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Abstract

3D point clouds are a universal and discrete digital representation of three-dimensional objects
and environments. For geospatial applications, 3D point clouds have become a fundamental type
of raw data acquired and generated using various methods and techniques. In particular, 3D
point clouds serve as raw data for creating digital twins of the built environment.

This thesis concentrates on the research and development of concepts, methods, and tech-
niques for preprocessing, semantically enriching, analyzing, and visualizing 3D point clouds
for applications around transport infrastructure. It introduces a collection of preprocessing
techniques that aim to harmonize raw 3D point cloud data, such as point density reduction and
scan profile detection. Metrics such as, e. g., local density, verticality, and planarity are calculated
for later use. One of the key contributions tackles the problem of analyzing and deriving semantic
information in 3D point clouds. Three different approaches are investigated: a geometric analysis,
a machine learning approach operating on synthetically generated 2D images, and a machine
learning approach operating on 3D point clouds without intermediate representation.

In the first application case, 2D image classification is applied and evaluated for mobile
mapping data focusing on road networks to derive road marking vector data. The second
application case investigates how 3D point clouds can be merged with ground-penetrating radar
data for a combined visualization and to automatically identify atypical areas in the data. For
example, the approach detects pavement regions with developing potholes. The third application
case explores the combination of a 3D environment based on 3D point clouds with panoramic
imagery to improve visual representation and the detection of 3D objects such as traffic signs.

The presented methods were implemented and tested based on software frameworks for 3D
point clouds and 3D visualization. In particular, modules for metric computation, classification
procedures, and visualization techniques were integrated into a modular pipeline-based C++
research framework for geospatial data processing, extended by Python machine learning scripts.
All visualization and analysis techniques scale to large real-world datasets such as road networks
of entire cities or railroad networks.

The thesis shows that some use cases allow taking advantage of established image vision
methods to analyze images rendered from mobile mapping data efficiently. The two presented
semantic classification methods working directly on 3D point clouds are use case independent and
show similar overall accuracy when compared to each other. While the geometry-based method
requires less computation time, the machine learning-based method supports arbitrary semantic
classes but requires training the network with ground truth data. Both methods can be used
in combination to gradually build this ground truth with manual corrections via a respective
annotation tool.

This thesis contributes results for IT system engineering of applications, systems, and
services that require spatial digital twins of transport infrastructure such as road networks and
railroad networks based on 3D point clouds as raw data. It demonstrates the feasibility of fully
automated data flows that map captured 3D point clouds to semantically classified models. This
provides a key component for seamlessly integrated spatial digital twins in IT solutions that re-
quire up-to-date, object-based, and semantically enriched information about the built environment.
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Zusammenfassung

3D-Punktwolken sind eine universelle und diskrete digitale Darstellung von dreidimensionalen
Objekten und Umgebungen. Für raumbezogene Anwendungen sind 3D-Punktwolken zu einer
grundlegenden Form von Rohdaten geworden, die mit verschiedenen Methoden und Techniken
erfasst und erzeugt werden. Insbesondere dienen 3D-Punktwolken als Rohdaten für die Erstellung
digitaler Zwillinge der bebauten Umwelt.

Diese Arbeit konzentriert sich auf die Erforschung und Entwicklung von Konzepten, Methoden
und Techniken zur Vorverarbeitung, semantischen Anreicherung, Analyse und Visualisierung von
3D-Punktwolken für Anwendungen im Bereich der Verkehrsinfrastruktur. Es wird eine Sammlung
von Vorverarbeitungstechniken vorgestellt, die auf die Harmonisierung von 3D-Punktwolken-
Rohdaten abzielen, so z. B. die Reduzierung der Punktdichte und die Erkennung von Scanprofilen.
Metriken wie bspw. die lokale Dichte, Vertikalität und Planarität werden zur späteren Verwendung
berechnet. Einer der Hauptbeiträge befasst sich mit dem Problem der Analyse und Ableitung
semantischer Informationen in 3D-Punktwolken. Es werden drei verschiedene Ansätze untersucht:
Eine geometrische Analyse sowie zwei maschinelle Lernansätze, die auf synthetisch erzeugten
2D-Bildern, bzw. auf 3D-Punktwolken ohne Zwischenrepräsentation arbeiten.

Im ersten Anwendungsfall wird die 2D-Bildklassifikation für Mobile-Mapping-Daten mit
Fokus auf Straßennetze angewendet und evaluiert, um Vektordaten für Straßenmarkierungen
abzuleiten. Im zweiten Anwendungsfall wird untersucht, wie 3D-Punktwolken mit Bodenradarda-
ten für eine kombinierte Visualisierung und automatische Identifikation atypischer Bereiche in
den Daten zusammengeführt werden können. Der Ansatz erkennt zum Beispiel Fahrbahnbereiche
mit entstehenden Schlaglöchern. Der dritte Anwendungsfall untersucht die Kombination einer
3D-Umgebung auf Basis von 3D-Punktwolken mit Panoramabildern, um die visuelle Darstellung
und die Erkennung von 3D-Objekten wie Verkehrszeichen zu verbessern.

Die vorgestellten Methoden wurden auf Basis von Software-Frameworks für 3D-Punktwolken
und 3D-Visualisierung implementiert und getestet. Insbesondere wurden Module für Metrikberech-
nungen, Klassifikationsverfahren und Visualisierungstechniken in ein modulares, pipelinebasiertes
C++-Forschungsframework für die Geodatenverarbeitung integriert, das durch Python-Skripte
für maschinelles Lernen erweitert wurde. Alle Visualisierungs- und Analysetechniken skalieren
auf große reale Datensätze wie Straßennetze ganzer Städte oder Eisenbahnnetze.

Die Arbeit zeigt, dass es in einigen Anwendungsfällen möglich ist, die Vorteile etablierter
Bildverarbeitungsmethoden zu nutzen, um aus Mobile-Mapping-Daten gerenderte Bilder effizient
zu analysieren. Die beiden vorgestellten semantischen Klassifikationsverfahren, die direkt auf
3D-Punktwolken arbeiten, sind anwendungsfallunabhängig und zeigen im Vergleich zueinander
eine ähnliche Gesamtgenauigkeit. Während die geometriebasierte Methode weniger Rechenzeit
benötigt, unterstützt die auf maschinellem Lernen basierende Methode beliebige semantische
Klassen, erfordert aber das Trainieren des Netzwerks mit Ground-Truth-Daten. Beide Methoden
können in Kombination verwendet werden, um diese Ground Truth mit manuellen Korrekturen
über ein entsprechendes Annotationstool schrittweise aufzubauen.

Diese Arbeit liefert Ergebnisse für das IT-System-Engineering von Anwendungen, Syste-
men und Diensten, die räumliche digitale Zwillinge von Verkehrsinfrastruktur wie Straßen- und
Schienennetzen auf der Basis von 3D-Punktwolken als Rohdaten benötigen. Sie demonstriert
die Machbarkeit von vollautomatisierten Datenflüssen, die erfasste 3D-Punktwolken auf seman-
tisch klassifizierte Modelle abbilden. Dies stellt eine Schlüsselkomponente für nahtlos integrierte
räumliche digitale Zwillinge in IT-Lösungen dar, die aktuelle, objektbasierte und semantisch
angereicherte Informationen über die bebaute Umwelt benötigen.
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Chapter 1

Introduction

1.1 Motivation

Our environment is constituted by natural and human-made objects and structures such
as soil, rivers, trees, mountains, buildings, streets, railways, etc. The scale at which
these objects and structures are digitally represented depends on the requirements of
the applied analysis, modeling, simulation, or visualization operations, ranging from
single objects, countries, and continents to the global scale of the Earth. “Consider
biodiversity, climate change, cultural heritage, debt, energy, water, natural hazards,
health, poverty, or security—spatial information at global, regional, and local scales is
essential for addressing each of these challenges. They all require a better understanding
of, and better decisions about, the location and interaction of things in space and time”
(Kuhn, 2012).

A growing number of applications demand for mapping of selected features of the
environment to digital representations applying high-resolution acquisition technology.
For example, navigation systems require up-to-date map data, administrations demand
for virtual 3D city models, and railway companies rely on precise infrastructure maps
to operate the railway system (Vosselman, 2003; Wirth, 2008). For cities in flood-prone
regions, digital flood simulations are conducted based on 3D models of the environment
to analyze potential risks and manage emergency plans (Kia et al., 2012). In general, for
all these applications, geospatial and georeferenced data and models of the real world
must be generated, collected, prepared, integrated, and processed to be used for their
corresponding purposes.

A large number of application domains deal with specialized or dedicated geospa-
tial models of the real-world environment. For construction projects, property boundaries,
terrain shape, and building measures must be known or defined precisely; the position
of trees and power or water lines is just as relevant as roof orientations for assessing
solar panel suitability (Babahajiani et al., 2017; Nadia et al., 2018). Many stakeholders
pay attention to how construction projects fit into the surroundings. In large cities,
details such as air currents between high-rise buildings are of interest during construction
planning, and they can be simulated in advance (Koss, 2006). In disaster management,
highly up-to-date data on access roads, water levels, fallen trees, and slope slides are of
the utmost importance (M. Yu et al., 2018). For example, after storm damage, insurance
companies must verify what the condition was before and after the storm to use this
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2 Chapter 1. Introduction

information to calculate compensation. Railroad tracks must be kept free of vegetation to
ensure the track environment is always clear and the required clearance can be maintained.
For bulky and oversized transports, it must be determined in advance how routes can be
used, the exact clearance height of a bridge, and the full turning circle at an intersection
in the case of a full road closure.

Regardless of the capturing technology and the scale at which geospatial data is
handled, IT systems are confronted with vast amounts of data that cannot be processed
manually. For most application domains, there is a steadily growing need to automatically
capture, collect, and process geospatial data, build corresponding digital models, and
maintain data and models in increasingly shorter time intervals.

At the same time, there is enormous progress in sensor technology. The variety of
sensors, their cost efficiency, availability, and compatibility is increasing. For that reason,
future geospatial models, systems, and applications will be based on heterogeneous
geospatial data sources that reflect various aspects and dimensions of the environment
(Dold and Groopman, 2017). “Massive supplies of sensor data, obtained remotely and
in situ, cover now large parts of the world at multiple granularities. Increasingly, they
are becoming available in open access form” (Kuhn, 2012). The city of Essen, for
example, uses its own vehicle for mobile mapping of streets, recording data with different
sensors; they are capturing data on a yearly basis and on demand for construction sites
(Stadt Essen, 2017). Self-driving cars continuously capture their current surroundings
to enable safe participation in road traffic. Potentially, these data could also be used to
update future geospatial models. Zourlidou and Sester (2019) give an overview of how
crowdsourced GPS data can be used to identify traffic regulators, e. g., traffic lights and
stop signs.

Figure 1.1: Visualization of an airborne 3D point cloud depicting from left to right: Meadows

around a river, agricultural land, train tracks, residential area, sports areas, allotment gardens, a

highway, and forest area.

3D point clouds are a universal and discrete digital representation of three-
dimensional objects and environments; in particular, they have been established them-
selves as a key data format for the large-scale acquisition of real-world environments
(Figure 1.1). For geospatial applications, 3D point clouds have become a fundamental
type of raw data (Q. Wang and Kim, 2019) acquired and generated using various methods
and techniques. They represent a specific captured environment by an unstructured set
of measured 3D points in three-dimensional space; additional attributes such as RGB
colors can be assigned to individual points (Richter, Behrens, et al., 2013). 3D point
clouds provide a discrete spatial representation without any abstraction or semantics. All
single measurements are contained individually and are not approximated or simplified.
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Generally, capturing 3D point clouds results in large amounts of data—automated and
efficient processing approaches are therefore required.

To capture and reflect real-world environments, 3D point clouds can be complemented
by almost all kinds of geospatial and image data such as vector data describing road
boundaries or property areas or 3D CAD models of buildings. In many cases, 3D
point clouds can be used as a data basis to derive abstracted or generalized geospatial
information (Vosselman, 2003; D. Chen et al., 2017). Depending on the capturing
technique, additional panoramic images are required for coloring a 3D point cloud with
real-world color information. Meshes can be derived as a surface approximation from 3D
point clouds and have the advantage of a surface for texturing compared to 3D point
clouds while accepting a loss in accuracy.

Frequently, generalized data cannot be effectively or reliably used because they
do not correspond to reality in detail. For example, a cuboid does not show the details of
a building’s facade, a tree model lacks information about the exact position of individual
branches, road markings may have worn over time and lost their generalized form, and
traffic signs may be soiled or pasted over and thus no longer be legible. As a representation,
3D point clouds are close to reality and, unlike abstract models, can provide precise,
detailed information about the as-is state.

For 3D point clouds, one of the core challenges arises from their volume and
simplicity because 3D point clouds do not provide structure, hierarchy, semantics, or
object-based information (Discher et al., 2018). To extract added value from 3D point
clouds, segmentation, classification, and semantics enrichment play an essential role—they
are the prerequisites for any downstream processing tasks (Hackel, Savinov, et al., 2017).
In this way, questions such as “How many trees are in a given area?”, “Where have
trees been planted or felled since the last survey?”, “Where does vegetation protrude
into the light room?”, “Where exactly are which road signs?”, “Which road markings
have worn off?”, “Where are utility hole covers?” can be answered. In many places,
preprocessing is still conducted by semi-automated analysis procedures, which generally
require a considerable amount of time and personnel. This approach of analysis does
not scale for vast amounts of data and permanent recording. Automatic approaches for
classification and filtering are therefore inevitably required (Xie et al., 2020).

Digital twins denote virtual counterparts of physical objects. They are used
increasingly frequently for decision making, optimization, and maintenance of captured
objects (Negri et al., 2017). Digital twins represent not only the objects’ shapes but
can also hold metadata such as information about their internal states. For that reason,
digitalization demands for a kind of “real-time” digital twin of environments. 3D point
clouds serve as raw data for creating such digital twins of the built environment. “There
is virtually no limitation for the specific types of 3D objects, structures, or phenomena
that can be identified and extracted by ML-based 3D point cloud interpretation” (Döllner,
2019). Semantic annotation of the 3D point cloud data, for example by methods described
in this thesis, is an essential prerequisite for creating a meaningful representation.
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1.2 Structure of this Thesis

This thesis concentrates on the research and development of concepts, methods, and
techniques for preprocessing, semantically enriching, analyzing, and visualizing 3D point
clouds for applications around transport infrastructure, typically captured by mobile
mapping. The remainder gives an overview of the topics covered in the thesis and explains
important terms and data sources.

Chapter 2 describes required preparation steps for 3D point cloud data. A typical
step is converting the 3D point clouds into a single reference coordinate system, e. g.,
converting latitude/longitude values into a local Cartesian coordinate system. In addition,
surface normal vectors are computed as well as specific metrics such as density values,
verticality, planarity, normal vector diversity, and post-likeness. The chapter explains
which of these metrics are required for a semantic classification and which information
they can contribute. Furthermore, the segmentation of a 3D point cloud into groups of
points forming objects’ surfaces is presented. The chapter further describes how training
data is created for machine learning-based approaches, both from existing ground truth
data and manually using an annotation tool.

Chapter 3 forms the core topic of this thesis and explains how individual ap-
proaches for semantic classification have been implemented. Classification uses geometric
approaches based on the precalculated metrics, machine learning via previously trained
Convolutional Neural Networks (CNNs) on images and 3D data, and hybrid approaches
combining those mentioned before. Semantic classes analyzed by the different approaches
are the base classes ground, building, vehicle, and vegetation, which can be extended and
divided into various subclasses such as, e. g., road, rail, pedestrian, traffic sign, and road

marking depending on the respective technique. The semantic classification forms the
basis for all further data processing of 3D point clouds.

In Chapter 4, applications and required export steps are presented in detail. Lines
and polygons are derived for usage in GIS tools, individual objects such as specific road
markings are identified, and statistics about the datasets are computed, e. g., the number
of trees in a particular area or an aggregated value representing a road’s or railroad
track’s “health”. The chapter also presents a concept for the automated verification of
existing data by the example of a traffic sign cadastre.

Data acquisition using mobile mapping systems allows for capturing additional
datasets collected in parallel to 3D point clouds. Measurement vehicles often combine
various sensors to scan the surrounding environment. The following two chapters high-
light the use of additional data sources and how they can be combined with 3D point
clouds. Possibilities for using Ground-Penetrating Radar (GPR) data are discussed
in Chapter 5. Below-ground information is used to detect potholes or cables, and
a combined visualization with 3D point clouds for individual exploration is presented.
Chapter 6 explains the usage of panoramic images to gain color information, e. g., for
the automated identification of traffic signs as well as visualization techniques for the
combined exploration together with 3D point cloud data.

The Point Cloud Research framework, which was used to implement the approaches
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described in this thesis, and its dependencies are presented in Chapter 7. It gives an
overview of the software architecture, including external libraries, and presents the three
main applications used for analyzing, visualizing, and modifying 3D point cloud data. It
further describes the Python scripts implemented for machine learning-based geodata
analysis.

Chapter 8 summarizes evaluations of the results’ quality and processing speeds of
individual processing steps. Firstly, it presents a comparison between a geometry-based
and a machine learning-based semantic classification. Secondly, it investigates the quality
of automatic road marking vector data derivation from 3D point clouds.

Finally, Chapter 9 draws conclusions and presents ideas for future work in this
area.

1.3 Fundamentals

This section explains the terms and techniques that are the main concepts for this thesis’s
domain.

3D Point Clouds represent geospatial information in the form of individual measurement
points within three-dimensional space. They are technically stored as an unordered
collection of points, each featuring three-dimensional coordinates and optionally
additional attributes (Richter, Behrens, et al., 2013). The coordinates represent the
points’ spatial location, usually in a given → coordinate system. Depending on the
capturing technique, 3D point clouds can store attributes that directly result from
the measurement and attributes that are computed based on additional analyses
(Habib et al., 2005). For example, when using → LiDAR for capturing the 3D
point cloud information, all points have individual intensity values, representing
how strong the emitted laser’s reflection was. When using → image matching for
creating a 3D point cloud, RGB color information is available for each point. 3D
point clouds are the primary data basis for the analyses within this thesis.

Airborne Capturing describes the process of measuring geospatial data from aircraft.
Measuring devices can be attached to aircraft and Unmanned Aerial Vehicles (UAVs)
flying over a specific area to obtain the desired coverage. Regular scan flights are
typically performed by municipalities or states that want to collect geospatial data
about their territory (Stadt Berlin, 2020). Commonly, the data from airborne
capturing is used to derive information about, e. g., terrain height, land use, building
sizes, and tree locations. Because transport infrastructure analysis is usually based
on ground-level data, this thesis focuses on → mobile mapping data.

B-Scans are a form of → GPR data representation. They represent the amplitudes
measured by a GPR antenna in relation to the position of the measurement on a
→ trajectory (Ozkaya and Seyfi, 2018). B-Scans are often visualized with the height
of measured amplitudes mapped to color intensity and the amplitude direction
mapped on hue, e. g., red and blue. In this thesis, B-scans are used to automatically
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detect pavement regions with developing potholes and for a combined visualization
with 3D point clouds.

Convolutional Neural Networks (CNNs) are a particular form of artificial neural net-
works inspired by biological processes in the human brain (Goodfellow et al., 2016).
Within these networks, convolutions are performed in some of the internal layers.
The respective neighborhoods for individual sections of the data play a significant
role during this process, making the method particularly suitable for processing
image information. The result is usually the output of a probability for a specific
object class based on the input data, such as what kind of object was detected in an
image. The methods described in this thesis partially use CNNs for the semantic
classification of geospatial data.

Coordinate Systems describe the context in which location values (coordinates) are
interpreted. → 3D point clouds are often handled in zoned coordinate systems from
the UTM Reference System, also known as Military Grid Reference System. Such
locally used coordinate systems have the advantage that the approximation of a
rectangular Mercator projection of the Earth’s surface in a small, enclosed area
deviates only slightly from the actual conditions so that a Cartesian coordinate
system can be used within each of these areas. x, y, and z coordinates of a 3D point
cloud can here be interpreted in meters, enabling more comfortable handling and
intuitive perception of the coordinate values in contrast to latitude and longitude
values.

Global Navigation Satellite System (GNSS) is a satellite-based system that provides
geolocation information for devices with respective receivers. Several systems are
operated by different nations: GPS (USA), GLONASS (Russia), BeiDou (China),
and Galileo (European Union). A GNSS serves as a data source for registering
geodata, i. e., for determining the position of a → mobile mapping vehicle and
therefore the coordinates of its measurements (R. Li, 1997).

Ground-Penetrating Radar (GPR) delivers below-ground structural information by send-
ing radiation into the ground and capturing the returning signal via dedicated
antennas (Davis and Annan, 1989). The scanning device can measure material
properties several meters below ground, creating insights about the non-visible
foundation of roads and pathways. The strength of the returned signal is used
to conclude the condition of the pavement and underground structures such as
pipes and developing potholes (Huston et al., 2000). This thesis uses GPR as an
additional data source for geospatial analysis and a combined visualization with
→ 3D point cloud data.

Image Matching describes the “reconstruction of 3D surface representations from large
sets of overlapping imagery” (Haala and Cavegn, 2016). “Space reconstruction
starts with identifying features of interest in overlapping images. Conjugate features
and the exterior orientation parameters of the involved images are then used in an
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intersection procedure yielding corresponding object features” (Habib et al., 2005).
From this image data, → 3D point clouds can be generated with high resolution
without the need for a → LiDAR scanner (Wenzel et al., 2012). Because → mobile

mapping primarily uses LiDAR for 3D point cloud capturing, this thesis does not
go into image matching methods in detail.

LiDAR (Light Detection and Ranging) is a capturing technique using a laser to measure
objects’ distances. It “stands out as one of the most valuable sources of geospatial
information, providing enormous benefits in a wide range of scientific and profes-
sional fields” (Deibe et al., 2020). Traditional LiDAR is “operating in that part of
the spectrum comprising ultraviolet to near-infrared regions. It consists of a laser
which emits radiation in pulse or continuous mode through a collimating system,
and a second optical system which collects the radiation returned and focuses it on
to a detector” (Barrett and Curtis, 1999). By measuring the time until the reflec-
tion returns to the device, the precise distance is determined. → Mobile mapping

systems often use motorized optomechanical scanners with rotating mirrors, which
are as by now the most common type of LiDAR scanners in the industry (D. Wang
et al., 2020). Two or more scanners with different orientations can be used to
minimize the area that is not scanned between two revolutions and avoid missing
areas vertically oriented to the vehicle. In recent years, Flash LiDAR sensors were
introduced for handheld consumer devices such as tablets and smartphones. “Flash
LiDAR uses all solid-state components, which has the advantages of no moving
parts, being resistant to vibrations, a compact size, and low price” (D. Wang et al.,
2020).

Mobile Mapping techniques can be used in contrast to → airborne capturing to gain
information on the ground level. Mobile mapping systems can be installed on moving
vehicles like cars or trains, functioning as moving carrier platforms. Navigation
sensors such as → Global Navigation Satellite System (GNSS) receivers and Inertial
Navigation Systems (INS) provide precise information about the current location;
mapping sensors such as → LiDAR are used to measure distances to the environment
(R. Li, 1997). A combination of these data sources enables the creation of mobile
mapping → 3D point clouds. For example, these can be used in applications
analyzing road or railroad environments, as described in Section 1.1.

Panoramic Images are taken with a dedicated camera setup capable of capturing a 360
degrees environment. Usually, the setup consists of at least five circular placed
cameras for a surround-view and an optional camera pointing to the top. The
individual images are transformed and merged into a panoramic image via a process
called “stitching” (Szeliski and Shum, 1997). Panoramic images can be used for,
e. g., coloring → 3D point clouds or applying digital image analysis for object
detection.

Trajectory is the name of the path a → mobile mapping scanning vehicle took during
the measurement. The combination of a → GNSS and an Inertial Measurement
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Unit (IMU) provides accurate location data (Gressin et al., 2012). The trajectory
consists of a series of coordinates with timestamps that enable a reconstruction of
the measuring path and the vehicle’s speed at a given position. The information is
used, e. g., for projecting a → GPR scan into a 3D point cloud.

Transport Infrastructure within this thesis describes infrastructure used for transporting
people and goods, primarily focusing on roads and railroads. In these areas,
individual assets like traffic signs, road markings, railroad signals, track switches,
and many others are of specific interest for planning and maintenance purposes.
Data for these use cases are mostly captured via → mobile mapping.

Voxel Grids are three-dimensional data containers consisting of usually cubic cells called
“voxels” stacked together to fill a particular space. They can be used to analyze
neighborhoods in → 3D point clouds efficiently. After all points have been placed
into the particular voxel surrounding their position, all points within the same
voxel can be handled as a local neighborhood with the voxel’s dimensions. Voxel
grids are used, e. g., for the calculation of several metrics described in Section 2.4.

1.4 Data Sources

This section lists the datasets used for the work described in this thesis. The included data
formats, the dataset’s size, existing ground truth information, and unique characteristics
are presented in Tables 1.1 through 1.4.

Name Essen

Type Mobile mapping from car
Description Individual streets distributed in the city area, recorded explicitly for individual

analysis before/after construction work
Provided by Amt für Geoinformation, Vermessung und Kataster; City of Essen

Data • LiDAR

– LAZ format
– Separate left and right scans
– Intensity values
– 30.3 GB (218 scans)

• Panoramic images

– Merged 360 degrees images from 5 sideways cameras and 1 upward
camera

– 8 000 × 4 000 px resolution
– 69.1 GB (13 891 images)

• GPR

– 8.8 GB (318 scans)
• GPS trajectory

– 677 GB (94 files)

Table 1.1: Essen Dataset.
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Name Hamburg

Type Mobile mapping from car
Description Streets in the city center; recorded for the acquisition of general road environ-

ment data, among other things, for the derivation of a base map for autonomous
cars

Provided by AllTerra Deutschland GmbH
Data • LiDAR

– LAZ format
– Left and right scans merged
– Intensity values
– 126 GB (809 scans)

• Panoramic images

– Merged 360 degrees images from 5 sideways cameras and 1 upward
camera

– 8 000 × 4 000 px resolution
– 75.6 GB (15 748 images)

• Ground Truth

– Manually created shape files with location of road markings, traffic
signs, traffic lights, trees, etc.

– 173 MB (73 files)
– Road markings have only length, no width; sign types are only catego-

rized in circular, rectangular, etc.; locations are not necessarily precise;
some road markings are recorded but not existent in the LiDAR data

Table 1.2: Hamburg Dataset.
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Name Potsdam

Type Mobile mapping from car
Description Complete city area

Provided by City of Potsdam
Data • LiDAR

– LAZ format
– Separate left and right scans; occlusions by other scanner
– Intensity values
– RGB values mapped from panoramic images
– 335 GB (6004 scans)

Table 1.3: Potsdam Dataset.

Name Railroad

Type Mobile mapping from train
Description Tunnels and overground sections recorded for structure checks, searching objects

in the track environment, and deriving rail networks with tracks and switches
Provided by Nextrail GmbH

Data • LiDAR

– LAS/LAZ format
– Scan profiles
– Intensity values
– 111.4 GB (303 scans)

• Video

– RGB values
– Precise capturing position per frame
– 67.4 GB (2 files)
– 1 920 × 1 080 px resolution
– 10.7 hours duration

Table 1.4: Railroad Dataset.



Chapter 2

Preparing Raw 3D Point Cloud Data

Sensors provide raw data for 3D point clouds; similarly, photogrammetric approaches
compute that kind of raw data. However, raw data needs to be preprocessed for several
reasons, such as:

• Unification of different coordinate systems or reference systems for different raw
data sets

• Harmonization of the average spatial point density

• Removal of outlier points and noisy points

• Removal of incorrectly or incompletely encoded data

This chapter first presents related work in the preprocessing of 3D point clouds in
Section 2.1 and then describes the harmonization of coordinates and point densities as
well as outlier recognition in Section 2.2. Section 2.3 describes procedures for computing
normal vectors and segmenting 3D point clouds into point groups belonging together.
Section 2.4 describes the calculation of various metrics that are required for later analysis
steps, and Section 2.5 concludes with approaches for generating training data for machine
learning.

2.1 Related Work

Outlier detection is a fundamental problem when working with 3D point clouds and
has been investigated with different approaches for years. Han et al. (2017) state “the
raw point cloud is often noisy and contains outliers. Therefore, it is crucial to remove
the noise and outliers from the point cloud while preserving the features, in particular,
its fine details”. The basis for most approaches is established outlier detection algorithms
from the field of general statistics.

K. Zhang et al. (2009) define a metric called “Local Distance-based Outlier Factor”
(LDOF), stating the outlier-ness of a point in a scattered two-dimensional dataset. They
use a point’s relative location to its neighbors to determine the degree to which the object
deviates from its neighborhood. Therefore, they define the LDOF being the average
distance of a point to its k-nearest neighbors divided by the average distance between all
pairs of points in this k-nearest neighborhood.

11
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Nurunnabi et al. (2015) propose a “Maximum Consistency with Minimum Distance”
(MCMD) approach, stating that outliers are usually perceived as points not fitting
the majority of the surrounding data and, therefore, points not forming consistent
homogeneous surfaces are those to be removed.

LDOF and MCMD are combined in the method proposed by Dey et al. (2019). They
argue that each method only considers parts of the problem, and a combination of both
leads to much better overall results.

With increasing computing performance, 3D point cloud density reduction, also
known as 3D point cloud thinning, becomes less critical but can nevertheless be used
to speed up processing times and decrease visual clutter. Many different approaches for
general uniform data thinning can also be applied to 3D point clouds. Of greater interest
are methods tailored to the overall structures in a 3D scan and, therefore, preserving
them better.

Dyn et al. (2008) describe 3D point cloud thinning as a “greedy point removal
scheme” in which they compute the significance of a point for its local neighborhood and,
one by one, remove the least significant point. Significant to them are points with few
other points nearby and those in non-uniform areas.

Tazir et al. (2016a) propose a method basing decisions on RGB color information.
They place all points into a voxel grid and, in each voxel, cluster points by color using
k-means clustering. Each cluster only keeps one representative point, stating that all
other cluster points have a similar color in a similar position when using a “small voxel
size”.

Du and Zhuo (2009) describe a 3D point cloud thinning method based on curvature
values. For all points in the 3D point cloud, they determine the curvature using a
paraboloid fitting approach. The points are placed into a voxel grid, and all voxels
are analyzed one by one. Suppose the average curvature in a voxel is lower than the
complete 3D point cloud’s average curvature. In that case, they only keep the point with
its curvature being closest to the average in this voxel. If a voxel’s average curvature is
higher than the overall average, they keep all points from this voxel with a curvature
higher than the overall average. Many points in regions with high curvature remain in
the data, while low curvature regions are drastically thinned by this method.

Points located at sharp edges best describe the structure of scanned objects and
are thus most important to preserve during data reduction. “Because of the distinct
feature represented by data points located on or near the sharp edges (edge points),
these points should always be retained by the simplification process” (Song and Feng,
2009). Song and Feng present a method to explicitly identify edge points and consider
tangential discontinuity in addition to the curvature. To determine the importance of
single points, they consider only points in the respective neighborhood, which were not
before recognized as edge points.

Normal vector computation is a necessary preprocessing step for many of the
following metric computations and analyses. Traditional 3D point cloud analysis ap-
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proaches often used surface reconstruction to create surface triangle meshes from the 3D
point cloud data (Amenta et al., 1998; Funke and Ramos, 2002). From these meshes,
surface normals can trivially be determined. However, surface reconstruction is very time-
consuming and thus not feasible and consequently less often used for modern large-scale
datasets. Also, with high-density point information, a reconstruction of surfaces is no
longer necessary for many use cases, and thus the reconstruction was broadly replaced
by precise point-based analyses.

C. Wang et al. (2001) compare local plane fitting methods from which normal vectors
are derived. Mitra and An Nguyen (2003) in detail present a method based on local
least-squares fitting and analyze the effects of point neighborhood sizes, curvature values,
and sampling density and consider noise.

The framework used in this work uses the Point Cloud Library (PCL) (Rusu and
Cousins, 2011) coming with an implementation for the normal vector computation also
based on least-squares plane fit.

Several papers emphasize the relevance of an analysis of individual scan profiles or
scan lines in various applications in the mobile mapping field (X. Chen et al., 2009; Chu
et al., 2019). Yan et al. (2016) explain the advantage of a scan profile-based analysis with
the relatively small number of points in a single profile that can be managed easily with
simple data structures. Scan profile analysis is also very time efficient for large datasets
because scan profiles can be processed in parallel.

Anh Nguyen and Le (2013) published a survey about 3D point cloud segmentation

techniques. They categorize them into edge-based, region-based, attributes-based, model-
based, and graph-based methods. Vosselman (2013) presents an approach based on a
3D Hough transform focused on objects in road space, such as trees, posts, and vehicles,
aiming to minimize undersegmentation. Vo et al. (2015) describe a method combining
advantages of clustering and region growing. While clustering is a robust method without
the need for seed points that are required for region growing, it is computationally
expensive. They propose a fast but rough octree-based clustering followed by a step
merging left-over points to the best-fitting clusters. Similarly, later works such as Ni
et al. (2017) base their segmentation on a combination of multiple algorithms, in this
case RANSAC region growing, followed by scattered points clustering and small segments
merging.

Many 3D point cloud analysis steps require information about surfaces in the data,
which provides the basis for many other recognition steps. Oehler et al. (2011) developed
an approach for a planar segmentation. Even in sparse data from moving cars, it is
possible to detect planes, as W. Wang et al. (2016) show.

In the same way that more and more machine learning-based algorithms are being
investigated for the semantic classification of 3D point clouds, segmentation can also
be approached with machine learning. RGCNN and VV-NET are two of the recently
popular networks (Te et al., 2018; H.-Y. Meng et al., 2019). RGCNN is an approach
based on graph construction and convolution, which does not require any preceding
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voxelization as many other algorithms. VV-NET, on the other hand, is using voxels.
However, the authors emphasize the advantage of storing a binary occupancy value per
voxel and a more detailed multi-dimensional latent space.

Various metrics have been developed for the geometry-based analysis and semantic
classification, focusing on different characteristics.

The usage of a local point density value is, e. g., discussed by Ning et al. (2018). They
define sparse outliers as “erroneous measurement points with low local point density”
and isolated outliers “have high local point density and are relatively separated from the
scanned data”. They further define the local point density as the average distance of a
point to its k-nearest neighborhood and use this metric for outlier detection. Similarly,
Breunig et al. (2000) use a “local reachability density”, which is also based on average
distances to the nearest neighbors, for outlier detection. Soilán et al. (2016) define a
planarity value for a cluster of points based on the eigenvalues from a Principal Component
Analysis and a post-detection by region growing, starting at positions where traffic signs
have been detected by intensity value and performing several height checks.

2.2 Harmonization

3D point clouds can be acquired with a variety of different scanning systems. Depending on
the technology used, such as LiDAR or image matching, and the hardware manufacturer,
the raw data are available in various data formats with different characteristics.

2.2.1 Data Formats

When using image matching, the 3D point clouds are calculated from image data afterward,
creating a uniform point density in a regular raster. When using LiDAR, this is not the
case because the measuring points are exactly created where the emitted laser beam hit
an object and was reflected. Depending on the mounting orientation of the scanner and
the number of scanners used, this can result in scan profiles, cross patterns, radial data,
or irregular distributions, as shown in Figure 2.1.

Different data formats are used for storing 3D point cloud information. Three
commonly used formats are the following:

LAS The format’s name is derived from the term “laser” as it is a file format primarily
developed for storing and exchanging LiDAR 3D point cloud data. LAS is a widely-
used open format developed by the American Society for Photogrammetry and
Remote Sensing (ASPRS, 2019). Compressed LAS files usually get the extension
LAZ.

XYZ Files with this ending use a non-standardized ASCII representation of 3D point
cloud data. The data is usually represented column-based, with the first three
columns holding information about the x, y, and z coordinates. The following
columns store additional attributes such as color or normal vectors.
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(a) Scan profiles. (b) Cross pattern.

(c) Radial pattern. Adapted from Simonite (2017). (d) Irregular distribution.

Figure 2.1: Visualization of 3D point clouds captured with different scanner setups resulting in

different point distribution patterns.

E57 This format was developed by ASTM International and is named after its Committee
E57, which is responsible for the development of standards for 3D imaging systems
(ASTM International, 2019).

The framework used for the implementations described in this thesis uses its own
format XPC and is described in Chapter 7 in more detail. It implements readers for
several typical data formats and converts them into a unique internal representation.
Thus, later processing steps can assume the always same data format.

2.2.2 Coordinate Systems and Shift

Besides the data format, coordinates of individual points can be stored in various
coordinate systems. These can either use latitude/longitude values or metric values in a
local coordinate system. Local coordinate systems are often described by their EPSG
codes, defining the valid area and its projection on the earth’s surface (IOGP Geomatics
Committee, 2020).

For easier processing, source data is always converted into a suitable local metric
coordinate system. In this local coordinate system, distances can be read directly from the
coordinates. For this purpose, each dataset is given the information in which coordinate
system it is stored in an EPSG code. Data from different systems can be converted into
one another and put into relation. In Germany, for example, “ETRS89 / UTM zone 32N”
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and “ETRS89 / UTM zone 33N” with the EPSG codes 25832 and 25833 are widely used
as reference systems.

The accuracy of decimal places decreases with larger numbers because of how typical
representations of floating-point numbers in computer systems work. The coordinates’
numerical values must not become too large to ensure sufficient precision for the measuring
points’ coordinates. A shift to be applied to all local coordinates is specified in each
dataset to ensure this. Local coordinates and shift together result in the actual global
coordinates. The individual numerical values of the local coordinates can thus be kept
significantly smaller.

2.2.3 Outliers

Outlier points are individual measuring points that are considered as disturbance or noise
(Han et al., 2017). For example, reflections on wet surfaces, glass, or metal can lead
to measuring points at positions with no actual object. As described in the review of
related work, there are numerous approaches for outlier removal, each based on specific
assumptions about what outliers are and how individual types of datasets should be
handled.

For the datasets considered in this thesis, outliers are mostly small groups of loose
points without any recognizable affiliation to other objects or points that are located at
the edge of the 3D point cloud, where only sporadic measurement values are available.
In addition, reflections during scanning can create unwanted points under the ground or
behind facades. Outlier filtering removes points that have no or only a few other points
in their immediate vicinity.

The outlier detection is not a focus of this thesis because a small number of outliers
within millions of points is essentially not hindering the semantic classification. However,
especially those outliers visually disturbing the scene are removed by a fast outlier removal
algorithm that does not require long processing times.

Precise analysis for the detection would place a virtual sphere around each point and
determine the number of neighboring points within this sphere. The exact thresholds
depend on the respective dataset and the average point density. For example, in typical
applications, it may be required that a sphere with a diameter of one meter around the
point contains at least 10 points for this point not to be considered an outlier.

For a more efficient calculation without sphere radii and consideration of all individual
points, an approximate solution based on a voxel grid can also be used. All points of
the 3D point cloud are placed into a voxel grid with a cell size of, e. g., one cubic meter.
The points in all cells that subsequently contain less than 10 points can be removed
as outliers. This approximation solution is many times faster than the precise variant
because sorting the points into the voxel grid based on their coordinates is not very
computationally intensive. Afterward, not all other points have to be searched for a
possible neighborhood, but only the points within a voxel are counted. It is also possible
to use the voxel grid as acceleration for an exact determination. A voxel grid is filled
with the points first. For each point, the sphere neighborhood analysis is performed only
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(a) Complete data with outliers. (b) Data after outlier points have been removed.

Figure 2.2: Visualization of a 3D point cloud from the Railroad dataset before and after outlier

points removal.

with points, which are possible neighbors due to their assigned cell in the voxel grid.
An additional step in outlier removal can remove points below the ground. After

a ground detection has been performed, underlying points can be removed, which are
usually caused by reflections on roads or rails or by the holes in utility hole covers.
Figure 2.2 shows a visualization of a 3D point cloud before and after outlier points
removal.

2.2.4 Point Density Reduction

In 3D point clouds captured by LiDAR, there is no regular point density as in image
matching 3D point clouds. With LiDAR, the point density is significantly higher close to
the scanner than with increasing distance (Boulch, Saux, et al., 2017). The measuring
vehicle’s speed also influences the point density since the scanners usually work at a fixed
measuring speed, and the number of points captured per second thus remains constant.
Depending on the application, it can be advantageous to adjust the point density within
a dataset and across datasets (Seufert et al., 2020; Tazir et al., 2016b). Areas close
to the scanner often have a very high point density, which is not required for further
evaluation and only increases the computing effort. Besides, strongly varying point
densities can have an unintended influence on other metrics’ calculations and negatively
impact machine learning approaches (Hackel, Wegner, et al., 2016).

Therefore, 3D point clouds can be thinned out and contain fewer points afterward.
The local point density (see Section 2.4.1) depends on the point distribution characteristics,
e. g., when estimating distances from the measuring vehicle based on this value.

Thinning can be performed by various approaches as shown in Figure 2.3. A trivial
approach called n-th thinning keeps only every n-th point on iterating over the 3D point
cloud. All other points are discarded, resulting in a 3D point cloud with a density of 1/n

compared to the input data.
To better preserve the 3D point cloud structures, one way is to thin out the

points semantically based on curvature values. The curvature indicates how much the
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(a) Original 3D point cloud data. (b) 3D point cloud thinned to 10 % with n-th thinning.

(c) 3D point cloud thinned to 10 % with curvature

thinning.

(d) 3D point cloud thinned to 10 % with voxel grid

thinning.

Figure 2.3: Visualization of a 3D point cloud from the Hamburg dataset and different thinning

methods.

approximate surface is curved at this point in the 3D point cloud. A plane has no
curvature, and a cylindrical post has a high curvature. With this curvature thinning

approach, flat surfaces can be thinned out more than areas of the 3D point cloud rich in
structures.

Usually, the ground near the measuring vehicle was very densely captured. However,
the high number of measuring points offers only limited value because the ground’s
condition and any markings or other objects can also be detected with fewer points.
Therefore, significantly more points can be removed in this area than, for example, at
traffic lights, signals, or edges of building facades, representing essential structures in the
environment to be analyzed in detail.

An efficient implementation performs randomized removal considering the curvature
values. Points with lower curvature have a higher probability of being removed. By
setting the desired percentage of total thinning, appropriate probability thresholds can
be defined to perform the thinning.

Another approach is voxel grid thinning in which all points are placed into a voxel
grid with a small voxel size. In each voxel, only one representative point will be kept.
This point can either be arbitrarily chosen or the point closest to the voxel’s center. In
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contrast to the other approaches, the thinning percentage cannot be precisely configured
because the voxel size must be guessed. Also, the local density is not a meaningful metric
anymore in 3D point clouds thinned by this approach.

Although curvature thinning takes more time than n-th thinning, it usually allows
removing more points without degrading subsequent analyses, whose processing time is
reduced by the lower number of points. Therefore, the time required to determine the
curvature can be worthwhile. Voxel grid thinning is fast but has a significant impact on
further analysis steps.

2.2.5 Scan Profile Detection

In some scanning setups, the 3D point cloud data is recorded in the form of individual scan
profiles. Especially in the railroad environment, the LiDAR scanners are often mounted
at the train’s front and measure perpendicular to the train. Due to the scanner’s rotation,
the laser beam rotates in all directions in a circle around the train—the additional
movement of the train results in a spiral scan of the environment. The paths of the spiral
have a distance of a few centimeters from each other (Yan et al., 2016). Each revolution
within the spiral is called a scan profile and represents a cross-section of the environment.
The individual scan profiles are rarely closed all around. For example, there are only
a few measuring points above the train on overhead lines or signal bridges outside of
tunnels. In most cases, scan profiles contain only points near the ground and lateral
objects such as vegetation or signals. Figure 2.4 shows a 3D point cloud with highlighted
individual scan profiles.

In some acquisition datasets with scan profiles, the respective scan profile ID is
part of the scanner’s raw data. If this information is not provided, it can be calculated
by various methods to use it for subsequent analyses (Chu et al., 2019). For example,
the image-based classification of track environments described in Section 3.3.2 relies on
individual scan profiles.

(a) Points colored by intensity values. Lighter colors

represent higher intensity.

(b) Points colored by scan profile ID. Each scan profile

has a distinct color, all points in the same scan profile

have the same color.

Figure 2.4: Visualization of a 3D point cloud from the Railroad dataset and individual scan

profiles within.
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If available, the scanner’s angle at the time of scanning can be used to determine
individual scan profiles. Frequently, the measuring points are stored in the order of their
acquisition. A scan profile comprises all points within a 360 degrees scanner rotation
before the next rotation begins. If the angle is unavailable as an attribute, it can be
approximated via the trajectory if the points are ordered by acquisition time.

If the measuring points are not ordered, the determination of the affiliation to scan
profiles is more complex and time-consuming but still possible as an approximate solution.
From the trajectory, the direction of travel can be determined for the local environment.
The searched scan profiles are oriented perpendicular to it. Thus, points whose distance
to the neighboring point in the expected direction of the profile is smaller than a defined
limit value and significantly smaller than the distance to a neighboring scan profile can
be assigned to the same scan profile. It is considered that the resulting scan profile must
approximately result in a plane and that points cannot shear out too far laterally because
otherwise, they would have to be assigned to a different scan profile.

The above-mentioned methods assign the associated scan profile ID as an attribute to
each point in a 3D point cloud. Subsequent processing steps can access the information.

2.3 Normal Vectors and Segmentation

To analyze a 3D point cloud, information about its structure is required. The two most
basic preprocessing steps for almost all applications are calculating the surface normal
vectors and a subsequent division into segments. Both are described in detail below.

2.3.1 Normal Vectors

Mathematically, points have no orientation and, therefore, no normal vector. For
a 3D point cloud, the orientation of an individual point is understood as the local
neighborhood’s orientation, for which an imaginary surface can be constructed. Based
on that idea, the normal vectors in a 3D point cloud indicate the surface orientation of
the points.

To compute the points’ normal vectors, the local neighborhood is regarded for each
point, and the best-fitting plane is determined. This plane’s normal vector is recorded as
normal vector for this point of the 3D point cloud. With the help of the normal vectors
computed in this way, statements can be made about connected surfaces, a precondition
for the subsequent segmentation, among other analysis steps.

Different approaches can be used to determine the neighborhood of a point. For
example, the k-nearest neighbors could be considered the neighborhood or neighboring
points are searched for in a sphere radius around the point. For the implementation of
the normal vector computation, the implementation from the PCL (Point Cloud Library)
is used in the underlying framework of this thesis (see also Chapter 7), which was adapted
for the processing of vast and dense 3D point clouds. Figure 2.5 shows visualizations of
point normal vectors.
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(a) Points colored by normal vector orientation. RGB

channels map to XYZ coordinates.

(b) Points with attached lines representing the

orientation of the normal vectors.

Figure 2.5: Visualization of the points’ normal vectors in a 3D point cloud from the Hamburg

dataset.

(a) Points colored by intensity values. Lighter colors

represent higher intensity.

(b) Points colored by segment ID. Each segment has a

distinct color, all points in the same segment have the

same color.

Figure 2.6: Visualization of a 3D point cloud from the Hamburg dataset and detected segments

within.

2.3.2 Segmentation

“3D point cloud segmentation is the process of classifying point clouds into multiple
homogeneous regions” (Anh Nguyen and Le, 2013). The homogeneity can be based
on different values. Often segmentation is used to group all points of an object, such
as a car or traffic sign (Vosselman, 2013). Depending on the application, the desired
segmentation can be larger or smaller. For example, in one case, it might be required to
get one segment per car on the road, and in another, a subdivision into the hood, the
roof, the tires, and other parts might be of interest. Buildings could either be segmented
as a whole or broken down into individual parts such as facades, roofs, windows, and
doors. Figure 2.6 shows a visualization of a segmented 3D point cloud.

The surface normal plays a significant role in the semantic segmentation of objects.
In many use cases, the segmentation is performed based on surface orientation (Oehler
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et al., 2011). Local point clusters with the same orientation are combined into one
segment. Planes and rounded edges can be recognized as belonging together. Starting
from points with low curvature, neighboring points are added to the segment if their
orientation matches the previous points. A substantial change of the normal vector is
usually handled as an abort criterion to interrupt segments at hard edges. Likewise, a
limit value could be set that segments should not exceed a particular area or number of
points if smaller segments are desired.

Alternatively, segmentation can be based on other attributes such as color or
intensity. If, for example, similar intensity values are used as a basis, it is possible to
detect contiguous road markings which are just as planar as the surrounding road but
stand out from it by their intensity.

In the results of segmentation methods, a distinction is made between oversegmen-

tation and undersegmentation. Oversegmentation creates too many segments, so areas
belonging together fall apart into several segments harming individual objects’ recognition.
For example, if cars are detected by filtering segments of a specific size, individual cars
cannot be detected if split into too many individual segments. Undersegmentation occurs
if too few segments are created, for example, if the detection does not break off at narrow
or rounded edges, although this would be desirable. For example, smaller structures on
large surfaces could not be viewed individually, such as windows in a building facade or
stones on the ground.

The correct degree of segmentation depends on the individual application and cannot
be determined universally.

2.4 Metrics Computation

For the geometric analysis of 3D point clouds for semantic classification, many analysis
results of specific characteristics, so-called metrics, are required. Metrics provide infor-
mation about specific properties of points, point groups, and their environments, thus
enabling statements to be made about displayed structures and objects.

Additional pre-calculated metrics can also help machine learning-based procedures
to improve the classification with CNNs or accelerate their training.

The following sections describe important metrics that have been developed for the
analysis of 3D point clouds and have proven to be meaningful for semantic classification.
Many of the metrics require normal vectors and segment information to be already
available.

2.4.1 Local Point Density

The local point density (LDensity) is especially relevant in mobile mapping 3D point
clouds because here, the point density hugely varies throughout a dataset (Boulch, Saux,
et al., 2017). As the distance from the scanner increases, the point density decreases
significantly. Several thousand points per square meter can be available in the scanner’s
immediate vicinity. However, at a distance of 50 meters, for example, only less than 10
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Local Point Density
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(a) Points colored by local point density. (b) Points filtered by high local point density. Only

points with LDensity > 20 000 points are shown.

Figure 2.7: Visualization of the local point density metric in a 3D point cloud from the Hamburg

dataset.

points are captured in the same area. Figure 2.7 shows a visualization of the local point
density metric.

As described in Section 2.2.4, a uniform point density is advantageous for several
processing steps.

The local density considers the point density in a small local area in contrast to
the general point density, which can be specified as a dataset’s total value. The local
point density is calculated for each point in the 3D point cloud as an attribute. As a
theoretical concept, the number of neighboring points in a sphere with a defined radius
of, e. g., half a meter with the considered point in the center is counted and divided by
this sphere’s volume. The result is a local density value for the considered point.

Neighborhood analyses in large amounts of data are very time-consuming, and the
local point density is usually not required with per-point accuracy. This allows for an
approximate solution performed as follows instead: All points of a dataset are placed in a
voxel grid with an edge length of, for example, 30 centimeters. For each cell in the voxel
grid, the number of points within (nC) is determined and divided by the cell volume (VC).
The resulting value corresponds to the cell’s local point density (LDensity = nC/VC)
and is assigned to all points within the cell as an attribute value for their local density.

If not yet otherwise available, in many cases, the local density can be used to
determine an approximate trajectory of a measuring vehicle, i. e., the path traveled
because the point density along the travel path is much higher.

Areas with low local density within a dataset can often be excluded from subsequent
analyses because not enough information is available for classification. This is especially
the case in border areas of the collected data. Areas with high local density can be
thinned out to save memory and processing time when the level of detail is not required.
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2.4.2 Verticality

The verticality (V ert) of a point indicates how clearly its immediate surroundings belong
to a vertically oriented surface. Examples of surfaces separated from their surroundings
by this metric are building facades or posts whose surfaces stand vertically on the ground
(Demantké et al., 2012). Figure 2.8 shows a visualization of the verticality metric.

Verticality
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(a) Points colored by verticality. (b) Points filtered by high verticality. Only points with

V ert > 0.5 are shown.

Figure 2.8: Visualization of the verticality density metric in a 3D point cloud from the Hamburg

dataset.

There are two different approaches to determine the verticality value. One possibility
is to apply the procedure for calculating the local density analogously and to use a narrow,
infinitely high cylinder instead of a sphere as the measuring volume. This way, regions
with many points positioned on top of each other can be recognized, as is the case with
building facades, lamp posts, or signal posts.

Since this calculation is not well suited for large amounts of data due to complex
neighborhood analyses, an alternative approach was developed. Here, the value is
calculated by determining the fraction of normal vectors of all points in a defined
neighborhood that are vertically oriented. The verticality is thus defined as the number of
vertically oriented points (nV ) divided by the total number of points (n): V ert = nV /n.
As already described for the local point density, a voxel grid into which all points have
been sorted can be used to look up local neighborhoods. All points within the same
voxel receive the same verticality value. Again, a cell size with a side length of about
30 centimeters is suitable for most applications. Vertically oriented are considered all
normal vectors whose angle to an up-vector is between 80 and 100 degrees. Since the
normal vectors must usually be calculated for several analyses in any case, this approach
is very efficient. As soon as verticality values are available, they can be used in connection
with observations of the size of segments, e. g., for the efficient semantic classification of
building facades.
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2.4.3 Normal Vector Diversity

Normal vector diversity (NDiversity) makes it possible to locate vegetation areas in
particular. The metric describes how strongly the normal vectors scatter in a local
neighborhood. Trees and bushes do not have clearly structured surfaces, so the normal
vectors of the points of such objects point in many different directions. For example, most
buildings and the ground have a much smaller variety in their orientation in relation to
the size of the surface. More complex facades might still show a high diversity, however.
Thus, depending on the dataset, this metric might not be significant. Figure 2.9 shows a
visualization of the normal vector diversity metric.

Normal Vector Diversity
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(a) Points colored by normal vector diversity. (b) Points filtered by high verticality. Only points with

NDiversity > 0.8 are shown.

Figure 2.9: Visualization of the normal vector diversity metric in a 3D point cloud from the

Hamburg dataset.

For the calculation, a voxel grid can be used as a local neighborhood as described
above, or all points of a segment can be considered a group. For the group of points, the
distribution of the normal vectors is determined. For each normal vector, the angles to
the up-vector (which corresponds to the z-axis in the framework used) and the x-axis
are determined and considered modulo 18 degrees. This results in 10 possible directions
each. The combination of both angles results in a total of 100 possible orientations of
the normal vectors.

The normal vector diversity is defined as the proportion of the occurring directions
(ndirections) of the possible directions: NDiversity = ndirections/100. If all normal vectors
point in the same direction, a value of 1/100 results. If all possible orientations are
represented, a value of 1 results.
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2.4.4 Horizontal Planarity

The horizontal planarity (HPlan) expresses whether the normal vectors of a particular
group of points have a similar horizontal orientation, i. e., without considering the height
dimension. Thus, this metric is suitable for the detection of, for example, building facades
(Anagnostopoulos et al., 2016). Its advantage over verticality is that curved surfaces, such
as those on advertising pillars or tree trunks, do not have high horizontal planarity and
are, therefore, distinct from facades. Figure 2.10 shows a visualization of the horizontal
planarity metric.

Horizontal Planarity
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(a) Points colored by planarity. (b) Points filtered by high planarity. Only points with

HP lan > 0.5 are shown.

Figure 2.10: Visualization of the horizontal planarity metric in a 3D point cloud from the

Hamburg dataset.

The points are placed into a voxel grid for the calculation, as already described for
other metrics. The points within a voxel form the neighborhood to be considered. For
these points, the normal vectors are projected into the x-y-plane, and if the x-value is
negative, the vector is rotated by 180 degrees. All normal vectors are then located within
a semicircle. This means that the direction of two precisely opposite normal vectors
describing the same plane is no longer critical.

A mean value is calculated from these normal vectors, and the ratio of the normal
vectors that deviate by more than 15 degrees from the mean is determined. This angle
has proven to be particularly suitable in practice. The horizontal planarity is defined as
HPlan = 1 − (n15/n) with n15 being the number of points with normal vectors deviating
more than 15 degrees from the mean and n being the total number of points in the
considered neighborhood. This value is assigned as an additional attribute to all points
within the voxel under consideration.

Points with high horizontal planarity thus form a flat surface from a top-down view.
Curved elements can still occur, e. g., an arched roof surface. These do not influence
the metric. Nevertheless, horizontal curves such as on columns provide a low horizontal
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planarity value as intended. However, narrow structures such as lamp posts or traffic light
posts can still have a high horizontal planarity value in datasets with lower point density.
They consist of only a single column of points, all having similar normal vectors. This
could be avoided by requiring a minimum number of neighborhood points to calculate a
high horizontal planarity value.

2.4.5 Post-Likeness

Many relevant “street furniture objects either contain a pole or are entirely shaped like a
pole. For instance, lampposts are often pole-like objects (i. e., shaped like a pole), traffic
lights are usually placed in a pole-like structure and street trees often have a pole-like
trunk” (Cabo et al., 2014). Post-Likeness (PL) is used to detect such structures. The
characteristic features searched for are points with many neighboring points at the top
and bottom, but only a few at the sides. Laterally, the structure should only spread out
to a limited extent. Figure 2.11 shows a visualization of the post-likeness metric.

Post-Likeness
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(a) Points colored by post-likeness. (b) Points filtered by post-likeness. Only points that

are considered post-like are shown.

Figure 2.11: Visualization of the post-likeness metric in a 3D point cloud from the Hamburg

dataset.

The metric can be calculated either segment-based or via a voxel grid. In segmental
analysis, segments with a high verticality value (see Section 2.4.2) are examined. For this
purpose, these are divided into sub-segments of fixed height, e. g., 50 centimeters. For
each of these sub-segments, the diameter of an enclosing cylinder is calculated. If the
diameter is smaller than a fixed limit for the maximum diameter of a typical lamp post
or similar object, the sub-segment is considered to be post-like. In most datasets, a value
of about 30 centimeters can be selected as the maximum diameter. Either all points of
the sub-segments which fit into this diameter are attributed as post-like, and those of
the other sub-segments as non-post-like, or all points of the entire segment receive the
value of the share of the post-like sub-segments in all sub-segments as post-likeness.
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The analysis based on a voxel grid initially places all points into a voxel grid as
described before. The individual voxels are considered filled if at least four measuring
points are located in the voxel or empty otherwise. In an analysis starting at ground level,
all filled voxels are considered potential posts. If together with horizontally adjacent
filled voxels, they form at most a 2x2 neighborhood and all voxels with a distance of
2 are empty, they remain candidates because the contained points thus form a locally
contiguous structure that is not part of a more extensive object. If more neighboring
voxels are filled, all these voxels are discarded as potential posts. The check is continued
with the next layer of voxels further up, where the same neighborhood criteria are applied.
Once all voxel grid layers have been checked, all groups of voxels previously identified as
potential posts can be marked as actual posts that include at least three voxels directly
above each other that meet the criteria. All points in the corresponding voxels are
assigned a post-like attribute.

The post-likeness can be used to detect traffic signs, for example. For this purpose,
a post structure on the ground must be identified, which may only deviate from its post
shape beginning at a defined height. Elements placed there can serve as candidates for a
search for traffic signs.

2.4.6 Segment Density

The segment density (SDensity) indicates how many segments, which were previously
determined, are located in a certain area. Like the normal vector diversity, this metric
can be used for the detection of vegetation. Since, as already described, the surfaces
in vegetation do not usually form smooth surfaces, the normal vectors point in many
different directions. The segmentation uses this normal vector information to detect
connected segments. It results in many small individual segments in vegetation point
groups, which are not combined into larger segments due to their structure. Figure 2.12
shows a visualization of the segment density metric.

The number of segments in a limited area, such as within a voxel in a voxel grid, thus
provides information about the probability of vegetation. The number of different segment
IDs of each voxel’s points (nS) is counted to determine this value. Typically, a constant
value per dataset is used for normalization. For example, a median of the segment counts
(mediannS

) can be used. The segment density thus results as SDensity = nS/mediannS
.

2.5 Manual Creation of Training Data

A significant disadvantage of machine learning-based algorithms for semantic classification
is that they require large amounts of data to train artificial neural networks. “While
recording is nowadays straight-forward, the main bottleneck is to generate enough
manually labeled training data, needed for contemporary (deep) machine learning to
learn good models, which generalize well across new, unseen scenes” (Hackel, Savinov,
et al., 2017). This section presents approaches to generate such annotated training data.
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Segment Density
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(a) Points colored by segment density. (b) Points filtered by high segment density. Only

points with SDensity > 20 are shown.

Figure 2.12: Visualization of the segment density metric in a 3D point cloud from the Hamburg

dataset.

In contrast to other research areas like handwriting recognition or face recognition,
not much publicly available and already classified training data exists for large mobile
mapping 3D point clouds. Classified datasets can be found, but in most cases, these
are single objects like tables and chairs or only small scans. Available extensive mobile
mapping and aerial datasets are usually not semantically classified.

For a few years, more data for comparative research is gradually being made available.
Hackel, Savinov, et al. (2017) also describe the problem of missing training data and
provide a dataset called “semantic3D.net” with eight semantic classes, containing more
than four billion labeled points. However, this dataset consists of scans taken by a
stationary scanner and has different characteristics than mobile mapping scans. Better
suited is the “Paris-Lille-3D” dataset from Roynard et al. (2018) which provides over
140 million points with 50 semantic classes on almost 2 kilometers of road. However, the
scanners’ arrangement and the resulting structures differ from the large datasets used in
this work.

Due to the many distinct characteristics of the data depending on the acquisition
techniques, it is often necessary to generate new training data from an existing dataset,
which can be used for other acquisitions with the same hardware.

It is possible to build on already classified data, to avoid creating all training data
manually. This can be obtained, for example, through a geometric analysis as presented
in more detail in Section 3.2. Similarly, less sophisticated artificial neural networks can
be used for automatic preprocessing, the results of which are subsequently refined. It
is also possible to project manually created map data into the 3D point cloud, such as
information about the position of road markings. If this data is precisely fitted into the 3D
point cloud position, all points within the defined polygons can receive the corresponding
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Figure 2.13: Visualization of road marking map data from the Hamburg dataset. Individual road

markings have positional and semantic class data. Each semantic class is represented by a unique

color.

type of road marking as a label. Figure 2.13 shows a map of road marking data that can
be used for automated classification.

With these approaches, datasets can first be classified automatically and then serve
as new training data after manual post-processing to ensure the correctness of the
annotations.

For this manual post-processing or even a completely manual classification, a tool
has been developed that enables users to annotate 3D point clouds and provides various
interaction techniques for an efficient workflow.

First, the tool, shown in Figure 7.4 in the architecture chapter, enables a basic
inspection of the 3D space with the 3D point cloud. The data can be navigated by using
the computer mouse and keyboard. The parallel representation of the scene once with a
freely movable camera and once with a top-down view enables efficient work. It ensures a
good understanding of the scene, especially when annotating objects close to the ground,
such as rails or road markings.

Semantic classes can be displayed or hidden individually. Write protection can be
activated for each semantic class, for example, if only points are to be annotated that
have not yet been assigned a semantic class.

The semantic classes’ assignment to points is realized by selecting the desired class
and then selecting the respective points. Different selection modes are available:

For example, a height filter selects only points in a defined height range. This serves,
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e. g., to annotate rails, which are separated from the surrounding ground by their height.
A 3D lasso tool allows users to select arbitrary areas of the 3D point cloud by drawing
a polygon that, moving away from the viewer, continues as a frustum into the image
space and marks all points contained in it. This method is handy for marking trees or
masts. There is also a semi-automatic object detection, which marks, e. g., all connected
points only separated by the ground from the rest of the 3D point cloud, starting from a
starting point selected by a mouse click. Thus, for example, vehicles on the road can be
marked efficiently. The semi-automatic analysis can also use other values than ground
points as abort criteria for connected point groups, such as the intensity value, to quickly
select all points of a road marking by a single click.

This tool enables the efficient generation of semantically classified data to be used
as training data for machine learning-based approaches.

Research is also done on synthetically creating semantically classified 3D point
clouds based on virtual 3D models (Danhof et al., 2015; Bechtold and Höfle, 2016).
For this purpose, virtual 3D city models can be used whose objects already possess
semantic information. One or more virtual LiDAR scanners travel along the modeled
city streets and virtually emit beams like real scanners. If these rays hit an object, the
three-dimensional coordinate is stored together with the object’s semantic class as a point
of a 3D point cloud. This allows creating “perfectly” classified 3D point clouds—within
the correctness of the underlying semantics defined by the virtual 3D city model. However,
the artificial datasets generated in this way differ in their characteristics from real-world
data. For example, noise and outliers would have to be artificially added to obtain
a similar appearance. In addition, the intensity attribute, for example, is difficult to
map because information on surface materials is missing. The problem of few available
datasets is shifted to 3D city models, of which there are also only a few freely available
datasets whose level of detail is suitable.





Chapter 3

Semantic Classification of

Infrastructure Elements in 3D Point

Clouds

Semantic classification of 3D point clouds denotes the process of assigning each point an
attribute describing one or more semantic classes to which it belongs. Basic semantic
classes that are often used in the geospatial domain include ground, building and vegetation.
However, depending on application cases, the classification can also be more specific.
For example, for infrastructure-related applications the categories could include vehicle,
rail, road marking, traffic sign, traffic light and person or even such detailed classes as
straight arrow, priority road sign and stop line. Figure 3.1 provides an overview of the
most important semantic classes in the environment of roads and train tracks that have
been investigated in this thesis.

Figure 3.1: Hierarchical visualization of the most important semantic classes in transport

infrastructure mobile mapping scans.

Semantic information associated with individual points of a 3D point cloud is required
for most applications, particularly for analysis tasks, to detect, examine, and evaluate
objects in these scans. For example, an application might want to determine how far
vegetation is from roads and railways and whether it extends into areas that need to be
kept clear. It can also be determined to what percentage an area is covered by forest or

33
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buildings and how far a traffic sign is placed from the curb. Furthermore, basic semantic
information is the basis for object recognition, for example, identifying individual trees
within the vegetation or examining all detected road markings for their exact type.

This chapter explains semantic classification approaches in detail. First, Section 3.1
presents related work on the topic. Section 3.2 explains geometric approaches for the
classification. Sections 3.3 and 3.4 describe semantic classification via machine learning
techniques using rendered images and spatial data, respectively.

3.1 Related Work

Semantic classification is a key aspect in the analysis of 3D point clouds. As such, many
approaches have been published, focusing on various specific aspects, semantic classes, or
object types.

While the semantic classes of interest differ based on the use case, a common
distinction into the most basic semantic classes usually separates the 3D point cloud into
at least “building/structure”, “vegetation”, and “ground”. The classification approaches
can be based on geometric analyses (D. Chen et al., 2017), machine learning techniques
(Boulch, Saux, et al., 2017) or a combination of both. Geometric approaches (see
Section 3.2) base decisions about the respective semantic class of points or groups
of points on calculated metrics within predefined thresholds for specific object types.
Machine learning techniques as described in Sections 3.3 and 3.4 use annotated training
data for the training of an artificial neural network, which afterward makes decisions
about the semantic class based on the “recognition” of similar structures or environments
compared to the training data.

Explicit rules can be defined to distinguish semantic classes by geometric attributes
(Grilli et al., 2017), e. g., for separating nature from human-made structures (Yao and Fan,
2013). Usually, well-defined semantic classes are used for the classification. For example,
Niemeyer et al. (2012) distinguish the five object classes “building”, “low vegetation”,
“tree”, “natural ground”, and “asphalt ground” as shown in Figure 3.2 and use Conditional
Random Fields (CRFs) to separate the individual classes.

The separation between vegetation and non-vegetation is discussed by Rutzinger,
Höfle, et al. (2008), who use full-waveform (FWF) data for the analysis. Many analysis
approaches have been developed for aerial 3D point clouds, but they cannot be applied
directly to mobile terrestrial scans. Nüchter et al. (2006) classify points that an indoor
rescue robot has captured. Rusu, Marton, et al. (2009) also focus on indoor data such
as kitchen areas and describe an efficient semantic object labeling method. Rutzinger,
Pratihast, et al. (2011) analyze outdoor mobile mapping scans for parameters like crown
diameter and stem height for individual trees.

Post-like structures such as lanterns, traffic signs, and tree stems are often found in
mobile mapping datasets. Researchers seek to detect and classify these objects correctly
by their shape (Pu et al., 2011). A dedicated detection of lanterns and traffic signs is
described by Lehtomäki et al. (2010). It is also possible for post-like structures to voxelize
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Figure 3.2: Classified 3D point cloud with five semantic classes displayed in distinct colors.

Figure from Niemeyer et al. (2012).

the 3D point cloud data for segmentation and further classification analyses (Aijazi et al.,
2013).

X. Meng et al. (2009) describe a popular algorithm for detecting ground points
based on their relative height and orientation. The ground detection implemented in the
framework used in this thesis is based on Meng’s approach.

Analyses are either based on explicitly defined geometric characteristics of the 3D
point cloud’s topology (Richter, Behrens, et al., 2013) or machine learning techniques.
Older approaches based the analysis on probabilistic Markov networks (Triebel et al.,
2006; Munoz et al., 2008), newer solutions require previously trained artificial neural
networks to identify the semantic classes of objects (Zhou and Tuzel, 2018). Fukano and
Masuda (2015) analyze scan profile characteristics, which are processed by supervised
machine learning methods to detect utility posts, lanterns, traffic signals, and other
post-like objects. In recent years, with machine learning on the rise, using the 3D point
clouds’ internal structure has become increasingly popular, as exemplified by PointNet++
and similar networks (Qi, Yi, et al., 2017; Winiwarter et al., 2019). They all work on the
spatial data of the 3D point cloud to attribute all points with semantic information.

Especially and prominently used are Convolutional Neural Networks (CNNs) that are
a class of networks inspired by biological processes and find use mainly in the automated
analysis of image data (LeCun et al., 2010). Freely available frameworks have been
developed to make techniques for the automated analysis of images easy to use in own
applications (Pulli et al., 2012). Many research fields, such as face recognition, license
plate identification, or medical imagery analysis require efficient object detection in
images.

Viola and Jones (2001) present an often-cited algorithm that can be used to detect,
e. g., faces in images. U-Net is widely used for image segmentation (Ronneberger et al.,
2015) in many areas, not only the original medical context, and enables the automated
detection of specific areas in images, such as cancer cells but also roads in aerial images
(Z. Zhang et al., 2018). Lanes and arrow markings are detected by Vacek et al. (2007),
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who extract road marking information from images taken from a car. Veit et al. (2008)
present an approach to evaluate the performance of algorithms for road marking detection
in images in general. Extraction of road markings is performed on mobile laser scanning
data as well. B. Yang et al. (2012) use the reflective properties of road markings to extract
them from mobile mapping scans. Guan, Jonathan Li, Y. Yu, et al. (2014) perform a
curb-based road extraction, followed by rendering intensity images of the 3D point cloud
and a final extraction step, segmenting the areas containing road markings. Going into
more detail, Y. Yu et al. (2014) distinguish seven specific types of road markings by five
classification methods.

Autonomously driving cars require a high-speed evaluation of LiDAR data of their
surroundings to evaluate the current environment without delay. Caltagirone et al. (2017)
investigated the use of CNNs for this purpose. Some objects in road space, especially
people, need to be detected in the data for safely controlling vehicles (Navarro-Serment
et al., 2010). Guan, Jonathan Li, Cao, et al. (2016) give an overview of how approaches
from various publications use LiDAR information for road information inventory. Sester
(2020) illustrates several use cases for data acquired by mobile mapping vehicles, such as
analyzing the availability of parking spaces or detecting roadblocks from the collective
behavior of car drivers.

Many of the methods used for road data can also be transferred to railway networks.
Stein et al. (2016) investigate how tracks of light rails in LiDAR scans can be detected
automatically through variations in the distance values. It is important to detect specific
assets in the track environment for monitoring and maintenance. Arastounia (2017)
points out this necessity and presents an algorithm for how rail tracks and contact cables
can be detected via a geometrical analysis of point positions based on an automated seed
point search. Gézero and Antunes (2019) describe an approach to evaluate 3D point
clouds using a vertically mounted scanner’s angular information at a train’s front. Along
an imaginary line beneath the scanner, they determine the rails on either side of it and
the ballast’s dimensions. More detail-focused in his analysis is Taheriandani (2016), who
describes approaches for track analysis with LiDAR scanners directly aimed at the rails
to detect even the slightest deviations. Similar to road image analysis, CNNs can be used
for detecting rail defects on image data from railways (Shang et al., 2018). A widely used
implementation is YOLO (You only look once), which only returns labeled bounding
boxes for input images, but can process the provided images very fast (Redmon and
Farhadi, 2018). In a railway context, Yanan et al. (2018) use YOLO to detect problems
on the surface of rails, and Y. Yang et al. (2020) use it to recognize numbers on signal
posts in images.

The concept of scan profile analysis is used by Hu and Ye (2013) for detecting
buildings in aerial data. Yan et al. (2016) present an approach using them to recognize
road markings in mobile mapping data.

The above approaches show that there is no single way to classify mobile mapping
3D point clouds. Depending on the use case, the focus is set differently. Geometric
methods and machine learning exist in parallel and are both continuously researched.
Therefore, both approaches are examined in more detail below.
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3.2 Geometric Approaches

In contrast to machine learning-based approaches, geometric classification calculates
several metrics and considers the resulting values to find fitting semantic classes for
points and segments in a 3D point cloud. The decisions are mainly based on predefined
threshold values for the metrics, stating whether a specific semantic class should or should
not be assigned. In the following, approaches for geometry-based semantic classification
are presented.

This section is partially based on the author’s publication in J. Wolf, Richter, and
Döllner (2019).

Figure 3.3: Process for a geometric semantic classification of 3D point clouds.

Figure 3.3 shows an exemplary process for a geometric semantic classification. For
many processing steps, it is necessary to have the normal vectors computed. The 3D
point cloud data may have to be harmonized in advance, and metrics are calculated
during the preprocessing as described in Chapter 2. Optional 3D point cloud thinning
can take place at this point. Required besides is a segmentation of the data as described
in Section 2.3.2. Points forming connected surfaces without sharp edges are grouped in
segments. Afterward, the classification will focus on detecting pre-specified semantic
classes, and, finally, a postprocessing step will work on small improvements, resulting in
the classified dataset.

In a first step during the classification phase, the ground detection is performed.
The detection is based on the idea that the ground usually forms a large horizontal
surface at the bottom of the 3D point cloud. Using an adapted and extended approach
based on the description from X. Meng et al. (2009), the ground points are extended
from the 3D point cloud data. Edges and slopes are considered to the extent that can
be set in the parameters for the detection. Although initially developed for aerial data,
this implementation can also efficiently detect ground points in mobile mapping data
because the main characteristics of ground points remain valid. The ground is still below
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the scanning vehicle and results in a large enough surface despite objects like cars and
trees, partly shadowing areas of the ground in the scanning environment.
The ground detection is using a voxel grid where all voxels have infinite height. Thus,
only the points’ x and y coordinates determine to which voxel a point belongs. Scan lines
are used in the algorithm to detect ground points. They move axis-aligned and diagonally
through the grid in all eight possible directions. Slopes and elevation differences are
considered during the detection. Whether a point is considered a ground point or not is
based on majority voting by each scan line.

The building detection is based on the detection of large segments with appropriate
orientation and sizes. Adjacent vertical surfaces above a specific size are almost exclusively
building facades. If necessary, the number of points in the considered segment can be
additionally considered in relation to its size to ensure sufficient density for a closed
surface. This excludes, for example, some fences from classification as buildings.

The location of large, flat segments is analyzed in relation to previously detected
facades to identify building roofs. Not many roof points occur in mobile mapping data
because the scanner is located close to the ground. However, sloped roofs at a greater
distance can still be recorded. Due to their position above detected facades, they can be
recognized as roofs and assigned to the semantic class “building”.

Car detection is based on segments of predefined sizes as well, but in addition,
the distance to detected ground points is of importance. Thus, as a threshold value, it
can be assumed that a car segment must not be further than 50 centimeters away from
detected ground points. The proximity to the ground can be used to exclude segments
whose rough shape would fit vehicles but are located too far above. A small tolerance
range must be allowed because, for example, other vehicles can shade parts of the ground
so that no ground was detected directly under the car.

Post detection is performed on the remaining points based on the post-likeness
value described before. Points located above each other without other points in a certain
distance around them either represent tree stems, or they are posts such as lamp posts,
traffic signal posts, or flag posts. The distinction between these two is not always easy and,
therefore, done in a postprocessing step after posts and vegetation have been analyzed.

Vegetation detection is based on segment density analysis because it does not
have plane surfaces and thus is segmented into a large number of small segments. Points
in areas with a high segment density are usually vegetation and can be classified as such.
It is also possible to additionally consider the normal vector diversity metric. This metric
also identifies vegetation by the scattered normal vector directions in vegetation areas.

As mentioned before, some postprocessing is required after these semantic class
detection steps. First, all small segments which have not been assigned any semantic
class can be analyzed. If these segments are surrounded only by segments of one specific
semantic class, it can be assumed that the small segments belong to the same semantic
class, which can be assigned to them. Also, because posts and tree stems have a similar
geometric structure but belong to two different semantic classes, these must be analyzed
again. If a post-like structure is detected with many vegetation points above it, it is
considered a tree stem and will be reclassified as vegetation. The reclassification might
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lead to problems if, e. g., a traffic sign is located under tree branches and cannot be
distinguished from a tree stem. If the detection of traffic signs is of high importance for
the current use case, an additional analysis of intensity values can be performed, checking
whether a highly reflective traffic sign is mounted on the post structure. In this case,
it would not be considered as vegetation. Similarly, a lantern with just a small number
of erroneously classified vegetation points on top can be reclassified as a post because
vegetation usually exists next to other vegetation and not in small separated and elevated
patches.

As described in this section, semantic classification based on geometric analyses
requires a large number of thresholds. The values are partly based on average values, which
can be computed for each scan. However, they often require individual configuration for
each new dataset, e. g., when the data was captured with a different setup in another city.
The configuration is the main reason for the need for different classification approaches,
which enable an even higher grade of automation for the analysis process.

3.3 Machine Learning on Rendered Images

In addition to the classification by geometric methods, machine learning approaches
can also be used. These can either work on the spatial data directly or, as this section
describes, on rendered images.

Established methods for image analysis using CNNs have been used for several years.
As described in Section 3.1, these are applied in several use cases. For example, face
recognition, separation of cells such as shown in Figure 3.4, and recognition of specific
object classes in images. Other road users such as pedestrians, cyclists, and other vehicles
can be detected in camera images taken by autonomously driving vehicles. Similarly,
traffic signs and road markings can be recognized.

Based on these existing approaches, the idea of applying semantic classification of
3D point clouds via image analysis is justified. The 3D point cloud can be rendered
from a specific position, the resulting image is analyzed with a CNN, and the result is
transferred back to the 3D point cloud.

Figure 3.4: Result on the ISBI cell tracking challenge. (a) Part of an input image of the

“PhC-U373” dataset, (b) Segmentation result (cyan mask) with manual ground truth (yellow

border), (c) Input image of the “DIC-HeLa” dataset, (d) Segmentation result (random colored

masks) with manual ground truth (yellow border). Figure from Ronneberger et al. (2015).
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The general approach is described, for example, by Boulch, Guerry, et al. (2018), who
make images from different perspectives in their “SnapNet” to classify objects mapped
on them. In contrast to the work presented in this thesis, they are converting the 3D
point cloud data into a mesh, which requires a preceding normal vector analysis.

In the following two subsections, the analysis is considered in detail for two exemplary
use cases. Subsection 3.3.1 describes the analysis of two-dimensional objects on the
roadway (road markings and utility hole covers), and Subsection 3.3.2 describes the
analysis of scan profiles taken by trains to detect, e. g., tracks and signals.

In this work, the networks U-Net (Ronneberger et al., 2015) and YOLO (Redmon
and Farhadi, 2018) are used for the classification of image data.

3.3.1 Ground Image Analysis

This section is partially based on the author’s publications in J. Wolf, Richter, Discher,
et al. (2019), J. Wolf, Richter, and Döllner (2020), and J. Wolf, Pietz, et al. (2021).

In road maintenance, the condition and markings of the roadway are of particular
interest. On the one hand, it should be ensured that the roadway is in good condition
and does not contain any potholes. On the other hand, vehicle drivers need to find easily
recognizable markings to keep to the lane and correctly perceive turning lanes and bicycle
tracks.

For regular analysis of roadways, it is therefore essential to capture this data
automatically and precisely. This section describes the automatic recognition of lane
markings, which can be compared with as-built data to detect wear or changes after
construction work. The approach can also be used to detect utility hole covers, for
example, to exclude them from further investigation in conjunction with the GPR
analysis from Chapter 5 when anomalies are found to detect potholes specifically.

Road markings and utility hole covers are located flat on the ground, and their height,
if at all, differs only to a minimal extent compared to their environment. Therefore,
these objects are predestined for visual recognition as they can easily be represented in
two-dimensional images in a top-down view of the 3D point cloud data.

The approaches presented in this thesis aim to detect objects in billions of points
(e. g., 3D point clouds of whole cities), so data reduction is an important aspect. Only
the road itself along the captured path is required to detect road markings and utility
hole covers. A trajectory is captured during the scan of the 3D point cloud data, which
describes the measuring vehicle’s exact path. The 3D point cloud of interest can be
cropped along this trajectory, e. g., 10 meters to its left and right. Suppose the recording
path should not be available. In that case, relevant areas can also be filtered by analyzing
the local point density because regions close to the measuring vehicle have a much higher
density than areas further away. Outliers are removed by outlier filtering in the remaining
data as described in Section 2.2.3. Filtering is applied to remove noise within the data
that might affect the top-down rendering of the 3D point cloud.

A ground detection as described above identifies ground points based on their relative
height and orientation. Higher points can be removed, so points representing buildings
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Figure 3.5: Examples of rendered images from a 3D point cloud from the Essen dataset, showing

several types of road markings. Intensity values are represented in grayscale, lighter colors have

higher intensity values.

or high vegetation will not be analyzed. The remaining 3D point cloud only consists of
ground points along the measuring vehicle’s trajectory without outliers. Following this
preprocessing step, 3D point clouds of the test datasets have on average only about 60%
of their original points left.

For the region of interest, images of the 3D point cloud can be rendered in a top-down
view and are subsequently processed by the neural network.

The following example illustrates the approach: The renderer receives a 3D point
cloud as input and generates images of 128 by 128 pixels in orthogonal projection, as
shown in Figure 3.5. Each image represents about 4.5 by 4.5 meters of the road’s surface.
The images are generated slightly overlapping and cover the entire area to be analyzed.
By removing higher points in the preprocessing step, overhanging vegetation is removed,
and the road surface can be displayed entirely.

Each image contains a channel storing the intensity value of the point visible in each
pixel and a channel storing the ID of the point rendered in this position. The latter is
used for projecting the classification results back into the 3D point cloud.

Empty pixels cause difficulties in the classification. Therefore, the results can be
improved if 3D point clouds are rendered using a rendering technique that fills gaps
between neighboring points, such as paraboloids (Schütz and Wimmer, 2015a). Rendering
with different primitives is shown in Figure 3.6. Using paraboloids will fill more pixels
in areas with lower density to avoid gaps in the resulting image while preserving sharp
edges of individual structures, as shown in Figure 3.6(g).

The rendered images are used as input for the previously trained neural network,
using adapted versions of U-Net for the classification. The result is an output mask
for each input image. A semantic ID describes for each pixel, whether it represents
background (road) or an object such as a particular type of road marking or a utility
hole cover.

A binary separation was used for utility hole covers, distinguishing them from the
road in black and white result images. Figure 3.7 shows images rendered from a 3D
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(a) Small points (2 pixels). (b) Large points (6 pixels).

(c) Small circles (1 x 1 cm). (d) Large circles (3 x 3 cm).

(e) Small quads (1 x 1 cm). (f) Large quads (3 x 3 cm).

(g) Paraboloids.

Figure 3.6: 3D point cloud from the Essen dataset rendered with different primitives.
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Figure 3.7: Top row: Images rendered from 3D point clouds from the Essen dataset for utility

hole cover detection. Bottom row: Classification result masks; black pixels represent detected

utility hole covers, white pixels represent background.

point cloud and the utility hole cover classifications’ result masks. For road markings, a
multi-class implementation produces distinct colors for the different types of detected
road markings.

In Europe, utility hole covers following EN 124 are usually not larger than 85
centimeters in diameter. For the rendered images’ overlapping area, a default value of 16
pixels is used, representing about 60 centimeters. The overlap ensures that at least one
image contains the complete utility hole cover, even in the worst case.

The appropriate representation of road markings, on the other hand, is more complex.
Road markings can be several meters long, such as arrows or barred areas. Therefore, it
was found that a different approach is better suited for road markings, which clusters
the markings beforehand and only then classifies them, similar to the method of Wen
et al. (2019). Using U-Net, binary classification is first performed that identifies all pixels
belonging to road markings. This classification works analogously to the classification of
utility hole covers.

The areas detected as lane markings are clustered in a multi-step process. The
procedure assumes a certain minimum distance between pixels of different road marking
classes so that contiguous pixels can be assigned to the same class. In a first clustering,
arrow markings are to be detected. These stand alone but can consist of multiple parts.
For example, the arrowhead is often separated from the line, which can also consist of
several partial lines, as shown in the center image of Figure 3.5. For this purpose, a
large maximum distance between points is defined as a threshold for clustering. Thus,
arrows are placed in their own clusters, but other markings of different classes can also
fall together in one cluster and need to be analyzed in a later step.

In an optimization step, all clusters with insufficient points and those covering a too
small area can be discarded.

All generated clusters are rendered individually. The generated images have binary
values per pixel, stating whether they are part of a road marking as detected by U-Net
or not. An optimization in image space applies a combination of a dilation followed by
an erosion to close small gaps in areas where road markings might be dirty or rubbed off
and those occurring in arrow lines. Figure 3.8 shows some rendered images.

The image is rotated and cropped to the object-oriented bounding box (OOBB) of
the marking with the longer side in the vertical direction. Cropping and rotating are
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Figure 3.8: Examples of rendered 132 by 132 pixel images of detected road marking clusters.

White pixels represent areas where a road marking was detected, black pixels represent background.

important for easier processing because all road markings are then oriented in the same
way.

An initial classification is performed using a Support Vector Machine (SVM) previ-
ously trained on road markings like described by Greenhalgh and Mirmehdi (2015). Only
clusters classified as one of the different arrow types are finished processing. The points
from all other clusters are considered again in the next step.

In the second clustering step, a smaller maximum distance is chosen for clustering,
for example, to separate individual strokes within boundary lines. For these newly created
clusters, a classification is performed with another SVM trained for all available line types.

An alternative implementation for road marking classification uses just a multi-class
U-Net for a combined detection and classification. Therefore, larger orthographic images
must be rendered to depict most road markings as a whole. Images that cover 10 by 10
meters have proven suitable. These are also processed overlapping, here with an overlap
area of 5 meters. This means that each pixel is represented in four images. Instead
of using U-Net to create only a binary mask that delineates road markings from the
surrounding area, a variant that can distinguish multiple classes is used. The binary
U-Net implementation maps a 64-element feature vector into a two-element feature vector
in the final step. This step is modified to perform the mapping into a feature vector
with one more element than possible road marking types. Thus, U-Net’s prediction’s
pixels determine which road marking type they represent or if they do not belong to a
road marking. In the interpretation, a weighted majority decision is performed between
the overlapping areas, giving higher weight to the result of those images in which the
respective pixel was located further in the center of the rendered image. The majority
voting is applied to minimize artifacts at the edges.

After the semantic classification of utility hole covers or road markings, the infor-
mation about the semantic class of individual pixels can be transferred back to the 3D
point cloud through the point ID channel. The point within the 3D point cloud whose
ID matches that in this image channel is assigned the recognized semantic class as an
additional attribute. The point density is generally higher than the resolution of the
rendered images. Therefore, several points are covered by one pixel. All points in the
immediate neighborhood of the point classified also receive its semantic class without
being noted in the ID channel itself. For road markings, the points’ intensity values can be
used as a criterion to decide which of the neighboring points belong to the same marking.
Utility hole covers are circular objects with standardized sizes so that a best-fitting circle
can determine all points belonging to the detected cover.
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3D point clouds that have been semantically classified as described can be used to,
e. g., automatically create road maps or compare the real-world situation with existing
map data. Chapter 4 describes these use cases in detail.

3.3.2 Scan Profile Analysis

This section presents how scan profile data of LiDAR scans from railroad environments
can be converted into image data to subsequently identify objects therein with established
image analysis methods and use this information for further analyses. This section is
partially based on the author’s publication in J. Wolf, Richter, and Döllner (2021).

Besides road infrastructure, another essential backbone of today’s transportation
sector is the railway infrastructure. Many national railroad companies, such as Deutsche
Bahn in Germany and SBB in Switzerland, operate measuring trains that examine the
tracks and their surroundings in detail during the journey (Wirth, 2008). Besides image
data, LiDAR scans are used for precise measurements, resulting in 3D point clouds.

Figure 3.9: Measurement train “Limez III”. LiDAR scanners are attached to the front of the

train. Figure from Wirth (2008).

Figure 3.9 shows a train with LiDAR scanners mounted at the front of the train.
These scanners typically generate 3D point clouds with a 5 to 15 cm scan profile distance.
The rotation of the laser beam during the measurement and simultaneous movement
of the train result in a series of captured points in the form of a helix. Each point can
be located by its distance from the scanner and the laser’s current angle at the time
of measurement. The points of one rotation of the laser are called scan profile. The
resulting points can be visualized as a 3D point cloud of the entire track environment.
Figure 3.10 shows a section of such a 3D point cloud. The individual scan profiles, which
are here 8 cm apart, are clearly visible.

The scan profile analysis is based on the assumption that the performance of 2D
image recognition can be used due to the nature of the data when individual scan
profiles are available in a dataset. The three-dimensional dataset can be reduced to a
two-dimensional image recognition problem similar to the image analysis described in the
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Figure 3.10: 3D point cloud from a railroad mobile mapping LiDAR scan from the Railroad

dataset, showing individual scan profiles. Points are colored based on intensity values.

previous section for ground images. Typical objects that can be found in railroad data
scans and should be semantically classified with this approach are shown in Figure 3.11.

When rendering images from 3D point cloud data for object classification, positioning
the virtual camera is of utmost importance. As described in the previous section, top-
down views are suitable for detecting objects such as road markings and utility hole
covers in mobile mapping data. However, catenaries and signal bridges above railroad
tracks occlude essential parts of the track in a top-down view and hinder comprehensive
classification. They cannot simply be removed from the data because they are to be
included in the semantic classification. Furthermore, in tunnels, catenaries and signals
are often mounted to the ceiling, making it difficult to perform a top-down view analysis.
Using the scan profiles with objects captured from the train’s perspective is an alternative
to the top-down view.

For the semantic classification process, first, individual scan profiles are identified.
This process is described in Section 2.2.5.

Then, all scan profiles can be rendered individually as 2D images. A particular color
(e. g., white, represented by a value of 255) is used as masking for the areas not containing
data. All other pixels can be colored with gray levels according to the intensity of the
measuring points at the respective position, mapping the lowest intensity to black (0),
the highest to almost white (254). An additional image channel containing the rendered
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Figure 3.11: Typical objects found in railroad environments: Sign (a), ballast (b), tie (c),

balise (d), switch motor (e), signal post (f), axle counter (g), rail (h), catenary (i). Images from

the Railroad dataset.

(a) Two rails with a tie in between. (b) Two rails with ballast in between.

Figure 3.12: Two scan profiles of a railroad track on a ballast hill. Grayscale colors represent

the intensity values of the points.

points’ IDs must also be included to map the results back into the 3D point cloud after
the image classification. If several points are rendered in the same pixel, the last rendered
point’s ID is stored.

Figure 3.12 shows the difference of the surface’s smoothness between two rails
depending on whether a tie is placed at this position or the ballast is exposed. Thus, ties
can be identified if the scan profiles are placed at suitable distances from each other so
that each tie and ballast area between two ties is captured by at least one scan profile.
With the above-mentioned scan profile distance of 8 cm, each tie is visible on 3 to 4
consecutive ties.

A large variety of objects can be found in the immediate neighborhood of the rails.
Figure 3.13 shows a scan profile at the beginning of a track switch. The switch tongue is
placed close to one of the rails and a box with the switch motor on the other side of the
rail. The box shadows the area on the right side, so this part of the ballast hill is missing.

Figure 3.14 shows two scan profiles of a signal post next to the rails. Due to its
shape, the front of the actual signal can be seen in multiple scan profiles before the signal
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Figure 3.13: Scan profile of two rails (R), a switch tongue (S) and a box containing the motor

(M) next to the rails.

(a) Front part of the signal. (b) Signal post, six scan profiles behind the other one.

Figure 3.14: Scan profiles of a signal post next to two rails. An axle counter is attached to the

outside of the left rail.

post. In total, the structure has a length of approximately 1.5 meters.
A large number of rendered images is required for training purposes. This data can

be generated manually by labeling individual pixels and bounding boxes within the scan
profile images. A faster approach would be using pre-classified 3D point clouds, created
either manually or by a different automated approach. Then, semantic information can
already be included when rendering the 2D images.

Suitable networks for the analysis of the rendered images are, for example, U-Net
and YOLO. Both follow a different approach but could provide similarly relevant results
for the application described here. While U-Net classifies individual pixels, YOLO only
determines bounding boxes for recognized objects. However, since there are hardly any
overlapping objects in individual scan profiles, mapping the information to individual
pixels is not a problem. When using YOLO, all non-background pixels within the
bounding box of a recognized object could get assigned the corresponding semantic class.
They would then be treated similarly to the images classified pixel by pixel with U-Net.

Figure 3.15 shows exemplary results of the semantic classification with YOLO and
U-Net on a scan profile.

Once the semantic class for each pixel is determined, the information can be mapped
back into the 3D point cloud by using the ID channel in the same way described in
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(a) Classification result using YOLO. Bounding boxes

are placed around identified objects.

(b) Classification result using U-Net. Points are

colored based on semantic class: Signal (red), rail

(green), axle counter (blue), other (black).

Figure 3.15: Exemplary semantic classification results of the scan profile shown in Figure 3.14(b).

Section 3.3.1. In case the point density is higher than the resolution of the rendered
images, several points have been covered by the same pixel. In this case, all points in
the immediate neighborhood of the point just classified can also receive the respective
semantic class to ensure all points will receive semantic information.

Processing the data results in a 3D point cloud with semantic information attached
to each point. This data can then be used for the previously described use cases.

Simple postprocessing steps based on plausibility checks can further improve the
results of the classification. For example, axle counters must lie close to the track, and
rails of a track always run parallel with a fixed, previously known distance between
them. Such conditions can be checked for after the classification. For example, objects
identified as axle counters but not located right next to a track could be discarded and,
e. g., classified as “other”.

3.4 Machine Learning on Spatial Data

A significant property of 3D point clouds is their three-dimensionality. It is precisely the
arrangement of the measurement points in three dimensions, and thus the direct mapping
of reality, distinguishing them as a form of representation. Machine learning requires
many resources to compute the models that are used to make statements about new data.
As hardware has become more powerful, these models have also become more advanced
and perform ever-increasing amounts of computation (Xie et al., 2020). While early
implementations could only work with relatively small amounts of data and a limited
number of attributes, today, new neural networks are being developed with continuously
increasing throughput. This development gave rise to the idea of no longer examining 3D
point clouds via intermediate representations such as images but instead using spatial
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data directly. In terms of the basic idea, this form of machine learning on 3D point clouds
returns to the original geometric analysis because positions and shapes once again are
becoming more important compared to an image-based semantic classification.

An image-based semantic classification has the disadvantage of the scene in an image
being visible from only one perspective. Therefore, a single image can typically only
classify objects with high accuracy that do not lose critical information when projected
in two dimensions. For that reason, it works for objects such as lane markings and utility
hole covers when taken from a predetermined perspective. For more complex objects,
a series of images from different viewing angles is required to obtain good semantic
classification (Boulch, Guerry, et al., 2018). As a result, image analysis speed is partially
lost again as the number of images to be processed increases. This makes it interesting
to use more complex neural networks for three-dimensional processing, where viewing
angles no longer matter, requiring a scene to be analyzed only once.

The fundamental problem in processing 3D point clouds with machine learning
approaches is that points in a 3D point cloud have no intrinsic order. In contrast, the
structure and order of pixels in an image are fixed. It is known in advance which pixels
are to be considered as neighbors, and the neighborhood has a significant meaning for
image filtering operations and image analysis. For a 3D point cloud, transformations such
as translation, rotation, and scaling change a 3D point cloud’s visual appearance, but the
semantic classes it contains are unaffected. Similarly, a 3D point cloud is still the same
when the individual points are randomly sorted, whereas an image with randomly re-
sorted pixels has lost its original meaning. Consequently, permutation invariant functions
must be used in neural networks for the semantic classification of 3D point clouds.

Pioneers in the semantic classification of 3D point clouds over their structure using
3D CNNs were Maturana and Scherer (2015). Here, VoxNet is a volumetric CNN in
which the 3D point cloud is transformed into voxels. Precisely, the points are placed
into a voxel grid (“occupancy grid”) whose voxels are subsequently either filled or empty.
3D convolutions can now be performed on these voxels. The semantic class is derived
via the neighborhood in the occupancy grid. Maturana and Scherer write: “While it is
conceptually simple to extend the basic approach [of CNNs] to volumetric data, it is not
obvious which architectures and data representations, if any, will yield good performance.
Moreover, volumetric representations can easily become computationally intractable.”

The voxel grid’s use requires a lot of memory relative to the actual data it contains
because typical datasets leave many voxels empty. Therefore, the resolution cannot be
arbitrarily large. Besides, as with image-based classification, the classification results
must be subsequently transferred back to the 3D point cloud, another additional cost.
Although voxel-based approaches continue to be pursued (Huang and You, 2016; Qi,
Su, Nießner, et al., 2016; Poux and Billen, 2019), the focus is now primarily on other
approaches that do not use an intermediate volumetric form.

A new form of semantic classification of 3D point clouds brought PointNet (Qi, Su,
Mo, et al., 2017). In this approach, no additional abstraction form is used; the points are
processed directly. Each point is initially represented only by its x, y, and z coordinates.
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Figure 3.16: Three components of PointNet. Figure from Qi, Su, Mo, et al. (2017).

Further attributes like the normal vector and other values such as those described in
Section 2.4 can be added additionally.

Strictly speaking, PointNet consists of three components, as shown in Figure 3.16.
The first component classifies 3D point clouds representing individual objects (“Classifi-
cation”). The second component segments individual objects into their constituent parts
(“Part Segmentation”). The last component, which is a combination of the other two, is
the one of interest in this work’s context, as it can semantically classify complex scenes
(“Semantic Segmentation”).

Qi et al. summarize that “Key to our approach is the use of a single symmetric
function, max pooling.” Max pooling achieves the invariance of permutations mentioned
above which is required for 3D point clouds. PointNet uses max pooling to select relevant
representatives from the points that represent the rough structure of objects. On the one
hand, the analysis of representatives dramatically reduces the required processing time.
On the other hand, the network is robust against outliers and slight variations in the
acquired data.

However, a problem with PointNet is that information about the point environment
and local structures is lost, which can be important for classification. This problem is
addressed in the more advanced PointNet++.

Qi, Yi, et al. (2017) describe how PointNet++ can be used to improve the classifica-
tion result. They partition the 3D point cloud into local groups, in which local features
are first determined. These are hierarchically and recursively combined into larger and
larger groups, whereby higher-level features are determined, as usual for a CNN. As a
result, the environment is also included in the classification, which significantly improves
the results. On the ScanNet dataset, the authors achieve an accuracy of 0.74 with
PointNet and 0.85 with PointNet++. Each step (“feature learner”) corresponds to an
application of PointNet, in which the most representative points are determined as before.
Thus, the repeated application of the PointNet layers significantly increases the overall
runtime of PointNet++ compared to PointNet.

Even one step further goes DGCNN (Dynamic Graph CNN, also called EdgeConv)
by Y. Wang et al. (2019). In this network, point features are created that “describe the
relationship between a point and its neighbors”. Local structures are analyzed by creating
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Figure 3.17: Semantic classification results. Each color represents a semantic class. Adapted

from Y. Wang et al. (2019).

a k-neighborhood graph. Convolutions are applied to the edges in this graph which
are connecting neighboring points in the embeddings. The graph is updated for each
layer of the network, and the k-nearest neighbors in feature space are newly computed.
DGCNN considers both local and global geometry information. It regards a point in
connection to its neighbors in the current layer’s feature space, which are points with
similar characteristics. This contrasts with PointNet++, which only looks at the distance
between fixed point coordinates. Figure 3.17 shows semantic classification results of
PointNet and DGCNN in comparison.

Because DGCNN computes the k-nearest neighborhood multiple times, it has a
long runtime. However, the information about local structures is beneficial for the
semantic classification process. Thus, for the 3D point cloud framework used in this
thesis, a combination of DGCNN and PointNet was developed, combining the advantages
of both. This hybrid network, called PCNN (Point Cloud Neural Network), uses just
one EdgeConv layer and therefore computes much faster than a complete DGCNN
implementation. Before PointNet’s max pooling operation is applied, the EdgeConv layer
adds neighborhood information advantageous for the following analysis.

Figure 3.18 shows the architecture of PCNN. The EdgeConv layer is here used with
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Figure 3.18: Architecture of PCNN. n: points, f: features, k: neighbors, c: semantic classes.

k = 20. The first four convolutions’ outputs are used as a shortcut input for the fifth
convolution, which outputs PointNet’s global feature vector. This vector is appended to
EdgeConv’s output. Four additional convolutions follow, and a final softmax function
computes the class label for each point in the result.

In addition to the x, y, and z coordinates, various other attributes can be used as
input for semantic classification. Sections 2.3 and 2.4 have already presented values that
can be precomputed for 3D point clouds and that can be used in further analysis. In the
implementation used in this thesis, the values which are listed below are supported. For
example, intensity enables the classification of road markings in otherwise flat surfaces.
The detection of traffic signs also benefits from intensity, as the signs are highly reflective
and thus stand out. Similarly, RGB color values can be entered if they are available
from image matching acquisitions or colorization via panoramic images. For all points
normals can also be calculated, whose x, y, and z coordinates are entered additionally.
While this information can also be learned within the neural network, pre-computation
of these characteristic values improves classification results. Similarly, the curvature

can be used as additional information about edges and structures as input. Another
value is the local point density, which can be used for classification. Last, a value for
height above ground per point is possible as input. During semantic classification in the
neural network, sampled points are scaled into the unit sphere for processing. Thus, this
absolute information is lost and can contribute to the classification via the additional
attribute. However, tests have shown that the classification result hardly depends on
whether the information is available, so the height has no significant influence on the
semantic classification.

The classification approaches presented in this chapter serve as a foundation for the
use cases presented in Chapter 4. The implementation is highlighted in Chapter 7, and in
Chapter 8, the classification results of the geometric approach are compared with those
of PCNN.





Chapter 4

Applications of Semantically

Classified Mobile Mapping Data

The presented approaches for preprocessing and classification enable a wide range of
applications for mobile mapping data. For example, detected objects can be used for
road cadastre creation or renewal (Caroti et al., 2005), clearance area checks (Mikrut
et al., 2016), and 3D modeling (Vosselman, 2003). Interactive visualization tools allow
users to explore and analyze cadastral data combined with 3D point clouds (Aringer and
Roschlaub, 2014).

Navigation systems belong to the most prominent examples of geodata applications
in everyday life. They provide maps with information, e. g., about roads, the number
of lanes, and which lane must be used to turn into a particular direction (Bétaille and
Toledo-Moreo, 2010). Autonomously driving cars must continuously detect road markings
on the pavement around them to keep the car in its lane. They use a base map with lane
information for anticipating the course (Maurer et al., 2016). Mobile mapping data is
the key data source used for navigation system databases.

In this chapter, Section 4.1 explains how semantically enriched geospatial data can
be exported in different formats. Using traffic signs as an example, Section 4.2 explains
how existing map data can be verified and updated using semantically classified 3D point
clouds. This chapter is partially based on the author’s publications in J. Wolf, Richter,
Discher, et al. (2019), J. Wolf, Richter, and Döllner (2020), and J. Wolf, Pietz, et al.
(2021).

4.1 Data Export

This section presents examples for geospatial data export. Subsection 4.1.1 shows how
vector-based polygons can be created by the example of road markings. Outlines, object
positions, and dimensions are then available as map data, which can be further used
in GIS applications. Subsection 4.1.2 explains how data can be exported as graph
data by the example of a track network map with track and switch positions. Finally,
Subsection 4.1.3 presents several statistical analyses that can be used for data exploration.
The data export aims to provide an aggregated, generalized and quality-assured output
for further work with the data. For this purpose, the classified 3D point clouds cannot
be mapped unfiltered but require in-depth processing to avoid erroneous results.
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4.1.1 Vector Data

Polygonal vector-based geospatial data is a standard format supported by GIS tools.
ESRI shape files are the de facto standard used in this area (ESRI, 1998). Shape files are
used for exporting single-point location data as well as lines and polygonal areas. Each of
these entries is called a shape; multiple shapes can be aggregated into shape groups. Each
shape can have arbitrary attribute-value pairs, describing additional information available
for this specific shape. Resulting files usually have the endings .shp for the vector data
and .dbf for attached data attributes and can be used in various GIS applications for
subsequent tasks.

The use case described here is creating polygon vector data by the example of road
marking shape files. The information on road marking position and their type can be
used to create a detailed road cadastre. For example, this is used in traffic planning,
for surveying the current road situation, checking the reconstruction of the road surface
after construction work, and deriving a base map for autonomous driving vehicles (Hata
and D. Wolf, 2014; Prochazka et al., 2019).

First, road markings must be detected and semantically classified as described in
Section 3.3. Depending on the type of marking, one of three methods is applied to derive
suitable shapes for the marking, which can be combined in a shape file for export.

Arrows on the road are used to show which lane must be used for which direction at
a crossing. They are more complex markings than the various rectangular lines but have
a unique form. Only a small number of arrows are used in almost all situations, namely
those pointing left, straight, right, and any combination of those. Additionally, within
a dataset of a particular region, the arrows have a standardized form. For this reason,
templates of arrow shapes can be used to position a proper shape easily. These templates
are placed in the position where an arrow marking was detected. The orientation is
determined as best-fit so that they cover the largest number of points of the detected
road marking. It would also be possible to calculate the lane’s direction and use this for
the arrow’s orientation. Using templates results in clearly shaped arrows in the export file.

Rectangular lines are the most common type of road markings. They are used for,
e. g., roadside markings, lane dividers, stop lines, pedestrian crossings, and cycle tracks.
When creating convex hulls for rectangular road markings, these often have rough edges,
resulting in a noisy visualization. Therefore, a better approach is the representation via
correctly oriented rectangles concerning the width, height, and orientation of the road
marking.

All connected points of the same semantic class are analyzed together as one line
marking. A line’s orientation is calculated by a Principal Component Analysis (PCA) on
all points of the line, resulting in a vector describing the main direction of the points
in the cluster of this line. An Object-Oriented Bounding Box (OOBB) with this main
direction for the longer sides is drawn around the points. The resulting rectangle can be
used for the shape of this road marking.
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Figure 4.1: Example for generated polygons (orange) using individually oriented rectangles for

line markings placed on top of the 3D point cloud.

An error value is calculated for each of the generated rectangles, describing which
percentage of the area covered by this rectangle is not located on top of detected points
of the road marking. Should this value get too high, the rectangle does not fit, which
might occur if parts of the marking are missing, or several lines are merging. In this case,
an outline will be computed as described for intersecting lines below.

Figure 4.1 shows that the orientation of the lines can be hard to determine, especially
in situations where lines are not fully visible due to, e. g., abrasion.

The approach works well for single marks but is problematic for longer linework of
successive dashed lines. The orientation and thickness of the generated rectangles deviate
slightly from each other, resulting in an overall unclean image. Such line strings can be
considered a cluster up to a certain extent, for which a uniform direction is determined
that is applied to all generated rectangles in it to remedy this.

Lines from the same type are collected into a combined cluster if the distance to
the following neighboring line is smaller than a given threshold, and the orientation only
differs by a small amount. Watching the orientation prevents taking lines at corners
that are oriented perpendicular to each other into the same cluster. For each of these
larger clusters, the orientation can be determined with another PCA on the points of all
road markings that are part of this cluster. All the rectangles in the cluster will then be
oriented in the same calculated direction. The width of all rectangles for the cluster can
be harmonized by using an average width or using a predefined width for standardized
line types where this information is available.

The most complex markings are barred areas and intersecting lines and all
other non-regular markings. Here, the shapes must be constructed differently. When the
rectangle fitting described above does not fit a marking or rectangles or arrows cannot
represent the marking’s semantic type, the following approach is used to generate a
proper shape.

A two-dimensional grid with squared cells with a side length of about 5 cm is created.
The points of the respective marking are placed into this grid. After all points have been
added, each cell either contains points or not. Those cells containing points define the
area that the created shape should span. The outline is generated by iterating over all
outer cells at the border of the marking. For each cell, the outermost point will be used
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as a vertex for the generated polygon, resulting in a shape fitting closely to the detected
road marking. Holes are cut from the area in regions with empty cells in the same way.
Afterward, the Douglas-Peucker algorithm (Douglas and Peucker, 1973) is used for shape
simplification.

Figure 4.2 shows a screenshot of a 3D point cloud source file and the shape file that
was automatically derived via the described classification and shape creation processes.

When combining these three methods, map data with all road markings can thus be
derived automatically from mobile mapping 3D point clouds of roads.

Incorrectly assigned semantic classes such as an incorrect line type and overall high
intensity in wet areas of the road can affect the result. Section 8.2 evaluates the result of
the automated vector data creation.

4.1.2 Graph Data

For railroad track environments, a different use case is investigated. Here, a track network
can be derived as a graph in which all tracks are recorded as edges and switches as nodes.
These can be placed georeferenced or summarized as an overview map with shortened
distances.

This information can serve as base information for a track cadastre and provide the
basis for maps for archiving and maintaining object locations. Many data at railroad
companies are not yet available as digital models for the entire service area. For example,
signal and balise locations relative to other objects are known but not necessarily precise
coordinates and complete track network maps.

In a 3D point cloud, all rails can first be classified using one of the approaches
described in Chapter 3. From this, information about the tracks and locations as well as
types of switches can be derived.

Once coordinates have been determined for these within the 3D point cloud, a
graph can be generated to record the infrastructure. All switches are created as spatially
located nodes with precise coordinates and the switch type as an attribute. The track
sections between them are represented as edges, for the length can be kept as an attribute.

Already existing plans can be checked for correctness. For example, coordinates of
objects in existing maps can be checked by analyzing the 3D point cloud to determine
whether an object of the appropriate type is present at this location. If this is the case,
the information can be recorded as verified; otherwise, matching structures are searched
for in the immediate vicinity. For example, it can be determined if the object’s actual
location deviates from the recorded position by a few meters, and this can be suggested
as a correction. The process is described in Section 4.2.

4.1.3 Statistics Computation and Further Analyses

A combination of previously describes techniques enables exporting comparisons and
statistical data after analyzing 3D point cloud scans and using 3D point cloud data for
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(a) 3D point cloud of a road crossing. Points are

colored by intensity values.

(b) 3D point cloud filtered for road markings.

(c) Classification result with shapes for individual road

markings. Semantic classes are represented by distinct

colors.

Figure 4.2: Visualization of a 3D point cloud from the Hamburg dataset, the filtered road marking

points, and the derived road marking shape file.
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predictive measures and simulations.
For example, differences between point clouds from two acquisition times can be

highlighted. If a semantic classification of two mobile mapping scans of different points
in time is performed, classes and objects detected in them can be compared with each
other. For example, it can be determined whether traffic signs that were detected in a
previous scan are no longer present. Similarly, it can be determined whether traffic signs
or road markings have been soiled, rubbed off, or pasted over, causing their reflectance
to deteriorate from one scan to the next. Even newly planted or removed street trees can
be easily identified in two scans of the same street. The data from different acquisition
times can also be used to detect occlusions in the data and create a composite data set
in which as few objects as possible are occluded by, for example, vehicles.

Statistical data can be determined for the analyzed objects. For example, how many
trees are along a roadway, how far they are from the road or track, and their approximate
height. From this, it is possible to determine a storm hazard for tall trees close to roads
and tracks.

It can be determined how many posts, traffic lights, signs, signals, or utility hole
covers are on a route, allowing users to estimate construction or replacement costs.
Similarly, the total area of road markings can determine the amount of paint required for
renewal.

The surrounding vegetation is of particular importance in road and rail areas. For
safe and trouble-free operation, a clearance area must be permanently ensured, i. e.,
branches and twigs must not protrude into the area where trucks or trains operate or
come too close to power lines. Figure 4.3 shows a visualization of a clearance area profile
placed into a 3D point cloud. By analyzing mobile mapping scans in these environments,
it is possible to determine how far the vegetation is from the clearance area in each case
(Toyama et al., 2019). In particular, if multiple measurements from different times are
available, predictions can be made as to when pruning will be necessary because the
vegetation has grown too much.

All the information obtained on the proximity of existing trees, the condition of the
vegetation, the wear of signs and markings, or the presence of potholes can be used in
large-scale surveys to calculate a kind of “health score” for specific sections of road or
rail. This score can be used to decide where maintenance is most urgently required and
where available resources can be most effectively deployed.

Another practical use case is investigating whether a route for oversize loads is
feasible. Many thousands of oversize load transports per year must be planned in large
cities. In particular, the available width of lanes and the radii of curves play a significant
role. Mobile mapping scans can be used to simulate the travel of oversize load transports
for a defined route and check for possible bottlenecks and collisions. In the case of
problematic locations, it is possible to go into detail as to whether a bridge is in the way
and passage is therefore impossible, or whether it is just an overhanging branch of a
tree that could be removed for critical transports. The precise measurement data and
available detailed information on the type of objects can be used to determine whether
there are signs or lanterns in the way that could be dismantled and which other objects
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Figure 4.3: Visualization of a clearance area profile in a 3D point cloud. Figure from Toyama

et al. (2019).

require special attention for transport. Automated analysis of the requested route can
save manual inspection time if problematic locations can be automatically detected and
displayed in a summarizing report to the processing personnel.

In summary, semantically classified 3D point clouds enable numerous automated
analysis methods. Traffic planning, construction measures, and maintenance work can be
efficiently supported if the data is processed for the individual use case.

4.2 Data Verification

An everyday use case for geospatial data analysis recognizes specific objects in 3D point
clouds for automated verification of existing datasets. For example, existing map data
can be matched with a 3D point cloud scan to verify or adjust object locations. This is
useful, for example, to semi-automatically verify the condition of traffic signs in a city’s
streetscape. If the traffic signs are available on a map, current 3D point cloud scans can
be used to compare the map’s status.

Data from a map with locations of traffic signs can be combined with the 3D point
cloud from a mobile mapping scan to compare the information. All signs in the map
are compared with corresponding structures at this location in the 3D point cloud.
Conceptually, this is realized using a continuously increasing search radius to determine
the search point’s closest sign. The detailed information of an already classified 3D point
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cloud can be used, or characteristic properties for the searched object are analyzed, like a
reflecting surface sitting on a post structure. In addition to the position, the type of sign
can also be checked if the information is available. Matching attributes in the datasets
can be noted as confirmed.

If the matching sign cannot be found in the 3D point cloud at the position noted in
the map, the nearby surroundings are searched. The map’s position data is automatically
adjusted if the corresponding object is detected only a few centimeters away.

If the object cannot be determined in the vicinity, it is removed from the map and
transferred to a separate list in which all objects are collected that could not be detected
in the 3D point cloud.

Likewise, non-matching sign types are noted so that they can be adjusted in a
manual revision. In LiDAR 3D point clouds, not all traffic signs can be identified by
type. Since no color information is available, the type’s recognition is based solely on
the shape and intensity values. Especially older or dirty signs are therefore often not
well recognizable. Section 6.3 addresses an approach to classify traffic signs when color
information from panoramic images is available. In this case, information about the type
of signs can also be adjusted automatically.

A further step creates signs in the map data that have been determined in the 3D
point cloud but have not yet been recorded. These receive the entry that they were
added automatically as a review note.

In the end, there are four groups of signs:

• Signs that match in the map data and the 3D point cloud. This is usually the
most extensive group. All these signs are considered verified and do not need to be
considered further manually.

• Signs whose position or type could be adjusted automatically. This was the case
when the sign searched for was not found at the noted position but in the immediate
vicinity, or the sign is most likely of a different type than indicated.

• Signs that cannot be found in the 3D point cloud scan. Signs recorded in the map
may not be detected in the 3D point cloud. For example, this can happen because
signs were only temporarily erected during construction work and are no longer
there, because they have been damaged, or because other objects have obscured
them in the 3D point cloud or they could not be correctly classified. These cases
need to be checked manually.

• Signs found in the 3D point cloud but not recorded in the map data. These can be
temporarily erected signs, new signs that have not been recorded so far, or other
objects recognized as road signs in the 3D point cloud due to their structure.

Only some of these groups need manual postprocessing. Thus, the automated
analysis greatly reduces the number of signs that must be processed manually and the
time required for this work.



Chapter 5

Ground-Penetrating Radar Data

By their very nature, LiDAR scans can only capture objects in the 3D environment in
the scanning system’s line of sight. In road construction and maintenance, however, the
subsoil is of immense importance in addition to the condition of the surface and applied
markings. The subsoil impacts the stability of a road. For example, as soon as potholes
or cavities develop beneath the road surface, they must be eliminated to maintain safe,
long-term operation (Saarenketo and Scullion, 1994).

Figure 5.1: Schematic representation of a GPR antenna and the transmitted and returned signals.

Figure from Saarenketo and Scullion (1994).

To widen the data base for digital twins of roads and the street infrastructure in
general, Ground-Penetrating Radar (GPR) can be used as a technology to generate
subsurface information beyond LiDAR 3D point clouds. GPR scanners can measure
material properties several meters below ground, creating insights about the non-visible
foundation of roads and pathways (Davis and Annan, 1989). Figure 5.1 shows how
GPR signals are reflected from the different layers of the road. Using this data source
significantly expands the analyzed area, and the acquired data can be used for even more
use cases.

To illustrate the potential applications of integrating GPR data into 3D point clouds,
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(a) Four GPR antennas mounted on the back of a car. (b) GPR hand cart. Figure from Geophysical Survey

Systems (2018).

Figure 5.2: GPR measuring vehicles.

the following scenario is considered: On the one hand, pipes and lines below the road
can be detected in GPR scans. This enables the automated creation of a map with
information about these structures’ courses. Then, during construction or maintenance
work, reliable information about the exact position is available and can be considered
during planning. On the other hand, developing potholes and emerging cavities beneath
the road can be detected. By comparing several captures taken at intervals, changes that
indicate a weakening of the subsoil become visible. However, anomalies that may be of
interest for maintenance can also be detected in a single scan. Information about these
anomalies can be presented using appropriate exploration tools, allowing responsible road
agencies to address problems as part of road maintenance before they have a negative
impact on traffic.

GPR emits electromagnetic waves into the ground and receives the reflected signal
from pavement and soil. The ground’s structure impacts the propagation of the emitted
signal. Thus, the returned signal provides information about the materials’ conditions.
Radar antennas for road inspection are usually mounted on scanning vehicles, as shown
in Figure 5.2, which can drive along with uninterrupted traffic. Alternatively, they can
be mounted onto hand carts. The vehicle shown in Figure 5.2(a) has four antennas that
use two different frequencies for measurement in an alternating placement to better cover
different depth ranges. By arranging them across the vehicle’s width, the whole lane can
be measured during the drive. The vehicle would have to travel along each lane once to
cover the entire road’s surface.

The antennas are hovering above the ground, and their distances to the surface
slightly change while driving. A time zero correction is usually part of the sensor
calibration to account for these changes (Yelf, 2004). After capturing, the radar scan data
is usually analyzed in the form of B-scans. They are a consecutive sequence of individual
measurements (A-scans), in this case, along the vehicle’s driving path (Giannopoulos,
2005). The amplitudes of the radar signal recorded during the measurement are displayed
as color values in a diagram. The amplitudes’ height is indicated by the color intensity
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Figure 5.3: Visualization of a GPR B-scan from the Essen dataset. Red represents positive

amplitudes, blue negative. Color intensity represents the amplitudes’ heights.

and the direction by hue, usually red and blue. Figure 5.3 shows such a B-scan. The
x-axis maps the traveled distance of the measuring vehicle, and the y-axis represents
the depth at which the corresponding value was returned. The measured values are
represented by colors as described.

Georeferencing is the process of “aligning geographic data to a known coordinate
system so it can be viewed, queried, and analyzed with other geographic data” (Wade
and Sommer, 2006). Mobile mapping vehicles use a Global Navigation Satellite System
(GNSS) to track their current position. The information is stored “in the form of so-called
trajectories, i. e., sequences of individual 2D or 3D points with time stamps” (Sester,
2020). Using this information and the knowledge about the fixed positions of LiDAR
scanners and ground-penetrating radar scanners on the scanning vehicle, the different
datasets can be collocated in exact spatial relation to each other.

The combination of above-ground 3D point clouds and below-ground 2D radar scans
enables more extensive analysis of road environments by using two combined sources
instead of evaluating each on their own. An everyday use case for ground-penetrating
radar data inspection is to detect specific areas with an increased chance of developing
potholes (Huston et al., 2000). By adding road surface information from the 3D point
cloud, false positives like utility holes can easily be distinguished from other anomalies in
the road’s subsoil.

This chapter addresses requirements for the evaluation of GPR datasets in combina-
tion with 3D point clouds. It shows visualization concepts for the manual exploration
and evaluation of corresponding data and procedures for automated analyses. It presents
a tool developed for GPR data analysis and the combined visualization with 3D point
cloud data.

This chapter is partially based on the author’s publications in J. Wolf, Discher,
Masopust, et al. (2018) and J. Wolf, Discher, and Döllner (2019).
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5.1 Related Work

Benedetto et al. (2017) give an overview of how ground-penetrating radar can be used
for road inspections. They discuss in detail which processing techniques can be used to
analyze the pavement condition. Evans et al. (2008) summarize the abilities of ground-
penetrating radar for general pavement investigations. Saarenketo and Scullion (1994)
explicitly list localization of sinkholes and crack growth monitoring in their report about
ground-penetrating radar applications on roads and highways. They further describe
possible soil and road structure evaluations and required data interpretation techniques
(Saarenketo and Scullion, 2000). Giannopoulos (2005) describes how ground-penetrating
radar data can be visualized. In addition to two-dimensional profiles, they show an
example for a three-dimensional visualization by rendering the three principal planes of
a cuboid holding the data. Usually, two-dimensional ground-penetrating radar profiles
are shown individually, but multiple scans can be placed next to each other to create a
spatial feeling for the data (Geo Radar: 3D and GPR 2005).

Eitel et al. (2016) describe the relevance of 3D point clouds for many geospatial
applications. Puente et al. (2013) review available mobile terrestrial laser scanning systems,
showing that LiDAR is widely used on various mobile platforms for data acquisition
leading to users being enabled to “experience and work directly with real-world conditions
by viewing and manipulating rich point clouds”. Biasion et al. (2005) describe mobile
laser scanning applications for environment analysis during disaster management. Several
authors discuss the automated analysis of 3D point clouds: Per-point surface category
information can be derived by analyzing a 3D point cloud’s topology (D. Chen et al.,
2017) and applying deep learning concepts (Boulch, Saux, et al., 2017). In turn, derived
surface category information can be used to reconstruct three-dimensional models of
specific buildings or infrastructure assets as shown by Teizer et al. (2005).

A general overview of rendering techniques for 3D point clouds is presented by
Gross and Pfister (2011). While photorealistic approaches (Schütz and Wimmer, 2015a;
Preiner et al., 2012) aim to reduce typical artifacts (e. g., visual clutter or a holey
surface representation) by rendering points with an appropriate size and orientation,
non-photorealistic techniques (Simons et al., 2014; L. Zhang et al., 2014) deal with the
inherent fuzziness of a 3D point cloud by emphasizing edges and structures. All those
rendering techniques can be seamlessly integrated into one rendering system, as here
demonstrated with the eye dome lighting technique initially introduced by Boucheny
(Boucheny, 2009).

Focus+context visualization is used here to combine 3D point clouds and GPR
in a combined visualization. Focus+context visualization techniques have been widely
discussed in the context of mesh-based models (Vaaraniemi et al., 2013; Elmqvist and
Tsigas, 2008), ranging from static visibility masks (Sigg et al., 2012) to interactive
lenses (Trapp et al., 2008). Discher et al. (2017) apply such techniques to 3D point
cloud depictions, enabling users to highlight task-relevant but occluded objects and
structures. Similar to the approach presented here, they apply multi-pass rendering
based on G-buffers; however, they do not combine 3D point clouds and additional
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geodata. State-of-the-art out-of-core rendering concepts decouple rendering efforts from
data management to render 3D point clouds of any size. Exemplary systems (Martinez-
Rubi et al., 2016; Goswami et al., 2013; Rusinkiewicz and Levoy, 2000) subdivide 3D
point clouds into small, representative subsets suitable for real-time rendering. Recent
approaches combine out-of-core and web-based rendering concepts, enabling a ubiquitous
visualization on a diverse range of client devices (Discher et al., 2018; Schütz and Wimmer,
2015b; Butler et al., 2014).

5.2 Visualization Concepts

Based on GPR and GNSS data characteristics, the following requirements need to be
addressed for a combined visualization of 3D point clouds and GPR data:

R1 Correct positioning of GPR data and 3D point clouds into a homogeneous spatial
reference system.

R2 Occlusion-free visualization of individual GPR B-scans within a GPR dataset.

R3 Visual filtering and highlighting techniques to enable a focused inspection of areas
of interest that can be defined at runtime.

The combined visualization of 3D point clouds and GPR data is based on two major
user interface components: A 3D scene view and a 2D user interface further explained in
the following sections.

5.2.1 3D Scene View

The first step towards integrating GPR data and 3D point clouds into a single visualization
is projecting each B-scan onto the captured GNSS trajectory (R1). Individual B-scans
can be hidden dynamically (R2) to prevent different B-scans from occluding each other.

Each GPR dataset is represented by a cuboid-like structure, covering the amount of
space scanned by the GPR sensors that is rendered onto the GNSS trajectory (Figure 5.4).
Their values are interpolated to fill the area between the B-scans.

A 3D-texturing approach guarantees the possibility of slicing the cuboid both
vertically and horizontally and moving it along the trajectory. Thus, the cuboid can be
restricted to specific areas of interest, thus, facilitating visual filtering and highlighting
(R3).

Visibility and usability of the cuboids are increased by raising them onto the GNSS
trajectory instead of leaving them below ground level (R2). The points initially located
above the cuboid are translated alongside to keep the spatial context and highlighted for
better contrast to non-translated points (Figure 5.5). Furthermore, to enable a direct
view onto the cuboid’s surface, an interactive lens is provided that hides points around
the cursor. The visualization can be switched to instead only show the points above the
cuboid around the cursor for focusing on the GPR data while keeping once more the
spatial context (R3).
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Figure 5.4: Cuboid of four parallel interpolated GPR scans rendered onto the GNSS trajectory

(left) from the Essen dataset. Vertical and horizontal slicing can be used to explore data inside

the cuboid (right).

5.2.2 2D User Interface

A supplementary widget is provided, visualizing all B-scans in total length in 2D (Fig-
ure 5.6) and enabling configuration of the 3D scene view, facilitating an in-depth explo-
ration of the GPR data.

First, users can change how the cuboid of the given GPR dataset is rendered.
Configuration includes (1) setting its elevation relative to ground level, (2) cropping to
specific start and end points, (3) cropping to a specific minimum and maximum radar
scanning heights, and (4) hiding specific B-scans altogether. Cropping to specific start
and end points enables users to move both the cuboid and the corresponding slice in the
2D view, back and forth. Doing so moves the camera position in the 3D view accordingly,
ensuring that the view is always centered on the cuboid (R3).

Second, users can change how textures are generated from a GPR dataset. While
the input data includes raw information about the reflected signal picked up by the
receiver, the generated textures show the amplitudes of these values, with positive and
negative values color-coded in red and blue. Users can change how much these values
should be amplified since their range can vary greatly. For example, a larger amplification
should be applied when exploring parts of the data with small differences. Furthermore,
parts featuring drastic changes (i. e., most often points of interest) can be highlighted by
specifying thresholds. As a consequence, these parameters facilitate identifying anomalies
in specific regions of the GPR data.

5.3 Analysis Techniques

During the large-scale recording of ground radar data, large amounts of data are generated.
Manual evaluation of the data would require considerable time. However, large parts
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Figure 5.5: Points originally under the cuboid are elevated and highlighted in red. An interactive

lens shows the cuboid’s surface below the points. Data from the Essen dataset.

Figure 5.6: 2D User Interface for GPR data with cropping and thresholding options.

of the data do not contain any information that is relevant in the further course of the
evaluation. In particular, road layers that run uniformly over long distances are signs of
good road condition, where no detailed assessment is required. On the other hand, all
areas deviating from the normal condition are of interest. The ground-penetrating radar
information can be automatically checked for anomalies to assist in the analysis of the
data. These areas are highlighted for users. Only those areas where deviations exist need
to be considered for subsequent manual analysis.

The tool described in this chapter provides a parameter-based anomaly detection
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Figure 5.7: Highlighted positions of detected anomalies in the 3D scene from the Essen dataset.

working on the GPR textures. It highlights positions in the scan data in which specific
areas in a predefined depth exceed given thresholds. The values can be configured in the
UI, and the filtering results are displayed immediately for fast data exploration.

Detected anomalies are highlighted in the application both in the overview window
and in the 3D scene, as shown in Figure 5.7. Users can jump to areas of interest within
the dataset through this display.

Detecting relevant areas can also be automated. For this purpose, machine learning
for image analysis is used. After converting the raw GPR data into textures, these can
be interpreted as images. The representation of the measured values with two colors
described above generates images in which the line course can be interpreted. In a
prototypic implementation, a handwriting recognition network from scikit-learn was used
(Pedregosa et al., 2011), which was also found to be suitable for this application. A sliding
window moves over the images generated from the GPR’s B-scans. In a test dataset,
anomalous areas were marked. The network trained with this data can be applied to
other datasets to detect areas with anomalies.

In a further step, anomalies detected in the road are merged with existing data
from the semantic classification of a 3D point cloud of the environment. The 3D point
cloud is examined for typical objects matching this formation at all locations detected
as anomalous. In particular, streetcar rails and utility holes lead to a deviation in the
road surface structure compared to areas with a smooth road surface. Both rails and
utility hole covers can be detected in 3D point clouds using an automated semantic
classification described in Chapter 3. Thereupon, the detected anomalies can be filtered,
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and explainable deviations do not need to be further considered. Afterward, only areas of
the roadway remain whose structure deviates from typical values, without this deviation
being expected because of known objects. Filtering considerably reduces the number of
sections of a GPR scan that must be checked manually, and significantly larger sections
can be evaluated in the same amount of time as would be the case if all the data were
examined manually.

5.4 Usability and Performance

The presented rendering system was implemented in C++ by extending the framework
described in Chapter 7. The test data consisted of four GPR B-scans continuously
captured in driving direction and a 3D point cloud from a mobile mapping LiDAR
scan. The four B-scans were captured in parallel. Two antennas were measuring with a
frequency of 2 000 MHz, the other two with 1 000 MHz. Their signals reached a depth of
0.45 m and 0.90 m, respectively. The scanners were mounted with a distance of 0.42 m
to each other. Each scanner captured the 650 m of road data with 13 146 data points,
holding 512 4-byte samples each.

The 3D point cloud is a combination of two LiDAR scans. The respective scanners
were oriented to the left and the right, mounted on top of the measuring vehicle. Besides
the three-dimensional coordinates, each measuring point holds information about the
measured intensity, visualized as grayscale values. More than 1 000 points per square
meter have been captured in the region covered by the ground-penetrating radar.

One problem in the visualization originates from the antennas’ order: While the
first and third antennas measured with 2 000 MHz, the second and fourth were using
1 000 MHz. While having these antennas in that order with different frequencies—and
therefore different pickup patterns, maximum depths, and accuracy—covers the region
with two different settings, it makes visualization more challenging since neighboring
B-scans are not directly comparable anymore. Therefore, interpolating the 2D B-scans to
create a 3D representation of the captured data might lead to unexpected results when
B-scans with differing antenna settings are active. Since the B-scans are located close to
each other, they also easily occlude each other. An essential part of the visualization is
that the radar scan coordinates are precisely mapped to the 3D point cloud, so adjusting
the B-scans’ distances is not viable. Thus, the user can hide unwanted B-scans to make
otherwise occluded B-scans visible.

The used rendering system generates interactive frame rates for arbitrary large
3D point clouds (Discher et al., 2017). The GPR data is supplied as raw data to the
system before being loaded into OpenGL textures to generate the final rendered textures.
Therefore, the performance cost is composed of the initial time to load the data and the
time at runtime to update and draw the B-scan textures. Since the few textures in the
test case have a resolution of 13 146 × 512 pixels with a bit depth of 4 bytes for the raw
data and one byte for result textures, and both updating and drawing of these textures
are completely GPU-accelerated, this runtime cost is negligible in comparison to the one
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introduced by managing and rendering the 3D point cloud. However, this was evaluated
on a small dataset of 650 m captured road data. More advanced memory managing
methods and level of detail approaches might be used for more extensive datasets to
overcome challenges such as limited GPU memory.

Combined visualization of GPR datasets and 3D point clouds enables comparisons
between both data sources and facilitates evaluations, e. g., in the context of road
inspections. Anomalies in the GPR data can be compared with the 3D point cloud to
detect irregularities visible from above ground. Utility hole covers and rails can easily be
identified within the 3D point cloud, and their location can be considered when evaluating
anomalies from the GPR data.

Cropping the GPR B-scans to a particular area of interest in length and height
enables focusing on details in a small area and avoids occluding too much context
information. Individual B-scans can be enabled or disabled for the visualization to further
decrease the visual clutter of currently unneeded data, especially concerning B-scans
scanned with different frequencies. As discussed, implementing level of detail approaches
for the GPR data might improve handling larger datasets.

Visualizing B-scans slightly raised above the ground, and also raising the ground
points from the 3D point cloud near them, results in a less occluded view onto the B-scans.
The ground-penetrating radar cuboid’s top plane can still be inspected by hiding those
elevated points in a small region around the cursor.

The threshold and amplification manipulation assist while visually identifying anoma-
lies in the GPR data. An extended automated analysis could help to detect anomalous
regions in the data by highlighting them during the inspection, further facilitating the
detection of areas of interest.

The visualization of B-scans from different GPR datasets in areas of intersections
and for roads with multiple scanning runs holds potential for further development.
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Panoramic Images

Panoramic images are a combination of multiple images taken from the same viewpoint
in different directions. Such images can be acquired by many mobile mapping vehicles
in addition to LiDAR 3D point clouds (R. Li, 1997) and provide another source of
information for object detection because they contain color information in contrast to
the LiDAR data.

Panoramic image camera systems mounted on mobile mapping cars usually consist
of at least five side-facing cameras and one upward-facing camera to cover the all-round
view. No camera is pointed downward because the car obscures the ground. The images
from the cameras can be merged at the edges as shown in Figure 6.1, creating a single
panoramic image that depicts a 360-degree panoramic view, including the sky. The
process of merging multiple images into one panoramic image is also known as stitching.

Figure 6.1: Visualization of a panoramic image from the Essen dataset taken by five cameras ori-

ented sidewards and one oriented upwards. The regions of the individual images are approximately

bordered in red. The measuring car is partly visible.

On the one hand, the created panoramic images can be displayed in a combined
visualization with 3D point clouds to provide a more comprehensive impression of the
captured environment. On the other hand, they form the basis for image-based object
recognition, for example, for the recognition of traffic signs (Zhu et al., 2016), and they
can be used to colorize 3D point clouds (Swart et al., 2011).

For each image, the location where the image was taken and the camera’s orientation
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(a) Colored by intensity values. (b) Colored by RGB values from panoramic images.

Figure 6.2: Visualization of a 3D point cloud from the Potsdam dataset.

(a) Sky shining through at tree

branches.

(b) Sign projected on the floor. (c) Car moving during the scan.

Figure 6.3: Color inaccuracies in 3D point clouds from the Potsdam dataset colored by panoramic

images.

are known, so the colors of the pixels can be projected from this position to the points
of the 3D point cloud. Figure 6.2 shows the result of coloring a 3D point cloud in this
way. However, this colorization is only an approximation. Images are taken every few
meters, and the 3D point cloud is created continuously as the vehicle moves. Thus, the
fundamental problem is that LiDAR takes a discrete sample of the environment that
does not necessarily match the occlusions in the imagery in terms of depth. Figure 6.3
shows such incorrect occlusions. For example, the colors on narrow pillars, small signs,
and tree branches deviate from reality.

This chapter presents an approach for a combined visualization of 3D point clouds
and corresponding panoramic images in Section 6.2 and an approach for an automated
analysis in Section 6.3.
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6.1 Related Work

Panoramic images have been created manually since the 18th century (Comment, 1999).
In digital camera technology, the decisive factor for widespread entry into the market
was that individual consecutively captured images could be merged fully automatically
into a single panoramic image using appropriate stitching software (Mann and Picard,
1994; S. E. Chen, 1995).

Szeliski and Shum (1997) describe how images can be transformed to merge them
into a panoramic image. In older approaches, the images’ positions relative to each
other usually had to be configured manually. Brown and Lowe (2006) have developed
an approach to automatically detect contiguous images in unsorted data and join them
by several transformations. This is implemented by first using Scale Invariant Feature
Transform (SIFT) to determine key points in the images (Lowe, 2004). These points
can be found again in other images to determine an interconnection and the positioning.
Subsequently, the images are straightened, and brightness values are adjusted to obtain
a visually appealing overall image.

Blaser et al. (2017) describe a system with a stereo panoramic camera setup used to
generate images, which are the basis for generating 3D point clouds via image matching.
The correct alignment of images for precise coverage of a 3D point cloud is called
registration. Coloring previously acquired 3D point clouds with image data based on
precise registration is the subject of numerous research works: Pintus et al. (2011)
present “a simple, fast and robust technique for semi-automatic 2D-3D registration
capable to align a large set of unordered images to a massive point cloud with minimal
human effort”. Swart et al. (2011) show that “the automated registration of separately
acquired panorama and LiDAR trajectories is feasible”. Jianping Li et al. (2018) base
the registration on semantic features by using vehicles “as registration primitives, which
are extracted from both panoramic images and point clouds”.

Free navigation within panoramic data is another use case for combining 3D point
clouds and panoramic images. Current applications like Google’s Street View (Anguelov
et al., 2010) allow navigating in panoramic images only in discrete steps based on the
locations where the images have been taken. Adam and Steinbach (2021) present an
approach to how virtual panoramic images can be computed for arbitrary locations within
an environment for which sufficient panoramic images have been captured alongside a
3D point cloud. Within the 3D point cloud, free navigation is easily possible. A modified
version of U-Net is used for inpainting those pixels not covered in a rendering of the
3D point cloud at an arbitrary position. Because the network is trained on the given
environment’s panoramic images, this approach can create realistic renderings.

6.2 Visualization Concepts

Visualization offers powerful methods to combine and explore spatial data from different
sources and captured by different technologies. In particular, visualization allows us to
seamlessly integrate that data at the visualization stage, i. e., there is no need to integrate
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the data in a preprocessing step at the data stage, e. g., creating a unified data model.
Chapter 5 already outlined how GPR data can be combined with 3D point clouds.

The same can be done for panoramic images. With their help, details can be better
recognized than in a 3D point cloud alone.

In the following, three prototypically implemented visualizations are presented.
Panoramic images are generally available as a series of consecutive images, and

besides, a metadata file can be used to associate the capture position with each image. A
possible overview for panoramic images of a dataset is created by displaying their capture
positions on a map.

The first presented visualization thus consists of a map and the currently selected
panoramic image next to it. Users can click on the location of a panoramic image within
a map to select it. This image is displayed next to the map, and users can adjust its
orientation. Because a panoramic image represents the environment as seen from one
point, it is rendered on the inside of a sphere with the camera placed in the sphere’s center.
Users can click and drag to rotate the sphere, creating a visualization that resembles
turning the head in the real world and looking in different directions.

As shown in Figure 6.4, the current viewing angle is additionally displayed on
the map. This visualization is used for finding the appropriate panoramic image for a
particular position and aligning it correctly.

The concept of showing available panoramic images in a spatial context is the basis
for a combination of panoramic image data and 3D point clouds. Instead of displaying
the capture positions on a map, they can also be placed directly in the 3D point cloud
scene, as shown in the second visualization presented here. Figure 6.5 shows the spheres
that are placed at the capture positions of the available panoramic images. A click on a
sphere again opens the corresponding image.

The third presented visualization is another combination with 3D point cloud data.
A panoramic image is projected onto the inside of a sphere as described above. The
camera of the 3D scene is located in the center of this sphere. All points from the

Figure 6.4: Visualization of a panoramic image from the Essen dataset next to a map showing

the point and direction of capture as well as other available panoramic image locations.
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corresponding 3D point cloud in the immediate vicinity are additionally rendered into
the georeferenced scene. If the registration is correct, the effect is that the points cover
the structures visible on the panoramic image, as shown in Figure 6.6.

However, problems arise in several situations during blending. For example, ledges in
buildings’ facades have been recorded in the 3D point cloud from all sides. At buildings’
corners, the 3D point cloud contains points from both sides, but not all areas are
necessarily visible in each of the images, which were taken from a fixed viewing angle. In
this case, the 3D point cloud creates a translucent effect because structures are visible
that cannot be seen in the image data from the current viewing position.

Figure 6.5: Visualization of panoramic image locations within a 3D point cloud from the Essen

dataset.

Figure 6.6: Visualization of a panoramic image with the points of a 3D point cloud from the

Essen dataset projected on top of it.
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Figure 6.7: Visualization of a panoramic image from the Essen dataset. Image stitching artifacts

are visible at the catenary cables (red circles).

The stitching of the individual images into a panoramic image causes another problem.
Figure 6.7, for example, shows catenaries of a streetcar that do not merge seamlessly
at the image boundaries. These problems imply that 3D point clouds and panoramic
images can only be approximately blended.

6.3 Analysis Techniques

Combining 3D point cloud data and panoramic images is not only useful for enhanced
visualization approaches, but it can also be used to achieve powerful analysis tools.
Panoramic images, for example, are ideal for the recognition of traffic signs in the
scanned environment (Zhu et al., 2016); the recognition is based on image analysis with
artificial neural networks. For example, the implementation described in this thesis uses
a combination of YOLO and Capsule Net for data analysis.

In Chapter 3, YOLO is applied for image-based classification; it detects those
positions in unknown images where objects are located (Redmon and Farhadi, 2018) for
which the network has been previously trained. A rectangular bounding box is returned
for each detected object, outlining the image content in which the object was detected
and a label indicating the respective semantic class.

When captured with panoramic images from a mobile mapping vehicle, the traffic
signs have different orientations to the camera. Also, the signs are located at various
heights, resulting in many different viewing angles. To prevent errors in the classification
based on the orientation, a neural network designed to be independent of viewing angles,
rotations, and distortions is used in the classification process.

Kumar (2018) published Capsule Net, a method based on Capsular Networks
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Figure 6.8: Panoramic images from the Essen dataset with annotated traffic signs.

presented by Hinton et al. (2018). Capsule Net is used exclusively for classification, i. e.,
it cannot recognize object positions in images but only determines the semantic class
for a mapped object. Thus, a so-called Region Proposal Network (RPN) must first be
used to select sections from the panoramic images in which a traffic sign is depicted with
a high probability. For this purpose, YOLO is used, which has been trained on traffic
signs of all classes without any particular distinction. The bounding boxes determined
by YOLO outline image regions that are subsequently extracted and input to Capsule
Net. This network determines the semantic class of the respective sign.

The results are visualized in the panoramic images. Figure 6.8 shows the results of
automatic annotation of traffic signs in panoramic images.

Based on the described approach in this chapter, panoramic images as a general
source of semantic-rich information can be evaluated such that the derived semantic
information eventually is assigned back as per-point information in 3D point clouds. The
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corresponding process is briefly outlined in the following.
Using the position within the panoramic image and the information about the

location where the image was taken, the approximate position of, for example, a sign in
the 3D point cloud is determined. At this position, the 3D point cloud is searched for
an object that corresponds to the expected structure, or previous semantic classification
results are used to detect the points that correspond to the sign. That is, the approach
approximately determines a subset of points in the 3D point cloud that is attributed by
semantic information, extending the semantic classification of the 3D point cloud.

The described object detection in panoramic images can be applied to other object
types besides traffic signs. For example, signals, balises, or ties on railroad tracks can
also be recognized with this method if the networks are trained for these object types.

Another possible application is the anonymization of panoramic images to prepare
them for publishing. For this purpose, faces and license plates can be detected and
blurred in the image or eliminated in the 3D point cloud.



Chapter 7

Software Architecture and

Implementation

The prototypical implementation based on the concepts presented in this thesis uses a
pipeline structure for large 3D point cloud data, which can be outlined as follows: Input
data can be specified as a list of files or directories, and the desired processing steps
can be configured. Execution takes place locally or on a server set up for this purpose,
parallelizing depending on the available resources. The results are made available at a
defined location. The data analysis is performed using specially developed geometric and
machine learning-based approaches or hybrid solutions.

The developed prototypical implementation has been used as the basis for the
described analysis and visualization approaches.

Figure 7.1: Visualization of the software architecture used in the context of this work.
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7.1 Overview

Figure 7.1 provides a schematic overview of the software architecture of the prototypical
implementation. Its core is the research framework PCR (“Point Cloud Research”). It
provides a tool for processing 3D point clouds (PCTool), a visualization tool (PCViewer),
and a tool called Annotation Tool for manual classification. The processing is based
on PCLib, a library that provides the essential components for data processing. Addi-
tional machine learning tools, which are also presented below, have been developed for
classification tasks and integrated into the described ecosystem.

7.2 Basic System Components

PCR is a general framework written in C++ for processing and visualizing 3D point
clouds and related data. This framework has been used as an implementation basis for
this thesis and partially extended for the specific features described in the thesis.

Three tools serve as the user interface for operating the framework. They rely on
the following main dependencies:

Qt is a cross-platform framework used to create the user interfaces of the tools described
in this thesis. Qt “contains a comprehensive set of [...] modularized C++ library
classes”. Detailed technical specifications can be found at the framework’s website1.

OSG and OpenGL/GLSL are used for 3D scene management and rendering. “The
OpenSceneGraph [OSG] is an open source high performance 3D graphics toolkit,
used by application developers in fields such as visual simulation, games, virtual
reality, scientific visualization and modelling”2. OSG is written in C++ and
OpenGL and can be used cross-platform. OpenGL (Open Graphics Library) is a
cross-platform API for hardware-accelerated rendering. GLSL (OpenGL Shading
Language) is the C-style language used to write code for detailed control of the
rendering pipeline within OpenGL. Technical specifications can be found on the
OpenGL website3.

PCLib as a complex “middleware for 3D point clouds” processes the data and provides
functions for I/O operations. It is described in more detail in Section 7.2.2.

PCL (Point Cloud Library) was presented by Rusu and Cousins (2011) and provides
basic functionality for processing 3D point clouds. For example, it is used by PCLib
for the normal vector computation.

CUDA is a “parallel computing platform and programming model developed by NVIDIA
for general computing on GPUs”4. First released in 2007, CUDA enables highly

1
https://www.qt.io/product/qt6/technical-specifications

2
http://www.openscenegraph.org

3
https://www.opengl.org

4
https://developer.nvidia.com/cuda-zone

https://www.qt.io/product/qt6/technical-specifications
http://www.openscenegraph.org
https://www.opengl.org
https://developer.nvidia.com/cuda-zone
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parallel general-purpose processing on CUDA-enabled hardware and is used to
accelerate computations of suitable parallelizable steps.

LAStools and ShapeLib are used for processing the standard data formats LAS and
ESRI shape files, respectively. More detailed information about the libraries can
be found on their websites5,6.

GDAL (Geospatial Data Abstraction Library) is an open-source translator library for
raster and vector geospatial data formats, which is used to process various data
formats within the tools presented in this thesis. The library’s documentation can
be found on its website7.

7.2.1 Core Tools

In this thesis, three core tools provide the basis for application scenarios and use cases
related to processing, visualization, and manual classification. These tools have been
designed, extended, implemented, and tested based on the described middleware.

The PCTool is used to configure and execute any combination of processing steps
for supported geospatial data. Many specialized nodes are provided for this purpose,
which can be connected in pipelines, as shown in Figure 7.2. The nodes are grouped into
three types: Reader nodes, processing nodes, and writing nodes. They are presented in
more detail in Section 7.2.2.

Figure 7.2: Screenshot of an exemplary pipeline for mobile mapping data classification in the

PCTool. On the right edge is the interface for configuring the currently selected node; here:

Ground Detector.

5
https://rapidlasso.com/lastools

6
https://github.com/OSGeo/shapelib

7
https://gdal.org

https://rapidlasso.com/lastools
https://github.com/OSGeo/shapelib
https://gdal.org
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The pipelines configured in the PCTool can be adapted to the specific execution
environment. Resources such as CPU and GPU are adaptively managed and allocated
to process multiple data packets in parallel. They can run on individual PCs as well as
taking advantage of GPU clusters if available. Not only 3D point clouds are processed
with the tool. Nodes can also support shape files, digital terrain models, and other data
formats as input or output, depending on their task.

The second tool is called PCViewer. It is a visualization tool capable of displaying
3D point clouds and shape files.

Rendering 3D point clouds requires out-of-core data management due to the sub-
stantial number of individual measurement points that need to be represented. Datasets
from mobile mapping surveys often contain several billion points. The visualization
tool based on the works of Richter, Discher, et al. (2015) and Discher et al. (2017) has
been extended and adapted to the specific requirements of the described approaches
of this thesis. PCViewer uses a layered, multi-resolution kd-tree for massive 3D point
clouds to manage the data. Extensive datasets, e. g., the 3D point cloud of an entire
city with several billion points, can be handled in real-time using out-of-core algorithms.
For rendering, suitable representative points are selected depending on the area being
viewed and the zoom level so that the rendering time allows for interactive frame rates.
Richter, Discher, et al. (2015) show that “Interactive frame rates can be achieved for each
rendering technique as long as the overall number of rendered points does not exceed a
certain threshold. Since the proposed out-of-core rendering approach limits the number
of rendered points by dynamically selecting them, arbitrarily large datasets with varying
point densities can be rendered in real-time as well.”

Movement and rotation within the 3D scene are performed by moving the mouse
while holding the left or right mouse button. The mouse wheel is used to zoom in and
out. Alternatively, a so-called first-person mode can be activated, enabling movement
with the keyboard, in which case only the viewing direction is controlled with the mouse.

Different rendering techniques can be selected to render the points. Thus, the
rendered primitives and their size can be configured, and the color can be determined
from a selected attribute. For example, 3D point clouds can be colored using their RGB
values, height gradients can be used for coloring, or the color can be determined from the
semantic class. If displayed 3D point clouds have been classified, each semantic class’s
visualization can be configured individually, or displaying this class can be disabled
completely. Figure 7.3 shows multiple rendering options for a dataset with a 3D point
cloud and shape files.

In addition to 3D point clouds, other data such as shape files or GPR data can also
be displayed. GPR information is displayed in a separate widget next to the 3D scene.
The widget can be seen in Figure 5.6.

Finally, the Annotation Tool enables manual semantic classifications in 3D point
clouds or post-correction of automatically semantically classified data. The manually
refined data can be used as training data for machine learning. This tool has been
developed as part of several research projects with external partners.
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Figure 7.3: Screenshots of PCViewer with different configurations for data visualization. Shown

are parking areas (light brown areas), curbs (green lines), points above the road (pink to green

height gradient) and the surrounding points (grayscale intensity values).

Various selection modes are available for selecting points to accomplish this. For
example, a sphere or a cuboid can be displayed as an auxiliary body and, when clicked,
all points within the body are selected. A lasso tool and semi-automatic selections of
neighboring points with similar height, color, or intensity are also implemented. The
3D point cloud can be displayed in parallel in a 3D scene and an orthographic 2D
view, especially for a more straightforward classification of rails and their surroundings.
Selected points can each be assigned the desired semantic class. Editing is simplified
by options for locking already classified points and hiding individual semantic classes.
Figure 7.4 shows a screenshot of the annotation tool.

7.2.2 PCLib

PCLib is a library that provides functions for processing 3D point clouds and other
geospatial data; it forms part of the PCR framework. Of particular importance are the
nodes, which are available to create pipelines in the PCTool. These are, on the one hand,
reader and writer classes for I/O operations and, on the other hand, processing nodes in
which the data is processed step by step.

Importers (readers) and exporters (writers) are available for 3D point cloud,
vector, and image formats. Readers load a previously configured list of files from the
file system into memory and make them available to subsequent nodes in the form of
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Figure 7.4: Screenshot of a 3D point cloud in the Annotation Tool. Selecting points with the

lasso tool is currently in progress. The area to be selected is visualized by the not yet closed green

line.

data packets. Writers write all received data packets in the respective file format into a
previously defined directory.

For 3D point clouds, on the one hand, PCR’s format PCX is supported, which enables
straightforward access to individual attributes. Standard formats such as LAS, LAZ and
XYZ are also supported.

Furthermore, shape files, GPR datasets, digital terrain models, and panoramic images
can be read, and rendered images can be saved, e. g., for image-based classification.

The processing nodes provide a variety of functions for processing the data. They
receive one or more data packets as input, process them according to their specific
implementation, and pass them on to the following node. They can be further divided
into preprocessing nodes and analysis nodes.

Preprocessing nodes are used for various tasks when preparing 3D point clouds
for visualization or analysis. The tasks described in Chapter 2 can be accomplished with
these nodes. Among them are nodes for computing normal vectors, curvature values,
and local density. A segmentation of the input 3D point cloud can be performed, a scan
profile detection, and thinning of dense 3D point clouds.

Most nodes have configuration options such as settings for the percentage of points
remaining after thinning or for the number of nearest neighbors to be considered during
a normal vector computation.

Finally, the analysis nodes are the main components for 3D point cloud classifica-
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tion and other processing tasks. Nodes exist for, e. g., a ground detection and a multi-step
geometric classification as described in Section 3.2, as well as the derivation of shapes
for, e. g., detected road markings and nodes for scene rendering to generate images used
for image-based classification as described in Section 3.3. For road marking classification,
a node for neural network classification exists, which executes the external Python script
for U-Net classification described in Section 7.3.3.

Several nodes have been implemented, extended, or optimized for the approaches
described in this thesis. For example, the calculation of metrics and the extensive
geometry-based semantic classification have been implemented, machine learning ap-
proaches for classifying 3D point clouds and image data have been integrated, and
functionality for post-processing and exporting vector data has been added.

As an example, the node used to calculate the local point density explained in
Section 2.4.1 will be presented here. First, the current 3D point cloud input data packet
points are placed into a spatial data structure. Based on the node’s configuration, this
can either be a pcl::gpu::Octree or a pclib::GeoRaster. The octree implementation
enables a precise analysis but is more time-expensive than the georaster, which implements
a voxel grid as described before. When using the octree, a radius search is performed
to count the number of neighbors for each point within the radius defined in the node’s
configuration. The local density of each point is calculated by its neighbor count divided
by the volume of the sphere with the configured radius. When using the voxel grid, the
neighborhood for each voxel cell is defined as all adjacent voxel cells whose center is
within the configured radius from the current voxel cell’s center. For each voxel cell, the
summed number of points in its neighborhood is computed. This number divided by
the combined volume of the neighborhood voxel cells approximately represents the local
density of all points within this voxel cell. All points from the input data packet get
assigned the additional attribute of their local point density, and the packet is output to
the following pipeline node.

7.3 Python ML Implementations

In addition to PCR, several Python scripts are used for machine learning on 3D point
clouds and rendered images. In the following, these scripts are presented in more detail.

7.3.1 PCNN

PCNN is the artificial neural network already presented in Section 3.4 for semantic
classification of 3D point clouds. It is a combination of PointNet++ (Qi, Yi, et al., 2017)
and DGCNN (Y. Wang et al., 2019) to form a network that has shown to be suitable
for processing mobile mapping 3D point clouds. Figure 3.18 in the classification chapter
depicts the structure of the neural network.

The project includes a GUI to control processing, but it can equally be controlled
from the command line. PCNN supports processing 3D point clouds in CSV, LAS, and
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XPC format. It is written in Python using PyTorch as the main dependency. In a first
step, all input 3D point clouds must be preprocessed (preprocess.py) before they can be
used further. Preprocessing involves collecting metadata such as min and max values and
remapping the semantic classes’ IDs to use consecutive natural numbers without gaps.
Density reduction takes place to save time in subsequent steps. Finally, the data is stored
in the standardized h5 format, with all values normalized using the previously collected
metadata. Preprocessed 3D point clouds can then be used for training and prediction.

The training uses already classified 3D point clouds as train and test data to train
the artificial neural network (train.py). The training can be interrupted after each
epoch and continued later. Also, the best model so far is stored after each epoch. As
measurement value for this accuracy, mIoU (mean Intersection over Union), mAP (mean
Average Precision), or loss can be used. The 3D point clouds used for train and test must
have been preprocessed together to have undergone the same normalization.

The prediction script classifies 3D point clouds using a previously trained model
(predict.py). In addition to the preprocessed 3D point clouds, the training’s metadata
file must also be input to obtain correct information for mapping the semantic classes.
The output of the classified data is a CSV file. It contains only the points sampled
during classification with their semantic class. Points in the immediate neighborhood
can subsequently be assigned the same semantic class to classify all points of the original
3D point cloud.

The project can also execute previously configured classification pipelines, including
the preprocessing step (execute_pipeline.py) to automate more complex workflows.

Finally, benchmark.py provides a tool that calculates metrics such as precision, recall,
F1-score, IoU, and a confusion matrix based on ground truth data.

7.3.2 Traffic Sign Classification

The traffic sign classification in images described in Section 6.3 is also implemented as a
prototypical proof-of-concept implementation in Python, using TensorFlow and Keras.

The project contains a YOLOv3 model trained on the German Traffic Sign Detection
Benchmark (GTSDB) from Houben et al. (2013). For the training, all traffic signs are
considered the same class because the network is only used to detect the position of
traffic signs in panoramic images, not to classify them.

An implementation of Capsule Net performs the classification. This network, in turn,
is trained on the German Traffic Sign Recognition Benchmark (GTSRB) by Stallkamp
et al. (2012), taking into account the different classes of traffic signs.

Both networks used are adapted variants of publicly available implementations.
A script for traffic sign classification receives a directory of panoramic images as

input. YOLO is first applied to the images. The bounding boxes of all areas recognized
as traffic signs with a probability of at least 0.9 are collected. Each of these areas is
extracted as an independent image and classified using Capsule Net. The results are
output as a CSV file in which the semantic class is assigned to each image. A projection
of the results into 3D point clouds acquired in parallel has not been implemented yet.
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7.3.3 Road Marking Classification

The road marking classification project essentially consists of a PyTorch implementation
of U-Net, which can be trained and used for predictions using two scripts.

The network is trained using orthoimages rendered from 3D point clouds in which all
road markings have already been classified. The classification can be realized manually
using the annotation tool, or the information is derived from existing shape files. In the
latter case, it must be ensured that not only the mere content of the specified shape
areas is classified. The actual situation with intensity values must also be considered to
avoid mistakenly classifying places as markings where there are no markings in the 3D
point cloud.

Subsequently, prediction can be used to determine the type of road marking for each
pixel for previously unknown orthoimages like described in Section 3.3.1. Similarly, if a
pixel does not represent a road marking, it is classified as “other”.

The results can be further processed within pipelines in the PCTool. A corresponding
node exists for a direct connection. This node generates the required orthoimages,
activates the external prediction script, and reads the results back in.





Chapter 8

Evaluation of Application Scenarios

This chapter presents two evaluations of application scenarios in detail. First, in Sec-
tion 8.1, 3D point clouds of a mobile mapping dataset are semantically classified using
geometric methods and machine learning. The results are compared in terms of quality
and runtime. Section 8.2 focuses on a specific use case and provides information about
runtime and accuracy in the detection of road markings in 3D point clouds and subsequent
derivation of vector data.

All performance measurements have been made on hardware with an Intel i7-6700
8 core 3.4 GHz CPU, 32 GB RAM, and an NVIDIA GeForce GTX 1080 Ti GPU with
11 GB dedicated and 16 GB shared memory.

8.1 Results for Semantic Classification of 3D Point Clouds

As described in Chapter 3, different methods can be used for the automatic semantic
classification of 3D point clouds. A geometric method and the machine learning method
PCNN, based on DGCNN and PointNet, have been presented as methods that can
generally be used for a semantic classification without focusing on a particular use case.
They are used for the overall semantic classification of mobile mapping 3D point clouds
to enrich the raw data with semantic information. Thus, they do not focus on individual
use cases and must handle large datasets efficiently. The two methods are compared here
to evaluate the quality of the results and the required computation times.

The data used for the evaluation is from the Hamburg dataset. This dataset is
particularly suitable as a reference dataset within the evaluation, as it is representative
for major European cities. The acquisition was performed with modern hardware, and
the 3D point cloud is available in high density. The data was acquired in moving traffic,
so typical artifacts and occlusions of vehicles and pedestrians occur. The acquired data
is available in unprocessed original form; thus, realistic measurements can be made with
this real-world data. The 185 MB file size test area consists of 9 569 752 points. The
chosen test area represents a street with buildings on both sides, some trees, vehicles on
and beside the roadway, and various post-like structures such as traffic signs and lanterns.
It is thus exemplary for an average section of a modern city.

PCNN supports significantly more different semantic classes and can make detailed
distinctions, e. g., between a post and signs mounted on it. It also recognizes bicycles
and people, among other objects. The current implementation of the geometric methods
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supports only the base classes “Building”, “Ground”, “Post-like structure”, “Vegetation”,
and “Vehicle”, plus a preceding outlier analysis. To make the results of both methods
comparable, PCNN is also limited to these classes within the evaluation. For this, the
unsupported classes are mapped to their parent category. For example, road markings
are considered as ground.

For the evaluation, a ground truth classification was manually created. In this ground
truth, pedestrians, bicycles, bicycle holders, and other classes that cannot be mapped
to an appropriate higher-level category and are not covered by the geometric method’s
current implementation were removed. This creates an equal basis for both methods and
allows the computed accuracy values to be compared directly. Besides, boundary regions
of the 3D point cloud were removed, in which the point density decreases strongly and
which do not provide helpful information in any classification method. This cropping
corresponds to a restriction to the vehicle’s closer vicinity when the data were acquired.

Figure 8.1 first shows an overview visualization of the entire scan colored by intensity
values, and in Figure 8.1(b) the ground truth information of the area relevant for the
classification is shown. Subsequently, only those points of the automatic classification are
shown for the geometric method and the machine learning method PCNN, which deviate
from the ground truth. The color in these visualizations is based on the incorrectly
assigned semantic class making it possible to see which points have been assigned the
wrong class and which class was chosen. The correctly classified points are not shown.

For a more detailed insight into the classification results, the 3D point cloud is shown
again from a different perspective in Figure 8.2. Again, the entire 3D point cloud colored
by intensity values, the ground truth colored by semantic class, and the points incorrectly
classified in both methods are shown.

Semantic Class Number of Points Precision Recall F1-Score IoU
Building 4 093 082 99.3 % 96.5 % 97.9 % 95.8 %
Ground 3 587 280 96.8 % 99.5 % 98.1 % 96.3 %
Outlier 43 966 28.3 % 8.7 % 13.3 % 7.1 %
Post-like 42 371 89.4 % 65.6 % 75.7 % 60.9 %
Vegetation 1 562 153 95.9 % 95.1 % 95.5 % 91.4 %
Vehicle 240 900 89.8 % 88.2 % 89.0 % 80.2 %
Average 83.2 % 75.6 % 78.2 % 72.0 %

Weighted mean 97.2 % 96.7 % 96.9 % 94.3 %

Table 8.1: Accuracy values of the geometry-based semantic classification.

Tables 8.1 and 8.2 list the precision, recall, F1-score, and IoU (Intersection over
Union) values for the geometry-based and the machine learning-based method for each
of the semantic classes and as overall aggregations. With weighted mean IoUs of 94.3 %
(geometry-based) and 94.5 % (machine learning-based), both methods delivered similar
results concerning the overall quality.

The most notable difference occurred with the outliers. The geometric method uses
a purely spatially determined delimitation for this purpose. All points with less than the
specified threshold value of neighboring points in their vicinity were marked as outliers.
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(a) Complete 3D point cloud colored by intensity.

(b) Ground truth information. Colored by semantic class: Building (red), Ground

(brown), Outlier (magenta), Post-like (cyan), Vegetation (green), Vehicle (orange).

(c) Points from geometry-based classification differing from ground truth. Colored by

wrongly assigned semantic class.

(d) Points from machine learning-based classification differing from ground truth.

Colored by wrongly assigned semantic class.

Figure 8.1: Visualization of ground truth semantic classes in a 3D point cloud and the points

differing from ground truth in both classification methods. The original 3D point cloud from the

Hamburg dataset (a) was cut to the relevant area for evaluation (b–d).
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(a) Complete 3D point cloud colored by intensity.

(b) Ground truth information. Colored by semantic class: Building (red), Ground (brown), Outlier (magenta),

Post-like (cyan), Vegetation (green), Vehicle (orange).
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(c) Points from geometry-based classification differing from ground truth. Colored by wrongly assigned semantic

class.

(d) Points from machine learning-based classification differing from ground truth. Colored by wrongly assigned

semantic class.

Figure 8.2: Detail view of the 3D point cloud shown in Figure 8.1.
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Semantic Class Number of Points Precision Recall F1-Score IoU
Building 4 093 082 99.0 % 96.5 % 97.7 % 95.6 %
Ground 3 587 280 95.9 % 99.9 % 97.9 % 95.8 %
Outlier 43 966 68.0 % 54.1 % 60.3 % 43.1 %
Post-like 42 371 89.9 % 83.5 % 86.6 % 76.4 %
Vegetation 1 562 153 99.7 % 94.6 % 97.1 % 94.4 %
Vehicle 240 900 78.8 % 86.9 % 82.6 % 70.4 %
Average 88.6 % 85.9 % 87.0 % 79.3 %

Weighted mean 97.2 % 97.0 % 97.1 % 94.5 %

Table 8.2: Accuracy values of the machine learning-based semantic classification.

On the other hand, in the ground truth, points were also marked as outliers that lie
behind the building facades, as seen from the roadway. Because of the high number of
points in these areas, only a few were marked as outliers by the geometric method. With
PCNN, a larger number of outlier points was recorded. However, due to the small overall
number of outlier points, this hardly affected the classification result’s overall value.

For a more detailed insight, confusion matrices for the semantic classes are presented
in Figure 8.3. In these, for each semantic class of the ground truth, it is shown to which
proportion its points were assigned to which semantic class in the automatic classification.
In both methods, points that could not be assigned to any semantic class were marked
as “Undefined”.

Significant deviations from ground truth also occur in PCNN classification during
outlier detection. The points wrongly classified as “building” originated mainly from roof
areas and partly from the area behind the facades.

(a) Geometry-based classification. (b) Machine learning-based classification.

Figure 8.3: Confusion matrices showing which percentage of points has been assigned which

semantic class compared to ground truth. “Undefined” denotes points that did not receive any

semantic class during the automatic classification.

In the PCNN classification results, it is visible that the distinction between vehicle
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Figure 8.4: Processing times for the geometry-based 3D point cloud classification. Values in

seconds.

Figure 8.5: Processing times for the machine learning-based 3D point cloud classification. Values

in seconds.

and ground causes difficulties in addition to the outlier detection. Here, as can also be
seen in Figure 8.2(d), it was the wheels and sidewalls of the vehicles that were incorrectly
assigned to the ground. The same also occurred in the geometric method but to a lesser
extent. In return, some vehicles were falsely identified as vegetation in the geometric
method. This was not a problem in PCNN.

The biggest weakness of the geometric method apart from the outliers is the wrong
assignment of post-like structures to vegetation. Some posts of lanterns and traffic signs
were not assigned correctly in whole or in part.

Despite the listed weaknesses, both methods are well suited for the semantic classi-
fication of mobile mapping datasets of this kind and provided good overall results for
further processing.

Especially concerning the processing time, it became clear that automatic classifi-
cation is inevitable. A dataset of this size requires several hours if classified manually
at the level of detail shown. Classification using the geometric method took just over
four minutes (259 seconds), and classification using PCNN took just under eight minutes
(461 seconds). For the geometric method, this corresponds to about 37 000 points or
0.73 meters per second. For PCNN to about 21 000 points or 0.41 meters per second.
Figures 8.4 and 8.5 show how much time was spent on each processing step in the
automatic classification.

Extrapolated to an entire city’s dataset, Potsdam’s classification takes about nine
days with the geometric method and about 16 days with the classification via PCNN.

Additionally, time was spent on configuration for the geometric method, which must
be adjusted for each dataset, but can be used across most scans within a dataset.

For PCNN, additional time was spent to train the artificial neural network. Training
requires an average of at least four hours, but the time varies by configuration and dataset



98 Chapter 8. Evaluation of Application Scenarios

and is often significantly higher. This training also requires ground truth data, which
must be generated in advance. For example, the geometric method can be used for an
initial classification, which is corrected and refined by additional semantic classes before
being used for the training.

In summary, both methods provided equivalent results on the test dataset. However,
the processing time, including all necessary configurations and training, was significantly
lower for the geometric method than for the machine learning-based method PCNN.
Nevertheless, PCNN has the significant advantage of supporting arbitrarily detailed
semantic classes, making it more suitable for some use cases. The high amount of time
used to create ground truth information and train the network is amortized when large
datasets such as whole urban areas are classified. Individual configurations as needed for
the geometric method, which require specific process knowledge, are unnecessary. Thus,
both methods can provide relevant results, and the use must be made dependent on the
particular application.

8.2 Road Marking Detection and Vector Data Derivation

This section investigates the automatic detection of road markings and the derivation of
vector data based on them.

3D point clouds and shape files of intersections from the Hamburg dataset are used
as test datasets. The 3D point clouds acquired with LiDAR enable recognition of road
markings via the contained intensity values. Ground truth information is available via
manually created shape files in which the position and type of road markings are recorded.
Line markings, however, are only available as lines instead of rectangles, so no exact
evaluation of polygon areas can be performed.

An image-based classification is performed as described in Section 3.3.1. Subsequently,
the vector data is derived as described in Section 4.1.1 and stored as shape files.

Figure 8.7 shows the resulting shapes in comparison to the ground truth information.
The corresponding 3D point cloud is shown in Figure 4.2.

The artificial neural network U-Net, which was used for the classification, was trained
for 5 hours using 3D point clouds previously classified with the ground truth information.

The shape file shown in Figure 8.7 was created in 129.3 seconds from a 3D point
cloud with 25.8 million points. Thus, the throughput of the combined classification and
vector data derivation was about 12 million points per minute, which corresponds to
approximately 450 meters of captured road per minute. The bottleneck in the analysis is
the file operations during rendering and classification because many images are written to
and read from disk. This could be avoided with an in-memory implementation. Figure 8.6
shows the time distribution for individual processing steps as measured on average during
five runs.

The resulting vector data all corresponded in shape to the recognized structures
from the 3D point cloud data. Matching the shape with the ground truth information is
not possible as described. Therefore, the specified accuracy values were only determined
based on the assigned type of road marking.
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Figure 8.6: Processing times for the automated shape derivation for road markings in 3D point

clouds. Values in seconds. “Other” includes I/O for 3D point cloud and shape files.

In an evaluation of a larger test dataset, an overall precision of 92.5 % and an overall
recall of 93.9 % were achieved, as shown in Table 8.3.

Errors in the classification mainly were undetected road markings in areas of overall
high intensity in wet regions of the road, wrongly assigned semantic classes like an
incorrect type of line, and high-intensity regions wrongly classified as road markings.

Marking Precision Recall F1-score
Arrows (48) 93.5 % 89.6 % 91.5 %
Lane dividers (230) 96.6 % 98.7 % 97.7 %
Stop lines (39) 84.8 % 100.0 % 91.8 %
Pedestrian crossing lines (228) 91.2 % 97.0 % 94.0 %
Cycle track lines (270) 91.2 % 87.7 % 89.4 %
Barred areas (3) 100.0 % 100.0 % 100.0 %
Weighted average 92.5 % 93.9 % 93.1 %

Table 8.3: Road marking classification accuracy values.

Both applications clearly show that large amounts of data can be processed and
analyzed efficiently and automatically using suitable approaches and that high-quality
results can be achieved in the process. Manual processing would be significantly more
time-consuming and can instead be replaced by automated processing with less costly
manual rework.

The lack of ground truth data continues to limit many comparable analyses in
research publications. However, more datasets are gradually becoming available that can
be used as ground truth in various use cases. With the strong development in machine
learning, the availability of such data is expected to further improve in the coming years.
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(a) Classification result with shapes for individual road

markings. Semantic classes are represented by distinct

colors.

(b) Ground truth information. Note that no

information about line widths is given. Colors

represent the same semantic classes as in (a).

(c) Comparison of automated classification result

(orange) with ground truth data (black).

Figure 8.7: Visualization of automatically generated road marking shapes and the corresponding

ground truth data from the Hamburg dataset.



Chapter 9

Conclusions and Future Work

This thesis shows how 3D point clouds from mobile mapping scans can be processed,
analyzed, and visualized to detect objects and structures in road and railroad environments.
The combination of 3D point cloud data acquisition hardware and software partly based
on machine learning enables semantic-sensitive interpretation of the built environment.
In this regard, mobile mapping scan data serves as the fundamental data source used to
create spatial digital twins of the built environment.

Among the challenges for a seamless processing chain for current and future applica-
tions and services is a solid and robust but also extensible semantic classification based
on the needs of each application domain. In this respect, 3D point clouds as unsorted,
unstructured data represent ideal input data for machine learning approaches. Object
categories can be filtered through semantic classification, and individual objects in the
data can be derived and exported to external systems. Different methods for automatic
semantic classification of 3D point clouds, the necessary preprocessing, and enrichment
with other data sources have been presented in this work.

Preprocessing is a key step for creating spatial digital twins based on 3D point clouds.
It is required for semantic classification approaches as well as for real-time visualization
techniques. It manages data harmonization and fusion—a typical requirement when the
built environment is captured frequently and redundantly. Outlier detection and point
density reduction, especially for dense areas, remove unnecessary points from 3D point
clouds and reduce the amount of data processed or visualized.

Several methods have been presented in this work that can be used for use-case
independent semantic classification of mobile mapping 3D point clouds. The geometric
method is based on metrics presented in Section 3.2; it requires a specific configuration for
each dataset but provides convincing results and has a lower runtime than the machine
learning-based analysis called PCNN, a PointNet and DGCNN hybrid. However, PCNN
can perform a much more detailed classification with an arbitrarily large number of
semantic classes, provided that suitable training data are available to train the artificial
neural network. The classification results of the presented approaches have been compared
in detail in Chapter 8. As far as the classification of semantic classes supported by both
methods is concerned, the quality is almost identical with a weighted mean IoU of about
94 %.

The results of this work have shown that both approaches can be combined, e. g.,
by using the geometric method to generate the training data for the machine learning
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method. The resulting datasets can be manually improved with a suitable tool, and
the classification can be refined, generating extensive ground truth information. Since
sufficiently large ground truth information is essential for machine learning, an efficiently
usable tool for manual semantic information processing in 3D point clouds is important.
Such a tool has been developed and extended for the framework used in this work.

Image-based classification methods have also been presented in this thesis. For
example, an image recognition method that works on orthographically rendered images
of ground points is particularly well suited for recognizing road markings. Road markings
can be detected and classified in these images. The results can be used to derive vector
data of, for example, intersections, representing a map of all existing road markings.
These maps can be used for georeferenced digitization of road data and restoring the
previous condition after construction works. Based on available ground truth information,
the vector data generated by the presented method have been evaluated and achieved a
F1-score of 93.1 %.

A scan profile analysis specifically tailored to those 3D point clouds often generated
during mobile mapping scans in railroad networks enables further analysis steps for the
railway infrastructure. For this purpose, individual scan profiles can be extracted and
rendered as described. Image classification techniques are applied to the rendered images,
enabling the detection of tracks and specific objects in the track environment, such as
signals and balises.

However, 3D point clouds are not the only source of spatial information. For this
reason, this work has explored how 3D point clouds can be combined with other types of
spatial data, such as through GPR and with panoramic images. A suitable visualization
is critical for exploring such combined data. Therefore, appropriate ways to display the
different data sets together have been presented and explored for their usability. The
GPR data enables the analysis of the road substructure so that problematic areas of the
roadway, such as developing potholes, can be identified. When combined with information
from the 3D point cloud, utility hole covers, for example, can be identified and considered
separately when evaluating pavement anomalies. Supplementing the 3D point clouds
with information from panoramic images adds additional color information about the
environment. In particular, this enables an unambiguous classification of traffic signs,
which is only possible to a limited extent using intensity values alone. This classification
can be performed directly on the images using artificial neural networks, for example,
and then be transferred to 3D point clouds acquired in parallel using positional data
about the capture locations.

To demonstrate the feasibility and practicality of the presented approaches, an
extensive C++ 3D point cloud framework has been adapted and extended with tools
for visualization, analysis, and manual processing of classification data. For example,
Python machine learning scripts have been developed to provide a solid foundation for
comprehensive visualization and processing of mobile mapping 3D point clouds and can
be used to process large amounts of data.
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Future Work

Extensions of the presented approaches that have not yet been implemented are reasonable
at various points. For example, the geometry-based classification could benefit from the
support of additional semantic classes. If the existing base classes are subdivided into
subclasses, more detailed assumptions can be made. Subdividing ground points into the
street, curb, sidewalk, and unsealed ground could help identify vehicles or lampposts
better because additional assumptions about relative positions become possible. The
identification of doors in building facades would enable the recognition of specific entrances.
In combination with an analysis of the curb height, accessibility statements would become
possible. As described in the evaluation, there are points behind building facades due to
reflections or the inclusion of interior spaces behind windows. Better differentiation of
building facades and these points would help to remove many points from the data sets
that do not have significant meaning.

It would also be possible to perform classifications on a combination of multiple scans
of the same area to fill in gaps created by shading or unfavorable viewing angles. Not only
could multiple mobile mapping scans be combined, but the data could be supplemented
with aerial scans when available. This would first require precise registration for the
correct relative positioning of the data sets. If this is successful, the combination offers
new potential for a comprehensive representation of the scanned environment.

A combination of the geometry-based method and the machine learning-based
method could better assess classification results. Matching results are more likely to be
correct, and areas with divergent semantic classes could be examined in more detail by
specific methods in a detailed analysis. Machine learning-based methods could also be
adapted or developed for both segmentation and outlier detection.

For semantic classification with PCNN, it is essential to use sufficiently large training
data to train a network that is less dependent on a particular dataset. For example,
mobile mapping scans from multiple cities could be used to achieve greater independence
from the characteristics of a particular city. It could be analyzed to what extent cities
in different parts of the world are similar and whether better results are obtained when
networks are explicitly trained for different regions.

The presented image-based method for classifying road markings has also been used
for utility hole covers. Similarly, the approach could certainly be applied to rail data and
enable detecting rails, ties, balises, axle counters, and other ground-level objects in the
track environment. Accordingly, the image-based approaches could be combined with
rendered ground images and rendered scan profiles. For the analysis of scan profiles, in
addition to the presented approach, it remains to be investigated whether one-dimensional
CNNs can be used, such as those used in noise classification. Similarly, viewing multiple
scan profiles simultaneously as parallel layers in an image could aid classification by
providing contextual information.

In addition, future work could explore how multiple scans acquired in parallel or
overlapping at intersections could be combined for analysis and what an appropriate
visualization would need to look like for the analysis of overlapping GPR data.
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The concepts and techniques presented in this thesis provide a broad basis for analyz-
ing large-scale geospatial mobile mapping data of transport infrastructure. Increasingly
frequent and detailed “snapshots” of our built environment by more and more users will
continue to offer tremendous potential for advancing spatial visualization and analysis
methods, with the ultimate goal of achieving real-time, semantic-rich spatial digital twins.
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