
Technische Berichte Nr. 50

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Data in
Business Processes
Andreas Meyer, Sergey Smirnov, Mathias Weske

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 50

Andreas Meyer | Sergey Smirnov | Mathias Weske

Data in Business Processes

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2011
http://info.ub.uni-potsdam.de/verlag.htm

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 4623 / Fax: 3474
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2011/5304/
URN urn:nbn:de:kobv:517-opus-53046
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53046

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-144-8

mailto:verlag@uni-potsdam.de�

Data in Business Processes

Andreas Meyer, Sergey Smirnov, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany

{andreas.meyer,sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de

Abstract. Process and data are equally important for business pro-
cess management. Process data is especially relevant in the context of
automated business processes, process controlling, and representation
of organizations’ core assets. One can discover many process modeling
languages, each having a specific set of data modeling capabilities and the
level of data awareness. The level of data awareness and data modeling
capabilities vary significantly from one language to another.
This paper evaluates several process modeling languages with respect to
the role of data. To find a common ground for comparison, we develop
a framework, which systematically organizes process- and data-related
aspects of the modeling languages elaborating on the data aspects. Once
the framework is in place, we compare twelve process modeling languages
against it. We generalize the results of the comparison and identify clusters
of similar languages with respect to data awareness.

1 Introduction

In the mid-nineties, the primary focus of business process management (BPM) was
on the design and documentation of processes. Business process models captured
activities and their ordering necessary to achieve a business goal. In this way
control flow was the dominant aspect in business process models. During the last
decade, BPM received much attention as “a systematic and structured approach
to analyze, improve, control, and manage business processes” [1]. Being widely
adopted by industry, business process management faced new challenges and
opportunities. Process models focusing only on control flow become insufficient.
It turned out that additional aspects have to be addressed, including data.

We motivate the relevance of data within three areas: Service-oriented Ar-
chitectures, representation of organizations’ core assets, and process controlling.
The emergence of Service-oriented Architecture (SOA) opened new horizons for
automated business process execution, yet revealed new challenges. SOA trans-
formed enterprise landscapes slicing the functionality of large software systems
into services. As services are capable of accomplishing atomic business tasks,
they can be effectively used for task automation. Thereafter, SOA catered for
automation of business processes. While control flow oriented business processes
made the process routing logic explicit, data was still “hidden” inside IT systems.

2

However, this data highly impacts process execution. For instance, many decisions
in processes are data driven. As a result, the role of data in process models grew
significantly. It became essential to model the data and data flow within the
process. Thereby, process modeling languages that emerged in the last decade,
e.g., Business Process Model and Notation (BPMN) [2], demonstrated higher
data awareness.

Another driver for explicit data representation in process models is the
representation of core assets which capture essential properties of an organization
without the value creation cannot take place. Organizations’ value creation mainly
base on information about their own value chain, customers, production, and
research and development cycles. This information is captured in terms of data
in different IT systems which combine the enterprise-wide data utilized in the
everyday work. All customer information, for instance, is stored in the customer
relationship management (CRM) system. The organizations’ actual value creation
is performed by executing the organizations’ business processes which depend on
the information mentioned above. Following, these business processes need access
to the IT systems and its contained data to keep an organization operational.

Finally, we refer to business process controlling as another motivator of data
support in process modeling. For ensuring process quality by process controlling,
key performance indicators (KPIs) are measured and interpreted using business
process intelligence techniques. KPIs reflect business goals of an organization.
These goals are defined referring to data. Following, KPIs rely on data. For
instance, one business goal might be to achieve the highest customer satisfaction
in the market. This goal is reflected by several KPIs; one of them deals with
delayed credit applications. This number should be minimized for increasing
the customer satisfaction. For process controlling, the activities contributing to
this goal need to be identified for evaluating them. This is done by selecting the
activities performing work on the appropriate data objects – in this case the
credit application. Following, an explicit statement supports process controlling.
Additionally, the data objects are considered for the evaluation itself as well. State
and content changes provide insights with regard to the progress and long lasting
steps can be identified amongst others. Against this background, process models
focused on control flow and describing how to achieve business goals rather than
what has to be achieved are insufficient. One approach to goal externalization is
shifting the focus from control flow to data [3,4].

The three considered contexts motivate the need for extensive data modeling
capabilities in business process modeling languages. The contribution of this
paper is an evaluation of the data awareness level of current business process
modeling languages. To organize the evaluation, we develop a framework. This
framework assesses data awareness of process modeling languages against a set
of criteria. We use the framework to compare the properties of twelve modeling
languages emerged from industrial and academic initiatives. We also reflect on
the results of the evaluation and organize the studied approaches according to
their capabilities.

3

The remainder of this paper is structured as follows. Section 2 presents
the evaluation framework enabling process modeling language comparison in
Section 3. Afterwards, we discuss the summarized evaluation results and cluster
the approaches amongst different criteria in Section 4. Section 5 discusses the
related work. Section 6 concludes the paper.

2 Evaluation Framework

In this section, we present the framework for the evaluation of process modeling
languages with a main focus on their data modeling capabilities. The framework
assesses modeling languages against 23 criteria organized into four groups. The
first group comprises criteria reflecting process modeling capabilities. The second
group includes criteria that assess data modeling capabilities. The third group
reveals how strongly process and data modeling capabilities are related. Finally,
the criteria of the fourth group deal with general execution semantics and specific
execution capabilities comprising the influence of data for execution.

2.1 Process Modeling Capabilities

Process modeling capabilities describe, whether the modeling language enables
process modeling from the process perspective. A process perspective describes
which activities have to be performed in which order to achieve the process’
business goal. We distinguish the following process modeling capabilities:

1. Activity Modeling. An activity represents an unit of work. An activity example
is Create order. Activity modeling capability indicates, whether the modeling
language provides a construct for activity modeling.

2. Event Modeling An event represents something that happens within the course
of the business process. Event examples are sending of a message, timing-
incidents, and exception alerts. Event modeling capabilities show, whether
the modeling language has a standalone construct for event modeling.

3. Gateway Modeling. A gateway is a model element realizing routing logic in
the process. Gateways are used to model decisions or concurrency. A gateway
example is the AND split, where two paths are executed concurrently. For
instance, customer address details and customer bank details can be verified
independently. Gateway modeling capability reveals whether the modeling
language has specific constructs for gateways and specific gateway types.

4. Control Flow Modeling. The control flow represents the partial order between
(if existing) activities, events, and gateways for one process. Therefore, it
visualizes the set of all valid execution traces of a process. An example is the
Handle order process, where the order will be received via a message event
first, followed by creation and check of the order. Based on the outcome of
the check, i.e. the order is approved or rejected, the order will be packed and
sent to the customer or the order will be canceled. Control flow modeling
capability evaluates whether the modeling language enables the modeler to
order activities, events, and gateways explicitly.

4

created

approved rejected

Fig. 1. Example of a life cycle for data object Order

2.2 Data Modeling Capabilities

Data structure modeling constructs introduce the capabilities representing data
and of considering data possibly based on concrete data values or states. Addi-
tionally, relations between data objects play a key role for data modeling. The
identified modeling constructs are as follows:

5. Data Modeling. Data modeling indicates whether a modeling language is
capable of considering information, i.e. data, in the process specification by
any means. This data awareness may be achieved via variables, (primitive)
data types, or objects in the sense of object orientation (see below). These
data representations may exist with any complexity. Examples are an Order,
a Product description, or the Value of an item. Data modeling capability
indicates, if a modeling language provides constructs to include the utilization
of information and data within the process model.

6. Data Object Modeling. A data object is a model element that captures a unit
of data manipulated during the business process. A data object is utilized as
object in the sense of object orientation, i.e. a data object has an identity and
encapsulates the behavior of the object: The life cycle, and either complex or
a set of primitive variables and data types. An example of a data object is
Order in the Handle order process. Data object modeling capability indicates,
if a process modeling language provides constructs for capturing data objects
explicitly.

7. Data Object State Modeling. A data object state is the set of property values
characterizing the unique configuration of information of this data object.
For instance, let data object Order has the only property status with the
possible values created, approved, and rejected. Then Order can be in states
created, approved, or rejected. Data object state modeling capability shows, if
a modeling language enables the user to express data object states.

8. Data Object Life Cycle Modeling. Data object life cycle describes data object
states and the allowed state transitions. The life cycle of data object Order,
see Fig. 1, may allow the transitions from state created to state approved and
from state created to state rejected. If the modeling language has data object
life cycle modeling capability, the modeler can specify both data object states
and transitions between them.

9. Modeling of Data Object Collections. Often business processes operate with
several data objects of one type at a time. For instance, activity Pack order
may consider several Items to be delivered within one Order. In this case
modeling data objects collections is handful.

10. Persistence Mechanism Modeling. Certain process modeling scenarios re-
quire to show how data is persisted. The persistence mechanism can be

5

Data Modeling
(5)

Data Object
Modeling (6)

Data Object
States (7)

Data Object
Collections (9)

Data Object
Relations

Persistence
Mechanism (10)

Is-A Relation
(12)

Part-Of
Relation (11)

Data Object
Life Cycle (8)

Fig. 2. Relations of data modeling capability criteria

realized, e.g., by means of a database management system. Returning to the
example of order handling, the persistence mechanism may provide means
to store information about the orders in the corporate IT infrastructure.
Modeling of data persistence mechanisms enables the designer to specify
explicitly in which storage data objects are persisted.

11. Data Object part-of Relation Modeling. While some data objects are prim-
itives, others can be decomposed into more fine-grained objects. Such a
decomposition is formalized with a part-of relation. For instance, a Package
data object includes Items, each of which is a part of this package. The
part-of relation models this fact. Thereby, this criterion shows if the process
modeling language enables modeling of part-of relation for data objects.

12. Data Object is-a Relation Modeling. The is-a relation is another fundamen-
tal modeling relation. Data object is-a relation shows that one data object
type is the specialization of another data object type. An example is Order
and Purchase order, where Purchase order is-a Order. The data object is-
a relation modeling capability indicates, if the process modeling language
supports modeling of the is-a relation for data objects.

13. Are data objects mandatory elements in the process design phase?
Answering this question determines whether data must be added to
the business process model. Thereby, we assume that the potential necessity
is valid for design- as well as run-time representations, if both aspects are
supported by a modeling language.

Figure 2 interrelates the different criteria of this category and visualizes
existing dependencies. Each shown connection conforms to a leads-to relation.
Exemplarily, this means that data object life cycle modeling might only be
supported by a modeling language if data object states are supported as well.

2.3 Connection of Process and Data Modeling Capabilities

As we argued in Section 1, process and data aspects should not be examined
separately. Hence, we assess the modeling languages with regards to their capa-
bilities of data flow modeling. Data flow represents the evolution of data objects

6

within a business process. In particular, the data flow is captured by relations
between the process elements and the data objects. Hence, data flow shows the
order of manipulations for each data object along with activities performing these
manipulations. This linkage is supported by the following modeling constructs:

14. Modeling of Typed Relations between Process Elements and Data. The rela-
tions between a data object and the process element indicate the fact of data
access. These relations can be typed. The principle of relation typification
can vary depending on the notation. One example is the distinction of read
and write relations.

15. Are data object life cycle state transitions associated with activities?
Associations between state transitions and activities connect the control flow
with data of a business process and determine which actions manipulate
which data object.

2.4 Execution Semantics

For automated processes, the execution semantics of the utilized modeling ap-
proach describes how the execution eventually takes place. Therefore, we evaluate
the execution capabilities with a strong focus on data and highlight the capabilities
of including data as important part into the execution of a process.

16. Formal Token Flow Semantics. Formal token flow semantics rely on a for-
mally specified execution semantic.

17. Informal Token Flow Semantics. Informal token flow semantics rely on exe-
cution semantics which can be represented by using the token flow approach
(including multiple token flow per instance), but a formal token flow specifi-
cation is missing.

18. Data-based Decisions. Data-based decisions allow decisions based on data
which directly influence the process control. An example is for instance the
choice how to deal with an Order based on the order’s current state. Path
one is taken if the Order is in the state approved and path two is taken if
the Order is in the state rejected. Alternatively, the current value of a data
object may be used for decision making, e.g. the price of the Order is above
or below 500 Euro.

19. Execution Controlled by Control Flow only. Control flow controlled process
execution is indicated by an exclusive process guidance by the elements
introduced in group one (see Subsection 2.1), especially item number four:
Control flow. An example is a sequence of activities to Pack, Label, and Ship
an Order after the event order is accepted occurred.

20. Execution always Controlled by Data and its Dependencies. Data controlled
process execution is indicated by process guidance always basing on data
objects, their states and possibly their values or their pure existence. Thereby,
the current state and value of a data object specifies upcoming actions, which
map to activities, towards the business process goal.

7

Execution

Control Flow
Only (19)

Control Flow +
Data (21)

Always Data
(20)

Data
Existence (22)

Data Object
States (23)

Fig. 3. Relations of execution semantics criteria

21. Execution Controlled by Data and Control flow. Process control influenced
by both control flow and data is indicated if execution semantics and the
execution order base on control flow dependencies as well as data dependencies,
data states, data values or data existence, whereby we do not differentiate
the driving force. An example for such collocated process control is that
the control flow specifies the general execution order and that the data
dependencies influence the enabling of activities due to state and value
requirements. For instance, the activity Check warehouse status is planned to
be enabled after Verify order, but it can only be enabled if the data objects
Internal order and Warehouse stock are in the states approved and updated
respectively to ensure proper execution of the activity.

22. Process Control via Existence of Data. This criterion indicates that process
control is influenced by the existence or non-existence of a data object
independently from the value and the state of the data object. Existence
in our case means that the data object is defined and contains a value of
business use. An example for this criterion is the activity Verify customer
which needs a customer existing to be enabled and executed.

23. Process Control via Data Object States. This criterion builds up on the one
before but contains stricter requirements for activity enabling. The data
object does not only need to exist but it must also exist in the specified
state to be executed. An Order in state created cannot enable the activity
Pack shipment, but an Order in state accepted can do so with respect to the
business process definition.

Figure 3 outlines the relations between the criteria of this category. Each
edge of the graph conforms to a leads-to relation. Exemplarily, this means that
criteria 22 can only be supported if criteria 20 or 21 are supported by a specific
modeling language.

3 Evaluation

We evaluate twelve process modeling languages against the criteria introduced in
Section 2. These are Workflow nets, Web Services Business Process Execution

8

Warehouse
management

Customer
processing

Order
preprocessing

Order
creation Order delivery Order

invoicing
Order

completion

Fig. 4. Value chain of Handle order business process

Language (BPEL), Yet Another Workflow Language (YAWL), Event-driven
Process Chains (EPC), UML activity diagrams, Business Process Model and
Notation (BPMN), Corepro, Business Artifacts, Document-driven workflows,
ADEPT, Case handling, and State charts in that order.

The modeling capabilities of the evaluated approaches are illustrated by a
running example of a Handle order business process. This process is presented in
Fig. 4 and comprises seven main steps. To illustrate the modeling capabilities,
we use an appropriate subset of these steps for each of the evaluated modeling
languages. Following, we introduce the complete scenario.

Handle order business process. First, the order is received from a cus-
tomer and created internally to deal with it. Based on the order information,
customer details are extracted and checked. If the customer is already registered,
nothing has to be done in this respect. Otherwise, the new customer needs to
be registered and verified afterwards. The verification includes checks for the
provided address details, the bank account information, and the bank account
cash balance. If the customer could not be verified, the order is canceled and the
process closed. Otherwise, the process continuous with the Order preprocessing
step which includes a possibly iterative verification of the order. Each iteration
includes an order refinement which is performed in close cooperation with the
customer. A rejected order skips the following process steps and continuous
with the Order completion step. Approved orders are passed to the Warehouse
management step. There, the order packaging good supply are performed. After
packaging, the Order delivery step is initiated. In case the ordered products are
not on stock completely, the order can be split into two parts: The available
and the pending one. The available part is packaged and the pending part is
backordered from the customer point of view. Internally, the necessary products
are reordered and put to the warehouse after arrival. Following, the pending order
is executed again analogously to the original order. For instance, if the arrived
products are not sufficient to handle all orders, still open orders are put into
another backorder iteration. In case a product is not deliverable at all, the order
is rejected and canceled. Then, Order completion is the next process step. For
deliverable orders, the Order delivery comprises labeling, sending, and tracking
of the order. Following, the Invoice order step comprises the creation and sending
of the invoice as well as the receiving of the payment. In case the customer is
not paying, the invoice can be re-send. Alternatively, a dunning letter might be
created and sent to the customer. After receiving the payment, the process is
continued with the Order completion. If the order has been split earlier, it will
be consolidated again. The final task performed is to archive the order including
all related information.

9

i Identify
customer

Create
customer

Verify
customer

o

Cancel
order

Fig. 5. Extract of business process Handle order modeled using Workflow nets

3.1 Workflow Nets

Workflow nets are based on Petri nets introduced by Petri in [5]. After several
Petri net extensions covering for instance timing, hierarchies, and colors in
Petri nets [6,7,8,9], they are often used to model or formalize business processes.
Transitions model process activities, while places model process states and help
to realize routing decisions. The edges capture the process control flow. Workflow
nets again utilize petri nets for workflow modeling [10]. Compared to Petri nets,
Workflow nets have been extended with explicit split and join nodes to highlight
exclusiveness and parallelism relationships between activities. But generally,
Workflow nets are Petri nets with additional modeling constructs.

Data Capabilities and Limitations. Data in general or data objects specif-
ically are neither considered in the Petri net nor the Workflow net approach.
Therefore, all criteria from the categories data modeling and connection of process
and data and process modeling are not supported by Workflow nets. Execution
semantics related, Workflow nets implement the formal token flow semantics of
Petri nets and therefore, execution is controlled by control flow only. Data-based
decisions as well as data-driven execution of any kind is not supported due to
the lack of data awareness.

Example. Figure 5 introduces a Workflow net example comprising the second
step of the overall scenario. As Workflow nets only cover control flow aspects,
this net is limited to the four activities and the two decision points shown. After
identifying the customer, the step can either be completed or the customer needs
to be created and verified afterwards. Based on the verification, the process needs
either be canceled and completed that way or it will be completed via the happy
path, which leads to the upcoming order verification.

Conclusion. Workflow nets focus on modeling of process activities and control
flow. No data aspect is part of this approach.

3.2 BPEL

WS-BPEL, the Web Services Business Process Execution Language, has been
introduced by IBM, BEA Systems, Microsoft, Siebel Systems, and SAP. The

10

current version 2 has been introduced in [11] and focuses on activities, services
linked to these activities, and their order visualized by an XML structure. The
support for events and gateways is presented by the pick, switch and flow
statements. The latter one introduces parallelism into BPEL whereas the first one
allows decision taking based on external events. switch provides the capability
to include decisions based on process aspects. Comprising these aspects, BPEL
supports control flow specification which is the main driver for process execution
utilizing BPEL. Currently, BPEL is the de-facto standard for web-service-based
and IT systems supported enactment and execution of business processes.

Data Capabilities and Limitations. Data is modeled through variables
contained in globally or locally visible data containers, which might be shared
among the participants of the process. The variables represent in- and output
messages of the activities. The exchange of specific data and the manipulation of
variables is handled through BPEL’s assign statement. This either copies specified
data from one container the appropriate service cannot access to another container
the service can access or it assigns a new value to the current variable. Execution
is mainly driven by the control flow specification. However, data plays a role
with respect to existence assumptions. Services linked together by the control
flow can only be executed if the data assigned to this web service exists. Data-
based decisions are supported by references to variables in the switch statement.
Execution semantics neither follow a formal nor an informal token flow semantics.

To extend these capabilities, Habich et al. introduced a data aware extension
to BPEL in [12]. They utilize so-called Data-Grey-Box Web Services [13], which
are web services enhanced with an explicit data aspect specifying how and from
where input information and is gathered and output information is stored. This
information is added as data pointers to the SOAP message. Additionally, they
introduce a new link type to connect services from the data perspective. Following,
data dependencies and storage locations can be utilized. Altogether, the authors
propose an orthogonal extension to the control flow concept: A separate data
flow layer, which is eventually added on top of the specified process by a data
modeling expert. However, specific aspects known from data modeling, e.g. data
relations and states are not covered by this approach.

Altogether, data dependencies can be specified in BPEL, but data plays a
supporting role only.

Example. The BPEL example presented in Listing 1.1 covers the passing of the
order information from the Seller Administration dealing with the first steps until
and including the Order verification to the Seller Warehouse where packaging
and warehouse activities are performed.

1 <a s s i gn>
2 <copy>
3 <from conta ine r=” Se l l e r Admin i s t r a t i on ” part=” Inte rna lOrder ”/>
4 <to conta ine r=” Se l l e r Warehouse ” part=” Inte rna lOrder ”/>
5 </copy>
6 </ a s s i gn>

Listing 1.1. Copying order information within Handle order business process in
BPEL

11

As the aforementioned data containers usually only allow limited access,
step three in the overall order process requires a transmission of the created
and verified order from the administration to the warehouse department where
packaging will continue the process. The data passing is solved in BPEL via the
copy tag with indication of the information to be transferred and its source and
its target.

The example in Listing 1.2 presents BPEL’s capabilities with respect to data-
based decision taking. Alongside the Order variable, a second variable stating
the current state of the order is introduced. Based on the value of this variable,
the order is changed in cooperation with the customer, the customer is informed
about the rejection, or the warehouse staff deals with order packaging.

1 <switch>
2 <case cond i t i on=” getVar iableData (stateOfOrder)==undecided ”>
3 <invoke partnerLink=”Customer” operat ion=”Change order ”/>
4 </ case>
5 <case cond i t i on=” getVariableData (stateOfOrder)==r e j e c t e d ”>
6 <invoke partnerLink=”Customer” operat ion=”Reject order ”/>
7 </ case>
8 <case cond i t i on=” getVar iableData (stateOfOrder)==undecided ”>
9 <sequence>

10 <invoke partnerLink=” Se l le r Warehouse ” operat ion=”Check wh s ta tu s ”/>
11 . . .
12 </ sequence
13 </case>
14 </ a s s i gn>

Listing 1.2. Modeling a Decision within Handle order business process in BPEL

Conclusion. BPEL focuses on the control flow with data playing a minor role
by mainly shifting the responsibility to the executed services.

3.3 YAWL

YAWL, Yet Another Workflow Language, has been introduced at the Queensland
University of Technology in [14]. The main driver for developing this language
was to comprise all control flow patterns [15] initially discovered by the Workflow
Patterns initiative as novelty in business process modeling. Therefore, the process
modeling criteria are completely fulfilled. Visually, YAWL bases on Petri nets,
but the semantics are completely new defined, independently from the Petri net
semantics.

Data Capabilities and Limitations. Because of focusing on control flow pat-
terns during language development, data was out of scope for YAWL. Therefore,
the role of data is not formally specified in YAWL. This includes the absence
of data objects and all related concepts. Consequently, data is not modeled in
YAWL. However, YAWL is a business process language meant to be executed
by the YAWL engine which is part of the YAWL editor and following, data
needs to be considered at this stage. In fact, YAWL’s data support is completely
handed over to the tool. There, some of the also determined data patterns [16]

12

Identify
customer

Create
customer

Verify
customer

existent customer

new customer customer verified

customer not verified

Cancel
order

Fig. 6. Extract of business process Handle order modeled using YAWL

are considered. Besides the process modeling constructs activities, events, and
gateways their connection in terms of control flow, a YAWL process generally
contains a global, probably complex process variable as XML structure. A data
variable in YAWL is not to be seen as data object in the sense of object orientation
as discussed in the framework introduction. Additionally, tasks may work with
locally visible variables. Further, input and output behavior of variables can be
specified, whereas all data dependencies are hidden and not visualized explicitly.
The access to the variables is handled via XPath and XQuery. Decisions may be
taken based on variables.

Additional data aspects like states and relations between data are not avail-
able in the YAWL editor. The execution semantics follow a formal token flow
semantics and is based on both: control flow and data, whereas existence of data
is satisfactory for process control.

Example. The YAWL model in Figure 6 covers the customer processing step
from the scenario. The utilized data is hidden in variables and becomes visible
only at decision points for path evaluation. After the customer is identified, this
step is completed successfully in case the customer is already registered what can
be examined by evaluating the variable customer and check this one against the
production customer database. Otherwise, the customer needs to be created and
afterwards verified. The failed verification is followed by an order cancellation,
whereas an approved verification leads to the next step in the process of the
overall scenario.

Conclusion. Specification-wise, YAWL does not support any data-related aspect.
However, the YAWL editor provides the concept of global and local variables to
allow process execution based on data input and output requirements.

3.4 EPC

Event-driven Process Chains, EPCs, have been introduced by Keller et al. in [17]
and are widely accepted by industry. EPC is a graph-based notation, where the

13

nodes are distinguished into activities, events, and gateways (called connectors),
while the edges represent the control flow (called connections). Connectors are
distinguished into ORs, XORs, and ANDs. The industry demand motivated the
development of extended EPCs, eEPCs, introduced by ARIS. eEPC provide
capabilities to model organizational entities, data objects, interfaces to processes
and input/output records for functions.

Data Capabilities and Limitations. EPCs capture no data related infor-
mation, whereas eEPCs, as we argued earlier, are far more expressive. eEPCs
model data objects as a graph node that does not belong to the control flow
and is optional for process specification. Data object states are not explicitly
modeled, but can be deduced from events. Hence, no support of data object life
cycles is observed except derivation from events and utilizing them as states.
eEPC do not address data object collections, relations between data objects and
persistence mechanisms. However, eEPCs enable modeling of undirected and
directed relations between data objects and activities. Data flow is visualized
through directed relations, where the association direction points to the data
object being the activities’ input or output. Decisions are taken event-based
whereat such event may refer to a data object.

Neither EPCs, nor eEPCs do have formally defined execution semantics.

Example. The example in Figure 7 illustrates the Customer processing step.
The process assumes the existence of the order modeled as Order created event.
The subsequent activity Identify customer accesses the Order data object and
outputs the customer details. Next, the XOR gateway represents the decision. If
the details match an existing customer, no verification is needed and the process
is completed. Otherwise, a new customer entry is created. The new entry is
used for verification. The verification updates the Customer data object. If the
verification succeeds, the customer is verified. Whereas if the verification fails,
the order is canceled and the appropriate data object is updated.

Conclusion. Although eEPCs provide facilities for data modeling, data plays
the secondary role. The process design is driven by the control flow aspects. At
the same time, the semantics of data objects and their use is not formalized and
is vague. Original EPCs do not cover data at all.

3.5 UML Activity Diagrams

Activity diagrams became part of the UML specification in version 2.0 [18].
Activity diagrams formalize processes as graphs. Graph nodes are typed into
activities, data nodes, and flow nodes. The latter node type is further refined
to XOR and AND gateways. Activities may be triggered by events utilizing
the AcceptEventAction. Basically, events are supported as activity trigger but
not as concrete modeling construct. The edges represent the control flow. Data

14

Order created

Identify
customer

XOR

Existing
customer
identified

New customer
identified

Create
customer

Customer
created

Verify
customer

XOR

Customer
verified

Customer
details

Customer

Customer

Order

Customer
details

XOR

Customer not
verified

Cancel order Order

Order
cancelled

Fig. 7. Extract of business process Handle order modeled using eEPC

nodes are distinguished into pins and datastores, which both are optional in
activity diagram modeling. Datastores introduce persistence locations in terms
of databases. Pins allow data object flow modeling and therefore, they specify
input and output data conditions of activities.

Data Capabilities and Limitations. These pins represent the association of
data objects to activities. Generally, states of data objects are not part of the
specification. But due to UML’s extensibility, the modeler may annotate each
pin with a data object state. Following, state changes of data objects throughout
process execution are captured by activity diagrams. However, the object life cycle
is not given explicitly, but can be derived based on these conditions. Additionally,
data objects’ structures of any type cannot be modeled: Part-of and is-a relations
as well as data object collections are out of scope for this approach.

The execution semantics follow an informal token flow approach which is
driven by control flow aspects and, if specified, data dependencies, which consider
the actual state of the appropriate data object. Moreover, data-based decisions
are supported.

15

Create
invoice

Invoice [created]
Send

invoice
Invoice [created]

Customer [verified]
Order [sent]

Customer [verified]

Invoice [sent]
Order [invoiced]

consolidation necessary
Consolidate
split orders

Split orders [payed]

Order [consolidated]

consolidation not necessary
Receive
payment

Invoice [sent]
Order [invoiced]

Order [payed]
Order [invoiced]

payed

invoiced

Create&send
dunning letter

Dunning Letter [initial]
Customer [verified]

Re-send
invoice

Invoice [sent]
Customer [verified]

Dunning Letter [sent]

Invoice [re-sent]

invoice resend needed

dunning letter needed

Archive order

Order [archived]

Order [consolidated]
Order [payed]

Fig. 8. Extract of business process Handle order modeled using UML activity
diagrams

Example. The example in Fig. 8 comprises the last two steps of the order
process. The first activity utilizes the data objects Order and Customer in the
states sent and verified respectively. Note that we assume and relations between
all specified data objects, if they are different, and or relations if they are the
same. The result of the first activity is the created Invoice which is sent to the
customer afterwards. This send operation also changes the state of the Order
data object to invoiced. Then, the organization is awaiting the payment from the
customer. If the payment is not received within a defined timespan, the activity
is completed without any changes to the data objects. If the payment has not
been received, the next activity is either to re-send the invoice to remember
the customer or to create and send the dunning letter. Which path needs to
be chosen here is based on an external decision. If the payment arrives at the
organization, the step of order invoicing is completed and following, the last
step of the order process is initiated. In this step, the first decision is basically
based on the historical information of the Order. If it had to be split earlier, a
consolidation is performed and afterwards the archiving is initiated. Otherwise,
the Order is archived directly. After archiving, the process step and therefore,
the overall process, is completed with the data object Order in the business state
archived.

Conclusion. Data modeling capabilities of activity diagrams have supporting
character. Although, data flow is modeled explicitly and therefore, object life
cycles can be derived, data modeling is optional in UML activity diagrams.
Additionally, the models focus on the specification of control flow aspects.

3.6 BPMN

The initial version of the Business Process Modeling Notation, BPMN 1.0, was
introduced in 2004 in [19]. Within years, BPMN 1.X has experienced a large
uptake by the industry and matured to the current version 2.0 [2]. BPMN 2.0
evolves with new model elements, diagram types, and model execution semantics.

16

BPMN has rich expressiveness and provides numerous modeling constructs. In
essence, BPMN is a graph-based modeling notation. The graph nodes correspond
to modeling constructs as events, activities, data objects, and gateways. Graph
edges represent object relations, e.g., control flow, message flow, and associations.
Those graph nodes that are related by the control flow relation are referenced
as flow nodes, e.g. events, activities, and gateways. The other nodes like data
objects are non-flow nodes.

Data Capabilities and Limitations. BPMN enables explicit specification of
data objects by associating them with flow nodes. An association indicates that
the flow object accesses the data object. While undirected associations capture
only the fact of data access, directed associations indicate, whether the data
object is read or written. The modeler can also specify data objects as process
input and output to show that the specific data object is read from or written to
an process external source. A data object can be also associated with a sequence
flow to visualize data passing. In this context, it is relevant to mention the
message exchange mechanism of BPMN: Different organizations communicate
with each other via message exchange. BPMN enables capturing of messages as
graph nodes, simplifying modeling of message content.

Additionally, each data object may get assigned a data object state. While the
data object life cycle can be derived from the data object states and associations
connecting flow elements with data objects, there is no explicit life cycle modeling
support. BPMN enables modeling of neither is-a nor part-of relations of data
objects. BPMN 2.0 introduces the concept of data object collections, organizing
similar data objects. Additionally, data stores are introduced as a data persistence
instrument. Notice that the process flow is mainly driven by the control flow
elements and data is not a mandatory aspect within the process design phase.

BPMN specification prescribes the execution semantics based on tokens
informally. The basic execution order is determined by the control flow. At the
same time, data impacts the process execution in terms of data-based decisions
on gateways or as prerequisite of activity to allow activity execution. Following,
the process is driven by both the control flow and data.

Example. The BPMN example presented in Fig. 9 comprises the Order invoicing
and Order completion steps of the Handle order process. First, the invoice needs
to be created. This requires data objects Customer and Order to be retrieved from
an external source: Order from the ERP System and Customer from Customer
Database. Next, the invoice is sent to the customer, the state of the Invoice data
object is set to sent, and the Order state is set to invoiced. After sending the
invoice, the organization awaits the payment from the customer completing the
step of Order invoicing. If the payment is not received within a defined timespan,
the Receive payment activity is terminated. Based on environmental aspects,
either the invoice is re-sent or the dunning letter is created and sent to the
customer, each utilizing the specified data objects. After reminding the customer,
the Receive Payment activity is enabled again. If the payment is received, prior

17
C

us
to

m
er

S
el

le
r A

dm
in

is
tra

tio
n

Archive order

Order
[sent]

Create
invoice Send invoice

Receive
payment Create and

send dunning
letter

Invoice
[created]

Invoice
[sent]

Invoice Payment Dunning letter

Order
[invoiced]

Order
[payed]

Customer
[verified]

Order
[archived]

Dunning letter
[sent]

Dunning letter
[initial]

Consolidate
split orders

Order
[payed]

Order
[consolidated]

consolidationnc
necessary

cconsolidation
necessary

Customer
[verified]

Re-send
invoice

Invoice

Customer
[verified]

Invoice
[sent]

Invoice
[re-sent]

ERP System

ERP System Customer
Database

Invoice
sent 3 times

2 weeks

Fig. 9. Extract of business process Handle order modeled using BPMN

split orders need to be consolidated. If no split occurred earlier, the default
path is taken. The existence of a split order leads to consolidation realized as
a sequentialized multiple instance activity where each instance adds one list
element to the consolidated Order. The final step is archiving the Order within
an ERP System.

Conclusion. BPMN generally provides a high data awareness in terms of data
object specifications, implicit data dependencies, and derivable object life cycles.
However, data modeling is optional in BPMN. Following, BPMN remains an
approach focusing on control flow with modeling constructs of this type being
the only mandatory ones. Therefore, data objects remain second class modeling
constructs supporting the control flow.

3.7 Corepro

Corepro is a framework providing an approach for enacting and changing data
driven process structures belonging to the same complex process structure. Basi-
cally, there this complex process structure has an initial state, several intermediate
states, and one final state with respect to the business goal. Between these states,
processes perform business related steps to achieve the subgoals (intermediate
states), whereas branching is allowed. The Corepro approach is presented in [20]
and [21].

The core idea is to automatically create data driven process structures.
Corepro is a four-step-approach. First, the data model is defined. The data model
comprises the involved data objects and their part-of relations determining the

18

dependencies independently from specific representations of the data object, i.e.
instances. Afterwards, the life cycle coordination model is determined which
comprises the data object life cycles of each data object specified in the data
model and its dependencies for state transitions. This also includes dependencies
between states of life cycles of different data objects. Therefore, the inter-relation
between all involved data objects is defined. These both steps influence the
model level and act as schema for the instance level tackled by the remaining
steps. Step three deals with the definition of actual data structures, i.e. deriving
dependencies for actually utilized data objects from the model level. Based on
these data structures and the prior defined life cycle coordination model, the
data driven process structures are created automatically in step four. Following,
due to the given complex process structure and the defined data aspects, process
execution is highly influenced from both: Control flow and data. Based thereon,
support for all process modeling criteria can be derived.

Data Capabilities and Limitations. The execution of the processes being
part of the complex structure leads to state changes within the life cycles towards
the ultimate business goal. Within these processes, events and gateways may be
utilized. Additionally, gateways are supported on a higher level by the created
data driven process structures. For instance, parallel execution of different lifecycle
fragments and their according processes may occur.

Due to the high data involvement and the object orientation during creation
of the data driven process structures, data modeling in terms of data object
modeling is covered by Corepro. As mentioned above, each data object has
assigned a life cycle comprising all states of the object, whereas these data
objects are not categorized in collections nor the concrete storage locations are
specified. Step one and three describe the part-of relations of data objects. In
contrast, is-a relations are not part of the approach. Finally, the data object
definitions are mandatory and therefore, they need to be completely specified at
all times.

In Corepro, relations between the data objects and the appropriate processes
are defined by stating the process or process fragment to be executed to achieve
a state transition. Therefore, a direct coupling of activities and state transitions
does exist. As aforementioned, the execution is driven by control flow and data,
whereby the states of the data objects and their transitions play the main role.
Execution semantics neither follow a formal nor an informal token flow semantics.

Corepro also allows process adaptation during run-time. Therefore, the mod-
ifications made to data structures are automatically translated into the data
driven process structures. These modifications include but are not limited to
changes like adding or deleting data objects, changing relations of data objects,
or adding external state transitions. For not yet activated elements of the process,
the authors provide simple rules for the adaptation. For modifications of already
started instances, specific correctness criteria are formulated and need to be
fulfilled for allowing the intended adaptation.

19

Order

Customer Line Item ...

Name ...Address

1

1 1

1..n

1 1

1..21

i

created

create

verified

unverified changed

verify

verify change

change

verify

verify

i

entered
enter

change

empty

delete enter

add
i

added verified

unverified changed

verify

verify change

change

verify

verify

i

added
add

change

removed

remove add

Fig. 10. Extract of business process Handle order modeled using Corepro

Example. The example presented in Fig. 10 consists of two parts: The part-of
relations between the super data object Order and its sub data objects and the
data object life cycles for each element of the part-of relation. For complexity
reasons, we only show a part of the whole model. The notation for part-of
relations is similar to UML class diagrams. Each Order consists of exactly one
Customer, of one to n Line Items, and of further not presented sub data objects.
Analogously, the Customer also exists of sub data objects. The data object life
cycles are given as State charts [22]. Each is placed next to the data object it
describes.

After definition of these single State charts and the composed data objects,
linkings between the states of each data object need to be determined. In this
example, the Customer can reach the state created only, if the Name and Address
are entered or added respectively as visualized exemplarily by the dotted arrows.
Further sub data objects may provide more dependencies than just the two
mentioned. These dependencies highly drive the process execution and therefore,
influence the process control equally as the process structures.

Conclusion. Corepro closely relates control flow and data structures within a
complex process structure. Following, process execution is equally influenced by
data structures and dependencies as well as control flow aspects.

3.8 Business Artifacts

Compared to traditional process modeling languages, in Business Artifacts, the
focus changed from actions taken (control flow) to data objects on which actions
are performed. Initially introduced by Nigam and Caswell in [23], the approach
has been discussed in a series of papers, for instance [24,25], and thoroughly

20

formalized by Bhattacharya et al. in [3]. The formalization identifies Business
Artifacts, schemata, services, and business rules as main concepts of the approach.

The main idea of Business Artifacts is to achieve a closer coupling between data
and processes. Generally, Business Artifacts are information entities capturing
business process goals including the path and information to achieve them and
to enable judgment of the goal accomplishment. Examples for Business Artifacts
are the waiter’s guest check in a restaurant presented in [23] or the tracking form
of a postal organization. The tracking form, for instance, contains the goal to
deliver the shipment to the recipient, the intermediate steps to be handled, the
information needed to manage the delivery, and the final signature to indicate a
successful delivery.

Business Artifacts modeling relies on three constructs: Stages, guards, and
milestones. A rectangle with rounded corners represents the stage which maps
to a collection of activities to be performed to achieve a milestone. The stages
can be hierarchically structured. A rotated square represents the guard which
maps to an event or a condition. A guard enables a stage. A circle represents
the milestone which maps to an event or a condition as well. A milestone is
considered to be a business relevant goal and completes a stage once it is achieved.
Decisions are not supported with modeling construct. But these are captured by
the guards and milestones which guide process execution.

The relations of the formalized aspects are as follows: Services correspond to
activities. A service acts on Business Artifacts manipulating the content of the
informational model and changing the artifacts’ life cycle states. Business rules
determine the use cases and conditions which need to appear for allowing a service
to access a Business Artifact. Following, control flow is implicitly represented by
these modeling constructs.

Notice that in the new revision process of the Business Artifacts approach,
Business Artifacts are renamed to business entities with life cycles. But we will
still use the term Business Artifacts in the upcoming discussion.

Data Capabilities and Limitations. Within a process, one Business Artifact
is the key object that steers process execution. Therefore, it holds the afore-
mentioned executional information for the whole process. This also includes
references to further Business Artifacts, the key object involves in process execu-
tion. These referenced Business Artifacts only hold the information necessary for
their purpose instead of all process information.

According to the formalization in [3], a Business Artifact is a connection of
two models: The informational model and the life cycle model. The informational
model describes the artifact properties relevant to the process, e.g. a database
schema. The life cycle model defines the states and allowed state transitions,
e.g. via State charts or Petri nets. The life cycle states correspond to high-level
states on the path towards the business process goal, i.e. the intermediate steps
mentioned above. Further data capabilities are not supported. Linkage between
process and data aspects is achieved via the services.

21

Cancel order
customer

not
verified

order
canceled

Authorize customer

order
created

customer
verified

customer
not

verified

Identify customer

order
created

customer
verified

Create customer

new
customer

customer
created

new
customer

Verify customer
customer
created

customer
verified

customer
not

verified

Create order

order
received

order
created

Authorize order

order
created

&&
customer
verified

order
approved

order
rejected

Verify order
order

created
order

approved

order
rejected

Change order

order
undecided

order
changed

order
undecided

order
changed

Fig. 11. Extract of business process Handle order modeled using Business Arti-
facts

Process execution does not follow a predefined order, but bases only on the
availability of Business Artifacts in the specified state containing defined content.
Token flow semantics of any kind cannot be associated with Business Artifacts.
Data-based decisions are supported as basically all decisions are taken based on
data within this approach.

Example. The key object within the Handle order process is Order. Fig. 11
represents the first three steps and includes the linkage to a second artifact,
the Customer. If the external order received event is observed, the stage Create
order is performed leading to the event order created. After observing that
event, the Authorize customer stage is activated. This stage consists of three
substages which might, but do not necessarily need to be performed. First,
Identify customer is performed and based on the achieved milestone, the stage
is either completed or the stages Create customer and Verify customer are
executed in this order. Afterwards, the stage Authorize customer is definitely
completed with either milestone. In case the customer could not be verified,
the stage Cancel order performs the completion of the process. Otherwise, the
stage Authorize order performs the order verification and if needed an order
refinement (stage Change order). After each refinement, the verification will
be performed again. Theoretically, this iteration can be performed unlimitedly.
Based on the verification result, the appropriate next step of the Handle order
process is triggered.

Conclusion. Process execution does not follow a predefined order but depends
on the availability of Business Artifacts in a specific state or Business Artifacts

22

holding certain information. Hence, this approach utilizes data as first class
modeling construct which alone drives the business process execution.

3.9 Document-driven Workflows

Document-driven workflows have been introduced by Wang and Kumar in [26].
Within their approach, no control flow is specified explicitly. The execution of a
process is driven by documents, i.e. data objects, which are the input and output
to single tasks. Following, the specification of them is mandatory. Based on the
existence and availability of a specific document (or part of a document), execution
of a task can be started. Thereby, they distinguish between so-called hard and
soft constraints which relate to data dependencies (strict dependencies guiding
process execution without exception) on the one hand and to business policy
constraints (execution order not fixed and depends on organizations’ decisions)
on the other hand. Therefore, we consider process control of this approach to be
always data-driven.

The underlying framework relies on four layers: schema, runtime, scheduling,
and application layer. Within the schema layer, workflow processes and the
appropriate tasks and resources (in the sense of humans and data) are defined
conceptually. Events are not part of this approach and gateways only support data-
based decisions. The runtime layer deals with process execution and determines
how tasks are started and ended. For each case, one process instance is instantiated
and the tasks are executed driven by data considering the hard and soft constraints.
Following, the control flow is implicitly given by by the documents and the
gateways. The scheduling layer ensures the assignment of resources to the tasks.
Finally, the application layer provides an abstraction layer between applications
and workflows and links the application data to documents.

The authors position their framework to be very useful especially in the
field of ad-hoc processes because flexibility, i.e. execution structure changes, is
introduced easily by changing the constraints, i.e. input and output documents,
instead of completely rerouting and remodeling the process.

Data Capabilities and Limitations. The Document-driven workflow ap-
proach fundamentally deals with data. The existence of data objects fulfilling
specific requirements is the criteria which influences process execution. Thereby,
an informal token flow semantics can be applied. Following, each task needs to
get assigned at least one document to work with. This assignment is a directed
relation. For modeling, this means that this approach focuses on mandatory
input-output-representations of the utilized data objects. The access to doc-
uments may occur concurrently. The framework allows this via three locking
mechanisms (shared, exclusive, append) and via the opportunity to split and
duplicate documents. However, a large amount of concurrent data changes may
lead to conflict resolution issues, because the probability to access the same part
of a document increases. If two tasks access identical parts of a document, syn-
chronization between these accesses needs to be achieved, whereas the framework

23

Create order

Order
(received)

Customer
details

Verify
customer

XOR

Customer
(created)

XOR

Customer
(verified)

Customer
(not verified)

Cancel order

Order
(canceled)

Fig. 12. Extract of business process Handle order modeled using Document-
driven workflows

does not provide such means. Besides splitting, merging of prior split documents
is possible. Therefore, the framework allows data object aggregation and part-of
relations are supported, whereas is-a relations are out of scope as well as the
support of document collections and persistence mechanism modeling. In contrast,
the association of states to a document is available by annotating the document
with the state. However, states of documents and following data object life cycle
modeling have not been in focus of this approach.

The visualization of this approach is difficult. As the data-based constraints are
modeled using connectors, large models run into complexity and understandability
problems and the model itself ends up as spaghetti model.

Example. The example presented in Fig. 12 deals with the very beginning of
the order process until the customer who placed the order is verified or the order

24

canceled due to an unverified customer. First, the order is received. Afterwards
the order must be created and the Customer details be derived as these are the
information needed for the next step of the process. Based on the Customer
details, the decision is taken and either this process step be completed or a
new customer created. This new customer must be verified to either end again
the process step leading to the next one or to refuse the order which results
in a cancellation, which requires the unverified customer as input or rather
precondition and which outputs the order in a final state, i.e. no more work will
be performed on this document.

Conclusion. Document-driven workflows are purely data-driven. Following, data
is the first class modeling construct. Process execution relies on data dependencies
and business policies only.

3.10 ADEPT

Reichert and Dadam introduced ADEPT to support dynamic changes in business
process models [27]. The approach formalizes process models as graphs: nodes
correspond to activities and gateways, while edges represent the control flow.
Activities are shown with rectangles connected by the directed edges - the control
flow. Events are not part of this approach. ADPET allows only block-structured
process models. As the introduction of changes to process models in general and
to running process instances in particular highly depends on the process data,
Reichert and Dadam elaborate on the modeling of data, which is represented
by variables being input or output of an activity, what is modeled by means of
data links. In addition, the authors introduce correctness criteria for data flow
schemata for helping to judge, if the required process change is valid or not.

Data Capabilities and Limitations. Data is exchanged between activities by
means of global variables. A variable contains a unique identifier and the domain.
In general, the user can define data objects, specify, whether a data object is an
activity input or output, and define the data object value. Additionally, data
objects must be modeled in ADEPT. But besides, no further data aspects like
relations between data objects are covered. The concept of a data flow schema
allows to model the current state of a process. A data flow schema comprises
the set of all data links, i.e. associations between activities and data elements.
Based on the current execution of data links, the current status of the process
can be derived. For correct execution, ADEPT assumes that all specified inputs
are supplied prior execution and that all specified outputs exist after execution.
Additionally, unsynchronized activities are not allowed to write the same data
element. These developed correctness criteria enhance traditional data modeling
capabilities.

Execution of an ADEPT model follows an informal token semantic and is
driven by control flow as well as data aspects. Thereby, only data existence is
considered. The gateways mentioned earlier are operated in three ways and one
is the capability to base decisions on values of a data object.

25

Create
invoice Send invoice

Customer

Await payment
receipt

Consolidate
split orders

Archive order

Create&send
dunning letter

Re-send
invoice

Payment

Order

Split Orders

Invoice

Dunning
letter

Receive
payment

Fig. 13. Extract of business process Handle order modeled using ADEPT

Example. Fig. 13 provides an example representing the last two steps of the
overall order process scenario. The data objects Order and Customer are process
inputs as indicated through the association to the first gray rectangle. They are
utilized to create the Invoice data object which is part of the input of the two
upcoming activities Send invoice and Receive payment. The latter succeeds Await
payment receipt which acts as buffer to receive the payment by the customer.
If the payment is received, the according Payment data object exists process
execution is continued along the main path. Otherwise, if the payment does not
reach the organization, one out of two activities follows the waiting period. Based
on environment information, either the invoice should be resent or the dunning
letter created and sent. The latter shall happen, if two reminders have been sent.
After receiving the payment, one of two follow-up tasks are executed. If there
exist split orders, they will be consolidated and afterwards the consolidated order
archived. Otherwise, the single Order is archived directly. The last aspect to
be mentioned is the association of the final Order data object to the last gray
rectangle to symbolize that this data object is the process output.

Conclusion. ADEPT is an approach focusing on changes to process models as
well as process model instances. Therefore, it focuses on data dependencies and
checks these dependencies to verify requested process changes. The general data
support is limited to the linkage of data elements to activities as input or output.
Additionally, process control is steered by the existence of data.

3.11 Case Handling

Case handling has been introduced by van der Aalst, Weske, and Grünbauer in [4].
The authors designed a process modeling approach intended to capture knowledge-
intensive business processes. Within such processes, process control needs to be
flexible to improve the process’ execution by reducing the overall execution time
though parallelism. Therefore, Case handling relies on process control by data

26

and its dependencies. In this approach, data objects are represented as forms
with several data fields. The dependencies are specified between the data fields
of different forms. Activities visualize the actions to be performed utilizing the
forms for achieving the case goal. However, process execution does not follow a
predefined order of these activities. Instead, an activity is triggered when the
needed data is available, i.e. the specified data fields are filled by prior activities.
These fields may be part of different forms on which work may be performed
by different activities. Events and gateways are not supported in this approach.
However, gateways can be regarded as considered as for instance parallelism
exists if the data dependencies are fulfilled for several activities simultaneously
or overlapping in execution. Decisions cannot be regarded.

Data Capabilities and Limitations. [4] introduced the meta model for Case
handling as well as its formal framework. The framework defines the main concepts
of Case handling and specifies case execution semantics. The formalization of a
case distinguishes two object types: activities and data objects. Activities can
be in the precedence relation, which corresponds to the control flow. However,
activity execution is driven by data only and does not follow any token flow
semantic. More specific, the existence of data, i.e. information within the data
fields of forms, drive the execution. Therefore, each activity is linked to at least
one data object, i.e. form. Following, data objects are mandatory modeling
elements. For these links between activities and data objects, two types of
relations exist: Restricted relation and mandatory relation. A mandatory relation
assures that a data object is available, i.e. the specific data fields of the form are
filled, after the according activity completes. However, it does not mean that the
according activity is responsible for adding the information. It might be done
in an earlier step of the process. In contrast, a restricted relation indicates that
the according activity is responsible of filling the specific form fields. Further, for
each activity the mapping condition specifies data objects and their values that
enable execution of the activity. The activities require user interaction to enter
the information into the form fields.

Additionally, the forms are not linked to or consist specific states and therefore,
object life cycles and state transitions cannot be captured. Comprising data
objects in a collection, defining persistence aspects as well as relations between
forms are not captured by Case handling.

Example. The example visualized in Figure 14 contains the activities of the
Customer processing step. This includes the activity Create customer and the ad
hoc subprocess Verify customer from which all tasks need to be executed. With
respect to the Case handling approach, execution of each of the three tasks can
be started even if the customer creation is not completed but the data fields in
the form are filled instead. For instance, Verify cash balance can be activated
as soon as the data fields Acc No and BIC are filled. Following, parallelism and
therefore throughput is highly increased. The restricted relation indicates that
the customer form is exclusively filled by the Create customer activity.

27

Verify customer

Create
customer

Verify
address
details

Verify
account

information

Verify cash
balance

Name

Street Adr

City Zip

Phone

Acc Owner

Acc No

BIC

Bank

Request

Name

Street Adr

City Zip

Phone

Acc Owner

Acc No

BIC

Acc No

BIC

restricted

Fig. 14. Extract of business process Handle order modeled using Case handling

Conclusion. To address flexibility in process control, Case handling considers
data as a first class modeling construct and studies the relations between activities
and data in a business process. The activity execution order depends on the
availability of required data objects, i.e. on completed data fields of according
forms.

3.12 State Charts

State chart diagrams represent the behavior of usually one object, e.g. the life
cycle of a data object. They have been introduced by Harel in [22] to extend
state transition systems like automatons [28,29] with means to model hierarchies,
concurrency, and communication. State charts are a graph-based notation, where
the nodes correspond to states of an object and the edges to state transitions.
A state transition identifies the action which may be performed next on the
object described by the State chart. Therefore, the actions map to activities
with respect to our evaluation framework. The actions comprise the full set of
operations which may be performed on the appropriate object. Each state node
can be a container for several other state nodes to specify hierarchies. Entry
and exit points are possible from each contained state. Concurrency is modeled
through subgraphs divided by a continuous line within one container. Except
the aforementioned activities, no criteria from the group of process modeling
capabilities is supported by State charts.

Data Capabilities and Limitations. A State chart represents the life cycle
of one data object. Following, data object specification is mandatory for this
approach. Therefore, each diagram is linked to exactly one data object and
visualizes each state transition and the appropriate action which are associated
to the data object. However, the life cycles of two different data objects can be
aligned by utilizing so-called extension points. These synchronization points get

28

i

created

Create
order Verify order

archived

changed

rejected

approved

Verify orderVerify order

Verify order

Verify order

Verify Order

Check
warehouse status

Archive
order

partially
accepted accepted

shipped

packed

labeled

Split order

Approve
partial order

Check
warehouse status

sent

consoli-
dated payed

invoiced

i DLabel
shipment

Send
shipmentPack

shipment
τ

Ship order

Send
invoice

Send
invoice

Archive
order Archive

order

Consolidate
split orders

canceled

Cancel
order

Fig. 15. Extract of business process Handle order modeled using State charts

attached specific dependencies which include notification of another State chart
that a certain state is reached or waiting for such a notification from another State
chart before the next action can be performed. Following, dependencies between
data objects are covered by State charts. The states itself can be organized into
a hierarchy, but the data objects represented by State charts cannot. Besides the
already mentioned data capabilities, State charts do not support others. Following,
part-of and is-a relations as well as collections and persistence mechanisms are
not supported. Execution semantics are also not defined for State charts.

Considering newer specifications of State charts like the state machines part
of the UML 2 documentation [18], some additional features are supported. For
instance, UML state machines allow annotations to edges specifying conditions
for actions. Using the terminology event[guard]/action of these state machines,
an action can only be performed after the specified event occurred and the
guard condition is true. Following, UML 2 state machines support implicit event
modeling as well as data-based routing decisions.

Example. The example in Fig. 15 presents the valid state transitions of the
Order data object of the complete order process introduced in the beginning
of this section. After initialization, the activity Create order leads to the state
created which subsequently allows two different activities to be executed from
the Order data object’s point of view. These activities do not necessarily follow
directly in the process model, but these are the next ones which utilize the Order.
Therefore, either Cancel order ends the process by changing the state into the
final one canceled or Verify order leads to one out of three states based on the
result of the verification. The outcome changed requires rework on the Order
and finally reactivates the activity Verify order allowing the same upcoming
states as before. A rejection is followed by the archival activity and a proper

29

termination in the state archived. The expected path leads to approved. The
following activity Check warehouse status may lead to a rejection with equal
follow ups as mentioned before and to accepted as expected path. Additionally,
the Order ’s state may transition to partially accepted. At this point in time, a
copy of the current situation need to be done covering the part of the Order
which got accepted and the part which need further work. The notation cannot
handle this as compositions are not supported. However, assuming this partition,
the activity Split order leads to accepted for the first part or it leads to approved
for the other currently not handleable part. Afterwards, for this now as full
Order handled part, the warehouse checking is performed again with the same
consequences as above. An accepted Order gets shipped next which is indicated
by the composed state at the bottom of the example. Shipping is composed of
packaging, labeling, and sending the Order. Following, the last two steps of the
overall order process are following. Send invoice leads to invoiced followed by
payed. The last decision goes back to the partial accept earlier and consolidates
the different split Orders. Basically, the different copies of State charts for one
process instance need to be integrated into one which again is not supported by
the notation. Independently whether the Order needed to be consolidated or not,
the last activity of the process is Archive order and it leads to the final state
archived which is the same as for the rejected Orders. However, the distinction
is done due to process context information assigned to the Orders. Within this
example, we used the notation introduced by Harel. But UML 2 state machines
can be created similarly.

Conclusion. State charts usually describe the life cycle of one data object only.
But it is possible to connect State charts of different data objects in specific
synchronization states to visualize dependencies between these data objects.
Altogether, State charts are highly focused on data and represent the actual
evolution of data objects – usually from the business point of view towards the
final business goal.

4 Discussion of Evaluated Approaches

This section compares the discussed process modeling languages. We not only
summarize the modeling languages’ features, but cluster also the languages
identifying their common properties.

4.1 Modeling Language Clustering

The evaluated process modeling languages can be clustered according to different
criteria. We introduce three clustering schemata. First, we distinguish between
industrial and academic approaches according to their place of origin. Second,
we cluster the approaches with respect to their execution semantics. And lastly,
we consider the degree of data support as clustering criteria.

30

Clustering According to Origin Industrial approaches are widely used in
commercial contexts, whereas the academic approaches are designed at universities
or research facilities of companies but lack a high degree of practical usage.
Among the evaluated approaches, we consider BPEL, BPMN, EPC s, UML
activity diagrams, and Workflow nets to be industrial approaches. The others
are academic ones.

Clustering According to Execution Semantics We distinguish three ap-
proach clusters according to the execution semantics: control flow driven, data
driven, and a mixture of both named control and data flow driven cluster (com-
pare with criteria 19 to 21 in Section 2). As State charts and EPCs have no
execution semantics specified, they belong to none of the three clusters. Table 1
visualizes the results.

Control flow Control flow and data Data

Workflow nets BPEL Business Artifacts
YAWL Document-driven WF

UML AD Case handling
BPMN
Corepro
ADEPT

Table 1. Clustering of business process modeling languages based on execution
semantics

Clustering According to Data Support This classification organizes process
modeling languages according to their general data support capabilities. We
cluster all approaches based on their capabilities at design- as well as run-time.
Modeling languages without specified execution semantics are only considered
for clustering at design-time. Fig. 16 sketches the dependencies between these
clusters. The control flow driven and the data driven clusters indicate both
extremes and they meet in the middle for the equally control flow and data driven
cluster.

Control flow
driven

Control flow and
data driven

Data driven

Data aware
control flow driven

Control aware
data driven

Fig. 16. From control flow to data driven processes

31

Table 2 outlines the applied clustering criteria. Thereby, run-time clustering
considers all four sections of the table, whereas design-time clustering only
considers criteria from table sections one to three. All criteria marked with a “+”
need to be supported for the specific cluster, whereas all criteria marked with
a “–” must not be supported for belonging to that specific cluster. The marking
“o/–” indicates that a criterion may be implicitly but is not explicitly supported.
Markings “x” indicate an either or support between the criteria marked that way.
Lastly, all empty entries denote that the support can be of any strength as it
does not influence clustering.

Criteria C
lu
st
er

C
o
n
tr
o
l
fl
ow

d
ri
v
en

D
a
ta

aw
a
re

co
n
tr
o
l
fl
ow

d
ri
v
en

C
o
n
tr
o
l
a
n
d

d
a
ta

d
ri
v
en

C
o
n
tr
o
l
aw

a
re

d
a
ta

d
ri
v
en

D
a
ta

d
ri
v
en

1 Activity Modeling + + + +
2 Event Modeling + + + + o/–
3 Gateway Modeling + + +
4 Control Flow Modeling + + + o/– o/–

5 Data Modeling – + + + +
6 Data Object Modeling + + +
7 Data Object State Modeling + + +
13 Mandatory Data Objects in Design Phase? – – + + +

14 Modeling of Typed Relations – + +
15 Associations b/t. State Transitions and Activities – + +

18 Data-based Decisions – + + + +
19 Execution via Control Flow Only +
20 Execution Always via Data x +
21 Execution via Control Flow and Data + + x
23 Process Control via Data Object States +

Table 2. Overview of clustering criteria

The control flow driven languages are characterized by a complete support
of process modeling capabilities; process control is driven by control flow only.
Due to the data unawareness, data, data-based decisions, and relations between
data and traditional process modeling constructs are not supported by these
languages.

For the data aware control flow driven languages, we relax the requirements
with respect to capturing of activities and routing decisions, i.e. gateways, com-
bined with a explicit control flow representation. Additionally, data linked to
activities is a model part. Decisions may rely on data and the process control is
affected by control flow and data.

32

The cluster comprising approaches driven by control flow and data is char-
acterized by a support of all traditional process modeling constructs and basic
data constructs comprising 1) data objects as a mandatory process model part,
2) data object states, and 3) associations between activities and state transitions
of data objects. The process control is driven by control flow and data. Decisions
based on data is obligatory.

Control aware data driven approaches support the mandatory existence of
data objects, associations between activities and state transitions, states being
assigned to data objects, and data-based decisions. Process control is driven
either by data, or by a mixture of data and control flow. Control flow related
aspects needed to be comprised in an approach being part of this cluster are
activity and event modeling capabilities. However, control flow modeling is not
explicit in contrast to the aforementioned clusters.

Finally, the data driven cluster concentrates on mandatory data object mod-
eling. These data objects get states representing the evolution and decisions
taken with respect to data. The process control is driven by data object states,
rather than data object existence. Regarding the traditional process modeling
constructs, event and control flow modeling is not explicitly supported.

Based thereon, Table 3 presents the clustering of all evaluated modeling
languages. A “+” refers to an assignment of the approach to the specific cluster,
whereas a “–” indicates that the approach is not part of that cluster. Two symbols
parted by a slash (“/”) correspond to different cluster assignments at design-
and run-time due to missing execution semantics for EPCs and State charts. An
“o” indicates that we assign an approach to a cluster, yet it does not fulfill all
the cluster criteria. For instance, ADEPT is assigned to Data aware control flow
driven cluster despite the missing support of event modeling and the link between
data state transitions and activities. In general, one can realize the reasons for
“o” comparing Table 2 and Table 3.

Cluster A
p
p
ro
a
ch

W
o
rk
fl
ow

n
et
s

B
P
E
L

Y
A
W

L

eE
P
C

U
M
L
A
D

B
P
M
N

C
o
re
p
ro

B
u
si
n
es
s
A
rt
if
a
ct
s

D
o
cu

m
en

t-
d
ri
v
en

W
F

A
D
E
P
T

C
a
se

h
a
n
d
li
n
g

S
ta
te

ch
a
rt
s

Control flow driven + – – – – – – – – – – –
Data aware control flow driven – + + +/– + + – – – o – –
Control flow and data driven – – – – – – + – – – – –
Control aware data driven – – – – – – – + – – – –
Data driven – – – – – – – – + – o o/–

Table 3. Clustering of business process modeling languages based on data support
at design-time/ run-time

33

The majority of the approaches is aware of data and incorporates it for process
execution and process control as visualized in Table 3. The industrial approaches
are driven by control flow, while data is considered as a conditional factor for
enabling activities. Data driven approaches, aware as well as unaware of control
flow, currently play rather an academic role.

Evaluated Aspect M
o
d
el
in
g
L
a
n
g
u
a
g
e

W
o
rk
fl
ow

n
et
s
[1
0
]

B
P
E
L
[1
1
]

Y
A
W

L
[1
4
]

eE
P
C

[1
7
]

U
M
L
A
D

[1
8
]

B
P
M
N

[2
]

C
o
re
p
ro

[2
0
,2
1
]

B
u
si
n
es
s
A
rt
if
a
ct
s
[2
3
,3
]

D
o
cu

m
en

t-
d
ri
v
en

W
F

[2
6
]

A
D
E
P
T

[2
7
]

C
a
se

h
a
n
d
li
n
g
[4
]

S
ta
te

ch
a
rt
s
[2
2
,1
8
]

1 Activity Modeling + + + + + + + + + + + +
2 Event Modeling + + + + + + + + – – – o
3 Gateway Modeling + + + + + + + o + + – o
4 Control Flow Modeling + + + + + + + o o + + –

5 Data Modeling – + + + + + + + + + + +
6 Data Object Modeling – – – + + + + + + – + +
7 Data Object State Modeling – – – o + + + + + – – +
8 Data Object Life Cycle Modeling – – – o o o + + – – – +
9 Modeling of Data Object Collections – – – – – + – – – – – –
10 Persistence Mechanism Modeling – – – – + + – – – – – –
11 Data Object “part-of” Relation Modeling – – – – – – + – + – – –
12 Data Object “is-a” Relation Modeling – – – – – – – – – – – –
13 Mandatory Data Objects in Design Phase? – – – – – – + + + + + +

14 Modeling of Typed Relations – + + + + + + – + + + +
15 Associations b/t. State Transitions and Activities – – – – + + + + – – – +

16 Formal Token Flow Semantics + – + – – – – – – – – –
17 Informal Token Flow Semantics – – – – + + – – + + – –
18 Data-based Decisions – + + o + + + + + + – +
19 Execution via Control Flow Only + – – – – – – – – – – –
20 Execution Always via Data – – – – – – – + + – + –
21 Execution via Control Flow and Data – + + – + + + – – + – –
22 Process Control via Data Existence – + + – + + – – + + + –
23 Process Control via Data Object States – – – – – – + + – – – –

Table 4. Comparison of the evaluated business process modeling languages

34

4.2 Feature Discussion

Table 4 summarizes the results of our evaluation. It witnesses that the evaluated
approaches are very diverse. However, we observe that the data awareness of
modeling languages increases. Among the evaluated approaches, Workflow nets
are the only completely data unaware approach. With their focus on utilizing
Petri nets for process modeling, data aspects have never been in scope.

In Table 4, a “+” symbol indicates a feature support, a “–” represents a lack
of feature, and an “o” represents an implicitly supported feature. Implicitly refers
to situations where, for instance, the necessary information can be derived from
the process model, but the feature is not part of the specification.

Control flow aware as well as control flow unaware data driven approaches
lack support for traditional modeling constructs as their support of the first group
of criteria is below average for each representative. The support of data aspects
is two fold. Basically, non of these approaches achieves the highest support, but
except Case handling, they are above average and close to the top score. However,
data support is rather primitive. Data support in terms of objects is obligatory,
but data object relations and data object collections are barely supported.

The data aware control flow driven approaches are complete in terms of
traditional process modeling, but vary significantly in terms of data support. All
have in common that data is utilized within the business process – either as
variable or as object. The approaches, which capture objects, also support states
as mapping to business milestones and goals. Generally, these approaches have
the same issues as the data driven pendants: Complex data aspects, especially
relations, are rarely supported. Following, shallow data support is widespread
in process modeling approaches. But data modeling including amongst others
hierarchies, specifications, and aggregations is mostly not supported. A complete
support is reached by none of the evaluated modeling languages. Therefore, we
identify a need for data-related features. Altogether, Corepro is the only approach
coupling the worlds of traditional process and data modeling closely as both
aspects are explicitly considered for process specification and process control.

BPMN, Corepro, and UML activity diagrams are the most feature complete
approaches according to the introduced framework, see Section 2. These three
approaches support simple data modeling completely. But with respect to the
complex criteria also these approaches only achieve a limited support, i.e. one to
two complex out of four complex data modeling criteria. Following, even for these
most complete approaches, the aforementioned need for features with respect to
data modeling capabilities is observed.

However, not all features identified in the evaluation framework from Section 2
need to be supported by one modeling language for two main reasons: First,
complexity increases with a higher degree of criteria coverage. And second, most
modeling languages are created to cope with a specific problem domain and
therefore, the scope is limited. With respect to complexity, in [30,31], the authors
discuss optimal and maximum numbers of modeling constructs. They identified
20 as an optimal number of modeling constructs. But full data modeling support
within a process modeling language increases the complexity from the point

35

of view of visualized elements for a business scenario. This holds especially for
connectors and associations representing all data dependencies. A solution for
the complexity issues might be the introduction of data-oriented views on process
models or the specification of standardized interfaces between process and data
models. With respect to the scope of modeling languages, data aspects only need
to be supported to a degree the scope comprises.

For instance, we recognized a stronger focus on data in approaches like Case
handling and ADEPT which are made for business processes requiring a large
degree of flexibility. A use case application is amongst others the field of dynamic
activity reordering or parallelizing for higher throughput during run-time. Because
of their strong focus, these approaches do not necessarily comprise a large set of
covered criteria from our evaluation framework.

Approaches utilized to represent business processes meant to be implemented
provide a strong data criteria coverage due to the need of considering data
dependencies during process execution. Lastly, independent from specific model-
ing approaches, data consistency can be ensured easier by fully modeling and
specifying the dependencies.

However, data capabilities are not the only factor in choosing an approach to
use within a project or an organization. Based on the field of application and the
scope of process modeling in a particular case, the decision should be taken. For
instance, the activity driven approaches, data aware or unaware, may the pick of
choice regarding documentation of business processes. Data driven approaches
are more applicable in areas which require flexible process redesign, probably
even during process execution, or fields of knowledge intensive processes.

5 Related Work

In this section, we will introduce different works dealing with data capabilities.
We structure the section by distinguishing two basic aspects. On the one hand,
we discuss further recent evaluations of process modeling approaches with respect
to data. On the other hand, we discuss approaches dealing with or tangenting
data in the fields of business process management or workflow modeling. These
discussed approaches i) act as preparation step for developing process models
with one of the evaluated approaches, ii) utilize evaluated approaches for process
modeling, or iii) are out of scope for our evaluation.

Further Recent Evaluations. Another evaluation in the field of business process
management with respect to data is part of [32]. Müller focuses on the continuous
interplay of control flow and data within modeling, execution, adaptation, and
exception handling by assessing vendor tools as well as theoretical approaches.
Therefore, he arranges the approaches and tools in a four by four matrix indicating
the degree of process and data support on each axis. In contrast, we mainly focus
on the data aspects and assess them more detailed.

[33] evaluates different process modeling approaches with respect to their
capability to support case management. Case management focuses on process

36

execution aspects. Therefore, it basically makes use of data relations and aspects,
so-called case data, to verify and propose next execution steps especially based
on data dependencies and predefined rules. Moreover, the authors classify the
evaluated approaches based on the main modeling artifact into activity, data,
and communication driven approaches. Compared to our evaluation, the authors
considered a very limited scope and established a coarse-grained classification.
Additional evaluations are unknown to us for the best of our knowledge.

Further Approaches. The approach of product-based workflows by Reijers et al.
[34] addresses the problem of designing a workflow optimally with respect to
time or cost requirements. Thereby, a product is the business goal of a specific
workflow and corresponds to the appropriate data object as final output. To
achieve this goal, certain sub-products need to be created, which in turn may
have further sub-products. Additionally, only subsets of sub-products may be
needed to create the parent-product. This leads to a tree structure representing
the dependencies the authors call production rules. For each production rule,
the probability of use as well as costs and time consumption are annotated. An
example omitting these annotations for clarity reasons is presented in Figure 17.
Product A can be created following three different production rules: i) A is
created based on product B only, ii) A is created based on product D only, or
iii) A is created based on a combination of products B, C, and D.

A

B C D

E F G

Fig. 17. Visualization of production rules in product-based workflows

Altogether, product-based workflows is an approach which can be considered
as a pre-step to the definition of the control flow of a process. Based on data
dependencies and a well defined goal, the optimal execution path is calculated
considering side aspects like time and cost specifications. The optimal path then
is represented as a Workflow net highly influenced by data aspects.

Proclets are leight-weight processes which communicate via structured mes-
sages [35]. Each of these processes focus on the behavior of one specific case
instead of overloading single processes with information from several cases. Pro-
clets are basically a communication framework being able to utilize different
types of modeling languages, for instance the ones we discussed in Section 4.
Adapting this idea, each process, i.e. proclet, may represent a data object and
the activities needed to be performed on this data object. Synchronization, i.e.
fulfilling existing data dependencies, is achieved by utilizing the structured mes-
sages for communication. Though, proclets still utilize business process modeling
languages evaluated in this paper to represent the work performed on each data

37

object. Therefore, main aspects of the data support are driven by the utilized
modeling language.

Data provenance [36] deals with scientific workflows instead of business
processes as the approaches do we evaluate in this paper. The main difference is
the data traffic. Scientific workflows deal with data updates in the millisecond
range rather than on a daily or even monthly rate as business processes typically
do. Additionally, the focus of scientific workflows lies on querying the stream
of data to get real time answers instead of describing intended process flows.
One main challenge there is to provide meaningful answers to the queries, i.e.
understandable for the scientist performing the queries. In [37], an end-user-
centric provenance model has been introduced which bases on three operations
on data only: read, write, and state reset. The authors cluster the data operations
into sessions and as long as no state reset appears, read and write operations
belong to the same collection. Based on this information, the workflow traces can
be queried and consequently, the origin and evolution of data can be identified.
Altogether, data provenance approaches are highly data centric but not meant to
represent business processes. Nevertheless, the querying capabilities are interesting
in the field of business process monitoring. Enriching business process modeling
languages with such capabilities may lead to more detailed real-time information
during business process execution.

Petri nets [5] as one representative of place-transition-nets are usually unaware
of data. But using a mapping introduced in [38], a subset of BPMN is mapped to
petri nets focusing on the data flow implicitly modeled within BPMN. Thereby,
the evolution of a single data object within the business process is visualized. The
places represent the states of the data object and the transitions represent the
activities performed on that data object. As this utilization of place-transition-
nets is only a further interpretation and not explicitly covered by the defined
semantics of such approaches, we omit evaluating this idea alongside the other
business process modeling approaches.

In 2004, the Workflow Patterns initiative evaluated a range of at that time
current workflow systems [16]. Based on this evaluation, they derived a set of
39 patterns describing the common usage of data aspects within these systems.
This comprises data visibility, internal and external interaction, transfer, and
routing. Data visibility deals with questions with respect to who is allowed to
read data, i.e. setting the scope of a data object. Data interaction and transfer
deal with the access on data objects either with shared objects (interaction)
or separate but passed objects (transfer). Data transfer may generally occur in
external communications. Finally, routing deals with process control based on
data values and dependencies. Later, different evaluations have been obtained to
check the degree of coverage with respect to these patterns for business process
modeling notations. These include evaluations of BPMN 1.x [39], UML activity
diagrams [40], BPEL [41], and Oracle BPEL [42].

38

6 Conclusion

In this paper, we discussed the evaluation of a set of twelve process modeling
languages ranging from industry standards like BPMN, BPEL, UML activity
diagrams and industry driven approaches like EPCs to scientific approaches like
Business Artifacts, ADEPT, and Corepro with respect to their capabilities to
deal with data. Due to space limitations, we evaluated four representatives in
detail. But for the general discussion, we comprised the findings with respect to
all modeling languages. The underlying framework for our evaluation consists
of 23 criteria in four groups: Process modeling capabilities (control flow), data
modeling capabilities, connection of control flow and data modeling, and execution
semantics.

The results of the evaluation show that no process modeling notation supports
all criteria specified in the framework. Settled standards like Workflow nets and
Petri nets do not support data at all, except the modeling constructs are redefined
to represent, for instance, data object states. The highest coverage is achieved by
Corepro, UML activity diagrams, and BPMN. However, data support remains
on a shallow level in general: Only basic criteria like the representation of data
objects are widely supported, complex ones like interrelations between data
objects are mostly omitted. Also the three modeling languages with the highest
coverage only support a subset of the complex criteria.

Following, we identified a general need for features with respect to full support
modeling languages. However, the reason for shallow coverage is mostly intended
with respect to the scope of the modeling language. A full support approach
increases the complexity as, for instance, the number of modeling elements
increases. But wide acceptance requires a high understandability and an easy
use so that many modeling languages are restricted to specific use cases.

Based on our evaluation, we propose a clustering of the modeling languages
based on the awareness of process and data capabilities. Therefore, we distinguish
the groups of control flow driven, data aware control flow driven, control flow
and data driven, control aware data driven, and data driven process modeling
languages.

References

1. Elzinga, D., Horak, T., Lee, C.Y., Bruner, C.: Business process management: survey
and methodology. IEEE Transactions on Engineering Management 42(2) (1995)
119–128

2. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
http://www.omg.org/spec/BPMN/2.0/ accessed November 3, 2011.

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis
of Artifact-Centric Business Process Models. In: Business Process Management,
Springer (2007) 288–304

4. van der Aalst, W., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering 53(2) (2005) 129–162

5. Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle
Mathematik, University of Bonn (1962)

39

6. Jensen, K.: Coloured Petri Nets. Petri nets: Central Models and Their Properties
254 (1987) 248–299

7. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis methods, and Practical
Use. Volume 1–3. (1996)

8. van der Aalst, W.: Timed Coloured Petri Nets and their Application to Logistics.
PhD thesis, Eindhoven University of Technology (1992)

9. van der Aalst, W.: Putting high-level Petri nets to work in industry. Computers in
Industry 25(1) (1994) 45–54

10. Van der Aalst, W.: The Application of Petri Nets to Workflow Management.
Circuits Systems and Computers 8 (1998) 21–66

11. OASIS: Web Services Business Process Execution Language, Version 2.0 (April 2007)
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html accessed Novem-
ber 3, 2011.

12. Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A.: BPEL-DT
- Data-Aware Extension of BPEL to Support Data-Intensive Service Applications.
In: Emerging Web Services Technology. (2007) 111–128

13. Habich, D., Richly, S., Grasselt, M.: Data-Grey-Boxweb Services in Data-Centric
Environments. In: IEEE International Conference on Web Services. (2007) 976–983

14. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language.
Information Systems 30(4) (2005) 245–275

15. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow
Patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

16. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Data Patterns. Technical report, Queensland University of Technology (2004)

17. Keller, G., Nüttgens, M., Scheer, A.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report Heft 89,
Institut für Wirtschaftsinformatik, University of Saarland (1992)

18. OMG: Unified Modeling Language (UML), Version 2.2 (February 2009)
http://www.omg.org/spec/UML/2.2/ accessed November 3, 2011.

19. BPMI: Business Process Modeling Notation (BPMN), Version 1.0 (May 2004)
http://www.bpmi.org/downloads/BPMN-V1.0.pdf accessed November 3, 2011.

20. Müller, D., Reichert, M., Herbst, J.: Flexibility of Data-driven Process Structures.
In: Business Process Management Workshops, Springer (2006) 181–192

21. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In: Advanced Information
Systems Engineering, Springer (2008) 48–63

22. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8(3) (1987) 231–274

23. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3) (2003) 428–445

24. Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Business
Processes. Handbook of Research on Business Process Management (2009)

25. Kumaran, S., Liu, R., Wu, F.: On the Duality of Information-Centric and Activity-
Centric Models of Business Processes. In: Advanced Information Systems Engineer-
ing, Springer (2008) 32–47

26. Wang, J., Kumar, A.: A Framework for Document-Driven Workflow Systems. In:
Business Process Management, Springer (2005) 285–301

27. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows
without losing control. Intelligent Information Systems 10(2) (1998) 93–129

28. Mealy, G.H.: A Method for Synthesizing Sequential Circuits. Bell Systems Technical
Journal 34 (1955) 1045–1079

40

29. Moore, E.: Gedanken-Experiments on Sequential Machines. Automata Studies 34
(1956) 129–153

30. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Volume 6 of LNBIP. Springer
(2008)

31. Mendling, J., Reijers, H.A., van der Aalst, W.: Seven Process Modeling Guidelines
(7PMG). Information & Software Technology 52(2) (2010) 127–136

32. Müller, D.: Management datengetriebener Prozessstrukturen. PhD thesis, University
of Ulm (2009)

33. de Man, H.: Case Management: A Review of Modeling Approaches. Technical
report, BPTrends (2009)

34. Reijers, H., Limam, S., van der Aalst, W.: Product-Based Workflow Design.
Management Information Systems 20(1) (2003) 229–262

35. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Workflow Modeling using
Proclets. In: Cooperative Information Systems, Springer (2000) 198–209

36. Goble, C.: Position Statement: Musings on Provenance, Workflow and (Semantic
Web) Annotations for Bioinformatics. In: Workshop on Data Derivation and
Provenance. (2002)

37. Bowers, S., McPhillips, T., Ludäscher, B., Cohen, S., Davidson, S.: A Model for
User-Oriented Data Provenance in Pipelined Scientific Workflows. Provenance and
Annotation of Data (2006) 133–147

38. Awad, A., Decker, G., Lohmann, N.: Diagnosing and Repairing Data Anomalies
in Process Models. In: Business Process Management Workshops, Springer (2010)
5–16

39. Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N.: On
the Suitability of BPMN for Business Process Modelling. In: Business Process
Management, Springer (2006) 161–176

40. Russell, N., van der Aalst, W., ter Hofstede, A., Wohed, P.: On the Suitability
of UML 2.0 Activity Diagrams for Business Process Modelling. In: Conceptual
Modelling, Australian Computer Society, Inc. (2006) 95–104

41. van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N., Verbeek, H., Wohed,
P.: Life after BPEL? In: Web Services and Formal Methods, Springer (2005) 35–50

42. Mulyar, N.: Pattern-based Evaluation of Oracle-BPEL (v. 10.1. 2). Technical
report, Eindhoven University of Technology (2005)

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

49 978-3-86956-

143-1
Adaptive Windows for Duplicate Detection Uwe Draisbach, Felix Naumann,

Sascha Szott, Oliver Wonneberg

48 978-3-86956-
134-9

CSOM/PL: A Virtual Machine Product Line

Michael Haupt, Stefan Marr,
Robert Hirschfeld

47 978-3-86956-
130-1

State Propagation in Abstracted Business
Processes

Sergey Smirnov, Armin Zamani
Farahani, Mathias Weske

46 978-3-86956-
129-5

Proceedings of the 5th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren
des HPI

45 978-3-86956-
128-8

Survey on Healthcare IT systems:
Standards, Regulations and Security

Christian Neuhaus,
Andreas Polze,
Mohammad M. R. Chowdhuryy

44 978-3-86956-
113-4

Virtualisierung und Cloud Computing:
Konzepte, Technologiestudie,
Marktübersicht

Christoph Meinel, Christian
Willems, Sebastian Roschke,
Maxim Schnjakin

43 978-3-86956-
110-3

SOA-Security 2010 : Symposium für
Sicherheit in Service-orientierten
Architekturen ; 28. / 29. Oktober 2010 am
Hasso-Plattner-Institut

Christoph Meinel,
Ivonne Thomas,
Robert Warschofsky et al.

42 978-3-86956-
114-1

Proceedings of the Fall 2010 Future SOC
Lab Day

Hrsg. von Christoph Meinel,
Andreas Polze, Alexander Zeier
et al.

41 978-3-86956-
108-0

The effect of tangible media on
individuals in business process modeling:
A controlled experiment

Alexander Lübbe

40 978-3-86956-
106-6

Selected Papers of the International
Workshop on Smalltalk Technologies
(IWST’10)

Hrsg. von Michael Haupt,
Robert Hirschfeld

39 978-3-86956-
092-2

Dritter Deutscher IPv6 Gipfel 2010 Hrsg. von Christoph Meinel und
Harald Sack

38 978-3-86956-
081-6

Extracting Structured Information from
Wikipedia Articles to Populate Infoboxes

Dustin Lange, Christoph Böhm,
Felix Naumann

37 978-3-86956-
078-6

Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple
Graph Grammars

Holger Giese,
Stephan Hildebrandt,
Leen Lambers

36 978-3-86956-
065-6

Pattern Matching for an Object-oriented
and Dynamically Typed Programming
Language

Felix Geller, Robert Hirschfeld,
Gilad Bracha

35 978-3-86956-
054-0

Business Process Model Abstraction:
Theory and Practice

Sergey Smirnov, Hajo A. Reijers,
Thijs Nugteren, Mathias Weske

34 978-3-86956-
048-9

Efficient and exact computation of
inclusion dependencies for data
integration

Jana Bauckmann, Ulf Leser,
Felix Naumann

33 978-3-86956-
043-4

Proceedings of the 9th Workshop on
Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS '10)

Hrsg. von Bram Adams,
Michael Haupt, Daniel Lohmann

ISBN 978-3-86956-144-8
ISSN 1613-5652

	Titelblatt
	Impressum

	Abstract
	1 Introduction
	2 Evaluation Framework
	2.1 Process Modeling Capabilities
	2.2 Data Modeling Capabilities
	2.3 Connection of Process and Data Modeling Capabilities
	2.4 Execution Semantics

	3 Evaluation
	3.1 Workflow Nets
	3.2 BPEL
	3.3 YAWL
	3.4 EPC
	3.5 UML Activity Diagrams
	3.6 BPMN
	3.7 Corepro
	3.8 Business Artifacts
	3.9 Document-driven Workflows
	3.10 ADEPT
	3.11 Case Handling
	3.12 State Charts

	4 Discussion of Evaluated Approaches
	4.1 Modeling Language Clustering
	4.2 Feature Discussion

	5 Related Work
	6 Conclusion
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

