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Abstract

Supermassive black holes are a fundamental component of the universe in general and of galaxies in particular.
Almost every massive galaxy harbours a supermassive black hole (SMBH) in its center. Furthermore, there is a
close connection between the growth of the SMBH and the evolution of its host galaxy, manifested in the relation-
ship between the mass of the black hole and various properties of the galaxy’s spheroid component, like its stellar
velocity dispersion, luminosity or mass. Understanding this relationship and the growth of SMBHs is essential for
our picture of galaxy formation and evolution. In this thesis, I make several contributions to improve our knowl-
edge on the census of SMBHs and on the coevolution of black holes and galaxies.

The first route I follow on this road is to obtain a complete census of the black hole population and its properties.
Here, I focus particularly on active black holes, observable as Active Galactic Nuclei (AGN) or quasars. These are
found in large surveys of the sky. In this thesis, I use one of these surveys, the Hamburg/ESO survey (HES), to
study the AGN population in the local volume (z ~ 0). The demographics of AGN are traditionally represented
by the AGN luminosity function, the distribution function of AGN at a given luminosity. I determined the local
(z < 0.3) optical luminosity function of so-called type 1 AGN, based on the broad band B; magnitudes and AGN
broad Ha emission line luminosities, free of contamination from the host galaxy. I combined this result with fainter
data from the Sloan Digital Sky Survey (SDSS) and constructed the best current optical AGN luminosity function
at z = 0. The comparison of the luminosity function with higher redshifts supports the current notion of “AGN
downsizing”, i.e. the space density of the most luminous AGN peaks at higher redshifts and the space density of
less luminous AGN peaks at lower redshifts.

However, the AGN luminosity function does not reveal the full picture of active black hole demographics. This
requires knowledge of the physical quantities, foremost the black hole mass and the accretion rate of the black hole,
and the respective distribution functions, the active black hole mass function and the Eddington ratio distribution
function. I developed a method for an unbiased estimate of these two distribution functions, employing a maximum
likelihood technique and fully account for the selection function. I used this method to determine the active black
hole mass function and the Eddington ratio distribution function for the local universe from the HES. I found a
wide intrinsic distribution of black hole accretion rates and black hole masses. The comparison of the local active
black hole mass function with the local total black hole mass function reveals evidence for “AGN downsizing”, in
the sense that in the local universe the most massive black holes are in a less active stage then lower mass black
holes.

The second route I follow is a study of redshift evolution in the black hole-galaxy relations. While theoretical mod-
els can in general explain the existence of these relations, their redshift evolution puts strong constraints on these
models. Observational studies on the black hole-galaxy relations naturally suffer from selection effects. These can
potentially bias the conclusions inferred from the observations, if they are not taken into account. I investigated
the issue of selection effects on type 1 AGN samples in detail and discuss various sources of bias, e.g. an AGN
luminosity bias, an active fraction bias and an AGN evolution bias. If the selection function of the observational
sample and the underlying distribution functions are known, it is possible to correct for this bias. I presented a
fitting method to obtain an unbiased estimate of the intrinsic black hole-galaxy relations from samples that are
affected by selection effects.

Third, I try to improve our census of dormant black holes and the determination of their masses. One of the most
important techniques to determine the black hole mass in quiescent galaxies is via stellar dynamical modeling.
This method employs photometric and kinematic observations of the galaxy and infers the gravitational potential
from the stellar orbits. This method can reveal the presence of the black hole and give its mass, if the sphere of
the black hole’s gravitational influence is spatially resolved. However, usually the presence of a dark matter halo is
ignored in the dynamical modeling, potentially causing a bias on the determined black hole mass. I ran dynamical
models for a sample of 12 galaxies, including a dark matter halo. For galaxies for which the black hole’s sphere
of influence is not well resolved, I found that the black hole mass is systematically underestimated when the dark
matter halo is ignored, while there is almost no effect for galaxies with well resolved sphere of influence.






Zusammenfassung

Supermassereiche Schwarze Locher sind ein fundamentaler Bestandteil unseres Universims im Allgemeinen, und
von Galaxien im Besonderen. Fast jede massereiche Galaxie beherbergt ein supermassereiches Schwarzes Loch in
seinem Zentrum. Auflerdem existiert eine enge Beziehung zwischen dem Wachstum des Schwarzen Loches und
der Entwicklung seiner umgebenden Galaxie. Diese zeigt sich besonders in der engen Beziehung zwischen der
Masse eines Schwarzen Loches und den Eigenschaften der sphidroidalen Komponente der Galaxie, beispielsweise
seiner stellaren Geschwindigkeitsdispersion, seiner Leuchtkraft und seiner Masse. Diese Beziehung erkldren zu
konnen, sowie das Wachstum von Schwarzen Lochern zu verstehen, liefert einen wichtigen Beitrag zu unserem
Bild der Entstehung und Entwicklung von Galaxien. In dieser Arbeit steuere ich verschiedene Beitrige dazu bei
unser Verstindnis des Vorkommens Schwarzer Locher und der Beziehung zu ihren Galaxien zu verbessern.
Zunichst versuche ich ein vollstiandiges Bild der Anzahl und Eigenschaften Schwarzer Locher zu erhalten. Dazu
beschrinke ich mich auf aktive Schwarze Locher, wie man sie im Universum als Aktive Galaxienkerne (AGN)
in groen Himmelsdurchmusterungen finden kann. Ich benutze eine solche Durchmusterung, das Hamburg/ESO
Survey (HES), um die AGN Population im lokalen Universum zu studieren. Dazu habe ich die optische
Leuchtkraftfunktion von AGN des Typs 1 bestimmt. Diese habe ich mit anderen Ergebnissen leuchtschwécherer
AGN kombiniert um die bisher beste AGN Leuchtkraftfunktion bei z ~ 0 zu erhalten. Der Vergleich mit
Ergebnissen bei hoherer kosmischer Rotverschiebung bestitigt unser Bild des sogenannten "AGN downsiz-
ing®. Dies sagt aus, dass leuchtkriftige AGN bei hoher Rotverschiebung am hiufigsten vorkommen, wihrend
leuchtschwache AGN bei niedriger Rotverschiebung am hiufigsten sind.

Allerdings verrit uns die AGN Leuchtkraftfunktion allein noch nicht das ganze Bild der Demographie Schwarzer
Locher. Vielmehr sind wir an den zugrunde liegenden Eigenschaften, vor allem der Masse und der Akkretionsrate
der Schwarzen Locher, sowie deren statistischen Verteilungsfunktionen, interessiert. Ich habe eine Methode en-
twickelt um diese beiden Verteilungsfunktionen zu bestimmen, basierend auf der Maximum-Likelihood-Methode.
Dabei beriicksichtige ich vor allem vollstindig die Auswahleffekte der Stichprobe. Ich habe diese Methode be-
nutzt um die aktive Massenfunktion Schwarzer Locher, sowie die Verteilungsfunktion ihrer Akkretionsraten
fiir das lokale Universum aus dem HES zu bestimmen. Sowohl die Akkretionsraten, als auch die Massen
der Schwarzen Locher zeigen intrinsisch eine breite Verteilung, im Gegensatz zur schmaleren beobachtbaren
Verteilung. Der Vergleich der aktiven Massenfunktion mit der gesamten Massenfunktion Schwarzer Locher zeigt
ebenfalls Hinweise auf ”AGN downsizing®, in dem Sinne, dass im lokalen Universum die schwersten Schwarzen
Locher weniger aktiv sind als ihre leichteren Verwandten.

Als nichstes habe ich mich mit Untersuchungen zur zeitlichen Entwicklung in den Beziehungen zwischen
Schwarzem Loch und Galaxie beschiftigt. Diese kann helfen unser theoretisches Vestidndnis der physikalis-
chen Vorginge zu verbessern. Beobachtungen sind immer auch Auswahleffekten unterworfen. Diese konnen die
Schlussfolgerungen aus den Beobachtungen zur Entwicklung in den Beziehungen beeinflussen, wenn sie nicht
entsprechend beriicksichtigt werden. Ich habe den Einfluss von Auswahleffekten auf Typ 1 AGN Stichproben
im Detail untersucht, und verschiedende mochgliche Einflussquellen identifiziert, die die Beziehung verfilschen
konnen. Wenn die Auswahlkriterien der Stichprobe, sowie die zugrunde liegenden Verteilungen bekannt sind, so
ist es moglich fiir die Auswahleffekte zu korrigieren. Ich habe eine Methode entwickelt, mit der man die intrinsis-
che Beziehung zwischem Schwarzem Loch und Galaxie aus den Beobachtungen rekonstruieren kann.

SchlieBlich habe ich mich auch inaktiven Schwarzen Lochern und der Bestimmung ihrer Massen gewidmet. Eine
der wichtigsten Methoden die Masse Schwarzer Locher in normalen Galaxien zu bestimmen ist stellardynamische
Modellierung. Diese Methode benutzt photometrische und kinematische Beobachtungen, und rekonstruiert daraus
das Gravitationspotenzial aus der Analyse stellarer Orbits. Diese Methode kann ein supermassereiches Schwarzes
Loch im Zentrum der Galaxie entdecken und seine Masse bestimmen, sofern das gravitative Einflussgebiet des
Schwarzen Loches raumlich aufgeldst wird. Bisher wurde in diesen Modellen allerdings der Einfluss des Halos
aus Dunkler Materie vernachlissigt. Dieser kann aber die Bestimmung der Masse des Schwarzen Loches beein-
flussen. Ich habe 12 Galaxien mit Hilfe stellardynamischer Modellierung untersucht und dabei auch den Einfluss
des Halos aus Dunkler Materie berticksichtigt. Fiir Galaxien bei denen der Einflussbereich des Schwarzen Loches
nicht sehr gut aufgeldst war, wird die Masse des Schwarzen Loches systematisch unterschitzt, wenn der Dunkle
Materie Halo nicht beriicksichtigt wird. Auf der anderen Seite ist der Einfluss gering, wenn die Beobachtungen
diesen Einflussbereich gut auflosen kénnen.






Chapter 1

Introduction

1.1. Active Galactic Nuclei
1.1.1. AGN phenomenology

Active Galactic Nuclei (AGN) are essential ingredients of our
universe. AGN activity constitutes an important phase in the life
and evolution of galaxies. Thus, we need to understand these
objects and their connection to their host galaxies for a compre-
hensive picture of galaxy formation and evolution. Furthermore,
AGNSs are excellent laboratories to study high energy and strong
gravity processes.

AGN are sub-divided into several sub-classes, like Seyfert
galaxies, QSOs or quasars, Blazars, LINERs and Radio galax-
ies. While they all differ in appearance, they share some com-
mon properties. Characteristic are prominent high-ionization
emission lines, especially in Seyfert galaxies and QSOs. The ad-
ditional sub-classes of Seyfert 1 galaxies and type 1 QSOs show
narrow forbidden lines, like [O 1] or [N 1], and broad permitted
lines (FWHM > 1000 km s~"), like the Balmer lines or Mgu
in their spectra. On top of the broad lines, often also a narrow
component is present. On the other hand, Seyfert 2 galaxies and
type 2 QSOs also show narrow forbidden lines, but lack broad
lines. Their permitted lines are also narrow.

Seyfert galaxies and QSOs form a continuous population,
with their main difference being the luminosity of the nuclear
point source. Seyfert galaxies harbour lower luminosity AGN,
whereas QSOs are high luminosity AGN. Indeed, QSOs belong
to the most luminous objects in the universe. While in Seyfert
galaxies the AGN host galaxy is conspicuous, in QSOs it is out-
shined by the luminous AGN. A careful subtraction of the point
source in QSOs is required to reveal the underlying host galaxy
(e.g. McLeod & Rieke 1994a,b; Bahcall et al. 1997; McLure
et al. 1999), utilizing high resolution ground based or Hubble
Space Telescope (HST) observations. These studies showed
that QSOs preferentially (although not exclusively) reside in
massive elliptical galaxies, whereas Seyfert host galaxies are
mainly spiral galaxies. This morphological difference is under-
stood by the fact that more luminous AGN on average harbour
more massive black holes, and the presence of a tight correla-
tion between the mass of the black hole and the mass of the
galaxies bulge component (see Section 1.3.1).

A fraction of the AGN population is radio-loud, includ-
ing radio-loud quasars (~ 10%), radio galaxies and blazars.
Furthermore, AGN show a broad spectral energy distribution
(SED), ranging from X-rays or even y-rays, over the UV and

optical to infrared (IR), up to the radio regime (at least for radio-
loud AGN). On narrow frequency ranges, the SED can be ap-
proximated well by a power law of the form f, ~ v™®, with
typical values in the optical regime of 0 < @ < 1 (e.g. Vanden
Berk et al. 2001).

Almost all AGN show rapid optical variability, on nearly all
time scales, from years up to a few days. This variability is not
only observed in the continuum but also in the broad emission
lines. Light travel arguments imply that emission with variabil-
ity of a few days has to originate in a region of the size of a few
light-days. Thus, AGN variability provides evidence for small
spatial scales related to the AGN phenomenon.

1.1.2. AGN structure

Our standard model of the AGN structure is already able to ex-
plain a large fraction of the AGN phenomenology. The different
AGN classes are unified by means of intrinsic luminosity and
orientation. Nevertheless, many open questions on the structure
and properties of AGN remain.

It is now well established that the energy source of AGN
is accretion of gas and dust onto supermassive black holes
(Salpeter 1964; Lynden-Bell 1969). This is based on theoretical
grounds, as it is the only possible explanation for the observed
AGN phenomena (e.g. Rees 1984). Furthermore, there is strong
evidence for the presence of a compact, massive object, most
probably a supermassive black hole in the center of quiescent
galaxies (see section 1.2).

The gravitational potential energy of the infalling material is
converted into kinetic energy and through dissipation into heat
and radiation. The emitted luminosity is

L=nMc*, (L.1)

were M = dM/dt is the mass accretion rate onto the black
hole, and 7 is the radiative efficiency of the energy produc-
tion in terms of the rest mass energy. This efficiency depends
on the radius at which the emission process occurs. For non-
rotating Schwarzschild black holes the innermost stable orbit
is at r = 6GM, /c?, corresponding to a maximum efficiency of
n = 0.057. For maximally rotating Kerr black holes the effi-
ciency increases up to 7 = 0.42 (Novikov & Thorne 1973). The
commonly adopted value is 7 = 0.1. Thus, to power a luminous
QSO with Ly, ~ 10% erg s~ an accretion rate of M ~ 2M,
yr~! is required. This means that during QSO phases the black
hole is growing with time through mass accretion.
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Fig. 1.1. Composite quasar spectrum from the Hamburg/ESO
Survey QSO sample in the rest-frame wavelength optical range.
All spectra with z < 0.3 have been used to construct the
composite. The most prominent emmission lines are the broad
Balmer lines and the narrow [O m] doublet.

An indication for the maximum luminosity of an accreting
black hole is given by the Eddington luminosity

4nGcem,

M, -
Lad = M, =13x10% (V)ergs a2

or o)

with G the Gravitational constant, ¢ the speed of light, m,, the
proton mass and o the Thomson cross section. Its the lumi-
nosity in the equilibrium state between the gravitational force
and the force from radiation pressure. The Eddington limit is
the luminosity limit in the case of spherical accretion. However,
super-Eddington accretion is possible for non-spherical accre-
tion, e.g. within a disk, while the radiation is primarily emitted
along the disk axis.

Indeed, in AGN the accretion onto the black hole is fun-
neled through a disk. Within the disk, angular momentum has
to be transported outwards, while the gas is carried inwards,
allowing accretion onto the black hole. This is achieved by vis-
cosity in the disk, probably due to turbulent motion (Shakura &
Sunyaev 1973). A possible source for this turbulence are mag-
netorotational instabilities (Balbus & Hawley 1991), however
the details are currently poorly known. The emitted spectrum
from an AGN accretion disk is the composite of thermal spec-
tra with individual temperatures throughout the disk, peaking
around ~ 100 A. The disk emission mainly contributes to the
UV and soft X-rays, giving rise to the “big blue bump” observed
in the UV in the AGN SED (Shields 1978). The additional soft
X-ray to hard X-ray emission is believed to originate in a hot
corona of ionized plasma, surrounding the accretion disk, radi-
ating via bremsstrahlung and/or inverse Compton scattering of
disk photons.

Usually, the disk is assumed to be optically thick and geo-
metrically thin, corresponding to an radiatively efficient accre-
tion flow. An alternative accretion mode is an optically thin,

geometrically thick disk, corresponding to an radiatively ineffi-
cient accretion flow (RIAF). This can be for example via an ad-
vection dominated accretion flow (ADAF; Narayan & Yi 1994;
Yuan 2007). The kinetic energy is not radiated, but either ad-
vected with the matter into the black hole, or redirected into an
outflow. Such a mode is expected for low luminosity AGNs, like
Low Ionization Nuclear Emission Region galaxies (LINERS).
This picture has been challenged recently by the observation of
SEDs in low luminosity AGN showing a big blue bump (Maoz
2007), but they are also consistent with ADAF model spectra
(Yu et al. 2011).

The optical emission lines in AGN spectra are thought to
originate in two separate regions, at different distances from the
central black hole. The broad emission lines are emitted in a rel-
atively dense (n, ~ 10'% cm™3), unresolved area, the so-called
broad line region (BLR), close to the accretion disk. The BLR
is photonionized by the UV radiation from the disk, producing
the observed broad recombination lines. The line widths of 500
km/s up to 10000 km/s full width at half maximum (FWHM)
are interpreted as Doppler shifts from bulk gravitational motion
of optically thick gas clouds in the vicinity of the black hole (of
the order of several light-days). The geometry and kinematics of
the BLR are poorly known. A common, simple assumption is a
spherical BLR. However, there is also evidence for a disk-like
structure, at least for radio-loud AGN (Wills & Browne 1986;
Brotherton 1996; Vestergaard et al. 2000). Also for radio-quiet
AGN a non-spherical BLR is implied (McLure & Dunlop 2002;
Smith et al. 2005; Labita et al. 2006). The question if the BLR
also exhibits inflows and/or outflows is still unresolved. An ob-
servational tool to study the BLR, and potentially also probe
their structure, is reverberation mapping (see 1.2.2).

The narrow emission lines originate in optically thin gas,
spatially extended on scales up to several kpc, the narrow line
region (NLR). The NLR can be spatially resolved. The electron
density in the NLR is in the range n, ~ 10* — 10® cm=3, suffi-
ciently low for forbidden lines to arise, which would be colli-
sionally suppressed otherwise. The line widths range from 200
km/s to 900 km/s FWHM.

The main difference between Seyfert 1 and Seyfert 2 galax-
ies is the presence or absence of broad emission lines. Both
classes are successfully joined in the standard unified paradigm,
based on an orientation effect (Antonucci 1993). This postulates
the presence of a dusty torus, or some sort of toroidal obscuring
region, outside of the BLR but inside of the NLR. If the viewing
angle is nearly edge-on, the BLR is shielded from our view by
the torus - the AGN appears as a Seyfert 2, with a much weaker
AGN continuum radiation and without an observed BLR. If the
viewing angle is face-on, the BLR is seen and the AGN is clas-
sified as a Seyfert 1. The narrow lines are emitted on a larger
scale in the NLR and are thus always seen.

This unification is also valid for the higher luminosity
quasars, with type-1 QSOs corresponding to Seyfert 1s and
type-2 QSOs corresponding to Seyfert 2s, although most QSOs
detected in optical/lUV AGN surveys are type-1 and only a few
type-2 QSOs are known (Zakamska et al. 2003). Indeed, it is
known that the type 2 fraction depends on AGN luminosity,
with a decrease of the type 2 fraction for increasing luminos-
ity. This trend is seen at all wavelengths, in the optical (Hao
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et al. 2005; Simpson 2005), in the mid-IR (Maiolino et al. 2007;
Treister et al. 2008) and in X-rays (Ueda et al. 2003; Hasinger
2008). In the unified scheme, this corresponds to a decrease of
the opening angle of the torus, with increasing luminosity.

Strong support for the unified picture comes from spec-
tropolarimetric observations of Seyfert 2 galaxies (Antonucci &
Miller 1985; Tran 1995a,b) and type 2 QSOs (Zakamska et al.
2005). The first discussed case was the prototypical Seyfert 2
galaxy NGC 1068, which revealed weak broad lines in the po-
larised light. This is due to light from the BLR reflected into our
line of sight by dust and electrons in the NLR. Thus, NGC 1068
contains a BLR, hidden to our view by an obscuring torus.

The continuum radiation from the accretion disk is ab-
sorbed by the dusty torus, and re-emitted in the mid-infrared.
Interferometric observations of nearby Seyfert 2s in the mid-
infrared could even spatially resolve the torus, as a geomet-
rically thick, dust distribution of clumpy material (Jaffe et al.
2004; Tristram et al. 2007; Raban et al. 2009). They support
ideas of a clumpy torus, as a continuation of the BLR beyond the
dust sublimation radius (e.g. Elitzur & Shlosman 2006; Elitzur
2008; Nenkova et al. 2008).

Radio-loud AGN additionally posses a relativistic outflow-
ing jet, mainly observed in the radio. It originates in the vicinity
of the black hole, perpendicular to the accretion disk, and can
extend to large scales, up to megaparsecs, where it runs into
a lobe. Radio-loud AGN can also be largely unified by orien-
tation (Antonucci 1993; Urry & Padovani 1995). In powerful
radio galaxies (of so-called FR II type), the AGN is viewed,
analog to Seyfert 2s, more edge-on, while in radio-loud quasars
we see the AGN under a smaller viewing angle. In Blazars (BL
Lac objects and Optically Violent Variable quasars), we view
the AGN almost face-on, thus with a small angle to the rela-
tivistic jet. This scheme can adequately explain the observed
diversity in radio-loud AGN. The SED in radio-loud AGN, and
in particular in blazars, is dominated by non-thermal emission
from the jet. This is mainly synchrotron radiation in the radio
to the UV/X-ray regime, and inverse Compton scattering from
X-rays up to the y-ray regime.

Further information on the history of AGN, their phe-
nomenology, properties and structure can be found for example
in Shields (1999), Peterson (1997), Krolik (1999), Osterbrock
& Ferland (2006) and Mo et al. (2010).

1.1.3. AGN Surveys

To study the AGN population as a whole, first of all well-defined
AGN samples have to be constructed. These are derived from
AGN surveys. These surveys provide a list of AGN candidates,
which have to be confirmed by follow-up spectroscopy. There
are different selection techniques, each with their own advan-
tages and drawbacks, finding often different kinds of objects.

Radio surveys were historically the first survey method.
They can find AGN that do not show prominent emission lines
and would otherwise not be selected as AGN. However, only
~ 10% of all AGN are radio-loud, thus the results are not rep-
resentative for the whole population. Recent large radio surveys
include the NRAO VLA Sky Survey (Condon et al. 1998) and

FIRST (Faint Images of the Radio Sky at Twenty-cm; Becker
et al. 1995).

The most common search technique in the optical is colour
selection, to distinguish QSOs from stars. The classical method
is via UV excess (e.g. Schmidt & Green 1983; Marshall et al.
1983). QSOs have a high UV flux and thus a blue U — B colour,
compared to stars. A cutin U — B plus optionally an additional
morphological restriction to point sources turned out to be ef-
fective in selecting QSOs for z < 2.3. At larger z Lye is red-
shifted into the B band and the U — B colours become compara-
ble to stars. A selection in multi-colour space is able to extend
this range significantly (Warren et al. 1991; Fan et al. 1999;
Richards et al. 2002a). An extension of this colour space into
the near-IR is able to find QSOs at z > 4 (e.g. Fan et al. 2001a;
Willott et al. 2007; Richards et al. 2009; Glikman et al. 2010),
as well as QSOs missed by optical colour selection (Maddox
et al. 2008).

Another optical selection technique is slittless spectroscopy
(Hewett et al. 1985, 1995; Wisotzki et al. 1996). An objective
prism or grism is placed in front of a wide field telescope and
so low resolution spectra of all objects within the field of view
are obtained. With this technique a large number of spectra are
obtained within a single exposure, however at the risk of spec-
tral overlaps, in particular in crowded fields. The selection can
be based on emission lines or quasar like SEDs.

Additionally, AGN samples free of any preselection can
be obtained as a by-product of large spectroscopic surveys
(Gavignaud et al. 2006; Merloni et al. 2010), based on the
prominent emission lines in their spectra.

Quasars belong to the most luminous objects in most wave-
lengths regions, including X-rays. Indeed, luminous X-ray
emission of a point source is an efficient tracer of AGN ac-
tivity, also picking up optically obscured AGN. Large X-ray
surveys by satellite missions like ROSAT, Chandra and XMM-
Newton collected large samples of AGN (e.g. Miyaji et al. 2000;
Hasinger et al. 2005). Nevertheless, follow up spectroscopy of
these AGN candidates is sometimes hampered by their faint op-
tical appearance.

Having selected a well defined sample in such a survey, one
is able to study the statistical properties of the population as a
whole, i.e. derive AGN demographics.

1.1.4. AGN evolution

It is known for a long time that the quasar space density is not
constant with redshift, but there is an increase in the space den-
sity towards higher z. This has been indicated by simple tests
on quasar surveys, like the log N —log S test or the V/ Vi test
(e.g. Schmidt 1968; Wills & Lynds 1978).

More detailed information on the AGN population and its
evolution can be obtained from the AGN luminosity function
(LF), giving the number density of AGN per luminosity inter-
val:

2

d°N
L =
¢l2) = o7

(L,2) . (1.3)
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Fig. 1.2. Space density of optically selected type 1 QSOs in dif-
ferent luminosity bins. The peak in the space density is shifted
towards lower z for fainter sources. The circles show the binned
data from Croom et al. (2009), determined from SDSS and
2SLAQ, the solid lines give their best fit LDDE model.

The most common parameterisation for the AGN LF is a double
power law (Marshall 1987; Boyle et al. 2000)

(L/L)* + (L/L)F

where L, is a characteristic break luminosity and @ and 3 are
the bright-end slope and faint-end slope.

Studies of the QSO luminosity function found a strong in-
crease of their space density toward higher z, with a maxi-
mum at z ~ 2 and a decrease of the space density thereafter
(Warren et al. 1994; Schmidt et al. 1995; Fan et al. 2001b; Wolf
et al. 2003). Several simple evolutionary models have been sug-
gested to parameterise AGN evolution, like pure density evolu-
tion (PDE) or pure luminosity evolution (PLE). While they pro-
vide an adequate fit to specific surveys (e.g. Boyle et al. 2000;
Croom et al. 2004), especially covering the bright end of the LF,
they fail as a proper model for the full AGN LF evolution. The
simple PLE model breaks down at low redshift (Koehler et al.
1997), at high redshift (e.g. Richards et al. 2006) and at fainter
luminosities (Bongiorno et al. 2007, e.g.).

X-rays surveys required a luminosity dependent density
evolution model (LDDE; Ueda et al. 2003; Hasinger et al. 2005;
Silverman et al. 2008), due to their coverage of the faint end of
the AGN LF. They found a flattening of the faint-end slope with
redshift. This means that the space density for less luminous
AGN peaks at lower z, as shown in Fig. 1.2. This behaviour is
known as “AGN cosmic downsizing”, in analogy to the down-
sizing behaviour found for galaxies (Cowie et al. 1996). The
AGN downsizing behaviour has also been observed in the op-
tical AGN LF (Bongiorno et al. 2007; Croom et al. 2009) and
is consistent with a compilation of the bolometric luminosity
function (Hopkins et al. 2007).

¢(L) = (1.4)

The inferences drawn from the AGN LF evolution on the
growth of black holes are discussed in section 1.4.

1.2. Supermassive black holes
1.2.1. Direct dynamical BH measurements

It is well established that almost every massive galaxy contains
a supermassive black hole (SMBH) with 10 — 10'° M, in its
center (Kormendy & Richstone 1995). These SMBHs in nor-
mal, quiescent galaxies are the silent witnesses of past AGN
activity and black hole growth. The first step to study these
SMBHs is to verify their existence and determine their masses.
In this section, we present various direct methods to measure
the mass of central black holes. Reviews on this subject can be
found in Kormendy & Richstone (1995) and Ferrarese & Ford
(2005).

A critical condition for the detection of a central SMBH
is that the black hole’s sphere of influence is at least approxi-
mately resolved. The sphere of influence is defined by the radius
at which the gravitational influence of the central black hole still
significantly influences the stellar dynamics, given by

-2
GM., M. o

= 10.8pc . a5
o P (108Mo)(200kms—1) (15)

While the radius of the sphere of influence is no strict limit, it
is clear that for a spatial resolution much smaller than this, the
gravitational influence of the SMBH is not resolvable. Thus this
criterion restricts our ability to detect a black hole of arbitrary
mass in a given galaxy. High spatial resolution is required, for
most galaxies only achievable by HST or ground-based adaptive
optics (AQO) observations.

Rins =

The black hole in the Galactic Center

The closest SMBH is located in the center of our own Milky
Way, ~ 8 kpc away. While in the optical our view is blocked
by dust, in the radio a bright source has been found, known as
Sgr A*. This objects has to be very compact, smaller than 1 AU,
based on Very Long Baseline Interferometry (VLBI) measure-
ments (Doeleman et al. 2001), and also massive, based on a lack
of proper motions (Reid et al. 2003).

In the near-IR, high resolution astrometric observations
have been carried out to measure proper motions and radial ve-
locities of individual stars in the vicinity of Sgr A* (e.g. Ghez
et al. 2003; Schodel et al. 2003). These confirm the presence
of a massive object at the position of Sgr A*, with a mass of
4.3 x 10° M, (Gillessen et al. 2009), constraining the central
mass density to p > 3 x 10' Mg, pc=3. This high density leaves
the presence of a SMBH as the only realistic possibility. The
sphere of influence is clearly resolved to several orders of mag-
nitude. Thus the center of the Milky Way provides the best evi-
dence for a black hole in the center of a galaxy.

H,O Megamaser gas dynamics

The detection of a Keplerian H,O Megamaser disk in a few ac-
tive galaxies allows the verification and mass determination of
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SMBHs in other galaxies with unprecedented accuracy. Such lu-
minous water masers can form in the torus of an AGN (Neufeld
et al. 1994). When illuminated and heated by X-ray emission
from the innermost accretion disk, a warped, circumnuclear
molecular disk, with high water abundance, may form in the
midplane direction. This molecular disk gives rise to collision-
ally pumped H,O emission at 22 GHz. Additionally, a large
path-length through the disk is required for a sufficiently strong
signal, so the disk should be seen almost edge-on. This restricts
water maser candidates to Seyfert 2 galaxies and LINERS.
Unfortunately, Megamasers are not common, and the detection
of a rotating disk in the maser emission is even more rare.

The best example is in the Seyfert 2 galaxy NGC 4258.
VLBI observations revealed water maser emission in a thin,
warped, nearly edge-on molecular disk, extending from 0.17 —
0.28 pc from the central massive object (e.g. Miyoshi et al.
1995; Herrnstein et al. 1999). The spatially resolved disk emis-
sion displays Keplerian motion around a SMBH with 3.8 X
107 M, (Herrnstein et al. 2005). The use of VLBI allows a spa-
tial resolution two orders of magnitude higher than with optical
telescopes (like HST), which is crucial for the resolution of the
black hole’s sphere of influence and the detection of lower mass
SMBHs.

Until recently, only a hand full of other H,O Megamaser
disks were known, with less reliable black hole mass estimates,
either because the disk could not be spatially resolved (e.g.
Henkel et al. 2002), the rotation turned out to be not Keplerian
(Greenhill & Gwinn 1997) or the disk inclination is not known
(Greenhill et al. 2003). Recently, Kuo et al. (2011) reported the
detection of spatially resolved maser disks in seven additional
galaxies. Most of them show clear Keplerian rotation in thin,
almost edge-on disks, allowing a secure black hole mass mea-
surement. These observations significantly boosted the sample
of H,O Megamaser black hole masses.

Gas kinematics

A fraction of all galaxies posses disks of ionized gas in their
nuclear regions (e.g. Tran et al. 2001). The dynamics of these
gas disks can be used to infer the presence of SMBHs in the
center of these galaxies. Gas dynamical methods have been ap-
plied successfully to several elliptical (Ferrarese et al. 1996;
Macchetto et al. 1997; Dalla Bonta et al. 2009) and spiral galax-
ies (Sarzi et al. 2001; Devereux et al. 2003). HST resolution
turned out to be essential for gas dynamical studies, to resolve
the black hole’s sphere of influence, beyond very nearby galax-
ies, like Centaurus A (Marconi et al. 2001; Neumayer et al.
2007).

The central region of the galaxy is mapped spectroscopi-
cally, using either long slit spectra along different positions or
Integral Field Unit (IFU) spectroscopy. A two-dimensional ve-
locity field is reconstructed from the measured emission lines. A
model velocity field is then fitted to the data. The modeled rota-
tional velocity is based on the gravitational potential of the cen-
tral massive object, the stellar density and the contribution of the
gas disk itself, usually assuming a thin rotating disk, and is pro-
jected along the line-of-sight. This projection requires knowl-
edge of the inclination angle of the disc. The SMBH mass is

then derived as one of the free parameters in the fit. If the incli-
nation angle is not well constrained, the uncertainty of the mass
measurement can increase significantly.

Another potential drawback of gas dynamics measurements
are non-gravitational motions that may affect the gas disk.
However, their presence can be deduced from the observed ve-
locity field and the respective galaxy can be dismissed for a gas
dynamical mass determination.

Stellar kinematics

While gas disk are only present in a fraction of galaxies and can
be affected by non-gravitational motions, stars can always be
observed in galaxies and their motion is purely gravitational.
Most galaxies can be treated as collisionless stellar systems.
Thus the stellar motion is determined by a gravitational poten-
tial, given by all stars in the galaxy and the central SMBH (plus
the contribution from dark matter). Studying the motion of stars
within the range of gravitational influence of the black hole,
can reveal its presence and mass. Generally, stellar dynamical
modeling is not only able to determine the black hole mass, but
also the galaxy’s mass-to-light ratio, the orbital structure (e.g.
Cappellari et al. 2007) and the dark matter halo (e.g. Thomas
et al. 2007).

The first such study was performed on M 87 by Sargent
et al. (1978), assuming a spherically symmetric and isotropic
galaxy configuration. However, these simplifying assumptions
are in general not justified and more sophisticated dynamical
models are required. A spherical, isotropic stellar system con-
serves only one integral of motion, namely the energy.

In current stellar dynamical models usually axisymme-
try is assumed. A still relative simple approach is based on
anisotropic spherical Jeans models (Binney et al. 1990; van
der Marel et al. 1998; Cappellari 2008), using two integrals-of-
motion. Compared to more elaborate models, this approach is
computationally less expensive, and the results can be assessed
and inspected more directly. However, further assumptions are
required that do not have to be fulfilled and the solutions are
rarely unique. It is commonly used to independently verify the
results from more general modeling (e.g. Cretton & van den
Bosch 1999; Cappellari et al. 2009).

A more general approach is the Schwarzschild (1979) orbit-
superposition method. This numerical method computes an or-
bit library in a given gravitational potential and fits these orbits
to the data. Usually three integrals of motion are used. The in-
put data are the stellar surface brightness profile and spectral
measurements along several position angles. From the latter, the
line-of-sight velocity distributions (LOSVDs) at different posi-
tions in the galaxy are deduced. The surface brightness profile
is deprojected to a three-dimensional luminosity distribution,
and converted to a mass distribution, assuming a fixed mass-
to-light ratio for the whole galaxy. Together with the central
SMBH this defines the gravitational potential. In this potential
a large and representative number of stellar orbits are computed
by numerical integration of the equations of motion. Each orbit
contributes to the LOSVD at a given position. These predicted
LOSVDs are fitted to the observed LOSVDs at the observed
positions in the galaxy. The best fit solution provides the orbital
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structure and goodness of fit for the input mass-to-light ratio and
M,. The overall best fit is found by repeating this procedure for
a grid of the free parameters. Therefore, the method is compu-
tationally expensive. The observed LOSVDs are given either as
moments of a Gauss-Hermite fit to the data, or in nonparametric
binned form. Further details can be found in Chapter 7, or e.g.
in Cretton & van den Bosch (1999), Thomas et al. (2004) and
Siopis et al. (2009).

The Schwarzschild technique has been applied very suc-
cessfully in the last years, and led to the detection of a large
number of SMBHs in quiescent galaxies (van der Marel et al.
1998; Gebhardt et al. 2003; Shapiro et al. 2006; Giiltekin et al.
2009a). Nevertheless, this method also suffers from uncertain-
ties and potential systematics. First, the deprojection requires
the knowledge of the inclination of the galaxy, which often is
only poorly known. Dust or a weak AGN in the center can af-
fect the LOSVD measurements. The assumption of axisymme-
try does not hold for all galaxies, and triaxial Schwarzschild
modeling indicated that this can affect the measured black hole
mass (van den Bosch & de Zeeuw 2010). Finally, also the pres-
ence of the dark matter halo, not accounted for in most cases,
can bias the mass determination (Gebhardt & Thomas 2009).
This thesis made a contribution to a better understanding of this
last point. The performed work and the results are presented in
Chapter 7.

Direct comparisons of black hole mass determinations from dif-
ferent methods for the same galaxy are sparse. There are a few
cases with both, gas dynamical and stellar dynamical mass mea-
surements. For IC 1459 both seem to disagree (Cappellari et al.
2002). However, both measurements are highly uncertain, pre-
venting to draw firm conclusions. For NGC 3379 (Shapiro et al.
2006) and Centaurus A (Cappellari et al. 2009), good agree-
ment has been found between both methods. Siopis et al. (2009)
presented a stellar dynamical mass measurement of the Maser
galaxy NGC 4258, finding broad agreement between the two,
while their results suffer from uncertainties due to the presence
of the AGN and dust. Finally, Onken et al. (2007) presented a
tentative stellar dynamical mass measurement for the Seyfert 1
galaxy NGC 4151 that is in broad agreement with the value
from reverberation mapping (see next section).

1.2.2. Reverberation mapping

Dynamical methods require the resolution of the black hole’s
sphere of influence and are therefore limited to relatively nearby
systems. For broad line (type 1) AGN an alternative method ex-
ists, studying the dynamics of the BLR via reverberation map-
ping (Blandford & McKee 1982; Peterson 1993). This tech-
nique uses the variability of quasars in the continuum and the
emission lines. A luminosity change in the ionizing UV contin-
uum will lead to a response of the broad emission lines with a
time delay, due to the light travel time. An average time delay 7
for the BLR clouds can be obtained from the cross-correlation
of the continuum light curve with the emission line light curve.
This time delay yields the size of the line-emitting region for

the particular emission line, thus an estimate of the size of the
BLR, via RBLR = CT.

The great advantage of this method is that it does not de-
pend on high spatial resolution to measure the size of the
BLR. Spatial resolution is effectively traded for time resolution.
Therefore, the continuum and emission line light curve have to
be measured reliably, demanding extensive observational mon-
itoring campaigns. In general, this technique is not limited by
distance. However, in practice luminous high-z AGN have large
time delays, exaggerated by cosmological time dilation, and low
variability amplitudes. Only few objects have been measured
yet above z ~ 0.3 (Kaspi et al. 2007).

The dynamics of the broad line region can reveal the pres-
ence of the central SMBH, if the motion of the BLR clouds is
dominated by gravity and not by outflows or radiation pressure.
In this case, virial equilibrium is present, and M, is given by:

_ fReirAV?
= G ,
where Rg; R is the size of the BLR, AV is the broad line width
in km/s and f is a scaling factor of order unity, which de-
pends on the structure, kinematics and orientation of the BLR.
The scale factor f effectively converts the measured broad line
width into the velocity of the BLR clouds. The validity of the
virial assumption has been verified by the measurement of time
lags and line widths for different broad lines in the same spec-
trum. Different lines show different time delays and have differ-
ent line widths, but they follow the expected virial correlation
T o« AV~ (Wandel et al. 1999; Peterson & Wandel 2000; Onken
& Peterson 2002).

A significant uncertainty is the value of f, as the BLR struc-
ture is poorly known. For the simple assumption of a spherical
BLR, f = 0.75 with no dispersion (e.g. Krolik 2001). However,
the BLR is probably not spherical. For a disk-like BLR, f de-
pends on the viewing angle and the disk structure. The common
approach to determine f is using the M, — o, relation for qui-
escent galaxies. As discussed in section 1.3.1, there is a close
correlation between black hole mass and stellar velocity disper-
sion in the galaxy’s bulge component, both for quiescent galax-
ies and active galaxies (e.g. Gebhardt et al. 2000b; McLure &
Dunlop 2001). Onken et al. (2004) used this relation to deter-
mine an average scale factor (f)05.5, by normalizing the rever-
beration mapping masses to the M, —o. relation (see also Collin
et al. 2006; Woo et al. 2010).

A direct determination of f and thus M, from reverberation
mapping could potentially be obtained by velocity resolved re-
verberation mapping (Welsh & Horne 1991; Horne et al. 2004).
Using not only the line flux, but the full line profile, the BLR
velocity field, and therefore the BLR structure, can be recov-
ered. While this approach was hampered by poor spectroscopic
data in the past, recently first promising results on velocity re-
solved reverberation mapping have been published (e.g. Bentz
et al. 2009b, 2010).

Another open question is what line width estimate to use.
While often the FWHM is used, there is evidence that the line
dispersion iy, i.€. the second central moment of the line pro-
file, is the preferable width measurement for reverberation map-
ping data. Peterson et al. (2004) found that, using ojj,e from

M, (1.6)
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Fig. 1.3. Broad line region size - AGN continuum luminosity
scaling relationship. The symbols show the average HS time
lags for the reverberation mapping sample, the solid line is the
best fit scaling relation (data from Bentz et al. 2009a).

the root-mean-squared (rms) spectrum, the virial relationship
T « AV~ is better reproduced. Furthermore, Collin et al. (2006)
determined average f factors for both line widths. While for
Tiine they found the value of f to be independent of line shape,
this was not the case using the FWHM. Thus, they argue for
Oine as the less biased width estimate.

1.2.8. The 'virial method’

While reverberation mapping is able to directly determine M, in
broad line AGN, this comes at the cost of extensive observing
campaigns. Therefore, this method is not suited to study large
AGN samples, in particular at high redshift. Fortunately, rever-
beration mapping established an observational scaling relation
between the BLR size and the AGN continuum luminosity, usu-
ally measured at 5100 A, of the form Rp r « LY (Kaspi et al.
2000, 2005). In the earlier studies v =~ 0.7 was found. However,
these results are biased due to the host galaxy contribution to
the continuum luminosity, mainly for faint AGN. Bentz et al.
(2006) corrected for this host contribution using HST imaging
and found y = 0.5 for the slope of the scaling relation (see
also Bentz et al. 2009a). This value is in good agreement with
the theoretical expectation taken from a simple BLR photoion-
isation model. If the shape of the ionizing continuum is inde-
pendent of luminosity and all AGN have a similar ionisation
parameter and particle density in their BLR then it follows that
Rpir « L%3. The observations turned out to be consistent with
this simple picture. These photoionisation equilibrium consid-
erations have even been used in the past to estimate AGN black
hole masses without a calibration to reverberation mapping (e.g.
Dibai 1980; Wandel & Yahil 1985).

The scaling relation offers the opportunity to estimate black
hole masses of quasars directly from a single-epoch spectrum,
using L as a surrogate for the BLR size. Thus, M, for large

statistical samples of broad line AGN can be obtained (e.g.
McLure & Dunlop 2004; Vestergaard 2004; Shen et al. 2008b).
While the scaling relation so far is only established for Hp, also
other broad lines, like Ha, Mgu and C1v are commonly used,
but they rely on an additional cross-calibration (e.g. McLure &
Jarvis 2002; Vestergaard 2002; Greene & Ho 2005; Vestergaard
& Peterson 2006; McGill et al. 2008). The uncertainty of
these ’virial’ black hole masses are thought of being of order
~ 0.4 dex (Vestergaard & Peterson 2006), based on the compar-
ison with reverberation mapping masses. Thus, while individual
M, can be off by a factor of 3, they are a powerful tool to study
large statistical samples.

Estimating M, at higher z either requires the observation of
Hp in the near-IR (e.g. Netzer et al. 2007; Greene et al. 2010b)
or the use of Mgn or Crv. While Mg is assumed to be a
good tracer of black hole mass, the reliability of C1v has been
questioned. It is suspected to be not dominated by virial mo-
tions, but have an outflowing wind component (Richards et al.
2002b, 2010; Baskin & Laor 2005; Shen et al. 2008b). On the
other hand, black hole masses estimated from the C1v line do
not seem to be biased compared to the Balmer line estimates
(Greene et al. 2010b; Assef et al. 2010).

Another potential concern for virial black hole masses is
the importance of radiation pressure (Marconi et al. 2008).
Incorporating radiation pressure force into the virial relation
leads to a decrease of the intrinsic scatter from 0.4 dex to
0.2 dex, but also changes the mass distribution and especially
the Eddington ratio distribution. However, the validity of this
modified virial relation has been questioned, based on the com-
parison of the Eddington ratio distributions of type 1 and type 2
AGN (Netzer 2009) and on detailed BLR cloud motion calcula-
tions (Netzer & Marziani 2010).

1.3. Black hole - galaxy co-evolution
1.3.1. The black hole-bulge relations

With the first significant sample of dynamical black hole mass
determinations, a relation appeared between the black hole mass
and the blue luminosity of the galaxy’s spheroid component
(Kormendy & Richstone 1995), i.e. with the whole galaxy
for elliptical and with the bulge component for spiral galax-
ies. Magorrian et al. (1998) reported a correlation between
M, and the bulge mass, based on dynamical modeling. These
early results suggested a large scatter of ~ 0.5 dex in the rela-
tions, but this was strongly driven by measurement uncertain-
ties. Simultaneously, Gebhardt et al. (2000a) and Ferrarese &
Merritt (2000) found a close relationship between M, and the
bulge stellar velocity dispersion o,. For this relation a small in-
trinsic scatter of 0.3 dex was found (Tremaine et al. 2002). A
more careful determination of bulge luminosities in the near-IR
by Marconi & Hunt (2003) showed that the intrinsic scatter in
the M, — L relation is comparable to the M, — o, relation. The
same is true for the M, — Mgy relation (Héring & Rix 2004).

The most recent literature values for these three relations
are:

M.
log (V) =8.12+4.24 log(
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Fig. 1.4. Observed black hole - bulge relations for local quiescent galaxies. The solid line indicated the best fit linear relation. Left
panel: M, — o, relation from Giiltekin et al. (2009b). Middle panel: M, — Ly relation from Giiltekin et al. (2009b). Right panel:

M, — Mpyge relation from (Héring & Rix 2004).

for the M, — o, relation, with intrinsic scatter of ¢¢ = 0.44
(Giiltekin et al. 2009b).

M.
log(ﬁ) =838 +0.97 log( (1.8)
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for the M, — Lg relation, with intrinsic scatter of ¢y = 0.36 (Hu
2009).

M, M
log(ﬁ) =820+ 1.1210g( (1.9)
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for the M, — Mpuyjge relation, with intrinsic scatter of € = 0.3
(Héring & Rix 2004).

As these studies use different samples and slightly different
fitting methods, a direct comparison of these relations and their
intrinsic scatter have to be taken with care. Especially, the intrin-
sic scatter is still only poorly known for these relationships. A
better understanding of the intrinsic scatter is crucial, as it is an
important parameter for studies on black hole growth and black
hole-galaxy co-evolution, as shown below. Furthermore, there is
evidence that pseudobulges do not follow the black hole-bulge
relations of early-type galaxies (e.g. Hu 2008; Graham 2008;
Gadotti & Kauffmann 2009; Greene et al. 2010a). They may ei-
ther follow their own relation with own intrinsic scatter or may
show no correlation with black hole mass at all. In both cases,
the scatter in the relations is increased when pseudobulges are
included in the studied sample.

Presently, it is not clear if one relation is more fundamen-
tal than the other. At least, the M, — L relation is probably just
a manifestation of the M, — Mpye relation, as bulge luminos-
ity is simply easier to measure than bulge mass. Furthermore,
a number of additional relations between M, and the galaxy
properties have been reported. Among them are correlations
with the galaxy light concentration (Graham et al. 2001), the
galaxy’s Sérsic index (Graham & Driver 2007), the gravitational
binding energy (Aller & Richstone 2007), the dark matter halo
(Ferrarese 2002), and the number of globular clusters (Burkert
& Tremaine 2010).

The tight relations between black hole mass and bulge prop-
erties indicate the presence of a SMBH in every massive galaxy,
containing a significant bulge component. Furthermore, a close

relation between the growth of the black hole and the evolution
of the galaxy is implied, as will be discussed in the next section.

1.3.2. Black hole - galaxy co-evolution scenarios

The observed tight relations between M, and the galaxies
spheroid component puts strong constraints on theoretical mod-
els of galaxy formation and evolution. Their origin needs to
be explained theoretically. The presence of the M,—bulge re-
lations can be explained in analytic (Silk & Rees 1998; Fabian
1999; King 2003; Wyithe & Loeb 2003) and semi-analytic mod-
els (e.g. Kauffmann & Haehnelt 2000; Cattaneo 2001; Granato
et al. 2004; Bower et al. 2006; Croton et al. 2006), as well as
in numerical simulations (Di Matteo et al. 2005; Sijacki et al.
2007; Booth & Schaye 2009). However, the details of this con-
nection are not properly understood yet.

An important issue is the growth mechanism of black holes.
While usually large amounts of gas and dust are available in the
galaxy, these need to be funneled into the central region to be
accreted by the black hole. Thus, the gas in the host galaxy must
loose its angular momentum efficiently to serve as reservoir for
black hole growth. It is commonly assumed that galaxy mergers,
in particular major mergers, play a key role in this respect. The
strong gravitational interaction disturbs the galaxies and allows
large amounts of gas to flow to the center (Hernquist 1989).
At a lower level, also minor mergers can induce gas inflows by
generating disk instabilities like bars, having the advantage of
being more common than major galaxy mergers. Secular evolu-
tion processes, like bar instabilities, can also appear in isolated
galaxies without the need of a merger and may be able to feed
the central SMBH. At the same time, galaxy mergers also trig-
ger star formation, leading to a growth of stellar mass in the
galaxies.

The current theoretical picture assumes that AGN feedback
is required to establish and maintain the observed M,—bulge re-
lations. During a major merger, star formation is induced and
gas is funneled to the center to feed the black hole. This will ac-
crete at a high rate, producing a large amount of energy. A frac-
tion of this energy will heat and unbind the gas in the galaxy.
The black hole will now self regulate its growth by quenching



Andreas Schulze: Introduction 17

its gas supply through the energy released in the gas. At the
same time it will also shut down star formation, preventing fur-
ther growth of the stellar bulge.

Current theoretical models of AGN feedback distinguish
two main modes, the so called QSO mode and the radio mode
(Croton et al. 2006). The QSO mode works through radiative
feedback, i.e. though the transfer of the QSO radiation to ki-
netic energy of the host galaxy gas. This leads to a momentum
driven wind that stops the gas flow to the central black hole
and quenches star formation. The details and the magnitude of
this energy transfer are still highly uncertain. In the simulations,
usually just a fixed small fraction, ~ 5 %, of the radiated energy
is injected to heat the gas. This mode will be effective during ra-
diative efficient, high accretion rate phases, i.e. during the QSO
phase. The radio mode works through mechanical feedback via
radio jets and lobes, during low accretion, radiatively inefficient
AGN phases. These radio jets will transfer a fraction of their
mechanical energy into the surrounding gas environment. This
generates bubbles in the hot gas, observed as X-ray cavities in
galaxy clusters (Fabian et al. 2006; Randall et al. 2011).

As the details of these processes are not settled yet, impor-
tant constraints can be gained from their predicted redshift evo-
lution. Some numerical simulations (Robertson et al. 2006; Di
Matteo et al. 2008; Booth & Schaye 2010), and semi-analytic
models (Croton 2006; Hopkins et al. 2009; Lamastra et al. 2010)
make predictions for the redshift evolution of the M,—bulge
relations. While different in the details, an average trend can
be extracted. The M, — o relation is predicted to evolve only
weakly, not at all or with a mild negative evolution. On the
other hand the M, — Mpyg relation should evolve stronger with
redshift. These predictions need to be confronted with obser-
vations, to gain a deeper insight into black hole - galaxy co-
evolution, as will be discussed in the next section.

An interesting aspect on the establishment and maintenance
of the M,—bulge relations has been raised by Peng (2007).
He showed that a linear relation between black hole mass
and galaxy mass is a natural consequence within a merger
driven galaxy evolution framework. While Peng (2007) and
also Hirschmann et al. (2010) argue that this will maintain and
tighten the relations with cosmic time, Jahnke & Maccio (2010)
even claim that the M,—bulge relations can be fully explained
by this effect, superseding the need for AGN feedback.

1.3.3. Observational evidence for evolution in the black
hole-bulge relations

While the local M,—bulge relations are relatively well estab-
lished, at higher redshift they are poorly known. As discussed
in the previous section, the redshift evolution of these relations
contains important information about its origin and thus about
galaxy formation and black hole - galaxy co-evolution. In gen-
eral, three scenarios are possible: (1) a positive evolution of the
M, /Mpyge tatio, meaning black holes grow before their bulges,
(2) a negative evolution, thus galaxy bulges grow ahead of the
black holes, (3) no evolution, implying a coeval growth through-
out cosmic time. The evolution can be parametrized by an offset

M, /MBulge(Z)

@ = MO/MBulge(Z =0) '

(1.10)
or Alog M, = logT, at the specific redshift studied, or with a
slope y, assuming I'(z) o« (1 + z)”.

In the last years, efforts have been made to determine this
evolution, which can broadly be separated into two approaches.
The first approach uses integral constraints on the whole galaxy
population, employing the black hole mass function (Merloni
et al. 2004; Hopkins et al. 2006; Shankar et al. 2009; Somerville
2009). These studies found no or no strong evolution, both in
M, — Mgyjge and in M, — 0.

The second approach is a direct measurement of M, and the
bulge property in individual objects at high z. As already dis-
cussed, direct dynamical measurements are not feasible beyond
the local volume. Therefore, the best possibility relies on broad
line AGN, employing the virial method. In this case, deriving
M, is easy, by just obtaining a spectrum and measuring broad
line width and continuum luminosity. However, obtaining the
bulge property is difficult, especially hampered by the presence
of the bright AGN in the center. Several routes have been fol-
lowed to achieve this goal, all with their own advantages and
drawbacks.

At low to moderate redshift it is still possible to measure
stellar velocity dispersions directly. While Shen et al. (2008a)
found no significant evolution up to z < 0.4, Woo et al. (2006,
2008) claimed an evolution of I' ~ 3 at z ~ 0.5. Shields et al.
(2003) and Salviander et al. (2007) used the narrow [O 1] line
as a surrogate of o, applicable to higher z. Shields et al. (2003)
found no evidence for evolution for an inhomogeneous sample
up to z < 3. On the other hand, Salviander et al. (2007) reported
an indication for mild evolution, corresponding to y ~ 0.7, up
to z < 1.2, with no evolution found for z < 0.5. By using the
radio CO line width as surrogate of o, Shields et al. (2006) and
Ho (2007) see evidence for more massive black holes at given
o, forz > 3.

Alternatively, the M, — Mpyg relation has been explored.
Several authors studied QSO host galaxy luminosities and com-
pared these to the local relation, assuming passive galaxy evolu-
tion (Peng et al. 2006a,b; Treu et al. 2007; McLeod & Bechtold
2009; Decarli et al. 2010; Bennert et al. 2010). This requires
high spatial resolution (ideally HS T') observations and a proper
QSO-host decomposition. These studies tend to find y = 1.5.
However, the basically unknown mass-to-light ratio introduces
significant uncertainties onto these results. The more demand-
ing task is to obtain stellar masses, using multi-colour data.
This has been done by Schramm et al. (2008) and Jahnke et al.
(2009) via a QSO-host decomposition on imaging data in mul-
tiple bands, and by Merloni et al. (2010) via a decomposition
from the QSO+host SED. For a small sample of bright QSOs
Schramm et al. (2008) found I'(z ~ 3) =~ 10. Jahnke et al.
(2009) derived total stellar masses for 10 AGN, finding no evo-
lution at z ~ 1.4, while Merloni et al. (2010) found mild evo-
lution, y ~ 0.7 for 89 sources over a similar redshift range.
Alternatively, high resolution Integral Field Unit (IFU) observa-
tions allow a dynamical mass measurement of QSO host galax-
ies (Inskip et al. 2011). Also obscured AGN with detectable
broad lines were used (Sarria et al. 2010; Nesvadba et al. 2011),
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Fig. 1.5. Observed offset from the local M,—bulge relations as a function of redshift, for a compilation of studies on the evolution
in the relations. The left panel shows results for the M, — o, relation, and the right panel for the M, — Mpyjge relation. Similar obser-
vational approaches are indicated by the same colour in the respective panel. Note that these results show the direct measurements,

without accounting for selection effects.

for which the determination of the stellar mass is less problem-
atic. McLure et al. (2006) exploited radio-loud unification on a
sample of radio selected AGN, composed of radio galaxies and
radio-loud quasars. They derived M, for the quasars and Mpyg.
for the radio galaxies, finding an evolution of y ~ 2, when as-
suming that both represent the same underlying populations. At
the highest redshifts, z ~ 6, CO rotation curves were used to de-
termine dynamical masses for a few individual host galaxies of
luminous QSOs (Walter et al. 2004; Riechers et al. 2008, 2009;
Wang et al. 2010). These are found to be offset from the local
relation towards large M,, with I ~ 15.

An important issue for all these studies are selection effects
that may bias the sample and can induce an artificial signal of
evolution. This has been raised by several authors (Adelberger
& Steidel 2005; Fine et al. 2006; Salviander et al. 2007), but
the issue received major attention by the work of (Lauer et al.
2007). The main problem is that these objects are selected as
AGN, i.e. based on their AGN luminosity, and not based on
their galaxy luminosity. Thus, we will preferentially detect more
massive black holes, leading to a bias, due to the intrinsic scat-
ter in the M,—bulge relations. Investigating this bias and other
potential biases for studies of the evolution in the M,—bulge re-
lations through AGN surveys will be the subject of Chapter 5.

1.4. The growth of supermassive black holes
1.4.1. Constraints from the AGN luminosity function

Black holes mainly grow through mass accretion. During the
infall of matter, a fraction 7 of the rest mass energy is con-
verted into radiation, following Equation (1.1). A characteristic
upper limit for the radiated luminosity is the Eddington limit
(Equation 1.2), corresponding to an Eddington accretion rate
Mgaq,

Lggq

. 0.1 M,
Mgyg = — =2.22 M, 1.11
Edd e ( )(logM ) oyr! (L.11)

The accretion rate of the black hole is commonly expressed

normalised to the Eddington rate. Therefore, the ratio 4 =

Lvot/Lead = M/ Mgaq, the so-called Eddington ratio, is a rep-
resentation of the accretion rate of the black hole.

At the same time, the black hole is growing at a rate
. 1-n¢

M,=(1-nM = —5 Lo , (1.12)

nc

as the fraction 7 is radiated and does not contribute to the growth

of the SMBH. With the black hole accreting at a rate A, Lyo =

ALgqq. The Salpeter timescale then gives the time the black hole

needs for accretion at a rate A to e-fold its mass (Salpeter 1964)

cor n

4nGm, (1 — A

n

Ty
010 -n)

=45x10"y

ty = (1.13)

Furthermore, from Equation (1.12) follows that the QSO lu-
minosity function and its redshift evolution trace the growth his-
tory of SMBHs. The comoving black hole mass density accreted
during bright QSO phases is given by (e.g. Yu & Tremaine
2002)

QSO(Z )= f f

where ¢(L, z) is the redshift dependent QSO luminosity func-
tion, as defined by Equation 1.3. Ideally, the bolometric lu-
minosity function (LF) should be used, to account for SMBH
growth by the whole AGN population. As this quantity is not a
direct observable, the LF in a given band can be used instead.
The hard X-ray LF is expected to provide the most complete
census of the AGN population, and is therefore especially valu-
able. A recent estimate, using a determination of the bolometric
QSO LE, is p@*°(z = 0) = 4.8*12 x 105 My, Mpc™>, assuming
n=0.1and Hy = 70 km s~ (Hopklns et al. 2007).

The derived local black hole mass density through QSO ac-
cretion, p?so(z = 0), can be compared with estimates of the
local SMBH mass density in local dormant black holes. This

Lbol o(L, Z) — dez , (1.14)
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Fig. 1.6. Estimates of the mass function of local dormant black
holes. The blue solid line gives the mass function derived from
the spheroid luminosity function, estimated from the 2MASS
K-band luminosity function from Kochanek et al. (2001), fol-
lowing the approach from Marconi et al. (2004) and employ-
ing the M, — Lk relation from Marconi & Hunt (2003). The
red dashed line is the mass function estimated from the stellar
velocity dispersion function of early type galaxies from Sheth
et al. (2003), using the M, — o relation from Giiltekin et al.
(2009b). Note that this estimate is incomplete at the low mass
end, as late type galaxies are not included. For both relations an
intrinsic scatter of 0.3 dex is assumed.

value can be derived from the local spheroid luminosity func-
tion or the stellar velocity distribution function, employing the
local M, — L or M, — o relations. The local black hole mass
function of quiescent SMBHs is given by (e.g. Yu & Lu 2004;
Marconi et al. 2004)

1 (log M, — a — blog x)?

Pe(M,) = f N exP{ 752 } ¢u(x)dx,
(1.15)

where x gives the spheroid property, i.e. either x = o, or x =

Lgph, ¢.(x) is the respective distribution function of x, and we

have assumed a M,—bulge relation of the form log M, = a +

blog x with Gaussian intrinsic scatter of dispersion o-. The local

mass density locked up locally in SMBHs is then

Pe(z2=10) = f M.p.(M,)dM, . (1.16)
M,

,min

The integrated mass density is po(z = 0) = (3.2 — 54) X
10° My Mpc™ (Shankar et al. 2009). This is in broad agree-
ment with the local space density accreted during bright QSO
phases, suggesting that the majority of black hole growth occurs
in such luminous phases. On the other hand, it implies that all
local galaxies with quiescent black holes at least once in cos-
mic history went through an AGN phase. This argument has
been introduced by Soltan (1982) and has been used since then
by a number of authors to study black hole growth (e.g. Salucci
et al. 1999; Marconi et al. 2004; Shankar et al. 2004).
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Fig. 1.7. Active black hole mass function from the Large Bright
Quasar Survey (LBQS), determined by Vestergaard & Osmer
(2009). The mass function is shown in several redshift bins. The
turnover at the low mass end is due to incompleteness (also dis-
cussed in Chapter 3).

Further insight into black hole growth can be gained from
the black hole mass function itself, by solving a continuity equa-
tion

I¢Me,0) 9
ot oM,

(Small & Blandford 1992; Yu & Tremaine 2002; Yu & Lu 2004;
Marconi et al. 2004; Merloni 2004; Merloni & Heinz 2008;
Shankar et al. 2009). Here, mergers are neglected, as is com-
monly done. This continuity equation can be solved given some
initial conditions and the QSO LF, plus some additional simpli-
fying assumptions, such as a single, constant Eddington ratio A.
While differing in the details, these studies revealed evidence
for anti-hierarchical black hole growth (Merloni 2004; Marconi
et al. 2004). The most massive black holes complete most of
their growth at early cosmic times, with only minor growth oc-
curing in the local universe. Lower mass black holes have their
major growth phases at lower redshift, and may even exhibit
significant growth presently. This is a consequence of the AGN
downsizing trend found in the AGN LF. These studies also pro-
vide estimates of the AGN duty cycle and the mean AGN life-
times. Furthermore, the cosmic accretion rate history of SMBHs
is found to have a similar redshift dependence as the cosmic star
formation history, showing that the accretion onto a SMBH and
star formation are proportional, at least in a statistical sense.
(Marconi et al. 2004).

|¢o(Me, MM )| =0 (117)

1.4.2. The active black hole mass function

While already the study of the AGN LF contains a wealth of
information on the black hole growth history, they rely on sim-
plifying assumptions. Commonly, a single Eddington ratio is as-
sumed for the whole black hole population, to be able to map the
LF to the black hole mass function (BHMF). However, AGNs
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are not simply in an on or of state, but accrete at a wide distri-
bution of rates (e.g. Yu et al. 2005; Ho 2009). A remarkable
exception in this respect is the work by Merloni (2004) and
Merloni & Heinz (2008). They took into account a wide range
for the accretion rate distribution. However, to do so they had to
incorporate an observed relation between black hole mass, X-
ray luminosity and radio luminosity, the AGN radio luminosity
function and a prescription of accretion modes. Furthermore,
the efficiency 7 introduces some uncertainty. In general, it can
be in the range ~ 0.04 — 0.31.

A direct observational determination of the active black hole
mass function is able to circumvent most of the current implicit
assumptions and uncertainties to directly map the growth of
SMBHs. Thus, we can break the degeneracy between black hole
mass and accretion rate present in the AGN luminosity function.

However, while the AGN luminosity can be measured rel-
atively easy, the black hole mass is not a direct observable.
Therefore, the AGN LF has been studied for a long time, while
approaching the determination of the BHMF required the es-
tablishment of the virial method within the last years, which
made it possible to estimate M, for large well defined sam-
ples. A first attempt on the BHMF has been made by McLure
& Dunlop (2004), based on the type 1 QSO sample from the
Sloan Digital Sky Survey (SDSS) and by Heckman et al. (2004)
for low-z type 2 AGN. Remarkable progress has been reached
within the last few years on this field (Greene & Ho 2007;
Vestergaard et al. 2008; Vestergaard & Osmer 2009; Kelly et al.
2010; Willott et al. 2010), simultaneous with my work on this
topic. Some of these studies revealed direct evidence for cos-
mic downsizing, as found for the AGN LF. Further evidence for
downsizing in the black hole population has also been found by
several complimentary studies Heckman et al. (2004); Labita
et al. (2009); Gallo et al. (2010).

I present my own results on the determination of the lo-
cal active BHMF from the Hamburg/ESO Survey (HES) in
Chapter 3.

1.4.3. The accretion rate distribution function

The accretion rate or Eddington ratio distribution function has
not received much attention yet, despite of its importance for
our understanding of black hole growth and the accretion pro-
cess. The Eddington ratio distribution function (ERDF), to-
gether with the BHMF are the physical drivers for the growth
of black holes, the observed luminosity functions and the evo-
lution of the AGN population.

Currently, the most detailed observational determination of
the ERDF is by Yu et al. (2005), based on a local type 2 AGN
sample from the SDSS (see also Heckman et al. 2004; Hopkins
& Hernquist 2009). They found the ERDF to cover a wide range
and found qualitative agreement with simple theoretical models
of the accretion process, namely with a self-similar evolution
of the accretion disk. However, this study neglected the contri-
bution from type 1 AGN. In this thesis, I present the first lo-
cal determination of the ERDF for type 1 AGN, discussed in
Chapter 3.
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Fig. 1.8. Type 2 AGN Eddington ratio distribution function from
Yu et al. (2005) for z < 0.2 in a few representative small black
hole mass bins. The symbols show the observed distributions in
the respective mass bin. The bin size in the legend is given in
logarithmic black hole mass (in solar units).

1.5. Outline of this work

As already indicated during this introduction, in this thesis I
will cover a wide range of topics within the general framework
of supermassive black holes, their properties and their demo-
graphics. The thesis is divided into chapters, most of them are
meant to be self-contained articles. Two of them are already
in press in Astronomy & Astrophysics, one is in press in the
Astrophysical Journal and one is to be submitted to Astronomy
& Astrophysics. Two chapters present preliminary results, ex-
tending work from a previous chapter and are therefore not self-
contained. Each chapter contains a separate introduction, focus-
ing on the specific topic to be discussed, and separate conclu-
sions, summing up the results of the individual chapter. The last
chapter contains a final summary and discussion of the whole
thesis and provides an outlook on future perspectives.

I start in Chapter 2 with the determination of the low-z
type 1 AGN LF from the Hamburg/ESO Survey. In Chapter 3,
I present a method to determine BHMFs and ERDFs and deter-
mine both for the same data set. Chapter 4 extends this work
by incorporating uncertainties in the measured properties into
the determination of the BHMF and ERDF. Chapter 5 discusses
the issue of sample selection effects and their induced biases
for observational studies of the evolution in the M,—bulge re-
lationships. Based on this work, in Chapter 6 I present a fitting
technique to account for these selection effects and obtain an
unbiased estimate of the intrinsic M,—bulge relation. Finally,
in Chapter 7 I concentrate on the black hole mass determination
for quiescent galaxies, using stellar dynamics. In particular, I in-
vestigate the possible effect of including or neglecting the con-
tribution of a dark matter halo in the dynamical modeling on the
determined black hole mass.
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Chapter 2

Low redshift AGN in the Hamburg/ESO Survey
I. The local AGN luminosity function™

Andreas Schulze, Lutz Wisotzki, and Bernd Husemann

Leibniz-Institut fiir Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

ABSTRACT

We present a determination of the local (z = 0) luminosity function of optically selected type 1 (broad-line) Active Galactic Nuclei.
Our primary resource is the Hamburg/ESO Survey (HES), which provides a well-defined sample of more than 300 optically bright
AGN with redshifts z < 0.3 and blue magnitudes B < 17.5. AGN luminosities were estimated in two ways, always taking care
to minimise photometric biases due to host galaxy light contamination. Firstly, we measured broad-band B; (blue) magnitudes of
the objects over small apertures of the size of the seeing disk. Secondly, we extracted Ha and HB broad emission line luminosities
from the spectra which should be entirely free of any starlight contribution. Within the luminosity range covered by the HES
(=19 2 Mg, 2 -26), the two measures are tightly correlated. The resulting AGN luminosity function (AGNLF) is consistent with a
single power law, also when considering the effects of number density evolution within the narrow redshift range. We compared our
AGNLF with the Ha luminosity function of lower luminosity Seyfert 1 galaxies by Hao et al. (2005) and found a smooth transition
between both, with excellent agreement in the overlapping region. From the combination of HES and SDSS samples we constructed
a single local AGNLF spanning more than 4 orders of magnitude in luminosity. It shows only mild curvature which can be well
described as a double power law with slope indices of —2.0 for the faint end and —2.8 for the bright end. We predicted the local
AGNLF in the soft X-ray domain and compared this to recent literature data. The quality of the match depends strongly on the
adopted translation of optical to X-ray luminosities and is best for an approximately constant optical/X-ray ratio. We also compared
the local AGNLF with results obtained at higher redshifts and find strong evidence for luminosity-dependent evolution, in the sense
that AGN with luminosities around Mp ~ —19 are as common in the local universe as they were at z = 1.5. This supports the ’AGN
downsizing’ picture first found from X-ray selected AGN samples.

2.1. Introduction

A good knowledge of the AGN luminosity function (AGNLF)
is important for our understanding of the AGN population and
its evolution, as well as for gaining insight into the history of
black hole growth and galaxy evolution (e.g. Yu & Tremaine
2002; Marconi et al. 2004). Thanks to recent heroic quasar
surveys such as the 2dF QSO Redshift Survey (2QZ) and the
Sloan Digital Sky Survey (SDSS), large samples of AGN be-
came available, and the optical AGN/QSO luminosity func-
tion is today well established over a wide range in redshifts
(0.3 £ z £ 5) and luminosities (Boyle et al. 2000; Croom et al.
2004; Richards et al. 2006; Bongiorno et al. 2007). However,
neither of these surveys reaches below redshifts of z ~ 0.3—
0.4, because the imposed colour selection criteria, and also the
discrimination against extended sources in the 2QZ sample, ex-
clude a large fraction of lower luminosity, ‘Seyfert-type’ AGN.
The local AGNLF is therefore much less constrained than at
higher redshifts, despite of its importance as a zero-point for
quasar evolution.

Approaching this problem from the other end, large spectro-
scopic galaxy surveys are a powerful way to unravel the AGN
content of local galaxy samples (e.g. Huchra & Burg 1992;

* This chapter is published in Astronomy & Astrophysics, 2009, 507,
781.

Ulvestad & Ho 2001; Hao et al. 2005a). When constructing an
AGNLF from galaxy surveys, care has to be taken in defining
‘AGN luminosity’: Simply taking the optical galaxy magnitude
will lead to an ill-defined mix of host galaxy and AGN contri-
butions. It is much better to base the AGNLF on the conspicu-
ous broad Balmer emission lines which avoids the host galaxy
contamination problem. This approach was recently adopted by
Hao et al. (2005a) and Greene & Ho (2007). But since AGN
are scarce among galaxies unless the selection is sensitive to
very low levels of nuclear activity (Ho et al. 1997), any general
galaxy survey has a low yield, and the samples are dominated by
weak Seyfert nuclei and rarely reach quasar-like luminosities.

In this paper we study the population statistics of low-
redshift quasars and moderately luminous Seyferts. We exploit
the Hamburg/ESO Survey (HES; e.g. Wisotzki et al. 2000), a
survey which was specifically designed to address the selection
of low-redshift AGN with visible host galaxies, and to provide a
well-defined, complete, and unbiased sample of the local AGN
population. Here, the term ‘complete’ is meant in a methodolog-
ical sense, implying that all AGN selected by the criteria are in-
cluded in the sample. Since obscured or heavily reddened AGN
are typically not found in the HES, our sample can only claim
to be representative of the unobscured ‘type 1° AGN with broad
emission lines in their spectra. We refrain in this paper from re-
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peatedly recalling this fact, but it should be understood that we
always imply this restriction when using the term ‘AGN’.

This is the third paper investigating the local AGNLF in the
HES. Koehler et al. (1997) used a small sample of 27 objects ob-
tained during the initial period of the survey to construct the first
published local LF of quasars and Seyfert 1 galaxies. Wisotzki
(2000b) exploited ~ 50 % of the HES to study the evolution of
the quasar luminosity function and provided a re-determination
of the local LF as a by-product. With the completed HES cov-
ering almost 7000 deg? of effective area, the AGN samples are
doubled in size, as well as augmented by spectroscopic material.
Thus a new effort is well justified. In the present paper we go
substantially beyond our previous work not only in quantitative,
but also in qualitative terms. We first present our data material
and our treatment of the spectra. After constructing the standard
broad-band AGNLF we investigate the Ho and HB emission line
luminosity functions. This enables us to compare and combine
our data with the recent work by Hao et al. (2005a) based on the
SDSS galaxy sample, to obtain a local AGNLF covering several
orders of magnitude in luminosities. We discuss our results in
the context of other surveys and luminosity functions.

Thoughout this paper we assume a concordance cosmology,
with a Hubble constant of Hy = 70 km s~! Mpc~!, and cosmo-
logical density parameters Q,, = 0.3 and Q5 = 0.7 (Spergel
et al. 2003).

2.2. Data
2.2.1. The Hamburg/ESO Survey

The Hamburg/ESO Survey (HES) is a wide-angle survey for
bright QSOs and other rare objects in the southern hemisphere,
utilising photographic objective prism plates taken with the
ESO I m Schmidt telescope on La Silla. Plates in 380 differ-
ent fields were obtained and subsequently digitised at Hamburg,
followed by a fully automated extraction of the slitless spectra.
In total, the HES covers a formal area of ~9500 deg2 in the
sky. For each of the ~ 107 objects extracted, spectral informa-
tion at 10-15 A resolution in the range 3200 A < 1 < 5200 A
is recorded. Details about the survey procedure are provided by
Wisotzki et al. (2000).

The relatively rich information content in the HES slitless
spectra enabled us to apply a multitude of selection criteria,
depending on the object type in question. AGN can be eas-
ily recognised from their peculiar spectral energy distributions
if they contain a sufficiently prominent nonstellar nucleus, i.e.
‘type 1’ AGN. The HES picks up quasars with B < 17.5 at red-
shifts of up to z ~ 3.2. Several precautions ensured that low-
redshift, low-luminosity AGN are not systematically missed.
For example, both the extraction of spectra and the criteria
to select AGN candidates contained a special treatment of ex-
tended sources, making the selection less sensitive to the mask-
ing of AGN by their host galaxies. This property makes the HES
unique among optical survey in that it targets almost the entire
local (low-redshift) population of type 1 AGN, from the most
luminous quasars to relatively feeble low-luminosity Seyfert
galaxies. It is this property which we exploit in the present pa-
per.

2.2.2. Photometry

Photometric calibration in the HES is a two-step process. We
first measured internal isophotal broad-band B;' magnitudes
in the Digitized Sky Survey (DSS) and calibrated these against
external CCD photometric sequences. At the start of the HES
around 1990, only the Guide Star Photometric Catalog (GSPC
Lasker et al. 1988) was available which typically provided stan-
dard stars with 8 < B < 14, clearly insufficient to obtain rea-
sonably accurate photometry near B ~ 17... 18, the faint limit
of the HES. We therefore launched a campaign to obtain our
own deeper photometric CCD sequences in as many fields as
possible; the results of this campaign will soon be made pub-
lic (Schulze et al., in preparation). Augmenting these sequences
by incorporating also the Guide Star Photometric Catalog 11
(GSPC-II; Bucciarelli et al. 2001), we arrived at a satisfactory
photometric calibration of all 380 HES fields.

However, these isophotal DSS magnitudes suffer from a
number of drawbacks, the most undesirable one (for our pur-
poses) being the fact that for extended objects, the nuclear AGN
contribution tends to be drowned out by the host galaxy. Using
isophotal magnitudes would have a detrimental effect on the
estimation of a proper AGN luminosity function especially at
the low-luminosity end. Other negative properties of the DSS
magnitudes include the effects of relatively poor seeing in many
fields, boosting the number of undesired blends.

In order to approximate the concept of nuclear magnitudes,
we optimised the extraction procedure of slitless spectra in the
HES digitised data to assume either true point sources or point
sources embedded in a diffuse envelope. In other words, the
spectra used for the HES candidate selection always refer to
an area of the size of the central seeing disk only (note also
that the HES spectral plates were typically obtained under much
better seeing conditions than the DSS). We then measured ‘nu-
clear magnitudes’ by integrating the spectra over the B; pass-
band, and calibrated these magnitudes against the DSS using
hundreds of stars in each field. We demonstrate below (§ 2.4)
that this procedure indeed produces measurements that in rea-
sonably good approximation can be taken as basis for nuclear
luminosities (see also Figs. 2.5 and 2.6 below).

An additional advantage of our approach lies in the fact that
we thus entirely avoid variability bias: Selection criteria and
fluxes in each field are all defined for a single dataset.

For the purpose of the present paper, a good knowledge of
the survey selection function, and thus of the accurate flux lim-
its is important. In the case of the HES, the flux limit varies
considerably between individual fields, mostly due to changes
in the seeing and night-sky conditions, but also because of plate
quality. Thus, each field maintains its own flux limit, always
corresponding to the same limiting signal to noise ratio in the
slitless spectra. As long as redshift-dependent selection effects
are neglected, the survey selection function is identical to the
‘effective area’ of the survey, combining the 380 flux limits into
single array that provides the total survey area as a function of

' B; is a roughly rectangular passband defined by a red cutoff
at 5400 A (as imposed by the blue-sensitive photographic emulsion
Kodak IIla-J) and a blue cutoff at 3950 A. For AGN-like spectra,
B ~ B, + 0.1, in the Vega system.
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Fig. 2.1. Effective area of the Hamburg/ESO survey as a func-
tion of the Galactic extinction corrected B; magnitude.

magnitude. The effective area of the entire HES is shown in
Fig. 2.1. Notice that this array also fully accounts for the losses
due to overlapping spectra and images (see the full discussion
in Wisotzki et al. 2000).

All magnitudes used in this paper have been corrected for
Galactic extinction, using the dust maps of Schlegel et al.
(1998) (averaged over each HES field), and the extinction law of
Cardelli et al. (1989). Note that for the HES we had previously
followed a different extinction correction recipe based on mea-
sured column densities of Galactic neutral hydrogen converted
into extinction (see Wisotzki et al. 2000). The main result of
this change is a slight decrease of the average adopted extinc-
tion along most lines of sight.

Figure 2.1 shows that the average extinction-corrected lim-
iting magnitude of the HES is B; < 17.3, but with a dispersion
of 0.5 mag between individual fields. There is essentially no
bright limit, with 3C 273 recovered as the brightest AGN in the
sample.

2.2.3. Spectroscopic data

All AGN and QSO candidates brighter than the flux limit in a
given field were subjected to follow-up spectroscopy for confir-
mation and accurate redshift determination, altogether approxi-
mately 2000 targets. These observations were carried out during
23 observing campaigns between 1990 and 2000, using vari-
ous telescopes and instruments at the ESO La Silla observatory.
Known AGN that were recovered by the HES selection crite-
ria were initially not part of the follow-up scheme. However,
such objects were often included as backup targets, so that our
spectroscopic coverage is almost complete for the entire AGN
sample. For some quasars in areas overlapping with the Sloan
Digital Sky Survey we could later add spectra from the public
SDSS database.

Because of the diversity of telescopes used, the quality of
the spectra varied significantly, in signal to noise as well as
spectral resolution. We estimated the latter quantity from the
width of the night sky O1 emission line at 5577 A. A list of in-
dividual observing campaigns with their estimated spectral res-

Table 2.1. Observing campaigns for follow-up spectroscopy

Date Telescope  No. of Spectra  Resolution /A1
Dec 1990 3.6m 4 1020
Apr 1991 3.6 m 1 830
Feb 1992 22m 4 370
Feb 1992 3.6m 6 900
Sep 1992 3.6m 4 700
Mar 1993 3.6m 6 770
Feb 1994 1.5m 1 1900
Sep 1994 1.5m 2 1980
Sep 1994 3.6m 4 680
Nov 1994 1.5m 11 770
Oct 1995 1.5m 30 650
Oct 1995 22m 1 300
Mar 1996 1.5m 19 590
Oct 1996 1.5m 8 580
Feb 1997 1.5m 24 600
Oct 1997 1.5m 19 540
Dec 1997 1.5m 33 540
Sep 1998 1.5m 26 670
Nov 1998 1.5m 23 600
Sep 1999 1.5m 28 580
Mar 2000 1.5m 15 540
Sep 2000 1.5m 36 640
Nov 2000 1.5m 22 790

olution and the number of AGN from our sample observed is
listed in Table 2.1.

Although a formal spectrophotometric calibration was
available for all campaigns, the combined dataset is much too
heterogeneous to allow for any consistent direct measurement
of emission line fluxes. We therefore adjusted all spectra to a
common, homogeneous flux scale by computing a synthetic B,
magnitude from each spectrum and matching this to the ‘nu-
clear magnitude’ photometry of the HES. This step again also
ensured that AGN variability is of no importance.

2.2.4. The sample

For the present investigation of the ‘local’ AGN population we
selected all AGN from the final HES catalogue (Wisotzki et al.,
in prep.) that belong to the ‘complete sample’ and that are lo-
cated at redshifts z < 0.3. This sample contains 329 type-1
AGN. For 5 of them we could not obtain spectra of sufficient
quality. Thus our sample is 324/329 =~ 98.5 % complete in
terms of spectroscopic coverage.

The HES nuclear fluxes were converted into absolute Mg,
magnitudes using the K correction of Wisotzki (2000a). Figure
2.2 shows the distribution of the sample over redshifts and ab-
solute magnitudes. A wide range of nuclear luminosities is cov-
ered, ranging from bright quasars with Mp, = —26 to low-
luminosity Seyfert 1 galaxies of only Mg, ~ —18.
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Fig. 2.2. Redshift against absolute magnitude Mp,. The dashed
line indicates a constant apparent magnitude of 17.5 mag, ap-
proximately the flux limit of the HES.

2.3. Emission line properties
2.3.1. Fitting procedure

As our sample is defined by z < 0.3, all objects have HB and
most also have Ha visible in their spectra. We measured lu-
minosities and line widths of the Ha and HB emission lines
by fitting the spectral region around each line with a multi-
component Gaussian model. Over this short wavelength range
we approximated the underlying continuum as a straight line.
While the structure of the broad lines is generally complicated,
it has repeatedly been demonstrated (e.g. Steidel & Sargent
1991; Ho et al. 1997; Hao et al. 2005b) that in many cases a
double Gaussian provides an acceptable fit to the BLR lines.
We always started with a single Gaussian per line, which was
sometimes already sufficient; otherwise we added a second or
third component. At our limited spectral resolution, any possi-
bly present narrow component of a broad line such as Hg is dif-
ficult to detect. We did not include an unresolved narrow com-
ponent by default and added such a component only when it was
clearly demanded by the data.

The Fen emission complex affecting the red wing of HS
can be sufficiently approximated by a double Gaussian at wave-
length 114924,5018 A for our data. We fixed their positions
and also fixed their intensity ratio 15018/14924 to 1.28, typical
for BLR conditions. Thus only two parameters were allowed to
vary, the amplitude and the line width. The [O m] 214959, 5007
A lines were also fitted by a double Gaussian with the inten-
sity ratio fixed to the theoretical value of 2.98 (e.g. Dimitrijevi¢
et al. 2007). The relative wavelengths of the doublet were fixed
as well, but the position of the doublet relative to H3 was al-
lowed to vary as a whole.

For the Ha line complex, the contributions of [Nu], and
sometimes also [S 11] needed to be taken into account. The latter
was mostly well separated and could be ignored, but when re-
quired we modelled it as a double Gaussian with fixed positions
and same width for both lines. For fitting the [N 1] 116548, 6583
A doublet we left only the amplitude free. The positions were

200 - HE 0345+0046 ]

o3 N S B B
4800 4900 5000 5100

[ HE 0315-5339

Fp [10716 erg s7!l ecm=2 A-1 ]

30
- HE 0358-3713

|

|

10 — | | .
AN My

By {Rviai ‘I'HVV" d“wﬂw‘:

20

N T T L R |
4800 4900 5000 5100 6400 6500 6600 6700

rest frame wavelength [ A]

Fig. 2.3. Examples of fits to the spectra, illustrating the quality
of the spectroscopic data. The line complex of HE is shown on
the left side, the corresponding complex around He is shown
on the right side. The data are represented by black lines, the
multi-component Gaussian fits to the Balmer lines are shown
in red, other lines are shown green, and the combined model is
overplotted in blue. Each panel also shows the fit residuals at
the bottom.

fixed, the intensity ratio was set to 2.96 (Ho et al. 1997), and the
line width was fixed to the width of the narrow [O 1] lines.

With this set of constraints, each spectrum was fitted with
a multi-Gaussian plus continuum model. We decided manually
which model fits best, neglecting contributions by Fen, [N ]
and [Su] lines if not clearly present. In 6 objects we detected
Ha but the S/N was too low to trace HB. On the other hand,
21 of our spectra did not reach sufficiently into the red to cover
Ha; further 8 spectra were too heavily contaminated by telluric
absorption to produce a reliable He fit. For these objects, HB
was readily detected.

Of the 324 spectra of the sample, we thus could obtain rea-
sonable fits for 318 objects in HB, and for 295 in Ha. Figure 2.3
shows some example results, illustrating the range of signal to
noise ratios and resolutions of the spectral material.
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Fig.2.4. Correlation between the fluxes f(HB) and f(Ha).
The solid line shows the regression result using the FITEXY
method. The dashed line shows the best fit line with slope of
unity.

2.3.2. Line Fluxes

From the fitted model we determined the emission line fluxes
of Ha and Hp as well as the continuum flux at 5100 A. As said
above, a narrow component of the Balmer line was only sub-
tracted if clearly identified in the fit. This happened in 46 cases
for He and in 34 instances for HB. We also measured the line
widths of Ha and HpB, which were then used to estimate the
black hole masses for the sample. These results are presented in
a companion paper (Schulze & Wisotzki 2010).

In order to estimate realistic errors we constructed artificial
spectra for each object, using the fitted model and Gaussian ran-
dom noise corresponding to the measured S/N. We used 500
realizations for each spectrum. We fitted these artificial spec-
tra as described above, fitting the line and the continuum and
measured the line widths and the line flux. The error of these
properties was then simply taken as the dispersion between the
various realizations. Note that this method provides only a for-
mal error, taking into account fitting uncertainties caused by
the noise. Other sources of error may include: A residual Fen
contribution; an intrinsic deviation of the line profile from our
multi-Gaussian model, as well as uncertainties in the setting of
the continuum level.

2.3.3. Relation between HB and Ha fluxes

In order to investigate the distribution of AGN emission line
luminosities we focus on Ha and HB as the two most promi-
nent recombination lines in our spectra. It is of interest to look
at the relation between these two lines. While recent published
work on this subject has mostly relied on He (Hao et al. 2005a;
Greene & Ho 2005), extending similar studies to nonzero red-
shifts is easier using HB. In Fig. 2.4 we plot the fluxes of the
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Fig.2.5. Difference between ‘isophotal DSS’ and ‘nuclear’
magnitudes, plotted against absolute nuclear magnitude Mg, .

two broad lines against each other. As expected, Ho and HS
are strongly correlated. To quantify this, we applied a linear
regression between Ha and HB in logarithmic units, using the
FITEXY method (Press et al. 1992) which allows for errors in
both coordinates. We account for intrinsic scatter in the relation
following Tremaine et al. (2002) by increasing the uncertain-
ties until a y? per degree of freedom of unity is obtained. The
best-fit relation found for the line fluxes is

log (fe) = (1.14 £ 0.02) log (fHﬂ) +(0.46 £0.01) (2.1)
where the fluxes are given in 107'3 erg s™' cm™2. The rms scatter
around the best fit is 0.15 dex. The relation between Ha and
Hp line flux using the FITEXY method is shown as the solid
line in Fig. 2.4. However, a relation with a slope of unity is also
consistent with the data (with a scatter of 0.14 dex). When fixing
the slope to one, the normalisation corresponds to the relation
SHe = 2.96 fyp, consistent with the Case B recombination value
of 3.1 (e.g. Osterbrock 1989). We conclude that the measured
Ha and HB broad line fluxes give consistent results.

2.4. AGN luminosities

A long-standing issue for the determination of the local AGN
luminosity function is the problem of how to disentangle
nuclear AGN and host galaxy luminosities. Using total or
isophotal photometric measurements will inevitably lead to
luminosity- and redshift-dependent biases. For example, the
Seyfert luminosity functions determined in some earlier stud-
ies (e.g. Huchra & Burg 1992; Ulvestad & Ho 2001) clearly
reflected more the distribution of host galaxy luminosities than
AGN properties. Ideally, AGN and host light should be properly
decomposed object by object; but as this would require high an-
gular resolution data for all objects in a sample, such a route is
presently not possible.

As a simplified approach to tackle this problem, we intro-
duced in Sect. 2.2.2 our concept of ‘nuclear magnitudes’ mea-
sured in the HES spectral plates. We did not subtract any host
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Fig. 2.6. Relation between absolute magnitudes in the B; band and line luminosities (left: Ha, right: HB). A fixed-slope relation
Mp, o< =2.5 log L is shown as a dashed line in each panel, for illustration purposes only.

galaxy contribution, but we kept it to a minimum by measuring
only the flux contribution of a nuclear point source. In Fig. 2.5
we compare these ‘nuclear’ magnitudes with the more standard
isophotal measurements in the DSS direct images. While for
high-luminosity quasars (and for all quasars at higher redshifts,
not shown in the figure), these two magnitudes give completely
consistent results, there is an obvious discrepancy which in-
creases towards lower luminosities. Clearly, the isophotal mag-
nitudes are biased for almost all AGN with nuclear magnitudes
fainter than —23, and useless for low-luminosity Seyfert galax-
ies.

Hence it appears that the HES magnitudes are better esti-
mates of nuclear luminosities than standard isophotal ones; but
are they good enough? To investigate this we now compare the
HES magnitudes with the luminosities of the broad emission
lines. As Ha and Hp are pure recombination lines, their lumi-
nosities should be proportional to the UV continuum (e.g. Yee
1980). In an AGN spectrum, the fluxes of the broad lines are
usually conspicuous and can be reasonably well measured even
when the host galaxy contribution is strong or dominant. We
thus adopt the Balmer emission line luminosities as proxies for
the UV continuum luminosity of the AGN, without any host
contribution.

In Fig. 2.6 we compare the HES broad band nuclear B; mag-
nitudes with the luminosities in both Balmer lines. The correla-
tion is excellent and, more importantly, it extends over the en-
tire range of luminosities. To guide the eye, the dashed lines in
Fig. 2.6 represent fixed-slope relations Mg, o< —2.5 log L. We
see that the data come very close to a slope of unity in the case
of Mp, vs. Ha, while the relation is slightly shallower for HB.

If the HES magnitudes were systematically affected by host
galaxy contributions we should expect to see a saturation of M3,
values at small L. In fact no clear such trend is visible in the
data, except maybe a small excess of a few points above the lin-
ear relation in the lower left corner of the right-hand panel. If
at all, these few objects appear to be the only ones significantly
affected by host galaxy light when described by the HES mag-

nitudes. Overall we conclude that the broad band photometry of
the HES is, in good approximation, a measure of the pure AGN
luminosities.

2.5. Luminosity functions
2.5.1. Luminosity function parameterisation

The AGN luminosity function (LF) ¢(L) is defined as the num-
ber of AGN per unit volume, per unit luminosity. The number
of AGN per unit volume and per unit logarithmic luminosity
®O(L) = d¥/d(og,L) is given by (L) = (L/log;,e)p(L),
where W(L) is the camulative luminosity function.

In the following we present the results in two different ways.
We first estimate the LF in discrete luminosity bins, expressing
it in the logarithmic form ®(L) (or in the equivalent form in
magnitudes). We then show the results of fitting these binned
LFs with simple parametric expressions. As usual, the fit pa-
rameters are always expressed in terms of the non-logarithmic
form ¢(L).

The most frequently adopted parametric form for the AGN
luminosity function is a double power law:

¢ /L,
(L/L)™ + (L/L)#

(L) = (2.2)
where L, is a characteristic break luminosity, ¢* the normalisa-
tion and « and 3 are the two slopes.

It will be seen that the local AGN LF is close to a single
power law, so we will also consider that even simpler form:

_ (LY
oL =7 ( ) : 2.3)

% L*

Expressed in absolute magnitudes these functions have fol-
lowing form:
@*
100A40+a)(M-M.) 1 10A1+B)(M-M.)

(M) = 2.4
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Fig. 2.7. The differential broad band quasar luminosity function
of the HES for 0.01 < z < 0.3. The error bars are based on
Poisson statistics. The arrow indicates a bin with only a single
object. The black filled symbols show the luminosity function
corrected for evolution using a simple PDE model; red open
symbols show the LF not corrected for evolution. The dashed
line shows a single power law fit to the data.

for the double power law, and

q)(M) - Q* 10—0.4(1+(}z)(M—M*) (25)

for the single power law, with @ = 0.4 ¢* In(10) for both func-
tions.

2.5.2. Broad band Luminosity Function

We first present the broad band luminosity function, using the
full sample of 329 type-1 AGN with z < 0.3. This updates
the previous work of Wisotzki (2000b), with several improve-
ments: (i) The sample size has doubled. (ii) The quality of the
external photometric calibration is improved. (iii) The correc-
tion for Galactic extinction has been updated. (iv) We now also
include the effects of differential evolution within the redshift
range 0 < z < 0.3 (see below).

We determined the binned luminosity function using the
classical V/Vyx estimator (Schmidt 1968). The luminosity
function is then calculated by:

1 M+AM/2

O(M) = Z

M=-AM/2

1
Viax 20
where AM is the bin size and V), is the survey volume in which
the object k could have been detected within the flux limit of the
survey and the given redshift range. Recall that the dispersion
in limiting magnitudes over the 380 HES fields is taken into
account by the magnitude dependence of the effective survey
area Qg (Fig. 2.1). Thus Vy,. is given by

Tmax dV
Vous = [ Quntm e @7
dz

<min

In adopting this form we explicitly assume that the probability
of finding an AGN in the HES is independent of redshift. While
this would be too strong an assumption for the full quasar sam-
ple, it is certainly justified for the restricted low-redshift range
z < 0.3 considered here. The SEDs of typical type 1 AGN
(without host galaxy contributions) at such low redshifts are
distinctly blue in the optical/UV, and significant marked vari-
ation with redshift occur beyond z > 0.5. (Note that we do not
consider here the role of ‘red’ quasars which would be lost in
the HES altogether.) If S(m, z) is the redshift- and magnitude-
dependent survey selection function, we can safely marginalise
over redshifts and set S(m, z) o< Qe (m).

The resulting AGN luminosity function is shown in Fig. 2.7,
covering the range =26 < Mp, < —18 in bins of 0.5 mag. It
shows remarkably little structure and rises steadily up to the
faintest luminosities in the sample. At Mz, = —19 there ap-
pears to be an abrupt break which almost certainly is an arte-
fact, indicating the inevitable onset of severe incompleteness in
the HES sample for very low luminosities. For such objects,
the host galaxy contribution even to the HES nuclear extrac-
tion scheme will be substantial, modifying the slitless spectra
in a way that they no longer can be discriminated from nor-
mal, inactive galaxies. It is remarkable that this effect plays a
role only for the lowest luminosity bins; there is no gradual
turnover that might indicate incompleteness already at higher
luminosities (alternatively, invoking incompleteness would im-
ply an even steeper LF which would be inconsistent with other
results, see below).

If we ignore the lowest luminosity bins affected by incom-
pleteness, the M, AGN luminosity function is consistently de-
scribed by a single power law with slope @ = —2.4. Fitting in-
stead a double power law to all bins results in the same bright-
end slope and a break at Mp, = —18.75. A double power law fit
to these data is apparently not physically meaningful.

The observation that the local AGNLEF is perfectly described
by a single power law is in excellent qualitative and quantitative
agreement with previous results obtained in the course of the
HES (Koehler et al. 1997; Wisotzki 2000b). It is however in-
consistent with z = 0 extrapolations of the double power law
AGNLF obtained at higher redshifts. We will discuss this point
in section 2.6.4.

The evolution of comoving AGN space densities with red-
shift is sufficiently fast that there is a noticeable effect even
within the range 0 < z < 0.3. To derive a truly ‘local’
(z = 0) AGNLF we have to take evolution into account. The
V/Viax formalism (Schmidt 1968) provides a simple but ade-
quate recipe to do so. If our sample were unaffected by evolu-
tion, we would expect to find (V/Viyax) = 0.5. Our measured
value is (V/Vpnax) = 0.54 = 0.02, implying some evolution. To
correct the z < 0.3 AGNLF to z = 0, we approximate the evolu-
tion within this small redshift interval as pure density evolution
(PDE), i.e. ®(z) o (1 + z)¥». We varied the density evolution
parameter kp until we reached (V/Vpax) = 0.5. To increase the
leverage we performed the same exercise for a larger redshift
range, including quasars from the HES sample up to z = 0.6.
We found that the evolution within this redshift interval is well
described by a PDE model with kp = 5, essentially indepen-
dent of the exact value of the outer redshift boundary. Notice
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Table 2.2. Binned differential luminosity function in the Bj,
band, corrected for evolution.

Mg, N log®(Ms,) o(log @)
180 1 -5.81 +03 —co
-185 6 -5.30 +0.15  -0.24
-190 5 -5.72 +0.17  -0.26
-19.5 28 -5.22 +0.08  —0.09
-20.0 30 -5.54 +0.08  —0.09
205 37 -5.74 +0.07  -0.08
-21.0 40 -6.03 +0.07  -0.07
215 23 -6.62 +0.09  —0.10
220 24 -6.95 +0.08  —0.10
225 40 ~7.04 +0.06  —0.08
-230 38 ~7.40 +0.07  -0.08
-235 31 ~7.65 +0.08  —0.08
240 14 -8.04 +0.10  -0.13
245 9 -8.25 +0.13  —0.17
255 2 -8.91 +0.23  -0.53
260 1 -9.21 +03 —oo

Notes. N is the number of objects contributing per bin. The luminosity
function is expressed as number density per Mpc? per unit magnitude.

that beyond the very local universe, the HES samples only the
brightest quasars, and our correction for the most part concerns
these high-luminosity bins only. For a single power law, density
and luminosity evolution are indistinguishable. Therefore our
evolution correction does not critically depend on the choice of
the actually adopted model.

We then applied the parameterised density evolution to the
HES z < 0.3 sample to recompute the evolution-corrected z = 0
AGNLF. Note that we used the objects at z > 0.3 only to con-
strain the density evolution index kp and not for the luminosity
function.

We still obtain a relation very close to a single power law,
which however is slightly steeper than the uncorrected one. The
best fit power law slope is now @ = -2.6. This evolution-
corrected AGNLF is also shown in Fig. 2.7. It is provided in
tabulated form in Table 2.2.

2.5.3. Emission Line Luminosity Function

The emission line luminosity function (ELF) — the number of
AGN per unit volume per unit logarithmic emission line lumi-
nosity — is given by

d(L) =

1 1
AlogL Zk: VEax @8
The selection of AGN in the HES in this redshift range (and
up to z ~ 2.5) is exclusively based on continuum SED proper-
ties and independent of emission line properties (Wisotzki et al.
2000). Thus the selection function is the same as for the broad
band luminosity function, and the Vy,,x values needed for the
determination of the emission line luminosity function are also
the same as for the Mp, luminosity function, except for a correc-
tion factor containing the spectroscopic incompleteness. As dis-
cussed in § 2.2.4, our sample has an overall spectroscopic com-
pleteness of 324/329 = 98.5 %. Of the 324 objects with spectra,

Table 2.3. Binned Ha and HB emission line luminosity func-
tions.

Ha Hp
logL N log®He) N log®HP)
40.5 4 -5.19%02
40.75 3 5710
41.0 -5.2650% 11 501708
41.25 -5.8470% 23 503701}
415 16 49713 26 519709
4175 23 -504%011 38 538+
420 34 505709 37 _568100
4225 38  -54%% 25 —6.26%0%
425 35 572709 36 -6.6170%
42775 28  -63%01 45 674700
430 32 668701 35 -7.16%%
4325 34 6970 22 —7.48+0%
435 28 -7.22%0% 10 -7.87'1
4375 17 =758 2 850703
440 6 804701 1 _ggyr03

6 do not show HB and 29 do not show He, due to insufficient
spectroscopic coverage or atmospheric absorption. This incom-
pleteness does not affect any particular object types preferen-
tially, and we assumed the losses to be randomly distributed. We
therefore adopted the effective survey area as before, multiplied
by a factor of 318/329 for HB and by 295/329 for Ha, respec-
tively. Unless explicitly stating otherwise, we always refer to
the evolution-corrected Vo values, thus providing luminosity
functions valid for exactly z = 0.

The resulting ELFs for Ho and HB are shown in Fig. 2.8,
binned into luminosity intervals of 0.25 dex. The binned values
are given in Table 2.3.

Figure 2.8 displays a very similar behaviour of the ELF
when compared to the broad-band LF of Fig. 2.7: It rises nearly
as a straight line, i.e. as a single power law, until a sharp cutoff
at low luminosities indicates the onset of sample selection in-
completeness. Fitting power law relations to the data (again ex-
cluding the obviously incomplete lowest luminosity bins) gives
slopes of ap, = —2.28 and apg = —2.26, respectively. Fitting a
double power law improves the fit quality only marginally. We
conclude that a description of the ELF as a single power law, for
the luminosity range covered by our data, seems most appropri-
ate.

2.6. Discussion
2.6.1. Low luminosity-AGN: Comparison with SDSS

The sharp cutoff in the binned luminosity functions at nuclear
luminosities Mz, * —19 or log Ly, < 42 clearly signals the
onset of incompleteness in our sample. This luminosity approx-
imately marks the limit where AGN cease to be conspicuous
in the optical and tend to be masked by their host galaxies.
However, deep spectroscopic surveys of galaxies have shown
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Table 2.4. Fit parameters for the AGNLF.
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AGNLF ¢, @ [Mpc]® M., logL, B @ ' x2/dof
Mz, z2<03 1.80 x 1077 -22.44 -2.35 - 16.08 1.61
Mg, =0 8.36x 1078 -22.46 -2.56 - 1456 1.46
Ha z=0 2.18 x 1077 42776  -2.28 - 1851 2.31
Hp z=0 1.07 x 1077 4251 -2.26 - 3417 342
Ha + SDSS =0 5.59 x 107° 41.58 -2.21 - 97.0 2.85
He + SDSS =0 1.8 x 1073 41.67 -2.58 -1.80 37.32 1.49
Mg (HES+SDSS) z=0 5.60 x 107¢ -19.25 -2.40 - 65.5 4.09
Mp (HES+SDSS) z=0 1.55x 1073 -1946 -2.82 -2.00 24.4 1.62
log Ly, (HES+SDSS) z=0 2.54 x 1073 4437 =295 =217 25.58 1.71
:‘ ‘ \< ! ‘\‘ rrrrrrTrTTTTTTT ‘: plot the Seyfert 1 He luminosity function of HO5 (adapted to
B NN -+ our cosmology) together with our He LF. The transition from
_5 L \E\ E\E\ 3 Z]  one dataset to the other is remarkably smooth, if the incomplete
— r % \J N5 7 lowest luminosity bins in the HES sample are ignored. Over
- L N 3 3 - the luminosity range in common, both ELFs are fully consistent
= 6 N N N N ] with each other.
=y B ¥ % - Even more remarkably, the shape of the combined Ha LF
N i N ] — now covering almost 5 orders of magnitude in luminosity —
7 L [N 1 . .
o _m [ T ] 1is still close to that of a single power law. Already the fit to
§* - \i\ . -+ the HES Ha LF alone is almost consistent with the HOS LF.
— N LY \E\ 1] Combining both samples, we find a best-fit power law slope of
& r ¥ 1 a = —2.2. This fit is shown as the dashed-dotted line in Fig. 2.9.
& -8 N N\ \E AN B However, there is evidence for some curvature in the LF, as
a C N o « | the HOS LF alone is flatter (@ = —2.02) than the HES ELF. This
- j N\ is manifest in a ‘bulge’ around 10*? erg s~!, where the space
o j/ \\ B density of the combined LF is above the fitted single power
e b v v b b T aNg law. A better fit is obtained by a double power law breaking at

42 43
log Ly [ergs s™1]

Fig.2.8. Binned emission line AGN luminosity functions, for
Ha (red filled circles) and HB (blue squares). Open symbols
indicate incompletely filled bins. The dashed lines show the best
fit single power law to the Ha and Hp data, respectively.

that the AGN phenomenon persists down to very low levels (e.g.
Ho et al. 1997). In those cases, the only traceable indicator of
nuclear activity in the optical are the emission lines, thus the
statistics have to be expressed in terms of an ELF. This was re-
cently performed by Hao et al. (2005a, hereafter HO5), who se-
lected a set of ~ 1000 Seyfert 1 galaxies from the Sloan Digital
Sky Survey (main galaxy sample) to measure Ha line luminosi-
ties and construct the ELF. The redshift range covered in their
sample is 0 < z < 0.15, and the luminosity range is (103-—
10*) erg s~'. HOS found their ELF to be in good agreement
with several parametric descriptions, including single and dou-
ble power laws and also a Schechter function. However, differ-
ences between these forms become manifest only at their high-
est luminosities, for L(Ha) ~ 10** erg s~ . Over much of the
luminosity range, their data suggest a single power law.
Fortunately the high-luminosity end of HO5 overlaps quite
well with the low-luminosity end of our Ha ELF, so that a com-
parison is straightforward. This is shown in Fig. 2.9 where we

log L, = 41.67, with a faint-end slope of @ = —1.8 describing
the SDSS data and a bright-end slope of § = —2.6 describing
the HES. This mildly curved relation, shown by the dashed line
in Fig. 2.9, traces the combined data extremely well.

Some caveats are in place regarding the combination of the
two datasets. Although HO5 determined the narrow Ha compo-
nents separately, their broad-line ELF does not have this com-
ponent subtracted, whereas we tried to remove it. As such a
removal was possible in only a small number of cases, the dif-
ferent treatment does not make much difference. More relevant
might be the possibility of a systematic variation of the narrow
Ha contribution to the total Ha flux with luminosity. However,
the narrow Ha LF published by HOS5 has also a slope of —1.8,
which indicates that there should be no major bias introduced.

Another methodical difference lies in the fact that we cor-
rected our LF for evolution, whereas HO5 did not. If we assume
that the most luminous objects of HOS lie close to their high-
redshift limit of z < 0.15 and adopting our simple PDE recipe,
then the HOS space densities would have to be corrected down-
ward by a factor of 1.15° ~ 2, ie. by 0.3 dex; this correction
would rapidly decrease towards lower luminosities. The net ef-
fect would hardly be visible in Fig. 2.9.

We note that recently, Greene & Ho (2007) (hereafter
GHO7) derived the AGN He LF based on a combined sample of
about 9000 broad line AGN from the SDSS. Their space densi-
ties are considerably below ours, and the two LFs are highly in-
consistent (the same discrepancy exists between the GHO7 and
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Fig.2.9. Comparison of the Ha luminosity function derived in
this work (black points), with the work of Hao et al. (2005a)
(blue asterisks). The black dotted line gives the best fit single
power law to our Ha luminosity function. The red dashed dot-
ted line gives the best fit power law to the combined data set,
whereas the red dashed line gives the best fit double power law.

HOS results). This inconsistency has been traced back to an er-
ror made by GHO7 in the determination of their V/Vp,,« values
(J. Greene, private communication). Therefore the luminosity
function as well as the black hole mass function presented in
GHO7 are incorrect. Removing the error alleviates the discrep-
ancy, and the corrected He luminosity function for the low red-
shift AGN sample from GHO7 is consistent with the HES lumi-
nosity function presented in this work.

2.6.2. The combined local AGN luminosity function

Given the good agreement of the local HES LF, which traces
the bright end, and the SDSS Seyfert 1 LF sampling the faint
end, and having the mentioned caveats in mind, it is justified
to combine both datasets. Our aim is to present a single best-
knowledge local AGNLF in the optical, covering the broadest
possible range of luminosities. Because of its robustness against
dilution due to host galaxy light, we used the Ha luminosity
functions of HES and SDSS. We adopted a bin size of 0.24 dex
(0.6 mag) as an integer multiple of the binned values published
by HO5. We then recomputed the Ha ELF from the HES data
for the same bins and merged the two datasets, with weights
provided by the inverse statistical variances.

For easy comparison with other AGN luminosity functions,
especially at higher redshifts, we converted this combined LF
into two common reference systems: (i) absolute magnitudes
Mp in the standard Johnson B band; and (ii) bolometric lu-
minosity units. These conversions involve translating the Ha
data into broad band or bolometric fluxes. There is a very tight
correlation between Ha luminosity and absolute blue magni-

Table 2.5. Combined binned local AGNLF, based on the SDSS
broad line galaxy sample (faint end) and the Hamburg/ESO
Survey (bright end).

Mp  log®(Mp) logLps log ®(Lpor)
_142 2607011 4277 —2.117010
_148  -295%012 4297 _p.47%00
_154 300708 4317 —2507007
160 -3.49%00 4337 —3.02:00
~166  -3630% 4358  —3.17:0%8
S172 —410°0% 4379 -3.64°007
S178  —426°0% 4400  -380%0%
S184  —4.44°0% 4420 -399+0%8
S190  —4.69%00 4443 —425%00
_196  -5.04%0% 4465  —4.6010%
2202 -5460% 4487  —503700%
208 -578%00 4500  -5.35:007
214 -6360% 4532 -593%0%
2220 -6850% 4555  —6.43'0%
2226 -71940% 4577 —6.77+0%
232 -740°0% 4600  —-6.980%
238 787010 4623 —7.46%010
244 -820°012 4647  —7.79%00
250 -876:92 4670  -8.35%020

tude in the HES (Fig. 2.6). The translation relation is Mg =
—2.1(log L(Ha) — 42) — 20.1. This relation is covered by our
data down to Mp ~ —19. In order to incorporate also the lower
luminosity SDSS data we now make the somewhat unguarded
step of extrapolating the translation of Ly, to Mg towards lower
L. This certainly introduces additional uncertainties, including
the possibility that some of the lowest luminosity AGN could
have very different spectral energy distributions (for example,
the structure of the accretion disk might change drastically). On
the other hand, there is no reason to expect such a change to
occur just at the transition luminosity from HES to SDSS, so
some degree of extrapolation is most probably justified.

The resulting combined local AGN LF is shown in Fig. 2.10,
ranging from Mp 2 —25 to Mp < —15 (with the above caveat).
Also shown as a dotted line is the best fit single power law, and
as a solid line the best fit double power law; the fit parame-
ters are provided in Table 2.4. The double power law gives a
very good overall description, but the departure from a single
power law is not large, albeit statistically significant. There are
some minor wiggles in the binned LF that are most probably
due to underlying unaccounted for systematics; note however
that there is no trace of the HES-SDSS intersection (rather: tran-
sition region) around Mp ~ —20.

For the convenience of the reader we also provide this LF
in tabulated form, both in terms of the B band and as a bolo-
metric LF. For the latter we adopted the luminosity-dependent
bolometric corrections of Hopkins et al. (2007). A separate dou-
ble power law fit to the resulting bolometric LF is also provided
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Fig. 2.10. Local AGN luminosity function constructed as a combination of the SDSS broad line AGN LF from Hao et al. (2005a)
and our Ha HES bright AGN LF, both converted to the B band. The black solid line and dotted line show the double and single
power law fits, respectively. The open blue circles show the directly determined broad band (Mp,) LF for comparison.

in Table 2.4. Recall that this bolometric luminosity function is
valid only for broad-line (type 1) AGN, without any accounting
for obscuration.

2.6.3. Comparison with X-ray selected samples

X-ray surveys have made a great impact on our understanding
of the AGN population, chiefly through their ability to find low-
luminosity AGN at all redshifts. However, because of the expen-
sive spectroscopic follow-up, sample statistics are still moderate
despite considerable efforts.

The only dedicated effort to estimate an optical local
AGNLF from an X-ray selected sample was published by
Londish et al. (2000). Their bright-end slope of 8 = —2.1 (with-
out evolution correction) is similar to ours, but they obtained a
shallow faint end slope of @ = —1.1, however with considerable
error bars. Our new results, in particular in combination with
SDSS, show clearly that such a flat slope is ruled out and that
the local AGNLF continues to rise towards very faint luminosi-
ties.

A local (z = 0) luminosity function from an AGN sample
selected in the soft X-ray (0.5-2 keV) band was presented by
Hasinger et al. (2005). Their sample is restricted to unabsorbed
type 1 AGN and is therefore very comparable to ours. To facil-
itate a comparison, we again used the L-dependent bolomet-
ric corrections of Hopkins et al. (2007) to convert our com-
bined optical AGNLF into the soft X-ray domain. In Fig. 2.11
we compare the z = 0 XLF of Hasinger et al. (2005) with
our prediction. The X-ray points are represented by the filled
blue triangles, which are the binned estimate in the redshift

shell z = 0.015 — 0.2 of Fig. 7 in Hasinger et al. (2005), cor-
rected to redshift zero. The blue dotted line shows their best-
fit luminosity-dependent density evolution (LDDE) model for
z=0.

For intermediate luminosities, the observed XLF and the
prediction based on the optical AGNLF are in good agreement.
A modest discrepancy is visible for high-luminosity AGN; but
the two LFs disagree strongly at the faint end, with the optical
LF predicting more than an order of magnitude higher space
densities at given X-ray luminosity compared to the directly de-
termined XLF.

Is there an explanation for these discrepancies? One possi-
bility might be that the adopted conversion from optical to X-
ray luminosities has been inadequate. In order to explore this
option we alternatively tried a constant optical/X-ray luminos-
ity ratio; the dashed line in Fig. 2.11 shows our double-power
law relation converted with such a relation. Evidently, that pre-
dicted LF is a very good match to the bright end of the XLF. At
the faint end the two LFs still disagree, but the disagreement is
now much less. Thus it appears possible that the luminosity de-
pendence of the optical/X-ray ratio is much weaker than usually
assumed; if so, it would certainly help to reconcile the two lumi-
nosity functions. Another possibility is, of course, incomplete-
ness among the fainter objects in the X-ray sample. We reiterate
however that since both samples contain only broad-line AGN,
any incompleteness due to obscuration should be irrelevant in
this context.
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Fig. 2.11. Comparison of the soft X-ray LF of type 1 AGN by
Hasinger et al. (2005) with the prediction based on the optical
local AGNLF. The filled blue triangles show the binned X-ray
(0.5-2 keV) LF within z = 0.015 — 0.2, corrected to z = 0.
The blue dotted line shows the LDDE model of Hasinger et al.
(2005) for z = 0. The filled black circles and the solid line
show the binned data and the double power law fit to the opti-
cal HES+SDSS LF, converted to soft X-rays using a luminosity
dependent correction. The dashed line shows the same double
power law fit, but converted to soft X-rays using a constant cor-
rection.

2.6.4. Comparison with higher redshifts: Evidence for ‘AGN
downsizing’

We now perform a direct comparison of our local AGNLF with
luminosity functions based on surveys that probe mainly the
higher redshift AGN population. This is interesting not only be-
cause a comparison with z = 0 provides the longest leverage
in redshifts, but also because the local luminosity function can
be traced to very faint luminosities and high space densities. A
full investigation of the redshift evolution of the AGNLF is out-
side of the scope of this paper; we limit ourselves to a simple
comparison between the z = 0 LF determined above and para-
metric representations of the AGNLF evaluated at z = 1.5, the
latter chosen as a representative point at moderately high red-
shift where several surveys have been able to leave their marks.

The results of this comparison are displayed in Fig. 2.12.
The datapoints and the solid line show our combined local
AGNLEF. The thick dashed line shows the z = 1.5 fit to opti-
cally selected QSOs with 0.4 < z < 2.1 from the 2dF Redshift
Survey (Croom et al. 2004). They found their data to be in good
overall agreement with a double power law LF and a pure lu-
minosity evolution (PLE) redshift dependence. The thin dashed
line shows the z = 0 extrapolation of this PLE model (essen-
tially just a horizontal shift). This extrapolation is clearly a very
poor match to the local AGNLF, in several aspects: The ob-

I —- 2 = 1.5 Croom et al. (2009) \\\\\ R
- z = 1.5 Bongiorno et al. (2007) \\\H\\ i
T T I Y T N S S N R N NN Y
-18 —20 —22 —24 —26 —28
Mp

Fig. 2.12. Shape evolution and ‘downsizing’ of the AGNLF be-
tween z = 1.5 and z = 0. Filled circles and solid line denote our
combined HES+SDSS AGNLF at z = 0. The blue dashed and
red dotted lines show the best fit model to the data of the z = 1.5
AGNLF of the 2QZ (Croom et al. 2004) and the VVDS+SDSS
(Bongiorno et al. 2007), respectively. The black dashed line
shows the PLE model of Croom et al. (2004) extrapolated to
redshift zero.

served bright-end slope is flatter and the faint-end slope is much
steeper than the extrapolated one, so that the space density of in-
termediate luminosity AGN is over- and that of low-luminosity
AGN is heavily underpredicted.

As a second reference we considered the AGNLF by
Bongiorno et al. (2007) (dotted line), derived from a combi-
nation of the SDSS at the bright end and the faint type 1 AGN
sample from the VVDS (Gavignaud et al. 2006). This sample is
noteworthy in that it is certainly the most complete set of low-
luminosity AGN at substantial z, as it is purely flux limited and
not affected by any colour or morphological preselection. This
is manifest in the steeper faint-end slope of the z = 1.5 LF.

Nevertheless, comparing the Bongiorno et al. (2007) and the
local AGNLF reveals a striking change in the shape of the lu-
minosity function: The pronounced break visible at high z is
almost absent in the local LF. In terms of space densities, this
implies that while high-luminosity AGN were much more fre-
quent at high redshifts, AGN with nuclear luminosities around
Mp ~ —19 are as common in the local universe as they were
at high z. For somewhat fainter AGN this relation might even
be reversed, although there are too many uncertainties to make
such a claim.

Such a ‘downsizing’ behaviour of the AGN population was
previously detected through X-ray surveys (Ueda et al. 2003;
Hasinger et al. 2005); here we demonstrate for the first time that
the same phenomenon features very prominently in the optical
AGNLF as well. Note that this conclusion does not hinge on
our extrapolation of the Ha-Mjp relation, as the crossing of the
z = 1.5 and z = 0 LFs occurs at luminosities still covered by the
HES.
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2.7. Conclusions

We have presented a new determination of the local (z = 0)
luminosity function of broad-line Active Galactic Nuclei. Our
sample was drawn from the Hamburg/ESO Survey and contains
329 quasars and Seyfert 1 galaxies with z < 0.3, selected from
surveying almost 7000 deg? in the southern sky. As a central
feature, our broad-band magnitudes were measured in the sur-
vey data with a point-source matching approach, strongly reduc-
ing the contribution of host galaxy flux to the inferred AGN lu-
minosity. Compared to our previous work we have not only sub-
stantially increased the statistical basis, but also added a number
of methodical improvements.

In the construction of the broad band (B;) luminosity func-
tion, we now included the effects of differential number density
evolution within our narrow redshift range, 0 < z < 0.3. Since
the most luminous AGN tend to be located near the outer edge
of that range, ignoring evolution makes the luminosity function
appear slightly too shallow. We find that the evolution-corrected
local luminosity function within =19 < Mg, < -26 is well-
described by a single power law of slope @ = —2.6, still signif-
icantly shallower than the z = 0 extrapolation of the AGNLF
measured at higher redshifts.

As a second and independent measure of AGN power we
investigated the distribution of Balmer emission line luminosi-
ties, in particular the broad Ha and Hp lines. These lines can be
detected and accurately isolated in optical spectra even of low-
luminosity AGN where the host galaxy is bright compared to
the nucleus. We found a very tight correlation between Ha lumi-
nosities and broad band absolute magnitudes Mp, over the en-
tire luminosity range of our sample, confirming that host galaxy
contamination to the Mg, magnitudes is unimportant.

We constructed the broad emission line luminosity func-
tions for Ha and HpB, and found them to agree well with the
broad band LF. In particular, there is again no trace of signifi-
cant curvature over the covered luminosity range, and a single
power law is still sufficient to describe the shape of the LF.

We found excellent consistency between our data and the
Hea emission line luminosity function of low-luminosity AGN
determined from the SDSS by (Hao et al. 2005a). While the two
datasets are complementary in luminosity coverage, our low-
luminosity end overlaps very well with their high-luminosity
end. The SDSS data seamlessly continue the rise of the LF
towards the domain of low-luminosity Seyferts. The compar-
ison with SDSS also delineates clearly that below L(Ha) ~
10*? erg s™! (or Mg, ~ —19), the HES sample becomes heav-
ily incomplete; this we suspected already from the shape of the
HES luminosity function alone.

We combined the HES and SDSS results into a single z = 0
AGN luminosity function covering more than 4 orders of mag-
nitude in luminosity. This remedies a long-standing shortcom-
ing of AGN demographics: Despite the heroic survey efforts,
there was no really well-determined local luminosity function
that could serve as anchor for a global take on AGN number
density evolution. The combined local AGNLF is still amaz-
ingly close to a single power law, but it definitely shows cur-
vature. A good description is provided by a double power law
with slopes @ = —2.0 and 8 = -2.8.

Comparing the combined local AGNLF with determina-
tions at higher redshifts, we find strong evidence for luminosity-
dependent evolution, in the sense that weak AGN experience
a much weaker number density decline, or no decline at all,
than powerful quasars. This behaviour is well established from
X-ray surveys, where a systematic shift of the peak in comov-
ing space density with luminosity is observed (e.g. Ueda et al.
2003; Hasinger et al. 2005). Known as ‘AGN downsizing’, it
is presumably related to the anti-hierarchical mass dependence
of black hole growth (e.g. Heckman et al. 2004; Merloni 2004;
Marconi et al. 2004; Merloni & Heinz 2008). The steepening
of the faint end slope towards low redshift can be understood
in this scenario by the change of quasar lifetime with peak lu-
minosity, and hence black hole mass. The more massive black
hole AGN die more quickly than lower mass black hole AGN
and are therefore not observable in their decaying stage of their
light curve, whereas lower black hole mass AGN are observable
in their less luminous stage and contribute significantly to the
faint end of the LF (Hopkins et al. 2006; Gavignaud et al. 2008).
Thus the faint end of the luminosity function should consist of
a mixture of low mass black holes accreting at a high rate and
higher mass black holes with low accretion rates. Investigating
this question will be the subject of the next chapter.
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Chapter 3

Low redshift AGN in the Hamburg/ESO Survey
Il. The active black hole mass function and the distribution
function of Eddington ratios*
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ABSTRACT

We estimated black hole masses and Eddington ratios (L/Lggq) for a well defined sample of local (z < 0.3) broad line AGN from
the Hamburg/ESO Survey (HES), based on the HS line and standard recipes assuming virial equilibrium for the broad line region.
The sample represents the low-redshift AGN population over a wide range of luminosities, from Seyfert 1 galaxies to luminous
quasars. From the distribution of black hole masses we derived the active black hole mass function (BHMF) and the Eddington ratio
distribution function (ERDF) in the local universe, exploiting the fact that the HES has a well-defined selection function. While the
directly determined ERDF turns over around L/Lggq ~ 0.1, similar to what has been seen in previous analyses, we argue that this is
an artefact of the sample selection. We employed a maximum likelihood approach to estimate the intrinsic distribution functions of
black hole masses and Eddington ratios simultaneously in an unbiased way, taking the sample selection function fully into account.
The resulting ERDF is well described by a Schechter function, with evidence for a steady increase towards lower Eddington ratios,
qualitatively similar to what has been found for type 2 AGN from the SDSS. Comparing our best-fit active BHMF with the mass
function of inactive black holes we obtained an estimate of the fraction of active black holes, i.e. an estimate of the AGN duty
cycle. The active fraction decreases strongly with increasing black hole mass. A comparison with the BHMF at higher redshifts also
indicates that, at the high mass end, black holes are now in a less active stage than at earlier cosmic epochs. Our results support the
notion of anti-hierarchical growth of black holes, and are consistent with a picture where the most massive black holes grew at early

cosmic times, whereas at present mainly smaller mass black holes accrete at a significant rate.

3.1. Introduction

The observed relations between the black hole mass and the
properties of the spheroidal galaxy component imply a close
connection between the growth of supermassive black holes
(SMBH) and the evolution of their host galaxies. For local
galaxies a strong correlation between the mass of the SMBH
and the luminosity or mass of the bulge component (Magorrian
et al. 1998; Marconi & Hunt 2003; Héring & Rix 2004), as well
as with the stellar velocity dispersion (e.g. Ferrarese & Merritt
2000; Gebhardt et al. 2000; Tremaine et al. 2002; Giiltekin
et al. 2009) have been established. Semi-analytical and numer-
ical simulations also show the importance of black hole activ-
ity and their corresponding SMBH feedback for galaxy evolu-
tion (e.g. Di Matteo et al. 2005; Springel et al. 2005; Croton
et al. 2006; Cattaneo et al. 2006; Khalatyan et al. 2008; Booth
& Schaye 2009). It became clear that the central SMBH of a
galaxy and especially its growth is an important ingredient for
our understanding of galaxy formation and evolution.
Therefore a complete census of the black hole population
and its properties is required. Active black holes that will be
observable as AGN are particularly important to study black
hole growth. A useful tool to study the AGN population is the

* This chapter is published in Astronomy & Astrophysics, 2010, 516,
A87.

luminosity function (AGNLF). The observed evolution of the
AGNLF has been used to gain insight into the growth history of
black holes (e.g. Soltan 1982; Yu & Tremaine 2002; Marconi
et al. 2004; Merloni 2004; Shankar et al. 2009), and it be-
came clear that most of the accretion occurs during bright QSO
phases. But, using the AGNLF alone usually requires some ad-
ditional assumptions, e.g. for the mean accretion rate, and thus
is affected by uncertainties and degeneracies. Disentangling the
AGNLF into the underlying distribution functions, namely the
active black hole mass function (BHMF) and the distribution
function of Eddington ratios (ERDF), is able to provide addi-
tional essential constraints on the growth of SMBHs.

To understand the influence of black hole growth on galaxy
evolution over cosmic time, first the properties of growing black
holes in the local universe have to be well understood. Thus, it
is important to derive black hole masses and accretion rates for
large, well defined samples of AGN. However, measuring black
hole masses is much more difficult than measuring luminosi-
ties. Black hole masses for large samples of AGN can not be
measured directly, but only estimated, using locally established
scaling relations.

The best method to estimate M, for type 1 AGN is rever-
beration mapping of the broad line region (Blandford & McKee
1982; Peterson 1993). Assuming virial equilibrium black hole
masses can be estimated by Mpy = fRp rAV?/G, where Rpir
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is the size of the broad line region (BLR), AV is the broad line
width in km/s and f is a scaling factor of order unity, which de-
pends on the structure, kinematics and orientation of the BLR.
Although the physics of the BLR is still not well understood
and thus a source of uncertainty (e.g. Krolik 2001), the validity
of the virial assumption has been shown by the measurement of
time lags and line widths for different broad lines in the same
spectrum (Peterson & Wandel 2000; Onken & Peterson 2002;
Kollatschny 2003).

However, reverberation mapping requires extensive and
meticulous observations and thus is not appropriate for large
samples. Fortunately, a scaling relationship has been estab-
lished between Rpir and continuum luminosity of the AGN,
Rprr o« LY (Kaspi et al. 2000, 2005; Bentz et al. 2006). Thus it
became possible to estimate M, from single-epoch spectra for
large samples, and has been used extensively in the previous
years for large AGN samples (e.g. McLure & Dunlop 2004;
Vestergaard 2004; Kollmeier et al. 2006; Netzer & Trakhtenbrot
2007; Shen et al. 2008b; Fine et al. 2008; Gavignaud et al. 2008;
Trump et al. 2009).

For the measurement of the line width, different measures
are commonly used, and it is unclear if one is superior to the
others for estimating black hole masses. Most commonly used
is the FWHM, but it has been suggested that the line disper-
sion OTipe, 1.€. the second central moment of the line profile, is
a better measure of the line width (Peterson et al. 2004; Collin
et al. 2006). The line dispersion is more sensitive to the wings
of a line and less to the core, whereas for the FWHM the oppo-
site is the case. An additional measure of line width used is the
inter-percentile value (IPV, Fine et al. 2008).

The application of the virial method to large AGN samples
allowed the estimation of the active BHMF (McLure & Dunlop
2004; Shen et al. 2008b; Greene & Ho 2007; Vestergaard et al.
2008; Kelly et al. 2009; Vestergaard & Osmer 2009). A dataset
that is perfectly suited to study especially low redshift AGN is
provided by the Hamburg/ESO Survey (HES). In this paper we
use a local AGN sample, drawn from the HES, to estimate their
black hole masses and Eddington ratios, and construct the active
black hole mass function as well as the distribution function of
Eddington ratios.

We first present our data and our treatment of the spectra.
We estimate black hole masses and Eddington ratios from the
spectra using the virial method. Next, we determine the active
BHMEF, taking care to account for sample selection effects, in-
ducing a bias on the BHMF. Thereby, we not only constrain the
local active BHMF but also put constraints on the intrinsic un-
derlying distribution function of Eddington ratios. Finally, we
discuss our results in the context of the local quiescent BHMF
as well as that of other surveys.

Thoughout this paper we assume a Hubble constant of Hy =
70 km s~! Mpc~! and cosmological density parameters Q,, =
0.3 and Q, =0.7.

3.2. The Sample

The sample of low redshift AGN used in this study is drawn
from the QSO catalogue of the Hamburg/ESO Survey (Wisotzki
et al. 2000). For a more detailed description of the survey and

the sample used, see our companion paper (Schulze et al. 2009,
hereafter Paper I). Here we only give a short summary.

The HES is a wide-angle, slitless spectroscopy survey,
mainly for bright QSOs, carried out in the southern hemisphere,
utilising photographic objective prism plates. The HES covers
a formal area of ~9500 deg? in the sky. After digitisation, slit-
less spectra in the range 3200 A £ 1 < 5200 A have been ex-
tracted from the plates. From these spectra type 1 AGN have
been identified, based on their peculiar spectral energy distri-
bution. Follow-up spectroscopy has been carried out to confirm
their QSO nature. The HES picks up quasars with B < 17.5 at
redshifts of up to z ~ 3.2.

The Hamburg/ESO Survey yields a well-defined, flux-
limited sample with a high degree of completeness. The survey
covers a large area on the sky and the quasar candidate selection
takes care to ensure that low redshift, low luminosity objects,
i.e AGN with prominent host galaxies, are not systematically
missed. As in Paper I, we want to use this wide luminosity range
at low redshift, which is unique for optical surveys, to study the
low-redshift AGN population.

To construct such a local AGN sample we selected all AGN
from the final HES catalogue (Wisotzki et al., in prep.) that be-
long to the ‘complete sample’ and that are located at redshifts
7 < 0.3. The sample contains 329 type 1 AGN. Spectra are avail-
able for most of the objects from the follow-up observations.
For five objects, spectra were either missing in our database or
they were of such poor quality that they were deemed not us-
able for our purposes. Thus our sample is 324/329 ~ 98.5 %
complete in terms of spectroscopic coverage.

3.3. Measurement of Emission Line Widths

For the estimation of M, for our low redshift AGN sample, the
broad line width of the HB, or alternatively the Her, emission
line has to be determined. For the measurement of the line
widths of the He and HB emission lines we fitted the spectral
region around these lines by analytic functions, i.e. by a multi-
component Gaussian model plus continuum. Over this short
wavelength range we approximated the underlying continuum
as a straight line. The Ha and Hg lines are fitted by one, two
or, if required, by up to three Gaussians, based on visual inspec-
tion of the fits. Due to the limited resolution of the spectra the
narrow line component could only be subtracted for a few lines,
if a clear attribution of one fitting component to a narrow line
component was possible. Thus a narrow component was only
subtracted if clearly identified in the fit. Care has been taken to
avoid contamination of the lines by contribution from the [O m1]
A4 4959,5007 A lines and the Fen emission to the Hp line,
as well as from [N 1] and [S 1] to the He line, by fitting them
simultaneously with the Balmer lines. For details on the line
fitting we refer to Paper 1.

We use two different line width measurements, the FWHM
and the line dispersion for comparison, because there is at the
moment no consensus which is the most appropriate for the es-
timation of black hole masses. Both can be easily derived from
the fit. We then corrected the line widths for the finite resolu-
tion of the spectrograph. We measured the continuum flux at
5100 A from the continuum fit to the HB line region. We cor-



[km/s])

log (Uline,Ha

2.5 3 3.5 4
log (0)ineng [km/s])

log (FWHMp, [km/s])

2.5 3 3.5 4
log (FWHMyg [km/s])

Fig. 3.1. Left panel: Correlation between o (HB) and oy (Ha). Right panel: Correlation between FWHM(HB) and FWHM(Ha).
The solid line shows the regression result using the FITEXY method and the dashed line is a one-to-one correspondence.

rected the flux for Galactic extinction, using the dust maps of
Schlegel et al. (1998), and the extinction law of Cardelli et al.
(1989) and computed the continuum luminosity AL,(5100 10%),
hereafter Lsqp.

For the estimation of errors we constructed artificial spec-
tra for each object, using the fitted model and Gaussian random
noise, corresponding to the measured S/N. We used 500 realiza-
tions for each spectrum. We fitted these artificial spectra, fitting
the line and the continuum and measured the FWHM, the line
dispersion and the line flux. The error was then simply taken
as the dispersion between the various realizations. This method
provides a formal error, taking into account fitting uncertain-
ties caused by the noise. Thereby we assume that our multi-
Gaussian fitting model provides a sufficiently precise model of
the true line shape. Intrinsic deviations of the line shape from
the model will increase the error. A remaining Fe i contribution
at HB might also increase the error.

For a subsample of 21 AGN also included in the SDSS Data
Release 5 (DR5; Adelman-McCarthy et al. 2007), we compared
our results to the higher resolution SDSS spectra. We fitted the
SDSS spectra in the same manner as the HES spectra. The cor-
relation for oy is tight (we found a scatter of 0.07 dex for
Hp), whereas the scatter in the measurement of the FWHM is
significantly larger (0.18 dex for HB). This is at least partially
caused by the narrow component that can be disentangled bet-
ter in the SDSS spectra. In contrast, o7, is less susceptible to
the narrow line contribution and thus provides a more precise
width measurement for our sample. We also see evidence for an
small underestimation of the line width compared to the SDSS
spectrum, especially for narrower lines, with a mean deviation
of 0.03 dex. This might be caused by the lower resolution of the
HES spectra compared to the SDSS spectra and therefore the
stronger influence of the resolution correction.

A comparison of the continuum luminosity, FWHM and
black hole mass with the quasar sample of Shen et al. (2008b)
is in general agreement with our values for the few objects in
common.

The line dispersion is more sensitive to the wings of a line,
thus to the subtraction of the contaminating lines, i.e. Fem and
[Om] for HB and [N1u] and [S1u] for Ha. On the other hand,
the FWHM is more susceptible to the line core, thus to a proper
subtraction of the narrow component (see Denney et al. 2009).
For our data the latter seems to exhibit the larger uncertainty.
Together with the indication that o, is a preferable width esti-
mate over the FWHM (Peterson et al. 2004; Collin et al. 2006),
we decided to use oine to estimate black hole masses, and only
give the results using the FWHM for comparison.

3.3.1. Relations between HB and Ha Line Widths

We see a well-defined correlation between the line widths (both
FWHM and o7, ) of the HB and Ha emission lines, as shown in
Fig. 3.1. To quantify this relation, we applied a linear regression
between Ha and Hg in logarithmic units, using the FITEXY
method (Press et al. 1992), that accounts for errors in both co-
ordinates. We accounted for intrinsic scatter in the relation fol-
lowing Tremaine et al. (2002) by increasing the uncertainties
until a y? per degree of freedom of unity was obtained.
We found the following relations for the line widths:

log oye = 0.96log oy — 0.08 3.1

log FWHMp, = 1.10logFWHMyz - 0.17.  (3.2)

The rms scatter around the best fits are 0.11 dex for o, and
0.16 dex for the FWHM respectively. The relations between Ha
and Hg line properties using the FITEXY method are shown in
Fig. 3.1.

The relation obtained for the FWHM slightly deviates from
the relations obtained by Greene & Ho (2005) and Shen et al.
(2008a), showing a stronger deviation from a one-to-one cor-
relation. This might be due to the lower resolution of our data,
thus the resolution correction has a stronger effect on the line
width. This is supported by the slightly larger scatter for our re-
lation. The scatter in the relation between the line dispersions
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is lower than between the FWHMs, again favouring ojj,cover
FWHM for our data.

The HPB lines are on average broader than
He with (FWHM(HB)/FWHM(Ha)) = 1.54 and
(Oline(HB) /o ine(Ha)) = 1.29 respectively. This is larger

than found in other samples (e.g. Osterbrock & Shuder 1982;
Greene & Ho 2005) but in general agreement with the physical
expectation of an increasing density or ionisation parameter of
the BLR with decreasing radius.

3.4. Results
3.4.1. Estimation of Black Hole Masses

We estimated black hole masses for the AGN using the common
scaling relationship. The sample of quasars analysed is well in-
side the ranges in redshift, with z < 0.3, and in luminosity, with
10*? < Lsjgo < 10% erg s™!, over which the scaling relationship
based on reverberation mapping has been established. So the es-
timated black hole masses do not suffer from an extrapolation of
this relationship outside the range for which it is observationally
tested.

For the scaling relationship between BLR size and contin-
uum luminosity we use the values of Bentz et al. (2009):

IOgRBLR =-213+ 0.51910g(L5100) , (33)

with Lsio9 given in erg s~! and Rgy g in light days.
The black hole mass is thus computed by

Lo \"2( AV 2 y
10* ergs~! ©

(3.4)

MBH=6.7-f( s

where f is the scale factor and AV the line width used, i.e. the
FWHM or oipe. We computed black hole masses based on both
width measurements. We prefer the black hole masses using the
line dispersion and give the FWHM based black hole masses
as a reference. For the line dispersion we used a scale factor
f = 3.85, following Collin et al. (2006). This factor has been
determined by setting the black hole masses, computed from the
mean spectrum of the reverberation mapping sample and using
the line dispersion, to the local Mgy — o, relation for quiescent
galaxies, similar to the work of Onken et al. (2004). For the
FWHM we used the common scale factor f = 3/4 (e.g. Netzer
et al. 1990) appropriate for a spherical BLR.

We have not corrected our continuum luminosities Lsyqo for
their host galaxy contribution. This might lead to an overestima-
tion of M, for lower luminosity AGN, where the host contribu-
tion becomes significant. To disentangle the host contribution
high resolution HST imaging is required, which is not avail-
able for our sample. However, the narrow slit used for the spec-
troscopy and the AGN selection technique already reduce the
expected host contribution. Thus, the bias introduced by host
galaxy contamination is expected to be small, but will lead to a
systematic effect.

To estimate the degree of galaxy contribution to our AGN
spectra we used the equivalent width (EW) of the Can K line
at 3934 A, because this is the only prominent galaxy absorption
feature not confused by AGN emission features within our spec-
tral range. As this feature is only prominent in evolved stellar
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Fig. 3.2. Median composite spectra for 3 luminosity bins, show-
ing the Can K line region. The upper composite shows the
high luminosity bin (log Lsjg0 > 44.5), the middle composite
is for the medium luminosity bin (43.6 < logLsjg0 < 44.5)
and the lower composite spectrum shows the low luminosity
bin (log Lsjgo < 43.6). The Can K line at 3934 A is indicated as
the dashed line.

populations, the contribution from a very young stellar popula-
tion might be neglected. However, low luminosity AGN hosts
are known to have not particularly blue colours and generally
do not show extremely young stellar populations, but rather in-
dications for post starbursts (Vanden Berk et al. 2006; Davies
et al. 2007).

Since the mean signal-to-noise in our spectra is not suffi-
cient to accurately measure the Can EW in individual spectra,
we constructed composite spectra for three luminosity bins, de-
pending on Ls;qp, shown in Fig. 3.2. While no Cau absorption
is detected for the highest luminosity composite (log Lsjgo >
44.5), it is clearly present in the lower luminosity compos-
ites. We measure EWs of 0.8 A in the medium luminosity
(43.6 < logLsjpp < 44.5) and of 2.0 A in the low luminosity
(log Lsjg0 < 43.6) median composite spectrum, respectively.

To estimate the corresponding galaxy contribution, we used
model spectra from single stellar population models with differ-
ent ages and metallicities (Bruzual & Charlot 2003). The low
luminosity AGN, which will show the strongest host contri-
bution, are preferentially spiral galaxies. We modeled them by
stellar populations with ages between 900 Myr and 2.5 Gyr. We
added various constant AGN contributions to the spectra and
measured the resulting EWs of the AGN+galaxy spectra. To de-
rive the galaxy contribution at 5100 A we assumed a flux ratio
of the AGN of fs100/f3034 = 0.64. An EW of 2.0 A, as mea-
sured for our low luminosity subsample, corresponds to a host
contribution to Lsjog of 35 — 40 %. This would reduce our black
hole mass estimate by 0.10 — 0.12 dex. The upper limit we can
put on the host contribution is ~ 50 %, implying 0.16 dex for
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Fig.3.3. Left panel: Distribution of black hole masses. The
black solid histogram shows the distribution of black hole
masses estimated from oipe, the red dashed histogram shows
My estimated using the FWHM (and a constant scale factor of
f = 0.75). Right panel: Distribution of Eddington ratios. The
histograms are the same as in the left panel.

the M, estimation. The medium luminosity subsample shows
an average host contribution of 15 — 20 %, corresponding to an
overestimation of M, by 0.04 — 0.05 dex.

We used these estimates to apply average host corrections to
the continuum luminosities and thus to the black hole masses.
Although these corrections might be wrong in individual cases,
for the sample as a whole the host contribution is thereby ac-
counted for as good as possible for these data. We verified that
our results are not qualitatively affected by applying or neglect-
ing this correction. The quantitative change in the results is cer-
tainly very small.

The distributions of black hole masses using the FWHM
and the line dispersion are shown in Fig. 3.3. The usage of the
FWHM instead of o7, slightly shifts the distribution to lower
values, with (log Mpy) decreasing from 7.90 to 7.77, and also
broadens the distribution, with the standard deviation changing
from 0.65 dex for ojpe to 0.70 dex for FWHM.

In the following we will only refer to the black hole masses
using oine. This width estimate provides a more reliable width
measurement for our data compared to the FWHM, as discussed
in Section 3.3. We have verified that our results are fully con-
sistent when using the FWHM instead.

3.4.2. Eddington ratios

To compute the Eddington ratio 4 = Lyo/Lgdd, Which can
be understood as a normalised accretion rate, we estimated
the bolometric luminosity from the optical continuum luminos-
ity Lpoy = frLsi00, applying a bolometric correction factor of
fr =9, as proposed by Kaspi et al. (2000). The mean bolomet-
ric correction factor is still somewhat uncertain, ranging from
7 (e.g. Netzer & Trakhtenbrot 2007) to values around 10 (e.g.
Richards et al. 2006a; Marconi et al. 2004), and also seems
to be dependent on luminosity (Marconi et al. 2004; Hopkins
et al. 2007), black hole mass (Kelly et al. 2008) or Eddington
ratio (Vasudevan & Fabian 2009; Lusso et al. 2010). However,

assuming a constant value f; at 5100 A is a good approxima-
tion. The value of f;, = 9 is also in general agreement with the
value obtained by integrating over the mean SED presented by
Richards et al. (2006a). The Eddington luminosity is given by
Lggqa = 1.3-10% (M/M,) ergs™'.

The distribution of Eddington ratios, using the FWHM and
Oline, are shown in the right panel of Fig. 3.3. The mean
Eddington ratio of this sample is (log1) = —0.92 with stan-
dard deviation of 0.46 dex using ojipe, and {log A1) = —0.79 with
0.56 dex deviation for FWHM.

This dispersion is higher than that found by other authors in
higher redshift and higher luminosity samples (Kollmeier et al.
2006; Shen et al. 2008b). Indeed, the shape of the observed dis-
tribution does depend on the underlying distribution function
and the selection function of the survey. Thus the observed dis-
tribution of Eddington ratios is affected by the flux limitation
of the survey and is not a quantity independent of the specific
survey. The Eddington ratio distribution will change in mean
and dispersion with luminosity (Babi¢ et al. 2007; Hopkins
& Hernquist 2009) due to this selection effect. Usually it will
broaden with decreasing typical luminosity.

This trend is also clearly visible in the sample of SDSS
AGN presented by Shen et al. (2008b). A redshift dependence
is also indicated by their data. For their whole sample, cover-
ing the range 0.1 < z < 4.5, they found a typical dispersion of
~ 0.3 dex, similar to the sample of Kollmeier et al. (2006) that
covers a similar redshift range and includes relatively high lumi-
nosity objects. Restricting the sample of Shen et al. (2008b) to
7 < 0.3 gives a deviation of 0.43 dex, similar to our results, but
a lower mean Eddington ratio of -1.17 in logarithmic units. This
trend is also present in deeper surveys that cover a wide redshift
range. In the VVDS a value for the dispersion of ~ 0.33 dex has
been found (Gavignaud et al. 2008), while in the COSMOS sur-
vey a dispersion of ~ 0.4 dex has been observed (Trump et al.
2009), in agreement with our low redshift result. We will dis-
cuss this issue further in Section 3.6.

In Fig. 3.4 we plot black hole mass, Eddington ratio and
bolometric luminosity against each other. The first thing we
have to be aware of when interpreting these plots are the im-
plicit underlying correlations between these quantities. What
we effectively always show is a combination of continuum lu-
minosity Lsjoo and line width o7j;pe. Their underlying relation is
shown in Fig. 3.5. There is only some week correlation present
between Ls;oo and line width.

Physically these plots can be understood from the shape of
the underlying black hole mass function and distribution func-
tion of Eddington ratios in combination with the selection func-
tion of the survey, as we will explicitly show in Section 3.6.
The Eddington ratio A spans the range 0.01 < A < 1, similar to
other optical studies (Woo & Urry 2002; Kollmeier et al. 2006;
Greene & Ho 2007; Shen et al. 2008b). At high values, obser-
vations have shown that the Eddington rate represents an ap-
proximate upper boundary to the Eddington ratio distribution,
implying a steep decrease of the Eddington ratio distribution
function toward Super-Eddington values. At low A the sample
suffers from incompleteness due to the selection effects of the
survey. This can explain the observed range of Eddington ratios
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Fig. 3.4. Left panel: Black hole mass versus bolometric luminosity. Middle panel: Eddington ratio versus bolometric luminosity.
Right panel: Eddington ratio versus black hole mass. The three lines indicate Eddington ratios of 1 (solid), 0.1 (dashed) and 0.01

(dotted).

and the rough correlation between M, and Ly, shown in the left
panel of Fig. 3.4.

No strong correlation is seen between Adand Ly, for this
low redshift sample. There is a lack of objects in the lower
right corner of the middle panel of Fig. 3.4, thus a lack of
objects with low-1and high luminosity. These objects would
have M, > 2 - 10°M, and are rare objects due to the steep
decrease of the black hole mass function at the high mass end
(see Section 3.5.1 and 3.6.2). Thus it is not surprising to see
a lack of these objects in the sample. The same applies to the
lack of objects seen in the upper right corner of the right panel
of Fig. 3.4. These would be objects with relative high M, and
high Eddington ratio. This lack is also caused by the rarity of
these objects, due to the steep decrease of the black hole mass
function in combination with the decrease of the Eddington ra-
tio distribution function toward the Eddington rate. Therefore,
in the local universe massive black holes, accreting close to the
Eddington limit, are exceedingly rare.

In the right panel of Fig. 3.4, there is an absence of objects
in the lower left corner, i.e. objects with low black hole mass
and low Eddington ratio. These objects are victims of the sur-
vey selection. They would have low luminosities and therefore
only the closest would be detectable in a flux limited sample. An
additional effect is that the AGN selection in the HES inevitably
becomes incomplete at Mp, 2 —19, because the contribution of
the host galaxy light even to the HES nuclear extraction scheme
will become substantial, and the object will no longer be distin-
guished from a normal galaxy, due to a more galaxy like SED or
due to a no longer detectable broad emission line. Therefore, no
AGN with Mg, > —18 are detected in the survey, and the range
—18 > Mp, = —19 is already seriously affected by this survey
selection effect. Note that lines of equal luminosities in the right
panel of Fig. 3.4 are diagonals from the upper left to the lower
right. This selection effect explains the absence of observed ob-
jects in this region and results in the apparent anti-correlation
between Eddington ratio and black hole mass, also seen in other
samples (e.g. McLure & Dunlop 2004; Netzer & Trakhtenbrot
2007).

In Section 3.6 we will explicitly show by Monte Carlo sim-
ulations how the observed distributions arise from an assumed
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Fig. 3.5. Distribution of the HB line width (o) With contin-
uum luminosity Lsjo9. There is only little correlation seen be-
tween line width and Ls;qg.

underlying BHMF and Eddington ratio distribution function un-
der consideration of the survey selection criteria.

3.5. Black hole mass function and Eddington ratio
distribution function

3.5.1. The local active black hole mass function

The BHMF of quiescent galaxies in the local universe can be
estimated, based on the relation between M, and bulge prop-
erties (e.g. Salucci et al. 1999; Yu & Tremaine 2002; Shankar
et al. 2004; Marconi et al. 2004). Only a small fraction of local
black holes are currently in an active state, accreting at a sig-
nificant level and appearearing as an AGN. However, AGN do
not accrete at a single value of A, but rather show a wide distri-
bution of Eddington ratios (e.g. Heckman et al. 2004; Yu et al.
2005; Merloni & Heinz 2008; Ho 2009; Kauffmann & Heckman
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2009). Therefore it is not obvious what exactly to call an active
black hole. A pragmatic definition is to use a lower limit for the
Eddington ratio. A natural choice for such a lower Eddington
ratio for optical type 1 AGN samples would be 4 =~ 0.01, as
this is approximately the observed lower value.

By this definition, our sample suffers from incompleteness
at low black hole masses, because some low mass and low
A AGN will be fainter than the flux-limit. The sample is not
selected on black hole mass or Eddington ratio but on AGN
flux. As already mentioned, the sample becomes incomplete at
Mpg, 2 —19. Thus, at low black hole mass only the AGN above
this luminosity limit will be detected. This introduces a selec-
tion effect on the black hole mass distribution that needs to be
taken into account for the determination of the BHMF. In the
following, we will refer to this selection effect on the black hole
mass and the Eddington ratio distribution as sample censorship,
to distinguish it from more direct, for example redshift depen-
dent, selection effects on the AGN luminosity distribution.

It is in principle possible to correct for this sample cen-
sorship by proper use of the respective selection function. If
applying the usual selection function, which is a function of
luminosity, and is appropriate for the determination of the lu-
minosity function, to the determination of the black hole mass
function, incompleteness is introduced because it has not prop-
erly accounted for active black holes below the flux limit (Kelly
et al. 2009). Instead, the selection function has to be derived
as a function of black hole mass and this selection function
has to be applied to the construction of the BHMF. However,
to do so would require knowledge of the, a priori unknown,
Eddington ratio distribution function. Thus this approach is not
feasible without additional assumptions. Nevertheless, it can be
useful as a consistency check, as we will show in Section 3.6.3.
To avoid such additional assumptions, we used a different ap-
proach to determine the intrinsic underlying active BHMF from
our data, taking into account the effect of sample censorship.
These results are presented in Section 3.6.

However, in this section we first determine the active
BHMEF, ignoring the effect of sample censorship on the data.
We construct the BHMF using the usual selection function also
used for the determination of the AGN luminosity function.
However, it must be kept in mind that in this case we ignore ac-
tive black holes with luminosities below the flux limit of the sur-
vey, even if their Eddington ratio is high enough to call it active
by the above definition. Thus, this determined BHMF suffers
from incompleteness at low mass caused by the sample censor-
ship. Nevertheless, this exercise is worthwhile, because it does
not require any assumptions on the shape of the mass function
or any information about the Eddington ratio distribution func-
tion. While the low mass end clearly will be affected by sample
censorship, the high mass end is already well determined by this
approach, providing important information on this mass range.
Also, this uncorrected BHMF can be better compared with pre-
vious estimates on the BHMF that usually have not properly
accounted for the sample censorship.

We constructed this active BHMF, not corrected for sample
censorship, in an equivalent manner as for the determination of
a luminosity function (see Paper I). We made use of the classical
1/Vmax estimator (Schmidt 1968) to construct a binned BHMF.

The differential BHMF (space density per log M, ) is thus given
by:

O(M.,) = (3.5

1 1
Alog M, zkl ko

where V.x 1S the maximal accessible volume in which the ob-
ject, with given magnitude could have been found, given the
flux-limit of the survey and the redshift bin used. The AGN
sample used has been selected based on UV excess measured
in the slitless spectra and no selection based on the presence of
emission lines is applied. Thus, the Vi,,x values used are equal
to the ones used for the determination of the AGN luminos-
ity function, presented in Paper I. We lack usable spectra for
5 objects, and for an additional 7 objects we could not fit HE
due to poor quality of the spectra in this region and/or due to a
low Hp contribution. Therefore we could not estimate M, for 12
objects. We took this into account in the survey selection func-
tion by multiplying the effective area by a factor of 317/329.
The exclusion of the 7 objects without proper HS measurement
may potentially bias our results. Therefore we estimated the HB
width from the He measurement, using Equation 3.1, and then
estimated M, for these 7 objects. Including these objects results
in a consistent BHMEF. Thus, the in- or exclusion of these ob-
jects makes no difference.

To derive the local (z = 0) BHMF we corrected for evolu-
tion within our narrow redshift bin, 0 < z < 0.3, as described
in Paper 1. We applied a simple pure density evolution model
within the redshift bin, i.e. p(z) = (1 +2)* with kp = 5, thus ad-
justing our BHMF to redshift zero. This specific value ensures
a result of the V/Vpax test consistent with (V/V.x) = 0.5, as
would be expected in the case of no evolution.

The differential active BHMF of the HES is computed for
bins of Alog M, = 0.25 dex in the range 10° < M, < 10°3.
The resulting differential local BHMF, not corrected for sample
censorship, is shown in Fig. 3.6.

We used the following functional forms to fit the BHMFE. A
double power law, given by:

_ ¢* /M.,
(Mo M)+ (Mo /M)

o(M,) 3.6)
where M, is a characteristic break mass, ¢* the normalisation
and « and B are the two slopes. A Schechter (1976) function,

given by:
o (M N\ M,
exp|— .
M, \ M, M,
is also used.

We additionally used a functional form, motivated by the
quiescent BHMF. The quiescent BHMF is given as a convolu-
tion of a Schechter function with a Gaussian and can be param-
eterised by the following function (e.g. Aller & Richstone 2002;
Shankar et al. 2004):

* [e3 19
& (M, M,
M,) = - .
ML) = - ( ) o=l
This basically corresponds to an ad-hoc modification of the
Schechter function with an extra parameter 8. A value § > 1

corresponds to a decrease stronger than exponential and 8 < 1
corresponds to a milder than exponential decrease. For g = 1

¢(M.) =

3.7

(3.8)
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Table 3.1. Fitting results for the local active black hole mass function, corrected for evolution but not for sample censorship.
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Function ¢t inMpc™  log M, o B ¥>  xYdodf.
DPL 2.86x 107° 7.86 -0.74 -3.11 7.29 0.81
Schechter 2.73x 1076 8.06 -0.84 - 1547 1.55
mod. Schechter 496 x 107° 6.97 -0.25 0.51 13.64 1.52
DPL (FWHM) 9.95 x 1077 821 -1.16 -3.62 11.66 1.30
Schechter (FWHM) 1.37 x 10°° 8.19 -1.08 - 1640 1.64
mod. Schechter FWHM)  5.15x 10°° 6.81 -0.59 032 1533 1.70
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Fig. 3.6. The differential active black hole mass function for z =
0, not corrected for sample censorship. Filled black symbols
show the BHMF using the line dispersion to estimate the black
hole mass. The dashed line shows the double power law fit to the
BHME, the dotted line gives the Schechter function fit and the
dashed dotted line represents the fit using a modified Schechter
function.

this function turns into the usual Schechter function. In the fol-
lowing we refer to it as the modified Schechter function.

These BHMFs are connected to the expression in logarith-
mic units by ®(M,) = (M./log,, e)¢(M,). The resulting fitting
parameters of these three functions to our binned BHMF are
listed in Table 3.1. All give acceptable fits, while the Schechter
function performs poorly at the highest black hole masses.
However, the BHMF is less well constrained at high M, due
to the small number of objects in these bins.

The shape of the BHMF is described by a steep decrease of
the space density towards higher M, with 8 ~ —3 in the double
power law, and a significant flattening at M, ~ 108M, toward
lower M, . The high mass regime is not affected by the already
mentioned sample censorship, while the low mass flattening is
partially caused by the systematic underrepresentation of low A
objects at low mass.

3.5.2. The local Eddington ratio distribution function

Given the estimates of the Eddington ratio 4 for our sample,
we can analogously determine the local Eddington ratio distri-
bution function (ERDF) for the HES, equivalent to the BHMF.

Table 3.2. Binned black hole mass function, not corrected for
sample censorship. N gives the number of objects in each bin,
log ¢ and Alog ¢ gives the space density per unit logarithmic
black hole mass in solar masses and its 1o error respectively.

Uline FWHM
logMgy N logdy N log @y
575 1 —627031 4 57502
600 1 —6.2479% ¢
625 4 534904 6 -533%0%
650 5 555702 8 5497019
675 6 -550701 11 -529701
7.00 20 -545%7012 28 534+l
725 27 =5.077%12 35 -5.15°012
7.50 38 -5.38010 42 565109
775 47 -532¢013 33 545018
8.00 42 564019 45 -5.6301
825 42 5857017 36 57801
8.50 45 635701 32 637016
875 21 721713 23 -7.20%01
9.00 13 -743%01L 8 -7.62:01]
925 5 -791*%17 6 —7.83%01¢

-0.29 —-0.25

This determination also does not take into account the effect
of sample censorship. We computed the local ERDF in bins of
AlogA = 0.25 dex in the range —2.25 < logd < 0.25. The
resulting differential local ERDF is shown in Fig. 3.7.

The uncorrected AGN space density declines at high as well
as at low A, showing a peak around log A ~ —1.0. We fitted the
ERDF by a Schechter function, neglecting the lowest A point.
The resulting best fit values are ¢,* = 6.66 x 107 Mpc~3,
logd, = —1.01 and &y, = —0.05 with a value of y? per degree
of freedom of 1.9.

However, also this ERDF is strongly affected by sample cen-
sorship. While at the highest Eddington ratios (logd > —1)
the majority of AGN will be detected by the survey, at low
Eddington ratio (logA < —1) a significant number of objects
will have a too low luminosity to be detected. Therefore the
space density at low A will be underestimated by the derived
ERDF. In the next section we will reconstruct the intrinsic un-
derlying ERDF as well as the intrinsic BHMF.
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Fig.3.7. The differential Eddington ratio distribution function
for z = 0, not corrected for sample censorship. The dashed line
shows the best Schechter function fit.

3.6. Reconstruction of the intrinsic BHMF and
ERDF

3.6.1. Method

As already noted, the BHMF presented so far is basically lumi-
nosity limited and thus incomplete at low mass in terms of an
accretion rate limited active BHMF. We now want to constrain
the intrinsic active BHMF by our observations, correcting for
this sample censorship. We use logd = -2 as the lower limit
for the Eddington ratio; for log A = —2 we call black holes ’ac-
tive’.

The selection function of the survey is a function of lumi-
nosity, and thus of the product of M, and A . Therefore, the re-
construction of the active BHMF also requires the knowledge
of the ERDF. Both distribution functions cannot be determined
independently from each other. In Section 3.6.3, as a consis-
tency test, we will determine the active BHMF assuming a spe-
cific ERDF. But without such an assumption both distribution
functions have to be determined at the same time. This is the
approach we will follow in this section.

Knowing both distribution functions, the AGN luminosity
function is directly given as a convolution of the two:

CD(L):fm
M

e.min

Py ()P, (M,)dlog M, , (3.9

where we adopt log Memin = 6. With P, we define the nor-
malised ERDF, thus:

@, (1)

Pid)= — A
2(4) [@,(1)dloga

(3.10)

We determined the BHMF and ERDF together, performing
a maximum likelihood fit to the data (e.g. Marshall et al. 1983).
We consider the joint Poisson probability distribution of black
hole mass and Eddington ratio. We minimise the function S =
—2In L, with £ being the likelihood of finding the observed

data, given the respective model. Thus, S is given by:

N
S =-23"Inp(M.;, 1) +2 ﬂ (M., V)dlog Adlog M. .
i=1

(3.11)
The sum is over the observed objects and the integral is equal to
the expected number of objects, given the assumed BHMF and
ERDEF. The probability distribution p(M,,A)dlogAdlog M.,
gives the probability of finding an AGN with black hole mass
between log M, and log M, + dlog M, and Eddington ratio be-
tween log A and log A + dlog A in an observed sample. The to-
tal number of objects N is then given by integration of p(M,, 4)
over M, and 1.

We will now briefly motivate the used probability distribu-
tion p(M,, A1) for our sample. The observed number of objects
in a sample is given by:

N = ﬂ Qerr(m, ) Dy (log L, 2) ‘;—V dlogLdz,  (3.12)

z

where @ (log L) is the AGN luminosity function and Q. is the
effective survey area as a function of apparent magnitude and
redshift, thus the selection function for our flux-limited survey.
This can be understood as a selection function depending on z,
M, and A, thus Q.¢(m, 7) = Qeg(L,2) = Qeg(M,, A, 7). For the
Hamburg/ESO Survey the selection function within our covered
redshift range is almost independent of redshift. Thus, as dis-
cussed in Paper I, we can marginalise over redshift. For details
on the selection function of the HES see Wisotzki et al. (2000).

Apart from the flux limit, our sample is incomplete at the
lowest luminosities Mg, > —19. For low luminosity AGN the
host galaxy contribution becomes an important factor and the
objects might no longer be classified as an AGN, due to the SED
being dominated by starlight. As shown in Paper I, the sample
is highly complete brighter than Mp, ~ —19. Thus, we adopted
a luminosity limit of Mg, < —19 in the selection function, Qeg.
We also restricted the observed sample to this lower luminosity
for the comparison of the sample properties.

The AGN luminosity function ®@;(logL) is related to the
BHMF and the ERDF via Equation 5.12. For the redshift evo-
lution, we assumed the simple pure density evolution model of
Section 3.5.1. In this case the black hole mass function is sep-
arable into a function of M, and a function of z, ®(M,,z) =
O(M.)p(z) = O(M)(1 + ), with kp = 5.

The expected number of objects for a given survey and an
assumed BHMF and ERDF is then given by:

av
_ kp
N = fﬂ Qe Py ()@o(M.) (1 + 2~ dlog Adlog Madz .

(3.13)
Thus, the bivariate probability distribution of black hole mass
and Eddington ratio is given by:

p(M,, ) = erﬁ-‘ Py(1)D.(M,)(1 +z)k“((jj—‘zldz. (3.14)

Given this bivariate distribution for an assumed BHMF and
ERDF, we minimise the likelihood function § (Equation 3.11)
using a downhill simplex algorithm (Nelder & Mead 1965). As
a lower limit for the fitting we employed a black hole mass of
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Muyin = 10°M, and an Eddington ratio of A, = 1072. The
HES sample was restricted to these limits accordingly.

For the BHMF we assumed three different models. Firstly
we used a double power law with the high mass slope fixed
to the value Bgy = —3.01, determined from the uncorrected
BHMEF in Section 3.5.1. This lowers the required number of
free parameters and is justified, because the high mass region in
the uncorrected BHMF is only weakly affected by incomplete-
ness. Secondly we also used a double power law, but leaving
the high mass slope as a free parameter, to be determined in the
fit. As third model we used the function given by Equation 3.8,
thus a modified Schechter function. The starting values for the
minimisation algorithm are taken from the fit to the uncorrected
BHMEF.

We decided to model the ERDF by a Schechter function,
corresponding to an exponential cutoff close to the Eddington
limit and a wide power law-like distribution at low Eddington
ratio. This parameterisation differs from the often assumed log-
normal distribution. However, a log-normal distribution is only
motivated by the observed distribution, not accounting for any
selection effects. Also, a log-normal distribution enforces a
maximum and a turnover at low 1. A Schechter function is more
flexible, allowing for a turnover at low values, but not enforcing
it. In particular, it allows an increase of the space density at low
A. This shape would be consistent with observations of type 2
AGN (Yu et al. 2005; Hopkins & Hernquist 2009; Kauffmann
& Heckman 2009), with estimates for the total AGN popula-
tion (Merloni & Heinz 2008) as well as with model expecta-
tions of AGN lightcurves from self-regulated black hole growth
(Yu & Lu 2008; Hopkins & Hernquist 2009). Aside from the
Schechter function parameterisation of the ERDF, we addition-
ally tested a log-normal ERDF as functional form. Together
with the Schechter function it covers a wide range of possible
parameterisations for the ERDF.

From our data we are not able to constrain a dependence
of the ERDF on M, , so we assumed the ERDF to be inde-
pendent of M, , already implicitly assumed in Equation 5.12.
The normalisation of the ERDF is fixed by the condition that
the BHMF and ERDF have to predict the same space density
of AGN. This leaves two free parameters for the ERDF, the
break A, and the low-A slope a, for the Schechter function, or
the mean A . and the width o, for the log-normal distribution.
However, these two parameters in both cases are not indepen-
dent from each other, because the data by construction needs to
be consistent with the observed luminosity function (LF). Thus,
for a given BHMF and a fixed value for 4., @, is given by the
condition that the LF derived from the BHMF and ERDF by
Equation 5.12 has to be consistent with the observed LF. Our
approach automatically ensures the consistency of the BHMF
and the ERDF with the observed LF.

To assess the goodness of fit for the individual models we
used two different methods. This is required because the maxi-
mum likelihood method does not provide its own assessment of
the goodness of fit. First, we used a two-dimensional K-S test
(Fasano & Franceschini 1987) on the unbinned data. Second,
we employed a y? test, binning the data in bins of 0.5 dex in
M, and A respectively. The results are given with the best fit
parameters in Table 3.3.

3.6.2. Results

The first model consists of a double power law BHMF, with
the high mass slope fixed to 8 = —3.11, and a Schechter func-
tion ERDF. The best fit distribution functions are shown as
black dashed line in Fig. 3.8 and their fit parameters are given
in Table 3.3. The BHMF shows a steep high mass slope with
agy ~ —2 and the break is consistent with the uncorrected
BHMF. The ERDF is increasing towards low 4 down to the
applied limit of 4 = 0.01.

This function provides a good fit to the high mass end of the
uncorrected BHMF, which is only little affected by sample cen-
sorship. At the low mass end the uncorrected BHMF strongly
underpredicts the active black hole space density, compared to
the reconstructed underlying active BHMF. This also holds true
for all other applied functional forms for the BHMF and the
ERDF. The same also applies to the uncorrected ERDF. The un-
corrected ERDF is strongly biased and underestimates the BH
space density. The best fit to the uncorrected BHMF and to the
ERDF is clearly rejected by the maximum likelihood approach
with high confidence. They are not able to produce the observed
distributions of M, and A and are not consistent with the AGN
LF. This clearly shows that the usual approach used to construct
an uncorrected BHMF and ERDF is strongly biased.

We briefly want to illustrate how the maximum likelihood
approach is able to reject certain models for the BHMF and
ERDF and favour others. To compute the expected distributions
within a grid of free parameters, we restricted the number of
parameters to two. We fixed the break and normalisation of the
BHME. Thus, with the high mass slope already fixed, the only
free parameter for the BHMF is the low mass slope agy. For the
ERDF there are two free parameters, the break and the low-A
slope of the Schechter function. However, one of these is fixed
by the constraint to recover the observed AGN LF. We took a,
as a free parameter and determined the break by a y? minimisa-
tion of the LF computed via Equation 5.12 to the observed LF.
The normalised observed distribution of log M, and log A are
given by:

p(logM,) = %fp(M.,/l)dlog/l (3.15)

p(log ) = %fp(M.,/l)dlog M, . (3.16)
For illustration, in Fig. 3.9 we compare these expected dis-
tributions with the observed ones within a grid of free parameter
apy and «, . For a too steep BHMF the number of low mass ob-
jects is larger than observed, while for a too flat BHMF the num-
ber of low mass objects is lower than observed. A steep ERDF
corresponds to a break of the ERDF close to the Eddington
limit, thus more objects above the Eddington limit and less at
low A are predicted, compared to the observations. For a too
flat ERDF, the break needs to be at a low value of A and thus
not enough objects close to the Eddington limit are predicted.
We also carried out Monte Carlo simulations for a grid of
free parameters agy and @, , using the same assumptions as
above, as well as for the best fit model of the maximum likeli-
hood estimation. Here we proceeded as follows: First each AGN
gets assigned a redshift, then its black hole mass is drawn from
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Table 3.3. Fitting results for the active black hole mass function and the Eddington ratio distribution function. The first column
indicates the function used for the BHMF. "DPL’ is for a double power law, with 8 indicating the fixing of the high mass slope and
’'mS’ is for a modified Schechter function. The second column indicates the ERDF. °S’ is for a Schechter function and ’In’ stands

for a log-normal distribution.

Pact
BHMF ERDF ¢, [Mpc™] logM. gy Ben  logd. a,/og Dgs pxs  x*/d.of. pe  [MoMpc™]
DPLB) S 2.97 x 107° 797 =211 -=3.11 -0.57 -1.90 0.100 2.8e-2 61.3/25 4.2e-5 1621
DPL S 2.86 x 107° 8.01 -2.10 -321 -0.56 -1.94 0.101 2.6e-2 63.4/25 2.1e-5 1687
mS S 2.75 % 10°° 8.11 -=-2.11 0.50 -0.55 —-1.95 0.094 4.8e-2 56.8/25 1.8e—4 1767
mS In 2.36 x 107° 8.07 -2.12 048 —1.83 0.49 0.081 1.2e-1 50.8/25 1.1e-3 1388

log ® [Mpc>log Mgi]

6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
log Mgy [Mo]

log ® [Mpc3log A™']
&>

2.0 -1.5 -1.0 0.5 0.0
log A

Fig. 3.8. Results for the reconstructed BHMF and ERDF. The left panel gives the BHMF and the right panel the ERDF respec-
tively. The black points show the binned uncorrected distribution function, with filled circles representing bins that do not suffer
significantly from sample censorship and open circles represent bins, biased by sample censorship. They are shown for comparison
with the reconstructed BHMF and ERDF. The black dashed line shows a double power law BHMF with fixed high mass slope
B = —3.11 and Schechter ERDF, the blue dashed dotted line is for a free double power law BHMF and Schechter ERDF, the
red solid line represents a modified Schechter BHMF and Schechter ERDF and the green dashed line is for a modified Schechter
BHMF and log-normal ERDEF. The gray areas show the 1o~ confidence regions of both distribution functions, taking into account

all 4 parametric models.

the assumed BHMEF, and finally an Eddington ratio is drawn
from the ERDF. From these values absolute and apparent B,
magnitudes are computed, applying a bolometric correction. By
means of the apparent magnitude B; it is decided if the object is
selected by the survey or not, taking into account the flux-limit.

‘We ran Monte Carlo simulations for a wide range of apy and
a; and found results consistent with what we discussed above
and what is shown in Fig. 3.9. The Monte Carlo simulations are
clearly able to discriminate between models that are consistent
with the data and those that are not. The best matching solutions
of the Monte Carlo simulations are consistent with the best fit
from the maximum likelihood method, although ’best match-
ing’ is not as well defined in this case.

In Fig. 3.10 we show the mean of 10 Monte Carlo realiza-
tions of this best fit model. We show the observed distributions
for the sample for this model as well as the uncorrected BHMF
and ERDEF, as well as the M3, -LF and bolometric LF that would

be determined from an ’observed’ sample. To construct such
an 'observed’ sample we again limited the simulated sample to
Mg, < —19. In the middle panels of Fig. 3.10, we then com-
pare these expected distribution functions with the uncorrected
BHMF and ERDF determined with the same restriction applied
(shown as open red symbols). The distributions as well as the
constructed distribution functions are consistent with the ob-
served distributions and distribution functions. For models that
are found to be not consistent with the observations based on
the maximum likelihood approach, the Monte Carlo samples
also provide a poor match to the observed distributions and dis-
tribution functions, and thus can also be rejected based on the
Monte Carlo simulations.

These Monte Carlo simulations show that the observed dis-
tribution of objects between Lpo, M. and A, as shown in the
plots of Fig. 3.4, are well understood by the underlying BHMF
and ERDF and the selection function of the HES. These results
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Fig. 3.9. Comparison of the expected distribution of M, and A (solid lines) with their distribution in the HES sample (red histogram)
for 9 different combinations of the two free parameter agy and @, . The central panel is close to our best fit solution.

do not qualitatively change using a different functional form for
the BHMF or ERDF.

As a second model we again used a double power law, but
included the high mass slope as an additional free parameter
to be determined in the maximum likelihood fit. The result is
shown as blue dashed dotted lines in Fig. 3.8. The BHMF is
highly consistent with the previous result, with a mild steepen-
ing of the high mass slope when this parameter is allowed to
change in the fit.

Third, we also used the function given by Equation 3.8, thus
a modified Schechter function. The best fit result is consistent
with the double power law fit over most of the mass range and
only decreases stronger at the high mass end. All three mod-
els are good representations of the observed data and therefore
span the range of acceptable distribution functions. Formally,
the modified Schechter function has the lowest value of S and
the highest probability both in the KS-test as well as in the y*-
test and we will use it in the following as our reference model.

Apart from the Schechter function for the ERDF, we addi-
tionally tested a log-normal distribution. This distribution func-
tion also provides a good representation of the data. In Table 3.3
and Fig. 3.8 we give a model with a log-normal distribution for
the ERDF and a modified Schechter function for the BHMF.
While the BHMF is nearly unchanged, the ERDF deviates from
the Schechter ERDF at the highest and lowest values, while be-
ing consistent over a wide range in between. When enforcing a
turnover in the ERDF, using a log-normal distribution, the data
are consistent with such a turnover at low 4 (log 4 —1.8).
However, there is no evidence for a turnover at higher A, where

=~

the maximum in the observed Eddington ratio distribution is
present (logd ~ —1).

The log-normal fit indicates rather a flattening of the ERDF
at the low-1 end then a real turnover, because it is cut off be-
fore the turnover, enforced by a log-normal fit, becomes evident.
However, the low-1 regime is dominated by high mass black
holes. If there is a mass dependence in the ERDF and the ERDF
flattens towards high M, , this would be most prominent at low
A. Such a flattening would also be consistent with Hopkins &
Hernquist (2009), who found evidence for a mass dependence
in the ERDF of type 2 AGN, with a flatter low A slope at high
M, .

We take into account the log-normal ERDF in the uncer-
tainty range of the determination of the BHMF and ERDF.
Formally it has a higher probability in the applied statistical
tests than the Schechter function. However, as mentioned, the
main deviation compared to the Schechter function is above
the Eddington limit and close to the lower limit at A = 0.01.
The number statistics in this regions are low and thus a clear
discrimination between the two models is not possible. Thus,
the Schechter function and log-normal distributions indicate the
range of acceptable ERDFs.

We derived uncertainties in the BHMF and ERDF by ran-
domly modifying the best fit parameters for each model and
computing the likelihood function S. Using AS = S — S, for
each random realization, we converted AS into confidence val-
ues assuming a y? distribution (Lampton et al. 1976; Press et al.
1992). For all models within a certain confidence interval the
BHMF and ERDF is computed and these functions then span



51

LA L B B LI ) e I I B
60 — -+ -+ —
5 L 1 1 4
o 40— -+ -+
E |~ L 4
3 - L 4
Z L L 1
20 — — -T-
07 Ll 1 7\ \77\\\
6 7 8 9 -2 -1 0 43
log (Mpy/Mp) log (Lpo1/LEda)
L B B
0 e
—~ = * .-‘;'-' '-'~ 1R
—_ o B "..r‘, ») 3'_ 0
9 E o IO G-
~ — ,-'.'-,;_-.- % ]

= St e ve . 4%
= 8 1l =T - 3
= -] - L S K S 4 =2

S ® o 0 oo o hd
ap r v tate s tl. B
2 g [ eetlw 18
2 - '!,,,,- ,,,,,, L —
TN TN N T T B Cloii vl vl el o
43 44 45 46 47 43 44 45 46 47 6 7 8 9
log (Lpo [erg/s]) log (Lo [erg/s]) log (Mpy/Mp)

-4 . ]
= ] —_ -4 .
i ] - ]
EE 75 t ~< -

4 o n
o 7 2 5 -
,—40 —6 — (,V‘J :
% 1 & -s ]
a, . = ]
= =7 — i
= i o -
o - -7 —
@ ] 5 ]
-~ -8 - - i

] 78 j

—4 -4 _:
= -5 ]
L 8 ]
(o} — .
E 6 w 6 .
) o B
f i
a U -
=) a .

= ]

?D -8 = -8 3
o ap -
- 2 ]
-9 —

log Lyo [ergs s~1]

Fig. 3.10. Results of 10 Monte Carlo realizations for the best fit model with an assumed double power law with fixed high mass
slope for the BHMF and a Schechter function parameterisation of the ERDF. Upper panels: Comparison of the distributions of M, ,
A and Ly, between simulated sample (black, solid histogram) and observed sample (red, dashed histogram). Middle panels: Same
as Fig. 3.4, but for one simulated sample. Lower panels: uncorrected BHMF and ERDF, Mg, luminosity function and bolometric
luminosity function. The results for the simulated sample are shown as filled black points. The solid black line shows the true
input function and the dotted lines show the best fit to the uncorrected distribution functions of the observed sample. The open red
circles in the BHMF and ERDF plot indicate the individual bins for the observed uncorrected BHMF and ERDF with a restriction
of Mp, < —19 applied.
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Fig.3.11. Same as Fig. 3.8 with the constraints from the 1/V;,,x method added (see Section 3.6.3). The binned results for the
BHMF (left panel) were derived assuming the ERDF of the best fit solutions for the 4 models given in Table 3.3. Shown are only
the two distinct models, the Schechter function (blue circles) and the log-normal distribution (green squares). Analogously, the
binned results for the ERDF were derived assuming the BHMF of these 4 models. Shown are again only the two distinct models,
the double power law (blue circles) and the modified Schechter function (green squares). The binned results for the different
models are consistent with each other, as well as with the results of Section 3.6.2, shown as lines and by the shaded area.

the confidence range of the two distribution functions. The total
uncertainty of the BHMF or ERDF is then the sum of the con-
fidence ranges of the individual models. In Fig. 3.8, we show
this sum of the 1o confidence values for the two distribution
functions as the gray shaded areas.

So far, we assumed the estimated black hole mass to be
equal to the true black hole mass. However, this is probably
an oversimplification. It is known that there is a considerable
uncertainty in M, estimates using the virial method, probably
of order 0.4 dex (Vestergaard & Peterson 2006). Accounting
for this uncertainty might change the reconstructed BHMF and
ERDF in shape as well as in normalisation. We will investigate
this important point in detail in future work.

3.6.3. BHMF and ERDF from the 1/V,.x method

As mentioned in Section 3.5.1, there is also a different approach
to determine the intrinsic BHMF and ERDF, namely using the
1/Viax method, but directly accounting for the selection effects
in terms of black hole mass or Eddington ratio completeness
imposed on the sample by the AGN luminosity selection. In
this case, the BHMF and ERDF cannot be determined jointly.
When using the 1/V,,x method the selection effects need to be
accounted for in the determination of the accessible volume of
the individual AGN, given by:

Zmax dV
Vinax = f Qeff_zdz s

1 (3.17)

Zmin
where Qg is the effective survey area as a function of appar-
ent magnitude, thus the selection function for our flux-limited
survey, depending on z, M, and 4, is Qeg(m) = Qe(L,2) =
Qe.5(M., A,z). While for the determination of the luminosity
function the proper selection function to compute Vy,, is given

by Q.s(L,z), using it for the determination of the BHMF (as
we did in Section 3.5.1) will lead to the presence of sample se-
lection effects, and thus to the observed underestimation of the
space density at low mass.

This bias on the determined BHMF can be avoided by using
a black hole mass selection function, given by:

Qui(M.,2) = f Pr() Qe (Mo, A, dlog A, (3.18)
A min

where P, (1) is the normalised ERDF, given by Equation 3.10.
However, this approach requires knowledge of the ERDF as
prior information, which is not present a priori.

Likewise, the ERDF can be derived in an unbiased way
by using the Eddington ratio selection function for the survey,
given by:

Qe(d,2) = f
M,

min

Peu(M)Qe(M,, A, z)dlogM, , (3.19)

where Pgy(M, ) is the normalised BHMEF, similar to P, (1), de-
fined by:
D, (M.,)

Pau(M.) = .
Bu(M.) [®.(M.)dlog M.

(3.20)

This reqires knowledge of the BHMF, which is also unknown
beforehand. Thus this approach is usually not feasible for the
determination of the intrinsic BHMF and ERDF directly from
the data.

However, this approach has the advantage that no prior as-
sumptions on the shape on the ERDF are required for their de-
termination, once we fixed the assumed BHMEF. The same is
equally true for the determination of the BHMF. The only nec-
essary information beforehand is on the shape of the ERDF. The
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problem is that one distribution function needs to be known to
determine the other one.

Nevertheless, first we can use it as a consistency test, con-
structing the BHMF from the constraints on the ERDF from
Section 3.6.2 and vice versa. The resulting binned BHMFs and
ERDFs using the 4 best fit models are shown as filled symbols in
Fig. 3.11 together with the best fit solutions to the active BHMF
and the ERDF, as determined in Section 3.6.2. These binned
BHMEFs as well as the binned ERDFs for all 4 models are fully
consistent with our previous constraints and also consistent with
each other.

On the other hand, this approach is useful to verify the as-
sumptions on the shape of the distribution functions used in
Section 3.6.2. This is especially worthwhile for the ERDF, be-
cause the shape of the BHMF is relatively well determined at the
high mass end, with the main uncertainty in the low mass slope,
while the shape of the ERDF is poorly determined. Therefore,
we assumed the double power law with fixed high mass slope
parameterisation of the BHMF. As shown above, the shape of
the binned ERDF is consistent for all four assumed BHMFs,
based on the 4 best fit models. Thus it is justified to use one of
these for the investigation of the ERDF shape.

We again fix the break of the double power law and
thus the only free parameter left is the low mass slope apy.
We determined the Eddington ratio selection function, using
Equation 3.19 for a variety of values for apy, covering the
whole range of acceptable values. We use agy = —0.7 as lower
limit, taken from the uncorrected BHMF, and agy = —3.2 as
upper limit, corresponding to a single power law BHMEF. The
fitting results on these ERDFs with a Schechter function are
given in Table 3.6.3. While the normalisation of these ERDFs
changes significantly for different assumed values of apy, the
shape is not strongly affected and is consistent with our pre-
vious constraints thoughout the whole range. In particular, the
ERDF is well described by a Schechter function. While there
is an indication for a flattening at the low A4 end, no indication
for a real turnoff of the ERDF is present, as also shown in the
right panel of Fig. 3.11. A log-normal distribution is also ap-
propriate, but needs to be cut off close to the maximum of the
distribution. Thus it does not indicate a turnover, but only a flat-
tening of the ERDF. We again want to emphasise that no prior
assumptions on the ERDF are used here, we just modified the
selection function using an assumed BHMF over a wide range
of possible parameters. This strongly confirms our previous re-
sults for the shape of the ERDF, in that it shows that a Schechter
function provides a good representation of the data.

3.7. Discussion
3.7.1. Active fraction of local black holes

For a census of active black holes, the derived mass function
of active black holes should be compared to the local mass
function of quiescent black holes. Because the number of dy-
namically measured black hole masses is still very low and
the sample is inhomogeneous, the quiescent black hole mass
function has to rely on the known M, - bulge property rela-
tions, thus converting galaxy luminosity or velocity functions
into a black hole mass function. This approach has been used

Table 3.4. Fitting results for the ERDF, determined using an ap-
propriate Eddington ratio selection function, assuming different
values for the low mass slope apy of the BHMF.

By a, logd, x?*/d.of.
-0.7 -1.51 -0.63 1.81
-1.2 -1.50 -0.66 1.77
-1.7 -1.51 -0.69 1.73
-2.0 -1.55 -0.70 1.73
-22 -1.59 -0.71 1.75
-22 -1.59 -0.71 1.75
=27 -179 -0.73 1.92
-30 -194 -0.72 2.02
-32 =204 -0.71 2.02

by several authors to derive a local BHMF (e.g. Salucci et al.
1999; Yu & Tremaine 2002; Shankar et al. 2004; Marconi et al.
2004). However, there is still some uncertainty in the estima-
tion (Tundo et al. 2007). We compare our active BHMF to the
BHMF presented by Marconi et al. (2004), shown as the solid
line in Fig. 3.12. Our best fit model of the reconstructed active
BHMEF, derived above, is indicated as dashed line in Fig. 3.12.

At this point we need to recall that our operational definition
of ’active’ black holes only includes type 1 AGN. We are not
able to distinguish between a true quiescent black hole and an
AGN not selected due to obscuration. By dividing our active
BHMF by the quiescent BHMF we thus get the fraction of black
holes in an active stage, not hidden to our survey by obscuration,
and thus a lower limit to the true active fraction.

The lower panels in Fig. 3.12 show the fraction of local
black holes in an active stage as a function of the black hole
mass, thus the black hole duty cycle.

As circles we give the active fraction, or duty cycle, derived
from the binned uncorrected BHMF, presented in Section 3.5.1,
where open symbols indicate bins that are affected by sample
censorship. The estimate of the active fraction for the intrinsic
BHMF is shown as dashed line, thus showing the intrinsic un-
derlying black hole duty cycle. A clear decrease of the active
fraction with increasing M, is visible, being close to a power
law with slope aar ~ —0.86 over the whole covered mass range.

Using a very different approach, Shankar et al. (2009) pre-
dicted the black hole duty cycle. They used simple black hole
growth models, based on the local quiescent BHMF and the
bolometric AGN luminosity function. They made the simpli-
fied assumption of a single constant accretion rate, in contrast
to the wide accretion rate distribution we assumed. Their ac-
tive fraction also refers to the whole AGN population, while
we are restricted to type 1 AGN. Nevertheless, when compar-
ing their low z duty cycle with our results, we find an excellent
agreement between both. However, taking into account the large
differences between the simple model of Shankar et al. (2009)
and our empirical determination, this agreement might even be
a coincidence.

In the right panels of Fig. 3.12 we split our sample into two
subsamples, based on the Eddington ratio 4, at logd = —1.
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Fig. 3.12. Comparison of our active black hole mass function with the inactive BHMF of Marconi et al. (2004) (solid line in upper
panels). The circles show the uncorrected binned data, where open symbols correspond to bins that suffer from selection effects.
In the lower panels the active fraction of black holes in the local universe is shown in logarithmic units. In the left panel the active
BHMF and active fraction for the whole sample are shown. In the right panel the active BHMF and the corresponding active
fraction are shown for two Eddington ratio bins (above and below logd = —1). The BHMF and active fraction for the best fit
model of the intrinsic BHMF and ERDF are shown as dashed lines, in the left panel for the whole sample and in the right panel for
the two A4 bin subsamples. There is a decrease in the active fraction with increasing black hole mass, in agreement with the cosmic
downsizing picture. This decrease is already visible in the high 1 subsample (red squares).

For both subsamples we computed the uncorrected BHMF and
the active fraction. The uncorrected BHMF and the uncorrected
active fraction for the low A subsample are shown as blue cir-
cles, while the blue dashed line shows the active fraction de-
rived from the reconstructed BHMF (best fit modified Schechter
function). Incompleteness sets in around 10% M, and is domi-
nant below 107 M, therefore no information on the behaviour
of the active fraction can be gained from these low A black
holes.

The high A subsample is shown as red squares, while the red
dashed line shows the active fraction derived from the recon-
structed BHMF, with the normalisation derived from the frac-
tion of objects above logd = —1. The subsample is almost
complete up to ~ 107 My, where the low A subsample is al-
ready heavily incomplete. Above 107 M, the binned active frac-
tion is in good agreement with the reconstructed intrinsic active
fraction. This provides a consistency test for the reconstructed
BHMF and ERDF estimate. But even without this comparison
there is a clear trend present for the high A subsample with a de-
crease of the active fraction with increasing black hole mass, di-
rectly verifying our previous result from the uncorrected binned
data. Thus, far more low mass black holes in the local universe
are in an active state than high mass black holes.

This result is in general agreement with the picture of anti-
hierarchical growth of black holes (e.g. Merloni 2004; Merloni
& Heinz 2008), where the most massive black holes grew at
early cosmic times and are preferentially in a less active stage in
the present universe, and at present mainly smaller mass black
holes grow at a significant rate, also known as cosmic down-
sizing. Our results strongly support this anti-hierarchical black
hole growth scenario. This is in general agreement with previ-
ous findings on low redshift AGN (Heckman et al. 2004; Greene
& Ho 2007; Goulding et al. 2010) that also report a decrease of
the active fraction for the most massive black holes, as well as
with results at higher redshifts (Vestergaard & Osmer 2009).

3.7.2. The active black hole mass density

We now want to estimate the black hole mass density of active
type 1 AGN in the local universe

Pact = Mo¢(Mo)dMo s
Muin

(3.21)

with My, = 10°M,, using our results for the active BHMF.
A lower limit on the local mass density of active black holes
is given by the BHMF without a correction for sample censor-
ship. We derived a lower limit of p, = 277 My Mpc . Using
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Fig. 3.13. Comparison of the local BHMF of the HES with the
BHMEF presented in Greene & Ho (2009). The blue asterisks
and the blue dotted line show the BHMF from Greene & Ho
(2007) (corrected in Greene & Ho (2009)). The open, black cir-
cles show our BHMEF, not corrected for evolution and sample
censorship, while the filled, red circles show our BHMEF, with
the black hole mass estimated as in Greene & Ho (2007). The
dashed line indicates our reconstructed BHMF for reference.

our reconstructed BHMEF, the local mass density of active black
holes with log A > —2 is then p,. ® 1700 M Mpc_3, a factor of
6 higher then derived from the uncorrected active BHMEF. The
results for the individual models are given in Table 3.3.

The observational estimate of the integrated mass den-
sity of the total black hole population in the local universe
is pot = (3.2 = 5.4) x 10° M, Mpc_3 (Shankar et al. 2009;
Graham & Driver 2007; Yu & Lu 2008). Using a value of
4.6 x 10° M, Mpc 3, as presented by Marconi et al. (2004), re-
sults in a fraction of ~ 4 x 1073 of the black hole mass that
is currently actively accreting at a rate larger that 1% of the
Eddington limit (~ 6 x 10~ for the uncorrected BHMF).

3.7.3. Comparison with other surveys

Greene & Ho (2007) presented a determination of the active
black hole mass function for z < 0.352, using the SDSS DR4
main galaxy sample as well as the QSO sample. They con-
structed their sample based on spectroscopic confirmation of
broad He lines, ending up with 8728 objects. For these they
computed black hole masses from the Hoe FWHM and line lu-
minosity.

As already mentioned in Paper I, an error has been discov-
ered in the determination of the V.« values in the work of
Greene & Ho (2007) (J. Greene, private communication), re-
sulting into an erroneous luminosity function as well as BHMF.
This error has recently been resolved (Greene & Ho 2009). Thus
we caution not to use the original active BHMF from Greene
& Ho (2007). In Fig. 3.13 the active BHMF by Greene & Ho
(2009) from their SDSS sample is shown as blue asterisks.

Greene & Ho (2007) have not taken into account the selec-
tion effects caused by the use of the luminosity selection func-
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Fig. 3.14. Comparison of our local active BHMF (filled circles
for uncorrected and dashed line for intrinsic BHMF) with the
BHMF of the BQS, as determined directly as binned estimate by
Vestergaard & Osmer (2009)(blue asterisks) and as determined
by a Bayesian approach by Kelly et al. (2009)(blue solid line
for median and dashed lines for 1o uncertainty).

tion and thus underestimate the number of active black holes
at low masses, due to the discussed sample censorship. They
also do not correct for evolution within their z range. However,
a direct comparison with the mass function from Greene & Ho
(2009) can be made using our BHMF, without correction for
evolution and sample censorship.

For consistency, we also re-estimated the black hole masses
of our sample, using the same formula as Greene & Ho (2007),
using He FWHM and He line luminosity. For our sample, the
black hole mass distribution is shifted by 0.54 dex towards
lower mass in the mean. Compared to the FWHM based M, this
shift is 0.42 dex, thus ~ 0.1 dex can be attributed to the differ-
ence between the FWHM and o;,.based M, . The main reason
for the remaining difference originates from a different relation
of Ha luminosity to Lsjgo found for our sample compared to the
one given in Greene & Ho (2005). This difference leads to an
offset of 0.31 dex. The remaining offset can be attributed to the
different Rg g — L scaling relation as well as to scatter in the
relation between the FWHMs, as shown in Fig. 3.1.

The resulting BHMF of the HES is shown as filled circles
in Fig. 3.13. Both BHMFs are fully consistent with each other,
especially at the high mass end, where different survey selec-
tion effects are not important. At the low mass end the SDSS
BHMEF seems to exhibit similar survey selection effects as our
HES sample, resulting in a consistent uncorrected BHMF, even
at the biased low mass end.

Recently, Vestergaard & Osmer (2009) presented the binned
local active BHMF of the Bright Quasar Survey (BQS, Schmidt
& Green 1983), in the redshift interval z = 0 — 0.5. In Fig. 3.14
we compare their derived BHMF with our binned BHMF, not
corrected for evolution and sample censorship (filled black
circles), and our reconstructed intrinsic BHMF (dashed black
line). We also show the local BHMF of the BQS as blue solid
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line, but determined using a Bayesian approach (Kelly et al.
2009).

The most direct comparison between the BQS and the HES
is with the binned estimates. At the high mass end, both binned
estimates are in reasonable agreement. However, the BQS does
not cover exactly the same redshift range as our HES sample.
This might also cause some difference between both BHMFs,
due to evolution of the BHMF, which has the largest effect
at the high mass end. Because the BQS is not as deep as the
HES, incompleteness sets in at higher M, in the binned BHMF.
Also it is known that the BQS suffers from both incompleteness
(Goldschmidt et al. 1992; Koehler et al. 1997) as well as over-
completeness (Wisotzki et al. 2000). Thus, the HES is superior
to the BQS for a determination of the local active BHMF.

Recently, Kelly et al. (2009) presented a determination of
the active BHMF from the BQS using a Bayesian method, tak-
ing also into account scatter in M, and accounting for black
holes below the flux limit of the survey. Their approach aims
at correcting their BHMF for sample selection effects caused
by the flux-limit, as we did in Section 3.6. However, they mod-
eled the BHMF with a combination of Gaussian functions and
also enforced a log normal distribution for the ERDF, while
we mainly used a Schechter function description without a spe-
cific maximum and with a high fraction of objects at low 1. In
Fig. 3.14 we compare their posterior median BHMF (blue solid
line) with our intrinsic BHMF (black dashed line). While both
mass functions are consistent at the high mass end, there is a
clear disagreement at the low mass end. Their BHMF is rather
consistent with our uncorrected BHMF. We speculate that the
reason for this disagreement might lie in the different assump-
tions on the shape of the BHMF and ERDF. This emphasises
the importance of the assumed ERDF for the determination of
the underlying BHMF. An important constraint on the ERDF
is provided by the condition to recover the observed luminos-
ity function as a convolution of BHMF and ERDF, as we have
ensured by construction.

So far, little observational results exist on the distribution
function of Eddington ratios from AGN surveys. Yu et al. (2005)
used a sample of type 2 AGN from the SDSS (Kauffmann et al.
2003; Heckman et al. 2004) to determine the ERDF. Their re-
sults have recently been compiled by Hopkins & Hernquist
(2009). They also fitted the ERDF by a Schechter function and
found an average slope of @; ~ —1.6. ! Our constraints on the
local type 1 ERDF presented here are consistent with this av-
erage slope of the ERDF of type 2 AGN. This might indicate
a similar accretion behaviour of type 1 and type 2 AGN, as
expected from the standard unification model (e.g. Antonucci
1993).

3.7.4. Evolution of the active fraction

Vestergaard et al. (2008) presented a determination of the
BHMF in the redshift range 0.3 < z < 5. They used a well-
defined, homogeneous sample of 15180 quasars from the SDSS
DR3, already used by Richards et al. (2006b) for the construc-
tion of the luminosity function. They found a high-mass decline

! See also Fig. 1.8 for their results on the type 2 AGN ERDF (this
note was added for the thesis).
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Fig. 3.15. Comparison of our uncorrected z < 0.3 BHMF (filled
circles) with the active BHMF within 0.3 < z < 0.7 from the
SDSS (Vestergaard et al. 2008), shown as the blue dashed line
and asterisks, and the active BHMF of the LBQS within 0.2 <
z < 0.5 (Vestergaard & Osmer 2009), shown as the red dotted
line and triangles.

with constant slope 8 = —3.3 at all epochs. Our high-mass slope
of B = =3.1 for z < 0.3 (when not corrected for evolution) is
consistent with their higher-z result within the uncertainties.

We compare our z < 0.3 BHMF, not corrected for evolution
within the z-bin and for sample censorship, with the lowest red-
shift bin (0.3 < z < 0.68) BHMF of Vestergaard et al. (2008),
shown in Fig. 3.15. We also show the active BHMF of the Large
Bright Quasar Survey (LBQS; e.g. Hewett et al. 2001) in the
redshift bin z = 0.2 — 0.5 (Vestergaard & Osmer 2009) as tri-
angles. Both SDSS and LBQS BHMFs are in general agree-
ment, even though they do not cover exactly the same redshift
range. The decline of the space density at the lowest M, in both
BHMFs is mainly due to incompleteness in this mass range in
the SDSS QSO sample as well as in the LBQS QSO sample. At
the high mass end the BHMF shows a similar slope but a larger
space density than our HES BHMF. This seems to indicate evo-
lution of the BHMF between these redshift bins. Because the
mass function of the total supermassive black hole population
will only decrease at the high mass end toward higher z, we can
use the local quiescent BHMF as an upper limit for the mass
function at 0.3 < z < 0.68. This then implies an increase of the
active fraction at the high mass end towards higher redshift, ex-
actly as would be expected in the cosmic downsizing scenario.
Thus, the number of the most massive black holes being in an
active stage in the present universe seems to be lower than at
earlier cosmic epochs.

3.8. Conclusions

We have presented a study of the low-redshift active black hole
population, residing in broad-line active galactic nuclei. We es-
timated black hole masses and Eddington ratios, and from it
estimated the local active black hole mass function and the
Eddington ratio distribution function. Our sample was drawn
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from the Hamburg/ESO Survey and contains 329 quasars and
Seyfert 1 galaxies with z < 0.3, selected from surveying almost
7000 deg? in the southern sky.

We estimated black hole masses from single-epoch spectra,
measuring the line dispersion of the broad Hg line and the con-
tinuum luminosity at 5100 A Lsiqo, using the common virial
method. We took care to avoid contamination of the line mea-
surement by neighbouring emission lines and roughly estimated
the degree of host galaxy contribution to Ls;go. This has been
found to be negligible for the most luminous AGN and not dom-
inant even at the low luminosity end of our sample. We applied
a rough statistical correction to the continuum luminosities to
take into account the host contribution. The bolometric lumi-
nosity and thus the Eddington ratio A, has been estimated from
Lsi00.

The observed black hole masses cover a range 10° — 2 -
10° My, and the Eddington ratio is roughly confined between
0.01 — 1. The observed distributions of these quantities are un-
derstood by the underlying distribution functions of black hole
mass and Eddington ratio, in combination with the survey se-
lection function, as we explicitly demonstrated by Monte Carlo
simulations.

We made an attempt to determine these two distribution
functions in an unbiased way. First of all, when we want to de-
termine the active BHMF, we have to make clear what we mean
by an active black hole, due to the wide distribution of accre-
tion rates. We used a lower Eddington ratio cut of log A = —2,1in
agreement with the observed range of Eddington ratios. Using
a different cut for A will preserve the shape of the BHMF, but
change their normalisation, due to our assumption of an uncor-
related BHMF and ERDF. This is already shown in the left panel
of Fig.3.12. The normalisation and therefore the space density
clearly depend of the chosen definition of an active black hole.

Next we have to be aware that our sample is selected on
AGN luminosity, not on black hole mass. Therefore, we have
to make sure that we properly account for active black holes
below the flux limit of the survey. We presented a method that
determines the active BHMF as well as the ERDF at the same
time, by a maximum likelihood fit. Here, the bivariate probabil-
ity distribution of black hole mass and Eddington ratio is fitted
to the observations. This probability distribution is given by an
assumed BHMF, ERDF and the selection function of the sur-
vey. We also corrected for evolution within our redshift range,
transforming the distribution functions to z = 0. This maximum
likelihood method also ensures the consistency of the derived
BHMF and ERDF with the AGN luminosity function. We were
able to put tight constraints on both the active black hole mass
function and the Eddington ratio distribution function.

The Eddington ratio distribution function is well described
by a Schechter function with low A slope a; ~ —1.9. The data
are consistent with no decrease of the ERDF at low A, within the
constrained range. Using a log-normal distribution, we found a
maximum at log A = —1.8, what can be taken as an upper limit
for a potential turnover in the ERDF. Our results clearly show
a wide distribution of Eddington ratios, in contrast to a single
value or to a narrow log-normal distribution, which is based on
the observed distribution, without accounting for the underlying
selection effects. While we also observe a narrow log-normal

distribution of Eddington ratios, this is in agreement with the
constrained Schechter function or wide log-normal distribution
for the Eddington ratio distribution function, when survey selec-
tion effects are properly accounted for, because low-1 objects
will be systematically missed in flux limited samples.

The active BHMF is well described by different analytic
models. In general, it strongly decreases at the high mass end
and follows a power law at the low mass end with slope of
a ~ —2. A good fit to the data is achieved by a function similar
to a Schechter function, but modified by an extra parameter that
determines the steepness of the high mass decrease. We found
no evidence for a decrease of the BHMF toward low mass, as
indicated by Greene & Ho (2007) for M, < 10%°M,. However,
our sample is not very sensitive in this low mass range.

We compared our local active BHMF with the local quies-
cent BHMF from Marconi et al. (2004), determining the ac-
tive fraction, or duty cycle, of local black holes. This active
fraction is decreasing with increasing black hole mass, con-
sistent with a power law with slope ~ —0.86. Thus, the most
massive black holes in the present universe are less active than
their lower mass companions. At the highest M, only 10~ of all
black holes are currently in an active stage, i.e. accreting above
0.01 of the Eddington rate. This supports the general picture of
anti-hierarchical growth of black holes. This mass dependence
of the active fraction indicates that our assumption of an uncor-
related BHMF and ERDF cannot be sustained up to low values
of A and thus we caution to extrapolate the distribution func-
tions into the low A regime. Investigating a mass dependence of
the ERDF would especially require a wider luminosity coverage
of the sample.

By comparing our low z BHMF with the BHMF of a higher
z-bin, presented by Vestergaard et al. (2008) and Vestergaard
& Osmer (2009), we found an indication that the most massive
black holes are currently in a less active stage than at earlier
cosmic times, also in general agreement with anti-hierarchical
black hole growth.

Recently, Marconi et al. (2008) proposed a modified method
to estimate M,, taking into account the effect of radiation
pressure. So far, it is still unknown if radiation pressure
has an important effect on the BLR or not (see e.g. Netzer
2009). If we take into account radiation pressure and ap-
ply their M, estimation formula to our sample, the major ef-
fect is an increase of M, especially for the low M, objects.
In total, the dispersion of the M, distribution decreases from
0.65 dex to 0.63 dex. In the BHMF the space density at me-
dian M, increases, while at high M, the space density slightly
decreases. This would strengthen even further the evidence for
anti-hierarchical black hole growth. On the other hand it would
change our observed M, , and especially our A, distributions,
and thereby our constrained BHMF and the Eddington ratio dis-
tribution function.

Our work strengthens the scenario of anti-hierarchical
growth of black holes, also seen in other studies (Merloni 2004;
Heckman et al. 2004; Greene & Ho 2007; Shankar et al. 2009;
Vestergaard & Osmer 2009), at least at low redshift. The obser-
vation of ’cosmic downsizing’ in the X-ray luminosity function
(e.g. Ueda et al. 2003; Hasinger et al. 2005), as well as in the
optical, radio and IR luminosity function (e.g. Hunt et al. 2004;



58 Schulze & Wisotzki: The local active black hole mass function

Cirasuolo et al. 2005; Matute et al. 2006; Croom et al. 2009), i.e.
the flattening of the faint end slope of the luminosity function
towards higher redshift, is explained by the shift of the typical
black hole mass of an active accreting black hole toward lower
mass.

The presented local active black hole mass function and
Eddington ratio distribution function serve as a local anchor for
future studies of both distribution functions. These will provide
further information on the cosmic history of growth and activity
of supermassive black holes.
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Chapter 4

Accounting for scatter in virial black hole masses in the AGN
distribution function determination*

Andreas Schulze and Lutz Wisotzki

Leibniz-Institut fiir Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

ABSTRACT

We here present further, but preliminary results on the active black hole mass function and Eddington ratio distribution function.
In Chapter 3 we determined the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) at
z < 0.3 from the Hamburg/ESO Survey (HES). However, we treated the estimated masses as the true values, ignoring the intrinsic
uncertainty oyy in the virial method. Here, we present results that properly take the uncertainty in the virial method into account.
We present the extension of our maximum likelihood method to incorporate measurement uncertainties. We demonstrate the effect
of the correction on the distribution functions for different values of oy . Finally, we investigate whether our method is able to put
constraints on the size of the intrinsic scatter in the virial method and present an independent assessment on the size of the intrinsic

scatter.

4.1. Including scatter in the maximum likelihood

approach

The maximum likelihood method presented in section 3.6.1 de-
termines the BHMF and ERDF jointly. Both distribution func-
tions can be combined in a bivariate distribution function of
black hole mass and Eddington ratio

Y(M.,1,2) = Py(1)De(M,,2) . 4.1)

Here M, is the black hole mass, A is the Eddington ratio (4 =
Lyo1/Lgaa), . is the BHMF and P, is the normalised ERDEF,
defined by Equation (3.10). BHMF and ERDF are just different
projections of this general bivariate distribution function.

The bivariate probability distribution is then:

dv
p(M.’/l) = fQCE (M.’/lsz)lP(MO’/l9Z)d_ZdZ 9 (4'2)

where Q. is the selection function of the specific survey, as a
function of M,, A and z, The probability distribution p(M,, 1)
predicts the observed distribution of objects in the M,-A plane
and is directly compared to the observations via a minimisation
of the likelihood function, Equation (3.11).

We account for the uncertainty in the black hole mass and
Eddington ratio estimates by convolving ¥ with the measure-
ment uncertainty before comparing to the data

Wo(Mayo, 20,2) = fg(M.,o,Ao | Mo, 1) ¥(M,,1,7)dM, dA .

(4.3)
We assume a log-normal scatter distribution in M, as well as in
Lol

— )2 2
gMap, Ao | My, 1) = (o= (=D }

2
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* This chapter may lead or contribute to a future publication.

where ¢ = log M, is the black hole mass and / = log M, +
log A +38.11 is the bolometric luminosity. For the uncertainty in
the bolometric correction o, We assumed a scatter of 0.05 dex
(Marconi et al. 2004). The statistical scatter in M, was varied.
Thus the 2D scatter distribution in the M, -1 plane is repre-
sented by an ellipse with axes oo and oyy. The respective
probability distribution, computed via Equation (4.2), is then
used for the maximum likelihood fit, constraining the underly-
ing BHMF and ERDF in the presence of measurement uncer-
tainties, equivalent to Chapter 3.

4.2. Effect of scatter in virial black hole masses on
the AGN distribution functions

We applied this method to our sample of 329 type 1 AGN with
z < 0.3 from the HES. The uncertainty in the virial method is
not well established. Usually a value of ~ 0.4 dex is adopted
(Vestergaard & Peterson 2006), but there is also evidence that it
may be smaller (Fine et al. 2008; Steinhardt & Elvis 2010; Kelly
et al. 2010). Neglecting or underestimating the intrinsic scatter
in the virial method will bias the resulting BHMF and ERDF.
But if oyy is overestimated, the resulting BHMF and ERDF
will be biased likewise. Therefore, we corrected for scatter in
the virial mass estimates using different values for the uncer-
tainty (oyy = 0.1, 0.2, 0.3 and 0.4 dex), spanning a range of
reasonable values. Our aim at this point is only to demonstrate
the effect of accounting for oyy on the derived AGN distribu-
tion functions. In Table 4.1 we give the best fit parameters using
the presented maximum likelihood approach for a BHMF mod-
eled by a modified Schechter function and an ERDF modeled
by a Schechter function. As in Chapter 3, we provide an assess-
ment of the goodness of fit my means of a two-dimensional K-S
test (Fasano & Franceschini 1987) and by a y? test. In Fig. 4.1
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Fig. 4.1. Reconstructed BHMF (left) and ERDF (right) when accounting for uncertainty in virial black hole mass estimates. Three
assumed values for the uncertainty oy are used. Uncertainties of oym = 0.2, 0.3 and 0.4 are assumed in the upper panels, middle
panels and lower panels, respectively.. The blue dashed dotted line corresponds to a model with double power law BHMF and
Schechter ERDF, the red solid line is for a modified Schechter BHMF and Schechter ERDF and the green dashed line is for a
modified Schechter BHMF and a log-normal ERDF. The thick solid black line shows the BHMF or ERDF without accounting for
ovm, for reference (The model with modified Schechter function for the BHMF and Schechter function for the ERDF is displayed).
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Table 4.1. Fitting results for the active black hole mass function and the Eddington ratio distribution function for a modified
Schechter function BHMF and Schechter ERDF for different values of the intrinsic scatter in the virial method oy

Pact
ow ¢, [Mpc]  log M. agy  PBea  logd. ) Dxs pxs  x*/d.of. P [MoMpc™]
0.00 275x10° 8.11 =211 050 -055 -1.95 0.094 48e-2 56.8/25 1.8e—4 1767
0.10 2.70x 107 8.10 -2.12 049 -062 -1.87 0.086 8.5¢e-2 61.525 3.9e-5 1742
0.15 244x10° 8.12 -2.12 051 -067 -1.82 0.087 8.1le-2 61.525 4.0e-5 1702
020 5.47x1077 8.49 -222 064 -072 -1.74 0.086 8.5¢e-2 60.6/25 5.3e-5 1700
030 3.02x10° 799 -2.11 045 -091 -1.34 0.094 4.5e-2 72.6/25 8.6e-7 1386
040 191x10° 794 -227 032 -1.29 0.10 0.109 1.3e-2 83.6/25 1.6e-8 1004
we show the reconstructed BHMF and ERDF for oy = 0.2, 4.3. Can we constrain the statistical scatter?

OVyM = 0.3 and OVyM = 0.4.

The best fit solution for oy = 0.2 only slightly deviates
from our previous estimate, neglecting the effect of intrinsic
scatter in virial black hole masses. While the BHMF is nearly
unchanged, in the ERDF the space density of objects above the
Eddington limit decreases and the low A slope of the ERDF
flattens. This trend is strongly enhanced for oyy = 0.3 and
even more for oy = 0.4. The break of the ERDF is shifted
to a lower value and «, flattens significantly. The ERDF for
oym = 0.4 even shows a maximum and a turnover towards low
A also for the Schechter function parameterisation.

On the other hand, the shape of the BHMF is affected little.
The BHMF, accounting for measurement uncertainty, is basi-
cally consistent with the previous results. Only the normalisa-
tion, i.e. the total space density, decreases.

A change of the shape is expected, because accounting for
measurement uncertainties narrows the intrinsic observed dis-
tribution of M, and A, corresponding to less objects at low
and high values. Therefore, also in the reconstructed distribu-
tion functions, the space density at low and high values should
be reduced. The effect is much stronger for the ERDF, be-
cause their observed distribution is already narrower than the
M, distribution. The BHMF is almost not affected. For a large
value of oy, the BHMF at the low mass end is only poorly
constrained by the observations. In this mass range, only ob-
jects with high A are observable in the survey. However, due to
the steep decrease of the ERDF toward the Eddington rate, very
few objects are expected in this region. Thus, it is more likely
that the objects observed with low mass and high A have intrin-
sically a higher mass and therefore lower Eddington ratio and
are only scattered into this region of the M, -A plane. Therefore,
the low mass end of the BHMF is less well constrained if mea-
surement uncertainties become significant. The same is true for
the low-A end of the ERDF.

The decrease of the normalisation is a result of the change
of the shape of the ERDF. Because the number of objects at
low A is reduced, there are less objects with low luminosity that
would be missed by the survey. Thus, the observed number of
objects corresponds to a lower corrected number of objects and
hence to a lower space density and to a lower normalisation.

Without any further knowledge on the size of the intrinsic scat-
ter oym, our uncertainty on the active BHMF and especially on
the ERDF increases significantly, as indicated by the range of
solutions in Fig. 4.1. However, we can ask the question if all of
these solutions provide equally good fits to the observations.

In Fig. 4.2 we show the effect of increasing the assumed
ovmMm on the predicted observed distributions. We also show the
oym = 0 distributions as dashed blue line. The observed mass
distribution is broadened with increasing intrinsic scatter. This
is a consequence of the almost invariance in shape of the best fit
BHMEF when convolved with oy, as discussed in the previous
section. On the other hand, the best fit ERDF changes signif-
icantly while the observed distribution of A, after convolution
with the intrinsic scatter, has a comparable width as for oy = 0
or is even narrower. The main effect is a shift of the peak of the
observed distribution to lower A, but still consistent with the
observed distribution of the HES sample. However, from the
observed distribution of M, it is already conspicuous that the
best fit solution for oym = 0.4 provides a less well fit to the
observations as the best fit solution for oyy = 0.2. The results
of the two-dimensional KS-test and y>-test support this suspec-
tion. The mismatch can be properly quantified by the maximum
likelihood fit.

While the maximum likelihood method does not have its
own assessment of the goodness-of-fit, it provides an estimate
of the confidence level for the free model parameters via the
distribution of S, where § = —21In L is the likelihood for the
model. We computed AS = § — S, within a range of assumed
oym values and converted it into confidence values assuming
a y? distribution (Press et al. 1992). In Fig. 4.3 we show the
resulting AS for three model parameterisations. We again take
the modified Schechter BHMF and Schechter ERDF parame-
terisation as our reference model. The minimum of the AS' dis-
tribution lies at oy = 0.15. The confidence contours suggest
constraints of oy < 0.21 at 1o confidence, and oy < 0.30 at
30 confidence.

The crucial question is now whether these constraints are re-
liable, i.e. whether this method is actually able to constrain the
intrinsic scatter. Currently, we have to leave the answer to this
question open. A possible way to test this is by performing ex-
tensive Monte Carlo simulations and inspect if the assumed in-
put value of oy is recovered. We started on this approach, but
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Fig. 4.2. Comparison of the model observable distributions of black hole mass and Eddington ratio (black curve) with the observa-
tions (red histograms) for different assumed values of the intrinsic scatter oyy. As blue dashed line the model distributions without

correction for oy are given for reference.
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Fig.4.3. AS distribution as a function of the applied intrinsic scatter in the virial method. The lines indicate different models, with
the red solid line for a modified Schechter BHMF and Schechter ERDF, the blue dashed-dotted line for a double-power law BHMF
and Schechter ERDF and the green dashed line for a modified Schechter BHMF and a log-normal ERDF. The black horizontal
lines indicate 107, 20~ and 30" confidence levels, corresponding to AS = 1, 4 and 9 respectively. Left panel: For black hole masses
based on the line-dispersion. Right panel: For black hole masses based on the FWHM.

so far the results are inconclusive. Further work on this subject
is required. Therefore, we here only report tentative evidence

for a small intrinsic scatter in the virial method.

Nevertheless, the constraints we would get from our data
only strictly refers to our method for estimating M,, which is
based on the Hg line, and uses the line dispersion o, as mea-

sure of the broad line width. This variant of the virial method
probably exhibits the smallest intrinsic scatter (Collin et al.
2006), as it is directly tied to reverberation mapping, while
other variants require an additional cross-calibration of single-
epoch spectra against the reverberation mapped masses (e.g.
Vestergaard & Peterson 2006; McGill et al. 2008; Wang et al.



Schulze & Wisotzki: Influence of scatter in the virial method on the BHMF and ERDF 63

2009; Rafiee & Hall 2011). In Chapter 3 we not only used ojjpe
to estimate M,, but also the full width half maximum (FWHM).
While our results do not change qualitatively using the FWHM
instead of ojjpe, we consider the FWHM based mass estimates
as less reliable (see section 3.3). Thus, we would expect a larger
value for the scatter in the virial black hole masses using the
FWHM. We tested this expectation by again computing the like-
lihood of the BHMF and ERDF fit for a range of oy, but us-
ing M, and A from the FWHM. The results are shown in the
right panel of Fig. 4.3. We obtained oyy = 0.35 + 0.05, i.e.
it is suggested that the FWHM based mass estimates exhibit
a significant additional uncertainty of ~ 0.3 dex, compared to
the mass estimates from oe, as qualitatively expected. This at
least shows consistency in the oy estimates we derive from
the maximum likelihood fit.

We further note that it would be interesting to have a direct
constraint on oy for our sample, because it covers the same
range in redshift and luminosity as the reverberation mapping
sample and also uses HB. Thus, it does not suffer from uncer-
tainties due to the extrapolation of the virial method, as it is the
case for other studies (Fine et al. 2008; Steinhardt & Elvis 2010;
Kelly et al. 2010).

4.4. Intrinsic scatter budget for the virial method

If reliable, our constraints on oy suggest a smaller intrinsic
scatter in the virial method for the HB line dispersion than usu-
ally adopted. We now check whether such a small scatter is re-
alistic at all, based on the scatter budget in the virial method.
In particular, we are interested in putting lower and upper limits
on ovm.
Virial black hole masses are given by

logM, =log f+ylogL+2logAV +C, 4.5)
where in C all remaining constants are absorbed. The intrinsic
scatter is thus given by:

2 _ 2 2, 2
OVM = Ologf TOR T Oyyr -

(4.6)
Here, o f is the uncertainty in the f factor that will also affect
reverberation mapping (RM) masses, o is the scatter in the
Rprr — L relation and oy, contains the uncertainty in line width
from using single-epoch spectra instead of line widths from RM
campaigns. We briefly discuss all of these contributions.
Uncertainty in the f factor affects both, reverberation map-
ping and single-epoch black hole masses. The intrinsic scatter
in the f factor is probably caused by the difference in incli-
nation and geometry of the AGN broad line region. The aver-
age value for f is derived by scaling RM masses to the local
M., — 0. relationship of quiescent galaxies, assuming they fol-
low the same relation (Onken et al. 2004; Collin et al. 2006;
Woo et al. 2010). The scatter in the f factor adds to the intrinsic
scatter in the M, — o, relation. This intrinsic scatter is of order
0.3 — 0.44 dex (Tremaine et al. 2002; Giiltekin et al. 2009). For
the RM sample, the intrinsic scatter around the M, — o, rela-
tionship is oy = 0.44 = 0.07 (Woo et al. 2010). This implies a
constraint on the intrinsic scatter in log f of 0 < orjee r < 0.32.

For the RM sample, Bentz et al. (2009) found a value of
or = 0.15 dex for the intrinsic scatter in the Rgigr — L scal-
ing relationship, using the FITEXY method (Press et al. 1992).
However, there is evidence that the measurement errors for
some time delays from low-quality data are underestimated.
Peterson (2010) report an intrinsic scatter of only 0.11 dex,
when restricting the RM sample to objects with reliable time
delay measurements. Denney et al. (2010) found an improved
agreement with the Rgrr — L relation for objects with pre-
viously unreliable time delays, when using new accurate re-
verberation mapping measurements. These results suggest that
the scaling relation and thus the virial method is better than
usually assumed and only better, high precision reverberation
data are required to improve on this relation. We assume here
0.11 < og <0.15.

Denney et al. (2009) presented a comprehensive analysis of
uncertainties in black hole mass estimates from single epoch
spectra, based on the Seyfert 1 galaxy NGC 5548 and the quasar
PG 1229+204. For the uncertainty in the estimated black hole
mass due to variability they found about 0.12 dex for Seyferts
and 0.05 dex for quasars, which we simply take as upper and
lower limit for the contribution of variability to the intrinsic
scatter.

For the full scatter budget on the intrinsic scatter in the virial
method, using the H line and the line dispersion, we then get
an estimate of 0.12 < oym < 0.37. Thus, a low estimate for
ovM, as suggested by our BHMF and ERDF determination, is
at least not unreasonable. Further support comes from the de-
termination of the M, — 0. relation for virial black-hole masses
(Greene & Ho 2006; Bennert et al. 2011), finding a scatter of
0.4 dex, similar to the value for the RM sample and quiescent
galaxies. The M, — Lpyge relation for a sample of black holes
with virial mass estimates seems to have a scatter comparable
to direct mass measurements as well (Kim et al. 2008).

4.5. Conclusions

We presented an extension of our maximum likelihood method
to determine the active BHMF and ERDF, presented in
Chapter 3, to account for the intrinsic scatter oyy in the virial
method to estimate black hole masses. We corrected our BHMF
and ERDF estimates from Chapter 3 for this scatter and made
an attempt to constrain oy from our data. We found evidence
for a small value of ovy. However, we have not rigorously ver-
ified the reliablity of this result yet. Therefore, in the spirit of
presenting preliminary results, we currently refrain from draw-
ing a firm conclusion on the size of oyy. However, we argue
that a small value of ovy is not unreasonable and consistent
with independent direct estimates of oyy;.
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Chapter 5

Selection effects in the black hole-bulge relations and its
evolution*
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ABSTRACT

The observed tight correlation between black hole masses and their host galaxies’ spheroid properties and especially the redshift
evolution of this correlation contains important information on the coevolution of black holes and galaxies. Observational studies
on the evolution in these relations are affected by sample selection effects. These need to be understood and taken into account, to
distinguish a real evolutionary trend from a selection bias. Here, we discuss in detail the issue of selection effects on type 1 AGN
samples. Apart from the well known luminosity bias, we identify additional sources of biases. If for a black hole the probability to
be in an active stage directly depends on the black hole mass, a bias is induced on the active black hole subsample. Furthermore, an
evolutionary signal in the black hole - bulge relations may be superimposed by the evolutionary behaviour of the AGN population
itself, as evident from the evolution of the AGN luminosity function, which affects the expected sample bias. We present a general
framework to investigate these biases, based on the bivariate probability distribution of galaxy property and black hole mass, and
show predictions for luminosity limited and flux limited samples. We discuss these predictions in the context of current observations.
Additionally, we comment on the effect of measurement uncertainties in black hole masses and spheroid properties on the bias. Our
work emphasises the importance and complexity of sample selection effects for observational studies on the black hole - bulge

relations and their evolution.

5.1. Introduction

Supermassive black holes appear to be ubiquitous in the
centers of massive galaxies (Kormendy & Richstone 1995).
Furthermore, they show tight correlations with the properties
of the galaxies’ spheroidal components, e.g. with the stellar ve-
locity dispersions (Ferrarese & Merritt 2000; Gebhardt et al.
2000; Tremaine et al. 2002; Giiltekin et al. 2009), bulge lumi-
nosity and mass (Magorrian et al. 1998; Marconi & Hunt 2003;
Hiring & Rix 2004; Sani et al. 2011) or concentration index
(Graham et al. 2001). These relations have been established by
direct dynamical measurement of the black hole mass in a few
dozens of local, inactive galaxies, mainly using stellar dynamics
(e.g. van der Marel et al. 1998; Emsellem et al. 1999; Gebhardt
et al. 2003) or gas dynamics (e.g. Ferrarese et al. 1996; Marconi
et al. 2001; Dalla Bonta et al. 2009).

Nevertheless, significant uncertainties in these relations per-
sist. The high mass and the low mass regimes are still poorly
constrained. There even may be systematic effects on the de-
termined masses. Not accounting for triaxiality of the galaxy
(van den Bosch & de Zeeuw 2010) or not including a dark mat-
ter halo in the dynamical models (Gebhardt & Thomas 2009;
Schulze & Gebhardt 2011) can bias the dynamical measure-
ment. Also the intrinsic scatter in these relations is still not
well established (Giiltekin et al. 2009). Furthermore, there is
evidence that late-type galaxies and in particular pseudobulges

* A version of this chapter will be submitted to Astronomy &
Astrophysics

do not follow the same relationships as early-type galaxies (Hu
2008; Graham 2008; Greene et al. 2010; Kormendy et al. 2011).

The black hole - bulge relations contain important infor-
mation, as they imply a connection between the growth of a
black hole and the evolution of its host galaxy. A common
picture invokes AGN feedback to shut down star formation
and self-regulate black hole accretion. This scenario is able
to reproduce the local black hole - bulge relations in numer-
ical simulations (Di Matteo et al. 2005; Sijacki et al. 2007;
Booth & Schaye 2009), and semi-analytic models (Kauffmann
& Haehnelt 2000; Cattaneo et al. 2005; Croton et al. 2006;
Bower et al. 2006; Somerville et al. 2008; Marulli et al. 2008).
On the other hand, a correlation between black hole mass and
host galaxy mass will also be tightened or may even be gener-
ated natural within a merger driven galaxy evolution framework
(Peng 2007; Hirschmann et al. 2010; Jahnke & Maccio 2010).

Essential constraints on the origin of the black hole - bulge
relation can be inferred from their redshift evolution. There are
several theoretical predictions, based on numerical simulations
(Robertson et al. 2006; Hopkins et al. 2007; Di Matteo et al.
2008; Johansson et al. 2009; Booth & Schaye 2011) as well as
on semi-analytic models (Wyithe & Loeb 2003; Croton 2006;
Malbon et al. 2007; Hopkins et al. 2009; Lamastra et al. 2010).
Although the details are still far from being settled, they tend to
predict an increase in the M,/Mpyg ratio with redshift, while
only a weak or even negative evolution in the M, — o, relation
is implied.

These models need to be confronted with observations.
Several different approaches have been followed in the last
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years to observationally constrain the evolution in the black
hole - bulge relations. These range from more indirect argu-
ments, to direct estimates of M, and the respective bulge prop-
erty. Constraints on integrated quantities can be gained from the
black hole mass function (Merloni et al. 2004; Hopkins et al.
2006; Shankar et al. 2009; Somerville 2009; Kisaka & Kojima
2010). Bluck et al. (2011) studied X-ray selected AGN, employ-
ing Eddington ratio arguments, to constrain black hole - bulge
coevolution.

A direct dynamical determination of M, is not feasible out-
side of the local universe. Therefore, the most direct approach
resorts to broad line AGN, for which the black hole mass is
easily accessible through the ’virial estimator’ (e.g., McLure &
Jarvis 2002; Vestergaard & Peterson 2006). The main challenge
for the determination of the M,—bulge relationship from AGN
samples is the determination of the bulge properties, hampered
by the bright nuclear point source of the AGN, which may well
outshine the entire galaxy.

The Mgy — 0. relation has been studied, measuring either
the stellar velocity dispersion directly (Woo et al. 2006, 2008;
Shen et al. 2008) or using the width of narrow emission lines
as surrogates for o, (Shields et al. 2003, 2006; Salviander et al.
2007). The M, — Mpyge relation has been investigated by mea-
suring QSO host galaxy luminosities (Peng et al. 2006a,b; Treu
et al. 2007; McLeod & Bechtold 2009; Decarli et al. 2010;
Bennert et al. 2010), by directly estimating the stellar masses
utilising colour information (Schramm et al. 2008; Jahnke et al.
2009; Merloni et al. 2010), or by dynamical mass measurements
(Inskip et al. 2011). Also obscured AGN with detectable broad
lines have been used (Sarria et al. 2010; Nesvadba et al. 2011),
for which the determination of stellar masses is less problem-
atic. McLure et al. (2006) determined the M, — Mpyig. ratio up
to z = 2, matching distributions of radio-loud QSOs and radio
galaxies. At the highest redshifts, CO rotation curves have been
used to determine dynamical masses for a few individual ob-
jects (Walter et al. 2004; Riechers et al. 2008, 2009; Wang et al.
2010). All these methods have their own advantages and draw-
backs. Nevertheless, there seems to be increasing evidence for
evolution in the relations, with more massive SMBHs at given
bulge mass than in the local universe.

On the other hand, observations of sub-mm selected galax-
ies (SMGs) appear to imply a lower M, /Mpyg. ratio at high red-
shifts (Borys et al. 2005; Alexander et al. 2008). However, these
samples are limited to strongly star forming galaxies, which
tend to be biased towards massive stellar systems (Lamastra
et al. 2010).

But, selection effects may also play an important role for
observations of broad line AGN. One of these selection effects
is related to the AGN luminosity. AGN samples preferentially
select luminous AGN, which on average tend to have more mas-
sive black holes. The intrinsic scatter in the M, — Mpyge Telation
then generates a bias towards a higher M, /Mgy ratio. This
bias has been pointed out by several authors (Adelberger &
Steidel 2005; Fine et al. 2006; Salviander et al. 2007), but re-
ceived major attention by the work of Lauer et al. (2007), who
discussed it in more detail (but see also Peng 2010). However
this AGN luminosity bias may not be the only important selec-
tion effect and thus restricting the discussion to this single point

falls short. For example, previous studies usually assume that
AGN are a random subset of the supermassive black hole pop-
ulation. As they are per definition active black holes, this is not
necessarily true, which can potentially introduce an additional
selection effect. This effect did not receive much attention so
far, and we discuss it in more detail below. A further effect has
been discussed by Shen & Kelly (2010), caused by the uncer-
tainty in virial black hole mass estimates in connection with the
steep decease of the active black hole mass function (BHMF).
We also comment on this effect below. Overall, previous studies
tend to be focused on a single selection effect. We here present
a general framework to investigate a variety of effects at large.
In this paper we study and quantify selection effects on ob-
servations of the M, — Mpyge relation and discuss their impli-
cations for studies on evolution in this relation. In section 5.2
we present the general framework in which we investigate the
consequences of selection effects and show a first application
to the quiescent black hole sample. Section 5.3 discusses sev-
eral selection effects for AGN samples and their ramifications
for the black hole-bulge relations. In section 5.4, we take into
account redshift evolution effects. We discuss the implications
of our results on observational studies in section 5.5. We finally
conclude in section 5.6. For the cosmological parameters we
assume Hy = 70 km s™! Mpc‘l, Qn=03and Qs =0.7.

5.2. The local M, — Mgy relation

We start with some general thoughts on the M, — Mgy relation
and selection effects, discussing the special aspect of AGN
samples in the next section. We here focus on the M, —
Mapyge relation, but the argument equally holds for the M, —
o relation. We do not imply one relation to be more funda-
mental than the other. We refer to the bulge property as s with
s = log o, or s = log Mpuye , respectively and to the black hole
mass as u = log M,.

The distribution of objects in the u — s diagram is given by
the bivariate distribution function of bulge mass and black hole
mass (s, u). Thus ¥(s, w)duds gives the number of objects per
Mpc? with galaxy property between s and s + ds and black hole
mass between u and u + du. We assume the following parame-
terisation for most of the paper,

W(s, ) = g(u|s) Dy(s) (.1

where @ (s) is the spheroid distribution function, e.g. the
spheroid mass function, and g(u | s) gives the probability of find-
ing the black hole mass u given s. If s and u are correlated,
as suggested by the observations, then g(u|s) corresponds to
this correlation. In the following we assume a linear relation
M = a + bs with log-normal intrinsic scatter o, i.e.

exp {——('u —a- bs)z} .

2072

gluls) =

1
Voo (5.2)
This parameterisation for the bivariate distribution function is
not the only one possible. We comment on the its observational
justification as well as on alternative parameterisations and their
implications in the Appendix of this Chapter. While our quan-
titative results depend on the adopted parameterisation, most of
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Fig.5.1. Bivariate probability distribution function of bulge
mass and black hole mass with no selection effects. The con-
tours indicate decreasing probability in logarithmic units. The
thick black line shows the input M, — Mgy relation from
Hiring & Rix (2004). The red dashed dotted line shows the
mean galaxy property for a given black hole mass. The upper
panel shows the projection of the bivariate distribution function
to the bulge mass, i.e. the spheroid mass function. The right
panel shows the projection to black hole mass, i.e the quiescent
black hole mass function.

our qualitative results are independent of the specific choice of
(s, ).

The corresponding distribution functions for s and u are
given by marginalisation over the other variable.

®,(s) = f W(s, ) d = Dy () (5.3)

®-(ﬂ)=f‘P(S,u)dS= fg(uIS) Qy(s)ds (5.4

The integration over u simply returns the spheroid mass func-
tion. The integration over s returns the quiescent black hole
mass function (BHMF), equivalent to the common approach
for its determination (e.g. Yu & Lu 2004; Marconi et al. 2004;
Merloni 2004). The first equality in Equations (5.3) and (5.4)
is independent of the special choice of ¥(s, ). In particular, as
the galaxy distribution function is an observable, Equation (5.3)
sets a constraint on the bivariate distribution ‘P(s, ). Note that
the specific shape of W(s, u) has direct consequences for the qui-
escent black hole mass function.

Fig. 5.1 shows YW(s,u), ®,(s) and ®.(u) for the local
universe, employing our parameterisation. We estimated the
spheroid mass function from the early type and late type stellar
mass functions from Bell et al. (2003), selected from the SDSS.
We computed the spheroid mass function as sum of the early

type mass function and the mass function of the bulge compo-
nent of the late type galaxies. Since the bulge fraction in disk
galaxies is still somehow uncertain, we simply assumed an av-
erage value of B/T = 0.3 to convert the late type mass function
into a bulge mass function, consistent with current observations
(e.g. Graham & Worley 2008; Gadotti 2009). This value also
produces a black hole mass function that is consistent with de-
terminations from the M, — o, and M, — L relations (Marconi
et al. 2004). For the M, — Mgy relation, we used the relation
by Hiring & Rix (2004) and an intrinsic scatter of o~ = 0.3 dex.
We keep this value for the intrinsic scatter fixed for most of the
paper and comment on the consequences of changing it when
appropriate.

The distribution shown in Fig. 5.1 would be obtained
for a volume limited sample of galaxies with Mpyg and
M, measurements. In practise, the distribution will be affected
by selection effects of the sample construction. This is ac-
counted for by the selection function, defined as the probabil-
ity of observing an object of a given bulge mass, black hole
mass and potentially further selection criteria, such as for in-
stance redshift or AGN luminosity. We define a selection func-
tion Q(s, u, 8), where 6 refers to the set of additional parameters
present as selection criteria. The observed bivariate distribution
is then given by

Wols, ) = fQ(S,/J, 6) (s, 1) pe(6) d6 (5.5
where pg(f) is a set of normalised distribution functions
of the parameters 6. Depending on €, the observed M, —
Mg relation can be significantly biased if the selection ef-
fects are not taken into account. However, this requires a proper
knowledge of the selection function.

The bivariate distribution ¥, (s, 1), when normalised to one,
represents the full probability distribution of the expected M, —
Mg relation. However, we may be not mainly interested in
the full distribution, but only in the mean relation. This is given
by the mean black hole mass at a given bulge property

[ 15, ) dpe
[Wo(s.pydu

If no selection effects are present then {u)(s) will be identical to
the input M,—bulge relation, (u) = a + bs . Alternatively, the
mean bulge property at a given black hole mass can be used

fs‘PO(s,u) ds
[ ¥o(s.ds

Even without any selection effects (s)(«) does not simply corre-
spond to the inverse relation but deviates from it at the high
mass end where the space density in the galaxy distribution
function is decreasing. This is illustrated as red dashed-dotted
line in Fig. 5.1 and was already discussed by Lauer et al. (2007).
This is not an observational bias but just a direct consequence
of the different projection chosen and the decrease of the galaxy
distribution function. In general, under the presence of selection
effects (s)(u) may be modified as well.

In observational studies on the evolution of the M,—bulge
relation, the sample is often compared to the local relation in

k) (s) = (5.6)

($)(w) = (5.7
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terms of a single value, the offset from the local relation. The
sample bias on this offset is given by

= a—bs)Wo(s, ) duds
T [ Wo(s, ) duds

Alternatively, the mean offset of the galaxy property from the
local relation is given by

_ I — = ) Wo(s. p) dpuds
JJ Wols, ) duds

where we use the inverse relation s = @+ Bu with @ = —a/b and
B = 1/b. This directly leads to (As) = —1/b(Au), without any
specific assumption on W, (s, ). Thus the bias in (Ay) and (As)
should always be directly proportional to each other.

To a certain extend, also the observed sample of a few
dozen quiescent black holes will be affected by selection effects.
However, this sample is inhomogeneous, i.e. it does not posses
a well defined selection function, which hampers a proper in-
vestigation of potential selection effects. Yu & Tremaine (2002)
and Bernardi et al. (2007) reported on a possible bias in the
quiescent black hole mass sample through finding a discrep-
ancy in the o, — L relation compared to the SDSS. Furthermore,
Giiltekin et al. (2009) discussed a bias induced by culling the
sample based on the resolution of the black hole’s sphere of in-
fluence. Before discussing selection effects on AGN samples in
detail, we want to investigate this bias to illustrate the general
applicability of Equation (5.5).

(D)

(5.8)

(As)

1
=58, (59)

5.2.1. Bias by sphere of influence resolution

Dynamical black hole mass determinations need to spatially re-
solve the region of gravitational influence of the central black
hole on the stellar velocity distribution. The size of this region
is commonly estimated by the sphere of influence, with radius
Ry = GM.o-;z. It has been argued (e.g. Ferrarese & Ford 2005)
that dynamical black hole masses are unreliable for Ri,¢/dres < 1
and therefore should be excluded from the sample. Here di is
the spatial resolution of the observations. Giiltekin et al. (2009)
demonstrated that this procedure leads to a bias in the M,—bulge
relations, simply because galaxies below a line M, « o2 are
rejected. Batcheldor (2010) pointed out that it would even be
possible to artificially generate a M, — o, correlation via this
selection effect. Giiltekin et al. (2009) argued against culling
the sample based on the sphere of influence to avoid this bias.
However, even without an active rejection this effect may be
present, either due to an implicit target selection or through the
mere ability to detect a black hole. The condition Riys/dres > 1
is no strict limit for the reliability of black hole detection, but
it is clear that for Rj,¢/ds << 1 no black hole can be detected
dynamically.

We now illustrate the results of this bias. We assume that
we can detect all black holes above a certain threshold in reso-
lution of the sphere of influence, Ri¢/dres > Fmin- We keep the
spatial resolution of our survey fixed at 0.1”. Thus the selection
function is given by

1 for

Rin‘ dr > TI'min
Q(s,p,d) = { 0 else (/s

(5.10)

where d is the distance to the galaxy. The observed bivariate
probability distribution is then given by

3 2
Wols ) = ——— f Qs . d) W(s,pyd?dd . (5.11)
d; —di Ja,

For the purpose of illustration, we again use the M, —
Mpy)ge diagram. We convert bulge mass into velocity disper-
sion, assuming a fixed mass-to-light ratio for the r-band and
using the o, — L, relation from Bernardi (2007). We cover the
distance range from 1 to 30 Mpc. In Fig. 5.2 we show the
M, — Mpy)g diagram for two thresholds in the sphere of influ-
ence resolution, rmi, = 1 and ry, = 0.1. We additionally plot
the *observed’ mean M, — Mpyge relation {u)(s) for both cases as
thick black solid line and the *observed’ mean relation {s)(u) as
red dashed-dotted line. The bias induced by the resolution of the
black hole’s sphere of influence leads to a flatter slope, a higher
normalisation and a smaller intrinsic scatter, as already shown
by Giiltekin et al. (2009). See also their work for an extensive
Monte Carlo investigation of this bias.

While a significant bias is induced only for a high cutoff
in rmin, the probability distribution is affected even for a low
threshold, most severely at the low mass end. Also the relation
(s)(w) is biased in both cases. The selection along lines of M, o
o? is clearly visible in the probability contours. However, the
degree of the bias caused by this selection effect on the actually
used sample of quiescent black holes is hard to quantify, due
to the inhomogeneous character of the sample. Here, we only
emphasize that selection effects are a concern in general, thus
also for dynamical black hole mass measurements.

5.3. Biases of broad line AGN samples

Selection effects are a major concern for samples selected as
broad line AGN. For these objects the black hole mass can be
easily estimated using the virial method. This makes them so
valuable for studies of the evolution in the M,—bulge relations,
as at high redshift black hole masses cannot be determined by
means of direct dynamical observations. We first discuss gen-
eral issues of selection effects, also inherent in low-z AGN sam-
ples. The application to higher redshifts will be covered in sec-
tion 5.4.

Samples of non-active galaxies are basically drawn from the
galaxy luminosity function. In contrast, AGN samples are effec-
tively drawn from the broad line AGN luminosity function. This
can induce non-trivial selection effects on the sample, as already
pointed out by Lauer et al. (2007). Firstly, there will be a lumi-
nosity bias. Flux limited AGN surveys will on average contain
more luminous objects then an ’ideal’ volume-limited sample.
Thus, the AGN will on average have more massive black holes.
The intrinsic scatter in the black hole-bulge relations, together
with the steep decrease of the spheroid distribution function,
causes a Malmquist type bias towards more massive black holes
at a given spheroid mass. The strength of the bias depends on the
luminosity limit, the shape of the spheroid distribution function,
the intrinsic scatter in the M,—bulge relation, and the distribu-
tion of Eddington ratios. We will further discuss and illustrate
these details below.
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Fig. 5.2. The bivariate probability distribution function and its projections for a quiescent black hole sample under the presence of a
sample selection on the resolution of the black hole’s sphere of influence. A threshold of Riy¢/des > 1 (left panel) or Rins/dres > 0.1
(right panel) is applied to the sample. The dashed black line shows the input M, — Mgy, relation, the thick black solid line
highlights the "observed’ relation {u)(s), and the red dashed dotted line indicates the *observed’ relation {s)(u)

A second effect, so far not discussed, may be an active frac-
tion bias. For a sample of broad line AGN, their black holes are
per definition active, and therefore not a random representation
of the entire black hole population. Only a minority of all black
holes is active, described by the active fraction or duty cycle. If
this active fraction is a function of M, then the intrinsic scat-
ter in the M, — Mpyjg relation will induce an additional bias as
shown below. If the active fraction is decreasing with increasing
black hole mass, then for a given spheroid mass it will be more
probable to find a smaller mass black hole in an AGN sample,
causing a bias towards a lower M, /Mpyg ratio. Conversely, for
an increasing active fraction we expect a positive bias, while for
a constant (M, independent) active fraction no bias will occur.
Thus, this bias can work in both directions, depending on the
black hole mass dependence of the active fraction. It will add to
the luminosity bias.

5.3.1. Luminosity limited samples

We now show analytically how these selection effects influence
the M,—bulge diagram. Broad line AGN are drawn from the
AGN luminosity function @y (I), with [ = log Li). The luminos-
ity of an AGN is produced by mass accretion onto a SMBH,
thus it is determined by the black hole mass and the mass ac-
cretion rate. The latter is expressed in normalised units by the
Eddington ratio 4 = Lpo/Lgqq- The Eddington luminosity is
proportional to M, , thus the bolometric luminosity is given by
I = logA + p + 38.1. The AGN luminosity function @ () (in
logarithmic units) is then given by

@L(l)=fpa(l—u)®.,a(#)dﬂ. (5.12)

By ®, ,(u) we define the active BHMEF, where active black holes
are those that contribute to the corresponding AGN luminos-
ity function. Thus, when restricting the AGN sample to type 1
AGN (showing broad lines), the active BHMF includes only
these type 1 AGN. The distribution function p,(I — ) gives
the probability of finding a black hole with mass u given an
AGN luminosity /, i.e. it corresponds to the normalised distri-
bution function of Eddington ratios 1. We implicitly assume
that the Eddington ratio distribution function is independent
of black hole mass, i.e. py(ull) = p(I — p) = ploga).
Type 1 AGN are observed to have Eddington ratios in the range
0.01 < Lpoi/Lgag < 1. When applying a lower threshold to the
Eddington ratio, not all black holes are currently in an active
state. The active fraction is defined as the ratio between the ac-
tive and the total black hole population, estimated as

Pac(t) = Qua(1)/Dag() ; (5.13)
with @, (1) and @, (1) as the active and quiescent BHMEF, re-
spectively. Therefore, the AGN luminosity function can be ex-
pressed as

O = [{ pall = 10) pactut) gGu1] 5) @, (5) dsd

There is thus a connection between the bulge property and the
AGN luminosity, which is however smeared out by convolution
with a set of additional distribution functions.

Following Equation (5.5), the bivariate black hole-bulge dis-
tribution function for a luminosity limited sample is given by

‘Po(s,u)=fﬁ(s,u,l)m(l—,u)g(ulS)q)s(S)dl. (5.15)

If we assume a fixed lower luminosity limit /i, the selection
function is

(5.14)

for
else

l > llim

Pac(1t)

Qs,u, 1) = { 0 (5.16)
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Fig. 5.3. Bivariate probability distribution function and its projections for a local type 1 AGN sample under the presence of a lower
luminosity limit. The dashed black line again shows the input relation, the thick black solid line the observed relation {u)(s), and
the red dashed dotted line indicates the ’observed’ relation (s)(u) of this sample. A lower luminosity limit of log Ly, > 45 (left

panel) and log Ly, > 47 (right panel) is applied, respectively.

The bivariate distribution function is then

Wols, 1) = pac(u) gt ] s) Dy(s)

lim

00

pal—pdl.  (5.17)

So, ®©;(l) and W,(s,w) are just different projections of a mul-
tivariate distribution function W, (s, u, ). The non-trivial differ-
ence between (s, u) and W, (s, u) is the source of the bias. It is
controlled by the three probability distributions, p,.(1), pa(l—p),
and g(u | s). The distribution of p,.(u) regulates the active frac-
tion bias, p,(I— ) rules the luminosity bias and g(u | s) controls
the overall strength of the bias.

In Equation (5.17) we can combine the parts governing the
AGN selection, by defining the selection function, integrated
over the AGN luminosity,

Q) = pac(p) f pal —p)dl. (5.18)
llim
and thus W, (s, ) = Q)Y (s, w).
The mean relations obtained from such a sample, affected

by an AGN luminosity limit, are

Ju¥ols,pdu [ pQ(eu| sdu
S du [ Q] s)du

[ sWo(s,p)ds [ sg(ul $)Dy(s)ds

J¥ols.ds [ gul)®(s)ds

The relation {(u)(s) is independent of the galaxy distribution
function, but it is affected by the selection function. Therefore,
(u)(s) # a + bs, as would be the case without selection effects.
On the other hand (s)(w) is already intrinsically affected by the
galaxy distribution function, but it is independent of the selec-
tion function. Therefore, (s)(u) contains information on the in-
trinsic relation, unaffected by the AGN luminosity bias and ac-
tive fraction bias. This is an interesting fact, as it provides a

(u)(s) = (5.19)

($)() =

(5.20)

potential route to study the evolution in the M,—bulge relations
without accounting for AGN selection effects. However, even
if (s)(u) is not biased by the selection effects, the mean offset
(As) is biased, as shown by Equation (5.9), because we have to
integrate over the entire observed black hole mass distribution.

We now first illustrate the AGN bias in the M,—bulge plane,
and then investigate it in terms of a simple offset from the in-
put relation. For this purpose, we need to know all the under-
lying distribution functions, for which we here adopt the local
values. For ®@(s), we again use the above estimated spheroid
mass function. For g(u|s), we assume a log-normal distribu-
tion with intrinsic scatter o = 0.3 dex around the relation from
Hiring & Rix (2004). These then define the quiescent BHMF
via Equation (5.4). If we further know the active BHMEF, the ac-
tive fraction is given by Equation (5.13). The active BHMF and
the Eddington ratio distribution function (ERDF) p,(/ — w) for
type 1 AGN in the local universe were determined by Schulze
& Wisotzki (2010, hereafter SW10), and we use those values,
assuming a modified Schechter function for the BHMF and a
Schechter function for the ERDF. The SW10 active BHMF im-
plies a decrease of the active fraction with increasing black hole
mass, thus the active fraction bias will work towards a lower
M, /Mg ratio, opposite to the luminosity bias. Note that this
parameterisation by construction ensures the consistency with
the broad line AGN luminosity function via Equation (5.14).

In Fig. 5.3 we show the M, — Mpye. diagram for a luminos-
ity limited local AGN sample, for two lower luminosity limits,
Lmin = 45 and l;, = 47. For z ~ 0 the latter case is rather unre-
alistic, as we are limited to the most luminous QSOs. However,
as further discussed below, it is of importance for higher z ob-
servations, where only the brightest QSOs can be detected. The
luminosity limit of /,,;, = 47 roughly corresponds to the SDSS
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Fig.5.4. Predicted bias for a luminosity limited local type 1
AGN sample as a function of the low luminosity limit (in loga-
rithmic units). The solid line shows our prediction for o = 0.3.
The dashed lines show the predictions for o = 0.4 (upper line)
and o = 0.2 (lower line). The dotted line gives the prediction
from Lauer et al. (2007), based on the local AGN luminosity
function; see text for an explanation of the differences.

magnitude limit of i ~ 19 at z =~ 3 and to the SDSS high-z limit
of i =202atz~6.

For both luminosity limits the M, — Mgy, relation is bi-
ased towards larger black hole masses at a given spheroid mass.
This is already true for [, = 45, but is greatly enhanced for
the high luminosity limit. The dashed line again shows the
mean black hole mass for a given spheroid mass (computed
via Equation (5.6)), i.e. the M, — Mgy relation obtained for
the given sample. It is clearly visible that in general the bias
is strongest at the low mass end rather than at the high mass
end. Specifically, it is strongest close to the luminosity limit of
the survey, on average corresponding to lower mass black holes.
The red dashed dotted line again shows the mean spheroid mass
for a given black hole mass (computed via Equation (5.7)). As
noted, this relation is unaffected by the AGN selection and is
identical to the one shown in Fig. 5.1. However, it is not iden-
tical to the intrinsic relation, as it turns upwards at the high
mass end due to the decrease in the spheroid mass function.
Therefore, an integration over (s)(u) with a stronger weight on
the high mass end will lead to a bias for the mean offset from
the local relation, i.e for the total sample bias.

The sample bias is enhanced for a bright luminosity limit.
The steep decrease of the spheroid mass function and the in-
trinsic scatter in the relation itself induce an increase in the
bias compared to the flat section of the spheroid mass func-
tion. This is shown in Fig. 5.4, where the mean offset from
the input relation for the whole AGN sample, (Au) (computed
via Equation (5.8)), is plotted for a range of bolometric AGN
luminosity limits, assuming the local distribution functions.
Here, we assumed our reference value for the intrinsic scatter,
o = 0.3 dex, but we also indicate the dependence of the bias

on the intrinsic scatter. A smaller intrinsic scatter also leads to a
smaller sample bias, while a larger scatter causes a larger bias.
As dotted line, we additionally show the bias predicted by Lauer
et al. (2007), using their Equation (25) and the local bolomet-
ric type 1 AGN luminosity function from Schulze et al. (2009).
The main difference between their result and ours is that we not
only use the AGN luminosity function, but the whole set of un-
derlying distribution functions. In particular, we also take into
account the active fraction bias that reduces the total bias, due
to the decrease of the active fraction towards higher black hole
masses. As a caveat we note that for very high luminosities, our
knowledge of the underlying distributions (active and passive
BHMFs, AGN luminosity function and M, — Mgy relation)
are observationally poorly determined.

We provide an additional illustration of these selection ef-
fects by Monte Carlo Simulations. We generated a large galaxy
sample drawn from the spheroid mass function, and attributed
black hole masses drawn from a log-normal distribution with
mean from the Héring & Rix (2004) relation. We decided if the
black hole is in an active state based on the probability p,.(u).
If so, an Eddington ratio was drawn from the SW10 Eddington
ratio distribution function, which also sets the bolometric lumi-
nosity of the AGN. Now specific selection criteria were applied
to this sample, with the results presented in Fig. 5.5. It is no-
table that for a bright luminosity limit most, if not all, AGN
lie above the input M, — Mpyg. relation, while they are intrin-
sically drawn from it. The applied luminosity limit effectively
corresponds to a smoothed low black hole mass limit. At the
same time also many massive black holes are excluded that ac-
crete only at low rates. For low spheroid masses only positive
outliers from the relation can be detected, while for increasing
spheroid masses also black holes on the relation and for further
increasing spheroid masses even strongly negative outliers can
be still detected. This causes the bias at low Mpyjge.

In a realistic AGN sample there may be additional selec-
tion effects that affect the distribution of Mpyjge. For exam-
ple, usually a minimum host-to-nucleus ratio is required for
the AGN host galaxy to be detected. This will correspond to
some sort of cutoff in Mpyjge, €xcluding low mass hosts. This
additional selection effect will decrease the average bias for the
sample, as the excluded objects are the most biased. However,
this will only be of importance if objects are actively eliminated
during the sample construction based on these considerations.
Therefore, it is important to model the selection effects as pre-
cisely as possible for a realistic prediction of the average bias of
the given sample.

5.3.2. On a black hole mass bias

Shen & Kelly (2010) discussed an additional black hole mass
bias that will affect AGN samples with virial mass estimates.
This Malmquist type bias should arise due to the steep decrease
of the active BHMF and the intrinsic scatter in the virial method.
They argue that this is independent of the luminosity bias dis-
cussed by Lauer et al. (2007) and thus adds an additional bias
to the observations. In our framework we are directly sampling
from the active BHMF, thus we are already taking this effect
into account. If we introduce an uncertainty in the mass esti-
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Fig.5.5. M, — Mgyjge diagram for a Monte Carlo simulation of
a local AGN sample. The different sized and coloured symbols
correspond to different luminosity limits, applied to the sample.
Blue, green, red, and yellow symbols show the sample when
culled at a bolometric luminosity of /., = 45, 45.5, 46, and
46.5 in logarithmic units. The solid black line shows the input
relation for the sample from Héring & Rix (2004).

mates this will only increase the scatter, but it will not affect
the mean relation {u)(s) or (Au). This can again be illustrated
by the Monte Carlo simulations. Adding a virial mass scatter
does not affect our sample selection, as it is by construction
based on luminosities, which can be measured with relatively
high precision. Thus we are just shifting the black hole masses
symmetrically to lower or higher values, without affecting the
mean.

It is also straightforward to see this from the distribution
function ¥, (s, u). We assume that the virial mass estimate (the
observed mass () is given by a log-normal probability distri-
bution with mean y and dispersion o, the uncertainty in the
virial mass estimate,

g(ﬂo“J) =

2
_M} . (5.21)

Zo%m

1
——exp
V27moym {

The bivariate distribution function for bulge property and virial
black hole mass is then

Wo(s, o) = fg(ﬂo | 1) Wo(s, ) . (5.22)

The mean relation is

IS Ho 8to 110 Wols, 1) dudpto [ 1'Wols, ) dt

I g | ) Pols, ) dudpe [ Wo(s.pydu
(5.23)

(Uo)(s) =

when integrating over y,. This is identical to Equation (5.6), so
no additional bias is introduced by the virial mass uncertainty.

The conceptual difference between our results and the work
by Shen & Kelly (2010) is, firstly, that we do not treat the black
hole mass bias independently, but within the total bias budget.
Secondly, we are effectively not sampling directly from the true
BHMEF, but rather from the luminosity limited BHMF. This suf-
fers from incompleteness at the low mass end, due to the lu-
minosity limit, and therefore turns over towards low M, (see
SWI10 for a detailed discussion).

In Fig. 5.6 we show the result for a luminosity limit of
Imin = 47, assuming oy, = 0.3 dex. While the black hole mass
distribution is broadened, the mean relation is unchanged.

5.3.3. On a spheroid bias

At least, at high redshifts, not only the estimated black hole
mass is significantly uncertain, but also the spheroid property.
Several times, the emission line width of [Omi] has been used
as surrogate of o.. However, this is at best reliable on average
and exhibits a dispersion of probably ~ 0.2 dex (Nelson 2000).
Also spheroid masses estimated for AGN host galaxies suffer
from several uncertainties, among them are a proper AGN-host
decomposition, a decomposition of the galaxies’ bulge and disk
components, and the conversion of host luminosities into stel-
lar masses, using either a fixed mass-to-light ratio or colour in-
formation. These uncertainties accumulate to a total error of at
least similar magnitude or more. Therefore, the observationally
determined galaxy properties will be similarly uncertain as the
black hole mass estimates. In that case, again a Malmquist type
bias is possible.

We model the observed spheroid property s, by a log-
normal probability distribution with mean s and dispersion oy,
analog to Equation (5.21). The bivariate distribution function is
then

Wo(so, ) = fg(so | 5) Wo(s, p) ds, (5.24)
and the mean relation is
()(50) = W HE 1) Boli ) sl (5.25)

JI 8(so|5) ¥o(s, p) dsdu

The total sample bias (Au) is not affected by the uncertainty,
as can easily be verified. However, the predicted M,—bulge re-
lation is affected, as shown in Fig. 5.7. At the low mass end
the mean M, increases compared to the prediction without scat-
ter, while at the high mass end it decreases. To understand this
trend we have to recall that we are sampling from the luminosity
limited AGN host galaxy spheroid mass function. Due to the lu-
minosity limit the space density decreases at the low mass end,
similarly to the BHMF. Because of this steep decrease at the low
mass end more objects are scattered from slightly larger masses
to lower masses than the other way around. This produces an
excess of higher true s at a given observed s,. This leads to an
increase in the average u at the given s,. At the high mass end
the reverse happens. Due to the steep decrease towards higher
masses, more black holes are scattered to higher s,, having on
average a lower y, as they intrinsically have a lower s than ob-
served. In total, the observed M,—bulge relation flattens, with-
out changing its normalisation. As for AGN the bulge property
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Fig. 5.6. Predicted M, — Mpyge diagram and its projections for
atype 1 AGN sample, with luminosity limit of /., = 47 (as the
right panel of Fig. 5.3). For the black hole masses an uncertainty
of 0.3 dex is assumed, representing the intrinsic uncertainty in
the virial method. A thick solid line shows the observed M, —
Mpuge relation for the observed M,, which is identical to the
relation without uncertainty in the virial mass. Only the scatter
in the relation is increased. The red dashed dotted line shows
the mean relation (s)(u,), while the dotted red line gives the
mean relation (s)(u), i.e. without measurement uncertainty in
the black hole mass.

is usually determined with larger uncertainty than for quiescent
galaxies, this effect could contribute to the flatter slope observed
several times in the M,—bulge relation of AGN (Greene & Ho
2006; Kim et al. 2008; Bentz et al. 2009b; Woo et al. 2010).

For the mean spheroid mass at a given black hole mass the
opposite effect happens. Uncertainties in the spheroid masses
does not change the mean relation (s,)(u), but uncertainties
in the black hole masses can strongly affect the mean relation
(s)(4o), causing a steepening of the observed relation. This is
indicated by the red lines in Figures 5.6 and 5.7.

Finally, we note that in general the convolution with the un-
certainty has to be with W(s, u) rather than with W,(s, u), i.e.
before applying the selection criteria. In our case of a purely
luminosity limited sample, the selection function does not de-
pend on s, or y,. Therefore, our approach is justified and no
additional bias is introduced for the sample in total. In case of
a more complicated selection function that depends on s, or y,
this might no longer be the case. An additional bias by the mea-
surement uncertainty then becomes possible which will depend
on the details of the selection function.

5.3.4. Flux limited samples

So far, we have discussed purely luminosity limited samples.
This approximation is valid for samples spanning small ranges
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Fig.5.7. Same as Fig. 5.6, but with measurement uncertainty
of 0.2 dex in the spheroid mass and no uncertainty in the black
hole mass. The thick solid line shows the M,—Mpyg relation for
the observed Mpyjge and the dotted is the M, — Mpyg relation
for the true Mpyige, i.e. if there where no measurement uncer-
tainty. The sample bias is not affected, but the slope of the
M, — Mpyg relation flattens due to uncertainties in Mpyjge. The
red dashed dotted line shows the mean relation (s,)(u), which
is not affected by uncertainties in Mpyjge.

in redshift. More generally, we have to consider flux limited
samples. There may be additional luminosity limits present, be-
cause the AGN need to be identified as such, requiring them
not to be outshined by their host galaxies. We first define the
multivariate distribution function W, (s, i, [, 7), as

dv
Wols, i, 1,2) = QU 2) pac(pt, 2) pall — p, 2) gt | 5, 2) O (s, z)d—Z .
(5.26)
The bivariate distribution function for a flux limited sample is
then

P, (s, 1) = ALVC H P, (s, 1, 1, 2) dzdl (5.27)
where AV, is the comoving volume within the redshift range.

At this place, we ignore possible redshift dependencies of
the individual distribution functions and postpone their discus-
sion to section 5.4.2. We further assume that the selection func-
tion is purely defined by an AGN luminosity limit and an AGN
flux limit, i.e. we neglect any dependence of the selection func-
tion on the bulge property s. The selection function Q is then
defined as

Q,z) = { (1)

where f is the bolometric flux f =/ — 10g(47rd12) in logarithmic
units.

for
else

> lmin & f 2 fmin (528)
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At high redshift and for a narrow z range, this is almost iden-
tical to the luminosity limited case. However, it is the more gen-
eral case for realistic observations, also able to describe a wider
z range and the low z regime. Its application to low z AGN
samples is illustrated in the next subsection. Its consequences
at higher z are discussed in section 5.4.

5.3.5. Application to the reverberation mapping AGN sample

As demonstrated above, even the low z population will be af-
fected by selection effects. The main difference compared to
high z is that the AGN in the local universe are so close that
the luminosity limit is low and therefore the bias is less severe.
Nevertheless, it is present, and as a test case we will briefly es-
timate its influence on the AGN sample with black hole masses
determined via reverberation mapping.

The technique of reverberation mapping (e.g. Blandford &
McKee 1982; Peterson 1993) provides the most precise black
hole mass estimates for type 1 AGN. It builds the foundation
for the virial method through the establishment of a scaling re-
lationship between the size of the broad line region and the con-
tinuum luminosity (Kaspi et al. 2000, 2005; Bentz et al. 2009a).
However, currently this method only provides a measurement
of M, that is uncertain up to a scale factor depending on the
(largely unknown) geometry and dynamics of the broad line re-
gion. The usual approach to determine this scale factor and thus
fix the virial mass scale is to scale the reverberation mapped
black hole masses of galaxies with stellar velocity dispersion
measurements to the local M, —o relation of quiescent galaxies
(Onken et al. 2004; Woo et al. 2010). However, this implicitly
assumes that the reverberation mapping (RM) sample follows
the same relation as quiescent galaxies. If its M, — o relation is
biased by selection effects than this bias will propagate into the
absolute calibration of the virial mass estimates.

Properly defining the selection function for the RM sample
is difficult, due to the inhomogeneous selection of the objects.
Thus, it does not represent a well defined sample. Nevertheless,
to estimate potential systematics that may be inherent in the
sample, we assume a first order approximation to the selec-
tion function. The sample covers a wide range in luminosity,
from bright quasars to moderate-luminosity Seyfert galaxies.
Especially for the Seyfert galaxies there is no clear AGN lumi-
nosity dependence for the selection. However, there must be an
implicit limit on the AGN luminosity and also on the AGN flux.
First of all, the AGN has to be luminous enough to classify the
galaxy as harbouring an active nucleus. Furthermore, the con-
tinuum and broad lines have to be sufficiently bright to enable
the measurement of a reliable time lag. For simplicity, we relate
the low luminosity limit to the faintest AGN in the sample of
Bentz et al. (2009a), NGC 4051, with log AL, agn(5100A) =
41.9. This approximately corresponds to log Ly, = 42.8, We
adopt a redshift range of 0.003 < z < 0.15, which contains the
majority of the RM AGN. We also tested the effect of extending
the range to z < 0.3, including the full RM sample, and provide
the results as well.

If we only assume a luminosity limit, the total sample bias
(Ap) predicted by our model would be negligible (see Fig 5.4).
Indeed, when omitting the flux limit we find (Au) = 0.003,

log @,

115 7 6
log ®,

16.0 16.5 1i.0
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Fig. 5.8. Predicted M, — Mpuig. diagram and its projections for a
local type 1 AGN sample, simulating the reverberation mapping
sample. A flux limit in the redshift interval (0.003,0.15) and
a luminosity limit are applied to the sample, based on the ob-
served range for the reverberation mapping AGN. In this sample
a mild bias of 0.09 dex is present.

as a lower limit to the bias. However, the luminosity limit is
only important for z < 0.008. At higher z the flux limit domi-
nates the selection function. Incorporating the flux limit, we get
(Apy = 0.09 for z < 0.15 ((Au) = 0.12 for z < 0.3). If we relax
our conservative flux limit, the expected sample bias would de-
crease slightly. Decreasing our assumed luminosity limit has al-
most no effect, as we are dominated by the flux limit. Increasing
the luminosity limit will slightly increase the bias.

In Fig. 5.8, we show the predicted M, — Mpyjg. diagram. At
the high mass end no bias is expected, whereas a mild bias at
low masses is present. Thus, the M, — Mpyge relation is slightly
affected.

We further tested this result with Monte Carlo simulations.
We restricted our Monte Carlo sample to the same luminosity
limit and flux limit and fitted the culled sample with a maximum
likelihood method (see e.g. Giiltekin et al. 2009), with slope b,
normalisation a and intrinsic scatter o~ as free parameters. From
the restricted sample, we fitted 1000 random subsamples of 100
objects each. The distribution of the free parameters are shown
in Fig. 5.9. We found mean values of @ = 8.31, b = 1.12 and
o = 0.29, compared to input values of a = 8.2, b = 1.12 and
o = 0.3, i.e we recover the predicted mean offset and confirm
that the slope and scatter are not strongly affected.

Therefore, based on our model assumptions, we estimate
that the reverberation mapping sample may be biased towards
a high M, /Mgyg rtatio by ~ 0.1 dex. This would correspond
to an underestimation of the virial method by the same amount,
when using the scale factor normalised to the quiescent M, —



Schulze & Wisotzki: Selection effects on the black hole-bulge relations and its evolution

75

log M, [M,)]

9.5 10.0 10.5 11.0 11.5 8.2 8.3
IOg MBulge [M(D} a

8.4

1.1 1.2 0.25 0.30
b o

1.0 0.35

Fig.5.9. Results of Monte Carlo simulations of the reverberation mapping AGN sample. Panels from left to right: (1) M, —
Mapyge relation for a Monte Carlo realisation of 100 objects. The dashed line shows the input relation, the solid line the mean
best fit for 1000 realisations. (2) Distribution of recovered zero points of the M, — Mpyg. relation. The horizontal line shows the
input. (3) same for the slope of the relation. (4) same for the intrinsic scatter in the relation. There is an offset in the zero point of
~ 0.1 dex. The slope and intrinsic scatter are not strongly affected.

o, relation (Onken et al. 2004; Woo et al. 2010). However, due
to the poorly defined selection function of the RM sample this
can only be taken as a qualitative evaluation of possible selec-
tion effects.

5.4. Evolution in the M, — Mgy relation
5.4.1. Evolution in a flux limited sample

How will selection effects bias studies that test for redshift evo-
lution in the black hole-bulge relations? If at higher z exactly the
same sample selection criteria are applied as for a local compar-
ison sample, no bias will be present, at least to first order (see
section 5.4.2). A change in the M,—bulge relations could then
be seen as evidence for their evolution. However, usually this
simple situation is not the case. The local comparison is com-
monly provided either directly by the quiescent relation, or by a
local type 1 AGN comparison sample. While the former clearly
possesses different selection criteria, also the latter is not auto-
matically selected in the same manner. This has to be considered
when comparing low and high redshift results.

To illustrate this case we derive the sample bias for a flux
limited sample at a given redshift. The sample bias at a given
redshift z is

JIJ @ = a = bs)Wols, p,1,2) dlduds
[[f Wols, s 1, ) dl de ds

with the multivariate distribution function W, (s, u, [, z) given by
Equation (5.26). This is equivalent to the bias for a luminosity
limited sample, with a redshift dependent luminosity limit.
Instead of using a bolometric flux limit as before, we now
assume an optical flux limit in the B band. For simplicity, we
assume a simple power law K-correction with spectral index
a = —0.44 (Vanden Berk et al. 2001). The B band luminosity
is converted to bolometric luminosity using the bolometric cor-
rections of Marconi et al. (2004). In Fig. 5.10 we provide the
expected sample bias at a given z for different apparent magni-
tude limits. The deeper the respective survey, the lower is the
expected bias. For a fixed flux limit, the expected bias increases

(A)(2) = , (5.29)
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Fig. 5.10. Redshift evolution of the selection bias for a magni-
tude limited AGN sample, assuming the local distribution func-
tions. The dashed, dotted, solid, and dashed dotted lines show B
band magnitude limits of 19, 20, 22, and 24 mag, respectively.

with redshift, which can mimic an evolutionary trend if taken
for granted.

Furthermore, to have a comparable bias between a local
sample with By & 19 mag and a sample at z ~ 2, the high red-
shift sample has to be complete for B, ~ 24 mag. The use of
a local AGN sample as comparison sample for higher z studies
is already an improvement over the use of the quiescent black
hole sample, but it does not ensure the absence of a selection
bias. Ideally, the local comparison sample should be matched in
AGN luminosity to the high z sample.

On the other hand, if the selection function of the respec-
tive sample at high z is known, the predicted bias can be com-
puted and a clear offset from this prediction can be interpreted
as evidence for evolution in the M,—bulge relations. However,
unfortunately even this approach is not fully unbiased.
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5.4.2. AGN evolution biases

So far, we have ignored any possible explicit redshift
dependence of the underlying distribution functions in
Equation (5.26). However, at least some of them must evolve
with redshift. The stellar mass function, and thus also the
spheroid mass function, are certainly evolving with z (e.g.
Bundy et al. 2005; Franceschini et al. 2006; Pozzetti et al. 2007;
Ilbert et al. 2010). Furthermore, it is well known that the AGN
population itself is strongly changing between z = 0 and z = 2,
apparent in the evolution of the AGN luminosity function (e.g.
Ueda et al. 2003; Hasinger et al. 2005; Richards et al. 2006;
Bongiorno et al. 2007; Croom et al. 2009). Not only the normal-
isation and typical luminosity changes with z but also the shape
of the luminosity function. At low z the faint end of the QSO
luminosity function steepens, known as "AGN cosmic down-
sizing”. While in the local universe the QSO luminosity func-
tion shows only a mild break (Schulze et al. 2009), at high z a
prominent break is present in the luminosity function. This di-
rectly implies evolution in the active black hole mass function,
the Eddington ratio distribution function, or most probably in
both. This will lead to a change of the predicted bias with red-
shift, even for a fixed luminosity limit. It is not straightforward
to judge if an observed evolution in the M,-bulge relations may
be caused by evolution in the intrinsic relations, or whether it is
a result of evolution in the distribution functions.

A prediction of the sample bias at given redshift requires,
apart from a well defined selection function, also knowledge
about these underlying distribution functions, the spheroid mass
function, active BHMF and ERDF. At low redshift they are at
least reasonably well established (SW10), but for the high red-
shift universe currently the situation is not so good. The velocity
dispersion function is essentially unknown beyond the local uni-
verse (Sheth et al. 2003). The total stellar mass function is ob-
served up to z ~ 4 (Fontana et al. 2006), but galaxy mass func-
tions for different morphological types have been determined
only up to z = 1.4 (Bundy et al. 2005; Franceschini et al. 2006;
Ilbert et al. 2010). The spheroid mass function itself is unknown
for higher z. To enable the illustration of how evolution influ-
ences the biases, we derive rough estimates of these distribution
functions. A more detailed investigation is beyond the scope of
the current paper.

An upper limit on the spheroid mass function is given by the
total stellar mass function. We use the parametric fit to the stel-
lar mass function from Fontana et al. (2006) for this purpose.
A lower limit is given by the elliptical galaxy mass function.
To derive this mass function at arbitrary z we assume the same
elliptical-to-total ratio as for the local mass function from Bell
et al. (2003), and apply this correction to the total mass func-
tion at higher redshift. This is clearly an oversimplification, as
the relative contribution of elliptical galaxies seems to decrease
with increasing z, at least to z ~ 1 (e.g. Bundy et al. 2005).
However, at higher redshifts the low mass end that is most af-
fected by this correction is not well determined and may be un-
derestimated, due to the distribution of galaxy mass-to-light ra-
tios. Thus, we assume that our simple approximation serves as
a reasonable lower limit of the spheroid mass function for the
purpose of this work. As our reference spheroid mass function

we use the local spheroid-to-total ratio, derived above from the
Bell et al. (2003) local mass function.

There has been significant progress in the determination
of the active BHMF and Eddington ratio distribution function
at high redshifts in the last years (Vestergaard et al. 2008;
Vestergaard & Osmer 2009; Kelly et al. 2010). But these re-
sults mainly cover the bright end of the luminosity function and
thus the high mass end of the BHMF, while the low mass end is
still poorly determined; also the systematics are not fully under-
stood. Here we restrict ourselves to the use of a mass function
that is consistent with current observations.

We use the local active BHMF and ERDF as well as the
redshift evolution of the type 1 AGN luminosity function (LF)
as constraints to predict the distribution functions at higher red-
shift. To achieve a smooth redshift evolution of the BHMF and
ERDF we explored several arbitrary, but reasonable evolution
models for these distribution functions. We fixed the zero point
of the two distribution functions to their local values (SW10),
and fit their redshift evolution to the optical LF (employing
Equation 5.12). For the LF we use the luminosity dependent
density evolution model from Bongiorno et al. (2007), utilis-
ing the SDSS at the bright end and the VVDS at the faint
end. Optical B band magnitudes are converted to bolometric lu-
minosity using the bolometric corrections from Marconi et al.
(2004). We also directly fitted the BHMF and ERDF in individ-
ual redshift bins. This approach does not change our qualitative
conclusions, but introduces artifacts into the redshift evolution.

Purely based on the LF, there is a degeneracy between evo-
lution in the BHMF and evolution in the ERDF, while proba-
bly both are present. Therefore, we explore two extreme cases.
First, we assume a constant ERDF and let the BHMF change
with z. Second, we fix the active BHMF and let the ERDF
evolve with z.

The first case, a non-evolving ERDF, serves as an upper
limit to the expected AGN evolution bias. The downsizing of
the AGN LF directly corresponds to a downsizing in the active
BHME. In Fig. 5.11 we show the best fit BHMF, ERDF, and the
respective AGN LF, for a few representative redshifts. Here, we
assume a mass dependent density evolution model, following
the LDDE model used by Bongiorno et al. (2007) to parame-
terise the evolution in the AGN LF. To reproduce the observed
AGN LF, the space density at the high-mass end has to increase.
Thus, the mass dependence of the active fraction is flattened,
changing the active fraction bias. This leads to an increase of
the expected sample bias compared to the local case. This is il-
lustrated in Fig. 5.12, where we show the expected sample bias
(Ap) as a function of the applied lower luminosity limit for var-
ious redshifts.

The second case, a fixed BHMF and evolving ERDF, pro-
vides a lower limit to the expected AGN evolution bias. In this
case, the active fraction is only mildly evolving with z, through
the evolution of the spheroid mass function. Furthermore, the
ERDF needs to evolve strongly, with an increasing average
log A, to satisfy the constraints from the evolving AGN LF.
For a higher average logA the same luminosity limit corre-
sponds to a lower average black hole mass limit, thus reduc-
ing the expected bias. Therefore, this assumption will predict
the lowest sample bias. However, the best fit model enforces an
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Fig. 5.11. Reconstructed AGN distribution functions at three representative redshift derived from fitting the observed AGN lumi-
nosity function to a redshift evolution model for the BHMF and ERDF. For the BHMF a mass dependent density evolution model
is used, and no evolution in the ERDF is assumed. Left panel: Best fit active black hole mass function. Middle panel: Eddington
ratio distribution function. The shape has been fixed, the normalisation is determined by the space density of the black hole mass
function. Left panel: AGN luminosity function. The red lines show the type 1 AGN luminosity functions from Bongiorno et al.

(2007), the black lines are our best fit to them.
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Fig. 5.12. Expected sample bias as a function of the lower lumi-
nosity limit for the same representative redshifts as in Fig. 5.11.
The dotted line shows the local prediction, the other lines show
predictions at higher z. The shaded area incorporates the uncer-
tainty on the spheroid mass function, by using the total mass
function as upper limit and an estimate of the elliptical mass
function as lower limit.

unreasonably high space density of objects accreting at super
Eddington rates and also provides a poorer fit to the AGN LF.
Furthermore, it disagrees with the picture of anti-hierarchical
black hole growth (Marconi et al. 2004; Merloni 2004; Merloni
& Heinz 2008). Thus, this case is not physically plausible.
We also experimented with intermediate evolution scenarios,
where a mild evolution of the ERDF balances the increasing
bias through the evolution of the BHMF to some degree. For all
physically plausible scenarios, we found at least some increase

of the bias compared to the local case. Thus we argue that the
expected sample bias for the local universe is a lower limit for
high z samples.

In Fig. 5.13 we show the expected bias at a fixed magnitude
limit as a function of redshift, equivalent to Fig. 5.10, but now
assuming an evolving active BHMF and a constant ERDF (our
case 1 above). As discussed, the resulting bias can be seen as
an upper limit. Only observations that show a clear excess on
top of this prediction constitute evidence for real evolution in
the M,—bulge relations. However, due to the limitations of our
model these results should only be taken as a qualitative esti-
mate.

While the evolution is usually thought of as evolution in the
normalisation of the relation, also evolution in the intrinsic scat-
ter is possible (Merloni et al. 2010). The strength of the sample
bias is strongly affected by the size of the intrinsic scatter in
the M,—bulge relations. Therefore, an offset of the M,/Myyige
ratio on top of the expected selection bias can equally be inter-
preted as being caused by an increased bias due to an increased
intrinsic scatter, rather than as a true offset in the zero point of
the respective M,—bulge relation. To illustrate this effect, we
assume an arbitrary redshift evolution model for the intrinsic
scatter 0(z) = o.—o(1 + 2)*° with o.—o = 0.3, which gives ap-
proximately o(z = 2) = 0.5. In Fig. 5.14 we show the resulting
redshift evolution of the bias for fixed magnitude limits. The
predicted scatter is strongly enhanced in this case, especially at
high redshift.

An increase in the intrinsic scatter is also some kind of evo-
lution in the relations. However, its interpretation is of course
different from a change in the zero point. Whereas the latter
would suggest a phase where black holes grow stronger than
galaxies, or the other way around, the former would be consis-
tent with a true coeval growth on average, in which the correla-
tion is tightened from a rather loose one to the tight correlation
we observe today. Indeed, such an evolution in scatter towards
a tight relation is expected in various models (e.g. Peng 2007;
Volonteri & Natarajan 2009; Lamastra et al. 2010).
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Fig. 5.13. Redshift evolution of the selection bias for a magni-
tude limited AGN sample, assuming our estimate of the z evo-
lution of the underlying distribution functions, as discussed in
the text. The shaded regions incorporate the uncertainty on the
spheroid mass function.

5.5. Discussion

Several observational studies on type 1 AGN samples found
tentative evidence for an increase in the M,/Mpyy,. ratio with
redshift. This increase is often parametrised as an evolution-
ary behaviour M,/Mpyige < (1 + z)?, with values for y up to
2.1 reported (McLure et al. 2006). As discussed in this paper,
these observational studies are invariably affected by selection
effects. We now apply our formalism to a few published studies.
We estimate approximate distribution functions and the result-
ing sample biases. We do not aim at deriving detailed correc-
tions, or presenting a full discussion of the literature, but we
want to highlight the magnitude of possible systematic biases.

Specifically, we explore two scenarios for the distribution
functions that serve as upper and lower limits for the magnitude
of our predicted selection bias.

e Model 1: We use the local distribution functions presented
in section 5.3.1 throughout the entire redshift range, i.e. ig-
noring any effect of redshift evolution. As discussed above,
even if this scenario is unrealistic, it serves as a lower limit
to the expected bias.

e Model 2: Here, we incorporate redshift evolution in the un-
derlying distribution functions, in particular in the AGN
population. We use the model discussed in section 5.4.2, as-
suming a mass dependent density evolution for the BHMF
and a non-evolving ERDF. This model provides an approx-
imate upper limit to the selection bias.

5.5.1. Merloni et al. (2010)

A relatively large, well-defined sample has been employed by
Merloni et al. (2010). They used an I band limited sample
drawn from zCOSMOS (Lilly et al. 2007) in the redshift range
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Fig.5.14. Same as Fig. 5.13, but assuming an evolution of the
intrinsic scatter in the M, —Mpyge relation of o(z) = 0.3(1+2)*.

7 =[1.06,2.19], with Ixg < 22.5. We modelled their sample se-
lection using these restrictions and explore our two models for
the distribution functions. The results are shown in Fig. 5.15,
together with the data from Merloni et al. (2010). While for the
observations the offset from the local relation is (Au)gps = 0.34,
we found values for the sample bias of (Au)y; = 0.17 and
(Apymn = 0.36, for our model 1 and 2, respectively. As dashed-
dotted line in the right panel of Fig. 5.15 we additionally indi-
cate our sample offset prediction for an evolution of the form
(1 +z),1i.ey = 1, for our model 1, serving as lower limit to the
bias. A stronger evolution is barely consistent with the observa-
tions. When only considering the mean sample offset from the
local relation, the data are fully consistent with the null hypoth-
esis of no evolution.

Alternatively, the mean stellar mass at given black hole mass
can be inspected for this sample, as this quantity is to first order
unaffected by the AGN selection bias. We show the predicted re-
lation as red dashed-dotted line in Fig. 5.15. As a rough approx-
imation of the observed mean relation (s)(u) we bin the data
in black hole mass and show the mean stellar mass in the mid-
dle panel of Fig. 5.15 as open red triangles. While the binned
relation is consistent with the prediction at the low mass end,
it deviates at the high mass end, being suggestive of evolution.
This evolution can be interpreted in two ways. Firstly, the nor-
malisation at the high mass end may increase with redshift, with
v = 1, while the low mass end may evolve weaker, as suggested
by some semianalytic models (Lamastra et al. 2010). Secondly,
the intrinsic scatter in the relations may increase, with o =~ 0.5
atz > 1. Also a mixture of both scenarios is possible. Our results
are qualitatively consistent with the conclusions from Merloni
et al. (2010).

5.5.2. Jahnke et al. (2009)

Jahnke et al. (2009) studied the M, — M., relation for a sam-
ple of 10 AGN from COSMOS (Hasinger et al. 2007). Their
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Fig.5.15. Left panel: Predicted M, — Mpyy. probability distribution for the sample of Merloni et al. (2010), using our model 1
(local distribution functions). The black dashed line shows {u)(s), the red dashed-dotted line shows (s)(u). The blue symbols show
the data from Merloni et al. (2010), the yellow squares are for the sample of Jahnke et al. (2009). Middle panel: same, but for
model 2 (evolving distribution functions). Additionally, the red open triangles give the mean stellar mass for the data from Merloni
et al. (2010) binned in black hole mass. We also indicate (s)(u) for evolution in the normalisation, with y = 1 (red dashed line),
and for evolution in the intrinsic scatter, with o = 0.5 (red dotted line). Right panel: redshift evolution of the sample bias. The blue
circles show the data from Merloni et al. (2010), the large, open circles show the mean offset in three redshift bins. The yellow
squares give the data from Jahnke et al. (2009), the large, open square is their mean. The dashed line shows our prediction for
model 1, the solid line with the shaded area shows our prediction for model 2, including the uncertainties on the spheroid mass
function. The dashed-dotted line is for model 1, but assuming evolution in the M, — Mpyg relation M,/Mpuge < (1 + z). This

serves as an upper limit to the evolution in the relation.

sample is X-ray selected, but the spectroscopic follow-up re-
quirement leads to a similar optical flux limit as for the work by
Merloni et al. (2010) (see Trump et al. 2009). As the covered
redshift range is very similar as well, we simply add the results
from Jahnke et al. (2009) to Fig. 5.15. As already discussed in
Jahnke et al. (2009), their data are fully consistent with the local
relation. Accounting for selection effects, would rather imply a
negative evolution. It is interesting to note that also the small,
X-ray selected sample by Sarria et al. (2010), covering a similar
redshift range finds no, or even a negative evolution. However,
notice that both studies (and also Merloni et al. 2010) target the
black hole - total galaxy mass relation instead of the black hole
- bulge mass relation.

5.5.3. Salviander et al. (2007)

Next, we investigate the study by Salviander et al. (2007). They
studied the M, — o, relation in the redshift range 0 < z < 1.2,
using the [Om] line width as surrogate of o, for z < 0.8, and
the [O 1] line width for 0.4 < z < 1.2. Their sample is drawn
from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3;
Abazajian et al. 2005), which does not constitute a well-defined
sample (see e.g. Richards et al. 2006). Furthermore, they ex-
cluded a large fraction of objects based on quality cuts. To
model their sample, we assumed the flux limit of the SDSS
main quasar sample, i < 19.1 (Richards et al. 2002). In Fig 5.16
we show our predicted redshift evolution for the sample bias,
adopting this flux limit and again exploring our two models,
and compare them to the observations. For z < 0.7, their re-
sults are broadly consistent with no evolution, given the current
uncertainties. At z > 0.7, an evolutionary trend is indicated,
consistent with y < 1.

0.8 ——m————

10 12 14

Fig. 5.16. Predicted redshift evolution of the sample bias for
the SDSS. The dashed and solid lines shows our model 1 and
model 2, respectively, assuming no intrinsic evolution in the
M, — o, relation. The dashed-dotted and dotted lines give the
predicted sample offsets for an evolution with y = 1 for model 1
and model 2, respectively. The green circles show the observa-
tional results from Salviander et al. (2007), using the [O ] line
width as surrogate of o, the blue squares show their results us-
ing [O ], and the yellow triangles show the results from Shen
et al. (2008).

Salviander et al. (2007) already extensively discussed the
influence of selection effects on their results, attributing ~
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Fig. 5.17. Predicted M, — Mpyige probability distribution for the
sample of Schramm et al. (2008), using our model 2. The
blue symbols show the data from Schramm et al. (2008). The
black contours show the case of no evolution in the M, —
Mpyge relation, and the green contours show our prediction for
evolution of the form (1 + z)2.

0.25 dex of their offset to selection effects. They also discussed
an additional bias, caused by their signal-to-noise requirement
for the narrow lines, which may accumulate to ~ 0.15 dex at
high z. This bias may at least contribute to the offset in (Au) in
the data compared to our no-evolution predictions. Therefore,
the null hypothesis of no evolution is not clearly rejected.

5.5.4. High redshift, bright QSO samples

The largest offset from the local M,—bulge relations observed
so far are for high redshift samples, z > 3. However, these
samples suffer from a bright luminosity limit and therefore are
strongly affected by selection effects. We illustrate this effect on
the small sample by Schramm et al. (2008). They used a sam-
ple of three luminous quasars in the range z = [2.6, 3.0], drawn
from the Hamburg/ESO Survey (Wisotzki et al. 2000), with a
magnitude limit of B; < 18 mag. We modelled the sample, em-
ploying these restrictions and our model 2. In Fig. 5.17 we show
our prediction, together with the sample from Schramm et al.
(2008). The vast majority of objects is predicted above the lo-
cal relation, although the local relation is still assumed as input.
The three objects from Schramm et al. (2008) are consistent
with this prediction. We additionally show the probability dis-
tribution for evolution of the form (1 + 2)2, barely consistent
with the observations, while the data are fully consistent with
v= 1.

The general trend discussed on this example is applicable
to other bright QSO, high z studies. In particular, this sample
at z ~ 3 has a similar luminosity limit as the z ~ 6 SDSS

main quasar sample (Fan et al. 2001). Therefore, the large offset
from the local relations found in high-z studies (e.g. Walter et al.
2004; Wang et al. 2010) is at least partially, if not fully, due to
these selection effects. A quantitative assessment of this bias is
currently hampered by our poor knowledge of the underlying
distribution functions at such high redshift.

5.6. Conclusions

We investigated the ramifications of sample selection effects for
the observed black hole - bulge relations. Our starting point is
the bivariate probability distribution of galaxy bulge properties
and black hole masses, providing the true underlying relation.
However, for realistic observations this probability distribution
is inevitably modified. The only way to avoid this is to obtain
a complete volume limited sample with measured galaxy prop-
erties and black hole masses. We incorporate the modification
of the bivariate distribution function by the use of a selection
function. While the true M, —bulge relations are recovered from
the original bivariate probability distribution, this is generally
not the case for the observed one, i.e. in the presence of selec-
tion effects. We presented a qualitative framework to predict the
expected bias on the M,—bulge relations.

Also the probability distribution for the sample of normal
galaxies with dynamical black hole mass measurements, which
defines the reference for the M,—bulge relations, is changed by
selection effects. We illustrated one potential effect, namely a
selection effect against objects for which the black hole’s sphere
of influence is not well resolved, which may bias the local
M, —bulge relations, even without active rejection of objects.

For the main part of this paper we investigated in detail se-
lection effects for type 1 AGN samples. These samples are es-
sential as probes for redshift evolution in the M,—bulge rela-
tions. We identified a variety of selection effects that can work
in both directions:

e Active fraction bias: If the probability for a black hole to
be in an active (type 1 AGN) stage directly depends on the
black hole mass, the selection from the quiescent BHMEF is
affected. For an active fraction decreasing with black hole
mass, low mass black holes have a higher probability to be
in an active stage and thus a bias towards a low M,/Mpyee
ratio is produced. For an increasing active fraction the op-
posite is the case. If the active fraction is independent of, or
constant with black hole mass, no bias is introduced. This
bias has not been discussed before.

e Luminosity bias: As AGN are selected based on their lu-
minosity, we expect to find on average higher mass black
holes when we restrict our sample to a brighter luminosity
limit. The steep decrease of the galaxy distribution function
and the intrinsic scatter in the M,—bulge relations generates
a bias which is strongly enhanced for a bright luminosity
limit. The magnitude of the bias depends on the underly-
ing distribution functions and the size of the intrinsic scat-
ter. This bias has already been extensively discussed before
(e.g. Salviander et al. 2007; Lauer et al. 2007).

o AGN evolution bias: The AGN distribution functions that
regulate the magnitude of the bias are evolving themselves
as a function of redshift, as implied by the evolution of the
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AGN luminosity function. This evolution will change the
expected sample bias with redshift.

These effects modify the bivariate probability distribution
and can alter the conclusion drawn from observational stud-
ies. It is important to distinguish what is meant by saying the
M,—bulge relations are biased, as, due to the intrinsic scatter,
there are different quantities to represent these relations. (1)
The most comprehensive approach would be to investigate the
bivariate distribution of galaxy property and black hole mass.
However, the bivariate distribution is modified by the AGN se-
lection, and is thus biased. (2) The most basic approach is to
simply compute the mean offset from the local relation for the
entire sample. We showed that this quantity is equally biased
by the AGN selection. (3) An intermediate way is to look at the
respective M,—bulge relation, defined as the mean black hole
mass for a given galaxy property. This relation is also biased by
the AGN selection, as some black holes are excluded from the
sample during the selection process. (4) Alternatively, one can
inspect the relation of mean galaxy property for a given black
hole mass. While, for our parameterisation of the bivariate dis-
tribution, this quantity deviates from the true relation even with-
out any selection effects, it is not affected by the three AGN se-
lection effects outlined above. Therefore it is unbiased, as long
as no additional selection on the host galaxy properties exists.

The first three quantities above are biased by the AGN se-
lection. To properly model and correct these for the effects in-
troduced onto an AGN sample it is necessary to know the un-
derlying distribution functions. These are the spheroid distri-
bution function, the active fraction, or alternatively the active
black hole mass function, and the Eddington ratio distribution
function. These are at least reasonably well known for the lo-
cal universe, but only poorly established at high z. This current
uncertainty in the high z distribution functions prevents an ex-
act correction for the above selection effects. Thus, resolving
this issue is essential for the determination of the M,—bulge re-
lations at high redshifts. Furthermore, the selection function of
the studied sample needs to be known, which demands a well-
defined observational sample. An ill-defined sample lowers the
ability to properly account for the selection effects.

The fourth quantity, inspecting the mean relation of galaxy
property at a given black hole mass, may provide a possible
route to circumvent some of these issues. However, it does also
not directly yield the intrinsic relation. Reconstructing the in-
trinsic relation from the observed mean relation of galaxy prop-
erty at a given black hole mass also requires knowledge of the
spheroid distribution function and the intrinsic scatter in the re-
spective M,—bulge relation, which is of particular importance
at the high mass end. Furthermore, measurement uncertainties
in the black hole mass will introduce a dependence of the AGN
selection into this quantity, as a chosen black hole mass bin is
contaminated by neighbouring mass bins. This contamination is
not symmetric, but depends on the active black hole mass func-
tion from which the masses are sampled.

There are several sources of uncertainties to our knowledge
of the M,—bulge relations at high redshifts. All of them need to
be understood and incorporated to make progress in this field.
Firstly, there are statistical uncertainties, simply caused by the
limited sample size of the observations. These uncertainties can

be reduced in the future by increasing the sample size. Secondly,
there are measurement uncertainties, i.e. how well can we de-
termine the black hole mass and spheroid property from the ob-
servations, and are there systematic effects in their determina-
tion? If the measurement error is symmetric this is not a crucial
concern, but systematic effects can bias the conclusions if they
are not properly understood. Finally, there are selection effects
present, which are the topic of this paper. These regulate the
composition of the observed samples and may modify the ap-
parent M,—bulge relations in these observations.

To reach a definite conclusion on the presence or absence
of redshift evolution in the M,—bulge relations it is essential to
improve on all of these aspects. Being confronted with all these
issues it may appear to be hard to say anything about the pres-
ence of evolution. However, we are indeed able to make a state-
ment on evolution in the M,—bulge relations from observations,
even in the presence of selection effects, as we demonstrated in
section 5.5. However, to do so, it is essential to properly incor-
porate these effects into the analysis.

We employed our method to predict the M,—bulge probabil-
ity distribution and the the bias for a few representative observa-
tional studies. Firstly, we inspected the reverberation mapping
sample. This is essential, as this sample serves as absolute cali-
bration of the virial method. We found evidence for a bias in this
sample by ~ 0.1 dex. A precise prediction is hampered by the
inhomogeneous selection of the reverberation mapping sample.
Most studies that test for evolution show a clear intrinsic offset
from the local M, — Mpye relation at higher z, but at least a part
of it is caused by sample selection effects. We found tentative
evidence for a mild evolution in the M, — Mgy relation and in
the M, — o, relation in the works of Merloni et al. (2010) and
Salviander et al. (2007), respectively, in line with the conclu-
sions in these studies. From our approximate assessment of the
selection effects we found for both relations consistency with
the observations within the range 0 < y < 1 for the redshift
evolution parameter.

Our work emphasises the importance and complexity
of sample selection effects for observational studies on the
M,—bulge relations and their evolution. Several studies already
took these effects into account (Salviander et al. 2007; Merloni
et al. 2010; Bennert et al. 2010; Lamastra et al. 2010), how-
ever sometimes with simplifying assumptions. Our work goes
beyond these attempts and provides a common framework in
which all kinds of selection effects on the M,—bulge relations
can be investigated. With future improvements in observational
sample sizes, the estimation of black hole masses and galaxy
properties, and the determination of the underlying distribu-
tion functions, an answer to the question of evolution in the
M, —bulge relations seems to be within reach.

Appendix 5.A: Validation of the bivariate probability
distribution

O ur chosen parameterisation of the bivariate probability distri-
bution (s, 1), given by Equation (5.1), follows common prac-
tise, but is not the only possible solution. In particular, this pa-
rameterisation predicts an upturn in the distribution at high val-
ues of the galaxy property, where their space density is decreas-
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ing. Thus, it is worthwhile to first test if this parameterisation
is consistent with current observations, and second inspect a
more general parameterisation and their consequences for our
presented work.

Firstly, in Fig. 5.18 we compare our intrinsic bivariate prob-
ability distribution ¥(s, 1) with the quiescent black hole sample
from dynamical black hole mass measurements, employing the
M, -0, the M,— Mg and M, — Myyg relations. For the M, —o.
relation we use the stellar velocity dispersion distribution func-
tion from Sheth et al. (2003) and the observational sample from
Giiltekin et al. (2009). For the M, — Mk relation we employ
the 2MASS K-band luminosity function from Kochanek et al.
(2001) and the sample from Hu (2009), and for the M, — Myyjge
relation we use our estimate for the spheroid mass function,
based on galaxy mass functions from Bell et al. (2003), and
show the sample from Héring & Rix (2004). The observations
do not directly follow the probability contours, as they suffer
from selection effects. However, especially at the high mass end
they should allow a fair assessment of the true distribution. We
found that our used bivariate probability distribution P(s, u) is
consistent with the current observations of this bivariate distri-
bution for all three relations, supporting our assumption for the
quiescent black hole population and their host galaxies.

The bivariate distribution of active black holes and their
host galaxies will not directly resemble that of quiescent black
holes, because active black holes are a non-random subpopu-
lation of the total black hole population. This can be incor-
porated by multiplying W¥(s, u) by an active fraction term that
in general may depend on black hole mass and galaxy prop-
erty pac(s, i) (in this paper we made the simplifying assumption
Pac(8, 1) = pac(p)). Additionally, AGN luminosity selection will
modify ¥, (s, u). In Fig 5.19, we compare a local prediction for
W, (s, 1) with local observations of type 1 AGN samples. For
the M, — 0. and M, — Myyg. relations the high mass end is
currently poorly covered by observations, which inhibits us to
draw firm conclusions. Nevertheless, they seem to be consistent
with our parameterisation. The M, — Lpyig Trelation seems to
disagree with our bivariate probability distribution at the high
mass end. This may reveal a problem with our assumption or it
may just indicate that the M, — Ly is not the same for normal
galaxies and AGN host galaxies. In particular, host galaxies of
high luminosity AGN have on average younger stellar popula-
tions (e.g. Kauffmann et al. 2003; Jahnke et al. 2004; Vanden
Berk et al. 2006) compared to normal galaxies. Thus, if they
obey the same M, — My, relation, they should deviate in the
M, — Lpyg relation.

To summarise, the bivariate distribution used in this work
is consistent with the local quiescent black hole sample and is
therefore a proper choice for the intrinsic bivariate distribution.
The comparison with local AGN samples is yet inconclusive,
but our used bivariate distribution is at least not inconsistent
with current observations. The M, — Lpyi. relation seems to
deviate, but this may be simply caused by the difference in the
average stellar population in elliptical galaxies between normal
galaxies and AGN host galaxies.

Nevertheless, we can also think about other parameterisa-
tion for W(s, ). However, in any case they need to satisfy the

constraints on the two distribution functions:

Dy(s) = f W(s, p) du (5.30)

D, (u) = f'{’(s,y) ds (5.31)
As the BHMF is not known observationally and only inferred
from the galaxy LF, this means that we have to satisfy the con-
straint on the galaxy distribution function. Furthermore, we re-
quire two additional assumptions to be fulfilled. First, there is a
linear mean relation y = a + bx. Second, there is intrinsic scatter
on this relation in the s direction and in the y direction, i.e. s
is drawn from a probability distribution with mean x and u is
drawn from a probability distribution with mean y. These three
assumptions lead to the following general bivariate distribution
function

Wi, ) = fg(ﬂ | x)g(s]x) @r(x) dx (5.32)
Here x is the position on the linear relation, g(u | x) and g(s| x)
are the two probability distributions that account for the intrin-
sic scatter in both directions and ®,(x) is an arbitrary distribu-
tion function (without physical correspondence) to satisfy the
galaxy distribution function constraint. Indeed, we find for the
distribution functions

Dy(s) = fg(s | ) @ (x) dx (5.33)

D, (1) = fg(,u | x) @,(x)dx (5.34)

Once we choose a specific g(s|x) Equation (5.33) defines the
function ®,(x). This parametrisation is able to cover the full
range of possibilities to divide the intrinsic scatter between u
and s. If we attribute no scatter to s, i.e. we assume g(s|x) to
be a §-function we get the case discussed in this work W¥(s, u) =
g(u| s) Dy(s). As other extreme case, if we assume g(u | x) to be
a o-function, we get W(s,u) = g(s|u) @®.(u). This case is ex-
cluded observationally. It would require the galaxy luminosity
function to be a convolution of the BHMF with the intrinsic
scatter and in order to achieve this, the BHMF would need to
decrease strongly above ~ 10% My, This is in conflict with the
observations of higher masses of dormant black holes as well as
in AGN, and also with the active BHMF (SW10).

We can also define an intermediate case where the intrin-
sic scatter is distributed symmetrically. This is achieved by
additionally requiring the conditional probabilities p(u|s) and
p(s|w) to be equal. These conditional probabilities are defined
by

(s, u)
Y 535
U = T o di 03

(s, )
- 5.36
p(s|p) f‘I’(s,u)ds (5.36)

Thus, we require O, (s) = @,(a+bs). We assume log-normal dis-
tributions for g(u | x) and g(s | x), with means given by a+bx and
x, respectively, and dispersions o, and o;. When we assume a
total intrinsic scatter of o, the condition p(u|s) = p(s|u) re-
quires o, = o/ V2 and oy = 0/( \/zb). The function @, (x) is
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Fig. 5.18. Comparison of our bivariate probability distribution W¥(s, ) (contours) with observational data of dormant black holes
(blue circles). The thick black line shows the mean relation (u)(s), the red dashed dotted line shows (s)(u). The black open squares
gives the mean u binned in s from the observations (an estimate of (u)(s)) and the red open triangles gives s binned in y (an
estimate of (s)(u)). Left panel: M, — o sample from Giiltekin et al. (2009). Middle panel: M, — M sample from Hu (2009). Right
panel: M, — Mpyee sample from Hiring & Rix (2004).
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Fig. 5.19. Comparison of our bivariate probability distribution ¥(s, i) (contours), for active black holes with an arbitrary AGN
luminosity limit of log Ly, = 10% ergs s™!, with observational data of local active black holes. The thick black line shows the
mean relation (u)(s), the red dashed dotted line shows (s)(u). Left panel: M, — o, relation. We show stellar velocity dispersion
measurements for the reverberation mapping sample (blue circles, Woo et al. 2010), a local SDSS sample (green stars, Greene &
Ho 2006) and the sample from Bennert et al. (2011, red squares). Middle panel: M, — Ly relation for the reverberation mapping
sample (blue circles, Bentz et al. 2009b), a local QSO host galaxy sample (green triangles, Kim et al. 2008) and the sample from
Bennert et al. (2011, red squares). Right panel: M, — Myyg. relation for the sample from Bennert et al. (2011, red squares) and a
z < 0.2 AGN sample from Schramm et al. (in prep., green triangles)

determined via Equation (5.33). We show the bivariate prob-
ability distribution W(s, 1) in Fig. 5.20, symmetric around the
intrinsic linear relation y = a + bx. We also show the mean rela-
tions {(u)(s) and (s)(u), computed via Equations (5.6) and (5.7),
both symmetrically deviating from the intrinsic relation at the
high mass end. The general result that the two mean relations

variate distribution defined by Equation (5.1) for the intrinsic
probability distribution.

The here presented more general case can be easily incor-
porated into the main paper by replacing (s, ) = g(u| s) O (s)
by Equation (5.32). While the details of our work depend on our
choice of W(s, 1), our general results are still valid assuming a

do not give the same answer is caused by the decrease of the
galaxy distribution function and the intrinsic scatter in the re-
lations. It cannot be avoided as long as consistency with the
observed galaxy distribution function is enforced. Furthermore,
this bivariate distribution is in worse agreement with the obser-
vations of quiescent black holes, while it does not improve the
consistency with the AGN observations. Thus, we prefer the bi-

different bivariate distribution, as long as we satisfy the three
general assumptions above.

Currently, the bivariate distribution of galaxy property and
black hole mass ¥(s, ) is not well established. This is particu-
larly true for AGN, as only few measurements of stellar veloc-
ity dispersions and spheroid masses at high values, where the
galaxy space density is decreasing, are available so far. A bet-
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Fig. 5.20. Bivariate probability distribution function (assuming
Equation (5.32)) which is constructed as symmetric around the
intrinsic linear relation. The black dashed line shows the rela-
tion binned in galaxy property, i.e. {¢)(s). The red dashed dot-
ted line shows the relation binned in black hole mass, i.e. {(s)(u).
The galaxy distribution function constraint it satisfied by con-
struction.

ter determination of this bivariate distribution will improve our
understanding of galaxy-black hole coevolution and is impor-
tant for a proper assessment of the evolution in the M,—bulge
relations.
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Chapter 6

Accounting for selection effects in the black hole-bulge relations
and its evolution™

Andreas Schulze and Lutz Wisotzki

Leibniz-Institut fiir Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

ABSTRACT

We present preliminary results on a further investigation of the issue of selection effects in the black hole mass-bulge relations. We
build on the ideas and methods developed in Chapter 5, and present an alternative route to reconstruct the intrinsic black hole-bulge
relations from a sample affected by selection effects. The method employs a maximum likelihood fit to the conditional probability
distributions of black hole mass and galaxy properties. Two different probability distributions are used. Firstly, the probability
distribution for a black hole mass at given galaxy property, redshift and Eddington ratio. Secondly, the probability distribution
for a galaxy property for a given black hole mass. Both provide independent constraints on the intrinsic relation. This approach
restricts prior knowledge of the underlying distribution functions to a minimum and thus tries to avoid some of the issues discussed
in Chapter 5. Furthermore, it allows a quantitative assessment of the confidence for or against evolution in the black hole-bulge
relations. We present Monte Carlo tests for this method, discuss their modifications in the presence of measurement uncertainties in
black hole masses and galaxy properties and present a first application of the method to observational data.

6.1. Introduction

In Chapter 5 we showed that observational studies on the
M,—bulge relations naturally suffer from selection effects. If
these are not considered, the observed M,—bulge relations will
inevitably be biased. However, a full assessment of the selec-
tion effects and potential inherent biases requires knowledge of
the underlying distribution functions, such as the galaxy dis-
tribution function, the active black hole mass function and the
Eddington ratio distribution function. While at least for the local
universe these distribution functions are reasonably well estab-
lished, at higher z they are only poorly known. This is a problem
for observational studies that test for evolution in the M,—bulge
relations. If the associated biases are not properly understood
and accounted for, it is hard to judge if an observed evolution-
ary trend is real or not. Here we present a simple fitting method
to determine the intrinsic black hole-bulge relations, restricting
prior knowledge of the underlying distribution functions to a
minimum.

6.2. Maximum likelihood fit

In Chapter 5 we discussed the full probability distribution of
s and u (with s = logo, or s = log Mpuge and u = log M,).
However, we are interested in the M,—bulge relation, repre-
sented by the relations of black hole mass at a given galaxy
property or galaxy property at a given black hole mass. These
quantities are given by the conditional probabilities

Wo(s, )
S ¥ols, ) d

* This chapter may lead or contribute to a future publication.

pluls) = (6.1)

Wo(s, )
J¥o(spds”

where p(u|s) gives the probability of finding a black hole of
mass u in a galaxy with property s and p(s|u) is the proba-
bility of finding a galaxy with s for a black hole with mass .
The function W, (s, i) is the bivariate distribution function of
w and s for the observed sample, as defined in section 5.2. If
there are no selection effects present ¥, (s, 1) = (s, ). When
we further assume the same bivariate distribution as we did
in Chapter 5 (given by Equation (5.1)), in this case it follows
that pin(u|s) = g(uls), i.e. the intrinsic underlying relation is
directly recovered. For the conditional probability of spheroid
mass for given black hole mass it follows in the absence of any
selection effects

p(s|p) = (6.2)

gl s) Dy(s)

I —— 6.3
[ guls) ®y(s)ds ©

pint(s | /'1) =

already deviating from the intrinsic relation g(u | s).

In general, selection effects will be present. These modify
the bivariate distribution, i.e. W, (s, 1) # ¥(s,u), and therefore
also affect the conditional probabilities, i.e. p(u|s) # g(uls).
However, if the relation between the conditional probability and
the intrinsic M,—bulge relation is known, the latter can be re-
constructed from observations of the former. So lets assume
we know the conditional probability distribution up to some
free parameters that represent the respective intrinsic M,—bulge
relation, and we have an observational sample, with observed
black hole mass, galaxy property, redshift, Eddington ratio, etc..
In this case, we can fit our model for the conditional proba-
bility distribution to the observations. The parameters of the
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M,—bulge relation are then obtained from the best fit solution.
A reliable and simple method is to employ the maximum likeli-
hood technique. This method aims at minimising the likelihood
function § = —-21In L, with £ = [];/; being the product of the
likelihoods for the individual measurements. For the study of
the M,—bulge relations, the individual likelihoods are given by
the conditional probabilities for the observed data.

There are two independent options to study the M,—bulge
relations. The first one utilises the conditional probability of
black hole mass at a given galaxy property, i.e. [; = p(uls),
as defined by Equation (6.1). In the absence of selection effects
p(uls) = g(uls),ie we are directly fitting the data to the under-
lying relation. This is identical to the common maximum likeli-
hood fit to the M,—bulge relations (e.g. Giiltekin et al. 2009).
However, in the presence of selection effects the conditional
probability is modified, as given below. The second possibility
uses the conditional probability of galaxy property at a given
black hole mass, i.e. [; = p(s|u), as defined by Equation (6.2).
In the following we discuss the special case of an AGN sam-
ple, but the approach is applicable to any sample affected by
selection effects.

For an AGN sample with well defined selection function
Q(u, 1,7) that describes the AGN flux limit of the sample,
the multivariate probability distribution W, (s, 4, 4, z) of galaxy
property, black hole mass, Eddington ratio and redshift is given
by

dv
Wols,u, A,2) = Q(u, A,2) pac(t, 2) pa(d,z) glu| s, 2) Dy(s, z)d—Z .

6.4)
This is equivalent to Equation (5.26), we only expressed the
probability distribution as a function of the Eddington ratio A
instead of logarithmic AGN luminosity /. The conditional prob-
ability then follows as

Wols,p,4,2)
[ Wols, 1, 4,2)du
Q pac(u,2) glul s, 2)
[ Qpac(.2) gul 5.2 dp

The dependencies on the Eddington ratio distribution function
(ERDF) p,(2) and the galaxy distribution function @(s) cancel
out. The conditional probability only depends on the selection
function, the mass dependence of the active fraction and the true
M ,—bulge relation. This has the advantage that we do not need
to know these other distribution functions, and we also do not
have to assume that the sample is randomly drawn from them,
as long as the selection function is well defined. Nevertheless,
knowledge of the selection function of the sample and the mass
dependence of the active fraction is required. For the fit, we then
minimise

pluls,A,2) = (6.5)

N
§ =2 Inplulsidiz). (6.6)
i=1

The intrinsic M,—bulge relation g(u | s) is inferred from the best
fit solution of p(u| s, 4, z) to their free parameters. Thus, when
accounting for the selection function in the fit, we are able to
recover the true relation, even if the location of the data points
indicate a clear apparent offset from the true relation.

For the second option, the conditional probability is given
by

Wo(s.44,2)

f‘I’(,(s,,u,/l,z) ds
8 5) Bi(s)

J sl @y(s)ds”

identical to the case without AGN selection effects
(Equation (6.3)). We already discussed this fact in Chapter 5,
but we can use this result here to recover the intrinsic relation
by the maximum likelihood fit, fully unaffected by AGN
selection effects. The only quantity that has to be known is the
galaxy distribution function.

Both options tackle the M,—bulge relations from different
directions and require different prior knowledge. Thus, they can
put independent constraints on the relations and it would be re-
assuring to find that both methods give consistent results for a
given observational sample.

p(slu,A,2) = 6.7)

6.3. Monte Carlo tests

To get a better sense of the reliability, strengths and uncertain-
ties of the presented likelihood fitting method we used extensive
Monte Carlo simulations of the M, — Mpyge relation. The Monte
Carlo samples were generated as outlined in section 5.3.1. We
build samples with different AGN luminosity limits and dif-
ferent sample sizes. For each investigated luminosity limit and
sample size, we generated 1000 Monte Carlo realisations. The
M, — Mgyige relation is assumed to be linear, with slope b and
zero point a and log-normal intrinsic scatter with dispersion o.
Each realisation is fitted, first with a, b and o as free parame-
ters, and second with b fixed to the assumed input value from
Hiring & Rix (2004), b = 1.12.

In Fig. 6.1 we present results for the fit to the conditional
probability p(u| s, 4, z) for two inspected AGN luminosity lim-
its and two different sample sizes. In the right panels we com-
pare the histogram of fitted parameters from our corrected
maximum likelihood fit (black solid histogram) with the re-
sults without correction for selection effects (green dashed his-
togram). The decrease of the bias in the fit parameters of the
M, — Mpug relation is apparent, but this is accompanied by an
increase in the dispersion of the distribution. In the left panels
we show two representative results for the best fit to a particular
Monte Carlo sample, a good case and a poor case, both for a fit
with free and with fixed slope. We also indicate 1o~ confidence
regions, as computed from the AS likelihood distribution. We
verified that these confidence regions provide a fair estimate of
the uncertainty in the M, — Mgy relation.

In Fig. 6.2, we show the median and 68% confidence limits
of the 1000 realisations over a larger range of AGN luminosity
limits and sample sizes. In the top panels we left all three pa-
rameters (zero point a, slope b and intrinsic scatter o)free, and
determine them from the best fit. The results are always statis-
tically fully consistent with the input value. For a large sample
size and a low luminosity limit @ and b are also unbiased in the
median, while they are slightly biases for a small sample size
and a very bright luminosity limit. The reason for this is that
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Fig. 6.1. Results of Monte Carlo tests on the fit to the conditional probability distribution of u given s (p(u|s, A ,z)) for different
applied AGN luminosity limits and sample sizes. These two values are always given in the upper left corner of the individual
panels. The left subpanels show two examples from the Monte Carlo realisations, a good one and a poor one. The blue circles
show the used sample, the red line is the input M, — Mpye. relation. The black dashed line is the best fit relation when fitting for the
zero point a, slope b and intrinsic scatter o simultaneously, the light grey area is their corresponding 1o confidence region. The
black dotted line and the dark grey area give the best fit to the zero point, with slope and intrinsic scatter fixed, and their confidence
region. The three right subpanels show the histograms for the best fit parameters a, b and o for the full set of 1000 Monte Carlo
realisations. The black histograms are for the fit, properly accounting for selection effects, while the green dashed histograms are
for a fit, ignoring selection effects. The thick vertical red line indicates the input value. The input relation is better recovered when
selection effects are taken into account, although with increased uncertainty.
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Fig. 6.2. Median results of Monte Carlo tests on the fit to the conditional probability distribution of y given s (p(u|s, 4, z)) for
different applied AGN luminosity limits and sample sizes. In the individual panels, we show the median and the 68% confidence
interval of the zero point a, the slope b and the intrinsic scatter o of the M, — Mpug relation for 1000 realisations. In the upper
panels all are left free in the fit, while in the lower panels we first fix o and then also b. We investigated a range of sample sizes
(Novj) and assumed AGN luminosity limits (/yis), with x-positions slightly shifted for better visibility. The horizontal black line

indicates the input value.
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Fig. 6.3. Results for a fit to the intrinsic M, — Mpyg relation
(without selection effects). We show the median and the 68%
confidence interval for the fit with a, b and o as free parameters
(black circles) and with a and b fixed (red squares). We recover
a and b unbiased. The intrinsic scatter o is systematically under-
estimated for a small sample size, because the fit determines the
sample standard deviation (green squares) instead of the popu-
lation standard deviation (black solid line).

we systematically underestimate o for a small sample size. A
smaller value of o then demands a higher zero point to explain
the high mass outliers detected for a bright luminosity limit (the
low mass outliers are not detected). The reason for the under-
estimation of o is that we are effectively determine the sam-
ple standard deviation (§ = +/(n — 1)1 27, (x; — X)), which is
known to be not an unbiased estimator for the standard deviation
o, but tends to be an underestimate of the true population stan-
dard deviation. In Fig. 6.3 we illustrate that this bias is already
present in the maximum likelihood fit without the presence of
selection effects, while the zero point and slope are unbiased.
While the value of o has no effect on @ and b for the fit with-
out selection effects, it is an important quantity for the selection
effect correction, and therefore will bias the determination of a
and b in our case if it is biased itself. This suggests fixing o, as
we did in the lower panels of Fig. 6.2. In this case a and b are
recovered unbiased. Thus, we confirm that we can reconstruct
the input M, — Mgy relation unbiased with our maximum like-
lihood fitting method on the conditional probability distribution

p(uls,A,2).

In Figures 6.4 and 6.5 we show similar results, but for the
fit to the conditional probability p(s|w). We also find that the
intrinsic scatter is underestimated for a small sample size, as
discussed above. The slope b seems to be systematically over-
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Fig. 6.4. Same as Fig. 6.1, but for the fit to the conditional probability distribution of s given ¢ (p(s|w)). In the left subpanels we
show exactly the same examples as in Fig. 6.1 and their respective results for the fit to p(s|u).

estimated for a small sample size and in particular for a bright
luminosity limit. This may indicate a limitation of this fitting
option for data that are sampled from the decreasing part of the
spheroid mass function. There may be also an issue with the
used Monte Carlo sample, as this was constructed over a prede-
fined, fixed range in bulge mass. However, we find that the zero

point a is well recovered in the median, in particular if the slope
b and the intrinsic scatter o are fixed.

As we are interested in the evolution of the M, —
Mpuyge relation with redshift, we can also fix the local rela-
tion and only fit for their redshift evolution, given a flux lim-
ited AGN sample in a specific redshift range. As an example,
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Fig. 6.6. Results of Monte Carlo test for a fit to redshift evolution in the M, — Mpyg relation. A flux limited sample, with magnitude
limit of 22 mag in the B band, in the redshift range 1 < z < 2 and mild redshift evolution y = 0.5 has been generated and fitted to
the conditional probability p(u| s,log A, z). We fixed the local relation and fitted for the evolution term y. The left panel shows an
example for a sample of 10 objects (blue circles). The red solid line gives the input relation at the mean redshift of the sample, the
black dashed line shows the best fit relation at the same mean redshift and the grey area indicates the 10~ confidence region. The
middle panels show the histogram of y values for 1000 realisations, for sample sizes of 10 and 100 objects. The red vertical line
gives the input value. The right panel shows the dependence of the median value and the 68% confidence interval on the sample
size (red circles and error bars). The black line indicates the input value.

we generated a Monte Carlo sample with B band flux limit of
22 mag in the redshift range 1 < z < 2, drawn from the local
distribution functions (see section 5.3.1). We assumed a redshift
evolution in the zero point a(z) = ag + ylog(l + z) and chose a
mild evolution case of y = 0.5 for our example. We again chose
different sample sizes and generated 1000 Monte Carlo realisa-

tions for each sample size. We fitted for v, fixing the other pa-
rameters. The results are shown in Fig. 6.6 for the conditional
probability p(u| s, A,z) and in Fig. 6.7 for the conditional prob-
ability p(s|u,z). In both cases we recover the input evolution
slope vy fairly well. However, we seem to slightly overestimate y
for the p(u| s,log 4, z) fit and underestimate it for the p(s|u, z)
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Fig. 6.7. Same as Fig. 6.6, but for the conditional probability distribution p(s |y, z).

fit by ~ 0.05 dex, respectively. We have to admit that we do not
fully understand the reason for this deviation yet. It may indi-
cate a limitation in our method, in our implementation of it, or
may indicate an issue with the Monte Carlo sample. Anyway,
a further investigation of this issue is demanded. Nevertheless,
this effect is much smaller than current other uncertainties, and
our results are consistent with the input value with at least 1o
confidence. Given a large enough statistical sample, the null hy-
pothesis of no evolution in the M, — Mpyg relation can be ex-
cluded confidently. Even for a small sample, the no evolution
case deviates from the best fit by more than 1o

Thus, we conclude that our fitting method is already a sig-
nificant improvement over a direct assessment of the M, —
Mapyge relation in evolutionary studies, in principle able to re-
cover an underlying evolutionary trend. However, an important
issue that we have ignored so far is the influence of measure-
ment uncertainties in the black hole mass and galaxy property
on our method.

6.4. Measurement uncertainties

So far, we neglected measurement errors on ¢ and s. However,
ignoring them in the fitting approach can lead to its own bias.
Here, we discuss measurement uncertainties and their conse-
quences separately for u and for s. We first discuss the effect on
the fit to the conditional probability p(u| s, A, z) and then briefly
comment on the implications for the fit to p(s|y, z).

If we have measurement uncertainties in g, the main ef-
fect will be a smoothing of the probability distribution in the
u direction, without affecting the slope and normalisation of
the recovered relation, as already discussed in section 5.3.2.
Following this discussion we have to use W, (s, 1), given by
Equation (5.22), to compute the conditional probability for the
maximum likelihood fit. The probability distribution is then
given by

[ Wos, 1, 4,2) g(uo | 1) dpa
[ Pols, 1, A, 2) glkto | 1) dpadpt

[ Q pac(.2) g1 5.2) g(tto | 1) dpa
J Q@ pac(u,2) gl s, 2) du

Pito | 5,2,2) (6.8)

with g(u, | 1) given by Equation (5.21). Thus, if we know the un-
certainty in the black hole mass, usually the uncertainty in the
virial method (e.g. Vestergaard & Peterson 2000), it is straight-
forward to incorporate it into the likelihood estimate.

Secondly, we discuss the effect of measurement uncertain-
ties in the bulge property s. As discussed in section 5.3.3, con-
trary to the black hole mass, this uncertainty will change the
slope of the respective M,—bulge relation. On the other hand,
the normalisation is not affected. For the conditional probabil-
ity follows

f‘I‘O(s,u, A1,2)8(so15)ds
[ Wo(s. 11, 2,2) g(so | 5) dsdy

[ Q pac(it, 2) g1 5.2) 8(s0 | 5) Dy(s) ds
[ 9 pac(tt, 2) g1 5.2) 8(56 | 5) Dy(s) dsdy

While at least the Eddington ratio distribution cancels, the
galaxy distribution function remains in the conditional proba-
bility distribution in this case, complicating the situation. Thus,
for an unbiased fit, we again have to know or assume the shape
of the galaxy distribution function.

When there is measurement uncertainty in s and y, the con-
ditional probability is

Pl o, ,2) (6.9)

p(/‘lo | SO’/19Z) =
[ Q Pac(ie.2) 8111 5.2) Dy(5) 850 | ) g(tto | 1) disdut
[ pac(tt, 2) g1 5.2) @y(s) g(so | ) dsdp

(6.10)

For the fit to the conditional probability p(s|u,z) the re-
verse is true. Measurement uncertainty in s only broadens the
conditional probability and can be directly accounted for if the
uncertainty is known,

[ Wols. 11, 2,2) g(so | 5)ds
[ Wo(s. 1, 2,2) (s, 5) dsds,
[ 8ul9) D) g(s0 | 5) ds

[ 8l s) @y(s)ds

However, uncertainty in u introduces a dependence on the AGN
selection that is absent otherwise. The conditional probability

p(solp,2) = (6.11)
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in this case becomes

J Wals. 1.4, 2) gluto | 1) du
[ Wols, 1, A, 2) 8(tto | 1) dsdu

[ Q pacltt, 2) (a1 5,2) (1o | 1) B, (5) dpt
[Q pactit, 2 8] 5,2) (3o | 10) Dy(5) dsdp

Thus, a dependence on the active fraction and the selection
function is introduced into the conditional probability through
the measurement uncertainty in u.

We also ran first Monte Carlo tests, incorporating measure-
ment uncertainties. We show our results for an example of an
AGN luminosity limit of /,,;, = 46 and a sample size of 500 in
Fig. 6.8 for the fit to p(u|s,4,z) and in Fig. 6.9 for the fit to
p(s|u, 2). In the left panel of Fig. 6.8 we add a log-normal error
of oym = 0.3 dex to the samples and fit them with the condi-
tional probability distribution of Equation (6.9), thus account-
ing for this error. For comparison we also show the histogram
of the results without measurement uncertainties as dashed red
lines. The input relation is equally well recovered, only with in-
creased dispersion. Next, we add an additional log-normal error

(8| o, A,72) (6.12)

of oy = 0.2 dex to the spheroid mass. The histograms in the
right panel of Fig. 6.8 show the results using p(u, | s, 4,z) from
Equation (6.9), i.e accounting for oy, but ignoring the error in
the spheroid mass. While the zero point is reasonably well re-
covered, the slope is underestimated, a result already expected
from our discussion in section 5.3.3. However, we also fixed
the slope b and intrinsic scatter o and fitted only for the zero
point. The result is given by the dashed dotted histogram. The
input value is almost recovered, but slightly underestimated by
~ 0.1 dex. On the other hand, when we use the proper condi-
tional probability for this case, given by Equation (6.10), and
again have a as only free parameter, we properly recover the
input value in the median.

Next, we investigated the fit to the conditional probabil-
ity distribution p(s|u,z). We first added a log-normal error of
o5 = 0.2 dex to the spheroid mass and fitted the samples with
the conditional probability distribution of Equation (6.12), i.e
accounting for o;. We show the results in the left panel of
Fig. 6.9. The input value is also as well recovered as without
measurement uncertainties, just with larger dispersion. Then we
added an error of oy, = 0.3 dex to the black hole mass and
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fitted the samples with the same conditional probability distri-
bution, thus ignoring this error. The result is given in the right
panel of Fig. 6.9. When all parameters are left free, the result is
strongly biased. However, when the slope and the intrinsic scat-
ter are fixed, the zero point is closely recovered, underestimated
by only ~ 0.05 dex.

Thus, when we are interested in the redshift evolution in the
M, — Mgy, relation the most reliable approach is to fix the slope
and the intrinsic scatter and only fit for the zero point a, which
is expected to vary with redshift. This is particularly true if the
dynamical range of the observations is small. In the spirit of pre-
senting preliminary results, we suggest three possible options to
fit the M, — Mpug. relation under the presence of AGN selection
effects and measurement uncertainties in both variables.

1. Fit the conditional probability p(u,|s,4,z) given by
Equation (6.9), i.e. accounting for the error in y, but not in
S.

2. Fit the conditional probability p(s,|u,z) given by
Equation (6.12), i.e. accounting for the error in s, but
not in y.

3. Fit the conditional probability p(u,|s,,1,z) given by
Equation (6.10), i.e. accounting for the error in y and s.

The advantage of the first two options is that they indi-
vidually require less assumptions on the underlying distribu-
tion functions and they are computationally less expensive.
However, they only use a simplified estimate of the true condi-
tional probability, and hence may be slightly biased. The third
option is more precise, but requires more assumptions. In prin-
ciple, we could also fit to p(s, | o, 4 , 2), accounting for the error
in ¢ and s, but this estimate deviates from the third option only
slightly, requiring the same information, so we neglect it. In the
following, we will use all three options to derive constraints on
observational studies on evolution in the M, — Mpjg relation.

6.5. Application to observational studies

We further illustrate our fitting method to the M,—bulge rela-
tions and their evolution by applying it to a few observational
studies. This requires assumptions on the mass dependence of
the active fraction and on the galaxy distribution function. We
assumed a constant active fraction. The mass dependence of
the active fraction at high redshifts is not well known, but is
probably flattening compared to z = 0 (Merloni & Heinz 2008;
Shankar et al. 2009), thus a constant active fraction is a reason-
able assumption. It also provides an upper limit to the evolution
in the M, — Mpyg. relation, when we assume that the active frac-
tion will not increase with mass in this redshift range. For the
galaxy spheroid mass function we used our high redshift esti-
mate, presented in section 5.4.2. To investigate the degree of
evolution, we again assumed a redshift evolution in the zero
point a(z) = ap + ylog(1 + z), fixed the local relation to the val-
ues from Héring & Rix (2004) and fitted for the evolution term
Y.

The first study we investigated is the QSO sample from
Merloni et al. (2010), already discussed in section 5.5. We took
their data, computed bolometric luminosities and Eddington ra-
tios, and applied their /xg-band flux limit of 22.5. We fitted all
three options for the conditional probability distributions to the
data. The results are shown in Fig. 6.10. For the fit to the con-
ditional probability p(u,|s,4,z) we get y,, = 0.32 = 0.16,
for the fit to the conditional probability p(s, |u,z) we found
Vs = 0.35+0.12 and for the fit to p(u, | S0, 4, 2), fully incorpo-
rating measurement uncertainties, we obtain y, . = 0.43f8:%§.
It is reassuring and encouraging that all estimates are fully con-
sistent with each other. They all indicate mild evolution in the
M, — Mgy relation. However, the null hypothesis of no evo-
lution in the M, — Mpug. relation lies formally within 20 of
our results, thus it is not rejected with statistical significance.
Furthermore, note that our stated confidence region only ac-
counts for the statistical uncertainty. We have fixed our assump-
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mean redshift of the sample. The grey area is the 1o~ confidence
region. As the sample is small, the uncertainty on the evolution
is large.

tions on the underlying distribution functions and the uncer-
tainty in M, and M.,. Uncertainties in these assumptions further
increase the errors on the best fit solution. Thus, our stated er-
rors are probably too optimistic.

Alternatively, we can assume no evolution in the zero point
a of the M, — Mpyg relation, but instead in the intrinsic scatter.
We parametrised this evolution as o(z) = oo + dlog(1l + 2),
assuming o9 = 0.3. We again fixed the local relation and fitted
the conditional probability p(s, |y, z) to the data with § as only
free parameter. We obtained 6 = O.ISfS:S, corresponding to
o(z = 1.5) = 0.37. Thus, also a mild evolution in the intrinsic

scatter provides an adequate fit to the data.

The sample by Merloni et al. (2010) is well suited for our
study, as it provides a relative large sample which also cov-
ers the faint end of the AGN luminosity function. But, we also
want to illustrate the constraints we can derive from this meth-
ods from a sample with small sample size, only covering bright
QSOs. For this purpose, we used the sample from (Schramm
et al. 2008), which we also already discussed in section 5.5. We
adopt a B-band flux limit of 18 mag and again assume a constant
active fraction and our estimate of the spheroid mass function.
The results are shown in Fig. 6.11. For the fit to the conditional
probability p(u, | s, 4,z) we gety, s = 0.93*1'6, for the fit to the
conditional probability p(s, | i, z) we derive y,,, = 0.82*0¢) and
from p(uo | 8o, 4,2) we obtain vy, = 0.34+173_ All constraints
are consistent with each other, but the uncertainties in the fits to
p(Uo s, A,z)and p(ue | so, 4, z) are substantial. These results are
also consistent with the constraints we derived above from the
Merloni et al. (2010) QSO sample. They also tentatively suggest
at least a mild redshift evolution in the M, — Mpyg. relation. For
an evolution in the intrinsic scatter we get 6 = 0.17*137 with
large uncertainty.

6.6. Conclusions

We here presented a novel fitting method to the M,—bulge re-
lations and their evolution. This is based on a maximum like-
lihood fit to two independent conditional probability distribu-
tions, the probability of finding a specific black hole mass u
for a given spheroid property s, p(u|s), and the probability to
find a specific galaxy property s given a black hole with mass y,
p(s|w). As already discussed in Chapter 5, the former is affected
by the AGN selection, while the latter is affected by the shape of
the galaxy distribution function. If these effects are well under-
stood and known, both can be used to determine the underlying
intrinsic relation.

We presented the theoretical framework for this approach
and verified its reliability by means of Monte Carlo simulations.
We also took into account the effect of measurement uncertain-
ties in y and s. When measurement uncertainties in the variables
w and s have to be considered, the dependencies on the respec-
tive distribution functions and selection function for both con-
ditional probability distributions become entangled and they all
need to be taken into account for a proper determination of the
intrinsic relation. We suggest three practical solutions to deter-
mine the intrinsic relation from observational data. In any case,
the best fit is achieved by fixing the slope and intrinsic scatter
and fit for the zero point as only free parameter.

We illustrated the ability of our method to constrain the
evolution in the M, — Mpyyg. relation by applying it to two ob-
servational studies, the zZCOSMOS QSO sample from Merloni
et al. (2010) and the small bright QSO sample from Schramm
et al. (2008). Their data reveal evidence for mild redshift evo-
lution, either in the zero point or in the intrinsic scatter of the
M, — Mpuyg relation.

Our presented technique still needs further tests, but already
shows promising prospects for a better understanding of the
M, — Magyge relation and its evolution. Compared to our esti-
mates in Chapter 5, this method allows a strict statistical state-
ment on the evolution in the M, —bulge relations, including con-
fidence intervals.
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ABSTRACT

Stellar dynamical modeling is a powerful method to determine the mass of black holes in quiescent galaxies. However, in previous
work the presence of a dark matter halo has been ignored in the modeling. Gebhardt & Thomas (2009) showed that accounting for
a dark matter halo increased the black hole mass of the massive galaxy M87 by a factor of two. We used a sample of 12 galaxies
to investigate the effect of accounting for a dark matter halo in the dynamical modeling in more detail, and also updated the masses
using improved modeling. The sample of galaxies possesses Hubble Space Telescope and ground-based observations of stellar
kinematics. Their black hole masses have been presented before, but without including a dark matter halo in the models. Without
a dark halo, we find a mean increase in the estimated mass of 1.5 for the whole sample compared to previous results. We attribute
this change to using a more complete orbit library. When we include a dark matter halo, along with the updated models, we find an
additional increase in black hole mass by a factor of 1.2 in the mean, much less than for M87. We attribute the smaller discrepancy
in black hole mass to using data that better resolve the black hole’s sphere of influence. We redetermined the M, — o, and M, — Ly
relationships using our updated black hole masses and found a slight increase in both normalization and intrinsic scatter.

7.1. Introduction

It is now well established that almost every massive galaxy
harbors a supermassive black hole in its center. Furthermore,
close relations between the mass of this supermassive black
hole and the properties of the galaxy’s spheroid component
have been found, namely with the mass (Magorrian et al. 1998;
Hiring & Rix 2004), luminosity (Kormendy & Richstone 1995;
Kormendy & Gebhardt 2001; Marconi & Hunt 2003; Giiltekin
et al. 2009b), and with the velocity dispersion (Gebhardt
et al. 2000a; Ferrarese & Merritt 2000; Tremaine et al. 2002;
Giiltekin et al. 2009b). These relations imply a link between the
growth of black holes and galaxy evolution, usually attributed
to active galactic nucleus (AGN) feedback (e.g., Silk & Rees
1998; Di Matteo et al. 2005; Springel et al. 2005; Ciotti &
Ostriker 2007), but at least to some degree they are a natu-
ral result within a merger-driven galaxy evolution framework
(Peng 2007; Hirschmann et al. 2010; Jahnke & Maccio 2010).
In general, the black hole-bulge relations and especially their
evolution with cosmic time are able to provide deep insight into
galaxy formation and black hole growth. Therefore, it is essen-
tial to properly establish the local relationships as precisely as
possible.

The black hole-bulge relations are based on a sample of
~ 50 quiescent black holes, whose masses have been deter-
mined based on maser emission (e.g., Greenhill et al. 2003;
Herrnstein et al. 2005; Kuo et al. 2011), gas kinematics (e.g.,
Ferrarese et al. 1996; Marconi et al. 2001; Dalla Bonta et al.
2009), and stellar kinematics (e.g., van der Marel et al. 1998;

* This chapter is published in Astrophysical Journal, 2011, 729, 21.

Gebhardt et al. 2000b; Shapiro et al. 2006; Gebhardt et al. 2007;
Giiltekin et al. 2009a). In particular, stellar dynamical modeling
using orbit superposition is a powerful method to estimate black
hole masses in quiescent galaxies, also recovering the orbital
structure within the galaxy. Usually, axisymmetry is assumed in
these models. However, there are still uncertainties and possi-
bly systematic biases within these methods. Uncertainties may
arise from the deprojection of the observables onto three di-
mensions as the true inclination of the galaxy often is not well
known, the presence of dust, some triaxiality that cannot be
modeled properly with axisymmetric models (van den Bosch
& de Zeeuw 2010), or the presence of an AGN at the center. So
far, in most models the contribution of the galaxy’s dark matter
(DM) halo has been neglected. Gebhardt & Thomas (2009) re-
cently showed that the black hole mass can be underestimated
in this case. For the massive galaxy M87 they found an increase
of more than a factor of two in the measured black hole mass,
just by including a DM halo in the modeling. The reason is that
without a DM halo the mass-to-light ratio is overestimated in
order to account for the mass in the outer parts of the galaxy.
Under the usually applied assumption of a constant mass-to-
light ratio for the whole galaxy, this will propagate inward and
lead to an underestimation of the black hole mass at the center
due to overestimation of the stellar contribution.

A similar result has been obtained by McConnell et al.
(2011). They measured the black hole mass in the brightest clus-
ter galaxy NGC 6086. They report a factor of six difference
between the black hole mass obtained from models without a
DM halo and their most massive DM halo models. However,
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the black hole’s sphere of influence is barely resolved in their
work.

Shen & Gebhardt (2010) found for NGC 4649, also a mas-
sive galaxy, no change in the black hole mass by including a
DM halo. In this case the sphere of influence is well resolved
by the data. A larger sample, especially spanning a larger range
in mass, is clearly required.

Gebhardt et al. (2003) (hereafter G0O3) studied a sample
of 12 galaxies with kinematics derived from Hubble Space
Telescope (HST) and ground-based observations, using axisym-
metric orbit superposition models. They do not include a DM
halo in their modeling. Since then the orbit superposition code
used by our group has been improved (Thomas et al. 2004,
2005; Siopis et al. 2009), by including a more complete orbit
sampling.

The aim of this paper is to reanalyze the data set presented
by GO03, using the most up-to-date dynamical modeling code
and investigating the effect of accounting for the dark matter
contribution on the derived black hole masses. One of the galax-
ies in the GO3 sample, NGC 4649, was recently analyzed by
Shen & Gebhardt (2010), including a DM halo. We have rean-
alyzed this galaxy for consistency with the remaining sample,
but find consistent results with this previous investigation.

7.2. Data

The data set used in this work is identical to those used in the
work of GO3. Thus, we will only give a brief summary and refer
to GO3 for more detail. The data consist of three sets of obser-
vations for each galaxy: imaging, HST stellar kinematics, and
ground-based stellar kinematics.

High-resolution imaging is required to obtain the stellar sur-
face brightness profile for each galaxy. This imaging has been
obtained in the V band with the HST WFPC2 (Lauer et al.
2005), except for NGC 4697, which was observed with the HST
WFPCI1 (Lauer et al. 1995). Surface brightness profiles were
measured from the pont-spread function deconvolved images
and were augmented with ground-based imaging at the outer
parts, not covered by HST. For the deprojection of the surface
brightness profile to a luminosity density profile, we assume
axisymmetry, an inclination angle of 90°, which we refer to
as edge-on, and used the technique outlined in Gebhardt et al.
(1996).

The HST observations and kinematics are presented by
Pinkney et al. (2003) and GO3. They consist of Space Telescope
Imaging Spectrograph (STIS) long-slit spectra along the ma-
jor axes, except for NGC 3377 and NGC 5845, which have
Faint Object Spectrograph (FOS) aperture spectra. The spec-
tra cover the Ca2 triplet around 8500 A. For the dynamical
modeling, the line-of-sight velocity distributions (LOSVDs),
extracted from the spectra, are used. The LOSVDs are given
in a non-parametric form, binned into 15 equidistant bins, com-
pared to 13 bins in GO3.

The ground-based kinematics are presented by Pinkney
et al. (2003) and GO3 as well. They consist of long-slit spec-
tra along several position angles, mainly obtained at the MDM
observatory. They also cover the Ca 2 triplet, or alternatively the

Mgb absorption at 5175 A. The individual LOSVDs are binned
into 15 points as well.

7.3. Dynamical Models

The dynamical modeling uses the orbit superposition method,
first proposed by Schwarzschild (1979). This general method
has been widely used by various groups (Rix et al. 1997; van
der Marel et al. 1998; Cretton et al. 1999; Valluri et al. 2004).
Our technique is described in detail in GO3, Thomas et al.
(2004, 2005) and Siopis et al. (2009). We will give a brief sum-
mary here and especially point out the differences compared to
the work of G03. The basic approach consists of the follow-
ing steps: (1) deprojection of the surface brightness profile to
a three-dimensional luminosity distribution, (2) computation of
the specified gravitational potential, (3) generation of a repre-
sentative orbit library in this potential, (4) fitting the orbit li-
brary to the observed light distribution and kinematics, and (5)
modifying the input potential to find the best match to the data,
based on a y? analysis.

As described in Section 7.2, we deproject the surface bright-
ness profile following Gebhardt et al. (1996) and assume an
edge-on configuration, as used by G03. The only exception is
NCG 4473, where we assume an inclination of 72°, as has been
done in GO3. To determine the potential, we assume a constant
mass-to-light ratio throughout the galaxy, a specific black hole
mass and optionally also include a DM halo. The mass distribu-
tion is then given by

p(r,0) = M,6(r) + Tv(r, 0) + ppm(r) (7.1)

where M, is the black hole mass, T is the mass-to-light ratio, v
is the stellar luminosity distribution, and ppy is the DM density
profile. The potential ®(r, 8) is derived by integrating Poisson’s
equation.

In this potential, a representative orbit library is constructed
that samples the phase space systematically. The generation of
the orbit library is described in detail in Thomas et al. (2004)
and Siopis et al. (2009). For the comparison with the data, we
use a spatial grid of N, = 20 radial bins and Ny = 5 angular
bins and use N, = 15 velocity bins for the LOSVD at each spa-
tial gridpoint. The galaxy potential and the forces are evaluated
on a grid with 16 times finer resolution. For our axisymmetric
code, there are three integrals of motion that sample the phase
space accordingly: the energy E, the angular momentum L., and
a non-classical third integral /3. The (E, L;)-plane is sampled
based on the spatial binning (Richstone & Tremaine 1988). We
choose E and L, such that the respective orbits have their peri-
center and apocenter in every pair of the radial grid bins. The
third integral /3 is sampled as outlined by Thomas et al. (2004).
First, orbits are dropped from the zero-velocity curve (defined
by E = Lf/(2r2 cos? 0) + O(r, ), as in GO3. This is done by us-
ing the intersections of the angular rays of the spatial grid with
the zero-velocity curve as starting points for the integration of
the orbit’s motion. However, this does not ensure a representa-
tive sampling of orbits. Such a sampling is indicated by a homo-
geneous coverage of the surface of section, i.e., the position of
radii and radial velocities of orbits during their upward crossing
of the equatorial plane. Therefore, additional orbits are launched
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Table 7.1. Results for the Galaxy Sample

Galaxy D M. *,G03 M/ Lgos M o,n0DM M/ Lopm M «.DM M/Lpwm Ve re Ring

(Mpc) (Mo) (Mo) (Mo) (kms™) (kpe) (")
(D 2 (3 4 Q) 6) Q) () () (100 an
NGC 821 25.5 9.9 +4.1x 107 6.8 1.1+04x 108 7.7+0.5 1.8+0.8 x 108 6.2+0.7 450 14.0 0.14
NGC 2778 24.2 1.6 + 1.0 x 107 7.2 14+1.1x107 119+1.1 15+15x107 11.8+12 300 5.0 0.02
NGC 3377 11.7 1.1 +0.6 x 108 2.7 1.6+1.0x10% 26+0.5 19+1.0x10% 23+04 350 6.0 0.69
NGC 3384 11.7 1.8 +0.2 x 107 2.5 80+42x10° 24+0.1 1.1+£05%x107  22+0.1 400 8.0 0.04
NGC 3608 23.0 1.9+09x 108 3.7 46+09%x10%® 35+03 47+1.0x10®° 33+03 400 10.0  0.55
NGC 4291 25.0 32+1.6x108 6.0 9.7+20x10® 6.0+05 92+29x10® 6.0+0.8 400 8.5 0.56
NGC 4473 17.0 1.3+0.7x 108 5.1 59+50x107  7.4+02 1.0+£05%x10%  6.8+0.3 400 10.0  0.15
NGC 4564 17.0 6.9+0.7 x 107 1.6 9.8+2.3x107 1.6 £ 0.1 9.4+2.6x107 1.5+0.1 350 7.0 0.19
NGC 4649 16.5 2.1+0.6x10° 8.8 390+£1.0x10° 86+06 42+1.0x10° 8.0+0.7 500 20.0 1.51
NGC 4697 124 2.0+0.2x 108 4.2 22+03%x10% 45+03 20+05x10% 43+03 450 120 045
NGC 5845 28.7 29+1.1x10% 4.5 45+12%x10% 54+02 54+17x10% 51+02 300 5.0 0.30
NGC 7457 14.0 4.1+14x10° 2.8 7.4+42x10° 27+0.5 1.0+ 0.6 x 107 2.6+0.5 300 5.0 0.14

Notes. Column 1: name. Column 2: distance. Columns 3-4: black hole mass and mass-to-light ratio from study of Gebhardt et al. (2003).
Columns 5-6: black hole mass and mass-to-light ratio using updated code but without including a DM halo in the dynamical modeling. Columns
7-8: black hole mass and mass-to-light ratio when a DM halo is included. Column 9-10: parameters of the circular velocity and the core radius
for the logarithmic DM density profile used. Column 11: radius of the black hole’s sphere of influence, based on the black hole mass including

the contribution of DM.

to give such a homogeneous coverage. This method provides a
complete sampling of the surface of section for given E and L,
and thus a proper coverage of phase space. We typically have
13,000—-16,000 orbits in our library. The allocation of the indi-
vidual orbits to the spatial grid points is based on the time they
spend there.

Given this orbit library, the orbit weights are chosen by
matching the orbit superposition to the observed light distribu-
tion and the LOSVDs of the galaxy on the spatial grid. To fit
the orbit library to the data, we use the maximum entropy tech-
nique of Richstone & Tremaine (1988). This method maximizes
the function

S=8-ay*, (7.2)

where y? is the sum of the squared residuals over all spatial and
velocity bins, e.g.,

_ Z (lmodk - lddt k) , (73)

where [ is the light in the kth bin, with the bins composed of the
spatial position on the sky and the line-of-sight velocity, thus the
bin in the LOSVD, at that position. Hence, & is varying from 1
to Ny = N.NgN,. While l4,  refers to the measured light at that
position, ek is given by the weighted sum of the contribution
of all orbits to the kth bin.

S is the Boltzmann entropy

Nory Wi
S = ,'lO — s
,-Z‘W g(Vi)

where w; is the weight of the individual orbit and V; is the phase
space volume of this orbit, i.e., the volume of the region in phase
space that is represented by this orbit i, given by

(7.4)

V = AEAL, f T(r,v,)drdv, , (7.5)

where T(r,v,) is the time between two successive crossings of
the equatorial plane and AE and AL, are the ranges in ener-
gies and angular momenta of the respective orbits (Binney et al.
1985; Thomas et al. 2004).

The parameter o in Equation (7.2) controls the relative
weight of entropy and y? for the maximization. We start with
a small @, being dominated by the entropy maximization in the
fit, and then iteratively increase it until there is no longer an
improvement in the y.

This procedure provides a value for the y? for one com-
bination of M,, T and DM halo. The best fit is found by the
global minimum of y? for the variation of these parameters. For
the estimation of the parameter uncertainties we adopt the usual
Ax? = 1 criterion (Press et al. 1992) to obtain the 68% confi-
dence intervals for one degree of freedom, thus when marginal-
izing over the other free parameters.

7.4. Results
7.4.1. Models without a DM halo

We first ran a set of models without including the contribution
of a DM halo; thus, we set ppy = 0 in Equation (7.1). This
assumption is consistent with most previous studies on black
hole masses using dynamical models as well as with G03. As
we are using the same data asthose of G03, the main difference
is the improved modeling code. Thus, we would expect to re-
cover similar black hole masses as in G03. We also use slightly
different distances to the galaxies, as given by Giiltekin et al.
(2009b).

For each galaxy we ran models on a fine grid in M, and
mass-to-light ratio (M/L). Each model gives a best-fitting orbit
superposition, and thus orbital structure for the galaxy, with a
corresponding value of y?. The best fit M, and M/L are deter-
mined by the global minimum of the y? distribution.



100 Schulze & Gebhardt: Effect of a DM halo on the determination of dynamical black hole masses

. : T : —r—— 12 ‘ -
68[| | NGC 821 Axéa; =90.6 NGC 2778  Axg,=—85.3 ' NGC 3377 Axy,=T.6
' Ax> =20.7 AX? =56 1 I .
66] | ! K 1 10 : :
' ! | |
8t ! I
! |
! I
’NX 6 II I
|
al 1
\\
2b \
118k L L o 0 L L
0 1 2 3 4
M, [M,] x10°
- - ; :
NGC 4291  Ax(y,=1123
110} I g

110

1001

90

‘ ‘ ‘ ‘ ‘ 80, - oo e ‘ ‘
0.0 0.5 1.0 15 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0
M, [M,) x107 M, [M,) x10°
40 NGC 4473, AxZ,,=16.5 1601l NGC 4564  AyZy,=88.2
| I
B
I\
E 150 |
#
i
1 =« I
= i
] 140} |’
_ 1 130
0 1 2 3 z 00 05 10 15 20 25 1 2 3 4 5 6 7 8
M, [M,) x10° M, [M,) x10°
- » — ‘ — ‘
Lol NGC 5845 Alrx(}[,;;::l&ﬁ 68 ,;}NGC 7457 AnGy=-13
. , :
1 ,l
67 !
l
I
66] \
e
65
N
64
63
010 0.5 1.0 1.5 010 0‘.5 1‘.0 1.5 2.0 215
M, [M,)] x10° M, [M,)] x10° M, [M] <107

Fig. 7.1. Comparison of the y? distributions as a function of M, (marginalized over M/L). The black solid line shows the models
including a DM halo. Their y? values always show the actual modeling result. The y? distribution for the models without a DM
halo is shown as the blue dashed-dotted line. The zero point has been shifted for NGC 2778 and NGC 3384 by an offset given in
the figure as Ay? (in blue). The y? distribution of GO3 is shown as the red dashed line, offset by the value given as A)(ZG(B (in red).
The distributions have been scaled in M,, to account for the difference in the assumed distance.

The y? distribution as a function of M, (marginalized over 7.4.2. Models with a DM halo
M/L) is shown as the blue line in Figure 7.1. We determined
our stated best fit M, and M/L from their marginalized y* dis- It has been shown that dynamical models are clearly able to de-
tributions, using the mid-point of the Ay?> = 1 interval, which tect and constrain the presence of a DM halo, if the data range
corresponds to a 1o uncertainty. The results are presented in sufficiently far in radius (Rix et al. 1997; Kronawitter et al.
Table 7.1. 2000; Thomas et al. 2007; Weijmans et al. 2009; Forestell &
Gebhardt 2010). Due to the faintness of the stellar component
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Fig.7.2. Two-dimensional contour plot of y? as a function of M, and M/L for each galaxy. Here the models with a DM halo
included are shown. The contour lines show AX2 values of 1.0, 2.71, 4.0, and 6.63 (corresponding to 68%, 90%, 95%, and 99%
confidence for one degree of freedom). The points indicate the individual models we ran. The contours are derived from a smooth-

ing spline to these models. The cross represents the best fit.

at large radii, other kinematic tracers such as globular clusters
(Zepf et al. 2000; Pierce et al. 2006; Bridges et al. 2006) or plan-
etary nebulae (Méndez et al. 2001; Romanowsky et al. 2003;
Coccato et al. 2009) have to be used. Furthermore, if dynamical
coverage of both the central and the outer regions of the galaxy
is present, it is possible to constrain M,, M/L, and the dark halo

parameters by dynamical modeling (Gebhardt & Thomas 2009;
Shen & Gebhardt 2010).

Two common parameterizations for the DM halo are a
Navarro-Frenk-White (NFW) profile (Navarro et al. 1996) and a
DM distribution based on a cored logarithmic potential (Binney
& Tremaine 1987; Thomas et al. 2005). For a sample of 17
early-type galaxies, Thomas et al. (2007) found both profiles
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to give consistent results, with tentative evidence to favor a log-
arithmic dark halo. Gebhardt & Thomas (2009) confirmed this
result for M87, and McConnell et al. (2011) found consistent
results for M, using either a logarithmic dark halo or an NFW
profile. In the following, we will use a DM halo with a cored
logarithmic potential, whose density profile is given by

VC2 3}% + 72

_— 7.
4nG (r2 +r2)2”° (7.6)

pom(r) =
where V. is the asymptotically constant circular velocity and
r. is the core radius, within which the DM density is approxi-
mately constant.

Our data in general do not constrain the DM profile, as we
are lacking kinematic information at large radii. While for a few
galaxies in our sample, large radii kinematic information for
the stars, globular clusters or planetary nebulae exist in the lit-
erature, we do not include them in this analysis. In this work,
we are not aiming at constraining the DM halo itself, but we
are mainly interested in the effect of including such a halo for
the recovered black hole mass. We leave a more detailed in-
vestigation of the combined DM halo and black hole properties
for these individual galaxies to future work. This also allows
a better direct comparison to the work of GO3 and the models
without a DM halo, presented in the previous section.

Therefore, we assume a fixed DM halo, with fixed param-
eters V. and r.. These are taken from the scaling relations pre-
sented by Thomas et al. (2009), based on the galaxy luminosity:

log r. = 1.54 + 0.63(log(Lp/Le) — 11) (1.7)

log V. = 2.78 + 0.21(log(Lp/Le) — 11 , (7.8)

and given in Table 7.1. These scaling relations have been estab-
lished based on a sample of 12 early-type galaxies in the Coma
cluster with old stellar populations. While our sample does not
have to follow these scaling relationships exactly, they at least
provide well motivated parameters for the DM halo. Younger
early-type galaxies and disk galaxies have been found to have
on average a less massive halo, thus our approach tends to maxi-
mize the DM contribution. We investigate the effect of changing
the assumed DM halo on the central black hole mass further be-
low.

Thus, for each galaxy, we ran a grid of models for varying
M, and M/L with fixed DM halo. We show the two-dimensional
distribution of y? as a function of M, and M/L in Figure 7.2.
The contours are based on the y? values of the underlying grid
points, applying a two-dimensional smoothing spline (Dierckx
1993). The marginalized y* distribution as a function of M, is
shown as the black line in Figure 7.1. We again determined the
best-fit values for M, and M/L from the marginalized distribu-
tion and have given them in Table 7.1.

7.5. Comparison of black hole masses
7.5.1. Comparison with Gebhardt et al. (2003)

As we are using the same data as those in GO3, the only differ-
ence between the work presented in Section 7.4.1 and in GO3 is
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Fig.7.3. Black hole masses given by Gebhardt et al. (2003) vs.
the black hole masses determined in this work (without a dark
halo). The solid line shows a one-to-one correspondence.

the improved modeling code. Thus, we would expect to recover
the same black hole masses as in GO3.

For a comparison with GO3, their masses are first increased
by a factor of 1.09, due to a unit conversion error (Siopis et al.
2009), and then are rescaled, according to the difference in the
adopted distance, assuming M, « d. These masses are listed in
Giiltekin et al. (2009b), apart from NGC 821. This galaxy has
an erroneous black hole mass in G03, corrected in Richstone
et al. (2004). After accounting for the factor of 1.09 and the
distance difference, the black hole mass for NGC 821 is M, =
9.9 x 107 M.

In Figure 7.3 we compare the black hole masses, determined
without including a DM halo, with the black hole masses given
in GO3. In Figure 7.4 we show as blue squares the ratio be-
tween both mass determinations as a function of the GO3 mass.
The marginalized y? distributions for the individual objects are
shown in Figure 7.1, as blue dashed-dotted lines for the current
work masses and as red dashed lines for the GO3 distributions.
Note that the GO3 distributions are offset in y?, such that the
minimum corresponds to the minimum of the y? distribution
including a dark halo, shown in black. The reason for the offset
in y? is mainly due to the larger number of orbits used in the
current modeling, compared to GO3.

For three objects (NGC 821, NGC 2778, and NGC 4697) the
difference in M, is less than 20 %, thus consistent with our pre-
vious work. The internal structures of the dynamical models (as
discussed below) are similar for these three galaxies in the old
and new models, which explains the reason for lack of change.
The small difference is probably due to the presence of numeri-
cal noise in the models. This noise is mainly caused by the use
of a finite number of individual orbits instead of a smooth orbit
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Fig.7.4. Ratio between the M, determined in this work and the
M, given in Gebhardt et al. (2003), as a function of the GO3
M,. The blue squares are for the models without a dark halo,
while the black circles correspond to the result, when a dark
halo is included in the models. The solid line is a one-to-one
correspondence to the GO3 values.

distribution function. The comparison of the y? distribution for
the three objects shows that they are basically consistent, while
the distribution may widen, possibly due to a more complete or-
bit library. Also, for NGC 3377 and NGC 4564 ,the difference
in M, is within the stated uncertainties.

However, for the rest of the objects the new M, is signifi-
cantly offset from the previous estimate, not simply explained
by numerical noise. For two objects, NGC 3384 and NGC 4473,
M, decreases; for the rest there is an increase in M,, by up to
a factor of three. The mean increase for this sample is a fac-
tor of 1.46 with the standard deviation of 0.73. This result is in
line with the findings of Shen & Gebhardt (2010), who found
an increase in the mass by a factor of two for NGC 4649. This
object is included in Figures 7.3 and 7.4 as the highest mass
point. Shen & Gebhardt (2010) attribute the mass difference to
the better orbit sampling in the new models. In particular, they
argue that the old orbit sampling lacks high energy, nearly circu-
lar orbits, which lead to an underestimate of M,. NGC 4649 is a
core galaxy, and it is important to note that all galaxies with an
increase in mass by more than a factor of two are core galaxies
as well. This seems to indicate that the previous orbit sampling
was not able to properly model core galaxies.

To investigate this issue further for our whole sample, we
inspect the internal orbit structure, looking for any clear dif-
ference between the models. To do so, we examine the shape
of the velocity dispersion tensor, represented by the ratio of ra-
dial to tangential dispersion o, /o;. The tangential dispersion in-
cludes contributions from random as well as from ordered mo-
tion; thus, it is given by o7 = o7 + o-é + Vg. In Figure 7.5, we
compare the internal dispersion ratio o, /o, for the best-fit mod-
els presented here, with and without a DM halo (as blue solid

and black dashed dotted lines, respectively), with the ratio for
the models in GO3, shown as red dashed lines. We also indicate
the black hole sphere of influence Rj,s = GM.,o72, assuming
the new M, (without DM halo). The galaxies with consistent
black hole masses, such as NGC 3377 and NGC 4697, also ex-
hibit consistent internal structure. On the other hand, the galax-
ies with the largest mass increase, especially the core galaxies
such as NGC 4291 and NGC 3608 show a clear difference in the
internal structure. First, there is a strong radial bias at large radii
for these galaxies, especially compared to the previous disper-
sion ratio. However, this radial bias is mainly outside the range
for which kinematic data are available and is therefore driven
by the maximization of the entropy. We do not expect these or-
bits to have an influence on the black hole mass determination.
Second, there is a stronger tangential bias inside the black hole
sphere of influence. In particular, the previous models exhibit
a radial bias within R;,¢ for the largest outliers. GO3 only sam-
pled the zero-velocity curve, instead of the whole phase space,
and due to the coarse sampling of drop points they missed the
orbits near the pole that are nearly circular. This sampling then
causes a radial orbital bias. This radial bias is removed in the
models presented here, using a better orbit sampling. An in-
crease in tangential orbits will reduce the projected line-of-sight
velocity dispersion and therefore a more massive black hole is
required to match the observed velocity dispersion profile. On
the other hand, NGC 4473 which shows a decrease in the deter-
mined black hole mass, exhibits a stronger radial bias in the new
modeling compared to GO3. This radial bias is probably caused
by the presence of a nuclear disk in this galaxy.

Thus, we find that the main reason for the change in black
hole mass is the different orbit sampling used, as already found
by Shen & Gebhardt (2010) for NGC 4649. We now cover the
phase space more completely and therefore also include orbits
missed by the previous sampling. This issue is of special impor-
tance for core galaxies, as they often show a significant tangen-
tial orbital bias in their center, i.e., they usually have the largest
o, (G03).

To illustrate this point, we computed the difference of the
dispersion ratio between G03 and this new model in a shell in-
side the black hole sphere of influence:

AR, = fmax [(or/0)6os = (/)] dr,

Fmin

(7.9)

with rpin = 0.1Rjs and rpmax = Rine. This quantity is just a
simple and quick way of quantifying the change in the orbital
structure and is just meant to highlight the relation between the
change in orbital structure and the change in black hole mass. In
Figure 7.6 we plot it against the ratio of the black hole masses
M, /M, gos. There is a clear correlation between the quantities,
confirming our previous argument. We have also tested the ef-
fect of decreasing the number of orbits in the modeling, but saw
no clear influence on the best-fit black hole mass. Thus we con-
firm our previous results in finding that the recovered black hole
mass is not affected by the number of orbits (Gebhardt 2004;
Richstone et al. 2004; Shen & Gebhardt 2010).

This investigation emphasizes the need for a complete or-
bital sampling of phase space for dynamical modeling of galax-
ies, especially of core galaxies.
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Fig.7.5. Ratio of the internal velocity dispersions as a function of radius for the best model of each galaxy. Shown is the ratio
o /o, along the major axis. The result with a DM halo, without a DM halo, and the result of Gebhardt et al. (2003) (without a
dark halo) are shown as the black dashed, blue solid and red dashed lines, respectively. The horizontal dashed line corresponds to
a non-rotating isotropic model. The vertical dashed-dotted line indicates the black hole’s sphere of influence, assuming the black
hole mass, determined without including a DM halo. The vertical dashed lines show the radial extent of the ground-based data.

7.5.2. Effect of a dark matter halo on the determined black
hole mass

The main motivation of this paper is to investigate the effect of
the inclusion of a DM halo in the dynamical modeling on the

the inclusion of a DM halo as a function of the resolution of the

black hole sphere of influence divided by the spatial resolution
of the kinematic observation (Rjn¢/d;.s). For the computation of

determined black hole mass. In Figure 7.7 we show the differ-
ence in black hole mass between the models with and without

Rinr we used the black hole mass including a DM halo (given in
Table 7.1). The spatial resolution is given by the seeing and the
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Fig.7.6. Ratio between the M, determined in this work and the
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cess in radial motion in the internal structure of the models of
Gebhardt et al. (2003), as defined by Equation (7.9). A correla-
tion between both quantities is apparent.

aperture of the HST kinematic observations; thus, des = 0.08
for the STIS data and d,.; = 0.15 for the FOS data.

As expected, there is a general trend of an increase in M,
when a DM halo is included. For five objects, we find almost
no change in M,, while for one object — NGC 2778 — the sig-
nificance of the black hole detection even vanishes, with the
minimum x? for no black hole. The other six galaxies show an
increase in the measured M, between 20% and 80% when a DM
halo is included. The most extreme case is NGC 4473 probably
due to the presence of a nuclear disk, with an increase of a fac-
tor of 1.8 when a DM halo is included. For the whole sample we
find a mean increase of a factor of 1.22 with standard variation
of 0.27. This increase is much less than the factor of more than
two found for M87. In contrast to M87, our data set contains
no stellar kinematic information at large radii but includes HST
data at small radii. Thus, we are better able to probe the region
affected by the presence of the black hole at the center.

In Figure 7.7, there appears to be a trend of a larger bias for
objects where Ry, is less well resolved, as would be expected.
Howeyver, due to the black hole mass uncertainties there is no
statistically significant relation. The most massive galaxy in our
sample, NGC 4649, is not shown in the figure, as it would ap-
pear at Riy¢/des = 20 with no significant change in black hole
mass. M87 would lie at Rins/dres = 1.5 and Mepm/Menopm =
2.8. In contrast to M87, the galaxies in our sample with a less
well resolved sphere of influence exhibiting a smaller change in
the determined M, are less massive and probably reside in less
massive DM halos. This indicates that especially for massive
galaxies properly resolving Rj,s is important to determine M,
under the consideration of DM.

In Figure 7.1, the marginalized y? distributions for the indi-
vidual objects with (solid black line) and without (dotted dashed
blue line) a DM halo are shown. For the five objects with al-
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Fig.7.7. Ratio between the M, without accounting for the DM
halo and the M, including a DM halo in the model, as a function
of the ratio of black hole sphere of influence over the spatial
resolution. The arrow indicates the upper limit for the mass of
NGC 2778 when DM is included. The solid line shows a one-
to-one correspondence between both masses.

most no change in M, (NGC 3377, NGC 3608, NGC 4291,
NGC 4649, and NGC 4697), there is also no change in the y?
(apart from NGC 4649). For the other galaxies, including a rea-
sonable DM halo improves the fit in terms of x2. The most con-
vincing cases are NGC 821 and NGC 3384, where the model
without a DM halo is excluded at more than 3¢ significance.
Thus, while we are not able to constrain the shape of the DM
halo, at least for some galaxies the presence of such a halo
is supported. In total, for six galaxies (NGC 821, NGC 2778,
NGC 3384, NGC 4473, NGC 4564, and NGC 5845), the model
without a DM halo is excluded with at least 20" significance.
The mean increase of the black hole mass goes along with a
decrease of the mass-to-light ratio, as expected. This indicates
the degeneracy present between the stellar mass-to-light ratio
and the DM contribution in dynamical models. For the whole
sample we find a decrease in M/L of 6% with a scatter of 5%.
Even if our choice of DM halo is well motivated by the scal-
ing relations of Thomas et al. (2009), it is basically an ad hoc
assumption we had to make as we do not have the data to ro-
bustly constrain the DM halo profile. To at least test the effect of
changing the assumed DM halo on the black hole mass, we ran
a set of models, changing V., in the logarithmic DM potential.
We restrict ourselves to changing only this one parameter, as we
want to avoid sampling the whole four-dimensional parameter
space. It has also been found that V, and r, are degenerate, espe-
cially if the large radii coverage is poor (Shen & Gebhardt 2010;
Forestell 2009). For each galaxy, we assume a twice as massive
DM halo and a DM halo about half as massive, as well as some
additional values. The results are shown in Figure 7.8. We con-
firm the basic trends of an improved y? for a reasonable massive
halo and an increase in M, for a more massive halo. The range
of given M, approximately covers the range consistent with the
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current data, as long as the DM halo is not constrained for these
galaxies.

7.5.3. Notes on individual galaxies

In the following, we provide more detailed information on the
black holes for some individual galaxies.

NGC 821. There are two recent studies on the DM halo of
this galaxy, providing large radii data. Weijmans et al. (2009)
used SAURON data to measure LOSVDs out to ~ 4 effec-
tive radii. Their assumed DM halo gives Mpy = 9 X 10° M,
within the effective radius (assuming R, = 5.1 kpc), using an
NFW profile. Forestell & Gebhardt (2010) used long-slit data
from the Hobby-Eberly Telescope to measure the LOSVD out
to ~ 2R,. Assuming their power law fit to the DM halo, we find
Mpy = 8 x 10° My within R,. Our assumed DM halo is more
than twice as massive. Thus, M, for the true DM halo should be
contained within the range spanned by our no DM and DM so-
lution. Including these large radii data into the dynamical mod-
els is beyond the scope of this paper. The nuclear supermas-
sive black hole in NGC 821 has been detected as a weak X-ray
source, implying a very weak level of activity (Lx/Lgdd ~ 1078,
Pellegrini et al. 2007). There is also evidence for the presence
of a jet (Fabbiano et al. 2004; Pellegrini et al. 2007).

NGC 2778. This galaxy already had the least confident black
hole detection in GO3. Assuming the value for M, of our no DM
halo model, we do not resolve the black hole’s sphere of influ-
ence (Ripf/dres = 0.2). Including a DM halo in the model im-
proves the fit significantly, but the significance of the black hole
detection disappears. However, the previous M, estimate is still
fully consistent with the 1o~ upper limit of M, u, = 2.99x107 Mo,
that we derive for NGC 2778 under the presence of a DM halo.
This behavior might indicate the need to properly resolve Rin¢
when a DM halo is included to properly determine M,.

NGC 3377. The black hole mass for this galaxy increased
by ~ 70%, compared to GO3, mainly caused by the stronger
widening of the confidence contours at the high-mass end than
at the low-mass end. The previous value is still fully consistent
within 1o. Copin et al. (2004) reported a black hole mass of
M, = 8.3 x 10" M, (for our assumed distance) based on IFU
observations with SAURON and OASIS, also still consistent
with our results within 1o The first detection of a black hole in
NGC 3377 has been reported by Kormendy et al. (1998), based
on ground-based observations. Using an isotropic model, they
found M, = 2.1 x 108 My, and M/Ly = 2.0 (for our assumed
distance), in good agreement with our results. NGC 3377 is a
rapid rotator and close to isotropy, justifying the isotropic as-
sumption for this galaxy. NGC 3377 exhibits a nuclear X-ray
source, showing a jet like feature (Soria et al. 2006).
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Fig.7.9. Same as Figure 7.8 for the second half of the galaxy sample.

NGC 3384. Besides NGC 2778, this is the only other galaxy
for which the sphere of influence is not resolved. While for
NGC 2778 the new code does not lead to a change of the y?
distribution, for NGC 3384 M, decreases. This might indicate
a larger uncertainty in the determination of M, using differ-
ent modeling codes when Ry, is not resolved. NGC 3384 is
the galaxy with the strongest constraints on the presence of a
DM halo. For this galaxy, we ran a grid of models changing r,
as well as V., but we found no change in )(2 for different val-
ues of r.. However, we are able to set a lower limit on V, with
V, >~ 350 km s~! at 1o confidence. The no DM halo model is
excluded at more than 30" confidence (see Figure 7.8).

NGC 4473. NGC 4473 shows evidence for a central stellar
disk both in the imaging and the kinematics, as discussed by
GO03. We followed GO03 and include a central exponential disk
and also assumed a galaxy inclination of 71°, as found for the
disk component. Thus this galaxy is the only case in our sample
not modeled with an edge-on inclination. The presence of the
disk has a distinct influence on the measured black hole mass
causing a relatively large difference between the models with
and without a DM halo.

NGC 4564. This galaxy is known to have a nuclear X-ray
source (Soria et al. 2006), indicating the presence of an ex-
tremely sub-Eddington accreting AGN.

NGC 4649. This object has recently been studied by Shen
& Gebhardt (2010) including a DM halo in the models. In addi-
tion to the stellar kinematics used in this work, they included

globular cluster velocities from Hwang et al. (2008). Thus,
our results are not directly comparable. They report values of
M, = (4.5 +1.0) x 10° when including a DM halo in the models
and M, = (4.3 +0.7) x 10° without a DM halo. Our results for
M, are consistent with their work.

NGC 4697. The black hole mass for this galaxy is basi-
cally unchanged using the modified code and including a DM
halo. This result is consistent with Forestell (2009). She used the
same data and model code as we did, but augmented by kine-
matics of planetary nebulae at large radii (Méndez et al. 2001,
2008, 2009), constraining M, and the DM halo at the same
time. Her best-fit model has M, = 2.1 x 108 My, M/L = 4.35,
V. =388 kms™!, and r. = 9 kpc, assuming a logarithmic halo.
We find identical values for M, and M/L, using slightly differ-
ent DM halo parameters. NGC 4697 has a nuclear point source
detected in X-rays (Soria et al. 2006), showing that its black
hole is active at a low rate.

NGC 5845. While there is a moderate increase in M, when
a DM halo is included in the model, the )(2 distribution flattens
at the high-mass end, due to an increased degeneracy between
M, and M/L. Increasing the mass of the DM halo strongly en-
hances this degeneracy, leading to an almost unconstrained M,
over a wide mass range, until for V., ~ 600 km s~! the minimum
switches to M, ~ 1.7 x 10° My, still with strong degeneracy be-
tween M, and M/L. Kinematic data at large radii, to better con-
strain the DM halo and M/L would be desirable for this galaxy.
The model without a DM halo is excluded with more than 30
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significance for NGC 5845. There is a nuclear X-ray source here
as well (Soria et al. 2006). There is evidence for obscuration of
the black hole by a dusty disk, with the X-ray emission origi-
nating from scattering of the AGN continuum emission on the
surrounding plasma.

7.6. The black hole-bulge relations

As our sample constitutes a significant fraction of the galaxy
sample for which dynamical black hole masses are available,
it is worth looking at the effect of these new black hole mass
measurements on the black hole-spheroid relations, namely the
M, — o, and M, — Ly relationships. We used the sample of
Giiltekin et al. (2009b) as the reference sample, containing 49
M, measurements and 18 upper limits, including our 12 objects.

For the fitting, we used a generalized maximum likelihood
method as described by Giiltekin et al. (2009b, ; see also Woo
etal. (2010)). We minimize the likelihood function § = —21In L,
with £ = []; li(u;, s;) being the product of the likelihoods for
the individual measurements of black hole mass ¢ = log M,
and bulge property s = log o, or s = log Ly. The likelihood for
measuring the mass y; and bulge property s; for given true mass
u and true bulge property s is:

s 53) = f 0. 1 100Q:(s: | 9P| s)duds.  (7.10)

We assume Q,,, O, and P to have a log-normal form, with oo,
and o, corresponding to the measurement uncertainty in the
black hole mass and bulge property, and op = ¢ is the in-
trinsic scatter in the black hole mass-bulge property relation.
Upper limits are incorporated in the fit, following Giiltekin et al.
(2009b). Thus, we minimize

N 2 M
(i — a — Bs;)
S = § 2—'8 +2In €|+ 2 § Inly;, (7.11)

i=1 €oot,i =1
with @ and 3 being the normalization and the slope of the black
hole-bulge relations, etzot’l. = O-ZQ;,,i + O'ZM + Eg, N is the number
of black hole measurements, M is the number of upper limits,
and [ ; is the likelihood of the upper limit as in Giiltekin et al.
(2009b).

We first fit the M, — 0. and M, — Ly relationships using the
sample of Giiltekin et al. (2009b), finding identical results. We
then updated their black hole masses with our new values for
the 12 objects in our sample. We find

log(M./My) = (8.18+0.06) + (4.32+0.31) log(o./200 km s7h
(7.12)
with intrinsic scatter ¢y = 0.44 + 0.06 and

log(M,/Mpg) = (9.01 £0.10) + (1.06 + 0.15)log(Ly /10" Ly, y)

(7.13)

with intrinsic scatter € = 0.41 + 0.04. They are shown in
Figure 7.10.

Note that both relations are not based on exactly the same

samples. As in Giiltekin et al. (2009b), for the determination

of the M, — Ly relationship we restricted the sample to ellip-

tical and SO galaxies with reliable bulge—disk decomposition.
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When using the same restricted subsample for the M, — o, re-
lationship, we find a shallower slope (8 = 3.80 + 0.33) and a
reduced intrinsic scatter (¢y = 0.34 + 0.05), lower than for the
M, — Ly relationship for the same sample. Restricting the sam-
ple in this manner is supported by observations that suggest that
spiral galaxies do not follow the M, — o relation of ellipticals
(Greene et al. 2010).

We also used a generalized least squares method to incor-
porate measurement uncertainties in both variables and intrinsic
scatter as described in Tremaine et al. (2002), omitting the upper
limits, which yields consistent results. Compared to Giiltekin
et al. (2009b), we find only a slight change for the best-fit.
While the slope of the relation is consistent, the normalization
increased slightly as well as the intrinsic scatter in both rela-
tions. We also fitted the sample of Giiltekin et al. (2009b) with
our updated black hole masses, without accounting for a DM
halo. Most of the change in the M, — 0. and M, — Ly rela-
tionships is caused by the improved masses. The effect of the
inclusion of a DM halo on these relationships is marginal.

However, this is not a full correction of the black hole-bulge
relationships for the effect of a DM halo on the black hole
masses, as it is restricted to our sample of 12 galaxies. The rest
of the galaxies with stellar dynamical black hole mass measure-
ments potentially suffer from the same systematic bias. Ideally,
a correction would consist of a re-modeling of these galaxies
including a DM halo, as performed in this work for the sam-
ple of GO3. However, we can use Figure 7.7 as a guideline for
an average correction. Figure 7.7 indicates that the correction
factor depends on the resolution of the sphere of influence. For
Rine/dres 2 3 including or ignoring a DM halo in the modeling
gives consistent results, while for lower values there is on aver-
age a systematic bias with a mean (M, py/Menopm) = 1.5 for
our sample.

To estimate the effect on the black hole-bulge relations, we
increased all stellar dynamical black hole mass measurements
in the sample of Giiltekin et al. (2009b) with Riy¢/dies < 3 by
this average factor and re-fitted the relations. To investigate the
pure change due to the DM halo, we also fitted the black hole-
bulge relations to the sample of Giiltekin et al. (2009b), but with
M, of the 12 galaxies of our work replaced by our results with-
out a DM halo. Compared to the best-fit to this sample, we
found a slightly increased slope, a consistent intrinsic scatter,
and an increase in normalization by 0.04 dex. We found a nor-
malization, slope, and intrinsic scatter of (8.21,4.38,0.42) for
the M, — o and (9.05,1.07,0.41) for the M, — Ly relationship.

Additionally, we fitted only our sample with the values for
M, with and without including a DM halo in the models. We
recovered an increase in the normalization of ~ 0.07 dex, cor-
responding to the mean increase in M, in the sample, while the
slope is consistent and the intrinsic scatter decreases.

7.7. Conclusions

We investigate the influence of accounting for the presence of
a DM halo in the stellar dynamical modeling of galaxies on the
measured black hole masses. We use a sample of 12 galaxies,
already analyzed by Gebhardt et al. (2003), which have ground



Schulze & Gebhardt: Effect of a DM halo on the determination of dynamical black hole masses

1010
with DM N

10° i
3
E 108

L]
=

107 i

6 I I L I I
10 80 100 200 300 400
0. [km/s]

109

1010

with DM

10°

= 108

107

6 . . . .
10 9.0 9.5 10.0 10.5 11.0

log Ly [LOV}
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including a DM halo for our 12 galaxies. The dashed line and crosses are again from Giiltekin et al. (2009b).

based as well as high-resolution HST observations of the stellar
kinematics to address this issue.

We model these galaxies without and with the presence of a
DM halo. In the first case we found a significant difference of
the measured black hole masses between our previous results
for a large fraction of the sample. For most of the objects the
mass increased compared to the values given by Gebhardt et al.
(2003). We ascribe this difference to the improved code, exhibit-
ing a better coverage of the phase space for the generated orbit
library. This shows the importance of a dense coverage of phase
space in the dynamical models.

Second, we include a reasonable DM halo into the mod-
els, using a scaling relationship based on the galaxy luminosity
(Thomas et al. 2009). We find an increase of the measured black
hole mass, but much less than what has been found for M87
and NGC 6086. For these two galaxies, kinematic information
is available only at large radii, whereas for our sample we have
high-resolution data covering the central parts of the galaxies.
Thus, the black hole mass is better constrained by central kine-
matic observations and less affected by the presence of a DM
halo in the models.

Using different massive DM halos for the same galaxy, we
confirm the trend of an increase of the recovered black hole
mass for a more massive halo as well as a decrease of the mass-
to-light ratio. Based on a y? analysis, the presence of a DM
halo is implied for five of the 12 galaxies with at least 20 sig-
nificance, although we are not able to constrain the shape of the
DM halo.

We study the consequence of our new black hole mass mea-
surements on the M, — 0. and M, — Ly relationships, updating
the sample of Giiltekin et al. (2009b) with our results. We found
only a mild change in the best-fit values, still consistent with
the previous estimate, with a slight increase in the normaliza-
tion and the intrinsic scatter. We estimated the total effect of a
black hole mass increase for galaxies studied by stellar dynam-

ics by accounting for a DM halo which will lead to an increase
in the normalization by ~ 0.04 — 0.07 dex.

Even if our sample shows only a mild influence of the DM
halo on the black hole mass, a DM halo is clearly present. Thus
it is necessary to take it into account in the modeling of the
galaxy to avoid a systematic bias.
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Chapter 8

Conclusions & Outlook

8.1. Summary

In this thesis I studied various topics in the general framework
of supermassive black holes, their properties and demographics.
These range from detailed dynamical studies of local quiescent
galaxies and their central black holes, over a statistical study of
the z < 0.3 optical type 1 AGN population, to an investigation
on black hole - galaxy coevolution, affecting both, quiescent and
active black holes. My results can be summarised as follows:

8.1.1. Local AGN distribution functions

I utilised the well defined optically selected type 1 AGN sam-
ple of the Hamburg/ESO survey for an investigation of the local
(z = 0) AGN and active SMBH demography. The sample con-
tains 329 quasars and Seyfert 1 galaxies with z < 0.3, selected
from an effective area of almost 7000 deg?. An important sta-
tistical quantity are the distribution functions of the AGN prop-
erties. These properties are first of all the AGN luminosity, but
also the direct physical quantities, black hole mass and accre-
tion rate.

In Chapter 2 I determined the local AGN luminosity func-
tion (LF), using common methods. I used broad band B; mag-
nitudes and AGN broad Ha emission line luminosities, giv-
ing consistent results. I combined my results with the low-
luminosity AGN luminosity function from the SDSS by Hao
et al. (2005a) and constructed a single z = 0 AGN LF span-
ning more than 4 orders of magnitude. My work provides a
well-determined local optical AGNLF and thereby resolves a
long-standing problem of AGN demographics. The shape of
the local AGNLF shows only mild curvature, distinct from the
LF at higher redshift. This is strong evidence for luminosity-
dependent evolution and therefore for “AGN cosmic downsiz-
ing”.

However, the knowledge of the AGNLF alone is not suf-
ficient for a full understanding of black hole demographics
and black hole growth. In the LF, black hole mass and black
hole accretion rate are degenerate, and a separate assessment
of their distribution functions is required. In Chapter 3 I tack-
led this issue for the same low-redshift type 1 AGN sample of
the Hamburg/ESO survey. Firstly, I estimated black hole masses
and Eddington ratios for the same low redshift AGN sample,
employing the “virial method* on the broad HS line. Secondly,
it is important to clearly define what we mean by an active black
hole. Detailed studies of apparently normal galaxies often reveal

AGN at low levels (e.g. Ho et al. 1997; Soria et al. 2006; Gallo
et al. 2010). I chose to define nuclear activity by the Eddington
ratio and employ a lower Eddington ratio cut of 0.01 as a practi-
cal definition of an active black hole. With this definition, flux-
limited AGN samples are systematically devoid of active black
holes with low mass and low Eddington ratio, as they are se-
lected on AGN luminosity and not on mass. I developed a max-
imum likelihood fitting method to estimate the intrinsic active
black hole mass function (BHMF) and the Eddington ratio dis-
tribution function (ERDF) simultaneously. This approach takes
the sample selection function fully into account and thus avoids
a selection bias. I applied this method to the low-redshift HES
AGN sample.

The intrinsic ERDF is well-characterised by a Schechter
function with a low-A slope of @, ~ —1.9, thus with a wide
distribution of Eddington ratios. I compared my results for the
local active BHMF with the local total BHMF and found a de-
creasing active fraction with increasing black hole mass. This
shows that presently the most massive black holes are less ac-
tive, while low mass black holes exhibit a high degree of ac-
tivity, supporting the current picture of anti-hierarchical growth
of black holes. Further support for this picture comes from a
comparison of our local active BHMF with the active BHMF at
higher redshift from Vestergaard et al. (2008) and Vestergaard
& Osmer (2009).

I confirmed the results from the maximum likelihood fits by
performing extensive Monte Carlo simulations, comparing the
predicted observable distributions with the observations.

In Chapter 4 I extended the maximum likelihood fitting
method to incorporate measurement uncertainties, in particu-
lar the intrinsic scatter in the virial method. I found tenta-
tive evidence for a small intrinsic scatter in the virial method,
ovyMm < 0.21 at 1o confidence. This is consistent with an inde-
pendent direct estimate of ovy. However, as this is a prelimi-
nary result, I have to verify or refute it in the future.

8.1.2. Selection effects in the black hole - bulge relations

The observed black hole - bulge relations and especially their
redshift evolution put essential constraints on theoretical mod-
els of coeval growth of black holes and galaxies and on galaxy
evolution models in general. Determining these relations obser-
vationally out to high redshift requires a proper handle on the
underlying systematics and selection effects. In Chapter 5 I in-
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vestigated the issue of selection effects in more detail, starting
from the bivariate distribution function of black hole mass and
spheroid property and applying a survey selection function to
this distribution function. I identified several sources of poten-
tial bias.

e Only a fraction of all black holes are in an active stage at a
particular point in time, and this fraction may depend on the
mass of the black hole. In this case, there will be a bias on
the AGN sample, depending on the mass dependence of the
active fraction.

e AGN samples are selected based on their AGN luminos-
ity, which is correlated with the black hole mass. This se-
lection also modifies the bivariate distribution function and
may bias the analysis. This bias is most severe for a bright
AGN luminosity limit of the respective sample. Modelling
this bias requires knowledge on the underlying distribution
functions. These are reasonably well known at low redshift
but only poorly known at high redshift.

e The cosmic evolution of the underlying distribution func-
tions introduces an additional uncertainty, as the predicted
sample bias changes with redshift. Without proper knowl-
edge of the underlying distribution functions evolution in
the black hole bulge relations and in the AGN population
itself can be degenerate.

The deeper cause for all these sources of bias is the intrinsic
scatter in the black hole-bulge relations. The size of the intrinsic
scatter critically regulates the magnitude of the bias.

The mean offset from the local relation as well as the mean
relation for the black hole mass at a given galaxy property are
affected by these selection effects. On the other hand, the mean
galaxy property at a given black hole mass is unaffected, offer-
ing an opportunity to circumvent AGN selection effects if the
bivariate distribution is known.

I illustrated my approach to tackle the black hole - bulge
relations by comparing particular model predictions with ob-
servational studies. A very strong positive evolution is implau-
sible, whereas a range from mild evolution to no evolution at all
is consistent with current observations. This work demonstrates
the importance and complexity of sample selection effects on
the study of the black hole bulge relations at high redshift. It
should make a contribution to a better understanding of the high
redshift black hole - bulge relations and the conclusions that can
be drawn from its observation.

In Chapter 6 I used the framework presented before to de-
velop a maximum likelihood fitting approach that can recover
the intrinsic black hole-bulge relation from an observational
sample that is affected by sample selection effects. I took care to
include the effect of measurement uncertainties on the apparent
black hole-bulge relation. I tested this method on Monte Carlo
samples, thereby verifying its reliability, and presented a first
application to observational studies. This method supplies an
avenue for a strict statistical investigation of observational sam-
ples, rigorously accounting for the inherent selection effects.
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8.1.3. Black hole masses from dynamical modelling with
dark matter

While our knowledge of the black hole - bulge relations at high
redshift is very limited and affected by systematics and selection
effects, even the local relations are still not free of possible sys-
tematic effects. One such systematic effect on the determination
of the black hole mass is the inclusion or exclusion of a dark
matter halo in stellar dynamical modelling. This issue has been
raised by Gebhardt & Thomas (2009) for the massive galaxy
M87. I investigated the influence of accounting for a dark mat-
ter halo on stellar dynamical black hole masses in more detail.
For this purpose I carefully modelled a sample of 12 galaxies,
already previously analysed by Gebhardt et al. (2003), includ-
ing and excluding a dark matter halo in the model. For the latter
case I found a significant difference in the black hole mass for a
large fraction of the objects, compared with the previous analy-
sis. This difference is induced by the improved dynamical mod-
elling code used, compared to previous work that apparently
suffered from an incomplete orbit library. This emphasises the
importance of a dense coverage of the phase space of the orbits,
i.e. a complete orbit library.

When a dark matter halo is included into the modelling the
determined black hole mass increases, but less than for M87. |
found evidence that the systematic bias can be significant when
the black hole’s sphere of influence is only poorly resolved by
the observations, whereas almost no bias in induced when the
sphere of influence is well resolved. This result is further sup-
ported by the recent work of Gebhardt et al. (2011) on M&7,
using higher spatial resolution observations for the central re-
gion of the galaxy. With these improved data the dynamical
black hole mass determination is not affected by the treatment
of the dark matter halo, as it was the case before in the study by
Gebhardt & Thomas (2009).

I also inspected the ramifications of the updated black hole
masses for the black hole - bulge relations. While the pure inclu-
sion of the updated masses only causes a mild change, account-
ing for a dark matter halo for the full stellar dynamical black
hole mass sample may lead to an increase in the normalisation
in the M, — o, relation by ~ 0.04 — 0.07 dex.

8.2. Future perspectives

8.2.1. Systematics in the quiescent black hole - bulge
relations

Before we can draw firm conclusions on the redshift evolution
in the black hole - bulge relations, we have to ensure that the lo-
cal relations itself are properly well known and are not affected
by systematics and selection effects. I demonstrated that stellar
dynamical black hole masses can be erroneous when an incom-
plete orbit library is used for the dynamical modelling and/or
when the presence of a dark matter halo is neglected in the mod-
elling. I present updated black hole masses for a sample of 12
galaxies, but there are more galaxies that may be affected by
these systematics. A useful service would be to re-model more
galaxies that are suspected to be affected by these effects consis-
tently with an up-to-date dynamical modelling code, including
a dark matter halo.
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A potentially even more severe effect can be caused by se-
lection effects on the local quiescent black hole sample. I briefly
discussed the influence of a black hole’s sphere of influence re-
striction on the inferred relations. A more detailed investigation
of this issue will be valuable. In particular it should be studied
whether the observed tight log-linear relation could be an arti-
fact of the sample selection process and there may be a much
wider intrinsic relation, as suggested by Batcheldor (2010). It is
an interesting question if this potential intrinsic relation can be
inferred from current observations when the selection function
is properly taken into account. Furthermore, the results from
AGN samples have to be considered as well, as these are unaf-
fected by this kind of selection effect.

8.2.2. Constrain the growth of black holes through the
cosmic ages

In this thesis, I developed a simple maximum likelihood method
to determine the active BHMF and the ERDF jointly, and ap-
plied it to the local type 1 AGN sample from the Hamburg/ESO
survey. However, the approach itself is very general and can
easily be applied to other samples to determine the two distri-
bution functions. Of special interest is the redshift evolution of
the two functions, i.e. their determination from the local vol-
ume up to high redshift. This will break the degeneracy between
black hole mass and accretion rate in the luminosity function
and therefore can directly reveal the mass evolution and an AGN
downsizing behaviour in black hole mass. Furthermore, the evo-
lution of the ERDF may contain information about the physical
mechanism of the accretion process in AGN and their redshift
evolution.

A comprehensive study requires the coverage of a wide
redshift range and in particular also a wide luminosity range,
including the faint end of the luminosity function (LF).
Otherwise, only the high mass, high Eddington ratio regime
can be accessed. This is not achievable within a single sur-
vey, but demands the usage of multiple surveys. These surveys
should ideally already provide a well-defined sample for which
the AGNLF is already determined and the existence of spectral
measurements for the black hole mass estimation. There are a
number of surveys that are perfectly suited for such a global
investigation of black hole growth through the cosmic ages.

The Hamburg/ESO survey (Wisotzki et al. 2000) provides
especially the low redshift zero point for the study, established
in this thesis, but also covers the bright end of the LF for z < 3.
The LF for a subsample was presented in Wisotzki (2000) and
in this thesis, black hole masses for z < 0.3 are presented in this
thesis, the rest still has to be determined. The SDSS AGN lu-
minosity function (Richards et al. 2006) covers in particular the
bright end of the LF over a wide redshift range 0.3 < z < 5.
Black hole masses have been estimated for the SDSS QSOs
(Vestergaard et al. 2008; Shen et al. 2008; Rafiee & Hall 2011).
Kelly et al. (2010) already determined the BHMF and ERDF
from this sample, using a different approach to ours. However,
these surveys are not deep enough to cover the faint end of
the LF at high redshift. Therefore they need to be augmented
by deep surveys. This is in particular the VVDS AGN sample
(Gavignaud et al. 2006). The LF was determined by Bongiorno
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et al. (2007), black hole mass estimates are given in Gavignaud
et al. (2008). Also the COSMOS survey provides a faint AGN
sample (Trump et al. 2009a; Merloni et al. 2010). The LF is
not yet determined, but black hole masses have been estimated
(Trump et al. 2009b; Merloni et al. 2010). Finally, also the
2SLAQ AGN sample (Croom et al. 2009a) can be added. The
LF is presented in Croom et al. (2009b), the black hole masses
in Fine et al. (2008, 2010). In general, also other samples could
be included, as long as they constitute a well-defined sample
and posses spectral measurements to estimate black hole masses
and Eddington ratios. In the future, the HETDEX survey will
make an important contribution to the faint end of the LF, and
thus to the coverage of intermediate to low black hole masses
and Eddington ratios. The AGN LF can be included as an addi-
tional observational constraint in redshift and luminosity ranges
that are otherwise less well covered. Of course, special care has
to be taken when combining different samples with different se-
lection functions. Also, it needs to be ensured that the black hole
mass estimates are as consistent as possible to avoid systematic
effects and artifacts.

In the end, the combination of these samples will allow
an unprecedented determination of the two underlying physical
distribution functions of the AGN population and will bring our
currently poor knowledge of the BHMF and ERDF to a similar
level as that of the optical AGNLF.

8.2.3. Black hole growth in low luminosity AGN

The local BHMF and ERDF presented in this thesis are well
established at high and intermediate masses and Eddington ra-
tios, but suffer from low number statistics in the low mass / low
Eddington ratio regime. This is caused by the lower luminosity
limit of the Hamburg/ESO survey sample. Probing fainter lumi-
nosities would resolve this issue. A better coverage of the low
mass, low Eddington ratio regime will also allow to probe for
a mass dependence in the ERDF or an Eddington ratio depen-
dence in the BHMF. Such a faint type 1 AGN sample can be
extracted from the SDSS galaxy catalogue (Hao et al. 2005b;
Greene & Ho 2007), which will directly continue the AGN lu-
minosity coverage to low levels. This will improve the deter-
mination of the local BHMF and ERDF, especially at the low
mass, low Eddington ratio end.

8.2.4. Black hole growth in obscured and unobscured AGN

Broad line AGN samples do not provide a complete census
of growing black holes, as obscured (type 2) AGN are miss-
ing from these samples. This AGN class can be selected from
galaxy samples using emission-line diagnostic diagrams. The
local active BHMF and also the ERDF of type 2 AGN have al-
ready been studied before (Heckman et al. 2004; Yu et al. 2005;
Kauffmann & Heckman 2009), but not jointly, but rather by em-
ploying a simple binning approach. An interesting prospect is to
use either their data or an updated type 2 AGN sample, based
on the SDSS DR7, to determine the active BHMF and ERDF of
type 2 AGN jointly by my maximum likelihood approach, thus
consistent with the type 1 AGN sample. In particular, this can be
combined with my results on the type 1 AGN sample to derive at
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Fig. 8.1. Illustrative prediction of the type 1 + type 2 AGN active BHMF (left panel) and ERDF (right panel), derived from our
type 1 AGN distribution functions and applying the luminosity dependent obscuration correction from Hasinger (2008). The solid
line shows the type 1 + type 2 AGN distribution functions and the dashed line gives the type 1 AGN only distribution functions.

a full census of all local active black holes, directly comparable
to theoretical model predictions. Also differences in the black
hole properties of type 1 and type 2 AGN can be investigated.
Furthermore, the type 2 fraction is known to be luminosity de-
pendent, decreasing with increasing luminosity (e.g. Simpson
2005; Hasinger 2008). This study would be able to distinguish
between a true luminosity dependence, a black hole mass de-
pendence or an Eddington ratio dependence of the type 2 frac-
tion. This should improve our picture of AGN unification and
their physical drivers.

As an illustration, Fig. 8.1 shows a prediction for the total
(type 1 and type 2) BHMF and ERDF, applying the luminosity
dependent type 2 fraction from Hasinger (2008) to the type 1
BHMF and ERDF determined in this thesis. Note that the X-
ray type 2 fraction may miss a population of optically identi-
fied obscured AGN (e.g. Reyes et al. 2008) and thus Fig. 8.1
should only be taken as illustrative outlook on the result of such
an analysis. For a true luminosity dependence both, BHMF and
ERDF for the total population, should be steeper at the low mass
/ low Eddington ratio end, compared with the type 1 AGN dis-
tribution functions.
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