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Abstract

Anthropogenic activities such as continuous landscape changes threaten biodiversity

at both local and regional scales. Metacommunity models attempt to combine these

two scales and continuously contribute to a better mechanistic understanding of how

spatial processes and constraints, such as fragmentation, affect biodiversity. There is a

strong consensus that such structural changes of the landscape tend to negatively ef-

fect the stability of metacommunities. However, in particular the interplay of complex

trophic communities and landscape structure is not yet fully understood.

In this present dissertation, a metacommunity approach is used based on a dy-

namic and spatially explicit model that integrates population dynamics at the local

scale and dispersal dynamics at the regional scale. This approach allows the assess-

ment of complex spatial landscape components such as habitat clustering on com-

plex species communities, as well as the analysis of population dynamics of a single

species. In addition to the impact of a fixed landscape structure, periodic environmen-

tal disturbances are also considered, where a periodical change of habitat availability,

temporally alters landscape structure, such as the seasonal drying of a water body.

On the local scale, the model results suggest that large-bodied animal species, such

as predator species at high trophic positions, are more prone to extinction in a state of

large patch isolation than smaller species at lower trophic levels. Increased metabolic

losses for species with a lower body mass lead to increased energy limitation for

species on higher trophic levels and serves as an explanation for a predominant loss

of these species. This effect is particularly pronounced for food webs, where species

are more sensitive to increased metabolic losses through dispersal and a change in

landscape structure. In addition to the impact of species composition in a food web

for diversity, the strength of local foraging interactions likewise affect the synchro-

nization of population dynamics. A reduced predation pressure leads to more asyn-

chronous population dynamics, beneficial for the stability of population dynamics as

it reduces the risk of correlated extinction events among habitats. On the regional

scale, two landscape aspects, which are the mean patch isolation and the formation

of local clusters of two patches, promote an increase in V-diversity. Yet, the individ-

ual composition and robustness of the local species community equally explain a large
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proportion of the observed diversity patterns. A combination of periodic environmen-

tal disturbance and patch isolation has a particular impact on population dynamics of

a species. While the periodic disturbance has a synchronizing effect, it can even su-

perimpose emerging asynchronous dynamics in a state of large patch isolation and

unifies trends in synchronization between different species communities.

In summary, the findings underline a large local impact of species composition and

interactions on local diversity patterns of a metacommunity. In comparison, landscape

structures such as fragmentation have a negligible effect on local diversity patterns,

but increase their impact for regional diversity patterns. In contrast, at the level of

population dynamics, regional characteristics such as periodic environmental distur-

bance and patch isolation have a particularly strong impact and contribute substan-

tially to the understanding of the stability of population dynamics in a metacommu-

nity. These studies demonstrate once again the complexity of our ecosystems and the

need for further analysis for a better understanding of our surrounding environment

and more targeted conservation of biodiversity.
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Zusammenfassung
Folgen von lokalen und regionalen Prozessen auf die Stabilität von

Metagemeinschaften

Seit geraumer Zeit prägt der Mensch seine Umwelt und greift in die Struktur von

Landschaften ein. In den letzten Jahrzehnten wurde die Landschaftsnutzung inten-

siviert und Ökosyteme weltweit anthropogen überprägt. Solche Veränderungen der

Landschaft sind mit Verantwortlich für den derzeit rapiden Verlust an Biodiversität

auf lokaler wie regionaler Ebene. Metagemeinschafts-Modelle versuchen diese beiden

Ebenen zu kombinieren und kontinuierlich zu einem besseren mechanistischen Ver-

ständnis beizutragen, wie räumliche Prozesse, so z. B. Fragmentierung von Biotopen,

die Biodiversität beeinflussen. Es besteht dabei ein großer Konsens, dass sich solche

Änderungen der Landschaft tendenziell negativ auf die Stabilität von Metagemein-

schaften auswirken. Jedoch ist insbesondere das Zusammenspiel von komplexen tro-

phischen Gemeinschaften und räumlichen Prozessen längst nicht vollständig verstan-

den.

In der vorliegenden Arbeit wird ein Metagemeinschafts-Modellansatz verwen-

det, der auf einem dynamischen und räumlich expliziten Modell basiert, das Popula-

tionsdynamiken auf der lokalen Ebene und Migrationsdynamiken auf der regionalen

Ebene integriert. Dieser Ansatz erlaubt die Bewertung komplexer räumlicher Land-

schaftskomponenten wie z. B. die Auswirkung von Habitatsclustern auf Populations-

dynamiken einzelner Arten bis hin zur Diversität komplexer Artengemeinschaften.

Zusätzlich zum Einfluss von einzelner konstanter räumlicher Strukturen werden auch

periodische Umweltstörungen berücksichtigt, bei der ein Wechsel der Habitatverfüg-

barkeit, die räumliche Struktur der Landschaft temporär verändert, wie z. B. die Aus-

trocknung eines Gewässers.

Auf der lokalen Ebene deuten die Modellergebnisse darauf hin, dass Tierarten mit

einer großen Körpermasse, wie z. B. Raubtierarten in höheren trophischen Positio-

nen, in einem Zustand großer Habitat-Isolation stärker vom Aussterben bedroht sind,

als Arten mit geringer Körpermasse auf unteren trophischen Ebenen. Arten mit einer

geringerer Körpermasse haben einen erhöhten metabolischen Verlust, der zu einer

Energielimitierung auf den höheren trophischen Ebenen führt. Dies kann eine Erk-

lärung dafür sein, dass Arten mit großer Körpermasse ein höheres Aussterberisiko
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in den Modellergebnissen aufweisen. Dieser Effekt ist vor allem in Nahrungsnet-

zen ausgeprägt, bei denen Arten empfindlicher auf metabolische Verluste durch Mi-

gration und eine Veränderung der Habitat Struktur reagieren. Neben der Bedeu-

tung der Zusammensetzung der Arten eines Nahrungsnetzes für die Diversität, haben

lokale Fraßinteraktionen ebenfalls Auswirkungen auf die Synchronisierung von Pop-

ulationsdynamiken. Ein geringerer Fraßdruck führt zu mehr asynchronen Popula-

tionsdynamiken, die diese Dynamiken einer Metapopulation stabilisiert, sodass das

Risiko von Aussterbeereignissen einzelner Arten sinkt. Auf der regionalen Ebene

führen als landschaftliche Aspekte, neben der mittleren Habitat-Isolation, ebenso die

Bildung von lokalen Clustern aus zwei Habitaten zu einer Zunahme der Beta-Diversi-

tät. Jedoch erklären die individuelle Zusammensetzung und Robustheit der lokalen

Arten- gemeinschaft gleichermaßen einen großen Anteil der zu beobachteten Diver-

sitätsmuster. Eine Kombination aus periodischen Umweltstörungen und Habitat-Isola-

tion hat insbesondere einen Einfluss auf die Populationsdynamiken einzelner Arten.

Populationsdynamiken können durch periodische Umweltstörungen synchronisiert

werden, und dabei die sonst auftauchende asynchronen Populationsdynamiken bei

einer größeren Habitat-Isolation überlagern. Die dadurch vereinheitlichen Trends in

der Synchronisierung erhöhen das Risiko korrelierter Aussterbeereignisse einer Art.

Zusammenfassend lassen sich zwei große Einflussfaktoren auf die lokalen Diver-

sitätsmuster der Metagemeinschaften feststellen. Zum Einen die lokale Artenzusam-

mensetzung und zum Anderen die Interaktionen der Arten. Im Vergleich dazu, haben

räumliche Komponenten wie die Fragmentierung der Landschaft einen vernachläs-

sigbaren Einfluss auf die lokalen Diversitätsmuster und gewinnen erst für regionale

Diversitätsmuster an Gewicht. Im Gegensatz dazu spielen auf der Ebene der Popula-

tionsdynamik besonders regionale Eigenschaften, wie die periodische Umweltstörung

und Habitat-Isolation, eine Rolle und tragen wesentlich zum Verständnis der Stabilität

von Populationsdynamiken der Metagemeinschaft bei. Diese Untersuchungen zeigen

einmal mehr die Komplexität unserer Ökosysteme und die Notwendigkeit weiterer

Analysen für ein besseres Verständnis unserer umgebenen Umwelt und gezielteren

Schutz der Biodiversität.
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Chapter 1

General Introduction

A serious biodiversity decline threatens species communities worldwide (Pimm et al.,

2014). The Millennium Report (Assessment, 2005) identified major causes for this on-

going decline including habitat change, climate change, invasive species, over-exploi-

tation and pollution. While each of these causes contribute to the biodiversity decline,

the magnitude of their impact varies depending on the ecosystem and local condi-

tions. By assessing the impact of individual causes on the coexistence of species com-

munities, on both local and regional scales, we gain a better understanding of critical

metacommunity processes and can develop more targeted biodiversity conservation

strategies in the future.

1.1 Metacommunities in Ecology

In ecology, metacommunities refer to species communities that interact with each

other on a local and a regional scale (Figure 1.1), with a variety of processes influ-

encing species composition and distribution. At the local scale, ecological processes

such as intra- and interspecific competition or trophic interactions are known to play

a key role in structuring the composition of a local community (Connell, 1971, 1978;

Tilman, 1982). These processes are the local basis for the coexistence of a diverse

species community. At the regional scale, landscape-level processes such as land-

scape fragmentation, seasonality of environmental conditions, or habitat loss affect

the distribution and interaction between different species and thus structure meta-

communities (Cuesta et al., 2017). The interaction between local and regional scales

can be illustrated based on the example of dispersal limitation. Empirical experiments
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(e.g. Burke and Nol (1998); Tilman (1997)) demonstrate that species local diversity (lo-

cal species richness) increases if dispersal rates are high (less dispersal limitation), but

there is still a strong selection pressure on the local scale due to interspecific competi-

tion and soil conditions. Therefore, an approach considering both scales is needed to

understand which regional and local processes support the persistence and diversity

of species communities (Leibold and Chase, 2017).

Dispersal in metacommunities

Dispersal is a complex process, linking the local and regional scale of a metacommu-

nity. Causes and effects of dispersal are species-specific ranging from the individual

behavioral level to synchronized passive wind dispersal and act on the two differ-

ent scales (Bowler and Benton, 2005; Schlägel et al., 2020). Local interactions between

species, such as predation pressure or competition within a habitat, are drivers for

species to leave or stay in a patch (Bowler and Benton, 2005). At the regional scale,

species have further developed capabilities to adapt to e.g. changing resource avail-

ability of a landscape and adjust their dispersal accordingly (García et al., 2011). As a

result, a tremendous variety of dispersal strategies have evolved based on individual

species properties in response to changing local and regional conditions.

Despite this, there are successful theoretical approaches trying to predict a general

relationship between dispersal rate (used here as a proxy for patch isolation or dis-

tance among patches) and species local diversity, which assume a unimodal pattern

(Cadotte et al., 2006). The latter is based on the following reasoning: If the rate of dis-

persal for a species is limited, then the species is more isolated and can be restricted

to fewer resources or cannot be rescued through recolonization (Gotelli, 1991). This

explains the differences in the local diversity of plant communities between main-

land and isolated islands (Kreft et al., 2008). Yet, when dispersal rates are high, the

synchronization of population dynamics between habitat patches increases the risk

of correlated extinctions for a species in multiple patches (Gouhier et al., 2010), or

may enhance regional competition and decrease diversity (Matthiessen et al., 2010).

Consequently, intermediate dispersal rates are supposed to be the most beneficial for

species local diversity (Mouquet and Loreau, 2002). However, the difficulty of empir-

ical measurements and a lack of empirical examples make it challenging to verify this
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hypothesis (LeCraw et al., 2014).

FIGURE 1.1: a) A schematic example of a spatial network of habitat
patches where each habitat comprise a network of species interactions
forming a meta-food web. b) Simplified schematic example of a lo-
cal food web comprising the local species interactions. The impact
of landscape properties, such as mean patch isolation, the number of
patches, and patch availability, on metacommunities is evaluated by
two measures of stability. First, a measure for biodiversity that evalu-
ates the persistence of species at local and regional scale and, second,
a measure quantifying population dynamics also at local and regional
scale. - Solid lines: dispersal links among patches constantly available
for species; Dashed lines: dispersal links among patches temporally
available for species; Solid circle: constantly available patch for species;

Dashed circle: temporally available patch for species;

1.2 Regional complexity

Spatial processes in a metacommunity can influence the coexistence of predator and

prey species. For example, early classic experiments show that integrating disper-

sal for a predator and prey species compared to a non-spatial approach allows both

species to coexist, which is even further stabilized by larger dispersal rates for the

prey species (Hastings, 1977; Huffaker, 1958). However, whether spatial complexity

has a stabilizing or destabilizing effect usually depends on more than a single pro-

cess (Amarasekare, 2008; Leibold and Chase, 2017). For instance, the dispersal rates of
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both predator and prey species, the patch arrangements of a landscape, the strategy

of dispersal, and fluctuations of the environment can all affect coexistence in a species

community (Altermatt and Holyoak, 2012; Cooper et al.; Fahrig, 2003; Gouhier et al.,

2010; Gramlich et al., 2016; Haegeman and Loreau, 2014).

Structure of landscapes

A key component influencing biodiversity and population dynamics is the structure

and configuration of landscapes. Initial theoretical approaches on metacommunities

considered few habitats with regular spatial structures such as rectangular grids or

symmetrical habitat structures (e.g. Briggs and Hoopes (2004)). Over time it has been

recognized that the geometric position of a habitat and its local environment both

have an impact on a metacommunity: For example, that local clustering of habitats

can increase regional diversity (Altermatt and Holyoak, 2012). Thus a more realistic

approach to studying the impact of complex landscapes is to include the explicit po-

sitions of habitats, such as in a random geometric graph (RGG) (Penrose, 2003), that

is used in Chapters 2 & 3 & 4 to generate the spatial structure. A use of RGGs al-

lows to consider additional ecologically relevant aspects like the effects of the number

of patches, mean patch isolation or other landscape attributes commonly evaluated

in conservation studies (Fahrig, 2003; Lindborg and Eriksson, 2004; Urban and Keitt,

2001). Analyzing these attributes is more urgent than ever, especially due to the ever

increasing impact human activities have on the landscape resulting in eutrophication,

habitat loss, and habitat fragmentation (Foley et al., 2005).

Fragmentation of landscapes

While there is an overwhelming amount of evidence for the negative impact of habitat

loss on biodiversity, the effects of habitat fragmentation on biodiversity are still sub-

ject of intense debate (Fahrig et al., 2019; Fletcher et al., 2018). According to Fahrig

(2003), fragmentation per se includes three main components: the number of patches,

patch size and patch isolation (while the total area of habitats remains constant). It is

difficult to empirically analyze the effects of the individual components of fragmen-

tation per se, because the individual components alone typically have a weaker effect

on biodiversity and also because habitat fragmentation often appears in conjunction
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with habitat loss (Didham et al., 2012). Furthermore, patch isolation, for example, has

been shown to have positive as well as negative effects on biodiversity (Fahrig, 2003,

2017) which makes it even more difficult to get a clear picture of the effect of a single

component. A theoretical and simulation based model can help to overcome these

difficulties (but see also Hadley and Betts (2016) for empirical approaches), because it

allows for independent manipulation of patch isolation, number of patches and other

landscape attributes and contribute to a comprehensive overview of their impact (see

Figure 1.1).

Environmental fluctuations

Environmental fluctuations can have a direct effect on the population dynamics of a

species, and can also implicitly impact landscape structures. For example, correlated

periodic fluctuations that occur as changes in the ambient temperature or resource

availability can alter demographic rates of species and can ultimately synchronize

patch dynamics (Kahilainen et al., 2018; Koenig, 1999; Ranta et al., 1995). While a syn-

chronization of population dynamics does not imply a direct limitation for a species,

the same environmental fluctuations can also modify the availability of patches as

habitable areas, thus temporally decreasing the number of patches (changing mean

patch isolation) and limiting the availability of resources (Wellborn et al., 1996). An

empirical example of such changes in a landscape, where both a temporally fluctu-

ating environment and distinct spatial structure strongly influence ecological com-

munities, are kettle holes in formerly glaciated regions (Kalettka and Rudat, 2006).

These small pools filled with water are typically found in larger clusters, and seasonal

changes in temperature and precipitation cause some of them to be temporally water-

filled. If the pools run dry, the aquatic community becomes temporally extinct. Later

recolonization is possible through a reimmigration of species from other permanent

pools (De Meester et al., 2005). Since the process of recolonization is often temporally

correlated to the onset of a rainy season, a synchronizing effect of reimmigration on

population dynamics is expected. However, this is only feasible if a sufficient large

number of permanent patches is available and patch isolation allows for high enough

dispersal rates for a recolonization.
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1.3 Local complexity

Population dynamics are an ubiquitous phenomenon and their regularity and empir-

ical observation has fascinated ecologists for generations. Population dynamics can

be further divided into subcategories: chaotic, cyclic and stationary dynamics. The

different types of population dynamics have strong implications on the stability of a

local species. While it is difficult to predict and analyze chaotic dynamics, analysis of a

population exhibiting cyclic dynamics shows an increased risk of stochastic extinction

at their local biomass minima (Pimm et al., 1988). In comparison, the risk of extinction

is on average lower for a species with a stationary biomass density.

One of the first descriptions of cyclic dynamics was a lynx-hare cycle in which

regular variations in capture rates were observed over a period of several years (Elton

and Nicholson, 1942). Since then, such population dynamics have been observed in

a range of aquatic and terrestrial habitats, and studied using simple models such as

the Lotka-Volterra model (Lotka, 1925; Volterra, 1926) or the Rosenzweig-MacArthur

model (Rosenzweig and MacArthur, 1963). Despite different model approaches, the

consistent results on population dynamics demonstrate the interdependency of two

key factors: External factors such as resource availability within a habitat, and biotic

interactions between species such as predation (Berryman, 2002).

A rather recent approach tries to delineate population dynamics of metacommu-

nities at the local and regional scale analogously to the distinction between U-, V and

W-diversity (Whittaker, 1972): local dynamics are determined using a modified mea-

sure of the coefficient of variation (U-variability), regional differences describe the syn-

chrony of dynamics (V-variability), and regional dynamics are described by the overall

variability (W-variability) of the dynamics of a species (Wang and Loreau, 2014). This

approach provides a comprehensive analysis of population dynamics with a compar-

ison of local and spatial scale effects for a single and multiple species. Further, it

provides a different perspective on the stability of a species community from the local

level of population dynamics rather than species persistence (see Chapter 3). Thus,

the stability of metacommunities can be examined from multiple perspectives, which

is necessary to understand the complexity of an ecosystem’s response to disturbances

(Radchuk et al., 2019).
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Synchronization of population dynamics

A common way to analyze and compare population dynamics is to evaluate the syn-

chronization of metapopulation dynamics. Highly synchronized metapopulation dy-

namics are destabilizing, as there are larger variations in the amount of total biomass

densities increasing the risk of a joint extinction event. In contrast, asynchronous dy-

namics between patches are beneficial and increase stability, for example, the possibil-

ity of a rescue effect or the portfolio effect (Blasius et al., 1999; Schindler et al., 2015;

Thorson et al., 2018). The spatial portfolio effect assesses the total biomass fluctuations

of a species for an increasing number of habitat patches. Empirical observations often

demonstrate a decrease in total biomass fluctuations for a larger number of patches

due to asynchronous biomass dynamics among them. While an increased number of

patches can support stability, the structure of the landscape can also destabilize dy-

namics. A lower mean patch isolation (higher dispersal rates) can cause the opposite

trend leading to habitat synchronization (Jansen, 2001; Sherratt et al., 2000). These

contrasting trend directions make applications particularly relevant where both patch

number and patch isolation are involved e.g. in the context of fragmentation per se.

In addition to the structure of the landscape, dispersal strategies of a given species

can alter the synchronization between patches. For example, a density-dependent dis-

persal strategy of species can have a stabilizing effect, by generating a larger propor-

tion of asynchronous dynamics (Abrams and Ruokolainen, 2011). Other theoretical

approaches indicate also an impact of energetic loss during dispersal or intra- and

interspecific density-dependent dispersal (Hauzy et al., 2010).

Trophic interactions & trophic cascading

The absence of a predator species and the accompanying top-down processes can

strongly affect the distribution of species in a metacommunity. The local presence of a

predator species and its selectivity on prey species can directly alter prey diversity by

decreasing competition between prey species (Terborgh, 2015). Particular empirical

relevance of predator distribution is derived from small islands or lakes with natu-

rally fewer predator species. With fewer species interactions on average, top down

control can be of great relevance there and explain the community structure (Leibold

and Chase, 2017; Wellborn et al., 1996). Apart from a strong community dependence
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on the extent of top down control, the food chain length and the interaction pathways

are of importance (Thakur and Eisenhauer, 2015; Wollrab et al., 2012).

In the case of an extinction event, top down control of a predator species can have

dramatic negative effects on local diversity depending on the robustness of the species

community and its respective food web. The loss of a species can cause secondary

extinction events, induced by trophic cascading which propagates through the food

web, decreasing the corresponding local diversity (Dunne et al., 2002; Srinivasan et al.,

2007). With increasing climate and habitat change, such local extinctions of a species

become more likely, and can increase the probability of further secondary extinction

events. For instance, such negative effects are observed in studies demonstrating that

a greater mean patch isolation results in a lower mean food chain length, suggesting a

less complex metacommunity (LeCraw et al., 2014).

Bistability in ecosystems

Another phenomenon responsible for differences in local dynamics is the occurrence

of multiple attractors. From theoretical approaches is known that interactions of three

species are already sufficient to allow the emergence of two different stable states with

different properties (Jansen, 1995), such as a low and high productive attractor (Ceule-

mans et al., 2019). Such multi-stabilities are regularly reported in theoretical models

and empirically observed in ecosystems, and their relevance can be exemplified by

the hysteresis effect (Scheffer et al., 1993). It describes how a small perturbation of a

system can lead to a switch towards the second stable state, but a much larger effort is

needed to return the system back to its original state. We observe such hysterises for

example in aquatic ecosystems, where eutrophication turns a lake from a macrophyte

dominated system to an algae dominated system (Ibelings et al., 2007). In order to get

back to a state of macrophyte dominance, through reoligotrophication of the lake, the

amount of nutrients must be reduced to a much lower level than before.

1.4 Modelling species interactions

A species rich and diverse community consists of a multitude of species, and can

range from simple food chains to complex food webs. The first assumption about

the stability of such local communities was that the more species a habitat contains
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and the higher the diversity, the more stable the community (MacArthur, 1955). How-

ever, it became apparent that the stability of a community could not depend on the

number of interactions alone and that additional properties of a food web also have

an effect on its stability (May, 1972). Given this discrepancy and knowledge gap, spe-

cific relevant properties and model classes gradually emerged, for example, describing

species niches, weighting interactions, and considering energy fluxes, thereby creating

complex species interactions networks (Banasek-Richter et al., 2009; Boit et al., 2012;

Brose et al., 2006; Williams and Martinez, 2000). Based on these principles, the created

model networks can resemble and more accurately describe properties of empirical

food webs (Riede et al., 2011).

Allometric trophic network models

In the field of ecology, the allometric trophic network (ATN) approach is a widely

applied class of models. The model focuses on consumer-resource interactions bal-

ancing the consumption and energy losses of consumer species and production of

autotroph species through ordinary differential equations (ODE). Initially introduced

as a two species food chain (Yodzis and Innes, 1992), it has been continuously de-

veloped and refined to consider higher number of species (Williams and Martinez,

2004) or plant-nutrient dynamics (Brose et al., 2005). The resulting clear hierarchical

structure with multiple trophic levels is well suited to study and compare different

properties of the food web, which can represent a complex network of interactions

between species (Martinez, 2020; Thompson et al., 2012). Another main mechanism

and strength of this approach is the incorporation of metabolic rates, based on body

size of the species, which is derived from empirical measurements and can be adapted

continuously. With these fundamentals, ATN models have evolved in different direc-

tions ranging from applied models for fisheries (Kuparinen et al., 2016), to models

of ecosystem functions (Schneider et al., 2016) and models of plant pollinator appli-

cations (Hale et al., 2020). As the applied models mentioned above, the ATN model

of Schneider et al. (2016) used in Chapters 2 - 4 was specifically spatially extended

to allow dispersal of species, and enable to study effects of the spatial structure on

metacommunities (see Figure 1.1).
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1.5 Thesis overview

The following three Chapters examine how attributes of a landscape on local scale

and in particular on regional scale explain metacommunity responses for population

dynamics and diversity [see Figure 1.1]. The spatially explicit approach allows to ex-

amine landscape aspects as complex spatial networks for a very large metacommunity.

Further, an integration of temporally changing landscapes enables a comparison of the

extent of impact of an external environmental disturbances on a species community.

Chapter 2

I investigate in Chapter 2 how two aspects of habitat fragmentation, namely the num-

ber of habitat patches and patch isolation, affect the diversity of a food web model,

forming a large metacommunity. The main results emphasize that species on higher

trophic levels are more prone to extinction caused by a large mean patch isolation

than species on lower trophic levels. I attribute the increased loss of species on higher

trophic levels to two effects. First, a higher biomass loss for dispersal with increasing

mean patch isolation. Second, due to energy limitation in highly fragmented land-

scapes, whereby higher trophic levels cannot survive.

Chapter 3

In Chapter 3, the focus shifts from effects on diversity towards the stability of popula-

tion dynamics. I analyze a simple three species food chain, and evaluate how a land-

scape process, the effect of mean patch isolation, and a temporal process, the effect

of periodic environmental disturbances, have an impact on the dynamics. The results

show an expected relationship of higher synchronization of dynamics and lower mean

patch isolation. However, a bistability of dynamics indicate also a relevance of biotic

interactions and dispersal strategies on the state of synchronization. Further, the im-

pact of periodic environmental disturbances can overrule the trends for the observed

effects of mean patch isolation and aligns trends in dynamics.
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Chapter 4

Based on the results of Chapter 2, I investigate in more detail which local and regional

components can explain patterns for Ū-diversity and V-diversity. Using a random

forest approach, I show that the trends for Ū-diversity depend mainly on the local

robustness of the respective food web and, surprisingly, to a very small extent on

regional mean patch isolation. In contrast, trends for V-diversity are explained to a

large extent by two regional predictors, mean patch isolation and minimum distance

to the nearest neighbor, but the local food web robustness also is a major driver of the

observed patterns.
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Abstract

Habitat fragmentation is threatening global biodiversity. To date, there is only lim-

ited understanding of how the different aspects of habitat fragmentation (habitat loss,

number of fragments and isolation) affect species diversity within complex ecologi-

cal networks such as food webs. Here, we present a dynamic and spatially-explicit

food web model which integrates complex food web dynamics at the local scale and

species-specific dispersal dynamics at the landscape scale, allowing us to study the

interplay of local and spatial processes in metacommunities. We here explore how the

number of habitat patches, i.e. the number of fragments, and an increase of habitat iso-

lation, affect the species diversity patterns of complex food webs (U-, V-, W-diversity).

We specifically test whether there is a trophic dependency in the effect of these to fac-

tors on species diversity. In our model, habitat isolation is the main driver causing

species loss and diversity decline. Our results emphasize that large-bodied consumer

species at high trophic positions go extinct faster than smaller species at lower trophic

levels, despite being superior dispersers that connect fragmented landscapes better.

We attribute the loss of top species to a combined effect of higher biomass loss during

dispersal with increasing habitat isolation in general, and the associated energy limi-

tation in highly fragmented landscapes, preventing higher trophic levels to persist. To

maintain trophic-complex and species-rich communities calls for effective conserva-

tion planning which considers the interdependence of trophic and spatial dynamics

as well as the spatial context of a landscape and its energy availability.
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Introduction

Understanding the impact of habitat fragmentation (habitat loss, number of frag-

ments, and isolation) on biodiversity is crucial for ecology and conservation biology

(Fahrig, 2003; Haddad et al., 2015; Tilman et al., 1994). A general observation and

prediction is that large-bodied predators at high trophic levels which depend on suf-

ficient food supplied by lower trophic levels are most sensitive to fragmentation, and

thus, might respond more strongly than species at lower trophic levels (Henle et al.,

2004; Holt, 2002). However, most conclusions regarding the effect of fragmentation

are based on single species or competitively interacting species (see references within

Melián and Bascompte (2002); Rybicki and Hanski (2013); Valiente-Banuet et al. (2015),

but see for example (Liao et al., 2017a,b,c) for food chains and simple food web mo-

tifs). There is thus limited understanding how species embedded in complex food

webs with multiple trophic levels respond to habitat fragmentation (Amarasekare,

2008; Hagen et al., 2012; Holt and Hoopes, 2005; Holt, 2002; Martinson and Fagan,

2014), even though these networks are a central organizing theme in nature (Dunne,

2005; Elton, 1927).

The stability of complex food webs is, amongst others, determined by the num-

ber and strength of trophic interactions (May, 1972). While it is broadly recognized

that habitat fragmentation can have substantial impacts on such feeding relationships

(Kondoh, 2003; Valladares et al., 2006), we lack a comprehensive and mechanistic un-

derstanding of how the disruption or loss of these interactions will affect species per-

sistence and food web stability (Dobson et al., 2006; Kondoh, 2003; Martinson and Fa-

gan, 2014; Rooney et al., 2006). Assuming that a loss of habitat, a decreasing number

of fragments, and increasing isolation of the remaining fragments disrupt or weaken

trophic interactions (Valiente-Banuet et al., 2015), thereby causing species extinctions

(Martinson and Fagan, 2014; Valladares et al., 2006), population and community dy-

namics might change in unexpected and unpredictable ways. This change in commu-

nity dynamics might lead to secondary extinctions which potentially cascade through

the food web (Curtsdotter et al., 2011; Dunne and Williams, 2009).

Habitat loss, i.e. the decrease of total habitable area in the landscape or a reduction

in patch size, can limit population sizes and biomass production, which might drive

energy-limited species extinct (Post, 2002; Takimoto and Post, 2013) and subsequently
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entail cascading extinctions (Dunne and Williams, 2009). Successful dispersal among

habitat patches might prevent local extinctions (spatial rescue effects), and thus, en-

sure species persistence at the landscape scale (Brown and Kodric-Brown, 1977; Han-

ski, 1998). Whether dispersal is successful or not depends, among other factors, on the

distance an organism has to travel to reach the next habitat patch and on the quality

of the matrix the habitat patches are embedded in (in short: the habitat matrix) (Bonte

et al., 2012). With progressing habitat fragmentation, suitable habitat becomes scarce

and the remaining habitat fragments increasingly isolated (Fahrig, 1997; Haddad et al.,

2015), affecting the dispersal network of a species. As a consequence, organisms have

to disperse over longer distances to connect habitat patches, which in turn might in-

crease dispersal mortality and thus promote species extinctions (Fahrig, 2003). Also,

habitat fragmentation often increases the hostility of the habitat matrix, e.g. due to

human land use and landscape degeneration (Haddad et al., 2015; LeCraw et al., 2014;

Prugh et al., 2008). The increased matrix hostility might further reduce the likelihood

of successful dispersal between habitat patches as the movement through a hostile

habitat matrix is energy intensive, and thus, population biomass is lost (Bonte et al.,

2012; Prugh et al., 2008). This loss depends on the distance an organism has to travel

and its dispersal ability, i.e. its dispersal range and the energy it can invest into move-

ment. Finally, the detrimental effects of habitat loss and increasing isolation are likely

to interact, as dispersal mortality can be expected to have a larger per capita effect

when a population is already declining due to decreasing habitat.

In this context, superior dispersers might have an advantage over species with re-

stricted dispersal abilities if the distances between habitat patches expand to a point

where dispersal-limited species can no longer connect habitat patches. If this is the

case, increasing habitat isolation impedes the ability of organisms to move across a

fragmented landscape and prevents spatial rescue effects buffering against local ex-

tinctions. Increasing habitat isolation might result in increased extinction rates and

ultimately lead to the loss of dispersal-limited species from the regional species pool.

As large animal species are, at least up to a certain threshold, faster than smaller ones

(Hirt et al., 2017; Peters, 1983), they should also be able to disperse over longer dis-

tances (Holt, 2002; Jenkins et al., 2007; van Noordwijk et al., 2015). In fragmented land-

scapes, this body mass dependent scaling of dispersal range might favor large-bodied

consumers such as top predators, and thus, increase top-down pressure resulting in
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top-down regulated communities.

Empirical evidence and results from previous modeling approaches, however, sug-

gest that species at higher trophic positions are most sensitive to isolation (Davies

et al., 2000; Holyoak, 2008; Liao et al., 2017b; Martinson and Fagan, 2014; van Nouhuys,

2005). Modeling tri-trophic food chains in a patch-dynamic framework, Liao et al. Liao

et al. (2017b,c) for example, show that increasing habitat fragmentation leads to faster

extinctions of species at higher trophic levels, which they ascribe to reduced avail-

ability of prey Liao et al. (2017b). In the fragmentation experiment by Davies et al.

(Davies et al., 2000) on the other hand the observed loss of top species is attributed to

the unstable population dynamics of top species under environmental change.

Despite its relevance, a realistic picture and comprehensive understanding of how

natural food webs might respond to different aspects of fragmentation such as habitat

loss or increasing isolation, and any alteration to the spatial configuration of habi-

tat in general, are lacking. To understand how fragmentation affects the diversity of

communities organized in complex food webs requires knowledge of the interplay

between their local (trophic) and spatial (dispersal) dynamics. The latter are deter-

mined by the number of fragments in the landscape and the distance between them,

which can potentially affect the local trophic dynamics. We address this issue using

a novel modeling approach which integrates local population dynamics of complex

food webs and species-specific dispersal dynamics at the landscape scale (which we

hereafter refer to as meta-food-web model, see Figure 2.1 for a conceptual illustra-

tion). Our spatially-explicit dynamic meta-food-web model allows us to explore how

direct and indirect interactions between species in complex food webs together with

spatial processes that connect sub-populations in different habitat patches interact to

produce diversity patterns across increasingly fragmented landscapes. Specifically,

we ask how the number of fragments and increasing habitat isolation impact the di-

versity patterns in complex food webs. We further ask which species or trophic groups

shape these patterns.

Following general observations and predictions, we expect species diversity within

complex food webs to decrease along a gradient of isolation. Based on the substan-

tial variation in both dispersal abilities and energy requirements among species and

across trophic levels (Davies et al., 2000; Holt, 2002; Post, 2002), we expect species at

different trophic levels to strongly vary in their response to isolation. Specifically, we
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expect certain trophic groups such as consumer species at lower trophic ranks with

limited dispersal abilities or top predators with strong resource constraints to be par-

ticularly sensitive to isolation. Additionally, with a larger number of fragments we

expect more potential for rescue effects, thus fostering survival. This might especially

apply to species with large dispersal ranges, which allow them to connect many habi-

tat patches. We test our expectations using Whittaker’s classical approach of U-, V-,

and W-diversity (Whittaker, 1972), where U- and W-diversity describe species richness

at the local (patch) and regional (metacommunity) scale, respectively, and V-diversity

accounts for compositional differences between local communities.

Methods

In the following we outline a methods summary, for detailed information on equa-

tions and parameters see the methods section in the supplement. We consider a mul-

titrophic metacommunity consisting of 40 species on a varying number of randomly

positioned habitat patches (the meta-food-web, Figure 2.1b). All patches have the

same abiotic conditions and each patch can potentially harbor the full food web, con-

sisting of 10 basal plant and 30 animal consumer species. The potential feeding links

(i.e. who eats whom) are constant over all patches (Figure 2.1a,b) and are as well as

the feeding dynamics determined by the allometric food web model by Schneider et

al. (Schneider et al., 2016). We use a dynamic bioenergetic model formulated in terms

of ordinary differential equations that describe the feeding and dispersal dynamics.

The rate of change in biomass density of a species depends on its biomass gain by

feeding and immigration and its biomass loss by metabolism, being preyed upon and

emigration. We integrate dispersal as species-specific biomass flow between habitat

patches (Figure 2.1b,d). Based on empirical observations (e.g. (Jenkins et al., 2007))

and previous theoretical frameworks (e.g. (Hirt et al., 2017; Holt and Hoopes, 2005;

Holt, 2002; Jetz et al., 2004)), we assume that the maximum dispersal distance of an-

imal species increases with their body mass. As plants are passive dispersers, we

model their maximum dispersal distance as random and body mass independent. We

model emigration rates as a function of each species’ per capita net growth rate, which

is summarizing local conditions such as resource availability, predation pressure, and
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inter- and intraspecific competition (Fronhofer et al., 2018). During dispersal, distance-

dependent mortality occurs, i.e., the further two patches are apart, the more biomass

is lost to the hostile matrix separating them. We constructed 30 model food webs and

simulated each food web on 72 different landscapes. For each simulation we gener-

ated landscapes on two independent gradients covering two aspects of fragmentation,

namely number of patches and habitat isolation (Figure 2.1c). We achieved a full range

for the gradient of habitat isolation (landscape connectance ranging from 0 to 1, Fig-

ure 2.3 c). Additionally, we performed dedicated simulation runs to reference the two

extreme cases, i.e. (1) landscapes in which all patches are direct neighbors without a

hostile matrix, and thus, no dispersal mortality, and (2) fully isolated landscapes, in

which no species can bridge between patches, and thus, a dispersal mortality of 100%.

Additionally, we tested a null model in which all species have the same maximum

dispersal distance. To visualize the impact of number of patches and habitat isola-

tion on species diversity we used GAMMs from the mgcv package in R (Team, 2016).

See the supplement for detailed information on the maximum dispersal distance, the

additional simulations and the statistical analysis.



28 Chapter 2. Effects of number of patches and patch isolation on diversity patterns

FIGURE 2.1: Conceptual illustration of our modelling framework. In
our meta-food-web model (b) we link local food web dynamics at the
patch level (a) through dynamic and species-specific dispersal at the
landscape scale (d). We consider landscapes with identical but ran-
domly distributed habitat patches, i.e. all patches have the same abiotic
conditions, and each patch can potentially harbour the full food web.
We model fragmented landscapes which differ in the number of habitat

patches and the mean distance between patches (c).

Results

Species diversity patterns

Our simulation results identify habitat isolation (defined as the mean distance be-

tween habitat patches, g, Figure 2.2, x-axis) as the key factor driving species diversity

loss. As expected, we find fewer species on patches (the averaged local diversity, U)

in landscapes in which habitats are highly isolated (Figure 2.2, left panel). In contrast

to the decrease in U-diversity, V-diversity (Figure 2.2, middle panel), which describes
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differences in the community composition between patches, increases with habitat iso-

lation. This increase happens around the infliction point of the landscape connectance

at a mean patch distance log10 g ≈ of -0.5, at which 50% of all possible patch to patch

connections are lost (supplement Figure A4, first panel). W-diversity, the species di-

versity in the landscape, shows a more complicated pattern. First it decreases due to

the loss of U-diversity with habitat isolation. This decrease is then reversed by the in-

crease of V-diversity and the W-diversity increases again with habitat isolation (Figure

2.2, right panel). The number of habitat patches in a landscape, / (Figure 2.2, y-axis),

only marginally affects the diversity patterns. The additional simulations of the two

extreme cases (i.e. joint scenario with no dispersal loss and fully isolated scenario

with 100% dispersal mortality) support these patterns (see the supplement, section

A for the corresponding results). We further show that the isolation-induced species

loss also translates into a loss of trophic complexity, i.e. isolated landscapes are char-

acterized by reduced food webs with fewer species and fewer trophic levels (see the

supplement, Figure A).
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FIGURE 2.2: Heatmaps visualizing U-, V- and W-diversity (color-coded;
z-axis) in response to habitat isolation, i.e. the mean patch distance (g,
log10-transformed; x-axis) and the number of habitat patches (/ ; y-axis),
respectively. We generated the heatmaps based on the statistical model

predictions (see the methods section).

Differences among trophic levels

As the number of patches only marginally affects species diversity patterns, we here-

after focus on the effects of habitat isolation on trophic-dependent differences among

species (Figure 2.3). In Figure 2.3, biomass densities, �8 , and landscape connectances,

d8 , represent the average of each species 8 over all food webs. Species are ranked

according to their body mass. Thus, although species body masses differ between
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food webs, species 1 is always the smallest, species 2 the second smallest and so

forth. The same applies to d8 , where the landscape connectance of consumer species is

body mass dependent, but the connectance of plant species is body mass independent

(see the methods section). In well-connected landscapes (i.e. landscapes with small

mean patch distances, g), large and medium-sized consumer species (except the very

largest) have higher population biomass densities than smaller consumers (Figure

2.3a,c). With expanding distances between habitat patches, large-bodied consumers

at high trophic positions (Figure 2.3a, red to blue lines) show a particularly strong de-

crease in population biomass densities. Small consumer species (Figure 2.3a, orange

to yellow lines) are generally less affected by increasing habitat isolation. Plant species

show a less consistent response to increased isolation, with most species slightly in-

creasing their biomass density (Figure 2.3b, green lines). Based on our assumption

that the maximum dispersal distance of animals scales with body mass, the ability to

connect a landscape follows the same allometric scaling (Figure 2.3c). Despite this dis-

persal advantage, intermediate-sized and large animal species (Figure 2.3a, red to blue

lines) lose biomass in landscapes in which they still have the potential to fully connect

(almost) all habitat patches (Figure 2.3c). The differences in plant species biomass den-

sities cannot be attributed to body mass dependent species-specific dispersal distances

as for plants maximum dispersal distances were randomly assigned, and thus, there is

no connection between body mass and landscape connectance (d8 , Figure 2.3d). Addi-

tional simulations, in which we assumed a constant maximum dispersal distance for

all species of X8 = X<0G = 0.5, support the negligibility of species-specific differences in

dispersal ability for the emerging diversity patterns (see the supplement, Figure A3).
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FIGURE 2.3: Top row: Mean biomass densities [log10(biomass density
-1)] of animal consumer species and basal plant species (b) over all food
webs (�8 , log10-transformed; y-axis) in response to habitat isolation, i.e.
the mean patch distance (g, log10-transformed; x-axis). Each color de-
picts the biomass density of species 8 averaged over all food webs: (a)
color gradient where orange represents the smallest, red the intermedi-
ate and blue the largest consumer species; (b) color gradient where light
green represents the smallest and dark green the largest plant species.
Bottom row: Mean species-specific landscape connectance (d8 ; y-axis)
for consumer (c) and plant species (d) over all food webs as a func-
tion of the mean patch distance (g, log10-transformed; x-axis). See the
supplement Figure A9 for standard errors in biomass densities for four

exemplary species.

Discussion

Habitat fragmentation is a major driver of global biodiversity decline. To date, a com-

prehensive understanding of how the different aspects of habitat fragmentation, i.e.

habitat loss (Melián and Bascompte, 2002), number of fragments and isolation, affect

the diversity patterns of species embedded in complex ecological networks such as

food webs is lacking (see e.g. meta-analysis by Martinson and Fagan (Martinson and
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Fagan, 2014), and references therein). Our simulation experiment allows us to inde-

pendently explore the effects of number of fragments (i.e., number of habitat patches

in the landscape), and of habitat isolation (i.e., distance between patches) on persis-

tence and biomass densities of species in complex communities. We identified habitat

isolation to be responsible for species diversity decline both at the local and regional

scale. The rate at which a species loses biomass density strongly depends on its trophic

position. Large-bodied consumer species at the top of the food web are most sensitive

to isolation although they are dispersing most effectively (i.e. for them, increasing

distances between habitat patches do not necessarily result in the loss of dispersal

pathways or a substantial increase of dispersal mortality). Surprisingly, we find top

species to lose biomass density and sometimes even go extinct in landscapes they can

still fully connect, whereas the biomass densities of small consumer species at lower

trophic levels and plant species are only marginally affected by increasing habitat iso-

lation. We attribute the accelerated loss of top species to the energy limitation propa-

gated through the food web: with increasing habitat isolation an increasing fraction of

the biomass production of the lower trophic levels is lost due to mortality during dis-

persal and is thus no longer available to support the higher trophic levels. Addition-

ally, the reduced top-down pressure on smaller consumers seems to compensate for

their increased dispersal loss. Our model adds a complementary perspective to previ-

ous research pointing towards a trophic-dependent extinction risk due to constraints

in resource availability with increasing habitat fragmentation (Liao et al., 2017b; van

Nouhuys, 2005).

Habitat isolation drives species loss The increasing isolation of habitat fragments

poses a severe threat to species persistence (but see (Fahrig, 2017; Fahrig et al., 2019)).

We demonstrate in our simulation experiment that the generally observed pattern of

species loss with increasing habitat isolation (e.g. (Haddad et al., 2015)) also holds

for species embedded in large food webs. The loss of species occurs both at the lo-

cal (U-diversity) and regional (W-diversity) scale. For the latter, however, an increase

in V-diversity compensates the loss in local diversity (U) when landscapes become

very isolated and W-diversity increases again (see below, Habitat isolation promotes

V-diversity).
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We modeled dispersal between habitat patches by assuming an energy loss for the

dispersing organisms – a biologically realistic assumption as landscape degeneration,

which often occurs concurrently with habitat fragmentation, increases the hostility of

the habitat matrix (Haddad et al., 2015). Consequently, the dispersal mortality, and

thus, biomass loss of populations to the habitat matrix increases substantially when

dispersal distances between habitat patches expand. To account for the variation in

dispersal ability among trophic groups, we incorporated species-specific maximum

dispersal distances. For animal species, this maximum dispersal distance increases

like a power law with body mass, therefore weakening the direct effect of habitat

isolation the larger a species is. Despite this, top predators and other large consumer

species respond strongly to isolation. These species exhibit a dramatic loss in biomass

density or even go extinct in landscapes they still perceive as almost fully connected

(landscape connectance, d8 , close to one), which indicates that their response to habitat

isolation is mediated by indirect effects originating from the local food web dynamics.

Local food web dynamics and energy limitation drive top predator loss In local

food webs energy is transported rather inefficiently from the basal to the top species,

with transfer efficiency in natural systems often only around 10% (Lindeman, 1942).

This energy limitation effectively controls the food chain length (Takimoto and Post,

2013) and renders large species at high trophic levels vulnerable to extinction due to

resource shortage (Binzer et al., 2012). In our model, energy availability decreases if

habitat isolation is high as this increases biomass loss during dispersal. This affects

particularly small species at lower trophic levels since they generally have the highest

metabolic costs per unit biomass and therefore the highest biomass losses per dis-

tance traveled (Peters, 1983; Schneider et al., 2016). The biomass loss during dispersal

consequently reduces the net biomass production at the bottom of the food web and

severely threatens species at higher trophic positions that already operate on a very

limited resource supply.

Moreover, due to the feedback mechanisms regulating the community dynamics

within complex food webs, a loss of top consumer species can have severe conse-

quences for the functioning and stability of the network (Dobson et al., 2006; Rooney

et al., 2006). A loss of top-down regulation can, for instance, lead to secondary ex-

tinctions resulting in simpler food webs (Brose et al., 2012; Dobson et al., 2006) – an
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additional mechanism that can foster the loss of biodiversity as observed in our sim-

ulations. However, we also see a much more direct effect of the changing community

composition: The biomass densities of small species that suffer most from increased

dispersal mortality do not, as one might expect, decline much as isolation progresses.

We attribute this to a release from top-down control as their consumers lose biomass

or even go extinct, which counters the negative direct effect of habitat isolation. These

arguments suggest that differential dispersal capabilities are less important than ener-

getic limitations in explaining the strong negative response of large consumers to habi-

tat isolation. This claim is supported by the additional simulations where all species

experienced the same level of dispersal mortality, which yielded similar results (see

the supplement, Figure A3).

We did not find an effect of the number of patches on U-, V- and W-diversity. As we

model biomass densities on patches without defined area (see below, Model specifi-

cations), fewer patches do not reflect habitat loss, but rather the loss of fragments, i.e.

stepping stones in the dispersal network. Thus the energy limitation in our simulated

landscapes derives from direct dispersal loss and cascading effects of dispersal losses

of resources. For plant and small animal species this can be understood easily, as these

species are less energy limited and thus are able to persist on a single habitat patch.

For larger animal species the situation is more subtle: While they can integrate over

multiple patches, feeding interactions still always occur on one patch at a time. If the

biomass densities of their resources (and thus also the realized feeding rate) is too low

on a particular patch to cover their metabolic requirements, they gain no advantage

from the addition of more patches with equally low resource abundance.

Habitat isolation promotes V-diversity Contrary to the decline in U-diversity with

increasing habitat isolation, we find an increase in V-diversity starting from around

log10 mean patch distance g ≈ −0.5. We assumed identical abiotic conditions on all

habitat patches, i.e. there are no differences in nutrient availability or background

mortality rates. Therefore, any differences in conditions experienced by the species on

different patches can only originate from the initial community composition and the

structure of the dispersal network. One way for such different conditions to emerge

is the disintegration of the dispersal network into several smaller clusters. Up to a
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log10 mean patch distance g ≈ −0.5, the species with the largest maximum disper-

sal distance (which could be both large animals that have not already gone extinct

and plants with a randomly selected large dispersal distance) have a landscape con-

nectance (d8) of at least 0.5. This dispersal advantage easily allows them to connect

all patches to a single network component, thereby providing homogenization for the

meta-food-web. However, as the mean patch distance increases further, even these

species cannot bridge all gaps in the habitat matrix any more and clusters of patches

emerge that are for all species disconnected from the other patches. As these clusters

vary in the number of patches and mean patch distance within the cluster, the level of

dispersal mortality experienced by the species on the different clusters can also vary

considerably. Any further increase in mean patch distance causes the landscape con-

nectance to drop to nearly zero for all species and all patches within the landscape

approach complete isolation. With no immigration into isolated patches, non-resident

species cannot colonize them and initial community compositions drive dissimilari-

ties among patches. However, the initial V-diversity is not sufficient in explaining the

high V-diversity in strongly isolated landscapes (supplement Figure A4). This sug-

gests that different food web positions of initial species lead to different cascading

effects in local food web dynamics with more or less secondary extinctions on isolated

patches further increasing differences in local community compositions. The increase

in V-diversity is even stronger than the loss of local diversity resulting in an increase in

W-diversity in highly isolated landscapes. However, species contributing to this high

W-diversity tend to occur on fewer patches and thus are more prone to go extinct in

the whole landscape due to stochastic extinction events.

Model specifications

The framework we propose here for modeling meta-food-webs is very general and al-

lows for a straightforward implementation of future empirical insight where we so far

had to rely on plausible assumptions. The trophic network model for the local food

webs is based on a tested and realistic allometric framework (Schneider et al., 2016)

with a fixed number of 40 species – a typical value in dynamic food web modeling

(e.g. (Brose et al., 2006; C. Rall et al., 2008)). We based all model parameters on allo-

metric principles (Peters, 1983; Rall et al., 2012) allowing for a simple adaptation of our
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modeling approach to other trophic networks such as empirically sampled food webs

(Brose et al., 2006) or other food web models such as the niche model (Williams and

Martinez, 2000). Moreover, empirical patch networks (e.g. the coordinates of mead-

ows in a forest landscape) or other dispersal mechanisms (Eklöf et al., 2012; Melián

and Bascompte, 2002) may be incorporated in the future. In our simulations, biomass

loss during dispersal is predominantly responsible for the decline in species diversity.

We linked the maximum dispersal distance of animals and thereby also their mortal-

ity during dispersal to body mass, which is plausible because larger animal species

can move faster (Hirt et al., 2017), and thus, have to spend less time in the hostile

habitat matrix. Interestingly, however, we did not find any empirical study relating

body mass directly to mortality or biomass loss during migration. If such informa-

tion becomes available in the future, it can be easily incorporated into our modeling

framework. Further, we deliberately assumed all habitat patches to share the same

abiotic conditions (Leibold et al., 2004) as we wanted to focus on the general effects of

the interaction of complex food web and dispersal dynamics. Adding habitat hetero-

geneity among patches, e.g. by modifying nutrient availability or mean temperature,

however, is straightforward and can be expected to yield additional insight into the

mechanisms for the maintenance of species diversity in meta-food-webs. Finally, by

using a dynamic model formulated in terms of biomass densities instead of absolute

biomasses (or population sizes), we make the implicit assumption that patches do not

have an absolute size. Thus, the number of patches in a landscape cannot be directly

linked to the total amount of habitat but rather reflects the number of fragments, i.e.

stepping stones in the dispersal network of a species. A decreasing number of patches

thus does not necessarily imply habitat loss. In order to also address effects of habitat

loss (in terms of area), the model could be adapted to include for example area spe-

cific extinction thresholds and absolute biomasses in dispersal dynamics, but this was

beyond the scope of this study.

Synthesis and outlook

Our simulation experiment demonstrates that habitat isolation reduces species diver-

sity in complex food webs in general, with differences in the effect across trophic lev-

els. In increasingly isolated landscapes, energy becomes limited, which decreases the
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biomass density of large consumers or even drives them extinct. These primary ex-

tinctions may result in a cascade of secondary extinctions, given the importance of top

predators for food web stability (Brose, 2008; Curtsdotter et al., 2011). The increased

risk of network downsizing, i.e. simple food webs with fewer and smaller species

(Duffy, 2003; Hagen et al., 2012), stresses the importance to consider both direct and

indirect trophic interactions as well as dispersal when assessing the extinction risk of

species embedded in complex food webs and other ecological networks.

To date, most conservation research focuses on single species and does not con-

sider the complex networks of interactions in natural communities (Hagen et al., 2012;

Valiente-Banuet et al., 2015). However, the patterns we presented here clearly support

previous studies highlighting the importance of trophic interactions (e.g. (Holyoak,

2008; Liao et al., 2017b; van Nouhuys, 2005)). We show that the fragmentation-induced

extinction risk of species strongly depends on their trophic position, with top species

being particularly vulnerable. Given that top-down regulation can stabilize food webs

(Brose, 2008; Curtsdotter et al., 2011), the loss of top predators might entail unpre-

dictable consequences for adjacent trophic levels, destabilize food webs, reduce species

diversity and trophic complexity and ultimately compromise ecosystem functioning

(Curtsdotter et al., 2011; Dunne and Williams, 2009). In addition to the trophic posi-

tion of a species, the trophic structure of the food web has also been shown to be an

important aspect (see (Liao et al., 2017a)). Our results suggest that bottom-up energy

limitation caused by dispersal mortality due to habitat isolation can be a critical fac-

tor driving species loss and the reduction of trophic complexity. The extent of this

loss strongly depends on the spatial context (see also (Melián and Bascompte, 2002)).

Thus, to maintain species-rich and trophic-complex natural communities under future

environmental change, effective conservation planning must consider this interdepen-

dence of spatial and trophic dynamics. Notably, conservation planning should also

consider habitat isolation and matrix hostility (and consequently dispersal mortality)

to ensure sufficient biomass exchange between local populations, capable of inducing

spatial rescue effects, and to alleviate bottom-up energy limitation of large consumers.

Energy limitations can also result from habitat loss (which we did not model here),

decreasing energy availability at the bottom of the food web affecting local dynamics

intrinsically independent of dispersal. Thus, avoiding habitat loss remains a crucial

aspect (Fahrig, 2003; Fahrig et al., 2019). We highlight the need to explore food webs
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and other complex ecological networks in a spatial context to achieve a more holistic

understanding of biodiversity and ecosystem processes.
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Abstract

While habitat loss is a known key driver of biodiversity decline, the impact of other

landscape properties, such as patch isolation, is far less clear. When patch isolation

is low, species may benefit from a broader range of foraging opportunities, but are at

the same time adversely affected by higher predation pressure from mobile predators.

Although previous approaches have successfully linked such effects to biodiversity,

their impact on local and metapopulation dynamics has largely been ignored. Since

population dynamics may also be affected by environmental disturbances that tem-

porally change the degree of patch isolation, such as periodic changes in habitat avail-

ability, accurate assessment of its link with isolation is highly challenging. To analyze

the effect of patch isolation on the population dynamics on different spatial scales, we

simulate a three-species meta-food chain on complex networks of habitat patches, and

assess the average variability of local populations and metapopulations, as well as the

level of synchronization among patches. To evaluate the impact of periodic environ-

mental disturbances, we contrast simulations of static landscapes with simulations

of dynamic landscapes in which 30 percent of the patches periodically become un-

available as habitat. We find that increasing mean patch isolation often leads to more

asynchronous population dynamics, depending on the parametrization of the food

chain. However, local population variability also increases due to indirect effects of

increased dispersal mortality at high mean patch isolation, consequently destabilizing

metapopulation dynamics and increasing extinction risk. In dynamic landscapes, pe-

riodic changes of patch availability on a timescale much slower than ecological inter-

actions often fully synchronize the dynamics. Further, these changes not only increase

the variability of local populations and metapopulations, but also mostly overrule the

effects of mean patch isolation. This may explain the often small and inconclusive

impact of mean patch isolation in natural ecosystems.
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Introduction

Anthropogenic habitat degradation and loss are strong negative drivers of biodiver-

sity on local and global scales (Butchart et al., 2010; Pereira et al., 2010; Pimm et al.,

2014). While habitat loss has a clear cause-effect relationship with declining diver-

sity induced by e.g. lack of resources, habitat size restrictions, or increased mortality

(Brooks et al., 2002; Duraiappah et al., 2005), the effect of other modifications of the

landscape such as fragmentation are still intensely debated (Fahrig, 2017; Fahrig et al.,

2019; Fletcher et al., 2018; Hanski, 2015). Following Fahrig (2003), habitat fragmen-

tation comprises three main components, the number of patches, patch isolation and

patch size, but excludes habitat loss. Their respective effects are more difficult to as-

sess because they are usually weaker than the effects of habitat loss (Fahrig, 2003) and

often confounded with the latter (Didham et al., 2012).

In metacommunities, patch isolation determines to which extent individuals can

disperse through the landscape and thereby contribute to the regional distribution and

persistence of species. Empirical and experimental studies report however conflicting

results of patch isolation at different spatial scales: Negative effects on regional di-

versity have been attributed to the prevention of rescue effects (Gotelli, 1991; Levins,

1969), but also positive effects on local diversity have been recorded (Fahrig, 2017).

On the local scale dispersal can also alter biotic interactions among species directly,

emphasizing the interplay between local and regional dynamics in metacommunities

(Walting and Donnelly, 2006). Recent modeling approaches on metacommunities try

to integrate more details of local and regional aspects regarding landscape attributes

and species interactions, but mainly focus on species persistence and diversity (Pil-

lai et al., 2011; Ryser et al., 2019) and ignore effects of dispersal on local population

dynamics and its relevance for stability (LeCraw et al., 2014).

A major concern of models that include explicit population dynamics are mecha-

nisms that synchronize population cycles between habitat patches. Such synchronous

oscillations destabilize metapopulations by amplifying the amplitude of oscillations in

their regional abundances and increasing the extinction risk of species in entire regions

due to correlated local extinction events. Conversely, asynchronous oscillations can

promote regional persistence and stability through rescue effects (Blasius et al., 1999;

Levins, 1969) or the portfolio effect (Schindler et al., 2015; Thorson et al., 2018). These
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models, which are often limited to either a small number of patches or to regular,

rectangular lattices (Briggs and Hoopes, 2004), have established that the synchronic-

ity of population oscillations between patches generally increases with dispersal rate

(Jansen, 2001; Sherratt et al., 2000). Other factors affecting synchronicity are adap-

tive dispersal (Abrams, 2007; Abrams and Ruokolainen, 2011), inter- and intraspecific

density dependence of dispersal rates (Hauzy et al., 2010), and costliness or distance

dependence of dispersal (Koelle and Vandermeer, 2005). In larger networks of habi-

tat patches, an irregular network structure favors asynchronous dynamics (Holland

and Hastings, 2008), but high dispersal rates again lead to synchronous oscillations

that are detrimental for species persistence (Plitzko and Drossel, 2015). At larger ef-

fective distance between patches, dispersal between them is limited (Fletcher et al.,

2016; Koelle and Vandermeer, 2005), linking the results regarding synchronization of

population oscillations to research on the effect of patch isolation. Indeed, it has been

shown that synchronization among natural populations declines with increasing dis-

tance between them (Ranta et al., 1995).

While synchronization is often linked to dispersal rate, and thereby implicitly to

landscape properties like patch isolation, it can also be directly affected by correlated

environmental fluctuations (Kahilainen et al., 2018; Koenig, 1999; Moran, 1953; Ranta

et al., 1995). These fluctuations can affect demographic rates of the species via chang-

ing environmental conditions (like ambient temperature or resource availability), but

they can also directly influence the availability of patches as habitable areas. As an ex-

ample for the latter, a landscape in which both a temporally variable environment and

a pronounced spatial structure strongly affect ecological communities are kettle holes

in formerly glaciated regions (Kalettka and Rudat, 2006). These small ponds are typi-

cally formed in large clusters, and seasonal changes of temperature and precipitation

cause some of them to be only temporally filled with water. The local aquatic com-

munities of these temporary ponds thus periodically become completely extinct and

recolonization through dispersing species from permanent ponds is a key element to

reestablish the communities (De Meester et al., 2005). As the recolonization happens

in a temporally correlated manner at the beginning of the wet season, a synchronizing

effect on the population dynamics can be expected. However, this is again contingent

on the spatial structure of the landscape, as lower dispersal rates due to higher mean

patch isolation can impede the recolonization process.
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So far, the interaction between these drivers of synchronization and population

variability in general remains largely unexplored (but see (Gouhier et al., 2010)), de-

spite the fact that anthropogenic activity continues to increase both habitat degrada-

tion and environmental variability. In order to fill this gap, we examine the dynamics

of a meta-food chain in large, spatially explicit networks of habitat patches and ana-

lyze its stability with respect to the mean patch isolation of the landscape and environ-

mental disturbances that periodically render a subset of the patches uninhabitable. We

chose a food chain as model system because it has on the hand a simple and tractable

structure that, on the other hand, already allows for indirect effects mediated by feed-

ing interactions on different trophic levels. In order to obtain a complete picture of

the effects of patch isolation and periodic environmental disturbances on the extent

and synchronicity of population oscillations in food chains, we analyze two parame-

terizations of the food chain that correspond to contrasting oscillation patterns. These

patterns are characterized either by a relatively even distribution of biomass along the

food chain (weak trophic cascade) or by marked differences among the species (strong

trophic cascade), both of which are common in natural ecosystems (Carter and Ryp-

stra, 1995; Estes and Duggins, 1995).

Our model setup explicitly addresses one aspect of fragmentation, namely patch

isolation, while keeping other potentially confounding drivers such as the total amount

of habitat or the number of patches constant. We consider both static landscapes,

where all patches are constantly available as habitats, and dynamic landscapes, where

periodic environmental disturbances regularly render some of the patches uninhab-

itable. The stability of the dynamics of the metacommunity is evaluated within the

framework of Wang and Loreau (2014) that divides population variability into an U-,

V-, and W-component (similar to the classical diversity indices by Whittaker (1972)):

U-variability is the average coefficient of variation of a species’ local abundances, W-

variability is the coefficient of variation of the regional (metapopulation) abundance,

and V-variability quantifies differences in oscillations between patches, i.e., how syn-

chronously the local populations oscillate. Generally, it is assumed that higher disper-

sal rates synchronize population dynamics (e.g. Gouhier et al. (2010)). When mean

patch isolation increases, mortality during dispersal increases, too. We expect that

this decreases net dispersal flows and thus also decreases synchrony of population

dynamics among patches (i.e., increases V-variability).
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This may however be counteracted by (synchronous) periodic disturbances of patch

availability. Furthermore, we expect local (U-) variability to decrease, as increasing

mortality allows less biomass to flow up the food chain, thus weakening (and thereby

stabilizing) the trophic interactions (Rip and McCann, 2011). If the local population

oscillations indeed become less synchronous, this will also decrease regional (W-) vari-

ability as habitats become more isolated.

Methods

The model comprises a tri-trophic food chain including an autotroph (�), a consumer

(�) and a predator (%) species. As basis for the growth of the autotroph, a dynamic

resource (') serves as essential energy source and can be seen as a universal nutrient.

This food chain is extended to a metacommunity by placing copies of it on habitat

patches that are randomly distributed in space and connected via species-specific dis-

persal links (Figure 3.1). Where applicable, the individual parameters are derived

from empirical data, largely from invertebrate communities.

FIGURE 3.1: a) simplified example of a spatial network of habitat
patches. Dashed lines of different grey tones indicate dispersal links of
the respective species. The resource does not disperse between patches.
b) local food chain on each patch comprising three trophic levels (au-
totrophs, �, consumers, �, and predators, %) plus a dynamic resource,

'.
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Trophic interactions

We first describe only the trophic interactions between the populations on a single

patch and disregard dispersal. The local dynamics of the food chain follow a gen-

eralization of the bioenergetics approach (Brose et al., 2006b; Yodzis and Innes, 1992),

supplemented with an equation for the resources. Adapted from chemostat dynamics,

the rate of change of the resource density ' is expressed as

3'

3C
= � · ('0 − ') − ��'� (3.1)

with the resource turnover rate � and the supply concentration '0. Uptake of re-

sources by the autotroph � is described by a Monod function ��' = A
'

 +' with max-

imum uptake rate A and half saturation constant  . The rates of change in biomass

density for each species (�, � and %) are expressed by

3�

3C
= ��'� − ���� − G�� = 6��

3�

3C
= 4����� − �%�% − G�� = 6�� (3.2)

3%

3C
= 4%�%�% − G%% = 6%% ,

where the first terms in all three equations represent growth due to consumption, the

last terms denote metabolic losses, and the middle terms in the equations for the au-

totroph and the consumer describe mortality through predation. The terms are sum-

marized by the net per capita growth rates 68 (8 = �,�, %). The parameters 48 and

G8 are assimilation efficiencies and per capita respiration rates, respectively. The per

capita feeding rate of species 8 on species 9 is described by a Beddington-DeAngelis

functional response (Beddington, 1975; DeAngelis et al., 1975):

�8 9 =
1
<8

08 9� 9

1 + 08 9ℎ8 9� 9 + 28�8
(3.3)

with the attack rate 08 9 , the handling time ℎ8 9 , the interference coefficient 28 , and �8

and � 9 as placeholders for the respective consumer’s or resource’s biomass density.

Since the model is formulated in terms of biomass densities (as opposed to popula-

tion densities), the functional response is scaled with 1
<8

, the inverse of the respective

consumer’s body mass (Heckmann et al., 2012).
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The parameters of the trophic dynamics scale allometrically with the body mass

of the species. Mass-specific maximimum growth rate and respiration rates are as-

sumed to decrease with a negative quarter-power law with body mass, i.e. A = A0<
−0.25
8

and G8 = G0,8<
−0.25
8

(Brose et al., 2006b; Yodzis and Innes, 1992). Following Rall et al.

(2012), handling times depend on the body masses of both consumer and resource

with ℎ8 9 = ℎ0<
−0.48
8

<−0.66
9

. The same is true for the attack rates, but since these parame-

ters were used to differentiate the contrasting states of top-down control, fixed values

were used here (c.f. Tab. 3.1) that nevertheless obey the general trends found in Rall

et al. (2012). Body masses increase by a factor of 100 per trophic level, a value com-

monly found in invertebrate communities and known to have a stabilising effect on

population dynamics (Brose et al., 2006a,b). Freedom of choosing an appropriate set of

units allows us to set the body mass of the autotroph to <� = 1. In general, the model

is parameterised such that the population dynamics of all species are oscillatory when

dispersal is not accounted for (Tab. 3.1, Figure 3.2).

Habitat network and dispersal

We use the same rules for modeling spatial interactions as in Ryser et al. (2019). Disper-

sal is considered for the autotroph, consumer, and predator species in the model. The

spatial setting is implemented as a random geometric graph (RGG) (Penrose, 2003),

where each node of the spatial network represents a habitat patch for a local com-

munity (Urban and Keitt, 2001). The (G, H)-coordinates of each patch were drawn at

random from a bivariate uniform distribution over the intervall [0 : 1] × [0 : 1]. Dis-

persal links between the patches connect the local populations, enabling exchange of

biomass between patches and thereby forming a meta-food chain (Figure 3.1).

Each species perceives its individual dispersal network depending on its body

mass <8 . A dispersal link for species 8 exists between two patches : and ; only if the

distance between them is less than the species-specific maximum dispersal distance

�<0G,8 = �0<
n
8 . (3.4)

The exponent n is set to a positive value to account for increased mobility and thus im-

proved dispersal abilities of species with a larger body mass (Hein et al., 2012; Peters,

1983).
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Dispersal itself is at least for animal species often an active process resulting in

metabolic costs and potentially involving a higher risk of predation. To account for

these costs (dispersal mortality), we assume that dispersal success (8,;: (i.e., the frac-

tion of individuals not dying during dispersal) of species 8, when moving between

patches ; and : , decreases linearly with the distance between the patches:

(8,;: = max
(
1 − 38,;: , 0

)
, (3.5)

where 38,;: =
3;:

�<0G,8
is the distance between the patches relative to the maximum dis-

persal distance of species 8. For passively dispersing plants distance-depending costs

can be caused by a decreasing probability of propagules finding by chance a suitable

patch that is further away.

The fraction of individuals emigrating from a source patch : that move towards a

target patch ; is calculated using the weight function

,8,;: =
1 − 38,;:∑
? (1 − 38, ?:)

, (3.6)

where the sum in the denominator is taken over all potential target patches ? that are

within the maximum dispersal range of species 8 on patch : (i.e., those with 3?: <

�<0G,8). This weight function makes dispersal links between nearby patches stronger,

implying that a larger proportion of emigrating biomass arrives there, than those be-

tween patches that are further apart. Note that while specific distances 38,;: and suc-

cess terms (8,;: are symmetric for all pairs of patches, the weight function is not (i.e.

,8,;: ≠ ,8,:;).

In general, the process of dispersal can be described as an exchange of biomass

between habitat patches that is affecting the population dynamics of species 8 on patch

; via emigration (�8,;) from this patch and immigration (�8,;) into the patch. The full

population dynamics of species 8 on patch ;, comprising both local, trophic dynamics,

Eqs. (3.2), and dispersal dynamics, can thus be written as

3�8,;

3C
= 68,;�8,; − �8,; + �8,; . (3.7)

Emigration is a complex process in nature possibly involving different environ-

mental cues and species properties. Here we assume an adaptive emigration rate that
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depends on the net per capita growth rate 68,; of species 8 on patch ;, reflecting its

current situation in this habitat. If a species’ net growth is positive, there is little need

for dispersal and emigration will be low. However, if the local environmental condi-

tions deteriorate, e.g. due to low resource availability or high predation pressure, the

emigration rate increases. This is captured by the following function:

�8,; =
`8�8,;

1 + 41(68,;+G8)
. (3.8)

The parameter `8 = `0G8 determines the maximum per capita emigration rate and 1

determines how sensitively the emigration rate depends on the net growth rate (i.e.,

how quickly it drops when 68,; increases). Finally, immigration of species 8 into patch

; depends on the amount of emigration from all neighboring patches : as well as on

the specific dispersal network, encoded in the success and weight functions (8,;: and

,8,;: , according to

�8,; =
∑
:

(8,;:,8,;:�8,: . (3.9)

The parameters defining the dispersal dynamics are also summarized in Tab. 3.1.

TABLE 3.1: Standard parameter set used in the model.

Parameter Description Value

� resource turnover rate 0.5
'0 resource supply concentration 5
A0 intercept mass specific max. resource uptake rate 1
 half saturation density for resource uptake 0.2
2� , 2% interference competition 0.6
4� assimilation efficiency consumer (�) 0.45
4% assimilation efficiency predator (%) 0.85
G0, � intercept respiration rate plant (�) 0.138
G0, � , G0, % intercept respiration consumer (�) and predator (%) 0.314
0�� attack rate consumer 105 or 170
0%� attack rate predator 450 or 10000
ℎ0 intercept handling time 0.1
�0 intercept maximum dispersal distance [0.06: 0.5]
n scaling exponent for maximum dispersal distance 0.05
`0 scaling factor maximal emigration rate 2
1 curvature of emigration function 25
/ number of habitat patches 30
f fraction of habitat patches blinking 0.3
_ period length of blinking cycle 6000



Chapter 3. Interplay of temporal patch availability and patch isolation
on population dynamics

55

Simulation setup

Static and dynamic landscapes

The baseline simulations are carried out using static landscapes, i.e., with RGG net-

works of / = 30 habitat patches as described above, where all patches and dispersal

links are permanently available. However, since the environmental conditions in na-

ture are rarely completely constant, we also study dynamic landscapes in which a

fraction f of the patches becomes periodically unavailable as a habitat. This process

is called ’blinking’ and has a period length _ = 6000. This period length encompasses

several hundred generation times of the autotroph, thereby providing sufficient time

for the food chain to recover between blinking events. Blinking patches are turned on

and off synchronously and change their state every _
2 time units. When the blinking

patches are turned off, the local food chains go extinct immediately. Furthermore, the

dispersal network can be disrupted because these patches cannot be used as stepping

stones for dispersal between patches that are too far apart for a direct dispersal link.

Patch isolation

To capture the effects of varying mean patch isolation, the intercept of the maximum

dispersal distance, �0, (Eq. (3.4)) is varied systematically between 0.06 and 0.5. This

creates habitat networks that range from mostly isolated patches to systems where the

predator can move in a single step between any two patches. The spatial network is

quantified by the mean patch isolation of the predator’s dispersal network,

�'��,% = 1 − !%
1
2/ · (/ − 1)

, (3.10)

with !% the number of undirected dispersal links of the predator and Z the number

of habitat patches. Note that using the isolation of the dispersal network of any of the

other species to define the mean patch isolation of the landscape would only rescale

the x-axis of the results (Figure 3.3), but not change them qualitatively.
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Ecosystem stability

We evaluated ecosystem stability according to Wang and Loreau (2014) as U-, V-, and

W-variability of autotroph, consumer, and predator. For the mean local or U-variability

of a species, the coefficients of variation (CV, standard deviation
mean ) of its local biomass densi-

ties on all patches are calculated and then averaged across patches (weighted with the

respective local mean biomass density), while for the W-variability (variability of the

metapopulation) the CV of the total biomass density (sum over all patches) is eval-

uated. Similar to the U-, V-, and W-diversity indices (Whittaker, 1972), V-variability

measures differences between the patches and can thus be used to determine how

synchronously local biomass densities on the different patches oscillate. It is here de-

fined as V = U
W

. In contrast to the diversity indices, however, variability decreases with

an increase of spatial scale, i.e. W ≤ U and thus V ≥ 1. Spatially synchronous oscil-

lations result in a low V-variability and a W-variability that approaches the value of

the U-variability. Perfect synchronicity is obtained at V = 1. The variability measures

of a species do not change if it is permanently extinct on one or several patches. An

intuitive example of two species, one with synchronous and one with asynchronous

oscillations, is provided in the Appendix (Figure B1).

Numerical simulations

We simulated food chains that were parameterized to exhibit either a strong or a weak

trophic cascade, corresponding to a very uneven or a relatively even distribution of

biomass along the food chain, respectively. The weak trophic cascade was gener-

ated by relatively low attack rates of the consumer and predator species (0�� = 105,

0%� = 450, Figure 3.2A), while for the strong trophic cascade much higher attack rates

were chosen (0�� = 170, 0%� = 10000, Figure 3.2B). The spatial networks were either

static (all patches permanently available as habitats) or dynamic (30% of the patches

periodically becoming unavailable as habitats). The mean patch isolation was constant

for each individual simulation run, but was gradually varied between simulations by

decreasing �0 from 0.5 to 0.06 in steps of 0.01. Simulations were carried out with a

full-factorial design and 30 replicates for each combination of parameters, resulting in

a total of 5400 simulation runs. Replicates differed in the randomly chosen positions

of 30 patches that formed the spatial networks. Time series were simulated for 90 000



Chapter 3. Interplay of temporal patch availability and patch isolation
on population dynamics

57

time units and split in three sections of equal length. During the first section, the sys-

tems settled on the attractor and from the second section, mean biomass densities were

calculated. These mean biomass densities were then used to calculate the variability

coefficients from the third section of the time series. During the simulations, a species

was considered extinct on a given patch if its local biomass density fell below 10−20.

Global extinction of a species from the entire meta-food chain was never observed.

Numerical simulations of the ODE model were performed in C (source code adopted

from (Schneider et al., 2016)) using the SUNDIALS CVODE solver (Hindmarsh et al.,

2005) with absolute and relative error tolerances of 10−10. Output data were analysed

using Python 2.7.11, 3.6 and several Python packages, in particular NumPy and Mat-

plotlib (Hunter, 2007; Oliphant, 2015; Van der Walt et al., 2011).

Results

Food chain dynamics without dispersal

To capture how different parameterizations of trophic interactions affect the metacom-

munity dynamics, we analyzed two contrasting trophic cascades in the food chain

that were created by assuming either low or high attack rates. The first type, called

weak trophic cascade, is characterized by a weak predation pressure of the predator,

a relatively even distribution of biomass along the food chain and a high oscillation

frequency (note the different scales of the x-axes of the two panels in Figure 3.2). The

strong trophic cascade is, in contrast, characterized by a very uneven distribution of

biomass with a strong dominance of the autotroph (caused by the suppression of the

consumer by the predator), a much lower oscillation frequency, and much more dras-

tic population cycles that drive both the predator and the consumer biomass densities

repeatedly to very low values. The difference between the predator attack rates in the

two cases had to be this pronounced as for intermediate values, the food chain is stable

and the analysis of (meta-)population variabilities is not possible (Appendix, Figure

B2).
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FIGURE 3.2: Timeseries of the dynamics for the weak (A) and the strong
(B) trophic cascade on a single patch without dispersal dynamics. In
case A, 0�� = 105 and 0%� = 450; in case B, 0�� = 170 and 0%� = 10000.
All other parameters as in Tab. 3.1. Note the different scales of x- and

y-axes in the two panels.

Metacommunity dynamics

We evaluated the two different landscape scenarios (static vs. dynamic) for both the

weak and strong trophic cascade over a gradient of the mean patch isolation. All sce-

narios are evaluated with respect to local (U-variability), between patch (V-variability),

and metapopulation dynamics (W-variability). The observed trends in population vari-

abilities on the different spatial scales were always the same for all trophic levels. We

therefore only show results for the predator species. Results for the autotroph and

consumer species are in the Appendix (Figures B3 and B4).

Local dynamics: U-variability

In contrast to our expectations, increasing mean patch isolation amplifies biomass os-

cillations in static landscapes (increasing U-variability, Figure 3.3A,B). This trend is

particularly pronounced in the strong trophic cascade from intermediate mean patch

isolation (where many systems even settle on a stable fixed point) to high mean patch

isolation (Figure 3.3B). Because U-variability has non-zero values at low mean patch

isolation, the overall pattern is u-shaped. In the weak trophic cascade, U-variability

monotonously increases with mean patch isolation. In dynamic landscapes, U-variability
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is higher than in static landscapes, but its main trends with mean patch isolation are

significantly weaker than in static landscapes (cf. also Tab. 3.2).

FIGURE 3.3: Local (U-variability, top row), between patch (V-variability,
middle row) and metapopulation dynamics (W-variability, bottom row)
of the predator for the weak (left column) and the strong trophic cas-
cade (right column). Light gray data points and dashed trend lines
(second order fit) indicate static landscapes, dark gray data points and
solid trend lines indicate dynamic landscapes. Each data point repre-
sents the result of one simulation run with a unique spatial network of
habitat patches. All data points where the variability is below 10−6 are
set to 10−6 as differences between them provide no meaningful infor-

mation that close to the fixed point.

Synchronization of patches: V-variability

On the regional scale we evaluated to what extent the biomass dynamics between

habitat patches synchronized (Figure 3.3C,D). In line with our expectations, there is in

most cases a clear trend towards decreased synchronization (increased V-variability,

c.f. also Table 3.2) of the dynamics as mean patch isolation increases. The apparent

limitation of synchronization in dynamic landscapes (minimal V-variability ≈ 2 for
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both weak and strong trophic cascades) is only a numerical effect due to the difference

between constant and blinking patches.

Only the weak trophic cascade in static landscapes deviates from the general trend:

The V-variability is not only higher than in the other cases, but it also appears to de-

crease from low to intermediate mean patch isolation and only slightly increases at

high mean patch isolation. The initial decrease is due to a separate cloud of data

points with very high V-variabilities, which emerges for �'��,% / 0.4. This suggests

that in this part of the parameter space a second attractor with even less synchroniza-

tion between the patches exists. The bistability of the system is indeed confirmed by

dedicated simulations using spatial networks with fixed coordinates of the patches (cf.

Appendix, Figure B5)

TABLE 3.2: Summary of the trends of U-, V- and W-variability with
increasing mean patch isolation for the weak (WTC) or strong (STC)

trophic cascade in static or dynamic landscapes.

State of landscape Type of effect Trend for WTC Trend for STC

static U-variability ↑ u-shape
static V-variability ↓ &↗ ↑
static W-variability ↑ &→ u-shape
dynamic U-variability → ↗
dynamic V-variability ↗ ↑
dynamic W-variability ↘ →

Metapopulation : W-variability

For both the weak and the strong trophic cascade we find a relatively constant total

biomass of the metapopulation (W-variability < 10−1, Figure 3.3E,F). As expected, W-

variability is higher in dynamic landscapes than in static ones. Since local biomass

oscillations are often highly synchronized, the trends in the metapopulation dynamics

largely follow those already observed in the local dynamics (cf. also Tab. 3.2). As with

the V-variability of the weak trophic cascade in static landscapes, at low mean patch

isolation (�'�� / 0.4) a small cloud of data points appears to be separated from the

rest, which have a low W-variability. Again, these data points can be attributed to an

alternative attractor with less synchronized dynamics and correspondingly a lower

W-variability.
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Discussion

The impact of habitat fragmentation on biodiversity and community dynamics is a

subject of ongoing debate (Fahrig et al., 2019; Fletcher et al., 2018). Here, we evalu-

ated the effect of mean patch isolation as one aspect of fragmentation on the popula-

tion dynamics of two contrasting states of a meta-food chain in static and dynamic

landscapes. Most intriguingly, we found that both local (U-) and metacommunity

(W-) variability increased with increasing mean patch isolation, despite the fact that

synchronization among patches mostly decreased (V-variability increased) along the

same gradient. Periodic environmental disturbances that rendered some patches reg-

ularly uninhabitable in dynamic landscapes weakened these trends, but at the prize

of overall higher levels of U- and W-variability.

Interactions between dispersal and local interactions drive the dynamics in

static landscapes

Higher effective dispersal rates at low patch isolation have been shown to synchro-

nize the dynamics of metacommunities (Gouhier et al., 2010), but our results suggest

that the extent of this effect may depend on the local interactions between the popula-

tions. While our results largely confirm the negative correlation between mean patch

isolation (and thus, by proxy, effective dispersal rate) and synchronization, we also ob-

serve a significant deviation from this trend in the weak trophic cascade at low mean

patch isolation. There, an alternative attractor with very asynchronous population os-

cillations (high V-variability) emerges. However, U-variability is also relatively low on

this attractor, which may explain the lack of synchronization: When the local popula-

tions do not oscillate much, their emigration rates are also almost constant over time,

and there is consequently little potential for affecting the population oscillations on

neighboring patches. This highlights the importance of details of the local interactions

between species (in this case low attack rates in the weak trophic cascade that limit

U-variability) for collective phenomena like synchronization.

Other theoretical studies also indicate a relevance of local interactions for the syn-

chronization of population dynamics. Koelle and Vandermeer (2005) show for exam-

ple opposing trends of synchronization between species in a food chain, which are

due to an interaction between dispersal patterns and trophic interactions. Moreover,
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empirical studies provide evidence that dispersal may even alter biotic interactions

between species directly (Walting and Donnelly, 2006), further underlining the impor-

tance of local species interactions for our understanding of metapopulation dynamics.

Indirect effects of local trophic interactions also explain why our initial hypothesis,

regarding decreasing U-variability at increasing mean patch isolation, turned out to be

incorrect in the weak trophic cascade. The hypothesis was based on the ’principle of

energy flux’ (Rip and McCann, 2011), according to which an increasing (dispersal)

mortality at higher mean patch isolation should weaken and consequently stabilize

the trophic interactions along the food chain (and thus decrease U-variability). In con-

trast to this prediction, high dispersal mortality does not generally result in a lower U-

or W-variability in our model. We attribute this counter-intuitive trend to an indirect

effect of dispersal mortality: Despite their superior dispersal abilities, higher trophic

levels often suffer most from mean patch isolation because they are energetically more

limited than the species on lower trophic levels (Ryser et al., 2019). In fact, we also find

that the higher the mean patch isolation, the lower the mean biomass of the predator

(see Appendix, Figure B6). This decreases the per-capita predation mortality of the

consumer, which more than compensates for the increase in the consumer’s dispersal

mortality. In line with the principle of energy flux, this destabilizes the consumer-

autotroph interaction. At high mean patch isolation, the U-variability of the predator

thus increases because the dynamics of the predator is driven by the increasingly un-

stable consumer-autotroph interaction.

This apparent mismatch between increasing V-variability (more asynchronous dy-

namics) and simultaneously increasing W-variability at high mean patch isolation has

also implications for the so-called ’portfolio effect’ (Schindler et al., 2015), which is

often considered in more applied contexts. Specifically, the spatial portfolio effect

(Thorson et al., 2018) measures how much W-variability is reduced relative to its the-

oretical maximum (here given by W-variability = U-variability) due to asynchronous

oscillations among different spatial locations. While we do observe such a reduction

of W-variability relative to U-variability when mean patch isolation increases, the indirect

effect of dispersal mortality discussed above still leads to an increase of W-variability

in absolute terms. This underlines that assessing factors that affect the synchroniza-

tion of population dynamics across space is not always sufficient to understand the

variability of a population on the regional scale.
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Bistability in the weak tropic cascade

In static landscapes, the weak trophic cascade is bistable for low to medium mean

patch isolation. In this parameter range, in addition to the attractor with intermedi-

ate synchronicity, which exists for the entire range of mean patch isolation, a second

attractor with very asynchronous dynamics between the patches exists.

Interestingly, the bistability concerns only the synchronicity of the dynamics (and

consequently the W-variability). Local (U-) variability is not affected by whether the

populations on different patches cycle more or less in synchrony (Figure 3.3A).

Such bistability is relevant because it implies hysteresis (Scheffer et al., 1993): a

small change in environmental conditions can drive the system away from one at-

tractor, but for the system to return to it, a much larger change of the environmental

conditions in the opposite direction will be necessary. This is particularly concerning

here: The second attractor, which may be regarded as more desirable due to its lower

metapopulation variability, loses its stability when the mean patch isolation increases

beyond a certain threshold. However, the system may never return to it even when

environmental conditions improve again, because the primary attractor never loses its

stability.

A possible explanation for the occurrence of the alternative synchronization pat-

terns we observe is the way the dispersal rate is modeled. Specifically, that the rate at

which individuals emigrate from a given patch depends on the net growth rate they

experience there. Emigration can thus be driven by a lack of resources (in which case

emigration helps ending the unfavorable growth conditions and is thus self-limiting)

or by an exceedingly high predation rate (in which case emigration actually inten-

sifies the per-capita predation rate for the remaining individuals and becomes self-

enforcing). Preliminary analyses suggest that dampening or amplification of net dis-

persal flows by synchronous and asynchronous oscillations, respectively, create differ-

ent feedback loops based on these different drivers of emigration, but more detailed

analyses are required to understand how these contrasting states stabilize themselves.

Effect of periodic environmental disturbances

Periodic environmental disturbances have a stronger effect on population variability

on all spatial scales than local interactions or mean patch isolation. We infer this from
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the observation that both weak and strong trophic cascade, which behave very dif-

ferently in static landscapes, exhibit almost identical variability patterns in dynamic

landscapes, with elevated levels of U- and W-variability and low V-variability. Fur-

ther, all three variability measures are almost constant over a wide range from low to

medium mean patch isolation. Only at high mean patch isolation, where the patch

networks begin to decompose into several isolated components anyway, the effect of

the periodic disruption of the patch networks by the blinking patches dwindles and

the variability measures become more similar to their values in static landscapes again.

Both the increase in U-variability and the synchronization of the patches, due to the pe-

riodic environmental disturbances, are of course not unexpected. The blinking of the

patches increases U-variability by causing low-frequency biomass oscillations through

the extinction- and recolonization process and by decreasing the mean biomass densi-

ties on these patches. Similarly, environmental fluctuations have long been known to

be able to synchronize ecological dynamics in coupled habitats (Moran, 1953). More

surprising is however the overruling strength of the effect of periodic environmen-

tal disturbances, considering that a blinking cycle (period length _ = 6000) is about

150 times slower than the period length of the population cycles in the weak trophic

cascade.

Our approach of modeling periodic environmental disturbances as dynamic land-

scapes, where some patches become periodically uninhabitable, is inspired by the nat-

ural example of kettle holes that have a species-rich community during the colder

and wetter seasons, but can run dry during the summer (Kalettka and Rudat, 2006).

Such periodic (in the example: seasonal) environmental disturbances are a common

feature of ecological systems, since in most environments seasonally fluctuating cli-

matic drivers exist (Fretwell, 1972). Together with the above discussed surprisingly

strong effect of even very rarely occurring disturbances, this may explain why em-

pirically observed effects of patch isolation are often small and inconclusive (Fahrig,

2003). Environmental disturbances (especially seasonal ones) of course do not always

lead to the abrupt extinction of entire local communities, but could for example sim-

ply modify resource availability or mortality rates. An interesting avenue for future

research might therefore be to explore whether such less drastic disturbances also have

the potential to overrule the effects of local interactions and landscape configuration.

Furthermore, resting stages can play a critical role in the recolonization of periodically
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uninhabitable patches (Wade, 1990). Accounting for them in the model might decrease

synchronicity, as they allow for an independent restart of the local communities.

Relevance and effects of dispersal assumptions

Details of the way species dispersal is implemented within a model can have major

implications for the arising population dynamics. In nature, a multitude of causes

affects an individual’s decision to leave its home patch (Bowler and Benton, 2005),

among them being for example intraspecific competition (Herzig, 1995), quality of

food resources (Kuussaari et al., 1996), or top-down pressure through parasitism or

predation (Sloggett and Weisser, 2002). In our model we use the net growth rate of

a species in a given patch to determine its emigration rate. Since the net growth rate

depends on both food availability and predation pressure, the model captures multi-

ple of the above mentioned causes of dispersal. However, we assume that individuals

have only knowledge about the growth conditions in the patch they are currently

in and not about the conditions in potential target patches. The dispersal rate be-

tween any two patches thus only depends on the local conditions in the source patch

and on the spatial arrangement of the patches. Using a consumer-resource model

with two patches, Abrams and Ruokolainen (2011) showed that when the dispersal

rate depends on the difference of the growth rates between source and target patch,

asynchronous (antiphase) cycles frequently occur, which promotes stability. With our

approach, we only find asynchronous dynamics in static landscapes, but even then

synchronous metacommunity dynamics frequently occur.

Conclusions

We conclude that due to indirect effects of local ecological interactions, dispersal is not

necessarily a "double-edged sword" (Hudson and Cattadori, 1999) (dubbed so because

too much of it can synchronize metacommunity dynamics and increase the risk of cor-

related extinctions), but also that a portfolio effect due to asynchronous oscillations

may not always result in reduced variability at the metacommunity level. Further-

more, in each unique landscape, comprising a multitude of abiotic factors, the impact

of a periodic environmental disturbance has the potential to outweigh local interac-

tions present in a community. The extent of the effect of mean patch isolation on the
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variability of population dynamics in a metacommunity thus may strongly depend on

local environmental conditions which are relevant for reliable predictions. Whether

this is also true for other aspects of fragmentation or habitat loss is an intriguing ques-

tion for future investigations. Finally, the non-monotonous stability response curve of

the strong trophic cascade shows that the effect of mean patch isolation on metacom-

munity dynamics may not be trivial and that there might be transitions where patch

isolation might switch from having a positive to having a negative effect.
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Abstract

Anthropogenic habitat change is one of the main drivers of declining biodiversity but

the magnitude of the effect depends on specific properties of the landscape and the

species community. To protect biodiversity, it is therefore necessary to identify rel-

evant characteristics that explain diversity patterns and enable target oriented mea-

sures from local to regional scales. Our theoretical approach simulate dynamics of a

meta-food web of 40 species on 40 habitat patches and we evaluate the emerging di-

versity patterns using a machine learning approach. We show that the mean local (Ū-)

diversity is mainly determined by the robustness of the food web and additionally to

a lesser extent by the mean patch isolation. The large standard deviation in food web

robustness emphasizes that it is highly food web dependent how sensitive it reacts to

a change of habitat structure. In contrast, the best predictors explaining differences in

species composition between patches (V-diversity) were predictors of the landscape,

namely mean patch isolation and the minimum distance to the next neighbor habi-

tat, but the robustness of a food web still contributes to explain more than 35% of

the explained variance. We conclude that, if we want to preserve species and biodi-

versity, we should first understand the local food web structure in which species are

embedded in, and in a second step integrate landscape structure and characteristics

that contribute to the preservation of a metacommunity.
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Introduction

Currently we are observing a world-wide decline in biodiversity across all types of

ecosystems (Assessment, 2005; Pimm et al., 2014). Despite the large number of diverse

ecosystems, such as marine, grassland or tropical biota, which differ largely in their

respective abioitc and biotic conditions, we can identify common relevant processes

that explain how biodiversity can be maintained, e.g. Chesson (2000). These processes

are often categorized into two different scales, the local and regional scale. On the local

scale, ecological processes such as intra- or interspecific competition (Tilman, 1982) or

trophic interactions (Connell, 1971) determine the coexistence of the local species com-

munity. Although these local processes are the basis for the coexistence of species, also

regional processes have an effect on biodiversity. At the regional scale, processes such

as habitat change and habitat loss e.g. due to deforestation or fragmentation, select for

different species communities and limit for example the ability of species to disperse

between habitats (Prugh et al., 2008). In an early experiment, Tilman already empha-

sized the relevance of both local and regional scale processes on species richness of

plant communities through the role of dispersal limitation (Tilman, 1997). A large

species richness relied on a large number of introduced seeds, but at the same time

also on local soil conditions and the presence of individual species. Thus, both scales

can involve processes and mechanisms that affect observed diversity patterns (Ches-

son, 2000; HilleRisLambers et al., 2012; Leibold and Chase, 2017). However, there

is still controversy on which regional processes and resulting structural characteris-

tics make a relevant contribution to maintaining biodiversity across ecosystems and,

further, what magnitude of impact do these regional processes have on biodiversity

compared to local processes (Fahrig et al., 2019; Fletcher et al., 2018).

A very well-studied regional characteristic affecting diversity patterns of commu-

nities is patch isolation, and the associated constraints for dispersal rates that has al-

ready been a central determinant in the theory of island biogeography (MacArthur

and Wilson, 1967). The theory predicts a decreasing local species richness (U-diversity)

with increasing patch isolation. Later theoretical approaches (e.g. Mouquet and Loreau

(2002)) and an empirical review by Cadotte et al. (2006) showed a predominantly

unimodal relationship between dispersal rate, with mean patch isolation used as a

proxy, and U-diversity. They predict high levels of U-diversity for an intermediate
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mean patch isolation since at a high mean patch isolation (corresponding to a low

dispersal rate), the rescue effect (Gotelli, 1991) is limiting, and species can experience

increased competition due to an over-exploitation of resources. In comparison at low

mean patch isolation (or high dispersal rate), biotic homogenization is often observed,

where predators can forage over all patches, increasing top down control and remov-

ing prey refuges (Briggs and Hoopes, 2004; Grainger and Gilbert, 2016; LeCraw et al.,

2014). Despite these advances, most of these studies either focus exclusively on the

effects of the structure of the landscape on biodiversity, or largely consider local in-

teractions on a single trophic level (Fahrig, 2003; Rybicki and Hanski, 2013), although

complex food webs are a central scheme in natural habitats (Dunne, 2005). Accord-

ingly, trophic interactions between species and their impact on diversity patterns re-

main largely unaddressed (but see also Amarasekare (2008); Gravel et al. (2011); Liao

et al. (2017)).

Both local trophic interactions among species and regional spatial structures can af-

fect and determine the diversity of a complex metacommunity. A central role for local

trophic interactions have predator species. They can alter, for example, the dispersal

behavior of prey species that affect diversity patterns on the regional scale (Cadotte

et al., 2006; Macedo, 2012). Another effect of predator species is that they can reduce

local competition among prey species by selectively foraging on them, which can pre-

serve local U-diversity (Terborgh, 2015). This demonstrates that trophic interactions

have considerable effects on the stability and persistence of a local species community

but that trophic interactions are also linked to the regional scale and affect the species

distribution among habitats (Leibold and Chase, 2017). At the same time the regional

structure of the landscape and corresponding dispersal of species can contribute to

diversity patterns and affect the trophic structure of a local food web. For example,

an increase of mean patch isolation can have a negative effect on food web complex-

ity, decreasing U-diversity (Gravel et al., 2011). In comparison, a positive impact on

U-diversity of the landscape structure can be attributed to dispersal corridors. Their

connectance of nearby habitats can buffer against species loss by increasing local food

supply (Damschen et al., 2006) or can offer the possibility to temporarily escape local

predation although habitats are largely isolated. Such better mechanistic understand-

ing of these mutual dependencies between trophic and landscape structure support
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our knowledge on current diversity patterns, and helps to create a more holistic ap-

proach to maintain biodiversity which is a more than ever pressing task (Gross et al.,

2020).

To analyze diversity patterns, we use a meta-food web approach based on an allo-

metric trophic network (ATN) model that comprises a large community of species and

is embedded in a complex network of habitat patches. We use this approach follow-

ing Ryser et al. (2019) because we want to emphasize trophic interactions in metacom-

munities which are represented in a very complex network of interactions between

species in the model, and since the model creates an allometric trophic structure that

is comparable to empirical food webs (Riede et al., 2011). Further the complex network

of the landscape allows for a distinction of common regional landscape attributes such

as patch isolation and their impact on mean U- diversity (Ū) and differences in species

composition (V-diversity). For a solid validation we use a machine learning approach

(random forest) and select for relevant predictor variables. We distinguish between

local, i.e. food web specific predictors and regional, i.e. landscape specific predictors.

The analysis runs across a gradient of mean patch isolation that we know has an effect

on both Ū- and V-diversity patterns (Ryser et al., 2019).

On the local scale we evaluate the Ū-diversity, where we expect to find food webs

that are intrinsically more stable than other ones (Jacquet et al., 2016). These differ-

ences in stability and robustness of the food web suggest that they can also buffer

against negative effects of landscape structure, such as a large mean patch isolation

which is thought to decrease U-diversity (Gravel et al., 2011; Ryser et al., 2019). A re-

gional structural aspect that can support Ū-diversity is the local clustering of patches,

where dispersal corridors increase the likelihood of species to persist. On the regional

scale, we expect an increase of V-diversity for a large patch isolation (Ryser et al., 2019)

which is motivated through different routes of extinction cascades between patches.

Beside regional characteristics, we also expect that the local structure of the food web

has an impact on V-diversity. For example, if the intrinsic food web structure is very

stable, we do not expect large differences in the species composition among patches.

Yet, if the stability of a food web is low, larger differences among patches can be ex-

pected (high V-diversity), in particular in a state of high patch isolation where biotic

homogenization between patches through dispersal is not possible.
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Methods

General framework

We analyzed a meta-food web model in a landscape of 40 randomly distributed habitat

patches (Figure 4.1), based on the model by Ryser et al. (2019). In each patch, which is a

local habitat, the local food web comprises a maximum number of 40 species which in-

teract through feedings links. On the landscape scale, dispersal links between patches

describe the regional interactions that are characterized by an inflow (immigration)

and an outflow (emigration) of biomass.

Feeding and dispersal dynamics are described using ordinary differential equa-

tions. The general form of the rate of change in biomass density, �8,I , of species 8 on

patch I is given by
3�8,I

3C
= )8,I − �8,I + �8,I , (4.1)

with)8,I the rate of change in biomass density determined by local feeding interactions

(Eq. (4.2) & (4.3) & (4.4)), �8,I the total emigration rate of species 8 from patch I (Eq.

4.6), and �8,I the total rate of immigration of species 8 into patch I (Eq. 4.8).

Trophic interactions

The local trophic interactions are based on an ATN model developed by Schneider

et al. (2016) taking into account allometric degree distributions of species and includ-

ing empirical data for scaling relationships of body masses. Following their basic idea,

we made a general distinction between animal and plant species, with a fixed number

of 30 animal and 10 plant species in each food web. Gain and loss of biomass den-

sity due to trophic interactions ()8,I , Eq. (4.1)) are described for both plant and animal

species with a species specific per capita net growth rate (E8,I). For plant species, it is

given by

)8,I = E8,I�8,I = A8�8,I −
∑
:

�:,I�:8,I − G8�8,I , (4.2)

with a body mass (<) dependent growth rate A8 = <−0.25
8

<8=;

(
#;

 8,;+#;

)
, and for animal

species it is given by

)8,I = E8,I�8,I = 4%�8,I

∑
9

�8 9 ,I + 4��8,I
∑
:

�8:,I −
∑
:

�:,I�:8,I − G8�8,I , (4.3)
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FIGURE 4.1: Overview of our meta-food web model approach: a) local
food web of species connected through feeding interactions b) structure
of the landscape with a set of patches where each patch comprise a local
food web of species. We consider a fixed number of patches randomly
distributed in the landscape. Dashed line in b) indicates dispersal links
between patches and we model differently fragmented landscapes c)
by varying the mean patch isolation of patches. For evaluation of the
stability of the food web d) we consider a measure of robustness based
on the persistence of species. A low robustness implies a low number
of species that survive model simulations with and without metabolic
dispersal losses from emigration, in comparison to a high robustness

where a large number of species survives.

with feeding rate �8 9 ,I (see below, Eq. (4.5)) and a conversion efficiency 48 . The trophic

dynamics of the species on a given patch are supplemented by ODEs for the dynamics

of two abiotic nutrients which serve as resources for the plants:

3#;,I

3C
= � ((; − #;) − a;

∑
I

A8�8,I . (4.4)

For both plants and animal species (i) we assume a loss due to consumption by

consumer/predator species : which is also defined as prey specific feeding rate �:8,I .

Metabolic demands are defined as G8 = 0.138<−0.25
8

for plant species and G8 = 0.314<−0.305
8

for animal species (Ehnes et al., 2011). Nutrient dynamics are based on a global
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turnover rate � = 0.25, a supply concentration (; which defines the maximum nu-

trient level for each nutrient ; and the plant uptake depends on a relative nutrient

content a; of a plant species. See Table 4.1 for more information on each variable.

Feeding rates of an animal species 8 on a prey species 9 (either plant or animal

species) �8 9 ,I are expressed as a Beddington-DeAngelis functional response term (Bed-

dington, 1975; DeAngelis et al., 1975):

�8 9 ,I =
l8^8 9�

1+@
9,I

1 + 2�8,I + l8
∑
: ^8:ℎ8:�

1+@
:,I

· 1
<8

. (4.5)

The feeding rate of an animal species 8 is scaled by the respective body mass <8 of the

species and considers an interference competition 2, a resource specific capture coef-

ficient ^8 9 , a resource specific handling time ℎ8 9 which determines the time a species

needs to kill, ingest and digest its prey, a relative consumption rate l8 and a Hill coef-

ficient of 1 + @. See Table 4.1 and Supplements for more information on each variable.

Dispersal

We model dispersal between local communities as a dynamic process of emigration

and immigration, assuming that dispersal occurs on the same time scale as the local

population dynamics (Amarasekare, 2008).

Emigration

The rate of emigration depends on the net per capita growth rate h8,I of the species 8 on

patch I, which reflects the current situation of a species in its patch. For animal species,

we assumed an increased emigration when the local net growth rate decreases, which

represents poor local conditions for the species. Based on empirical examples we as-

sumed for plant species both scenarios, an increased and a decreased emigration when

the local net growth rate decreases which is assigned randomly to each plant species

(Macedo, 2012; Miyazaki et al., 2009).

The total rate of emigration of species 8 from patch I is

�8,I = 38,I�8,I , (4.6)
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with 38,I as the corresponding per capita dispersal rate. We model 38,I as

38,I =
0

1 + 4−1 (−G8−h8,I )
, (4.7)

with 0, the maximum dispersal rate, 1, determining the shape of the dispersal rate

(Figure C1), G8 , the inflection point determined by the metabolic demands per unit

biomass of species 8, and h8,I , the per capita net growth rate of species 8 on patch I (see

Eq. (4.2) & (4.3)). The per capita dispersal rate 38,I thus accounts for emigration cues

such as resource availability, predation pressure and inter- and intraspecific competi-

tion (Bowler and Benton, 2005; Fronhofer et al., 2018). In each simulation run 0 was

sampled from a Gaussian distribution (`0�, f0�) and 1 from an uniform distribution

within different limits for consumer and plant species (see Table 4.1). The selected

intervals reflect the different dispersal strategies of an animal and plant species.

Immigration

The immigration of species 8 into patch I,�8,I , depends on the emigration rates �8,= of

a species 8 from all neighbouring patches = that are within the species’ dispersal range

X<0G and on the specific dispersal network, which depends on the relative position of

the patches in the landscape (see below) and is mathematically described by a success

and weighting term. The immigration rate of the biomass density of the species 8 into

the patch I follows

�8,I =
∑
=∈#I

�8,= (1 − X=I)
1 − X=I∑

<∈#= 1 − X=<
, (4.8)

where #I and #= are the sets of all patches within dispersal range of the species 8 on

patches I and =, respectively. The success term (1 − X=I) is the fraction of successfully

dispersed biomass and assumes a linear increase in biomass loss with X=I , the distance

between the patches = and I relative to the maximum dispersal distance. The weight-

ing term 1−X=I∑
1−X=< determines the proportion of biomass of specie emigrating from the

source patch = to the target patch I. This proportion depends on the relative distance

between the patch X=I and the relative distances to all other potential target patches

< on the source patch =, X=<. For numerical reasons we do not allow dispersal flows

with �8,I < 10−10. In this case we immediately set �8,I to 0.
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Landscape properties

Landscapes with different mean patch isolation are generated by random geomet-

ric graphs, in short '�� (Penrose, 2003). The (G, H)-coordinates for each local patch

are drawn randomly from a bivariate uniform distribution over the intervall [0 : 1] ×

[0 : 1]. Between each simulation, the degree of mean patch isolation was gradually

changed by the species maximum dispersal distance X<0G , varied systematically be-

tween 0.04 and 0.39, producing landscapes from very high to intermediate mean patch

isolation (d'�� in Table 4.2). Compared to Ryser et al. (2019)), we however kept a fixed

dispersal range for all species (only minor effects of species-specific dispersal ranges

in Ryser et al. (2019)) in a single simulation run.

Statistics and evaluation

We recorded the following output variables for each simulation run: the mean biomass

density of each species 8 on each patch I over the last 20,000 time steps, �8,I , to deter-

mine the level of diversity on different spatial scales. By counting the species 8 present

in the patch I (i.e. those with �8,I > 10−20 at the end of a simulation run), we cal-

culate U-diversity as local species richness and U-diversity as average U-value over

all patches / , the total regional (W-) diversity as the number of species that have a

biomass density �8,I > 10−20 on any patch and V-diversity is the share of diversity that

shows differences in species compositions between local communities. We relate Ū-,

V- and W-diversity to each other using a multiplicative approach (Whittaker, 1972), i.e.

Ū · V = W. Further, we distinguish between local and regional parameters that are rele-

vant predictors for the model input: local parameters - robustness, standard deviation

of robustness and hill coefficient; regional parameters - mean patch isolation, mini-

mum distance between two patches, maximum emigration rates of animal and plant

species, shape parameter of emigration function for animal and plant species, transi-

tivity and mean closeness centrality of patches. Table 4.2 describes the predictors used

for the best model fit and the remaining predictors are described in the supplements

(see Table C1).
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TABLE 4.1: Model parameters and their respective description

Parameter Description Value or formula
Trophic interactions between species

4�, 4%
conversion efficiency for animal (A) and
plant species (P)

0.906, 0.545 ; (Lang
et al., 2017)

G�, G%
scaling constant of metabolic demands for
animal (A) and plant species (P)

0.314, 0.138; (Yodzis
and Innes, 1992)

l8 relative consumption rate of predator 8 1
number of resource species of i

^8 9

capture coefficient of predator species 8 on
prey species 9 with body masses <8 and
< 9 , respectively (Details in Supplement
and Schneider et al. (2016)).

_;<
V8
8
<
V 9

9

(
<8

< 91004
1− <8

<9100

)2

V8
mean and standard deviation of scaling
exponent for capture coefficient

` = 0.42, f = 0.05
(pred.)

V 9
for predator 8 and prey 9 . For plant species
<
V 9

9
= 1, as plants do not move.

` = 0.19, f = 0.04 (prey)

ℎ8 9

handling time of predator 8 on prey species
9 with a a scaling constant ℎ0, and a body
mass scaling through the exponents [8 and
[ 9 (Details in Supplement)

ℎ0<
[8
8
<
[ 9

9

1 + @ Hill coefficient
normal distribution,
` = 1.5, f = 0.15

Nutrient dynamics

 8,; half saturation density of nutrient uptake
uniform distribution, ∈
(0.1, 0.2)

(; nutrient supply concentration 50
Dispersal dynamics

X<0G species maximum dispersal distance
varied between
[0.04,0.39]

0

maximum emigration rate for animal and
plant species defined by mean and
standard deviation (The cut off for the
distribution is set to 3 · f0).

normal distribution,
` = 0.1, f = 0.03

1
shape parameter of the emigration
function

uniform distribution,
(0,19)-(animal);
(-20,19)-(plant)

Evaluation and visualization

We used a machine learning approach called random forest (RF) that utilizes a large

number of decision trees for a model prediction. For each prediction of a variable, we

used 2500 individual trees calculated in parallel via bootstrapping and trained them
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TABLE 4.2: Definition and ecological interpretation of local and re-
gional predictor variables of the best model. Remaining predictors of

the full model are explained in Table C1

Parameter
Description and interpretation of predictor
variables

Definition

Local predictors

'

Robustness - mean final species richness (`U)
of 20 simulation runs after computation of
the population dynamics with and without a
perturbation of a food web on a single patch.
A perturbation is described as larger
mortality rate for species dispersing through
a fragmented landscape. The first 10
simulations assume complete dispersal loss
for emigrating biomass (U;) and the other 10
simulations no dispersal loss (U=;), while
replicates differed in initial nutrient biomass
concentrations. The more species survive,
the larger the robustness and the larger the
stability of the food web.

`U;+`U=;
2

'(�

Standard deviation of the robustness '. It
describes the variation in species richness
between a state of no dispersal loss and full
dispersal loss of a food web. The larger the
standard deviation between the two cases
(no and complete dispersal loss), the larger
can be the effect of the landscape on the
species richness.

√∑<
8=1 (U;,8−`U; )2+(U=;,8−`U=; )2

<

Regional predictors

d'��

Mean patch isolation of a landscape, defined
as 1 - connectance of the patch network, with
!, the number of undirected dispersal links.
The larger the number of links the lower the
mean patch isolation of the landscape.

1 − !
1
2 / · (/−1)

3<8=

Minimum distance between two patches =
and < in each randomly constructed
landscape of # patches.

min(�=,<)

1

shape parameter of emigration function. For
each species, it represents how sharp the
transition of the emigration rate is between
positive and negative net growth rate.

(0,19)(animal);
(-20,19)(plant)

on a subset of the data set. Derived from the random forest approach, we used an im-

portance measure (relative importance) to quantify and compare the relevance of each

predictor value. The choice of predictors for the full model and best model is based
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on a two step selection process. All predictor variables with a linear correlation coef-

ficient < 0.75 are selected for the full model, being not strongly correlated with each

other. As a second step, the predictors for the best model are selected by the most

parsimonious generalized additive model (based on p-value < 0.05 and minimal AIC)

that show the same trends for diversity and similar results of explained variance (see

Supplements). The maximum number of input variables for the training data set were

11 parameters as predictors (Table 4.2 and Table C1 & C3, full model) which are stan-

dardized between 0 and 1, and two different diversity measures, Ū- and V-diversity,

as output. Predictors can be separated into three local predictors and eight regional

predictors. Local predictors comprise a measure for robustness, its standard deviation

and the Hill coefficient. We use the Hill coefficient as predictor variable because it

contributes to the dynamic stability of food webs by dampening of oscillatory pop-

ulation dynamics (Williams and Martinez, 2004). As regional predictors we use the

mean patch isolation, the minimum distance to the nearest neighbor patch for a whole

landscape, the maximum emigration rates for animal and plant species as predictor

for mean dispersal loss, the shape parameter of emigration function as an indicator

of the intensity of a species’ response to changing growth conditions, the closeness

centrality averaged over the whole landscape and the transitivity, a measure closely

related to the clustering coefficient.

While calculating the trees, the random forest approach used cross-validation in

calculating the OOB (Out of Bag score), a measure for its accuracy which is comparable

to the '2 results of a statistical model. See Supplements for more information on the

predictor variables, model selection and calculations.

Simulation details

The presented results are based on two simulation data sets. The first uses the full

range of parameters, while the second is a subset selected for medium food web sta-

bility (',[0.33,0.66]) and RGGs with a small minimum distance to the nearest neighbor

(3<8= < 0.2; see Table 4.1 and 4.2 for more details). We distinguish between these two

data sets as we expect a larger impact of landscape structure on V-diversity for the

selected subset. Based on our definition of robustness (see Table 4.2), we argue that

when robustness is either very high or low, the food webs are inherently so stable or
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unstable, that the landscape structure can not affect Ū- and V-diversity. Consequently,

we selected food webs with an intermediate robustness. A selection for RGGs with

a small minimum nearest neighbor distance is motivated by the reasoning in Ryser

et al. (2019), where it is argued that local cluster formation increase V-diversity, em-

phasizing the landscape structure. Between the simulations we varied the maximum

dispersal range with a step size of 0.01 between 0.04 and 0.39 for intermediate to high

mean patch isolation (see also section 4), as in this range a larger increase in V-diversity

is expected (Ryser et al., 2019). For the full data set, 30 replicates of a fixed dispersal

range 30 were simulated, that differ in food web structure and landscape (random po-

sition of the patches), resulting in a total number of 1085 simulation runs. Of these, 136

were terminated by reaching the maximum computation time of 5 days per simulation

(resulting in 949 simulation runs that were evaluated). For the subset 720 simulations

were started and 109 were terminated (total no. of simulations = 611).

For each simulation run, we initialized our model with the following conditions:

Initial biomass densities �8,I were kept identical for each species (�8,I = 1) to avoid

stochastic extinctions due to low initial biomass densities at the start of a simulation

run, as well as confounding effects on V-diversity. Also, environmental conditions on

each patch are kept identical for the species (identical nutrient supply concentrations).

Starting from these conditions, we numerically simulated local food web and dispersal

dynamics over 100,000 time steps by integrating the system of differential equations

implemented in C using procedures of the SUNDIALS CVODE solver version 2.7.0

(backward differentiation formula with absolute and relative error tolerances of 10−10

(Hindmarsh et al., 2005)). For numerical reasons, a local population was considered

extinct once �8,I < 10−20, and �8,I was then immediately set to 0. We performed sta-

tistical analyses in Anaconda (Python version 3.7.6 in particular NumPy, Matplotlib,

Scikit-learn and Pandas (Hunter, 2007; Oliphant, 2015; pandas development team,

2020; Pedregosa et al., 2011; Van der Walt et al., 2011) and used for parallelization

of the simulations GNU parallel (Tange, 2018).
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Results

With the focus on identifying key predictors that explain the trends in diversity, we

selected uncorrelated predictors for the full model (11 predictors) in a first step and the

most relevant predictors for a best model in a second step. We identified five relevant

predictors for Ū-diversity and four predictors for V-diversity for the best model (Figure

4.2). Our full model fit explained about 90% of the variance for U-diversity and 48%

of V-diversity (see Table 4.3). Almost equally performs the best model fit with 89%

and 50% explained variance for U- and V-diversity, respectively. For the subset with a

distinct selection of food webs and landscapes (see Methods 4), the explained variance

for U-diversity increased to 99% and V-diversity to 84% (Table 4.3).

TABLE 4.3: Overview of model results for random forest approach.

Model OOB

local Ū-diversity - full data set, all - eleven predictors 0.90
local Ū-diversity - full data set, best model - five predictors 0.89
local Ū-diversity - subset - five predictors 0.99
V-diversity - full data set, all - eleven predictors 0.48
V-diversity - full data set, best model - four predictors 0.50 1

V-diversity - subset - four predictors 0.84

To estimate the relevance of each predictor, relative importances were calculated

with the random forest approach. The noticeably best predictor variable for U-diversity

for all three models is one of the local predictors, the food web robustness (Figure

4.2, predictor 1), which accounts for about 60% of the total explained variance (about

90%). Furthermore, the standard deviation of robustness (Figure 4.2, predictor 2) ac-

counted for a relative importance of about 30% of the explained variance. Compared

to the two local predictors, the proportion of variance for U-diversity explained by

landscape structure is small (around 10 - 15%) in all model approaches, highlighting

the relevance of the composition of the local food web for U-diversity (Figure 4.2, U-

diversity all & best model & subset ).

For V-diversity, the relative importance of each predictor in the full model are more

evenly distributed with the share of all regional predictors of around 60% and of all lo-

cal predictors around 40% (Figure 4.2, V-diversity all, best model, subset). For the best

model, most important is the regional predictor mean patch isolation with the largest

1The larger OOB-score for the best model compared to the full data set probably arise due to the
stochastic nature of calculation, where 2500 random trees are generated for each model.
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FIGURE 4.2: Proportion of relative importances for each predictor of
six random forest models. The first three bars depict three model fits
predicting local U-diversity. First row the full simulation data set with
eleven uncorrelated predictors, second row the full simulation data set
with five predictors (most parsimonious model for U-diversity) and
third row a subset with five predictors. The lower three bars depict
three model fits predicting regional V-diversity. Fourth row the full
simulation data set with eleven predictors, fifth row the full simulation
data set with four predictors (most parsimonious model for V-diversity)

and sixth row a subset with four predictors.

proportion of about 30% of explained variance (Figure 4.2, predictor 4). The second

largest proportion has the local predictor robustness (around 20%), closely followed

by the minimum nearest neighbor distance (Figure 4.2, predictor 7) and the standard

deviation in robustness (Figure 4.2, predictor 2). For the subset of the simulations (see

details in Methods), the predictive power for V-diversity increases with an explained

variance of almost 85% (see Table 4.3, V-diversity best model & subset). Particular

noteworthy is the increased share of relative importance for the predictor mean patch

isolation from around 30 to 45% (Figure 4.2, V-diversity subset). The subsequent part

describes the visible trends for the random forest model.

In general, trends for local predictors are more pronounced for U-diversity com-

pared to regional predictors which is consistent with their relative importances (Fig-

ure 4.2) and the trends are qualitatively the same for both, the best model of the full

data set and the subset (Figure 4.3). U-diversity increases strongly with robustness, but

decreases with the standard deviation of robustness Figure 4.3 A,B). An increase in the
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FIGURE 4.3: Partial dependence plots for U-diversity and five selected
predictors of the best model for the full data set (solid line) and subset
(dashed line). The two local predictors are the robustness and standard
deviation of robustness as well as three regional predictor, the mean
patch isolation, shape of emigration curve for animal and plant species.
The shaded area in grey indicates the 95% confident interval of model

results.

predictor of mean patch isolation results in a weak decrease in local U-diversity, which

reflects the trends shown in the overview of replicated results of Ryser et al. (2019)

(Figure C2, in Supplements). The other two regional predictors (Figure 4.3 D,E), indi-

cate a very weak positive trend for the shape of emigration function of plant species

and a very weak negative trend for animal species.

For V-diversity, the trends for the best model fit of the whole data set and subset

are identical (Figure 4.4). V-diversity is increasing with the regional predictor of mean

patch isolation and the local predictor of the standard deviation of robustness (Figure

4.4 B,C). In contrast, there are moderate downward trends for the minimum distance

to the nearest neighbor and the robustness of the food web (Figure 4.4 A,D). Note that

the actual parameter range for robustness and minimum nearest neighbor distance

differ between subset and best model, as we use a selection of certain landscapes and

food webs in the subset and standardize both ranges between 0 and 1.
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FIGURE 4.4: Partial dependence plots for V-diversity and the four pre-
dictors in the best model for the full data set (solid line) and subset
(dashed line). There are two local predictors, the robustness and stan-
dard deviation of robustness as well as two regional predictors, the
mean patch isolation and minimum nearest neighbor distance. The
shaded area in grey indicates the 95% confident interval of model re-

sults.

Discussion

In this study, we analyzed the relevance of regional vs. local characteristics of meta-

ecosystems for maintaining diversity at different spatial scales. We found that the

mean local (Ū-) diversity is determined almost entirely by local characteristics such as

the overall robustness of the local food web, and only to a very small extent by regional

(or landscape) characteristics that capture landscape complexity and the positions of

patches relative to each other. In comparison, diversity among patches (V-) depends

on a combination of local and regional characteristics, with mean patch isolation being

the most important predictor.

Local predictors explain Ū-diversity patterns

The two local predictors, robustness of a food web and its standard deviation, are

the dominant variables predicting Ū-diversity. Our measure of robustness is defined
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as the mean fraction of species that survive population dynamics (Heckmann et al.,

2012) with and without additional losses due to emigration of species (see methods for

more details). Although the mortality caused by emigration implies the embedding

of the local food web in a metacommunity, robustness is still a strictly local predictor

since immigration and therefore the influence of the surrounding patch network are

ignored. It is calculated in separate simulation runs and highlights, on the one hand,

the relevance of the intrinsic stability of individual food webs and, on the other hand,

how the food web is affected by an additional mortality term. In using this approach,

we can also relate the effects of additional mortality on food webs more generally to

any disturbance that leads to additional mortality, such as harvesting.

Compared to local predictors, the proportion of variance explained by regional

predictors of landscape structure for Ū-diversity is small. As such, our results are in

contrast to studies demonstrating that spatial characteristics and the regional scale

have a larger impact on U-diversity (e.g. Jonsson et al. (2011)). This underlying dis-

crepancy can be explained by the focus and selection of regional predictors, as well

as by the analyzed species community. In particular, empirical studies that find a

larger impact of the regional scale on U-diversity often refer to habitat heterogeneity

as a relevant regional predictor for an increase of diversity (Jonsson et al., 2011; Stein

et al., 2014). However, in our model setup, there are no differences in environmen-

tal conditions among patches. In addition, these empirical studies commonly analyze

single communities, whereas we compared how different food webs, with their own

inherent stability, react to changes of landscape structure.

Regional characteristics and their magnitude of effect on U-diversity may in fact

depend strongly on local processes and the composition of a species community. For

example, empirical studies of plant communities find small effect sizes of regional

predictors on U-diversity when accounting for increased seed addition as a regional

predictor reflecting a higher dispersal rate (corresponding to a low patch isolation).

However, when combined with an additional community disturbance, the effect size

of the regional predictor increases (Myers and Harms, 2009). This finding emphasizes

that results regarding U-diversity patterns are highly context-dependent and suggest

that to understand U-diversity of food webs of different origin, a comprehensive anal-

ysis of the species and their interactions should be prioritized, with the inclusion of

landscape attributes as a second step.
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Finally, the selected predictor of robustness stresses the importance of the local

food web structure. Our measure of robustness is calculated similarly to Ū-diversity

from the number of surviving species and therefore a strong correlation can be ex-

pected. However, the two metrics are not identical: Ū-diversity describes the mean

species richness across all patches at the end of a simulation run, whereas robustness

is derived from a separate set of simulation runs, averaging the species richness of a

single patch in a state of no and full dispersal loss through emigration (see also Table

4.2). Thus, robustness does not describe a common structural property of the food

web (e.g. mean generality, or degree of omnivory), but is an estimate of the contri-

bution of food web structure and allows a comparison to the contribution of regional

predictors. Other commonly evaluated food web properties such as generality or food

web connectance that already demonstrated a relationship to diversity patterns (Riede

et al., 2010; Thébault et al., 2007), did not show a strong correlation. A possible expla-

nation might be the existence of an emerging property that is not reflected in a typical

feature of a food web (Thompson et al., 2012). The strength of competition between

species, for example, can be decisive for the impact of secondary extinctions in a food

web (Thébault et al., 2007). Despite significant progress in this area of research, fur-

ther efforts are needed to understand the determinants of local food web stability and

diversity.

Local and regional predictors determine V-diversity

Compared to the prediction of Ū-diversity, regional parameters were an essential part

of the model for predicting V-diversity. We use the spatial arrangement and disper-

sal distances between patches as the focus for regional processes and excluded het-

erogeneity as a factor within the landscape, which is also known to affect regional

diversity patterns (Stein et al., 2014).

Our step-wise selection of predictors identified a high correlation between several

landscape network characteristics such as the patch centrality and mean patch isola-

tion. We decided to keep the mean patch isolation as a main regional predictor to be

able to directly compare results with Ryser et al. (2019) where it was used as the main

axis, and because it is a very prominent and easy-to-compute measure used in theo-

retical and empirical studies addressing the impact of spatial patterns on biodiversity
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(Altermatt and Holyoak, 2012; Cadotte et al., 2006).

The formation of local patch clusters is the first hypothesis put forward by Ryser

et al. (2019) to explain the observed increase of V-diversity with increasing mean patch

isolation. It assumes that local patch cluster are beneficial for V-diversity due to less

dispersal mortality and an increased amount of food supply within the cluster. Thus

the patch cluster can harbor more species compared to fully isolated patches which

increase differences in species composition among patches. Intuitively, the parameter

most suitable to capture this is the clustering coefficient. However, it is highly cor-

related with mean patch isolation (see also Supplements Table C3) and was therefore

not included as an independent variable in the analyses. Although the average cluster-

ing coefficient therefore does not provide evidence for this hypothesis, the minimum

distance to the nearest neighbor gives an indication, that at least a small distance be-

tween two patches is beneficial for V-diversity. A possible explanation for why the

minimum nearest neighbor distance can explain additional variance in V-diversity is

the difference in the scale between the cluster coefficient and the minimum nearest

neighbor distance. While the minimum nearest neighbor distance accounts for two

patches at a time, the clustering coefficient gives an average across the entire land-

scape. Yet, two closely located patches can also be considered a small cluster. The

advantage of two closely located habitat patches is, for example, an increased num-

ber of resources species compared to fully isolated patches and less energy limitation

for higher trophic levels of consumer species (Crooks et al., 2011). If such a cluster

is beneficial for U-diversity on the small scale, this also supports diversity on the re-

gional scale. In particular, when Ū-diversity is low, a local increase in diversity in

such a cluster also increase differences between habitat patches, and consequently in-

creases V-diversity. In natural systems, such a local cluster can be established by the

creation of dispersal corridors, which demonstrated to have a positive impact on U-

diversity (Damschen et al., 2006). The importance of the nearest-neighbor distance is

also shown by the analysis of the subset of the full data set. By selecting landscapes

with at least two closely linked habitat patches, it is ensured that species have at least

one local cluster with a higher food availability despite a large mean patch isolation,

which increases the fraction of explained variance from 50% in the full data set to 80%

in the subset.
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As a second hypothesis from Ryser et al. (2019), it is assumed that different ex-

tinction cascades due to different initial species compositions and different food web

positions of the species present drive the increase in V-diversity at high mean patch

isolation. A prominent measure of such extinction cascades is the "structural robust-

ness", which defines robustness as the minimum level of secondary extinction that

occurs in response to a removal of a species, which is widely used in the analysis of

empirical food webs (Dunne et al., 2002; Srinivasan et al., 2007). In contrast, our re-

lated measure of robustness focuses on the persistence of species under the evolution

of population dynamics. As a result, our measure for robustness is limited to address

the question of extinction cascades due to the fact that we do not intentionally re-

move a particular species from the food web, but extinctions happen over time and

are driven through species interactions. Accordingly, we cannot use our predictor of

robustness to directly evaluate the second hypothesis on different extinction cascades.

Instead, we use the standard deviation of the robustness as an indirect indicator for

the importance of extinction cascades: a high standard deviation implies that the state

of the landscape can in principle have an effect on the robustness of a food web. Thus,

only when the standard deviation is high, an extinction cascade can be triggered by

high dispersal losses in a landscape with very isolated patches, which then causes dif-

ferences in species composition. A positive trend between the standard deviation and

V-diversity consequently provides evidence that extinction cascades do indeed take

different routes in different clusters of patches when mean patch isolation is high.

Contrary to Ryser et al. (2019), these different extinction routes are not caused by dif-

ferent initial species compositions, but are restricted to causes of species interactions

and the inhomogeneous arrangement of patches that lead to differences in species net

dispersal losses.

By linking the robustness of a food web to dispersal losses, we incorporate a spatial

component into the measure. Therefore, we can infer from the predictor of robustness

when landscape characteristics (i.e., greater dispersal mortality) also have a larger im-

pact on food web stability. And indeed, we observe a larger impact of regional pre-

dictors of the landscape in a state of intermediate robustness, which we confirmed

by computing additional simulation runs for a selected subset of food webs. Accord-

ingly, landscape characteristics are of little importance when the food web has a large
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or small robustness. Considering this, a simple explanation is that the effects of dis-

persal losses are either marginal for food webs with a large robustness, causing a large

number of species to survive, or so extensive that most species go extinct. However,

for an intermediate robustness, the landscape can play a crucial role, since species are

susceptible to dispersal losses and differences in the landscape can promote or impede

the survival of species. Based on these observation, we randomly selected food webs

with an intermediate robustness for a subset of simulation runs that should provide

food webs where the landscape itself can at least in principle have a larger impact on

species composition and diversity. In analyzing this subset, we are able to explain

most of the variance for V-diversity of our meta-food web model.

Conclusion

Our results on the impact of local and regional predictors on diversity patterns empha-

sizes the context dependency of effects on local and regional scale. Importantly, our

results do not imply that Ū-diversity in metacommunities is not at all affected by the

state of the landscape. However, to understand the difference in U-diversity between

two different food webs, it is more important to study their species compositions and

the interactions between the species than the characteristics of the landscapes the food

webs are embedded in. On the regional scale, V-diversity can be explained naturally to

a larger extent through regional predictors such as the presence of patch clusters, but

the relevance of local food web characteristics should not be underestimated. Thus, if

we want to maintain diversity of a metacommunity, a comprehensive understanding

of the local community is of great value to develop more targeted oriented natural

conservation measures such as the establishment of dispersal corridors.
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Chapter 5

General Discussion

In the previous Chapters (Chapters 2-4), I applied the approach of a meta-food web

and meta-food chain that represent a metacommunity of species on multiple trophic

levels. Within this framework, it has been possible to identify relevant local and re-

gional characteristics that explain trends and patterns for metacommunities. A key

element of this analysis is to vary complexity at both local and regional scales, allow-

ing for different perspectives and gaining a more comprehensive view of mechanisms

promoting the stability of metacommunities. For example, on the local scale, the max-

imum number of species present in a patch varies between the approaches in Chapter

2 and 3, as do the identities of species present (Chapter 2 & 4). On the regional scale,

the spatially explicit approach sets a location for each habitat, and allows for iden-

tification of regional landscape aspects that have an influence on the stability of the

species community (Chapters 2 & 4). While these spatial characteristics are fixed in

each simulation run, a periodic environmental disturbance also temporally altered

spatial features within a simulation (Chapter 3), corresponding to an additional layer

of complexity. In this chapter, I will frame the general trends within the larger context

of biodiversity, provide a perspective on the synthesis of the individual sub-aspects of

the Chapters, and further integrate perspectives of ongoing climate change.

5.1 From metacommunities to meta-food webs

Based on the idea of metacommunities, many models and approaches have been de-

veloped that relate spatial with local processes and emphasized different aspects im-

portant for the coexistence of multiple species (Amarasekare, 2008; Leibold et al., 2004;

Mouquet and Loreau, 2003). In that respect, the meta-food web and meta-food chain
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approach from Chapters 2-4 particularly emphasizes the complex trophic interactions

of diverse species communities and how spatial characteristics constrain or promote

these communities. In the following sections I first focus on effects of local trophic

interactions and then continue with the impact of the landscape structure.

5.1.1 Local trophic interactions form metacommunities

The local composition of a species community, its interactions, and the resulting biomass

distribution of species forms the basis for the local coexistence of multiple species and

their stability. Across Chapters 2-4, several local scale mechanisms have emerged that

have an impact on diversity and population dynamics of metacommunities.

Energy limitation and extinction cascades In a broad ecological context, the produc-

tivity-diversity relationship assumes that more energy leads to faster growth, more

niche differentiation, longer food chains and thus promotes diversity (Takimoto and

Post, 2013). In accordance with this relationship, a limitation of available energy leads

to shorter food chains on average (Chapter 2 & 4), in particularly isolated landscapes.

Based on this conclusion, it can be inferred that higher trophic levels are exposed to

a higher risk of extinction due to a lack of sufficient energy transported through the

food web (Binzer et al., 2012). The lack of energy is caused by higher metabolic losses

due to a large patch isolation, resulting in a proportionally higher species extinction

rate.

While our findings support the productivity-diversity relationship and emphasize

its relevance in more isolated landscapes, empirical support for the relationship so far

is ambiguous (Mittelbach et al., 2001; Whittaker, 2010). There are several major causes

for these seemingly contradictory results, the first being the use of different proxies for

the productivity or energy (for example standing biomass, nutrients, or actual produc-

tivity), leading to difficulties in comparison. A second cause is the relevance of scale

for such empirical results. For example, empirical data for productivity is often highly

variable on a smaller scale (Mittelbach et al., 2001), while at larger scales a positive re-

lationship has been found for terrestrial as well as aquatic ecosystems (Gonzalez et al.,

2011; Storch et al., 2005; Tittensor et al., 2010). This noticeable difference in regional

and local scale exemplifies the relevance of a metacommunity perspective (see also
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Chase and Leibold (2002)) and also supports our findings of a positive relationship

between productivity and diversity for a meta-food web (Leibold and Chase, 2017).

In Chapter 2, species with a larger body mass are more prone to extinction, al-

though our approach assumes that larger animal species realize larger dispersal ranges,

which benefits species persistence due to the larger colonization rates of predator

species (Shulman and Chase, 2007). The large selection pressure on the higher trophic

levels thus affects the composition and stability of the entire local food web (Dob-

son et al., 2006; Rooney et al., 2006). For example, a lack of top down regulation of

large bodied predator species can trigger an extinction cascade which decreases U-

diversity and simplifies the structure of a food web (Donohue et al., 2017). However,

such extinction cascades can also have a positive effect (Chapter 2 & 4) on V-diversity:

Differing initial positions of a species within a food web can produce different cas-

cading pathways in local food web dynamics, resulting in contrasting local species

communities when patch isolation is high. The influence of the local predictor of the

standard deviation of robustness for V-diversity in Chapter 4 supports this hypothesis,

and suggests that in a state of large patch isolation, a high standard deviation in the

robustness of a food web can serve as an indicator for extinction cascades triggered by

the landscape.

As stated in Chapter 3, consequences of weakening top down regulation are also

observed for a simple food chain. A lower top-down control increases fluctuations in

biomass dynamics, and thus the coefficient of variation increases (see Fig. 3.3 , Chapter

3). A population that exhibits such larger fluctuations is more susceptible to stochastic

extinction events when local biomasses are at their minimum (Pimm et al., 1988). In

addition to increased extinction risk, a lack of top down control had a largely positive

effect on biomass densities of lower trophic levels, leading to a more uneven biomass

distribution between trophic levels (Chapters 2 & 3). This particularly benefits species

with a smaller body mass, although biomass loss is proportionally larger for them

relative to the dispersed distance in comparison to species with larger body masses

(Peters, 1983; Schneider et al., 2016).

Local food web stability To understand the local diversity of a metacommunity, one

must consider both local and regional processes and their impacts on species coexis-

tence. For example, a meta-analysis on metacommunities from Grainger and Gilbert
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(2016) shows that in two-thirds of the studies the regional process of dispersal has a

significant impact on local U-diversity, beside local predictors. While Chapters 2 and

4 suggest a negative impact of the mean patch isolation as a regional predictor on

U-diversity, results from Chapter 4 also indicate that, remarkably, a majority of the

explained variance for U-diversity are attributed to two local predictors based on the

food web robustness. To a large extent this dependence also explains the broad scatter

in the data from Chapter 2 and puts the impact of the regional predictor, expressed

as mean patch isolation, in a perspective that is highly dependent on the local species

composition.

A dominance of local predictors (Chapter 4) suggests that the effect size of regional

characteristics on U-diversity can be small. For example, empirical studies from plant

communities confirm that the effect of seed additions on U-diversity (with seed addi-

tion as predictor for a change in dispersal rate) is very small in the absence of an addi-

tional community disturbance which allows for an establishment of the seeds (Myers

and Harms, 2009). Another study on aquatic communities emphasizes a dependence

between successful colonization of a new species and the disturbance of a local com-

munity that excludes resident species. Such an exclusion increased the total amount

of biomass in a local patch, while an intact local species community and their local in-

teractions hindered successful colonization by other species (Leibold and Chase, 2017;

Shurin, 2000). These findings highlight the importance of local scale effects such as ro-

bustness and composition of a species community on dispersal success. Yet, a viable

extension on the regional scale representing a more diverse landscape could include

habitat heterogeneity, where an increase of the impact of regional predictors on U-

diversity is expected (e.g. Jonsson et al. (2011); Ryser et al. (2020); Stein et al. (2014)),

and on the local scale non-trophic interactions are also suggested to contribute to di-

versity patterns (Kéfi et al., 2012).

Alternative stable states Another local phenomena that can affect stability are alter-

native stable states (ASS). ASS emerge within local species communities with identical

environmental conditions when the initial state of the community determines differ-

ent final population dynamics or structures of the community. Chapter 3 gives an

example of an ASS promoting stability through asynchronous population dynamics

between patches, thus generating a more stable amount of total biomass for a species
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within a metapopulation. Such an ASS can decouple correlated dynamics between

communities and is relevant because it implies hysteresis (Scheffer et al., 1993): a small

change in environmental conditions can put the system into a different state, but to re-

turn to the original state, a larger change of environmental conditions in the opposite

direction is required.

From empirical examples it is known that there are conditions that support the

occurrence of such ASS within a metacommunity. There is evidence that they are more

likely to occur in environments that are more productive (Chalcraft et al., 2008), less

frequently disturbed (Chase, 2003), or smaller and less interconnected (Chase, 2003;

Leibold and Chase, 2017). The observed ASS of Chapter 3 also confirms the effect of

disturbances on the likelihood of finding ASS since they only occur in static landscapes

without periodic environmental disturbances.

For more complex food webs such as in Chapters 2 & 4, such ASS may also occur

and especially promote V-diversity. In fact, the variation in species richness for a single

food web that are present in the simulation runs for the predictor of the robustness in

Chapter 4 (not shown in the Chapter) might point towards the presence of AAS, but

further testing is needed for a confirmation.

5.1.2 Few landscape characteristics matter for metacommunities

Our environment is shaped by continuous changes of the landscape such as fragmen-

tation or other disturbances of habitats (Foley et al., 2005; Haddad et al., 2015). In

this subsection prominent regional factors are discussed that have an influence on the

structure of the meta-food web and stability of species communities.

Mean patch isolation of a landscape A common assumption about the effects of

patch isolation on diversity patterns is that intermediate patch isolation shows a max-

imum positive effect on U-diversity. This is motivated by avoidance of some negative

consequences of low and high dispersal rates, which include bioitc homogenization

and a lack of rescue effects (Mouquet and Loreau, 2003). In accordance with that hy-

pothesis, Chapters 2, 3 & 4 demonstrate a destabilizing effect of a large mean patch

isolation on metacommunities. In Chapters 2 and 4, this is expressed as a decrease in

Ū-diversity with increasing isolation. Fewer dispersal links between patches thus in-

creases the negative effects of energy limitation on stability and decreases Ū-diversity,
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as discussed in the previous section, and the absence of a rescue effect prevents re-

colonization (Gotelli, 1991). In contrast, even though high dispersal rates (low patch

isolation) may homogenize local food webs, reflected in a low V-diversity, this homog-

enization does not negatively affect Ū-diversity. This disagreement with theoretical

expectations likely results from the dominant role of local stability of food webs on

Ū-diversity, as observed in Chapter 4. Accordingly, when the influence of the land-

scape is minimal for a majority of food webs, and the main reason for species loss is a

limitation of energy on the lower trophic levels, the positive influence of a larger food

supply outweighs that of homogenization and a low patch isolation has a net positive

effect on diversity.

While we find no negative effect of biotic homogenization on diversity in Chap-

ters 2 & 4, we do find a negative effect on population dynamics of a simple food chain

(Chapter 3). A synchronization of patches in a state of low mean patch isolation in-

creases the variation in total biomass dynamics of a species, thus increasing the risk

of correlated extinction events. However, this trend is observed exclusively in food

chains experiencing a strong trophic cascade, again suggesting an effect of biotic inter-

actions. A comparable effect of contrasting biotic interactions on the synchronization

of population dynamics is observed by Koelle and Vandermeer (2005). They uncover

that changing trophic interactions may produce opposing trends in synchronization

for intermediate to high dispersal rates of a species.

Biotic homogenization among patches at low mean patch isolation also have very

relevant empirical implications for the so-called portfolio effect (Schindler et al., 2015).

The spatial portfolio effect (Thorson et al., 2018) is a way to analyze the extent of syn-

chronization among patches. In empirical systems, a common observation is that for

a higher number of patches, total biomass dynamics of a species tends to be steadier

over time, due to asynchronous oscillations between patches. However, our model re-

sults from Chapter 3 demonstrate that one should be cautious with this generalization.

Despite a reduced biotic homogenization in a state of increased patch isolation, there

is an overall increase of total biomass amplitude (W-variability). An increase of dis-

persal mortality and higher metabolic losses on lower trophic levels cause an energy

limitation for the upper trophic levels, decreasing their biomass and thus increases

W-variability. This illustrative example points out that the synchronization of dynam-

ics between patches is only one of a number of possible phenomena that can strongly
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affect population dynamics on the regional scale, even in a rather simple three-species

modeling approach.

Number of patches and patch identity In a fragmented landscape, the state of frag-

mentation is determined by the mean patch isolation, the number of patches, and the

patch size (Fahrig, 2003). Each of these properties has a direct impact on biodiver-

sity (Haddad et al., 2015). With a focus on the effects of mean patch isolation and

the number of patches in Chapter 2, the number of patches did not affect U-, V- and

W-diversity in contrast to mean patch isolation. While varying the number of patches,

a lower quantity does not imply a direct habitat loss for a species. Since each habitat

patch has no explicit area, and the calculations are based on biomass densities, fewer

patches can be interpret as there are fewer possible stepping stones for a species within

a landscape and patch size effects are excluded.

In expanding on some suggestive results from Chapter 2, we demonstrate in Chap-

ter 4 that the minimum distance between two habitats that form a small local cluster

increases V-diversity. A possible explanation for why the minimum distance between

two habitats has a significant impact on V-diversity in Chapter 4, and not in Chapter

2, although they are analyzed both times, is most likely the simplified modeling ap-

proach in Chapter 4. While in both approaches the generation of landscapes and food

webs is the same, the main simplifications involve fixed initial conditions between

simulations, for example, the same initial biomasses and the same dispersal ranges

for species. In particular a fixed dispersal range for the species increase compara-

bility of regional predictors between simulation runs and avoid confounding effects

due to randomly attributed dispersal ranges for plant species. In addition, fixed initial

biomass densities combined with the absence of an initial V-diversity prevent arbitrary

extinctions of species in an early stage of a simulation run.

A beneficial increase of V-diversity due to a dispersal link of two nearby patches,

that form a local small cluster, is especially relevant for a low mean patch isolation.

For the local cluster, an increased availability of suitable resources, which prevents an

energy limitation for higher trophic levels, first explains a local increase in U-diversity

(Crooks et al., 2011). For comparison, empirical experiments on dispersal corridors

also demonstrate that the establishment of such corridors between habitat patches has

a positive effect on U-diversity (Damschen et al., 2006). On the regional scale, such
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a local increase in diversity can also promote differences in species composition (V-

diversity) in a metacommunity if mean patch isolation is high. This effect is particu-

larly pronounced when the Ū-diversity is very small compared to the maximum pos-

sible W-diversity of the meta-food web. In a heterogeneous landscape, the described

effect of patch position and identity in local clusters could be even stronger, due to

differences in the quality of food supply. Altermatt and Holyoak (2012) demonstrated

a clear positive effect of local clusters with a high food quality on V-diversity in small

experimental metacommunites.

5.2 Metacommunities in temporal changing landscape struc-

tures

In addition to the question of how spatial charachteristics affect diversity patterns, I

investigated the effects of temporal changes in spatial structures on population dy-

namics and diversity. The approach of modeling periodic environmental disturbances

as a dynamic landscapes is motivated by an example of kettle holes, which have a

species-rich community during a cold and wetter season, but can run dry in sum-

mer and accordingly become temporarily uninhabitable and unavailable for species

(Kalettka and Rudat, 2006). Such periodic environmental disturbances are a common

feature in ecological systems, for example through environmental fluctuations in cou-

pled systems (as observed by Fretwell (1972)).

Chapter 3 demonstrates that the population dynamics of a food chain are more

strongly affected by periodic environmental disturbances than by local interactions of

species, or by the landscape structure. This large effect size of disturbance becomes

apparent in a comparison of two food chains that are characterized as either a strong

or weak trophic cascade and exhibit different population dynamics. Despite these

pronounced differences, which lead to markedly different patterns in biomass vari-

ability when the food chains are undisturbed, the patterns of biomass variability are

almost identical under periodic environmental disturbance. The regular occurrence of

the disturbance is a probable explanation for the equalizing trends of variabilities. A

periodic disturbance starting at identical time points in each habitat patch promotes

a synchronization of patches, which is also known, for example, from environmental

fluctuations in coupled systems (Fretwell, 1972).
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FIGURE 5.1: Level of U-,V- & W-diversity for four distinct ranges of
mean patch isolation in two scenarios. The first scenario in the first
row (panels A, B, C) reflects simulation runs where in each simulation
a new random food web is created. In the second scenario (panels D, E,
F), food webs are selected for an intermediate robustness, and species-
specific dispersal ranges are assumed. Furthermore for both scenarios,
there are four different states of periodic environmental disturbances,
that temporally change the degree of patch isolation. The scenarios
vary in their proportion of patches that are temporally not available
- High blinking: around 50 % of patches are temporally unavailable;
Medium blinking: around 25 % of patches are temporally unavailable;
Low blinking: around 12.5 % of patches are temporally unavailable; No

blinking: 0 % of patches are temporally unavailable;

While the results from Chapter 3 suggest a large influence of periodic environ-

mental disturbances on population dynamics, the same approach for a large meta-

food web, based on the food web from Chapters 2 and 4, reveals no such pronounced

influence on diversity patterns (Figure 5.1). The figure is based on separate simula-

tion runs illustrating the impact of periodic environmental disturbance on food webs,

ranging between scenarios with a large proportion of temporarily unavailable patches

to no disturbance. As in Chapter 2, there is a negative trend for Ū-diversity, a posi-

tive trend for V-diversity, and a resulting increase in W-diversity for moderate-to-high

mean patch isolation. In line with empirical results (Vanschoenwinkel et al., 2013),
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we see a synergistic effect of patch isolation and the disturbance, with the tendency

of the negative effect being most pronounced on Ū- and W-diversity for the scenario

with the largest proportion of temporally unavailable patches (Figure 5.1 A,C,D,F). A

positive effect of the disturbance on V-diversity can be attributed, as already argued

for Chapter 2, through the additional biomass loss and extinction cascades for species

and the state of high patch isolation prevents species from recolonization, or in case

of species-specific dispersal ranges (Figure 5.1 D,E,F), a recolonization by a subset of

species.

Neither body mass dependent dispersal ranges for animal species, as implemented

in Chapter 2, nor a selection of food webs with an intermediate robustness to increased

dispersal mortality, as in Chapter 4, has a large effect on trends in diversity for a peri-

odic environmental disturbance (compare Figure 5.1 A,B,C & D,E,F). Potential rescue

effects through larger dispersal ranges of species are thus still outweighed by an in-

creased energy limitation. And even if more variance in diversity can be explained for

an intermediate robustness (Chapter 4), spatial changes do not have an appreciably

larger effect on diversity patterns per se.

An explanation for why the periodic environmental disturbance has a small effect

size on diversity patterns could be related to its implementation. While the distur-

bance itself is drastic, such that all species in a habitat go extinct, the blinking cycle

has a very large period length compared to population growth rates (period length

_ = 300 which can be up to 300 generations for small phytoplankton species & c.f.

Chapter 3 for a comparison). This provides species sufficient time to re-establish

on temporally unavailable habitats. In comparison, an empirical study on tempo-

ral ponds underlines the impact of a higher frequency of a disturbance on diversity

patterns which provides less time for recolonization (Vanschoenwinkel et al., 2013).

They distinguish between a high and low disturbance, based on the frequency of dry

phases, and found that large effects in particular have a high frequency of disturbance

(in line with our low frequency of disturbance). These results indicate that for a state

of higher frequency of disturbance, also a larger effect on U-diversity can be expected

for this meta-food web model approach.

In summary, the surprisingly strong effects of periodic environmental disturbances

from Chapter 3 and the smaller effect sizes of the preliminary results on a meta-food
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web (Figure 5.1), suggest that the effect size of environmental disturbance on popula-

tion dynamics is larger than on diversity per se. By causing converging trends among

different communities, the presence of a periodic environmental disturbance may ex-

plain why empirically observed effects of mean patch isolation and other landscape

structures are often small and inconclusive. This further aligns with the results that

although local and regional scale processes are the basis to understand metacommu-

nites, local community structure and trophic interactions can largely outweigh the

impact of landscape structure (Chapter 4 and e.g. Myers and Harms (2009)).

5.3 Perspectives - metacommunities in a globally changing

world

The conservation of biodiversity in our diverse ecosystems faces challenging times

as climate change continues. For metacommunities, these changes can have mani-

fold consequences. Chapter 2 & 4 illustrate that changes to the landscape structure

have an impact on diversity patterns of metacommunities. By additionally includ-

ing changes to the abiotic conditions of patches, isolated species communities which

are limited in their dispersal may have increased difficulties to survive. For example,

species may not be able to access the habitats that provide good conditions for their

survival (Alexander et al., 2012; Mouquet et al., 2002). An example of the effect of

changing abioitc conditions on metacommunities is shown by Baho et al. (2012), using

an aquatic community of bacteria and analyzing the impact of a disturbance on the

community composition by a sudden change of salinity. Their long-term chemostat

experiments illustrated a long-lasting impact of such a disturbance over many gener-

ation times. The best recovery was observed for the treatment open for immigration

from a regional resource pool, suggesting that reimmigration can support recovery

from such a disturbance and thus may help species of a metacommunity in their abil-

ity to adapt to changing environmental conditions (Leibold and Chase, 2017).

Chapter 3 and the previous subsection already examined exemplarily one way

of the impact of changing abiotic conditions, namely periodic environmental distur-

bances, which temporally change the structure of the landscape. With the knowledge

of projected climate change in the future, the continuous increase of strong weather
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events and seasonal droughts further rapidly change the landscape structure. Pre-

cisely smaller ponds and kettle holes that provided inspiration as a vivid example of

the model approach (c.f. Chapter 3), are in the context of climate change even more

affected by such disturbances and accordingly we should be attentive with changes in

biodiversity caused by climate change (Horváth et al., 2019; Vanschoenwinkel et al.,

2013).

Yet our focus should not be limited to biodiversity. Important ecosystem func-

tions may be comparatively more strongly affected by disturbances caused by climate

change (Leibold and Chase, 2017). For example, by a change in abiotic conditions

species could dominate a landscape that are secondarily adapted. Thus, species bio-

diversity could be maintained, but ecosystem functions could decline. A study on

animal communities indicate that species richness is less affected by disturbances of

the community, while the total abundance or the composition of a species community

is stronger affected and more volatile (Supp and Ernest, 2014). A generalization of

relationships between these ecological metrics, such as ecosystem function and biodi-

versity is still inconclusive (but see Ceulemans et al. (2021)) but is an important next

step for a comprehensive overview of our ecosystems and their stability as climate

change continuous.



BIBLIOGRAPHY 113

Bibliography

H. M. Alexander, B. L. Foster, F. Ballantyne IV, C. D. Collins, J. Antonovics, and R. D.
Holt. Metapopulations and metacommunities: combining spatial and temporal per-
spectives in plant ecology. J Ecol, 100(1):88–103, 2012. doi: https://doi.org/10.1111/
j.1365-2745.2011.01917.x.

F. Altermatt and M. Holyoak. Spatial clustering of habitat structure effects patterns
of community composition and diversity. Ecology, 93(5):1125–1133, 2012. doi: 10.
1890/11-1190.1.

P. Amarasekare. Spatial dynamics of foodwebs. Annu Rev Ecol Evol Syst, 39:479–500,
2008. doi: 10.1146/annurev.ecolsys.39.110707.173434.

D. L. Baho, H. Peter, and L. J. Tranvik. Resistance and resilience of microbial commu-
nities - temporal and spatial insurance against perturbations. Environ Microbiol, 14
(9):2283–2292, 2012. doi: https://doi.org/10.1111/j.1462-2920.2012.02754.x.

A. Binzer, C. Guill, U. Brose, and B. C. Rall. The dynamics of food chains under climate
change and nutrient enrichment. Phil Trans R Soc B, 367(1605):2935–44, 11 2012. doi:
10.1098/rstb.2012.0230.

R. Ceulemans, C. Guill, and U. Gaedke. Top predators govern multitrophic diversity
effects in tritrophic food webs. Ecology, page e03379, 2021. doi: https://doi.org/10.
1002/ecy.3379.

D. R. Chalcraft, S. B. Cox, C. Clark, E. E. Cleland, K. N. Suding, E. Weiher, and D. Pen-
nington. Scale-dependent responses of plant biodiversity to nitrogen enrichment.
Ecology, 89(8):2165–2171, 2008. doi: https://doi.org/10.1890/07-0971.1.

J. M. Chase. Community assembly: when should history matter? Oecologia, 136:
489–498, 2003. doi: https://doi.org/10.1007/s00442-003-1311-7.

J. M. Chase and M. A. Leibold. Spatial scale dictates the productivity-biodiversity
relationship. Nature, 416:427–430, 2002. doi: https://doi.org/10.1038/416427a.

K. R. Crooks, C. L. Burdett, D. M. Theobald, C. Rondinini, and L. Boitani. Global
patterns of fragmentation and connectivity of mammalian carnivore habitat. Phil
Trans R Soc B Sci, 366(1578):2642–2651, 2011. doi: 10.1098/rstb.2011.0120.

E. I. Damschen, N. M. Haddad, J. L. Orrock, J. J. Tewksbury, and D. J. Levey. Corridors
increase plant species richness at large scales. Science, 313(5791):1284–1286, 2006.
doi: 10.1126/science.1130098.

A. Dobson, D. Lodge, J. Alder, G. S. Cumming, J. Keymer, J. McGlade, H. Mooney, J. A.
Rusak, O. Sala, V. Wolters, D. Wall, R. Winfree, and M. A. Xenopoulos. Habitat loss,
trophic collapse, and the decline of ecosystem services. Ecology, 87(8):1915–1924, 8
2006. doi: 10.1890/0012-9658(2006)87[1915:HLTCAT]2.0.CO;2.

I. Donohue, O. L. Petchey, S. Kéfi, A. Génin, A. L. Jackson, Q. Yang, and N. E.
O’Connor. Loss of predator species, not intermediate consumers, triggers rapid
and dramatic extinction cascades. Glob Chang Biol, 23(8):2962–2972, 2017. doi:
10.1111/gcb.13703.



114 Chapter 5. General Discussion

L. Fahrig. Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst, 34
(1):487–515, 2003. doi: 10.1146/annurev.ecolsys.34.011802.132419.

J. A. Foley, R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin,
M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard,
C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K.
Snyder. Global consequences of land use. Science, 309(5734):570–574, 2005. doi:
10.1126/science.1111772.

S. D. Fretwell. Populations in a seasonal environment. Monogr Popul Biol, 1972.

A. Gonzalez, B. Rayfield, and Z. Lindo. The disentangled bank: How loss of habitat
fragments and disassembles ecological networks. J Bot, 98(3):503–516, 2011. doi:
10.3732/ajb.1000424.

N. J. Gotelli. Metapopulation models: The rescue effect, the propagule rain, and the
core-satellite hypothesis. Am Nat, 138(3):768–776, 1991. doi: 10.2307/2462468.

T. N. Grainger and B. Gilbert. Dispersal and diversity in experimental metacommu-
nities: linking theory and practice. Oikos, 125(9):1213–1223, 2016. doi: 10.1111/oik.
03018.

N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E.
Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M.
Ewers, B. L. Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R.
Margules, B. A. Melbourne, A. O. Nicholls, J. L. Orrock, D.-X. Song, and J. R. Town-
shend. Habitat fragmentation and its lasting impact on earth’s ecosystems. Sci Adv,
1(2), 2015.

Z. Horváth, R. Ptacnik, C. F. Vad, and J. M. Chase. Habitat loss over six decades
accelerates regional and local biodiversity loss via changing landscape connectance.
Ecol Lett, 22(6):1019–1027, 2019. doi: https://doi.org/10.1111/ele.13260.

M. Jonsson, G. Englund, and D. A. Wardle. Direct and indirect effects of area, energy
and habitat heterogeneity on breeding bird communities. J Biogeogr, 38(6):1186–
1196, 2011. doi: 10.1111/j.1365-2699.2010.02470.x.

T. Kalettka and C. Rudat. Hydrogeomorphic types of glacially created kettle holes in
north-east germany. Limnologica, 36(1):54 – 64, 2006. ISSN 0075-9511. doi: 10.1016/
j.limno.2005.11.001.

K. Koelle and J. Vandermeer. Dispersal-induced desynchronization: from metapopu-
lations to metacommunities. Ecol Lett, 8(2):167–175, 2005. doi: 10.1111/j.1461-0248.
2004.00703.x.

S. Kéfi, E. L. Berlow, E. A. Wieters, S. A. Navarrete, O. L. Petchey, S. A. Wood,
A. Boit, L. N. Joppa, K. D. Lafferty, R. J. Williams, N. D. Martinez, B. A. Menge,
C. A. Blanchette, A. C. Iles, and U. Brose. More than a meal. . . integrating non-
feeding interactions into food webs. Ecol Lett, 15(4):291–300, 2012. doi: https:
//doi.org/10.1111/j.1461-0248.2011.01732.x.

M. A. Leibold and J. M. Chase. Metacommunity Ecology, volume 59. Princeton Univer-
sity Press, Princeton, 2017.



BIBLIOGRAPHY 115

M. A. Leibold, M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes,
R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. The meta-
community concept: a framework for multi-scale community ecology. Ecol Lett, 7
(7):601–613, 2004. doi: 10.1111/j.1461-0248.2004.00608.x.

G. G. Mittelbach, C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide,
M. R. Willig, S. I. Dodson, and L. Gough. What is the observed relationship between
species richness and productivity? Ecology, 82(9):2381–2396, 2001. doi: https://doi.
org/10.1890/0012-9658(2001)082[2381:WITORB]2.0.CO;2.

N. Mouquet and M. Loreau. Community patterns in source-sink metacommunities.
Am Nat, 162(5):544–557, 2003. doi: 10.1086/378857.

N. Mouquet, J. L. Moore, and M. Loreau. Plant species richness and community pro-
ductivity: why the mechanism that promotes coexistence matters. Ecol Lett, 5(1):
56–65, 2002. doi: https://doi.org/10.1046/j.1461-0248.2002.00281.x.

J. A. Myers and K. E. Harms. Seed arrival, ecological filters, and plant species richness:
a meta-analysis. Ecol Lett, 12(11):1250–1260, 2009. doi: https://doi.org/10.1111/j.
1461-0248.2009.01373.x.

R. H. Peters. The Ecological Implications of Body Size:. Cambridge University Press,
Cambridge, 10 1983.

S. L. Pimm, H. L. Jones, and J. Diamond. On the risk of extinction. Am Nat, 132(6):
757–785, 1988. doi: 10.1086/284889.

N. Rooney, K. Mccann, G. Gellner, and J. C. Moore. Structural asymmetry and the sta-
bility of diverse food webs. Nature, 442(20):265–269, 2006. doi: 10.1038/nature04887.

R. Ryser, M. R. Hirt, J. Häussler, D. Gravel, and U. Brose. Landscape heterogeneity
buffers biodiversity of meta-food-webs under global change through rescue and
drainage effects. bioRxiv, 2020. doi: 10.1101/2020.06.03.131425.

M. Scheffer, S. Hosper, M.-L. Meijer, B. Moss, and E. Jeppesen. Alternative equilibria
in shallow lakes. Trends Ecol Evol, 8(8):275 – 279, 1993. ISSN 0169-5347. doi: 10.
1016/0169-5347(93)90254-M.

D. E. Schindler, J. B. Armstrong, and T. E. Reed. The portfolio concept in ecology and
evolution. Front Ecol Environ, 13(5):257–263, 2015. doi: 10.1890/140275.

F. D. Schneider, U. Brose, B. C. Rall, and C. Guill. Animal diversity and ecosystem
functioning in dynamic food webs. Nat Commun, 7(12718), 2016. doi: 10.1038/
ncomms12718.

R. S. Shulman and J. M. Chase. Increasing isolation reduces predator:prey species
richness ratios in aquatic food webs. Oikos, 116(9):1581–1587, 2007. doi: https://
doi.org/10.1111/j.0030-1299.2007.14690.x.

J. B. Shurin. Dispersal limitation, invasion resistance, and the structure of pond
zooplankton communities. Ecology, 81(11):3074–3086, 2000. doi: 10.1890/
0012-9658(2000)081[3074:DLIRAT]2.0.CO;2.



116 Chapter 5. General Discussion

A. Stein, K. Gerstner, and H. Kreft. Environmental heterogeneity as a universal driver
of species richness across taxa, biomes and spatial scales. Ecol Lett, 17(7):866–880,
2014. doi: 10.1111/ele.12277.

D. Storch, K. L. Evans, and K. J. Gaston. The species-area-energy relationship. Ecol
Lett, 8(5):487–492, 2005. doi: https://doi.org/10.1111/j.1461-0248.2005.00740.x.

S. R. Supp and S. K. M. Ernest. Species-level and community-level responses to
disturbance: a cross-community analysis. Ecology, 95(7):1717–1723, 2014. doi:
https://doi.org/10.1890/13-2250.1.

G. Takimoto and D. M. Post. Environmental determinants of food-chain length:
a meta-analysis. Ecological Research, 28(5):675–681, 2013. doi: 10.1007/
s11284-012-0943-7.

J. T. Thorson, M. D. Scheuerell, J. D. Olden, and D. E. Schindler. Spatial heterogeneity
contributes more to portfolio effects than species variability in bottom-associated
marine fishes. Proc R Soc Lond, B, 285:20180915, 2018. doi: https://doi.org/10.
1098/rspb.2018.0915.

D. P. Tittensor, C. Mora, W. Jetz, H. K. Lotze, D. Ricard, E. V. Berghe, and B. Worm.
Global patterns and predictors of marine biodiversity across taxa. Nature, 466:1098–
1101, 2010. doi: https://doi.org/10.1038/nature09329.

B. Vanschoenwinkel, F. Buschke, and L. Brendonck. Disturbance regime alters the im-
pact of dispersal on alpha and beta diversity in a natural metacommunity. Ecology,
94(11):2547–2557, 2013. doi: http://www.jstor.org/stable/23597216.

R. J. Whittaker. Meta-analyses and mega-mistakes: calling time on meta-analysis of
the species richness-productivity relationship. Ecology, 91(9):2522–2533, 2010. doi:
https://doi.org/10.1890/08-0968.1.



117

Appendix A

Supplementary material to Chapter

2

Food web and local population dynamics

We consider a multitrophic metacommunity consisting of 40 species on a varying

number of randomly positioned habitat patches, / (the meta-food-web, Figure 2.1).

All patches have the same abiotic conditions and each patch can potentially harbor

the full food web, consisting of 10 basal plant and 30 animal consumer species. The

feeding links (i.e. who eats whom) are constant over all patches (Figure 2.1 a,b) and

are as well as the feeding dynamics determined by the allometric food web model

by Schneider et al. (2016). We integrate dispersal as species-specific biomass flow be-

tween habitat patches (Figure 2.1 b,d).

Using ordinary differential Equations to describe the feeding and dispersal dy-

namics, the rate of change in biomass density, �8,I , of species 8 on patch I is given by

3�8,I

3C
= )8,I − �8,I + �8,I , (A.1)

with )8,I = h8,I · �8,I as the rate of change in biomass density determined by local feed-

ing interactions (where h8,I is the per capita growth rate), �8,I as the total emigration

rate of species 8 from patch I (Equation (A.2)), and �8,I as the total rate of immigration

of species 8 into patch I (Equation (A.4)).
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Local food web dynamics

We use an allometric trophic network model (ATN model) based on the work of

Schneider et al. Schneider et al. (2016) & Kalinkat et al. Kalinkat et al. (2013) to simu-

late the trophic dynamics of local populations ()8,I in Equation (A.1)). Regarding this

term, we distinguish between animal species (Equation T1-1) and basal plant species

(Equation T1-6). In each patch, the biomass dynamics of animal species (biomass den-

sities �8,I) is given by the differences between growth due to consumption of animal or

plant species and losses due to mortality through predation and metabolic demands.

The rate of change in plant biomass densities, %8,I , depends on the uptake of the two

resources, mortality through grazing, and also accounts for metabolic losses. We used

a dynamic nutrient model (Equation T1-8) with two nutrients (concentrations #;,I) of

different importance as the energetic basis of our food web (Brose, 2008; Schneider

et al., 2016).

The topological network model is an extension of the niche model originally in-

troduced by Williams & Martinez Williams and Martinez (2000) and accounts for allo-

metric degree distributions and recent data on scaling relationships for species body

mass and trophic levels (Riede et al., 2011). Each species 8 is fully characterized by

its average adult body mass <8 . We sampled log10 body masses of animal species

randomly with a uniform probability density from the inclusive interval (2, 12) and

the log10 body masses of plant species from the inclusive interval (0, 6) (for empiri-

cal examples see Brose et al. (2019)). This step makes the model inherently stochastic,

but from hereon, all other steps are completely deterministic. The model is designed

such that animal consumers feed on resources, which can be both plants and other

animal species that are smaller than themselves. Body masses further determine the

interaction strengths of feeding links as well as the metabolic demands of species.

Data from empirical feeding interactions are used to parametrize the functions that

characterize the optimal prey body mass and the location and width of the feeding

niche of a predator. From each <8 a unimodal attack kernel, called feeding efficiency,

!8 9 , is constructed which determines the probability of consumer species 8 to attack

and capture an encountered resource species 9 . We model !8 9 as an asymmetrical

hump-shaped Ricker’s function (Equation T1-4) that is maximized for an energetically

optimal resource body mass (optimal consumer-resource body mass ratio '>?C = 100)
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and has a width of W = 2. The maximum of the feeding efficiency !8 9 equals 1. Table

A1 list the full set of Equation and Table A2 is an overview of the standard parame-

ter set for the equations. See also Schneider et al. (Schneider et al., 2016) for further

information regarding the allometric food web model.
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Generating landscapes

We generated differently fragmented landscapes, represented by random geometric

graphs (Penrose, 2003), by randomly drawing the locations of / patches from a uni-

form distribution between 0 and 1 for x- and y-coordinates respectively. We created

landscapes of different size by scaling the maximum dispersal distance of all organ-

isms X<0G with a factor, &, to represent landscape sizes with edge lengths between

0.01 and 10. We obtained the number of patches, / , by using a stratified random

sampling approach, i.e. we added a random number drawn from an integer uniform

distribution between 0 and 9 to a series of numbers of 10, 20, . . . , 60. Similarly, we set

the landscape size, &, by adding a random number drawn from a uniform distribu-

tion between 0 and 1 (respectively 0 and 0.1 for landscape sizes below 1) to a series of

numbers of 0.01, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9.

Dispersal

We model dispersal between local communities as a dynamic process of emigration

and immigration, assuming dispersal to occur at the same timescale as the local pop-

ulation dynamics (Amarasekare, 2008). Thus, biomass flows dynamically between

local populations and the dispersal dynamics directly influence local population dy-

namics and vice versa (Fronhofer et al., 2018). Similar approaches have been used by

e.g. Abrams & Ruokolainen Abrams and Ruokolainen (2011) and Ims & Andreassen

Ims and Andreassen (2005). We model a hostile matrix between habitat patches that

does not allow for feeding interactions to occur during dispersal, and thus, assume

the biomass lost to the matrix to scale linearly with the distance traveled.

Emigration The total rate of emigration of species 8 from patch I is

�8,I = 38,I�8,I , (A.2)

with 38,I as the corresponding per capita dispersal rate. We model 38,I as

38,I =
0

1 + 41 (G8−h8,I )
, (A.3)
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with 0, the maximum dispersal rate, 1, a parameter determining the shape of the dis-

persal rate (Figure A1), G8 , the inflection point determined by the metabolic demands

per unit biomass of species 8, and h8,I , the per capita net growth rate of species 8 on

patch I. We chose to model 38,I as a function of each species’ per capita net growth

rate to account for emigration triggers such as resource availability, predation pressure

and inter- and intraspecific competition (Bowler and Benton, 2005; Fronhofer et al.,

2018). If for example an animal species’ net growth is positive, there is no need for

dispersal and emigration will be low. However, if the local environmental conditions

deteriorate, the growing incentives to search for a better habitat increase the fraction

of individuals emigrating. For plants, we assumed an additional scenario as there

are examples of different life history strategies. There are for example plant species

which disperse from their local habitat when they are doing well, i.e. they have a high

net growth rate, as they can allocate more resources into reproduction resulting in

higher seed dispersal (Miyazaki et al., 2009). However, there are also examples where

plants reallocate resources into reproduction when they are doing poorly (Macedo,

2012) (Figure A1b).

For each simulation run, 0 was sampled from a Gaussian distribution (`0( , f0()

and 1 was sampled from an integer uniform distribution within inclusive limits that

differed between consumer and plant species (see Table A2). The different intervals

reflect different dispersal triggers for animals and plants.

Immigration The rate of immigration of biomass density of species 8 into patch I

follows

�8,I =
∑
=∈#I

�8,= (1 − X8,=I)
1 − X8,=I∑

<∈#= 1 − X8,=<
, (A.4)

where #I and #= are the sets of all patches within the dispersal range of species 8 on

patches I and =, respectively. In this equation, �8,= is the emigration rate of species

8 from patch =, (1 − X8,=I) is the fraction of successfully dispersing biomass, i.e. the

fraction of biomass not lost to the matrix, and X8,=I is the distance between patches

= and I relative to species 8’s maximum dispersal distance X8 (see below paragraph

Maximum dispersal distance). The term 1−X8,=I∑
1−X8,=< determines the fraction of biomass of

species 8 emigrating from source patch = towards target patch I. This fraction depends

on the relative distance between the patches, X8,=I , and the relative distances to all
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FIGURE A1: Functions illustrating the dispersal rate 38 for animal (a)
and plant species (b), where G8 marks the inflection point for each
species 8 determined by the metabolic demands (G8) per unit biomass
of species 8 (see Table A1). The colors blue and red represent different
dispersal strategies and the respective color gradients depict the pa-
rameter range of 1, which determines the slope of the dispersal rate
(see Equation (A.3)). For the purpose of illustration, we set the maxi-
mum dispersal rate to 0 = 0.1 and for animals and plants G8� = 0.314

and G8% = 0.1384, respectively.

other potential target patches < of species 8 on the source patch =, X8,=<. Thus, the flow

of biomass is greatest between patches with small distances. For numerical reasons,

we did not allow for dispersal flows with �8,I < 10−10. In this case, we immediately set

�8,I to 0.

Maximum dispersal distance Based on empirical observations (e.g. (Jenkins et al.,

2007)) and previous theoretical frameworks (e.g. (Hirt et al., 2017; Holt and Hoopes,

2005; Holt, 2002; Jetz et al., 2004)), we assume that the maximum dispersal distance X8

of animal species increases with their body mass. For animal species, the body mass

<8 determines how fast and how far they can travel through the matrix before needing
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TABLE A2: Model parameters and output variables.

Parameter Description Value

Trophic interactions between species
4� conversion efficiency animal species 0.906; (Lang et al., 2017)
4% conversion efficiency plant species 0.545; (Lang et al., 2017)

G� scaling constant metabolic demands animal species
0.314; (Yodzis and
Innes, 1992)

G% scaling constant metabolic demands plant species
0.138; (Yodzis and
Innes, 1992)

`2 , f2
mean and standard deviation for interference
competition

0.8, 0.2

_0
scaling factor capture coefficient for carnivorous
species

40

_1
scaling factor capture coefficient for herbivorous
species

5000

`V8 , fV8
mean and standard deviation allometric exponent
for attack rates consumer

0.42, 0.05; (Hirt et al.,
2017)

`V 9 , fV 9
mean and standard deviation allometric exponent
for encounter of prey

0.19, 0.04; (Hirt et al.,
2017)

l8 relative consumption rate 1
number of prey species 8

'>?C optimal consumer-resource body mass ratio 100
W scaling exponent Ricker’s function 2
ℎ0 scaling factor handling time 0.4

`[8 , f[8
mean and standard deviation allometric exponent
handling time consumer

-0.48, 0.03; (Rall et al.,
2012)

`[ 9 , f[ 9
mean and standard deviation allometric exponent
handling time resource

-0.66, 0.02; (Rall et al.,
2012)

`@, f@ mean and standard deviation hill coefficient 1.5, 0.2

Nutrient dynamics
 half saturation density nutrient uptake (0.1, 0.2)
� nutrient turnover rate 0.25

`(; , f(;
mean and standard deviation of nutrient supply
concentration

50, 2

a1, a2 relative nutrient content in plant species biomass 1, 0.5

Dispersal dynamics
X<0G species-specific maximum dispersal distance 0.5

n
scaling exponent for species-specific maximum
dispersal distance

0.05

`0( , f0( mean and standard deviation of max. emigration 0.1, 0.03
\ cut off emigration function 3 · f0(
1 shape parameter of the emigration function (0,19) (cons.)

(-20,19) (plants)

Output variables

g

mean distance between all habitat patches, with
g=<, the absolute distance between patches = and <,
and (/2 − /), the total number of potential directed
links between all / habitat patches

∑/
=,<=1 g=<

/2−/

d8
landscape connectance of species i, with !8 , the
number of directed dispersal links of species 8

!8
/2−/
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to rest and feed in a habitat patch. Thus animal species at high trophic positions can

disperse further than smaller animals at lower trophic levels. Each animal species per-

ceives its own dispersal network dependent on its species-specific maximum dispersal

distance

X8 = X0<
n
8 , (A.5)

where the exponent n = 0.05 determines the slope of the body mass scaling of X8 .

We chose a positive value for n to account for a higher mobility of animals with larger

body masses. The intercept X0 = 0.1256 was chosen such that the animal species with

the largest possible body mass of <8 = 1012 had a maximum dispersal distance of

X8 = 0.5. Thus, the animal species with the smallest possible body mass of <8 = 102

had a maximum dispersal distance of X8 = 0.158.

As plants are passive dispersers driven by e.g. wind with no clear relationship be-

tween body mass and dispersal distance, we model their maximum dispersal distance

as random and body mass independent (Jenkins et al., 2007). We sampled X8 for each

plant species from a uniform probability density within the interval (0, 0.5). Thus, the

best plant disperser can potentially have the same maximum dispersal distance as the

largest possible animal species (Table A2). Additionally, we tested a null model in

which all species have the same maximum dispersal distance of X8 = X<0G . See section

A for further information on the additional simulations.

Numerical simulations and data analysis

We constructed 30 model food webs, each comprising 10 plant and 30 animal species.

To avoid confounding effects of different initial species diversities, we kept both the

number of species ( and the fraction of plants and animals constant among all food

webs. For each simulation, we randomly generated a landscape of size& (edge length

of a square landscape) with / randomly distributed habitat patches. To test each food

web across a gradient of number of habitat patches and habitat isolation, we drew the

number of habitat patches, / , from the inclusive interval (10, 69) and the size of the

landscape, &, from the inclusive interval (0.01, 10) using a stratified random sampling
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approach (see also section A for further information). With this approach, we gener-

ated landscapes on two independent gradients covering two aspects of fragmentation,

namely number of fragments and habitat isolation. To cover the full parameter range

of / and &, we simulated each food web on 72 landscapes resulting in a total of 2160

simulations. We achieved a full range for the gradient of habitat isolation (landscape

connectance ranging from 0 to 1, Figure A3c). The upper limit for the number of

patches was chosen to conform to the maximum usage time of 10 days per simula-

tion on the high-performance-cluster we used (Schnicke et al., 2017). Additionally, we

performed dedicated simulation runs to reference the two extreme cases, i.e. (1) land-

scapes in which all patches are direct neighbors without a hostile matrix, and thus, no

dispersal mortality, and (2) fully isolated landscapes, in which no species can bridge

between patches, and thus, a dispersal mortality of 100% .

For each simulation run, we initialized our model with random conditions: Each

habitat patch I holds a random selection of 21 to 40 species (with each of the 40 species

of the full food web existing on at least one patch) and initial biomass densities �8,I

and nutrient concentrations #; (; ∈ 1, 2) were randomly sampled with uniform prob-

ability density within the intervals (0, 10) for �8,I and ((;/2, (;) for #;, respectively.

Here, (; are the supply concentrations of the nutrients, which are constant on all habi-

tat patches but differ between the two nutrients. See Table A2, Equation T1-8 and

Schneider et al. Schneider et al. (2016) for further information on the nutrient dynam-

ics.

Starting from these random initial conditions, we numerically simulated local food

web and dispersal dynamics over 50,000 time steps by integrating the system of dif-

ferential equations implemented in C++ using procedures of the SUNDIALS CVODE

solver version 2.7.0 (backward differentiation formula with absolute and relative error

tolerances of 10−10 (Hindmarsh et al., 2005)). Successful dispersal between local pop-

ulations thereby enabled species to establish populations on patches where they were

initially absent. For numerical reasons, a local population was considered extinct once

�8,I < 10−20, and �8,I was then immediately set to 0.
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Output variables

We recorded the following output variables for each simulation run: (1) the mean

biomass density of each species 8 on each habitat patch I over the last 20,000 time

steps, �8,I ; (2) the number of habitat patches in a landscape, / ; (3) habitat isolation, i.e.

the mean distance between all habitat patches, g (see Table A2); and (4) the landscape

connectance of each species 8, d8 (see Table A2). Thus, d8 determines the ability of a

species to connect habitat patches in a fragmented landscape.

Statistical models and data visualization We tested for correlation between ini-

tialized and emerged V-diversity, which was however not the case (see section A).

Further, we used generalized additive mixed models (GAMM) from the mgcv pack-

age in R (Wood, 2017) to visualize the impact of number of patches and habitat iso-

lation on species diversity. To fit the model assumptions, we logit-transformed U-

diversity, and log-transformed V-diversity. We analyzed each diversity index sepa-

rately, with the number of patches / (log-transformed), the mean patch distance g

(log-transformed) and their interaction as fixed effects and the ID of the food web (1

- 30) as random factor (with normal distribution for U- and V-diversity, and binomial

distribution for W-diversity). Similarly, we analyzed the mean biomass densities, �8,I

(log-transformed), and species-specific landscape connectance, d8 , for each species (ID

1 - 40) using GAMM with a normal distribution.

Analysis

Out of the 2160 simulations we started, 57 were terminated by reaching the maxi-

mum usage time of 10 days per simulation on the high-performance-cluster we used

(Schnicke et al., 2017). We further deleted 30 simulations as they had entirely isolated

landscapes with no dispersal links. We performed all statistical analyses in R version

3.3.2. (Team, 2016) using the output of the remaining 2073 simulations. See also section

A for additional information.

Species diversity We quantified Whittaker’s U-, V-, and W-diversity (Whittaker, 1972)

using presence-absence data derived from the recorded mean biomass densities, �8,I ,

counting species 8 present on patch I when �8,I > 10−20. In Whittaker’s approach, U
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accounts for the local species richness, V is the component of regional diversity that

accumulates from compositional differences between local communities, and W is the

regional diversity, i.e. the species richness at the landscape scale (Whittaker, 1972). We

relate U, V and W to each other using multiplicative partitioning (Whittaker, 1972), i.e.

U · V = W. Here, we use U averaged over all habitat patches / (which we hereafter refer

to as U) to get a measure at the landscape level comparable to V and W.
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FIGURE A2: Heatmap visualizing the maximum trophic level within
a food web (colour-coded; z-axis) in response to habitat isolation, i.e.
the mean patch distance (g, log10-transformed; x-axis) and the number
of habitat patches (Z; y-axis). The heatmap was generated based on
the statistical model predictions. The loss of species diversity driven
by habitat isolation also translates into a loss of the maximum trophic

level.
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Additional simulations with a constant maximum dispersal dis-

tance

We repeated all simulations with a constant maximum dispersal range for all species

of X2>=BC. = 0.5, i.e. all species have the same spatial network, to understand the effect

of the dispersal advantage of larger animals. The results from these simulations are

very similar to the results with the species-specific scaling of dispersal ranges, show-

ing the same biomass density drop of larger animals at low mean distances (Figure

A3).
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FIGURE A3: Top row: Mean biomass densities of consumer (a) and
plant species (b) over all food webs (�8 , log10-transformed; y-axis) in
response to habitat isolation, i.e. the mean patch distance (g, log10-
transformed; x-axis). Each color depicts the biomass density of species
8 averaged over all food webs: (a) color gradient where orange repre-
sents the smallest, red the intermediate and blue the largest consumer
species; (b) color gradient where light green represents the smallest and
dark green the largest plant species. Bottom row: Mean species-specific
landscape connectance (d8 ; y-axis) for consumer species (c) and plant
species (d) over all food webs as a function of the mean patch distance
(g, log10-transformed; x-axis), using the same maximum dispersal dis-

tance for all species, X2>=BC = 0.5.
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Additional simulations of the two extreme cases

To explore the extreme cases of fragmentation in our model framework, we conducted

additional simulations with emigration but no immigration on patches to represent

completely isolated patches (disconnected), and landscapes with patches containing

all species of the meta-food-web and neither emigration nor immigration to represent

one joint landscape with no fragmentation (joint). For the disconnected scenario we

simulated 12 replicates for each of the 30 food webs covering in the same stratified

random gradient of patch numbers between 10 and 69 as in the main simulations and

were also initialized with a subset of species (see section S4). For the joint scenario we

simulated 20 replicates for each food web containing 2 independent patches initialized

with all species and no dispersal.

(1) Joint scenario with no dispersal mortality U-diversity is on average 37.621, W-

diversity 37.172 and V-diversity 1.004 (Figure A4, purple triangle).

(2) Fully isolated scenario with 100% dispersal mortality U-diversity is on average

11.945, W-diversity 32.801 and V-diversity 2.876 (Figure A4, orange triangle).
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FIGURE A4: Shown are model predictions for landscapes with 40
patches across the whole gradient of the mean patch distance (g,
log10-transformed; x-axis). Top-left panel shows the landscape con-
nectance averaged over all species (y-axis) as response to the mean
patch distance (g, log10-transformed; x-axis). Subsequent panels show
W-diversity, V-diversity and U-diversity (y-axes) in response to the mean
patch distance (g, log10-transformed; x-axis). Purple triangles represent
reference points from dedicated simulations in a joint scenario and or-

ange triangles for fully isolated scenarios (see section S7).

Sensitivity analysis

We tested the effect of randomly drawn dispersal parameters (maximum dispersal

rate, 0, and the shape of the dispersal function, 1; Equation (A.3)) on U-, V- and W-

diversity for consumers and plants respectively. We used generalized additive mixed

models (GAMM) from the mgcv package in R for all sensitivity analyses. To fit the

model assumptions, we logit-transformed U-diversity, and log-transformed V- and W-

diversity.The emigration parameters were separately used as fixed effects and the ID

of the food web (1 - 30) as random factor (with normal distribution for U- and V-

diversity, and binomial distribution for W-diversity). Both parameters show no strong

effect in all tested cases (Figure A5 - A7). Only the maximum emigration rate 0 of
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consumers shows a small negative effect on U-diversity (Figure A5). As a higher max-

imum emigration rate results in an overall larger loss term due to dispersal, this fits to

our general findings.

Additional sensitivity analysis for interference competition, allometric exponent

for attack rates of consumer species, exponents for handling time, hill coefficient and

nutrient turnover rate were omitted as they were tested thoroughly in Schneider et al.

Schneider et al. (2016). There, the dynamics of the food web model were shown to

be robust to changes in model parameters. For each of the 2073 simulation runs the

parameters of the trophic interactions were independently sampled from appropri-

ate probability distributions within ecologically reasonable limits (see Table A1). To

account for the stochastic nature of the algorithm provided by Schneider et al. (Schnei-

der et al., 2016) by which food web topologies are created, we generated an ensemble

of 30 food webs by randomly sampling 30 sets of species body masses.

0 5 10 15

0
10

20
30

40

Shape of Emigration Curve Consumers

Shape Exponent b

α−
D

iv
er

si
ty

0.05 0.10 0.15

0
10

20
30

40

Maximum Emigration Rate Consumers

Maximum Emigration Rate a

α−
D

iv
er

si
ty

−20 −10 0 10 20

0
10

20
30

40

Shape of Emigration Curve Plants

Shape Exponent b

α−
D

iv
er

si
ty

0.05 0.10 0.15

0
10

20
30

40

Maximum Emigration Rate Plants

Maximum Emigration Rate a

α−
D

iv
er

si
ty

FIGURE A5: U-diversity (y-axes) of consumers and plants in depen-
dence of the maximum emigration rate, 0, and the shape of the emigra-

tion function, 1 respectively (x-axes).
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gration function, 1 respectively (x-axes).
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FIGURE A7: W−diversity (y-axes) of consumers and plants in depen-
dence of the maximum emigration rate, 0, and the shape of the emigra-

tion function, 1 respectively (x-axes).

Initial and post-simulation V-diversity

To see how the initialised V-diversity (see section A) influenced the post-simulation V-

diversity we performed a generalized additive mixed model (GAMM) from the mgcv

package in R with the initial V-diversity as fixed effect and the post-simulation V-

diversity as the response variable. Both were log-transformed to fit model assump-

tions. The post-simulation V-diversity and initial V-diversity were not correlated. This

suggests that the initial V-diversity which is due to initializing the patches in the land-

scape with only a subset of species from the regional species pool does not influence

the post-simulation V-diversity detectably (approximate p-value: 0.518) (Figure A8).
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FIGURE A8: (a) Heatmap visualizing V-diversity (color-coded; z-axis)
in response to habitat isolation, i.e. the mean patch distance (g, log10-
transformed; x-axis) and the initial V-diversity (y-axis). The heatmap
was generated based on the statistical model predictions. (b) The post-
simulation V-diversity (y-axis) and the initial V-diversity (x-axis) were
not correlated. In strongly isolated landscapes V-diversity increases
slightly with higher initial V-diversity. However, post-simulation V-

diversity is higher than the initial V-diversity.
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Standard errors in biomass densities
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FIGURE A9: Top row: Mean biomass densities [log10(biomass density
+1)] with standard errors [± 2*SE] for four exemplary animal consumer
species (a) and three exemplary basal plant species (b) over all food
webs (�8 , log10-transformed; y-axis) in response to habitat isolation, i.e.
the mean patch distance (g, log10-transformed; x-axis). Each color de-
picts the biomass density of species 8 averaged over all food webs: (a)
color gradient where orange represents the smallest, red the intermedi-
ate and blue the largest consumer species; (b) color gradient where light
green represents the smallest and dark green the largest plant species.
Bottom row: Mean species-specific landscape connectance (d8 ; y-axis)
for consumer (c) and plant species (d) over all food webs as a function

of the mean patch distance (g, log10-transformed; x-axis).
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Example Variability

In this section, we show illustrative time series of two species on two patches to

demonstrate effects of synchronous and asynchronous dynamics on U-, V- and W-

variability (Figure B1). Frequency and amplitude of the biomass oscillations (and

thus also the U-variability) are the same for both species. Perfectly asynchronous

(antiphase) oscillations of species 1 result in V-variability → ∞ and W-variability ap-

proaching 0. Conversely, perfectly synchronous dynamics of species 2 result in a V-

variability of 1 and W-variability equal to the U-variability.
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FIGURE B1: Exemplary dynamics of a system with two species on two
patches. The first two panels show the time series for each species on
patch 1 and 2, respectively, while the bottom panel shows the corre-
sponding total biomasses. The boxes to the right contain the numerical

values of the U-, V- and W-variabilities.

Attack rate dependence of local biomass oscillations

We tested a broad range of combinations of consumer and predator attack rates to find

suitable parameter sets for oscillatory dynamics. There are two areas in the parameter

space that show oscillatory dynamics, separated by an area that leads to a stable equi-

librium (Figure B2). Oscillatory behavior is indicated by an increased U-variability

(CV). Mean biomasses of the species are shown to illustrate the two different trophic

cascades. The change in biomass between the two cascades is most striking for the

autotroph: at low attack rates (weak trophic cascade), it has relatively low biomass,

as it is controlled by the consumer, which in turn is only weakly controlled by the

predator, whereas its biomass is high when attack rates are also high (strong trophic
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cascade). Now the consumer is strongly top-down controlled by the predator and

cannot control the autotroph anymore.
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FIGURE B2: Simulation results of the food chain on a single patch for
a broad range of consumer- and predator attack rates. Shown are the
U-variabilities (left) on a logarithmic scale (;>610) and biomasses (right)
of predator, consumer, and autotroph species. The black x’s denote the
parameter values used for the main simulations. Step size attack rate

predator: 10; step size attack rate consumer: 5

Variabilities of consumer and autotroph species

To complement the results, we here show U-, V-, and W-variabilities for the consumer

(Figure B3) and the autotroph (Figure B4). The main trends for the local (U-variability),

between habitat patches (V-variability) and metapopulation dynamics (W-variability)

are qualitatively the same for the consumer and the autotroph as for the predator

species (Figure 3.3).
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FIGURE B3: Local (U-variability, top row), between patch (V-variability,
middle row) and metapopulation dynamics (W-variability, bottom row)
of the consumer for the weak (left column) and the strong trophic cas-
cade (right column). Light gray data points and dashed trend lines (sec-
ond order fit) indicate static landscapes, dark gray data points and solid
trend lines indicate dynamic landscapes. Each data point represents the
result of one simulation run with a unique spatial network of habitat
patches. All data points where the variability is below 10−6 are set to
10−6 as differences between them provide no meaningful information

that close to the fixed point.
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FIGURE B4: Local (U-variability, top row), between patch (V-variability,
middle row) and metapopulation dynamics (W-variability, bottom row)
of the autotroph for the weak (left column) and the strong trophic cas-
cade (right column). Light gray data points and dashed trend lines (sec-
ond order fit) indicate static landscapes, dark gray data points and solid
trend lines indicate dynamic landscapes. Each data point represents the
result of one simulation run with a unique spatial network of habitat
patches. All data points where the variability is below 10−6 are set to
10−6 as differences between them provide no meaningful information

that close to the fixed point.
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Alternative stable states in the weak trophic cascade

In order to establish whether the weak trophic cascade (in static landscapes) is indeed

bistable, as the seemingly disconnected clouds of data points in Figure 3.3 (C and E)

suggest, we performed dedicated simulations with one randomly chosen RGG (fixed

patch locations) and evaluated the V-variability of the predator. The minimum disper-

sal distance, �0, which controls the mean patch isolation of the RGG (the larger �0,

the lower is the mean patch isolation), was varied between 0.06 and 1.05, first from

low to high values (grey points in Figure B5) and then from high to low values (black

points in Figure B5). In both cases, the respective attractor the system had settled on

was numerically followed, but sudden jumps in the V-variability occurred as the net-

work structure of the RGG changed in a discontinuous way or one of the attractors

lost stability. In this particular case, an asynchronous attractor (high V-variability) is

present for all values of �0, while a second attractor with more synchronous dynamics

(lower V-variability) is present only for low (�0 < 0.4) or high (�0 > 0.9) values.
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FIGURE B5: Bifurcation diagram of the V-variability of the weak trophic
cascade with the minimum dispersal distance, �0, as control parameter.
Grey points: Simulations starting at low �0 and gradually increasing
it (step size: 0.01), black points: simulations starting at high �0 and
gradually decreasing it. The dashed line (�0=0.5) denotes the maximal

�0 used for the simulations of the main results.
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Mean biomasses of each species for different mean patch isola-

tion of the landscape

Over the gradient of patch isolation, the average biomasses (per patch) of the three

species in the weak trophic cascade gradually changes. The mean biomass of the

predator and consumer species steadily decreases with increasing mean patch iso-

lation, while the mean biomass of the autotroph increases.
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FIGURE B6: Mean biomasses (per patch) for the weak trophic cascade
in static landscapes. Dotted trend line (second order fit) and dark gray
data points: autotroph, dashed trend line and gray data points: con-
sumer, solid trend line and light gray data points: predator. Each data
point represents the result of one simulation run with a unique spatial

network of habitat patches.
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Methods

Local interactions

Our species community model is an extension of the niche model (Williams and Mar-

tinez, 2000), taking into account allometric degree distributions and empirical data

on scaling relationships for the body masses and the respective trophic levels of the

species (Riede et al., 2011). Each species 8 is characterized exclusively by its average

adult body mass <8 , the key trait to describe both animal and plant species. The ;>610

body masses of animal species are randomly drawn from the inclusive interval [2,12]

and the ;>610 body masses of plant species from the inclusive interval [0,6]. The body

mass also determined the interaction strengths of the feeding links and the metabolic

requirements of the species.

Feeding interactions and the respective interaction strength are determined through

handling times ℎ8 9 (Eq. C.3) and through a capturing coefficient ^8 9 (Eq. C.1), both

scaled with the according species body masses <8 and < 9 . The capturing of a predator

species 8 on a prey species 9 is defined as

^8 9 = _;<
V8
8
<
V 9

9
!8 9 , (C.1)

with the constant scaling factor _; which subdivide the group of consumer species

into herbivore (_0= 40) and carnivore species (_1= 5000), the scaling exponent for

body masses V8 and V 9 sampled from a normal distribution (mean: `V8 = 0.42, s.d.:
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fV8 = 0.05; mean: `V 9 = 0.19, s.d.: fV 9 = 0.04 (Hirt et al., 2017)) and the feeding effi-

ciency !8 9 . For plants as resources, <V 9
9

was set to 1 (since plants do not move). From

each mean body mass <8 a unimodal attack kernel defines the feeding efficiency, !8 9 ,

which determines the probability of the consumer species 8 attacking and capturing

an encountered prey species 9 . We model !8 9 as an asymmetric hump-shaped Ricker

function

!8 9 =

(
<8

< 9'>?C
4

1− <8
<9'>?C

)W
, (C.2)

maximized for an energetically optimal resource body mass (optimal consumption-

resource-body mass ratio '>?C =100) with a scaling component W = 2. The feeding

interactions in the model are such that animal consumers feed on resources that can

be both plants and other animal species smaller than themselves.

We described the other part of the feeding interactions through the handling times

ℎ8 9 accounting for the time a consumer 8 needs to kill, ingest and digest:

ℎ8 9 = ℎ0<
[8
8
<
[ 9

9
. (C.3)

The handling times are defined by a scaling constant ℎ0=4 and body masses are scaled

through the exponents [8 and [ 9 sampled from a normal distribution (mean: `[8 =

−0.48, s.d.: f[8 = 0.03; mean: `[ 9 = −0.66, s.d.: f[ 9 = 0.02). See also Schneider et al.

(2016) for more information on the allometric food web model.

Emigration

In natural ecosystems, emigration is a complex process involving various environ-

mental factors and species characteristics. We assume that emigration depends on the

net per capita growth rate h8,I of the species 8 on patch I, which reflects its current

situation in this habitat. For example, if the net growth rate of an animal species is

positive, the habitat offers suitable living conditions and the rate of emigration is low.

However, when local environmental conditions deteriorate, species intrinsic motive

to disperse in search of a better habitat increases and emigration rate increases. For

plants, life history strategies are more complex and we assumed an additional sce-

nario. For example, there are also plant species that disperse from their local habitat
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when they are doing well, i.e. they have a high net growth rate and they allocate

more resources for reproduction, leading to higher seed formation and seed dispersal

(Miyazaki et al., 2009). As for animal species, there are also examples where plants

tend to disperse largely when they are in a poor state and reallocate resources to re-

production (Macedo, 2012), we assume both scenarios (see Figure C1).

Figure C1 shows exemplarily how the dispersal rate (Eq. 4.5) is changing depend-

ing on the net growth rate of a species for plant and animal species:

1.0 0.5 0.0 0.5 1.0
net growth rate (vi, z)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

pe
r c

ap
ita

 d
isp

er
sa

l r
at

e 
(d

i,z
)

xi

Animal species

1.0 0.5 0.0 0.5 1.0
net growth rate (vi, z)

xi

Plant species

FIGURE C1: Emigration function (see Eq. 4.6 in main manuscript) for
animal and plant species, with selected values for the shape 1, a fixed
maximum emigration rate 0 and G8 the metabolic demands defining the
point of inflection. The black color shows examples of a positive value

for 1 and the blue color a negative value.

Data analysis

GAM- Generalized additive model Generalized additive models are a statistical

model approach that uses smooth functions 5 (G) of input variables to fit an output H.

The advantage of the statistical approach is that they capture nonlinear relationships

(in contrast to a linear model) and can also account for multiple input variables. The
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model uses a general form of

H = V0 +
∑
?

5? (G?) (C.4)

with H8 the additive function, G? the different input variables used for the model

and the constant factor V0. For implementation, we used the mgcv package in R

(Wood, 2011) and selected a Gaussian model with the use of five basis functions (k=5)

and penalized splines for predictions of Ū-diversity and six basis functions (k=6) for

predictions of V-diversity. The number of basis functions determines how many func-

tions are used in the fitting process. For verification of the goodness and reliability of

the fit we compared the resulting pseudo-'2 with the OOB score of the RF model (see

Table C2).

To select predictor variables for the full model and best model we used the fol-

lowing stepwise selection procedure based on the full dataset. To avoid confounding

effects between the input variables we first checked the correlation (cor) between pre-

dictor variables and selected between those below a threshold of cor < 0.75. This

selection provides the basic set of predictor variables for the full model with 11 pre-

dictor variables. In a next step, we used the GAM model to select the predictors that

are significant for Ū- and V-diversity (p-value < 0.05), respectively. A final selection is

done based on the lowest AIC value for the GAM, giving our best model.

RF- Random forest Random forest models are a machine learning approach com-

monly applied for data analysis (Ref) with the advantage of a simple model structure

and high versatility. The model utilizes multiple regression trees to make an aggre-

gated prediction for an output variable across the trees. Each tree consist of multiple

nodes where each node corresponds to a decision for the strongest associated predic-

tor variable based on a randomly chosen subset of the full data set.

We used the random forest model to (1.) compare the best model fit with the least

number of predictor variables and the full model fit for Ū-diversity and V-diversity

via relative importances and out-of-bag predictions (OOB), and (2.) to visualize the

partial effects of each predictor variable on the diversity.



Appendix C. Supplementary material to Chapter 4 155

1. The out-of-bag prediction is an error estimation calculated from the remaining

data set not used in the subset for the calculation of the tree. The accuracy is

$$� = 1 − "(�
fH

, (C.5)

with fH as the variance of the output variable H and "(� the mean squared

error of the OOB predictions comparing the mean prediction H of OOB and the

true value. Thus it can be interpreted as a measure of a pseudo '2 with an upper

bound of 1, where in this case (pseudo '2 = 1) the model predicts a perfect model

outcome.

Derived from these error estimation, we can also evaluate the importance for

each variable we used for predicting the output value H. It is quantified by per-

muting the predictor value across all trees used in the random forest model and

quantifying its change in accuracy. If the accuracy of a predictor variable changes

to a larger extent, this indicates that the corresponding predictor is more impor-

tant for model prediction. Based on the relative importances, a low correlation

between predictors and the AIC of the GAM model, the best model with the

least necessary parameters and a large OOB-score was chosen.

The random forest model was implemented in Python through the Scikit-learn

library (Pedregosa et al., 2011). For each variable, the random forest model was

trained with 2500 tress.

2. The partial effects of each input predictor on the output variable can be visual-

ized in a partial dependence plot. Through the training data set we obtained a

RF model prediction, our target function, and plot the trends for the different

predictor variables of interest. Each prediction 6 for an input predictor variable

G8 with 9 numbers of input variables can be defined as follows:

6(G 9) =
1
=

=∑
<=1

6(G<,1), ..., 5 (G<, 9)) , (C.6)

with < data points for each variable 9 (Hastie et al., 2009). We take the median

value of = predictions, calculated by the RF model, for each data point to derive
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the trend line. In addition we calculate a confidence interval (99 %) from the

mean and standard deviation 3·f
B

for the sample size B.

Other output variables For comparison of the random forest models we used a so

called full model, which we compared to the best model fit. In this full model we

used 11 predictor variables, predictors 1-6 are described in the main manuscript (Table

4.2) and predictors 7-11 are described in Table C1. Each predictor is standardized

between 0 and 1 to avoid scaling problems. The calculations of the regional predictors:

transitivity and mean closeness centrality were calculated through the python package

networkx (Hagberg et al., 2008).

Calculation of robustness For the calculation of the robustness we used an addi-

tional set of simulations. The robustness of the food webs was calculated for each

food web separately by assuming two extreme scenarios on a single habitat patch. In

the first scenario we ignored dispersal and evaluated the resulting species richness

depending only on local food web dynamics. In the second scenario we accounted for

dispersal, but emigrating biomass was completely lost to the matrix. For each scenario

we simulated 20 replicates and took the mean of both scenario as measure for the ro-

bustness (mean species richness) of a single food web. The standard deviation of the

robustness is the parameter '(� (Table 4.2 in the main manuscript) used in the model.
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TABLE C1: Other output variables (predictors 7-11) with ecological in-
terpretation used in the full model

Param-
eter

Description and interpretation of output variables Definition

Local predictors

`@, f@

mean and standard deviation of Hill coefficient - the
coefficient in the functional response term (see Eq. 4.5 in
manuscript) that determines whether the shape of the
response is more like a functional type II or type III
response. We assumed a normal distribution with a lower
and upper bound of 1 and 2, respectively. The Hill
coefficient reveals different strategies where type III
indicates more selective feeding response and type II a
more generalist feeding response and contributes to
stabilize dynamics for a low coefficient.

1.5, 0.2

Regional predictors

0

Maximum emigration rate of plant and animal species
given by mean and standard deviation from a normal
distribution. The larger the emigration rate on a habitat
patch, the larger the potential biomass loss through
dispersal. Thus it can be an estimator for the potential
amount of mean dispersal loss. Parameter range is defined
in the methods of the main manuscript.

`0,f0

Θ

Transitivity - The relative number of triangles in the
graph, compared to total number of connected triples of
nodes present in the RGG, where patches are the nodes
and dispersal connections correspond to the edges. It is a
measure for the relative frequency of triangles and is
closely related to the clustering coefficient, a measure to
what extent habitat clustering occurs in the landscape or
not.

3 G number of triangles
number of connected triples of nodes

Δ<2

Mean closeness centrality - the centrality of a patch n is
the reciprocal of the average shortest path distance (XE,=) to
n over all z-1 reachable patches. Thus it gives us a measure
how central on average patches are in the landscape.

I−1∑I−1
E=1 XE,=
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Results

We replicated the results of Ryser et al. (2019), which qualitatively show the same re-

sults of diversity patterns. An increase of mean patch isolation led to an decrease in U-

diversity (local species richness), an increase in V-diversity (compositional differences

between the local communities), and no significant trend in W-diversity (diversity of

metacommunity) for the selected range of mean patch isolation (Figure C2).

FIGURE C2: The full dataset showing U-, V- and W-diversity in response
to a changing mean patch isolation of the landscapes. The trend line is

a linear fit of the data.

TABLE C2: Overview of model results for random forest approach in
comparison to generalized additive model (GAM).

Model pseudo '2

(GAM)
OOB (Random
Forest)

local Ū-diversity - full data set, best model -
five predictors

0.89 0.89

local Ū-diversity - full data set, all - eleven
predictors

0.89 0.90

local Ū-diversity - subset - five predictors 0.93 0.99
V-diversity - full data set, best model - four
predictors

0.27 0.496

V-diversity - full data set, all - eleven predictors 0.27 0.52
V-diversity - subset - four predictors 0.49 0.84

A comparison of the generalized additive model approach, and the random forest

approach shows very congruent results for local Ū-diversity while the explained vari-

ance for V-diversity in the random forest approach almost doubles for each selected

model compared to the GAM (see Table C2).
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When comparing the trends between the two model approaches (RF vs. GAM),

they show qualitatively the same shape. Minor differences can nevertheless be identi-

fied. Especially when there is a lower amount of data points available or towards the

end of an axis, the GAM model has problems with the fit (see e.g. Figure C4 C,D &

C5 C). However, this probably does not completely explain the large differences in the

explained variance between the approaches.

FIGURE C3: Model predictions of generalized additive model for U-
diversity and five selected predictors. Two local predictors are the ro-
bustness (d.f.: 4, p-value: < 2 · 10−16) and variance of robustness (d.f.: 4,
p-value: < 2 ·10−16 ) as well as three regional predictors, the mean patch
isolation (d.f.: 4, p-value: < 2 · 10−16), shape of emigration function for
basal (d.f.: 3.8, p-value: 0.019) and for plant species (d.f.: 4, p-value:

0.00011).
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FIGURE C4: Best model predictions of generalized additive model for
V-diversity for four selected predictors. Two regional predictors, the
mean patch isolation (d.f.: 5, p-value: < 2 · 10−16) and minimum nearest
neighbor distance (d.f.: 5, p-value: 1.86 · 10−6) as well as two local pre-
dictors, the robustness (d.f.: 5, p-value: 0.0006) and standard deviation

of robustness (d.f.: 5, p-value: 2.5 · 10−10).
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FIGURE C5: Model predictions of generalized additive model for U-
diversity and five selected predictors of the subset. The two local pre-
dictors are the robustness (d.f.: 4, p-value: < 2 · 10−16) and variance of
robustness (d.f.: 4, p-value: < 2 · 10−16 ) as well as three regional pre-
dictors, the mean patch isolation (d.f.: 4, p-value: < 2 · 10−16), the shape
of emigration function for plant (d.f.: 4, p-value: < 8.3 · 10−15) and for

animal species (d.f.: 4, p-value: < 2 · 10−16).
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FIGURE C6: Subset model predictions of generalized additive model
for V-diversity and four selected predictors. Two are regional predic-
tors, the mean patch isolation (d.f.: 5, p-value: < 2 ·10−16) and minimum
nearest neighbor distance (d.f.: 5, p-value: < 9.8 · 10−12) as well as two
local predictors, the robustness (d.f.: 5, p-value: 3 · 10−7) and standard

deviation of robustness (d.f.: 5, p-value: 3.2 · 10−9).
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