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0Abstract

Generative adversarial networks (GANs) have been broadly applied to a wide
range of application domains since their proposal. In this thesis, we propose
several methods that aim to tackle di�erent existing problems in GANs. Particu-
larly, even though GANs are generally able to generate high-quality samples,
the diversity of the generated set is often sub-optimal. Moreover, the common
increase of the number of models in the original GANs framework, as well as
their architectural sizes, introduces additional costs. Additionally, even though
challenging, the proper evaluation of a generated set is an important direction
to ultimately improve the generation process in GANs.

We start by introducing two diversi�cation methods that extend the original
GANs framework to multiple adversaries to stimulate sample diversity in a gen-
erated set. Then, we introduce a new post-training compression method based
on Monte Carlo methods and importance sampling to quantize and prune the
weights and activations of pre-trained neural networks without any additional
training. The previous method may be used to reduce the memory and com-
putational costs introduced by increasing the number of models in the original
GANs framework. Moreover, we use a similar procedure to quantize and prune
gradients during training, which also reduces the communication costs between
di�erent workers in a distributed training setting.

We introduce several topology-based evaluation methods to assess data gen-
eration in di�erent settings, namely image generation and language generation.
Our methods retrieve both single-valued and double-valued metrics, which,
given a real set, may be used to broadly assess a generated set or separately
evaluate sample quality and sample diversity, respectively. Moreover, two of our
metrics use locality-sensitive hashing to accurately assess the generated sets
of highly compressed GANs. The analysis of the compression e�ects in GANs
paves the way for their e�cient employment in real-world applications.

Given their general applicability, the methods proposed in this thesis may be
extended beyond the context of GANs. Hence, they may be generally applied to
enhance existing neural networks and, in particular, generative frameworks.
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0Zusammenfassung

Generative adversarial networks (GANs) wurden seit ihrer Einführung in einer
Vielzahl von Anwendungsbereichen eingesetzt. In dieser Dissertation schlagen
wir einige Verfahren vor, die darauf abzielen, verschiedene bestehende Probleme
von GANs zu lösen. Insbesondere, fokussieren wir uns auf das Problem das GANs
zwar qualitative hochwertige Samples generieren können, aber die Diversität
ist oft sub-optimal. Darüber hinaus, stellt die allgemein übliche Zunahme der
Anzahl der Modelle unter dem ursprünglichen GAN-Framework, als auch deren
Modellgröße weitere Aufwendungskosten dar. Abschließend, ist die richtige
Evaluierung einer generierten Menge, wenn auch herausfordernd, eine wichtige
Forschungsrichtung, um letztendlich den Generierungsprozess von GANs zu
verbessern.

Wir beginnen mit der Einführung von zwei Diversi�zierungsmethoden die
das ursprüngliche GAN-Framework um mehrere Gegenspieler erweitern, um
die Diversität zu erhöhen. Um den zusätzlichen Speicher- und Rechenaufwand
zu reduzieren, führen wir dann eine neue Kompressionsmethode ein. Diese Me-
thode basiert auf den Monte-Carlo-Methoden und Importance Sampling, für
das Quantisieren und Pruning der Gewichte und Aktivierungen von schon trai-
nierten neuronalen Netzwerken ohne zusätzliches Trainieren. Wir erweitern
die erwähne Methode zusätzlich für das Quantisieren und Pruning von Gra-
dienten während des Trainierens, was die Kommunikationskosten zwischen
verschiedenen sogenannten „Workern“ in einer verteilten Trainingsumgebung
reduziert.

Bezüglich der Bewertung der generierten Samples, stellen wir mehrere typolo-
gie basierte Evaluationsmethoden vor, die sich auf Bild-und Text konzentrieren.
Um verschiedene Anwendungsfälle zu erfassen, liefern unsere vorgestellten Me-
thoden einwertige und doppelwertige Metriken. Diese können einerseits dazu
genutzt werden, generierte Samples, oder die Qualität und Verteilung der Samp-
les anhand einer Menge von echten Samples zu bewerten. Außerdem, verwenden
zwei unserer vorgestellten Metriken so genanntes locality-sensitive Hashing, um
die generierten Samples von stark komprimierten GANs genau zu bewerten. Die

vii



Analyse von Kompressionse�ekten in GANs ebnet den Weg für ihren e�zienten
Einsatz für reale Anwendungen.

Aufgrund der allgemeinen Anwendungsmöglichkeit von GANs, können die in
dieser Arbeit vorgestellten Methoden auch über Kontext von GANs hinaus erwei-
tert werden. Daher könnten sie allgemein auf existierende neuronale Netzwerke
angewandt werden und insbesondere auf generative Frameworks.
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1 Introduction

This Chapter provides an overview of the research presented throughout this
thesis. Namely, Section 1.1 describes the di�erent research contexts in which
the work presented in this thesis was conducted. Section 1.2 introduces the
broad motivations for the overall research. Section 1.3 presents the thesis outline.
Finally, Section 1.4 provides a summary of the main research contributions in
this thesis. For readers unfamiliar with the fundamentals of deep learning, we
refer to Goodfellow et al. [GBC16].

1.1 Research Background

The presented research was performed with a practical and interdisciplinary
nature in mind and was conducted in several independent collaborations with
two industry partners: SAP and NVIDIA. More speci�cally, SAP provided funding
for the entirety of my Ph.D. studies. On the other hand, I also spent a total of
10 months of that time at NVIDIA in the form of two research internships: a
6-month internship at an early stage of my studies and a 4-month internship
approaching the end. This Section provides a broader picture of the contexts
from which the di�erent research topics presented in this thesis originated.

Throughout most of the duration of my Ph.D. studies, my research was con-
ducted with practical views in mind that may potentially bene�t several appli-
cation scenarios within di�erent teams at SAP. During the �rst project period,
I worked closely with the Conversational AI at SAP located in Palo Alto, CA,
USA. The research goal was to enhance generative enterprise systems. To this
end, I proposed to stimulate sample diversity in generative adversarial networks
or GANs. Two refereed papers came out of this collaboration:

• Dropout-GAN: Learning from a Dynamic Ensemble of Discriminators, pre-
sented at KDD 2018 Deep Learning Day [MYM18]. Joint work with Haojin
Yang and Christoph Meinel.

• microbatchGAN: Stimulating Diversity with Multi-Adversarial Discrimina-
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Chapter 1 Introduction

tion, presented at WACV 2020 [MYM20]. Joint work with Haojin Yang and
Christoph Meinel.

For the next project iteration, I worked with the Conversational AI team
located in Paris, France. This time, the goal was to focus on the evaluation of
generative enterprise systems. To this end, I proposed several metrics applied to
di�erent data domains. Such metrics resulted in two refereed papers:

• Assessing Image and Text Generation with Topological Analysis and Fuzzy
Logic, presented at WACV 2021 [MNM21]. Joint work with Julian Nieder-
meier and Christoph Meinel.

• Mark-Evaluate: Assessing Language Generation using Population Estimation
Methods, presented at COLING 2020 [MM20]. Joint work with Christoph
Meinel.

In the most recent project iteration, I worked with the SAP Innovation Center
Network team located in Newport Beach, CA, USA. The general goal of this
iteration was to compress such generative enterprise systems. I performed a
thorough evaluation of compressed generative adversarial networks and devel-
oped additional evaluation metrics optimized to assess the compression e�ects
in the generated sets. These e�orts resulted in one paper that is currently under
review at the time of this writing:

• Evaluating Post-Training Compression in GANs using Locality-Sensitive
Hashing, under review [MYM21]. Joint work with Haojin Yang and
Christoph Meinel.

Switching gears, in my time at NVIDIA, I worked on making neural networks
more e�cient by applying di�erent compression techniques. Two refereed
papers came out of this collaboration:

• Instant Quantization of Neural Networks using Monte Carlo Methods, pre-
sented at NeurIPS 2019 workshop on Energy E�cient Machine Learning
and Cognitive Computing [MVK19]. Joint work with Matthijs van Keirs-
bilck and Alexander Keller.

• Monte Carlo Gradient Quantization, presented at CVPR 2020 workshop on
E�cient Deep Learning in Computer Vision [MVK20]. Joint work with
Matthijs van Keirsbilck and Alexander Keller.

2



Research Motivation Section 1.2

The aforementioned works are also part of a granted patent [Kel+19a] and
were further presented at NVIDIA’s 2019 GPU Technology Conference [Kel+19b].
In this thesis, I further extend and discuss these works in the context of generative
adversarial networks.

As brie�y mentioned, I ended up interning again at NVIDIA by the end of my
Ph.D. studies where I received the NVIDIA Recognition Award for my research
contributions. The conducted research was presented at NVIDIA’s 2021 GPU
Technology Conference [MVK21a] and led to a paper [MVK21b] to be presented
at INTERSPEECH 2021 as well as a �led patent [KMV21]. However, this research
falls outside the scope of this thesis and it is, therefore, not presented.

Moreover, I was also a co-author in several refereed papers during my Ph.D.
studies which have shown the successful extension of some of my research
contributions in additional tasks and data domains:

• Pseudo-Ground-Truth for Adversarial Text Generation using Reinforcement
Learning, presented at NeurIPS 2018 workshop on Deep Reinforcement
Learning. First authored by Jonathan Sauder and joint work with Xiaoyin
Che, Haojin Yang, and Christoph Meinel.

• Best Student Forcing: A Simple Training Mechanism in Adversarial Lan-
guage Generation, presented at LREC 2020 [Sau+20]. Co-First authored by
Jonathan Sauder and Ting Hu and joint work with Xiaoyin Che, Haojin
Yang, and Christoph Meinel.

As suggested in this Section, the work presented in this thesis originated from
several collaboration e�orts. Therefore, the pronoun "we" instead of "I" is used
in this document from here on.

1.2 Research Motivation

Generative adversarial networks (GANs) [Goo+14] were originally proposed as
a two-model framework consisting of one generator (�) and one discriminator
(�) that are trained together. More speci�cally, while � learns to distinguish
real and fake samples, � attempts to generate realistic samples to fool � . Al-
though being a widely used framework o�ering promising results across various
domains [DMP19; ES16; HE16; Yan+18; Yu+17], GANs have also been inherently
associated with instability in training.

3



Chapter 1 Introduction

One common problem is known as mode collapse [AB17; ACB17; Che+17;
Kim+17; MNG17], observed when � ’s generated set exhibits high sample qual-
ity but low sample diversity when compared to the real set. Hence, � may
successfully fool � by only generating samples from the same data mode, i.e.
connected components of the data manifold, leading to the generation of similar
fake samples. This suggests that G did not succeed in learning the real data
distribution, as originally intended. As an example of mode collapse, considering
a use case where the real data consists of images of several animals, � would
only be capable of generating images of dogs or cats at the end of training. Our
�rst research question is then: How may we mitigate mode collapse?

Although extending the original GANs framework to multiple generators
[Gho+18; Hoa+18], discriminators [DGM17; Ngu+17], or both [CF18; Gan+17;
GE18] have been proposed, we rely solely on increasing the number of discrim-
inators to mitigate mode collapse. Augmenting the number of discriminators
instead of generators o�ers bene�ts at inference time since the discriminator(s)
are usually discarded after � ’s training. More speci�cally, we propose two
novel multi-discriminator frameworks: Dropout-GAN [MYM18], which applies
adversarial dropout by omitting the feedback of a given � at the end of each
minibatch, and microbatchGAN [MYM20], which assigns a di�erent portion
of each minibatch (called microbatch) to each � to stimulate sample diversity.
The increase in the number of models in the framework leads to yet another
question: How may we reduce the complexities of the di�erent models in these
multi-adversarial frameworks?

The memory and computational cost of neural networks may be reduced by
pruning redundant weights or neurons [HMD16; LDS90; Moc+18] as well as ap-
plying quantization to lower the precision of weights [CBD15a; LZL16; Zhu+17]
as well as activations [Hub+16; Ras+16]. Using low-precision computations on
top of pruning allows for e�cient hardware implementations [Lin+16; VNM17].
One problem of popular compression methods, however, is the need to re-train
or �ne-tune the compressed network, introducing additional �nancial and en-
vironmental cost [SGM19]. To this end, we propose Monte Carlo Quantization
(MCQ) which uses Monte Carlo methods and importance sampling to prune and
quantize both weights and activations of pre-trained neural networks without
any additional training. This leads to another question: What about compression
during training?

Compression techniques may also be applied in the backward pass. Therefore,

4



Research Motivation Section 1.2

pruning and quantization methods may also be applied to gradients during train-
ing [CBD15b; Gup+15; Lou+19; Wu+18; Zho+16]. The main bene�ts of gradient
compression schemes come into play in distributed training settings [Ali+17;
Ber+18; Kar+19; SCJ18; Sei+14; Wen+17], since the communication cost be-
tween the di�erent workers may be reduced while improving the computational
e�ciency of each worker. Since common approaches mostly focus on either gra-
dient quantization or gradient pruning separately, we propose to apply a similar
procedure as MCQ to gradients – Monte Carlo Gradient Quantization (MCGQ) –
combining pruning and quantization in one e�cient sampling algorithm.

In the context of GANs, MCQ may be used to reduce the memory and compu-
tational costs of � post-training, without the need for any re-training. This is
important when, for example, the computational resources are scarce or time is of
the essence. Moreover, re-training a pre-trained model may also be problematic
in cases where the accessibility to training data and settings is limited. On the
other hand, MCGQ may be used during training to reduce both the complexity
and communication costs of our multi-adversarial frameworks if training the
di�erent discriminators in a distributed setting scenario.

One important point that we have not yet introduced is the task of evaluating
a generated set. The appropriate assessment of a generated set is of extreme
importance to identify possible shortcomings in a model’s generation process.
When learning a discriminative, supervised task, evaluation is often straightfor-
ward by comparing a model’s predictions against ground-truth labels. However,
with generative, unsupervised tasks, the assessment of a model’s capabilities
is far more challenging. A relevant question is then: How can we evaluate a
generated set?

Depending on the use case, single-valued metrics [Biń+18; Heu+17; Sal+16]
may su�ce to assess speci�c conditional generation tasks, such as machine
translation and text summarization, where we are interested in evaluating the
similarities of a generated translation or summary to a speci�c reference transla-
tion or summary, respectively. On the other hand, if we consider unconditional
generation, for example, it may be useful to have separate measures for the
quality and diversity of the generated set [Kyn+19; Saj+18]. Such double-valued
metrics (usually in the form of precision and recall) may enable the identi�cation
of possible shortcomings of a given generation system, such as the mode collapse
problem in GANs. We propose several evaluation metrics in this thesis that cover
di�erent drawbacks of existing methods. Namely, we propose Fuzzy Topology
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Chapter 1 Introduction

Impact (FTI), a �ner-grained image evaluation approach that leverages fuzzy
logic, and Mark-Evaluate (ME), a family of three language evaluation metrics
based on population estimation methods that achieves a high correlation to
human evaluation on challenging text generation tasks. To tie some ends, our
�nal research question is: How does compression a�ect the generated set?

High compression levels are likely to distort the generation process. This is
likely to lead to an increase of outliers which may negatively a�ect the overall
assessment of a generated set, especially if using popular :-nearest neighbor
(KNN) approaches [Kyn+19]. Hence, on top of assessing several popular GANs
designs trained on several high-quality datasets, we propose two new metrics
that use locality-sensitive hashing (LSH) to increase outlier robustness as well as
reduce the computational complexity of the overall evaluation process. Our study
suggests that GANs may be compressed to low bit-width, ultimately leveraging
speci�c application scenarios where sample quality is potentially more critical
than sample diversity.

Figure 1.1 highlights the di�erent methods proposed throughout this thesis. As
discussed in this Section, all methods are inherently connected and complement
one another. For example, the proposed compression methods may be used
to reduce the complexity added by the proposed generative multi-adversarial
networks, with the compression e�ects possibly being evaluated using our
LSH-based evaluation metrics. Alternatively, we may also directly assess the
proposed generative multi-adversarial networks, as well as original GANs, using
the other proposed evaluation metrics, depending on the task and data domain.
Furthermore, our compression methods may also be used to possibly balance
out our generative multi-adversarial networks in terms of improving the sample
quality and sample diversity trade-o�.

1.3 Thesis Outline

In this Chapter, we started establishing the research background in which the
di�erent work presented in this thesis was conducted. Then, we highlighted
some of the research questions that fueled the discussed work. Furthermore, we
provided a glance at the proposed methods as well as research topics that will
be presented throughout this thesis. We will now proceed to outline the rest of
the document and summarize the main discussions presented in each chapter. A
summary of our main contributions is also presented at the end.

6



Thesis Outline Section 1.3

Generative Multi-
Adversarial
Networks

Dropout-GAN

microbatchGAN

Compression
methods

MCQ

MCGQ

Evaluation
metrics

ME

FTI

LSH

MEPetersen

MESchnabel

MECapture

LSH + KNN

Figure 1.1: Thesis contributions. The discussed topics, represented as rounded rectan-
gles, are inter-connected and complementary. The proposed methods for each topic are
represented as ellipses.

In Chapter 2, we start by presenting our contributions to multi-discriminator
GANs training. More speci�cally, we discuss our two novel frameworks, Dropout-
GAN and microbatchGAN, that make use of an ensemble of discriminators to
stimulate sample diversity in the generated set produced by � . Popular training
modi�cations to stabilize and improve learning in GANs are also discussed.

In Chapter 3, we present our novel compression methods that make use
of Monte Carlo methods and importance sampling. Speci�cally, Monte Carlo
Quantization is used to quantize and prune weights and activations in a post-
training setting. On the other hand, Monte Carlo Gradient Quantization extends
the previous approach to compress gradients during training in a distributed
training setting. Related compression methods for weights, activations, and
gradients are also introduced.

In Chapter 4, we discuss our novel evaluation metrics to assess a generated
set. Namely, one of the metrics assesses how a generated set and a real set di�er
by measuring their Fuzzy Topology Impact, using Fuzzy Logic and topological
representations. Our family of metrics, Mark-Evaluate, assesses an evaluation
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Chapter 1 Introduction

set by using population estimation methods that are popular in ecology. A
discussion of widely used evaluation metrics is provided.

In Chapter 5, we build on our previously described e�orts to assess the com-
pression e�ects in the generated set of GANs. To this end, we propose two
novel outlier-aware evaluation metrics based on locality-sensitive hashing. Even
though GANs compression is a relatively new, albeit important, research topic,
we analyze recent work and discuss future directions.

Finally, in Chapter 6, we highlight our contributions and present our �nal
remarks.

1.4 Main Contributions

We summarize the main contributions presented in this thesis as follows:

• We present two novel and general multi-adversarial frameworks for GANs
training, i.e. Dropout-GAN and microbatchGAN, and empirically show
that they help mitigate the inherent mode collapse problem in GANs by
promoting sample diversity in � during training.

• We propose Monte Carlo Quantization (MCQ) to quantize and prune the
weights and activations of pre-trained neural networks using Monte Carlo
methods and importance sampling techniques. The resulting compressed
networks achieve close to full-precision accuracy without any additional
training. Importantly, the complexity of the resulting networks is propor-
tional to the number of samples taken.

• We extend the previous method by leveraging both pruning and quan-
tization to compress gradients of neural networks during training. On
top of reducing the communication exchanged between multiple workers
in a distributed setting, we also improve the computational e�ciency of
each worker. Our method, called Monte Carlo Gradient Quantization
(MCGQ), shows faster convergence and higher performance than exist-
ing compression methods on image classi�cation and language modeling
tasks.

• To evaluate the quality and diversity of a generated image set, we propose
Fuzzy Topology Impact. Our metric retrieves two interpretable metrics,

8



Main Contributions Section 1.4

which directly correlate to sample quality and sample diversity. Contrarily
to previous topology-based methods, our method enhances evaluation by
allowing for a �ner-grained assessment due to the usage of fuzzy logic.

• Focusing on text evaluation, we present Mark-Evaluate: a family of 3
novel language metrics that empirically show sensitivity to mode collapse
and quality detriment. Moreover, we achieve a high correlation to human
evaluation on challenging text generation tasks, such as unconditional
language generation, machine translation, and text summarization.

• We reduce the computational complexity of assessing an evaluation sample
against a set of reference samples of existing KNN-based metrics by using
locality-sensitive hashing. This is an important step since increasing the
number of reference samples is likely to lead to a better assessment of
existing evaluation methods. Our LSH-based metrics are also sensitive to
outliers in both the generated and real sets that may otherwise negatively
impact the proper evaluation using current KNN-based metrics.

• Finally, we show that existing compression methods may be successfully
applied to pre-trained GANs, providing a trade-o� between precision
and recall: while sample quality is mostly retained, sample diversity is
majorly a�ected by high compression levels. Hence, depending on the use
case, compression may act as a simple, yet e�ective measure to balance
existing GANs in a post-training setting, improving the precision and
recall trade-o� on several popular GANs.

9





2 Generative Multi-
Adversarial Networks

This Chapter is based on two of our refereed papers: Dropout-GAN [MYM18] and
microbatchGAN [MYM20]. We note that some of the results presented for Dropout-
GAN are based on an extended arXiv version of the paper presented at KDD 2018
Deep Learning Day. Dropout-GAN has also been applied to the language generation
domain in our subsequent work presented at LREC [Sau+20]. For readers unfamiliar
with GANs, we refer to Goodfellow et al. [Goo+14].

In this Chapter, we introduce our novel generative multi-adversarial networks
that aim at stimulating sample diversity in the generated set of� when training
GANs. Hence, the proposed frameworks aim at mitigating the inherent mode
collapse problem in GANs. Speci�cally, we provide an overview of the original
GANs framework as well as existing modi�cations focused on increasing sample
diversity in Section 2.1. We then present our contributions in the form of two
new multi-adversarial frameworks – Dropout-GAN and microbatchGAN – in
Sections 2.2 and 2.3, respectively. Finally, we present some concluding thoughts
in Section 2.4.

2.1 Related Work

We will start by introducing GANs in Section 2.1.1 as well as discussing existing
methods to stimulate sample diversity in the generated sets in Section 2.1.2.

2.1.1 Generative Adversarial Networks (GANs)

The original GANs framework, introduced by Goodfellow et al. [Goo+14], con-
sists of two models: a generator (�), that tries to capture the real data distribution
to generate fake samples that look realistic, and a discriminator (�), that tries to
do a better job at distinguishing real and fake samples. � maps a latent space
to the data space by receiving noise as input and applying transformations to
it to generate fake samples. On the other hand, � maps a given sample to a
probability ? , representing the likelihood of such sample coming from the real

11
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data distribution. Ideally, with enough iterations, � starts generating such real-
istic samples that � is no longer able to distinguish from real samples. However,
due to the training instability in GANs previously mentioned in Chapter 1, this
ideal state of equilibrium is hard to reach in practice. More concretely, GANs
introduce the following minimax game between � and � :

min
�

max
�
+ (�,�) = EG∼?A (G) [log� (G)] + EI∼?I (I) [log(1 − � (� (I)))], (2.1)

with ?A being the real data distribution from which a real sample G may be
sampled and � (G) representing �’s output. On the other hand, ?I is the noise
distribution used to sample � ’s input I, while � (I) represents its output.
� maximizes (2.1) by improving its classi�cation task on correctly distinguish-

ing between real and generated samples by assigning ? ≈ 1 to real samples and
? ≈ 0 to generated samples. On the other hand, � minimizes (2.1) by improving
its ability to fool � , i.e. leading � to assign ? ≈ 1 to its generated samples.

In practice, however, log(1 − � (� (I))) is known to introduce vanishing gra-
dients, which hinder training and are originated from �’s ability to easily distin-
guishing real and fake samples due to the lack of realistic samples generated by
� . To prevent this, the original paper [Goo+14] introduces a simple modi�ca-
tion by maximizing log(� (� (I))) instead. Note that this modi�cation does not
change the tasks originally designed for each model. Nevertheless, to study the
change in training behaviors when introducing a multi-adversarial setting, we
experiment with both the original and modi�ed variants in Section 2.2.

2.1.2 Stimulation of Sample Diversity in GANs

As discussed in Chapter 1, mode collapse is a common problem in GANs [AB17;
ACB17; Che+17; Kim+17; MNG17], where � mostly produces similar samples
that are able to fool � . In the end, this leads to a poor generation process since
only samples from certain data modes are likely to be produced. A description
of the initially proposed e�orts to mitigate mode collapse follows below.

Several approaches were �rst introduced by directly modifying the models’
objective functions to better approximate the real data distribution through
discrepancy measurements [Li+17; MSG17; Sut+17], various divergence func-
tions [NCT16; Ueh+16], energy-based functions [BSM17; Unt+18; ZML17], or
unrolled optimization [Met+17]. In another line of work, adding an auto-encoder
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model in the framework may be useful to penalize the lack of sample diver-
sity [BSM17; Che+17; Wan+17; WB17]. Other approaches conditioned �’s
output to consider the similarity of samples in a minibatch [Sal+16] or by lever-
aging supervised learning to calculate the mutual information between samples
and labels [Spr15] as well as the combined discrimination of multiple samples of
a given class [Lin+18b].

Increasing the number of generators in the framework [Gho+18; Hoa+18]
may also be a viable option. However, it comes with the increased cost of having
multiple generative models after discarding the discriminator or discriminators, if
using a multi-generator and multi-discriminator setting [CF18; Gan+17; GE18], at
the end of training. Increasing solely the number of discriminators in the original
GANs framework was also proposed in these early research stages. Speci�cally,
D2GAN [Ngu+17] proposed two discriminators that have di�erent objective
functions and provide two complementary rewards to � : while one rewards
samples coming from the real data distribution, the other rewards samples
likely generated by � . However, this may compromise scalability to bigger
discriminator sets, unlike our proposed frameworks. GMAN [DGM17] proposed
to use several discriminators with the same common objectives. However, their
focus was on restricting the feedback provided from the discriminator ensemble
to� in di�erent ways, simulating di�erent levels of di�culty throughout training.
However, this may compromise convergence while being task-dependent.

As previously mentioned, the methods above only present the initial e�orts
to mitigate mode collapse in GANs. The high popularity of GANs led to the
extensiveness of the related work being too broad to be fully covered in this
thesis. Since then, several popular methods were proposed to stabilize GANs
training, some of which will be later discussed in Chapter 5. For now, we �nd
that the presented methods provide appropriate coverage of the existing work at
the time of writing of both our multi-adversarial frameworks – Dropout-GAN
and microbatchGAN – which will be discussed next.

2.2 Dropout-GAN

We present our �rst novel method in Section 2.2.1 and describe important imple-
mentation details in Section 2.2.2. In Section 2.2.3, we report experimental results
on multiple datasets using di�erent con�gurations of the proposed framework.
Finally, we compare our solution against existing methods in Section 2.2.4.
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2.2.1 Adversarial Dropout

Before we dive into describing our approach, let us �rst discuss dropout [Sri+14],
a widely used neural network technique to prevent over�tting [BS13; GG16;
War+14]. By omitting or dropping out neurons in a neural network with a prob-
ability 3 , called dropout rate, this technique aims at reducing neuron dependency.
In other words, dropout prevents neurons to be entirely dependent on a speci�c
set of other neurons to learn their weights, promoting generalization in the
neural network by making it less prone to over�t.

Our framework, Dropout-GAN, leverages the dropout principles in gener-
ative multi-adversarial networks. More concretely, we �rst extend the GANs
framework to a multi-adversarial setting by introducing an ensemble of  dis-
criminators. Then, by dropping out the feedback of a given discriminator with a
probability 3 , we disentangle � to rely on the feedback of a speci�c discrimina-
tor or discriminator set to learn how to generate realistic samples. Hence, � is
guided by a dynamic ensemble of discriminators that is likely to change at every
iteration.

With adversarial dropout in mind, mode collapse may be seen as a conse-
quence of over�tting to the feedback of a static ensemble of discriminators.
Hence, by continuously and dynamically changing the discriminator ensemble
during training, � is stimulated to induce sample variety in the generated set
to ultimately increase its chances of fooling the di�erent possible discrimina-
tors that may be in the ensemble at a given iteration. Figure 2.1 illustrates the
proposed multi-adversarial framework.

�

�

(a) Original GANs [Goo+14].

�

�1 �2 �3 . . . � 

(b) Dropout-GAN.

Figure 2.1: We extend the original GANs framework (left) to  discriminators (right),
where some of which are dropped out (dashed circles) according to some probability,
leading to a random subset of feedback (represented by the arrows) being used by � at
each training iteration.
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Considering a Bernoulli variable X: ∼ �4A=(1−3) and a set of discriminators
{�: }, with : ∈ {1, . . . ,  }, the output of a given discriminator �: is only used
to update � if X: = 1. (Note that % (X: = 1) = 1 − 3 .) Our initial modi�cation of
the minimax game’s value function + ′ is then the following:

min
�

max{
�:

}  ∑
:=1

+ ′(�: ,�) =

 ∑
:=1

X:

(
EG∼?A (G) [log�: (G)] + EI∼?I (I) [log(1 − �: (� (I)))]

)
.

(2.2)

Our second and �nal modi�cation is to consider the possibility of no discrimi-
nator being left in the dynamic ensemble at a given iteration. This is not ideal
since� would have no guidance. To accommodate this case, if all the discrimina-
tors are dropped out, we uniformly pick one discriminator � 9 at random, with
9 ∈ {1, . . . ,  }, and follow the original GANs value function+ , described in (2.1).
Hence, we de�ne our �nal value function, � , as:

� (�,
{
�:

}
) =


min
�

max{
�:

}  ∑
:=1

+ ′(�: ,�), if ∃: : X: = 1

min
�

max
� 9

+ (� 9 ,�), otherwise, for 9 ∈
{
1, ...,  

}
.

(2.3)

We note that we treat each discriminator independently, i.e. each discriminator
is not aware of the existence of a discriminator ensemble. Hence, despite being
dropped out or not, all discriminators still update their parameters at every
iteration. Our training procedure is presented in Algorithm 1.

2.2.2 Implementation Details

We will provide important insights about the e�ects of using a di�erent number
of discriminators,  , as well as di�erent dropout rates, 3 . Moreover, we discuss
how the splitting of samples among the di�erent discriminators is performed.
The proposed framework was implemented using Tensor�ow [Aba+16].
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Algorithm 1 Dropout-GAN.
Input:  discriminators, 3 dropout rate, � batch size
< ← �

 

for each iteration do
for : = 1 to  do
• Sample minibatch I8 , 8 = 1 . . .<, I8 ∼ ?6 (I)
• Sample minibatch G8 , 8 = 1 . . .<, G8 ∼ ?A (G)
• Update �: by ascending along its gradient:

∇\�:
1
<

<∑
8=1
[log�: (G8) + log(1 − �: (� (I8)))]

end for
• Sample minibatch X: , : = 1 . . .  , X: ∼ �4A=(1 − 3)
if X1 = 0 ∧ . . . ∧ X = 0 then
• Sample minibatch I8 , 8 = 1 . . .<, I8 ∼ ?6 (I)
• Update� by descending along its gradient using a random discriminator
� 9 , for some 9 ∈

{
1, ...,  

}
:

∇\�
1
<

<∑
8=1

log(1 − � 9 (� (I8)))

else
• Sample minibatch I:8 , 8 = 1 . . .<, : = 1 . . .  , I:8 ∼ ?6 (I)
• Update � by descending along its gradient:

∇\�
 ∑
:=1

X:

( 1
<

<∑
8=1

log(1 − �: (� (I:8 )))
)

end if
end for
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Number of discriminators

As previously addressed in Section 2.1, GANs are prone to show signs of training
instability. Previous works have shown that increasing the number of adver-
saries in the framework may act as a simple yet e�ective way of reducing such
instability [DGM17; NBC17]. More speci�cally, the chances of � receiving
positive feedback are greater if using an ensemble of discriminators, which
has been shown to improve the training even when using the original GANs
formulation [DGM17].

By correlating training instability with the magnitude of� ’s gradient updates
throughout training, we observed that using a static ensemble of discriminators
helped the gradients to converge to zero faster when compared to using only one
discriminator. This suggests that� ’s learning is more smooth and continuous
over time, instead of experiencing drastic changes which are likely not bene�cial,
especially after the early training stages. We further observed that increasing
the number of discriminators in the static ensemble delays the gradient to
converge which may be explained by the con�icting feedback from the di�erent
discriminators at the beginning of training.

Batch partitioning

Intuitively, having an ensemble of discriminators is most bene�cial if each dis-
criminator provides unique, but complementary, feedback. Hence, to encourage
each discriminator to specialize in di�erent aspects of the data, we partition
both the real and fake batches among the di�erent discriminators. Hence, at a
given iteration, each discriminator is trained with a di�erent set of real and fake
samples. We observed that� ’s loss was higher when batches were partitioned,
which suggests the reduction in � ’s capacity of fooling the entire discriminator
ensemble.

In terms of total batch size, we keep the same number of samples at each
discriminator batch, independently of the size of the discriminator ensemble. On
the other hand, this implies that� has access to feedback from more samples,
proportionally to the ensemble size. However, having weaker discriminators
compared to � , by providing them access to fewer samples, is likely to lead
to more positive feedback, which correlates better to improved learning than
continuous negative feedback [DGM17; NBC17].
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Dropout rate

Variability in the discriminator set is controlled by a dropout rate (3) which
determines if a given discriminator’s feedback is omitted to � . This creates a
dynamic ensemble of discriminators that is likely to change at each iteration.
Hence, our adversarial dropout may also be seen as a form of regularization in
� ’s training. The rate at which the ensemble may change, directly depends on
the used dropout rate, with 3 ≈ 1 leading to an often varying ensemble whereas
3 ≈ 0 leads to a nearly static ensemble. The di�erent variance levels in the
ensemble directly impact � ’s learning and deserve consideration.

We will see in Section 2.2.3 that 0.2 < 3 ≤ 0.5 leads to consistently improved
results when compared to using a static ensemble of adversaries, i.e. 3 = 0.
These values are in conformity to the reported values in the original dropout
paper [Sri+14]. In our use case, this suggests that adding variability to the
ensemble positively in�uences� ’s learning, however, too much variability in the
feedback received by � is likely to lead to poorer learning overall. A discussion
regarding the correlation between di�erent dropout rates and the number of
discriminators in the realism of the generated set follows below.

2.2.3 Experimental Results

We start by evaluating Dropout-GAN on three image datasets: MNIST [LCB10],
the 10-handwritten-digit dataset, CIFAR-10 [Kri09], the 10-class dataset of vehi-
cles and animals, and CelebA [Liu+15], the cropped celebrity faces dataset. We
borrowed the DCGAN-like architecture [RMC16] and training settings proposed
by GMAN [DGM17]. Namely, � makes use of 4 convolutional layers with 128,
64, and 32 channels for the �rst three layers and either 1 channel (MNIST) or 3
channels (CIFAR-10 and CelebA) in the last convolutional layer. On the other
hand, � employs the earlier 3 convolutional layers in reverse order with an
additional fully connected layer at the end for classi�cation purposes. Note that,
even though all discriminators share the same architectural design, their weights
are initialized di�erently.

The main metric used throughout this Section is the Fréchet Inception Distance
(FID) [Heu+17], which retrieves a distance measure re�ecting the similarity of the
real and fake distributions. FID is discussed and evaluated in detail in Chapter 4.
For now, it su�ces to say that FID is more robust to noise while showing a higher
correlation to human evaluation compared to other single-valued metrics, such
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Table 2.1: Minimum FID obtained across 40 epochs on the di�erent datasets. For each
dataset, the overall best FID is presented in bold. For each framework con�guration, the
best FID is underlined.

MNIST CIFAR-10 CelebA

1 disc. 21.71 ± 0.39 104.19 ± 0.07 53.38 ± 0.03

2 disc.; 3 = 0.0 24.88 ± 0.13 106.54 ± 0.38 52.46 ± 0.08
2 disc.; 3 = 0.2 22.34 ± 0.29 103.55 ± 0.13 46.60 ± 0.03
2 disc.; 3 = 0.5 22.08 ± 0.09 103.20 ± 0.05 45.90 ± 0.04
2 disc.; 3 = 0.8 21.87 ± 0.10 103.60 ± 0.03 46.82 ± 0.14
2 disc.; 3 = 1.0 23.56 ± 0.29 104.73 ± 0.19 51.17 ± 0.01

5 disc.; 3 = 0.0 21.47 ± 0.40 95.75 ± 0.15 45.89 ± 0.05
5 disc.; 3 = 0.2 21.70 ± 0.12 90.59 ± 0.35 36.36 ± 0.11
5 disc.; 3 = 0.5 19.25 ± 0.12 89.74 ± 0.35 38.10 ± 0.54
5 disc.; 3 = 0.8 20.26 ± 0.07 90.77 ± 0.70 41.22 ± 0.24
5 disc.; 3 = 1.0 20.54 ± 0.15 95.71 ± 0.03 41.56 ± 0.18

10 disc.; 3 = 0.0 22.62 ± 0.10 99.91 ± 0.10 43.85 ± 0.30
10 disc.; 3 = 0.2 19.12 ± 0.01 91.31 ± 0.16 41.74 ± 0.14
10 disc.; 3 = 0.5 18.18 ± 0.44 88.60 ± 0.08 40.67 ± 0.56
10 disc.; 3 = 0.8 19.33 ± 0.18 88.76 ± 0.16 41.74 ± 0.03
10 disc.; 3 = 1.0 19.82 ± 0.06 93.66 ± 0.21 41.16 ± 0.55

as the popular Inception Score [Sal+16]. More importantly, FID is also able to
detect lack of diversity in the generated set and may be used to assess signs of
mode collapse [Luc+18].

Minimum FID

We present the minimum FID over 40 epochs for di�erent con�gurations, calcu-
lated from 10K fake samples at the end of every epoch. Results obtained over 2
runs are presented in Table 2.1 (the same applies for the following tables in this
Chapter). The inferior results with 10 discriminators on CelebA may be due to
longer training being required since this is the most challenging dataset.

We observe that the best minimum FID across the di�erent datasets and
ensemble size were often obtained with 3 = 0.5, even though competitive results
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Figure 2.2: Mean FID calculated using di�erent dropout rates and number of discrimi-
nators across 40 epochs on the di�erent datasets. The convex representations suggest
the bene�ts of using mid-range dropout rates.

were also achieved with 3 = 0.2 and 3 = 0.8. Overall, we see that applying
adversarial dropout achieves lower minimum FID values than using a static
ensemble, i.e. 3 = 0, or the original GANs framework, i.e. 3 = 0 and  = 1.

Mean FID

To have a better understanding of the realism of the generated set during training,
we also calculated the mean FID across 40 epochs. Smaller mean FID values
suggest the generation of more realistic samples over time. Results are shown in
Figure 2.2. We observe that mid-range dropout rates tend to perform better over
time over the di�erent datasets. Moreover, the advantage of using a discriminator
ensemble instead of only one � is also noticeable across the board.

Even though using 10 discriminators seems to have an identical mean FID
then using 5 discriminators, we note that this may be explained by � requiring
more time to learn from the additional, perhaps contradictory, feedback in the
early to mid iterations. However, the better performance in terms of minimum
FID when using 10 discriminators previously presented in Table 2.1 implies that
� is eventually able to produce more realistic samples in the later training stages.

Cumulative Intra FID

We further introduce Intra FID, which is used to compare 10K generated samples
from subsequent epochs. The goal of this metric is to assess how samples di�er
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Figure 2.3: Cumulative Intra FID using a di�erent number of discriminators and dropout
rates across 40 epochs on the di�erent datasets. Higher values suggest more sample
diversity over time.

over time, speci�cally in terms of sample diversity. We used the cumulative Intra
FID for each model to assess its overall generation process. Results are presented
in Figure 2.3.

We observe that increasing the size of the discriminator ensemble leads to an
increase of cumulative Intra FID across the di�erent datasets and dropout rates.
We also see a slight increase of cumulative Intra FID in the mid-range dropout
rates, especially when using 5 or 10 discriminators.

2.2.4 Method Comparisons

We now compare Dropout-GAN against existing diversity-inducing methods in
a variety of metrics and datasets.

Mode coverage on a toy dataset

We start by visualizing the mode coverage of di�erent frameworks on a 2D
mixture of 8 Gaussian distributions. The goal of this toy experiment originally
proposed by Metz et al. [Met+17], is to treat each distribution as a data mode. We
used 8 discriminators and followed D2GAN’s architecture and training details.
Results are presented in Figure 2.4.

We observe that our framework, Dropout-GAN, covers all data modes across
all training stages, unlike the original GANs framework which shows clear
signs of mode collapse. Compared to the other discriminator-based methods, i.e.

21



Chapter 2 Generative Multi-Adversarial Networks

unrolled optimization of � (UnrolledGAN) and dual-discriminators (D2GAN),
Dropout-GAN shows fewer signs of noise, especially in the early training steps.
We note that MGAN makes use of multiple generators plus an additional classi�er
while using a bigger architecture. We �nd this to likely be a big contributor to
MGAN’s superior results, especially later on in training.
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Figure 2.4: Method comparisons on a toy dataset. Real data is presented in red while
generated data is presented in blue. Dropout-GAN successfully covers all data modes
throughout training.

FID on MNIST, CIFAR-10, and CelebA

We will now go back to quantitative evaluation by assessing the minimum FID
of di�erent frameworks trained on MNIST, CIFAR-10, and CelebA for 20, 40,
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and 100 epochs, respectively. We compare Dropout-GAN against other popular
GANs modi�cations presented by Lucic et al. [Luc+18]. Namely, we consider
the original and modi�ed formulations, i.e. GANs and modGAN [Goo+14],
respectively, as well as applying gradient penalty, i.e. DRAGAN [Kod+17], and
using an unbounded output for each � , i.e. LSGAN [Mao+17]. We used a bigger
version of the convolutional architecture previously presented in Section 2.2.3
by simply doubling the number of channels. Results are presented in Table 2.2.

Table 2.2: Minimum FID of the di�erent methods on MNIST, CIFAR-10 and CelebA.
Lower values are better. In our adversarial dropout variants, we used  = 2 and 3 = 0.5.

MNIST CIFAR-10 CelebA

Real data ≈ 0.00 ≈ 0.00 ≈ 0.00

GANs ([Goo+14]) 22.65 ± 0.13 70.23 ± 0.07 46.18 ± 0.07
Dropout-GAN 14.63 ± 0.18 66.82 ± 0.10 31.25 ± 0.09

modGAN ([Goo+14]) 22.66 ± 0.11 79.58 ± 0.11 41.25 ± 0.03
Dropout-modGAN 15.39 ± 0.15 67.57 ± 0.14 35.32 ± 0.06

LSGAN ([Mao+17]) 24.05 ± 0.15 83.66 ± 0.08 43.13 ± 0.04
Dropout-LSGAN 15.41 ± 0.21 69.37 ± 0.11 37.58 ± 0.10

DRAGAN ([Kod+17]) 22.84 ± 0.15 80.57 ± 0.06 46.82 ± 0.06
Dropout-DRAGAN 15.20 ± 0.16 66.90 ± 0.09 37.21 ± 0.08

We observe that applying the proposed adversarial dropout reduces the mini-
mum FID across the di�erent GANs variations and datasets. For an unbiased
comparison against the 1-discriminator baselines, we only used 2 discriminators
for the adversarial dropout variants. Despite not reported, we note that using
static discriminator ensembles, i.e. 3 = 0, showed worse and less consistent per-
formance than our dynamic ensembles. Speci�cally, on CIFAR-10, our reported
results lower the minimum FID of static ensembles by 7.25, 4.39, 3.96, and 9.93,
on GANs, modGAN, LSGAN, and DRAGAN, respectively.
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Comparison to GMAN on CIFAR-10

To further investigate the e�cacy of adversarial dropout in a multi-discriminator
setting, we directly compared Dropout-GAN to GMAN [DGM17] using 2 and
5 discriminators. We used di�erent GMAN variations which use the mean
loss of all discriminators, i.e. GMAN-0, the maximum discriminator loss in the
ensemble, i.e. GMAN-1, or a learned hyper-parameter _ variant controlled by
� , i.e. GMAN*. We also report results with the modi�ed GANs variant, i.e.
modGAN, as a baseline.

Since GMAN’s reported results on CIFAR-10 assess the Inception Score or
IS [Sal+16], we follow the same experimental setup. Higher IS values suggesting
a more realistic generated set, both in terms of quality and diversity. Similar to
FID, we discuss IS in more detail in Chapter 4. For a fair comparison, we used
the architectural and training details reported by GMAN. Results are presented
in Table 2.3.

Table 2.3: Inception score (IS) of a GANs baseline with modi�ed loss and di�erent
variants of GMAN and Dropout-GAN on CIFAR-10. Underlined values represent the
best scores within each framework variation. Bold values refer to the best scores under
a certain number of discriminators.

1 disc. 2 disc. 5 disc.

modGAN ([Goo+14]) 5.74 ± 0.17 - -

GMAN-0 ([DGM17]) - 5.88 ± 0.19 5.96 ± 0.14
GMAN-1 ([DGM17]) - 5.77 ± 0.16 6.00 ± 0.19
GMAN* ([DGM17]) - 5.54 ± 0.09 5.96 ± 0.15

Dropout-modGAN (3 = 0.2) - 5.95 ± 0.10 6.01 ± 0.12
Dropout-modGAN (3 = 0.5) - 5.98 ± 0.10 6.05 ± 0.15

We observe that all adversarial dropout variants outperform the modi�ed
GANs baseline. More importantly, we outperform GMAN’s variants across
di�erent discriminator ensemble sizes. We further observe that using 3 = 0.5
consistently provides the best performances in our framework.
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Inception Scores on CIFAR-10, STL-10, and ImageNet

We further assessed how the proposed adversarial dropout translates to larger
image datasets. Namely, on top of CIFAR-10, we trained the di�erent GANs
on STL-10 [CNL11], containing 100K of both labeled and unlabelled images,
and ImageNet [Rus+15], the 1M-image dataset. Despite being higher quality
datasets, we downsized all images to 32x32 pixels so we could re-use the same
architectural setting as before (Table 2.2) for the di�erent datasets. However, we
trained CIFAR-10 and STL-10 for 250 epochs and ImageNet for 50 epochs. The
obtained IS are presented in Table 2.4.

Table 2.4: Inception score (IS) of di�erent GANs on CIFAR-10, STL-10, and ImageNet.
We used 2 discriminators and 3 = 0.5 for all the adversarial dropout methods represented
in bold.

CIFAR-10 STL-10 ImageNet

Real data 11.24 ± 0.16 26.08 ± 0.26 25.78 ± 0.47

GANs ([Goo+14]) 5.35 ± 0.04 5.53 ± 0.03 7.30 ± 0.08
Dropout-GAN 6.22 ± 0.09 7.20 ± 0.11 7.52 ± 0.13

modGAN ([Goo+14]) 5.49 ± 0.07 6.64 ± 0.05 6.96 ± 0.08
Dropout-modGAN 5.90 ± 0.08 6.95 ± 0.09 7.26 ± 0.12

LSGAN ([Mao+17]) 5.76 ± 0.05 5.32 ± 0.06 6.92 ± 0.04
Dropout-LSGAN 5.95 ± 0.07 6.88 ± 0.13 7.08 ± 0.13

DRAGAN ([Kod+17]) 5.65 ± 0.08 6.97 ± 0.09 7.41 ± 0.11
Dropout-DRAGAN 6.22 ± 0.08 7.30 ± 0.13 7.54 ± 0.12

We observe the bene�ts of applying adversarial dropout in terms of IS on the
di�erent GANs and datasets. This goes in accordance with the previous results
using FID on the smaller datasets in Table 2.2.

In Figure 2.5, we provide a glance at a random subset of the generated images
using the previous GANs trained with adversarial dropout on the di�erent
datasets. Overall, we observe high sample diversity, even on the larger datasets.
The extensiveness of the empirical studies presented in this Section suggests the
general applicability and success of our approach in mitigating mode collapse.
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Figure 2.5: Generated samples on CIFAR-10, STL-10, and ImageNet using di�erent
GANs and adversarial dropout.

2.3 microbatchGAN

Now, we introduce our other multi-adversarial framework called microbatch-
GAN. We follow a similar structure as Section 2.2 and introduce our new frame-
work in Section 2.3.1, together with theoretical discussions. Then, we discuss
several implementation details of our new method in Section 2.3.2. Finally, we
analyze di�erent con�gurations of our approach in Section 2.3.3 and compare
them to existing methods in Section 2.3.4.

2.3.1 Multi-Adversarial Microbatch Discrimination

In microbatchGAN, we also propose to use multiple discriminators, i.e.  > 1.
However, instead of applying adversarial dropout, we introduce a new mecha-
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nism: multi-adversarial microbatch discrimination. In sum, our approach starts
by splitting the real and fake minibatches into di�erent but complementary
portions called microbatches. Then, we change the objective function of each �
to distinguish between fake samples in its microbatch and the rest of the fake
samples present in the microbatches assigned to the other discriminators. On
top of this, similarly to the original GANs formulation [Goo+14], each � also
distinguishes between samples in its assigned fake microbatch and samples from
its assigned real microbatch. Figure 2.6 illustrates the proposed framework.

� data

. . .I��1
I�� 

I�

G�

. . .G��1
G�� 

�1

G��1 GA�1
∨ G� \ {G��1

}

GA

. . .GA�1
GA� 

� 

G�� GA� ∨ G� \ {G�� }

. . .

Figure 2.6: Our proposed framework, microbatchGAN, uses multiple discriminators
and microbatch discrimination. Each discriminator �: is assigned a unique fake (G��: )
and real (GA�: ) microbatch obtained from partitioning a fake (G� ) and real (GA ) minibatch,
respectively. Note that G� is generated using a noise minibatch (I� ), which may also be
partitioned and assigned to each �: (I�� ). �: ’s task is then to distinguish between
samples from its fake and real microbatches as well as samples from the rest of the
microbatches assigned to the other discriminators, i.e. G� \ {G��: }.

We gradually induce microbatch discrimination by introducing a diversity
parameter U . Hence, the discriminator objectives change throughout training:
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starting from simply distinguishing real and fake samples, increasingU stimulates
each � to also distinguish between fake samples assigned to its microbatch and
fake samples assigned to the other discriminator’s microbatches. The crux of our
algorithm is to ultimately promote sample diversity in� ’s generated minibatch
through U , making the microbatch discrimination performed by each � harder.
To prevent the production of identical samples, we initialize each � di�erently
and train them with unique microbatches. Hence, each � is likely to focus on
di�erent data properties, making it unlikely that similar fake samples would
continuously fool the entire discriminator ensemble.

Considering microbatch discrimination, i.e. U > 0, we add a new term to the
original GANs value function presented in (2.1). Particularly, we change each
�’s objective to assign low probabilities to fake samples from its microbatch but
high probabilities to the fake samples assigned to the rest of the discriminators.
Hence, within a fake minibatch, fake samples shall be given distinct probabilities
by each � . Moreover,� ’s objectives are also changed to promote sample variety
in the fake minibatch. Speci�cally, and conversely to each� ,� minimizes its loss
by fooling each � into assigning high probabilities to samples in its microbatch
but low probabilities to the rest of the fake samples in the minibatch. Hence, all
models in our framework bene�t from sample variety. The value function � ′ of
our minimax game is then:

min
�

max{
�:

}  ∑
:=1

� ′(�: ,�) =
 ∑
:=1

EG∼?A�: (G)
[log�: (G)]

+EI∼?I��: (I)
[log(1 − �: (� (I)))] + U × EI′∼?I� \{I��: } (I

′) [log�: (� (I ′))],

(2.4)

where, considering  discriminators and : ∈ {1, . . . ,  }, ?A�: and ?I��: repre-
sent real and fake samples from �: ’s real and fake microbatches, respectively,
and ?I� \{I��: } indicates the rest of the fake samples in �: ’s fake microbatch.
The incorrect microbatch discrimination by each � is penalized to di�erent
extent depending on the diversity parameter U . This implies each � follows
its original GANs objective if U = 0. Our training procedure is presented in
Algorithm 2.
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Algorithm 2 microbatchGAN.
Input:  discriminators, U diversity parameter, � minibatch size
< ← �

 

for number of training iterations do
• Sample minibatch I8 , 8 = 1 . . . �, I8 ∼ ?6 (I)
• Sample minibatch G8 , 8 = 1 . . . �, G8 ∼ ?A (G)
for : = 1 to  do
• Sample microbatch I: 9 , 9 = 1 . . .<, I: 9 = I (:−1)×<+1::×<
• Sample microbatch G: 9 , 9 = 1 . . .<, G: 9 = G (:−1)×<+1::×<
• Sample microbatch I ′

: 9
, 9 = 1 . . .<, I ′

: 9
⊂ I8 \ {I: 9 }

• Update �: by ascending its stochastic gradient:

∇\�:
1
<

<∑
9=1
[log�: (G: 9 ) + log(1 − �: (� (I: 9 ))) + U × log�: (� (I ′: 9 ))]

end for
• Update � by descending its stochastic gradient:

∇\�
 ∑
:=1

[ 1
<

<∑
9=1
[log(1 − �: (� (I: 9 ))) + U × log�: (� (I ′: 9 ))]

]
end for

Theoretical discussions

To take a deeper look at how our framework promotes sample variety in the
generated set, we now provide some theoretical discussions that build on previ-
ous work [Goo+14; Ngu+17]. Namely, we consider a simplistic version of the
proposed minimax game by not training, i.e. freezing, each� but training� until
convergence. Moreover, we examine the most extreme case of mode collapse
where each generated sample G is identical to one another. Hence, following the
original GANs formulation in (2.1), we de�ne mode collapse in its acute form as:

For all I ′ ∼ ?6 (I),� (I ′) = G . (2.5)
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I Theorem 2.1. In original GANs, mode collapse fully minimizes� ’s loss when
we train � exhaustively without updating � . J

Proof. Let us consider an optimal (unique) fake sample G∗ that maximizes �’s
output: G∗ = argmax

G

� (G). Training � to exhaustion until it learns how to

generate G∗, and making it independent of I, would result in mode collapse and
a fully converged � . �

I Theorem 2.2. In microbatchGAN, multi-adversarial microbatch discrimina-
tion, i.e.  > 1 and U > 0, forces G ∼ ?6 to be dependent of I for � to fully
minimize its loss against a frozen discriminator ensemble. J

Proof. Considering (2.4), the value function between � and each �: may be
expressed as:

� ′(�: ,�) = EG∼?A [log�: (G)]+EG′∼?6 [log(1−�: (G ′))]+U×EG′′∼?6 [log�: (G ′′)] .
(2.6)

To fully minimize its loss in relation to �: , � must �nd

G ′ = argmax
G

�: (G) and G ′′ = argmin
G

�: (G), (2.7)

which implies

�: (G ′) ≠ �: (G ′′) =⇒ G ′ ≠ G ′′. (2.8)

Thus, sample generation must be dependent on the noise I to fully minimize
� ’s loss regarding each�: . Since, going back to (2.4), we simply sum all � ′(�: ,�)
to calculate� ’s �nal loss, we extend this discussion to the discriminator ensemble,
concluding the proof. �

2.3.2 Implementation Details

The introduction of the diversity parameter U raises important questions re-
garding its e�ects on microbatch discrimination and consequent mitigation of
mode collapse. Intuitively, small U values would likely neglect the importance of
microbatch discrimination in our framework. On the other hand, large U values
may induce too much weight on microbatch discrimination, possibly sacri�cing
sample quality in the end. We will discuss possible U implementations next.
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Constant diversity parameter "

We �rst acknowledge the most straightforward implementation of directly setting
U to a constant value during training. For a quick assessment, we make use of the
toy dataset previously described in Section 2.2.4 consisting of 8 data modes from
8 Gaussian distributions. Similarly to Dropout-GAN, we use 8 discriminators in
these experiments. Results are shown in Figure 2.7.
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Figure 2.7: Mode coverage on a toy dataset using constant U values. Real data is
presented in red while generated data is presented in blue.

We observe that the original GANs formulation (U = 0) shows clear signs of
mode collapse by only generating samples around a given data mode throughout
training. After the initial training steps, 0.1 ≤ U ≤ 0.5 shows good coverage of
all data modes, successfully mitigating mode collapse. However, considering the
initial training stages, we observe that � primarily focuses on sample diversity,
without much consideration being given to sample quality. This is even more
predominant with bigger U values, i.e. U ≥ 0.6. These results suggest that, while
constant U values successfully stimulate sample diversity in the generated set,
care must be taken to not undermine sample quality, especially from the initial
training stages.
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Learned diversity parameter "

Considering the poor sample quality and sample diversity trade-o� observed in
the early training stages when using a constant U , learning an optimal U may
then be a better approach. However, when adding U as a parameter of � , we
noticed that� simply learns to increase U at a large rate to reduce its loss. Hence,
sample quality continued to be neglected with this approach. To �x this, we
suggest U to have the following behavioral properties:

• Upper boundness: To avoid microbatch discrimination to overpower the
original GANs objective in (2.4), we suggest that U should be upper
bounded.

• Saturated growth: To prevent the continuous increase of U to lower � ’s
loss, we propose U ’s growth to saturate over time.

• Controlled growth: To balance sample quality and sample diversity in the
earlier training stages, we note that U ’s growth should be performed in a
controlled fashion.

To accommodate such properties, we propose to make U a function of a learned
dummy parameter V , where U (V) ∈ [0, 1[, and let � learn V instead of directly
regulating U . We experimented with the following functions which manipulate
U ’s growth di�erently over time:

U (V) =


Usigm(V) = Sigmoid(V), V ≥ Vsigm

Usoft(V) = Softsign(V), V ≥ Vsoft

Utanh(V) = Tanh(V), V ≥ Vtanh

Uid(V) = V,

(2.9)

where Vsigm, Vsoft, and Vtanh indicate the initialized V value for the respective
functions. In our experiments, we use Vtanh = Vsoft = 0, and Vsigm = −1.8
obtained through empirical observations. We reformulate the initial study of
directly learning U by using the identify function Uid. We tested the di�erent
functions in Figure 2.8 by re-using our toy dataset.

We observe that increasing U in a milder fashion (Usigm) promotes a good trade-
o� between sample quality and sample diversity, especially in the initial training
steps. The dominance of sample diversity over sample quality is heavily observed
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Figure 2.8: E�ects of using di�erent U functions on the toy dataset. The generated
samples (blue) and real samples (red) are shown in (a). The evolution of U considering
each function is presented in (b), according to the number of training steps.

at the beginning of training if using Utanh and, even though less signi�cantly,
Usoft. This is intuitive since both functions increase U at a steeper rate. However,
due to the saturating behavior of all functions, we observe that, given enough
training steps,� achieves a good balance of sample quality and sample diversity
across the di�erent U .

Considering the objectives of both� and the discriminator ensemble, we may
summarize the e�ects of the di�erent U functions on the training in the following
way: in the �rst training stages, U increases as a measure to reduce � ’s loss,
inducing sample variety. In the mid to late training stages, as U saturates and
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each � better distinguishes real and fake samples, � is stimulated to promote
both sample quality and sample diversity in the generated set.

2.3.3 Experimental Results

Following the previous Dropout-GAN experiments in Section 2.2.3, we validated
the e�ects of using di�erent U functions on MNIST [LCB10], CIFAR-10 [Kri09],
and cropped CelebA [Liu+15] datasets. Moreover, to quantitatively evaluate the
e�ects of the number of discriminators and di�erent U , we also quantitatively
assessed the generated sets by using di�erent variations of FID [Heu+17].

Intra FID

We start out by assessing the Intra FID, which was previously introduced to
measure sample variety over time. Note that we do not use the real sample set
for this measurement. Instead, we compare two sets of 10K randomly generated
samples at the end of every thousand iterations. Hence, higher Intra FID suggests
a change in the generated sets over time, which we assume to correlate with� ’s
ability to promote sample diversity. Figure 2.9 presents the evolution of Intra
FID over di�erent U values.
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Figure 2.9: Intra FID as U progresses on the di�erent datasets. Higher values suggest
higher sample diversity in the generated set over time.

We observe that as U values progress, Intra FID increases at a fast rate, espe-
cially at lower U values which relate to earlier training stages. Higher U values
maintain the sample diversity in the generated set, represented by the stagnation
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(MNIST) or increase (CIFAR-10 and CelebA) of Intra FID. We further see that
di�erent U functions have di�erent e�ects on the generated set as measured by
the Intra FID, especially on MNIST and CIFAR-10. However, as U increases and
training progresses, Intra FID tends to converge similarly across the di�erent
functions, speci�cally on MNIST and CelebA.

Cumulative Intra FID

Similar to our previous study for Dropout-GAN, we also accumulated all Intra
FID values to assess sample diversity over time. Higher values should then re�ect
a higher variety in the generated set across di�erent iterations. The cumulative
Intra FID results using di�erent U and  are presented in Figure 2.10.
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Figure 2.10: Cumulative Intra FID of di�erent microbatchGAN con�gurations with a
di�erent number of discriminators and U functions. We further report baseline results
using original GANs as a grey plane. Higher values suggest more sample diversity over
time.

We observe that using a bigger discriminator ensemble results in higher
cumulative Intra FID across the di�erent datasets and U functions. Not applying
microbatch discrimination, i.e. U = 0, leads to lower cumulative Intra FID
suggesting the e�cacy of our approach. Using Usigm, Usoft, and Utanh leads to
similar results among the di�erent datasets. Even though Uid presents higher
values compared to the other functions, the generated set lacks sample quality,
as previously discussed in Section 2.3.2.
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Mean and minimum FID

We further calculated the mean and minimum FID obtained during 50K training
iterations to measure the similarity between the real and generated sets. We
used 10K samples from each of the sets to calculate the FID at every thousandth
iteration. Results are presented in Table 2.5.

Table 2.5: Mean and minimum FID of di�erent microbatchGAN con�gurations as well
as the original GANs baseline. Lower values suggest higher similarity between the real
and generated sets. Bold values represent the best mean and minimum FID for each
dataset, while underline values represent the best U for each  .

microbatchGAN MNIST CIFAR-10 CelebA

K U Mean FID Min FID Mean FID Min FID Mean FID Min FID

1 - 50.9 ± 9.7 22.7 ± 0.7 125.5 ± 1.5 84.8 ± 1.6 77.3 ± 1.7 38.5 ± 1.1

2 Usigm 37.6 ± 1.1 23.5 ± 3.0 111.9 ± 0.1 90.8 ± 0.6 76.3 ± 0.6 53.0 ± 2.6
2 Usoft 41.9 ± 1.2 24.6 ± 0.0 110.2 ± 0.9 90.6 ± 1.2 74.7 ± 2.9 49.5 ± 0.1
2 Utanh 43.9 ± 0.8 27.2 ± 0.5 115.3 ± 0.5 91.3 ± 0.4 87.1 ± 2.4 54.7 ± 0.8
2 Uid 89.1 ± 2.2 53.6 ± 2.9 168.1 ± 2.0 113.2 ± 2.2 206.1 ± 3.5 113.6 ± 5.2

5 Usigm 34.7 ± 0.3 20.1 ± 0.1 103.9 ± 1.8 81.4 ± 1.1 66.5 ± 0.6 40.4 ± 3.1
5 Usoft 37.2 ± 0.3 19.4 ± 0.1 106.4 ± 0.8 82.5 ± 1.2 69.1 ± 0.3 42.0 ± 2.0
5 Utanh 39.4 ± 1.1 20.0 ± 0.1 107.2 ± 0.8 80.8 ± 0.6 70.3 ± 1.3 42.8 ± 0.5
5 Uid 61.2 ± 0.3 37.3 ± 0.2 127.9 ± 0.4 97.5 ± 2.8 135.9 ± 1.1 77.5 ± 2.0

10 Usigm 38.9 ± 3.0 18.0 ± 0.1 110.2 ± 1.7 79.0 ± 0.7 68.4 ± 0.1 34.8 ± 1.2
10 Usoft 36.2 ± 0.9 17.1 ± 0.2 110.8 ± 0.4 79.2 ± 0.5 67.8 ± 2.6 34.5 ± 0.2
10 Utanh 37.4 ± 1.2 17.4 ± 0.2 112.8 ± 1.7 77.7 ± 0.6 71.0 ± 1.4 34.5 ± 0.3
10 Uid 48.7 ± 0.9 28.7 ± 0.1 117.0 ± 0.2 87.1 ± 1.0 91.4 ± 0.2 45.4 ± 0.1

We observe that using a bigger discriminator ensemble as well as Utanh, Usoft,
or Usigm leads to a better mean and minimum FID. We note that the higher
FID observed with Uid indicate the lack of sample quality in the generated
samples, highlighting the need for the proposed properties in U (Section 2.3.2)
for the success of microbatch discrimination. The better mean and minimum
FID observed with  = 5 and  = 10, respectively, may be explained by the
training instability introduced by using a bigger discriminator set in the earlier
training iterations.
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2.3.4 Method Comparisons

We now compare di�erent con�gurations of microbatchGAN to existing methods,
including our previously proposed Dropout-GAN.

Comparison to Dropout-GAN on CIFAR-10

We start by comparing microbatchGAN to di�erent GANs variations, namely
original GANs, modi�ed loss GANs, LSGAN, and DRAGAN on CIFAR-10. We
also compared against the multi-adversarial dropout versions of these methods
previously reported in Section 2.2.4, using the same architectural and training
settings. For a fair comparison, we also use  = 2, similarly to the adversarial
dropout variants. Comparison results are presented in Table 2.6.

Table 2.6: Method comparison in terms of minimum FID on CIFAR-10.

CIFAR-10

GANs [Goo+14] 70.23
mod-GANs [Goo+14] 79.58
LSGAN [Mao+17] 83.66
DRAGAN [Kod+17] 80.57

GANs ( = 2) 74.07
mod-GANs ( = 2) 71.96
LSGAN ( = 2) 73.33
DRAGAN ( = 2) 75.83
Dropout-GANs ( = 2, 3 = 0.5) 66.82
Dropout-mod-GANs ( = 2, 3 = 0.5) 67.57
Dropout-LSGAN ( = 2, 3 = 0.5) 69.37
Dropout-DRAGAN ( = 2, 3 = 0.5) 66.90

microbatchGAN ( = 2, U = Usigm) 66.93
microbatchGAN ( = 2, U = Usoft) 65.54
microbatchGAN ( = 2, U = Utanh) 65.84

We observe that all microbatchGAN con�gurations improve the minimum FID
of all compared methods. Even though all U functions show good performance,
Usoft presents the best result.
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Inception Scores on CIFAR-10, STL-10, and ImageNet

Considering a broader comparison against existing methods, we evaluated mi-
crobatchGAN on CIFAR-10, STL-10, ImageNet using Inception Score. We used
 = 2, for a more honest comparison to the 1-discriminator methods, and fol-
lowed the architecture and training procedure described in Section 2.2.4. Results
are presented in Table 2.7.

Table 2.7: Inception scores of di�erent unsupervised methods on CIFAR-10, STL-10,
and ImageNet. The original GANs baseline, which shares identical architectural and
training settings as microbatchGAN, is underlined.

CIFAR-10 STL-10 ImageNet

Real data 11.24 26.08 25.78

WGAN [ACB17] 3.82 - -
MIX+WGAN [Aro+17] 4.04 - -
ALI [Dum+17] 5.34 - -
BEGAN [BSM17] 5.62 - -
MAGAN [Wan+17] 5.67 - -
GMAN ( = 2) [DGM17] 5.87 - -
GANs [Goo+14] 5.92 6.78 7.04
Dropout-GAN ( = 2, 3 = 0.5) 5.98 - -
GMAN ( = 5) [DGM17] 6.00 - -
Dropout-GAN ( = 5, 3 = 0.5) 6.05 - -
DCGAN [RMC16] 6.40 7.54 7.89
Improved-GAN [Sal+16] 6.86 - -
D2GAN [Ngu+17] 7.15 7.98 8.25
DFM [WB17] 7.72 8.51 9.18
MGAN [Hoa+18] 8.33 9.22 9.32

microbatchGAN ( = 2, U = Usigm) 6.77 7.23 7.32
microbatchGAN ( = 2, U = Usoft) 6.66 7.19 7.40
microbatchGAN ( = 2, U = Utanh) 6.61 7.07 7.40

We note that the compared methods, except for GMAN, Dropout-GAN, and
the GANs baseline, were trained with di�erent architectural designs and training
settings. Namely, we notice the strong e�ects of bigger architectures on the
increase of IS, especially in DCGAN. DFM and MGAN make use of additional
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autoencoders or classi�ers, with the latter framework making use of 10 genera-
tors in their reported results. We further acknowledge D2GAN’s great results,
which uses two discriminators with di�erent objectives. However, we �nd that
this may compromise the extendibility of their approach.
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Figure 2.11: Generated samples from di�erent microbatchGAN con�gurations ( = 2
and varying U) trained on CIFAR-10, STL-10, and ImageNet.

Hence, for a direct comparison, we should take a look at the aforementioned
method exceptions. Speci�cally, we observe an increase in IS of approximately
15%, 7%, and 5% on CIFAR-10, STL-10, and ImageNet, respectively, of our ap-
proach compared to the original GANs baseline. Moreover, considering CIFAR-10,
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Chapter 2 Generative Multi-Adversarial Networks

all microbatchGAN con�gurations outperform the best GMAN and Dropout-
GAN variants while using fewer discriminators, i.e. 2 instead of 5. Examples
of generated samples are showcased in Figure 2.11. We observe sample vari-
ety and sample quality across the di�erent datasets, suggesting the e�cacy of
multi-adversarial microbatch discrimination.

2.4 Concluding Remarks

In this Chapter, we proposed two novel multi-adversarial frameworks, Dropout-
GAN and microbatchGAN, that help mitigate the mode collapse problem inherent
to GANs. To this end, our frameworks leverage a multi-adversarial setting di�er-
ently to ultimately stimulate sample diversity while maintaining sample quality
in the generated set. Through empirical and theoretical discussions, we have
shown the e�cacy of the proposed frameworks on multiple GANs formulations
and datasets. We note that Dropout-GAN has also been shown to improve sample
diversity in the text domain in one of our follow-up publications [Sau+20].

A drawback of the proposed methods, however, is in their multi-adversarial
nature. More speci�cally, both methods rely on the addition of discriminators
to the original GANs framework, leading to an increase in the memory and
computational costs. However, this may be attenuated by applying complemen-
tary compression techniques to the proposed frameworks both at training and
inference time. We discuss and propose new mechanisms to compress neural
networks in the next Section.
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3 Compression of Neural Networks

This Chapter is based on two of our refereed papers: Monte Carlo Quantiza-
tion [MVK19] and Monte Carlo Gradient Quantization [MVK20]. We note that
some of the results presented for Monte Carlo Quantization are based on an ex-
tended arXiv version of the paper presented at NeurIPS 2019 Workshop on Energy
E�cient Machine Learning and Cognitive Computing. For readers unfamiliar with
compression of neural networks, we refer to Sze et al. [Sze+20].

In this Chapter, we introduce our novel compression methods to reduce the
costs of pre-trained models after training as well as the communication costs
during training in distributed settings. Reducing neural network costs by making
them more e�cient is an important endeavor considering their wide adoption
in a broad range of real-world applications. Lowering the footprint of existing
and future models may directly translate to a reduction in energy consumption,
which not only bene�ts cloud applications but also opens the possibility of
bringing such applications to edge devices. Such compact models may then be
store and executed on-chip to improve inference latency and address certain
privacy concerns.

We start by providing an overview of existing compression methods in Sec-
tion 3.1. Then, we present our post-training compression method for weights
and activations, Monte Carlo Quantization (MCQ), in Section 3.2. We then ex-
tend the previous method to gradient compression, i.e. Monte Carlo Gradient
Quantization (MCGQ), in Section 3.3. Finally, we summarize our contributions
and possible applications of the proposed methods in Section 3.4.

3.1 Related Work

We �rst discuss existing compression methods that focus mostly on weight and
activation compression in Section 3.1.1. Then, we shift our focus to gradient
compression methods in Section 3.1.2.
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Chapter 3 Compression of Neural Networks

3.1.1 Compression of Weights and Activations

Pruning and quantization techniques may be applied to the weights and activa-
tions of neural networks to reduce their memory and computational costs. While
pruning removes certain weights or activations that may be redundant [HMD16;
LDS90; Moc+18], quantization reduces the precision required to represent weights
and activations [Hub+16; Ras+16; Zho+16]. Quantization techniques may also in-
duce sparsity which further enables e�cient hardware implementations [Lin+16;
VNM17]. We discuss popular quantization methods below.

The reduction of weight precision to binary representations was introduced
in BinaryConnect [CBD15a] and further extended to activations by XNOR-
Net [Ras+16] and BNN [Hub+16]. On the other hand, TWN [LZL16] proposed
to increase the model expressiveness by using ternary weight representations
instead. TTQ [Zhu+17] further improved such expressiveness by learning a posi-
tive and a negative weight scale during training. Stochastic parameterization was
proposed by LR-Net [SLF18] to binarize and ternarize weights while a restriction
to powers of two and zero on the weights was presented in INQ [Zho+17]. The
categorization of weights in di�erent groups with di�erent scaling factors was
presented in FGQ [Mel+17] to minimize the element-wise distance of the original
and quantized weights. Hardware-aware quantization was also proposed through
reinforcement learning based on a speci�c hardware’s response [Wan+19a]. Com-
pressed networks may also be jointly trained alongside quantizers [Zha+18a] or
weights may be directly encoded by Bloomier �lters [Rea+18].

The main drawback of the previous methods is the reliance on the addi-
tional training or �ne-tuning of the compressed neural networks to achieve
competitive performance relative to the full-precision counterparts. This may
introduce unnecessary costs which may, in turn, have signi�cant �nancial and
environmental implications [SGM19]. On the other hand, our proposed method,
Monte Carlo Quantization (MCQ), was designed to appropriately approximate
the original weight and activation distributions without requiring retraining
of the compressed model. To this end, we use Monte Carlo methods and im-
portance sampling techniques, with the resulting network’s complexity being
proportional to the number of samples taken during the sampling process. We
address other post-training compression techniques that do not rely on pruning
or quantization, such as clipping [BNS19] and splitting [Zha+19a], in Chapter 5.
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3.1.2 Compression of Gradients

Some of the previous techniques may also be applied to compress gradients on
top of the weights and activations, during the backward pass [CBD15b; Gup+15;
Zho+16]. Speci�cally, di�erentiable quantization schemes were proposed to en-
able training with discrete gradients [Lou+19] as well as training losses [Wu+18].
On the other hand, some methods solely perform gradient compression to reduce
the communication costs in distributed settings where several workers need
to synchronize their gradients. We will provide an overview of such methods
below.

Focusing on the most extreme case of gradient quantization, 1-bit gradients
were presented in 1-bit SGD [Sei+14] and signSGD [Ber+18], with an addi-
tional variant using also the sign of momentum being proposed by the latter
method. Ternary gradient quantization was proposed by TernGrad [Wen+17]
and QSGD [Ali+17], with the latter proposing a family of schemes accommodat-
ing 2, 4, and 8 bits. Storing information relative to accumulated errors in memory
was proposed by Mem-SGD [SCJ18], with Ef-signSGD [Kar+19] introducing
step-wise error feedback to improve the previous 1-bit gradient methods.

Regarding gradient pruning approaches, an even greater compression scheme
may be achieved at high sparsity rates using encoded communication. A simple
yet e�ective way of promoting gradient sparsity is to rely on thresholds [AH17;
Lin+18a; Str15]. However, optimal threshold levels are likely network-dependent
and may be hard to �nd in practice. To ease the relevance of the chosen threshold,
Deep Gradient Compression (DGC) [Lin+18a] proposed to transmit only the
accumulated gradients above a certain value. The pruned accumulated gradients
would then eventually be sent as training progresses such that no information
is lost. Instead of thresholding, one may perform fraction-based pruning in-
stead [Dry+16]. Moreover, AdaComp [Che+18] proposed a dynamic pruning
approach based on local gradient activity.

As suggested by previous work, high-level compression of gradients may be
performed by applying quantization and pruning techniques. However, existing
approaches mostly rely on either one or the other and do not leverage both
techniques. To this end, we propose to use a modi�ed version of the previously
proposed method, MCQ, to also compress gradients during training. Our new
method, called Monte Carlo Gradient Quantization (MCGQ), combines both
sparsity and quantization to achieve high gradient compression rates, which
may be controlled by the sampling amount.
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3.2 Monte Carlo �antization

We propose to use Monte Carlo methods and importance sampling to compress
a pre-trained neural network without retraining. More speci�cally, we prune
and quantize weights and activations by creating sparse, low-bit-width integer
representations that approximate the full-precision weights and activations. Due
to the sampling nature of our approach, called Monte Carlo Quantization (MCQ),
the precision, sparsity, and complexity of our approach depends on the performed
sampling amount. Our method is linear in space and time in the number of
weights and activations and the resulting compressed models achieve minimal
to no performance loss compared to their full-precision, dense counterparts.

We start by discussing the relation between neural networks and Monte Carlo
methods in Section 3.2.1 and present MCQ as well as important implementation
details in Section 3.2.2. Then, we present empirical evidence of MCQ’s e�cacy
in Section 3.2.3 and compare against existing methods that do require additional
training on a variety of models and datasets in Section 3.2.4.

3.2.1 Neural Networks and Monte Carlo methods

Monte Carlo methods and random sampling techniques have been widely applied
to neural networks on several fronts. As popular examples we have: network
initialization with random weights, network optimization through stochastic
variants of gradient descent [RM51], random network regularization schemes
such as Dropout [Sri+14] or DropConnect [Wan+13], random data augmen-
tation and shu�ing during training, random generative network inputs with
GANs [Goo+14]. Particularly, stochastic rounding [Gup+15] has been proposed
to optimize training, which di�ers from MCQ’s focus on optimizing inference.

On a separate note, the ReLU [NH10] activation function has been widely
used in many state-of-the-art networks since it was proposed. Considering our
compression use case, we are particularly interested in exploiting the equivari-
ance property of ReLU. We will be discussing how to leverage such property to
normalize and, ultimately, quantize neural networks next.

Network normalization

The equivariance property of ReLU allows for an arbitrary scale and re-scale
of weights and activations without a�ecting the output of a neural network.

44
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Speci�cally, let us consider the weights|;−1,8, 9 going from the 8-th neuron out of
#;−1 neurons of layer ; − 1 to the 9-th neuron out of #; neurons in layer ; , with
8 ∈ {0, . . . , #;−1 − 1} and 9 ∈ {0, . . . , #; − 1}. Representing the 9-th activation in
the ;-th layer as 0;, 9 and a scaling factor 5 ∈ ℝ+, we have 0;, 9 equal to:

<0G

{
0,
#;−1−1∑
8=0

|;−1,8, 90;−1,8 + 1;−1, 9

}
= 5 ·<0G

{
0,

∑#;−1−1
8=0 |;−1,8, 90;−1,8 + 1;−1, 9

5

}
.

(3.1)
To enable the treatment of the weights of a given neuron 9 in layer ; as a

probability distributions over all its connections, one may normalize the weights
using the following (non-zero) scaling factor:

5 = ‖w;−1, 9 ‖1 =
#;−1−1∑
8=0
||;−1,8, 9 |. (3.2)

A similar procedure may be applied to normalize the activations 0;, 9 of layer
; . Assuming an exclusive use of ReLU on all hidden layers, one may propagate
the di�erent scaling factors throughout the entire network. This ultimately
enables the usage of integer weights and activations, without the expensive
computational cost of re-scaling to full-precision representations at every layer.

Network quantization

Our approach relies on leveraging a normalized network to simulate discrete
probability densities by constructing a probability density function (PDF) and
sample from the corresponding cumulative distribution function (CDF). The
number of hits per weight or activation after this importance sampling process
is then their respective integer representation. To ease explanations, we focus
solely on weight quantization for now. However, as previously mentioned, the
following processes may also be used to quantize activations at inference time.

Given=weights|: , with: ∈ {0, . . . , =−1} and assuming
∑=−1
:=0 ||: | = ‖|‖1 = 1

without loss of generality, let us de�ne a unit interval partition %< :=
∑<
:=1 ||: |:

0 = %0 %=−1 = 1.%1 %2 %=−2

||1 | ||2 | ||=−1 |

(3.3)
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We may then approximate the original weight distribution by using # uni-
formly distributed samples G8 ∈ [0, 1):

=−1∑
9=0

| 90 9 ≈
1
#

#−1∑
8=0

sign(| 98 )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈{−1,0,1}

×0 98 , (3.4)

where 98 ∈ {0, . . . , = − 1} is uniquely determined by % 98−1 ≤ G8 < % 98 .
We improve this importance sampling process by using jittered equidistant

sampling with a random o�set to better approximate the weight approximation.
In particular, given a random variable b ∈ [0, 1), we generate # uniformly

distributed samples G8 ∈ [0, 1) such that G8 =
8 + b
#

, where 8 ∈ {0, . . . , # − 1}.

3.2.2 Implementation Details

Our method, MCQ, follows the previous network normalization and network
quantization principles to compress a pre-trained neural network. Speci�cally,
we apply the following steps to quantize the #;,| weights of a given layer ; :

(1) Create a PDF, such that
∑#;,|−1
:=0 ||: | = 1.

(2) Perform importance sampling based on weight magnitudes by sampling
from the corresponding CDF.

(3) Represent each weight by its hit count at the end of the sampling process.
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(d) Integer weights.

Figure 3.1: Starting from full-precision, FP, weights (a), we create a PDF of the sorted
absolute values (b) and uniformly sample from the corresponding CDF (c). The sampling
process produces quantized integer network weights based on the number of hits per
weight (d). Note that since weights 7, 8, and 9 were not hit, they may be pruned.
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Algorithm 3 Monte Carlo Quantization.
Input: Pre-trained full-precision network, ! trainable layers,  ratio of sam-
ples to be sampled per weight
Output: Quantized network with integer weights
for K=0 to L-1 do
D=B>AC4383GB ← 0A6B>AC (, )
,B>AC43 ← B>AC (, )
,01B ← 01B (,B>AC43 )
,%�� ←

,01B

‖, ‖1
,��� ←

∑ |,%�� |
8=1 ,%��8

# ← 248; ( |, | ∗  )
BC0AC83G ← 0
b ← A0=3><(0, 1)
, ′
 
← [0] × |, |

// Start sampling
for i=0 to # − 1 do
G8 ←

8 + b
#

ℎ8C83G ← 0A6<0G (,��� [BC0AC83G :] ≥ G8) + BC0AC83G
BC0AC83G ← ℎ8C83G
D=B>AC4383G ← D=B>AC4383GB [ℎ8C83G ]
// Update counter
if, [D=B>AC4383G ] > 0 then
, ′
 
[D=B>AC4383G ]++

else
, ′
 
[D=B>AC4383G ]--

end if
end for
// Update to integer weights
, ←, ′

 

end for
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Figure 3.1 illustrates our method’s steps for a layer with 10 weights and 10
samples. A more detailed overview of our method is presented in Algorithm 3. We
refer the reader to NumPy’s documentation [Har+20] for additional information
about the used functions.

Layer normalization

In Section 3.2.1, we introduced normalization as a neuron-wise procedure. In
practice, we observed that this required big sample size to achieve a good approx-
imation, especially if the number of incoming weights is limited. Instead, we
propose to perform such normalization in a layer-wise manner. This represents
a broader sampling approach, which allows the redistribution of hit counts from
low-importance weights from a given neuron to high-importance weights from
another neuron. As previously mentioned, importance is measured by the weight
magnitude in our use case.

Overall, we observed that the layer-wise approach promotes a better overall
approximation of the original weight distribution. In this layer-wise variant,
our scaling factor 5 is the 1-norm of all weights from a given layer ; − 1 to the
subsequent layer ; . Hence, each normalized weight is now a probability with
respect to all connections in a given layer, instead of a given neuron. Moreover,
this results in the storage of only one �oating-point scale per layer, instead of per
neuron. Since we do not quantize the gradients in our experiments, the e�cient
low-precision integer multiply-accumulate (MAC) operations in each layer are
re-scaled by 5

#
before adding the biases.

Importance sampling

Each iteration of our importance sampling process results in a ternary represen-
tation for each weight, representing a positive or negative hit, depending on the
weight’s sign, or no-hit. We use this information to count the total number of hits
across all weights at the end of sampling. Since each weight may be hit multiple
times across all iterations, the �nal representation for each weight is likely to
not be ternary, depending on the weight’s magnitude. As previously mentioned
in Section 3.2.1, we avoid the binary search cost otherwise induced with fully
random sampling by using a jittered equidistant sampling strategy. Hence, since
we only need to iterate through the CDF once, our sampling algorithm is linear
in space and time in the number of weights (or activations) at inference time.
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We use # =  × #{0;D4B samples, where  ∈ ℝ+ is a hyper-parameter (not
related to the number of discriminators from here on) and #{0;D4B is the number
of values, i.e. weights or activations, to sample from. Hence,  directly a�ects
the quality of the approximation, presenting a trade-o� between precision and
approximation quality, which directly correlates to performance. In other words,
while bigger  values promote a better approximation at increased sampling
costs, smaller  values sacri�ce approximation but make the sampling process
more computationally e�cient. Even though a di�erent  may be used for
di�erent layers, depending on the number of weights or activations, we used
the same  for all layers in our experiments.

To promote better approximation, sorting mechanisms applied to Monte
Carlo schemes have been proposed in the past [LEc+18; LLT08]. In our use
case, sorting the full-precision distributions before creating the PDF results in
grouping smaller magnitude values together. In combination with the proposed
uniform sampling strategy, this is likely to result in such values being sampled
less often, which may result in higher sparsity and a better approximation of the
higher-magnitude values. In practice, we observed that sorting the full-precision
values before starting the sampling process helped reduce the performance loss
of quantizing smaller layers.

Layer quantization

The bit-width of a given layer ; is related to the number of bits �,; ∈ ℕ required
to represent the highest integer value in its #;,| quantized weights, & (|;,8),
including its sign:

�,; = 2 +
⌊
log2

(
max

0≤8≤#;,|−1
|& (|;,8) |

)⌋
. (3.5)

We note that, alternatively, separating positive and negative weights into dif-
ferent sets would remove the additional bit used to represent the sign. However,
we do not consider this when calculating the bit-widths of each layer.

Online quantization

The previous discussions may be also applied to quantize activations online, i.e.
at inference time. This di�ers from weight quantization, which is performed
o�ine, i.e. after training but before inference. Hence, considering a layer ; , its
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#;,0 activations are treated as a probability distribution over layer ; ’s output
features, such that

∑#;,0−1
9=0 |0;, 9 | = 1. Since weights and activations are sampled

independently, a di�erent  may be used for each of the processes. However, we
used the same  to quantize both the weights and activations in our experiments.
Moreover, the bit-widths ��; for the quantized activations & (0;, 9 ), with 9 ∈
{0, . . . , #;,0 − 1}, may be calculated by adapting (3.5), discarding the additional
bit sign if ReLU is employed throughout the entire network.

3.2.3 Experimental results

We will �rst study the e�ects of using varying amounts of sampling on the per-
formance of the quantized models. We used several pre-trained, full-precision
models trained on CIFAR-10, SVHN [Net+11], and ImageNet. Since we use
the same  on all layers, some layers may be quantized to di�erent bit-widths,
depending on the original weight and activation distributions. Hence, we simply
report the average bit-widths across all quantized layers of each network. More-
over, we also indicate the average sparsity percentage of the quantized weights
and activations.

Quantizing the �rst layer of pre-trained models has been shown to increase
the performance gap between the compressed networks and their full-precision
counterparts [HMD16; LZL16; Zho+16]. With this in mind, we present results
with and without quantizing the initial layer. We further note that we do not
quantize batch normalization layers since their transformations may be incor-
porated into the network weights at inference time [Wu+18]. We describe the
architectural and training details of the baseline pre-trained models next.

CIFAR-10

We trained VGG-7 [LD15], VGG-14, and ResNet-20 [He+16] baseline models
on CIFAR-10 using a popular training regime 1. More speci�cally, all models
were trained for 300 epochs using the Adam optimizer [KB15] with a decreasing
learning rate schedule and weight decay. The ResNet-20 baseline’s architecture
follows the original residual network con�guration [He+16], with 64, 128, and 256
�lters in the residual blocks. The quantized model performances over di�erent
sampling amounts are presented in Figure 3.2.

1 https://github.com/bearpaw/pytorch-classi�cation
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Figure 3.2: Quantized weights and activations on CIFAR-10 models.

We observe that all compressed models quickly reach their respective baseline
performance at low bit-widths and high sparsity levels. More speci�cally, the
di�erent quantized models reach baseline accuracy at around  = 0.5 while
pruning approximately 50% of the weights and approximately 70 to 80% of the
activations.

SVHN

We further evaluated using di�erent sampling amounts to compress popular
SVHN models previously studied in related methods. Speci�cally, the base-
line VGG-7 model presented by Courbariaux et al. [CBD15a] and Hubara et
al. [Hub+16] was trained for 164 epochs using Adam optimizer and a decaying
learning rate with weight decay. Moreover, using the previous training set-
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tings for 200 epochs, we trained four additional baselines presented by Zhou
et al. [Zho+16]: Model A represents a popular SVHN architectural setting 2

and Model D adopts Model A’s architecture with a 87.5% reduction in the num-
ber of channels. Compression results for the di�erent models are presented in
Figure 3.3.
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Figure 3.3: Quantized weights and activations on di�erent SVHN models.

Compared to CIFAR-10, we observe that fewer samples per weight or activa-
tion are required to reach close to baseline performance. This is likely due to
the bigger architectures used, which may increase redundancy and allow for
a better approximation of more relevant values according to their magnitude.
Moreover, the smaller variant (Model D) requires a higher  to achieve base-

2 https://github.com/aaron-xichen/pytorch-playground
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line performance, re�ecting the e�ects of model size in the performance of the
compressed models.

ImageNet

We also experimented on ImageNet by using several pre-trained models from
Pytorch [Pas+19]’s model zoo 3. Namely, we applied MCQ on AlexNet, ResNet-
18, and ResNet-50. We refer to their documentation for training details of the
di�erent models. Figure 3.4 presents the compression results using di�erent
sampling amounts.
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Figure 3.4: Quantized weights and activations on ImageNet models.

Compared to both CIFAR-10 and SVHN, we observe that compressed ImageNet
models require additional sampling to reduce performance loss. This may be

3 https://pytorch.org/serve/model_zoo.html
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attributed to the more challenging task at the end. The additional sampling
results in a higher bit-width and less sparsity on weights and activations when
compared to the other datasets. We note that we applied no sorting on ImageNet
since sorting showed to be more bene�cial when using a lower sampling amount.

3.2.4 Method Comparisons

We now proceed to evaluate MCQ against existing compression methods on the
previous datasets. For our compressed models, we indicate the average bit-widths
across all quantized layers: "8w-32a" means that the average weight bit-width is
8 bits and the average activation bit-width across all layers is 32 bits, for example.
To describe special instances where some layers are not quantized by some of
the compared works, we make use of footnotes 4,5,6. For a fair comparison, we
report the accuracy di�erence between each quantized model and its respective
full-precision baseline.

CIFAR-10

We compare against several baselines using the same models on CIFAR-10.
To achieve this, we report the baseline results for BNN [Hub+16] and XNOR-
Net [Ras+16] presented in BC [CBD15a], since they make use of the same model.
Moreover, since we report the performance di�erence instead of the absolute
performance of the quantized models, we present the results of the baselines
of BWN [Ras+16] reported in TWN [LZL16] since their original work does not
mention the performance of their original baseline. The accuracy di�erences used
for all the other compared methods were the ones reported in their respective
works. Importantly, we note that all compared methods use additional training
of the compressed models, unlike MCQ. Results are presented in Table 3.1.

We observe that MCQ achieves competitive results, even outperforming some
methods that use additional training. Moreover, quantizing weights leads to
higher performance loss related to the full-precision (FP) baseline than activa-
tions, leading to a decrease of approximately 1.0% accuracy, in the worst case.
Quantizing activations on top of weights does not show a negative impact for
the VGG-based models but reduces ResNet-20’s accuracy by approximately 1.0%.

4 Not quantizing weights in the �rst layer.
5 Not quantizing weights in the last layer.
6 Using higher precision (8w-8a) for the �rst layer.
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Table 3.1: Comparison results of di�erent compression methods on CIFAR-10. We
quantize weights (w), activations (a), or both (w+a), using  = 1.

Method VGG-7 VGG-14 ResNet-20

FP baseline (32w-32a) 91.23 92.49 95.02
J MCQ (w) -0.48 (6.1w-32a) -1.04 (6.7w-32a) -0.84 (5.1w-32a)

+0.044 (6.1w-32a) -0.504 (6.8w-32a) -0.544 (5.1w-32a)
J MCQ (a) -0.124 (32w-5.68a) -0.064 (32w-5.51a) -0.284 (32w-6.3a)
J MCQ (w + a) -0.58 (6.1w-5.6a) -1.08 (6.6w-5.3a) -1.77 (5.1w-5.3a)

-0.134 (6.1w-5.6a) -0.544 (6.8w-5.5a) -1.214 (5.1w-5.3a)

J TTQ [Zhu+17] (2w-32a) - - -0.644

J dLAC [VNM17] (2w-32a) - -3.0 / -1.44 -
J TWNs [LZL16] (2w-32a) -0.06 - -
J BC [CBD15a] (1w-32a) +0.74 - -
J BNN [Hub+16] (1w-1a) +0.494 - -
J BWN [Ras+16] (1w-32a) -0.36 / +0.764 - -
J XNOR-Net [Ras+16] (1w-1a) +0.474 - -
J RQ [Lou+19] (8w-8a) +0.25 - -
J LR-net [SLF18] (2w-32a) -0.115 - -

Overall, accuracies tend to drop by approximately 0.5% when quantizing the
�rst layer across the di�erent models.

SVHN

We perform a similar comparison study on SVHN against 1-bit weight compres-
sion methods. Results are presented in Table 3.2.

Table 3.2: Comparison results of di�erent 1-bit weight compression methods on SVHN.
We quantize weights (w), activations (a), or both (w+a), using  = 1.

Method VGG-7 Model A Model D

FP baseline (32w-32a) 94.06 96.01 91.08
J MCQ (w) -0.30 (7.3w-32a) / -0.024 (7.0w-32a) -0.204 (5.1w-32a) -2.174 (4.1w-32a)
J MCQ (a) -0.04 (32w-7.15a) +0.014 (32w-5.28a) -0.114 (32w-4.58a)
J MCQ (w + a) -0.32 (7.2w-6.0a) / -0.064 (7.0w-5.5a) -0.404 (5.1w-4.2a) -3.724 (4.1w-3.7a)

J DoReFa [Zho+16] (1w-1a) - -0.44,5 -10.94,5

J BC [CBD15a] (1w-32a) +0.14 - -
J BNN [Hub+16] (1w-1a) -0.094 - -

We observe a minimal performance loss relative to the FP baselines, especially
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on bigger models (VGG-7 and Model A). As previously discussed in Section 3.2.3,
accuracy is more a�ected on smaller models (Model D). However, we note that
we only use around 4 bits per weight and activations on Model D, so additional
sampling may be performed to improve the approximation while still retaining a
low bit-width. Overall, quantizing only the activations shows a neglecting e�ect
on performance.

ImageNet

We conclude our experimental studies by performing additional comparisons
on ImageNet. We note that the accuracy di�erences for DoReFa [Zho+16],
BWN [Ras+16], TWN [LZL16] were calculated using the results reported by
TTQ [Zhu+17]. Comparison results are presented in Table 3.3.

Table 3.3: Comparison results of di�erent compression methods on ImageNet. We
quantize weights (w), activations (a), or both (w+a), using  = 5.

Method AlexNet ResNet-18 ResNet-50

FP baseline (32w-32a) 56.52 69.76 76.13
J MCQ (w) -0.99 (8.00w-32a) -0.72 (8.00w-32a) -0.73 (8.28w-32a)

-0.684 (8.00w-32a) -0.634 (8.00w-32a) -0.204 (8.28w-32a)
J MCQ (a) +0.024 (32w-8.36a) -0.584 (32w-7.36a) -0.764 (32w-7.45a)
J MCQ (w + a) -1.05 (7.88w-8.46a) -1.13 (8.00w-7.35a) -1.64 (8.26w-7.43a)

-0.754 (8.00w-7.2a) -1.034 (8.00w-7.36a) -1.214 (8.28w-7.45a)

J FGQ [Mel+17] (2w-8a) -7.796 - -4.29
J TTQ [Zhu+17] (2w-32a) +0.34,5 -3.04,5 -
J TWNs [LZL16] (2w-32a) -2.74,5 -4.34,5 -
J BWN [Ras+16] (1w-32a) +0.2 -8.54,5 -
J XNOR-Net [Ras+16] (1w-1a) -12.4 -18.14,5 -
J DoReFa [Zho+16] (1w-32a) -3.34,5 - -
J INQ [Zho+17] (5w-32a) -0.15 -0.71 -1.59
J RQ [Lou+19] (8w-8a) - +0.43 -
J LR-net [SLF18] (2w-32a) - -6.074 -

We observe that quantizing weights to 8-bits results in an accuracy drop of
less than 1% on all models. Quantizing both weights and activations results in an
additional 0.6% accuracy drop, in the worst case. Quantizing only the activations
seems to a�ect the performance of the residual models but not AlexNet. Overall,
MCQ shows competitive results against existing methods that require additional
training of the compressed variants to achieve close to baseline performance.
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3.3 Monte Carlo Gradient �antization

We now shift our focus to in-training compression. To this end, we propose
to apply an extended version of MCQ to quantize gradients during training.
This new approach, called Monte Carlo Gradient Quantization (MCGQ), mainly
tackles the communication cost required to synchronize multiple workers in
distributed settings. Such communication creates a relevant overhead, especially
as neural network architectures grow larger and become more complex. Hence,
our novel method improves the training of large networks at scale by compressing
and encoding the gradient information exchanged by di�erent workers.

We detail how the previous method, MCQ, may be applied to gradient com-
pression in Section 3.3.1. Moreover, we propose important modi�cations to
MCQ that enable extreme gradient compression schemes in Section 3.3.2. We
assess di�erent con�gurations of MCGQ in Section 3.3.3, and compare against
existing gradient compression methods on several tasks, models, and optimizers
in Section 3.3.4.

3.3.1 Learning with �antized Gradients

We start by discussing how to apply gradient quantization and pruning schemes
to train neural networks using stochastic gradient descent (SGD) [RM51]. Consid-
ering a loss function 5 : ℝ3 → ℝ, SGD minimizes 5 with relation to a parameter
G at iteration C by using a learning rate W to update G as follows: GC+1 := GC −W6GC ,
where 6GC is the stochastic gradient such that E[6GC ] = ∇GC 5 .

MCQ may be directly applied to gradients by �rst computing their �oating-
point values for all layers. Then, layer by layer, we may create an integer
distribution that approximates the original full-precision distribution. By nor-
malizing all gradients of a given layer ; by their ;1-norm, ‖6; ‖1 =

∑=−1
:=0 |6;,: | = 1,

we may represent the normalized gradients as a PDF. Then, we may construct
the respective CDF and de�ne a unit interval partition %< :=

∑<−1
:=0 |6;,: |:

0 = %0 %<−1 = 1.%1 %2 %<−2

|6;,0 | |6;,1 | |6;,=−1 |

(3.6)

Using a similar importance sampling procedure as in MCQ, we may approxi-
mate the full-precision gradients with integer representations. Speci�cally, using
jittered equidistant sampling with # uniformly distributed samples G8 in [0, 1),
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as described in Section 3.2.1, each gradient 6;,: may be represented by its hit
counts during the importance sampling process. Namely, considering a sample
G8 , 6;,:8 ∈ {−1, 0, 1} is set to either 0, if G8 is not in the interval of 6;,: , or ±1, if
%: ≤ G8 < %:+1, depending on the original gradient 6;,: ’s sign. After # sampling
iterations, 6;,: may then be approximated by:

6;,: ≈
1
#

#−1∑
8=0

6;,:8 . (3.7)

A simpli�ed adaptation of MCQ’s sampling procedure (Algorithm 3) to gradi-
ent quantization is presented in Algorithm 4. We brie�y note that the function
"cumsum" represents a cumulative sum; additional function details may be found
in NumPy’s documentation [Har+20].

Algorithm 4 Monte Carlo Gradient Quantization.
Input: gradients of layer ; 6; , sampling amount  
Output: integer gradients 6;8=C
b ← random(0, 1)
# ← d;4=(6; ) ×  e
6;8=C ← [0] × ;4=(6; )
BC0AC83G ← 0

6;%�� ←
|6; |
‖6; ‖1

6;��� ← cumsum(6;%�� )
// perform importance sampling
for 8 = 0, . . . , # − 1 do
G8 ←

b + 8
#

// find hit index
ℎ8C83G ← argmax(6;��� [BC0AC83G :] |6;��� ≥ G8)
BC0AC83G ← ℎ8C83G
// count according to the original sign
6;8=C [ℎ8C83G ] ← 6;8=C [ℎ8C83G ] + B86=(6; [ℎ8C83G ])

end for

Similarly to MCQ, we describe the number of samples as # , which may be
controlled by adjusting  . Quantized gradients of a given layer ; are described
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as 6;8=C . We point special attention to the monotonically increasing sampling
from the CDF by keeping track of the index of the previously hit gradient during
the last sampling iteration. Hence, similarly to the quantization of weights and
activations with MCQ, quantizing gradients only requires a single pass over the
CDF and is linear on the number of gradients to quantize: O(;4=(6; )). Contrarily
to MCQ, we do not sort the full-precision values before constructing the PDF,
since we found that this noise reduction step was not relevant to gradients and
the respective convergence of the trained neural networks in practice [Nee+15].

We summarize the previous discussions in Algorithm 5. We note that the
re-scaling of gradients is not necessary if using a scale-invariant optimizer, such
as Adam [KB15] or Lazy Adam, which further allows for e�cient sparse gradient
updates. On the other hand, if using standard SGD, which is sensitive to gradient
scale, the re-scaling of the quantized gradients 6;8=C by ‖6; ‖1

;4= (6; )× is necessary
before performing parameter updates.

Algorithm 5 Gradient quantization.
Input: learning rate X , = parameters of layer ; G; , sampling amount  
6; ← [0] × =
// compute gradients
for 8 = 0, . . . , = − 1 do
6; [8] ← StochasticGradient(G;8 )

end for
// quantize and prune
6;8=C ← MCGQ(6; ,  )
// update parameters
G; ← G; − X6;8=C

So far, we have only considered traditional neural network training in a single
node. Before we discuss distributed training scenarios, we would like to note
that MCGQ may also be used to reduce the computational cost of parameter
updates in a single-worker environment by skipping parameter updates with
sparse gradients.
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3.3.2 Implementation Details

We will now go over several variants of MCGQ, which present new modi�cations
to the original MCQ algorithm presented in Section 3.2. Namely, we introduce
dynamic sampling, by learning an optimal  for each layer. Moreover, we
propose a novel variant of MCGQ that samples proportionally to the magnitude
of the accumulated gradients, instead of the gradient values calculated at each
training iteration. Finally, we present important discussions regarding distributed
training as well as the proposed encoded communication scheme.

Dynamic sampling

One drawback of MCQ is in  ’s grid-search for the sampling amounts that
achieve a good performance and compression trade-o�. Moreover, since di�erent
layers are likely to require di�erent sparsity and quantization levels, such search
may be even more costly if performed at each layer. To this end, we propose to
learn an optimal  for each layer during training. Ideally, each layer learns a low
sampling amount that approximates its �oating-point gradient distribution up
to a su�cient degree. We update  using the �rst Wasserstein distance [Val74]
between the quantized and the full-precision gradient distributions, which has
been shown to be correlated with quantization errors [Kre11].

In our use case, the �rst Wasserstein distance calculates the minimum cost
required to transform a �oating-point probability distributionℙ5 into a quantized
probability distribution ℙ@ , using a transformation cost function W . Speci�cally,
the joint distribution of the two random variables - and . represents the mass
transfer space, with N (ℙ5 ,ℙ@) being the set of all - and . joint distributions:

Wasserstein(ℙ5 ,ℙ@) = inf
W ∈N (ℙ5 ,ℙ@)

E(-,. )∼W [‖- − . ‖] . (3.8)

Our dynamic sampling procedure is presented in Algorithm 6. At a given iter-
ation, we �rst compute the �rst Wasserstein distance between the full-precision
and integer PDFs. Then, we calculate the di�erence between the such distance
and the distance computed in the previous iteration. Finally, considering a
learning rate X , we update the  to be used in the next iteration accordingly.
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Algorithm 6 Dynamic sampling.
Input: learning rate X , layer ; ’s full-precision and quantized gradients 6; and
6;8=C , respectively, and the Wasserstein distance 3 ′ and a sampling amount  
from a previous iteration
// compute distance between PDFs

3 ←Wasserstein( 6;
‖6; ‖1 ,

6;8=C
‖6;8=C ‖1

)
// calculate distance difference
J3 = 3 ′ − 3
// update K
 ←  + X × J3

Local gradient accumulation

Sampling proportionally to the gradient magnitude at a given iteration, as pro-
posed so far, may result in certain parameters with consistently small gradients
rarely being updated throughout training. In such instances, gradients that are
not hit during the importance sampling process will be lost which may com-
promise training convergence later on. To mitigate this information loss, we
propose a variation of MCGQ that samples proportionally to the accumulated
gradients instead. In a given iteration, the magnitude of non-sampled gradients
is stored independently in a cumulative fashion. On the other hand, the stored
information of sampled gradients is reset. Overall, this increases the likelihood
of small gradients eventually being sampled in future training iterations.

The usage of accumulated gradients was �rst proposed by Deep Gradient
Compression or DGC [Lin+18a], with small gradient parameters being updated
at a lower frequency, equivalently to having a dynamic batch size per parameter.
In MCGQ, sampling according to the accumulated gradients enables fewer sam-
pling amounts, ultimately promoting higher sparsity and lower bit-width in the
quantized gradients per iteration.

Our accumulated gradient version of MCGQ is presented in Algorithm 7.
At a given iteration, after computing all gradients using stochastic descent, we
accumulate them with their respective stored values from earlier iterations. Then,
we quantize and prune the accumulated gradient information using MCGQ and
update the parameters appropriately. (Note that, as previously discussed, we
omit gradient re-scaling by assuming a scale-insensitive optimizer.) Finally, we
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reset the accumulated gradient values of the updated parameters for the next
iteration.

Algorithm 7 Gradient quantization with accumulated gradients.
Input: learning rate X , = parameters of layer ; G; , accumulated gradients of
layer ; 06; , sampling amount  
// compute gradients
for 8 = 0, . . . , = − 1 do
6; [8] ← StochasticGradient(G;8 )

end for
// accumulate gradients
06; ← 06; + 6;
// quantize and prune
6;8=C ← MCGQ(06; ,  )
// update parameters
G; ← G; − X6;8=C
// reset used accumulated gradients
06; [6;8=C ≠ 0] ← 0

Distributed se�ings

So far, we have described MCGQ from the perspective of a single worker. How-
ever, MCGQ may be simply applied to distributed settings among several workers.
More speci�cally, after each worker independently performs the gradient quan-
tization steps proposed so far, the quantized gradients may be exchanged and
merged across all workers by using an all-reduce operation [GLS99]. Then,
each worker updates its locally stored parameter copies using the total gradient
average across workers. In the accumulated gradients variant, each worker
may accumulate its gradients independently. If dynamic sampling is in use, the
di�erent sampling amounts per layer among workers may also be synchronized
to ensure correctness.

On each worker, MCGQ o�ers practical bene�ts by enabling the leverage
of quantized, sparse gradient representations. However, considering large dis-
tributed settings, communication is more likely to be a bigger bottleneck than
compute. To alleviate this, we describe our proposed communication compres-
sion scheme below.
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Communication compression scheme

Existing gradient pruning methods propose to employ di�erent compression
schemes to leverage gradient sparsity [Ali+17; Lin+18a]. With MCGQ, since we
promote both quantization and pruning, we propose to use run-length encoding
(RLE) to compress continuous sequences of zero-valued gradients and transmit
only the number of bits necessary to transfer the maximum quantized gradient
value for the non-zero gradients.

Assuming the MCGQ variant without accumulated gradients and considering
a vector of = quantized gradients of layer ; , 6;8=C = {6;8=C0 , 6;8=C1 , . . . , 6;8=C=−1 }, each
worker sends the following information scheme, adopting (3.5):

1. Number of bits required to represent the maximum non-zero gradient:

�6 = 1 +
⌊
log2

(
max

0≤8≤=−1
|6;8=C8 |

)
+ 1

⌋
. (3.9)

2. Number of bits required to represent the longest sequence of 20 ∈ ℕ

zero-valued gradients:

�'!� =
⌊
log2(20) + 1

⌋
. (3.10)

3. Use �6 bits to represent the non-zero gradient values as well as the �rst
gradient in each zero-valued gradient sequence.

4. Use �'!� bits to represent the length of each zero-valued gradient se-
quence.

Figure 3.5 illustrates an example of the proposed scheme, considering 6;8=C =
[2,−1, 0, 0, 0, 3, 0, 1] and respective �6 = 3, 20 = 3, and �'!� = 2.

Figure 3.5: Example of our communication compression scheme. In total, 86 bits are
used to represent 6;8=C , instead of 256 bits (;4=(6;8=C ) × 32).
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We note that the previous scheme may be extended to the accumulated gra-
dients variant. Moreover, if a scale-sensitive optimizer is used in training, the
gradient norm ‖6; ‖1 for each layer ; may be transmitted as well, i.e. a 32-bit �oat,
to re-scale the quantized gradients to their original range before performing
parameter updates in each worker.

3.3.3 Experimental Results

We now evaluate di�erent variants of MCGQ on di�erent models and tasks,
namely logistic regression, image classi�cation, and language modeling.
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Figure 3.6: Training losses of di�erent MCGQ variations on the epsilon dataset using
di�erent sampling rates and accumulated gradients.
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Logistic regression

We followed the logistic regression experiments described in Mem-SGD [SCJ18]
using the epsilon dataset [Son+08] which contains 400k 2K-dimensional sam-
ples. We refer to the original paper for information regarding the objective
function and training protocols. As a baseline, we use the results of LogisticSGD
from scikit-learn [Ped+11] reported in the aforementioned work. Results using
di�erent MCGQ variants and sampling amounts are presented in Figure 3.6.

Overall, we observe that a bigger  often leads to a faster convergence over
time, independently of using accumulated gradients or not. However, the gradi-
ent information retained by accumulating the gradients across several iterations
allows for using smaller sampling amounts, leading to a lower variance between
di�erent  .

Image classification

We use dynamic sampling in both the original and accumulated gradients variants
to train a ResNet-110 on CIFAR-10. We followed the training settings publicly
available7 using the Lazy Adam optimizer, which was designed to handle sparse
gradient updates. The baseline model trained with full-precision gradients
reached an accuracy of 91.22%. Comparison results between both MCGQ variants
and the baseline are presented in Figure 3.7.

We observe that both MCGQ variants share a similar behavior as the baseline
model in terms of training loss. However, both variants reach a better test
performance than the 32-bit gradient baseline.

Language modeling

We also investigate using quantized gradients in the text domain by �rst evalu-
ating language modeling on the Penn Treebank corpus (PTB) [MSM93] dataset.
We use a 2-LSTM model 8 with the training details proposed by DGC [Lin+18a],
to which we will further compare our method to in Section 3.3.4. For the next
experiments on language modeling, we use our proposed communication scheme
to assess the compression levels in possible distributed settings. We note that
we only simulate distributed scenarios by increasing the batch size of a single

7 https://github.com/bearpaw/pytorch-classi�cation
8 https://github.com/salesforce/awd-lstm-lm
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Figure 3.7: Di�erent ResNet-110 accuracies (red lines) and training losses (black lines)
using full-precision as well as quantized gradients on CIFAR-10.

worker accordingly. The training losses of di�erent MCGQ compression rates
using accumulated gradients, as well as the respective full-precision gradient
baseline, are presented in Figure 3.8.

Using our proposed RLE-based compression scheme presented in Section 3.3.2,
at 469× fewer communication exchanged compared to the full-precision gradient
baseline, the MCGQ model consistently presents lower training losses than the
baseline. Further compressing up to 1200×, our model shows comparable training
loss progression to the baseline model.

Furthermore, we assess gradient compression on character-level language
modeling using Char-RNN trained on Shakespeare excerpts 9. We use the same
2-layer LSTM and training settings as AdaComp [Che+18] since we directly

9 https://github.com/karpathy/char-rnn
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Figure 3.8: Training losses of two MCGQ models with di�erent compression rates using
accumulated gradients and di�erent sampling amounts on PTB.

compare MCGQ to AdaComp in Section 3.3.4. The training losses of di�erent
models with compressed and uncompressed gradients are presented in Figure 3.9.

Once again, we observe that the di�erent MCGQ models are able to success-
fully learn even at high compression rates. Moreover, the di�erent models show
a similar loss behavior as the baseline model throughout the entirety of the
training.

3.3.4 Method Comparisons

We now compare MCGQ against methods that either quantize or prune gradients
on the previously described tasks.
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Figure 3.9: Training losses of two MCGQ models with di�erent compression rates using
accumulated gradients and di�erent sampling amounts on Shakespeare.

Logistic regression

We �rst compared MCGQ to Mem-SGD [SCJ18], QSGD [Ali+17], and 32-bit SGD.
Comparison results on the epsilon dataset using MCGQ with  = 1.0 are shown
in Figure 3.10.

We observe that both MCGQ variants show faster convergence than all gradi-
ent quantization methods as well as the full-precision 32-bit SGD. Despite both
variants showing similar behaviors, accumulating gradients in MCGQ presents
slightly faster convergence in the initial training phase.

Image classification

Using the previously described ResNet-110 experiments on CIFAR-10 in Sec-
tion 3.3.3, we now compare MCGQ with and without accumulated gradients
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Figure 3.10: Comparison results on the epsilon dataset. Both of our MCGQ variants (rep-
resented as red lines) show faster convergence than the compared gradient quantization
methods, in terms of training loss.

against QSGD as well as popular gradient pruning methods: Gradient Drop-
ping [AH17] and DGC [Lin+18a]. We note that we use dynamic sampling in both
of our variants and initialize  equally among all layers. We report the accuracy
di�erences between the compressed gradients models and their respective base-
line models presented in the di�erent works. Similarly to MCQ, we present the
average maximum number of bits required to represent the maximum gradient
values of all layers, including their sign, at each iteration. Comparison results
are presented in Figure 3.11.

We observe that from 3 bits or higher, both MCGQ variants outperform
QSGD, with accumulating gradients showing better performance, especially at
lower bit-widths. Particularly, we reach the performance of the full-precision
gradient baseline at 3 bits instead of 4 bits, as reported by QSGD as well as
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Figure 3.11: Comparison results using ResNet-110 on CIFAR-10. Considering the
accuracy di�erence to the respective 32-bit baseline, both MCGQ variants reach full-
precision performance by 4-bit gradient compression.

our variant with no gradient accumulation. Considering higher bit-widths, i.e.
bigger sampling amounts, both MCGQ variants outperform the baseline in a
similar fashion, improving accuracy by approximately 0.5%, outperforming the
compared methods, including QSGD which has a 0.33% accuracy increase at
8 bits. We note that since DGC and Gradient Dropping are gradient pruning
methods, the bit-width of the non-zero gradients is still represented in full-
precision, despite being highly sparse. We will be comparing overall sparsity
and compression levels later on with our language modeling experiments.

To continue our comparison with gradient quantization methods, we also
experiment with ResNet-18 [He+16] on CIFAR-100, following the experiments 10

presented by ef-signSGD [Kar+19] and reporting the average over 3 training

10 https://github.com/epfml/error-feedback-SGD
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runs. Speci�cally, we compared MCGQ to the following 1-bit gradient compres-
sion methods: signSGD [Ber+18], signum [Ber+18], and ef-signSGD [Kar+19].
Since we did not observe any signi�cant bene�ts of having a dynamic  with
this variant, we only report results using the accumulated gradients variant
without dynamic sampling from now on. We compress gradient communication
by approximately 32×, similarly to the compared binary methods, by using
the communication scheme proposed in Section 3.3.2. Comparison results are
presented in Table 3.4.

Table 3.4: Comparison results on CIFAR-100 using the best learning rate of the compared
methods.

ResNet-18 on CIFAR-100
Method Test accuracy (%) Compression rate LR

SGD (baseline) 74.02 1× 5.64−2
MCGQ 74.89 ≈ 32× 5.6e−2

ef-signSGD [Kar+19] 74.43 32× 5.64−2
signSGD [Ber+18] 73.14 32× 5.64−2
signum [Ber+18] 72.20 32× 3.24−4

We report the models with the best learning rate (LR) for signSGD and ef-
signSGD and apply the same LR schedule to SGD by reducing the LR by 10 at
epochs 100 and 150. We observe that MCGQ outperforms the compared methods
at the same compression rates and under identical training settings. We present
the training progress of the di�erent models in Figure 3.12.
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Figure 3.12: Test and train accuracies of di�erent gradient quantization methods on
CIFAR-100 using the best learning rates of the compared methods.
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We observe that MCGQ showcases the fastest convergence in terms of test
and train accuracy among the compared methods, including the 32-bit gradient
baseline. While ef-signSGD matches the baseline’s progress, the other methods
show overall poorer convergence, especially in terms of test accuracy.

Ideally, the di�erent methods would not require the adjustment of training
hyper-parameters, such as the learning rate, relative to the 32-bit baseline. Hence,
we also compared the di�erent methods using the best learning rate reported
for the SGD baseline with momentum (SGDm) presented by Karimireddy et
al. [Kar+19]. Comparison results are presented in Table 3.5.

Table 3.5: Comparison results on CIFAR-100 using SGDm’s best learning rate.

ResNet-18 on CIFAR-100
Method Test accuracy (%) Compression rate LR
SGDm 75.20 1× 1.04−2

SGD (baseline) 69.75 1× 1.04−2
MCGQ 72.57 ≈ 32× 1.0e−2

ef-signSGD [Kar+19] 69.69 32× 1.04−2
signSGD [Ber+18] 67.13 32× 1.04−2
signum [Ber+18] 58.90 32× 1.04−2

We observe that, out of all gradient quantization methods, MCGQ presents
the closest accuracy to the 32-bit SGD baseline with momentum. Moreover,
we note that we also signi�cantly outperform the 32-bit SGD baseline without
momentum. These �ndings suggest the superior applicability of our approach
in being integrated into existing training frameworks. We report the training
progress of the di�erent methods in Figure 3.13.

We observe MCGQ converges faster in the mid-training iterations out of all
compared methods. However, at the end of the training, SGDm presents the
best performance in terms of test accuracy. Once again, we observe a poorer
performance of the signSGD and signum methods through training.

Language modeling

We conclude our comparisons by analyzing highly sparse gradient pruning
methods using the language model experiments described in Section 3.3.3. We
start out by comparing MCGQ with DGC [Lin+18a] on PTB in Table 3.6.
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Figure 3.13: Test and train accuracies of di�erent gradient quantization methods on
CIFAR-100 using SGDm’s best learning rate.

Table 3.6: Compression results of two MCGQ variants with di�erent sampling amounts
and Deep Gradient Compression (DGC) on PTB.

2-LSTM on PTB
Method Perplexity ↓ Gradient size Compression rate
Baseline 82.03 194.69 MB 1×
� MCGQ -0.21 0.16 MB 1218×
� MCGQ -4.30 0.42 MB 469×

J DGC [Lin+18a] -0.06 0.42 MB 462×

We observe that, at similar compression rates of 469× and 462× for MCGQ
and DGC, respectively, our method improves perplexity by a greater degree
relative to the respective full-precision gradient baseline. At approximately
1200× compression rates, MCGQ still manages to outperform the relative per-
plexity performance when compared to DGC. We note that DGC’s baseline
model achieves a higher perplexity than our baseline model.

Moreover, we also compare MCGQ to AdaComp [Che+18] on Shakespeare
text. Comparison results, in terms of cross-entropy validation loss, are presented
in Table 3.7.

We observe that, at more than double the compression rate, MCGQ reaches a
similar performance as AdaComp. If compressed to similar compression rates,
MCGQ outperforms AdaComp while reducing the validation loss of the baseline
model.
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Table 3.7: Compression results of two MCGQ variants with di�erent sampling amounts
and AdaComp on Shakespeare.

Char-RNN on Shakespeare
Method Val. loss ↓ Gradient size Compression rate
Baseline 1.578 13.28 MB 1×
� MCGQ +0.020 0.03 MB 520×
� MCGQ -0.016 0.06 MB 215×

J AdaComp [Che+18] +0.020 0.07 MB 200×

3.4 Concluding Remarks

In this Chapter, we showed that randomized importance sampling techniques
are an e�ective technique to convert �oating-point values to integer values by
quantization. Speci�cally, we proposed two novel Monte Carlo and importance
sampling methods to quantize weights and activations in a post-training regime,
i.e. MCQ, as well as gradients during training, i.e. MCGQ. The proposed methods
combine quantization and pruning to successfully compress di�erent neural
networks on multiple datasets and tasks with minimal to no performance loss
compared to the full-precision counterparts. Moreover, the trade-o� between
performance and compression (both in terms of sparsity and bit-width) may be
controlled by adjusting the number of samples.

Since both methods require enough sampling to enable a good approxima-
tion, they may require higher bit-width than existing quantization approaches,
especially MCQ. To reduce the required precision, one may split the maximum
quantized values using Outlier Channel Splitting (OCS) [Zha+19a], which may
be seen as orthogonal work. More so, combining existing compression methods
on top of MCQ, such as clipping [BNS19], also presents a good complement to
ultimately reduce precision without compromising the approximation of the
original distribution and without requiring any additional training. Moreover,
one may also improve the importance sampling process by incorporating Tay-
lor expansions [Mol+17] in both of our methods. In future work, it would be
interesting to evaluate the scalability of MCGQ in a real distributed setting by
performing training across multiple workers.

In the context of GANs, MCQ may be used to reduce the memory and com-
putational cost of a pre-trained generator, which will be further discussed in
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Chapter 5. Moreover, MCGQ may be used to reduce the communication costs of
training GANs in a distributed training, which is an important step considering
the increasing trend in the number of models by multi-adversarial frameworks,
such as the proposed Dropout-GAN and microbatchGAN, and architectural
sizes.
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4 Evaluation of Generated Samples

This Chapter is based on two of our refereed papers: Fuzzy Topology Impact
(FTI) [MNM21] and Mark-Evaluate [MM20]. The results presented for FTI are
an extended version of some of the work done by Julian Niedermeier for his Master’s
thesis, which I mentored. This preliminary version of FTI [NMM20] was presented
at AAAI 2020 workshop on Evaluating Evaluation of AI Systems. For readers unfa-
miliar with the evaluation of generative models, we refer to Theis et al. [TOB16].

Evaluation of a generated set is an important topic of research given the recent
popularity of generative models, mostly fueled by the introduction of GANs. A
proper and thorough evaluation of a generative model opens doors for improving
the generation process to meet the demands of speci�c real-world applications.

In this Chapter, we discuss the challenging task of evaluating generated sam-
ples, speci�cally from di�erent GANs as well as language models. We start by
introducing existing evaluation metrics as well as their current drawbacks in
Section 4.1. Then, we propose one novel metric called Fuzzy Topology Impact
(FTI) in Section 4.2, and a new family of metrics called Mark-Evaluate in Sec-
tion 4.3. Finally, we provide some closing thoughts on the proposed work as
well as future directions in Section 4.4.

4.1 Related Work

Existing evaluation methods may be broadly categorized into three main groups:
analysis of likelihoods [TOB16] and probability distributions [Gre+12; Heu+17],
topological analysis of manifolds [KO18; Kyn+19; Saj+18], and classi�er-based
methods [GKV17; Sal+16; SSA18]. A description of popular metrics follows.

Single-valued metrics

We now provide an overview of two evaluation metrics that have been previously
referenced in this thesis: Inception score (IS) [Sal+16] and Fréchet Inception
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Distance (FID) [Heu+17]. Since proposed, such metrics have been widely popular
in evaluating GANs by making di�erent use of an Inception-V3 [Sze+16] model
pre-trained on ImageNet.

Namely, IS proposes to measure the Kullback-Leibler Divergence [KL51]
between the conditional probability distribution of a generated sample belonging
to an ImageNet class and the marginal distribution across the classes assigned
to all generated samples. Both distributions are constructed from Inception-V3’s
output distribution. The intuition is that, given the broad classes of ImageNet,
a pre-trained model on that data should assign a high probability to one class
for each generated sample, depending on its quality. Moreover, the di�erently
assigned classes should be close to uniformly distributed, depending on the
sample variety in the generated set.

On the other hand, FID uses the embeddings of Inception-V3’s last pooling
layer to represent both real and generated images in a feature space. Hence,
contrary to IS, FID uses the real data to assess a generated set. As the name
suggests, FID measures the similarity between the real and the generated image
embeddings by using the Fréchet Distance. Note that high and low values
represent a better generated set for IS and FID, respectively. One of the practical
bene�ts of FID is to be more accurate than IS in assessing sample diversity,
namely when only one identical sample is generated for each class.

Note that neither high IS or low FID, or vice-versa, necessarily suggest a good
or bad sample quality or a good or bad sample diversity. This lack of clarity of
single-valued metrics may be unsatisfactory in scenarios where independent
insights regarding either sample quality or sample diversity in the generated set
are important, as it will be discussed throughout this Chapter.

Double-valued metrics

Several double-valued metrics have been recently proposed to individually mea-
sure sample quality and sample diversity. Similar to FID, the following metrics
�rst use the embeddings of di�erent pre-trained models to position real and
generated samples in a shared feature space. Then, precision (sample quality)
and recall (sample diversity) may be measured using the di�erent strategies
described below.

Precision and recall for distributions (PRD) was initially proposed by Sajjadi et
al. [Saj+18]. They use k-means [Mac67] to approximate the supports of the real
and generated sets using the centroids from the di�erent clusters. The generated
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set is then assessed in terms of relative probability densities. More speci�cally,
precision measures the probability of a generated sample being inside the support
of the real distribution. On the other hand, the opposite procedure is used to
measure recall by calculating the probability of a real sample being inside the
support of the generated distribution.

A follow-up method called improved precision and recall (IMPAR) was intro-
duced by Kynkäänniemi et al. [Kyn+19] to simplify the manifold approximation
process by using :-nearest neighbors (KNN) instead of k-means. More speci�-
cally, the real and generated manifolds are constructed by several hyperspheres
that connect each sample to the :-closest neighbor of its respective set. Then,
precision is measured by the ratio of generated samples in the real manifold, and
recall is measured by the ratio of real samples in the generated manifold. Due to
its simplicity, we also employ such manifold approximation using KNN in our
proposed metrics in this Chapter: FTI and Mark-Evaluate.

Topology-based metrics have also been recently proposed to assess language
generation [Zha+19b; Zha+20a] and are starting to supersede popular single-
valued text metrics such as BLEU [Pap+02], ROUGE [Lin04] and METEOR [BL05].
We note that, even though FID was initially proposed by Heusel et al. [Heu+17]
with image generation in mind, Semeniuta et al. [SSG18] proposed to extend FID
to the text domain by simply replacing the pre-trained image model, Inception-
V3, with a text model, InferSent [Con+17]. In this Chapter, we also extend both
PRD and IMPAR to the text domain by using sentence embeddings [RG19] or con-
textualized word embeddings [Dev+19]. Such representations have recently been
shown to improve language assessment in a variety of language tasks [MBC19;
Rei+20; SDP20; Zha+19b; Zha+20a].

In this Chapter, we also study unsupervised conditional language metrics,
namely BERTScore [Zha+20a] and MoverScore [Zha+19b], which show a high
correlation to human evaluation on conditional tasks, such as machine trans-
lation and text summarization. BERTScore returns a double-valued metric to
assess a generated sentence against a reference sentence by measuring the re-
quired transport between semantically similar words from the di�erent sentences.
MoverScore returns a single-valued metric representing the minimum transport
between an entire generated sentence and a reference sentence by leveraging
contextual representations. We now proceed to discuss our proposed metrics,
FTI and Mark-Evaluate, in Sections 4.2 and 4.3, respectively.

79



Chapter 4 Evaluation of Generated Samples

4.2 Fuzzy Topology Impact

We now introduce our �rst double-valued metric, Fuzzy Topology Impact (FTI),
which uses topological representations and Fuzzy Logic to assess a generated
set in a �ne-grained manner. In this Chapter, we use FTI to assess only image
generation, whereas our other family of metrics, Mark-Evaluate, is used to
evaluate language generation in Section 4.3. However, we note that since both
methods rely on embeddings of pre-trained models, we may apply each metric
to di�erent data domains.

We describe FTI in Section 4.2.1 and important implementation details in
Section 4.2.2. We evaluate di�erent con�gurations of FTI in Section 4.2.3 and
show empirical evidence of the bene�ts of having a �ner-granularity compared
to existing methods in Section 4.2.4.

4.2.1 Topological Representations and Fuzzy Logic

FTI leverages the topological representations from Uniform Manifold Approxima-
tion and Projection (UMAP) [MHM18], which is a popular method for dimension
reduction that leverages Riemannian geometry and Fuzzy Logic. In our use
case, we use such representations to assess a generated set where each sample
is a feature representation from a pre-trained model. Namely, UMAP is used
to retrieve a directed, weighted graph using each sample as a node, with the
connections being established by using KNN and the weights determined by
using Riemannian geometry principles and fuzzy logic. In the end, such graph
provides not only an overview of nearby samples but also how near they are
relative to one another. In other words, the weight of each connection presents
the probability of its existence in the original feature space.

To assess sample quality and diversity, we start by constructing a real data
graph for the real samples and a generated data graph for the generated samples.
Then, we analyze how similar the two graphs are by measuring the impact that
samples from one graph have on the other. More speci�cally, we de�ne impact as
the drop in the average probability of the existence of each connection on each
original graph after inserting new samples or nodes from the other graph. Hence,
quality relates to the impact that generated samples have on the real data graph,
whereas diversity represents the impact that real samples have on the generated
data graph. Even though this process is inspired by notions of precision and
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recall of existing topology-based metrics, our method Fuzzy Topology Impact
(FTI) enables a more sensitive and �ner-grained assessment of a generated set.

Topological representations

We will provide a brief overview of UMAP’s steps for the construction of each
graph as well as our proposed modi�cations for the adoption of such graphs to
the evaluation use case. In UMAP, each graph may be seen as an approximation
of the data manifold. Namely, by assuming samples to be uniformly distributed
across the manifold, UMAP de�nes a notion of local distance of each sample by
normalizing all sample distances on its neighborhood by the :-th neighbor’s
distance, or by a scaling factor f . Such assumption enables the usage of Rie-
mannian geometry and Fuzzy Logic to formally prove the e�cacy of UMAP’s
weighted, directed graph in terms of manifold approximation [MHM18].

Let us represent each graph � = (-, �) by a set of nodes or feature represen-
tations - = {G1, . . . , G# } and a set of # × : directed edges � ⊆ {(G8 , G8 9 ) | 9 ∈
{1, . . . , :}, 8 ∈ {1, . . . , # }}, where G8 9 ∈ - are the :-nearest neighbors of G8 under
the euclidean distance 3 . The weight or probability of existence ?G8 ,G8 9 ∈ [0, 1]
of a directed edge (G8 , G8 9 ) ∈ � is:

?G8 ,G8 9 = exp
(−3 (G8 , G8 9 )

f8

)
, (4.1)

where exp(·) is the natural exponential function and f8 ∈ ℝ+ is the scaling factor
of G8 such that the weights of its outgoing connections are standardized by:

:∑
9=1

?G8 ,G8 9 = log2(:), (4.2)

with log2(:) being originally proposed by McInnes et al. [MHM18] based on a
series of empirical studies. Since each sample has a corresponding scaling factor,
the local connectivity in each neighborhood set is still preserved despite the
global normalization of all weights in the graph.

We note that the described graph di�ers from the �nal graph retrieved by
UMAP due to the di�erent use cases: while we aim at performing sample as-
sessment, UMAP’s goal is to reduce sample dimensionality. Namely, McInnes
et al. [MHM18] further extends the previous graph to an undirected graph by
combining the weights of edges with opposite directions. On the other hand, we
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simply use the described directed graph. By retaining the probability of existence
of both incoming and outgoing connections of each sample, we aim at inducing
higher outlier awareness in the overall assessment of a generated set.

Impact evaluation

We measure the impact that an evaluation set - ′ has on a reference set - by
�rst calculating the average probability of existence of the edges of graph � ,
constructed only from samples in - :

%� =

∑#
8=1

∑:
9=1 ?G8 ,G8 9

# × : . (4.3)

We note that, given (4.2), %� is constant. However, we are only interested
in calculating the impact in the �nal graph. More speci�cally, we insert a new
sample G ′8 ∈ - ′ to � and update the weights of all original edges accordingly:

?
G′8
G8 ,G8 9

=


0, if 9 = : ∧ 3 (G8 , G8: ) > 3 (G8 , G ′8 )

exp
(−3 (G8 , G8 9 )

f ′
8

)
, if 9 ≠ : ∧ 3 (G8 , G8: ) > 3 (G8 , G ′8 )

?G8 ,G8 9 , otherwise.

(4.4)

Namely, if G ′8 is not a :-nearest neighbor of any original sample, no changes
are performed in � ’s weights. However, if G ′8 is in the neighborhood of a given
original sample G8 , we remove the original edge from G8 to its previous :-th
nearest neighbor and update the rest of the outgoing weights of G8 following
(4.1). Moreover, we update the original f8 by introducing f ′8 , where f ′8 satis�es:

:−1∑
9=1

(
exp

(−3 (G8 , G8 9 )
f ′
8

))
+ exp

(−3 (G8 , G ′8 )
f ′
8

)
= log2(:). (4.5)

The updated average probability of existence of the original � ’s weights after
inserting G ′8 may then be described as:

%�,G′
8
=

∑#
8=1

∑:
9=1 ?

G′8
G8 ,G8 9

# × : . (4.6)
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Considering a set of evaluation feature representations - ′ = {G ′1, . . . , G ′# ′},
the overall impact (FTI) may be de�ned as the average drop in %� , calculated
using the original graph � with a set of feature representations - and : nearest
neighbors:

�) � (-,- ′, :) =

∑# ′
8=1

(
%� − %�,G′

8

)
# ′

. (4.7)

A pseudo-code for the proposed method is presented in Algorithm 8. Assum-
ing the euclidean distances between each reference sample and its :-nearest
neighbors are provided, we iterate through the reference samples that have
a given evaluation sample G ′8 in their neighborhood and update the original
graph probabilities accordingly. During this process, we keep track of the total
impact induced by all evaluation samples. We note that we use the function
SmoothDistApprox(·), originally proposed by McInnes et al. [MHM18], to �nd
each updated scaling factor f ′8 through a binary search.

�ality and diversity

So far, we have introduced FTI in a broader sense by calculating the drop in the
average probability of existence that an evaluation set - ′ has on a reference set
- . However, we would like to assess a generated set in terms of sample quality
and sample diversity separately. To this end, we calculate sample quality by
setting - to be the set of real samples, -A , and - ′ to be the set of generated
samples, -6. Conversely, to measure sample diversity, we set - to -6 and - ′
to -A . Hence, the assessment of quality and diversity of a generated set -6 is
proposed as:

quality = FTI(-A , -6, :) diversity = FTI(-6, -A , :) . (4.8)

We note that this assessment concept was �rst introduced by Sajjadi et
al. [Saj+18] and adopted by Kynkäänniemi et al. [Kyn+19] in their proposed
double-valued metrics based on precision and recall. In FTI, however, we relate
sample quality to the impact that, on average, a generated sample has on the
real data graph. On the other hand, sample diversity is measured by the impact
that, on average, a real sample has on the generated data graph.
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Algorithm 8 Fuzzy Topology Impact.
Input: Original graph� constructed from a reference set- using : neighbors,
evaluation set - ′, dictionary 38BC with the euclidean distances between each
reference sample and is : nearest neighbors
impact← 0
for each G ′8 ∈ - ′ do
?- ← 0
?-
′ ← 0

count← 0
for each G8 ∈ - do
if 3 (G8 , G ′8 ) < 3 (G8 , G8: ) then

count← count + 1
?- ← ?- + ?G8 ,G8:
del dists[(G8 , G8: )]
?
G′8
G8 ,G8:

← 0
dists[(G8 , G ′8 )] ← 3 (G8 , G ′8 )
f ′8 ← SmoothDistApprox(dists, :)
for 9 = 1, . . . , : − 1 do
?- ← ?- + ?G8 ,G8 9
?
G′8
G8 ,G8 9

← exp
(−3 (G8 , G8 9 )

f ′
8

)
?-
′ ← ?-

′ + ?G
′
8
G8 ,G8 9

end for
end if

end for
impact← impact + ?- − ?- ′

end for
return

impact
# ′
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4.2.2 Implementation Details

The only adjustable parameter of FTI is the number of neighbors, : . Hence, we
now focus on the e�ects of di�erent values for : in the assessment of a generated
set.

(a) : = 2. (b) : = 3.

Figure 4.1: Impact assignment given 40 random original points using (a) : = 2 and 3
(b) : = 3. The top row shows the hyperspheres from each sample to its :-th nearest
neighbor, while the bottom row shows the di�erent degrees of impact assigned to each
hypersphere. Warmer colors represent high impact, cooler colors indicate low impact,
with the darkest color indicating no impact.
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Number of neighbors

The number of neighbors directly a�ects the approximation of the data manifold
performed by KNN. Intuitively, a larger : will broaden the estimated manifold
whereas a smaller : will shrink such estimation. The resolution of the manifold
estimation leads to the assignment of di�erent degrees of impact over the data
space by FTI. A visual representation of such e�ects is presented in Figure 4.1.

We observe that a higher : increases the chances of a new (random) sample
receiving a higher impact than a smaller : . Moreover, we would like to note the
importance of using probability weights (FTI) instead of binary weights (IMPAR),
which may otherwise result in a disproportionate (large) coverage of the data
space. (Check Figure 4.1 (b) for a visual example of such coverage.) Hence, the
�ner-grained assessment introduced by our approach is especially important if
using a higher : or if dealing with sparse data.

4.2.3 Experimental Results

We now evaluate the e�ects of using di�erent values for : on assessing realistic
images generated from pre-trained StyleGAN2 [Kar+20b] models on LSUN-
Church [Yu+15], LSUN-Horse [Yu+15], and FFHQ [KLA19]. We simulate di�erent
levels of sample diversity by using di�erent truncationk , namelyk = 0.5 and
k = 1.0, which translate to more and less diversity, respectively [BDS19; KD18;
KLA19; Kyn+19].

Truncation in StyleGAN2

Results using di�erent values for : and truncation levels are presented in Fig-
ure 4.2. We rescaled both the generated and real images to 256x256 for faster
computation.

We observe that all variants assess the generated sets correctly, showing an
increase of sample diversity while maintaining sample quality as k increases.
Moreover, smaller : values tend to show a higher FTI ratio than higher : values,
relative to the respective results at k = 0.5. This suggests that the higher
impact spread across the data space when using more neighbors, as previously
mentioned in Section 4.2.2, results in the assignment of a higher impact to
generated samples with k = 0.5 in the real data graph. We observed similar
conclusions on identical experiments performed with StyleGAN2’s predecessor,
StyleGAN [KLA19].
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Figure 4.2: Truncation results on StyleGAN2 using di�erent values for : on LSUN-
Church, LSUN-Horse and FFHQ, normalized by their respective values atk = 0.5.

4.2.4 Method Comparisons

We now compare FTI to existing single-valued (IS [Sal+16] and FID [Heu+17])
and double-valued metrics (PRD [Saj+18] and IMPAR [Kyn+19]) on several
experiments. We use the feature representations of Inception-V3 to represent
image samples. Due to the di�erent range of values retrieved by FTI and the
compared double-valued metrics, we report the di�erent results in terms of ratio
for an easier comparison analysis. We use : = 3 across all experiments to match
the number of neighbors originally proposed by IMPAR.

We start by extending the previous StyleGAN2 truncation experiment in
Section 4.2.3 to the compared methods. Moreover, we continue a synthetic
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analysis of sample quality and sample diversity on Fashion-MNIST [XRV17],
CIFAR-10, and CIFAR-100 [Kri09] by simulating noise sensitivity as well as mode
addition and invention. For these experiments, we use the original training set
as the real set and several modi�cations of the testing set as the generated set.

Truncation in StyleGAN2

Comparison results between FTI and compared methods is presented in Fig-
ure 4.3.
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Figure 4.3: Truncation results on StyleGAN2 using the di�erent methods on LSUN-
Church, LSUN-Horse and FFHQ, normalized by their respective values atk = 0.5.

We observe that FTI shows a clearer expected behavior when increasing k
than the compared methods by maintaining its quality assessment and increasing
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its diversity assessment. Speci�cally, even though less pronounced, IMPAR also
shows similar behavior to FTI, while PRD fails to show a substantial change in
its assessment. FID improves ask increases, suggesting a bias towards sample
diversity in its single-valued assessment which we further discuss in Chapter 5.
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Figure 4.4: Method comparisons with added Gaussian noise on Fashion-MNIST, CIFAR-
10 and CIFAR-100 test images, normalized by the respective metric values with no
noise.

Noise sensitivity

To simulate di�erent degrees of sample quality, we incrementally added Gaussian
noise to the test set images. Note that, since we are distorting the test image
samples in the feature space, sample diversity relative to the real images is also
likely to be negatively a�ected. Hence, both assessments of sample quality and
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sample diversity are expected to decrease, especially at higher noise distortions.
Comparison results are shown in Figure 4.4.

We observe that, in general, all metrics show high sensitivity to noise, pre-
senting a deteriorated assessment at visually negligible noise amounts. (We note
that such noise changes may be ampli�ed at the feature representation level
though.) More concretely, IS shows less noise sensitivity on Fashion-MNIST
compared to CIFAR-10 and CIFAR-100, similarly to PRD, unexpectedly showing
a better assessment at low noise amounts on the latter datasets. On the other
hand, FID shows a consistent sensitivity to noise on the di�erent datasets. Once
again, both FTI and IMPAR show a similar assessment behavior, even though
our method shows a higher sensitivity to noise given its �ner-grained nature.
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Figure 4.5: Method comparisons for mode addition and invention on Fashion-MNIST,
CIFAR-10, and CIFAR-100, normalized by the respective values at half of the classes.
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Mode addition and invention

To simulate a drop in sample quality and an increase in sample diversity, and
vice-versa, we follow the mode addition and invention experiments proposed by
Sajjadi et al. [Saj+18]. Speci�cally, we drop half the classes of the real image set,
which remains constant throughout the entire experiment, and progressively add
classes to the generated set, i.e. the test set in our use case. We start by adding
classes present in the real set, one by one, to stimulate mode addition. Then, we
proceed to add the rest of the classes to simulate mode invention. Comparison
results are presented in Figure 4.5.

We observe that FTI exhibits the expected behavior across all datasets: during
the mode addition phase, quality remains constant while diversity increases,
whereas diversity remains constant and quality decreases during the mode
invention phase. PRD fails to detect mode invention on CIFAR-10 and CIFAR-
100 and shows contradictory behavior on its quality and diversity assessments.
Moreover, IMPAR is less sensitive than FTI across the board while showing
ambiguous diversity in the mid-class ranges of the mode addition phase on
CIFAR-10. Even though FID shows sensitivity to mode addition, it fails to
signi�cantly detect mode invention on CIFAR-10 and CIFAR-100, reinforcing
the importance of a more thorough assessment by using double-valued metrics.

4.3 Mark-Evaluate

We now shift our focus from assessing image generation to evaluating text genera-
tion. To this end, we provide a thorough study regarding applying existing image
evaluation metrics, namely FID [Heu+17], PRD [Saj+18] and IMPAR [Kyn+19],
to challenging language assessment tasks. Moreover, we present a new family of
both single-valued and double-valued metrics that we call Mark-Evaluate. Our
metrics leverage di�erent population estimation methods widely used in ecology
to estimate the size of animal populations in the wild.

We introduce our proposed metrics in Section 4.3.1 as well as important
implementation details in Section 4.3.2. The e�cacy of the proposed metrics is
showcased in Section 4.3.3 and a comparison to existing metrics in synthetic
experiments as well as human evaluation correlation is presented in Section 4.3.4.
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4.3.1 Population Estimation Methods

Population estimation methods have been widely employed over the last decades
to study the evolution of species in ecology [Kre89]. Existing methods may be
separated into two categories focusing on either open populations or closed
populations. In our use case, we use several closed population methods which
assume the true population size to remain constant throughout the estimation
process. More speci�cally, we use the �nal population estimation of the dif-
ferent methods to assess a generated set consisting of either contextualized
word [Dev+19] or sentence [RG19] embeddings, depending on the task, given
the corresponding real set.

Our family of metrics, Mark-Evaluate (ME), consists of two single-valued
metrics and one double-valued metric. Concretely, we use two mark-recapture
methods which leverage a single marking and recapture process (MEPetersen)
or multiple markings and recaptures (MESchnabel) using the Petersen [Ric75]
and Schnabel [Sch38] estimators, respectively. Moreover, we use a maximum-
likelihood method based on the program CAPTURE [Oti+78], that relies on
multiple markings and captures (MECAPTURE) for the �nal population size esti-
mation. The capture mechanism used by the di�erent estimators is performed
using capture volumes, which are calculated by the hyperspheres to the :-closest
neighbors on each set, following IMPAR [Kyn+19] and FTI. A visual comparison
of the di�erent methods using : = 1 and considering a reference set ( and an
evaluation set ( ′ is presented in Figure 4.6.

Considering the reference (() and evaluation (( ′) sets, the true population size
(% ) is % = |( | + |( ′ |, since we are only dealing with closed populations. Hence,
given an estimated population size (%̂ ), the accuracy loss (�) of the estimation
may be measured as:

�(%, %̂) = max

(��� %̂ − %
%

���, 1), (4.9)

with �(%, %̂) ≈ 0 representing a good estimation and �(%, %̂) ≈ 1 indicating a
poor estimation of the population size. In general, a higher number of captured
samples will improve the estimation of all methods since more information is
provided regarding the data space. In our use case, this means that, if evaluation
samples tend to be within the hyperspheres of reference samples, and vice-versa,
each metric will give a high assessment score to the generated set.
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S S ′ single marking first marking

multiple markings and captures single recapture multiple markings and recaptures

MEPetersen

MECAPTURE

MESchnabel

Figure 4.6: Our evaluation metrics are based on population estimation methods. Ref-
erence (B ∈ () and evaluation (B ′ ∈ ( ′) samples are represented as blue and red circles,
respectively. Filled circles represent marked samples. In MEPetersen and MESchnabel, we
�rst capture and mark all samples inside any hypersphere of B . Then, in MEPetersen,
we count the number of marked samples (recaptures) inside any hypersphere of B ′. In
MESchnabel, we perform a similar process iteratively, marking and recapturing samples
inside the hypersphere of each B ′. This results in all samples being marked in the end.
Alternately, MECAPTURE captures and marks samples inside any hypersphere of B and B ′.
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4.3.2 Implementation Details

In this Section, we discuss how each estimator calculates its population size
estimate %̂ . For that purpose, we adapt the formulations of Kynkäänniemi et
al. [Kyn+19] and de�ne a function 5 , which returns a binary representing whether
a sample B ′ ∈ ( ′ is inside the capture volume, i.e. hypersphere, of some sample
B ∈ ( :

5 (B ′, () =
{
1, if | |B ′ − B | |2 ≤ ||B − NN: (B, () [−1] | |2 for at least one B ∈ (
0, otherwise,

(4.10)
where NN: (B, () is a function that returns a set with the :-nearest neighbors
of B ∈ ( , including itself. The returned set is ordered by ascending Euclidean
distances, with NN: (B, () [−1] representing the :-th nearest neighbor of B .

Petersen estimator

As previously presented in Figure 4.6, the Petersen estimator [Ric75] uses a
single marking and a single recapture step. More speci�cally, it simply considers
the ratio of marked samples (") in the population size (% ) to be the same as
the ratio of recaptured samples (') in the captured samples (�), in the marking
and recapture steps, respectively. Recalling ( and ( ′ as the sets of reference
and evaluation samples, respectively, the Petersen’s population size estimate,
%̂Petersen, is:

%̂Petersen((, ( ′) =
� ((, ( ′)" ((, ( ′)

'((, ( ′) . (4.11)

In our use case, the marking step consists of marking all samples inside the
hypersphere of any B . Hence, the number of marked samples (") is calculated
by:

" ((, ( ′) = |( | +
∑
B′∈(′

5 (B ′, () . (4.12)

Conversely, the recapture step �rst consists of capturing all samples inside the
hypersphere of any B ′. Hence, the number of captured samples (�) is measured
by:
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� ((, ( ′) = |( ′ | +
∑
B∈(

5 (B, ( ′) . (4.13)

Then, it requires counting the number of recaptured samples, i.e. the captured
samples that were previously marked:

'((, ( ′) =
∑
B′∈(′

5 (B ′, () +
∑
B∈(

5 (B, ( ′) . (4.14)

Schnabel estimator

The extension of the previous method to multiple markings and recaptures was
proposed by Schnabel [Sch38]. Considering ) consecutive Petersen estimates
and the reference (() and evaluation (( ′) sets, the population size estimate of the
Schnabel estimator, %̂Schnabel, is given by:

%̂Schnabel((, ( ′) =
�) ((, ( ′)") ((, ( ′)

') ((, ( ′)
. (4.15)

Throughout the estimation process, at a given iteration C ∈ {1, . . . ,) }, the set
of marked samples may be recursively de�ned as:

" (C, (, ( ′) =


( ∪ {B ′ ∈ ( ′ |5 (B ′, () = 1}, if C = 1,
( ∪ ( ′, if C = ),

" (1, (, ( ′) ∪
(
C−1⋃
8=1

NN: (B ′8 , ( ′)
)
, otherwise,

(4.16)

with the set of evaluation samples ( ′ being de�ned as {B ′1, . . . , B ′|(′ |}. At C = 1, the
marking step is identical to the single step of MEPetersen. At subsequent iterations,
newly captured (not marked) samples are marked. At the end of the estimation
process, all samples are marked since we iterate through all samples. Hence, at
C = ) , the number of marked samples (") ) is calculated by:

") ((, ( ′) = |" (), (, ( ′) |. (4.17)

After all recapture steps, the total number of captured samples consists of: (1)
the number of all evaluation samples, (2) their :-th nearest evaluation samples,
and (3) the number of reference samples inside the hyperspheres of each evalu-

95



Chapter 4 Evaluation of Generated Samples

ation sample B ′ ∈ ( ′. Hence, at C = ) , the number of captured samples (�) ) is
measured by:

�) = (: + 1) × |( ′ | +
∑
B′∈(′

∑
B∈(

5 (B,NN: (B ′, ( ′)) . (4.18)

Since all reference samples are marked in the �rst marking step, the total
number of recaptured samples consists of: (1) the number of reference samples
inside the hyperspheres of each evaluation sample B ′, and (2) the number of
captured :-th nearest evaluation samples already marked. Hence, at C = ) , the
number of recaptured samples (') ) is computed by:

') ((, ( ′) =
|(′ |∑
8=1

|( |∑
9=1

(
5 (B 9 ,NN: (B ′8 , ( ′)) + |" (8, (, ( ′) ∩ NN: (B ′8 , ( ′) |

)
. (4.19)

Program CAPTURE

One may also use the model null from program CAPTURE [Oti+78] to estimate
the population size that maximizes the log-likelihood given a total number of
marked (") ) and captured (�total) samples over ) = |( | + |( ′ | trials, with ( and
( ′ representing the reference and evaluation sets, respectively. More speci�cally,
the �nal population estimate (%̂CAPTURE) is found by iterating through several
provisional population estimates (%CAPTURE ∈ ℕ≥" ):

%̂CAPTURE((, ( ′) = argmax
%CAPTURE

!̂= (%CAPTURE; (, ( ′), (4.20)

with a given %CAPTURE having the following log-likelihood, as presented in
Krebs [Kre89]:

!= (%CAPTURE; (, ( ′) =

ln

(
%CAPTURE!

(%CAPTURE −") ((, ( ′))!

)
+�total((, ( ′) × ;=

(
�total((, ( ′)

)
+
(
) × %CAPTURE −�total((, ( ′)

)
× ln

(
) × %CAPTURE −�total((, ( ′)

)
−() × %CAPTURE) ln() × %CAPTURE),

(4.21)
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where "!" represents the factorial operation.
Since we iterate through all samples, the total number of captures consists of:

(1) the number of samples in ( and ( ′, (2) their respective neighbors, and (3) the
number of samples from each set inside the hyperspheres of any sample from
the other set. Hence, the total number of captures (�total), is calculated as:

�total((, ( ′) =
∑
B∈(

∑
B′∈(′

(
5 (B ′,NN: (B, ()) + |NN: (B, () |

)
+

∑
B′∈(′

∑
B∈(

(
5 (B,NN: (B ′, ( ′)) + |NN: (B ′, ( ′) |

)
,

(4.22)

with 5 de�ned in (4.10) and NN: returning the set of :-nearest neighbors of a
given sample, as introduced earlier in this Section.

Family of metrics

We combine the described estimations in one family of metrics: Mark-Evaluate
(ME). We use the accuracy loss (4.9) of each population estimation to compute
the �nal score of their corresponding metric, namely MEPetersen, MESchnabel, or
MECAPTURE. Each score is then calculated by:

ME{Petersen, Schnabel, CAPTURE}((, ( ′) = 1 −�
(
%, %̂{Petersen, Schnabel, CAPTURE}((, ( ′)

)
.

(4.23)
We note that MESchnable may be used as a double-valued metric due to its

iterative nature, resulting in a di�erent population estimate depending on which
sets are used as the reference and evaluation sets. Hence, given a real set (A
and a generated set (6, sample quality and sample diversity may be measured
by MESchnable((A , (4) and MESchnable((4 , (A ), respectively. On the other hand,
since the population estimations of both %̂Petersen and %̂CAPTURE are indepen-
dent of the set assignments, we have MEPetersen((A , (4) = MEPetersen((4 , (A ) and
MECAPTURE((A , (4) = MECAPTURE((4 , (A ). Hence, both MEPetersen and MECAPTURE
may only be used as singe-valued metrics.
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4.3.3 Experimental Results

Now, we brie�y validate the di�erent metrics on MNLI [WNB18], which contains
sentences from di�erent topics. We use 10K training sentences and 10K validation
sentences as our reference and generated sets, respectively. Each sentence is
represented by embeddings from SBERT [RG19]. Namely, we are interested in
analyzing the convergence of the di�erent metrics to their maximum scores
when signi�cantly augmenting the capture volumes by increasing : .

Number of neighbors

Results with : ∈ {1, . . . , 40} are presented in Figure 4.7.
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Figure 4.7: E�ects of using di�erent values for : , which directly impacts the size of
the used hyperspheres. The population size is 20K, since we use 10K reference and 10K
evaluation samples. The population estimates and scores of the di�erent metrics are
presented in the left and right �gures, respectively, converging to the expected values
as : increases.

We observe that the increase in the hypersphere volumes by increasing :
results in the estimated population size of each metric to converge to the true
population size. Such convergence translates to a maximum score of 1 in all
metrics. We note that di�erent metrics present di�erent behaviors, especially at
low values for : .

4.3.4 Method Comparisons

We now compare Mark-Evaluate to the existing metrics described in Section 4.1.
Namely, we evaluate drops in sample diversity and sample quality by syntheti-
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cally inducing mode collapse and random word swaps, respectively, as introduced
by Semeniuta et al. [SSG18]. Moreover, we assess language generation by eval-
uating the generated text from several language models. Finally, we evaluate
machine translation and text summarization models in terms of correlation to
human evaluation.

We start with synthetic experiments on the previously mentioned MNLI
dataset [WNB18], which contains more than 400K sentence pairs across �ve
di�erent topics. We note that we discard the pair information since we are only
interested in each sentence and its respective topic for our experiments. Hence,
the same number of individual sentences from the training and validation sets are
treated as our real and generated sets, respectively. Similar to FTI’s experiments
in Section 4.2.4, we manipulate the validation or generated set to stimulate
di�erent levels of sample quality or diversity. Each sentence is represented using
SBERT embeddings from a BERT-base model trained on SNLI [Bow+15] and
MNLI 11.

Mode collapse

We gradually remove sentences from each topic in the validation (generated) set
to simulate di�erent degrees of mode collapse. No modi�cations were made in
the training (real) set, which contains sentences from all �ve topics. We kept the
sizes of the modi�ed validation sets constant, assessing 4K validation and 4K real
samples throughout the entire experiment. Comparison results to PRD [Saj+18],
IMPAR [Kyn+19] and FID [Heu+17] are presented in Figure 4.8.

We observe that our single-valued metrics, MEPetersen and MECAPTURE, show
higher deterioration as more sentence topics are dropped, as expected. Similar
behavior is also observed by FID. Our double-valued metric, MESchnabel, shows
a drop in sample diversity, as expected, and a generally constant behavior in
terms of sample quality until up to four topics dropped. Then, at four dropped
topics, there is a sudden quality assessment shift of ≈ 0.5, suggesting high
sensitivity. We note that IMPAR shows a similar behavior, masked by the di�erent
y-scales, decreasing its quality assessment by ≈ 0.4 under the same scenario.
PRD shows contradictory behaviors to what is expected, as previously observed
in Section 4.2.4.

11 https://github.com/UKPLab/sentence-transformers
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Figure 4.8: Comparison results while dropping sentences from certain topics to simulate
mode collapse. For the double-valued metrics, quality and diversity assessments are
represented as full lines and dotted lines, respectively.

Word swap

For the simulation of di�erent levels of quality detriment, we randomly swap
each word of each validation sentence based on a range of swap probabilities.
We use 10K training (real) samples and 10K validation (generated) samples. We
note that the training set remains unchanged throughout all steps, similarly to
the previous experiment. Comparison results against the same previous methods
are presented in Figure 4.9.
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Figure 4.9: Comparison results while swapping words with a certain swap probability.
For the double-valued metrics, quality and diversity assessments are represented as full
lines and dotted lines, respectively.

We observe that MESchnabel showcases the expected behavior, with its diversity
assessment remaining close to constant and its quality assessment dropping as
more words are (likely to be) swapped. On the other hand, PRD and IMPAR’s
diversity assessments show instability and consistent decay, respectively, which
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is not expected. While PRD’s quality assessment decays at a fast rate, at least at
lower swap probabilities, IMPAR’s remains almost constant throughout the entire
experiment. All single-valued metrics show the desired behavior, deteriorating
as the quality detriment increases. As a side note, we point out the success of
using SBERT embeddings to detect quality changes, which has previously been
shown to be a challenge using other embedding schemes [SSG18].

Language generation

From now on, we focus on the assessment of generated text from existing models.
We start by measuring the correlation to human evaluation of the text models
studied by Cífka et al. [Cíf+18]. Namely, we assess a traditional language model
as well as di�erent autoencoders: variational, adversarial (regularized or not),
and plain. The human assessment was entirely based on the �uency of the
generated text; further information may be found in their work [Cíf+18]. Hence,
for the assess double-valued metrics, we study the correlation only in terms of
quality assessment. On top of the previously compared metrics, we also use
the reverse and forward cross-entropy (CE) calculated from a language model
pre-trained on English Gigaword [NGV12] presented by Cífka et al. [Cíf+18].
To represent each sentence, we used SBERT embeddings from a BERT-large
model pre-trained on SNLI and MNLI due to their superior performance [RG19].
Pearson, Kendall, and Spearman correlations are presented in Table 4.1.

Table 4.1: Absolute human evaluation correlations in terms of �uency of 10 di�erent
text generation models. We note that Mark-Evaluate, IMPAR, PRD results are reported
based on their best : , obtained before correlations start to drop. The highest overall
correlations are underlined, whereas our metrics’ correlations that match or outperform
all compared methods are represented in bold.

Correlations Forward CE Reverse CE FID PRD IMPAR MESchnabel MEPetersen MECAPTURE

Pearson 0.606 0.440 0.902 0.830 0.745 0.917 0.872 0.902
Kendall 0.556 0.333 0.867 0.822 0.778 0.911 0.911 0.867

Spearman 0.697 0.491 0.964 0.939 0.903 0.976 0.976 0.964

We observe that, in all scenarios, at least one of our metrics achieves a
higher human evaluation correlation than all compared methods. Even though
MEPetersen is slightly outperformed by FID in terms of Pearson correlation,
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we note that we still outperform both PRD and IMPAR. The compared cross-
entropy metrics, which were commonly used to evaluate text generation in the
past [Cíf+18; SSG18; Zha+18b], show the least correlation to human evaluation
compared to more recent, embedding-based metrics.

We now focus on the evaluation of conditional language generation, where a
generated text may be directly compared to one or more reference texts. Com-
mon examples of conditional tasks are machine translation and text summariza-
tion, which will be evaluated next. Since we are now interested in analyzing
shorter generated scripts, which may only consist of a few words over one
sentence, we require a �ner-grained representation. Hence, we propose to use
contextualized word embeddings from BERT-base �ne-tuned on MNLI, following
MoverScore [Zha+19b], which is one of our compared metrics.

More speci�cally, we propose to use several embeddings to represent each
word, namely the embeddings of the last �ve layers of BERT-base. This is
motivated by the e�ectiveness of using latter BERT layers on downstream
tasks [Liu+19; Zha+20a]. Moreover, by increasing the overall population size,
the estimation of our di�erent methods is likely to improve as a result. A com-
parison between the proposed and existing representation schemes is illustrated
in Figure 4.10.
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Figure 4.10: Considering a reference ((A ) and evaluation ((4 ) word set, we represent
each word by the �ve embeddings from the last �ve BERT-base layers. Existing methods,
such as BERTScore and MoverScore, adopt a single representation for each word by
using either the embeddings of a given layer or embedding aggregation schemes over
several layers, respectively.

In the following experiments, we also use our proposed embedding represen-
tations for PRD and IMPAR. Moreover, all methods use BERT-base embeddings.
Due to the likely discrepancy in the number of reference and evaluation words,
we only use the sample quality assessment for double-valued metrics. For the
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clustering-based metrics (Mark-Evaluate, PRD, and IMPAR), the reported results
use the best value for : obtained before the performance started to drop.

Machine translation

We start by assessing machine translation from several systems provided by
Bojar et al. [BGK17] in the WMT17 metrics task. We followed MoverScore’s
implementation 12 and evaluated around 3K Czech (cs), German (de), Russian (ru),
Turkish (tr), and Chinese (zh) to English (en) translations. We use the embeddings
from the �fth layer of BERT-base for BERTScore, with higher correlations being
possibly obtained by grid-searching over all layers. Pearson human evaluation
correlations are presented in Table 4.2.

Table 4.2: Pearson correlations to human evaluation on di�erent language pairs of
systems from the WMT17 metrics task. The highest correlations of each language pair
are underlined, whereas our metrics’ correlations that match or outperform all compared
methods are represented in bold.

Translations BERTScore MoverScore PRD IMPAR MESchnabel MEPetersen MECAPTURE

cs-en 0.966 0.983 0.992 0.987 0.989 0.988 0.987
de-en 0.859 0.920 0.769 0.934 0.944 0.953 0.953
ru-en 0.868 0.921 0.933 0.896 0.902 0.908 0.908
tr-en 0.938 0.931 0.935 0.959 0.970 0.960 0.959
zh-en 0.894 0.943 0.889 0.933 0.957 0.936 0.936

Average 0.905 0.940 0.904 0.942 0.952 0.949 0.949

We observe that at least one of our proposed metrics achieves the highest
human evaluation correlation on the majority of language pairs compared to
existing metrics. Moreover, when averaging the correlations across all language
pairs, all of our metrics outperform the rest. Considering only the compared
metrics, PRD achieves the highest correlation, validating the importance of
integrating existing metrics in di�erent data domains.

Text summarization

We also evaluated the correlation to human evaluation on text summarization of
news articles using the TAC-2009 dataset13. Each article, related to 1 out of 10

12 https://github.com/AIPHES/emnlp19-moverscore
13 http://tac.nist.gov/
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topics, has 4 reference and 55 generated summaries. The human evaluation is
separated into two assessments: the pyramid (pyr.) and the responsiveness (resp.)
score. While the �rst focuses on semantic similarities between the reference
and generated summaries, the latter analyzes the overall grammar and content
quality of the generated summaries. Kendall, Pearson, and Spearman correlations
are presented in Table 4.3.

Table 4.3: Kendall, Pearson, and Spearman correlations to human evaluation at the
summary-level on TAC 2009. We evaluate correlations based on two human assessments
in the form of the responsiveness and pyramid scores. The highest correlations of each
score are underlines, whereas our metrics’ correlations that match or outperform all
compared methods are represented in bold.

Correlations BERTScore MoverScore PRD IMPAR MESchnabel MEPetersen MECAPTURE

Re
sp

. Kendall - 0.482 0.398 0.481 0.483 0.487 0.484
Pearson 0.739 0.754 0.564 0.743 0.739 0.683 0.747
Spearman 0.580 0.594 0.501 0.594 0.595 0.598 0.596

Py
r. Kendall - 0.550 0.444 0.541 0.548 0.555 0.565

Pearson 0.823 0.831 0.658 0.804 0.813 0.770 0.808
Spearman 0.703 0.701 0.588 0.693 0.698 0.704 0.718

We observe that, in both the pyramid and responsiveness scores, at least
one of our metrics shows higher Kendall and Spearman correlations than all
compared metrics. Moreover, all of our metrics show a higher Pearson correlation
than PRD, whereas IMPAR is consistently outperformed by at least one of our
metrics. Overall, MoverScore shows the highest Pearson correlations on both
scores. The reported BERTScore correlations were the ones reported by Zhao et
al. [Zha+19b].

4.4 Concluding Remarks

In this Chapter, we introduced two new evaluation methods: FTI, which uses
topological representations and fuzzy logic to assess image generation, and
Mark-Evaluate, a family of metrics based on population estimation methods
for assessing text generation. Overall, the proposed metrics provide either
single-valued or double-valued assessments, which may be preferred in certain
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application scenarios. In the end, the assessment improvement by the proposed
work helps shed light on how to improve existing generation processes, like the
generator model in GANs, on a variety of tasks.

Ideally, evaluation metrics should be general and applicable to di�erent tasks
and data domains. Using the embeddings of a given pre-trained model to repre-
sent the real and generated samples is a promising step in this direction. Hence,
both FTI and Mark-Evaluate may be applied to di�erent application scenarios
by appropriately changing the pre-trained model used to obtain the sample
embeddings.
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This Chapter is based on one of our papers regarding evaluating the compression
e�ects of the generator model in GANs [MYM21], which is currently under review
at the time of this writing. Overall, this Chapter sheds some light on the connection
between the discussed topics throughout this thesis.

The ascending trend of computation and memory demands in GANs reinforces
the need for post-training compression of the generator model. Importantly, a
thorough analysis of how di�erent compression levels a�ect the generated set is
essential to the e�cient employment of GANs in real-world applications. In this
Chapter, we compress the weights of popular GANs, particularly the generator
model, to low bit-widths using di�erent compression techniques. Then, we study
the consequent compression e�ects by proposing two new, outlier-aware metrics
based on locality-sensitive hashing (LSH).

In Section 5.1, we introduce recent e�orts on compressing GANs during
training. In Section 5.2, we propose our new metrics and analyze the post-
training compression e�ects on popular GANs. Finally, in Section 5.3, we present
some concluding thoughts and future directions.

5.1 Related Work

Compression of GANs during training has been recently shown to increase the
inherent training instability of GANs, previously discussed in Chapter 2, often
resulting in a reduction of sample quality or extended mode collapse [Che+20;
Li+20; Shu+19; Wan+19b; YP20]. On top of the training of multiple models in
GANs, the high entropy of the generator’s input and output may also present an
obstacle for the successful compression of � alone [YP20]. Next, we describe
existing methods proposed to compress the generator (and also occasionally the
discriminator) during training.

Evolutionary algorithms for channel pruning have been applied to compress
the generator [Shu+19]. Knowledge distillation [HVD15] may also be used to
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compress a student generator to indirectly learn from a larger teacher generator
and discriminator [Agu+19]. Namely, an additional student generator may be
added to the previous framework to enable higher compression levels of the
student generator [Che+20]. Additionally, one may directly learn a student
generator from a pre-trained teacher generator using a learned intermediate
representation training (LIT) [Kor+19].

On a di�erent line of work, the negative learning e�ects of compressing
both the generator and the discriminator may be reduced using Expectation-
Maximization compression algorithms [Wan+19b]. Moreover, Liu et al. [Liu+20]
showed that improved training stabilization may also be achieved if quantizing
more layers of the discriminator than the generator. Yu et al. [YP20] used self-
supervised learning by leveraging a pre-trained generator and discriminator to
successfully train a pruned generator. Extending the original GANs objective
to account for knowledge distillation, channel pruning, and quantization may
also be a viable alternative [Wan+20]. Finally, Li et al. [Li+20] used neural
architecture search [EMH19] to �nd the best-compressed generator candidates
in conditional GANs.

All of the previous methods focus on developing new techniques to compress-
ing GANs during training. However, to the best of our knowledge, the study of
the e�cacy of existing compression methods to compress � after training and
without any �ne-tuning remains an open question at the time of this writing.
The several bene�ts of post-training compression previously discussed in Chap-
ter 3, namely the low computational cost and no training data restrictions, may
also translate to GANs. Moreover, if no additional training is performed to the
compressed � , one would not need to worry about the training instability of
GANs. We expand on these thoughts for the rest of this Chapter.

5.2 Assessment of the Compression E�ects

We introduce locality-sensitive hashing for assessing a generated set in Sec-
tion 5.2.1 and detail our two novel LSH-based metrics and important implemen-
tation details in Section 5.2.2. Moreover, we apply compression techniques to
popular GANs and present a preliminary discussion based on qualitative results
in Section 5.2.3. Finally, in Section 5.2.4, we compare our LSH-based metrics to
existing evaluation methods in the context of compression in GANs.
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5.2.1 Locality-Sensitive Hashing

As previously discussed in Chapter 4, reference and evaluation data manifolds
may be approximated using KNN, as originally proposed by Kynkäänniemi et
al. [Kyn+19] and further adopted by our evaluation methods, FTI and Mark-
Evaluate. However, considering the assessment of one evaluation sample, the
manifold approximation process has linear complexity on the number of ref-
erence samples, since one has to iterate through the entire reference set to
obtain an approximation of the reference manifold. Moreover, standard KNN
approximations are highly sensitive to outlier samples in both the reference
and evaluation sets, which may greatly distort the manifold approximation,
negatively a�ecting the overall assessment of precision and/or recall. This may
also be observed with highly sparse data, with the resulting hypersphere to
that :-th nearest neighbor covering a large, unpopulated portion of the data
space. Dealing with such (outlier) samples is crucial for a proper assessment of
the compression e�ects in GANs since the originally generated set is likely to
become distorted at high compression levels.

Alternatives to KNN

One may improve the computational cost of KNN by considering only a subset
of samples. (We note that performing sample dimensionality reduction is also a
viable option but it is outside the scope of this thesis.) Suitable sample �ltering
methods depend on the nature of the data, e.g. K-D trees [Ben75] are used for
low-dimensional, continuous data, whereas inverted lists may be applied to high-
dimensional, discrete data. In our use case, our data is both high-dimensional
and continuous since each sample consists of the feature representations of a
pre-trained VGG-16 model [LD15], as initially proposed by Kynkäänniemi et
al. [Kyn+19]. Hence, on top of �tting the nature of our data, locality-sensitive
hashing (LSH) is an ideal solution since it also grants the ability of discarding
(likely farther) neighbors, which may act as an outlier-prevention mechanism.

LSH-based metrics

To tackle the computational expensiveness and outlier sensitiveness of existing
KNN-based metrics, we propose two new metrics based on LSH. At their core,
they rely on splitting the data space into di�erent regions by using random
hyperplanes. The intuition is that outlier samples are likely isolated in a certain
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region, reducing their possible negative assessment e�ects. Our simplest metric
only uses LSH to directly approximate the reference or evaluation manifolds
with the regions that contain reference or evaluation samples, respectively. On
the other hand, our follow-up metric uses both LSH and KNN to approximate
the manifolds but only compares samples inside a certain region. A comparison
of the di�erent metrics is illustrated in Figure 5.1.
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Figure 5.1: Comparison of di�erent metrics in terms of precision (% ) and recall ('),
calculated using the ratios in the fake and real sets, respectively. Considering a set
of real and generated samples (a), we �rst split the data space into several regions by
generating random hyperplanes (e). Each region is represented by in which side it lies
regarding each hyperplane, indicated by the binary sequences. Using solely LSH, we
consider samples inside the same region to calculate precision and recall (b, f). Using
both LSH and KNN, we only consider the hyperspheres to the :-nearest sample (: = 1
in this example) within each region to approximate the manifold (c, g). On the other
hand, standard KNN approaches, e.g. IMPAR [Kyn+19], consider all samples to generate
such hyperspheres (d, h), which may have undesirable outlier e�ects (h). We mitigate
this by (likely) inserting outliers in isolated regions (f, g).

Generating identical keys for nearby samples allows us to reduce the search
space of standard KNN by only considering samples with the same keys, i.e. in
the same region. To achieve this, each key is generated in a simple, yet e�ective,
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way by leveraging random projections [SC08]. For e�cient storage and access,
we map each key and respective samples using a hash table.

5.2.2 Implementation Details

In this Section, we present details of the proposed steps. Namely, we specify
how keys are generated and how that information may be used to assess a
generated set using the proposed double-valued metrics. Moreover, we present
a computational complexity analysis, showcasing the e�ciency of our metrics.

Random projections

We follow the random projection procedure presented by Slaney et al. [SC08],
and generate � random 3-dimensional hyperplanes formed by a random vector
ℎ ∼ N3 (0, 1) and a random variable 1 ∼ U(0, 1):

ℎ0G0 + . . . + ℎ3−1G3−1 + 1 = 0. (5.1)

We use such random hyperplanes to construct a key of a3-dimensional sample
q ∈ Q . More speci�cally, each bit of q ’s key represents in which side of a given
hyperplane q lies on, obtained according to the sign of the following dot product:

hashℎ,1 (q) =


1, if sign(q · ℎ + 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈{−1,0,1}

≥ 0

0, otherwise.
(5.2)

After iterating across all � hyperplanes, q ’s key will have � bits:

key� (q) = hashℎ0,10 (q) . . . hashℎ�−1,1�−1 (q), (5.3)

where each bit may be computed in parallel by independently generatingℎ0,...,�−1
and 10,...,�−1. Considering an entire set of samples Q , a given sample q ’s key
may also be generated in parallel. We store this information in a hash table HTQ ,
where each unique key is mapped to the list of samples inQ that share that same
key.
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Precision and recall assessment

Each of our proposed metrics retrieves a double-valued assessment related to
precision (sample quality) and recall (sample diversity). We start by discussing
our simplest and most e�cient metrics, which uses solely LSH without KNN.
In this variant, we calculate precision as the probability of a generated sample
having at least one real sample in its region. Conversely, we calculate recall
as the probability of a real sample having at least one generated sample in its
region.

For this purpose, let us �rst de�ne the function 5LSH that returns whether or
not a key is in an initialized hash table HTQ with:

5LSH(key,HTQ ) =
{
1, if key ∈ HTQ
0, otherwise.

(5.4)

Given two sample sets Q0 and Q1 , we calculate the average probability of
a sample q0 ∈ Q0 being in the region of at least one sample q1 ∈ Q1 . More
precisely, we simply check if q0’s key exists in the initialized hash table ofQ1
(HTQ1 ):

?LSH(Q0,Q1) =
1
|Q0 |

∑
q0 ∈Q0

5LSH(key� (q0),HTQ1 ) . (5.5)

Using our LSH metric variant, and considering a real set (A and a generated
set (6, we calculate precision (%LSH) and recall ('LSH) as:

%LSH = ?LSH((6, (A ) 'LSH = ?LSH((A , (6) . (5.6)

For our other metric, we use KNN on top of LSH to improve the manifold
approximation. In this variant, we calculate precision with the probability of a
generated sample being in the hypersphere of at least one real sample inside
its region. Conversely, recall is calculated with the probability of a real sample
being in the hypersphere of at least one generated sample inside its region.

In this variant, we follow the formulations presented by Kynkäänniemi et
al. [Kyn+19] to de�ne whether or not a sample q is inside the hypersphere of
at least one sample q ′ ∈ Q , calculated to its :-nearest neighbor in the setQ by
NN: (q ′,Q):
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5LSH+KNN(q,Q) =


1, if ‖q − q ′‖2 ≤ ‖q − NN: (q ′,Q)‖2

for at least one q ′ ∈ Q
0, otherwise.

(5.7)

In the circumstances where there are not enough samples in the set Q to
retrieve the :-th nearest neighbor of q ′, i.e. : ≥ |Q |, we adapt NN: (q ′,Q) to
ensure that the farthest neighbor is retrieved instead.

Considering two sample setsQ0 andQ1 , we calculate the average probability
of a sample q0 ∈ Q0 being in the neighborhood of at least one sample q1 ∈ Q1
in q0’s region. More precisely, we retrieve the samples in Q1 that are in the
same region as q0 by accessing HTQ1 [key� (q0)]. Then, we check if q0 is in the
neighborhood of any of such samples by using (5.7):

?LSH+KNN(Q0,Q1) =
1
|Q0 |

∑
q0 ∈Q0

5LSH+KNN(q0,HTQ1 [key� (q0)]). (5.8)

Finally, using our metric variant that leverages LSH and KNN, we calculate
precision (%LSH+KNN) and recall ('LSH+KNN) as:

%LSH+KNN = ?LSH+KNN((6, (A ) 'LSH+KNN = ?LSH+KNN((A , (6) . (5.9)

Complexity analysis

We now brie�y shed some light on the e�ciency of the proposed methods com-
pared to standard KNN approaches, such as IMPAR [Kyn+19]. We are interested
in calculating the average computational cost of assessing a 3-dimensional eval-
uation sample against = (3-dimensional) reference samples, using � random
hyperplanes for our metrics. E�cient scaling with the growth of the reference
set is crucial since a higher = is likely to lead to a better overall assessment. The
complexities of the di�erent metrics are presented in Table 5.1.

For both of our metrics, determining the region of a 3-dimensional sample
costs 3 × � , originated from performing one dot product per hyperplane, as
discussed earlier in this Section. Moreover, since � hyperplanes divide the data
space into ≈ 2� regions, we may expect, on average, =/2� samples in each region.
Hence, in our LSH with KNN variant, the comparison cost between an evaluation
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Table 5.1: Average computational cost and complexity of the di�erent metrics.

Evaluation method Computational cost Complexity in =
LSH (ours) 3 × � $ (1)
LSH + KNN (ours) 3 × � + 3 × =/2� $ (log(=)), if � ∼ log(=)
KNN [Kyn+19] 3 × = $ (=)

sample and the rest of the samples in its region is 3 × =/2� . Note that, with
� ∼ log(=), the previous comparison cost becomes independent of =. Hence,
our LSH-based variants with and without KNN have a constant and logarithmic
complexity on the number of reference samples, respectively. On the other hand,
existing (standard) KNN metrics have linear complexity since one must iterate
through all reference samples. Figure 5.2 shows how the di�erent metrics scale
with an increasing number of reference samples on existing hardware.
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Figure 5.2: Speed scaling analysis of the di�erent evaluation methods using one NVIDIA
GeForce GTX 1080 Ti GPU. We report the average over three evaluation runs using 50K
evaluation samples and a varying amount of reference samples.
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5.2.3 Experimental Results

In this Section, we present qualitative results regarding the e�ects of compressing
the weights of pre-trained generators in popular GANs after training and without
any �ne-tuning. We study several post-training compression schemes 14 mainly
applied to image classi�cation models in the past [MVK19; Zha+19a]:

• Linear quantization (Q), which normalizes by the absolute maximum
weight and assumes symmetric dynamic range [Wan+19b; Zha+19a].

• Pruning and quantization (P + Q), which represents our method Monte
Carlo Quantization or MCQ. As previously presented in Chapter 3, the
sampling nature of MCQ allows for both quantization and pruning by
discarding non-hit weights.

• Splitting and quantization (S + Q), which leverages Outlier Channel Split-
ting (OCS) [Zha+19a] to split and duplicate outlier weights to reduce the
dynamic range. (After splitting, we apply linear quantization.)

• Clipping and quantization (C + Q), which uses Analytical Clipping for
Integer Quantization (ACIQ) [BNS19] to �nd an optimal clipping threshold
between the continuous and discrete weight distributions. (After clipping,
we apply linear quantization.)

These compression schemes rely on di�erent assumptions and steps to quan-
tize the weights of a given layer. The quantized assignments using linear quanti-
zation are sensitive to outlier weights due to the usage of the full dynamic range
of the continuous weights. On the other hand, by abruptly reducing the dynamic
range with clipping, ACIQ is likely to distort outlier weights whereas MCQ relies
on importance sampling, which may compromise the weight approximation
at low sampling amounts. Finally, OCS increases the number of weights after
splitting, which may be unfeasible at a high outlier rate.

We compress pre-trained generator weights of several popular GANs designs:

• PA-GAN [ZK19] progressively augments �’s input to prevent over�tting
during training.

14 https://github.com/cornell-zhang/dnn-quant-ocs
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• zCR-GAN [Zha+20b] augments� ’s input by adding small-magnitude noise
as a latent consistency regularization mechanism.

• SN-GAN [Miy+18] spectrally normalizes �’s weights to improve learning.

• SS-GAN [Che+19] leverages self-supervised learning in � and � by intro-
ducing auxiliary rotations.

• StyleGAN2 [Kar+20b] builds on a style-based � architecture [KLA19]
and proposes new mechanisms for normalization, regularization, and
progressive growing of � .

• ADA [Kar+20a] extends StyleGAN2 by adaptively augmenting � to enable
learning with limited data.

• BigGAN [BDS19] orthogonally regularizes a conditional � to learn from
large-scale data.

We use publicly available pre-trained generators from the previous GANs
trained on a variety of data 15,16,17, namely high-quality images of human faces
(1024x1024 and 256x256) from Flickr-Faces-HQ (FFHQ) [KLA19] as well as cats,
dogs, and wildlife faces (512x512) from Animal Faces-HQ (AFHQ) [Cho+20].
BigGAN was trained on downscaled 128x128 images from ImageNet [Rus+15].

In the following experiments, we compress the vast majority of� ’s weights (≈
94 to 96% depending on the architecture and data resolution), except the ones in
the last residual block of each network. As discussed in Section 5.2.2, we reduce
the computational complexity of our LSH-based metrics when evaluating against
= reference samples by using � = blog(=)c. Moreover, we follow IMPAR’s
recommended number of neighbors [Kyn+19] and use : = 3 in our LSH and
KNN metric variant. We qualitatively analyze the compression e�ects on the
di�erent generated sets next.

Mean images

We start by analyzing the pixel mean across 10K generated images, as presented
by Karras et al [Kar+20a]. Results of using di�erent compression techniques on
a StyleGAN2 pre-trained on FFHQ are presented in Figure 5.3.

15 https://tfhub.dev/deepmind/biggan-128/2
16 https://nvlabs-�-cdn.nvidia.com/stylegan2-ada/pretrained/
17 https://nvlabs-�-cdn.nvidia.com/stylegan2/networks/
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Figure 5.3: Mean 10K generated images from a StyleGAN2 generator pre-trained on
FFHQ 1024x1024 and compressed to di�erent bit-widths (from 6 to 2 bits) using di�erent
compression techniques (quantization, pruning, splitting and clipping). Mean faces
generated by the 32-bit baseline are also presented for comparison.

We observe that compressing � ’s weights using clipping and linear quanti-
zation (C + Q) yields the best results, especially at low bit-widths. Speci�cally,
the resemblance of the mean generated images to a human face, even at 2 bits,
suggests that generative models may be less sensitive to outlier weight distortion
(inherent to clipping) than discriminative models, particularly image classi�ca-
tion models [Zha+19a]. At 5 to 6 bits, all compression techniques show negligible
e�ects in the mean generated images compared to the 32-bit baseline. Similar
conclusions apply when compressing a pre-trained ADA model on AFHQ, as
observed in Figure 5.4.

We now also extend the previous experiments to analyze how compression
a�ects di�erent GANs that were trained on the same data: FFHQ 256x256. Due
to its superior performance, we only report compression results using clipping
and linear quantization (C + Q) from here on. The mean generated images at
2-bit compression rates and respective 32-bit baselines are shown in Figure 5.5.

We observe that the di�erent 32-bits baselines show a similar average gener-
ated face, supporting previous claims regarding the similar behaviour of di�erent
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GANs [Luc+18]. On the other hand, the generated faces at 2-bit compression
rates are a�ected di�erently across di�erent GANs with each compressed �
seemingly retaining the ability to generate di�erent face attributes. Namely,
elderly features (Figure 5.5 (e)), longer hair (Figures 5.5 (a) and 5.5 (f)), darker
hair (Figures 5.5 (b) and 5.5 (d)), and male characteristics (Figure 5.5 (c)).
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(a) ADA on AFHQ Cat.
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(b) ADA on AFHQ Dog.
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(c) ADA on AFHQ Wild.

Figure 5.4: Mean 10K generated images from an ADA generator pre-trained on AFHQ
512x512 and compressed to di�erent bit-widths (from 6 to 2 bits) using di�erent compres-
sion techniques (quantization, pruning, splitting and clipping). Mean faces generated by
the 32-bit baseline are also presented for comparison.

In general, we would like to point out that the overall face structure remains,
for the most part, intact both on FFHQ and AFHQ even at higher compression
rates. In other words, the compressed generators still manage to generate face-
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32b2b

(a) ADA.

32b2b

(b) StyleGAN2.

32b2b

(c) zCR-GAN.

32b2b

(d) SN-GAN.

32b2b

(e) PA-GAN.

32b2b

(f) SS-GAN.

Figure 5.5: Mean 10K generated images from generators of di�erent GANs pre-trained
on FFHQ 256x256 and compressed to 2 bits using clipping and linear quantization (C + Q).
Mean faces generated by the di�erent 32-bit baselines are also presented for comparison.

like images, especially if using clipping and linear quantization. This suggests
that compression negatively a�ects the generated set more in terms of sample
diversity than sample quality since the average generated face is di�erent from
the respective 32-bit baseline.

Generated images

Continuing with the previous discussion, we now visually assess the decrease
in sample quality in random sets of generated images from compressed and
uncompressed generators. Note that images of both sets are generated using the
same seed. A comparison between the generated images from uncompressed and
compressed generators (with 32 bits and 2 bits weights, respectively), pre-trained
on AFHQ are presented in Figure 5.6.

2b 32b

(a) AFHQ Cat.

2b 32b

(b) AFHQ Dog.

2b 32b

(c) AFHQ Wild.

Figure 5.6: Generated images from ADA generators on AFHQ 512x512 and compressed
to 2 bits using clipping and linear quantization (C + Q). Images generated by the 32-bit
baselines are also presented for comparison.

We observe a lack of sample diversity in the generated samples from the
compressed generators compared to the respective 32-bit generator baselines.
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However, sample quality remains high, with the 2-bit generators being able to
generate realistic images of cats, dogs, and wildlife. Similar compression e�ects
are observed in Figure 5.7 with di�erent GANs pre-trained on FFHQ.

2b 32b

(a) ADA.

2b 32b

(b) StyleGAN2.

2b 32b

(c) zCR-GAN.

2b 32b

(d) SN-GAN.

2b 32b

(e) PA-GAN.

2b 32b

(f) SS-GAN.

Figure 5.7: Generated images from di�erent generators pre-trained on FFHQ 256x256
and compressed to 2 bits using clipping and linear quantization (C + Q). Images generated
by the di�erent 32-bit baselines are also presented for comparison.

The generation e�ects from di�erent compression-levels on BigGAN gener-
ators pre-trained on ImageNet are shown in Figure 5.8. We observe that, as
compression increases, the depicted objects start becoming increasingly blurry
and start adopting identical textures.

32b 6b 5b 4b 3b 2b

Figure 5.8: Generated images from a BigGAN generator pre-trained on ImageNet
128x128 and compressed to di�erent bit-widths (6 to 2 bits) using clipping and linear
quantization (C + Q). Images generated by the 32-bit baseline are also presented for
comparison.
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5.2.4 Method Comparisons

We now analyze the compression e�ects quantitatively by using the proposed
metrics as well as existing single-valued (FID [Heu+17] and KID [Biń+18]), and
double-valued KNN metrics (IMPAR [Kyn+19]). Due to the inherent bias of FID
with small reference sets [Kar+20a], we use KID as the compared single-valued
metric on AFHQ. However, to assess generated data on the bigger datasets (FFHQ
and ImageNet) we compare our metrics against FID. On top of quantitatively
assessing several compressed generators, we also study the correlation of single-
valued metrics to precision and recall, separately. Finally, we study the Pareto
frontiers (regarding precision and recall) of compressed StyleGAN2 generators
and existing 32-bit style-based generator baselines.

�antitative compression e�ects

Comparison metric results of assessing several low bit-width generators pre-
trained on FFHQ and ImageNet are presented in Table 5.2. We observe that, in
most cases, generators compressed to low bit-width (3 to 4 bits) achieve a high
precision assessment by our proposed metrics as well as IMPAR and KNN. On
the other hand, recall decreases with higher compression, suggesting a decrease
of sample diversity in the generated sets. However, such insights may not be
derived from analyzing only FID, which consistently deteriorates as compression
levels increase. The same conclusions apply using KID to assess compressed
ADA generators in Table 5.3.

Overall, the quantitative analysis of the di�erent compressed GANs suggests
that sample diversity is majorly a�ected, whereas sample quality is retained, to
some extent, even at low bit-width compression. This also correlates with our
qualitative analysis presented in Section 5.2.3.

FID and KID correlations to precision and recall

Due to the ine�ectiveness of both FID and KID to detect the preservation of
sample quality in the compressed generators, we now study their separate
correlation to precision and recall. Since both lower FID and KID values represent
a better assessment of the generated set, we expect to see negative correlations: as
precision or recall increases, FID or KID should decrease, and vice-versa. For the
correlation measurements, we calculate the Pearson and Spearman correlations,
which evaluate the linear and monotonic relationships of the di�erent metric
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Table 5.2: Assessment using FID and di�erent precision (% ) and recall (') metrics on
FFHQ (1024x1024 and 256x256) and ImageNet. We used 50K real and generated samples
and present the average over 3 evaluation runs for each metric. For our metrics as well
as KNN, a higher score is better. For the distance-based metric, FID, a lower score is
better.

LSH ↑ LSH + KNN ↑ KNN [Kyn+19] ↑
Network b % ' % ' % ' FID [Heu+17] ↓

32 0.949 0.934 0.830 0.766 0.689 0.493 2.8
StyleGAN2 4 0.958 0.913 0.881 0.743 0.747 0.298 12.0

(FFHQ-1024) 3 0.945 0.847 0.869 0.512 0.676 0.038 50.4
2 0.561 0.400 0.052 0.026 0.091 0.000 157.5
32 0.929 0.919 0.763 0.784 0.681 0.442 3.8

ADA 4 0.941 0.906 0.811 0.701 0.740 0.285 10.1
(FFHQ-256) 3 0.969 0.815 0.896 0.446 0.808 0.048 40.4

2 0.751 0.651 0.280 0.135 0.307 0.000 145.9
32 0.933 0.917 0.764 0.772 0.682 0.445 3.7

StyleGAN2 4 0.940 0.902 0.813 0.715 0.802 0.220 14.4
(FFHQ-256) 3 0.965 0.838 0.900 0.595 0.891 0.043 40.2

2 0.730 0.626 0.352 0.229 0.371 0.000 143.4
32 0.934 0.918 0.769 0.741 0.680 0.473 3.3

zCR-GAN 4 0.960 0.893 0.861 0.696 0.766 0.300 12.6
(FFHQ-256) 3 0.955 0.813 0.876 0.492 0.828 0.043 65.2

2 0.452 0.544 0.106 0.062 0.189 0.000 157.4
32 0.932 0.916 0.772 0.693 0.717 0.383 4.5

SN-GAN 4 0.936 0.894 0.819 0.694 0.744 0.208 14.1
(FFHQ-256) 3 0.956 0.840 0.866 0.442 0.727 0.032 49.1

2 0.612 0.634 0.246 0.133 0.206 0.000 140.7
32 0.932 0.918 0.764 0.693 0.683 0.449 3.8

PA-GAN 4 0.957 0.887 0.863 0.691 0.789 0.260 13.5
(FFHQ-256) 3 0.969 0.812 0.900 0.454 0.797 0.041 50.2

2 0.425 0.376 0.071 0.027 0.214 0.000 164.8
32 0.934 0.916 0.772 0.733 0.686 0.428 4.2

SS-GAN 4 0.945 0.897 0.827 0.787 0.755 0.254 11.4
(FFHQ-256) 3 0.967 0.804 0.887 0.427 0.773 0.041 44.2

2 0.324 0.440 0.039 0.092 0.035 0.000 197.2
32 0.748 0.715 0.505 0.270 0.858 0.149 10.8

BigGAN 4 0.816 0.588 0.677 0.240 0.687 0.014 44.1
(ImageNet) 3 0.822 0.419 0.699 0.013 0.649 0.000 119.0

2 0.639 0.103 0.505 0.000 0.979 0.000 191.7
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Table 5.3: Assessment using KID and di�erent precision (% ) and recall (') metrics on
AFHQ (512x512). We used ≈5K real and generated samples and present the average over
10 evaluation runs for each metric. For our metrics as well as KNN, a higher score is
better. For the distance-based metric, KID, a lower score is better.

LSH ↑ LSH + KNN ↑ KNN [Kyn+19] ↑ KID [Biń+18] ↓
Network b % ' % ' % ' ×103

32 0.940 0.917 0.714 0.753 0.765 0.532 0.7
ADA 4 0.946 0.901 0.752 0.697 0.841 0.356 4.6

(AFHQ Cat) 3 0.957 0.829 0.773 0.566 0.819 0.140 21.8
2 0.847 0.534 0.459 0.156 0.295 0.005 55.3
32 0.776 0.779 0.484 0.509 0.743 0.605 1.1

ADA 4 0.775 0.762 0.495 0.495 0.820 0.436 3.4
(AFHQ Dog) 3 0.769 0.656 0.468 0.375 0.809 0.185 15.2

2 0.577 0.317 0.153 0.028 0.216 0.010 66.1
32 0.963 0.921 0.872 0.739 0.758 0.286 0.4

ADA 4 0.965 0.906 0.880 0.705 0.797 0.156 1.5
(AFHQ Wild) 3 0.977 0.851 0.869 0.567 0.648 0.034 8.4

2 0.495 0.645 0.166 0.059 0.058 0.00 72.1

scores, respectively. To increase the number of values and improve the correlation
study, we used the scores obtained from all the previous metrics when assessing
the previously compressed generators from 6 to 2 bits.

The correlation results between FID and the di�erent double-valued metric
assessments of precision and recall on several compressed GANs pre-trained on
FFHQ are presented in Figure 5.9. We observe that absolute Pearson correlations
are high across the di�erent GANs and double-valued metrics, indicating a linear
relation between FID scores and the di�erent precision and recall values. On
the other hand, the absolute Spearman correlations are high only for recall
assessments, with precision assessments measuring close to no correlation to
the FID scores.

Figure 5.10 presents the correlation between KID and the compared double-
valued metrics. We observe that the KID’s correlations are of a similar nature as
the previous FID’s correlations, presenting high absolute Pearson correlations for
both precision and recall assessments but higher absolute Spearman correlation
for recall than precision.

The previous correlation studies suggest that popular single-valued metrics,
such as FID and KID, may be biased towards sample diversity and may neglect
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Figure 5.9: Pearson and Spearman correlations between FID and the di�erent precision
and recall methods on several compressed generators pre-trained on FFHQ 256x256.

sample quality in the evaluation of generated sets. However, the high sensitivity
to sample diversity may empower such metrics to be used to detect mode collapse.

(a) AFHQ Cat. (b) AFHQ Dog. (c) AFHQ Wild.

Figure 5.10: Pearson and Spearman correlations between KID and the di�erent precision
and recall methods on compressed ADA generators pre-trained on AFHQ 512x512.
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Pareto frontier

Finally, we study how compression may be used to balance pre-trained gener-
ators that may exhibit higher sample diversity but lower sample quality than
other generators. To this end, we consider several con�gurations of style-based
generators presented by Karras et al. [Kar+20b] and analyze how a compressed
StyleGAN2 generator compares in terms of precision and recall measurements
using IMPAR or KNN. The Pareto frontier of the di�erent generators is presented
in Figure 5.11.
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Figure 5.11: Pareto frontier of di�erent style-based generator con�gurations pre-trained
on FFHQ 1024x1024. We present the average over 3 evaluation runs.

The compared variants consist of the original StyleGAN generator [KLA19]
with weight demodulation (con�g-b), lazy regularization (con�g-c), path length
regularization (con�g-d), new architectural settings (con�g-e), and larger net-
works (StyleGAN2). We note that the 32-bit StyleGAN2 generator achieves the
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highest recall compared to the other variants at the cost of sacri�ced precision.
However, we observe that compression may help to balance out the generation
process, increasing precision when compressing up to 4 bits. More particularly,
the 5-bit StyleGAN2 generator achieves the highest precision at similar recall
values of the compared 32-bit generators.

5.3 Concluding Remarks

In this Chapter, we applied existing post-training compression techniques to
the generators of several GANs. From all the tested techniques, clipping and
linear quantization showed the best performance, allowing the compression of
the generator weights to low bit-widths. Overall, we observed that the sample
diversity of compressed generators tends to get more negatively a�ected by high
compression levels than sample quality. Hence, post-training compression may
be used to e�ciently balance existing generators at a low computational cost
without requiring any �ne-tuning.

For a better assessment of the compression e�ects, we proposed two new
double-valued evaluation metrics based on locality-sensitive hashing. Our new
metrics diminish the negative impact that a low number of outlier samples may
have on the overall assessment of a generated set. Moreover, we signi�cantly
improve the e�ciency of the evaluation process compared to existing KNN-based
metrics.

We note that performing online compression on the generator activations may
also be achieved by the discussed compression techniques. Hence, allying both
weight and activation compression presents a promising direction for future
work. This may ultimately allow the deployment of compressed GANs in real-
world applications by further reducing computational and memory costs at
inference time.
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6 Conclusion

In this thesis, we propose several diversi�cation, compression, and evaluation
methods for generative adversarial networks (GANs). Particularly, we introduce
new diversi�cation methods to induce sample diversity by leveraging discrimina-
tor ensembles to mitigate mode collapse. To assess a generated set, we proposed
several novel single-valued and double-valued metrics that may be used in di�er-
ent application scenarios, such as the evaluation of image generation and both
conditional and unconditional language generation. Moreover, we present two
compression methods that may be used to reduce the memory, computation,
and communication costs of existing GANs. Finally, we propose two e�cient
evaluation metrics to appropriately assess how the generated set of a compressed
generator is a�ected by di�erent compression levels and techniques.

In Chapter 2, we discuss the importance of a balanced generation process,
possessing both sample quality and sample diversity. To this end, we propose to
tackle the lack of sample diversity in existing GANs, commonly referred to as
mode collapse, using two novel multi-adversarial frameworks: Dropout-GAN
and microbatchGAN. Both frameworks leverage discriminator ensembles in
di�erent ways to ultimately stimulate sample diversity in the generator during
training. In the future, making the di�erent discriminators aware of one another
may enhance the overall feedback provided to the generator.

In Chapter 3, we present two novel neural network compression methods:
Monte Carlo Quantization and Monte Carlo Gradient Quantization. Such meth-
ods may be used to reduce the costs of increasing a framework size, as previously
proposed. The �rst method reduces memory and computation costs by quantiz-
ing the weights and activations of pre-trained models, in a post-training fashion
and without any additional �ne-tuning. On the other hand, the latter method
reduces the communication cost between di�erent workers in a distributed train-
ing setting by quantizing and encoding synchronized gradients during training.
Both approaches use Monte Carlo methods allied with importance sampling
to quantize and prune �oating-point values to approximated integer represen-
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tations. In the future, combining both approaches to compress a model from
scratch is worth exploring.

In Chapter 4, we discuss the importance of properly assessing a generated set
and introduce two novel evaluation methods: Fuzzy Topology Impact and Mark-
Evaluate. The �rst method retrieves a double-valued assignment in terms of
sample quality and sample diversity by using topology representations and fuzzy
logic to measure the impact between a real and generated image set. The latter
method consists of a family of both single-valued and double-valued metrics
by using di�erent population estimation methods to assess a generated text set.
Testing the adaptability of both methods on additional data domains is a worthy
future direction to promote their general applicability.

In Chapter 5, we study the generator weight compression e�ects on the
generated set by using existing post-training compression methods, including
Monte Carlo Quantization. To properly assess such e�ects, we propose two
e�cient evaluation metrics that rely on locality-sensitive hashing to minimize
the negative e�ects that outliers may have in the overall assessment. Overall, we
observe that existing methods may be applied to compress pre-trained generators,
with higher compression levels o�ering a trade-o� between sample quality
and sample diversity. Speci�cally, while sample diversity is highly a�ected
in low compression bit-widths, sample quality is maintained to some degree.
Compressing both the weights and activations is a promising next step to further
optimize the inference of highly compressed generators.

Even though we mostly focused on GANs advancement throughout this thesis,
the proposed methods should be seen as general practices that may be applied to
di�erent frameworks, applications, and data domains to ultimately enhance real-
world applications. Particularly, the proposed diversi�cation methods may be
used to extend other adversarial frameworks, whereas the compression methods
may be generally applied to a wide range of neural networks and the evaluation
methods applied to di�erent generative frameworks. Hence, considering their
general applicability, the presented methods may be seen as di�erent tools to
advance existing machine learning and deep learning methods. A more detailed
discussion of future work directions that may be worth pursuing follows.
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6.1 Future Work

The principles introduced in Dropout-GAN and microbatchGAN may be com-
bined to further increase the sample diversity capability of a generator model
in GANs. However, �nding a suitable balance between the dropout rate and
microbatch discrimination of the separate methods may be required. More
speci�cally, for Dropout-GAN, the dropout rate may have to be adjusted to not
compromise the bene�ts of microbatch discrimination. On the other hand, for
microbatchGAN, the properties of the U functions employed may need to be
modi�ed to assist training convergence. For example, using a �xed schedule for
U that is not learned but is instead decided based on the interaction between the
two frameworks during training may be bene�cial.

On a similar note, Dropout-GAN and microbatchGAN may also be applied to
existing GANs. From the two, Dropout-GAN is more general and, therefore, eas-
ier to apply to existing frameworks. For example, by extending D2GAN [Ngu+17]
to an even number of dropout discriminators or MGAN [Hoa+18] to multiple
discriminators with each MGAN generator being assigned to a di�erent dynamic
ensemble of discriminators independently. Additional e�orts on microbatch-
GAN are likely needed to be followed to ensure compatibility with other GAN
frameworks. Particularly, special care is required to successfully incorporate
microbatch discrimination in existing frameworks that also modify the value
function in GANs or rely on additional models, such as auto-encoders [WB17].

A more in-depth look at the bene�ts of using the proposed Monte Carlo
sampling techniques in MCQ or MCGQ compared to simpler approaches, such
as deterministic or stochastic rounding [Gup+15], are important to be studied in
di�erent scenarios. In principle, the ability to both prune and quantize neural
networks by our proposed methods promotes e�ciency and allows better control
over sparsity levels. For example, when using 4 samples, one will at most hit 4
di�erent weights, while the rest may be pruned. Moreover, by leveraging random
o�sets, the importance sampling process of MCQ and MCGQ allows the iteration
over di�erent random o�sets, which is likely to result in better compressed
neural networks in the end. Nevertheless, using the aforementioned simpler
techniques may be bene�cial in certain applications. Particularly, comparing
MCQ to stochastic rounding applied to pre-trained models at inference time
represents interesting future work.

The process of evaluating evaluation metrics usually relies on correlation
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to human evaluation. Even though such benchmarks are widely used in the
natural language processing community, there is a shortage of image generation
benchmarks in computer vision. However, additional e�orts are also needed to
further improve the existing benchmarks for text generation. Speci�cally, having
human evaluation data on assessing language in di�erent aspects other than
�uency, such as adequacy in conditional language generation, is important to
broaden the application scenarios of existing natural generation models. Overall,
increasing both the number and e�ectiveness of benchmarks available is a crucial
step to properly assess, improve, and develop novel evaluation metrics both for
image and text.

Applying the diversi�cation, compression, and evaluation methods proposed
in this thesis to novel generative models is a promising direction to follow.
Particularly, generative �ow networks (GFlowNets) [Ben+21] were recently
proposed and show great promise to be a likely successor of GANs due to their
increased sample e�ciency and ability to �nd prominent data modes. We are
looking forward to seeing how the techniques proposed throughout this thesis
may help shape or improve the next-generation generative models.
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