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Simulations of laser-driven correlated many-electron dynamics in

molecular systems

vorgelegt von Stefan Klinkusch

Im Rahmen dieser Doktorarbeit werden Simulationen lasergetriebener korre-

lierter Vielelektronendynamik in molekularen Systemen präsentiert. Dabei geht es

im einzelnen darum, die Wechselwirkungen elektromagnetischer Wellen mit einem

Molekül, insbesondere im Bezug auf Photoionisation, zu demonstrieren. Die Pho-

toionisation wird insbesondere durch hochfrequente und intensive Lichtwellen her-

vorgerufen. Dabei können Elektronen ausreichend Energie erhalten, um die poten-

tielle Energie zu überwinden und als freie Elektronen betrachtet zu werden. Mit

Hilfe des hier vorgestellten Modells lassen sich dann Anregungen zwischen einzelnen

Zuständen unterhalb eines Ionisationspotentials, die Anregung von Wellenpaketen

und deren Abbildung als Ionisationssignal in der Simulation eines Pump-Probe-

Experiments berechnen. Außerdem wird diese Methode verwendet, um den Einfluss

auf so genannte Response-Signale zu testen. Als Beispiel soll das hier an der Polar-

isierbarkeit des Wasserstoffmoleküls demonstriert werden. In einem weiteren Mod-

ell werden zustandsselektive Anregungen auch in einer elektronenreichen Umgebung

simuliert.

Ein weiterer Teil der Doktorarbeit ist der Elektronenkorrelation gewidmet. Die

Hartree-Fock-Theorie, im Rahmen der closed-shell-Näherung, betrachtet keine di-

rekte Wechselwirkung der Elektronen untereinander, sondern lediglich die Wechsel-

wirkung einzelner Elektronen mit einem durch die anderen Elektronen aufgespan-

nten Feld. Dabei entsteht ein Fehler in der Gesamtenergie, der als Korrelationsen-

ergie bezeichnet wird. Die Korrelationsenergie selbst ist für zeitunabhängige Be-

trachtungen definiert, bei dynamischen Rechnungen nicht einfach zugänglich, aber

dennoch von Bedeutung. Deshalb wird die Einelektronenentropie als Maß für die Ko-

rrelationsenergie angenommen. Es wird für einfache Systeme (molekularer Wasser-

stoff, ein Aggregat zweier Heliumatome und ein Methanmolekül) gezeigt, dass diese

Annahme sinnvoll und richtig ist. Im weiteren Verlauf wird versucht, diese Systeme

mit Laserpulsen zu dekorrelieren, d.h., es wird versucht, die Entropie und damit die

Korrelationsenergie zu verringern.
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Chapter 1

Introduction

The motion of electrons plays a huge role in chemistry, e.g. in redox reactions,

ring currents, radical reactions and biological function. Also, it is important for

electrochemical and STM-induced processes. The theoretical description of these

processes is a big challenge for scientists.

A first break-through in the observation of electron movement in real time was

the foundation of femtochemistry, i.e., the femtosecond (fs, 1 fs = 10−15 s) laser

experiments by Zewail [1,2]. The possibility to generate even attosecond (as, 1 as =

10−18 s) laser pulses [3–6] makes it possible not only to observe but also to control

the electron motion. On these timescales a rearrangement of nuclei plays an inferior

role.

From the theoretical point of view, some methods to simulate such experiments

were developed. All of these methods have in common that they are time-dependent

(TD). Ferrell extended the Hartree-Fock (HF) theory [7, 8] to the time-dependent

Hartree-Fock method (TD-HF) [9] in 1957. In 1984, Runge and Gross developed

the time-dependent density functional theory (TD-DFT) [10] to solve the time-

dependent Kohn-Sham [11, 12] equations. In contrast to TD-HF, which contains

no electron correlation, TD-DFT treats the electron correlation using an appro-

priate functional. There are also multi-determinant approaches to solve a time-

dependent electronic Schrödinger equation [13–16], i.e., methods in which the total

wavefunction is expanded as a linear combination of electron configurations or deter-

minants. One of these methods is the multi-configuration time-dependent Hartree-

Fock method (MCTDHF) which was developed – amongst others – by Scrinzi and

coworkers [17–19]. This method can be seen as the time-dependent variant of the
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well-known complete active space self-consistent field (CASSCF) method [20], or

as an extension for electron dynamics of the multi-configuration time-dependent

Hartree (MCTDH) method by Meyer, Manthe, and Cederbaum [21]. The charac-

teristic feature of MCTDHF is the simultaneous propagation of the coefficients of

the determinants, and the determinants themselves in time. However, this system-

atically improvable method is computationally very demanding and thus typically

used for small systems (up to 10 electrons) or for small active spaces only. An-

other multi-determinant approach is the time-dependent configuration interaction

theory (TD-CI) [22–27], where only the coefficients are propagated in time while

the configurations are stationary. Like MCTDHF but unlike TD-DFT, this method

can be improved systematically by including more and more excitations explicitly

(singles [TD-CIS], singles and doubles [TD-CISD], and higher), or within perturba-

tion theory (TD-CIS(D) or TD-CISD(T)). With TD-CIS, also larger systems can

be treated. Another advantage of time-dependent methods in general is that they

treat laser fields explicitly and can describe non-linear processes of arbitrary order

(in contrast to the time-dependent perturbation theory (TD-PT)) [28]. The TD-

CIS approach was also extended to strong-field interactions of closed-shell atoms in

presence of a complex absorbing potential by Santra and coworkers [29].

Electron movement can be induced by ultrashort laser pulses. One possible result

are electronic or excitonic wavepackets, either intramolecular (shown by Krause and

coworkers [30–32]) or intermolecular [33]. Also, stimulated emission [33] or a switch

of a permanent dipole moment is possible due to state-to-state transitions [31–34].

Breidbach and Cederbaum demonstrated the possibility of charge migration [35],

and Barth and Manz modeled ring currents [36].

Some other processes cannot be described by the standard implementations of

MCTDHF or TD-CI which usually employ the fixed nuclei approximation and atom-

centered atomic orbital-like basis sets and are based on the non-relativistic electronic

Schrödinger equation. (A fully quantum mechanical MCTDHF-type approach to

coupled electron nuclear dynamics is given by Nest [37].) Such processes are, e.g.,

rearrangement of nuclei, or a radiationless decay due to internal conversion or inter-

system crossing, and photoionization.

Rearrangement of nuclei occurs, if two different states do not have the same

equilibrium geometry. Nuclear motion usually takes place on longer timescales than

electronic motion but during longer excitation sequences or propagations the nuclear
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motion should be considered in order to describe the system properly. A computa-

tional example where coupled electron-nuclear dynamics are treated has been given

for the H+
2 ion [38].

The internal conversion is the radiationless transfer of population from one elec-

tronic state to another one of the same spin multiplicity. This happens most prob-

ably at intersection points between the potential energy surfaces of two different

electronic states. If the two electronic states have different spin multiplicities and

are connected through spin-orbit couplings, an intersystem crossing can occur in-

stead.

In this thesis, the fixed nuclei approximation is used. Thus, nuclear motion and

internal conversion are not considered within this work. Furthermore, in this work,

only optical transitions between singlet states are considered. Therefore, spin-orbit

couplings and intersystem crossings are neglected.

The last phenomenon mentioned above is photoionization, which will be treated

in this thesis. One can distinguish two types of ionization. The first one is the

below-threshold- or tunneling ionization. This type occurs at any photon energy,

even far below the ionization potential of a molecular system. It is well described

for atoms by the Ammosov-Delone-Krainov (ADK) model [39]. Also, models to

calculate the tunneling ionization in molecules were developed [25,40,41].

The other type is above-threshold ionization that occurs if the excitation energy

(from the ground state) exceeds the ionization potential. For molecules in intense

laser fields, this may be the dominating ionization process. First, a molecule can

ionize because the frequency of the incoming electric field is sufficiently high to

transfer the system over the ionization potential (IP). Second, if a laser pulse is

short, the spectral width of the pulse is broadened. Hence, also states above the IP

are populated even if the carrier frequency is smaller than the IP. Third, if a laser

pulse or a continuous wave electric field is very intense, multi-photon excitations

are promoted. In the framework of many-electron dynamics to treat photoioniza-

tion, there are some existing models, e.g. for atoms by Scrinzi and Piraux [42], for

molecules by Saenz [25, 43], and for model systems employing extended grid basis

sets [23]. Furthermore, ionization spectra can be calculated using the algebraic dia-

grammatic construction (ADC) approach by Cederbaum and coworkers [44]. In this

work, a rather heuristic approach is presented and tested, which relies on standard

atom-centered Gauss-type basis sets.
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A very powerful technique in today’s laser physics is the pump-probe experiment

[45–50]. This means, a first pulse excites the system to a target state (electronic [46],

vibrational [48], or vibronic) or – more often – creates a wave packet. After a certain

delay time a second pulse is applied to the system. This pulse induces a response

signal, for instance, a fluorescence signal [47,49], ionized matter that can be analyzed

in a mass spectrometer, or photoelectrons [50]. The response depending on the

delay time is related to the time evolution of the system after the first pulse. Hence,

pump-probe spectroscopy is used for the analysis and control of ultrafast physical

and chemical processes. It is a challenge to describe these pump-probe processes

theoretically, a problem which will be treated in this work.

Further in this work, electronic wave packets are generated in systems with elec-

tronically excited charge transfer states. Time-dependent density functional theory

(TD-DFT) – in most cases formulated in the linear response regime [51, 52] – is

not capable of describing the R-dependence properly for most functionals [52–58].

This is due to a lack of Hartree-Fock-like exchange. TD-CI methods account for

an “exact” exchange and they are more appropriate methods to treat systems with

long-range charge transfer states.

Furthermore, if a system is excited photophysically, this usually leads to a change

of its molecular properties. Excited electronic states are dominated by different

electron configurations. This leads, for instance, to a higher total energy of the

system. Also, the electron distribution and thus the dipole moment of the molecule

is changed. It is an interesting challenge to control such properties on ultra-fast

timescales using laser pulses, which will also be attempted in this thesis.

Another property of interest for physicists and chemists is the entropy, which

is important for many processes. Here, we investigate the time evolution of the

“single electron entropy” derived from the many electron wavefunction. The time-

dependent wavefunction arising from a TD-CI or MCTDHF calculation is taken in

order to build a reduced one-electron density matrix. From this density matrix γ,

the time-dependent “single electron entropy” of the system can be defined according

to von Neumann as S = −kB Tr{γ ln γ} [59], where kB is Boltzmann’s constant and

Tr denotes a trace. Conceptually, the single electron entropy is rather interesting,

because it can be linked to correlation. In quantum chemistry, the correlation energy

is defined as the difference between the exact non-relativistic ground state energy

and the Hartree-Fock ground state energy at the basis set limit. Obviously, it is
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hard to generalize this concept to a time-dependent picture. However, as a single

determinant wavefunction, i.e., an uncorrelated state, has always zero single electron

entropy, the time-dependent single electron entropy can be taken as a measure for

correlation. We do not only aim for computing the time-dependent single electron

entropy but also an attempt is made to decrease the single electron entropy of a given

system photophysically using optimally shaped laser pulses. Another approach to

quantify electron correlation in a time-dependent scheme has been suggested by

Kato and Kono [60].

This thesis is organized as follows: In chapter 2, methods used in this thesis are

described. First, some aspects of Hartree-Fock theory and the post-Hartree-Fock

methods applied in this work (CI, CASSCF) are recalled. Their time-dependent

variants (TD-CI, MCTDHF) are then introduced. A heuristic model is presented

that is capable of treating photoionization within the time-dependent configura-

tion interaction theory. This model is extended to dissipation in order to treat

laser-driven electron dynamics of molecules in electron-rich environments including

photoionization. Also, the possibility of transforming a time-dependent wavefunc-

tion into a reduced one electron density matrix and calculating an entropy from

it is demonstrated. Finally, in this section, laser pulses and optimization methods

are presented in order to obtain maximal yields in target states, or minimal single

electron entropies.

In chapter 3, effects of ionization are considered. It is shown for a first model

system (LiCN) whether excitations to states below or above the ionization potential

are efficient and selective. Also, a pump-probe simulation is performed and it is

argued that this model is expected to be useful for the experimental detection of

electronic wavepackets in molecular systems. As a second example, a molecule which

does not undergo substantial geometrical changes in the involved excited state is

also presented and a corresponding pump-probe simulation is shown. Some results

of this simulation are analyzed in detail. As a result, an optimized pump-probe

scheme is derived. A further aspect in this section is the effect of photoionization

on the dynamic polarizability which is demonstrated for the H2 molecule. For this

molecule, simulations of state-to-state excitations in an electron-rich environment

are also presented.

In chapter 4, attempts to control electron correlation by laser pulses are reported.

First, the close correspondence between the correlation energy and other correlation
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measures, e.g., the single electron entropy, is demonstrated for H2, first for a minimal

basis, then for extended basis sets. It is shown for the H2 molecule, how well

the correlation energy can be described by different correlated wavefunction-based

methods. The time-dependent single electron entropy is calculated (also upon laser

pulse excitation). Further, several attempts are made in order to decrease the single

electron entropy, and thus decorrelate the electrons of a system, photophysically.

Chapter 5 concludes this thesis and gives some proposals for future work. If not

stated otherwise, all values are given in atomic units (~ = me = e = 4πε0 = 1). The

units are, however, sometimes mentioned for clarity.
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Chapter 2

Theoretical foundations and

methods

2.1 Stationary quantum chemistry

In this section, several time-independent electronic structure methods are recalled.

These methods are presented because analogous time-dependent wavefunctions are

used to simulate the electron dynamics.

2.1.1 The time-independent Schrödinger equation

The basic equation of stationary quantum mechanics in a non-relativistic wavefunc-

tion-based picture is the time-independent Schrödinger equation [13–16]

ĤΨi = EiΨi (2.1)

with the eigenenergies Ei and the eigenfunctions Ψi. The Hamiltonian Ĥ which is

a molecular Hamiltonian Ĥmol here, for a system consisting of N electrons and NA

nuclei

Ĥmol ≡ T̂el + V̂el,el + T̂nuc + V̂el,nuc + V̂nuc,nuc (2.2)

is described as the sum of the kinetic energy operator of the electrons

T̂el = −1

2

N
∑

i=1

∇2
i , (2.3)

the electron-electron potential energy operator

V̂el,el =

N
∑

i=1

N
∑

j>i

1

rij
, (2.4)
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the kinetic energy operator of the nuclei

T̂nuc = −
NA
∑

A=1

1

2MA
∇2

A , (2.5)

the electron-nuclei potential energy operator

V̂el,nuc = −
N
∑

i=1

NA
∑

A=1

ZA

riA
, (2.6)

and the nuclei-nuclei potential energy operator

V̂nuc,nuc =

NA
∑

A=1

NA
∑

B>A

ZAZB

RAB
. (2.7)

In these equations, small indices stand for electrons and capital indices for nuclei.

rij is the distance between the electrons i and j, riA is the distance between electron

i and nucleus A, and RAB is the distance between the nuclei A and B. MA stands

for the mass of nucleus A and ZA for its charge.

Next, the wavefunction is written as a product of an electronic wavefunction

Ψel, which depends only parametrically on the nuclear coordinates, and a nuclear

wavefunction Ψnuc

Ψ({ri}, {RA}) = Ψel({ri}; {RA}) ·Ψnuc({RA}) , (2.8)

and an electronic Schrödinger equation can be written as

Ĥel|Ψel〉 = (T̂el + V̂el,el + V̂el,nuc)|Ψel〉 = Eel|Ψel〉 . (2.9)

The electronic wavefunction can be obtained by solving equation (2.9) with nuclear

positions held fixed. This approximation – namely the Born-Oppenheimer approx-

imation [61] – is usually valid because electron motion often takes place on much

shorter timescales (within some femtoseconds or even below) than nuclear motion

(more than 10 fs). Nuclear motion as in photoisomerizations, for example, however,

can be induced by electronic transitions.

2.1.2 The Hartree-Fock method

The electronic Schrödinger equation (equation (2.9)) can only be solved exactly for

few-electron systems, and approximate methods are needed in more general cases.
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In the framework of the Hartree-Fock theory [7, 8], the wavefunction for a many-

electron system is approximated as a Slater determinant [62]

|Ψel〉 = |ΨHF
0 〉 = 1√

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(x1) χ2(x1) · · · χN(x1)

χ1(x2) χ2(x2) · · · χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) · · · χN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.10)

with χj(x) as the single electron wavefunction, i.e., the spin orbital j. The spin

orbitals depend on the electron coordinates x comprising a spatial coordinate r and

a spin coordinate ω. Within the restricted Hartree-Fock (RHF) ansatz, the spin

orbitals χj and χj−1 (j > 1) are then written as a product of a spatial orbital ψi and

a spin function which is one for α (if the spin quantum number is +1
2) or for β (if

the spin quantum number is −1
2) for electrons

χj(x) = χj(r, ω) =











ψi(r) · α(ω) if j = 2i− 1

ψi(r) · β(ω) if j = 2i

. (2.11)

Here, non-italic indices are used for spin orbitals while italic indices indicate spatial

orbitals.

The spin orbitals are determined from the variational principle. The variational

principle states that the eigenenergy for a test function Ψ̃ can be either greater than

the exact energy Eexact
0 (if the test function is not the exact solution), or equal to it

(if the test function is the exact wavefunction). The most suitable wavefunction is

found by minimizing the energy

Eexact
0 ≤ 〈Ψ̃|Ĥel|Ψ̃〉 !

= min . (2.12)

If the energy of a Slater determinant is minimized under the condition that the

single electron wavefunctions are orthonormal, i.e.,

〈χi|χj〉 = δij , (2.13)

one obtains the Hartree-Fock equations which are coupled effective single electron

equations that are used in order to determine the spin orbitals

f̂(x1)χa(x1) = εaχa(x1) with a = 1, . . . ,∞ . (2.14)

In this equation, εa stands for the orbital energy of the spin orbital χa(x1). f̂(x1)

is the Fock operator which is written as the sum of a core Hamiltonian (describing
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the kinetic energy of the electrons and the electron-nuclei interaction), an operator

describing the Coulomb interaction between electrons, and another operator giving

the description of an exchange interaction between electrons with parallel spin.

These equations lead to an infinite number of solutions χa (molecular orbitals or

MOs) with their respective energies εa. In practice, a finite basis (K basis functions)

is introduced – see below. Due to the two spin directions, this limits the number

of solutions to 2K. Among these solutions, there are N occupied and 2K − N

unoccupied (virtual) spin orbitals. One can reformulate the Hartree-Fock equations

(equation (2.14)) for a closed-shell system (all spatial orbitals are doubly occupied

or unoccupied) by integrating over the spin function. These Hartree-Fock equations

contain only the spatial orbitals ψi and the spatial coordinates r

f̂(r1)ψj(r1) = εjψj(r1) j = 1, . . . ,K . (2.15)

Also, a reformulation of the Fock operator, the Coulomb operator, and the exchange

operator is required.

There is an analogous algorithm to form Hartree-Fock equations for the unre-

stricted case, i.e., for systems with singly occupied molecular orbitals. This algo-

rithm leads to the Pople-Nesbet equations (see Ref. [63]).

2.1.3 The Roothaan-Hall equation

In order to solve the Hartree-Fock equations (equation (2.15)) numerically the molec-

ular orbitals ψi are written as a linear combination of atomic orbitals φµ (LCAO-

MO) with respective coefficients Cµi. In principle, also other basis sets like plane

waves, extended grids etc. can be used. For electronic structure calculations for

molecular systems, atom-centered contracted Gauss-type atomic orbitals have been

most successful and will be also used within this thesis. These atomic orbitals form

the basis; we thus write

ψi(r) =

K
∑

µ=1

Cµiφµ(r) . (2.16)

Thus the Hartree-Fock-Roothaan, or Roothaan-Hall equation [64,65] in matrix form

is

F C = S C ε . (2.17)

Here, F stands for the Fock matrix

(

F
)

µν
= 〈φµ|f̂ |φν〉 , (2.18)
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the matrix C = (C1, C2, . . . , CK) contains the LCAO-MO coefficients Cµi (as in

equation (2.16)). ε is a diagonal matrix containing the energies of the molecular

orbitals (
(

ε
)

ij
= εiδij), and S the overlap between two atomic orbitals (

(

S
)

µν
=

〈φµ|φν〉). The Fock matrix

(

F
)

µν
=
(

H
)

µν
+
(

G
)

µν
(2.19)

can be written as the sum of a one-electron matrix

(

H
)

µν
= 〈φµ| − 1

2∆|φν〉 −
NA
∑

A=1

〈φµ|ZA

riA
|φν〉 (2.20)

and a two-electron matrix, given for closed shells as

(

G
)

µν
=
∑

σ

∑

λ

(

P
)

λσ

[

〈φµφσ|φνφλ〉 −
1

2
〈φµφσ|φλφν〉

]

. (2.21)

The one-electron matrix H contains the kinetic energy of the electrons and the

electron-nuclei interaction. The two electron matrix G contains the elements of the

charge density bond order (CDBO) matrix

(

P
)

µν
= 2

N/2
∑

a=1

CµaC
∗
νa (2.22)

and two-electron integrals

〈φµφσ|φνφλ〉 =
∫∫

dr1dr2φ
∗
µ(r1)φ

∗
σ(r2)

1

r12
φν(r1)φλ(r2) . (2.23)

The Fock matrix depends on the coefficient vectors
{

Cj

}

. Thus, the set of

equations cannot be solved trivially. The Hartree-Fock-Roothaan equations

F
{

Cj

}

Cj = εjS Cj . (2.24)

can be solved by the well-known self-consistent field (SCF) method [63]. The re-

sults are – amongst others – a converged Hartree-Fock wavefunction |ΨHF
0 〉 and the

respective electronic energy for the ground state EHF
0 .

2.1.4 Electron correlation

The Hartree-Fock theory contains several approximations (neglect of electron corre-

lation, Born-Oppenheimer approximation, neglect of relativistic effects) and further

limitations are introduced in practice (finite basis). Thus, Hartree-Fock calcula-

tions do not provide exact results. One of the errors made in HF is the neglect of

correlation energy

Ecorr = Eexact,BO
0 −EHF,limit

0 . (2.25)
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that is approximately −1 eV for each electron (according to a rule of thumb) and

thus in the range of chemical binding energies. In this equation, EHF,limit
0 is the

Hartree-Fock ground state energy for a complete basis and Eexact,BO
0 is the exact

ground state energy within the Born-Oppenheimer approximation.

One typically distinguishes between two different types of electron correlation:

the dynamic correlation and the non-dynamic (static) correlation [66]. The non-

dynamic correlation occurs if the total wavefunction is not dominated by a single

Slater determinant. This is the case if there are some resonant electron configurations

for one molecule that are quasi-degenerate.

The other type of correlation is dynamic correlation. This type arises from the

fact that a single electron in Hartree-Fock theory is not influenced by another single

electron, but by the average field of all the other electrons. Dynamic correlation is

the type of correlation leading to dispersion bonds, e.g., in noble gas dimers.

In the following, two types of post-Hartree-Fock methods are described that

include electron correlation. The first one is the configuration interaction method

(CI, in Sec. 2.1.5), the second one is the complete active space self-consistent field

method (CASSCF, in Sec. 2.1.6).

2.1.5 Configuration Interaction (CI)

One method to minimize the error due to electron correlation (or even to make it

vanish) is configuration interaction [67]. While the Hartree-Fock theory includes only

a single Slater determinant (the ground state configuration), CI includes in addition

also other possible configurations. Depending on the CI method, one considers only

single excitations (CIS, S=Singles), double excitations (CID, D=Doubles), both of

them (CISD), or even all possible excitations (Full-CI), i.e., up to N -fold excitations

in an N -electron system. It can be shown that the Full-CI result is the exact solution

within the Born-Oppenheimer approximation for the respective basis set. The total

CI wavefunction is a linear combination of all these configurations:

|ΨCI〉 = D0|ΨHF
0 〉+

∑

a

∑

r

Dr
a|Ψr

a〉+
∑

a<b

∑

r<s

Drs
ab|Ψrs

ab〉

+
∑

a<b<c

∑

r<s<t

Drst
abc|Ψrst

abc〉+ . . . (2.26)

Here, |ΨHF
0 〉 is the ground state Hartree-Fock wavefunction, |Ψr

a〉 is the wavefunction
for the configuration when one electron is excited from the occupied spin orbital a
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to the virtual spin orbital r, and Dr
a is the appropriate coefficient. These coefficients

are determined from a variational calculation using the secular equations

H Di = EiDi (2.27)

with the elements of the Hamiltonian matrix

(

H
)

IJ
= 〈ΨI |Ĥel|ΨJ〉 . (2.28)

In this equation, ΨI and ΨJ are Slater determinants which occur in equation (2.26).

The results of equation (2.27) are a corrected ground state energy and wavefunction

and also the energies and wavefunctions of excited states. A Full-CI calculation is

technically not feasible for most systems. Therefore, the CI wavefunction is often

truncated, taking only excitations up to single electron excitations or the excitation

of two electrons (CISD) into account. As a further simplification, Slater determi-

nants are not used here, but spin-adapted linear combinations of these, the so-called

configuration state functions (CSFs) [68].

As already mentioned, there are two types of correlation. CI methods describe

dynamical correlation well and cover the most important effects of static correlation

[66].

Although the CI theory is a systematically improvable method that is capable of

describing electron correlation, there are some disadvantages of this method. If the

CI wavefunction is truncated, the size consistency is not given any more. If higher

excitations than single electron transitions are considered, the scaling increases to

non-tractable dimensions. According to a rule of thumb, CI methods scale with

K2m+2 where K is the number of orbitals taken into account and m is the order of

the highest excitation (1 for CIS, 2 for CISD, etc.). The CIS method that can be

applied to larger systems, however, does not include any correlation of the electronic

ground state.

2.1.5.1 Configuration Interaction Singles (CIS)

The total wavefunction within the CIS [69] method includes additionally to the

Hartree-Fock ground state determinant the Slater determinants of all possible single

electron excitations. The singlet CSF of a single excitation can be written as

| Ψr1
a〉 =

1

2

(

|Ψr
a〉+ |Ψr

a〉
)

. (2.29)
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In this equation, |Ψr
a〉 stands for the excitation of an α electron from the occupied

spatial orbital a to the virtual spatial orbital r. |Ψr
a〉 is the same for a β electron.

Note, that only singlet CSFs are considered here.

This method does not lead to a change of the ground state energy. According to

Brillouin’s theorem [70], the off-diagonal elements in the first row and column of the

Hamiltonian matrix (these elements stand for the coupling between the HF ground

state and the possible configuration with single electron excitations) are all zero, so

the CIS ground state wavefunction is equal to the Hartree-Fock wavefunction and is

thus not correlated. The method provides excited states which are partly correlated.

The total number of states nst which can be computed is calculated from

nst = 1 + (no − nfc) · (nv − nfv) , (2.30)

where no is the number of occupied spatial orbitals and nv is the number of virtual

spatial orbitals. nfc (fc = frozen core) and nfv (fv = frozen virtuals) are the numbers

of very low-lying (fc) or very high-energetic (fv) spatial orbitals which are neglected

in the single excitations. The one additional state is the ground state. Here, we

usually set nfv = 0 and nfc equal to the number of MOs, that correspond to the

non-valence AOs, e.g., the 1s-orbitals in the case of second-row atoms.

2.1.5.2 Configuration Interaction Singles Doubles (CISD)

Within this method, also double excitations are used to form the total wavefunction.

Therefore, also the following CSFs are important [63]:

| Ψrr1
aa〉 = |Ψrr

aa〉 ,

| Ψrs1
aa〉 =

1√
2

(

|Ψrs
aa〉+ |Ψrs

aa〉
)

,

| Ψrr1
ab〉 =

1√
2

(

|Ψrr
ab〉+ |Ψrr

ab
〉
)

,

| ΨrsA
ab〉 =

1√
12

(

2|Ψrs
ab〉+ 2|Ψrs

ab
〉 − |Ψsr

ab〉+ |Ψrs
ab〉+ |Ψrs

ab
〉 − |Ψsr

ab
〉
)

,

| ΨrsB
ab〉 =

1

2

(

|Ψsr
ab〉+ |Ψrs

ab〉+ |Ψrs
ab
〉+ |Ψsr

ab
〉
)

.

(2.31)

The total number of states nst is calculated from

nst = 1 +
(no − nfc)(nv − nfv)

2
[3 + (no − nfc)(nv − nfv)] . (2.32)

where nfv and nfc are chosen in the same way as for CIS.
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In contrast to CIS, the ground state in CISD is not only described by the Hartree-

Fock ground state Slater determinant, but by a linear combination of different con-

figuration state functions. This leads to correlation in the electronic ground state

and thus to a correction of the ground state energy. However, this ground state

energy is not size-consistent if more than two electrons are present.

2.1.6 The Complete Active Space Self-Consistent Field

(CASSCF) method

Another post-Hartree-Fock method that is capable of including correlation in the

ground state wavefunction is the complete active space self-consistent field (CAS-

SCF) method [20]. This method is very similar to Full-CI with some restrictions.

There, in an active space of n orbitals (including occupied and virtual orbitals), all

possible configurations with the m electrons within the active space are used to find

a suitable ground state energy. These configurations are built from all single-electron

excitations, two-electron excitations and higher excitations and their respective con-

figurations. However, in contrast to a CAS-CI calculation, not only the coefficients

of the electron configurations, e.g., Dr
a, but also the orbitals forming these con-

figurations, i.e., the AO coefficients Cµi are optimized with respect to a minimal

energy. The notation for CASSCF is CASSCF(m,n), meaning the treatment of m

electrons in a space of n active spatial orbitals. The number of configurations used

in a CASSCF calculation can be calculated from

nconf =





2n

m



 . (2.33)

The CASSCF method behaves differently compared to CI as far as the two

types of correlation are regarded. While static correlation is well described by CAS-

SCF, the description of dynamic correlation is not sufficient, at least for numerically

tractable active spaces.

2.2 Quantum electron dynamics in a laser field

In order to simulate many-electron dynamics within the fixed nuclei approximation,

time-dependent methods have to be applied. These methods are explained in the

next sections. The time-independent methods presented in the previous sections are

used as a basis for their time-dependent variants.
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2.2.1 The time-dependent electronic Schrödinger equa-

tion

A central postulate of quantum mechanics is the time-dependent Schrödinger equa-

tion [13–16]

i~
∂Ψ({xi}, t)

∂t
= Ĥ(t)Ψ({xi}, t) . (2.34)

In the present context the time-dependent Hamiltonian Ĥ({ri}, t) is the sum of the

electronic Hamiltonian of the unperturbed system Ĥel (which is not time-dependent,

but it depends on the spatial coordinates of the electrons, {ri}) and an operator

Ŵ ({ri}, t) describing the interaction between the molecule and the laser field

Ĥ({ri}, t) = Ĥel({ri}) + Ŵ ({ri}, t) . (2.35)

In equation (2.35), any dependencies on spin coordinates have been neglected. A

description for the interaction operator Ŵ (t) is derived as follows. In a classical

picture a particle (with the charge q, the mass m, the velocity v, and neglected

spin) in an electromagnetic field consisting of an electric field F (r, t) and a magnetic

field B(r, t), is influenced by an electrostatic force and the Lorentz force

K = qF + qv ×B . (2.36)

The corresponding classical Hamiltonian is given as

H(t) =
1

2m
(p− qA)2 + qφ+ Vs . (2.37)

In the semiclassical approximation (i.e., the particle being treated quantum mechan-

ically and the field classically), the corresponding quantum expression is

Ĥ(t) =
1

2m
(p̂− qA)2 + qφ+ Vs . (2.38)

with the momentum operator

p̂ =
~

i
∇ , (2.39)

the electrostatic potential φ and the vector potential A. The connection between

fields and potentials are

F (r, t) = −∇φ− ∂A

∂t
and (2.40)

B(r, t) = ∇×A . (2.41)
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Further, Vs is indicating an additional static potential, e.g., the electron-nuclei at-

traction in molecules. Equation (2.37) can also be written as the sum of a Hamilto-

nian of the unperturbed system

Ĥ = − ~
2

2m
∇2 + qφ+ Vs (2.42)

and the interaction operator

Ŵ (r, t) =
i~q

2m
(∇ A+A ∇) +

q2

2m
A A . (2.43)

This can be simplified to (with the Coulomb gauge ∇ A = 0):

Ŵ (r, t) = − q

m
(Ap̂) +

q2

2m
A A . (2.44)

For weak fields, the second term can be neglected. For a periodic field with an

amplitude A0, a wave vector |k| = 2π
λ (with λ as the wavelength), and a frequency

ω

A(r, t) = A0 cos(k r − ωt) , (2.45)

the interaction operator is written as

Ŵ (r, t) = − q

m
A0 ·

1

2

[

eik re−iωt + e−ik reiωt
]

p̂ . (2.46)

If the wavelength of the electric field is much longer than the size of the molecule,

i.e., λ≫ |r| (this is valid for UV/Vis spectroscopy and many other spectroscopies),

the semiclassical dipole approximation [71] can be applied. Within this approxi-

mation, the exponential functions containing the r-dependence are expanded in a

Taylor series that is truncated after the constant term (e±ik r ≈ 1). The interaction

operator then becomes

Ŵ (t) = − q

m
A0 cos(ωt)p̂ = −µ̂F 0 cos(ωt) . (2.47)

This means that the interaction is not dependent of the magnetic field and the spatial

dependence of the electric field is also neglected, i.e., F (r, t) ≈ F 0 · cos(ωt) in the

periodic case. For arbitrary fields F (t), equation (2.47) becomes Ŵ (t) = −µ̂F (t).

For a molecular system, the dipole operator µ̂ is written as the sum of an elec-

tronic dipole operator µ̂
el
and a nuclear dipole operator µ̂

nuc

µ̂ = µ̂
el
+ µ̂

nuc
= −

N
∑

i=1

ri +

NA
∑

A=1

ZA ·RA . (2.48)
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Here, the second sum enters as a constant, as we work in the fixed nuclei ap-

proximation. In order to simulate correlated many-electron dynamics in molecular

systems the time-dependent Schrödinger equation (equation (2.34)) has to be solved.

For this purpose, two time-dependent methods are used that are explained in detail

in the following sections: The time-dependent configuration interaction theory (Sec.

2.2.2) based on CI (see Sec. 2.1.5), and the multi-configuration time-dependent

Hartree-Fock method (Sec. 2.2.3) based on CASSCF (see Sec. 2.1.6).

2.2.2 Time-dependent Configuration Interaction (TD-

CI)

One possible way to solve the time-dependent electronic Schrödinger equation is a

multi-determinant approach. In the case of time-dependent configuration interac-

tion (TD-CI) methods [22–27,30–34,72], only the coefficients Θi of the CI states are

time-dependent, the CI states themselves Φi and thus the electron configurations

forming these states remain stationary. If also the orbitals forming the electron con-

figurations are assumed to be time-dependent, this results in the multi-configuration

time-dependent Hartree-Fock method (MCTDHF) [17–19]. The electronic wavefunc-

tion within the TD-CI method is written as

Ψ(t) =
∑

i

Θi(t)Φi , (2.49)

where Φi is the electronic wavefunction of the state i, e.g., in the TD-CIS case

Φi = D0,i|Ψ0〉+
∑

a

∑

r

Dr
a,i|Ψr

a〉 . (2.50)

Here, Dr
a,i is the coefficient for the electron configuration where a single electron has

been excited from the occupied orbital a to the virtual orbital r within the state i,

andD0,i is the coefficient of the Hartree-Fock state. TheDis are obtained from equa-

tion (2.27). In this case, the coefficients have to be propagated in time. Bandrauk

et al. [73] developed an algorithm that is used for this propagation. Accordingly, we

write

Θ(t+∆t) =

[

∏

q=x,y,z

U †
q
e
iFq(t)µ

q
∆t
U

q

]

e−iH̃∆tΘ(t) . (2.51)

Here, Θ(t) is a vector containing all coefficients Θi(t), H̃ is a diagonal Hamiltonian

matrix in the basis of the CI eigenstates containing the energies Ei, U q
is a unitary
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matrix which transforms the wavefunction from the basis of CI eigenstates into a

basis in which the dipole matrix µ
q
is diagonal.

When the laser is switched off, this propagation can be simplified to

Θ(t+∆t) = e−iH̃∆tΘ(t) . (2.52)

The populations of the eigenstates, which are also time-dependent if the laser pulse

is on, can be determined by calculating the square of the absolute of the respective

coefficients:

Pi(t) = |Θi(t)|2 = |〈Φi|Ψ(t)〉|2 . (2.53)

Another observable of interest is the time-dependent dipole moment. The latter can

be calculated as

µq(t) = 〈Ψ(t)|µ̂q|Ψ(t)〉 with q = x, y, z . (2.54)

As the dipole operator contains the electron positions, the time-dependent dipole

moment provides information concerning the position expectation value of the elec-

tronic wavepacket within the fixed nuclei approximation.

2.2.3 Multi-configuration time-dependent Hartree-Fock

(MCTDHF)

Within the multi-configuration time-dependent Hartree-Fock method, the config-

urations are also time-dependent. The total wavefunction Ψ does not consist ex-

clusively of a superposition of a stationary basis of electron configurations with

time-dependent coefficients but of a superposition of time-dependent electron con-

figurations ΨI(t) with time-dependent coefficients ΛI(t). The wavefunction can now

be written as

Ψ(t) =

nconf
∑

I=1

ΛI(t)ΨI(t) . (2.55)

Here, nconf is the number of configurations taken into account according to equation

(2.33). The configurations are written as a Slater determinant including spin orbitals

χi:

ΨI = |χi1χi2 · · ·χiN〉 . (2.56)

The equations of motion for the coefficients ΛI and the orbitals χi are taken from

Dirac-Frenkel variational principle [74,75] and are integrated using an eighth order
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Runge-Kutta integrator [76]:

dΛI

dt
= −i

∑

J

〈ΨI(t)|Ĥ |ΨJ(t)〉ΛJ , (2.57)

∂χj

∂t
= −i

∑

kl

(1− P̂ )jk

(

(h)kl +
∑

m

(ρ−1)km(〈V el,el
〉)ml

)

χl . (2.58)

In these equations, (h)kl is an element of the core Hamiltonian matrix in the repre-

sentation of spin orbitals. (〈V
el,el

〉)ml is an element of the mean field matrix 〈V
el,el

〉
describing the Coulomb repulsion between electrons. (ρ−1)km is an element of the

inverse of the reduced one electron density matrix, given in the basis of the time-

dependent spin orbitals. P̂ is a projector on the space of single particle functions:

P̂ =

2K
∑

j=1

|χj〉〈χj| . (2.59)

The spin orbitals |χj〉 are represented in an orthogonalized basis set that is derived

from standard Gauss-type atomic orbitals. The method is (like CASSCF) system-

atically improvable by increasing the number of virtual orbitals forming the active

space or the number of occupied orbitals within this active space and thus by in-

creasing the number of electrons. The number of electrons m and the number of

spatial orbitals n within this active space is written down in the same manner as

for CASSCF, i.e., MCTDHF(m,n). If all electrons of a given system are in the ac-

tive space (m = N), there are two limiting cases: A MCTDHF(N ,N2 ) calculation is

equivalent to time-dependent Hartree-Fock (TD-HF). If the active space consists of

all molecular orbitals (n = K), this results in MCTDHF(N ,K), which is equivalent

to TD-Full-CI, analogous to TD-CIS· · ·N.

2.3 Treatment of photoionization

CI methods provide a large number of eigenstates. If atom-centered basis sets are

used, most of these states have a large energy which can be above the ionization po-

tential IP according to Koopmans’ theorem [77] (see below). In the TD-CI method

– as described above – all these states are non-ionizing, i.e., the electrons remain

localized at the molecule. This does not correspond to the experimental situation.

If higher electronic states are excited, above-threshold ionization is possible. In

the heuristic approach for photoionization developed in this thesis, the Hamiltonian
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matrix in eigenstate representation H̃ from equation (2.51) becomes non-Hermitian:

H̃ → H̃ − i

2
Γ . (2.60)

Here, Γ is a diagonal matrix containing the ionization rates Γn for the respective

states. This results in an exponential decay of population as one can see from the

modified propagation equation

Θ(t+∆t) =

[

∏

q=x,y,z

U †
q
e
iFq(t)µ

q
∆t
U

q

]

e−iH̃∆te−
1

2
Γ∆tΘ(t) . (2.61)

This decay of population can be considered as a model for ionization losses. For the

heuristic model to treat this phenomenon, which is presented here (also Ref. [78]),

we postulate, that all electronic states below an ionization threshold should have

an infinite lifetime. The states above IP have a finite lifetime and decay with an

ionization rate Γn.

To derive an expression for Γn, we first introduce an “escape velocity” v. In a

classical picture, v can be defined from an “escape length” d̃, and an “ionization

lifetime” τ as

v =
d̃

τ
= d̃Γ , (2.62)

where the lifetime τ is equal to the inverse ionization rate Γ.

For a classical electron, the kinetic energy Ekin is given as

Ekin =
1

2
mev

2 , (2.63)

where me is the mass of the electron. The resulting classical equation for the ion-

ization rate is

Γ =

√
2

d̃

√

Ekin

me
=

1

d

√

Ekin

me
. (2.64)

In this equation, the ionization rates depend only on the kinetic energy of the electron

and the modified “escape length” parameter d (that is short for d̃√
2
). It is also

assumed that once the electron is above IP, it is considered as a free electron with

a total energy according to equation (2.63). In the following, we test three different

models for the kinetic energy (in Sec. 2.3.1, 2.3.2, and 2.3.3). After that, some

remarks concerning the escape length are made (in Sec. 2.3.4).

2.3.1 Eigenenergy algorithm

Within this model, all states below the ionization potential according to Koopmans’

theorem [77] are non-ionizing, i.e., the electrons remain localized at the molecule.
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All higher states are ionizing states. As the kinetic energy the eigenenergy of the

respective state is chosen, reduced by the Koopmans’ ionization potential. If this

difference is negative, the state is non-ionizing. The ionization rate is then calculated

in the TD-CIS case as

Γn =











0 if ECIS
n − IP < 0

1
d

√

ECIS
n −IP
me

if ECIS
n − IP ≥ 0

(2.65)

with ECIS
n being the excitation energy from the ground state to the state |n〉. IP

is the ionization potential according to Koopmans’ theorem, i.e., IP = −εHOMO,

where εHOMO is the energy of the highest occupied Hartree-Fock orbital.

As a higher electronic state usually has a higher eigenenergy (if states are not

degenerate), the ionization rate increases monotonically for higher electronic states

in this model. On the other hand, excitations from a low-lying orbital to a valence

orbital below the vacuum level can be very stable with respect to ionization losses.

Therefore, for photoionization, a monotonic behavior of the lifetimes and thus the

ionization rates is not desirable.

2.3.2 Configuration State Function (CSF) algorithm

To account for this, an alternative model was tested. Within this model, all states

are transferred to the space of configuration state functions. Again we refer to TD-

CIS. In CIS, each CSF corresponds to a defined configuration, where one electron

has been excited from an occupied spatial orbital a to a virtual spatial orbital r. By

definition, all electrons in orbitals with a negative orbital energy are considered as

bound, all others are unbound. This algorithm splits the energy difference between

the orbitals into two parts. The first part is the energy difference between the

occupied orbital a and the energy-zero, i.e. in Koopmans’ spirit the energy needed

for the electron to escape from the molecule,

Eesc = −εa , (2.66)

where εa is the energy of the orbital a. The other part, i.e., the energy difference

between the energy-zero and the virtual orbital r, is the kinetic energy of the electron

Ekin = εr . (2.67)

If the virtual orbital is still bound (it has a negative orbital energy), this CSF

does not contribute to ionization because the escape energy is not reached. These
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propositions result in an algorithm to calculate the ionization rate for a CSF as

ΓCSF
a,r =











0 if εr < 0

1
d

√

εr
me

if εr ≥ 0

(2.68)

with d being the “escape length” of equation (2.64).

The ionization rate for a CIS eigenstate is then calculated as

Γn =
∑

a

∑

r

|Dr
a,n|2ΓCSF

a,r (2.69)

with Dr
a,n as the coefficient for the linear combination of the CSF (excitation a→ r)

to the eigenstate Φn, and |Dr
a,n|2 being the probability that this excitation took

place in eigenstate n.

A disadvantage of this algorithm is the low number of non-ionizing states. The

ground state in CIS is determined by the Hartree-Fock ground state configuration;

the ionization rate is zero. All higher states are formed by a linear combination of

several CSFs with a non-vanishing ionization rate. This means, only the ground

state is non-ionizing in this picture. All higher states are ionizing, even if their

energy is below the IP, which is artificial.

2.3.3 Combined algorithm

As both of the previously mentioned algorithms have advantages and disadvantages,

it was also attempted to combine both models. The combination of both models is

obtained if the equations (2.65) and (2.69) are combined to

Γn =















0 if ECIS
n < IP

∑

a

∑

r
|Dr

a,n|2ΓCSF
a,r if ECIS

n ≥ IP
(2.70)

with ECIS
n as the excitation energy from the ground state to the state Φn.

Using this algorithm, all states below the IP according to Koopmans’ theorem are

non-ionizing. A set of stable states besides the electronic ground state is guaranteed.

The other states are ionizing, but the ionization rate is not increasing monotonically

for higher excited states.

2.3.4 Escape length parameter

All of the three previously introduced algorithms need an “escape length” d after

which the electron can be considered as released. The escape length cannot be
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obtained from standard quantum chemical calculations. It is not even known if this

parameter has different values for different final states. In a first approximation,

this parameter is kept constant and chosen equal for all final states.

There are different possible ways to determine a value for the escape length

parameter. First, one can simulate a process which has been investigated experi-

mentally, adjusted such that the experimental yields are reproduced.

Another way is to propagate a pulse or pulse sequence leading to the excitation

of final, ionizing or non-ionizing states. This is done for different values of d. At the

end of the propagation the norm N is calculated as the sum of the populations Pi

of all states

N =
∑

i

Pi , (2.71)

and the difference to one is seen as the loss of norm

N̄ = 1−N . (2.72)

The value for the escape length parameter where the loss of norm is maximal is

taken, to obtain an “upper bound” for the ionization rate. Using “upper bounds”

allows one to decide if ionization may play a role for a given process or quantity – or

not. This variant is used in this work.

2.4 Reduced density matrices

2.4.1 Calculation of the von Neumann entropy

Electron correlation energy can be determined – as already stated in equation (2.25)

– as the difference of the exact non-relativistic energy and the Hartree-Fock ground

state energy, both within the Born-Oppenheimer approximation and at the basis set

limit. This is true for the time-independent case. In a time-dependent picture, it

cannot be said trivially how much a system is affected by electron correlation at a

certain time. However, there are some approaches to calculate a correlation energy

in a time-dependent scheme. One possible ansatz is based on MCTDHF and natural

orbitals [60]. Another approach is to calculate the exact time-dependent electronic

energy in a MCTDHF calculation and to take the Hartree-Fock energy from a TD-

HF calculation. The correlation energy is the difference of these two time-dependent

energies.
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Another suitable measure for time-dependent electron correlation could be a

single electron entropy calculated by means of a reduced one electron density matrix.

This reduced one electron density matrix (or short one-matrix) can be calculated

from a TD-CI or MCTDHF wavefunction. The one-matrix is derived as follows: If

Ψ(x1, x2, . . . , xN ) is a normalized electronic wavefunction, the probability that one

electron is in the space and spin volume element between x1 and x1 + dx1, and

another electron is between x2 and x2 + dx2 and so on, is

Ψ(x1, x2, . . . , xN )Ψ∗(x1, x2, . . . , xN )dx1dx2 · · · dxN . (2.73)

The probability that an electron is between x1 and x1 + dx1, is obtained by inte-

grating over all other coordinates dx2 · · · dxN :

ρ(x1) = N

∫

Ψ(x1, x2, . . . , xN )Ψ∗(x1, x2, . . . , xN )dx2 · · · dxN (2.74)

where ρ(x1) is the reduced density function for an electron in a N electron system.

The reduced density function is normalized such that its integral gives the total

number of electrons:
∫

ρ(x1)dx1 = N . (2.75)

This can be generalized to the reduced one electron density matrix:

γ(x1, x1′) = N

∫

Ψ(x1, x2, . . . , xN )Ψ∗(x′1, x2, . . . , xN )dx2 · · · dxN . (2.76)

The diagonal elements of the reduced one-electron density matrix are the electron

densities at the respective coordinates, i.e., γ(x1, x1′) = ρ(x1). This matrix can be

expanded in the orthonormal basis of Hartree-Fock spin orbitals {χi} as

γ(x1, x1′) =
∑

ij

χi(x1)(γ)i,jχ
∗
j (x

′
1) (2.77)

with the elements

(γ)i,j(x1, x1′) =

∫

χ∗
i (x1)γ(x1, x

′
1)χj(x

′
1)dx1dx

′
1 (2.78)

forming the reduced one electron density matrix in the orthonormal basis of Hartree-

Fock spin orbitals.

This density matrix formalism can be useful for various applications in quantum

mechanics. One could use it to couple a system to an external bath (e.g., a solvent

or a surface) and propagate the density matrix, or one takes the time-dependent

wavefunctions for a calculation of the reduced density matrix in order to determine
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properties. Observables that are related to an arbitrary one-electron operator Ô can

be calculated from

〈Ô〉 = Tr{Oγ} . (2.79)

A very special property that can be calculated from a one matrix is a single electron

entropy (SEE) in the von Neumann definition [59], calculated as

S = −kB Tr{γ ln γ} (2.80)

where kB is Boltzmann’s constant.

This SEE is zero if the total wavefunction consists of only one configuration, e.g.,

the Hartree-Fock ground state wavefunction. Otherwise, the SEE is larger than zero

as not all eigenvalues of γ are either zero or one (see below).

2.4.2 Ionization in a dissipative environment [79]

Another interesting challenge is the development of a method which is capable of

describing laser-driven electron dynamics including photoionization and dissipation.

Therefore, the algorithm to calculate ionization rates from Sec. 2.3.3 was included

into the ρ-TDCI method from Ref. [80]. The ρ-TDCI method is an extension of

the TD-CI method to Liouville space, allowing for the treatment of coupling of the

system to a bath which leads to energy and phase relaxation.

At the beginning, a field-free electronic Hamiltonian Ĥel is considered, repre-

sented in a set of electronic configurations. From a CI calculation, the eigenvalues

En and the eigenvectors |n〉 (denoted as Φn above) are obtained. Next, a reduced

density operator is formulated

ρ̂(t) =
∑

nm

ρnm(t)|n〉〈m| , (2.81)

where ρnm is an expansion coefficient. The density operator is propagated in time

according to the Liouville-von Neumann equation [81] (~ = 1):

∂ρ̂(t)

∂t
= −i[Ĥel, ρ̂(t)] + i[µ̂ · F (t), ρ̂] + LDρ̂ . (2.82)

The interaction between the system and the field is treated within the semiclassical

dipole approximation. Furthermore, dissipation is represented by the dissipative

Liouvillian using the Lindblad semigroup formalism [82]:

LDρ̂(t) = −1

2

∑

k

([Ĉkρ̂(t), Ĉ
†
k] + [Ĉk, ρ̂(t)Ĉ

†
k]) , (2.83)
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where Ĉk is a Lindblad operator, representing the kth dissipation channel. For the

treatment of energy dissipation, we use upward and downward projectors

Ĉk →
√

ζm→n|n〉〈m| . (2.84)

In this equation, ζm→n is a dissipation rate, given as a scaled Einstein coefficient for

spontaneous emission

ζm→n =











4A|µm,n|2
3c3

ω3
m,n if m > n

0 else ,

(2.85)

where ωm,n is the energy difference between the CI eigenvalues Em and En, µm,n
is

the transition dipole moment 〈m|µ̂|n〉, and c is the speed of light in vacuum. A is a

scaling factor to model electron-rich environments.

Another type of “relaxation” is pure dephasing, which arises from processes

which are not due to energy relaxation, i.e., processes which can be described as

elastic scattering events. (In contrast to dissipation, which is due to inelastic scat-

tering.) This type can be implicitly included by a Kossakowski-like model [83, 84],

in which Lindblad operators are defined as

Ĉk →
√
ν∗Ĥel . (2.86)

Here, ν∗ is a phenomenological pure dephasing rate. In order to describe also ioniza-

tion in this model, there is an additional term −iŴabs to the electronic Hamiltonian

Ĥel (Ĥel → Ĥel − iŴabs), with the “absorption operator”

Ŵabs =
∑

k

Γk

2
|k〉〈k| . (2.87)

In this equation, Γk is a ionization rate for the state |k〉, calculated according to

equation (2.70).

Without equation (2.87), the Liouville-von Neumann equation (equation (2.82))

is norm conserving (Tr{ρ̂} = 1), but not energy or phase conserving. With equation

(2.87) but without the term LDρ̂ in equation (2.82), the TD-CI with ionization of

Sec. 2.3.3 is regained, which does not conserve the norm. With both equation (2.87)

and the term LDρ̂ included in equation (2.82), we have an algorithm in which norm,

energy, and phase relations are not conserved.
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2.5 Laser pulses

In order to induce electronic transitions, laser pulses are used within this work.

Here, five different pulses are used: π-pulses, manually optimized pulses (resonant

or non-resonant), experimental pulses, pulses derived from optimal control theory

(OCT) and pulses obtained from stochastic pulse optimization (SPO).

2.5.1 π-pulses

If a high population in a target state is desired, often π-pulses [85] are applied to

the system. These are pulses whose parameters are chosen in a way that the area

below the shape function leads to a complete population inversion in an idealized

two-level system within the rotating wave approximation (RWA). All π-pulses and

most of the other pulses in this work follow the expression:

F (t) = f
0
· s(t) · cos(ω(t− tp)) , (2.88)

with the cos2-type shape function

s(t) =











cos2
(

π
2σ (t− tp)

)

if |t− tp| ≤ σ

0 else .

(2.89)

In these equations, F (t) stands for the electric field at time t, ω is the constant carrier

frequency of the laser field. tp is the time where the shape function is maximal, and

f
0
is the amplitude of the pulse. σ stands for the Full Width at Half Maximum

(FWHM) of the pulse, which is – for cos2-pulses – half of the total pulse width.

A complete population inversion can be obtained if the π-pulse condition is fulfilled

(in a two level system, if the RWA is valid):

|µ
fi
· f

0
|

∞
∫

−∞

s(t)dt = π , (2.90)

with µ
fi

being the transition dipole moment between the initial state |i〉 and final

state |f〉. For cos2-pulses the π-pulse condition (equation (2.90)) simplifies to

µ
fi
· f

0
=
π

σ
. (2.91)

Below, we always use electric fields that are parallel to the transition dipole moment,

i.e. µ
fi
· f

0
= µfi · f0.
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2.5.2 Optimal control theory (OCT)

As in practice idealized two-level systems do not exist in this work, two-level π-pulses

do not lead to a complete population inversion. So, alternatives are needed. One

possibility is optimal control theory [86,87]. This theory is capable of computing a

suitable pulse iteratively. Here, a modified algorithm by Rabitz [88–90] was used.

In this approach, a total objective functional J is defined that should be maximal

at the end of the control time tf :

J = 〈Ψ(tf )|Ô|Ψ(tf )〉 −
∫ tf
0 α(t)|F (t)|2dt

−2Re
[

∫ tf
0 〈Ξ(t)| ∂∂t + i(Ĥ0 − µ̂F (t))|Ψ(t)〉dt

]

.
(2.92)

In this equation, the first term takes care that the pulse excites the system to the

target state |Ψt〉, for example, in which case Ô is a positive target operator, e.g.,

Ô = |Ψt〉〈Ψt| . (2.93)

The second term limits the strength of the laser field, and the third term ensures

that the time-dependent Schrödinger equation is obeyed. The positive function α(t)

is calculated from

α(t) =
α

g(t)
(2.94)

with a penalty factor α that controls the intensity of the laser field and another

shape function

g(t) = e
−
(

t−tm
∆ts

)Ns

. (2.95)

The shape function used here is a generalized Gaussian function. tm is the midtime

of the pulse, ∆ts is the pulse width, and Ns is an exponent. All values for these

parameters are given later. The third term in equation (2.92) contains a Lagrange

multiplier wave function Ξ(t), defined in equation (2.97) below. The optimal laser

field can be obtained from the following three coupled equations which follow from

the condition that δJ = 0, i.e., J is maximized:

i
∂Ψ(t)

∂t
= (Ĥ0 − µ̂F (t))Ψ(t) with Ψ(t = 0) = Ψ0 , (2.96)

i
∂Ξ(t)

∂t
= (Ĥ0 − µ̂F (t))Ξ(t) with Ξ(tf ) = ÔΨ(tf ) , (2.97)

F (t) = − 1

α(t)
Im[〈Ξ(t)|µ̂|Ψ(t)〉] . (2.98)

Here, equation (2.96) is used for a propagation forward in time, starting from t = 0,

and equation (2.97) is used for a propagation backward in time, starting from t = tf .



30 Theoretical foundations and methods

After several forward and backward propagations, the field converges monotonically

to an optimal field, and can be calculated from equation (2.98). The equations (2.96)

and (2.97) are time-dependent Schrödinger equations that can be solved in the same

manner as equation (2.35). The initial wave function Ψ0 is usually the ground state

wave function.

2.5.3 Stochastic pulse optimization (SPO)

Sometimes, the target can be expressed as a quantity that should be maximized or

minimized, but cannot be represented by a target operator Ô. An example is the

single electron entropy of a system which shall be minimized photophysically. In

this case, a stochastic pulse optimization is useful. In the present work, a similar

algorithm to the one in Ref. [91] is used.

The x- (k = x) and y-components (k = y) of the external electric laser field

F propagating in z-direction are expressed as a truncated Fourier series using f

frequency components:

Fk(t) = ω√
π
s(t)

f−1
∑

l=0

[ak,l cos((lωmin + ωmin)t)

+bk,l sin((lωmin + ωmin)t)] with k = x, y .

(2.99)

The minimal frequency ωmin is calculated as follows:

ωmin =
π

tmax
. (2.100)

Here, tmax is the total width of the shape function s(t). This shape function itself

is defined as

s(t) =























































0 if t < 0

sin2
(

πt
2trf

)

if 0 ≤ t < trf

1 if trf ≤ t < (tmax − trf )

sin2
(

π(tmax−t)
2trf

)

if (tmax − trf ) ≤ t < tmax

0 if t ≥ tmax .

(2.101)

The parameter trf , which is indicated in Fig. 2.1, is the so-called “rise-fall time”

The coefficients ak,l and bk,l are chosen as random initially, but their Euclidean norm

Nω is kept constant:

Nω =

f−1
∑

l=0

[a2x,l + a2y,l + b2x,l + b2y,l] . (2.102)
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Figure 2.1: Shown is the shape function s(t) of a pulse used within the stochastic

pulse optimization algorithm. The “rise fall time” trf and the total width of the

pulse tmax are indicated.

Nω is only connected to the laser fluence in a first approximation as mixed

frequency terms arising from the overcomplete basis in frequency space (see equation

(2.100)) are neglected. Using these initial conditions and parameters, one can start

a propagation. A set of g laser pulses {F p(t)} (p = 1, 2, ..., g) is created with

F p(t) =











Fx(t)

Fy(t)

0











(2.103)

where Fx(t) and Fy(t) are calculated according to equation (2.99). For each of these

laser pulses, a propagation is performed within the TD-CISD method, the reduced

one-electron density matrix is built, and the single electron entropy at the end of

the pulse is calculated according to equation (2.80). The propagations are sorted by

increasing single electron entropy. These laser fields form the “parent generation”.

In a next step, the laser fields for the “child generation” are calculated by varying

the coefficients of the truncated Fourier series (equation (2.99)), i.e.,

āk,l = ak,l(1 +R ·M) , (2.104)

where R is a random number from the interval [−1;+1] and M is a “mutation

rate” that is constant during an optimization. A propagation is done for each of
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the laser pulses from the “child generation” after renormalization of Nω and the

single electron entropy at the end of the pulse is calculated again. There are now

2g single electron entropy values (g from the “parent generation” and g from the

“child generation”). The g laser fields leading to the lowest single electron entropy

values are taken as a new “parent generation” for another optimization step. After

a certain number of steps, the optimization is finished and one obtains a laser field

which creates a lower single electron entropy in the respective system.

2.6 Electronic transitions

2.6.1 Processes of interest

With the methods presented here, many optically stimulated processes can be treated,

such as stimulated emission and laser excitations. Some of the processes, that can

be described with the methods presented in this work, are shown in Fig. 2.2.

Most of these processes can be also described within time-dependent perturba-

tion theory (TD-PT) [28]. In this thesis, in most cases electronic transitions are

modeled non-perturbationally using time-dependent configuration interaction the-

ory including photoionization. The influence of photoionization on state-to-state

transitions (below or above Koopmans’ ionization potential [77]) or response prop-

erties like the dynamic polarizability is evaluated.

2.6.2 Induced dipole moment

If the laser frequency is not resonant, there is still an effect of the electric field

on the system. The field leads to a movement of the electrons in the system. As

a consequence, there is – in addition to the permanent dipole moment µ
0
– a

time-dependent induced dipole moment µind(t)

µ(t) = µ
0
+ µind(t) . (2.105)

The induced dipole moment depends only on the current electric field F (t) and can

be expanded in a Taylor series

µindq (t) =
∑

q′

αqq′Fq′(t) +
1

2!

∑

q′

∑

q′′

βqq′q′′Fq′(t)Fq′′(t)

+
1

3!

∑

q′

∑

q′′

∑

q′′′

γqq′q′′q′′′Fq′(t)Fq′′(t)Fq′′′(t) + . . . (2.106)
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Figure 2.2: Shown are some of the electronic transitions and processes that can be

described using TD-CI methods.

with q, q′, q′′, q′′′ = x, y, z. Here, α stands for the polarizability, β is the first order

hyperpolarizability, γ is the second order hyperpolarizability. αqq′ is the element

of the polarizability tensor that describes the effect of an electric field polarized

along q′ on the dipole moment along q. This equation is only valid for constant

electric fields, but also a good approximation for weak periodic fields. In this case,

all polarizabilities are frequency-dependent (dynamic polarizability). If a periodic

electric field with a high intensity is investigated, the induced dipole moment can

be calculated from the equation [28,92]:

µq(t) =µ0q + αqq′(0; 0)F0,q′ + αqq′(−ω;ω)Fω,q′ cos(ωt) (2.107)

+
1

2
βqq′q′′(0; 0, 0)F0,q′F0,q′′ +

1

4
β(0;ω,−ω)Fω,q′Fω,q′′

+ βqq′q′′(−ω;ω, 0)F0,q′Fω,q′′ cos(ωt)

+
1

4
βqq′q′′(−2ω;ω, ω)Fω,q′Fω,q′′ cos(2ωt) + ... .

In equation (2.107), the Einstein sum convention has been used, i.e., we sum over

terms in which indices q, q′, q′′, ... occur twice. Therefore, the electric field is written

as a sum of a constant electric field F 0 and a periodic electric field Fω with a

frequency ω:

F (t) = F 0 + Fω cos(ωt) . (2.108)
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In equation (2.107), α(−ω;ω) stands for the situation when a photon with the

frequency ω is absorbed by the molecule, and a photon with the frequency ω is

emitted (as a convention, the frequencies of emitted photons are negative). The

induced dipole moment has the same frequency as the electric field. The value on

the left side of the semicolon of α(ω1;ω2) stands for the frequency of the emitted

photon (and for the frequency of the induced dipole moment), while the value on

the right side stands for the frequency of the absorbed photon that is the frequency

of the applied laser field.

The frequency dependence of the dynamic polarizability can be calculated per-

turbationally by the sum-over-states method [93] as described by the equation:

αqq′(−ω;ω) =
∑

n 6=0

[〈0|µ̂q|n〉〈n|µ̂q′ |0〉
ωn,0 − ω

+
〈0|µ̂q′ |n〉〈n|µ̂q|0〉

ωn,0 + ω

]

. (2.109)

In this equation, |0〉 stands for the ground state, |n〉 is a higher electronic state, ωn,0

is the resonant transition frequency between |0〉 and |n〉, and ω is the frequency of

the electric field.

As a consequence of equation (2.109), there is a pole at each transition frequency.

If the induced dipole moment is parallel to the polarization of the laser field (q = q′),

equation (2.109) simplifies to

αqq(−ω;ω) = 2
∑

n 6=0

ω0,nµ
2
0,n;q

ω2
0,n − ω2

. (2.110)

If one component of the dipole moment vector is plotted versus one component of

the electric field vector, the result is a so called “kennlinie” [94]. This “kennlinie” can

be either horizontal (no field dependence), linear (for small electric field strengths,

the effect of hyperpolarizabilities can be neglected), or polynomial (for high intensi-

ties). If the laser frequency is near a transition frequency, the “kennlinie” becomes

more elliptical. At the resonance frequency, it should ideally be a circle due to a

phase shift of π
2 near the transition frequency. The information on polarizabilities

and hyperpolarizabilities can be extracted from a polynomial fit to the “kennlinie”.

For small intensities where the hyperpolarizabilities are negligible, the polarizability

can also be approximated by calculating the ratio of the induced dipole moment at

the time where the pulse has its maximal intensity, and the field amplitude:

αqq′ =
µindq (t = tp)

f0,q′
(2.111)
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Chapter 3

Molecules in intense laser fields:

Treatment of photoionization

and applications

Whenever an electric field is applied to an atomic or molecular system, this changes

the electronic structure. The fields can lead to induced dipole moments, to elec-

tronic transitions, and to photoionization. As already stated, there are two types of

photoionization: One the one hand, there is tunneling ionization which occurs also

far below the ionization potential. On the other hand, there is above-threshold ion-

ization. The latter occurs when a system is excited above the ionization potential.

Such an excitation may have several possible causes. One reason is the excitation

using radiation with a sufficiently high frequency. This may be done intentionally

when such a laser pulse is used in a pump-probe experiment. The excitation may

also be caused by the finite spectral width of a short laser pulse even if the carrier

frequency is below the IP. If a pulse is very long, the frequency width is very small.

The shorter the pulse is, the wider the frequency range covered by the pulse. The

third reason are multi-photon excitations. They become more probable if the laser

field is intense. In this case, the system absorbs more than one photon and is thus

excited to a high-energy state.

In this chapter, it is attempted to model the above-threshold ionization in molec-

ular systems. For a first system (lithium cyanide molecule), the three algorithms

described in Secs. 2.3.1-2.3.3 to calculate the ionization rates Γn of the respective

states |n〉 are tested. Using the most suitable of these algorithms, it is also checked
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if laser excitations below the ionization potential are still selective. Further, it is at-

tempted to populate an ionizing state with a low ionization rate temporarily. Also, a

pump-probe excitation for an electronic wavepacket using the ionization probability

as the probe signal is simulated.

Further, pump-probe excitations that have longer delay times are simulated for

a second system (benzo[g]-quinolinium-7-hydroxylate molecule). This molecule is

expected, in contrast to the former, not to change the geometry much in the in-

volved excited state. Therefore, the applied fixed nuclei approximation should be

appropriate in this case. The parameters of the laser excitation are optimized such

that the formation of multiply charged ions is not very likely.

Next, the influence of the photoionization on response properties is checked.

For this purpose, the frequency-dependent polarizabilities of the hydrogen molecule

are calculated with and without photoionization and compared to each other. For

the case with photoionization, two algorithms are tested: on the one hand, the

polarizabilities are calculated using a quadratic fit of the kennlinie. On the other

hand, the polarizabilities are determined using the sum-over-states formula in a

time-independent approach.

Finally, it is attempted to simulate state-to-state transitions including photoion-

ization in an electron-rich environment, i.e., with dissipation. To this end, a direct

excitation with a single π-pulse and a pulse sequence for the hydrogen molecule are

shown using the algorithm presented in Sec. 2.4.2.

3.1 The lithium cyanide (LiCN) molecule [78]

3.1.1 System states and ionization rates

As a first system for TD-CIS including photoionization, the lithium cyanide molecule

was used. This molecule is relatively small (3 atoms, 16 electrons), has a permanent

dipole moment along the molecular axis, and excited states which have been shown

to be charge transfer states [30,32,80].

At the beginning, a geometry optimization of the system was performed at the

Hartree-Fock level of theory (RHF [7,8,64,65]/6-31G* [95]) using the Gaussian 03

program package [96]. The optimal bond lengths are RLiC = 3.68 a0 (1.95 Å, 1 Å =

10−10 m) and RCN = 2.17 a0 (1.15 Å), the bond angle is set to θLiCN = 180°. The

molecule was then oriented with the Li—C bond along the z-axis.
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Using this geometry and the Gamess 07 program package [97], a RHF/6-31G*

single point calculation was performed. The one- and two electron integrals were

used for a CIS calculation resulting in 186 CIS singlet eigenstates out of 8 occupied

spatial MOs (among these 3 frozen core orbitals) and 37 virtual spatial MOs. The

energies, dipole moments, and transition dipole moments for all of these eigenstates

were determined. Some of the data obtained is shown in Tab. 3.1.

As a first result, the lowest 18 states (S0 to S17) have excitation energies below

the first ionization potential using Koopmans’ theorem IP = 0.39079Eh (10.63 eV,

1 eV = 1.602×10−19 J). The ground state S0 has a negative dipole moment along z of

µ0,0,z = −3.7082 ea0 (−9.4253D, 1D = 3.3356× 10−30 C ·m) and corresponds to an

ionic state Li+CN−. The second excited state S2 (ECIS
2 = 0.2418Eh (6.580 eV)

above S0) has a dipole moment in the opposite direction µ2,2,z = +2.7951 ea0

(+7.1044D). These two states are connected by a sufficiently high transition dipole

moment along x (µ0,2,x = +0.3082 ea0 (+0.7834D)). According to group theory,

a transition is allowed, if the symmetry of at least one component (x, y, or z) of

the direct product Ψf ⊗ x(or y or z) ⊗ Ψi spans the totally symmetric represen-

tation of the point group. Furthermore, the symmetry of the orbitals involved in

the CSF that dominates the transitions is used instead of the symmetry of the CIS

eigenstates. The excitation from the electronic ground state to the second excited

state is dominated by a HOMO-LUMO transition. Within the C∞v point group,

the HOMO has Π symmetry, the LUMO has Σ+ symmetry. The third factor in the

direct product must have Π symmetry, because only then the resulting symmetry

spans the Σ+ symmetry. This is fulfilled, if a pulse is polarized along x or y, as

Σ+ ⊗Π⊗Π ∼ Σ+ +Σ− +∆ and contains thus Σ+.

The second and the ninth excited state S9 (ECIS
9 = 0.3028Eh (8.239 eV) above

S0) are connected with an even larger, equally polarized transition dipole moment

of µ2,9,x = −1.6019 ea0 (−4.072D). As the S2 → S9 excitation is dominated by an

electron transition from the LUMO (Σ+ symmetry) to the LUMO+2 (Π symmetry),

a transition is possible if a pulse is polarized along x or y, because then the direct

product contains Σ+ symmetry. These three states (S0, S2, and S9) can be used

for a simulation of laser-controlled electron dynamics below the ionization potential.

All other CIS eigenstates are included as well.

For all states, the ionization rates Γn are calculated. The escape length param-

eter d is for this calculation arbitrarily set to d = 1a0 (0.529 Å) in order to enable a



38 Molecules in intense laser fields: Photoionization

comparison between the results for different ionization rate models. The ionization

rates for the LiCN molecule with all of the three algorithms of Secs. 2.3.1-2.3.3 are

shown in Fig. 3.1. There, one can see that the ionization rate within the eigenstate

model gives on the one hand, a set of non-ionizing states (the ionization rate is

Γ = 0 Eh

~
for all states below the ionization potential (IP) according to Koopmans’

theorem [77]). On the other hand, the ionization rates for states whose excitation

energies are above IP increase monotonically due to the
√

ECIS
n − IP dependence

of the ionization rate. This behavior is not desirable, as the ionization rate for

some high-energetic state might also be lower than the ionization rates of neighbor-

ing states. For the CSF model, the ionization rates do not increase monotonically.

There is, however, no set of non-ionizing states below the IP except the ground state.

As the lifetimes of the excited states are very short (the shortest in the range of 2 ~

Eh

(48 as)), selective excitations are rather impossible. The combined model has both:

a set of non-ionizing states below the IP and a non-monotonic behavior above IP.

Hence, the combined model is used for the following simulations.

In order to simulate electron dynamics including photoionization within the TD-

CIS method and the combined model, an optimal value for the escape length d is

needed. This value can be obtained either by propagating a pulse sequence or by

applying the same pulse to different initial states. In both cases, the escape length is

varied and the loss of norm is calculated at the end of the propagation. For a “worst

case scenario”, giving an upper bound for the effects of ionization, a value of d which

yields the largest loss of norm is chosen. Here, a π-pulse sequence consisting of four

non-overlapping pulses is used. The pulses are chosen to enforce the transitions

S0 → S2 → S9 → S2 → S0 (3.1)

below the ionization potential. As already mentioned, the transition dipole moments

for these transitions are reasonably high. The first pulse is x-polarized with the

parameters tp = 2000 ~

Eh
(48.4 fs), σ = 2000 ~

Eh
(48.4 fs), ~ω = 0.2418Eh (6.57 eV),

f0 = 0.0051 Eh

ea0
(2.6 GV

m , 1GV = 109 V). The second pulse is also x-polarized and

has the following parameters: tp = 6000 ~

Eh
(145.1 fs), σ = 2000 ~

Eh
(48.4 fs), ~ω =

0.0610Eh (1.66 eV), f0 = 0.0010 Eh

ea0
(510 MV

m , 1MV = 106 V). The third pulse is

identical to the second one with tp = 10000 ~

Eh
(241.9 fs) and the fourth pulse is

the same as the first one, but with tp = 14000 ~

Eh
(338.6 fs). The whole sequence

ends at tf = 16000 ~

Eh
(387.0 fs). For a TD-CIS propagation without ionization,

this sequence results in a final population of the state S0 of P0(tf ) = 0.987. The



3.1 The lithium cyanide (LiCN) molecule 39

Sn ECIS
n,exc [Eh] µn,n,z [ea0] µ0,n,x (ea0) µ2,n,x [ea0] τn [ ~

Eh

]

0 0.00000 −3.7082 0.0000 +0.3082 ∞
1 0.23898 −1.5832 0.0000 +0.0449 ∞
2 0.24180 +2.7951 +0.3082 0.0000 ∞
...

...
...

...
...

...

9 0.30278 +1.2341 0.0000 −1.6019 ∞
...

...
...

...
...

...

17 0.38254 −1.5390 0.0000 +0.0901 ∞
IP 0.39079 — — — —

18 0.39230 +3.2742 0.0000 +0.1417 17.233
...

...
...

...
...

...

69 0.98349 +2.8164 0.0000 −0.7255 22.436
...

...
...

...
...

...

185 5.25264 −1.9455 0.0000 −0.0014 0.4657

Table 3.1: Shown are the excitation energies ECIS
n,exc, the permanent dipole moments

along z, µnn,z, the transition dipole moments from the ground state, µ0,n,x and

from the second excited state, µ2,n,x along x, and the lifetimes with respect to

photoionization, τn, for some states Sn within the lithium cyanide molecule, all

determined in a CIS [69]/6-31G* [95] calculation. The states S18, S69, and S185 are

above the ionization potential (IP) [77] and thus not stable.

time-dependent populations Pi(t) and the norm N(t) =
185
∑

i=0
Pi(t) are calculated for

the whole propagation time using the heuristic ionization model and different values

of d. After a time of tfinal = 26000 ~

Eh
(628.9 fs), the norm does not change any

more. Then, a loss of norm N̄(t) = 1 − N(t) is calculated for different values of d

and the obtained values are compared to each other. This is shown in Fig. 3.2.

In the figure, it is seen that the loss of norm becomes maximal for d ≈ 1 a0.

There, one observes a loss of norm of N̄(tfinal; d ≈ 1 a0) ≈ 0.13 (while the target

state population is P0(tfinal) = 0.864). The loss of norm decreases for larger and for

smaller values for the “escape length”. If d≫ 1 a0, the distance the classical electron

has to travel is too large, so ionization does not occur. If the escape length is too

small, ionization is also not probable. This can be understood from considering the
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Figure 3.1: Shown are the ionization rates Γn with respect to the ionization energy

En,exc for all CIS states |n〉 within the LiCN molecule. The black line indicates the

ionization rates according to the eigenstate algorithm of Sec. 2.3.1, which behaves

as Γn ∼
(

ECIS
n − IP

)
1

2 according to equation (2.65). The red line stands for the

CSF algorithm of Sec. 2.3.2, and the blue line is the ionization rate within the

combined model (Sec. 2.3.3). The vertical black dashed line indicates the ionization

potential (IP) according to Koopmans’ theorem [77]. Above IP, the CSF model and

the combined model have the same ionization rates, below IP, the ionization rates

of both the eigenstate and the combined algorithm are zero.

situation of absorbing potentials in real space. There, two major errors exist: the

transmission through the potential and the reflection from the absorbing potential.

For small d values, the “absorbing potentials” (− i
2Γn) become unphysically large, so

a large part of the population is reflected back to stable, non-ionizing states, which

explains the small loss of norm for small d values. In the following, the value d = 1a0

is chosen in order to simulate a worst case scenario.

As the combined model for photoionization within the TD-CIS method does

not contain a continuum by itself, but a set of discrete states above IP with finite

lifetimes, it should be checked, if the broadening of these discrete states leads to

a quasi-continuum. For this purpose, the density of states ρDOS is calculated as a

sum of normalized Lorentzians of width Γn and the center at the excitation energy
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Figure 3.2: Shown is the loss of norm N̄ for different values of the inverse escape

length parameter d−1 during a π-pulse sequence (see equation (3.1)) in the LiCN

system.

of the discrete state Sn according to

ρDOS(E) =
1

π

∑

n

Γn

2

(E − ECIS
n )2 +

(

Γn

2

)2 (3.2)

and plotted in Fig. 3.3.

There, it is shown that most of the discrete states above the ionization potential

(indicated by the left vertical dashed line) cannot be individually resolved, because

they are energetically broadened. Only the states S18 and S69 have low ionization

rates (Γ18 = 0.0580 Eh

~
(2.4 × 1015 s−1), Γ69 = 0.0446 Eh

~
(1.8 × 1015 s−1)), and

therefore a peak at the corresponding energy (for S69 this is indicated by the right

vertical dotted line). The discrete states below the ionization potential are delta

functions, indicated by vertical lines representing a discrete non-ionizing state each.

Furthermore, the density of states below IP is not exactly zero. This effect is a

consequence of the broadening of ionizing states above IP.

We have just seen that the state S69 is only slowly ionizing. The reasons for this

behavior can be understood from the nature of the CSFs forming this eigenstate. The

major contribution comes from an excitation from MO 4 (the first non-1s orbital)
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Figure 3.3: Shown is the density of states ρDOS according to equation (3.2). The

non-ionizing states are indicated by vertical lines representing delta functions. Also,

the ionization potential according to Koopmans’ theorem (IP) and the sixty-ninth

excited state (S69), that has a remarkably low ionization rate, are indicated in this

plot. The escape length is set to d = 1a0.

to MO 9 (the lowest unoccupied molecular orbital or LUMO), with a coefficient

of D9
4,69 = −0.673632. The energy difference of these two orbitals is ∆ε = ε9 −

ε4 = 1.1169Eh (30.4 eV), corresponding to a high-energy transition. Nevertheless,

the LUMO has a negative orbital energy (ε9 = −0.0141Eh (−0.38 eV)), so, this

excitation does not contribute to the ionization rate (see equations (2.68) and (2.70)).

3.1.2 Transitions to non-ionizing states

As a first example of the effects of ionization, transitions to formally non-ionizing

states are studied. For this purpose, the π-pulse sequence from equation (3.1) is

used. The pulses have exactly the same parameters as described in the previous

section. The escape length parameter is set to d = 1a0. We wish to see if these

transitions are still selective and if the target states can be populated with sufficient

probability even if ionization is considered. The time-dependent populations of some

important states and the norm, i.e., the sum of the populations of all states, are
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shown in Fig. 3.4. From this figure, one can see that every π-pulse (indicated by

the arrows at the top of the plot) leads to an almost complete population inversion.

The norm only decreases slightly with each pulse, leading to a total loss of norm of

N̄(tfinal) ≈ 0.13. The larger part of this loss happens during the first and the last

pulse, i.e., during the transition from the ground state S0 to the excited state S2

and back. The reason for this is the higher possibility of multi-photon excitations

due to the higher field intensity or maximal laser power (P|0〉↔|2〉 = 9.12 × 1015 W
m2

versus P|2〉↔|9〉 = 3.51 × 1014 W
m2 , with P = 1

2c0ε0|f0|
2) for the first and fourth

pulse. However, this scheme shows that below-threshold excitations are still possible,

selective, and efficient, even in a case of a strongly ionizing system.

Figure 3.4: Shown is the temporal evolution of the populations Pn of the ground

state (P0), the second excited state (P2), the ninth excited state (P9), and the sum

of all populations (
∑

n
Pn) during a sequence of four non-overlapping π-pulses (see

equation (3.1)) inducing transitions between states below the ionization potential

within the LiCN molecule. The pulses are indicated by the arrows on top of the plot

as well as in the inset. The escape length is set to d = 1a0.

3.1.3 Transitions to ionizing states

In Sec. 3.1.2 it was shown that the broadening of the ionizing states does not form an

“ideal” continuum but some resonances appear, e.g., for states S18 and S69 which
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have relatively long lifetimes. In this section we try to populate these states (at

least temporarily). It should also be checked if these excitations are selective, i.e.,

if other, neighboring states are also populated or not.

The state S69 cannot be populated using a single π-pulse with a reasonable in-

tensity as the transition dipole moment from the ground state to the sixty-ninth

excited state is too low (µ
0,69

= (0.000, 0.000,−0.089)† ea0 ((0.000, 0.000,−0.226)†

D)). Therefore, a pulse sequence is used instead. Only the last pulse should target

an ionizing state because transitions between ionizing states with high ionization

rates are difficult (photoionization is faster than an electronic transition). Here,

a sequence of two π-pulses is used. The first, x-polarized pulse has the param-

eters: tp = 4000 ~

Eh
(96.8 fs), σ = 4000 ~

Eh
(96.8 fs), ~ω = 0.2418Eh (6.6 eV),

f0 = 0.0025 Eh

ea0
(1.3 GV

m ) and is used to enforce a transition from the electronic

ground state S0 to the second excited state S2 (µ2,69;x = −0.7255 ea0 (−1.844D),

see Tab. 3.1). The second pulse is also x-polarized and induces a S2 → S69 transi-

tion with the following parameters: tp = 8062.5 ~

Eh
(195.0 fs), σ = 62.5 ~

Eh
(1.5 fs),

~ω = 0.7417Eh (20.2 eV), f0 = 0.0693 Eh

ea0
(35.6 GV

m ).

In this scheme, the first pulse is twice as long as the one used in Sec. 3.1.2. Thus

the laser power is reduced from 9.12×1015 W
m2 to 2.19×1015 W

m2 and the risk of multi-

photon excitations decreases. The time-dependent populations of the ground state

S0, the intermediate state S2, and the target state S69 are shown in Fig. 3.5 (only for

the second pulse, because the first pulse is selective even for shorter pulse durations

as demonstrated in Sec. 3.1.2). In this figure, one can see that the population of

the sixty-ninth excited state increases up to Pmax
69 = 0.12. Then, the population

decreases back to 0. The low maximal population in the target state S69 seems to

indicate an unselective excitation. However, in the same time, the population of

the second excited state decreases from 0.964 to 0.310 and the norm decreases from

0.969 to 0.314, i.e., the remaining population is mostly in the second excited state.

This indicates that no states except the intermediate and target states are populated

significantly. So, the second pulse should be selective as well. Another result that

fits to this conclusion, is a final population of 0.97 in the state S69 in the case of no

photoionization (1d = 0).
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Figure 3.5: Shown is the temporal evolution of the populations Pn of the ground

state (P0), the second excited state (P2), the sixty-ninth excited state (P69), the

sum of all states (
∑

n
Pn), and the difference between the sum of all states and the

population of the second excited state (
∑

n
Pn−P2) during a π-pulse excitation from

S2 to S69 within the LiCN molecule. The pulse is indicated by the arrow on top of

the plot. The escape length is set to d = 1a0.

3.1.4 Creation of electronic wavepackets

After these state-to-state excitations, it could also be interesting to excite electronic

wavepackets selectively. For these excitations, a superposition of the ground state S0

and the ninth excited state S9 is created which are connected by a high transition

dipole moment along z of µ0,9;z = −0.9580 ea0 (−2.43D). This transition dipole

moment has two advantages: on the one hand, this state can be easily accessed using

a resonant pulse. On the other hand, the resulting wavepacket has an oscillating

dipole moment with a high amplitude. Therefore, a z-polarized pulse with the

following parameters is used: tp = 1000 ~

Eh
(24.2 fs), σ = 1000 ~

Eh
(24.2 fs), ~ω =

0.3028Eh (8.2 eV), f0 = 0.0011 Eh

ea0
(566 MV

m ). This pulse is not a π-pulse (in fact it

is a 0.335π-pulse). The resulting wavepacket has two major contributions coming

from S0 (population P0 = 0.721) and S9 (P9 = 0.273). The total norm decreases to

0.993. The resulting dipole moment in the interval t ∈ [2000; 2100] ~

Eh
([48.4; 50.8] fs)

is shown in the upper left panel of Fig. 3.6. There, the dipole moment is also
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Fourier transformed to frequency space (lower left panel of Fig. 3.6), showing that

there is one main frequency peak at the transition frequency ω0,9, which means, the

wavepacket consists mainly of these two states.

If the initial wavefunction Ψ(t = 0) consists of a superposition of two eigenfunc-

tions Ψ1 and Ψ2 with respective real coefficients C1 and C2, the time-dependent

wavefunction is

Ψ(t) = C1 · e−iE1t/~Ψ1 + C2e
−iE2t/~Ψ2 . (3.3)

The (time-dependent) expectation value of an arbitrary Hermitian operator Â for

such a wavepacket is calculated as follows:

〈Â〉(t) = 〈C1 · e−iE1t/~Ψ1 + C2e
−iE2t/~Ψ2|Â|C1 · e−iE1t/~Ψ1 + C2e

−iE2t/~Ψ2〉 .

(3.4)

This can be simplified to

〈Â〉(t) = C2
1〈Ψ1|Â|Ψ1〉+ C2

2 〈Ψ2|Â|Ψ2〉+ 2C1C2Re(e
i(ω12t+θ)〈Ψ1|Â|Ψ2〉) . (3.5)

In this equation, θ is an additional phase shift. The exponential function is trans-

formed into a cosine function by using Euler’s formula:

〈Â〉(t) = |C1|2〈Ψ1|Â|Ψ1〉+ |C2|2〈Ψ2|Â|Ψ2〉+ 2|C1C2| cos(ω12t+ θ)Re〈Ψ1|Â|Ψ2〉
(3.6)

This means, the amplitude of an oscillation is defined by the mixed integral 〈Ψ1|Â|Ψ2〉,
while the frequency is given by the resonance frequency between the two populated

states, ω12. The pure integrals, 〈Ψ1|Â|Ψ1〉 and 〈Ψ2|Â|Ψ2〉 shift the expectation

value. In our case, the dipole moment can be calculated as:

〈µ̂z〉(t) = C2
0µ0,0,z + C2

9µ9,9,z + 2C0C9µ0,9,z cos(ω0,9t+ θ) . (3.7)

Using the values C2
0 = 0.721 and C2

9 = 0.273 for the populations, µ0,0,z = −3.7082 ea0

and µ9,9,z = +1.2341 ea0 for the dipole moments (see Tab. 3.1), µ0,9,z = +0.9580 ea0

for the transition dipole moment, ω0,9 = 0.30278 Eh

~
for the resonance frequency, and

C0 ·C9 =
√

C2
0 · C2

9 = 0.4437 for the mixed term, the dipole moment of the created

wavepacket is well reproduced (there is an additional phase shift of θ = −0.9π).

3.1.5 Pump-probe spectra for electronic wavepackets

The wavepacket from Fig. 3.6 can be excited with a single probe pulse above the

ionization potential. The probe pulse is delayed by a delay time ∆tp, which is
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defined as the time delay between the maxima of the pump and the probe pulses:

∆tp = tp,P robe − tp,Pump. The probe pulse is x-polarized with the parameters: tp =

1000 ~

Eh
+ ∆tp (24.2 fs + ∆tp), σ = 50 ~

Eh
(1.2 fs), ~ω = 0.2500Eh (6.8 eV), f0 =

0.0600 Eh

ea0
(30.8 GV

m ). Thus, the probe pulse is very short (the frequency width is

very large) and the intensity very high (the maximal laser power is about P =

1.26 × 1018 W
m2 ), so, multi-photon excitations could be promoted.

Such pump-probe simulations are usually done for a set of different delay times.

Here, the delay time ∆tp was varied within the interval ∆tp ∈ [−950;+1650] ~

Eh

(∆tp ∈ [−23.0;+39.9] fs). The loss of norm was then calculated for the obser-

vation time tobserv = 7000 ~

Eh
+ ∆tp (169.3 fs + ∆tp). The loss of norm starts

at N̄(∆tp = −950 ~

Eh
) = 0.528 and oscillates in an interval [0.378; 0.582]. Some

of these oscillations (for delay times within the interval ∆tp ∈ [1000; 1100] ~

Eh

(∆tp ∈ [24.2; 26.6] fs)) are plotted in the upper right panel of Fig. 3.6. This os-

cillation is similar to the one observed for the dipole moment. A further analysis

can be done if the loss of norm is expressed by a Fourier transformation in order

to obtain a signal in frequency space. This is done in the lower right panel of Fig.

3.6. From this plot, it can be seen that the frequency of the loss of norm is equal to

the oscillation frequency of the dipole moment of the wavepacket and thus identical

to the transition frequency between the two states forming the wavepacket. The

oscillating dipole moment reflects the oscillating position expectation value of the

electrons (〈Ψ(t)|
N
∑

i=1
ri|Ψ(t)〉 is a function of time). This changes the properties of

the system such that the amount of ionized species depends on the time when the

probe pulse has an effect on the wavepacket. As pump-probe techniques are used

to visualize transient properties that cannot be measured directly, i.e., in a “single

shot” experiment, in a sufficiently high time resolution, this model seems to resem-

ble the expected result of a pump-probe experiment. This means, the combined

model seems to be at least qualitatively a suitable description of photoionization

and related phenomena.

However, some critical points have to be made. The maximal observation time

was tobserv,max = 8650 ~

Eh
(209.2 fs). On these timescales, one cannot neglect nuclear

motion in molecules, especially if they contain light atoms. Another point is, that

our heuristic model treats ionization processes only phenomenologically. Still, the

simulations result in trends which one would intuitively expect form a pump-probe

experiment.
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Figure 3.6: Shown is in the upper left panel the expectation value for the z-

component of the oscillating dipole moment 〈µ̂z〉 of a wavepacket consisting of states

S0 and S9 of the LiCN system. In the lower left panel, the Fourier transform of the

dipole moment (as a function of the frequency ω) is plotted. In the upper right

panel, the loss of norm N̄ is plotted as a function of the delay time ∆tp as the probe

signal. In the lower right panel, the Fourier transform of the loss of norm is shown.

The escape length is set to d = 1a0.

3.2 A more rigid molecule

3.2.1 System states and ionization rates

The simulations for lithium cyanide in the previous section have shown the capa-

bility of the heuristic ionization model to describe pump-probe spectra. One major

critical aspect was, that one cannot work within the fixed nuclei approximation on

long timescales, in particular since some of the excited states of LiCN are unbound.

Therefore, another model molecule is considered in this section, which allows only

small geometry changes in the excited state. The model we chose is the benzo[g]-

N -methyl-quinolinium-7-hydroxylate (BMQ7H) molecule. This molecule is planar
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(apart from the methyl hydrogen atoms which are out of plane), and the ring struc-

ture should stabilize the molecular geometry. At the beginning, a geometry opti-

mization (RHF/6-31G* [95]) was done using the Gaussian 03 program package [96]

resulting the molecular geometry shown in Fig. 3.7.

Figure 3.7: Shown is the ground state geometry of the molecule (black: carbon,

white: hydrogen, blue: nitrogen, red: oxygen). The arrows indicate the displace-

ment of the atoms when the system is excited to the fifth excited state, S5. All

displacement values are given in Å. The thick red coordinate system is the one used

for the calculations, the thin black one is used to align the ground state and the

excited state geometries. (This leads to lower displacement values.)

For this geometry, a RHF/6-31G∗ [95] single point calculation was performed

within the Gamess 07 program package [97] in order to obtain the one- and two-

electron integrals. These integrals were then used in a CIS calculation resulting in

8074 states out of 55 occupied spatial molecular orbitals (among these 16 frozen core

orbitals) and 207 virtual spatial molecular orbitals. For these states, all excitation

energies, dipole moments, and transition dipole moments were calculated. Some of

these properties are given in Tab. 3.2.

From this table, one can see that the state S5 (dominated by a HOMO-1→LUMO

or π → π∗ transition) seems to be very promising for a wavepacket consisting of

S0 and this state. The transition dipole moment from S0 along x is very large,

µ0,5;x = −4.2228 ea0 (−10.73D), so the state should be accessible photophysically.
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Sn ECIS
exc [Eh] µn,n [ea0] µ0,n [ea0] τn [ ~

Eh

]

x y x y

0 0.0000 −6.1989 +1.4896 −6.1989 +1.4896 ∞
1 0.0853 −2.3567 +0.5484 +1.7900 +0.8783 ∞
2 0.1460 −4.0516 +1.7139 +0.2008 −0.3530 ∞
3 0.1785 −3.8602 +0.3822 −0.3415 +0.1524 ∞
4 0.1849 −1.8331 +0.8978 +0.0002 +0.0000 ∞
5 0.1949 −3.3692 +1.6684 −4.2228 +0.4371 ∞
IP 0.2057 – – – – –

6 0.2209 −3.5881 +1.1521 −0.2249 −0.5507 4.5544

7 0.2385 −5.7727 +0.6058 +1.1622 +0.2025 2.6158

8 0.2497 −5.1800 +1.0830 +0.9609 −0.0764 3.0435

9 0.2635 −4.4692 +2.4778 −1.9719 −0.7301 3.4412

10 0.2669 −1.6135 +1.0987 +0.0003 +0.0001 3.1447
...

...
...

...
...

...
...

8073 6.5701 −15.8005 +2.9631 −0.0003 +0.0015 0.4342

Table 3.2: Shown are the excitation energies ECIS
exc , the x- and y-components of the

permanent dipole moments µn,n and the transition dipole moments for the excitation

from the ground state µ0,n, and the lifetimes τn for some of the calculated CIS states

Sn in the BMQ7H molecule. Also, the ionization potential according to Koopmans’

theorem (IP) [77] is indicated. All values are obtained from a CIS [69]/6-31G∗ [95]

calculation.

Also, the coupling ensures a high amplitude in the oscillating dipole moment of

the wavepacket. This can be explained using group theory. The point group of

the BMQ7H molecule is nearly Cs (apart from the methyl hydrogen atoms). The

HOMO-1 and the LUMO both have A′′ symmetry. The direct product A′′ ⊗ A′′

gives A′ which is the totally symmetric representation of this point group. The

transition dipole moment is sufficiently high for the axes that have also A′ symmetry,

as A′ ⊗A′ ∼ A′. This is the case for x and for y, which explains the results of Tab.

3.2.

The transition dipole moments from the ground state to neighboring states (S1
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to S4 and S6 to S10) are much smaller than for the transition to the target state.

Further, the fifth excited state is still below the ionization potential and has thus

an infinite lifetime. Finally, the dipole moment changes along the principal axis

x from µ0,0;x = −6.1989 ea0 (−15.76D) to µ5,5;x = −3.3692 ea0 (−8.56D), i.e.,

the target state is a charge transfer state. For this state, a geometry optimization

was performed (CIS/6-31G∗) using the Gaussian 03 program package in order to

see how much the equilibrium geometries of the ground state and the target state

differ from each other. In Fig. 3.7, the displacements within the xy-plane from

the ground state to the fifth excited state are indicated by displacement vectors

and the assigned values denote the displacements of the respective atoms, given

in Å. There, it is seen that the maximum displacement is 0.043 Å. Therefore it

seems, that the displacements within the xy-plane are insignificant. The maximal

displacement perpendicular to the molecular plane is 2 × 10−4 Å and thus even

smaller and also negligible. Also, the shift in the excitation energy is rather small.

While the excitation energy for the ground state geometry is 0.1949Eh (5.30 eV), the

excitation energy at the equilibrium geometry of the fifth excited state is 0.1889Eh

(5.14 eV), the difference being only 0.006Eh (0.16 eV).

One first thing that should be investigated is the optimal value for the escape

length parameter d for this system. Therefore, the loss of norm is calculated for

different initial states (all non-ionizing states). In these simulations, an intense x-

polarized laser pulse with the following parameters is applied: tp = 12.4 ~

Eh
(300 as),

σ = 12.4 ~

Eh
(300 as), ~ω = 0.8000Eh (21.8 eV), f0 = 0.0100 Eh

ea0
(5.1 GV

m ). After a

control time of tfinal = 50 ~

Eh
(1.21 fs), the loss of norm is calculated and plotted

with respect to the reciprocal escape length parameter in Fig. 3.8. There, one can

see that for all investigated excited states a maximal loss of norm is achieved when

the escape length is set to d = 1a0 (0.529 Å) while the ground state tends to higher

escape lengths (lower reciprocal escape lengths). The optimal value for the ground

state would be d = 1×10+1 a0 (5.29 Å). As the loss of norm for a situation when the

pulse is applied to the ground state is still rather high for d = 1a0 (0.529 Å), this

value should be a good choice in order to obtain a model with a strongly ionizing

system. Furthermore, one sees in Fig. 3.8 that the loss of norm is significantly higher

for the ground state as initial state than for the excited states as initial states. This

counterintuitive result will be analyzed and discussed later.

It can be also interesting to see if the combined model results in a continuum
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Figure 3.8: Shown is the loss of norm N̄ as a function of the inverse escape length

parameter d−1 when an intense laser pulse (for details see text) is applied to different

non-ionizing initial states of the BMQ7H system. The states that will be used to

form an electronic wavepacket are highlighted. The other states are S1 (orange), S2

(green), S3 (cyan), and S4 (yellow).

above the ionization potential. For this purpose, the ionization rates and the density

of states are plotted in Fig. 3.9. In the upper panel, one can see by the oscillations

in the generally ascending curve that the ionization rate tends to higher values for

higher excited states, but there are still states with lower ionization rates compared

to other, neighboring states. The effect does not lead to such a weakly ionizing

state as S69 in lithium cyanide because the ionizing states are not dominated by

electron transitions from low-energy occupied orbitals to virtual orbitals below the

vacuum energy. In the lower panel, it is shown that a continuum is formed above

the ionization potential. As there are no extremely weakly ionizing states above the

ionization potential, no state can be individually resolved as a resonance here.

3.2.2 Creation of electronic wavepackets

Next, a wavepacket consisting mainly of the electronic ground state S0 and the

fifth excited state S5 will be created using cos2-shaped laser pulses. In this case,

a “suboptimal” pulse is used in order to show that such pulses are also capable of
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Figure 3.9: Shown are in the upper panel the ionization rates Γn for all CIS [69]/6-

31G∗ [95] eigenstates |n〉 of the BMQ7H molecule with the escape length d = 1a0.

The states |0〉 to |5〉 are non-ionizing. In the lower panel, the density of states

ρDOS according to equation (3.2) is plotted. The discrete states for Eexc
n < IP are

indicated by vertical lines, representing delta functions.

exciting a target selectively and because most experimental pulses are not exactly

resonant. Such a non-resonant pulse, as shown in panel (a) of Fig. 3.10, is used

here. The pulse is x-polarized with the parameters: tp = 125 ~

Eh
(3.02 fs), σ = 125 ~

Eh

(3.02 fs), ~ω = 0.1837Eh (5.0 eV), f0 = 0.0060 Eh

ea0
(3.1 GV

m ). The resulting time-

dependent populations are plotted in panel (b) of Fig. 3.10. The applied field leads

to a population of 0.256 in the ground state and 0.599 in the fifth excited state.

The sum of the populations of all states is 0.862, the maximal population in another

state is 6.9× 10−3 (in the third excited state).

The electronic wavepacket created in this way shows oscillations of the dipole

moment along the coordinates x (panel (c) of Fig. 3.10) and y (panel (d)). There,

it is shown that both dipole moments are oscillating with a similar main frequency,

which reflects the transition frequency from the ground state to the fifth excited

state. Both dipole components show a second oscillation with a longer period,

which is most clearly seen in the plot of 〈µ̂y〉. Also seen is that the amplitude

for the main oscillation is higher in the case of 〈µ̂x〉 (waving between −7.01 ea0

(−17.82D) and −0.21 ea0 (−0.53D)), than for 〈µ̂y〉 (oscillating between 0.98 ea0
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(2.49D) and 1.80 ea0 (4.57D)), which reflects the larger component of the transition

dipole moment, along x (see Tab. 3.2).
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Figure 3.10: Shown is in panel (a) the x-component of the electric field Fx of a non-

resonant laser pulse that creates for the BMQ7H system an electronic wavepacket,

mainly consisting of states S0 and S5 (for details see text). In panel (b), the time-

evolution of the populations Pn of these states (P0 and P5, respectively) and of the

norm (
∑

n Pn) are shown. Panel (c) shows the x-component of the expectation value

〈µ̂x〉 of the resulting dipole moment and panel (d) shows its y-component 〈µ̂y〉.

An alternative analysis is provided by Fourier transforming the dipole moments

after the laser pulse is off. This is shown in Fig. 3.11. There, it is seen that the main

frequency is exactly the transition frequency ~ω0,5 = 0.1949Eh (5.30 eV). A second

frequency ~ω = 0.0164Eh (0.45 eV) appears for both components which fits to the

transition between the states S3 and S5 (however, note that the third excited state

has a population of 6.9× 10−3 and is thus weakly populated). The transition dipole

moment between these states is µ
3,5

= (0.77, 0.56, 0.00)† ea0 ((1.96, 1.42, 0.00)† D).

This means there is a coupling between the two states along x and y, but none along

z, explaining the weak signal. In the Fourier analysis of the dipole moment along

coordinate y shows a third frequency as a weak signal. This frequency has an energy

~ω = 0.0489Eh (1.33 eV), belonging to the transition between the second and fifth

excited state. The small population of 3.5 × 10−4 in the state S2 and the coupling

elements µ
2,5

= (0.04, 0.55, 0.00)† ea0 ((0.10, 1.40, 0.00)† D) explain this behavior,

i.e., both states are populated, there is a sufficiently high coupling along y, and
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almost no coupling along x (and none along z).
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Figure 3.11: Shown are the Fourier transforms of the time-dependent dipole moment

along the coordinates x (|〈µ̂x〉|(ω), upper panel) and y (|〈µ̂y〉|(ω), lower panel) for

the BMQ7H system.

3.2.3 Pump-probe spectra

Similar to LICN, the electronic wavepacket of the previous section for BMQ7H

can also be used for a pump-probe simulation. To this end, a short probe laser

pulse is employed: tp = 125 ~

Eh
+ ∆tp (3.02 fs + ∆tp), ∆tp = tp,probe − tp,pump,

∆tp ∈ [−112.6; 757.8] ~

Eh
([−2.72; 18.33] fs), σ = 12.4 ~

Eh
, ~ω = 0.3675Eh (10.0 eV),

f0 = 0.1 Eh

ea0
(51.4 GV

m ). In two sets of calculations, probe pulses polarized along x

and y are tested.

First, the wavepacket is probed with an x-polarized pulse and the loss of norm

is calculated after a propagation time of tobserv = 1000 ~

Eh
+∆tp (24.2 fs+∆tp). The

loss of norm as a function of the delay time between the maxima of the pump and

the probe pulse is shown in the upper left panel of Fig. 3.12. For the minimal value,
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∆tp = −112.6 ~

Eh
(−2.72 fs), a loss of norm of about 0.83 is observed. For longer

delay times, the loss of norm as the probe signal decreases and oscillates within

an interval N̄(∆tp) ∈ [0.717; 0.807]. On a first view, two different frequencies can

be seen: a high-amplitude and high-frequency motion on the one hand, and on the

other hand an oscillation with a lower amplitude and lower frequency as an envelope

for the first oscillation. A deeper analysis is done via the Fourier transformation of

the loss of norm as shown in the upper right panel of Fig. 3.12. According to this

figure, one obtains two frequencies: the major signal has a frequency of ω = 0.195 Eh

~

(~ω = 5.3 eV). This fits exactly to the transition frequency between the ground state

and the fifth excited state. This frequency is also present in the dipole moment along

the coordinate x of the original wavepacket. The minor signal is at a frequency of

ω = 0.016 Eh

~
(~ω = 0.44 eV), which is the transition frequency between states S3

and S5.

The wavepacket can also be probed with an y-polarized pulse (shown in the lower

left panel of Fig. 3.12). For the minimal delay time, ∆tp = −112.6 ~

Eh
(−2.72 fs),

one obtains a loss of norm of about 0.90. A maximum of 0.93 is seen at a delay

time ∆tp = −59.9 ~

Eh
(−1.4 fs). After that, the loss of norm decreases and oscillates

finally in an interval N̄(∆tp) ∈ [0.564; 0.652]. A first analysis shows that there

are three visible frequencies in these oscillations. The first one is the main carrier

frequency that has the highest frequency and a high amplitude. The second one

is at a lower frequency that can be seen in the oscillations of the upper envelope.

The third corresponds to a frequency between the two previously mentioned ones,

and is visible in the oscillations in the lower envelope. A Fourier transform of

the time evolution of the loss of norm is shown in the lower right panel of Fig.

3.12. There, it can be seen that the major contribution comes from a frequency

of ω = 0.195 Eh

~
(~ω = 5.3 eV). This is exactly the frequency between the two

states forming the major part of the original wavepacket (S0 and S5). Two other

contributions are at ω = 0.050 Eh

~
(~ω = 1.4 eV) (close to the transition frequency

ω2,5) and at ω = 0.019 Eh

~
(0.5 eV) (close to ω3,5).

These results lead to the following question: Why is the loss of norm maximal at

minimal, negative delay times? This corresponds to an excitation of the electronic

ground state using the probe pulse, since the pump pulse has not been applied

yet. Since the probe pulse energy (10 eV) is higher than that of the pump pulse

(5 eV), higher-energy states are populated initially. Intuitively, one would expect
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Figure 3.12: Shown is in the upper left panel the loss of norm N̄ as a function of

the delay time ∆tp when an x-polarized probe pulse is applied to the wave packet

generated in Sec. 3.2.2. In the lower left panel, the same is done using a y-polarized

probe pulse. The Fourier transforms N̄(ω) of the respective loss of norm are shown

in the upper right (x) and lower right (y) panel. The escape length was set to

d = 1a0 for all calculations.

that N̄ should increase for higher initial energies, because then high-energy final

continuum states with a larger ionization rate can be reached. However, the results

of the pump-probe simulation and the ones obtained for the “d-scan” for different

initial states (see Fig. 3.8) are at variance with the expected result. Second, the

loss of norm obtained here is very high. One could argue that in a system with

such a high ionization probability, the formation of multiply charged ions cannot

be neglected. However, our ionization model does not allow for the formation of

multiply charged ions. To avoid artefacts of the model, the intensity of the probe

pulse should be decreased such that the ionization rate is still measurable but the

formation of multiply charged ions can be neglected.

For further investigation, a frequency scan was done. A probe pulse with varying

frequency (but otherwise parameters) was applied to the six non-ionizing states S0-

S5 as initial states. Three different pulse frequencies were tested: ~ω1 = 0.40Eh

(10.9 eV), ~ω2 = 0.80Eh (21.8 eV), and ~ω3 = 1.20Eh (32.7 eV). The loss of norm is

calculated and then plotted with respect to the frequency in Fig. 3.13. There, it it
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shown that the loss of norm depends on the frequency of the probe pulse, decreasing

with higher pulse energies. Using a pulse with a higher frequency, higher states

which have higher ionization rates can be populated temporarily. Another result is

the larger loss of norm if the pulses are applied to a system in the electronic ground

state, compared to any other non-ionizing initial state. This result disagrees again

with expectations.

Figure 3.13: Shown is the loss of norm N̄ for different initial, non-ionizing states at

different pulse frequencies ω within the BMQ7H system. The escape length is set to

d = 1a0. The states forming the target wavepacket, i.e., S0 and S5, are highlighted.

The other states are S1 (brown), S2 (green), S3 (blue), and S4 (yellow).

If the loss of norm decreases for higher probe laser pulse frequencies, there are

two possible explanations for this phenomenon. Either the target continuum states

have a low ionization rate, or they cannot be populated from the initial states

efficiently due to a small transition dipole moment. The latter hypothesis can be

tested by comparing transition dipole moments from the ground state and the fifth

excited state to all higher states. This is done in Fig. 3.14. There, one can see that

the transition dipole moments from the ground state are generally larger than the

transition dipole moments from the fifth excited state. This may be rationalized by

the simple estimates

〈µ̂
0,f

〉 = 〈Ψ0|µ̂|Ψf 〉 ≈ 〈Ψ0|µ̂|Ψr
a〉 = −

∑

i

e〈a|ri|r〉 (3.8)



3.2 A more rigid molecule 59

for the transition dipole moment from the ground state Ψ0 to a final state Ψf

(expressed in an approximation as a single CSF Ψr
a), and

〈µ̂
5,f

〉 = 〈Ψ5|µ̂|Ψf 〉 ≈ 〈Ψs
b|µ̂|Ψr

a〉 ≈ 0 (if b 6= a and s 6= r) (3.9)

for the transition dipole moment from the fifth excited state Ψ5 (also approximated

as a single CSF) to a final state.

The second effect emerging from Fig. 3.14 is that the transition dipole moments

decrease for transitions to higher excited states. A simple model based on a particle

in a one-dimensional box may provide an explanation. For an electron with charge

e in a box of length L, the transition dipole moment for transitions from state n to

m or vice versa is given as

−e〈Ψn|x|Ψm〉 =











8eL
π2 · mn

(n+m)2(n−m)2
if (m− n) mod 2 = 1

0 else

(3.10)

where Ψn and Ψm are the two eigenstates. The transition dipole moment, e.g., from

the lowest eigenstate (m = 1) to higher states is thus

µ1,n ∝ n

(n+ 1)2(n− 1)2
. (3.11)

For high-energy target states with large n, this can be simplified to

lim
n→∞

n

(n+ 1)2(n− 1)2
=

1

n3
(3.12)

which also shows the decreasing behavior of transition dipole moments from a defined

initial state to all higher target states. Analogous investigations for bound→continuum

transitions have been also done for the hydrogen atom [98], showing similar behav-

ior. This tells us that the higher states can only be poorly addressed. The other

possible explanation (a low ionization rate) is falsified by the upper panel of Fig.

3.9, showing that ionization rates increase with higher final state energy.

In order to decrease the loss of norm and thus the probability of formation

of multiply charged ions, the electric field amplitude of the probe pulse is set to

f0,probe = 0.015 Eh

ea0
(7.7 GV

m ) which corresponds to 15% of the field amplitude of

the probe pulse used before. In this case, the initial loss of norm (at the delay

time ∆tp = −112.6 ~

Eh
) is about 0.223 and decreases to oscillations of N̄(∆tp) ∈

[0.185; 0.206] (shown in the left panel of Fig. 3.15). A Fourier transform of these

oscillations shows that both frequencies which were observed in the first simulation

are still present (right panel of Fig. 3.15).
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Figure 3.14: Shown are the absolute values of the x-components of the transition

dipole moments |〈µ̂i,f,x〉| for the ground state (|0〉, blue) and the fifth excited state

(|5〉, red) as initial states |i〉 to all higher states |f〉 for the BMQ7H system. The

green dashed and dotted vertical lines and the numbers at the top indicate the

excitation energies (from the ground state) ~ω0,f .

To summarize Secs. 3.1 and 3.2, the calculations have shown that the combined

model is a first approximation for the treatment of photoionization using the time-

dependent configuration interaction singles method and atom-centered basis sets. It

was shown that state-to-state excitations below the ionization potential are still se-

lective, albeit somewhat effected by ionization if laser pulses as considered here were

used. Even state-to-state excitations to long-lived target states above the ionization

potential are still possible. The ion signal can be used for the probing of electronic

wavepackets by pump-probe spectroscopy. The pump-probe simulations lead to re-

sults one would intuitively expect. The fact that excited initial states lead to lower

ionization probabilities than the ground state can be explained by an analysis of the

transition dipole moments for the BMQ7H model system. Nevertheless, one has to

remark that the formation of multiply charged ions and the ionization of pre-ionized

matter was not considered. The amount of multiple-ionization can be suppressed

by using less intense probe pulses, which still lead to clear pump-probe signals.

In the next section, it will be shown that photoionization has not only effects on
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Figure 3.15: Shown is in the left panel the loss of norm N̄ for the BMQ7H system

after the application of a x-polarized probe pulse with a reduced intensity. In the

right panel, the Fourier transform N̄(ω) of the oscillations in the left panel is shown.

The escape length is set to d = 1a0.

the selectivity of state-to-state excitations or pump-probe excitations, but also on

molecular response properties like an induced dipole moment.

3.3 Dynamic polarizabilities for H2 [78]

In this section, the effect of photoionization on dynamic polarizabilities is investi-

gated. If one applies an external electric field to a system, the electrons begin to

move, which changes the dipole moment. According to equation (2.107), one can get

information concerning the elements of the polarizability tensor and elements of the

higher-order hyperpolarizability tensors. This information can be obtained either as

an approximation for weak fields using equation (2.111), or better, by performing a

polynomial fit to the kennlinie [94]. In this work, a quadratic fit is used in order to

correct polarizabilities by hyperpolarizability effects.

In the case without photoionization, one expects that the polarizability increases

with pulse frequency until the first resonance is reached. At a resonant frequency

there is a pole according to the perturbative sum-over-states formula (equation

(3.13)). For a higher frequency the polarizability increases again from infinite neg-
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ative up to infinite positive values at the next dipole-allowed transition frequency.

In the case with photoionization, this behavior is damped.

3.3.1 The H2 molecule as a test system

In the following, the hydrogen molecule is chosen as a suitable test molecule as it

was already investigated using similar methods [32, 99]. Since only two electrons

are present, the CISD method corresponds to the Full-CI result in this case. It was

shown, that the dynamic polarizabilities calculated by means of TD-CIS and TD-

CISD do not differ significantly for the non-ionizing case [32]. Therefore, we restrict

to the TD-CIS case in what follows. As a first step, a single point calculation

for the hydrogen molecule (oriented along the z-axis, bond length RHH = 1.39 a0

(0.734 Å)) with RHF/cc-pVTZ [100] using the Gamess 07 program package [97] was

performed. The one- and two-electron integrals were taken for a CIS calculation,

resulting in excitation energies, permanent dipole moments, and transition dipole

moments for 30 CIS states out of 30 molecular orbitals (among these one occupied

orbital). Some of the data are given in Tab. 3.3. This table shows that there is

only one excited state below the ionization potential. The second excited state is

a dark state (for excitation from the ground state, independent of the polarization

of the electric field) and should not show up as a pole in the plot for the dynamic

polarizability. The third excited state is the first accessible state above the ionization

potential.

Sn ECIS
exc [Eh] µ0,n,z [ea0]

0 0.0000 0.0000

1 0.5031 −1.2765

IP 0.5964 —

2 0.6305 0.0000

3 0.9215 +0.6381

Table 3.3: Shown are the excitation energies from the ground state ECIS
exc and the

transition dipole moments along z for the excitation from the ground state, µ0n,z

for some of the calculated CIS singlet states Sn in the H2 molecule. The data was

calculated on the CIS [69]/cc-pVTZ [100] level of theory. Additionally, the ionization

potential (IP) [77] is indicated.
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Laser pulses with different frequencies are applied to the system. The data

for all (z-polarized) pulses are the following: tp = 2000 ~

Eh
(48.4 fs), σ = 2000 ~

Eh

(48.4 fs), f0 = 0.005 Eh

ea0
(2.57 GV

m ). The pulse frequency is varied within the interval

~ω ∈ [0.40; 1.00] Eh ([10.88; 27.21] eV) in steps of ~∆ω = 0.001Eh (0.03 eV).

The dynamic polarizability in a non-ionizing system is shown as the red dots in

Fig. 3.16. The result for the non-ionizing system is as expected. The polarizability

increases up to the first excited state S1. There is a pole and the sign changes.

Then, the polarizability increases again until the transition frequency to the third

excited state S3 is reached. There one finds a second pole, the sign changes again.

It has been shown that for TD-CI propagations the resolution of poles at transition

frequencies depends on the pulse length. The longer the pulse duration, the better

the pole is resolved [99]. Due to this and due to the non-perturbative nature of

TD-CI, one does not find real poles with TD-CI in contrast to the sum-over-states

formula (equation (2.110)). This can be more clearly seen in the right panel of Fig.

3.16.

For the ionizing system, two different approaches were tested. The first one is

the same one as without photoionization, but with a reciprocal escape length of

d−1 = 1a−1
0 instead of d−1 = 0 (no ionization). The dipole moment as a function of

the electric field is fitted to a quadratic function. The coefficient of the linear term

is the polarizability. The other approach is the use of a modified sum-over-states

(SOS) formula [93]. Accordingly, the real part of the polarizability tensor elements

αR
qq′ can be calculated from the transition dipole moment components from ground

state to all other states |n〉, µ0n,q and µn0,q′ , the transition frequencies ωn0 and the

ionization rates Γn of states |n〉:

αR
qq′(−ω, ω) =

∑

n 6=0

(

µ0n,qµn0,q′(ωn0 − ω)

(ωn0 − ω)2 +
(

1
2Γn

)2 +
µ0n,qµn0,q′(ωn0 + ω)

(ωn0 + ω)2 +
(

1
2Γn

)2

)

. (3.13)

This equation is a result of perturbation theory including dissipation [99], ac-

cording to which

αR
qq′(−ω, ω) =

∑

n 6=0

(

µ0,n,qµn,0,q′(ωn,0 − ω)

(ωn,0 − ω)2 + (γn,0)
2 +

µ0,n,qµn,0,q′(ωn,0 + ω)

(ωn,0 + ω)2 + (γn,0)
2

)

. (3.14)

Here, γn,0 is a dephasing rate (between the states |0〉 and |n〉), which can be written

as [81]

γn,0 =
1

2

∑

m

(Γ0→m + Γn→m) + γ∗nm . (3.15)
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Here, γ∗nm is a term which describes a “pure dephasing”. In the case without dis-

sipation, but with photoionization, there is no effect analogous to pure dephasing,

thus γ∗nm = 0. Furthermore, ionization of state |n〉 can formally be treated as energy

relaxation, described by transition rates Γn→m. The rate for the transition from |0〉
to |m〉, Γ0→m is assumed to be zero here, because |0〉 is non-ionizing. The remaining

sum term
∑

m
Γn→m, on the other hand, can be interpreted as the ionization rate Γn

of state |n〉. The resulting total “dephasing rate” is therefore γn,0 =
1
2Γn, which was

used in equation (3.13).

The curve for the ionizing system using the quadratic fit approach to TD-CIS is

plotted as the black line in Fig. 3.16, the one using equation (3.13) is plotted as a

blue solid line. One can see that both curves resemble each other as the black curve

is mostly covered by the blue one for pulse frequencies ~ω ≥ IP . Also, it is shown

that below the ionization potential the polarizability behaves similar for all three

models near the transition frequency to the first excited state S1, i.e., TD-CI with

and without ionization, and SOS with ionization. Closer inspection shows that the

modified SOS formula (equation (3.13)) predicts a pole (since Γ1 = 0), while the two

TD-CIS methods with finite pulses predict damped poles instead. The differences

between TD-CIS with and without ionization are marginal. The second excited state

S2 is – as expected – a dark state and does not produce a pole for any of the three

methods. At the transition frequency to the third excited state, there is a damped

pole for the approach without photoionization, which is completely washed out for

the SOS and the TD-CIS approaches, which include photoionization.

In Fig. 3.17, the dynamic polarizability is shown for the H2 molecule assuming

weaker ionization rates, which can be simulating by choosing a large d value, d =

1 × 102 a0. Also, the pulse length is reduced (σ = 250 ~

Eh
instead of σ = 2000 ~

Eh
)

in order to show the effects of the pulse length. From the figure, one can see that

the poles are damped already at the transition frequency to the non-ionizing first

excited state S1. This is due to the fact that short pulses lead to less resolved poles

in the dynamic polarizability. Also in this example, ionization plays only a minor

role for ~ω < IP .

We also study the damping at the transition frequency from the ground state

to the third excited state. A closer look on the populations can lead to a reason-

able explanation why excited states above IP do not produce a pole in the case

with photoionization. If the populations of all states at the end of the propagation
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Figure 3.16: Shown is the dynamic polarizability αzz as a function of the frequency

ω calculated by three different approaches: the red dots represent a TD-CIS method

without photoionization using a quadratic fit of the ”kennlinie“ [94]. The black

curve results from TD-CIS with photoionization, using the same quadratic fit. The

blue curve is calculated by means of the SOS formula (equation (3.13)) [93], which

includes photoionization. For the methods with photoionization, the escape length

parameter is set to d = 1a0. In the left panel, this is done for a large frequency

range ([0.4; 1.0] Eh

~
). The behavior at the transition frequency for the first excited

state (S1) is plotted in detail on the right. The vertical dashed black lines indicate

the transition frequencies to excited states in the frequency range plotted here (S1,

S2, S3), and the first ionization potential according to Koopmans’ theorem (IP) [77].

(at tfinal = 4000 ~

Eh
(96.8 fs)) are compared for a propagation close to the transition

frequency ω3,0, once with and once without photoionization, there are significant dif-

ferences. The main populations in a system without photoionization are in the third

excited state (P3 = 0.429), in the ground state (P0 = 0.374) and in the tenth excited

state (P10 = 0.197). The main populations using our model for photoionization are

in the ground state (P0 = 0.989), the remaining part is ionized (N̄ (tfinal) = 0.011).

The other states that are well populated in the non-ionizing case, are unpopulated

if ionization is included. Even the maximal populations in these states are very

small, e.g., the third excited state (Pmax
3 = 8.6 × 10−6 at t = 1970 ~

Eh
) (47.7 fs) or

the tenth excited state (Pmax
10 = 1.4 × 10−10 at t = 1980 ~

Eh
(47.9 fs)). A pole can
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Figure 3.17: Shown is the dynamic polarizability αzz as a function of the frequency

ω for a system using lower ionization rates (d = 1×102 a0) and shorter pulse lengths

(see text), otherwise analogous to Fig. 3.16, left.

only exist if a population transfer to another state occurs and this population is

remaining in this state for an infinite time. If the lifetime is finite but long the curve

is damped [99]. This can also be seen if the left panel of Fig. 3.16 and Fig. 3.17 are

compared to each other. The shorter the lifetime becomes, the more damped is the

curve. For an ultrashort lifetime of the third excited state (τ3 = 1.3 ~

Eh
(30.8 as)),

the pole is damped so much that the curve is nearly horizontal at this frequency. For

d = 1 × 102 a0, an ionization rate of Γ3 = 7.86 × 10−3 Eh

~
is obtained. The lifetime

increases to τ3 = 127.1 ~

Eh
(3.08 fs) and the curve is only damped to a double peak.

This behavior can be explained by equation (3.13). There, it is said, that the

polarizability depends on the transition dipole moments to all higher states, the

transition frequencies, and the ionization rates Γn. If the ionization rate becomes

large with respect to the other frequency term in the denominator, equation (3.13)

simplifies to (with q = q′ = z):

αR
zz(−ω, ω) ≈

∑

n 6=0

(

µ20n,z(ωn0 − ω)
(

1
2Γn

)2 +
µ20n,z(ωn0 + ω)

(

1
2Γn

)2

)

=
∑

n 6=0

8µ20n,zω0n

Γ2
n

(3.16)

and is thus not frequency-dependent.

We finally note that around S3, the three models lead to different damped poles

according to Fig. 3.17. TD-CIS with finite pulse width and with photoionization
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shows the strongest damping, followed by TD-CIS with finite pulse width and with-

out photoionization, and finally SOS with photoionization. Thus, both finite pulse

width and photoionization influence polarizabilities, in particular around poles above

IP.

3.4 State-to-state excitations in a dissipative

environment [79]

Besides finite pulse width and ionization, also dissipation affects electron dynamics.

In Ref. [79], several molecules are investigated, e.g., the hydrogen molecule (H2)

and the BMQ7H molecule. In this section, we focus on the results for the H2

molecule. We simulated several state-to-state excitations of the hydrogen molecule

in the presence of photoionization and dissipation. For this purpose, the model

presented in Sec. 2.4.2 is used.

3.4.1 System states and ionization rates

The hydrogen molecule is treated as a toy model for this theory. Therefore, a first

calculation is done, at the CIS(D) [101] level of theory using Dunning’s aug-cc-pVQZ

basis. In CIS(D) the contribution of double excitations to the energies are added

perturbatively. Still, we use the same ionization rates as in CIS using the same

basis. If a state has a CIS energy above IP but a CIS(D) energy below it, the state

is counted as non-ionizing. The excitation energies, dipole moments, and lifetimes

with respect to ionization are shown in Tab. 3.4.

From this table, one can see that there are five non-ionizing excited states on the

CIS(D)/aug-cc-pVQZ level. In contrast, we have only one non-ionizing excited state

for CIS/6-31G∗. This is due to the fact, that we use another method and another

basis now. Two of the excited states, namely the first and the fifth excited state, can

be populated using a single z-polarized π-pulse. The fifth excited state can also be

populated stepwise, i.e., by a pulse sequence using the first and the second excited

state as intermediate states.

For the dynamical simulations, the lifetimes of the excited states with respect to

dissipation are scaled to the femtosecond regime, e.g., 1/ζ1→0 = 45 fs to model an

electron-rich environment, e.g., a surface.
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Sn Eexc
n [Eh] µ0,n,z [ea0] µ1,n,z [ea0] µ2,n,z [ea0] τn [ ~

Eh

] ζ5→n [Eh

~
]

0 0.0000 0.0000 +0.9949 0.0000 ∞ 5.0× 10−4

1 0.4705 +0.9949 0.0000 −2.9641 ∞ 2.0× 10−30

2 0.4844 0.0000 −2.9641 0.0000 ∞ 1.6× 10−5

3 0.5152 0.0000 0.0000 0.0000 ∞ 7.0× 10−30

4 0.5152 0.0000 0.0000 0.0000 ∞ 8.0× 10−30

5 0.5683 −0.7236 0.0000 −2.2665 ∞ –

IP 0.5945 – – – – –

6 0.6219 0.0000 +1.7695 0.0000 2.1443 –
...

...
...

...
...

...
...

9 0.6464 0.0000 −1.4500 0.0000 2.0329 –
...

...
...

...
...

...
...

91 9.5969 0.0000 0.0000 0.0000 0.3207 –

Table 3.4: Shown are the excitation energies En,exc, the transition dipole moments

along z from the ground state, µ0,n,z, from the first excited state, µ1,n,z, and the

second excited state, µ2,n,z, and the lifetimes with respect to photoionization, τn, for

some states Sn in the H2 molecule. Also, the dissipation rates from the fifth excited

state to all lower states, ζ5→0, are shown. The data was obtained in a CIS(D)

calculation using Dunning’s aug-cc-pVQZ basis.

3.4.2 Laser-driven state-to-state excitations

3.4.2.1 Direct excitation

First, it is attempted to populate S5 directly, i.e., with a single π-pulse. This pulse

is z-polarized, with the parameters: σ = tp = 496.1 ~

Eh
(12.0 fs), ~ω = 0.5683Eh

(15.46 eV), f0,z = 0.0044 Eh

ea0
(2.25 GV

m ). The resulting populations for some states

of the hydrogen molecule are shown in Fig. 3.18, once without photoionization and

without any coupling to an environment (panel (a)), once without photoionization in

a dissipative environment (panel (b)), once with photoionization, but without a cou-

pling to the environment (panel (c)), and once with photoionization in a dissipative

environment (panel (d)).

In Fig. 3.18, it can be seen that the excitation is selective, if the molecule is not
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Figure 3.18: Shown are the population of the ground state, P0, the population of the

fifth excited state, P5, and the norm,
∑

i Pi, for the H2 molecule during a π-pulse

excitation. This is done for a free molecule in vacuum without photoionization in

panel (a), for a molecule in a dissipative environment in panel (b), for a molecule

in vacuum with photoionization in panel (c), and for a molecule in a dissipative

environment with photoionization in panel (d).

coupled to an environment. In this case, the excitation leads to a complete popu-

lation inversion (despite some ionization losses, if photoionization is considered). If

the molecule is coupled to a dissipative environment, a population inversion does not

take place, as the population is transferred back to the electronic ground state. In

the case where both photoionization and a coupling to an electron-rich environment

are considered, the effects seem to be treated independently. The loss of norm at

the end of the propagation is slightly reduced in panel (d), as the relaxation to the

ground state reduces the possibility of multi-photon excitations. So, dissipation also

has effects on photoionization.

As already stated above, it is also possible to perform a stepwise population of

our target state. For this purpose, a π-pulse sequence is used targeting the states

S0 → S1 → S2 → S5 . (3.17)

The parameters of the pulses are chosen as follows. The first pulse is polarized

along z, with ~ω = 0.4705Eh (12.8 eV), tp = σ = 248.0 ~

Eh
(6.0 fs), f0,z = 0.0127 Eh

ea0
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(6.53 GV
m ). The second pulse is equally polarized with ~ω = 0.0139Eh (0.378 eV),

tp = 992.2 ~

Eh
(24.0 fs), σ = 496.1 ~

Eh
(12.0 fs), f0,z = 0.0022 Eh

ea0
(1.13 GV

m ). The third

pulse is also z-polarized with ~ω = 0.0839Eh (2.28 eV), tp = 1736.3 ~

Eh
(42.0 fs),

σ = 248.0 ~

Eh
(6.0 fs), f0,z = 0.0839 Eh

ea0
(43.1 GV

m ).

The resulting population dynamics for all four considered cases (molecule in

vacuum with and without photoionization, molecule coupled to an electron-rich

environment with and without photoionization) is shown in Fig. 3.19. One can

see that the last pulse is not selective for the free molecule in vacuum without

photoionization. The target state S5 has a final population of about P5(tfinal) =

0.317 (with tfinal = 2000 ~

Eh
), while the ninth excited state has an even higher

population (P9(tfinal) = 0.536). This happens due to the high intensity of the third

pulse. Population in the fifth excited state is transferred to the ninth excited state

by the same pulse which populates the state S5 (the transition dipole moment is

µ5,9,z = −2.7076 ea0 (−6.88D)). In a dissipative environment, the population in

the target state S5 and the even higher populated S9 are lower than in the case of

the molecule in vacuum (P5(tfinal) = 0.189 and P9(tfinal) = 0.332). The reason

for this is the finite lifetime of all excited states, that transfers the population back

to the electronic ground state (P0(tfinal) = 0.377). If all electronic states above

the ionization potential are assigned a finite lifetime due to photoionization, the

selectivity of the third pulse increases up to P5(tfinal) = 0.834. This is almost a

complete population inversion, as the norm is reduced to N(tfinal) = 0.844. The

ninth excited state remains unpopulated and does not play any role here. In the

description with photoionization and a coupling to an electron-rich environment,

the selectivity of the last pulse increases also compared to the case with dissipation

but without photoionization. The final target state population is P5(tfinal) = 0.485.

This confirms that photoionization can lead to improved pulse selectivities. Another

effect is that the norm is here at N = 0.873, which is a bit higher than in the case

without the coupling to a dissipative environment. This behavior was also visible

for the direct excitation in Fig. 3.18. Dissipation leads to a lower loss of norm.
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Figure 3.19: Shown is the temporal evolution of the populations of the ground state,

P0, the first excited state, P1, the second excited state, P2, the fifth excited state

P5, the ninth excited state P9, and the sum of the populations of all states,
∑

i Pi,

of the H2 molecule during a series of four non-overlapping π-pulses along the path

S0 → S1 → S2 → S5. In panel (a), this is simulated for the free molecule in vacuum

without photoionization. In panel (b), the molecule is coupled to an electron-rich

environment. In panel (c), the population dynamics for a molecule in vacuum with

photoionization is shown. Panel (d) shows the time-evolution of the populations for

a molecule coupled to a dissipative environment with photoionization.
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Chapter 4

Treatment of correlation and

calculation of the single electron

entropy

In this chapter, electron correlation and correlation effects are investigated. When-

ever two or more electrons are close to each other in a molecule, electron correlation

leads to a lower energy compared to the uncorrelated wavefunction. An uncorrelated

method, e.g., Hartree-Fock, does only account for the interaction between an elec-

tron and the average field arising from all the other electrons. Correlated methods

like the complete active space self-consistent field method (CASSCF) or configura-

tion interaction methods (CI, with at least double excitations) decrease the ground

state energy because they include more than one Slater determinant (unlike HF).

As a measure for the electron correlation, the single electron entropy (SEE) of a

molecule can be calculated from a reduced one electron density matrix [102]. Here,

one electron density matrices are used, as the entropy for N electron density matrices

representing a pure state, i.e., a state which is determined by a single wavefunction, is

always equal to zero. The SEE is zero for a Hartree-Fock ground state wavefunction

but it increases quickly when the wavefunction is propagated using a correlated

method. This leads also to the question if the SEE can be lowered if the system

is excited photophysically, i.e., if the electrons can be decorrelated at will. In this

chapter, it is attempted to control the single electron entropy using laser pulses.

As the SEE is suggested to be a correlation measure, its control is a possibility to

generate a Hartree-Fock state from a correlated state.
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This chapter is organized as follows: In Sec. 4.1.1, the relation between the

correlation energy and the suggested correlation measures is checked for a minimal

basis model of H2. In Sec. 4.1.2, the potential energy curves of the H2 molecule for

two wavefunction-based correlated methods (CISD and MCTDHF) are calculated

and on the one hand, compared to each other, on the other hand, they are compared

to uncorrelated method (RHF). The RHF state is then propagated in real time,

and the entropy is obtained as well as another suggested correlation measure, the

quantum impurity (QI). These two measures are compared to each other using an

extended basis set in Sec. 4.1.3. In Sec. 4.2, we consider the control of the SEE.

First, the Hartree-Fock ground state is used as a target wavefunction in a calculation

using the optimal control theory, starting from the correlated ground state. It was

attempted to decrease the SEE to a value much lower than the one of the CISD

ground state. In a further section, Sec. 4.2.1.3, it is proved that a stochastic

laser pulse optimization algorithm is more appropriate to achieve low single electron

entropies. In Sec. 4.2.2, we report on attempts to generate a low SEE which are

stable over longer time intervals. In the following, the terms “entropy” and “SEE”

are used synonymous with the single electron entropy.

4.1 Correlation and entropy: Foundations

4.1.1 Minimal basis model of H2

Within the minimal basis (MB) model for H2, two spatial orbitals ψ1 and ψ2 are

considered. These are used to test the relation between the correlation energy Ecorr,

the single electron entropy S, and the quantum impurity Ω.

The H2 Full-CI ground state is, in intermediate normalization,

Φ0 = ΨHF
0 +A|22〉 (4.1)

with the Hartree-Fock ground state

ΨHF
0 = |11〉 (4.2)

and the doubly excited determinant |22〉. Single excitations do not contribute to

the correlated ground state due to symmetry. In the H2 minimal basis model,

the coefficient A and the correlation energy Ecorr can be calculated analytically
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according to [63]:

A = − K12

Ecorr − 2∆
, (4.3)

Ecorr = ∆−
√

∆2 +K2
12 (4.4)

with 2∆ = 2(ε2 − ε1) + J11 + J22 − 4J12 + 2K12. In these equations, εi is the

energy of orbital i, Jij = 〈ij|ij〉 is a Coulomb integral, and Kij = 〈ij|ji〉 is an

exchange integral. All orbital energies and two-electron integrals depend on the

internuclear distance RHH . In Fig. 4.1, the correlation energy Ecorr(RHH), the

coefficient A(RHH), the RHF energy

ERHF = 2h11 + J11 , (4.5)

where h11 is a one-electron integral, and the Full-CI (FCI) energy

EFCI = ERHF + Ecorr (4.6)

are shown, all calculated for the STO-3G basis set. For very large bond lengths

(R → ∞), one can treat the hydrogen molecule as two single hydrogen atoms. It

follows, that the orbital energies are equal (ε2 − ε1 = 0) and K12 = −1
2J11; as a

consequence, ∆ becomes zero. The correlation energy in the long-range limit is

lim
RHH→∞

Ecorr = −K12 = −0.3873Eh (4.7)

and the respective coefficient

lim
RHH→∞

A(RHH) = −1 , (4.8)

i.e., the ground state is an equal mixture of |11〉 and |22〉.
We now come to the other suggested correlation measures, i.e., the entropy

S = −kB Tr{γ ln γ} (4.9)

and the quantum impurity

Ω = 1− 1

2
Tr{γ2} . (4.10)

For functions of matrices as its natural logarithm, please refer to Appendix A. In the

minimal basis model for the H2 molecule, the one-matrix for the correlated ground

state Φ0 in the basis of Hartree-Fock spin orbitals χi(xj) (i, j = 1, 2), is

γij =

∫

dx1dx
′
1χ

∗
i (x1)γ(x1, x

′
1)χj(x

′
1) (4.11)
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Figure 4.1: Shown are the RHF energy, ERHF , the Full-CI energy, EFCI , and the

correlation energy, Ecorr, as a function of the interatomic distance, RHH , for the H2

molecule using a minimal basis set (STO-3G).

with

γ(x1, x
′
1) = 2

∫

dx2Φ0(x1, x2)Φ
∗
0(x

′
1, x2) , (4.12)

can be calculated analytically as

γij = δi1δ1j + δi1δ1j +A2δi2δ2j +A2δi2δ2j (4.13)

resulting in

γ =

















1 0 0 0

0 1 0 0

0 0 A2 0

0 0 0 A2

















. (4.14)

After renormalization (Tr{γ} = 2), the one-matrix gives

γ =
1

1 +A2

















1 0 0 0

0 1 0 0

0 0 A2 0

0 0 0 A2

















. (4.15)

The single electron entropy is then also given analytically as

S

kB
= − 2

1 +A2

[

ln

(

1

1 +A2

)

+A2 ln

(

A2

1 +A2

)]

. (4.16)
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For the two considered limiting cases, namely the Hartree-Fock wavefunction (A = 0)

and the Full-CI solution at an infinite bond length (A = −1), the calculated single

electron entropies according to the von Neumann definition are S = 0 (HF) and

S = 2kB ln(2) ≈ 1.38kB (Full-CI).

Also, the quantum impurity Ω can be calculated analytically as

Ω = 1− 1 +A4

(1 +A2)2
, (4.17)

which is Ω = 0 for A = 0 (Hartree-Fock), and Ω = 1
2 for A = −1 (Full-CI, R→ ∞).

The correlation measures are both shown in Fig. 4.2.
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Figure 4.2: Shown are the single electron entropy S (in units of Boltzmann’s constant

kB) and the quantum impurity Ω as a function of the modulus of the correlation

energy, |Ecorr|, for the H2 molecule using the STO-3G basis set.

From Fig. 4.2, one can see, that both suggested correlation measures increase

monotonically with higher |Ecorr|, suggesting that S and Ω can indeed be used as

useful correlation measures.

4.1.2 Extended basis sets

We now consider the hydrogen molecule H2 using an extended basis set. We also con-

sider different methods to obtain potential energy curves, namely restricted Hartree-

Fock (RHF), unrestricted Hartree-Fock (UHF), MCTDHF (for two electrons within
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two or more, up to ten orbitals), and Full-CI at different interatomic distances. For

RHF and UHF, the energies are obtained from Gamess 07 [97] calculations. For

Full-CI, they are obtained from a CISD program [30]. Finally, the MCTDHF results

are obtained from a MCTDHF program [103] that uses sorted one- and two-electron

integrals out of a Gamess 07 RHF calculation. In the MCTDHF calculation, the

wavefunction is propagated in imaginary time as long as necessary to reach the

ground state energy. This algorithm is described in Appendix B. The basis set is

aug-cc-pVTZ [100] for all calculations, that is, we have 50 molecular orbital for H2.

The results of these calculations are plotted in the upper panel of Fig. 4.3. There,

one can again see, that the RHF energy is much too high for large interatomic

distances. The energy does not reach the theoretical value for two free hydrogen

atoms (−0.5Eh per atom). The well-known reason is that RHF considers doubly

occupied or non-occupied spatial orbitals [63]. In the case of dissociation of the

hydrogen molecule, an UHF wavefunction with two singly occupied orbitals is a more

appropriate description. The MCTDHF and CISD energies include dissociation

correctly but their energies near the equilibrium distance R0
HH = 1.388 a0 (0.734 Å)

are lower than the UHF energy. Also, the correlation energy, defined here as Ecorr =

Ecorrelated method −ERHF [104] is plotted in the lower panel of Fig. 4.3. There, it is

shown that the effect of correlation is maximal at large distances, i.e., Rmax
HH ≈ 9.4 a0

(5.0 Å), corresponding to an extended bond length. One can determine the regions

where different types of correlation dominate. For interatomic distances of RHH ∈
[0.8; 2.5] a0 ([0.4; 1.3] Å), there is a small difference between MCTDHF methods

(with at least 6 orbitals in the active space), and the CISD result. That is the

region where dynamic correlation dominates which is well described by CISD, but

insufficiently described by MCTDHF. A special case is MCTDHF(N ,K) (with N as

the number of all electrons and K being the number of all molecular orbitals), which

is the same as TD-Full-CI. In a second region (RHH ∈ [2.5; 7.6] a0 ([1.3; 4.0] Å)), the

CISD and MCTDHF curves are very close to each other. There, non-dynamic or

static correlation is dominant. Here, a small number of doubly excited configurations

is enough to correct for the ionic nature of the HF determinant. This type is well

described by all of the multi-determinant methods.
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Figure 4.3: Shown are in the upper panel the potential energy curve V for the

ground state of the hydrogen molecule with respect to the interatomic distance RHH .

For this quantity, several different methods are used, such as RHF (black dotted

line), UHF (black dashed line), MCTDHF(2,2) (magenta solid line), MCTDHF(2,6)

(maroon solid line), MCTDHF(2,10) (blue solid line), and CISD (red solid line).

Recall, that the notation MCTDHF(2,M) denotes two electrons in an active space

of M spatial orbitals. In the lower panel the correlation energy Ecorr is plotted

against the interatomic distance. As an uncorrelated reference, the RHF potential

energy curve us used [104]. The basis set for all methods is aug-cc-pVTZ [100].

4.1.3 Dynamical aspects

In this section, entropy and quantum impurity as two different measures for the

correlation during the propagation of a wavefunction for small molecular systems

are calculated. The results of these measures are compared to each other. One can

also see from the time-evolution of the SEE, how fast the SEE builds up, starting

from an uncorrelated state.

For the calculation of the SEE, it is necessary to compute from the time-

dependent wavefunction (either from MCTDHF or from TD-CI), a reduced one

electron density matrix. From this density matrix, the SEE is calculated directly

via equation (2.80). An alternative estimate for the electron correlation is the quan-

tum impurity Ω, defined in equation (4.10)
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For a single Slater determinant, Ω is always 0, while for a state consisting of

more than one determinant, Ω > 0.

In a first set of calculations, the different measures for the correlation, i.e.,

SEE and QI, will be compared to each other. The hydrogen molecule is used as a

model system again. For this molecule, a RHF/6-31G∗∗ [95] calculation (H-H bond

along z, RHH = 1.380 a0 (0.730 Å)) was performed using the Gamess 07 program

package [97], i.e., we have ten molecular orbitals. The one- and two-electron integrals

are then used for a MCTDHF(2,10) calculation on the one hand and for a TD-CISD

calculation on the other hand. As both methods account for all excitations within

all 10 molecular orbitals, both correspond to TD-Full-CI and should be identical.

Both of the time-dependent wavefunctions are transformed to the reduced density

matrix representation. From this reduced one electron density matrix, the time-

dependent SEE is then calculated for TD-CISD, for MCTDHF(2,10) the SEE and

Ω are calculated. Both calculations start from the RHF ground state wavefunction.
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Figure 4.4: Shown is the time-evolution of the SEE S for the H2 molecule using dif-

ferent methods and the 6-31G∗∗ basis set, starting from the RHF ground state. The

black curves represent quantities based on the MCTDHF(2,10) method. The dashed

line is the QI Ω according to equation (4.10), the solid line represents the entropy

calculated by means of equation (2.80). The red dots indicate a SEE calculated with

the TD-CISD method and equation (2.80).

These SEEs are shown in Fig. 4.4. On a first view, one sees that the two
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methods TD-CISD and MCTDHF (red dots and black solid line) lead to the same

SEE (S ∈ [0.08; 0.53] kB), as they should. The QI based on equation (4.10) shows

qualitatively the same time-dependence. We will focus on the SEE in the following.

However, note, that SEE and QI agree in general very well, e.g., all minima and

maxima occur at the same times.

Another effect that can be seen from Fig. 4.4 is that the initial SEE, i.e.,

S0 = 0, increases very fast. It rises from zero to a first maximum within an initial

rise time of tir ≈ 2.5 ~

Eh
(60 as). This can be interpreted as the time the electrons

need to correlate. One may also calculate a “correlation length” as rc = vel · tir ≈
1 ~

mea0
· 2.5 ~

Eh
= 2.5 a0.

In general, the time-evolution of the SEE shows oscillations. These oscillations

can be explained as follows. The RHF initial state ΨHF
0 can be written as a linear

combination of correlated states Φn, i.e.,

ΨHF
0 =

∑

n

CnΦn . (4.18)

For instance, in the H2 minimal basis model using CID (CI doubles), we have two

eigenstates Φ0 and Φ1 contributing to ΨHF
0 according to equation (4.18). The time-

evolution of the wavefunction is given as

Ψ(t) = e−E1t/~ · [C0 · eiω10tΦ0 + C1Φ1] (4.19)

where ω10 =
E1−E0

~
derives from the correlated energies E1 and E0 of Φ1 and Phi0.

It can be shown that in this model, both the entropy S and the quantum impurity

Ω oscillate, starting from S = 0 and Ω = 0, with a single period

T =
2π

ω10
. (4.20)

If, as in Fig. 4.4, several CISD states Φn form a wavepacket, the HF state ΨHF
0 ,

this leads to a reduced one electron density matrix of the form

γ(x1, x1′) = 2
∑

n

∑

m

CnC
∗
me

−iωnmt

∫

dx2 · {Φn(x1, x2) · Φ∗
m(x1′ , x2′)} . (4.21)

Expressing this density matrix in the basis of HF orbitals leads to a complicated

oscillatory behavior of properties such as S or Ω.

The oscillations in the SEE lead to another characteristic time. If the oscillations

are Fourier transformed, the frequency with the largest signal, ωc, is used to calculate

a main oscillation period T according to

T =
2π

ωc
. (4.22)
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In a model with only two populated states coupled to each other, as in the H2

minimal basis model, the initial rise time tir and the oscillation time T are connected

such that the oscillation time is approximately twice the initial rise time:

T = 2tir . (4.23)

For more complicated systems, this is usually not fulfilled, which is why we work

with two characteristic times tir and T in what follows. The oscillation time is

often dominated by the CISD ground state and a single excited state with a high

population, i.e., large coefficient Cn in equation (4.18). Within the initial rise time,

however, a part of an oscillation is described in order to reach a first maximum on

an ultrashort timescale. The initial rise time is thus often shorter than half of the

oscillation time.

4.2 Correlation and entropy: Control

4.2.1 Creation of a Hartree-Fock state in CISD space

In this section, it is attempted to create a Hartree-Fock ground state, i.e., the lowest

state in energy with S = 0kB, from the CISD correlated ground state Φ0. That is, we

ask ourselves if it is possible to create an uncorrelated state by optical means, which

otherwise is only a theoretical construct. For this purpose, first the Hartree-Fock

ground state is represented by a superposition of CISD eigenstates as in equation

(4.18). This representation is then used as a target wavefunction to excite the HF

state photophysically using different laser pulse optimization algorithms. Since the

Hartree-Fock ground state has an initial single electron entropy of 0, the creation

of the RHF ground state is also a first example for controlling the single electron

entropy using laser pulses.

4.2.1.1 Representation of the Hartree-Fock ground state in CISD

space

We first express the Hartree-Fock ground state in the space of CISD eigenstates.

For this purpose, one has to do a CISD calculation based on a RHF calculation.

The first row of the coefficient matrix D (consisting of all coefficient vectors Di

according to equation (2.27)) contains the coefficients of all states contributing to



4.2 Correlation and entropy: Control 83

Figure 4.5: Shown are the populations Pn of all CISD states |PhiCISD
0 〉 = |n〉

contributing to the Hartree-Fock ground state.

the Hartree-Fock ground state:

ΦCISD
n =

nst−1
∑

α=0

(D)α,n|α〉 , (4.24)

with ΦCISD
n being the n-th CISD state, and |α〉 stands for a determinant contributing

to the total CISD wavefunction. This state can be projected on the Hartree-Fock

ground state determinant |0〉:

〈0|ΦCISD
n 〉 =

nst−1
∑

α=0

(D)α,n〈0|α〉 = (D)0,n = D0,n . (4.25)

From these coefficients, it follows that

|0〉 = |ΨHF
0 〉 =

∑

n

D0,n|ΦCISD
n 〉 , (4.26)

which is analogous to equation (4.18), but specialized to CISD, i.e., Cn = D0,n and

Φn = ΦCISD
n . The populations in all CISD states are obtained as Pn = |D0,n|2.

As an example, this is done for a hydrogen molecule (H2, aligned along z,

RHH = 0.74 a0 (1.40 Å)) using Dunning’s cc-pVQZ basis set [100]. There, one

obtains 1830 CISD states out of 1 occupied and 59 virtual MOs. The populations

of a superposition of CISD states forming the Hartree-Fock ground state are shown

in Fig. 4.5. From this figure, one can see, that the major portion is in the CISD
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Figure 4.6: Shown are in the two upper panels the electric field polarized along x

(Fx, panel (a)) and y (Fy, panel (b)). In panel (c), the time-dependent population

of the Hartree-Fock ground state PHF is shown. In panel (d), the resulting SEE

S is plotted. This data was obtained for the hydrogen molecule oriented parallel

to the z-axis at the TD-CISD level of theory using Dunning’s cc-pVQZ basis set.

Additionally, the end of the laser pulse tf is indicated by the vertical green dashed

line, and the horizontal red dashed lines indicate the values for the CISD ground

state. In panel (e), the evolution of the target operator value 〈Ô〉 and the total

objective functional J is shown after η OCT iterations, after the control time tf .

ground state (about 0.982). The other states with a relatively high population are

the twenty-fourth (population P24 ≈ 2.5 × 10−3) and the thirteenth excited state

(P13 ≈ 1.9×10−3). Other states with a low excitation energy are unpopulated, such

as the first (P1 = 0) or the second excited state (P2 ≈ 2.6× 10−5).

This superposition can be used as the target wavefunction in a pulse optimization

process according to the optimal control theory.

4.2.1.2 Optimal control theory

In this section, it is attempted to find a suitable laser pulse in order to excite the

previously characterized Hartree-Fock ground state. For this purpose, this state is

used as the target state in an OCT calculation, i.e., Ô = |ΨHF
0 〉〈ΨHF

0 | in equation
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(2.93). From group theory (the point group of H2 is D∞h), it is known that both

the Hartree-Fock ground state and the CISD ground state have Σ+
g symmetry. As x

and y have Πu symmetry, and z has Σ+
u symmetry, it can be easily seen, that none

of the elements of the direct product ΨHF
0 ⊗x (or y or z) ⊗ΦCISD

0 spans the totally

symmetric representation of the point group, i.e., the Hartree-Fock ground state

cannot be populated from the CISD ground state using a single linearly polarized

laser pulse. Thus, the initial pulse polarized along x and y is randomly created using

the parameters (see equation (2.95)): tm = 300 ~

Eh
(7.3 fs), ∆ts = 600 ~

Eh
(14.5 fs),

Ns = 12, ~ωmin = 0.001Eh (0.027 eV), ~ωmax = 1.04Eh (28.3 eV), fmax = 3 ×
10−4 Eh

ea0
(154 MV

m ). This field is propagated using 60000 time steps of ∆t = 0.01 ~

Eh

(0.24 as), i.e., for a control time of tf = 600 ~

Eh
(14.5 fs). After 50 iterations with a

penalty factor α = 0.15 (see equation (2.94)), an optimized field is obtained, which

is shown in Figs. 4.6 (a) and (b). The initial wavefunction (the CISD ground state

ΦCISD
0 ) is propagated using the optimized field for 80000 time steps. In panel (c)

of Fig. 4.6, the target state population PHF (t)

PHF (t) = |〈ΨHF
0 |Ψ(t)〉|2 (4.27)

is plotted. The resulting SEE is shown in panel (d) and the convergence of the total

objective functional J and the target operator value 〈Ô〉 (both of equation (2.92)) is

plotted in panel (e). (Note, that full convergence is not achieved according to Fig.

4.6 (e).)

From Fig. 4.6 (e) it is noted that after a control time tf , the target state (HF)

population has increased from the initial value of 0.982, to about 0.989 after 50

iterations. From Fig. 4.6 (d), one can further anticipate that this moderate increase

of PHF , is accompanied by a local minimum of the SEE; we find S(tf ) = 0.153 kB,

starting from SCISD
0 = 0.228 kB for the correlated ground state. However, from this

figure, one can also see that the SEE is not permanently lower than the one of the

CISD ground state, but oscillates in a range of S ∈ [0.153; 0.396 ]kB . Hence, the SEE

is only temporarily lower than the SEE of the CISD ground state, at the control time

tf , and oscillates on ultrashort timescales afterwards. Averaged over the time in the

t > tf regime, the single electron entropy even increases to Sav = 0.271 kB. After

tf , also the target state population oscillates, in a range of PHF ∈ [0.965; 0.989].

Optimal control theory is thus a method that is capable of decreasing the entropy

at a certain time, but not permanently. In the next section, we try to decrease the

single electron entropy directly using a stochastic pulse optimization algorithm and
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Figure 4.7: Shown is in the panels (a) and (b) the electric field polarized along x (Fx)

and y (Fy). In panel (c), the time-evolution of the RHF ground state population

PHF is plotted. The curve in panel (d) represents the resulting SEE S. This data

is obtained for the H2 molecule oriented along z in a SPO algorithm using the TD-

CISD level of theory and Dunning’s cc-pVQZ basis. The red dashed lines in the

panels (c) and (d) indicate the initial value obtained for the CISD ground state,

the blue dotted line in panel (d) is the minimal value obtained for OCT in Sec.

4.6. The vertical green dashed line indicates the end of the pulse tf . In panel (e),

the convergence of the minimal entropy Sη
min (at the control time) and the average

entropy Sη
av (also at the control time) for each generation η are shown. The vertical

lines indicate the regions where different mutation rates M are used.

not indirectly by increasing the population of the Hartree Fock ground state.

4.2.1.3 Stochastic pulse optimization

Using the stochastic pulse optimization (SPO) algorithm, no defined target state is

needed. Instead, the SEE at the end of the pulse serves as the “fitness value” which

should be lowered iteratively.

A set of 100 randomly generated pulses polarized along x and y with the pa-

rameters (according to equations (2.99)-(2.104)) ~ω = 0.010Eh (0.285 eV), f = 99,

tmax = 600 ~

Eh
(14.51 fs), trf = 50 ~

Eh
(1.2 fs) is used for an initial propagation and

sorted by the lowest SEE at the end of the pulse. A “child generation” is formed by
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modifying the old pulses in the described algorithm (initial mutation rateM = 0.32).

Further propagations are made using the new pulses, sorting them by the SEE, and

taking only the 100 laser fields with the lowest SEE for the new “parent generation”.

After 100 “generations”, the SEE has decreased to SSPO
min (M = 0.32) = 0.144 kB. The

entropy oscillates after the end of the control pulse at t = tf , with an average of

SSPO
av (M = 0.32) = 0.281 kB. A further optimization is performed using a muta-

tion rate of M = 0.16. This lowers the SEE again to SSPO
min (M = 0.16) = 0.132 kB

and an average of SSPO
av (M = 0.16) = 0.297 kB. The results of a last optimization

process using a mutation rate of M = 0.08 are shown in Fig. 4.7. A propaga-

tion with the optimized field given in the panels (a) and (b) of Fig. 4.7 results

in an oscillating population in the Hartree-Fock ground state (shown in panel (c)

of Fig. 4.7) within the interval PHF (t > tf ) ∈ [0.934; 0.972] and an average pop-

ulation of PHF
av = 0.953. This population never exceeds the Hartree-Fock state

population for the CISD ground state (PHF
CISD = 0.982, shown as the red dashed

line in panel (c)). The resulting SEE (shown in panel (d) of Fig. 4.7), however,

oscillates within an interval SSPO(t > tf ) ∈ [0.127; 0.495 ]kB with an average of

SSPO
av (t > tf ) = 0.300 kB and goes thus temporarily below the entropy value for

the CISD ground state (SCISD = 0.228 kB, indicated by the red dashed line) and

the minimal value obtained using optimal control theory (SOCT
min = 0.181 kB, indi-

cated by the blue dotted line). As the oscillations of the SEE are still very fast,

further investigations were carried out in order to obtain a low SEE with a longer

“preservation time” (in Sec. 4.2.2).

4.2.2 Low SEEs with longer characteristic times

As one could see in the previous section, a low SEE (obtained photophysically or by

propagating the Hartree-Fock ground state) is increasing to a maximal SEE within

an ultrashort time of about 2.5 ~

Eh
(60 as). In this section, it is first proved that this

time can be extended if either high-energetic states (Sec. 4.2.2.1) or low-populated

states (Sec. 4.2.2.2) are cut off. After the cutoff procedure, the Hartree-Fock ground

state is no longer exactly represented by a linear combination of CISD states. The

renormalized wavefunction is then propagated without a laser field and the resulting

single electron entropy is calculated. An appropriate wavefunction is later used as

a target function within an OCT calculation (Sec. 4.2.2.3).

Two characteristic time measures are considered: one the one hand, the initial
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rise time tir as the delay time to the first maximum of the SEE, and on the other

hand, the main oscillation time T according to equation (4.22).

4.2.2.1 Neglect of high-energy eigenstates: Energy-cutoff criterion

Figure 4.8: Shown are in the upper panel the maximal SEEs (Smax, red line), the

minimal SEEs (Smin, blue line), the SEEs at the beginning of each propagation

(S0, dashed black line), and the average SEEs (Sav, green line) if only populations

in the lowest κ CISD eigenstates of the Hartree-Fock ground state (in CISD state

representation) are taken into account within the helium dimer using the 6-31G∗∗

basis set. In the lower panel the main oscillation periods T (determined by Fourier

transformation) and the initial rise times tir of these entropies are shown. For κ = 1

and κ = 2, there are no oscillations, so the oscillation period and the initial rise time

are infinitely large.

In a first investigation, the Hartree-Fock ground state wavefunction in the space

of CISD eigenstates was modified in the way that coefficients in high-energy states

are neglected. The resulting wavefunction is renormalized and propagated without

laser field, and the resulting SEE is calculated. First, the number of states taken

into account is varied in order to check the appropriateness as a wavefunction with

a low SEE and a long oscillation period of the entropy.

As a first model, the helium dimer (oriented along z, interatomic distance
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RHeHe = 2.74 a0 (1.45 Å)) is used. A CISD calculation with the 6-311G∗∗ basis

set [95] results in 231 states out of 2 occupied and 10 virtual MOs. The Hartree-

Fock ground state can then be represented as a superposition of all these CISD

eigenstates. Next, different “cut off” and renormalized wavefunctions are created

and propagated in time (the propagation ends at tend = 200 ~

Eh
(4.8 fs)). To this

end, one takes only the populations within the κ lowest eigenstates into account

(with κ ∈ [1; 231]). For κ = 1, the CISD ground state is obtained whose SEE is

greater than 0 but constant. For κ = 231, the Hartree-Fock ground state is the

initial wavefunction. Its SEE is (by definition) 0 at the beginning but increases on

an ultrafast timescale. For intermediate values of κ, there might be wavefunctions

for which the resulting SEE has a long oscillation period and a long initial rise time,

and a value between the initial entropy level of the HF ground state and the con-

stant level for the CISD ground state. It is a challenge to find a state that has a

low SEE (lower than the CISD ground state) with a high initial rise time and a high

oscillation period. In a second step, such a state may be excited photophysically.

The parameters of the SEEs for these “approximate” HF wavefunctions are

shown in Fig. 4.8. In the upper panel, one can see the minimal entropy Smin, the

maximal entropy Smax, the average entropy Sav, and the initial entropy S0 (equal to

Smin) for every approximate wavefunction with κ states. In the lower panel, the two

characteristic times tir and T are shown. On a first view, one can also see that the

oscillation time does not change significantly if the populations of the highest 137

states are set to zero (from κ = 231 to κ = 94). This is also valid for the initial rise

times tir that has even lower values. These “truncated HF wavefunctions” have still

the same behavior concerning the stability of their low single electron entropy. At the

same time, the SEE interval changes slightly from [Smin, Smax] = [0.000; 0.595 ]kB

to [Smin, Smax] = [0.058; 0.543 ]kB . But it is hard to populate a wavefunction with

contributions of at least 94 eigenstates – even for the case that some of these states

are numerically unpopulated – using laser pulses. Also, the “lifetime” should be

longer than about 2.9 ~

Eh
(69.2 as). Longer oscillation periods are achieved if only

the populations in the lowest 21 states are taken into account, but then the SEE

interval becomes much smaller ([0.189; 0.267 ]kB , T = 56.5 ~

Eh
(1.36 fs), tir = 1.2 ~

Eh

(29.0 as)). Also, it can be seen, that the SEE interval, the oscillation periods, and

the initial rise times do not change significantly when κ is changed in rather large

intervals (like for κ ∈ [94; 231] or κ ∈ [29; 93], or even for low energy states like
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κ ∈ [4; 18]). This means that many states are not important with respect to the

SEE, even within the low-energy state manifold. Therefore, one might obtain a

low-entropy target wavefunction for an OCT excitation consisting of only a few

CISD eigenstates, if not an energy-cutoff criterion is applied, but a population cutoff

criterion instead. This is done in the next section (Sec. 4.2.2.2).

4.2.2.2 Neglect of lowly populated eigenstates: Population-cutoff

criterion

Figure 4.9: Shown are in the upper panel the maximal SEEs (Smax, red line), the

minimal SEEs (Smin, blue line), the SEEs at the beginning of each propagation (S0,

black dashed line), and the average SEEs (Sav , green line) if only populations in the

κ CISD eigenstates with the highest population of the Hartree-Fock ground state

(in CISD state representation) are taken into account within the helium dimer using

the 6-31G∗∗ basis set. In the lower panel the initial rise times tir and the main

oscillation periods T of these SEEs are shown. For κ = 1, there are no oscillations,

so the oscillation period is infinitely large.

If the populations of the CISD eigenstates for the Hartree-Fock ground state

are sorted according to their absolute value and the CI coefficients for the lowly

populated states are set to zero, one obtains another type of “approximate wave-

function”, for which only κ states are taken into account. After renormalization,
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this wavefunction can also be used in order to calculate a low SEE with a longer os-

cillation period. The resulting parameters (maximal SEE Smax, minimal SEE Smin

and average SEE Sav) are shown in Fig. 4.9 together with the oscillation period T

and the initial rise time tir for various values of κ. In Fig. 4.9, one can see that

the oscillation period is small (T ≈ 2.8 ~

Eh
(68 as)) for any value of κ (except for

κ = 1). The same behavior is observed for the initial rise time, that is even shorter

(tir = 0.8 ~

Eh
(19 as)). The SEE range [Smin, Smax] does not change for κ > 40. For

lower numbers of states taken into account, the SEE range becomes smaller expo-

nentially. The initial SEE value, that is usually equal to the minimal value, does

not change either for κ > 40, but increases dramatically for lower values. Hence,

these “approximate HF wavefunctions” do not lead to long oscillation periods, long

initial rise times, and low SEEs.

The oscillation period and the initial rise time seem to correlate with the pop-

ulation of the respective CISD states. All oscillations of the SEE arising from a

coupling between the ground state to any populated higher state have a higher am-

plitude. Other higher populated states are the ninety-third state (P93 = 3.6× 10−3)

with an excitation energy of E93 = 3.88Eh and the seventy-ninth excited state

(P79 = 2.0 × 10−3, with E79 = 3.73Eh). For oscillations with a lower frequency, we

need at least two higher populated states with a low energy difference. To this end,

the CISD ground state cannot be used, as the excitation energy to the first excited

state E1 = 1.36Eh is very high.

As these “truncated HF wavefunctions” do not seem to be appropriate in order to

excite a Hartree-Fock-like state with a low SEE and a long oscillation period, another

molecule is tested. The methane molecule using the 6-31G∗ [95] basis set is the new

test system (one C-H bond along z, RCH = 2.04 a0 (1.08 Å), θHCH = 109.46 °,

φHCHH = 120.0 °) . For this molecule, only the “partial wavefunctions” using

the states with the highest populations are employed (population-cutoff criterion).

First, these wavefunctions are propagated in time without the use of a laser field.

Some of the resulting SEEs are shown in Fig. 4.10. There, it is clearly shown

that all “truncated HF wavefunctions” lead to entropies that are temporarily below

the constant level for the CISD ground state (κ = 1). It is also seen, that the

time evolution of the “approximate HF wavefunctions becomes more complicated,

if more CISD states are involved. For κ = 1, there are no oscillations; for κ = 2,

one oscillation is obtained, with T = 2tir (green line in Fig. 4.10). For even higher
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values κ ≥ 3, more oscillations are obtained, the initial rise time is no more a simple

function of the main oscillation time. One of these “approximate HF wavefunctions”

is now used as the target function in an OCT calculation.

Figure 4.10: Shown are the resulting SEEs when different “truncated HF wavefunc-

tions” within the methane molecule using the 6-31G∗ basis set are propagated in

time. The black dashed line indicates the pure CISD ground state (κ = 1), the green

line a wavefunction with two states taken into account (κ = 2). The blue curve is

for κ = 5, the magenta curve indicates the SEE for κ = 10. Finally, the red dashed

line stands for the exact Hartree-Fock ground state (κ = 2701).

4.2.2.3 OCT excitation of “approximate HF wavefunctions”

In this section, it is attempted, for CH4, to excite a previously defined renormalized

“approximate HF wavefunction” including only those CISD states with the highest

population using laser pulses generated by optimal control theory. For this purpose,

a wavefunction using the 10 most populated eigenstates of the Hartree-Fock ground

state in CISD representation (corresponding to the magenta curve in Fig. 4.10) is

the target function. The initial pulse is randomly chosen with energies in the range

~ω = [0.001; 5.500] Eh ([0.027; 149.663] eV). The electric field has components along

all Cartesian coordinates. The shape function of equation (2.95) has the parameters:

tm = 125 ~

Eh
(3.02 fs), ∆ts = 220 ~

Eh
(5.32 fs), Ns = 12. After 20 iterations using
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Figure 4.11: Shown are in the panels (a), (b), and (c) the x-, y-, and z-components

of the electric field (Fx, Fy, and Fz) for an excitation from the CISD ground state to

a Hartree-Fock-like target wave function, again for methane. This field is obtained

as the result of an pulse optimization process within the optimal control theory (for

details see text). In panel (d), the time-evolution of the SEE of the system is shown

(black solid line). The red dashed line represents the constant entropy level of the

CISD ground state. The vertical green dashed line in the panels (a) to (d) indicates

the end of the pulse tf . In panel (e), the values for the target operator value 〈Ô〉
and the total objective functional J are plotted for each OCT iteration (with η as

the number of iterations).

a penalty factor of α = 0.12, an OCT field is obtained. This field is shown in the

upper three panels of Fig. 4.11 (panel (a): x-component, panel (b): y-component,

and panel (c): z-component).

As one can see, the electric field has a low intensity. None of the three compo-

nents increases to more than 0.003 Eh

ea0
(1.54 GV

m ). In the resulting SEE (panel (d)

of Fig. 4.11), it is shown that the oscillating SEE is – averaged over the time

– Sav = 0.6753 kB and thus above the reference entropy for the CISD ground

state of SCISD = 0.6701 kB. It can be, however, temporarily below this SEE

(Smin = 0.6615 kB). This is reached although convergence in the target operator

value 〈Ô〉 and in the total objective functional J is not yet achieved after 20 OCT

iterations. The calculation is truncated after this number of iterations only to see
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if there is an improvement after such an optimization process. A real Hartree-Fock

ground state-like state is nevertheless not obtained.

In this section, it was shown that one can obtain a SEE that is below the value

for the CISD ground state temporarily. The oscillation period is very short for all of

the different tested target wavefunctions, so it seems not to be possible to decrease

the SEE permanently or at least with a long “lifetime”.

However, there may be other systems, for which the SEE does not increase

on an ultrashort timescale. If a molecule has different stable and quasi-degenerate

configurations, i.e., static correlation, this may lead to a low SEE with a high “initial

rise time” and a high oscillation period. Such a state can be accessed using optimal

pulses created by OCT or another pulse optimization scheme. Furthermore, one

could use long laser pulses in order to conserve a low SEE value over long time

periods.
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Chapter 5

Conclusions and Outlook

This thesis has shown how time-dependent correlated methods based on wavefunc-

tions can be used to describe laser-induced processes in molecular systems. Further,

they are capable of explaining these processes, and finally, they help to find predic-

tions for laser experiments.

In the first part, a heuristic ionization model within the time-dependent config-

uration interaction singles method was presented. This model is used to describe an

ionization continuum in the framework of atom-centered atomic orbital-type basis

sets. This ionization continuum is formed by broadening discrete states by a ion-

ization rate leading to an exponential decay of the population of this state. Three

algorithms to calculate these ionization rates were presented.

The third model was chosen the best of the three models. Within this algorithm

the ionization rates for all states below Koopmans’ first ionization potential are set

to zero leading to a set of non-ionizing excited states. The states above the ionization

potential are assigned a finite lifetime according to their composition of one electron

excitations within the molecular orbital picture. Thus, a non-monotonic increase

of the ionization rate is guaranteed which seems to be reasonable. The density

of states confirmed that an ionization continuum is formed above the ionization

potential. Some states that are dominated by low lying valence electron excitations

appear as resonances in this picture.

For all of the introduced algorithms, an empirical escape length d was introduced,

after which the electron was considered as ionized. Here, d was adjusted once for a

pulse sequence and once for different initial non-ionizing states in that manner, that

the loss of norm and thus the ionization probability is as high as possible in order to
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study a “worst case scenario”. Further, it was set to a constant value, independent of

the initial state and independent of the pulse parameters like frequency or intensity.

It is a challenge for future work to find an appropriate way to determine the values

for the escape length for specific systems and various initial and/or final states.

Within the model, it has been demonstrated that excitations between states

below the ionization potential according to Koopmans’ theorem using π-pulses are

still leading to an almost complete population inversion, if the pulse has a sufficiently

low intensity. For higher intensities, multi-photon excitations are promoted, and

the ionization probability would increase. Here, for LiCN even for a pulse sequence

consisting of four π-pulses, the loss of norm was lower than 0.13. Also excitations

to ionizing, resonance-like states were simulated. Then, one can obtain a temporary

population in this state that is above 0.10 for LiCN. This population, however,

decays on the timescale dictated by the resonance width.

It was shown for two different systems, e.g. LiCN and benzo-[g]-N -methyl-

quinolinium-7-hydroxylate, that one can generate electronic wavepackets below the

ionization potential and probe the wavepacket motion with a second pulse, that

is delayed in time, creating an ionization signal. If the delay time between the

pulses is varied, one obtains a pump-probe spectrum where the loss of norm is the

probe signal. For both systems (lithium cyanide molecule and benzo[g]-N -methyl-

quinolinium-7-hydroxylate molecule), it has been shown that the time-dependence

of the probe signal resembles the time-dependent dipole moment of the original

wavepacket (the wavepacket that is generated if only the pump pulse is applied to

the system). For the larger molecule, it was also shown that the loss of norm depends

strongly on the frequency of the probe pulse, the initial state, the transition dipole

moments, and – as already mentioned – the escape length parameter. The intensity

of the probe pulse was then optimized in the way that the loss of norm is low enough

to neglect the formation of multiply charged ions and the ionization of pre-ionized

matter. As these effects are not yet included in the model, it is a project for the

future to describe also these phenomena theoretically within a similar approach.

What was also determined using time-dependent configuration interaction sin-

gles including photoionization are the effects on frequency-dependent polarizabilities.

For an intense pulse with variable frequency it was investigated, if and how the dy-

namic polarizability changes when photoionization is included. The polarizability

has (for TD-CIS) without photoionization a characteristic behavior: At every tran-
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sition frequency to a higher state there is a pole-like structure (a damped pole), if

this state is optically accessible. When our heuristic ionization model is applied,

nothing changes for all transitions below the ionization potential. For higher tran-

sitions in the continuum, the polarizability has no pole any more but the curve is

damped (depending on the value of d). In an extreme case, the curve can even be

horizontal. Since poles of the polarizability in a broad continuum are artificial, the

TD-CI method with ionization gives a more realistic description of the system. Here,

also the SOS-formula was extended to ionization as another algorithm to calculate

frequency-dependent polarizabilities. It has no significant deviation with respect to

the frequency-dependent polarizability calculated with TD-CIS including photoion-

ization if transition frequencies above the ionization potential are investigated, for

lower frequencies, however, true poles at the transition frequencies appear due to

the perturbative wave nature of SOS.

The model presented here was also combined with another model based on the

propagation of density matrices in order to describe the effects of both dissipation

and photoionization. The effects are treated independently as competing processes.

The density-matrix based method was tested for state-to-state excitations of the H2

molecule using π-pulses. There, it was seen, that – despite of the treatment – the

individual processes are influencing each other. The inclusion of dissipation reduces

slightly the population losses due to photoionization. Furthermore, photoionization

increases the selectivity of laser pulses, even in a dissipative environment.

For all these results, it should be mentioned that they were obtained in the

clamped nuclei approximation. This approximation may be invalid during longer

pulse sequences and propagations, especially for light atoms. A rearrangement of nu-

clei would change the excitation energies, the dipole moments and transition dipole

moments, and even ionization rates. For the lithium cyanide molecule and the hydro-

gen molecule, the application of the fixed nuclei approximation is probably invalid,

i.e., a rearrangement of nuclei cannot be neglected. For the BMQ7H molecule, the

validity of the fixed nuclei approximation is more likely, at least for the two states

with the major contributions to the electronic wavepacket, which was investigated

in this thesis. The inclusion of important nuclear modes is also a promising project

for future work.

A second focus of this thesis was on the time-dependent single electron entropy

(SEE) of a molecular system and its control using laser pulses. For this purpose,
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the SEE is calculated from a one electron reduced density matrix, as the entropy

calculated from a N electron density matrix would always be zero, for a pure state.

Two time-dependent correlated wavefunction-based methods (MCTDHF and TD-

CISD) were tested.

An investigation was aiming at the time-dependent SEE calculated from the

MCTDHF and the TD-CISD wavefunctions. For this purpose, the Hartree-Fock

ground state of the hydrogen molecule was propagated in real time, and the entropy

was calculated. It was shown, that MCTDHF and TD-CISD lead to the same

SEEs in the Full-CI limit. The second measure for time-dependent correlation using

the quantum impurity (QI) results in the same qualitative behavior. For further

investigations regarding the SEE and its control, the TD-CISD method was used. It

was shown that the initial Hartree-Fock ground state has a SEE of 0 that increases in

an ultrafast process and oscillates. This lead to two different investigations: On the

one hand, laser pulses were optimized to minimize the SEE at least temporarily; on

the other hand, different “approximate HF wavefunctions” (renormalized Hartree-

Fock ground state wavefunctions truncated in CISD eigenstate representation), were

tested in order to obtain a wavefunction with a low SEE and a higher “initial rise

time” and main oscillation period. This “approximate HF wavefunction” was used

as a target state in a pulse optimization scheme.

For the first part, it was shown that an OCT optimized laser pulse with the

Hartree-Fock ground state as the target state leads to a temporarily lower SEE

arising from a temporarily higher Hartree-Fock ground state population. But the

average SEE even increases, and the initial rise time and the main oscillation period

are still ultrashort. This OCT result was improved by using the stochastic pulse

optimization as another laser pulse optimization scheme. For this algorithm, a

lower entropy was obtained, however, also with ultrashort characteristic times. In

this case, however, the Hartree-Fock ground state population decreases.

In the second part, two general approaches for “approximate HF wavefunctions”

were tested. First, one can neglect populations in high-energy CISD states. The

SEE range becomes smaller, but the initial rise time does not increase significantly.

The other approach is the neglect of populations in states with a low population

or states that are numerically unpopulated. This approach does not lead to higher

initial rise times (but to lower SEE ranges). An optimization within the optimal

control theory using an “approximate HF wavefunction” with the most populated
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states as target state results a decreased SEE but still an ultrashort initial rise time.

In future work, one could investigate other systems; furthermore, dissipation and

ionization should be considered, and the low-entropy state may be conserved and

stabilized by applying a continuous laser field.

To conclude, it has been shown that time-dependent correlated wavefunction-

based methods describe phenomena that are related to the interaction between laser

fields and matter properly and they can be extended that way that they include

effects like photoionization or single electron entropies.
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Appendix A

Functions of matrices

A.1 Functions of diagonal matrices

If a matrix is already diagonal, a function f(A) of this matrix (rank N) is given as

a diagonal matrix containing the functions of the respective diagonal element:

f(A) =

















f(A11) 0 · · · 0

0 f(A22) · · · 0
...

...
. . .

...

0 0 · · · f(ANN )

















. (A.1)

A.2 Functions of diagonalizable matrices

The function of a diagonalizable matrix is calculated as follows: First, the matrix

A is diagonalized by the matrix U (and its adjoint U †) containing the eigenvectors

ai of A. Then, the function is applied to all diagonal elements of the new matrix

according to equation (A.1). The result is retransformed using the same matrices U

and U †. This is written as follows:

f(A) = Uf(U †A U)U † . (A.2)

The function (here e A is developed as a Taylor series. One can always multiply

with U U †, as this gives the identity matrix 1.

e A = 1 +A+
A2

2
+ . . .

= U U † 1 U U † + U U † A U U † +
1

2
U U † A U U † A U U † + . . .

= Ue U† A UU† (A.3)
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For example, the natural logarithm of a matrix is calculated as

ln(A) = U [ln(U † A U)]U † , (A.4)

where

ln(U † A U) =

















ln(a1) 0 · · · 0

0 ln(a2) · · · 0
...

...
. . .

...

0 0 · · · ln(aN )

















. (A.5)
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Appendix B

Propagation in imaginary time

For time-dependent calculations, especially for MCTDHF, the ground state is often

obtained by propagating an (arbitrary) initial state in imaginary time. This means,

the usual propagation operator e−iĤt/~ is modified such, that the time step ∆t is

replaced by −iτ . We thus obtain a wavefunction

Ψ(τ) = C0e
−E0τψ0 + C1e

−E1τψ1 + . . . , (B.1)

where Ci is the coefficient of the wavefunction ψi, and Ĥψi = Eiψi. In this equation,

the wavefunctions ψn are sorted by ascending energies, i.e., E0 < E1 < E2 . . . . The

consequence of this is, that C0e
−E0τ becomes large for long propagation times with

respect to all other time-dependent coefficients Cne
−Enτ . For infinite values of τ ,

one obtains

lim
τ→∞

C2
0e

−2·E0τ

∑

m
C2
me

−2·Emτ
= 1 and

lim
τ→∞

C2
ne

−2·Enτ

∑

m
C2
me

−2·Emτ
= 0 for n 6= m . (B.2)

This is also shown for a system with three states ψn and respective energies (E0 =

0.00Eh, E1 = 0.20Eh, E2 = 0.22Eh) in Fig. B.1. At the beginning, all three

states have the same population (C2
0 = C2

1 = C2
2 = 1

3). After a propagation time of

t = 30 ~

Eh
(and renormalization of the wavefunction), practically all population is in

the ground state ψ0, and the other states are depopulated.
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Figure B.1: Shown are the renormalized populations Pn for a model with three

states at E0 = 0.00Eh, E1 = 0.20Eh, and E2 = 0.22Eh, when they are propagated

in imaginary time. The initial populations are set to P0 = P1 = P2 =
1
3 .



BIBLIOGRAPHY 105

Bibliography

[1] M. Dantus, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 87, 2395 (1987).

[2] T. S. Rose, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 88, 6672 (1988).

[3] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, M. Nenad,

T. Brabec, P. B. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, Nature

(London) 414, 509 (2001).

[4] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.-C. Kieffer, P. B.
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edited by J. Manz and L. Wöste (Verlag Chemie, Weinheim, 1995), volume 2,

chapter 25, p. 731.

[74] P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).

[75] J. Frenkel, Wave Mechanics (Oxford Univ. Press, Oxford, 1934).

[76] H. Levy and E. A. Baggott, Numerical Studies in Differential Equations, Vol.

1 (Watts & Co., London, 1934), and references therein.

[77] T. Koopmans, Physica (Amsterdam) 1, 104 (1934).

[78] S. Klinkusch, P. Saalfrank, and T. Klamroth, J. Chem. Phys. 131, 114304

(2009).

[79] J. C. Tremblay, S. Klinkusch, T. Klamroth, and P. Saalfrank, J. Chem. Phys.

134 (2011).

[80] J. C. Tremblay, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 129, 084302

(2008).

[81] K. Blum, Density matrix theory and applications (Plenum, New York, 1996).

[82] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[83] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821

(1976).

[84] V. Gorini and A. Kossakowski, J. Math. Phys. 17, 1298 (1976).

[85] I. I. Rabi, Phys. Rev. 51, 652 (1937).

[86] S. Shi, A. Woody, and H. Rabitz, J. Chem. Phys. 88, 6870 (1988).



110 BIBLIOGRAPHY

[87] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Chem. Phys.

139, 201 (1989).

[88] T. Klamroth, J. Chem. Phys. 124, 144310 (2006).

[89] W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998).

[90] W. Zhu and H. Rabitz, J. Chem. Phys. 109, 385 (1998).
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