbreviated by

g = −∇`(d|mt)
∣∣
m̂t

and H = −∆`(d|mt)
∣∣
m̂t

(3.14)

and the second order proxy of the log likelihood function is given by

`(d|mt) ≈ `(d|m̂t)− g>(mt − m̂t)−
1

2
(mt − m̂t)

>H(mt − m̂t) . (3.15)

The point of expansion remains as a free, yet unknown parameter vector. The definiteness
of the Hessian depends on the choice of m̂t. If m̂t is chose such that H is PD, then, the
proxy likelihood as a function in mt is Gaussian shaped with precision H and mean vector
m̂t − H−1g. To see this, collect all constant terms and expand the square.

Gaussianity of the likelihood function is sufficient to arrive at a computationally con-
venient solution for some Gaussian proxy posterior. Since the second order expansion is
Gaussian shaped w.r.t. the latent variables, the posterior is normal as well. This is the
case because the product of two Gaussian functions is Gaussian shaped [Rasmussen and
Williams, 2006, Eq. A.7]. Approximative mean and covariance of the latent variables Mt

are given through the equations known from GP regression (Eqs. 1.19 and 1.20).
To predict at arbitrary design points r and s, the exact posterior mean and covari-

ance (Eqs. 3.12 and 3.13) are combined with the latent variables’ approximative mean
and covariance. Under the Laplace approximation the conditional mean and covariance
functions are given by

E[M(s)|d] ≈ µM(s) +KM(s, t)
(
H−1 +KM(t, t)

)−1 (
m̂t − H−1g − µM(t)

)
(3.16)

Cov[M(r),M(s)|d] ≈ KM(r, s)−KM(r, t)
(
H−1 +KM(t, t)

)−1
KM(t, s) (3.17)

restoring the algebraic convenience of GP regression.
In order to bring Laplace’ method into practice a point to perform the expansion about

is missing. An obvious idea is to choose m̂t such that it minimizes the KL divergence.
However, direct minimization turns out to be intractable because it involves averaging
with respect to the exact distribution (see Sec. 3.2). In addition, a most likely non-linear
system of equations would have to be solved. As a consequence, optimizing the KL di-
vergence renders Laplace’ method even more complicated than the moment matching
Gaussian for a less accurate approximation. This is why a systematic approach determin-
ing the point of expansion is not rewarding.

The typically pursued strategy to choose m̂t is so-called mode seeking – i.e. find the
MAP estimate, if unique. The objective is to find a posterior mode with high probability
and wide support

m̂t ∈ arg max{p(mt|d)} . (3.18)

The problem of solving high dimensional integrals is replaced with computing the location
of the mode which is an optimization problem. As a rule of thumb, mode seeking is faster
to solve than numerical integration. Since m̂t is a mode, the gradient term of the Taylor
expansion vanishes and the mean of the proxy likelihood function becomes m̂t. However,
finding the global maximum is not an easy task, especially in case of a high-dimensional
parameter space featuring various saddle points and/or local maxima. The optimization
problem may be rephrased as a non-linear root finding problem

0 :=∇`(mt|d) ↔ 0 :=KM(t, t)g(mt) +mt − µM(t) . (3.19)
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3.3. Laplace Approximation

In the majority of applications an analytic solution does not exists. Therefore numerical
root finding is addressed which, however, is sensitive to the initial guesses. A concrete
implementation using Newton’s method and paying attention to stability considerations
is presented in Rasmussen and Williams [2006, sec. 3.4].

Example 3.5 (Laplace Approximation). The setting remains as in the previous examples
(see Ex. 3.2). According to Equation 3.9, the gradient and Hessian of the log likelihood
function follow to read

g =
2

ε2

{
m̂2
i − di
m̂3
i

}
i=1,...,n

, H =
2

ε2

{
3di − m̂2

i

m̂4
i

δij

}
i,j=1,...,n

. (3.20)

The root finding strategy (Eq. 3.19) is addressed to determine m̂t. To easy the imple-
mentation, SciPy’s general purpose root finding procedure is used. To ensure that m̂t

corresponds to the global maximum, every branch of the posterior must be taken into
account. In total, the posterior density features 2n branches because the square of the
underlying signal is observed n-times. The permutations of ±

√
di are used as initial

guesses. The global maximum is selected from the resulting 2n roots. In comparison with
the moment matching Gaussian, the computational costs for the root finding algorithm
are negligible. But it is also true that the results differ greatly. It can clearly be seen in
Figure 3.4 that the proxy mean aligns with one of the branches and the pointwise variance
is considerably underestimated. C

A major weakness of Laplace’ method is that it is essentially uncontrolled except that
the proxy posterior mean aligns with one of the modes. Evaluating the Hessian at m̂t

may lead to a poor approximation of the exact posterior density. The proxy covariance is
likely to collapse to a very narrow mode since there is no mechanism to ensure spanning
across all the modes. Another shortcoming of Laplace’s method is exposed if the a priori
covariance is large and/or a likelihood function that is highly non-Gaussian shaped. Then,
a lot of probability mass is sent through regions that are far from where the approximation
performs tolerably.

3.3.1. Mixture Approach

A Laplace approximation that is purely based on a single maximum of the exact posterior
distribution can fail to capture important global properties. A Gaussian model is intrin-
sically unimodal and so unable to provide a good approximation to a multimodal PDF.
Many of the distributions encountered in practice will be multimodal and so there will be
different Laplace approximations according to which mode is being considered [Bishop,
2006, sec. 4.4]. In situations when the posterior distribution does not feature a clearly
pronounced mode it is important to provide a more global approximation. A mixture
approach can be pursued if there are multiple local maxima m̂t,j present.

Let assume a set of local maxima is known that all in all covers the bulk of the exact
posterior density . In the following, the approximated PDFs are indicated by q(·). The
local maxima are marginalized by examining the individual Laplace approximations

p(ms|d) ≈
∑

q(ms|d, m̂t,j) p(m̂t,j|d) (3.21)
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3. Non-Gaussian Likelihoods
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Figure 3.5.: Mixture weights for all branches in descending order.

where the general product rule is used and s refers to an arbitrary design point. Equa-
tion 3.21 has the form of a Gaussian mixture with weights p(m̂t,j|d) because the individual
Laplace approximations are normal distributed. To determine the weights an empirical
Bayesian approach is addressed, adding a hierarchical stage. The weights are given by

p(m̂t,j|d) ≈ q(d|m̂t,j)p(m̂t,j)

Z
, (3.22)

the so-called marginal posterior distribution. To simplify matters all points of expansion
are assumed equally likely and mixing takes place only through the so-called marginal like-
lihood q(d|m̂t,j). The overall normalizing constant is given by Z =

∑
q(d|m̂t,j) because

in a mixture model the weights have to sum to one. Under the Laplace approximation the
marginal likelihood may be see as the normalizing factors of the individual components
(denominator of Bayes’ law). According to Rasmussen and Williams [2006, Equation A.6],
the marginal likelihood is given by

p(d|m̂t) =
exp
{
−1

2
(m̂t − H−1g − µM(t)) (KM(t, t)−1 + H) (m̂t − H−1g − µM(t))

}√
(2π)n |KM(t, t)−1 + H|

(3.23)
depending on d through g and H. Because the mixing distributions are normal, calculating
moments is simple. Mean and covariance are analogous to Equations 2.78 and 2.79.

Example 3.6 (Mixture Approach). This is the continuation of Example 3.5. Rather than
picking the MAP to linearize about – as shown in the previous example – all branches
and their related maxima are taken into account. Figure 3.4 illustrates that by visual
inspection, mean and standard deviation of the Gaussian mixture cannot be distinguished
from the moment matching Gaussian proxy. It can clearly be seen in Figure 3.5 that the
global maximum is not over-dominating the mixing weights. Without even knowing the
exact posterior, this already raises doubts about choosing a single point of expansion.
On the contrary it also shows that there is a certain number of components with little
to negligible contribution, unnecessarily increasing computational efforts. The mixture
approach meets the exact posterior much closer, but, computational costs increase by 2n

with respect to the number of observations. C

The main weakness of the mixture approach is that one usually does not know whether
an optimization algorithm has found the decisive maxima. It requires exploring the entire
space of latent variables which in itself is already a computational challenge, if feasible at
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3.4. Local Likelihood Approximations

all. In most applications, the mixture approach is not practical because either the branches
are not known and/or there are too many of them. In large scale applications the number
of combinations can hardly be solved. There is no general strategy to determine the
maxima of prime importance although the literature about root-finding and optimization
problems is exhaustive. An alternative to Laplace’ method are techniques that are based
on local approximations that do not explicitly rely on the marginal likelihood function.

3.4. Local Likelihood Approximations

The following presents two techniques for approximate Bayesian inference, namely, as-
sumed density filtering (ADF) and the expectation propagation (EP) algorithm. Although
not a general purpose method, ADF is introduced first because of its intuitive nature. It
may be understood as the groundwork necessary before introducing the more versatile
EP algorithm. Compared to Laplace’ method, these techniques require roughly similar
computational costs, however, feature an improved accuracy. The following discussion
settles on the special case of a GP model. With the Gaussian assumption, ADF and the
EP algorithm may be seen as extensions of Kalman type filters. For a general discussion
with respect to exponential families see e.g. Minka [2001], Seeger [2003], Bishop [2006],
Murphy [2012] and/or Gelman et al. [2013].

3.4.1. Assumed Density Filtering

The key intuition behind ADF is twofold: 1) Rather than considering all the data at
once, records are sequentially processed in terms of a Bayesian update system. 2) For
every record an exact update step is perform but the intermediate posterior distributions
are approximated by a tractable form [Murphy, 2012, sec. 18.5.3]. The following presents
ADF for the special case assuming that the moment matching Gaussian is sufficient to
approximate the intermediate steps.

The Bayesian update system is expressed as a recursive relation. The posterior distri-
bution of the latent variables is gradually built, adding in new records one after the other.
Following an arbitrary sequential ordering, the inclusion of a single record is given by

Mt|d ≈M
(j)
t = M

(j−1)
t |dj for j = 1, . . . , n (3.24)

where the base case (j = 0) represents the a priori model. The superscript j indicates
how many of the records are already worked in 6. Performing exact update steps results in
intermediate posterior distributions that are not tractable. To assume all the intermediate
steps being Gaussian distributed

M
(j)
t ∼ N

(
µ

(j)
t , Σ

(j)
tt

)
(3.25)

is the approximation upon which ADF is based. An interpretation of this recursion is
that every intermediate proxy distribution serves as prior for the subsequent record.

The attempt to systematically derive µ
(j)
t and Σ

(j)
tt results in similar problems as with

the point of expansion in Laplace’ method. A direct approach that tries to determine

6The superscript notation is chosen to keep equations concise, although, a vertical bar – to indicate a
conditional – might appear more logical.
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3. Non-Gaussian Likelihoods

mean and co-variance such that the global KL divergence is minimized involves averaging
with respect to the exact distribution and, thus, is assumed intractable. Even though
not suited to characterize global optimality, the typically performed approximation is to
minimize the local KL divergence for every individual record. This represents a much
simpler problem to solve. At a local scale – i.e. only considering a single record – the
KL divergence is minimized by the moment matching Gaussian proxy. The inclusion of
a single record consists of two tasks: 1) Calculate exact posterior mean and variance for
that very record, than, 2) perform a prediction on all the other latent variables.

Mean µ
(j−1)
j and standard deviation σ

(j−1)
j from the previous step serve as prior for

the inclusion of the next record. Because the tractable form is chosen to be the moment
matching Gaussian, first and second moments are calculated from the exact posterior
distribution

Zj =

∫
p(dj|mj) p(mj|µ(j−1)

j , σ
(j−1)
j ) dmj (3.26)

E
[
M

(j−1)
j

∣∣∣dj] =
1

Zj

∫
mjp(dj|mj) p(mj|µ(j−1)

j , σ
(j−1)
j ) dmj (3.27)

V
[
M

(j−1)
j

∣∣∣dj] =
1

Zj

∫
m2
jp(dj|mj) p(mj|µ(j−1)

j , σ
(j−1)
j ) dmj − E

[
M

(j−1)
j

∣∣∣dj]2

(3.28)

which, in general, do not possess explicit solutions. In many applications, one dimensional
integrals are amenable to numerical approximations. Taking all n records into account,
leads in total to 3n times one-dimensional integrals to be solved. Although numerical inte-
gration is required, the computational costs are cut down by carrying out one-dimensional
integrals which are undemanding compared to a n-dimensional quadrature.

Once the moments of the jth record are calculated, the so-called one-step ahead pre-
diction follows. According to the moment matching Gaussian proxy (Eqs. 3.12 and 3.13),
predictive mean and covariance are given by

µ
(j)
t = µ

(j−1)
t + Σ

(j−1)
tj σ

(j−1)
j

−2
(
E
[
M

(j−1)
j

∣∣∣dj]− µ(j−1)
j

)
(3.29)

Σ
(j)
tt = Σ

(j−1)
tt + Σ

(j−1)
tj σ

(j−1)
j

−2
(
V
[
M

(j−1)
j

∣∣∣dj]− σ(j−1)
j

2
)
σ

(j−1)
j

−2
Σ

(j−1)
jt (3.30)

where Σ
(j−1)
tj refers to the cross-covariance of latent variables and jth record i.e. the jth

row of the covariance matrix. In the consecutive step this proxy posterior serves as the
prior to include the next datum. This procedure is repeated until all records are worked
in.

When predicting at design points r and s, it is not necessary to carry those along
while progressing. It is sufficient to model the latent variables and defer predictions as a
post-processing step. The predictive mean is given by

E[M(s)|d] ≈ µM(s) +KM(s, t)K−1
M (t, t)

(
µ

(j)
t − µM(t)

)
(3.31)

and the predictive covariance follows to read

Cov[M(r),M(s)|d] ≈ KM(r, s)+

+KM(r, t)K−1
M (t, t)

(
Σ

(j)
tt −KM(t, t)

)
K−1
M (t, t)KM(t, s) (3.32)

48



3.4. Local Likelihood Approximations

where the a priori covariance function KM may be seen as a means for interpolation.
Because this property of ADF is not obvious at first sight it is briefly derived in the
following. One way to show that Equations 3.31 and 3.32 are equivalent to carrying along
design points is to start off from the hypothesis and use the recursive relation to replace
µ

(j)
t and Σ

(j)
tt . Once all terms are factored out and the hypothesis for the (j − 1)th step is

identified, it remains to show that

KM(r, t)K−1
M (t, t)Σ

(j−1)
tj = Σ

(j−1)
rj (3.33)

holds. The key to recognize this relation is the cross-covariance with the latent variables

Σ
(j)
xt = Σ

(j−1)
xt Σ

(j−1)
tt

−1
Σ

(j)
tt (3.34)

which may be read off from Equation 3.13. This equation can be transformed into

Σ
(j)
rt Σ

(j)
tt

−1
= Σ

(j−1)
rt Σ

(j−1)
tt

−1 ≡ KM(r, t)K−1
M (t, t) (3.35)

and the quantity that mediates between design points and latent variables is invariant
while progressing. This shows that modeling design points either while progressing or as
a post-processing step is in fact equivalent. The information is solely stored in the latent
variables. Performing predictions subsequently saves computational costs and memory
demands, however, may also lead to a difficulty. It might be necessary to regularize the
a priori covariance matrix because the inversion/factorization is hindered by numerical
instabilities.

As a proof of concept, applying ADF to travel time tomography is presented in Sec-
tion 4.3. The two step strategy that is presented in Section 6 about modeling the archeo-
magnetic field relies on a special case of ADF.

The major weakness of ADF is that the resulting approximation strongly depends on
the sequential ordering [Seeger, 2003]. If the measurements are appreciably correlated a
gradually set up posterior is sensitive to the order of succession. A record that was worked
in early might turn out to be of greater value at the end of the chain and vice versa.
Furthermore, because each datum is individually approximated, mutual interactions are
weakened and the joint proxy posterior could well give a poor approximation [Bishop,
2006, sec. 10.7]. As with Laplace’ method, ADF is an intuitive algorithm with little
control about optimality. These shortcomings are addressed by the EP algorithm, which
is introduced in the following.

3.4.2. Expectation Propagation Algorithm

The ADF chain is restricted to incorporate each record only once, not to contradict the
fundamental concepts of stochastic inference. It was Minka in 2001 who observed that the
basic ideas underlying ADF can be generalized. The concept behind the EP algorithm
is to assign a record for re-inclusion while preserving contributions of the rest of the
training set. EP may be seen as an iterative variant of ADF rendering the tractable
posterior distribution independent of the sequential ordering constraint. By multiply
passing over the data, EP adopts a more global point of view iteratively refining the
tractable posterior distribution. Although EP in its most general form can be expressed
for exponential families, the following assumes the tractable form to be Gaussian

Mt|d ≈M
(i)
t ∼ N

(
µ

(i)
t , Σ

(i)
tt

)
(3.36)
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3. Non-Gaussian Likelihoods

where i refers to an iteration until convergence. This differs from ADF where the index j
points to a certain record. The increased accuracy stems from multiply passing through
the data set which makes it necessary to compensate a previous inclusion while preserving
what has been leaned from the other records.

Suppose we are at iteration i with proxy posterior mean µ
(i)
t and covariance Σ

(i)
tt , e.g. by

passing through an ADF chain. The record dj – which is assumed being worked in at
the k-th step – is assigned for re-inclusion. This setting requires bookkeeping of three
indices: i denotes to the current iteration, j designates a datum for re-inclusion and k
refers to the previous step where dj was already worked in. To consider dj one more time,
its contribution to the k-th step needs to be removed. The so-called cavity distribution
is the i-th posterior divided by the k-th proxy likelihood

q(m
(i)
t |d \ dj) = Zj

q(m
(i)
t |d)

q(dj|m(k)
j )

(3.37)

where densities are indicated by q(·) to emphasize that we are dealing with the Gaussian
proxies and Zj is the normalizing constant. This approach can be seen as kind of a reversal
of Bayes’ law but preserves correlations governed by the remaining records.

Because we have chosen the tractable form being normal distributed, all proxy likeli-
hoods q(dj|mj) must also be Gaussian shaped w.r.t mj and thus Zj is explicit. Mean
and co-variance of the likelihood are obtained by comparing prior and proxy posterior at
the k-th iteration. Using again the identity A.7 in Rasmussen and Williams [2006] we
calculate mean and covariance

Σ
(k)
lkh = −Σ

(k)
jj − Σ

(k)
jj

(
V
[
M

(k)
j |dj

]
− Σ

(k)
jj

)−1

Σ
(k)
jj (3.38)

µ
(k)
lkh = µ

(k)
j − Σ

(k)
jj

(
V
[
M

(k)
j |dj

]
− Σ

(k)
jj

)−1 (
E
[
M

(k)
j |dj

]
− µ(k)

j

)
(3.39)

where E
[
M

(k)
j |dj

]
and V

[
M

(k)
j |dj

]
are numerically calculated with respect to the true

likelihood function (see Eqs. 3.26 to 3.28). In order to correct for the proxy likelihood we
have to store µlkh and Σlkh for every individual record.

The quotient of Gaussian shaped functions is again Gaussian shaped since the denom-
inator is less variant than the numerator in case of a GP regression. For the cavity dis-
tribution the Woodburry identity (a.k. matrix inversion lemma; Rasmussen and Williams
[2006, A. 3]) is addressed and mean and covariance are given by

Σ
(i\j)
tt =

(
Σ

(i)
tt

−1 − ItjΣ(k)
lkh

−1
Ijt
)−1

= Σ
(i)
tt − Σ

(i)
tj

(
Σ

(i)
jj − Σ

(k)
lkh

)−1

Σ
(i)
jt (3.40)

µ
(i\j)
t = . . . = µ

(i)
t + Σ

(i)
tj

(
Σ

(i)
jj − Σ

(k)
lkh

)−1 (
µ

(k)
lkh − µ

(i)
j

)
(3.41)

where Itj refers to an identity that is padded with zeros. The calculation of the proxy
likelihood and cavity distribution is the tricky part of the EP algorithm. The individual
Gaussian moment matching proxies and the one-step ahead prediction are analogous to
ADF and, thus, the heart of the EP algorithm is formed by the ADF equations.

The cavity distribution M
(i\j)
t can safely serve as prior to again incorporate the j-th

record because dj’s contribution is removed. The new, better moment matching Gaussian
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3.4. Local Likelihood Approximations

proxy for the j-th record is numerically obtained through Equations 3.26 to 3.28, analo-
gously to the ADF formalism. Likewise, projecting on the latent variables is the same as
for ADF. The one step ahead prediction is given by

µ
(i+1)
t = µ

(i\j)
t + Σ

(i\j)
tj Σ

(i\j)
jj

−1
(
E
[
M

(i\j)
j |dj

]
− µ(i\j)

j

)
(3.42)

Σ
(i+1)
tt = Σ

(i\j)
tt + Σ

(i\j)
tj Σ

(i\j)
jj

−1
(
V
[
M

(i\j)
j |dj

]
− Σ

(i\j)
jj

)
Σ

(i\j)
jj

−1
Σ

(i\j)
jt (3.43)

and the base case i = 0 refers to the a priori assumption. Mean µlkh and (co)-variance Σlkh

of the proxy likelihoods are carried along for every individual record and are iteratively
optimized. If there is additional knowledge, both may be initialized with coarse starting
values. Otherwise, starting with zero precision is analogous to an initial ADF chain. The
iteration should be stopped when the parameters do not change any more. An often
chosen termination criterion is the maximum of the absolute value for both mean and
covariance.

Revisiting the ongoing example is intended to showcase increased accuracy together
with the rapid convergence.

Example 3.7 (Expectation Propagation). The setting remains just the same as in the
previous examples. The first batch of the EP iteration is formed by an ordinary ADF
chain. As in the previous examples SciPy’s general purpose quadrature scheme is ad-
dressed for numerical integration. After just two more iterations the absolute difference
in all entries of mean µ

(3)
t and covariance Σ

(3)
tt is smaller than 10−4. Taking the tolerance

of 10−3 of the quadrature into account, this can be see as numerically identical. Because
of the high accuracy an illustration is skipped. A comparison with the moment matching
proxy would just yield the same view already provided in Figure 3.4.

The EP algorithm demonstrated empirical success in numerous applications e.g. the
clutter problem [Minka, 2001], TrueSkill™ [Murphy, 2012], GP classification [Rasmussen
and Williams, 2006] and many more. One disadvantage of EP is that there is no guarantee
that the iterations will converge [Bishop, 2006]. If convergent the solution will be a fixed
point obtained at tolerable computational costs (typically less than 5 iterations). However,
precise convergence against the moment matching proxy is not a property of the algorithm.
EP can offer local KL optimality depending on how the updates are performed. Although
EP is not global KL optimal, the algorithm provides control that e.g. a linearization or
Laplace’s approximation are lacking.
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Part II.

Seismology

Chapter 4 presents a new approach in travel time inversion which provides insight from
a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process
regression is adopted to estimate a velocity model. The non-linear travel time integral is
approximated and a heuristic covariance describes correlations amongst observations and
a priori model. That approach assess a proxy of the Bayesian posterior distribution at
ordinary computational costs.

Chapter 5 presents a systematic approach determining the spatial extent and duration
of seismic sources. The concept of Gaussian processes regression is adopted to the classic
inverse problem working backwards characterizing the external force that gave rise to
recorded seismograms. The corner stone of the modeling approach is formed by the
correlations amongst observations and heterogeneously distributed sources of continuous
or transient nature.
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4. Travel Time Inversion

A major application in seismology is the determination of seismic velocity models. Ar-
rival times are the basic measurements of seismology reflecting the underlying velocity
structures 1. The fundamental data to deduce the velocity structure between source and
receiver are the travel times of various seismic phases. In the following I am going to pro-
vide insight to travel time inversion from a statistical point of view. Therefore, the concept
of Gaussian process regression is adopted using travel time observations to estimate the
underlying velocity model.

For body waves, in a high frequency approximation, the transit times can be represented
by ray theory. Continuous lines perpendicular to the propagation of wavefronts are called
ray paths. For a wavefront generated from a point source at position xs and a receiver
located at xr, the travel time can be computed by an integral along the ray path

T =

∫ xr

xs

1

c
ds (4.1)

with underlying velocity c. For heterogeneous velocity structures, rays are not straight
because of refraction within the Earth. The solution to the ray path usually begins with
the non-linear partial differential Eikonal equation

|∇T |2 =
1

c2
(4.2)

which forms the basis for ray theoretical approaches. It is an approximate solution valid at
high frequencies, neglecting gradients in the Lamé parameters and the wave amplitudes.
Solving the two-point ray tracing problem is a non-trivial task. It is not subject of this
work and we will negotiate that obstacle latter.

Based on observed travel times the aim is to invert for a velocity structure that explains
the data. Travel times are in fact an average of the inverse of the velocity. Therefore, the
velocity of the intervening structure can be inverted. Each travel time gives an integral
constraint on the velocity between source and receiver. Hence, a set of travel times
provides decisive information about the velocity structure.

A wide range of inverse methods for different structures and geometries have been
established. There is a rich variety of textbooks discussing travel time inversion in greater
depth. References used for that work are Shearer [2009] in the first place in combination
with Gubbins [2004], Chapman [2004], Stein and Wysession [2003], Kennett [2002] and
Aki and Richards [2002]. For a difference-based and discretized model, in particular the
work by Malinverno and Parker [2006] is to be mentioned, which considers 1D travel time
inversion from a statistical point of view.

In comparison to the literature mentioned, I am going to present an alternative ap-
proach. It is a correlation based Bayesian attempt estimating the velocity model’s mean

1The useful information which may be deduced from amplitudes and waveforms are ignored. Interpre-
tation of the full waveform of a seismogram is a relatively recent innovation.
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Figure 4.1.: Sketch of the source-receiver geometry.

and covariance, posterior to travel time observations. The following method may be inter-
preted as the continuous generalization of the Bayesian approach presented by Malinverno
and Parker [2006] with a priori assumptions made over velocity rather than slowness. The
techniques introduced in Chapter 1 – GP regression with non-linear functionals – are
adopted for travel time inversion. The underlying correlation structure will be a heuristic
choice with little physical motivation and the kernel may be understood as a means of
interpolation. The aim of the subsequent examples is more about the concept rather than
a real-world application.

4.1. Direct Waves

Consider only travel time measurements in a purely 1-dimensional setting 2. To circumvent
reflections a continuous velocity model is considered. Only direct waves exist and we do
not have to solve for the ray path. The model is basically a straight line with actual
propagation velocity c̃(x) > 0. At position s a point source is located and travel time
measurements are gathered along the line at locations ri, i = 1, . . . , n with n the number
of receivers. Figure 4.1 provides a sketch of the setting.

If the true velocity c̃ were known, travel times are calculated according to Equation 4.1 .
The path to be integrated along is the model’s coordinate axis and the observation func-
tional is given by

Ts,r[c̃] =

∫ r

s

1

c̃(x)
dx . (4.3)

Not to end up with negative values, flipping bounds of integration may be necessary if the
source is on the right of the receiver. Picking and timing errors in the data are common.
Actual values recorded are denoted by

d =
{
Ts,ri [c̃] + ei | i = 1, . . . , n

}
(4.4)

corrupted by an error term ei. Although travel times may be observed at will, we do not
know the true velocity model c̃. To proceed with a Bayesian approach, the velocity model
is assumed a GRF determined by

E[C(x)] = µC(x) and Cov[C(x), C(y)] = KC(x, y) . (4.5)

Modelling C as a GRF is questionable because because the velocity could at least theo-
retically become negative. To overcome concerns, let assume the average seismic velocity
is significantly greater than zero and the variance is small compared to its mean. With
respect to C, the observational functional is not linear. To stay with Gaussianity, a

2Not to be confused with a 3d medium only varying along one axis.
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4.1. Direct Waves

linearization of Ts,r[·] is performed (see Section 3). A Gaussian moment matching ap-
proximation is not possible since first and second moment of 1/X, X ∼ N (µ, σ2) do not
exist [Robert, 1991]. To its first order, a Taylor expansion yields

1

C
≈ 1

µC
− 1

µ2
C

(C − µC) (4.6)

where µC – the a priori mean – serves as point of expansion. In its essence, this is nothing
but the traditional approach in tomography [e.g. Gubbins, 2004]. It is adequate to just
approximate 1/C as the integral is an affine transformation. The stochastic data model is
approximated by

D = Ts,r[C] + E ≈
∫ r

s

2

µC(x)
− C(x)

µC(x)2
dx+ E (4.7)

with independent zero mean normal noise E of variance σ2. To proceed with the ap-
proximated Bayesian posterior distribution we have to determine mean and covariance
functions as well as correlations. The observation’s approximated a priori mean reads

E[D] = E[Ts,r[C] + E] ≈
∫ r

s

2

µC(x)
− E[C(x)]

µC(x)2
dx =

∫ r

s

1

µC(x)
dx = Ts,r[µC ] . (4.8)

The covariance for the observational functional is approximated by

Cov[Ts,r′ [C], Ts,r[C]] ≈
∫ r′

s

∫ r

s

KC(x, x′)

µC(x)2µC(x′)2
dx′ dx . (4.9)

Remember that the translational part drops out calculating the covariance. Considering
measurement noise, the data covariance reads

V[D] = Cov[Ts,r′ , Ts,r] + Cov[E,E] ≈
∫ r′

s

∫ r

s

KC(x′, x)

µC(x′)2µC(x)2
dx′ dx+ δr′rσ

2 (4.10)

due to assumed independence of C and E and δ refers to the Kronecker delta. The
predictive functional is the pointwise evaluation of C at locations y. Correlations of
observations and model are

Cov[C(y), Ts,r[C]] ≈ Cov

[
C(y),

∫ r

s

2

µC(x)
− C(x)

µC(x)2
dx

]
= −

∫ r

s

KC(y, x)

µC(x)2
dx . (4.11)

Notice that although C’s correlation length may be short ranging, correlations of travel
times are affecting the whole ray path (see Fig. 4.3 for an example).

We determined all quantities necessary to compute the approximated Bayesian posterior
distribution of the velocity model. C’s posterior mean and covariance are given by

E[C(y)|d] = µC(y) + Cov[C(y), Ts,r]V[D]−1(Ts,r[µC ]− d
)

(4.12)

Cov[C(x), C(y)|d] = Cov[C(x), C(y)]− Cov[C(x), Ts,r]V[D]−1Cov[Ts,r, C(y)] (4.13)

according to Equations 1.37 and 1.38. It is worth emphasizing that we did not assimilate
the non-linear observational functional (Eq. 4.3) but its approximation (Eq. 4.7).
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Figure 4.2.: Prediction of velocity structure (top) and travel time curve (bottom) with its linear
trend removed. The posterior mean is shown by whereas half, once and twice the standard
deviation is indicated by the gray shaded area. A priori assumptions are shown by (mean
± standard deviation). For comparison the true velocity structure and travel time curve are
plotted by . Observations are depicted by and indicates the source location. In addi-
tion, realizations of the prior and posterior process are shown. Receiver locations are
indicated by vertical lines.

To predict on travel time curves, again a linearization is necessary. Indeed, the pre-
dictive functional is Ts,y[·] and we again perform a 1st-order Taylor expansion to make
it linear. In contrast to observations, C’s posterior mean (Eq. 4.12) serves as point of
expansion. The approximated posterior mean and covariance are given by

E[Ts,y|d] ≈
∫ y

s

1

E[C(x)|d]
dx (4.14)

Cov[Ts,y, Ts,y′|d] ≈
∫ y

s

∫ y′

s

Cov[C(x), C(x′)|d]

E[C(x)|d]2 E[C(x′)|d]2
dx dx′ . (4.15)

Both estimates come with the deficit of approximating the non-linear functionals. If
a priori assumptions are reasonably good, non-linearity is not a major concern. In Sec-
tion 4.3 we discuss how to address non-linearity. Only considering direct waves is hardly
satisfying. Lets have a look at an example before we go ahead with reflections at a
discontinuity.

Example 4.1. For demonstration, an arbitrary but continuous velocity model c̃ is gen-
erated. It is composed of Gaussian blobs with a constant offset, depicted in Figure 4.2.
To illustrate the limits of resolution the model shows a small scale wiggle at about 4.
Synthetic travel times are calculated from that model and are corrupted by zero mean
normal noise of variance σ = 0.020 . The geometry of a single source accompanied by
n = 10 receivers is outlined in Figure 4.2 . For the receiver nearest to the source the
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4.2. Reflected Waves

relative timing error is of about 5%. The velocity model C as well as travel times T will
be predicted on a grid of 112 points.
Let assume there is an independent source of information suggesting a constant mean
function of µC = 4.80 with a deviation of ±0.80 . Although it would be preferable to de-
rive a covariance from principles of wave propagation, a heuristic approach is used. The
assumption of a continuous velocity model motivates a smooth kernel function. The co-
variance of choice is the SE kernel (Eq. 1.14). The a priori knowledge already specifies the
variance (τ = 0.80) whereas the characteristic length scale is motivated by the sampling
theorem. Half the mean free receiver spacing gives a characteristic length of ` = 0.83
(being ` away from observations, the correlation drops to 1/e). A priori assumptions are
depicted in Figure 4.2. With the SE kernel and a constant a priori mean function an
analytic solution for the integrals in Equations 4.9, 4.10 and 4.11 are at hand. Ingredients
for the calculus – the antiderivatives of the SE kernel and the error function – may be
found in Bronstein et al. [2000, Eqs. 8.100a and 8.100d].
Figure 4.2 shows the reconstruction of the velocity model. The posterior mean nicely
follows the large scale features of c̃. Structures which are small compared to ` are not
caught how ever densly receivers are spaced (notice the wiggle at about 4 with reduced
receiver spacing). Although uncertainties shrank, a realization of the posterior process
still shows significant variations in comparison to a realization of the prior process. If the
kernel’s correlation length were increased, the posterior process and its realizations be-
come smoother. Interestingly, the posterior standard deviation shows minima in between
the receivers. Velocity perturbations amongst source and receiver are affecting the travel
time the most. This is due to the integral in the observational functional (Eq. 4.3) only
putting a constraint on the average velocity.
The posterior travel time curve is also shown in Figure 4.2. For better illustration, the
travel time curves are cleared of their linear trend. Therefore, the a priori mean is sub-
tracted. Equations 4.14 and 4.15 do not possess a solution of explicit form. For numeric
integration the cumulative trapezoidal rule is used. The overall reconstruction is not too
good, showing late arrivals. Due to non-linearity, even at points of observation the devi-
ation is large. Non-linearity has a substantial effect since a priori assumptions are pretty
far from reality and the reconstruction is just of medium quality. C

4.2. Reflected Waves

The approach presented in the following shall consistently unify two distinct concepts:
Discrete interfaces with an abrupt change in velocity and zones of continuous transition.
Therefore, we still consider the oversimplified setting from Figure 4.1, however, with
regard to a discontinuous velocity model. For simplicity let assume a velocity structure
with single interface

c̃(x) =

{
c̃l(x) x < xj

c̃r(x) x ≥ xj
, cl(xj) 6= cr(xj) (4.16)

where we are certain about the location xj of the discontinuity 3. In addition to direct
waves the interface causes a reflected wave. Again, within a 1d model we are not concerned

3The location of an interface is typically another source of uncertainty.
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4. Travel Time Inversion

about the ray path. The reflected wave basically travels from the interface back to the
receiver and the travel time for a reflection reads

Rs,r,j[c] = Ts,j[c] + Tj,r[c] . (4.17)

To consider travel times of reflections in the modeling approach we need to calculate the
covariance for the reflected wave, the correlation amongst reflected and direct wave and
the correlations amongst model and a reflected wave. That are

Cov[Rs,r,j, Rs,r′,j] = V[Ts,j] + Cov[Ts,j, Tj,r′ ] + Cov[Tj,r, Ts,j] + Cov[Tj,r, Tj,r′ ] , (4.18)

Cov[Rs,r, Ts,r′ ] = Cov[Ts,j, Ts,r′ ] + Cov[Tj,r, Ts,r′ ] , (4.19)

Cov[C(x), Rs,r,j] = Cov[C(x), Ts,j] + Cov[C(x), Tj,r] (4.20)

and all covariances are determined by combinations of Equations 4.9 and 4.11 .
An intuitive approach is to encode the knowledge about the interface in terms of a

piecewise a priori mean function. However, if we proceed with a covariance continuous
across the interface, the two regimes are coupled through the kernel. Then, the recon-
struction of C will also be continuous and the smoothness is determined by the kernel.
With the knowledge of an interface, the big concern is to setup an appropriate covari-
ance comprising the discontinuity. A simplistic approach constructing such a kernel is to
a priori model the two velocity regimes independent of each other. Therefore, let the prior
GRF of the overall model partition into distinct processes

C =

{
Cl x < xj

Cr x ≥ xj
(4.21)

left and right of xj. To accomplish independence the indicator function is used to truncate
at xj. Considered as an operator, the indicator function – e.g. 1x<xj [·] – is linear (additivity
and homogeneity). The left hand a priori GRF reads

Cl ∼ GP(1x<j µl, 1x<jKl 1y<j) (4.22)

with to be truncated mean function µl and kernel Kl. The right hand side GRF constructs
accordingly. Remember that linear combinations of Gaussian are still normal and we have

C = Cl + Cr . (4.23)

Notice that the assumption of independent regimes does not mean travel time observations
being partly uncorrelated. Due to integration along the ray path correlations for travel
times are ranging across the interface. To obtain the approximated Bayesian posterior we
proceed as before (see Eqs. 4.12 and 4.13). Although a priori kernels left and right of xj
are independent, the posterior covariance will show correlations across the interface.

Being certain about the location of an interface is typically not the case. It is rather
an additional source of uncertainty and shall be subject of further research. Nonetheless,
some thoughts may be found in Section 4.5. Before we go ahead to better accommodate
non-linearity, lets have a look at an example.

Example 4.2. Let us adopt the setting of Example 4.1. An interface at xj = 10 is
introduced to the previous model. The actual velocity structure is shown in Figure 4.4.
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Figure 4.3.: Depiction of a priori correlation kernels. Although, the characteristic length of the
truncated SE kernel (left panel) is short, correlations amongst model and travel times (mid
panel) and the travel time covariance (right panel) are showing interdependencies along the
whole ray path. The jump at xj = 10 encoded in the kernels is clearly visible.

Travel times are generated from the discontinuous model and the receivers on the left of
xj are in addition recording the reflection. The kernel of choice is almost be the same as
in Example 4.1, except for correlations across the interface. With a constant prior mean
µ0 = 4.86 we have

µC(x) = 1x<j µ0 + 1x≥j µ0 = µ0 (4.24)

KC(x, y) = 1x<jK0(x, y) 1y<j + 1x≥jK0(x, y) 1y≥j (4.25)

where K0 refers to the SE kernel with characteristic length ` = 0.83 and variance τ = 2.20 .
In comparison to Example 4.1 the variance was increased to account for larger velocity
variations. In Figure 4.3 depicts the three correlation kernels and the interface encoded
is clearly visible.
Figure 4.4 shows the reconstruction of the discontinuity. The point to emphasize is that
the posterior velocity model recovers the jump although not encoded in the a priori mean.
The wiggle at about 4 is still over pronounced because of C’s large correlation length.
Interestingly, the posterior covariance shows very little correlations amongst left and right.
Due to non-linearity the reconstruction is not truly satisfying. The a priori assumptions
are even further off than in Example 4.1 and the posterior model shows late arrivals,
i.e. average velocities are below the actual values. Although the inversion did not cover
the interface’s location, the height of the jump is nicely captured. C

4.3. Successive Approximation

To better accommodate non-linearity the successive approach introduce in Section 3.4.1
is adopted. The fundamental idea is the following: The closer the a priori mean to reality
the better a Taylor expansion approximates. Therefore, a Bayesian updated system is
established progressively improving the function used for the Taylor expansion. Only
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Figure 4.4.: Prediction of a velocity structure possessing a discontinuity at xj = 10 using inde-
pendent kernels. The posterior mean is shown by whereas half, once and twice the standard
deviation is indicated by the gray shaded area. The true velocity structure c̃ is plotted by .
A priori assumptions are indicated by (mean ± standard deviation). Receiver locations are
shown by vertical lines.

incorporating a single measurement at a time gradually builds the posterior mean which
in turn serves as point of expansion for the subsequent observation. Again, the posterior
mean is successively setup and the Taylor expansion will perform the better the more
observations are factored in. That approach is expected to perform well since there are
far reaching correlations along the entire ray path.

Let extend our notations by a subscript indicating the observation incorporated to
encode the idea outlined in the recursive relation. As an example C6 refers to the velocity
model posterior to d1, . . . , d6. The a priori GRF is indicated by C0. Then, the posterior
mean and covariance of Ci+1 = Ci|di+1 read

E[Ci+1] = E[Ci] + Cov
[
Ci, Ts,ri+1

[Ci]
]
V[Di+1[Ci]]

−1 (di+1 − E
[
Ts,ri+1

[Ci]
])

(4.26)

V[Ci+1] = V[Ci]− Cov
[
Ci, Ts,ri+1

[Ci]
]
V[Di+1[Ci]]

−1 Cov
[
Ts,ri+1

[Ci], Ci
]

(4.27)

where i = 1, . . . , n is referring to the total amount of data incorporated. Having considered
all n measurements, the final model is denoted by Cn. Let’s have a detailed look at what
the terms in the recursive relation are referring to. The quantities E[Ci] and V[Ci] refer
to the predecessor’s mean and covariance. According to Equations 4.8, 4.10 and 4.11 the
remaining terms become

E
[
Ts,ri+1

[Ci]
]

= E

 ri+1∫
s

2

µCi(x)
− Ci(x)

µCi(x)2
dx

 =

ri+1∫
s

1

µCi(x)
dx (4.28)

Cov
[
Ci(x), Ts,ri+1

[Ci]
]

= −
ri+1∫
s

Cov[Ci(x), Ci(y)]

µCi(y)2
dy (4.29)

V[Di+1[Ci]] = V
[
Ts,ri+1

[Ci] + E
]

=

ri+1∫
s

1

µCi(x)2

ri+1∫
s

Cov[Ci(x), Ci(y)]

µCi(y)2
dy dx+ σ2 (4.30)

where µCi refers to E[Ci]. To account for reflections, Equations 4.18, 4.19 and 4.20 need
to be translated accordingly.
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Figure 4.5.: Prediction of the velocity model (top) and travel time curve (bottom) with succes-
sively incorporated measurements. The posterior mean is shown by whereas half, once and
twice the standard deviation is indicated by the gray shaded area. Travel time curves are cleared
by their linear trends. A priori assumptions are indicated by (mean ± standard deviation).
Results from Example 4.2 ( ; mean ± standard deviation) and the true travel time curve
( ) are shown for comparison. Receiver locations are indicated by vertical lines.

The successive approach comes at the price of increased computational costs since mean
functions, correlations and variances will not possess a solution of closed from. By using
a fixed samples numeric integration scheme, this shall not be too much of a concern.

Example 4.3. We carry on with Example 4.2, however, incorporating measurements
successively. A priori assumptions and observations remain the same. The succession
order is the following: Direct waves first followed by reflections, both, from left to right.
Computing correlations and variances calls for numeric integration. Therefore, Simpson’s
rule is used considering a grid of 115 points across the interval [−2 : 21].
The top panel of Figure 4.5 shows the successive reconstruction of the velocity model.
In contrast to Example 4.2, the posterior mean shows more complexity, nonetheless,
uncertainties are at a similar level. Both attempts are catching the jump, however, at
a different height. Meeting the falling edge of the wiggle at 4 does not mean much. By
looking at those curves it is hard to judge which reconstruction outperforms the other.
The posterior travel time curve, however, helps to decide which attempt better assimilates
the data. In the bottom panel of Figure 4.5 it can clearly be seen that the successive
posterior travel time curve is closer to the true one. The successive approach replicates
prior assumptions past the last observations and does not impose an offset. Although
not explicitly demonstrated, the order of succession has a remarkable effect. If data
are considered in reverse oder, reconstruction of the right hand side is in dire straits
whereas the left hand side becomes very accurate. Nonetheless, the example shows that
a successive approach is a way to better accommodate non-linearity.
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4. Travel Time Inversion

4.4. Conclusion

The outlined approach provides a consistent tool for Bayesian travel time inversion. The
presumed understanding of physics – the high frequency approximation – is determining
the correlations amongst model and observations. In particular, the presence of posterior
uncertainties can be used to judge the quality of the reconstruction. On top of uncer-
tainties, discontinuities are modeled in a consistent manner. The key factor controlling
the inversion is a correlation kernel appropriately accounting for interfaces. However, it
is questionable if the SE kernel – used in the examples above – is well suited to describe
correlations of velocity models. Non-linearity has a substantial effect. The presented
successive approach accommodates non-linearity, however, with the need for further stud-
ies. As a non-parametric approach is addressed – in the sense considering a distribution
over functions – the spatial resolution is not limited by a certain basis. Computational
costs are at an ordinary level (compared with Markov chain Monte Carlo methods utterly
cheap).
While accommodating non-linearity and assessing posterior uncertainties the presented
modeling scheme is beyond ordinary approaches offering a promising vision. Still, it is a
long way to go to bring the outlined concept into a real world application.

4.5. Outlook & Further Thoughts

In case of multiply triggering an artificial source, summing the records to increase the
signal-to-noise ratio is called stacking, leading to reduced noise levels [Shearer, 2009]. For
the presented modeling approach stacking raises a question to be investigated: At each
receiver location, shall we either favour the accurate stack (sample mean and variance)
or incorporate individual measurements in an order of succession that remains to be
investigated? As the modeling approach presented partly qualifies for survey design, we
can also deduce if it is preferable to use single but accurate measurements (pyrotechnics)
over a stack of noisy records (sledgehammer).

It is straight forward to incorporate further or multiple observations. Think of
the knowledge obtained about the subsurface from outcrops or exploration boreholes.
Although not explicitly demonstrated, considering records of the velocity structure are
no difficulty. Another example are data sets obtained from multiple sources.

In case of seismological applications typically the source location is unknown and
its variability shall be jointly explored. Therefore, let us adopt and extend the approach
presented by Stein [1999, Sec. 7.2], putting an independent normal prior over s → S ∼
N (µS, σ

2
S). To invert for C, S|d, correlations amongst source location and observations

need to be known. In general we can not say much about about Cov[S,D]. To obtain a
proxy a Taylor expansion helps and to its first order the expansion around µS reads

Cov[S,D] ≈ Cov
[
S, TµS ,r + ∂STS,r

∣∣
µS

(S − µS)
]

= ∂STS,r
∣∣
µS
σ2
S (4.31)

since S |= C is assumed.

Accounting for multiple phases is straightforward. With identified reflections, a par-
tition P of the velocity model needs to be composed such that blocks A,B ∈ P are disjoint
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and covering the whole domain of interest
⋃
A∈P A. For each block A, setup an a priori

GRF given by its mean µA and covariance KA. The overall GRF is given by

C =
∑

1AA A ∼ GP(µA, KA) , A ∈ P (4.32)

truncated at the boundaries to achieve independence amongst blocks. In complex hetero-
geneous media, determining the ray path is certainly neither a linear nor a simple task
(Eq. 4.2) with the demand of computational resources. In a first attempt the model’s
mean shall serve to calculate ray paths. Since the mean progressively develops, in 2d
and 3d applications an adaptive grid is needed. This however is just half the difficulty.
An uncertain model renders the ray path uncertain as well. One of the open questions
is how to deal with uncertain ray paths. A further source of uncertainty is ignorance
about discontinuities. To jointly invert for interfaces, partition boundaries need to be
expressed in terms of functions, e.g. a plane in a 3d application. Its uncertainty may again
be described by a GRF and a Taylor expansion is used to linearize.

A problem not yet even mentioned is how to estimate hyper parameters. An
ordinary maximum likelihood estimate appears adequate to estimate the a priori mean
µC , the overall variance τ and the residual term σ. However, a clever strategy is needed
to determine the characteristic length `.

Last but certainly not least, the role of the correlation kernel shall be investigated.
Although presumed physics is encoded in correlations amongst model and observations,
a heuristic kernel is hardly satisfying. In the above examples the SE kernel was not well
motivated and may be considered more as a rule for interpolation. Because the earth is
almost a sphere, on a global the usage of the 3-dimensional Poisson kernel appears to be
the natural choice and imposes the reconstruction to be harmonic.
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The problem of locating and describing earthquakes is one of the oldest challenges in
seismology. The associated classic inverse problem is to work backwards characterizing
the seismic event that gave raise for ground motion records [Stein, 1999, sec 7.2]. The
preceding chapter was directed at finding a model of the Earth’s subsurface but largely
neglected the origin of the recorded wave field. In a seismological application not only the
subsurface is uncertain but also duration and spatial extent of a seismic event. It actually
were preferable to jointly invert for both the source mechanism and the medium through
which the waves passed [Shearer, 2009, sec 5.7]. However, for the sake of convenience the
subsurface is regarded to be known even though the Earth’s elastic properties may inherit
a substantial amount of uncertainty.

Although seismic source inversion has widespread applications – e.g. Heimann et al.
[2018], Sadeghisorkhani et al. [2016], Donner et al. [2016], Fichtner et al. [2017], Ballesio
et al. [2018] – credibility continues to be one of the pressing questions. Typically, a set of
parameters is in use that aim to describe a seismic event. It is almost standard to report
uncertainties of such parameters, nevertheless, some problems remain that need attention.
Without being exhaustive, they are: The wave field is non-linearly related to some of
the parameters – e.g. dip- and strike angle – rendering inference inherently difficult. A
complex seismic event described by a large number of parameters makes sampling based
estimation (e.g. MCMC) prohibitively expensive. The evolution and the spatial source
geometry together with its uncertainties are not reflected in knowing variabilities of a
partial parametrization only describing the far field.

The following work aims to present a conceptual and versatile framework for the charac-
terization of earthquake sources. Therefore, a rigorous non-parametric Bayesian approach
is addressed to consistently quantify modeling related uncertainties. It is not about de-
termining parameters of point source approximations such as epicenter, moment tensors
or finite fault rupture but the forcing function itself with spatial and temporal extent.
The overall modelling concept is to combine the wave equation and Gaussian processes
regression to infer the forcing function that gave raise for a wave field. Admittedly, the
problem as a whole appears yet too complex to assess. To work towards the outlined goal,
a fixed ends damped vibrating string subject to some external force serves as ongoing ex-
ample. Although an oversimplification, it catches the essence of seismic source inversion
at a comprehensive level.

Example 5.1 (Damped vibrating string). A homogeneous fixed ends damped vibrating
string subject to an external force f is considered. The equation of motion with respect
to the displacement u reads

∂2
t u(x, t) + 2β∂tu(x, t)− c2∂2

xu(x, t) = f(x, t) (5.1)

with damping factor β = 0.2 and tension c = 2. Damping is caused by the reversing term
proportional to the 1st time derivative. Boundary and initial conditions are

u(x = 0, t) = u(x = L, t) = 0 and u(x, t = 0) = ∂tu(x, t = 0) = 0 (5.2)
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where L = 8 denotes the length of the string. In the following only weak damping is
considered that is β < πc

L
. Physical units are skipped in favour for staying concise. C

The analogy of seismic source inversion and the damped vibrating string may be seen
as follows. For a given Earth model the propagation of seismic waves is described in terms
of the wave equation

ρ(x) ∂2
t u(x, t)−∇ · σ(x, t) = f(x, t) (5.3)

that relates the displacement field u to the mass density ρ, the stress tensor σ and an
external force f . At the Earth’s surface the stress vanishes and at initial time displacement
and velocity are zero. To obtain a complete set of equations, the stress tensor σ must be
related to the displacement field u. Ignoring visco-elastic effects, the constitutive relation
takes a simple form

σ(x, t) = C(x) : ∇u(x, t) (5.4)

with elastic parameters C, a 4th-order tensor of 21 independent components [Fichtner,
2011]. By means of the double-dot product, a second order tensor and a fourth-order
tensor are mapped to a new second-order tensor. Without anelasticity seismic waves
from every earthquake ever occurred would still be reverberating until the accumulating
vibrations shattered the Earth [Stein and Wysession, 2003, sec 3.7]. Though not a general
problem at its own, dispersion due to damping seriously complicates the phenomenon
under analysis [Orsingher, 1984]. Consult e.g. Aki and Richards [2002] for further details
and derivations.

Solving Equations 5.3 and 5.4 is quite demanding for realistic media and source terms.
It is beneficial to develop a notation that separates the source terms from all the other
details of wave propagation. The so-called Green function is obtained by solving the wave
equation for a point source that is f(x, t) = δ(x − x0)δ(t − t0) where δ(·) refers to the
Dirac delta. A Green function is a tensor as a point source is considered individually for
each direction. Provided a Green function, the wave field for a general source term is
given by

u(x, t) =

∫∫
G(x, t; y, s) · f(y, s) dy ds (5.5)

and the integral ranges over the support of f [Chapman, 2004, chp. 4]. The calculation of
Green’s function and the solution of the integral is a challenge in its own that in general
requires numerical methods. Under the assumption that G can be computed, notice the
power of this equation. Because it is linear, the ground motion resulting from a realistic
forcing function is given as the superposition of individual force vectors. It already implies
that knowledge of the wave field permits inference of the external force [Shearer, 2009,
sec. 9.1].

Example 5.2 (Green’s function). For an infinite damped string the causal Green function
may be written in terms of a Bessel function

G∞(x, t;x0, t0) =
exp{−β(t− t0)}

2c

{
I0

(
β
c

√
(ρ− ρ0)(η − η0)

)
ρ < ρ0 and η0 < η

0 otherwise
(5.6)

where η = x + ct and ρ = x − ct are denoting to so-called light cone coordinates and I0

refers the modified Bessel function of the first kind of order 0 [Orsingher, 1984, Eq. 3].
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Figure 5.1.: The left panel shows a pseudo-color plot of the causal Green function. A diverging
color-map is used, ranging from −1 (blue) to 1 (red). Selected traces are shown the right.

The causal Green function for the clamped string is established using the principle by
d’Alembert. Therefore, consider a 2L periodic odd extension of the spatial Dirac pulse.
The Green function follows as the consecutive and alternating superposition

G(x, t;x0, t0) =
N∑

n=−N

G∞(x, t; 2nL+ x0, t0)−G∞(x, t; 2nL− x0, t0) (5.7)

and the number of repetitions is truncatable with N =
⌈
t c
L

⌉
by specifying the temporal

domain of interest 1. Figure 5.1 illustrates the causal Green function and the effect of
dispersion due to damping is clearly visible. C

The following aims at inferring an unknown forcing function based on ground motion
records. At seismic stations time series are recorded that are induced by a source distri-
bution of unknown duration and unknown spatial extent. The data acquired at n stations
are denoted by

d =
{
u(xi, t) + ei

∣∣ i = 1, · · · , n
}

(5.8)

where measurement errors are indicated by ei and xi refers to the receiver locations.
To keep equations concise the discrete nature of time series and measurement errors are
omitted. For the rest of the section, d will refer to a general data set because evenly
sampled time series is not a prerequisite.

Example 5.3 (Pseudo Data). Synthetic data is generated to drive the inversions that
are presented subsequently. The source pattern of choice is the truncated half period of
a sine function, both, in space and time (see Fig. 5.3). The forcing function reads

f(x, t) = 1{ti≤t≤tf} sin

(
π(t− ti)

∆t

)
1{xl≤x≤xr} sin

(
π(x− xl)

∆x

)
(5.9)

where tf and xr are abbreviations for ti + ∆t and xl + ∆x. The onset time is ti = 1
with duration ∆t = 0.9 . The left edge is xl = 3.2 with spatial extent ∆x = 0.52 .
SciPy’s [Virtanen et al., 2020] general purpose quadrature scheme is in use to solve the

1dxe denotes the ceiling function that maps to the least integer greater than or equal to x.
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Figure 5.2.: The left panel shows a pseudo-color plot of the displacement. Black dots are in-
dicating individual records. The square on top of the pseudo-color plot refers to the region of
external action. Selected traces that are corrupted by normal noise are shown on the right.

integral in Equation 5.5. The data basis for the inversion is formed by Nx = 5 time series
each of Nt = 50 samples. Values are corrupted by independent and centered normal noise
such that the standard deviation is of about 1% of the signal’s peak-to-peak value. The
time increment of 0.2 is chosen such that it admits resolving the duration of the action.
On the contrary the spatial extent of the force is small compared with the few locations
specified. Figure 5.2 illustrates the displacement field together with traces recorded. C

Because a Bayesian approach is pursued, a priori assumptions are raised about the
forcing function. To express our ignorance, the a priori force is assumed a GP

f → F ∼ GP(µF , KF ) (5.10)

with a priori mean function µF (x, t) and assumed covariance structure KF (y, s;x, t). Since
F is continuous with respect to space and time, earthquakes are not approximated by
a point source but one with spatial and temporal extent. The a priori force distribution
implies a wave field whose statistical properties are governed though the wave equation.
For the modeling approach we exploit the fact that the integral with Green’s function
(Eq. 5.5) is a linear map in F . The resulting a priori wave field is a GP at its own right
and fully determined by

E[U(x, t)] =

∫∫
G(x, t; x̃, t̃)µF (x̃, t̃) dx̃ dt̃ (5.11)

Cov[U(y, s), U(x, t)] =

∫∫ ∫∫
G(y, s; ỹ, s̃)KF (ỹ, s̃; x̃, t̃)G(x, t; x̃, t̃) dỹ ds̃ dx̃ dt̃ (5.12)

where we made use of the linearity of the expectation and the bi-linearity of the covariance.
The decisive feature is that the space-time covariance function is deduced from physical
principles i.e. Green’s function. For the following it is taken for granted that at least a
numeric proxy of a Green function is at hand and that the integrals can be computed.
In fact, the overall modeling concept is preserved for any linear observational functional
e.g. averages, velocities or recordings of strong motion sensors.

To stay within the Gaussian model, the recorded data set is assumed to be corrupted
by centered, normal noise with error covariance matrix ΣE. If we assume the a priori force
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5.1. White Noise

field and measurement noise statistically independent then the data model is normal as
well. The data’s a priori mean and covariance are given by

µD = {E[U(xi, t)] | i = 1, · · · , n} (5.13)

ΣD = {Cov[U(xi, t), U(xj, t)] | i, j = 1, · · · , n}+ ΣE (5.14)

where discrete time steps are again not explicitly indicated. It is clear that the approach
can handle gaps in the data and, again, does not require uniform sampling.

The corner stone of the modeling strategy is formed by the correlations amongst ob-
servations and to be predicted source field. For an arbitrary design point (y, s), the
cross-covariance amongst forcing function and wave field reads

Cov[F (y, s), U(x, t)] =

∫∫
G(x, t; x̃, t̃)KF (y, s; x̃, t̃) dx̃ dt̃ (5.15)

where we made again use of Equation 5.5 and the bi-linearity of the covariance. The
according cross-covariance matrix is given by

ΣFD =
{

Cov
[
F (x̃, t̃), U(xi, t)

] ∣∣ i = 1, · · · , n
}

(5.16)

because measurement noise and a priori force are assumed independent. The advantage
is that the understanding of physics serves to derive an appropriate correlation structure
rather than using heuristics.

Referring to Section 1.3, the force’s posterior distribution is directly accessible. The
distribution of F posterior to the data set d is normal and given by conditional mean and
conditional covariance

E[F |d] = E[F ] + ΣFDΣ−1
D

(
d− µD

)
(5.17)

V[F |d] = V[F ]− ΣFDΣ−1
D ΣDF . (5.18)

The most probable force field is given as the posterior mean whereas uncertainties are
described by the posterior covariance. Inference takes place with respect to heteroge-
neously distributed sources of continuous or transient nature. The approach can deal
with earthquake data as well as ambient noise records. The key challenge is to establish
a suitable a priori force distribution. Localized seismicity calls for careful and elaborate
prior selection. On the contrary, in case of ambient noise records a white noise prior force
field appears appropriate at first sight.

5.1. White Noise

If there is no prior knowledge about the source characteristics, it is reasonable to impose
a force of uninterrupted white noise impulses. Nonetheless, the white noise assumption
shall only serve as a starting point and will receive refinements later on. Choosing an
a priori force of Gaussian white noise

E[F ] = 0 and Cov[F (x, t), F (y, s)] = δ(t− s)δ(x− y) (5.19)

results in fairly simple computations as the Dirac-delta causes many of the integrals to
collapse. The unbounded Dirac delta is used as a symbolic way of writing rather than
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5. Seismic Source Inversion

an appropriate covariance. From a theoretical point of view, the corresponding integrals
must be understood in the sense of the stochastic Paley-Wiener integral.

To calculate the posterior distribution, the data’s covariance and the cross-covariance
with the forcing function need to be known. The a priori wave field borrows its statistical
properties from uninterrupted white noise. Since F is centered the a priori displacement
is also of zero mean. The assumed covariance for the displacement field reads

Cov[U(y, s), U(x, t)] =

∫∫
G(y, s; z, u)G(x, t; z, u) dz du (5.20)

and the cross-covariance amongst forcing function and wave field is simply given by

Cov[F (y, s), U(x, t)] = G(x, t; y, s) . (5.21)

Notice that the argument’s order flipped. These equations allow the construction of the
data covariance matrix and the cross-covariance matrix. Posterior mean and covariance
are calculated as described above.

Example 5.4 (White Noise & Displacement). Let us proceed with the ongoing example
of a damped vibrating string, a priori submitted to uninterrupted white noise impulses.
The according kernel for the displacement is time stationary and does not depend on
knowing when the action starts. It features an upper bound

Cov[U(x, t), U(y, s)] ≤ L

16βc2
(5.22)

which results as the equilibrium between damping an excitation. Observations driving the
inversion are the displacement records introduced in Example 5.3. Figure 5.1 illustrates
Green’s function which serves a cross-covariance. SciPi’s general purpose quadrature
scheme is used to calculate the data’s covariance. Figure 5.3 compares the actual action
and the posterior mean. The reconstruction with edges and corners is not truly satisfying
but the time window agrees quite well. Due to coarse spatial sampling the posterior mean
is extensive and misses localization. The poor recovery is no surprise considering that the
actual force cannot be a realization of the a priori assumption. C

Most seismometers, however, measure velocity rather than displacement [Shearer, 2009,
p. 261]. In order to increase the overlap with seismology it is of interest to have the
displacement velocity under observation. In analogy to Equation 5.5, the velocity field
may be modeled in terms of the time derivative

v(x, t) =

∫∫
∂tG(x, t; y, s)f(y, s) dy ds . (5.23)

The derivative is a linear operation and thus also well suited as an observable. To directly
calculate the time derivative of Green’s function it is beneficial to address the so-called
velocity–stress formulation of the wave equation [Fichtner, 2011, sec. 2.2.2]. The cross-
covariance amongst a white noise force field and the velocity field is given by

Cov[F (y, s), V (x, t)] = ∂tG(x, t; y, s) (5.24)

and the data covariance translates accordingly. Because of the abrupt onset of Green’s
function at the edges of the light cone, unbounded delta fences are introduced by the time
derivative. The following example is intended to illustrate why the white noise assumption
is inappropriate for inference using velocity records.
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Figure 5.3.: Reconstruction of the external force using a white noise a priori force field. The
actual forcing function is shown on the left. The right panel illustrates the posterior mean
reconstructed using corrupted displacement records (see Ex. 5.3). A diverging color-map is in
use that ranges from −1 (blue) to 1 (red). The black square indicates the area of external action.

Example 5.5 (White Noise & Velocity). We again consider the damped vibrating string
but with respect to displacement velocity. The calculation of the cross-covariance already
shows that the white noise assumption is unsuitable for inference with velocities records.
The time derivative of the Green function of the infinite string is given by

∂tG∞(x, t; x̃, t̃) = c
(
δ(ρ̃− ρ) + δ(η − η̃)− β

)
G∞(x, t; x̃, t̃)+

+
β exp

{
−β(t− t̃)

}
2c

I1

(
β

c

√
(ρ̃− ρ)(η − η̃)

)
c(t− t̃)√

(ρ̃− ρ)(η − η̃)
(5.25)

where I1 refers to the Bessel function of order one. This result may be derived by imposing
the secondary constraints ρ < ρ0 and η0 < η in terms of two Heaviside step functions. At
the onset of the light cone the time derivative introduces unbounded delta fences. The
principle by d’Alembert is again used to establish a Green function for the clamped string.
For a single observation the resulting cross-covariance is illustrated by Figure 5.4. As a
consequence, the posterior mean consists of numerous of those delta fences which is the
reason why the white noise assumption is too rough as a priori assumption. C

As a concept, a a prior force of white noise is appealing and instructive because of
its simplicity. However there are fundamental shortcomings: Pointwise predictions of the
posterior variance are unbound because the posterior covariance is dominated by the white
noise prior. A spatial white noise prior distribution is too weak since in a seismological
application the spatial coverage is typically coarse. A reasonable reconstruction is possible
only if recorders are at least closely surrounding the source region. Nonetheless, white
noise is a good starting point that requires refinements. The strategy for the following
is to smoothen the white noise assumption in order to achieve compatibility with power
spectra observed i.e. the use of a more informative a priori distribution.

5.2. Fourier Analysis

This is a brief and incomplete digression about the Fourier Transform and the Convolution
Theorem. Details may be found in every textbook about time series analysis e.g. Gubbins
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Figure 5.4.: The left panel illustrate the cross-covariance for a white noise force field with a
single velocity record located at x = 3.2 and t = 11. Dirac fences at the onset of the light cones
are indicated by red and blue lines. Due to causality, the forcing function is only correlated
prior to the record. The right panel shows a filtered version of the white noise cross-covariance.
Using sinc(·) as transfer function turns the Dirac fences into triangular functions.

[2004], Chapman [2004, chp. 3] or Stein and Wysession [2003, chp. 6]. Throughout, the
unitary definition of the Fourier transform is used. The Fourier analysis is useful for
solving partial differential equations as the following example shows:

Example 5.6 (Helmholtz Equation). A transformation into the frequency domain turns
the temporal part of the wave equation into an algebraic equation

(4π2ξ2 − 4iπξβ︸ ︷︷ ︸
−c2k2

−c2∂2
x)u(x, ξ) = f(x, ξ) (5.26)

where the Fourier pair ∂t ↔ 2iπξ is used. Equation 5.26 is known as the Helmholtz
equation. The Helmholtz equation is an eigenvalue problem of the Laplacian and quite
elegant to solve. According to Fischer and Kaul [2014, §14], a Green function is given by

GH(x, y) =
1

k sin(kL)

{
sin(kx) sin(k(y − L)) x < y

sin(ky) sin(k(x− L)) y ≤ x
(5.27)

where k is a function in ξ and the boundary conditions are already satisfied. It is con-
tinuous but features an abrupt change at x = y. The transformation back into the time
domain is achieved by a phase factor together with the shift property of the inverse Fourier
transform. C

Performing computations in the frequency domain is beneficial because the subsurface
is assumed static at the characteristic time scales of wave propagation. This is the reason
why the temporal integral in Equation 5.5 can be written in terms of a convolution

u(x, t) =

∫∫
G(x, t− s, y)f(y, s) ds dy (5.28)

[see Chapman, 2004, sec. 4.5.2.3]. A convolution can also be described in the frequency
domain because the Fourier transform of a convolution equals the product of Fourier
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transforms. A synthetic seismogram resulting from a source is equivalently given by

u(x, t) =

∫
F−1

[
G(x, ξ, y)f(y, ξ)

]
(t) dy (5.29)

where the letter ξ is used to indicate frequencies and F [·] refers to the Fourier transform
and its inverse. Within the Fourier domain it is easy to account for a time derivative.
The velocity field is simply given by

v(x, t) =

∫
F−1[2iπξ G(x, ξ, y) f(y, ξ)](t) dy (5.30)

since derivative and 2iπξ are forming a Fourier pair. Using the fast Fourier transform
(FFT) as an implementation – rather than a direct approach – admits rapid computations
particularly for evenly spaced time series. Speaking in terms of computational costs, the
FFT scales very well compared to the individual double integrals in Equation 5.5 [Stein
and Wysession, 2003, chp. 6].

Example 5.7 (Velocity Data). Pseudo records are generated analogously to Example 5.3
but the velocity field is derived using Fourier methods. The frequency representation of
our external force of choice (Eq. 5.9) is given by

f(x, ξ) = 1{xl≤x≤xr} sin

(
π(x− xl)

∆x

)
·

·∆t exp{−iπξ(ti + tf )}
sinc(∆tξ − 1/2) + sinc(∆tξ + 1/2)

2
. (5.31)

The spectrum of the source time function is obtained by convolving the two Fourier pairs
rect(·)↔ sinc(·) and sin(·) as the sum of two Dirac-deltas. The velocity field is calculated
using Equation 5.30 together with the frequency domain Green function, presented in
Example 5.6. In this case the spatial integral can be solved analytically because the
product of two sin(·)-functions possesses an elementary antiderivative. The solution is
omitted because the case differentiation leads to very long equations not providing any
further insight. The FFT is used to efficiently transform back into the time domain.
To ensure almost trailing zeros, the spectrum is discretized such that the damping term
causes a decay by a factor of 1000. Figure 5.5 shows the resulting velocity field along
with the corrupted time series that are going to drive the subsequent inversions. The
corruption is again drawn from a centered normal and the standard deviation is about
1% of the signals peak-to-peak value. C

Unfortunately, with a seismological application in mind, we can not carry over this
approach to the spatial domain because the elastic modulus are in general inhomoge-
neous [Stein and Wysession, 2003, chp. 6.3, eq. 15]. As a consequence, a Fourier series
expansion in the spatial domain depends on the specific locations and cannot – as in the
time domain – be expressed as a function of distance 2. Although we can not exploit the
convolution theorem within the spatial domain, this does not prevent us from carrying

2A Fourier series expansion is chosen because the spatial domain is typically of compact support.
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Figure 5.5.: The left panel shows a pseudo-color plot of the displacement velocity. Black dots
are indicating individual records. The square on top of the pseudo-color plot refers to the region
of external action. Selected traces that are corrupted by normal noise are shown on the right.

out a Fourier expansion with respect to y

u(x, t) =
∑
m,n

F−1
[
Gn(x, ξ)

∫
φn(y)φm(y) dy︸ ︷︷ ︸

δmn

fm(ξ)
]
(t) =

= F−1
[∑

Gn(x, ξ)fn(ξ)
]
(t) (5.32)

where Gn and fn are referring to the Fourier series coefficients. Because the Fourier basis
is orthogonal, both, the integral and one of the two sums vanish. It is worth mentioning
again, that every location x requires its own series expansion.

Example 5.8 (Series Expansion). A Green function may also be derived using a series
expansion as presented by Fischer and Kaul [2014, §6 sec. 3.7]. If we kick-off with the
complex exponentials as fundamental solution and impose boundary conditions this leads
to

φn(x) =

√
2

L
sin
(nπ
L
x
)

(5.33)

which may be seen as the sin(·)-part of the 2L periodic orthonormal Fourier series. If we
expand the Dirac-delta as Fourier series, then, the n-th mode of the causal Green function
follows to read

Gn(x, ξ) = − φn(x)

4π2ξ2 − 4iπξβ − c2 n2π2

L2

(5.34)

without contributing to the cos-type basis due to vanishing boundary conditions. In com-
bination with the findings from Example 5.6, this result can be derived by differentiating
the basis twice. C

To establish a link with the spherical Earth, the solid spherical harmonics are forming a
complete basis. In analogy to a classical Fourier series, the spherical harmonics represent
the fundamental modes of vibrations of a sphere. As a consequence, waves in a spherical
Earth can be written as the sum of the Earth’s normal modes [Stein and Wysession,
2003, sec. 2.9]. An expansion in spherical harmonics is analogous to a Fourier series on
spheres and many results known from Fourier analysis translate accordingly [Gubbins,
2004, sec. 12.2].
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Figure 5.6.: Power spectra of microseismic noise derived from 20 minutes of data of the vertical
component. The characteristic noise peaks associated with microseism at about 6 and 16 seconds
are recognizable.

5.3. Filtered White Noise

As motivated by Examples 5.4 and 5.5, Gaussian white noise is unsuitable as an a priori
assumption. The power spectrum of the ground motion that stems from white noise is
not compatible with what is measured. If white noise were appropriate for modeling
earthquakes, then the instrument corrected time series must show the sharp onset of
Green’s function once the light cone passes through rather than the earthquake rise. The
observation of seismic noise is another indicator not to departure from white noise. It is
well known that the power spectrum of seismic noise exhibits a characteristic known as
microseism (see e.g. Shearer [2009, sec. 11.2] or Stein and Wysession [2003, sec. 6.6.3]).
To provide an example, the power spectrum for selected stations is displayed in Figure 5.6
and the two predominant microseismic peaks are clearly visible. Power spectra everywhere
on Earth feature characteristics which do not conform with the shape that stems from a
forcing function of Gaussian white noise. If the shape of the power spectrum is known, this
additional knowledge should be encoded in the a priori assumption. Thus, the previously
made white noise assumption requires an adjusted such that the slope of the power spectra
move closer to reality.

Many processes in the system Earth such as dispersion and/or attenuation have effects
that can be approximated as a filter action on the wave field [Stein and Wysession, 2003,
sec. 6.1]. To provide an example, an often addressed window function is:

Example 5.9 (Sinus cardinalis). If we know that the external force took place within a
finite time window, then sinc(·) may be used as transfer function. This can be seen as
follows: Let assume that ti and tf = ti + ∆t are specifying the interval. Then, the Fourier
transform of a boxcar function is given by

F [1{ti<t<tf}](ξ) = ∆t sinc(ξ∆t) exp{−iπξ(ti + tf )} (5.35)

and the center of the interval can be interpreted as a phase factor. A statement about
the decay behavior of the amplitude spectrum can be made although the actual signal is
not known. This principle translates one-to-one to a Fourier series expansion. C
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Figure 5.7.: Triangular covariance drawn as a function of the lag.

The concept of the following is to smooth the white noise assumption such that the
resulting power spectra become compatible with additional knowledge such as microseism.
Gaussianity – as the fundamental concept of that work – is preserved under stable, linear
and time-invariant (LTI) filter, using the same arguments as in Section 1.3. As stated by
the Wiener-Khinchin theorem for time stationary processes, the power spectrum and the
auto-covariance function are forming a Fourier pair (see Eq. 2.32). As a consequence, a
process can equivalently be characterized by its power spectrum or by its auto-covariance
function. Loosely speaking, Gaussian white noise has a flat spectrum and puts equal power
into each frequency. In turn, the power spectrum of filtered white noise is the squared
amplitude spectrum of the response of the filter. Suppose Tn(·) denotes a suitable transfer
function with respect to frequency domain and the index refers to a mode of a Fourier
expansion. Then, the a priori cross power spectrum is given by

Cov[Fm(ξ), Fn(ζ)] = |Tn(ξ)|2δmnδ(ξ − ζ) (5.36)

where subscripts n and m are referring to individual modes and ξ and ζ frequencies.
Because of the absolute value only the amplitude spectrum of the transfer function is of
relevance and a potential phase factor vanishes. Transformed back into the space-time
domain we have

Cov[F (x, t), F (y, s)] = F−1
[∑

|Tn(ξ)|2φn(y)φn(x)
]
(t− s) (5.37)

where again the shift property of the Fourier transform is used and φn(·) refers to an
orthonormal Fourier basis. One property worth mentioning is that filtering Gaussian white
noise results in a process that features spatio-temporal correlations although uncorrelated
with respect to the Fourier domain. Unlike Gaussian white noise, the decay behaviour of
the transfer function must be chosen such that the resulting process is of finite power.

Example 5.10 (Triangular Covariance). The sinc-function from the previous example
transfers the white noise covariance into the triangular kernel 3. This relation is established
by the Fourier pair sinc2(·) ↔ tri(·). The triangular kernel can be interpreted as a
weighted average and replaces the white noise impulses by triangular functions i.e. a
Bartlett window [Gubbins, 2004, eq. 3.8]. The auto-covariance as a function of the lag is
illustrated in Figure 5.7. Because the resulting power lacks normalization, the triangular
kernel depends on two yet unknown parameters. The length of the interval ∆t and the
overall variance σ2. C
3The phase factor in Example 5.9 is omitted because absolute value nullifies it.
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To calculate the posterior mean and covariance, the cross-covariance and the data-
covariance with respect to the smoothed a priori force are required. These are obtained
analogously by applying the transfer function. The cross-covariance amongst forcing
function and a velocity record follows to read

Cov[F (y, s), V (x, t)] = F−1
[
−2iπξ

∑
Gn(x, ξ)|Tn(ξ)|2φn(y)

]
(s− t) (5.38)

where the minus sign results from the complex conjugation of the velocity. The cross-
covariance matrix is composed as before. With respect to the time domain, the FFT in
combination with the shift property admits an efficient implementation for any transfer
function of choice. In contrast, the series expansion has to be carried out, individually for
every pair of locations. The minimum receiver spacing together with a desired resolution
admits to truncate the series. The expansion should be carried out until the Nyquist
frequency is reached.

Example 5.11 (Smoothend cross-covariance). Let us return to the damped vibrating
string in combination with velocity records. In Example 5.5 it was shown that the white
noise assumption is too rough to drive an inversion by velocity records. Using sinc(·) as
transfer function is reasonable if we know that the external force acted only for a finite
period of time. For a single velocity record, the right panel in Figure 5.4 shows a smoothed
cross-covariance structure. The Dirac fences at the edges of the light cones are replaced
by overlapping triangular functions. This, however, brings up a problem because we do
not know how strongly to smooth. C

As we can see from the above example, only the overall correlation structure is at
hand but not appropriate parameters. Typically, transfer functions depend on a num-
ber of unknown parameters. Examples are correlation lengths and/or scaling factors to
e.g. to adjust the overall variance. We can address this problem once we derive the data
covariance. The covariance function for the velocity field calculates analogously

Cov[V (y, s), V (x, t)] = F−1
[∑

(2πξ)2Gn(y, ξ)Ḡn(x, ξ)|Tn(ξ)|2
]
(s− t) (5.39)

and (̄·) indicates the complex conjugate. When composing the data covariance matrix,
the observation errors have to be taken into account (see Eq. 5.14). This brings up
another problem because is not clear how to weight the smoothed covariance relative to
the measurement errors. These parameters require estimation as part of an inference
e.g. through addressing the so-called marginal likelihood (see Sec. 2.3).

Example 5.12 (Parameter search). For both, the spatial and the temporal domain sinc
is used as transfer function. That choice results in three model parameters that require
estimation. They are the spatial extent ∆x, temporal duration ∆t and a scaling factor σ
to adjust the overall kernel contribution. As described in Section 2.3, these parameters
are searched by optimizing the logarithm of the so-called marginal likelihood. Therefore
an ordinary grid-search is carried out and the resulting density is visualized in Figure 5.8.
Because the bulk of the density is quite well concentrated, we settle for a point estimate
rather than propagating the uncertainties. Estimated values are only to some extent
comparable with the parameters of the external action of choice (see Ex. 5.3). The true

duration of the action is ∆t = 0.9 and the value recovered is ∆̂t = 0.585. The estimate for
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Figure 5.8.: Illustration of the marginal likelihood for the parameters of the transfer function in
Example 5.12. In each panel one parameter out of three is integrated out. The marginalization
is carried out by an ordinary Riemann sum.

the spatial extent is ∆̂x = 0.771 whereas the truth is ∆x = 0.52. Taking the slantening
effect of the force’s sinusoid into account makes the estimate appear reasonable. The
scaling factor σ̂ has no direct interpretation and the associated uncertainty is discussed
in the next example. C

Despite – or maybe because – of the rigorous Bayesian setting together with a consistent
estimation of model parameters, we cannot expect to be able to reconstruct the external
force almost exactly. The limiting factor are the discretized data and Shannon’s sampling
theorem. The precise reconstruction of a signal from discrete samples is only possible
if the signal is of finite bandwidth [Gubbins, 2004, sec. 3.1]. In turn this means that
a sampling rate of ∆x does not allow recover of structures smaller than 2∆x i.e. the
Nyquist rate. This principle serves as guideline and does not translate one-to-one because
the inference utilizes Green’s function to mediate between ground motion and external
action. Nonetheless, with a coarse receiver spacing, spatial structures can only be resolved
to a limited extent. The ongoing example of the damped vibrating string is chosen such
that this effect is emphasized:

Example 5.13 (Posterior force). Once the three model parameters are determined, we
can estimate the external action that gave rise to the recorded string vibration. The force’s
posterior mean and (co)-variance are calculated according to Equations 5.17 and 5.18 and
are illustrated in Figure 5.9. Compared to the white noise assumption the posterior mean
has improved significantly. There are no more corners and edges and overall the forcing
function shows improved localization. Considering the sampling theorem it becomes clear
that the resolution of the reconstruction is limited. An ordinary low-pass Butterworth
filter is applied to the actual force to improve the interpretation of the results. The corner-
frequencies are roughly estimated as the arithmetic mean of the spatial and temporal
sampling. As a result, the actual pulse becomes wider and flattens out. Figure 5.10
illustrates two cross sections through the center of the external action. Compared to
the filtered force, the reconstruction is convincing and stays mostly within one standard
deviation. The overshoots that can be seen in the time domain could be interpreted
as a kind of a filter effect caused through the choice of the transfer function. It is of
no concern that the low-pass filtered force does not always stay within error bounds
because the uncertainties in the model parameters are not propagated. However, it is
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Figure 5.9.: Reconstruction of the external action using sinc as transfer function. The left panel
illustrates the posterior mean with the same diverging colormap as in the previous figures. On
the right, the posterior standard deviation is shown. The color scale is chosen to start at zero
to illustrate the poor reduction in variance. At the locations of greatest variance reduction,
the position of the observations can readily be guessed. The black square indicates the area of
actual action and the gray lines are indicating cross sections that are detailed in Figure 5.10.

not clear why there is hardly any variance reduction achieved. Possible reasons are an
underestimation of sigma, not propagating parameter uncertainties or a still inappropriate
priori assumption. The classical Fourier series of the triangular kernel has both sin and
cos contributions. In contrast, correlations that stem from a clamped vibrating string act
only on the sin part. To use a covariance that has only sin contributions seems to be
intuitive because one cannot pluck a camped string right at the ends. C

The prerequisite for filtering white noise is a parametric transfer function that can
mimic the desired power spectrum. Coming back to the motivating example of micro-
seism, a transfer function is needed whose square roughly approximates the characteristic
noise peaks (see Fig. 5.6). An advantage using transfer functions is that the a priori pro-
cess remains uncorrelated in the frequency domain. This is beneficial for calculating the
covariances because an integral and a sum collapse. But it must also be said that using
transfer functions alone is not truly satisfying in a seismological context. Although in
the examples it was assumed that the force acts only within a finite interval, the a priori
process spans the entire domain. It is often the case that the extent of a seismologically
active area is known relatively accurately. The main microseism peak, for example, results
from standing waves created in the open ocean [Shearer, 2009, sec. 11.2]. Because the
receiver coverage is typically coarse, it would be desirable to encode the knowledge about
the source region as part of the a priori distribution.

5.4. Outlook & Further Thoughts

A desirable extension of the presented method would be to concentrate the a priori force
field to a specific source region. As shown in Example 1.6 and demonstrated in Section 4.2,
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Figure 5.10.: Cross sections through the center of the force. Comparison of the actual force
with the posterior mean ± one standard deviation. Every step in the white noise reconstruction
(displacement based) corresponds to the onset of the back-projected light cones. Figure 5.9
illustrates the orientation of the cross sections.

an indicator function may be used to restrict a GP to a certain area. However, a sharp
edged source region is hard to justify e.g. because the subsurface is not well known. A
similar approach is the use of a taper function with a smooth transition to zero where it is
known for sure that there are no sources. This will render meaningless solutions unlikely
and deposit the energy at areas where activity is expected. If g(x) denotes a suitable
taper function, then, the a priori covariance for the external force becomes

Cov[F (y, s), F (x, t)] = g(y)F−1
[∑

|Tn(ξ)|2φn(y)φn(x)
]
(s− t) g(y) , (5.40)

a non-stationary kernel (unless g ≡ const.). To calculate the covariances for velocity
records, an expansion of the product G(x, ξ, z)g(z) may be addressed. The corresponding
coefficients are given by a discrete convolution

Ggn(x, ξ) =
(
G(·)(x, ξ) ∗ g(·)

)
[n] =

∑
Gm(x, ξ)gn−m (5.41)

where the gn refer to the series coefficients of g(z). In analogy to Equations 5.38 and 5.39,
the cross- and data covariance follow to read

Cov[F (y, s), V (x, t)] = F−1
[
−2iπξ

∑
Ggn(x, ξ)|Tn(ξ)|2φn(y)

]
(s− t) (5.42)

and

Cov[V (y, s), V (x, t)] = F−1
[∑

(2πξ)2Ggn(y, ξ)Ḡgn(x, ξ)|Tn(ξ)|2
]
(s− t) . (5.43)

Because of the discrete convolution the covariance for velocity records ends up as a very
unpleasant triple sum. It is within possible that this triple sum renders the approach
prohibitive. To overcome that, there is chance that local stationary kernels offer a way to
reduce the complexity. It is certainly worth a try to investigate whether it is beneficial to
departure from local stationary white noise that is

g

(
x+ y

2

)
δ(x− y) (5.44)
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where, again, g is required to be a non-negative function of the centroid. The reason for
this assumption is that local stationary kernels have a remarkable spectral representation

Fxy
[
g

(
x+ y

2

)
K(x− y)

]
(ξ, ζ) = K̂

(
ξ + ζ

2

)
ĝ(ξ − ζ) (5.45)

where K refers to a stationary kernel function and (̂·) indicates the individual Fourier
transforms [Genton, 2002, sec. 3]. The difficulty is to link this idea with the concept
of using transfer functions. On top of all that, using a taper function will introduce
additional model parameters that need to be determined. Because numerical optimization
is in general difficult, the parameter search will become a bigger challenge as the number
of model parameters grows.

Provided the calculation of the cross covariance and data covariance is feasible 4, then
the numerical complexity is determined by a Cholesky factorization of the data covari-
ance matrix. An implementation using the Cholesky factorization is only suitable for
datasets of two to three thousand records because it scales with complexity O(n3). In ad-
dition, there is a massive memory requirement to store the covariance matrix that grows
quadratically. To consider entire seismograms that easily sum up to millions of records is
utterly out of the range. Nonetheless, there are very promising developments in the field
of machine learning that circumvent both, the memory requirements and computational
costs. Through bypassing the Cholesky decomposition, Gardner et al. [2018] succeeded
in reducing the time complexity of the parameter search to almost O(n2), a tremendous
acceleration. The key ingredient is the iterative conjugate gradients algorithm that does
not need to keep the complete covariance matrix in main memory. By effectively using
multi GPU parallelization, Wang et al. [2019] managed to estimate the model parameters
for more than one million data points. This achievement demonstrates, that the presented
approach – combined with data selection and reduction strategies – is within range. How-
ever, these promising approaches cannot hide the fact that a great deal of development
work still needs to be done for an application.

4Calculating realistic Green’s functions and solving the corresponding integrals is in itself a challenge
and might demand a high performance computer.
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Part III.

Geomagnetism

The following chapter was published as Mauerberger et al. [2020] in Geophysical
Journal International. The conceptional and theoretical work was conducted by
S. Mauerberger and M. Schanner, with significant assistance by M. Holschnei-
der. M. Korte accounted for data selection as well as interpretation and em-
bedding of the case study. S. Mauerberger prepared the manuscript with sup-
port of all authors. Software development and data processing were performed
by M. Schanner with major contributions by S. Mauerberger. M. Korte and
M. Holschneider supervised the findings of this work.

For the time stationary global geomagnetic field, a new modelling concept is
presented. A Bayesian non-parametric approach provides realistic location de-
pendent uncertainty estimates. Modelling related variabilities are dealt with
systematically by making few subjective a priori assumptions. Rather than
parametrizing the model by Gauss coefficients, a functional analytic approach is
applied. The geomagnetic potential is assumed a Gaussian process to describe a
distribution over functions. A priori correlations are given by an explicit kernel
function with non-informative dipole contribution. A refined modelling strategy
is proposed that accommodates non-linearities of archeomagnetic observables:
First, a rough field estimate is obtained considering only sites that provide full
field vector records. Subsequently, this estimate supports the linearization that
incorporates the remaining incomplete records. The comparison of results for
the archeomagnetic field over the past 1000 yr is in general agreement with
previous models while improved model uncertainty estimates are provided.
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6. Correlation Based Snapshot Models of the
Archeomagnetic Field

Global geomagnetic field reconstructions of the past millennia are useful to investigate
the geodynamo process or the complex interaction of the field with solar wind particles
and cosmic rays, and they find application in archeomagnetic and palaeomagnetic dating.
Reconstructions are typically built from volcanic and archeomagnetic samples collected at
the Earth’s surface providing records of the ancient Earth’s magnetic field (EMF). Unfor-
tunately, on a global scale records are clustered, unevenly distributed towards the Western
Eurasian region and corrupted by various uncertainties. This considerably complicates
the reconstruction of the ancient EMF.

Dating back to 1985, Gubbins and Bloxham were amongst the first to propose a
Bayesian inference for modelling the EMF, already discussing non-linear observables and
model uncertainties. Their parametrized implementation of a truncated spherical har-
monic (SH) representation with norm optimization has become a widely used modelling
scheme. The majority of historical and archeomagnetic field models published over the
past years essentially rely upon the same inverse strategy. Early models such as Jackson
et al. [2000], Constable et al. [2000], Korte and Constable [2003] provide estimates without
quantifying uncertainties. More recent attempts – for example Korte et al. [2009], Licht
et al. [2013], Hellio and Gillet [2018], Senftleben [2019] – describe variabilities by deriving
ensembles of equivalent solutions. Roughly speaking, those models differ in two aspects:
On the one hand, the error handling, data selection and outlier detection have been re-
fined over the years [Licht et al., 2013]. On the other hand, different strategies are used to
incorporate a priori knowledge. Early models are typically starting off from an axial dipole
and are regularized by a physically motivated norm. Since regularized field models are
known to underestimate uncertainties at small length scales [Gillet, 2019], more elaborate
modelling concepts are under investigation. Recent attempts deduce a priori information
including temporal dynamics from the statistics of satellite era models [e.g. Hellio and
Gillet, 2018] or from geodynamo simulations [e.g. Sanchez et al., 2016]. Existing models,
however, have in common that uncertainties related to modelling, in particular due to
model parameters and the uneven data distribution, are not dealt with systematically.

This paper introduces an advanced concept to model snapshots of the EMF. This work
should be considered as a first step towards a new inverse strategy in which the notion
of modelling related uncertainties is well defined. Therefore, we adapt the correlation
based inversion developed by Holschneider et al. [2016] that is known from modelling
observatory and satellite data. Several modifications are required to adjust the concept
to archeo- and palaeomagnetic data.

We pursue a fully Bayesian approach that determines the EMF’s posterior distribution
which simultaneously encodes the most probable field model and its uncertainties. To
obtain the posterior distribution we use a functional analytic approach where inference
takes place directly in the space of functions. Observables and quantities of interest are
expressed in terms of functionals that act on the geomagnetic potential. Rather than
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using a model that is parametrized by a finite SH basis, the geomagnetic potential is
assumed a GP. The GP in use is non-parametric in the sense that it is a distribution over
functions and is specified by a two-point covariance function.

From a parametric point of view, GPs have been used for a long time in modelling
the EMF [e.g. Bouligand et al., 2005, Khokhlov et al., 2006], known under the term
Giant Gaussian Process (GGP). That term was coined by Constable and Parker [1988]
who proposed a GP based model focusing on the estimation of model parameters. Our
approach may be seen as the functional analytic extension of the GGP model.

Our a priori distribution of the geomagnetic potential is characterized by its mean power
spectral behaviour, which is represented by an explicit correlation function that takes all
SH degrees into account. If a SH truncation was desired, transdimensional modelling
[Livermore et al., 2018] may be applied to also infer the cut-off degree. Using an explicit
kernel function – not truncated at a certain SH degree – circumvents that problem. This
does not necessarily mean that our approach reaches a higher resolution at a global scale
but, improves treatment of the uneven data coverage and allows the exploitation of the
records to their fullest. In addition, a low SH degree truncation may lead to spurious
oscillations and ringings if the data include pronounced local anomalies. We try to be
the least subjective and specify the a priori field model using uninformative distributions,
when possible. Our a priori model depends only on a single parameter that controls the
a priori power spectral behaviour.

In the case of satellite and observatory data, EMF full vector components are observed
directly and observables are linearly related to the geomagnetic potential. Thus the
posterior distribution for the GP is explicit and may be computed using ordinary linear
algebra. Archeomagnetic data, however, call for a refined modelling strategy that takes
the non-linearity of declination, inclination and intensity into account. The majority of
sites only have incomplete vector information so that a direct linearization of each record
is not possible. Therefore, we propose a two step Bayesian update system: First, a rough
field estimate is obtained considering only sites that provide complete field vector records.
Subsequently, this estimate supports the linearization that incorporates the remaining
incomplete records.

To demonstrate the potential of our modelling strategy we present a case study using
archeomagnetic and volcanic data of the past 1000 yr. Joint maps of best prediction
and point-wise uncertainty are presented, which allow an improved interpretation of the
spatial field structure. Although our modelling is not based upon a SH basis, we predict
Gauss coefficients and quantify their uncertainties. In addition, we calculate the posterior
mean of the spatial power spectrum and estimate error bounds. Finally, we present the
posterior probability density function (PDF) for the dipole strength and the location
of the geomagnetic north pole. The latter results are obtained for records of the past
millennium, coarsely sorted into 100 yr bins and arranged into a discrete time-series.

The structure of the document is as follows: Section 6.1 gives an overview of the mod-
elling theory, which closely follows Holschneider et al. [2016]. First, we introduce the
general construction of our dipole and non-dipole priors and correlations kernels (Sec-
tion 6.1.1). We describe the link between observations and model, and how to obtain
the posterior distribution from linear observations (Section 6.1.2), and then discuss the
need for linearization of archeomagnetic observables (Section 6.1.3). The treatment of
data uncertainties is laid out in Section 6.1.4. The following two Sections, 6.2 and 6.3,
give details about the necessary adjustments to model archeo- and palaeomagnetic data.
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Section 6.2 focuses on the two step strategy used to handle the non-linearities, formulated
as a Bayesian update system and includes synthetic tests. Section 6.3 covers the trans-
lation of a priori uncertainties in the model parameters to the posterior. Finally, Section
6.4 provides the case study. We close the document by drawing conclusions and showing
future perspectives in Section 6.5.

6.1. Modelling Concept

In this section we review the non-parametric and correlation-based modelling strategy
[Holschneider et al., 2016] that underlies our Bayesian approach for modelling time-
stationary snapshots of the EMF. We lay out our field model together with our a priori
assumptions and establish the nomenclature that we adopt throughout this paper. We
point out difficulties arising when working with non-linear observables such as archeo-
and palaeomagnetic records and discuss the general treatment of data uncertainties.

6.1.1. Magnetic Field Model

When modelling the geomagnetic core field on archeo- to palaeomagnetic timescales, fur-
ther contributions to the geomagnetic field – the crust, ionosphere and magnetosphere –
are neglected since archeo- and palaeomagnetic measurement errors are assumed to be
significantly larger than the respective field contributions [Constable and Korte, 2015].

Close to the surface – far from magnetic sources – the EMF, B, can be approximated
by the gradient of a scalar potential satisfying Laplace’s equation

B = −∇Φ , ∇2Φ = 0 , (6.1)

where Φ is referred to as the geomagnetic potential [Backus et al., 1996, chap. 4]. In
contrast to the magnetic field, the potential is not directly observable. For an internal
source and with respect to some reference sphere of radius R, the potential Φ at location
x, |x| > R, can be expanded in SHs

Φ(x) = R
∑
`

(
R
|x|

)`+1∑
−l≤m≤l

gm` Y
m
` (x̂) (6.2)

where Y m
` refers to the real valued and Schmidt semi-normalized SH of degree l and order

m with related Gauss coefficient gm` . The dependence of gm` on a reference radius R is not
explicitly typed.

We use a spherical coordinate system with BN pointing to geographic north, BE to the
east and BZ vertically downward. The components of the magnetic field vector B at a
location of radius r, colatitude θ and longitude φ, are

BN = −1

r

∂Φ

∂θ
, BE =

1

r sin(θ)

∂Φ

∂φ
, BZ = −∂Φ

∂r
. (6.3)

The ellipticity of the Earth is neglected and geocentric coordinates are treated as if they
were geodetic.

Motivated by magnetic field theory, we express our lack of knowledge by making a priori
assumptions about all Gauss coefficients. Considering Holocene timescales, the dipole part
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of the field does not have the same statistical distribution as the non-dipole part [Constable
and Parker, 1988]. Thus, our model of choice is dipole dominated with additional random
field contributions.

The dipole part is specified by the Gauss coefficients of degree ` = 1. A priori the
coefficients are assumed normal

g1 ∼ N (ḡ1, Σ1) , (6.4)

with mean vector ḡ1 and covariance matrix Σ1, nine model parameters to be determined
(three for the mean and six for the covariance). The subscript is hinting at the SH degree
and is going to be generalized. The dipole potential is a GP with mean and covariance
function

E[ΦDP] = Y >1 g1 , V[ΦDP] = Y >1 Σ1Y 1 (6.5)

where Y 1 refers to the SH basis of degree ` = 1, that is

Y 1(x)T = R
(
Y 0

1 (x), Y 1
1 (x), Y −1

1 (x)
) (

R
|x|

)2

. (6.6)

Section 6.3.1 deals with choosing a priori dipole parameters. The correlation pattern for
independent and identically distributed (IID) Dipole coefficients is shown in the left-hand
panel of Figure 6.1.

Our model of the non-dipole part is similar to the one proposed by Constable and
Parker [1988] but within a Bayesian setting. The non-dipole potential is assumed a GP
of zero mean. Rather than truncating the SH basis at a certain degree, a covariance
function of closed form is used. Therefore, we adopt the kernel construction method from
Holschneider et al. [2016, Sec. 4]. With respect to a reference sphere, the potential is
characterized by its mean power spectral behaviour (see Sec. 6.4.6). The reference sphere
may be seen as a virtual source region and the reference radius has no particular physical
significance [Constable and Parker, 1988]. Except for the dipole, at the reference radius
Gauss coefficients are assumed IID normal random variables. The corresponding Legendre
type kernel is of the form

KL(x,y) = λ2R2

∞∑
`=2

(
R2

|x||y|

)`+1∑
−l≤m≤l

Y m
` (x̂)Y m

` (ŷ) (6.7)

where we introduced λ, a scaling factor that controls the amount of the non-dipole contri-
bution and its dimension. A priori, dipole and non-dipole parts are assumed statistically
independent. According to Holschneider et al. [2016, Eq. 54], KL can be expressed in
closed form. We choose this kernel as it is computationally simple and depends only
on two parameters, R and λ. The right-hand panel of Figure 6.1 depicts an a priori
correlation pattern for the non-dipole potential.

In principle an SH decomposition is possible but computationally limited. To cover
highly localized modelling errors, the covariance has to map the characteristic length
scales present in the data. Small scale correlations among records are a valuable source
of information that should enter the model. In case of an expansion, the highest SH
degree must be chosen such that the smallest spatial wavelength coincides with distances
between sites. If some sites were clustered with distances of about 100 km, an expansion
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Figure 6.1.: Visualization of dipole (left-hand panel) and non-dipole (right-hand panel) corre-
lation structures at the Earth’s surface. The reference location is indicated by the blue dot.
The dipole pattern corresponds to IID dipole coefficients. The apparent correlation of antipo-
dal points stems from the fact that this kernel describes the fluctuations around the removed
dipole, which is dominated by the quadrupole contributions. Overall cross correlations result
from superimposing dipole and non-dipole parts. Correlations are normalized and a diverging
colourmap is used, ranging from −1 (blue) to 1 (red).

up to degree ` ≤ 175 would be needed. Since high degree expansions are demanding,
using an explicit kernel function is computationally beneficial and makes it feasible to
adopt a global point of view while preserving the accuracy of local length scales.

The reference radius R controls the predominant slope of the a priori power spectrum.
The smaller R, the smoother the a priori field at the surface. The scaling factor λ causes
a shift along the axis of ordinates. Similar to Constable and Parker [1988], the power
spectrum is used to tune the reference radius. R is chosen such that the prior mean
power spectrum roughly conforms with the International Geomagnetic Reference Field
(IGRF) [Thébault et al., 2015] time average from 1900 to 2020. Figure 6.2 depicts the
alignment, carried out by visual inspection. Throughout we are going to use the fixed
value R = 2800 km. In contrast, as λ is highly uncertain, it receives special treatment in
Section 6.3.2. A reference radius below the core-mantle boundary (CMB) implies a non-
erratic covariance structure at the CMB. A virtual source region within the outer core
may seem unconventional but is becoming more popular. To give an example, Sanchez
et al. [2016] are using complex correlation patterns at the CMB obtained from dynamo
simulations as prior information.

The EMF is modelled as the negative gradient of the potential (Eq. 6.1). Differentiation
is a linear operation and thus the field model is a GP as well. The a priori mean reads

B̄(x) = −∇Y >1 (x)ḡ1 = −
∑

−1≤m≤1

∇Y m
1 (x)ḡm1 (6.8)

and the correlation kernel is composed of dipole and non-dipole covariance functions

KB(x,y) = KB,DP +KB,ND = ∇Y >1 (x)Σ1Y 1(y)∇† +∇KL(x,y)∇† (6.9)

where the right-hand gradient acts on the left at the second argument.

6.1.2. Inference

In contrast to existing archeomagnetic field models we pursue a functional analytic ap-
proach and perform a regression directly in the space of functions. The corner stone of
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Figure 6.2.: The mean power spectral behaviour chosen a priori is indicated by red dots. As a
reference, the power spectra of the IGRF from 1900 to 2020 are drawn in grey. For comparison,
the solid black line refers to the mean spectrum suggested by Constable and Parker [1988].

our modelling strategy is formed by a GP regression. GP regression is also known in the
field of geostatistics as Kriging [see Rasmussen and Williams, 2006, Sec. 2.2 and 2.8]. For
linear B-field observations this strategy has already been adopted by Holschneider et al.
[2016]. We briefly recall the overall modelling concept before we introduce non-linear
observations.

Suppose we observe the components BN , BE and BZ of the EMF. Measurements are
denoted by

o =
{
oi =

(
BN(zi), BE(zi), BZ(zi)

)>}
i=1,...,n

, (6.10)

recorded at locations zi. Observations are corrupted by additive noise Ei and the data
model reads

O = {B(zi) +Ei}i=1,...,n . (6.11)

The error model is assumed normal of zero mean and covariance ΣE. Recorded values o
are assumed a realization of O. The data’s a priori mean vector and covariance matrix
are

Ō =
{
B̄(zi)

}
i=1,...,n

and ΣO = {KB(zi, zj)}i,j=1,...,n + ΣE (6.12)

with typically diagonal error-covariance matrix ΣE.
To obtain information about the EMF, we need to compute B’s posterior distribution.

If we assume the B-field and measurement errors are independent, the cross covariance
matrix follows to read

ΣB(x)O = Cov[B(x), O] = {KB(x, zi)}i=1,...,n (6.13)

for any design point x outside the reference sphere. Since O and B are jointly Gaussian,
the posterior distribution is normal as well. It is fully determined by the conditional mean
and conditional covariance

E[B(x)|o] = B̄(x) + ΣBOΣ−1
O

(
o− Ō

)
(6.14)

Cov[B(x),B(y)|o] = KB(x,y)− ΣBOΣ−1
O Σ>BO . (6.15)
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Gauss coefficients are modelled analogously. Magnetic potential and Gauss coefficients
are related through

gm` =
2`+ 1

4πR

∫∫
Y m
` (x)Φ(x) d2x , (6.16)

where integration is carried out over the sphere of radius R. The collection of Gauss
coefficients up to SH degree ` is denoted by g`. Accordingly, Σ` refers to the prior
covariance matrix of Gauss coefficients up to degree `. Except for the dipole and according
to Eq. 6.7, the a priori covariance Σ` is diagonal. At the reference radius the a priori
variance is λ2. The cross covariance matrix between g` and the observations reads

Σ`O = Cov[g`, O] = {−Σ`∇Y `(zi)}i=1,...,n (6.17)

and Y ` refers to the SH basis up to degree `. Since Gauss coefficients and potential are
linearly related, the posterior distribution is normal as well and, again, fully determined
by the conditional mean and covariance

E[g`|o] = ḡ` + Σ`OΣ−1
O

(
o− Ō

)
(6.18)

V[g`|o] = Σ` − Σ`OΣ−1
O Σ>`O . (6.19)

It is worth mentioning that Bouligand et al. [2005] used geodynamo simulations to con-
clude that there are significant cross-correlations among the Gauss coefficients. Our statis-
tical model places no restrictions on the posterior cross-correlations although the a priori
assumptions are based on IID Gauss coefficients.

These are the formulae we are going to build our modelling strategy upon. However,
they require an extension since archeomagnetic records and the magnetic potential are
non-linearly related. Before elaborating our approach to this problem, let us first recall
the observational functionals in question.

6.1.3. Observational functionals & Linearization

Archeomagnetic data is not provided in the form of Cartesian field vector components.
The quantities that are determined in laboratory experiments are the two angles, declina-
tion (D) and inclination (I), and intensity (F ), acquired at locations z. These quantities
and the vector components are non-linearly related. The corresponding functionals read

H : B →

DI
F

 =


arctan

(
BE
BN

)
arctan

(
BZ
FH

)√
B2
N +B2

E +B2
Z

 (6.20)

where the horizontal intensity

FH =
√
B2
N +B2

E (6.21)

is introduced as an auxiliary variable [Backus et al., 1996, Eq. 1.2.1 – 1.2.4]. The com-
ponents of H are referred to as observation functionals and are denoted by Hi[B] for
i = D, I, F . The inverse map to magnetic field vector components reads

H−1 :

DI
F

→ B = F

cos(I) cos(D)
cos(I) sin(D)

sin(I)

 . (6.22)
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The inverse map is only unique if all three observables are at hand, that is three vector
components relate uniquely to three observables and vice versa.

As already pointed out in the previous Section, the vital prerequisite for the modelling
strategy is joint normality of observations and EMF. Certainly, the functionals D, I and
F do not preserve B’s normality, nor are the measurement errors Gaussian.

To adopt the modelling concept by Holschneider et al. [2016] we approximate D, I and
F by a 1st order Taylor expansion

Hi[B] ≈ Hi[B̃] +∇Hi[B̃]>
(
B − B̃

)
, (6.23)

where B̃ refers to an arbitrary point of expansion (POE). This is the non-parametric coun-
terpart compared with the approach presented by Gubbins and Bloxham [1985, Eq. 10].
The functionals approximating D, I and F arise to

D ≈ D̃ +
1

F̃ 2
H

−B̃E

B̃N

0

>B , (6.24)

I ≈ Ĩ +
1

F̃H

0
0
1

− B̃Z

F̃

B̃

F̃

>B , (6.25)

F ≈ B̃
>

F̃
B (6.26)

where D̃, Ĩ and F̃ are referring to the 0th order terms. From those equations it is obvious
that performing an expansion about zero is not going to work. Existing models [e.g. Licht
et al., 2013, Hellio and Gillet, 2018] typically use an axial dipole as initial POE. Since a
Taylor expansion performs better the less B deviates from the POE, we propose not to
use an axial dipole. Section 6.2 is dedicated to which point to linearize about.

Since B is assumed a GP and due to linearity, the approximating observational func-
tionals are normally distributed. However, to actually achieve joint normality amongst
observations and B-field, measurement errors need a Gaussian proxy as well.

6.1.4. Measurement Errors

Although the observational functionals were linearised, the data model is still not normal
since measurement errors are not necessarily Gaussian. It is common to characterize the
uncertainty of archeomagnetic directions (D and I) using the von Mises-Fisher (vMF)
distribution and the variability of intensity using the normal distribution [Love and Con-
stable, 2003]. As long as intensity records report the standard error, linearizing F provides
a normal proxy model which we are going to use for inference. However, we lack a Gaus-
sian proxy for directional errors.

The commonly used approach is to calculate directional errors individually. The vMF
distribution is parametrized by a concentration factor and a location parameter. The
larger the value of the concentration factor, the more the distribution tends towards con-
centrating around the location parameter. Provided a large concentration factor and that
the location parameters are not pointing towards high latitudes, the marginal probabil-
ity densities for D and I are approximately Gaussian. Proxy errors for declination and
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inclination are assumed independent, of zero mean and standard deviation

σI =
57.3◦

140
α95 and σD =

1

cos oI
σI (6.27)

[Suttie and Nilsson, 2019]. Typically directional records report the 95% confidence cone
α95 of the vMF distribution. This is a pragmatic approach that does not necessarily reflect
the Gaussian moment matching proxy, since correlations are dropped and – in general –
the mean of a vMF distribution does not coincide with the location parameters. In case of
isolated declinations this approach does not work and such records are rejected. Another
drawback of a Gaussian proxy error model is the intolerance against outliers. In the
context of optimization theory there exist more robust approaches e.g. Farquharson and
Oldenburg [1998], Walker and Jackson [2008], Hellio et al. [2014]. For the vast majority of
non-Gaussian likelihoods, however, no explicit solution to the Bayesian inverse problem
is known.

Two philosophies have been used in previous work when modelling archeo- and palaeo-
magnetic data. Either very strict selection criteria are applied and these often contain
tests that had not been applied in data published a few decades ago. As the absence
of the test does not necessarily mean a result would not have passed the test, the other
philosophy is to include as much data as possible without applying very strict criteria,
aiming to increase the signal to noise ratio. However, it is likely that the reported mea-
surement errors in several cases underestimate the true data uncertainties, which might
contain systematic biases if corrections for, for example, cooling rate or anisotropy have
not been performed.

For practical reasons, we adopt the second philosophy. To compensate for possibly
non-conforming error estimates we introduce a scaling parameter ε. Then, the individual
proxy uncertainties are given by

Ei → εEi ∼ N
(
0, ε2σ2

i

)
(6.28)

and ε is regarded as a model parameter. Although we do not know the specific value for
ε, its order of magnitude is assumed to be one.

In addition, we introduce a residual term P that compensates for modelling related
errors and accounts for observational biases. Amongst others, effects that our model does
not include are temporal correlations, dating errors and crustal field anomalies. Therefore,
we assume P ∼ N (0, I), that is uncorrelated standard normal at every pair of distinct
sites. Our final data model becomes

oi = Hi[Bi + ρP i] + εEi (6.29)

and the magnitude of the residual is controlled by ρ, another not yet known model param-
eter. The residual term can be thought of as an error term that describes the simplification
of the underlying physics statistically. In other words, those real world contributions that
are not covered by our model are treated as if they were random errors.

Because we focus on time stationary snapshots of the EMF, dating uncertainties are
displaced into the residual term. Nonetheless, these errors are of importance if the tem-
poral behaviour of the EMF is reconstructed. There already exist several approaches to
accommodate dating errors for example Jack-knife [Korte et al., 2009, Licht et al., 2013],
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MCMC sampling [Hellio et al., 2014] or transdimensional modelling [Livermore et al.,
2018].

To proceed with the modelling concept outlined in Section 6.1.2, we combine the lin-
earization and the Gaussian proxy for the directional errors. However, a POE for the lin-
earization is still missing. The subsequent section covers this problem and also discusses
the concrete incorporation of the error term and the residual. As the final ingredient of
our modelling concept, the treatment of model parameters is the subject of Section 6.3.

6.2. Bayesian Update System

The need for linearization described in Section 6.1.3 requires a suitable POE. The lin-
earization as a Taylor expansion performs better the less the POE deviates from the truth.
Archeo- and palaeomagnetic directional and intensity data are determined from different
laboratory experiments, and the majority of records report either one or two field compo-
nents (incomplete records). The complete vector information (D, I, F ) is only available
in rare cases. Noting that it is easier to determine a POE from full vector records, we
introduce a Bayesian update system to treat complete and incomplete records successively.

The posterior distribution is computed by a two step strategy only considering a subset
of observations at a time. Records are partitioned into two disjoint groups oI and oC
where subscripts are referring to incomplete and complete measurements. Making use
of the conditional probability rule – that is p(X|Y )p(Y ) = p(X, Y ) – and according to
Bayes’ law the posterior B-field factorizes

p(B|o) = p(B|oC, oI) =
p(oI |B, oC)
p(oI |oC)

p(B|oC) , (6.30)

that is the posterior EMF based on the complete observations oC serves as prior for the
Bayesian posterior based on oI . Not to incorporate the data all at once appears to be a
promising strategy due to strong magnetic field correlations.

The complexity of the developed algorithm is growing through this and the following
section. Figure 6.3 provides a schematic illustration so as not to loose the overview. The
two step strategy is shown in the top panel of Figure 6.3.

6.2.1. Complete Records

In the initial step only complete records are taken into account. Triplets of declination,
inclination and intensity are forming the set of complete records

oC =
{
oi = (D(zi), I(zi), F (zi)

)>}
i=1,...,nC

. (6.31)

In order to apply the linearization, a POE is missing. The special case of knowing all
three components allows the calculation of the inverse map (Eq. 6.22)

B̃C =
{
H−1[oi]

}
i=1,...,nC

(6.32)

which will serve as the point to linearize about. That point is reasonable as long as the
priorB-field variance is large in comparison with the measurement errors. If measurement
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errors were not negligible w.r.t. the a priori distribution, then the POE is no longer known
with confidence and we have to propagate uncertainties. To ensure this, Section 6.3 is
devoted to choosing an uninformative a priori field. A Gaussian approximation in this
way is also known as Laplace’s method [Murphy, 2012, section 8.4.1].

In order to apply the modelling scheme introduced in Section 6.1.2 we use the Gaussian
proxy error model. The diagonal error covariance matrix is denoted by

ΣE,C = diag
(
σ2

1, . . . , σ
2
nC

)
, (6.33)

where σi refers to individual standard errors w.r.t. D, I and F . The linearised observation
functionals translate between (D, I, F ) andB. To keep equations concise, the dipole basis
and the Jacobi matrices are collected in big matrices

Ý1,C = {∇Y 1(zi)}i=1,...,nC
(3nC × 3) (6.34)

H́C =
{
δij∇H[B̃i]

}
i,j=1,...,nC

(3nC × 3nC) (6.35)

where δij refers to the Kronecker delta and H́C is 3 × 3 block-diagonal. For oC, the
approximative prior mean vector is given by

ŌC ≈ oC + H́>C

(
−Ý1,Cḡ1 − B̃C

)
(6.36)

where BC means evaluated at all the locations of observation. Due to assumed inde-
pendence of error model and EMF, the linearised covariance matrix for complete records
reads

ΣC = V[OC] ≈ H́>C
(
V[BC] + ρ2I

)
H́C + ε2ΣE,C , (6.37)

where V[BC] is constructed from the kernel (Eq. 6.9) at any two locations of observa-
tion. Due to bi-linearity of the covariance H́C is factored out and all constant terms are
stripped off. For arbitrary design points, the linearised cross covariance amongst EMF
and measurements is given by

ΣBC = Cov[B, OC] ≈ Cov[B,BC] H́C . (6.38)

According to Equations 6.14 and 6.15, a Gaussian proxy of B’s posterior distribution is
determined through the conditional mean E[B|oC] and conditional covariance V[B|oC].
This first step of our modelling scheme is illustrated in the top left panel of Figure 6.3.

Analogous to Eq. 6.17, the linearised cross covariance amongst Gauss coefficients and
observations is given by

Σ`C = Cov[g`, OC] ≈ Cov[g`,BC] H́C = −Σ`Ý`,CH́C . (6.39)

where Ý`,C extends Eq. 6.34 up to SH degree `. The approximations of the condi-
tional mean E[g`|oC] and conditional covariance V[g`|oC] are given through Equations 6.18
and 6.19.

Although the subset of complete records is comparatively small, as a first guess, we
anticipate a reconstruction of the EMF’s dominating features due to strong magnetic
field correlations.
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6.2.2. Incomplete Records

Inference with the incomplete records only implicitly depends on the a priori mean and
covariance function through the first step. The distribution of the EMF posterior to oC
may be understood as the prior to incorporate the remaining measurements oI . To carry
out the linearization, the mean conditional on oC will serve as POE

B̃|C = E[B|oC] . (6.40)

From a theoretical point of view this is a function that is going to be evaluated by the
observational functionals. We expect those points to be well suited, as in a Gaussian
model the mean is the most likely solution. However, this is an arbitrary choice and does
not necessary imply any optimality.

Because the EMF’s proxy posterior to oC is normal we are going to use the same
modelling concept as we have already done (Sec. 6.1.2). To facilitate the second step it is
necessary not only to predict on design points but also on auxiliary quantities in the first
step.

Incomplete records are treated individually even though a certain location may report
more than one observable. The approximative mean is given by

ŌI|C ≈
{

Hi

[
B̃|C
]}

i=1,...,nI
(6.41)

and we use the subscript i to indicate both the location zi and the type of record in Hi,
either D, I or F . If we collect all gradients within one big matrix

H́I|C =
{
δij∇Hi[B̃|C]

}
ij=1,...,nI

, (6.42)

then the covariance matrix for incomplete records reads

ΣI|C ≈ H́>I|C
(
V[BI |oC] + ρ2I

)
H́I|C + ε2ΣE,I . (6.43)

The error covariance matrix is analogous to Eq. 6.33. The auxiliary quantities we have to
carry along are conditional mean vector and covariance matrix at points of observation.

To model the posterior B-field we again have to calculate linearised cross correlations
amongst B|oC and OI . If we store the matrix Cov[B,BI |oC] within the first step, lin-
earised cross correlations amongst design points and incomplete records are given by

ΣBI|C = Cov[B, OI |oC] ≈ Cov[B,BI |oC] H́I . (6.44)

The Gaussian proxy for the EMF’s posterior distribution is again determined through
Equations 6.14 and 6.15. Conditional mean and covariance read

E[B|o] = E[B|oC] + ΣBI|CΣ
−1
I|C(oI − ŌI|C) (6.45)

V[B|o] = V[B|oC]− ΣBI|CΣ
−1
I|CΣ

>
BI|C . (6.46)

The top panel of Figure 6.3 illustrates how the posterior EMF is built within two steps.
Gauss coefficients are estimated analogously. If we store the matrix Cov[g`,BI |C] while

performing the first step, then, the linearised cross correlations are given by

Σ`I|C = Cov[g`, OI |oC] ≈ Cov[g`,BI |oC] H́I|C . (6.47)
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g1 ∼ Flat

BND ∼ GP(0, KB)R = 2800 [km] ŌC , ΣC , ΣBC

E[BI |oC ]

V[BI |oC ]

Cov[B,BI |oC ]

E[B|oC ]

V[B|oC ]

λ, ρ, ε

σC oC

B̃C

ŌI|C , ΣI|C , ΣBI|C

B̃I

E[B|o]
V[B|o]

σI oI

1st step 2ed step

λ ∼ Jeff

ε ∼ Uni

ρ ∼ Uni

10 ≤ε ≤ 350 [%]

1000 ≤ρ ≤ 6500 [nT]

∫∫∫
dλ dρ dε p(λ, ε, ρ) p(oC |λ, ε, ρ) p(oI |oC , λ, ε, ρ) p(B|o, λ, ε, ρ) p(B|o)

marginalization of model parameters

Figure 6.3.: Illustration of how the two-step strategy and a marginalization intertwine to com-
pute the posterior compound distribution. Invariants – such as observations – are shaded in
grey. The upper part refers to the update system where model parameters are highlighted in
red. Top left-hand panel shows the initial step (Sec. 6.2.1) whereas top right-hand illustrates the
update (Sec. 6.2.2). The marginalization is highlighted in green (Sec. 6.3.2). Arrows indicate
how information is passed.

Approximations of conditional mean and covariance translate according to Equations 6.18
and 6.19.

Unfortunately, we cannot yet directly apply that algorithm since we do not know specific
values for the model parameters ḡ1, Σ1, λ, ρ and ε. Before we deal with abandoning these
parameters (see Sec. 6.3) we carry out tests with synthetic data to validate the proposed
framework.

6.2.3. Synthetic Tests

The current IGRF coefficients are used as a realistic reference field. Synthetic data is
generated from the reference field and is corrupted by artificial noise. A gamma distri-
bution is used to corrupt intensity records whereas directional data is randomly drawn
from a vMF distribution. To check for robustness, the measurement errors are chosen on
purpose not to coincide with the proposed Gaussian proxy error model. For the tests we
use several data sets that differ in the error level, the complete/incomplete ratio and the
spatial distribution. Since the reference model is known, we use the mean absolute error
(MAE)

MAE =
1

n

n∑
j

∥∥B(zj)− E[B(zj)|o]
∥∥

1
(6.48)

as a test characteristic. Reconstruction and reference field are compared at the Earth’s
surface, sampled at a rate that accounts for the length scales present in the reference field.
Our modelling strategy is able to recover the reference field for all data sets considered.

Furthermore the influence of the POE on the linearization is examined. We compare the
proposed strategy to linearization about an axial dipole of g0

1 = −23µT 1. For all data sets
under consideration, the MAE of our modelling strategy falls below linearization about
the axial dipole. Especially if the data set mimics reality, the proposed strategy performs
better.

1An arbitrarily chosen value that roughly fits in terms of magnitude and sign.
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Figure 6.4.: Linearization about an axial dipole compared to the strategy proposed. The hori-
zontal red line indicates the MAE of our approach whereas the blue dots refer to the MAE by
varying the axial dipole strength. The shaded areas extend from the 25 to 75 per cent quantile
to illustrates the spread of absolute errors. The dashed vertical line refers to the axial dipole of
the reference field.

To make sure that g0
1 = −23µT is not a coincidence, we also vary the axial dipole

strength. For the synthetic data that mimic reality, Figure 6.4 compares the MAE of the
proposed strategy with linearizing about a range of axial dipoles. Even the axial dipole
featuring the smallest MAE has a value that is still above the proposed POE built from
the complete data. Throughout the synthetic data sets considered, the proposed strategy
outperforms the linearization about the best suited axial dipole. A detailed description
and the full test results are available together with the source code by Schanner and
Mauerberger [2019].

6.3. Model Parameters

Before applying the outlined modelling strategy we need to address several model param-
eters. As the posterior EMF must not depend on a certain choice of model parameters,
the a priori mean ḡ1 and covariance Σ1 of the dipole and the scaling factors λ, ρ and ε
are considered so-called nuisance parameters, that is parameters that are not of primary
interest. To abandon those quantities from the EMF’s posterior distribution we are go-
ing to use two different techniques: Section 6.3.1 analytically eliminates ḡ1 and Σ1 by
exploring the limit of a flat dipole prior. Section 6.3.2 addresses a hierarchical Bayesian
approach to marginalize the scaling factors λ, ρ and ε.

6.3.1. Uninformative Dipole

To make as few assumptions as possible we aim to explore the limit of an uninformative
prior dipole. This approach is beneficial in two different ways: 1) It prevents us from
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accidentally choosing an overly confident prior. 2) We abandon all of the nine dipole-
parameters. We expect the data to be strong enough to estimate g1 with confidence.

Loosely speaking, a flat prior may be understood as the limit of a Gaussian with variance
sent to infinity. Since an unbounded covariance is not well defined the standard approach
is to express formulae w.r.t. the precision and explore the limiting case of vanishing
dipole precision that is Σ−1

1 → 0. In the following, we closely follow Rasmussen and
Williams [2006, section 2.7], additionally taking our update system and the linearization
into account.

Even though the prior dipole precision is sent to zero, the posterior distribution remains
normal. The second step in our update system depends only implicitly on the a priori
assumptions made, thus, only the first step needs modifications. This means that the
overall modelling concept persists, although we have to modify the conditional mean and
covariance (Eqs. 6.14 and 6.15).

First of all, we have to partition the covariance matrix into dipole and non-dipole
contributions

ΣC = ΣC,DP + ΣC,ND = H́CÝ1,CΣ1Ý
>

1,CH́
>
C + ΣC,ND (6.49)

where ΣC,ND is constructed from KB,ND also containing measurement errors and residuals.
To keep equations concise, it is beneficial to predict the dipole coefficients first. Making
use of the matrix inversion lemma [Rasmussen and Williams, 2006, A.9], conditional mean
and inverse of the covariance result in

V[g1|oC]−1 = Σ−1
1 + Ý >1,CH́

>
C Σ−1
C,NDH́CÝ1,C (6.50)

E[g1|oC] = V[g1|oC]−1
(

Σ−1
1 ḡ1 − Ý >1,CH́>C Σ−1

C,NDH́CB̃C

)
(6.51)

and the data oC enters through the POE (see Eq. 6.36). Considering the limit of the
uninformative dipole yields

Σ−1
1|C := lim

Σ−1
1 →0

V[g1|oC]−1 = Ý >1,CH́
>
C Σ−1
C,NDH́CÝ1,C (6.52)

ḡ1|C := lim
Σ−1

1 →0
E[g1|oC] = −Σ−1

1|CÝ
>

1,CH́
>
C Σ−1
C,NDH́CB̃C . (6.53)

Interestingly, g1|oC does not depend on ḡ1, rendering the dipole’s prior mean irrelevant.
Predicting Gauss coefficients of higher SH degree is straightforward since a priori dipole

and non-dipole contributions are assumed independent. For ` > 1 cross correlations are of
no concern as they do not depend on g1. Analogous to Equation 6.39, conditional mean
and covariance result in

E[g2:`|oC] = − Σ2:`Ý
>

2:l,CH́
>
C ΩCH́CB̃C (6.54)

V[g2:`|oC] = Σ2:` − Σ2:`Ý
>

2:l,CH́
>
C ΩCH́CÝ2:l,CΣ2:` (6.55)

where ΩC refers to the limiting precision matrix

ΩC = Σ−1
C,ND − Σ−1

C,NDH́CÝ1,CΣ1|CÝ
>

1,CH́
>
C Σ−1
C,ND (6.56)

and we again made use of the matrix inversion lemma. To perform the second step, the
whole posterior covariance matrix is necessary. However, the posterior cross covariance
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amongst dipole and non-dipole coefficients is missing. The difficulty is to find the limiting
case. According to Equation 6.19 we have

Cov[g1, g2:`|oC] = −Cov[g1, OC] Σ−1
C Cov[OC , g2:`] (6.57)

since a priori dipole and non-dipole are assumed independent. Plugging in the linearization
we end up with

Cov[g1, g2:`|oC] = −Σ1|CÝ1,CH́CΣ
−1
C,NDH́

>
C Ý

>
2:l,CΣ2:` , (6.58)

which no longer depends on Σ1. To see this, use the matrix inversion lemma to express the
precision matrix, factor in the left hand side and expand by Σ−1

1|CΣ1|C. Using Equation 6.50
and re-arranging terms yields Equation 6.58.

To predict on the EMF, we divide the cross covariance into dipole and non-dipole
contributions. Since a priori the dipole term is assumed independent of the non-dipole
contribution we have

ΣBC = ΣBC,DP + ΣBC,ND = Ý >1 Σ1Ý1,CH́C + ΣBC,ND (6.59)

and ΣBC,ND is constructed from KB,ND. Using the same strategy as we did with the Gauss
coefficients, the posterior mean and covariance arise to

E[B|oC] = −Ý >1 ḡ1|C + ΣBC,NDΣ−1
C,ND

(
B̃C − Ý >1,C ḡ1|C

)
(6.60)

V[B|oC] = Ý >1 Σ1|CÝ1 +KB,ND − ΣBC,NDΩCΣ
>
BC,ND . (6.61)

From those equations we can obtain all quantities needed to proceed with the second step
incorporating incomplete records.

The importance in the result is that conditional mean and covariance no longer depend
on the choice of the a priori dipole, since we assumed zero precision.

6.3.2. Compound Distribution

Although we are not particularly interested in reconstructing the probability distribution
of ϑ = (λ, ρ, ε), their variabilities must be taken into account. The final result of the
proceeding is the EMF’s compound distribution

p(B|o) =

∫
p(B|o, ϑ) p(ϑ|o) dϑ (6.62)

which results from marginalizing the scaling factors. Figure 6.3 illustrates the interaction
of the two-step strategy and the compound distribution, with the marginalization being
depicted in the bottom part. This approach makes it possible to escape from Gaussian-
ity. The integral will not be tractable analytically and must be evaluated by numerical
methods.

Let us inspect the two PDFs we want to integrate over. For a certain choice of pa-
rameters, p(B|o, ϑ) is calculated according to our two step strategy. To keep track of the
scaling factor’s posterior p(ϑ|o) we add a hierarchical stage. Applying Bayes’ law, the
posterior density is given by

p(ϑ|o) ∝ p(o|ϑ)p(ϑ) (6.63)
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where we neglected the normalizing constant. To suitably normalize we have to carry out
another quadrature since p(o) =

∫
p(o|ϑ)p(ϑ) dϑ is unknown. Because of the flat dipole

prior, calculating p(o|ϑ) needs special attention. Not to distract from our endeavour, this
is the focus of Section 6.3.3.

A priori, all three parameters are assumed statistically independent. Both, residual and
error level are considered uniformly distributed. As we are roughly aware of magnitudes,
the chosen range is well-spaced (weakly informative). On the contrary, λ is a scale pa-
rameter bearing across orders of magnitude. The corresponding uninformative prior –
representing the state of no prior information – is Jeffrey’s prior

p(λ) ∝ 1

λ
[nT] (6.64)

that is, values ten times larger are just as likely as values ten times smaller [Murphy,
2012, section 5.4.2]. However, there is a subtlety arising for the compound prior PDFs.
The hierarchical approach has an impact because the a priori B-field depends on λ. The
scale invariance is passed on rendering the compound prior distributions improper, that
is the density can not be normalized. As an example, the compound PDF for the a priori
non-dipole Gauss coefficients reads

p(gm` ) =
1√
2π

∞∫
0

1

λ2
exp

{
−1

2

(gm` )2

λ2

}
dλ ∝ 1

|gm` |
. (6.65)

That density remains centred at zero whereas the variance does not exist. Nevertheless,
the compound posterior PDFs are normalizable and well defined. Marginalizing λ results
in an extremely weak a priori assumption.

Although the compound distribution is not normal, calculating higher-order moments
is one of its potentials. Posterior mean and covariance are given by

E[B|o] =

∫
p(ϑ|o) E[B|o, ϑ] dϑ (6.66)

V[B|o] =

∫
p(ϑ|o)

(
E[B|o, ϑ]2 + V[B|o, ϑ]

)
dϑ− E[B|o]2 (6.67)

and the mean and covariance we are integrating over are explicitly given. For modelling
Gauss coefficients the above formulae translate analogously.

An actual implementation requires to perform three numeric integrations, in total.
Since numeric quadrature in three dimensions is feasible, both the fully Bayesian posterior
density and also the Gaussian moment matching proxy are right at hand.

6.3.3. Marginal Likelihood

We postponed the calculation of the marginal likelihood until here. The terms marginal
and likelihood refer to the marginalization over the EMF as a function in ϑ. To actually
discretize and integrate the compound distribution, p(o|ϑ) is still missing. We again
separate into complete and incomplete records. The marginal likelihood factorizes

p(o|ϑ) = p(oI |oC, ϑ)p(oC|ϑ) (6.68)
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where we used the conditional probability rule. The major benefit is that we already know
the quantities needed to evaluate the PDFs on the right hand side of Eq. 6.68 through
our two step strategy. Figure 6.3 illustrates where Eq. 6.68 enters the modelling scheme
and how quantities are passed between marginalization and two-step strategy.

For the sake of simplicity we analyse incomplete records, first. For a certain choice of
parameters, B|oC, ϑ and OI |ϑ are jointly normal due to linearization and error approx-
imation. By taking advantage of the joint normality, we can directly observe the prior
predictive distribution of the incomplete records. The PDF follows to read

p(oI |oC, ϑ) =
exp
{
−1

2
(oI − ŌI|C)>Σ−1

I|C(oI − ŌI|C)
}

√
(2π)nI |ΣI|C|

(6.69)

and the mean and covariance are given by Eqs. 6.41 and 6.43, implicitly depending on λ,
ρ and ε through the first step in our update system. Regarded as a function in ϑ, the
marginal likelihood is certainly not normal.

Because of the flat dipole prior, the marginal likelihood for complete records needs
special attention. We proceed analogously to the incomplete data, however, having to
bear the limiting case

p(oC|ϑ) = lim
Σ−1

1 →0

exp
{
−1

2
(oC − ŌC)>Σ−1

C (oC − ŌC)
}√

(2π)nC |ΣC|
. (6.70)

We closely follow Rasmussen and Williams [2006, section 2.7] and again split into dipole
and non-dipole contributions. As already mentioned in Section 6.3.1, in the limit ḡ1 is
irrelevant and we set ŌC = oC − H́CB̃C (see Eq. 6.36). The limiting precision matrix is
of no concern and given by Equation 6.56. The big concern, however, is the determinant
as the dipole variance tends to infinity. According to Rasmussen and Williams [2006,
Eq. 2.45], the marginal likelihood for the complete records results in

p(oC|ϑ) =
exp
{
−1

2
B̃>C H́

>
C ΩCH́CB̃C

}
√

(2π)nC−3|ΣC,ND| |Σ−1
1|C|

(6.71)

and we already computed all relevant quantities in the first step of our update system.
Although not explicitly indicated, the non-dipole covariance, the limiting precision and
the dipole covariance depend on ϑ.

6.4. Application

As a practical proof of concept we apply the suggested method to the archeomagnetic and
volcanic data offered by the GEOMAGIA50.v3 database [Brown et al., 2015]. We used
all directional and intensity records between 753 AD and 1950 AD that were included in
GEOMAGIA50 version 3.3 in November 2019. To simplify matters, the Earth is assumed a
sphere of radius RE = 6 371.2 km and coordinates are treated as if they were spherical. We
estimate the committed error to be less than 1

2
µT which is small compared to modelling

uncertainties.
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Figure 6.5.: Number of data per 100 yr bin (D, I and F counts are without complete records).
For comparability each complete record is counted as three data points. The bin that we use as
example in the discussion is shaded in grey. The horizontal line refers to the criterion of how
the window length is chosen.

We use the individual, originally reported error estimates. If uncertainties are not
available (ca. 8.4 per cent of the data), we assign α95 = 4.5◦ as directional errors and σF =
8.25µT as intensity errors [Licht et al., 2013, section. 2.2]. Single unpaired declination
records are not used.

As our model does not yet account for time dependence we group the data into disjoint
bins of 100 yr. The decisive factor for the window length is the number of complete
records per bin. Our two step strategy and the linearization are the basic rationale
behind this choice. The number of complete records has to determine a reasonable POE
for incorporating the incomplete records. Let us assume that at the surface the EMF is
dipole dominated (about 90%) for the timespan under consideration. As a rule of thumb,
a Taylor expansion performs reasonably well when deviating less than 10% from the truth.
Having a parametric view back in mind, the field’s dominating features may be described
by only nine parameters (g1 and Σ1). With a minimum of ten complete records per bin
we anticipate a coarse field estimate suited as POE. This consideration leads to a window
length of 100 yr. Figure 6.5 shows the temporal data distribution.

To demonstrate the potential of our modelling strategy in recovering the stationary
field we use the interval [1650, 1750] as an example. In total, this bin summarizes 744
observations acquired at 480 sites. Figure 6.6 depicts the highly irregular data coverage
which is dominated by the northern hemisphere.

We are going to compare our findings to three previous, continuous magnetic field mod-
els. The models ARCH10k.1 [Constable et al., 2016], arhimag1k [Senftleben, 2019] and
COV-ARCH [Hellio and Gillet, 2018] are considered eligible competitors as they stem from
a similar data basis, although arhimag1k additionally includes direct historical observa-
tions. All three models report Gauss coefficients up to SH degree ` = 10. ARCH10k.1
and arhimag1k are continuous in time, but do not report modelling errors. In contrast,
COV-ARCH provides an ensemble of 50 realizations but uses the same coarse time steps
as we do. To compare with COV-ARCH’s ensemble we calculate sample mean and sample
variance. Histograms are computed according to Scott’s rule of thumb [Scott, 1979].
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Figure 6.6.: Illustration of the very irregular data coverage for the 1700 epoch. The left-hand
panel shows complete records whereas the right-hand panel illustrates combinations of D, I and
F measurements.
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Figure 6.7.: Discretisation of the parameter space for the epoch 1700. The accurately sampled
marginal densities for the integration phase (white framed box) are drawn atop of the coarse
exploratory grid.

6.4.1. Numeric Integration

To evaluate the compound distribution p(B|o) we discretize the integral in Equation 6.62.
The posterior PDF is approximated by a simple Riemann sum

p(B|o) ≈
∑
i

p(B|o, ϑi) p(ϑi|o)∆ϑi . (6.72)

Although not highly accurate, we favour using a Riemann sum because of its simplic-
ity. Since by construction the mixture components p(B|o, ϑi) are normally distributed,
the r.h.s. of Equation 6.72 gives a (finite) Gaussian mixture distribution [Murphy, 2012,
section 11.2.1], for which moments are readily available by translating Equations 6.66
and 6.67 accordingly.

To actually discretize the parameter space, we use a regular and equally spaced grid.
Thus we have the posterior

p(B|o) ≈
N∑

i,j,k=0

p(B|o, λi, εj, ρk) p(λi, εj, ρk|o) ∆λ∆ε∆ρ , (6.73)

where N3 is the number of gridpoints for the Riemann sum, ∆λ is the step width, λ0

and λN specify the bounds of the interval we integrate over and λi = λ0 + i∆λ (Similar
for ε and ρ). As mentioned above, we carry out a second quadrature to normalize the
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parameter posterior p(λi, εj, ρk|o). This also serves the purpose of having a well defined
Gaussian mixture density. We normalize it w.r.t. the Riemann sum, that is such that

N∑
i,j,k=0

p(λi, εj, ρk|o)∆λ∆ε∆ρ = 1 . (6.74)

Under these considerations Equation 6.73 can be seen as the discrete version of Equa-
tion 6.62, where all terms are replaced by their respective discrete equivalent.

We consider the approximation (Eq. 6.72) reasonable, since we found the probability
mass of the parameter posterior p(ϑ|o) to be unimodal and localized in a finite region.
Thus to calculate the Gaussian mixture proxy (Eq. 6.73) for the compound distribution,
we perform two steps:

Exploration of the parameter space We need to identify the region in which the
parameter posterior is localized. Hence we span a coarse grid over all values we believe
to be (physically) reasonable and calculate the posterior p(ϑ|o) on this grid. We choose
N = 25 gridpoints along each of the three dimensions and choose the bounds as

λ0 = 100 nT λN = 150000 nT

ε0 = 10 % εN = 350 % (6.75)

ρ0 = 1000 nT ρN = 6500 nT .

Although in principle a wider extent of the grid may be “physically reasonable”, by
trial and error we found these bounds to be sufficient (i.e. outside of the bounds the
probability mass was approximately zero for all considered cases). Finally, from the
posterior we calculate the marginal distribution for each parameter λ, ε, ρ via another
Riemann sum. We then calculate each (empirical) mean and standard deviation from
these coarse marginals. The region where the probability mass is located is then covered
by the cuboid centred at the empirical mean with edge-lengths given by two empirical
standard deviations.

Calculation The actual numerical integration only takes place within the cuboid that
is derived in the exploration step. Inside that cuboid a refined grid is spanned with N = 15
nodes per dimension. By calculating not only the posterior on this new grid, but running
for each gridpoint an inversion for the EMF, the Gauss coefficients and other quantities
of interest, we can calculate a proxy for the full compound posterior for each of these
quantities, using Equation 6.73. This proxy, which is a Gaussian mixture distribution, is
the final result of our modelling strategy.

For all epochs the parameter posterior is of good-nature only featuring a single mode.
For epoch 1700, Figure 6.7 depicts the posterior parameter PDF. Presented are all com-
binations of 2-D marginal parameter posterior at the coarse and refined grid. The white
rectangle refers to the edges of the refined grid that is used for numeric integration. The
maximum of the error level ε is slightly above 100% at a rather small spread. This means
that measurement errors are considered a little larger than described in the dataset. Tak-
ing the approximations into account, a shift toward higher values seems reasonable. The
residual term ρ has its maximum at about 4µT and is also relatively sharp. It is in-
teresting to note that the residual is of the same order of magnitude as the equatorial
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dipole. This need not only be due to unexplained sources, it can also be an effect of
the linearization or not taking time dependencies into account. The scaling parameter λ
features the widest distribution. In comparison with the IGRF, the magnitude and range
appear reasonable. However, the posterior PDF of the model parameters is not sharp
enough to justify a point estimate. Therefore we integrate out model parameters and
thus the uncertainties from the parameter posteriors are translated into the posterior of
the quantities of interest. This way the posterior variance, which is easily available due to
the Gaussian mixture structure, does not only reflect uncertainties arising from the data,
but also reproduces the model uncertainties.

6.4.2. Vector field predictions

The discretized versions of B’s posterior mean and variance translate according to Equa-
tions 6.66 and 6.67 and are given by

E[B|o] =
∑

p(ϑi|o)E[B|o, ϑi] ∆ϑ (6.76)

V[B|o] =
∑

p(ϑi|o)
(
E[B|o, ϑi]2 + V[B|o, ϑi]

)
∆ϑ− E[B|o]2 . (6.77)

The pointwise posterior standard deviation serves for realistic location dependent uncer-
tainty estimates. Again, B-field predictions are non-parametric and do not depend on
Gauss coefficients.

The top row of Figure 6.8 depicts both posterior mean and standard deviation of the
down component at the Earth’s surface. The field is evaluated at 2000 design points,
equally distributed over the sphere [Deserno, 2004]. We are able to quantify what pre-
vious studies are suggesting: The EMF is reconstructed with confidence within areas of
dense data coverage, for example in Europe. Structures of large parts of the southern
hemisphere, however, remain vague. We see quite similar patterns across all epochs under
investigation.

6.4.3. Declination, Inclination and Intensity

Because the EMF shares a non-linear relation with declination, inclination and intensity
we do not see the possibility of analytically deriving properties such as the posterior mean
for D, I and F . For a moderate number of design points we can obtain the distribution
by sampling strategies. However, trying to draw from a high dimensional normal mixture
distribution appears absurd. For the 2000 design points we are interested in, storing all
the covariance matrices of the entire parameter grid is hardly possible, let alone drawing
samples from the resulting mixture.

The idea behind uncovering the posterior mean and variance of D, I and F is once more
a linearization. To do so the same strategy as pointed out in Section 6.1.3 is used. The
linearization of D, I and F are given by Equations 6.24, 6.25 and 6.26. We build upon the
EMF estimate from the previous section and the posterior mean E[B|o] serves as POE.
Because of the linearization approximations for mean and (co)variance are explicit.

To provide an example we consider the intensity, only. Utilizing Equation 6.26, the
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Figure 6.8.: Posterior mean (left-hand panel) and standard deviation (right-hand panel) of the
EMF at the Earth’s surface for the 1700 epoch. The top row shows the down component BZ .
The locations at which we perform normality tests are indicated in red (see Tab. 6.1). The
bottom row shows the field intensity F . Blue dots refer to the underlying data sites.

approximate posterior mean and variance are given by

E[F |o] ≈ ‖E[B|o] ‖ (6.78)

V[F |o] ≈ E[B|o]>V[B|o]E[B|o]

‖E[B|o] ‖2
. (6.79)

We pursue a non-parametric approach but the concept is similar to that of Hellio et al.
[2014, Appendix A]. For the 1700 epoch, the bottom row of Figure 6.8 depicts mean
and standard deviation of the intensity at the Earth’s surface. Although not directly
observed by a single record, the evolving area of weak field known as the South Atlantic
Anomaly [e.g., Mandea et al., 2007, Hartmann and Pacca, 2009] is certainly significant
within one standard deviation. Looking at the other epochs, the westward drift is also
visible. This feature is constrained here by only a few points around the actual anomaly,
which shows that our modelling approach is capable of uncovering features that are known
from models with stronger data basis. This ability stems from long ranging spatial corre-
lations of the kernel and is controlled by the reference radius R (see Figure 6.1).

When comparing epoch 800 with figure 11(a) in Hellio and Gillet [2018] two things
stand out. The magnitudes are similar but a low intensity patch is found in the Pacific
rather than the Atlantic. In the standard deviation we also see a rather sharp transition
between north and south. Since this is a proof of concept a detailed comparison or even
an interpretation would be premature.

Since our posterior distributions are certainly not normal it is questionable if the stan-
dard deviation is adequate to describe uncertainties. If the posterior is highly skewed or
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Lat -26◦ 45◦ 71◦ 39◦ -26◦

Lon -88◦ 0◦ 9◦ 131◦ 159◦

D
∆16 2.5 0.7 0.3 -0.2 1.5
∆84 -0.3 2.9 3.9 1.8 0.4

I
∆16 3.6 -0.3 -0.4 -1.5 3.8
∆84 -3.0 1.0 3.0 6.7 -2.3

F
∆16 4.6 -2.4 0.7 1.5 7.1
∆84 -1.7 0.5 -0.1 -0.3 0.6

Z
∆16 2.9 -2.6 -1.1 -0.4 1.2
∆84 1.6 0.1 0.6 0.6 1.9

Table 6.1.: Estimation of the quality of the proxy standard deviation as a measure of error,
compared to the 16-/84-percentiles. If ∆ is larger (smaller) than 0, the standard deviation
overestimates (underestimates) the error. Values are given in percent of one standard deviation.

even multimodal, the standard deviation would not be well suited to quantify modelling
errors. One would preferably use percentiles which, however, cannot be derived analyti-
cally. As long as the number of design points is moderate, one brute-force method is to
calculate percentiles by sampling. This works well for percentiles that are not far from
the bulk of the probability mass.

A simplistic approach to obtain samples from a mixture distribution is the following
algorithm. First, by chance the kth random variable is selected from the mixing distribu-
tion p(ϑk|o) (categorical). Then the value of the selected random variable p(B|o, ϑk) is
realized (multivariate normal). Repeat until the desired amount of samples is achieved.

Although we have to radically reduce the number of design points we can gain insight
into how strong the proxy standard deviation and percentiles deviate. We compare 16-
and 84-percentiles to mean ± standard deviation via

∆16 = 1− µ− α16

σ
and ∆84 = 1− α84 − µ

σ
(6.80)

where α refers to percentiles, µ and σ indicate mean and standard deviation. The inter-
pretation of ∆ is as follows: If ∆ is larger (smaller) than zero, the standard deviation
overestimates (underestimates) the uncertainty given by the percentile, by |∆| standard
deviations. Note, that to keep this interpretation consistent for both ∆16 and ∆84 the
sign of the second term in (6.80) changes.

At 5 randomly selected locations we apply this check to the down component BZ and
to the three commonly used archeomagnetic observables D, I and F . As can be seen in
Table 6.1, at all locations the deviation is well below 10%. Thus we believe the proxy
standard deviation is qualified to describe uncertainties. Furthermore, the proxy standard
deviation obtained by linearization is computationally feasible and easy to visualize and
interpret.

6.4.4. Predictions at the Core-Mantle Boundary

Until here predictions were carried out at the Earth’s surface. It is straightforward to
predict the EMF at arbitrarily chosen design points outside of the reference sphere of
radius R. Figure 6.9 presents mean and standard deviation of the down component
BZ at the CMB. We again use 2000 equidistributed design points but at radius RCMB =
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Figure 6.9.: Posterior mean (left-hand panel) and standard deviation (right-hand panel) of the
EMF down component BZ at the CMB for the 1700 epoch. Blue dots refer to the sites where
records are acquired.

3480 km. One observes that uncertainties are greater than at the Earth’s surface. Roughly
speaking, the standard deviation is about 40% compared to the mean, while at the Earth’s
surface relative errors only amount up to 10% (see right-hand column of Figure 6.8). The
modelling error strongly depends on how far design points are from the reference sphere.

This behaviour is best understood thinking in terms of Gauss coefficients. In Equa-
tion 6.2 the term that is raised to the power of ` + 1 causes this effect. Since design
points lie outside the reference sphere, the ratio R

|x| is smaller than one. Thus, Gauss

coefficients are more penalized the larger the SH degree, and the ratio R
|x| determines the

rate of decline. In turn, the closer to the reference radius the more impact higher SH
degrees have. Related to smaller structures, the higher the SH degree the less certain we
are. When scaling down – for example to the CMB – higher SH degrees increase and so
do the respective uncertainties. This idea translates to our non-parametric model.

Compared to what Hellio and Gillet [2018, figure 8c] found, our reconstruction of epoch
1400 looks very similar. Because of the large variabilities, a detailed comparison does not
make much sense.

6.4.5. Gauss Coefficients

We want to stress again that our model is inherently non-parametric. The fundamental
quantity of the inference is the geomagnetic potential. Nevertheless, our approach allows
to infer Gauss coefficients since geomagnetic potential and Gauss coefficients are linearly
related (see Eq. 6.16). The procedure is similar to inferring the EMF. The discretized
versions of the compound mean (Eq. 6.66) and (co)variance (Eq. 6.67) for the Gauss
coefficients gm` read

E[gm` |o] =
∑

p(ϑi|o)E[gm` |o, ϑi] ∆ϑ (6.81)

V[gm` |o] =
∑

p(ϑi|o)
(
E[gm` |o, ϑi]2 + V[gm` |o, ϑi]

)
∆ϑ− E[gm` |o]2 . (6.82)

In principle we can predict up to arbitrary SH degree. However, storing the component’s
mean and covariances for the whole parameter grid becomes memory intensive. If we
restrict our selves to a moderate SH degree – for example ` ≤ 10 – we are able to
calculate the full mixture PDF, sample from the posterior and calculate percentiles.
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Figure 6.10.: Distribution of the dipole coefficients at the Earth’s surface for epoch 1700. The
resulting mixture PDF is indicated by the solid black lines whereas the, nearly identical, dashed
lines refers to the moment matching Gaussian proxies. The green histograms illustrates the
COV-ARCH ensemble coefficients. The blue vertical lines refer to arhimag1k and the red ones
to ARCH10k.1 .

Although not explicitly indicated, Gauss coefficients depend on the reference radius R.
Given the gm` at the reference radius, we can scale them to a radius R̃ > R by

g̃m` = gm`

(
R

R̃

)`+2

. (6.83)

Mean and covariances translate accordingly.

For comparison, we scale Gauss coefficients w.r.t. the Earth’s surface. The mixture
PDFs for the dipole coefficients are shown in Figure 6.10. As can be seen, the mixture is
quite close to the moment matching normal proxy. Across all epochs the dipole coefficients
are close to being normally distributed, except for the bin [850, 950], for which the mixture
distribution deviates slightly from the normal proxy. However, the higher the SH degree
the less normal the posterior is and the more the scale invariant prior dominates (see
Eq. 6.65). We further see that for the epoch under consideration, the histogram built
from the COV-ARCH ensemble shows a considerable overlap with the mixture’s PDF
and the mean aligns with the ARCH10k.1 estimate. It is not too much of a surprise that
the arhimag1k prediction deviates since it additionally incorporates historical records,
which are not included in our data set.

Although well suited to compare with existing models, care has to be taken when
interpreting Gauss coefficients. A finite set of Gauss coefficients does not represent the
full information contained in our non-parametric modelling approach. Areas of dense data
coverage may feature a resolution than can not be captured by an expansion, for example
until degree 10. However, this is less relevant in the context of geomagnetic core field
modelling, where SH degrees larger than around 14 are dominated by lithospheric field
signals, which cannot be resolved by a sparse data distribution. Figure 6.11 compares
the predicted Gauss coefficients to the selected reference models until SH degree 5, which
is considered the approximate global resolution of the spherical harmonics based models
[Korte et al., 2009, Licht et al., 2013, Sanchez et al., 2016, Constable et al., 2016, Hellio
and Gillet, 2018]. With few exceptions, our findings are on a par with existing models
within one standard deviation.
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Figure 6.11.: Comparison of Gauss coefficients for SH degrees 2 - 5 at Earth’s surface for epoch
1700. Results from this study are shown in black. Error bars indicate one standard deviation.
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6.4.6. Spatial Power Spectrum

It is hard to digest all the information contained in a collection of Gauss coefficients.
Therefore, it has become common to consider the geomagnetic power spectrum [Backus
et al., 1996, section 4.4.2], that reflects the contributions of different spatial wavelengths
in the SHs. For degree ` the corresponding wavelength is λ` ≈ 4πR

2`+1
[Langel and Hinze,

1998, section 4.3.5]. The EMF is apportioned such that

B =
∑
`

B` = −∇
∑
`

Φ` (6.84)

where

Φ`(x) = R

(
R

|x|

)`+1 ∑
−`≤m≤`

gm` Y
m
` (x̂) . (6.85)

The components Φ` are certainly orthogonal, since SHs form an orthogonal system. A
characteristic that describes B`’s variations is the so-called average square value. Since
B is divergence free, the net total flux through a closed surface is zero. Thus, the average
over the sphere vanishes

〈B`〉R = 0 , (6.86)

where the angle brackets are an abbreviation for the surface integral (see Eq. 6.16). The
definition of the average can be extended to the (centred) average square value〈

(B` − 〈B`〉R)2
〉
R

=
〈
B2
`

〉
R
. (6.87)

Due to Parseval’s Theorem [Backus et al., 1996, Eq. 4.4.21], the average square can be
expressed in terms of Gauss coefficients. Regarded as a function in `, the quantity

r` :=
〈
B2
`

〉
R

= (`+ 1)
∑
−`≤m≤`

(gm` )2 (6.88)

is called the geomagnetic power spectrum [Lowes, 1974]. Again, Gauss coefficients gm`
depend on the reference radius and so does r`.

Within the setting of statistical inversions, calculating the power spectrum requires
special attention since uncertainties have an appreciable effect. Squaring and summing
normal distributed Gauss coefficients gives a random variable (RV) that is distributed as
the sum of weighted non-central χ2 RVs. Unfortunately, for the PDF of a linear combina-
tion of non-central chi-square RVs no closed, analytic expression is known [Bausch, 2013].
Nonetheless, using the algebraic formula for the variance E[XY ] = Cov[X, Y ]+E[X]E[Y ]
we obtain an expression for the expectation of the power spectrum

E[r`|o] = (`+ 1)
∑
m

(
E[gm` |o]2 + V[gm` |o]

)
(6.89)

and it is obvious that variances play an important role. In other words, the larger the
uncertainties the bigger the impact on the spectrum’s mean.

Although the second moment may be accessible, the standard deviation is not suited
to quantify errors. Roughly speaking, if standard deviations of the gm` s dominate over
the mean, the PDF of r` is highly skewed with wide tails. In turn, a moment matching
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Figure 6.12.: Power spectrum at the Earth’ surface for epoch 1700. The mean of the posterior
power spectrum is indicated by the dashed line. The top and bottom of the error bars refer to
16 and 84 percentiles, respectively. Except for a constant offset, the grey shaded area indicates
the slope of the a priori power spectrum.

Gaussian proxy would violate the positivity constraint of r`. For an increasing SH degree
this is certainly the case. Percentiles are better suited to estimate the error level, but
impossible to access analytically. We again calculate the distribution and percentiles
empirically by brute-force sampling Gauss coefficients from the posterior. The sampling
strategy is described in Section 6.4.3.

For epoch 1700 the resulting power spectrum is shown in Figure 6.12. Within the error
margins our findings and the COV-ARCH model are in good agreement. Differences arise
comparing with ARCH10k.1 and arhimag1k. Both models report less power at degree
` = 3 and feature a rapid loss for degrees ` ≥ 8. While the degree 3 deviation might be
due to differences in the underlying data basis, the latter likely is caused by the influence
of the global regularization in the spherical harmonic models. Nonetheless, for ` ≤ 8
ARCH10k.1 and arhimag1k are potential realizations from what we find.

6.4.7. Dipole Moment

To a first approximation, the EMF is dipolar. This is, its shape is similar to that of a
hypothetical bar magnet placed at the centre of the Earth. With respect to a Cartesian
coordinate frame, the corresponding vector dipole moment is given by

m =
4πR3

E

µ0

(g1
1x̂+ g−1

1 ŷ + g0
1ẑ) , (6.90)

where µ0 ≈ 4π · 10−7 [Tm/A] refers to the permeability of free space [Backus et al.,
1996, Eq. 4.4.17]. Vector components are indicated by subscripts x, y and z, for example

115



6. Correlation Based Snapshot Models of the Archeomagnetic Field

8 8.2 8.4 8.6 8.8 9 9.2 9.4
0

1

2

m [·1022 Am2]

p
(m
|o)

COV-ARCH

arhimag

ARCH10k

Figure 6.13.: Distribution of the dipole moment for epoch 1700 based on 10000 drawn samples.
The kernel density estimate is indicated by the red dashed line, that is nearly identical to the
Gaussian proxy (black line).

mx ∝ g1
1. Considering the discretization, the vector dipole moment m is a Gaussian

mixture borrowing its statistical properties from the dipole coefficients. The dipole’s
magnitude can be computed directly via

τ = ‖m‖ =
4πR3

E

µ0

√
(g1

1)
2

+ (g−1
1 )

2
+ (g0

1)
2

(6.91)

and is proportional to the square root of the power r1. We are interested in statistical
properties of τ . Because of the square root, we are not able to derive an analytic expression
for E[τ |o]. Nonetheless, if we knew E[τ |o], the variance is right at hand

V[τ |o] = E
[
τ 2|o

]
− E[τ |o]2 , (6.92)

since E[τ 2] ∝ E[r1], which is given by Eq. 6.89. To obtain a proxy of E[τ |o] and to
calculate the empiric distribution we again use sampling. An ordinary Gaussian kernel
density estimate is used to smooth the histogram [Murphy, 2012, section 14.7.2]. The
bandwidth is selected by Scott’s rule of thumb which – due to its simplicity – strongly
influences the estimate.

For the epoch of choice, Figure 6.13 compares the density estimate, the according
histogram and the Gaussian proxy. The density estimate looks rather normal and is
approximated well by the moment matching Gaussian. This is also the case for all other
epochs in our study. At least for the epoch 1700 our findings agree with ARCH10k.1 and
COV-ARCH. Presumably, due to its stronger data basis arhimag1k deviates. However,
the agreement varies through epochs.

As the dipole moment is known to change with time, Figure 6.14 displays the time-series
of all epochs under consideration. Compared to COV-ARCH, ARCH10k.1 and arhimag1k,
we find a similar temporal evolution of the dipole moment. Presumably the most recent
epoch deviates from the other models, since we do not include historical information in our
model. Especially for the earlier epochs we see slightly higher intensities than reported
by existing models. The strong deviation of epochs 1100 and 1500 may be caused by
outliers, which we did not test for so far, but it is also possible that the variations are
real and earlier models underestimate strong variations due to the treatment of dating
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Figure 6.14.: Temporal variation of the dipole moment magnitude based on 10000 drawn sam-
ples. The posterior means are connected by black lines and the error bars indicate one standard
deviation. The gray shaded background refers to the kernel density estimate. Results from
models COV-ARCH, ARCH10k and arhimag are shown for comparison.

uncertainties and temporal regularization. It is beyond the scope of our proof-of-concept
model to resolve this question. For both epochs the deviation is caused by g0

1. The
parameter distributions p(ϑ|o) for these epochs do not show any noticeable problems.
However, epoch 1500 features a rather weak data basis.

We are further interested in the distribution of the dipole’s north pole a.k.a. geomag-
netic north. The geomagnetic north pole is given as the antipode of the projection of
the vector dipole moment onto the sphere. In other words, the intersection of the axis
of the hypothetical bar magnet with the Earth’s surface. The location w.r.t. spherical
coordinates is given by

θm = arccos
(
−mz

τ

)
, φm = arctan

(−my

−mx

)
(6.93)

where θ refers to colatitude and φ to longitude. We proceed with a similar approach as
presented in Khokhlov et al. [2006] and translate the dipole’s PDF that is interpreted
w.r.t. a Cartesian reference frame into spherical coordinates. The PDF of the vector
dipole moment transformed to spherical coordinates is given by

p

 τ
θm
φm

∣∣∣∣∣∣o
 = p

mx = sin θm cosφm
my = sin θm sinφm
mz = cos θm

∣∣∣∣∣∣o
 τ 2 sin θm , (6.94)

where we made use of the change of variables theorem [Murphy, 2012, section 2.6]. To
obtain the distribution of the location we have to marginalize the magnitude from the
mixture distribution

p

(
θm
φm

∣∣∣∣o) =
∑
i

p(ϑi|o)
∞∫

0

p

 τ
θm
φm

∣∣∣∣∣∣o, ϑi
 dτ . (6.95)

Since individual dipole coefficients are normally distributed, we can analytically solve the
integral. To do so, factor out m, complete the square and marginalize via the standard
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Figure 6.15.: Wander of the geomagnetic north pole. For each epoch in the study, the probability
distribution of the location is shown with the mean marked by dots and one sigma marked by
an ellipse. The colour varies according to time. For comparison, wander paths for the reference
models are shown, without uncertainties in order not to clutter the figure.

Gaussian integral equations [Owen, 1980, Eqs. 10, 11 and 12]. We deliberately skip the
resulting expression as it is lengthy and of no particular interest.

However, to visualize the wander of geomagnetic north it is useful to numerically eval-
uate the resulting PDF. As can be seen in Figure 6.15 the general movement is similar to
the models we are comparing with. Again the 1500 epoch deviates and is ahead of the
comparison path, which may be caused by outliers as stated previously. For comparison
we only show COV-ARCH’s sample mean because a scatter plot of the complete ensem-
ble leads to an overstuffed picture. The ensemble covariance features similar magnitudes
compared to what we find.

6.5. Conclusions and Perspectives

The extensive theory of Sections 6.1 - 6.3 build the foundation of a new modelling strategy
for archeo- and palaeomagnetic field models. The key advantage of this probabilistic
approach is that realistic modelling uncertainty estimates are obtained, for example via
the standard deviation. The a priori distributions we choose have pros and cons. Taking
the least subjective choice is an advantage as we a priori do not specify any preferred
direction and, thus, our method is even well suited for time periods featuring reversals.
However, a shortcoming – in particular concerning the prior dipole – is that we could not
visualize a comparison of prior and posterior uncertainties.

Besides the a priori covariance structure and the weakly informative parameter pri-
ors, our modelling strategy depends only on a single parameter, the reference radius R.
Conceptually, it is no problem to also integrate out this remaining parameter. Only a
technicality arises if we want to integrate out R, Gauss coefficients require scaling to a
common radius – for example the Earth’s surface – as they depend on R. The limiting
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factor is a 4-D parameter space with excessive computational demands.
To save the effort of implementing the exhaustive theory, a ready-to-use software suite

called CORBASS [Schanner and Mauerberger, 2019] was developed as part of the project.
CORBASS is written in python and licensed under the GPLv3. A public GIT repository
serves for development, maintenance and support. To facilitate first steps we provide usage
examples in the form of a web based interactive environment (Jupyter notebooks), that
further illustrate the modelling concept and the algorithm. To lighten system requirements
we make use of the package and environment manager conda.

We carried out a case study to demonstrate the potential of our statistical model. All
results presented in Section 6.4 are produced using CORBASS. Even though we use a
rather small data set, computational costs are not negligible. At the time of writing,
processing all epochs under consideration took about 30 hr on an ordinary workstation.
The computational complexity is set by the number of observations and the parameter grid
chosen. For a certain choice of model parameters, the computational complexity of GP
regression is cubic w.r.t. number of observations. Performing a Riemann sum along one
dimension scales quadratically according to the number of collocation points. Thus the
complexity of the quadrature scheme for all three model parameters grows with the sixth
power. Although numeric integration offers room for optimizations, the computational
complexity cannot be lightened.

Although a proof of concept rather than a fully featured EMF model, our case study
already supports the findings of existing studies. In comparison with models using tradi-
tional methods this is useful since it is another source that quantifies what was described
qualitatively. As an example, early studies questioned the reconstruction of the EMF in
the southern hemisphere from archeomagnetic and volcanic data only due to poor data
coverage e.g. Korte et al. [2009], Constable and Korte [2015]. That statement is quantified
by our findings: The EMF’s posterior standard deviation is small in areas of good data
coverage, such as Europe, while uncertainties are large on the southern hemisphere (see
top panel of Fig. 6.8). Even though our uninformative prior assumptions are significantly
weaker, we find uncertainties similar to for example Licht et al. [2013], while noting that
bootstrap ensemble methods tend to underestimate uncertainties in regions where there
are no data to draw from. Surprisingly, our uncertainty estimates are on a par with more
elaborate modelling concepts [e.g. Hellio and Gillet, 2018] whereas our approach does not
yet account for the temporal evolution. Future work will show if this is a coincidence,
and if taking temporal dynamics into account yields different results.

In a general context, caution is advised when performing any further processing with
posterior Gauss coefficients. Whenever possible, use the posterior EMF instead. At
densely covered regions a vast amount of Gauss coefficients are necessary to represent all
the information that is contained in the posterior EMF at the surface. However, this is
irrelevant when studying the core field which cannot be retrieved beyond degrees around
14 anyway, due to the distance from the source and dominance of the lithospheric field at
higher degrees.

The spatial correlation structure we employ makes truncating the SH decomposition
obsolete and the model resolves according to the availability of data. This raises the
obvious question of how our global, non-parametric model compares to higher resolving
studies. To investigate this question one would have to include other sources of data such
as historical logs and observatory data for recent times. Although the modelling strat-
egy inherently works with magnetic field components BN , BE and BZ we deliberately
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left out recent observatory data to put attention on non-linear observables. If we focus
on areas of small modelling errors, precise locations must not be neglected. Considering
elevation and the coordinate conversion from geodetic to geocentric is straightforward.
The difficulty with historical logs is that the direction of travel is affected by large inac-
curacies [Jackson et al., 2000, Jonkers et al., 2003]. To account for location uncertainties,
our data model requires an extension. Another difficulty is computational costs related
to the large amount of historical and observatory data. Therefore one has to introduce a
data selection and reduction process as the interest is in time spans of years but not days
or less. Furthermore, our proxy Gaussian error model is intolerant of outliers. With only
a few records that strongly deviate, the Gaussian error model causes a highly distorted
reconstruction. Therefore it is important to perform outlier analysis and select data with
care. The work by Khokhlov et al. [2006] appears to be well suited to discriminate data
that are incompatible with our modelling approach.

For the time increments of interest – ∆t ≥ 1 yr – we know with confidence when
observatory data and historical records were acquired. For volcanic and archeomagnetic
records, the average dating uncertainties amount to about a hundred years [Licht et al.,
2013, section 2.2], and they tend to increase further back in time. For this study, we
assume that our rather long bin width of 100 yr balances temporal errors, although it
results in poor temporal resolution. Arguably, our model is still overly confident as we
did not consider dating errors. In order to apply our method more generally and to
longer times the inclusion of sediment records has to be implemented. Sediment records
are affected by large dating uncertainties which require a data model that also accounts
for temporal errors and preserves the stratification [e.g., Nilsson et al., 2014]. Moreover,
a strategy to deal with the scaling or relative intensity has to be developed and our two-
step approach might become a challenge if the number of available full vector records with
absolute intensity information is small.

Nonetheless, the presented snapshot model should be considered a first step in the di-
rection of a time continuous correlation based Holocene magnetic field model, and, more
generally, a new modelling method for the palaeomagnetic field on various time-scales.
We regard the time stationary binning an interim solution as it does not capture the
dynamics of the EMF well. In our opinion a temporally continuous model also consid-
ering dating errors is needed to fulfil the needs of palaeomagnetic field modelling. For
the extension of our modelling concept we are currently working on an empirical contin-
uous time correlation kernel, similar to Bouligand et al. [2016], Hellio and Gillet [2018].
Combining a temporal and a spatial kernel to a space-time kernel will make any binning
obsolete. Within this space-time GP setting, existing techniques may be used to address
dating uncertainties [McHutchon and Rasmussen, 2011].

We conclude by emphasizing again that this is initial work towards a new palaeomag-
netic field modelling strategy and an improved full Holocene model, and that it is destined
to receive many improvements in the future. The open source modelling concept offers
vast flexibility and a allows for a variety of refinements.
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