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General Abstract 
 
Detecting and categorizing particular entities in the environment are important visual 

tasks that humans have had to solve at various points in our evolutionary time. The question 

arises whether characteristics of entities that were of ecological significance for humans play 

a particular role during the development of visual categorization.  

The current project addressed this question by investigating the effects of developing 

visual abilities, visual properties and ecological significance on categorization early in life. 

Our stimuli were monochromatic photographs of structure-like assemblies and surfaces taken 

from three categories: vegetation, non-living natural elements, and artifacts. A set of 

computational and rated visual properties were assessed for these stimuli. Three empirical 

studies applied coherent research concepts and methods in young children and adults, 

comprising (a) two card-sorting tasks with preschool children (age: 4.1-6.1 years) and adults 

(age: 18-50 years) which assessed classification and similarity judgments, (b) a gaze 

contingent eye-tracking search task which investigated the impact of visual properties and 

on 8-month-olds' ability to segregate visual structure. Because eye-category membership 

tracking with infants still provides challenges, a methodological study (c) assessed the effect 

of infant eye-tracking procedures on data quality with 8- to 12-month-old infants and adults. 

In the categorization tasks we found that category membership and visual properties 

impacted the performance of all participant groups. Sensitivity to the respective categories 

varied between tasks and over the age groups. For example, artifact images hindered infants' 

visual search but were classified best by adults, whereas sensitivity to vegetation was highest 

during similarity judgments. Overall, preschool children relied less on visual properties than 

adults, but some properties (e.g., rated depth, shading) were drawn upon similarly strong. In 

children and infants, depth predicted task performance stronger than shape-related properties. 

Moreover, children and infants were sensitive to variations in the complexity of low-level 

visual statistics. These results suggest that classification of visual structures, and attention to 

particular visual properties is affected by the functional or ecological significance these 

categories and properties may have for each of the respective age groups.  

Based on this, the project highlights the importance of further developmental research on 

visual categorization with naturalistic, structure-like stimuli. As intended with the current 

work, this would allow important links between developmental and adult research.    
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Zusammenfassung 
 
Spezifische Objekte der Umwelt zu entdecken und zu erkennen, sind wichtige visuelle 

Aufgaben, die Menschen im Laufe der Evolution zu lösen hatten. Es stellt sich die Frage, ob 

Charakteristika von ökologisch wertvollen Entitäten in der Entwicklung der visuellen 

Kategorisierungsfähigkeit bei kleinen Kindern eine besondere Rolle spielen.  

Die vorliegende Dissertation untersucht, wie sich visuelle Fähigkeiten, visuelle 

Eigenschaften der Entitäten und Wertigkeit dieser Entitäten auf die frühe Kategorisierungs-

fähigkeit auswirken. Als Stimuli dienten monochromatische Fotografien, die strukturähnliche 

Ausschnitte der drei Kategorien Vegetation, natürliche Elemente und Artefakte zeigen. Ein 

Set visueller Eigenschaften wurden für diese Stimuli computational und durch menschliche 

Einschätzung erstellt. In drei empirischen Studien wurden übergreifende Forschungskonzepte 

und -methoden bei Babys, Kindern und Erwachsenen angewandt: Diese beinhalteten (a) zwei 

Kartensortieraufgaben mit 4-6-jährigen Vorschulkindern und Erwachsenen, worin Klassifizie-

rung und Ähnlichkeitsbeurteilungen erhoben wurden, (b) eine Eyetracking-Suchaufgabe, die 

den Einfluss visueller Eigenschaften und Kategoriezugehörigkeit auf die visuelle Segmentie-

rung natürlicher Strukturen bei 8-Monate-alten Babys untersuchte. Da Eyetracking mit Babys 

methodisch anspruchsvoll ist, wurde (c) in einer Studie mit 8-12-Monate-alten Babys und mit 

Erwachsenen der Einfluss verschiedener Vorgehensweisen auf die Datenqualität untersucht. 

Die Kategorisierungsaufgaben zeigten, dass die Performanz aller Altersgruppen von 

Kategoriezugehörigkeit und visuellen Eigenschaften beeinflusst wurden. Sensitivität für die 

jeweiligen Kategorien variierte zwischen den Aufgaben und über die Altersgruppen hinweg. So 

erschwerten Bilder von Artefakten die visuelle Suche bei Babys, wurden aber von 

Erwachsenen am besten klassifiziert, während Vegetation Ähnlichkeitsurteile am stärksten 

beeinflusste. Insgesamt bezogen sich Vorschulkinder weniger als Erwachsene auf visuelle 

Eigenschaften, wobei aber einige davon (z. B. Tiefenwirkung, Schattierung) auch ähnlich stark 

beachtet wurden. Bei Kindern und Babys beeinflusste Tiefenwirkung die Performanz stärker 

als formbezogene Eigenschaften, zudem waren sie sensibel für Komplexitätsunterschiede bei 

statistischen Eigenschaften. Diese Ergebnisse deuten darauf hin, dass die Klassifizierung 

visueller Strukturen und die Aufmerksamkeit auf visuelle Eigenschaften von deren Wertigkeit 

für die jeweilige Altersgruppe beeinflusst sind.  

Damit unterstreicht das Projekt den Bedarf, visuelle Kategorisierung naturalistischer, 

strukturähnlicher Stimuli in weiteren entwicklungsbezogenen Studien vertiefend zu erforschen. 

Das würde wichtige Verbindungen zwischen Entwicklungs- und Erwachsenenforschung 

ermöglichen, wie es auch von der vorliegenden Arbeit angestrebt war.
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Chapter 1  
 

General Introduction 

 

The sense of vision guides many inferences of infants and young children when they 

interact curiously and attentively with the environment. Starting with birth, they engage with 

increasing competency in new tasks in accordance with their growing motoric abilities and 

autonomy (Bushnell & Boudreau, 1993). However, early visual abilities are described in 

incongruent, seemingly opposing ways: On the one hand, immaturities of visual functions and 

their protracted development are emphasized, part of which lasts up into adolescence (e.g., 

Ellemberg et al., 1999; Kovács et al., 1999; Siu & Murphy, 2018). Then again, literature 

highlights early onset and fast progress in the development of visual abilities within the first 

year of life (e.g., Atkinson & Braddick, 2013; for a discussion of this incongruency see: 

Kellman & Arterberry, 2007). Visual competencies beyond basic visual functions, such as 

visual categorization, also have their onset within the first year of life as indicated by 

behavioral (e.g., Mandler & McDonough, 1998a; Quinn, 2011; Rakison & Yermolayeva, 

2010) and neuroscientific research (for review see: Hoehl, 2016). Some findings on early 

sensitivities to category distinctions or superior detection of particular stimuli are difficult to 

explain with the maturational state of the child's visual abilities. These sensitivities become 

evident within the first year of life and refer to faces (Fantz & Nevis, 1967; Mondloch et al., 

1999), the animate-inanimate distinction (Opfer & Gelman, 2011; Rakison & Poulin-Dubois, 

2001), and signals imposing ancestrally recurrent threats (LoBue & Adolph, 2019; Rakison & 

Derringer, 2008; Włodarczyk et al., 2018) among others.  

Studies interested in early categorization abilities frequently adapt their stimuli to the 

child's visual abilities by selecting artificial or graphically simplified stimuli, or by extracting 

object stimuli from their background. These materials provide important insight into young 

children's visual processing of higher level visual information, including sensitivity to 

perceptual regularities (Bhatt & Quinn, 2011; Goldstone, 1998) and adaptation to deviations 

from familiar regularities (Fiser & Aslin, 2002; Kayhan et al., 2019). However, in every-day 

situations, young children are confronted with cluttered scenes consisting of diverse textures, 

colors and lighting gradients, making the detection and distinction of particular surfaces or 

entities difficult. Research with artificial or bounded stimuli might lack important aspects of 
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visual processing stages necessary for the visual organization of scenes. Evidence that the 

human visual system is adapted to visual tasks provided by the natural environment (for 

reviews see e.g.: Geisler, 2008; Simoncelli & Olshausen, 2001) underscores the necessity to 

assess infant visual abilities with more naturalistic stimuli so that possible processing 

advantages can unfold. However, such research is still rare. Studies conducted in this field 

targeted aspects like the effect of low-level saliency on the detection of faces (Amso et al., 

2014; Frank et al., 2012; Kelly et al., 2019), and perceptual adaptation to visual properties in 

naturally occurring textures (Balas et al., 2018; Balas & Woods, 2014), materials (Balas, 

2017; Balas et al., 2020), or natural scenes (Ellemberg et al., 2012). These studies varied in 

the tasks conducted to assess processing ability, including  allocation of gaze (e.g., Balas & 

Woods, 2014; Kelly et al., 2019), similarity judgment (Ellemberg et al., 2012), and 

classification (Balas, 2017; Balas et al., 2020), and they varied in the visual aspects which 

were investigated, covering global vs. local features (Balas et al., 2020), summary statistics 

(i.e., an algorithm by: Portilla & Simoncelli, 2000; included in: Balas et al., 2018; Balas & 

Woods, 2014), attention to social signals (Amso et al., 2014; Frank et al., 2012; Kelly et al., 

2019), and the distribution of spatial scales (Ellemberg et al., 2012). The children's age ranged 

from as young as three months up into adolescence, with main foci laid on 6- to 10-month-old 

infants and children aged 5 to 12 years, complemented with comparison groups of adults. Due 

to this variability in research motivations, it is difficult to draw more general implications 

from these studies concerning young children's integrative abilities of complex naturalistic 

structures into visual tasks, provided their developing visual abilities. Still, this research 

points to three key aspects which affected processing of real-world images in young children. 

These were (i) children's sensitivity to naturally appearing visual regularities (i.e., statistically 

assessed vs. manipulated visual properties), (ii) their sensitivity to entities with ecological 

significance (e.g., faces, natural scenes), and (iii) the developmental state of the child's low- 

and higher-level visual abilities (e.g., spatial acuity, contrast sensitivity). The coherent 

consideration of these three aspects in study designs would provide a beneficial contribution 

to research on visual processing and categorization of naturalistic scenes. The current 

dissertation project was motivated by the wish to pursue this goal. It includes an eye-tracking 

search task with 8-month-old infants and two card-sorting tasks with preschool children and 

an adult comparison group. Images of real-world structures taken from different superordinate 

categories with diverse ecological significance were employed as stimuli. Furthermore, a 

study on infant eye-tracking procedures was conducted in preparation of the infant search 

task, motivated by the aim to implement methods which improve data quality and which 
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support infants' engagement with the task. This was important because of (a) the challenges 

that unconstrained infant movement and attention generally pose on eye-tracking data quality 

(e.g., Hessels, Andersson, et al., 2015; Wass et al., 2014), and (b) the relative novelty of using 

an EyeLink eye-tracker with infant participants. The aim of the project was to answer the 

following questions:  

• How do developing visual abilities relate to the discrimination of real-world structure?  

• Does the ecological significance of the structure's category affect this relation?  

• Do young children rely on similar visual properties during their discrimination of real-
world scenes as adults do? 
 

The following sections will introduce the research concept in more detail and give a 

selective overview of background literature. The introductions of the studies in Sections 2.2, 

3.2, and 4.2 include additional detailed literature reviews. First, aspects of visual 

development, visual properties, and categorization which are of importance for the 

categorization of naturalistic scenes and structures will be defined (Section 1.1), followed by 

examples of how these aspects relate to each other (Section 1.2). Then, general 

methodological decisions which underlie the conceptual formulation and scope of the project 

are discussed (Section 1.3), and an overview of the particular studies is given in Sections 1.4.    

1.1 Core Aspects of Categorization of Naturalistic Structures 

Developmental literature on the categorization of bounded objects frequently investigates 

sensitivity to perceptual characteristics of these objects during categorization by manipulating 

the objects' appearance (e.g., controlling the presence or absence of features, creating morphs 

or adjusting visual similarity between two categories; for overviews see: Bornstein & 

Arterberry, 2010; Mareschal & Quinn, 2001; Sloutsky & Fisher, 2004). These manipulations 

relate to characteristics of the objects which are expected to be—in general—perceivable by 

the child. In contrast, the visual categorization of real-world scenes or structures is fused with 

the child's ability to visually process the properties which define naturalistic visual structures 

(e.g., Balas et al., 2018; Ellemberg et al., 2012). This difference to object categorization 

makes it necessary to specify the aspects comprised in the categorization of naturalistic 

structures. The following three sections introduce the current perspectives on these key 

aspects which refer to visual development, visual properties in real-world scenes, and 

concepts of categorization.  
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1.1.1 The Development of Visual Abilities 

Literature on visual development in infants and young children assesses visual functions 

ranging from lower-level abilities, such as pattern vision or sensitivity to orientation and 

contrast, over color vision and sensitivity to depth, to higher-level abilities such as perceptual 

organization (for overviews see e.g., Braddick & Atkinson, 2011; Kellman & Arterberry, 

2007; Zihl & Dutton, 2015). Aside from recruiting participants with normal vision—and also 

with corrected-to-normal vision if no eye-tracking was applied—we did not assess visual 

abilities of our participants as part of the conducted studies. Instead, an estimation of these 

were drawn from reports on the developmental state of visual abilities in similarly-aged 

participants (see Table 1.1). We mainly focused on (a) basic visual functions which are 

included in pattern vision, and (b) integrative processing abilities relating to perceptual 

organization. In particular, we considered spatial acuity and contrast sensitivity (i.e., the 

ability to discriminate light and dark lines of gradually decreasing size and contrast), and the 

refinement of spatial acuity, termed hyperacuity or vernier acuity (i.e., the ability to perceive 

small-scale shifts in lines or pattern; Almoqbel et al., 2017; Dekker et al., 2019; Ellemberg et 

al., 1999; Skoczenski & Norcia, 2002). Perceptual organization involves a number of aspects: 

the segmentation of distinct pattern or texture patches, the integration of distributed contour 

elements, and sensitivity to pictorial depth (for reviews see e.g., Kavšek et al., 2012;  Landy 

& Graham, 2004; Taylor et al., 2014). Of these, we mainly considered texture segregation 

ability and sensitivity to pictorial depth. These abilities were expected to particularly affect 

the perception of the image materials we had chosen for the current study, which were 

monochromatic or greyscale naturalistic structures. Table 1.1 lists the age ranges over which 

the respective visual abilities develop until they are considered to be equal to those of a 

mature adult.  
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Table 1.1 Age-ranges in which visual abilities develop 

Visual ability Age at onset Adult-like at age References 

Spatial acuity After birth 8 years 1, 6 

Hyperacuity After birth Teenage years 4, 7 

Contrast sensitivity After birth 8 years 1, 6 

Texture segregation: 

    Phase, intensity a 

    Orientation a 

 

8 weeks 

9 months 

 

School age 

School age 

4, 5 

Contour processing 3–6 months Teenage years 6, 8 

Pictorial depth 6 months ca. 7 years 2, 3 
 
Note. References: 1 Almoqbel et al., 2017; 2 Freud & Behrmann, 2017; 3 Kavšek et al., 2012; 4 
Kellman & Arterberry, 2007; 5 Sireteanu & Rieth, 1992; 6 Siu & Murphy, 2018; 7 Skoczenski & 
Norcia, 2002; 8 Taylor et al., 2014) 
a Textures defined by phase, intensity, or orientation. 
 

One key question concerning young children's visual processing of naturalistic stimuli is 

whether basic visual abilities, which are assessed with artificial stimuli, transfer to naturalistic 

scenes. In adults, visual responses to naturalistic stimuli exceed the performance that can be 

expected from responses to artificial stimuli (Kayser et al., 2004). Yet, comparisons of visual 

abilities in children assessed with these different stimuli types are rare. One example comes 

from Ellemberg et al. (2009), who found that children's contrast sensitivity was lower for 

naturalistic than for artificial stimuli, and also differed stronger from that of adults in 

naturalistic compared to artificial stimuli. This suggests that children's visual processing 

abilities related to naturalistic visual input may also differ more generally from those reported 

in Table 1.1. The current studies therefore investigated what visual information may have 

been available to children when exploring naturalistic stimuli through their performance in the 

respective tasks. 

1.1.2 Visual Properties in Real-world Scenes 

In the current project, visual properties are referred to as visual regularities, which can be 

assessed from real-world entities computationally or by human ratings. Examples of visual 

regularities may be that scene elements or objects have similar shading or shape 

characteristics, or that surfaces consist of coherent patterns. Visual properties contribute to 
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grouping, segregation or categorization of the environment (e.g., Baumgartner et al., 2013; 

Geisler, 2008; Goldstone, 1998; Torralba & Oliva, 2003). The visual properties commonly 

investigated to understand (or predict) such visual processes mainly derive from literature on 

adults (e.g., Cichy et al., 2014; Olshausen & Field, 1996; Portilla & Simoncelli, 2000) or from 

computer vision (e.g., Clausi, 2002; Gonzalez & Woods, 2018; Tenenbaum, 1995). Although 

computational models do not necessarily mimic human visual processing, the fields inform 

one another and share an overlapping toolkit (e.g., Fleming, 2017; Hyvärinen et al., 2009; 

Wallis et al., 2017). 

Relevant aspects of this literature which might help to approximate which visual 

regularities are extracted from real-world scenes by young children are (a) the relation 

between characteristics of the human environment and the neural architecture of the visual 

system leading to facilitated visual processing of the environment (Field, 1987; Geisler & 

Diehl, 2002; Isherwood et al., 2017) , and (b) the extraction of definable features and 

properties which underlie recognition or detection of scene elements at different levels of the 

processing hierarchy (e.g., Oliva & Torralba, 2006; Rao & Lohse, 1996; Schmidt et al., 2017). 

The following provides a brief summary of both subjects. 

1.1.2.1 Properties Leading to Facilitated Processing 

The human visual system has adapted to the visual tasks and physical properties inherent 

in the environment over evolutionary times (for reviews see e.g., Geisler, 2008; Simoncelli & 

Olshausen, 2001). The changing environments which humans inhabited were variously 

composed of vegetation, waters, stones, and also desert or snow (e.g., Potts, 2012). Such 

landscapes constituted visual backgrounds to every-day tasks, including the segmentation and 

rough classification of such background structures (Oliva & Torralba, 2006; Walther & Shen, 

2014). These landscapes also enclosed areas or objects which were of particular interest 

because of their relevance to human survival and reproduction (e.g., ponds, game, or other 

human beings), making fast visual processing, segmentation, and the detection of significant 

visual targets necessary (Gegenfurtner & Rieger, 2000; Thorpe et al., 1996). Research in 

adults provides much evidence for processing advantages of characteristics that can be 

encountered in the natural environments. Examples are: particular aspects of the distribution 

of spatial frequencies (e.g., the slope of the distribution, its scaling invariance), or correlations 

between visual information (e.g., luminance and contrast) occurring at locations of varying 

distance in textures or environmental scenes, which both align well with neural computations 

of the visual system (e.g., Frazor & Geisler, 2006; Isherwood et al., 2017; Olshausen & Field, 
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1996). With regard to these characteristics, facilitating effects within the visual processing of 

naturalistic scenes were found for visual memory, detection of targets within the scene, and 

scene discrimination (H. E. Gerhard et al., 2013; Hansen & Hess, 2006; Hollingworth & 

Henderson, 2002; White et al., 2008)  

1.1.2.2 Properties Involved in Recognition and Classification 

The recognition and classification of entities is another task which is of particular 

importance in human every-day life. Contact with objects and substances involves many 

senses, and the visual properties adults rely upon during classification range from statistical 

properties equivalent to those involved in scene processing, to higher-order properties, 

including aspects of three-dimensional surfaces, or visually inferred material properties such 

as softness, fluidity or naturalness (Baumgartner & Gegenfurtner, 2016; Contini et al., 2017; 

Fleming, 2017; Schmidt et al., 2017). Because higher-order properties build upon the 

processing of basic visual information (Nassi & Callaway, 2009) or rely on prior experience 

(Goldstone, 1998), they are less reliably assessed with computational algorithms, but instead 

by human raters (e.g., Nosofsky et al., 2017; Rao & Lohse, 1996). Specific properties will be 

discussed below Section 1.3.3. 

1.1.3 Categorization of Ecologically Significant Entities 

"A category exists whenever two or more distinguishable objects or events are treated 

equivalently. This equivalent treatment may take a number of forms, such as labeling distinct 

objects or events with the same name, or performing the same actions on different objects." 

This definition introduces the review on categorization of natural objects by Mervin and 

Rosch (1981). The merit of this definition lies in its applicability to different types of 

categorization, and to categorization within all age groups. It does not restrict the indicators of 

categorization to any modality: they can be behavioral, physiological, or verbal.  

1.1.3.1 The Current Concepts of Categorization 

Developmental research suggests different models in which categorization and its 

underlying processes change (or do not change) over development, with particular focus on 

which resources and sensitivities categorical inferences are based upon (Gelman, 2004; 

Madole & Oakes, 1999; Mandler & McDonough, 1993; Rakison & Yermolayeva, 2010; 

Sloutsky, 2016; Westermann & Mareschal, 2012). If different age groups are compared, it is 
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therefore important to assess categorization performance with measures that are sensitive to a 

variety of mechanisms. 

Three distinct notions of categorization are considered here to uncover determinants of 

visual categorization with real-world images. They refer to (i) the ability to segregate visual 

structures as an indicator of the perceived distinctness of those structures, (ii) explicit 

judgments of the visual similarity of structures which does not refer to their identity or class, 

and (iii) classification, assessed as explicit assignment of a visual structure to a superordinate 

category.  

The first kind of categorization—scene or texture segregation—can be seen as a very 

basic level of categorization. It occurs non-verbally and can be assessed for all age groups 

(e.g., by using eye-tracking). Segregation ability can be affected by the salience of a structure, 

as well as by distinctness in visual pattern and by image content (Amso et al., 2014; Kayser et 

al., 2006; Sireteanu et al., 2005). Examples of the assessment of this kind of categorization 

ability within different age groups are eye-tracking search tasks for faces in natural scenes, 

which take advantage of infants' particular interest in faces (Amso et al., 2014; Frank et al., 

2012; Kelly et al., 2019).  

The second and third kinds of categorization can be assessed from verbal participants of 

approximately 4 years of age and older (e.g., Markman, 1989). Judgments of visual similarity 

can be based on low- and higher-order visual characteristics, including past experiences 

obtained in contact with the depicted structures. Judgments of perceived similarity (e.g. via 

grouping or rating) is a useful categorization technique for visual structures for which labels 

are missing. Similarity judgments are therefore useful in studies investigating texture 

perception or unfamiliar objects (e.g., Heaps & Handel, 1999; Rao & Lohse, 1996; Schmidt et 

al., 2017) and can tolerate differences in the familiarity of entities between children and 

adults. In contrast, familiarity of entities does affect their classification. Still, since 

classification also relies on inferences based on appearance, similarity judgments as well as 

classification tasks may allow us to assess the degree to which a person is sensitive to visual 

properties and image content.   

1.1.3.2 Definition of Ecological Significance  

Human environments were sources of food and materials, and still are—although 

dramatic changes have occurred in how environments are structured. Next to the above-

described processing advantages related to statistical properties of natural scenes, recurrent 

involvement with particular entities or objects provided by the environment similarly lead to 
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enhanced performance in visual tasks or sensitivity related to these entities. For example, 

adults are very fast at classifying animals compared to non-living objects (e.g., Crouzet et al., 

2012; Thorpe et al., 1996), and the animate-inanimate distinction is suggested to be evident in 

the visual processing hierarchy (e.g., Carlson et al., 2014; Sha et al., 2015). Similarly fast 

processing is evident for the recognition of materials (Fleming, 2017; Sharan et al., 2014). 

Moreover, information which is of significance to humans such as social signals (e.g., human 

faces: Amso et al., 2014; Crouzet, 2010), or signals indicating threat (LoBue & DeLoache, 

2008) are detected fast and in a privileged way. Vegetation plays a distinctive role for humans 

in that while it provides both food and raw materials, it can also be hazardous. For this reason, 

the categorization of plants for subsistence strategies was an integral part of ancestral human 

life (Hardy, 2018; Şerban et al., 2008; Wertz, 2019).  

Sensitivity to some of these entities and signals arises early in life. For example, infants 

showed distinct behavioral responses (i.e., avoidance, social referencing) and enhanced 

learning when they were confronted with plants compared to other entities (C. Elsner & 

Wertz, 2019; Wertz & Wynn, 2019; Włodarczyk et al., 2018). Categorical distinctions which 

refer to the animate-inanimate distinction become evident during infancy (B. Elsner et al., 

2013; Opfer & Gelman, 2011; Rakison & Poulin-Dubois, 2001)‚ and responses to threat 

signals from spiders or snakes are evident even from infancy (LoBue & Adolph, 2019; LoBue 

& DeLoache, 2010; Rakison & Derringer, 2008). These examples of early sensitivities 

support the claim that entities or events which were of ancestral relevance can lead to 

behavioral adaptations in infants (Pauen & Hoehl, 2015; Wertz, 2019).  

Yet, infants and young children are also very sensitive to perceptual regularities within 

their surrounding (Fiser & Aslin, 2002; Janacsek et al., 2012; Kirkham et al., 2002; 

Tummeltshammer et al., 2014). Attention to learning opportunities is of essential relevance 

for young children in order to get acquainted with and act in their every-day environment 

(e.g., Köster et al., 2020; Oudeyer & Smith, 2016). Such sensitivity also suggests that for 

young children, ecological significance may imply much more than the particular entities or 

category domains defined above—visual aspects or physical qualities (e.g., spatial 

information, contrast distributions) that are part of a child's developmental tasks in supporting 

his or her interaction with the environment may also be included. 
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1.2 Interrelations between Visual Abilities, Visual Properties and Ecological 

Significance in Young Children 

1.2.1 Young Children's Gathering of Visual Information 

In particular during the first years of life, infants attend to novel or increasingly complex 

visual pattern and events (Courage et al., 2006; Reynolds et al., 2013; Ruff & Rothbart, 

2001). The gathering of such visual experience underlies the development of several visual 

functions (e.g., spatial acuity, contrast sensitivity, configural processing, and also the 

specialization of the visual cortex; for review see: Maurer & Lewis, 2013). Ongoing visual 

experience also leads to perceptual learning of progressively complex and differentiated 

environmental regularities (Goldstone, 1998). Young children rely on environmental 

regularities during categorization by 3 months of age (Madole & Oakes, 1999; Quinn, 2011; 

Rakison & Yermolayeva, 2010), and it does not seem feasible to demarcate the gathering of 

visual information supporting basic-level visual abilities from the gathering of environmental 

regularities. Since visual abilities are part of the organism's adaptation to relevant and 

reoccurring aspects of the environment (e.g., Geisler & Diehl, 2002), exposure to 

environmental regularities may support the development of such visual abilities to better 

capture these regularities. All these growing competencies enable children to visually 

organize their surrounding with decreasing effort (Madole & Oakes, 1999; Quinn, 2011; 

Rakison & Yermolayeva, 2010).  

A key question in the study of young children's ability to visual process properties of real-

world scenes is when and how visual adaptation to these properties occurs. This was 

addressed by investigating perceptual constancy and perceptual narrowing in infants. Visual 

adaptation generates sparse percepts which rely on the processing of relevant visual 

information, and on decreased sensitivity to irrelevant information. For example, gloss is 

perceived as a constant reflectance property in adults—in spite of the variability in 

appearance of glossy surfaces (Fleming, 2015; Yang et al., 2011, 2015). Surprisingly, already 

by seven months of age, infants were able to ignore this variability and perceive glossy 

objects (presented as 3-D graphics) as constant, while 3- to 4-month-olds' were still very 

sensitive to variations in the surface appearance if illumination changed (Yang et al., 2015). 

This early onset of perceptual constancy offers an intriguing example of early visual 

adaptation to characteristics of the environment.  

Balas and collaborators (2018; 2014) investigated 3- to 10-month-old infants' sensitivity 

to the natural appearance of visual structure. They presented greyscale textures of natural 
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substances and surfaces in a preferential looking paradigm, and colorful photographs of 

plastic objects in a study measuring event-related potentials with EEG. The images were 

contrasted with manipulated versions, which were obtained by either applying an algorithm 

that disrupted global image layout (texture synthesis; Portilla & Simoncelli, 2000), or by 

inverting image contrast to disrupt the typical appearance of local contours. Differential 

sensitivity to these manipulations was found in infants by 9 months of age in both studies, 

suggesting sensitivity to aspects of naturalistic visual input within the first year of life. 

However, a particular contribution of either of the respective manipulations was not 

conclusively revealed by the results, making it difficult to infer the involvement of underlying 

visual abilities (Balas et al., 2018).  

1.2.2 Visual Properties and Their Significance for Young Children 

Some properties of the environment can be understood as being of particular importance 

to humans because they fundamentally affect their actions. Spatial and physical 

characteristics, such as the three-dimensionality of an object and its plasticity, are examples 

for such significant properties. Because visual experience is acquired in interaction with the 

organism's changing physiology and motoric possibilities (Adolph & Tamis‐LeMonda, 2014; 

Bushnell & Boudreau, 1993; Campos et al., 2000; Siu & Murphy, 2018), the gathering of 

visual regularities related to characteristics of the environment can similarly be affected by 

the child's changing organismic state (Bhatt & Quinn, 2011; Colombo & Cheatham, 2006; 

Kovács, 2000). 

Alterations in depth within or between scene elements is one example of a visual quality 

whose role changes over the course of development (Adolph, 2000), but which is of constant 

ecological significance. Depth not only indicates spatial characteristics of the surroundings 

which are relevant for navigation when crawling or starting to walk (e.g., Gibson & Walk, 

1960), but also specifies characteristics of surfaces or the shape of an object, which offer 

essential cues for explorative opportunities (Gibson, 2000) and categorization (e.g. in object-

examination tasks; Mandler & McDonough, 1993; Pauen, 2002). Sensitivity to pictorial depth 

cues such as texture gradients, contour junctions and shading—which can be perceived with 

one eye and without movement—arises by 6 months of age (Kavšek et al., 2012; Kellman & 

Shipley, 1991). Since stereoscopic depth perception (i.e., integration of disparities between 

the retinal images) is still immature for central regions of the visual field until school-age 

(Giaschi et al., 2013), an early availability of pictorial depth may significantly support a 

child's perception and categorization of attended areas within their surroundings. The ongoing 
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perceptual refinement of depth perception suggests that depth cues may trigger different 

behavior in infants compared to young children: rather explorative reactions to spatial cues 

might be elicited in infants (e.g., Atkinson & Braddick, 2013), whereas children with more 

experience might already be instantaneously able to rely on two-dimensional depth cues to 

segment scenes—enabling them to attend to more additional characteristics of a scene. 

Another integral characteristic of the environment is its complex structure, consisting of 

heterogeneous collections of elements and physical qualities—confronting us with wide-

stretched surfaces, collections of differently-sized elements, or combinations of them all, 

which consist of granular, plastic, fluid, or solid substances. Such structural and physical 

characteristics are not separable from the environment's entities, and they fundamentally 

affect ongoing tasks. These physical characteristics are also integral properties of categories 

referring to environmental domains. For example, non-living natural entities include sand, 

stone, or water, which are prototypical for granular, solid, or fluid substances, respectively. 

For vegetation, collections of similar looking elements such as branches, blossoms, or leaves 

are typical. In contrast, manmade things—ranging from consumables to architectural 

elements—can appear in rather diverse ways depending on their function or prior processing. 

In adults, the appearance of surfaces and general form essentially contributes to the visual 

classification of materials as well as to category distinctions such as between plants, minerals, 

or animals (Baumgartner et al., 2013; Schmidt et al., 2017). However, young children might 

still be collecting experience with such complex and variable properties, and it is difficult to 

estimate how much children already rely on these physical aspects during categorization 

decisions. 

A general sensitivity to physical characteristics has been studied in infants by performing 

similar actions with solid, granular, or fluid substances, or with collections of objects. Indeed, 

infants' looking behavior when watching these actions was found to be affected by the 

physical characteristics of the objects and substances by the second half of the first year of life 

(Chiang & Wynn, 2000; Hespos et al., 2016; Hespos & VanMarle, 2012; Huntley-Fenner et 

al., 2002), suggesting that higher-level visual properties of substances already start to serve as 

a basis for cognitive expectations in infants (Hespos et al., 2009; VanMarle & Scholl, 2003). 

However, infants' reactions to actions performed with substances in these studies may refer to 

cues other than those available in a visual scene (e.g., the causal effect of the performed 

action). Thus, infants' reactions in these studies do not necessarily indicate if visual sensitivity 

to these substances can be drawn upon during other perceptual tasks, such as segmentation.  
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Visual processing of materials—which also differ in their physical characteristics—was 

investigated in children and adults in a categorization task by Balas (2017). Here, 5- to 7-

year-olds still showed lower performance in their assignment and matching of material 

categories compared to older participant groups, suggesting a protracted acquisition of the 

visual properties defining materials. Yet, all participants of this study, and particularly the 5- 

to 7-year-olds, had greater difficulties with categorizing images of processed materials (i.e., 

metal) compared to images of water (Balas, 2017), which raises the question of whether other 

qualities of the materials beyond their visual properties—such as their naturalness—affected 

visual processing and categorization ability. 

1.2.3 Does Ecological Significance Affect Visual Abilities?  

Research on the effect of ecological significance on early visual processing and 

categorization ability shows rather incongruent findings. 

For example, in spite of recurrent exposure to natural surroundings, processing 

performance of natural scenes is still affected by immature visual abilities up into late 

childhood. Ellemberg and colleagues (2012) compared children aged 6, 8, and 10 years to 

adults regarding their sensitivity to changes in the spatial characteristics of natural scenes. 

Only the 10-year-olds showed processing advantages of image statistics which are typical for 

natural scenes similar to those of adults. Processing difficulty of the younger age groups was 

explained by their immature contrast sensitivity for lower compared to higher spatial 

frequencies (Ellemberg et al., 2012). 

In contrast, significant entities such as faces are spontaneously detected by infants with 

increasing sensitivity over the first year of age, even if the faces are included in complex 

visual scenes (Amso et al., 2014; Frank et al., 2012; Kelly et al., 2019). Yet, unlike infants' 

ongoing contact to faces, which might support face detection, infants' spontaneous reactions 

to potentially threatening entities such as spiders, snakes, or threatening faces are evident 

before they could have had similar exposure to those threat-inducing objects (LoBue & 

DeLoache, 2010; Rakison & Derringer, 2008). Infants' different responses to spiders and very 

similar looking cues such as blossoms, or their sensitivity to snakes or threatening faces may 

rely on evolved detection mechanisms sensitive to low-level visual information and 

movement pattern (DeLoache & LoBue, 2009; LoBue, 2014; Rakison & Derringer, 2008). 

However, how do young children process visual information which defines a significant 

entity, if it might exceed their visual abilities? 
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Sensitivity to plants—which is apparent in infants (e.g., C. Elsner & Wertz, 2019; Wertz 

& Wynn, 2014a, 2019)—is difficult to explain by an easy-to-detect perceptual template 

(Rakison & Derringer, 2008). The manifold involvement of humans with plants, together with 

the heterogeneous appearance of vegetation, make it difficult to suggest a general diagnostic 

property. Instead, when considering the reviewed literature, properties affecting the visual 

processing of vegetation may depend on the visual tasks as much as on the affordances 

determined by the person's age. Visual tasks related to vegetation include fast processing of 

natural background, as well as the categorization of plants, plant parts (e.g., branches, fruit), 

and plant properties for particular purposes (e.g., Gegenfurtner & Rieger, 2000; Hardy, 2018; 

Knill et al., 1990). Affordances which might be determined by the age of the child refer for 

example to the avoidance of plants due to potential hazards. Infants, who are not yet able to 

differentiate subgroups of plants nor to treat plants with the necessary care, show behavioral 

strategies when confronted with plants (e.g., avoidance, social referencing; C. Elsner & 

Wertz, 2019; Wertz & Wynn, 2014a; Włodarczyk et al., 2018). Infants do not need to 

categorize plants so that these strategies are triggered—any general visual aspect, and even 

visual uncertainty may be sufficient (e.g., Pauen & Hoehl, 2015). However, young children 

who start to move and act more independently in their environment may profit from 

increasing plant knowledge (Inagaki & Hatano, 1996; Nguyen & Gelman, 2002), including 

their categorization, to learn how to avoid hazards and benefit from specific plants.  

 Since in addition to changing affordances, visual abilities mature and the gathering of 

perceptual regularities builds up rapidly with increasing age, young children can be expected 

to draw upon quite different visual information when responding to plants—depending on 

their age.  

1.2.4 Bringing Together Visual Abilities, Visual Properties, Categorization, and 

Ecological Significance 

The current project will take a first step in investigating visual properties used by infants 

and preschool children in their visual processing and classification of vegetation in 

comparison to other superordinate categories. By considering the reviewed literature, a 

complex and dynamic interplay of abilities and environmental properties can be brought into 

focus, which develops in conjunction with the growing competencies and behavioral abilities 

of a child. It also becomes obvious that it is mainly the relation between visual abilities and 

categorization—including the possible effect of ecological significance on both abilities—

which is least understood
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1.3 General Methodological Decisions 

The following will give details about general decisions on methods and materials 

underlying the current research objective. These methods predominantly relate to the 

categorization studies, which are : "Grass and Gravel: Investigating visual properties 

preschool children and adults use when distinguishing naturalistic images" (Study 1), and 

"Visual segmentation of complex naturalistic structures in an infant eye-tracking search task" 

(Study 3). The rationale of the study conducted to adapt and improve infant eye-tracking 

procedures and data quality (Study 2) is presented as well.  

1.3.1 Choice of Participant Groups 

We considered two age groups of young children as participants in the categorization 

studies, namely, 4- to 5-year-old preschool children together with a comparison group of 

adults were chosen for Study 1 which was investigating classification and similarity 

judgments of naturalistic structures by conducting card-sorting tasks. Additionally, 8-month-

old infants were chosen for Study 3—an eye-tracking search task investigating the impact of 

category- and structure-related image characteristics on infants' detection performance.  

By preschool age children have already have already gained substantial experiences of 

environmental regularities and developed naive concepts of environmental entities and events 

(Goldstone, 1998; Opfer & Gelman, 2011). Although the application of labels starts to affect 

categorization already during infancy, children's categories are increasingly affected by 

language with the beginning of school age (Markman, 1989; Nazzi & Gopnik, 2001; 

Westermann & Mareschal, 2012). Then, the impact of culture and language also effects visual 

scene processing (e.g., Köster et al., 2017a). In line with the current research interest contrast, 

we therefore chose preschoolers, who may provide more naive classifications than older 

children. Categorical inferences in preschoolers can be expected to still be more strongly 

based on experiences and possibly on their sensitivity to ecologically-driven significance.  

Eight-month-old infants were chosen for the eye-tracking search task in which a 

discrepant structure patch had to be detected on a background structure. Eight-month-olds are 

expected to have already gathered some visual regularities of their environment including 

spatial and textural cues (Balas & Woods, 2014; Bertenthal, 1996), possess the ability to 

orient to locations of interest, and show sustained attention, such as during explorative tasks 

(Colombo & Cheatham, 2006; Ruff & Rothbart, 2001). Moreover, 8-month-olds had shown 
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differential behavior to plants compared to manmade or other naturally occurring objects in 

previous studies (e.g., C. Elsner & Wertz, 2019). 

In addition to these qualifications, the selected age groups of the children were the 

youngest who were able to perform the tasks included in the two main studies (Markman, 

1989; Wang et al., 2012). 

1.3.2 Choice of Images 

The stimuli used in the categorization experiments (i.e., the card sorting study Chapter 2 

and the eye-tracking search study Chapter 4) were all based on photographs taken of 

structure-like extracts of real-world entities. These entities belonged to the superordinate 

categories vegetation, non-living natural elements, and manmade artifacts.  

Advantages of Using Photographs 

Photographic images are a compromise between real-world settings and fully controlled 

artificial stimuli. Although the background of the current study relates to young children's 

perception of their real-world environment, we chose photographs for several reasons. In their 

reduction to two dimensions they preserve significant properties of real-world structure and 

complexity which exceeds that of graphics, line drawings, or Gabor patches. Properties of 

texture, shape, and pictorial depth are well represented in photographs, allowing the 

assessment of children's ability to perceive this kind of information. Further advantages are 

that algorithms to extract statistical properties are directly applied to digitized photographs. 

This allowed us to test the participant’s reactions to the stimuli and compare them with the 

stimuli’s statistical properties. When implemented in an eye-tracking experiment, 

photographs are presented on the eye-tracking monitor and the registration of participants' 

gaze can provide substantial information about their attention to regions of the scenes. 

Additionally, gaze-contingent feedback can be given during eye-tracking, which is a valuable 

means of experimental guidance, especially for non-verbal participants (Wang et al., 2012). 

Selection of Contrasting Categories 

The particular role that vegetation played for humans, as well as its heterogeneous visual 

characteristics inspired the project's research interest (see Section 1.2.3), and vegetation is one 

of the stimuli's superordinate categories. As contrasting categories, artifacts and non-living 

natural elements were chosen.   

Artifacts in the form of tools, articles of daily use, or architecture nowadays dominate 

most living spaces of industrialized cultures. In contrast to vegetation, which was an 

important part of the human environment during ancestral times, early-history artifacts (e.g., 
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leaves, stones or bones) visually resembled natural objects and only differed in their 

intentional use or nomination (Carrara & Mingardo, 2013), becoming increasingly 

manufactured and artificial only in more recent history. In comparison, non-living natural 

elements from the third category have been part of the human environment as long as 

vegetation, providing visual background as much as vegetation did, although the appearance 

of non-natural elements has not changed dramatically in the same way. Nowadays 

experiences with natural elements can be described as less detailed—compared to vegetation, 

to which differentiated contact occurs when plants are grown, watered, harvested, and used as 

decoration or food even in industrialized societies. The occurrence of natural elements in the 

environment in form of lakes, earth, rock or snow is mainly somewhat passive, for example, 

by providing prototypical substances on or in which locomotion occurs. Although during 

locomotion, action-related vision may well discriminate physical characteristics of such 

substances (e.g., Pelz & Rothkopf, 2007), the explicit differentiation and classification of 

exemplars or instances of natural elements is not as common in western cultures as it is for 

vegetation.  

Important materials and substances of natural elements, which are made accessible 

mainly by physical or chemical transformation (e.g., metal, concrete), or manufactured goods 

which are produced from plant materials (e.g., noodles, fabric), are not considered here as 

natural elements nor vegetation, since they lost their original characteristics—instead, some 

were included as manmade artifacts (e.g., architectural elements. For image examples see 

Figure 2.2).   

In spite of their diverse roles, all three categories provide visual surroundings in which 

humans act and move. They were depicted as extracts of structures instead of bounded objects 

in the images, because structures best represent the way categories appear in visual scenes 

(see also Section on ecological significance 1.2.3).   

 

1.3.3 Relevant Features of the Selected Visual Properties 

We chose common statistical and rated properties with the intention that they would 

provide variance within the images of a category, and that there would be the right amount of 

difference between the selected categories. However, they needed to fulfill several additional 

requirements. In particular, they needed to (i) be suitable for both descriptive and inferential 

statistical analysis, in that they are interpretable as a single, particular characteristic, (ii) cover 

basic statistical properties as well as higher-order characteristics, (iii) relate to aspects of 
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visual abilities which change during development (including contrast, shape characteristics, 

spatial frequencies, surface structure and surface appearance), and (iv) be sufficiently distinct 

from each other. In order to keep statistical comparisons within a manageable range, 

computational properties were reduced to one property per aspect of interest (e.g., only the 

one property deviation is representing scaling invariance and fractality, which can be assessed 

in many different ways; e.g., Costa et al., 2012; Isherwood et al., 2017; Redies et al., 2007). 

Moreover, we adapted the choice and number of properties included in the infant search task 

to the small number of participants in this study by including mainly those visual properties 

which refer to more general aspects of image structure.  

The visual properties included in both studies are listed in Table 1.2. Further details about 

the respective properties are provided in Tables 3, 6, and Figure 4.15. 
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Table 1.2 Properties included in the categorization studies 

Property Definition Included in study: 

Rated a   

Curvature Angular vs. curved.  1, 3 

Depth Plane vs. three-dimensional.  1, 3 

Gloss Dull vs. reflecting.  1 

Regularity Regular vs. chaotic.  1, 3 

Size Small vs. large pattern.  1 

Symmetry Asymmetrical vs. symmetrical.  1, 3 

Computational b   

Alpha Steepness of the distribution of energy across 
spatial frequencies.  

1, 3 

Deviation Deviation of a spatial frequency distribution 
from the fitted line defined by Alpha.  

1, 3 

CooCor Co-occurrence Correlation.  1 

Entropy c Shannon entropy of pixel luminance values 
(Shannon, 1948). 

3 

Luminance c Mean pixel luminance. 3 

Skew Skew of the pixel luminance histogram.  1, 3 

 
a Rated properties were formulated as opposites and judged on a continuous scale by adult 
participants. 
b Computational properties were assessed with functions implemented in Matlab (version 
R2017b) or provided by literature on image processing (Gonzalez & Woods, 2018) 
c In the eye-tracking search task, computational properties were transformed to target-
background difference variables (Section 4.9.1.1). 

1.3.4 Methods of Analysis 

Inferences drawn from the diverse studies conducted on the processing and categorization 

of naturalistically occurring visual structures (e.g., Balas, 2017; Balas & Woods, 2014; 

Ellemberg et al., 2012; Kelly et al., 2019) are manifold and frequently non-conclusive. 

Therefore, a project intending to obtain a basic and rather general approach to this subject 

cannot rely on previous findings to conduct scrutinizing experiments. Moreover, to best deal 
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with the uncertainty of which visual processes and sensitivities are involved in categorization 

of naturalistic structures in young children, prior assumptions needed to be kept as 

unconstrained as possible. Therefore, at least when conducting the first investigation of this 

project, an application of exploratory methods was the most promising option. For example, 

multidimensional scaling and hierarchical cluster analysis allow to condense and generalize 

the structure of the participants' judgments on the images (e.g., Hair et al., 1998). These 

methods of analysis were employed in the card-sorting tasks (for further details see Section 

2.4). With the help of inferences drawn from the exploratory analysis, a reference-frame could 

be established which then guided the more directed experimental setting of the subsequent 

eye-tracking search task. 

As outlined above, the concepts of categorization considered here were well 

operationalized by the selected tasks (see Section 1.1.3.1). Moreover, the analysis of target 

detection performance and sorting decisions is similarly sensitive for visual and conceptual 

distinctions (Aslin, 2007; Markman et al., 1981; Van Gompel, 2007), which can be specified 

by the choice of stimulus materials. To best relate inferences drawn from the studies to each 

other, the same photographs of real-world structures were chosen as stimuli in the two 

categorization studies.  

1.3.5 Challenges of Infant Eye-tracking 

Eye-tracking with infants offers a spatially and temporally detailed analysis of infant 

attention and a flexible implementation of experimental paradigms (for overviews see: Aslin, 

2007; Gredebäck et al., 2009; Oakes, 2012). Eye-tracking was therefore the appropriate 

method to be chosen for studying how visual and conceptual aspects affect scene 

segmentation in infants. However, eye-tracking with infants can be problematic, because eye-

tracking instruments are commonly developed for participants who can constrain their 

movements. In contrast, infants are likely to spontaneously perform body movements and to 

turn their gaze away from the eye-tracking monitor, which both can markedly effect data 

quality (Haith, 2004; Hessels, Andersson, et al., 2015; Morgante et al., 2012; Wass et al., 

2014). Furthermore, due to young children’s (relatively short) attentional span, particular 

experimental procedures might be necessary to support their engagement with the task. At the 

time at which the experiment was conducted, there was no data available on the success of 

infant calibration targets, nor on measurement quality that can be expected from 

unconstrained participants using the Eyelink eye-tracking technology (SR Research Ltd. 

2015) which was chosen for the current project. In particular, infant calibration videos need to 
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comprise several eligibilities. For example, the complexity of their characteristics should 

repeatedly attract infants' attention, but not lead to distress, which can be caused by 

overwhelming complexity (e.g., Aslin & Smith, 1988; Ruff & Rothbart, 2001). We therefore 

investigated which measures successfully support infants' attention to common experimental 

procedures, such as repetitive calibrations and trial sequences, and which actions can be taken 

to improve data quality (Schlegelmilch & Wertz, 2019).  

In particular, with both 8- to 12-month-old infants and adults, we investigated (i) which 

types of calibration targets differing in shape and movement are preferred to others; (ii) which 

calibration targets lead to the most central fixations; (iii) how long a target attracts more 

central fixations before gaze shifts away–indicating the time in which fixations during a 

calibration procedure should be accepted; (iv) how body and head movements affect 

measurement accuracy and precision at different screen locations. Moreover, the study 

applied eye-tacking procedures—such as randomly alternating trials providing scenes with 

different layout and with changing sounds and background colors by keeping the luminance 

level stable—which were intended to increase the infant participants' interest in the 

experiment without causing distress.  

Procedures and materials that worked well in this methodological study were then also 

implemented in the infant eye-tracking search task (Study 3). For example, calibration 

procedures of the eye-tracking search task used a different precise target and a different color 

scheme with every re-calibration. Additional precise calibration stimuli which worked 

simultaneously as attention grabbers and validation targets (in that they only disappeared if 

infants fixated a central region of the stimulus) were included to control measurement 

accuracy. These attention grabbers were placed at central and peripheral screen locations, 

because accuracy and precision were differentially affected at peripheral locations. In Study 3, 

the search stimuli also randomly alternated across three monochromatic colors, which had 

been found to increase infants' engagement. Yet, no underlying music was added to the search 

stimuli, because in the methodological study, some trials with especially happy music had 

affected some infants to joyfully perform rhythmic movements. A further insight adopted 

from Study 2 was the utility of analyzing movement during eye-tracking, which can account 

for a large part of variance in the statistical models on task performance. 
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1.4  The Studies 

The following chapters present three studies conducted to investigate infants' and young 

children's categorization of naturalistic structures (Chapter 2 and 4) and to ensure 

methodological precision (Chapter 3).  

In Chapter 2 we introduce the study "Grass and Gravel: Investigating visual properties 

preschool children and adults use when distinguishing naturalistic images" (Study 1). This 

study is an explorative investigation of 4- to 5-year-old children's and adults' card-sorting 

decisions in two tasks: (a) sorting cards depicting naturalistic structures into groups according 

to perceptual similarity, and (b) sorting a different set of these cards into boxes according to 

their superordinate category membership (i.e., vegetation, natural elements, artifacts). The 

sorting decisions of the participants were related to visual properties of the images by using 

explorative and inferential methods. Results revealed visual properties on which children and 

adults equally relied during categorization and similarity sorting, and other properties which 

differed between the participant groups in these tasks. In further analysis, differences in 

categorization performance were related to the three superordinate categories, and 

participants' sensitivity to the superordinate categories during their judgments of perceptual 

similarity was compared. This allowed us to make inferences about the significance of the 

particular categories for the age groups. Study 1 was preceded by a pilot-study in which 26 

adults were performing variants of the sorting tasks on 141 images. With the pilot study, 

methodological decisions such as the selection of subgroups of images, the number of 

participants, the size of the image sets, and the amount of sorting options during each sorting 

session were determined in order to be able to successfully apply the intended statistical 

methods (see also Section 2.3.2). 

Chapter 3 presents Study 2: "The effects of calibration target, screen location, and 

movement type on infant eye-tracking data quality", which investigates the virtue of materials 

and experimental procedures during infant eye-tracking. It was conducted in preparation for 

the infant eye-tracking search task (Chapter 4). Eight- to 12-month-olds and a comparison 

group of adults were watching variants of animated calibration targets, and the adult 

participants were additionally performing head and body movements—similar to those infants 

spontaneously perform—while their gaze was being tracked. The results yielded well-

working calibration videos and procedures to be implemented in the main eye-tracking search 

task. Additionally, the adult movement tasks revealed that accuracy and precision were 

affected in diverse ways by the particular movement directions, and by the screen location 
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which was fixated during movement. These findings provided measures useful for obtaining a 

more reliable assessment of infants' gaze.  

The third study presented in Chapter 4, "Visual segmentation of complex naturalistic 

structures in an infant eye-tracking search task", investigated infants' ability to distinguish 

visual structures according to their superordinate categories, or to visual properties present in 

the structures. Search stimuli consisted of a background structure image in which a patch of 

another structure image was inserted. It was shown that detection success was affected by 

combinations of categorical and property-related characteristics of the target-background 

image combinations. Furthermore, the analysis incorporated additional variables which were 

extracted from the sorting tasks in Study 1—namely, category assignments and similarity 

judgments of preschool children and adults related to images which were likewise used in 

both studies. This further analysis showed that the preschoolers' sorting decisions predicted 

infants' detection performance more strongly than the adults' decisions, indicating a 

relationship between preschoolers and infants visual processing of the visual structures. These 

respective results will be discussed in the general discussion Section 5.4. 
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2.1 Abstract 

Visual processing of a natural environment occurs quickly and effortlessly. Yet, little is 

known about how young children are able to visually categorize naturalistic structures, since 

their perceptual abilities are still developing. We addressed this question by asking 76 

children (age: 4.1-6.1 years) and 72 adults (age: 18-50 years) to first sort cards with greyscale 

images depicting vegetation, manmade artifacts, and non-living natural elements (e.g., stones) 

into groups according to visual similarity. Then, they were asked to choose the images' 

superordinate categories. We analyzed the relevance of different visual properties to the 

decisions of the participant groups. Children were very well able to interpret complex visual 

structures. However, children relied on fewer visual properties and, in general, were less 

likely to include properties which afforded the analysis of detailed visual information in their 

categorization decisions than adults, suggesting that immaturities of the still-developing 

visual system affected categorization. Moreover, when sorting according to visual similarity, 

both groups attended to the images' assumed superordinate categories—in particular to 

vegetation—in addition to visual properties. Children had a higher relative sensitivity for 

vegetation than adults did in the classification task when controlling for overall performance 

differences. Taken together, these findings add to the sparse literature on the role of 

developing perceptual abilities in processing naturalistic visual input. 
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2.2 Introduction 

Our daily environment consists of assemblies of complex structures, for example rock 

surrounded by shrubbery, or the differently patterned clothes piled up in our wardrobe. Still, 

adults are adept at distinguishing these entities visually, even if the visual information is 

reduced to two dimensions and color cues are lacking, like on a photograph (Renninger & 

Malik, 2004). Regularities of visual properties serve as cues for visual categorization (Geisler, 

2008; Torralba & Oliva, 2003). However, for young children it might be more laborious to 

categorize the entities depicted in a photographed scene. One can think of several reasons for 

this additional effort. The reduced visual information of the photograph might make it 

difficult for the child to separate the image into regions which belong to separate entities, 

especially if they occlude each other. Alternatively, a child's perceptual abilities might not be 

sufficiently developed to perceive some fine-grained or complex visual information necessary 

for categorization. On either interpretation, a child's categorization success depends on the 

ability to perceive and differentiate diagnostic visual information, such as textures or contour 

elements that define the identity of the objects and their distribution in real-world space.  

2.2.1 The Development of Visual Categorization 

Categorization occurs when different discriminable entities are treated as equivalent, for 

example by labeling them with the same name, or by performing the same action on them. 

Individuals can generalize category membership to novel instances on the basis of some 

internalized representation of the category (Mervis & Rosch, 1981; Quinn, 2011). With 

increasing age and experience during development, categorical differentiations become more 

fine-grained (e.g., Fisher et al., 2015; Smith, 1979), and more distinctions as well as more 

similarities among entities are noticed, motivating an organization of categories into 

hierarchies in which more specific classes are included in more general ones (Markman, 

1989).  

Perceptual similarities between stimuli are found to elicit category formation and 

induction in infancy and early childhood (Badger & Shapiro, 2012; Madole & Oakes, 1999; 

Sloutsky & Fisher, 2004). If infants and young children are exposed to stimuli which have 

correlating properties, they incidentally form categories (e.g., Rakison & Yermolayeva, 2010; 

Younger & Gotlieb, 1988). These similarities can be based on properties like shape, color, or 

texture (e.g., Quinn & Eimas, 2000), on features like symmetry (Bornstein & Stiles-Davis, 

1984), on the presence of salient parts like the legs of a chair (Tversky & Hemenway, 1984), 
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or on types of motion patterns (Opfer, 2002). The inclusion of properties and relations 

between properties in children’s categorical representations becomes more complex with age 

(Smith, 1979). Until preschool age, children are more likely to base category membership on 

within-category similarity rather than on between-category dissimilarities (Markman, 1989). 

Accordingly, they have a stronger tendency to attend to more distributed properties of unique 

stimuli, instead of primarily attending to diagnostic features which define category boundaries 

(Deng & Sloutsky, 2016), and young children have a stronger tendency to incidentally learn 

item-specific perceptual information compared to older children and adults when viewing a 

sequence of images (Köster et al., 2017b; Ofen & Shing, 2013).  

Concurrently to perceptual information, non-verbal social signals and language direct a 

child's attention to relevant objects and features, facilitating the formation of categories and 

taxonomies (e.g., Bloom, 2002; Nazzi & Gopnik, 2001; Pauen & Hoehl, 2015). When adults 

cue a young child's attention to objects, the label they provide typically refers to basic level 

categories, like "flower" instead of the subordinate level term "tulip", or "chair" instead of the 

superordinate level term "furniture" (Markman, 1989). Basic level categories possess high 

within-category similarity and low between-category dissimilarity and are found to be 

processed faster than higher category levels in children and adults (Contini et al., 2017; 

Mervis & Rosch, 1981).  

Other research emphasizes the relevance that more general superordinate categories such 

as plants, non-living natural entities, human-made objects or animals have to humans (Carrara 

& Mingardo, 2013; Gelman, 1988; Opfer & Gelman, 2011). Foundationally different statuses 

are given to these categories, for example, some categories are viewed as more natural 

whereas others are seen as being grounded on conventions (Rhodes & Gelman, 2009). In 

contrast to perceptually more similar basic level categories, the information included in the 

formation of perceptually heterogeneous superordinate categories is more likely to be drawn 

from multiple sources. For instance, categorization of artifacts strongly relies on their function 

or the way they are used, and preschool children were found to rapidly learn to group objects 

according to this kind of information (e.g., Casler & Kelemen, 2005; Matan & Carey, 2001; 

Truxaw et al., 2006). Similarly, living things can be categorized by drawing upon their goal 

orienting behavior (Opfer, 2002). The distinction of living and non-living things emerges 

during infancy (Rakison & Poulin-Dubois, 2001), but is found to develop still during school 

age to become based on less obvious attributes and overcome earlier naive beliefs. Plants are 

not explicitly acknowledged as living things until later in childhood (Carey, 1988; Opfer & 

Gelman, 2011), yet there is evidence that young children possess rich representations of this 
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category. For example, preschool children understand that plants can grow, need water and 

sunshine to do so, and can die (Backscheider et al., 1993; Hickling & Gelman, 1995; Inagaki 

& Hatano, 1996; Nguyen & Gelman, 2002). Perceptual features which are included in 

superordinate category representations provide crucial cues for nonobvious properties 

(Gelman, 2004).  

Researchers have also proposed that humans are equipped with specific sensitivities to 

certain categories due to their relevance over evolutionary time, and are prepared to process 

information about those categories in ways that allow for rapid responses and efficient 

learning (Barrett, 2014; Pauen & Hoehl, 2015). Visual sensitivity for dynamic and static 

features can enhance learning of functional and causal aspects that support the categorization 

of instances within the environment (Rakison & Poulin-Dubois, 2001). Moreover, visual 

sensitivity can enhance learning and facilitate adaptive responses. For example, research has 

shown that infants rapidly orient towards threatening stimuli presented as images of 

ancestrally relevant threats like spiders and snakes (LoBue et al., 2010). On the basis of these 

findings, researchers have proposed that the perceptual system is equipped with initial 

template representations that can be matched with real world visual input and trigger attention 

and learning (Rakison & Derringer, 2008). Plants are another category that has posed 

significant benefits and costs for humans over evolutionary time (Wertz, 2019). However, 

unlike snakes and spiders, plants are inconsistently shaped such that a representational 

template cannot easily be defined. Visual characteristics of plants are very complex and 

include symmetry, occlusion, and the repetition of parts varying in their orientation and size, 

for which young children were found to possess limited perceptual abilities (e.g., Siu & 

Murphy, 2018). Nevertheless, infants respond differently to plants than manmade artifacts, 

animals, and other natural kinds (e.g., rocks, shells; Elsner & Wertz, 2019; Mandler & 

McDonough, 1998b; Wertz & Wynn, 2014; Włodarczyk et al., 2018) and selectively learn 

about plant properties such as edibility (Wertz & Wynn, 2014a, 2019). To our knowledge, the 

perceptual features used to distinguish heterogeneous superordinate categories such as plants 

from other entities still need to be investigated.   

2.2.2 Visual Features Included in Adult Visual Categorization 

Research asking which visual information adults rely upon when identifying or 

differentiating entities in their environment covers category levels ranging from global 

distinctions between animate and inanimate things (e.g., Schmidt, Hegele, & Fleming, 2017) 

to subordinate category levels like subtypes of rock (Nosofsky et al., 2017). We will begin 
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with an overview of visual properties in real-world scenes or extracts of scenes that have been 

investigated in the adult categorization literature. 

Textures provide important visual information relevant for any level of categorization. 

Natural textures are defined as spatially homogeneous, consisting of repeated elements 

(Julesz, 1981; Portilla & Simoncelli, 2000; Zhu et al., 2005). Characteristics of the 

arrangement of these small elements such as their structural regularity, directionality, depth or 

roughness (Heaps & Handel, 1999; Rao & Lohse, 1993; Rao & Lohse, 1996) can be assessed 

via rating scales or card sorting with images of natural texture samples (e.g., Brodatz, 1966). 

Early stages of texture processing are fundamental for the segmentation of visual scenes 

(Marr, 1976). Because these early processing levels do not necessarily reach awareness, their 

characteristics are computationally assessed and based on pixel luminance levels of digitized 

images. Such computational approaches include characteristics of the luminance histogram 

and spatial frequency information, and can lead to complex parametric texture models (e.g., 

Portilla & Simoncelli, 2000; Wallis et al., 2017; Zujovic et al., 2013), but less complex image 

statistics which assess contrast, co-occurrence, or predictability of pixel luminance values can 

also provide diagnostic visual information (Clausi, 2002; Geisler, 2008). Within more 

heterogeneous scenes (e.g., urban or rural environments), statistical analysis is often generally 

applied to the entire image to predict the superordinate category of a scene. Natural scenes 

usually have a fractal-like quality in that their spatial frequency distribution stays 

approximately the same even if one zooms into the image (termed scale-invariance; Burton & 

Moorhead, 1987; Knill et al., 1990; Ruderman, 1997). The slope of a line fitted to this 

distribution, represented by the value of alpha, is another statistic applied to naturalistic 

scenes (see Figure 2.1 for examples). Images within certain ranges of alpha are found to be 

more visually discriminable than images with alpha values outside these ranges (Hansen & 

Hess, 2006; Isherwood et al., 2017). Alpha has also been found to differ between categories 

of image content (Redies et al., 2007). Furthermore, studies that focus on the superordinate 

categories of the visual scenes (e.g., urban, forest, beach etc.) also investigate descriptors of 

general gist (e.g., Oliva & Torralba, 2006) or descriptors of the included contours (e.g., 

Walther & Shen, 2014).  

An important focus of this categorization literature is unique objects. These objects are 

commonly extracted from their context, which increases attention to aspects of their shape. In 

particular the discrimination of basic level categories could well rely on shape features shared 

within each group (Goldstone, 1994; Rosch et al., 1976). However, visual categorization of 

perceptually heterogeneous higher-order categories is as much a subject in research with 
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adults as it is with young children (e.g., Jozwik et al., 2016; Warrington & McCarthy, 1987; 

Zachariou et al., 2018). In a behavioral study, Schmidt, Hegele, & Fleming (2017) compared 

the classification of unfamiliar objects belonging to three superordinate categories—animals, 

plants and minerals—to judgments of the objects' properties. Specifically, mid-level shape 

opposites like non-symmetrical/symmetrical/, chaotic /regular, angular/curved, or if the object 

is branched or not were assessed. On the basis of this catalog, Schmidt et al. (2017) were able 

to classify distinctive shape features such as symmetry or roughness which increased the 

probability by which an object was assigned to a certain superordinate category. The materials 

that comprise an object have distinct surface qualities that can also contribute to the 

classification of objects. Material qualities sometimes refer to experiences induced by 

movement or touch (e.g., gloss or softness; Fleming, 2017; Hiramatsu et al., 2011), so that 

studies including these properties frequently rely on human judgments (Baumgartner et al., 

2013; Fleming et al., 2013; Nosofsky et al., 2017). 

Several behavioral studies found it fruitful to explore categorization of naturalistic images 

by interrelating data received through a combination of methods including rating of image 

features, visual similarity judgments, and classification of image content (Gegenfurtner & 

Rieger, 2000; Heaps & Handel, 1999; Nosofsky et al., 2018; Rao & Lohse, 1993). This 

approach has the advantage of being beneficially applicable to both children and adults (e.g., 

Sloutsky, 2003). Yet, in order to successfully interpret findings of developmental studies 

including the categorization of visually complex naturalistic images, it is important to 

consider the impact of immature vision on image perception (Aslin & Smith, 1988; Ellemberg 

et al., 1999).  

2.2.3 Basic-level Visual Abilities Affect Perceptual Organization in Children 

Visual abilities contribute to the child’s developing understanding of his or her world and 

should not be isolated from the development of cognition, attention, and action (Atkinson & 

Braddick, 2013). During their first year of life, infants are already sensitive to visual signals 

which enable them to perceive some substantial properties of their environment (Aslin & 

Smith, 1988; Braddick & Atkinson, 2011; Daw, 2014; Kellman & Arterberry, 2007). 

However, lower order visual abilities such as spatial acuity and contrast sensitivity do not 

reach adult levels before late childhood (Almoqbel et al., 2017; Ellemberg et al., 1999; Leat et 

al., 2009). Vernier acuity—the ability to perceive detailed spatial relationships—continues to 

develop beyond spatial acuity into the teenage years (Bondarko & Semenov, 2012; Dekker et 

al., 2019). Such basic visual abilities promote the perception of fine-grained patterns and 
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disrupted contours (Skoczenski & Norcia, 2002) and provide necessary detail for the 

development of perceptual organization.  

In particular, if images depict scenes with overlapping and heterogeneous elements—such 

as rock surrounded by shrubbery—segregation and grouping of texture patches is essential to 

perceptually organize the scenes into meaningful areas. Texture segregation (the effortless 

discrimination of texture features; Kastner et al., 2000; Landy & Graham, 2004) or contour 

grouping (e.g., Elder & Goldberg, 2002; Geisler et al., 2001) therefore are prerequisites to 

successful identification (Panis et al., 2008; Perrinet & Bednar, 2015). Both abilities were 

found to mature around the age of 13 years (for a review see: Taylor et al., 2014).  

Junctions within the contours of depicted objects can signal occlusion and depth (e.g., 

Kellman & Shipley, 1991). Sensitivity to monocular depth cues such as contour junctions, 

shading, or texture gradients is already present in infants around 6 months of age (Kavšek et 

al., 2012). Yet, more complex or detailed pictorial depth (e.g., Freud & Behrmann, 2017) is 

difficult to solve for preschool children, and likely relies on sub-processes which mature later 

in childhood. 

2.2.4 The Impact of Visual Experience of Real-world Structures on Categorization Ability 

Adults perceive cluttered natural scenes with little effort, suggesting that the adult visual 

system is shaped phylogenetically and ontogenetically by the tasks and physical properties 

inherent in human environments (Field, 1987; Geisler, 2008; Kayser et al., 2004; Nassi & 

Callaway, 2009; Shepard, 1992). The visual system is most susceptible to experience-driven 

adaptations and refinement up until early adolescence (Fantz & Nevis, 1967; Maurer & 

Lewis, 2013; Siu & Murphy, 2018). From their first months of life on, children show learning 

mechanisms which build up a basis for perceptual organization and visual categorization 

(Bhatt & Quinn, 2011; Goldstone, 1998). For example, 9-month-old infants as well as 

children beyond four years of age have the ability to detect visual statistical regularities such 

as spatial or temporal co-occurrence of feature combinations (e.g., Fiser & Aslin, 2002; 

Janacsek et al., 2012), which enables them to individuate objects and to perceive entities as 

unique (Scherf et al., 2009; Wilcox & Chapa, 2004). During development, there is an increase 

in the ability to differentiate variations and combinations of visual properties, and more 

versatile distinctions between object categories or single percepts can be made (Goldstone, 

2003; Smith, 1979). In parallel, frequently occurring combinations of stimuli are learned to be 

processed as one unit (Goldstone, 1998), leading to more efficient and faster processing of 

complex stimuli.  
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Studies investigating visual development rely to a large extent on abstract graphic stimuli, 

while perceptual learning occurs in a natural environment. So far, there is inconclusive 

evidence that, similar to adults, children show processing advantages for image properties 

which they experience in their everyday environment. Findings with infants younger than one 

year of age suggest early sensitivity for differences between distorted compared to naturally 

appearing textures (Balas & Woods, 2014) or images of colorful plastic objects (Balas et al., 

2018). In contrast, 10-year-olds—but not younger children—showed similar processing 

advantages to adults for spatial characteristics of natural scenes (Ellemberg et al., 2012). This 

finding was explained by younger children's more immature processing of lower compared to 

higher spatial frequencies.  

The literature on visual development clearly suggests that the kind of information drawn 

upon by young children during visual categorization must be affected by their maturing visual 

abilities. The literature also suggests that analysis of typical real-world scene characteristics 

such as fine details, variations in the shape of repeated elements, or complex arrangements of 

scene components most likely requires significant processing effort. Still, children show a 

great ability to perceive and react to the entities of their environment. Consequently, we 

assume that children with immature visual abilities categorize their environment by drawing 

upon visual cues which they can perceive more efficiently, and which are sufficient to 

determine similarities of relevant entities and structures. These cues do not necessarily 

overlap with those perceived by adults. The current study aims to identify visual properties 

children use in their categorization of naturalistic images, and how children's use of visual 

properties during categorization differs from that of adults who receive identical visual 

information. 

2.2.5 Selected Visual Properties  

The current investigation is based on candidate visual properties which have been found 

to differentiate natural scenes, textures, or superordinate categories. They were selected from 

the literature on visual categorization (e.g., Baumgartner et al., 2013; Geisler, 2008; Heaps & 

Handel, 1999; Isherwood et al., 2017; Schmidt et al., 2017) and computer vision (Clausi, 

2002; Costa et al., 2012). We specifically considered properties which had been included in 

developmental studies (Balas, 2017; Ellemberg, Hansen, & Johnson, 2012). Selection criteria 

were that the properties allowed us to quantitatively capture and distinguish the kind of image 

structures used in the present study. Moreover, the properties must describe a delimited visual 
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characteristic or be associated with a certain visual phenomenon. The final selection of image 

properties is defined in Table 2.3.  

 

Table 2.3 Definitions of the Visual Properties 

Rated a   

Curvature Angular vs. curved.  Shape characteristic, supports classification 
between animate and inanimate objects 
(Long et al., 2017; Schmidt et al., 2017). 

Depth Plane vs. three-dimensional.  Indicates spatial arrangement of scene 
elements as it is relevant for perceptual 
organization. 

Gloss Dull vs. reflecting.  Surface property, supports classification of 
materials (Fleming, 2017) 

Regularity Regular vs. chaotic.  Characteristic for texture discrimination 
(Heaps & Handel, 1999; Rao & Lohse, 
1996). 

Size Small vs. large pattern.  The magnitude of elements as depicted on 
the cards. 

Symmetry Asymmetrical vs. symmetrical.  Shape characteristic, related to living things 
and plant parts, attracts attention in natural 
scenes (e.g., Açık et al., 2009). 

Computational b  

Alpha Steepness of the distribution of 
energy across spatial 
frequencies.  

Typical alpha levels of natural scenes are 
efficiently processed in adults (for further 
details see Figure 2.1). 

Deviation Deviation of a spatial frequency 
distribution from the fitted line 
defined by Alpha.  

Measure of scaling-invariance (fractality; 
e.g., Burton & Moorhead, 1987). 
Distinguishes between artifacts, plants, and 
natural scenes (Redies et al., 2007; see 
Figure 2.1) 

CooCor Co-occurrence Correlation.  Repeating probabilities of neighboring pixels 
over the image dimensions  
(Haralick et al., 1973). Sensitive for low-
level irregularities of naturalistic textures. 

Skew Skew of the pixel luminance 
histogram.  

Relates to the impression of lightness, 
reflectance, and original colors. 

a Rated properties were formulated as opposites and judged on a continuous scale by an 
additional group of adult participants.  
b Computational properties were assessed with functions implemented in Matlab (version 
R2017b, http://www.mathworks.com) or provided by literature on image processing (Gonzalez & 
Woods, 2018). 
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Figure 2.1: Examples of image spatial frequency characteristics.  
Three images taken from the study (top row) and their distribution of spatial frequencies (f) 
plotted on logarithmic scales (bottom row). F is assessed by Fourier spectral analysis in cycles 
per image (cpi; alternations between light and dark) plotted on the x-axis, with a maximum of 256 
cpi for our images analyzed in a resolution of 512 by 512 pixel. Energy refers to the magnitude of 
an f for all orientations. The fitted line falls with a slope of 1/ f alpha. Porcelain (left) exhibits low 
Alpha, describing a steep fall of the slope, while high Deviation indicates a large variance of f  
around the fitted line. The more shallow slope of tuff (center) indicates more smaller compared lo 
large sized f, and moderate Deviation. Geranium (right) has moderate Alpha, and the distribution 
of f almost overlaps with the fitted line, resulting in low Deviation.  

2.2.6 The Current Study 

Here, we explored the influence of developing visual abilities on categorization by 

comparing preschool children's and adults' categorization of images depicting real-world 

structures. Participants performed two tasks in which (1) perception of similarity of one set of 

images, and (2) inferences about the membership of images from another set to one of three 

superordinate categories—artifacts, non-living natural elements, and vegetation—were 

assessed. These categories were chosen because they cover different aspects of human daily 

life and are reliably distinguished from one another early in development. The selection of 

visual properties described above (Table 2.3) was assessed of these images. We evaluated 

children's and adults' performance in each of the tasks and the effect of the assessed visual 
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properties on their performance and categorization decisions. By doing so, we aimed to infer 

the impact of developing visual abilities on children's categorization by asking the following 

questions: 

• Do preschool children and adults differ in which visual properties they attend to when 

sorting naturalistic structures according to visual similarity?  

• Do preschool children and adults draw on different visual properties during the 

classification of naturalistic structures depicting artifacts, non-living natural elements, 

and vegetation? 

• How do decisions about visual similarity during categorization relate to the 

superordinate categories of the visual structures? 

 

We assumed that category formation is influenced to some degree by immature visual 

abilities. Thus, we expected systematic differences between children's and adults' 

categorization.  

 

2.3 Methods 

2.3.1 Participants 

The final sample of child participants recruited from urban and suburban regions of a 

large European city were 76 preschool children (age: M = 4.8 years, SD = .7 years, range = 

4.1 to 6.1 years; 40 female). We chose the youngest age range which could be expected to be 

able to perform our tasks. One additional child was invited but did not want to participate and 

was excluded from the analysis. Three children did not want to participate in the sorting task 

but provided data for the classification task, and remained in the analysis of this task. The 

adult sample consisted of 72 participants (age: M = 32.9, SD = 9.2, range = 18 to 55 years; 37 

female). All participants had normal or corrected to normal vision. We chose a sample size 

based on a pilot study which was conducted using tasks similar to those used in the present 

study (see Stimulus section below for details). Participants were tested either in a laboratory 

or in a day care center. Participants who were invited to the laboratory received 10 Euros 

while the day-care center received a general donation of toys and books. All children 

additionally received a participation certificate. 

All procedures involving human subjects in this study were approved by the Ethics 

Committee of the Max Planck Institute for Human Development. Written informed consent 
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was obtained from each adult participant and from a parent or guardian for each child 

participant before any assessment or data collection. 

2.3.2 Stimuli 

The photographs included in the study were taken by the first author using a digital 

camera (Canon Ixus 85 IS), or downloaded from license-free online databases. Selection 

criteria were that they (1) depicted extracts of real-world structures representing one of the 

three superordinate categories non-living natural elements (e.g., water surfaces or rocks; in 

the following abbreviated to natural elements), vegetation, or artifacts, and (2) were 

homogeneous in that each entity was covering the whole image space in a non-manipulated 

way. The images were transformed to greyscale using the software Adobe Photoshop 

(Version 2017.0.0). Although color contributes to the identification of natural entities 

(Gegenfurtner & Rieger, 2000), we decided against its inclusion because we expected color to 

dominate similarity perception in the sorting task and hide the impact of visual properties 

which are based on pattern. In our picture set, we adjusted the luminance distribution using 

the software Adobe Photoshop to reduce the impact of technical decisions during 

photographic exposure, such as overall dark or light images, by stretching each range of grey-

levels to the full range of 1–256. In parallel, we took care to keep meaningful characteristics 

of the luminance distribution which relate to lightness and the original color of the depicted 

entities by keeping the averaged grey within the range of 71–183.  
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Figure 2.2: Images and their category assignments by children and adults.  
The images of the current study are ordered from top to bottom by their true category, and within 
each category by the proportion of correct assignments of children and adults taken together. 
Next to each image, colored bars indicate the groups' proportional assignments to each of the 
categories. These proportional assignments were used as variables in the sorting task. 

 

 

Classification difficulty was balanced between the categories according to the results of 

the pilot study in which 26 adults had categorized 141 of our images. To promote variance 

within a category's appearance we also matched some overarching properties between the 

categories by visual judgment (i.e., image complexity, irregularity, and repetitiveness of 

elements; Rao & Lohse, 1996), and we chose images providing approximately similar 

variability within the levels of the categories' visual properties. This reduced stereotypical 

representation of the superordinate categories and was intended to produce more perception-

related variance (for a similar approach see: Schmidt et al., 2017).  

The selection process resulted in a final set of 60 images with 20 images per category.  

All images are shown in Figure 2.2. The images were then downsized to 1024 × 1024 pixel, 

printed on card board photo paper and laminated to obtain sorting cards of size 9.7 × 9.7 cm. 

A square format was chosen to reduce biases of orientation and gravity. These cards were 
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split into two halves so that different images could be used in the two categorization tasks, 

respectively (see Procedure section).  

2.3.3 Procedure  

The experiment started with a card sorting task in which participants were asked to group 

images together according to visual similarity. Directly after sorting, adult participants 

received a questionnaire asking about criteria for their similarity judgments. After a short 

break, a classification task followed in which participants were asked to place images into one 

of three boxes representing the categories vegetation, natural elements and artifacts, 

respectively. Stimuli and tasks were identical for children and adults except that children were 

told cover stories around the instructions. For the sorting task, the story included a bat puppet 

who liked image patterns but could not sort the cards itself. When the child finished sorting, 

the bat happily flew over the sorted image groups (see Supporting Information (SI) for the 

precise instructions of the sorting task, Table S 2.1 and Section S1 Results). 

Sixty images were selected to obtain as many exemplars of each category as possible with 

respect to the attentional span of preschoolers. Before each session the full set was separated 

into two halves of 30 cards with equally balanced categories, so that each participant viewed 

different images during the two tasks. The separation of cards followed a routine which 

provided similar probabilities for each image to be sorted into a group with any other image 

during the sorting task. We also ensured that the cards given to the participants for sorting 

were always balanced over the three categories. In preparation of the classification task, the 

other half of the images were shuffled to a random order and piled to a stack.  

2.3.3.1 Design of the Sorting Task  

Participants were instructed to group images together that they perceived as visually 

similar. Visual similarity was asked to be judged subjectively without taking the identity of 

the objects depicted on the images into consideration. There were no restrictions on the 

number of groups or the number of images within each group. Nine cards were already placed 

on the table in a circle at the beginning of the task, and participants were asked to point to a 

card pair that they perceived as visually similar. The card pair was put aside and replaced by 

two new cards. This was repeated until all cards were assembled. Participants could request 

additional cards to be put on the table if they did not find a match. Furthermore, if we noticed 

that participants were only assembling pairs of two cards we reminded them that it was also 

possible to add cards to these pairs if wished (see SI, Table S 2.1).  
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2.3.3.2 Design of the Classification Task  

Participants were seated in front of three boxes. They were told that cards with different 

images would be presented to them. In contrast to the sorting task, we pointed out that it was 

now important to attend to the things depicted on the cards, and guess into which of the three 

boxes the card belonged. Definitions of the categories represented by the boxes were then 

given orally. These definitions were adapted in their wordings to be suitable for the age 

groups (see Table 2.4). Participants were then shown one image after another and asked to 

decide for one of the boxes even if they did not fully classify the depicted things. Participants 

did not receive feedback regarding the correctness of their decision, but the children were 

praised periodically and were reminded to look at the images carefully. 

 

Table 2.4 Category definition during the classification task.  

Category Definition for Adults Definition for Children 

Vegetation "Cards that depict plants or parts of 
plants." 

"Anything that you think is a plant or tree." 

Artifacts "Everyday objects and utensils – 
everything that you would say isn’t 
naturally occurring, but has instead been 
produced by people." 

"Things that are man-made. You would know 
them from seeing them in your kitchen 
shelves or in your bedroom, as parts of houses 
or on the street." 

Natural 
Elements 

"Things that you would know as natural 
materials – that is, things that you would 
see in a natural environment, and which 
are not plants, nor animals, nor 
manmade objects." 

"Natural things – things you might see in the 
mountains, or by the sea. However, plants 
can’t go in there, since they belong in the first 
box, and the same goes for man-made things, 
which have their place in the second box." 

 

2.3.4 Data Preparation 

We noted the images which were assembled within a group by each participant during the 

sorting task. All possible combinations of images within a group were classified as pairs of 

images perceived as similar by the participant. Occasionally, a participant did not find a 

match for an image. These individual images stayed in the analysis. We then calculated 

proportional similarity matrices by dividing the frequencies of joined image pairs by the 

number of participants who had received the respective images with the 60 images on the x-

and y-axis, separately for children and adults.  
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In the classification task, we noted participants' answers for each image, no matter if it 

was correct or not, leading to the variables Assigned Artifact, Assigned Natural Element, or 

Assigned Vegetation.

2.4 Results 

Data comparisons in both tasks were conducted as analysis of variance (ANOVA; R-

package ez; Lawrence, 2016) or generalized linear model (GLM) with the function glm 

implemented in R (R Core Team, 2019). In the classification task, we conducted generalized 

linear mixed effect models (GLMM) with the function lmer (R-package lme4; Bates et al., 

2015) if the comparisons included multiple levels of comparisons. Binomial error structures 

were defined for GLMs and GLMMs. Residual and specification diagnostics of the GLMMs 

were carried out with the R package DHARMa (Hartig, 2020). Influential cases within the 

units of our comparisons were diagnosed with regard to DFBetas (function influence; R-

package lme4), and Cook's D (R-package influence.ME; Nieuwenhuis et al., 2012). In the 

GLMMs, we assessed the significance of predictors by comparing the current model with a 

model reduced by the respective predictor with the R-function Anova (package car; Fox & 

Weisberg, 2019), which provided p-values for fixed effects based on Chi-square likelihood-

ratio test. In all comparisons, p-values ≤ .05 were considered as significant. 

The data underlying the statistical analysis of this study is accessible under the link 

https://osf.io/8xy5n/?view_only=6ddced286c31456fae7d20dd86e072e6. 

2.4.1 Classification Task  

We pursued several goals with the analysis of the classification data. First, we assessed 

performance measures as a function of participant group (children, adults) and image category 

(artifact, natural element, vegetation). The rationale for this was to determine the difficulty of 

the task and sensitivity for the three categories. Then, we assessed the impact of visual 

properties on participant groups' assignment of category membership to each of the images. 

This was done to infer which visual property affected classification. Next, we compared 

visual properties between the participant groups to understand which visual properties were 

specifically affecting children's decisions. Finally, we assessed six indices for each image, 

representing the proportions to which a category was assigned to an image by either 

participant group. These indices were included in the analysis of the sorting task. We 

therefore begin by reporting the classification results, even though the classification task was 
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conducted after the sorting task in the experimental procedure. We first report the children's 

results, followed by those of the adults. 

2.4.1.1 Children's Classification Task Results 

Each of the 76 children who participated in the classification task sorted a complete set of 

30 cards into artifact, natural element, and vegetation boxes. In sum, they correctly classified 

N = 1586 (69.6%) of a total of N = 2280 images. No difference in the proportion of correctly 

classified images was found between girls (71.3%, SD = 45%) and boys (67.5%, SD = 47%; t 

= 1.3, n.s.). The continuous variable Age, however, predicted children's proportion of 

correctly classified images (!(1) = 10.8, p = .001). We therefore included the covariate Age 

in the GLMMs conducted in the later analysis of children's assignment of categories.  

Classification Performance Children. A confusion matrix (Table 2.5) shows the 

structure of responses to each of the presented images. Children most correctly assigned cards 

in the vegetation category, and least in the natural elements category. We assessed the 

sensitivity measure d-prime (d'; Wickens, 2002) for each of the true categories (Table 2.5). 

Higher values of d' indicate a better discriminability of one category from the others. Analysis 

of variance of the three categories on d' revealed that children's sensitivity differed between 

categories (F(2, 150) = 20.6, p < .001, η2 = .07), in that sensitivity for natural elements was 

lower than for vegetation and artifacts (both adjusted p < .001; Post-hoc Tukey's HSD test), 

while sensitivity for vegetation and artifacts did not differ. 
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Table 2.5 Classification performance of children and adults. 

Image category Assigned category a Decision measures 

 Artifact   Natural element   Vegetation   Sensitivity b 

 M SEM  M SEM  M SEM  d' SEM 

    Children     Children 

True artifact 6.88 (0.26)  
2.89 (0.23) 

 
1.67 (0.16) 

 
1.70 (0.10) 

True natural element 2.22 (0.20) 
 

6.34 (0.24) 
 

2.39 (0.17) 
 

1.33 (0.09) 

True vegetation 1.45 (0.11) 
 

2.04 (0.23) 
 

7.64 (0.21) 
 

1.78 (0.07) 

    Adults     Adults 

True artifact 9.08 (0.76)  
1.19 (0.62) 

 
1.05 (0.21)  

2.99 (0.05) 

True natural element 1.13 (0.35) 
 

9.07 (0.89) 
 

1.43 (0.70) 
 

2.63 (0.07) 

True vegetation 1.20 (0.42) 
 

1.49 (0.68) 
 

8.99 (1.00) 
 

2.76 (0.07) 

 
Note. Participants' category assignments (left), and decision measure (right) as functions of true 
image categories, separate for children (N = 76) and adults (N = 72).  
a Cells show responses given by one participant, averaged over all participants within the 
participant group (M) and their standard error (SEM). Rows correspond to the true image 
categories. Diagonal cells in bold case indicate correct responses (hits), while the remaining cells 
in a column indicate if an image was assigned to one category, but belonged to one of the 
remaining categories termed false alarms (fa). The remaining cells of a row indicate correct 
rejections of the true category, respectively. Decision measures are averaged over all participants 
within the participant group.  
b Sensitivity (d') was calculated by subtracting the normalized proportion of the sum of false 
alarms from the normalized proportion of hits, d' = z(hits) - z(sum(fa)).  

 

Visual Properties Predicting Children's Category Assignment. In order to extract 

visual properties that predicted a child's assignment of an image to one of the three categories, 

we conducted GLMMs with a binomial error structure. Participants' responses were binarily 

coded, resulting in three DVs which indicated if an image was assigned to one of the 

categories or not (1, 0). To account for intra-class correlation, we included participants and 

images as the units of random intercepts. Visual properties were included as fixed effects, and 

age was included as covariate in all models. We assessed the impact of visual properties on 

category assignment by including each visual property individually in a model, resulting in 10 

tests. These tests equivalently explored the predictive value of each property. The reason for 

choosing separate analysis of visual properties were 1) missing prior expectations about their 
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significances, and 2) the fact that interrelations of simultaneously included IVs in a full model 

might obscure the impact of some predictors (correlation matrix shown in S2 Results, Figure 

S 2.2). Alternative methods like the agglomeration of properties by PCA might hide their 

unique contributions, whereas variable selection with specialized methods like lasso 

regression (Groll & Tutz, 2014) could generate different results if additional properties than 

those currently selected were included. These alternative types of analysis would not be as 

appropriate for the exploratory approach taken here. We controlled the false discovery rate in 

multiple comparisons by adjusting p-values within the 10 tests conducted for each DV using 

the method of Benjamini and Hochberg (Benjamini & Hochberg, 1995).  

Visual properties that contributed to children's category assignment are specified in 

Figure 2.3a. Overall, the visual properties depth, symmetry, skew, and deviation were drawn 

upon by children during the classification task. Children's assignment to artifacts was best 

predicted for images with high skew, high values of deviation, and low depth. Assignment to 

natural elements was mainly predicted by low symmetry, whereas the assignment to 

vegetation was predicted by high depth. In particular, children drew upon pictorial depth cues 

in their decisions about category assignment. Although alpha was an important predictor of 

the categories in our image set (see S2 Results), it was not drawn upon significantly by 

children. All coefficients are reported in S3 Results. 
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Figure 2.3: Visual properties as functions of assigned categories by children (top) and 
adults (bottom).  

Properties are z-standardized and averaged within assigned categories. Asterisks in (a) and (c) 
indicate significant main effects of a visual property in the GLMMs conducted on the respective 
assigned category for children (a) and adults (c). Asterisks in (b) indicate significant interaction 
terms between participant group and visual property, of the GLMM conducted with the data of 
both participant groups. All adjusted p < .05 (method: Benjamini and Hochberg,1995). 
Coefficients and CI are provided in S4 Results, Table S 2.5Table S 2.7.  
 

2.4.1.2 Adults' Classification Task Results 

Each of the 72 adult participants sorted a full set of 30 cards into artifact, natural element, 

and vegetation boxes, which resulted in a total of N = 2160 images sorted. Adults correctly 

classified N = 1586 (90.5%) of the sorted images.  

Classification Performance Adults. A three level within-subject ANOVA on d' showed 

that adults' sensitivity for the categories differed, F(2, 142) = 21.4, p < .001, η2 = .07, in that 

sensitivity for artifacts was higher than for vegetation and natural elements. No other contrasts 

were significant. Inspection of the confusion matrix in Table 2.5 (bottom left) suggests that 

this effect can mainly be attributed to fewer incorrect assignments to the artifact category.  

Visual Properties Predicting Adult's Category Assignment. Adults drew upon the 

visual properties deviation, skew and alpha, as well as upon curvature, size, depth, and 
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symmetry when assigning categories to the images. Visual properties which significantly 

predicted adults' assigned categories are specified in Figure 2.3c. Although adults correctly 

classified 90% of the images, some differences remained when comparing the visual 

properties predicting adult category assignment with those predicting our true image 

categories as shown in SI S2 Results. In particular, adults included curvature and size in their 

assignments to the artifact category although these properties did not predict the true category 

of artifacts in our image set. 

2.4.1.3 Comparison of Children's and Adults' Results in the Classification Task 

The correlation of correctly classified images between children and adults was r(59) = 

.74, 95% CI = [0.59, 0.83], p < .001. Children's sensitivity for the image categories was 

generally lower than adults' sensitivity. Of great interest for our study were differences 

between the participant groups within particular visual properties or image categories. These 

particular differences could specify the effect of immature visual abilities on visual 

categorization in children. We therefore conducted comparisons between children and adults 

which included the factor group (children, adults) and an interaction term between the IV of 

interest and the factor group. 

A 2 × 3 ANOVA on the sensitivity measure d' with the factors category (i.e., true image 

category) and group confirmed the general difference in sensitivity between children and 

adults with a main effect of group (F(1, 146) = 164, p < .001, η2 = .45). Moreover, there was a 

main effect of category (F(2, 292) = 33.8, p < .001, η2 = .055) and an interaction between 

group and category (F(2, 292) = 7.6, p = .001, η2 = .013). Post-hoc comparisons (Tukey's 

HSD) indicated that within both participant groups, classified natural elements were classified 

with lower sensitivity than artifacts and vegetation (both p < .001). Adults' sensitivity for 

vegetation was lower than children's sensitivity, if compared to the other categories within 

groups (p = .02; see Table 2.5). No other contrasts were significant.  

We also compared the impact of the specific visual properties on the assignment of 

categories between children and adults. GLMMs included the IVs group, a particular 

individual visual property, their interaction term, and the random effects image and 

participant id. Figure 2.3b indicates visual properties that significantly differed between 

children and adults. Children differed from adults in their inclusion of all visual properties in 

at least one of the three assigned categories, in particular in their assignment of images to the 

natural elements category. Symmetry differed between the participant groups in all of the 

assigned categories, whereas depth, curvature and size only differed in natural elements.  
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All significant interaction coefficients, except for deviation on the assigned vegetation 

category, indicated a weaker inclusion of the property for children compared to adults (all 

adjusted p < .05; SI S3 Results).  

2.4.2 Sorting Task 

The sorting task measured participant's attention to visual information (e.g., pattern, 

shading, the arrangements of elements) apart from the identity of the depicted entities. We 

aimed to identify visual properties relevant for the discrimination of naturalistic structures. 

However, reference characteristics to which similarity is judged without further instruction 

can vary between individuals (A. Tversky, 1977). These variations might have been even 

more emphasized with our images because the perception of photographic images might be 

influenced by experiences with the objects depicted on the photographs. In the analysis, we 

therefore also explored whether the categories which were assigned to the images by the 

participant groups in the classification task had affected the similarity judgments (Figure 2.2).  

Similarity judgments can be based on dimensions of image characteristics, in which 

similarity relies on similar levels within a property's continuum (e.g., Nosofsky et al., 2017; 

Rao & Lohse, 1996). Alternatively, similarity judgments can be based on the salience of a set 

of unique attributes which images share in a context (e.g., Heaps & Handel, 1999; Tversky, 

1977). In order to include these different aspects, we applied the statistical methods 

hierarchical cluster analysis (HCA; e.g., Friesen et al., 2015; Hair et al., 1998), and non-

metric Multidimensional Scaling (nMDS; e.g., Läge et al., 2011), which allow a dimensional 

as well as a categorical perspective on multivariate data. The similarity data is accessible 

under the link https://osf.io/8xy5n/?view_only=6ddced286c31456fae7d20dd86e072e6. 

We first conducted HCAs using the R-function hclust (R Core Team, 2019) with the 

Ward2 agglomerative clustering method (Murtagh & Legendre, 2011; Ward, 1963) separately 

for children and adults. HCAs determine a progressive series of more inclusive clusters, and 

the Ward2 clustering method attempts to merge clusters which lead to a minimum total of 

within-cluster variance. The obtained HCA solutions were then related to image 

characteristics. Next, we conducted nMDS specified for ordinal data with the R-function mds 

(package smacof; De Leeuw & Mair, 2011) separately for children and adults. The fit of the 

nMDS was evaluated according to suggestions of Mair et al. (2016). We will again report the 

children's results first. 
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2.4.2.1 Children's Similarity Sorting 

Seventy-three children participated in the sorting task. 70 children received the full set of 

30 images, while 3 children stopped participating after receiving 20, 24 and 24 images, 

respectively. Children sorted between 15 and 30 images into groups (M = 29.5, SE = .24). The 

remainder of the images were not sorted because the child terminated sorting early, or they 

were not included into a group because no match was found. Each child sorted their images 

into M = 9.8 (SE = 0.3) groups which each included M = 3.2 (SE = 0.1) images. In sum, child 

participants assembled 2153 images to 2874 image pairs.  

Children's HCA. The dendrogram of the children's HCA is shown in  

Figure 2.4 (left). The scale at the y-axis indicates the distances between clusters which are 

merged at a certain height. Inter-cluster distances of the children's sorting data ranged from a 

minimum of .18 between the two most similar images to a maximum of 1.89. In order to 

assess the impact of visual properties on the participants sorting decisions, we added the 

visual property values of the images to the data indicating the images' cluster membership. 

The impact of a visual property for each step in the clustering hierarchy was assessed by 

calculating the proportion of variability between the individual clusters to the total variability 

of the property, specified by R2 (frequently termed "explained variance"; for a similar 

approach see: Friesen et al., 2015). Higher levels of the resulting R2 values indicate a stronger 

variation of the visual property between clusters, interpreted as a stronger impact of the 

property on participants' sorting decisions. The impact of assigned categories was assessed 

with the same procedure. 

In Figure 2.5 (top row) we plotted the visual properties' R2 values as a function of the 

height of the dendrogram. The top left of Figure 2.5 illustrates the development of the impact 

of visual properties on children's sorting decisions. At the origin of the children's x-axis, each 

of the 60 images belonged to an individual cluster, resulting in values of R2 = 1 for each of 

the properties. Visual inspection indicates that the impact of particular visual properties 

started to vary late with increasing height at about height .4 (56 Clusters). Moreover, visual 

properties alternated in the strength of their impact depending on the number of clusters in 

which images were organized, and on the corresponding inter-cluster distance. To evaluate 

the overall impact of the visual properties on children's similarity judgments, we included the 

R2 values of each step in the agglomeration process (60 to 2 Clusters) in one test. Analysis of 

variance showed a main effect of visual properties on R2, F(9, 522) = 77, p < .001, η2 = .03. 

Post-hoc analyses using Tukey’s HSD indicated that depth had the highest impact on 

children's similarity decisions, differing from all other properties, all p < .005. Skew with the 
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second highest impact and regularity with the third highest impact differed from all other 

properties except each other, all p < .005. Gloss and alpha had the lowest impact on children's 

similarity sorting (see Figure 2.7, for all contrasts SI, S4 Results).   

The impact of assigned categories on children's similarity decisions is depicted in Figure 

2.5 bottom left. Variability between categories increased late around height .75 (30 clusters). 

From here onward, the assigned vegetation category explained the largest proportion of 

variance compared to the other categories, with a value of R2 = .37 at maximum height (2 

clusters). An ANOVA with the factor assigned category on R2 revealed a main effect for 

assigned categories (F(2, 116) = 26, p < .001, η2 = .03), qualified by high levels of vegetation 

which differed from the two other categories (p < .001), while artifacts did not differ from 

natural elements within children (Figure 2.7 top right). These results confirm our assumption 

that children's similarity judgments were affected by the categories they perceived in the 

images.  

 

 
 
Figure 2.4: Hierarchical clustering results of the sorting task.  
Dendrograms representing the structure of image similarities as hierarchical clusters received 
from the children's (left) and adults' (right) sorting task. For each dendrogram, zero height at the 
origin of the x-axis was the starting point from which individual images were agglomerated to 
decreasing numbers of clusters (method Ward2). Colored bars represent the proportion with 
which individual images were assigned to one of the categories (see Figure 2.2). The levels of 
height indicate the dissimilarity of the merged image clusters (inter-cluster distance).  
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Figure 2.5: The impact of image characteristics on participants' sorting as function of 
the number of clusters.  
Levels of R2 for image characteristics as a function of the height of the dendrogram, for children 
(left) and adults (right). Height (x-axis) indicates the inter-cluster distance of images merged 
within successive hierarchical clusters. R2 (y-axis) represents the impact of each of the image 
characteristics on similarity judgments (i.e. explained variance), separately for the 10 visual 
properties (top row) and for the categories assigned to an image in the classification task (bottom 
row). R2 was assessed in steps of height .05. For better comparability of the differences between 
the properties, R2 values were centered for each indexed height. A detailed discussion on the 
impact of image characteristics is provided in SI, Section 1 in S4 Results. 

2.4.2.2 Adult's Similarity Sorting 

Seventy-two adults participated in the sorting task and received the full set of 30 images. 

Adults sorted between 26 and 30 images into groups (M = 29.3, SE = .12). The remainder of 

the images were not sorted into groups because no matches were found. Each adult sorted on 

average 7 (SE = .3) different groups which included on average 4.7 (SE = .2) images. Adults 

assembled a total of 2110 images to 4592 image pairs. 

Adults' HCA. The right dendrogram of Figure 2.4 shows the HCA conducted on the 

adult sorting task data. Inter-cluster distances range between close to zero and the maximum 

of 2.64. The median of the decrease in the number of clusters lies at height .54. At minimum 

height (57 Clusters) visual properties already varied in their impact, indicating that 3 pairs of 

images were grouped together by adults frequently, and that these images included 

corresponding image properties (Figure 2.5 top right). Visual properties varied in their impact 
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during the full cluster agglomeration process, with strong differences between groups of 

properties. Beyond height 1.9 (3 clusters), depth showed the highest impact until maximum 

height, indicating a very general impact on similarity decisions of adults. Analysis of variance 

of the factor visual property on R2 values of the whole agglomeration process showed a main 

effect of visual property, F(9, 522) = 121, p < .001, η2 = .08. Post-hoc analyses using Tukey’s 

HSD indicated that regularity had the highest impact on adults' similarity judgments, differing 

from all other properties except symmetry, with all p < .001. Symmetry differed from the 

remaining properties except Deviation, all p < .05. Gloss had the lowest impact, differing 

from the other low impact properties alpha and CooCor, both p < .001 (Figure 2.7 and SI, S4 

Results).   

As shown in Figure 2.5 (bottom right), assigned categories started to vary in their impact 

at height .2 (51 clusters) much later than visual properties. Vegetation showed a strong impact 

on similarity judgments during most of the clustering process until maximum height, where 

vegetation still explained more than 50% of the variance within the more general clusters. All 

R2 values are reported in the online data repository. Analysis of variance on the whole 

agglomeration process revealed a main effect for assigned categories (F(2, 116) = 33, p < 

.001, η2 = .03) in adults, qualified by a high impact of vegetation which differed from the two 

other categories (p < .001), and by a higher impact of natural elements compared to artifacts, 

p = .006 (Figure 2.7). These results show that adults relied on the category they perceived in 

the images when judging their visual similarity. 

2.4.2.3 Nonmetric Multidimensional Scaling 

In multidimensional scaling, objects are arranged in distances in a multidimensional space 

so that the configuration of the objects represents the distances of the underlying matrix. 

Including configuration plots in our analysis provides visualization of the similarity 

judgments related to concrete images. We decided on a two-dimensional nMDS model 

because it had better clarity and because scree plots did not indicate a more preferable number 

of dimensions (Mair et al., 2016).  

Children's nMDS. Figure 2.6a shows the nMDS solution obtained for children. Clusters 

of images in the nMDS configurations relate to images which were assembled together 

frequently in the sorting task due to their perceived similarity. 

Adult's nMDS. The two-dimensional nMDS configuration plot for the adult data is 

shown in Figure 2.6b. We will discuss the nMDS of both participant groups in more detail 

below.   
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Figure 2.6: Two-dimensional nMDS solutions and the distribution of assigned 
categories.  
Images used in the task are plotted in configurations obtained by nMDS models, for children (A) 
and adults (B). Stress fit index was .293 for children, and .252 for adults. We applied Procrustes 
transformation to the models to obtain comparability between the participant groups (congruence 
coefficient = .93). The size of the colored discs superimposed on each image represents the 
proportional assignments of categories to these images by the participant groups.  
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2.4.2.4 Comparison of Children's and Adults' Results: Sorting Task 

To answer the question of whether children and adults attended to different visual 

properties in their similarity judgments, we statistically compared their HCA solutions with 

focus on the impact of visual properties (Figure 2.7). A 10 × 2 ANOVA on R2 values of the 

entire cluster sequence with the factors participant group (children, adults), visual property 

(10 levels), and their interaction term showed a main effect for participant group (F(1, 28) = 

5.6, p = .025, η2 = .14) which was qualified by an overall greater impact of visual properties 

on adults' similarity judgments. We also found a main effect for visual properties (F(9, 252) = 

110, p < .001, η2 = .38), and a significant interaction between participant group and visual 

properties (F(9, 252) = 51, p < .001, η2 = .22). Post hoc comparisons of the interactions 

revealed that differences between children and adults went in both directions. Children 

attended less than adults to Deviation, Curvature, Regularity, Size and Symmetry (all p < 

.001). In contrast, children included CooCor and Gloss to a greater extent than adults (both p 

< .001), while no differences were found for Depth (p = .1), Skew (p = .921), and Alpha (p = 

.372). Differences in means and CIs of the comparisons are provided in SI, Tables S2.12 and 

S2.13 in S4 Results). 

 

 

 
Figure 2.7: The impact of visual properties (left) and assigned categories (right) 
separately for children and adults.  
Predicted means are obtained by analysis of variance. Comparisons are based on R2 values 
obtained at each step in the clustering process from 60 to 2 clusters, error bars are Fisher's Least 
Significant Difference (FLSD). All means and the differences of post-hoc comparisons are provided 
in SI, S4 Results. 
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Inspection of the nMDS configurations allows inferences about the combinations of 

visual properties which might have been included in similarity decisions. This is of interest 

because children differ from adults in their ability to differentiate visual regularities (e.g., 

Smith, 1979). On first sight, nMDS model configurations of children and adults (Figure 2.6) 

show generally similar arrangements. For example, the bottom right corners include images 

with elongated, parallel elements, and the top of the configurations include images depicting 

small distributed particles. Next to this more general overlap, disparities in the characteristics 

of more direct image neighbors are noticeable. In the children's nMDS, image neighbors 

frequently overlapped in clearly visual characteristics. For example, the 4-image-group at the 

crossing of dimension 1 (D1) = .4, and D2 = -.3 to -.1 shows round, erected elements with 

jagged contours, or the 3-image group at D1 -.4, D2 = -.4 includes radially-configured 

elongated elements. In contrast, adults also appeared to use non-visual similarities to assemble 

images. One example is the 2-image-group at D1 = -.5 to -.4, D2 = -.2 to 0, in which two 

artifacts with irregular structured threads and cables are assembled in spite of their different 

patterns. Another example is D1 = .1 to .3, D2 = .5 to .7, where a 4-image-group of natural 

elements overlaps in some image characteristics (i.e., shape, material, or the subcategory 

stone surfaces), but none seems to be included in every image. To a lesser degree, these kinds 

of thematic combinations are also obvious in children, such as the two crochet works at D1 = 

.1 to .2, D2 = -.1. Still, these examples provide illustration of how similarity might be 

perceived in children and adults. 

For children and adults, assigned vegetation was a major image characteristic related to 

similarity decisions. In the nMDS configurations, we found that both children's and adults' 

images were organized in accordance with their assigned categories (Figure 2.6). In 

particular, images on the left tended to predominantly depict vegetation. Artifacts and natural 

elements shared the remaining space, with less clearer boundaries. In the HCA, vegetation 

showed its major impact on both participant groups, especially within the organization of 

images to larger clusters. A 3 × 2 ANOVA on R2 values compared the impact of assigned 

categories on similarity judgments between the participant groups. A main effect for assigned 

category (F(2, 232) = 56, p < .001, η2 = .25) was qualified by a stronger impact of vegetation 

compared to artifacts and naturel elements, which did not differ. The participant groups did 

not differ (F(1, 116) < 1, p = .38), and the interaction term did not reach significance  (F(2, 

232) = 2, p = .12). These results indicate that similarity judgments were affected by all 

assigned categories, of which assigned vegetation had the strongest impact for both children 

and adults.  
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2.5 Discussion 

In the present study, we investigated preschool children's and adults' categorization of 

images depicting real-world structures by focusing on the impact of developing perceptual 

abilities on categorization ability. Participants performed a sorting task in which they 

assembled a set of images to groups according to visual similarity, and a classification task in 

which another set of images were put into boxes representing the superordinate categories 

artifacts, natural elements, and vegetation. We then related categorization decisions of the 

participant groups to the visual properties of the images.    

The results of both tasks show that—in spite of their still maturing visual system—

preschool children readily perceive and interpret complex visual structures by 4 years of age 

(for 5-year-olds see also: Balas, 2017; Cohen et al., 2019; Köster et al., 2017b). Nevertheless, 

children's sensitivity for the superordinate categories was generally lower than adults'. 

Moreover, children’s lower reliance on many visual properties than adults' during 

classification might reflect spontaneous choices of a superordinate category. Such choices are 

not necessarily based on the properties children perceive in the unfamiliar images, but perhaps 

instead result from inattentiveness, playfulness, or a personal preference for one category type 

over the others. These kinds of factors are common in children's task performance and lead to 

more noise in the data. However, that some of the relevant properties did not differ between 

children and adults, or were even included to a greater extent by children, indicates that 

children also showed systematic sensitivities for image characteristics that seemed to depend 

on the image's assigned category. 

2.5.1 Visual Properties Used by Children and Adults 

Rated pictorial depth was an important predictor for children's assignment of images to 

artifacts and vegetation. In the sorting task, depth had the overall highest impact on children's 

similarity judgments, directly followed by skew, and the impact of both properties did not 

differ between children and adults. This was also the case for the inclusion of depth in the 

assignment to vegetation. The importance of depth cues for sensorimotor coordination and the 

early onset of sensitivity for pictorial depth (Kavšek et al., 2012) are both in line with the high 

impact of depth on children's sorting decisions. However, previous research has reported 

immature analyses of depth in 3D-figure-drawings for young children (Freud & Behrmann, 
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2017). It is possible that the depth cues in our naturalistic images were easier to perceive for 

children because, in contrast to Freud and Behrmann (2017), they are supported by shading 

information. Depth in the current images additionally refers to real-world distances between 

structure-elements rather than to the 3-dimensionality of the elements (e.g., leaves of a plant 

are flat, but assembled in space). The availability of shading information could have made the 

analysis of fine-grained and distributed depth information (e.g., contour junctions) 

unnecessary, which may be more demanding for young children.  

Skew refers to an overall impression of shade within an image. Similar to depth cues, 

variations in skew were possibly instantaneously perceived without the necessity to attend to 

details. This might have allowed a spontaneous visual comparison of both depth and skew for 

children as much as adults during similarity perception.  

In contrast, symmetry and curvature cues, which are both shape related properties, had 

high impact on adults' similarity judgments, but were included to a significantly lesser extent 

in children's similarity perception. Moreover, symmetry also differed strongly between 

children and adults in the classification task—in spite of its importance as a predictor of 

natural elements in our image set (see SI, Section 1 in S2 Results). There is evidence that the 

development of symmetry perception is still ongoing during preschool age (Bornstein & 

Stiles-Davis, 1984), whereas curvature cues were already found to be perceived during 

infancy (Kellman & Arterberry, 2007). The literature suggests that the most likely explanation 

for the lower impact of these shape properties could lie in the cognitive demand on young 

children raised by a necessary attention to distributed details such as contour junctions or 

texture elements. The integration of detailed visual cues into larger shapes may be difficult for 

children because of their immature vernier acuity and less efficient read-out of visual 

information (e.g., Dekker et al., 2019; Skoczenski & Norcia, 2002). Neuroimaging studies 

additionally support this explanation by indicating that adult-like efficiency of visual object 

processing is not reached before school age (Dekker et al., 2011, 2015; Gathers et al., 2004). 

In order to find additional support for this explanation, we conducted a post-hoc analysis of 

the children's classification data which included the continuous variables age, visual property, 

and the interaction term Age × Visual Property. With this, we aimed to investigate the 

inclusion of visual properties which rely on shape details in relation to children's age. And 

indeed, as shown in the SI, S5 Additional Analysis, the reliance on some detail-based visual 

properties changed significantly within the age-range of the child participants. The inclusion 

of symmetry and size became more differentiated in older children for the assigned artifact 

and natural element categories. Similarly, curvature, deviation and CooCor became more 
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differentiated in older children for the assigned artifact category. In contrast, depth and skew 

did not show differences between younger and older children's classification, indicating that 

even 4-year-olds successfully relied upon these important predictors for their category 

assignments (see SI, S5 for the full analysis).  

The impact of regularity on children's sorting was as high as the impact of skew. 

Regularity provides an overall impression of the structure of an image. Its inclusion during 

similarity sorting requires the ability to distinguish irregular from regular arrangements and 

shapes. It may be the case that this property is more accessible to children because a detailed 

analysis of shape is not necessary. Yet, that older children relied more on regularity than 

younger children in the classification task (SI, Figure S 2.3 in S5) could indicate that these 

arrangements of varying elements are still difficult to process in younger children. This is 

supported by a recent finding in an eye-tracking search task with 8-month-olds using the same 

images. There, the degree of regularity of a background image did not affect target detection 

(Schlegelmilch & Wertz, 2021) 

These examples suggest that visual properties with less emphasis on detailed information 

and more global or holistic information had a stronger impact on children's categorization. In 

adults, global image features provide an instant perceptual and semantic "understanding" of a 

naturalistic scene (Oliva & Torralba, 2006). Developmental studies support this explanation, 

in that 6- and 8-year-olds were found to be faster in comparing global rather than detailed 

local visual information (Mondloch et al., 2003; but see e.g. Vinter et al., 2010 for more 

variable findings in younger children). Moreover, preschool children attend to the overall 

appearance of objects in categorization tasks, in contrast to adults who instead attend to 

category-relevant features (Deng & Sloutsky, 2016; but see: Mash, 2006). However, a 

stronger impact of properties which can be perceived globally in the current study does not 

rule out that young children attend to details as well. Their inclusion might rely on their 

relevance for a visual task and on the amount of details the child needs to solve (e.g., during 

material judgments: Balas et al., 2020). In the current study, children were confronted with 

many pictures present in the visual scene , so that it was perhaps more difficult to perceive 

details of particular images (Kimchi, 2015; Vinter et al., 2010). 
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2.5.2 Do Children Rely on Incomplete or Sub-threshold Visual Information During 

Categorization? 

Our finding that children included several properties to a lower degree than adults in their 

categorization decisions raises the question: how were they still able to perform relatively 

well in the classification task?  

One explanation could be that the classification of visual structures with ecological 

relevance relies on over-generalization of incomplete visual information. This suggestion is 

based on findings that young children are as able as adults to gather and adapt environmental 

information (e.g., Amso & Davidow, 2012). Moreover, the design of the visual system is 

argued to be based on task-related contact to statistical regularities of the natural environment 

during human evolution (Frazor & Geisler, 2006; Geisler & Diehl, 2002). In our study, the 

visual property Deviation may have been over-generalized by preschoolers. Deviation had a 

rather moderate impact on children's similarity perception, except at a point in the HCA 

clustering sequence in which vegetation increased its impact (height 1.2 to 1.5, relating to 10 

to 5 clusters). Correspondingly, the inclusion of area differed between children and adults 

(adjusted p = .002) in that area was the only property which was drawn upon to a greater 

extent by children than adults in the assignment of vegetation. In contrast to the higher values 

of area which predicted children's assignment of images to the artifact category, low values of 

area must include high spatial frequencies to meet scaling invariance, which was found to be 

typical for natural scenes (Ruderman, 1997). Visual information that deviates from scaling 

invariance can therefore be seen as qualitatively different from scaling invariant visual 

information. The reliance on low area in children's assignments to vegetation exceeded even 

its actual predictive power for the vegetation category in our image set (SI, Figure S 2.1 in S2 

Results,). This might indicate that children over-generalized a category to unknown cases on 

the basis of visual information which was gathered from their environment. Balas (2017) 

came to a similar conclusion in a material categorization task, suggesting that available but 

incomplete visual information had led to quickly-adopted representations in 5- to 7-year-olds 

which then led to incorrect responses.  

Yet, how could children include high spatial frequencies—which are difficult to perceive 

for them—into their classification decisions? One might conjecture that it is not necessary to 

perceive the precise spatial information provided by the full range of frequency bands 

included in low values of area. Moreover, sub-threshold stimuli properties might have 

affected classification preattentively, as they did affect the perception of ambiguous visual 

input in adults (e.g., Pearson & Brascamp, 2008; Sterzer et al., 2009). Behaviorally, 
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sensitivity to sub-threshold properties might provide developmental advantages, because 

uncertain or overwhelmingly complex regions of the environment could then be avoided or 

treated with care (e.g., ambiguous visual input affected infants' search for social signals from 

adults; Pauen & Hoehl, 2015). Visual uncertainty can also trigger increased attention and 

provide a ground for adaptation and learning (e.g., specific sensitivities support the 

categorization of instances within the environment; Rakison & Poulin-Dubois, 2001). 

Adaptive reactions might in particular be beneficial for young children and infants when 

confronted with difficult or uncertain visual information as it is included in vegetation (Wertz, 

2019). 

2.5.3 The Effect of Developing Perceptual Organization 

In the sorting task, participants viewed about nine images placed in front of them, while 

the growing number of already-assembled image groups was placed right beneath. This 

situation made the detection and grouping of similar images within the visual scene necessary. 

Possibly, one reason why children sorted smaller image groups than adults would be 

immaturities of perceptual integration. During childhood, neuroimaging studies found an 

increase of horizontal intra- and interhemispheric connectivity, as well as increasing feedback 

connectivity from extrastriate visual areas to V1—changes which are thought to be involved 

in the detection, grouping and spatial integration of distributed visual elements (Fornari et al., 

2014; Knyazeva, 2013; Kovács, 2000; van den Boomen et al., 2014). Larger distances 

between the images would have increased the difficulty to find matches. Therefore, children 

preferred to compare similarity within the region around where the new images were placed, 

and produced more image groups which consisted of only 2 to 3 images. Non-metric MDS 

and HCA reflect the distinct sorting behavior of the participant groups. In the children's 

nMDS, there were predominantly groups consisting of 2 to 3 images, yet many separate 

images were distributed over the nMDS space. In contrast, images in the adult nMDS were 

assembled into larger constellations which were loosely connected to each other (Figure 2.6). 

However, children's smaller image groups could alternatively be explained by more strict 

decision rules applied to similarity judgments, based on their better memory for the general 

appearance of images compared to adults (Deng & Sloutsky, 2016; Ofen & Shing, 2013). The 

difference between children's judgments and adults' more flexible property inclusions are 

reflected in the HCA. In the children's dendrogram, the inter-cluster distances between 

individual images were much higher than in the adults' dendrogram, which additionally 

showed a more distributed variability (Figure 2.4). These examples show how higher order 
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visual abilities might affect the perception of elements in a naturalistic scene, which provides 

insight into the cognitive demand on children during categorization in every-day situations. 

2.5.4 Both Age Groups Attended to Assigned Categories in their Similarity Judgments 

The impact of assigned categories on similarity decisions did not differ between children 

and adults. Young children as well as adults seem to have processed images in a semantic 

fashion, while simultaneously the available combinations of images triggered category 

formation based on visual properties (for similar suggestions see: Hoehl, 2016; Mandler, 

2000). This would indicate an equivalent inclusion of visual properties and semantic 

categories in similarity perception. Consistent with this proposal, answers provided by adults 

to the questionnaire which asked about their similarity criteria included only 55% of terms 

which related to visual properties, whereas the remaining terms related to the identity of or 

experiences with the depicted entities. In children, visual properties were mentioned in 62% 

of the comments referring to similarity, which were recorded during the sorting task (SI, 

Section 1 and 2 in S1 Results). The equivalence of semantic and property-related perception 

is additionally supported by a detailed comparison of the R2 values referring to visual 

properties and categories, provided in the SI, Section 3 in S4 Results. In western cultures, 

photographic representations are understood to include at least two levels of information, 

which either relate to the image object itself (the sorting card), or to the entity which it 

represents. Children become acquainted with this cultural habit from an early age (DeLoache, 

2011; Liben, 2003), and it might have been difficult for some participants to ignore the 

referent of the image but exclusively attend to its visual properties.  

Of the three categories, vegetation was the strongest predictor for similarity in children 

and adults. Vegetation had a very high impact in the HCAs at organizations of the images to 

only few clusters, indicating a domain-like differentiation (Figure 2.5). Such a differentiation 

is also reflected in the nMDS solutions (Figure 2.6, and SI, S4 Results). Further, when 

controlling for overall performance differences in the classification task, children had higher 

sensitivity for vegetation than adults did. These findings suggest that preschool children 

possess a superordinate category representation for plants (see e.g., Gelman, 2004) and add to 

previous findings that preschoolers have a rich conceptual representation of plants and their 

properties (Backscheider et al., 1993; Hickling & Gelman, 1995; Inagaki & Hatano, 1996; 

Nguyen & Gelman, 2002). Research with infants provides evidence that such rich 

representations start to develop very early in life. Infants treat plants differently than artifacts 

and other natural kinds (Elsner & Wertz, 2019; Mandler & McDonough, 1998b; Wertz & 
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Wynn, 2014; Włodarczyk et al., 2018) and rapidly learn about plant properties such as 

edibility (Wertz & Wynn, 2014, 2019). These results with infants suggest that they were able 

to visually distinguish the plants from the other types of entities which were used as stimuli in 

the studies. In the current study, an age effect was lacking in children for any of the visual 

properties within the assigned vegetation category (see SI, S5). That the categorization of 

what is assumed to be vegetation in the current study is only marginally influenced by the age 

of the child may also be explained by the particular importance of vegetation (see e.g., Wertz, 

2019).  

Yet, substantial changes within the visual cortex make a direct link between infants and 

preschool children difficult (Siu & Murphy, 2018). Moreover, many of the visual features of 

plants are still difficult for infants to perceive (Ellemberg et al., 1999; Skoczenski & Norcia, 

2002; Taylor et al., 2014). For example, depth cues, which were used by both children and 

adults in the current study to categorize vegetation, could also affect infant's visual 

categorization, albeit in a different way. Sensitivity to pictorial depth and coarse stereopsis is 

already present in infants around 6 months of age. However, fine stereopsis, which determines 

three-dimensional depth in the central visual area (where the plants were placed in some of 

the infant studies) continues to develop up into the school-age years (Giaschi et al., 2013; 

Kavšek et al., 2012). Therefore, future studies investigating whether infants rely on similar 

visual information when distinguishing naturalistic structures as those we have identified in 

the current study will be particularly informative.  

2.5.5 Limitations 

It might be argued that the images showing vegetation were perhaps more similar within 

their category than the images of the other categories. Consequently, this would have led to an 

increase in assembled vegetation images. Although we did not assess the impact of the true 

categories, but only the categories to which the images were assigned, this argument could 

still apply to the relatively large number of correctly classified images in children and adults. 

We therefore aimed to statistically evaluate whether the categories differed in the variance of 

properties they included by conducting an analysis of variance on the combined visual-

property values in the image data (see SI, S2 Results). The ANOVA did not reveal a main 

effect for the factor category: F(2, 8) = 1.1, p = .37, n.s; Means (SD) of artifacts = .09 (1.1), 

natural elements = -.14 (1), vegetation = .05 (.8). This analysis shows that statistically, there 

were no differences in the variance of the visual properties between the categories. 
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It should also be kept in mind that the results of the classification task do not provide 

absolute descriptors of properties relevant for the classification of artifacts, natural elements, 

and vegetation. The current results were obtained by comparing visual property values 

included in the assignment of a particular category to the values of the two remaining 

categories. The diagnostic properties which we found therefore depend on differences 

between the images selected for the three categories. However, by choosing superordinate 

categories which differ in several conceptual and functional aspects we hope to have extracted 

meaningful properties.  

Still, the selection of visual properties investigated here might have missed other 

properties that have a significant impact on categorization. For example, it could be argued 

that algorithms which mimic early-stage visual processing of textures (e.g., Portilla & 

Simoncelli, 2000) may have provided insight into substantial differences between children's 

and adults' perception of the images. However, we decided against the inclusion of this 

algorithm in the current study because our images were not well represented by it, and our 

restricted stimulus set was not suited for a necessary reduction of the variables obtained by 

the algorithm (for a similar argument see: Okazawa et al., 2015).  

Importantly, it should be noted that classification decisions may have also been affected 

by higher-level characteristics. For example, Figure 2.2 shows that of the stimuli from the 

natural elements category that children assigned to the vegetation category, crystals were the 

most-represented sub-category. Crystals are formed by crystal growth, which is visually 

reflected in their shape and resembles, to some degree, the growth of plants. Moreover, 

crystals might not be as familiar to children as other natural elements (e.g., pebbles or clouds). 

High-level characteristics were not assessed in the current study and might provide 

alternative, yet not mutually-exclusive, explanations for classification decisions. 

Our selection of images was aimed at providing the most lifelike stimuli that could be 

used with our participant age groups and the type of tasks that were being performed. 

However, it cannot be ruled out that the inherent absence of color, movement or binocular 

disparity, which are important visual cues for visual categorization in a naturalistic 

environment, strongly influenced the results. Nevertheless, textures, as mentioned above, also 

provide important visual information that substantially supports the segmentation and 

categorization of the environment. We therefore believe that our results provide important 

insight into the impact of immature vision on categorization. Future studies could investigate 

the role of cues like color and motion in processing naturalistic images. 
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2.6 Conclusion 

The current findings reveal visual properties that preschool children and adults use to 

distinguish complex naturalistic stimuli. Some visual properties were similarly included in 

categorization decisions by both age groups, but there were systematic differences which 

cannot be explained by noise. In general, children were less likely to include characteristics 

that relied on the analysis of detailed and distributed visual information. These findings 

suggest that immaturities of the developing visual system affect visual categorization through 

the preschool years.  

Of the categories assigned to images by the participant groups, vegetation was the 

strongest predictor of similarity in both age groups. Moreover, children were most sensitive to 

vegetation in the classification task, differing from adults who were most sensitive to artifacts. 

Children's strong sensitivity for vegetation is consistent with recent work showing that infants 

respond differently to plants than artifacts or natural elements. Studies of visual properties 

used to process naturalistic stimuli in infancy may be a particularly fruitful line of future 

inquiry.  

Finally, our findings suggest that during categorization, children flexibly draw upon 

visual signals when confronted with the ambiguity of complex naturalistic stimuli. 

The data underlying the statistical analysis of this study is accessible under the link 

https://osf.io/8xy5n/?view_only=6ddced286c31456fae7d20dd86e072e6.
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 Table S 2.1 Translations of the Instructions for the Sorting Task 

 

German Original English Translation 
 
Children 

 

„Hast Du Lust, mit mir zu spielen?“... 
Experimentator*in holt die Puppe. 

“Would you like to play a game with me?” - 
the Experimenter picks up the puppet. 
 

„Erst einmal erzähle ich eine Geschichte - 
von Uri. Das ist Uri!“  
Die Puppe wird gezeigt. Sie bewegt sich 
kurz und winkt. „Uri kann nicht sprechen, 
aber er kann fliegen! Weißt Du, was Uri für 
ein Tier ist?“ ...  „Ja, eine Fledermaus. Und 
weißt Du, wann Fledermäuse fliegen?“ ...  
„Genau, die fliegen, wenn es dunkel ist. Und 
dann sehen sie Sterne.” 

“First, I’m going to tell you a story about 
Uri. Here he is!” 
The puppet is shown to the child. The 
puppet is moved around and waves. “Uri 
can’t speak, but he can fly! Do you know 
what sort of animal Uri is?”…”Yes, he’s a 
bat! And do you know when bats normally 
fly?”…”Exactly, they fly when it’s dark. And 
in the dark, there are lots of stars in the 
sky.” 
 

"Uri lebt eigentlich in einer Welt, wo es ganz 
besondere Sterne gibt: Mustersterne! Und 
die vermisst Uri sehr.“ Puppe wird 
hingesetzt. 
„Mustersterne sind etwas ganz Besonderes: 
In ihren Strahlen haben sie Bilder, die sich 
ganz ähnlich sind, weil sie nämlich das 
gleiche Muster haben. Jeder Strahl hat ein 
anderes Muster. Und weil Uri selbst keine 
Mustersterne basteln kann, kannst Du das 
vielleicht für ihn machen. Ich habe mir ein 
Spiel ausgedacht, damit es für Dich 
einfacher ist. Hättest Du Lust, Uri zu 
helfen?“ 

“Now, Uri comes from a world where there 
are very special kinds of stars: patterned 
stars! And Uri misses them a lot.” The 
puppet is put back down. 
“Patterned stars are something special: 
their rays have little pictures in them, and 
these pictures look quite similar to one 
another because they have the same 
pattern. Every ray has a different pattern. 
Because Uri can’t make a patterned star 
himself, maybe you can make one for him. 
Would you like to help Uri?” 
 

„Siehst Du diese Karten? Da sind 
unterschiedliche Muster drauf.  
Du kannst mir jetzt zwei Karten zeigen, die 
sich ähnlich sehen, weil sie ein ähnliches 
Muster haben, dann legen wir die zwei 
zusammen, und das ist der Anfang vom 
ersten Strahl. 
 

“Do you see these cards? There are 
different patterns on them. For a start, give 
me two cards that look similar to one 
another. We’ll put those cards down beside 
one another, and that will be the start of the 
first ray.” 

Die Kinder fangen an. Die beiden 
kombinierten Karten werden als Paar 
beiseitegelegt, und eine neue Karte (oder 
bei Bedarf auch mehrere neue Karten) 
füllen die Lücken. Immer wieder sollten - in 
Sätze eingebaut - die Hinweise kommen: 
Strahlen mit Bildern, die sich ähnlich sind ... 

The children begin the game. The first set 
of combined cards are set down as a pair, 
and a new card (or if necessary multiple 
new cards) fill the gaps. Again and again 
the experimenter should—built into 
appropriate sentences—repeat the 
following sorts of hints: “rays with pictures 
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Bilder, die gleiche Muster haben ... ein 
schöner Musterstern mit langen Strahlen 
usw. 
Evtl. der Hinweis: „Es ist gar nicht wichtig, 
was für Dinge oder Sachen auf den Karten 
sind, Uri geht es nur um die Muster.“  
Falls nur 2er-Paare gefunden werden wird 
darauf hingewiesen, dass die Strahlen auch 
aus mehr Karten bestehen können. Das 
Kind spielt so lange weiter, bis es nicht 
mehr möchte oder die Karten verbraucht 
sind.  

that look similar”…”pictures with the same 
pattern”…”a nice star should have long 
rays” and so forth.  
Eventually the experimenter may say “it’s 
not at all important what the things in the 
pictures are—Uri is only interested in the 
pattern.” 
In the case of the child only setting down 2-
card groups/rays they will be reminded that 
they can put more cards onto the rays that 
are already there. The child plays the game 
until they no longer want to, or until all the 
cards are used up. 

„Oh, das sind schöne Muster! Uri, gefallen 
sie Dir? Freust Du Dich über diesen 
Musterstern?“  
Uri fliegt über die Karten und bedankt sich 
dann durch nicken. 

“Oh, what lovely patterns! Uri, do you like 
it? Does this star make you happy?” 
Uri flies over the cards and thanks the child 
by nodding.  
 

 
Adults 

 

„Wir möchten Sie bitten, Karten, die ich 
Ihnen gleich geben werde, mit Karten 
zusammen zu legen, denen sie visuell 
ähnlich erscheinen.  
Die Gründe, weshalb Sie etwas visuell 
ähnlich empfinden entscheiden Sie selbst. 
Dabei ist es nicht wichtig, welche 
Gegenstände auf den Karten abgebildet 
sind - die Karten, welche am ähnlichsten 
aussehen, kommen zusammen in eine 
Gruppe. Die Größe einer Gruppe ebenso 
wie die Anzahl der entstandenen Gruppen 
hängt davon ab, wie viele Karten Sie jeweils 
als ähnlich empfinden. Da gibt es keine 
Vorgaben. Haben Sie Fragen dazu?“ 
 

“We ask you to lay down cards—which I 
will give to you shortly—with other cards on 
the basis of how visually similar they are.  
What it is for them to be “visually similar” is 
something you decide for yourself. It’s not 
at all important what objects are depicted 
on the cards—if cards strike you as similar, 
you put them together in a group. The size 
of these groups and the number of those 
groups both depend on how similar you 
find the cards. There are no other 
requirements.  
Have you any other questions?” 
 

„Sie können mit Paaren von 2 ähnlichen 
Karten beginnen, und später noch andere 
passende Karten dazu legen, so dass die 
Gruppen größer werden.“ 
(Es sollten keine Fragen beantwortet 
werden, welche sich auf die Motive 
beziehen) 
 

 “You can start with pairs of two similar 
cards, and later add other matching ones to 
make the group bigger.” 
(The experimenter cannot answer 
questions relating to the images' identities) 
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2.8.1 S1 Results Questionnaires 

2.8.1.1 Adults' Questionnaire on their Criteria for Assembling Images.  

After the finishing the sorting task, adult participants received a questionnaire asking 

about criteria underlying their similarity judgments. Adults were asked a) to provide terms 

which described image similarity within their image groups in general (question 1), and b) to 

choose two to three of their assembled image groups and describe image similarity within 

each of these groups (question 2a-c).  

We coded the answers by noting if they included terms which belonged to one of four 

qualities, defined by the variables:  

• Appearance–descriptions of pattern, shape, or grey tone. 

• Entity–labels of depicted objects. 

• Haptic–adjectives which describe experiences with the depicted objects. 

• Paraphrases, which include labels of entities (e.g. "leave-like", "rock-pattern").  

We then calculated the proportion in which each quality contributed to similarity 

decisions. This was done by dividing the total of cases in which the particular quality was 

mentioned by the total of all mentioned qualities. We only included answers to question 2 

because some of the general criteria were difficult to understand, and because answers to 

question 1 included terms which were repeated in the examples of question 2. The results are 

shown in Table S 2.2. 

 

Table S 2.2 Qualities included in adults' answers 
Quality Frequency Proportion 

Appearance 152 0.55 

Entity 76 0.27 

Haptic 17 0.06 

Paraphrase 33 0.12 

 

2.8.1.2 Children's Comments during Similarity Sorting 

In order to assess children's criteria on what they perceived as similar, we had video-

recorded children during the sorting task. If caregivers did not agree to video-recording, we 
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had taken notes of children's spontaneous comments on the images during the sorting task. 

We then coded all comments by first separating them according to the context in which they 

occurred, and the intention we assumed behind the comment (e.g. describing similarity 

between images versus naming an object or describing an impression independent of 

similarity to another image). In the analysis of the comments, we only included those that 

referred to the similarity between images. Because the quality of the terms children used were 

more difficult to categorize than those of adults, we only assessed the qualities: a) appearance, 

and b) entity because they were of great interest for our analysis. Their frequencies and 

proportions are shown in Table S 2.3. The assessment of criteria determining similarity 

indicates that children and adults attended to visual appearance as well as the depicted entities 

during the sorting task. 

 

Table S 2.3 Qualities included in children's comments 
Quality Frequency Proportion 

Appearance 53 .62 

Entity 33 .38 
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2.8.1.3  Analysis of Questionnaires on Prior Exposure to the Categories  

After the experiments, a questionnaire was given to the adult participants or the 

caregivers of the children which asked about frequencies of prior exposure to each of the 

categories: artifacts, natural elements, and vegetation. The questionnaires were developed for 

the present study. They included questions about exposure to the categories due to activities 

which the participant him- or herself performed, or exposure to activities a participant 

passively experienced—for example, when the partner of an adult or a child's parent was 

involved in the activities. We also assessed general exposure to pictures or picture books, and 

exposure to more abstract, computer-related activities such as text processing. These more 

general questions were expected to indicate visual exposure to two dimensional visual 

information, which differs from that of the naturalistic environment. For each of the 

questions, five possible frequencies could be chosen. These were: a) more than 4 times a 

week; b) 1 - 4 times a week; c) 1 - 4 times a month; d) less than once a month; c) never.  

We then averaged the frequencies over active and passive exposures and correlated the 

averages with performance data of the classification task (i.e., the sensitivity measure dprime) 

separately for each of the categories depicted in the images. No significant correlations were 

found between exposure frequencies and sensitivity for a particular category after adjusting p-

values (Benjamini & Hochberg, 1995). However, when correlating participants overall 

sensitivity values with frequencies of general exposure to pictures or picture books, we found 

that more frequent exposure to activities including pictures and picture books led to lower 

sensitivity for the categories depicted in the study's images in children (Spearman’s r(223) = -

.19, p = .02), but not in adults. Exposure to abstract, computer-related activities was not 

significantly related to sensitivity in children or adults. One possible explanation for this 

finding could be that children who spend much time with children's books learn graphical 

versions of entities, which do not include visual information as it is useful for the perception 

of photographs. Additionally, the more time a child spends with picture books and pictures, 

the less outdoor activities this child is exposed to. In contrast to what one might expect, 

frequent visual exposure to pictures did therefore not lead to an increase in the ability to 

perceive two-dimensional visual information. Future studies could compare the effect of 

frequent exposure to graphics designed for children with the effect of frequent outdoor 

activities on developing perceptual abilities. Moreover, this finding questions the validity of 

graphical representations of natural entities in categorization studies conducted with young 

children. 
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2.8.2 S2 Results Materials.  

2.8.2.1 Prediction of the True Categories in our Image Set 

In order to determine visual properties which were additionally included in participants' 

decisions during classification although they did not predict categories in our images, or 

which were not included by participants although they did predict category membership in 

our image data, we assessed which visual properties statistically predicted the category 

membership in our image set.  

For each of the three categories, separate GLMs were conducted (R-function glm, R Core 

Team, 2019) on the visual properties of the 60 images used in our study. The binary 

dependent variables (DV) indicated if an image depicted the respective category or not (1, 0). 

We assessed the significance of visual properties by including each visual property 

individually in a model, resulting in 10 tests (see Section 2.4 Results, Statistical Analysis in 

the main text).  and adjusted p-values with the method Benjamini and Hochberg (1995). 

Figure S 2.1 shows the distribution of visual properties as a function of the categories 

depicted in the images. Significant main effects are indicated by asterisks. Coefficients for all 

visual properties are provided in Table S 2.4. 
 

 
 

Figure S 2.1: Visual properties as function of the images' categories.  
Visual properties are z-standardized and averaged over true categories. 
* adjusted p < .05, assessed in the GLM, Table S 2.4. 
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Table S 2.4 Category membership of the images predicted by visual properties  
 True categories 

 Artifacts Natural Elements Vegetation 

Property Log-odds CI low High a Log-odds CI low High a Log-odds CI low High a 

Curvature 0.46 -0.10 1.02 -0.37 -0.93 .19 -0.09 -0.63 0.45 

Depth -0.51 -1.07 0.05 -0.29 -0.84 .25 0.99* 0.27 1.70 

Gloss 0.21 -0.32 0.74 0.18 -0.35 .71 -0.46 -1.09 0.18 

Regularity 0.13 -0.41 0.67 -0.52 -1.11 .07 0.35 -0.20 0.90 

Size -0.44 -1.00 0.11 0.29 -0.28 .86 0.17 -0.39 0.72 

Symmetry 0.38 -0.18 0.95 -1.13** -1.81 -.45 0.67 0.06 1.27 

Alpha -0.78* -1.44 -0.12 0.93* 0.26 1.59 -0.14 -0.69 0.41 

Deviation 0.87* 0.25 1.49 -0.72 -1.39 -.06 -0.20 -0.76 0.36 

Coocor 0.40 -0.27 1.06 -0.44 -1.00 .11 0.13 -0.44 0.70 

Skew 0.70* 0.10 1.29 -0.28 -0.86 .31 -0.48 -1.11 0.16 

* adjusted p < .05; ** adjusted p <.01 (method: Benjamini and Hochberg, 1995) 
a Confidence intervals with low = 2.5%, high = 97.5%. 
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2.8.2.2 Correlations between Visual Properties in the Image Set 

The visual properties we chose for the current study statistically relate to each other, 

indicated by correlations between some visual properties in our image set. We still decided 

not to agglomerate the correlating properties because a) they were chosen for theoretically 

distinct reasons, and b) even the members of highly correlating property pairs (i.e., alpha-

CooCor, or regularity-symmetry) were found to be included very differently in the 

categorization decisions of the participant groups and led to distinct significance patterns 

between the categories. This important information would have been obscured by including 

for example the principle component of property pairs (see main Result section for further 

discussion on this decision). We present the correlation matrix of the visual properties in 

Figure S 2.2. 

 
Figure S 2.2: Correlation matrix of visual properties included in our image set.  
Numbers are Pearson correlation coefficients including the data of 60 images. 
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2.8.3 S3 Results Classification Task 

The following tables include all results of the GLMMs conducted individually on visual 

properties and assigned categories. 

 

Table S 2.5 Visual Properties Predicting Assigned Categories in Children 

 Assigned categories children 

 Artifacts Natural elements Vegetation 

Property Log-Odds CI low high a Log-Odds CI low high a Log-Odds CI low high a 

Curvature .38 -.11 .87 -.08 -.48 .32 -.24 -.85 .37 

Depth -.69* -1.16 -.22 -.44 -.83 -.05 1.15** .60 1.69 

Gloss .27 -.22 .76 .01 -.39 .41 -.27 -.88 .35 

Regularity .05 -.45 .55 -.21 -.60 .19 .22 -.39 .83 

Size -.51 -1.0 -.03 .16 -.25 .56 .32 -.29 .93 

Symmetry .16 -.34 .65 -.65** -1.01 -.28 .44 -.16 1.05 

Alpha -.32 -.81 .17 .49 .11 .87 -.06 -.67 .54 

Deviation .80** .35 1.25 -.18 -.58 .22 -.64 -1.24 -.05 

CooCor .06 -.44 .56 -.32 -.71 .07 .13 -.47 .74 

Skew .71* .25 1.17 -.11 -.52 .29 -.65 -1.25 -.05 

 
* adjusted p < .05. ** adjusted p <.01, (method: Benjamini and Hochberg, 1995). 
a Confidence intervals with low = 2.5%, high = 97.5%. 
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Table S 2.6 Visual Properties Predicting Assigned Categories in Adults 
 Assigned categories adults 

 Artifacts Natural elements Vegetation 

Property Log-Odds CI low high a Log-Odds CI low high a Log-Odds CI low high a 

Curvature 3.0* .85 5.14 -.33 -1.73 1.08 -1.64 -3.85 .58 

Depth -.68    -2.99     1.63 -1.37 -2.81 .07 2.93** 1.17 4.70 

Gloss 1.33 -2.32 4.99 .42 -.97 1.81 -.59 -2.56 1.38 

Regularity .76 -1.81 3.34 -.83 -2.28 .62 .26 -1.72 2.23 

Size -3.05* -5.26 -.85 .34 -1.06 1.74 1.04 1.04 1.04 

Symmetry 2.28 -.64 5.19 -2.81** -4.16 -1.46 1-06 -.83 2.95 

Alpha -3.04* -5.12 -.97       1.89* .61 3.18 -.30 -2.20 1.60 

Deviation 3.72** 1.60 5.84 -.99 -2.37 .38 -2.21* -4.08 -.34 

CooCor 2.08 -.34 4.49 -1.26 -2.59 .07 .31 -1.43 2.06 

Skew 4.54* 1.48 7.60 -.97 -2.47 .54 -2.66** -4.34 -.99 

 
* adjusted p < .05. ** adjusted p <.01, (method: Benjamini and Hochberg, 1995) 
a Confidence intervals with low = 2.5%, high = 97.5%. 
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Table S 2.7 Visual Properties, Participant Groups, and Their Interaction Predicting 

Assigned Categories 
 Assigned categories group interaction 

 Artifacts Natural elements Vegetation 

Property Log-Odds CI low high a Log-Odds CI low high a Log-Odds CI low high a 

Group [c] (Curvature) -.01 -.26 .24 -.19 -.45 .06 .24 -.07 .56 
Curvature  .57 -.10 1.24 -.23 -.79 .33 -.23 -.99 .52 
Curvature × Group [c] -.18 -.37 .02 .17* .01 .34 -.05 -.25 .14 

Group [c] (Depth) -.06 -.31 .19 -.19 -.44 .07 .29 -.03 .60 
Depth -.76 -1.42 -.11 -.66* -1.20 -.11 1.46** .78 2.14 
Depth × Group [c] -.08 -.28 .11 .18* .00 .36 -.23 -.45 -.01 

Group [c] (Gloss) -.06 -.30 .19 -.16 -.42 .10 .24 -.08 .55 
Gloss .25 -.42 .92 .22 -.34 .78 -.52 -1.28 .24 
Gloss × Group [c] .11 -.07 .29 -.25* -.42 -.09 .30* .09 .52 

Group [c] (Regularity) -.03 -.28 .22 -.17 -.43 .09 .25 -.07 .56 
Regularity .18 -.50 .86 -.54 -1.10 .01 .50 -.26 1.25 
Regularity × Group [c] -.18 -.35 -.00 .38** .21 .55 -.32** -.52 -.12 

Group [c] (Size) -.04 -.29 .21 -.21 -.46 .05 .27 -.05 .59 
Size -.66 -1.33 -.00 .26 -.30 .83 .21 -.54 .97 
Size × Group [c] .05 -.14 .24 -.18* -.36 -.00 .21 .00 .42 

Group [c] (Symmetry) -.02 -.27 .23 -.11 -.37 .15 .22 -.09 .54 
Symmetry .54 -.14 1.22 -1.40** -1.92 -.89 .85 .11 1.60 
Symmetry × Group [c] -.50** -.69 -.31 .76** .58 .95 -.48** -.69 -.27 

Group [c] (Alpha) -.00 -.25 .25 -.14 -.40 .12 .24 -.07 .56 
Alpha -1.02* -1.70 -.34 1.19** .65 1.73 -.18 -.93 .57 
Alpha × Group [c] .81** .60 1.02 -.76** -.95 -.57 .15 -.06 .35 

Group [c] (Deviation) .03 -.22 .28 -.20 -.45 .06 .23 -.09 .54 
Deviation 1.19** .57 1.81 -.60 -1.15 -.04 -.46 -1.20 .28 
Deviation × Group [c] -.30** -.48 -.12 .50** .33 .67 -.39** -.60 -.18 

Group [c] (CooCor) -.01 -.26 .24 -.18 -.43 .08 .25 -.07 .56 
CooCor .52 -.17 1.21 -.70* -1.25 -.15 .19 -.56 .93 
CooCor × Group [c] -.57** -.80 -.34 .41** .23 .58 -.04 -.22 .15 

Group [c] (Skew) .01 -.24 .25 -.19 -.45 .07 .26 -.06 .58 
Skew 1.23** .60 1.87 -.39 -.95 .17 -.95 -1.70 -.21 
Skew × Group [c] -.45** -.63 -.26 .33** .14 .52 .23 .00 .45 

 
* adjusted p < .05. ** adjusted p <.01, (method: Benjamini and Hochberg, 1995). 
a Confidence intervals with low = 2.5%, high = 97.5%. 
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2.8.4  S4 Results Sorting Task 

2.8.4.1 The Course of Visual Property Variance during the Cluster Agglomeration Process 

HCA Children. Figure 2.6 (top row) of the main result section shows the proportion of 

variance explained by the visual properties as a function of the height of the dendrogram. The 

top left of Figure 2.6 illustrates the development of explained variance for children. At the 

origin of the children's x-axis, each of the 60 images belonged to an individual cluster, 

resulting in values of R2 = 1 (in the centered R2 values used in the figure the information of 

overall explained variance is not included anymore, so R2 values are zero). With increasing 

height, the agglomeration of the images to clusters reduced R2 values. According to visual 

inspection, explained variance of the individual visual properties first developed 

homogenously, but became more distinct at height .75 when images were merged to 30 

clusters. At height .9 (23 Clusters), which includes sizes of clusters approximately 

corresponding to the actual mean of sorted image group sizes, visual properties reached a 

point of high variability. Here, Regularity, Depth and Skew had the highest impact on 

children's similarity perception with values of R2 > .61, while Alpha had the lowest impact 

with R2 =.33. This changed at the second region of high variability between height 1.05 and 

1.25 (14 to 9 clusters). While Depth had remained the property with the highest impact with 

R2 > .6, Deviation and CooCor (both R2 = .36) elevated above Regularity and Skew. The 

impact of Gloss decreased below all properties to R2 =.1. Depth, Deviation and CooCor 

shared their high impact until height 1.6 (3 clusters), from where on variability of the 

properties diminished. 

HCA Adults. The impact of visual properties on adults' sorting decisions is depicted in 

Figure 2.6 top right. At zero height, the visual property values already varied due to the above 

described instantaneous agglomeration, leading to R2 values between 1 and .92. They then 

continued in a very similar order, arriving at a first region of high variability between heights 

.65 and .75 (21 to 19 clusters). Here, regularity had the highest impact with R2 > .72, whereas 

the lowest value belonged to gloss (R2 < .26). Within the next region of high variability 

(height .9 to 1.1, 16 to 12 clusters), the visual properties separated into a high and a low 

impact group. In the group with the impact, regularity, symmetry and area similarly explained 

the most variance (R2 > .55), while in the group with lower impact gloss remained at the 

lowest level with R2 < .22. Beyond this region, area elevated above the other properties, 
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replaced by depth at height 1.9 (3 clusters), which remained at the elevated position until 

maximum height.  

2.8.4.2 R2 values of the Agglomeration Process HCA 

This data is uploaded to: 

https://osf.io/8xy5n/?view_only=6ddced286c31456fae7d20dd86e072e6 

file: Explained_Similarity_HCA_sorttask_public.txt 
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2.8.4.3 Contrasts of the ANOVAs on the HCA R2 values: 

Table S 2.8 Tukey's HSD Contrasts of R2 Visual Properties, Children's HCA 
Contrast Difference CI low CI high a adjusted p 

Deviation-Alpha .054 .027 .08 <.001 

CooCor-Alpha .072 .046 .099 <.001 

Curve-Alpha .011 -.015 .038 .944 

Depth-Alpha .149 .122 .175 <.001 

Gloss-Alpha -.009 -.036 .017 .986 

Regularity-Alpha .106 .079 .132 <.001 

Size-Alpha .046 .02 .073 <.001 

Skew-Alpha .113 .087 .14 <.001 

Symmetry-Alpha .046 .019 .072 <.001 

CooCor-Deviation .018 -.008 .045 .469 

Curve-Deviation -.043 -.069 -.016 <.001 

Depth-Deviation .095 .068 .121 <.001 

Gloss-Deviation -.063 -.089 -.036 <.001 

Regularity-Deviation .052 .026 .079 <.001 

Size-Deviation -.008 -.034 .019 .996 

Skew-Deviation .06 .033 .086 <.001 

Symmetry-Deviation -.008 -.034 .019 .995 

Curve-CooCor -.061 -.087 -.034 <.001 

Depth-CooCor .077 .05 .103 <.001 

Gloss-CooCor -.081 -.108 -.055 <.001 

Regularity-CooCor .034 .007 .06 .002 

Size-CooCor -.026 -.052 .001 .063 

Skew-CooCor .041 .015 .068 <.001 

Symmetry-CooCor -.026 -.053 0 .059 

Depth-Curve .137 .111 .164 <.001 

Gloss-Curve -.02 -.047 .006 .311 

Regularity-Curve .095 .068 .121 <.001 

Size-Curve .035 .009 .061 .001 

Skew-Curve .102 .076 .129 <.001 
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(continues: Table S 2.8) 

Contrast Difference CI low CI high a adjusted p 

Symmetry-Curve .035 .008 .061 .001 

Gloss-Depth -.158 -.184 -.131 <.001 

Regularity-Depth -.043 -.069 -.016 <.001 

Size-Depth -.102 -.129 -.076 <.001 

Skew-Depth -.035 -.062 -.009 .001 

Symmetry-Depth -.103 -.129 -.076 <.001 

Regularity-Gloss .115 .088 .141 <.001 

Size-Gloss .055 .029 .082 <.001 

Skew-Gloss .122 .096 .149 <.001 

Symmetry-Gloss .055 .029 .082 <.001 

Size-Regularity -.06 -.086 -.033 <.001 

Skew-Regularity .007 -.019 .034 .996 

Symmetry-Regularity -.06 -.086 -.033 <.001 

Skew-Size .067 .041 .094 <.001 

Symmetry-Size 0 -.027 .026 1 

Symmetry-Skew -.067 -.094 -.041 <.001 

 

 

 

Table S 2.9 Tukey's HSD Contrasts of R2 Assigned Categories, Children's HCA 

Contrast Difference CI low CI high a adjusted p 

N_Elements-Artifacts 0 -.026 .025 .999 

Vegetation-Artifacts .066 .041 .091 <.001 

Vegetation-N_Elements .066 .041 .092 <.001 
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Table S 2.10 Tukey's HSD Contrasts of R2 Visual Properties, Adults' HCA 
Contrast Difference CI low CI high a adjusted p 

Deviation-Alpha .131 .097 .164 <.001 

CooCor-Alpha -.012 -.045 .022 .981 

Curve-Alpha .12 .087 .153 <.001 

Depth-Alpha .113 .08 .147 <.001 

Gloss-Alpha -.078 -.111 -.045 <.001 

Regularity-Alpha .174 .141 .207 <.001 

Size-Alpha .1 .067 .134 <.001 

Skew-Alpha .068 .034 .101 <.001 

Symmetry-Alpha .157 .124 .191 <.001 

CooCor-Deviation -.143 -.176 -.109 <.001 

Curve-Deviation -.011 -.044 .023 .99 

Depth-Deviation -.018 -.051 .016 .802 

Gloss-Deviation -.209 -.242 -.176 <.001 

Regularity-Deviation .043 .01 .077 .002 

Size-Deviation -.03 -.064 .003 .109 

Skew-Deviation -.063 -.097 -.03 <.001 

Symmetry-Deviation .026 -.007 .06 .27 

Curve-CooCor .132 .099 .165 <.001 

Depth-CooCor .125 .092 .158 <.001 

Gloss-CooCor -.066 -.1 -.033 <.001 

Regularity-CooCor .186 .153 .219 <.001 

Size-CooCor .112 .079 .146 <.001 

Skew-CooCor .08 .046 .113 <.001 

Symmetry-CooCor .169 .136 .202 <.001 

Depth-Curve -.007 -.04 .026 1 

Gloss-Curve -.198 -.232 -.165 <.001 

Regularity-Curve .054 .021 .087 <.001 

Size-Curve -.02 -.053 .014 .692 

Skew-Curve -.052 -.086 -.019 <.001 

Symmetry-Curve .037 .004 .071 .016 

Gloss-Depth -.191 -.225 -.158 <.001 

Regularity-Depth .061 .027 .094 <.001 

Size-Depth -.013 -.046 .021 .971 

 



2  Study 1: Grass and Gravel 
 

 84 

(continuous: Table S 2.10) 

Contrast Difference CI low CI high a adjusted p 

Skew-Depth -.045 -.079 -.012 .001 

Symmetry-Depth .044 .011 .077 .001 

Regularity-Gloss .252 .219 .286 <.001 

Size-Gloss .179 .145 .212 <.001 

Skew-Gloss .146 .112 .179 <.001 

Symmetry-Gloss .235 .202 .269 <.001 

Size-Regularity -.074 -.107 -.04 <.001 

Skew-Regularity -.106 -.14 -.073 <.001 

Symmetry-Regularity -.017 -.05 .017 .847 

Skew-Size -.033 -.066 .001 .062 

Symmetry-Size .057 .023 .09 <.001 

Symmetry-Skew .089 .056 .123 <.001 

 

 

Table S 2.11 Tukey's HSD Contrasts of R2 Assigned Categories, Adults' HCA 

Contrast Difference CI low CI high a adjusted p 

N_Element-Artifact .031 .008 .059 .006 

Vegetation-Artifact .081 .057 .105 <.001 

Vegetation- N_Element .049 .025 .073 <.001 

 

 

Table S 2.12 Tukey's HSD Contrasts of R2 Children and Adults, Visual Properties 
Contrast Difference CI low CI high a adjusted p 

Children-Adults -.045 -.051 -.039 <.001 

Alpha:Children-Alpha:Adults -.027 -.061 .007 .372 

Deviation:Children-Deviation:Adults -.104 -.138 -.07 <.001 

CooCor:Children-CooCor:Adults .057 .023 .091 <.001 

Curve:Children-Curve:Adults -.136 -.17 -.101 <.001 

Depth:Children-Depth:Adults .009 -.026 .043 1 

Gloss:Children-Gloss:Adults .042 .008 .076 .002 

Regularity:Children-Regularity:Adults -.095 -.129 -.061 <.001 

Size:Children-Size:Adults -.081 -.115 -.047 <.001 

Skew:Children-Skew:Adults .019 -.015 .053 .921 

Symmetry:Children-Symmetry:Adults -.138 -.172 -.104 0 
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Table S 2.13 Tukey's HSD Contrasts of R2 Children and Adults, Assigned Categories 

Contrast Difference CI low CI high a adjusted p 

N_Element -Artifact -.016 -.001 .032 .072 

Vegetation-Artifact -.074 -.057 -.090 <.001 

Vegetation- N_Element -.058 -.041 -.075 <.001 

 
a Confidence intervals of table 7–13 with low = 2.5%, high = 97.5% 
 
 

2.8.4.4 Can Variance of Visual Properties be Separated from Variance of Assigned 

Categories in the Sorting Task? 

We assessed and presented R2 values of visual properties and of assigned categories– 

both are indicating their impact on the participant's similarity decisions (Figure 2.5). One can 

argue that assigned categories and visual properties are not independent of each other, and 

that it is not clear whether participants attended to the category of an image, or the visual 

properties which are predicting the category. If categories were primarily attended to, then the 

R2 values of the visual properties should develop in patterns which are congruent to those 

provided by the R2 values of the categories. We therefore evaluated the relationship between 

assigned categories and visual properties by visual inspection and did not find a clear 

relationship. For example, children predominantly relied on Depth, Skew and Deviation in 

their assignment of artifacts and vegetation. In the sorting task, these properties had elevated 

impact on similarity perception in accordance with higher values of assigned vegetation and 

artifacts above natural elements (height 1.1 to 1.2). This gives the impression that visual 

properties illustrate the impact of assigned categories. However, around height 1.4 (6 

clusters), when vegetation is elevated high above the other properties, predictors of assigned 

vegetation only play a secondary role, while Alpha–which predicted natural elements–

increased its impact. Concerning the general sequence, we found that Symmetry which was 

predicting children's assignment to natural elements and vegetation only played a minor role 

in their similarity decisions. In contrast, CooCor which was not found to predict category 

assignment, explained a moderate to high proportion of variance during the children's 

clustering hierarchy, compared to the other properties. This inspection gives the impression 

that assigned categories and visual properties do not play an exclusive role for similarity 

judgments, but were attended in parallel. 

Visual inspection of the relationship between assigned categories and visual properties in 

the adult sorting task did not reveal a clear overlap. Recall that depth, skew and area had been 
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found to predict adults' assignment to vegetation. Between height 1.7 and 2.6 (5 to 2 clusters), 

depth and area were elevated in parallel to assigned vegetation. However, skew generally had 

a minor impact on similarity perception in adults. Moreover, regularity, which did not reach 

significance in the adults' classification task, was one of the properties with the highest impact 

in the sorting task (Figure 2.8). As with children, these examples show that the impact of 

particular visual properties cannot be fully attributed to participants' inclusion of assigned 

categories.   

Nevertheless, we cannot exclude that relationships exist which cannot be observed in this 

way. Alternative explanations of the partial overlap are discussed in the discussion part of the 

main text.  
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2.8.5 S5 Additional Analysis: The Effect of Children's Age on the Inclusion of Visual 

Properties during Classification 

During the analysis of the classification task, we compared which visual properties 

predicted the assignment of categories in children and adults. We had included the covariate 

age in the analysis of the children's classification task, because of its significant impact on a 

child's general performance in this task (i.e., Spearman correlation of correctly identified 

images; r(226) = .21, p < .001). The findings indicated that some visual properties which 

relied on detailed visual information were not included in an adult-like way by children. To 

receive better understanding of this finding, we decided to analyze the relationship between 

the inclusion of a visual property and the age of a child. This analysis could show, if younger 

children were including less visually-detailed information in their decisions than older 

children and support our interpretation. We ran additional GLMMs including the continuous 

variables age, visual property, and the interaction term Age × Visual Property. We ran 

separate models for each of the assigned categories and each particular visual property 

(further information about procedures and software are provided in the main result section). 

After adjusting p-values (Benjamini & Hochberg, 1995), we found significant interactions 

between age and visual property for the visual properties regularity, size, and symmetry on 

both of the assigned categories artifacts and natural elements, and, moreover, for the visual 

properties curvature, area and CooCor on artifacts (all p < .05). No properties led to an 

interaction with age on assigned vegetation. The directions of the effects are shown in Figure 

S 2.3. 

These results indicate that with regard to images of artifacts and natural elements, 

preschool children's inclusion of some visual properties drawn upon during categorization 

changed with age. Moreover, depth and skew, which were the strongest predictors of 

children's similarity judgments and did not differ between adults and children in the sorting 

task also do not show differences between younger and older children during classification.  

Visual properties included in the assignment of images to vegetation did not differ 

between younger and older children. This may be explained by the particular importance of 

vegetation (see e.g., Wertz, 2019). An additional explanation could be that visual properties–

except depth–were only included randomly in children's assignment to the vegetation 

category and therefore showed no interactions with age. In contrast, depth, which was the 

mayor predictor of vegetation, had the same impact on all children's classification decisions.  
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Figure S 2.3: Visual Properties as Function of Children's Age and Assigned Category. 
Note. Error bars are SE. 
* adjusted p < .05 (method: Benjamini and Hochberg, 1995).  
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3.1 Abstract 

During infant eye-tracking, fussiness caused by the repetition of calibration stimuli and 

body movements during testing are frequent constraints on measurement quality. Here, we 

systematically investigated these constraints with infants and adults using EyeLink 1000 Plus. 

We compared looking time and dispersion of gaze points elicited by stimuli resembling 

commonly used calibration animations. The adult group additionally performed body 

movements during gaze recording that were equivalent to movements infants spontaneously 

produce during testing. In our results, infants’ preference for a particular calibration target did 

not predict data quality elicited by that stimulus, but targets exhibiting the strongest contrasts 

in their center or targets with globally distributed complexity resulted in the highest accuracy. 

Our gaze measures from the adult movement tasks were differentially affected by the type of 

movement as well as the location where the target appeared on the screen. These 

heterogeneous effects of movement on measures should be taken into account when planning 

infant eye-tracking experiments. Additionally, to improve data quality, infants’ tolerance for 

repeated calibrations can be facilitated by alternating between precise calibration targets. 
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3.2 Introduction 

Many insights into infant development are based on the study of gaze behavior. Eye-

tracking technology allows an increasingly more detailed analysis of infant gaze behavior and 

is used to investigate a wide range of phenomena, such as categorization, object and face 

perception, and social cognition (for reviews see e.g., Aslin, 2007; Gredebäck, Johnson, & 

von Hofsten, 2009; Oakes, 2012). While the availability of high temporal and spatial 

measuring resolution expands the possible experimental designs and dependent measures, 

typical problems that might occur during infant eye-tracking can markedly effect data quality. 

Therefore, researchers must remain cautious to avoid overestimating its measurement 

accuracy (Aslin, 2012) and continue to address the inherent challenges of infant eye-tracking 

(Oakes, 2012).  

The major challenges are body movements or inadequate looking behavior during 

calibration and during the later stages of the experiment. Haith (2004) estimated that an 

average of 50% of infants recruited for eye-tracking studies did not provide usable data as a 

result of such failures. In cases where individual infants are not fully excluded from the 

datasets, rejected trials of otherwise acceptable individual performance increase the 

proportions of unusable data (for procedures to reduce data loss in post hoc data optimization, 

see Leppänen, Forssman, Kaatiala, Yrttiaho, & Wass, 2015, for Tobii systems; Renswoude et 

al., 2018, for EyeLink technology).  

A comparison of data quality in infant eye-tracking based on exclusion rates alone is 

difficult because exclusion criteria are adjusted according to the sensitivity of the phenomena 

under investigation. For example, psychophysical investigations that are sensitive to stability 

of gaze might be particularly prone to confounds related to differences in body movement, 

making more conservative exclusion boundary values necessary (e.g., an average calibration 

error of <1° or a data yield >80%; Alahyane et al., 2016). Infant studies that include data from 

adult participants often also employ more conservative exclusion boundaries to facilitate 

comparisons across differentially behaving participant groups (e.g., a data yield >80%; 

Morgante, Zolfaghari & Johnson, 2012). Similarly, studies that assess infants’ attention to the 

details of an image depend on high spatial accuracy to produce interpretable results (e.g., 

Constantino et al., 2017). In contrast, studies that assess attention to larger visual targets that 

are clearly separated in the visual field can achieve valid data in spite of higher calibration 

errors or lower proportions of recorded gaze (e.g., Kulke, Atkinson, & Braddick, 2015; 



3  Study 2: Infant Eye-tracking Data Quality 
 

 92 

LoBue, Buss, Taber-Thomas, & Pérez-Edgar, 2017). Despite the diverse demands of different 

experimental paradigms on data resolution, all approaches to infant eye-tracking would 

benefit from the following: (1) infant participants who are more attentive throughout the 

experimental session, and (2) enhanced measurement accuracy. 

The present study therefore targets the most common pitfalls of infant eye-tracking: the 

calibration procedure and body movement during remote mode recording. We compared 

several animated calibration targets for their attractiveness to infants and their ability to direct 

infants’ gaze to their centers. Enhancing the calibration stimuli and procedures used during 

this essential part of data collection will lead to more reliable recordings. In addition, we 

systematically investigated the ways in which body and head movements affect the accuracy 

of gaze recordings. More knowledge about the impact of these factors can help elucidate the 

best steps to take during and after data recording and adapt experimental procedures 

accordingly.  

3.2.1 Infant Calibration Targets 

The accuracy of infant eye-tracking data relies to a large extent on calibration quality 

(Gredebäck et al., 2009; Oakes, 2012). In standard adult calibration procedures, adults are 

explicitly instructed to fixate 5 to 13 point-like visual targets as precisely as possible. Infants 

of course cannot be instructed in this way. Instead, infants’ spontaneous attention needs to be 

captured and held by animated calibration targets. Further, infants are commonly expected to 

perform calibrations with only 5 to 6 targets because of their limited attention span 

(Gredebäck et al., 2009). Inattentiveness of an infant during calibration makes repetitions of 

this procedure necessary, which can lead to annoyance and further inattentiveness. 

Animations that facilitate infants’ attention and result in bundled fixations during calibration 

should therefore produce more reliable data. Indeed, the design of calibration targets has an 

impact on fixation stability even for adults, who voluntarily try to keep their gaze still (Thaler, 

Schütz, Goodale, & Gegenfurtner, 2013).  

Determining which features facilitate calibration in infancy is a difficult task. Visual 

acuity relating to spatial frequency and contrast are not yet as developed in infancy as in 

adulthood, making less detailed stimuli easier for infants to process. However, patterns that 

are easy for infants to perceive can become boring when presented too frequently. A family of 

commonly applied calibration targets therefore consists of looming concentric spheres or 

rings, which are expected to provoke central fixations. Because concentric forms are not 

processed in an adult-like way until adolescence (Doucet, Gosselin, Lassonde, Guillemot, & 
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Lepore, 2005), it is not yet clear how this processing difficulty interacts with infants’ 

attention, especially if the target is additionally flashed, moved, or its contour density is 

intensified to increase salience (Aslin & Smith, 1988; Zihl & Dutton, 2015). There is reason 

to suspect that the combination of these features may be problematic because visual patterns 

that are too stimulating can cause the infant to turn away (Bornstein & Benasich, 1986). 

Nevertheless, calibration targets must have features that make them sufficiently noticeable 

when appearing at unexpected locations on the screen because the area covered by the visual 

field is still increasing during infancy. 

Inter-individual variability in the development of the fundamental issues we have raised 

makes it difficult to rely on theoretical assumptions alone when predicting the impact of 

calibration targets on infants’ gaze behavior. Therefore, a systematic experimental 

investigation of the applicability and impact on data quality of calibration targets with 

different features is necessary.  

3.2.2 Infant Eye-tracking Accuracy 

Several factors that generally lead to a reduction of data quality during eye-tracking are 

present in infant eye-tracking experiments: movement, sitting position, geometry of the set-

up, and the operators’ experience with calibration procedures (for an extended discussion of 

these factors see Holmqvist, Nyström, & Mulvey, 2012). Movement during the recording 

sequence is particularly challenging because it causes changes in the geometry on which the 

calibration was based. In addition, the pupils might become partially covered, or move out of 

the area observable by the eye-tracker’s camera, resulting in less robust data recording. 

Common dependent variables like the number of fixations or response time latencies are 

systematically influenced by interruptions of contact to the eye-tracking camera (Wass, 

Smith, & Johnson, 2013). 

The circumstances of the infant eye-tracking situation make a more tolerant procedure 

necessary. Infants sitting on the lap of their caregiver can be expected to move in all spatial 

dimensions, even if they are interested in the experiment. Although some laboratories 

successfully use infant seats in eye-tracking studies for certain age groups (e.g., Saez de 

Urabain, Nuthmann, Johnson, & Smith, 2017), constrictions of movement can be 

uncomfortable and distracting for infants. Therefore, researchers must account for deviations 

from a stable position during infant testing. Remote mode eye tracking comes with a 

moderate spatial tolerance to account for such instability. Some systems also provide the 

ability to do drift checks to assess whether the measured gaze points have shifted during trial 
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sequences (e.g., EyeLink 1000 Plus). If the reported fixation error is too large, a recalibration 

procedure should be implemented. A single drift check measurement might not be sufficient if 

the moment to accept the fixation was poorly chosen or if the infant’s saccade towards the 

validation target was not precise. If the indicated gaze positions on the eye-tracking monitor 

or on a visual data output give the impression that fixations are systematically displaced, 

some eye-tracking software offers the possibility to adjust them later during analysis by 

carefully shifting them to their assumed correct locations (e.g., EyeLink Data Viewer User’s 

Manual, 2002-2015), and researchers have developed procedures for post hoc corrections as 

well (e.g. Frank, Vul, & Saxe, 2012).  

The success of all these factors—the tolerance of the eye-tracking device, drift checks, or 

subsequent corrections—depend on understanding the effects of movement on the data. The 

algorithms of the eye-tracker that correct head movements in remote mode might not function 

properly if participants move too much (Hessels, Cornelissen, Kemner, & Hooge, 2015; 

Niehorster, Cornelissen, Holmqvist, Hooge, & Hessels, 2017). Additionally, movement might 

result in blurred camera images leading to noise and a different variance of gaze points 

(Holmquist et al., 2012; Wass et al., 2014) and changes in the angle of the participant's head 

in relation to light sources might affect accuracy (Wass, Smith, & Johnson, 2013). Previous 

investigations of infant eye-tracking described reduced precision as a function of trial number 

(Hessels, Andersson, Hooge, Nyström, & Kemner, 2015), and high unpredictability of the 

magnitude or angular direction of inaccurate fixation measurement (Morgante et al., 2012). 

Therefore, more precise insights into the effects of unstable sitting positions on gaze data are 

needed.  

3.2.3 The Current Study 

We compared the impact of different factors on the eye-tracking data quality of infant (8- 

to 12-month-olds) and adult participants. Our goals in the current study were twofold. First, 

we compared several different calibration targets for their impact on infants’ attention and 

their ability to guide infants’ gaze to their centers. Some of the animated calibration targets 

we tested were already in regular use in laboratories conducting infant eye-tracking 

experiments, while two additional novel calibration targets were developed for this study 

based on the sensitivity of the early visual system and infant perceptual abilities. Second, we 

systematically assessed effects of certain types of head and body movements during the 

recording session by asking adults participants to perform movements similar to those 

typically made by infant participants during fixation sequences.  
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To our knowledge, this is the first investigation to address attention to different 

calibration stimuli with infants. The study was conducted in remote mode with the eye-

tracking system EyeLink 1000 Plus (SR Research Ltd. 2015). The EyeLink system has been 

predominantly used with adult participants. Its high sampling rate could enhance the detection 

of inadequate gaze shifts, but be less robust to unrestricted movement and cause measurement 

artifacts (Niehorster et al., 2017). Investigations of accuracy and precision with infants were 

thus far conducted with Tobii eye-tracking technology (Hessels, Andersson, et al., 2015; 

Morgante et al., 2012; Wass et al., 2013; Wass et al., 2014). The Tobii system assesses 

fixations on dispersal based algorithms instead of the velocity based algorithm of the EyeLink 

system, and data quality or dependent variables may be affected in a different manner if 

another technical system is used (Hessels, Cornelissen, et al., 2015). Moreover, the Tobii 

system uses different calibration procedures that allow missing calibration points and 

graphically indicate gaze distance to the calibrated target (Tobii Studio User's Manual, 2016; 

for a discussion of the procedure see Morgante et al., 2012). In spite of the differences 

between eye-tracking systems, our investigation of the effects of different calibration targets 

and movement types on accuracy using EyeLink technology will provide valuable insights for 

infant eye-tracking studies using other technical systems.

 

3.3 Method 

3.3.1 Participants 

The present study was conducted according to guidelines laid down in the Declaration of 

Helsinki, with written informed consent obtained from a parent or guardian for each child 

before any assessment or data collection. All procedures involving human subjects in this 

study were approved by the Ethics Committee of the Max Planck Institute for Human 

Development. The final sample of infant participants recruited from urban and suburban 

regions of a large European city were 29 healthy, full term infants (age: M = 10 months, 8 

days, range = 8 months, 0 days to 12 months, 13 days; 14 female). All infants had normal 

vision without correction. An additional four infants were recruited but excluded from the 

final sample because they could not be calibrated due to excessive movement (2 infants), or 

their eyes were not detected by the eye-tracker (2 infants). We did not assess eye color 

because it was outside of the scope of the present investigation (for a discussion of eye color 

affecting infant eye-tracking data quality, see Hessels, Andersson, et al., 2015). The adult 
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sample consisted of 25 participants (age: M = 24.9, SD = 3.96, range = 19 – 34 years; 11 

female). All adult participants had normal vision without correction and all adult participants 

were included in the analysis. Our infant and adult sample sizes were chosen based on those 

used in similar investigations (e.g., Dalrymple et al., 2018; Morgante et al., 2012; Wass et al., 

2013) and to be within the recruiting capabilities of a wide range of infant labs. All 

participants were recruited from participant databases and tested in the Max Planck Institute 

for Human Development, Berlin, Germany. Both participant groups received 10 Euros and 

infants additionally received a participation certificate. 

3.3.2 Stimuli 

The six calibration targets we tested were animated geometric forms (see Figure 3.8a.). 

The calibration targets we focused on included: a.) differing concentric forms (spiral, star-

like, or circular), b.) blurred contours vs. equally distributed contrasts, and c.) different types 

of motion around a center (twisting, looming or blinking). We focused on abstract 

symmetrical forms because stimuli that resembled naturalistic figures (e.g., faces, ducks) were 

expected to guide infants’ gaze to non-central areas of interest (e.g., eyes and mouth of a face, 

head or tail of an animal). Symmetrical forms equally surround the target's center so that 

attention is not drawn by irregularities of the silhouette. We therefore sought to compare the 

gaze elicited by different types of symmetrical forms, some with blurred contours at the outer 

edges and some without. All of our targets also exhibited some movement to attract infants’ 

attention. The zooming in and out motion gives the impression that the targets are looming 

towards the participant and receding again. In addition, spirals provide concentric movement 

effects when they twist. Due to the limitations of infants’ attention, we did not parametrically 

vary all possible feature and movement combinations. Instead, we investigated whether 

combinations of graphical forms and movement would elicit more central attention. 

Contrast and size values were chosen to fit the visual capability of the infant age group 

(Aslin & Smith, 1988). The calibration targets expanded to a maximum diameter of up to 5° 

visual angle, and shrank to minimal diameters of between 2.5° and 0.5°, depending on their 

specific design and behavior. All calibration targets were accompanied by sounds 

corresponding to their looming and twisting behavior. Video examples of the calibration 

targets are provided online 

(https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f). The calibration 

targets used for the initial calibration procedure were presented on a grey background, while 

repetitions for validation or as part of the trial sequences were presented on different 
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monochromatic backgrounds of the same luminance level as the grey (see Figure 3.8b and the 

Section 3.3.4 experimental design for further descriptions).  

The part of the experiment that was exclusively performed by adults (see Movement Task 

section below) used the 13 point calibration procedures provided by the manufacturer (SR 

Research Ltd. 2015). The stimuli that were used during the trial sequences of the adult 

movement block consisted of small filled circles (Ø = 0.5°) with a crosshair centered on it and 

a thin blurred circle surrounding the center at Ø = 3° to facilitate peripheral detection (see 

Figure S3.4). They appeared at 9 different screen locations (see Figure 7a and S1 Method) in 

randomized order.  

 
 a. 

 
 
b. 

 
Figure 3.8: Examples of calibration targets and their variants in their fully developed 
form of appearance.  
Top row (a): calibration targets expanding to 5° when presented on the screen. Bottom row (b): 
Variants of the calibration targets used for the Spread trials, expanding to 17°. The modified 
calibration targets Popflake II and BlurRings (a variant of Purple) kept their distinct movements. 
Harp and Nautilus were reduced to CentBlink (a blinking central disc surrounded by a white 
corona) and SpiralTwist (a twisting spiral). ContrRings resembled Bullseye but lacked the blinking 
center. FacetTwist was identical to Medal except that it did not show the four white bars. Both 
ContrRings and FacetTwist kept their contrast in the periphery, while CentBlink and SpiralTwist 
had a blurred periphery. Two different background colors for each target variant in (b) were 
equally balanced over the participants. Video examples are provided online (see 
https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f). Harp, Nautilus and the 
modifications of the target variants are developed for the present study by the first author, the 
other calibration targets were kindly provided by other laboratories. We thank Scott Johnson, 
Gustav Gredebäck, Elika Bergelson and SR Research. 
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3.3.3 Apparatus 

An EyeLink 1000 Plus (SR Research Ltd. 2013 - 2015) eye-tracking system was installed 

on a host PC with 32bit operating system Intel(R) Core(TM)2 Duo processor with 2.80GHz 

and 2Gb Ram. Gaze was recorded using an EyeLink 1000 Plus High-speed Camera with a 16 

mm / 1:14 lens and an CL Illuminator TT890. Monocular gaze position was recorded without 

head stabilization in remote mode. The device has a recording accuracy of 0.25° - 0.5° and a 

precision (RMS) of < .05 visual angle, as specified by the manufacturer. Pupil and corneal 

reflection was assessed in a sampling rate of 500 Hz. A target sticker was placed on 

participants’ faces (cheek or forehead) and the camera of the eye-tracker was placed 

approximately 60 cm in front of the target sticker as recommended by the manufacturer (the 

possible range is 40 cm - 70 cm for remote mode tracking; EyeLink, 2015). The presentation 

monitor (Samsung UE50H6470SS, 80 cm by 63 cm, 50” display, with 1280 by 1024 pixel 

resolution, and 400Hz CMR refresh rate) was set at a distance of 140 cm away from the 

participants’ eyes to approximately fit the trackable area of 32° by 26° visual angle in 

accordance to the manufacturers suggestion. 

3.3.4 Procedure for Infant Experiment 

Infants were seated on their caregiver’s lap with a small bullseye sticker placed on their 

forehead that was recognized by the eye-tracking camera. Parents were reminded to sit quietly 

and not direct their infant’s attention during the experiment. Corneal reflection and contrast 

sensitivity of the eye-tracker were adjusted while an introductory animation clip was shown. 

The room was dimmed and the eye-tracking device was operated quietly from behind a 

curtain. The presentation could last up to 9 minutes maximum, but was terminated early if the 

infant showed fatigue, did not attend to the screen anymore, or if the caregiver requested to 

end the session. 

Experimental design. The infant experiment consisted of six trial sequences. Each trial 

sequence started with a five point calibration using one of the six calibration targets (see 

Figure 3.8a). A different calibration target was used for this initial calibration before each of 

the six trial sequences; the order of the trial sequences was randomized across participants. 

Calibration success was determined by evaluating the symmetry of the pattern of gaze points 

shown on the eye-tracking monitor after the infant had attended to all five target locations. 

Following the instructions provided by the manufacturer, these gaze point locations were of 

equal distance to each other (EyeLink, 2015). If gaze points were registered at less than five 
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locations, the calibration procedure was not accepted by the eye-tracker and needed to be 

repeated. We stopped the experiment if three calibration attempts were unsuccessful.  

After successful calibration, if the infant still seemed interested in the screen, a five point 

validation was performed with the same calibration target on a differently colored 

background. This was done to tentatively assess calibration success during infant eye-

tracking, similar to how it is commonly done during adult eye-tracking. If the infant lost 

interest and started to move during this validation procedure, the validation was stopped 

immediately and the trial sequence (see below) was initiated so that the accuracy of the 

calibration would not be impaired through intermediate movement. If the infant already began 

fidgeting during calibration, the experimenter skipped the validation entirely and went 

directly on to the trial sequence. After the initial calibration procedure, infants were shown 

three types of trials in the trial sequence (Example videos for the three trial types are provided 

online (https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f):  

a.) Preference trials: These trials examined infants’ preference for looking at the six 

different calibration targets (see Figure 3.8a) when they were presented simultaneously on the 

screen. To do this, the different calibration targets were shown four at a time, evenly spaced 

in four quadrants of the screen (see Figure S 3.5). Infants were shown three different 

combinations of four calibration targets during one trial, such that each of the six calibration 

targets appeared twice. The stimuli were shown at the same four screen locations for each of 

the combinations. Each combination was shown for 8s, resulting in a 24s total duration for the 

trial. The Preference trials were accompanied by music and occurred only once in each trial 

sequence. 

b.) Verification trials: In these trials, we assessed the accuracy and precision of infants’ 

gaze elicited by each calibration target (see Figure 3.8a). A calibration target was presented in 

parallel at three of the five screen locations used in the initial calibration procedure; the 

configurations across the five possible locations were randomly selected out of several 

potential combinations and varied across trials to avoid confounds from particular screen 

locations (see Figure S3.6). The calibration target used in each Verification trial was always 

different from the target used for the initial calibration procedure. A Verification trial lasted 

for 12s and was accompanied by one of two rhythmic Marimba sounds. The parallel and 

synchronous movement of the three identical calibration targets was intended to maintain 

infants’ interest during these trials while their gaze to each of the targets was recorded. Three 

verification trials occurred in each trial sequence with alternating calibration targets.  
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c.) Spread trials: Here, we compared the accuracy of gaze elicited by variants of the six 

calibration targets (see Figure 3.8b) during the time course of a trial. We created variants of 

the calibration targets for these trials in order to understand which visual attributes elicit more 

accurate gaze (see Figure 3.8 for a precise description of the modifications). A single target 

was presented at central location on the screen and loomed from a size of 1° to 17° peaking at 

2s, and decreased back to 1° until the trial terminated 6s later. In these trials, the target 

variants were shown one at a time. Three spread trials occurred in a trial sequence; each 

spread trial showed a different target variant.   

Taken together, there were seven trials in each trial sequence (1 Preference trial, 3 

Verification trials, and 3 Spread trials) that were shown in randomized order within each of 

the six trial sequences. Moreover, we randomized the order of the six trial sequences across 

participants. Finally, two versions of the experiment were alternated to balance the 

combinations of targets used for the initial calibration procedure and the targets shown in the 

trial sequence. 

3.3.5 Procedure for Adult Experiment 

For the adult participants, the same eye-tracker setup was used as with the infants. The 

adult version of the study lasted approximately 30 minutes. At several pre-defined time points 

during the experiment, participants were offered a short break. 

Experimental design. The adult version of the experiment consisted of four blocks. The 

first block was a sequence of practice trials consisting of instructions and examples of the 

respective trials. During this first block, adults were instructed to view the target videos 

played during the Preference, Verification, and Spread trials freely while keeping their head 

and body in a central and stable position. Adults were informed that during the movement 

tasks (see below), they would be asked to perform certain movements at predetermined points 

in the trials, and that the type of movement would be indicated on the screen. Adults were 

instructed to look at the targets that appeared during these trials as precisely as possible 

during or after performing the respective body movements (described in detail below). If 

necessary, the instructions were explained orally. Adults were also asked to practice the body 

movements described on the screen with the guidance of the experimenter.  

The second block of the experiment was almost identical to the infant version described 

above, including the five point calibration, except that adults performed two fewer Preference 

trials to reduce the total testing time. The third block investigated the effect of head and body 

movements on data quality and was unique to the adult version of the experiment. It began 
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with a 13 point calibration followed by four movement sequences. Each sequence started with 

instruction slides. Participants were asked to perform movement tasks while a static target 

appeared at one of nine locations distributed grid-like over the screen (see Figure 3.14a and SI 

S1 Methods for details). The target was a small filled circle (0.5°) in front of a cross-hair 

pattern (3°); the same target was used throughout the movement sequence. The distance 

between the target locations was approximately 9° in the horizontal and vertical dimension. 

The target was presented for 1s at a location, with inter stimulus intervals of 1s. The 

movement tasks adults were asked to perform were: 

a.) Fix: Keep their head still and focus on the targets as precisely as possible by only 

moving their eyes (control condition).  

b.) Head Movement: Focus on the targets as precisely as possible with the direction of 

their head following the direction of their eyes. This task mimicked infants’ tendency to 

follow visual stimuli with their head as well as their eyes. 

c.) Side Movement: Turn their head and upper body out of the area tracked by the eye-

tracking camera in the direction indicated by arrows, and then directly return to the central 

position to fixate precisely on the following targets until the next directional arrow was 

shown. The arrows appeared three times during the task, pointing to the left, to the right, and 

upwards. With this movement task, we assessed data quality after the eye-tracking camera 

had to deal with fast movement and loss of the eyes and the bullseye sticker, as frequently 

occurs when infants look away from the screen. 

d.) Bend Movement: Bend about 10 cm (4 inches) forward towards the monitor and stay 

in this position while directing their gaze on the subsequent visual targets as precisely as 

possible. Changes in the distance towards the screen are another common occurrence during 

infant eye-tracking. 

The movement sequences consisted of 27 trials. 

The final block was the Calibration-Repetition block which was also unique to the adult 

version of the experiment. This block began with another 13 point calibration, then all six 

calibration targets (see Figure 3.8a) were repeated one at a time in random order at five screen 

locations identical to those during the five point calibration procedure used with infants. 

Calibration-Repetition was intended to compare our two accuracy measures Displacement 

and Instability (described below) for each of the targets. As in the first block, participants 

were asked to direct their gaze towards the stimuli in a way that reflected their natural interest 

(free viewing), but not to move their head or body during this part of the experiment. The 

stimuli were shown on a grey background with their original sound for 6s each.  
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3.3.6 Data Preparation 

Trials were excluded from analysis if the recorded gaze proportion was below 50% of the 

full trial duration (infants N = 88; adults N = 9). This exclusion criterion, which may seem 

liberal for studies comparing infants with adults (see e.g., Morgante et al., 2012), was set 

because variance in data quality was necessary for the analysis. In addition, if single 

calibrations during the experiment could not be performed satisfactorily because of temporary 

movement of the participant (infants N = 3) or because of technical problems (infants N = 1; 

adults N = 6), that particular trial sequence was excluded. 

For saccade detection, a velocity based algorithm was used, with thresholds of velocity 

30°/sec, acceleration 8000°/sec2, and motion 0.1°, and a heuristic filter was applied to reduce 

velocity noise in favor of saccade detection, as implemented by the manufacturer. Gaze was 

defined as fixation if it was not recognized as saccade or blink. We used these preinstalled 

settings because they are the most commonly used criteria and because every change in the 

thresholds will affect the outcomes (Holmqvist et al., 2011) and would reduce the 

generalizability of our results. Fixations that were shorter than 50ms, which is one of the post-

recording thresholds of the EyeLink software, remained in the analysis because they were 

considered an indicator of reduced data quality. 

We assessed the participants' head distance change after calibration. This was done by 

subtracting the head camera distance at the moment the calibration was accepted from all 

other data points of the trial sequence. This measure allowed us to estimate the amount of 

movement for each participant. The EyeLink 1000 Plus data output provides the distance 

between the eye tracking camera and the bullseye sticker on the participant’s head in 

millimeters. Note that this measure does not indicate the exact direction of movement3.  

To assess the proportion of recorded gaze, all samples with gaze data were divided by the 

total number of possible samples during a trial. For inferences about data quality, only points 

of gaze (POG) within a fixation were used. To further exclude POGs that most likely were not 

related to a distinct task, areas of interest (AOI) and periods of interest (POI) were defined. 

The AOIs covered the calibration target and a radial space around it large enough to include 

misplaced POGs due to inaccurate measurement, but small enough to exclude gaze that was 
                                                

 
3 EyeLink 1000 Plus also provides coordinates for sideways or vertical movements, but their units 
are not clearly defined. EyeLink notes that all values indicating head movement in the data output 
"are intended for a qualitative indication of subject head position in the camera coordinate. If you 
need quantitative data output for the head movements and rotation angle, you will need an 
independent head tracker" (EyeLink Data Viewer User’s Manual, 2015, p. 131). 
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directed at the screen for other reasons, such as gaze at the empty screen center, or 

intermittent fixations. The POIs began from the first moment when participants’ visual 

attention was directed at one of the targets during our trial sequences. We defined this 

moment as the first time point when the average of all participants' fixation positions was 

inside the AOI of the specific trial. The POIs ended when less than the average of all 

participants' fixation positions were inside the AOI. The POIs excluded orienting and 

anticipatory fixations at the beginning of a trial. Because POIs were contingent on the AOI of 

the specific trial, the starting and ending points of POIs differed between the trial types (see 

Table S 3.14 for a precise description of the AOIs and POIs).  

3.3.7 Dependent Variables: Precision and Accuracy Measures 

For our study we defined precision in line with Holmqvist et al. (2011) as the ability of 

the eye-tracker to reproduce a measurement, and spatial accuracy as the offset between the 

expected and the recorded gaze position. We assessed precision in two ways: first as a root 

mean square inter-sample distance of POGs (termed RMS, Holmqvist et al., 2012) and second 

as the distance between POG coordinates and their centroid during a fixation, divided by the 

amount of included POGs (termed Dispersion; Komogortsev, Jayarathna, Koh, & Gowda, 

2010). Higher values of both precision measures indicate lower precision. During infancy, 

gaze points during a fixation cover a larger area than during adulthood (Luna, Velanova, & 

Geier, 2008; Zihl & Dutton, 2015), which must be kept in mind when precision is based on 

distances between POGs. Nevertheless, impaired precision can affect the proportional looking 

time to AOIs (Wass et al. 2014).  

Accuracy was calculated in two ways as well. For trials following 13 point calibrations 

during the adult experiment, spatial accuracy of a fixation was assessed as the mean Euclidian 

distance between all fixational POGs and the stimuli center (termed Displacement). In the part 

of the experiment that was performed by infants and adults and that used animated calibration 

targets, accuracy was scored differently in order to separate calibration related displacements 

from gaze spread elicited by the stimuli. We calculated the Euclidean distance between all 

fixational gaze points occurring during the POI of a trial and their centroid. This score 

provides an estimate of the spatial spread or density of fixations (termed Instability)4. 

Displacement and Instability address distinct characteristics of accuracy. In contrast to 

                                                

 
4Note that Gredebäck et al. (2009) used the same measure but termed as RMS. 
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Instability, Displacement does not distinguish between fixations that are close together and 

others that are wide spread if they have a similar distance to the target's center; therefore the 

two measures might lead to diverging values. To validate the use of Instability as a measure 

of accuracy, we compared both accuracy measures in the adult Calibration-Repetition task. 

The units of all gaze related measures are degrees of visual angle. 

 

3.4 Results 

3.4.1 Statistical Analysis 

In the part of the study that was performed by both infants and adults, infants successfully 

completed 761 trials (Minfant = 26.2 trials per participant, SD = 10.7, min = 8, max = 42) and 

adults completed 976 trials (Madult = 39.4 trials per participant, SD = 3.3, min = 25, max = 40). 

In the infant sample, there were no differences between male and female infants in the 

proportion of the recorded gaze (Mfemale = .88, Mmale = .88, t = .05, df = 125, p = .95), or in the 

precision measure Dispersion (Mfemale = .38, Mmale = .41, t = 1.55, df = 117, p = .12). There 

was also no correlation between infants’ age and Dispersion (cor = .24, t = 1.3, df = 27, p = 

0.2) or proportion of recorded gaze (cor = -.12, t = .61, df = 27, p = 0.5). The covariates age 

and sex were therefore not included in the main analysis. Further descriptives of the data for 

the joint infant-adult part of the experiment are provided in the supporting information (SI) 

Section 1 in S2.  

We assessed the effects of our independent variables via linear mixed-effects models 

using the lme4 package (Version 1.1-12; Bates, Mächler, Bolker, & Walker, 2015) in R 

(Version 3.3.3). Linear mixed-effects models (LME) are suitable for our study because they 

tolerate the unequal number of trials provided by our participants (for an application see: 

Laubrock, Engbert, Rolfs, & Kliegl, 2007). In the models, random slopes were specified for 

variations of the variable of interest between participants (Pinheiro & Bates, 2000).  

3.4.2 Analysis Calibration Targets 

Preference trials. To examine which targets attracted participants’ attention, we analyzed 

how long they spent looking at the different calibration targets using dwell time. Total dwell 

time towards the calibration targets was calculated for the POI of an individual trial by the 

summing up all gaze points during fixations in the AOI of a target. Dwell time was then 

transformed by taking its square root to fit the data to a normal distribution. An LME model 
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was conducted to infer how dwell time to a stimulus was explained by the kind of target video 

presented. The effect of calibration target was taken as random at the participant level, and 

participant group was included as fixed effect covariate. Calibration target (F(5) = 47.9, p < 

.001), participant group (F(1) = 15.5, p < .001), and their interaction (F(5) = 8.7, p < .001) 

substantially contributed to the model, which is confirmed by likelihood ratio tests, indicating 

that removing video (!2(5) = 77.8), group (!2(1) = 9.5) or their interaction (!2(5) = 32.9) 

significantly decreased the goodness of fit (all p < .005). The estimated random effects 

accounted for a large part of the variance. Figure 3.9 illustrates dwell times estimated by the 

model as a function of the calibration videos and the participant groups.  

For the infant group, Popflake I received the most attention. Popflake I dwell time was 

higher than for Bullseye (β = 1885ms, SE = 138.8, p < .001), Nautilus (β = 1742ms, SE = 174, 

p < .001), and Purple (β = 1421ms, SE = 219.7, p < .05). Bullseye was attended to for a 

shorter time than the other targets (all t ≥ 2.7, p < .01) except Nautilus and Purple  

(all t < .9, n. s.). 

 
Figure 3.9: Preference for the calibration targets.  
Dwell time and 95% CI as a function of calibration target. Brackets depict significant differences 
(p > .05) between the targets. Predicted means in this and in the other plots are estimated and 
back transformed with the R package predictmeans version 0.99 (Luo, Ganesh & Koolaard, 
2014).  

 

Verification trials. To assess the accuracy of infants’ gaze elicited by the different 

calibration targets, we asked if Instability was affected by the calibration target. We also 
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asked if the precision measure Dispersion was affected by the calibration target that was used 

for the initial calibration procedure of the respective sequence (for means and standard 

deviations see SI Table S3.17). 

The dependent variables (DVs) were log transformed to fit normal distributions. 

Instability was best explained by the covariate participant group (F(1) = 109.2, p < .001), the 

attended calibration target (F(5) = 12.1, p < .001), head distance change (F(1) = 10.8, p < 

.001) and the interaction between group and target (F(5) = 3.9, p < .01). Removing any of the 

model terms led to a significant reduction of fit (all p’s < .01). Intraclass correlation 

associated with the participants was controlled for by specifying participants as random 

intercept and target at the participant level as random slope. Instability in the infant group was 

higher than in the adult group (β = .27°, SE = .04, t = 5.9, p < .001), and a larger change of 

head distance after calibration led to higher instability (β = .002°, SE = .0006, t = 3.4, p < 

.001). Nautilus elicited the lowest Instability in the infant group, differing from Bullseye with 

β = -.13°, SE = .047, t = -2.8, p < .01 (see Figure 3.10). No other comparisons were 

significant. 

The usage of a particular target for the initial calibration procedure only marginally 

predicted the precision measure Dispersion (F(5) = 1.97, p < .10). Instead, Dispersion was 

best estimated in an LME model that included participant group (F(1) = 161.9, p < .001), 

head distance change (F(1) = 31, p < .001), and as random slope head distance change at the 

participant level. Adding initial calibration target changed the model fit by (!2(5) = 9.8, p = 

.08, n.s.), and removing any of the other variables significantly reduced its fit (all p < .05). 

Infants' fixations had a higher Dispersion than adults' fixations (β = .16°, SE = .012, t = 12.7, 

p < .001), and if head - camera distance increased after calibration for 10 mm, Dispersion 

increased for .013° (SE = .0005, t = 2.6, p < .05).  
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Figure 3.10: Instability as a function of calibration target and participant group.  
Values are back transformed and estimated for a head distance of 13.2 mm, with a CI of 
95%. Instability of gaze in the adult group differed from the infant group in that adults 
attended the videos Medal and Purple with lower accuracy than the infants (all t < 2.1, p < 
.05). The bracket indicates the difference found in the infant group (p < .01).  
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Spread trials. The 6s time course of the Spread trials was segmented into bins using the 

following data driven procedure. First, we identified turning points in the slope over which 

the infant Instability measure developed over time with the R package strucchange (Zeileis, 

Kleiber, Krämer, & Hornik, 2003). We then defined six bins of approximately similar length 

around each turning point. Participants' Instability values within a bin, and within the entire 

POI for a particular target, were then aggregated in order to analyze differences in gaze 

accuracy towards the target variants over time. Because the targets in the Spread trials 

increased in size and decreased again over the course of the trial, the six bins also captured 

gaze toward the target at different sizes. 

When looking at the whole POI, Instability was best explained in a model including target 

variant (F(5) = 16.3, p < .001), participant group (F(1) = 12.8, p < .001) and bin (F(5) = 2.9, p 

< .05), and their interactions (target variant - bin (F(25) = 4.6, p < .001; group - bin (F(5) = 

12.5, p < .001). Target variant at the participant level was specified as a random slope. 

Including the target × group interaction does not improve the fit (!2(30) = 1.5, n.s.).  

Gaze towards the stimuli during the subsequent bins was then analyzed. Within each bin, 

the effects of target variant and the interaction between participant group and target variant on 

Instability of gaze were estimated, with participants as a random intercept (Figure 3.11a). To 

account for multiple comparisons, we will only report differences related to infants' instability 

of gaze towards the stimuli at a significance level p < .01 (Figure 3.11b).  

Infants’ gaze became less stable over time and varied by target (Figure 3.11a, right 

panel). In the earliest segment between 0.8 and 1.7s, Bin 1, only CentBlink triggered lower 

Instability than ContrRings and FacetTwist. Bin 2 between 1.7 and 2.55s, which included the 

fully expanded stimuli, revealed three target variants with better accuracy than the other target 

variants. Precisely, CentrBlink and Popflake II led to more stable and central fixations than 

ContrRings, FacetTwist and BlurRings, and SpiralTwist elicited more accuracy than 

ContrRings. This same pattern of results occurred within Bin 3, this time showing the largest 

discrepancies of the entire trial. In Bin 4, between 3.3 and 4.15s, only Popflake II differed 

from the three lower accuracy target variants. However, in Bin 5 gaze towards Popflake II 

increased in Instability, and only CentrBlink and SpiralTwist differed from FacetTwist, the 

latter as well from ContrRings. In Bin 6 all targets were viewed with similar, increasingly 

high Instability (for coefficients, standard errors and significance values see Table S3.18).  
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a. 

  
b. 
 

 
Figure 3.11: Changes in accuracy during the presentation period of the spread trials.  
(a) Predicted Instability in deg. as a function of target variant and participant group, with 95% 
CI. (b) Infants’ Instability as a function of target variants and bins. Brackets indicate 
differences with significance level p < .01. For coefficients and standard errors see SI Table 
S3.18. The target variants were most expanded at 2s. Numbers on the x axis represent the 6 
time bins. 

 



3  Study 2: Infant Eye-tracking Data Quality 
 

 110 

Calibration-Repetition trials. Next, we assessed adult participants' accuracy scores with 

our DVs Displacement and Instability. This allowed us to compare the performance of these 

two accuracy measures. 

The LME model that explained Displacement best included the factor calibration target 

(F(5) = 4.4, p < .01), the factor target location (F(1) = 4.6, p < .05), the continuous variable 

head distance change (F(1) = 22.1, p < .001), and participant as a random intercept. 

Removing calibration target (!2(5) = 18.4, p < .01), target location (!2(1) = 4.2, p < .05) or 

head distance change (!2(1) = 4.3, p < .05) would significantly decrease in the model's 

goodness of fit. Displacement increased with calibration targets presented at a peripheral 

location (β = .04°, SE = .019, t = 2.1), and with a larger head distance from the screen (β = 

.007°, SE = .002, t = 4.7). The calibration target Nautilus was attended to with the lowest 

Displacement and differed from all other videos except Harp (all t’s < 2.5), while Purple was 

attended to with the highest Displacement differing from Nautilus and Harp, with all t’s > 2.5.  

Instability was best explained by calibration target (F(5) = 9.5, p < .001), target location 

(F(1) = 17, p < .001) and calibration target at the participant level as random slope. Instability 

increased with targets shown at a peripheral location (β = .04°, SE = .009, t = 4.1). Here as 

well, Nautilus was attended to with the lowest Instability and differed from all other 

calibration target except Harp (all t’s > 2.5). Of those targets with low accuracy it was Purple 

which led to highest Instability scores, differing from all calibration targets except Bullseye, 

with all t’s > 2.7 (see Figure 3.12). The measures Dispersion and Instability were correlated 

(rdf 714 = .35, t = 10, p < .001), indicating an association of medium effect size between the 

two measures.  
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Figure 3.12: Comparison of the two accuracy measures.  
Scaled accuracy scores of the measures Displacement and Instability as a function of 
calibration target during the adult task Calibration-Repetition.  

 

3.4.3 Adult Movement Tasks 

Finally, using our adult participants, we asked how head and body movements (see 

section Procedure for Adult Experiment) affect accuracy (Displacement) and precision 

(Dispersion, RMS) compared to recordings without movement (the control condition Fix), 

and if there is an effect of target location on the gaze measurement. The targets appeared at 

nine screen locations, and were grouped as Center (central), Central-Peripheral (central on 

one axis but peripheral at the other axis) or Peripheral (all four corners). In all LME models, 

movement type at the participant level was included as a random slope. 

Displacement was best predicted with movement type (F(3) = 64, p < .001), target 

location (F(2) = 88.9, p < .001), and their interaction (F(6) = 5.4, p < .001; Figure 3.13a). All 

movement types led to increased Displacement (Side Movement: β = .14°, SE = .04, t = 3.7; 

Head Movement: β = .17°, SE = .04, t = 3.9; Bend Movement: β = .55°, SE = .07 t = 8.4), and 

non-central target locations led to larger Displacement than centrally presented targets 

(Central-Peripheral: β = .08°, SE = .02, t = 3.5; Peripheral: β = .14°, SE = .03, t = 5.5). 

Bending towards the screen significantly increased Displacement at Peripheral locations (β = 

.13°, SE = .04, t = 3.6; all p < .001). 
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Dispersion was predicted by movement type only (F(3) = 34.8, p < .001). Adding target 

location to the model did not improve the fit (!2(2) = 1.3, p = .53), and although the 

interaction of target location and movement type improved the model fit (!2(6) = 14, p = .03), 

we decided against including it for parsimonious reasons and because the interaction without 

a main effect of target location would not be meaningful here. Head Movement increased 

Dispersion (β = .046°, SE = .008, t = 5.6, while Bend Movement reduced Dispersion (β = -

.029°, SE = .004, t = 8; both p < .001). Dispersion elicited by Side Movement did not differ 

from the stable position. 

RMS was best predicted by movement type (F(3) = 63.2, p < .001) and target location 

(F(2) = 11.5, p < .001; Figure 3.13b). In a similar pattern as Dispersion, RMS was reduced in 

Bend Movement (β = -.0023°, SE = .0003, t = 7.1), but increased in Head Movement (β = 

.0025°, SE = .0003, t = 8.6) and Side Movement (β = .0003°, SE = .0001, t = 2.3). Non-central 

target locations led to decreased RMS than centrally presented targets (Central-Peripheral: β = 

-.0004°, SE = .0001, t = 3.1; Peripheral: β = -.0006°, SE = .0001, t = 4.7; all p < .05).  
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a. 

        
b. 

 
Figure 3.13: Effects of movement type on adult accuracy and precision.  
Accuracy (a: displacement) and precision (b: rms) as functions of movement type and target 
location. note the converse effects for accuracy and precision when approaching the screen 
during Bend Movement, changing the viewing angle during Head Movement, and when 
attending peripheral target locations.  
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a. 

  
b. 

 
 

Figure 3.14: Movement type affects the registration of gaze points.  
Gaze points during the adult movement tasks plotted on their measured screen locations in 
pixel coordinates. Black discs indicate the actual target positions, inter target distance was  
9° of visual angle (a). Accuracy (x axis) plotted against head–camera distance change after 
calibration. Negative values indicated reduced distance to the eye-tracking camera in  
mm (b). 
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3.5 Discussion 

In the present study, we investigated the impact of different infant calibration targets and 

movements during gaze recording on eye-tracking data quality with infant and adult 

participants using EyeLink 1000 Plus Remote Mode technology. We found that certain visual 

attributes of the calibration targets, as well as the duration of their presentation, influenced 

infants' gaze instability. Targets with interesting centers and low contrast at their periphery 

resulted in better gaze recording outcomes. Body movement substantially contributed to gaze 

instability and fixation dispersion. All movement types we tested with adults negatively 

affected accuracy, as did the eccentricity of a target's location. Movement towards the screen 

particularly increased peripheral gaze displacement and following a target with head turns 

resulted in less precise gaze. 

3.5.1 Calibration Targets Influence Stability of Gaze 

Infants fixated our calibration targets with different gaze stability, demonstrating that 

some characteristics of an animated graphical form elicited more accurate gaze than others. 

Interestingly, our results showed that infants’ preference to look at a particular calibration 

target was not predictive of the data quality elicited by that same target in our study. Infants 

fixated on the target Nautilus for the least amount of time in the Preference trials, but Nautilus 

nevertheless led to the highest stability of gaze points in the Verification trials. The 

calibration target which elicited the greatest preference, Popflake I, led to similar gaze 

stability as Nautilus.  

By reducing the attributes of our calibration targets in the Spread trials, we were able to 

infer which visual characteristics contributed to stable gaze. Our results showed that 

animations with an interesting center but low contrasts in their periphery (CentrBlink, 

SpiralTwist), as well as very complex concentric animations (Popflake II), elicit the most 

stable gaze over time and are therefore better suited for infant calibration. CentrBlink and 

SpiralTwist share two important attributes with the (not reduced) Nautilus target that 

performed well in the Verification trials: a blurred periphery and an interesting (blinking and 

high contrast) center. The target variants leading to less stable gaze consisted of blurred 

concentric forms without a clear center (as in BlurRings), or point symmetrical patterns with 

distributed contrast which were not blurred in their eccentric parts (ContrRings and 

FacetTwist; for a detailed description of all target variants see Figure 3.8). 
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The decision of when to accept infant's gaze to a target during the calibration procedure is 

another important criteria for calibration success. Our results from the Spread trials, in which 

the target variants appeared to loom over the course of the trial, indicated that accuracy 

dropped similarly for all target variants over time in our infant sample. About four seconds 

after stimulus onset, infants’ gaze started to be less stable even for targets that were fixated 

more accurately, and after 5 seconds, differences between targets could no longer be found 

(see Figure 3.11). This is in contrast to adults, who attended to the shrinking targets with 

increasing gaze stability over time. 

To better understand why infants' gaze decreased in stability over time, we compared our 

Instability measure to the more common accuracy measure of Displacement (also termed 

“offset” by Hessels, Andersson, et al., 2015) in the adult Calibration-Repetition task. The 

correlation between Displacement and Instability was of medium effect size in the adult 

Calibration-Repetition trials, indicating that the two measures were similar but not entirely 

overlapping. The most obvious difference between the two measures occurred for the visually 

demanding video Popflake I (see Figure 3.12). Given that the Calibration-Repetition trials 

were the last block of the experiment, the adult participants were already well acquainted with 

the targets, and more likely to direct their gaze to details of Popflake I's silhouette as is 

reflected in the higher Instability score for this target. We therefore interpret the increase of 

Instability in the later portions of the infant Spread trials as less central gaze, because by this 

point of the trial, infants became inattentive and increased exploratory gaze around more 

distributed screen areas. Alternatively, the increase of Instability can also be understood as a 

loss of interest in the target decreasing in size. These explanations are not mutually exclusive.  

Our calibration targets clearly differed in how they elicited central gaze, therefore it was 

surprising that they only marginally modulated later gaze precision when they were used 

during the initial calibration procedure. This may have occurred for several reasons. First, 

fixation control develops until early adolescence (Buquet & Charlier, 1996; Ygge, Aring, 

Han, Bolzani, & Hellström, 2005). Infants’ fixations generally cover a larger area than adults’ 

and are less stable (Luna et al., 2008; Zihl & Dutton, 2015), which may have obscured 

potential differences during fixation and is in line with the significant effect of the covariate 

participant group (infant vs. adult). Additionally, movement during recording significantly 

contributed to the variance of our infants’ Dispersion scores, leading to a loss of statistical 

power such that the effects of our calibration videos were only marginal (see SI Section 1 in 

S3 Discussion for further discussion of this point).  
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It was difficult to implement a validation of calibration success for our infant participants 

as it is commonly implemented in adult eye-tracking. The repeated presentation of the 

identical target at all five calibrated screen locations directly following calibration typically 

led to infant impatience and inattentiveness. Therefore, in many of the cases we omitted the 

validation procedure from the trial sequences. Additionally, the generally poor accuracy score 

reported by the eye-tracker for the attempted validations may not have been attributable to 

calibration success per se, but instead to the effects of movement due to infant inattentiveness 

during the validation procedure (see SI, Section 2 in S2 Results for a description of the 

validation attempts). As a result of these kinds of difficulties, experimenters often skip 

validation procedures with infants and instead rely on the pictorial pattern of the calibration 

map to infer calibration success. In future research it would be worth investigating whether 

the symmetry of the calibration coordinates provided by the EyeLink output can be quantified 

and included in the statistical analysis (for similar suggestions based on Tobii technology see 

Dalrymple, Manner, Harmelink, Teska, & Elison, 2018).  

3.5.2 Movement Affects Accuracy and Precision in Opposite Directions 

The accuracy of gaze measurement in our adult sample was affected by all of the 

movement types we examined. When the adult’s eyes and the bullseye head sticker briefly 

moved outside of the area registered by the eye-tracking camera—a common occurrence 

during infant eye-tracking—and returned to central and stable position before the recording 

started, the target - POG distance systematically increased by .15°. This adds to the findings 

of Niehorster and colleagues (2017) who performed a similar task and found a right sided 

insensitivity of the EyeLink system towards the returning gaze. A similarly strong impact of 

movement on accuracy occurred during head turns towards the target leading to an increased 

offset of .17°. Turning the head in the direction of a stimulus is also a common movement 

during infant eye-tracking, since perceptuomotor coordination accompanies attentional 

strategies and learning in infancy (Gibson, 1969; Yoshida & Smith, 2008).  

Movements toward the screen had the strongest effect on gaze accuracy. Displacement 

not only generally increased by .55° for this movement type, but was further augmented by 

.13° for targets presented in the four corners of the screen. In fact, our data revealed that 

during all trials the presentation of non-central targets systematically added between .08° and 

.14° to the measured gaze - target distance. This finding underscores the importance of using 

variable target locations during intermittent drift checks to verify calibration accuracy during 

infant eye-tracking. The full range of drift would not be detected if drift check targets are 



3  Study 2: Infant Eye-tracking Data Quality 
 

 118 

located only at the screen center. A warped POG map resulting from intermittent movement 

could also lead to imprecise post hoc adjustment of gaze data if a one directional 

displacement is assumed.  

There was a different pattern of results for precision during the adult movement tasks. 

Fixation dispersion was unaffected by target location, while non-central target locations 

reduced RMS values. Head turns decreased precision as assessed by both scores. However, 

bending toward the screen seemingly increased precision as assessed by Dispersion and RMS. 

This apparent increase in precision was surprising given that the bend movement led to the 

lowest gaze accuracy. The reason for this discrepancy, as Figures 7a,b show, is that 

movement towards the screen after calibration made the POGs drift towards the center of the 

monitor. This resulted in a reduction of the size of the POG map and in a shrinkage of the 

inter sample distances. At the same time, the offset of the measured POGs increased, resulting 

in higher displacement values especially at non-central target locations. This finding also 

illustrates the necessity of exploring data in multiple ways to avoid misinterpretation—here, 

better precision scores clearly do not reflect higher data quality.  

 The high inter sample distance during the Head Movement task may reflect data quality 

loss originating from the combination of head turns and movements as the adults turned their 

heads to follow the movement of the target during this task. A change in the angle of the eyes 

influences the assessed pupil size (Hayes & Petrov, 2016) which again affects the estimation 

of POGs (Choe, Blake, & Lee, 2016; EyeLink 1000 Plus User Manual, 2015; Nyström et al., 

2016). Moreover, the bullseye sticker that indicates a participant’s head position moves 

slightly sideways and in its angle during these kinds of movements. Infants usually 

spontaneously perform a combination of different movements, including more excessive 

angular positions than adults. Accordingly, these combinations of movement may have 

caused the considerably higher RMS values for the infant sample than those of the adult 

sample (MdInfants, = .021, min = .008, max = .063 compared to MdAdults = .011, min = .006, 

max = .02). This finding emphasizes the care that needs to be taken when comparing 

participant groups of different age, even if no strong distance changes to the eye-tracking 

camera are obvious (see SI S3 for further discussion).  

Taken together, our findings for the movement tasks demonstrate that the consequences 

of unconstrained recording situations on gaze DVs are difficult to calculate. Specifications 

given by manufacturers are usually achieved under optimal conditions and differ from the 

specifications assessed with naturally behaving participants. Our data quality scores were 

preprocessed (e.g., means of POIs or fixations limited by AOIs) to estimate the variability that 
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may occur during analysis of gaze from participant groups that cannot be restrained. In the 

user manual of the EyeLink eye-tracker (2013-2015), head movement of 35 cm in vertical and 

horizontal direction are said to be tolerated without accuracy reduction for a camera distance 

of 60 cm (EyeLink, 2015). For movements towards the camera, the system reports a warning 

if the distance exceeds a 20 cm range, outside of which accuracy can not be guaranteed. 

However, in our study movement within these ranges clearly affected DVs (for further 

examples including angular movements and recovery of the eye-tracker after loss of the eye, 

see Hessels, Cornelissen, et al., 2015; Niehorster et al., 2017). Future studies could investigate 

the usefulness of including the change in head distance registered by the eye-tracker as 

control variable during Remote Mode infant eye tracking. 

3.5.3 Practical Implications 

Our results point to several practical steps that infant researchers can take to improve eye-

tracking data quality. Of course, the requirements for gaze accuracy depend on the specific 

context in which eye-tracking data are collected. Therefore, researchers should take into 

account the demands of their phenomena of interest and of their experimental design when 

implementing any of our suggestions. 

First, we suggest using calibration targets with an interesting center and low contrast in 

their periphery or globally distributed complexity. Calibration targets with these 

characteristics—including some kind of movement to attract infants’ attention as all of our 

stimuli did (e.g., looming, twisting, etc.)—elicit more accurate gaze. Even if the differences in 

accuracy between the types of target used might only seem marginal in some cases, it is 

nevertheless important to optimize as many aspects of the calibration procedure as possible. 

Calibration targets that are not controlled in their distribution of contrast or luminance—even 

if they are provided by some eye-tracking systems—should be avoided. The calibration 

targets that worked well in our study are available online (see link in the conclusions section 

below).    

Importantly, gaze toward calibration targets during the calibration procedure should be 

accepted within the first four seconds because attention towards the targets is higher during 

this phase. To further facilitate infants’ attention when repeated calibrations or drift checks 

are necessary, calibration animations that elicit precise gaze can be alternated. Additionally, 

the background color of the screen on which the calibration target is shown can be changed to 

facilitate infants’ interest in the display. Because alterations of the display's luminance level 

would result in changes in pupil size and affect gaze measurement, changes in brightness 
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entering the participant’s eye should generally be avoided in eye-tracking experiments. If the 

background color change is controlled for luminance, it will not interfere with accuracy 

(EyeLink, 2015). Moreover, depending on the constraints of the experimental conditions, 

trials can be accompanied by changing sounds or music. In our study, infants were repeatedly 

confronted with the same six calibration targets during the trial sequences, and we 

successfully used background color changes and music as described. 

Calibration success is crucial for all infant eye-tracking studies, independent of the 

technology that is used. Poor calibration procedures have a particularly negative effect on 

infant eye-tracking procedures because the number of trials in these studies is limited by 

infants’ shorter attention spans. Therefore, the risk of a high amount of missing data and 

incorrect data points can be mitigated by adopting higher quality calibration procedures.   

In addition to optimizing calibration targets and procedures, the diverse effects of 

movement on our gaze measures in the present study should be kept in mind when planning 

infant eye-tracking studies. Movement towards the screen has an especially high impact on 

spatial accuracy, and if fixation positions on AOIs are assessed, researchers should expect 

misplaced POGs with large offsets especially at peripheral screen locations. In such cases, 

adapting the AOIs accordingly may avoid alterations of the variables of interest (Holmqvist et 

al., 2012; Orquin, Ashby, & Clarke, 2016). For example, in paradigms that compare attention 

to multiple areas of the screen, AOIs could be reduced in size, so that misplaced POGs fall 

into neutral screen areas rather than being falsely attributed to the wrong AOI. A warped POG 

map, with larger peripheral offsets, could also lead to systematic errors between central and 

peripheral AOIs. 

Experimenters should be attentive to movement throughout the recording sessions and 

have recalibration procedures prepared if infants exhibit excessive movement of any kind. 

The measurement of head target - camera distance provided on the EyeLink camera set-up 

screen as well as a blurred camera image of the eye can both be used as indicators for distance 

changes even if the eye-tracker does not provide a warning message. Additionally, 

implementing intermittent drift checks with central and non-central target locations can help 

to detect shifts of the POGs and possible skewness of the POG map. These checks can occur 

at regular intervals during the trials. POG shifts can also be assessed via additional software 

implemented in the experiment (e.g., Dalrymple et al., 2018; Frank et al., 2012).  

Studies targeting psychophysical research questions that are more sensitive to fine 

grained changes in inter-sample distance should be especially aware of the diverse movement 

effects. If, for example, participant groups differ systematically in their motoric responses, as 
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is the case for comparisons of infants and adults, the resultant systematic distortions in the 

assessed data could lead to false inferences about group differences. Studies that are 

particularly sensitive to dispersion of gaze points should consider the inclusion of drift checks 

and recalibrations at several predetermined intervals during the recording sequence.  

Following these practical steps can help to mitigate the problems of infant eye-tracking 

and increase the quality of measured gaze.  

3.6 Conclusion 

During infant eye-tracking, uncertainty about calibration success, fussiness caused by the 

repetition of calibration stimuli, and body movements during testing are frequent constraints 

on measurement quality. Our systematic investigation of these constraints with infants and 

adults revealed some characteristics of calibration targets that elicit more reliable data. These 

calibration targets can be flexibly implemented in different calibration procedure designs and 

are provided online, together with the necessary information on the adjustment of the 

background color (https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f). 

Using EyeLink 1000 Plus technology, we also discovered heterogeneous effects on accuracy 

and precision as result of movement types which are common during infant eye-tracking. 

These findings provide some insight into measures that can be taken to improve data quality 

when conducting infant eye-tracking studies.  
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3.8.1 S1 Methods.  

3.8.1.1 Comments on the Video Materials that are Available Online 

The calibration targets used in this study can be downloaded under the URL: 

 https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f 

These calibration targets may be implemented in the calibration procedures of any 

planned study. Please ensure that the size of the stimuli will be adapted to the monitor size of 

the planned study so that it will stay in the range of the size that was investigated here (see 

parameters in S 2 Methods). It should also be taken care that the screen background is 

changed exactly to the same color and lightness as the background of the calibration target 

itself. Otherwise, the square of the video might draw participants attention to the periphery of 

the stimulus.  Moreover, the quality of the videos should not suffer from these 

transformations. The graphs should have clear edges and the blurred parts should not show 

obvious pixel borders. The videos come with sound that is synchronized to their movement. 

Some experiment programming software requires separate sound and video image files. The 

synchrony should then remain as in the original versions. 

3.8.1.2 Parameters and Design of the Adult Visual Target 

The targets for the adult participants during the movement tasks were presented for 1s 

with an inter stimulus interval of 1s. They appeared at 9 fixed locations in randomized order 

with an inter target distance of 9° visual angle. The locations on the screen were (monitor size 

1280 × 1024 pixel; horizontal, vertical): [996,157], [996,512], [996,868], [640,157], 

[640,512], [640,868], [285,512], [285,157], [285,868]. 

 

 
Figure S 3.4: The visual target for adult participants during movement tasks.  
The small filled circle measured 0.5° and the crosshair 3° visual angle in diameter. 
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3.8.1.3 Parameters of the Infant Video Targets and Background Colors 

Target Locations. For the initial calibration procedure of each sequence, one of the 6 

calibration target videos was shown on a grey background with RGB levels [180,180,180]. 

The calibration targets were located at the following five positions on a monitor with the size 

1280 × 1024 pixel (horizontal, vertical): [640, 512] = center; [285, 868]; [285, 157]; 

[996,868]; [996,157]. The between target distance of 355 pixel approximates 9° of visual 

angle horizontally and 8.86° in the vertical dimension.  

The calibration targets used in the Preference trials appeared at the four locations in 

parallel: [306, 306]; [974, 306]; [306, 718]; [974, 718]. A trial consisted of 3 different 

combinations of calibration targets of 8s each: 1. Medal, Purple, Harp, Bullseye; 2. Popflake, 

Bullseye, Medal, Nautilus; 3. Harp, Popflake, Nautilus, Purple (see Figure S 3.5). To avoid 

confounds through infants' biases of one side of the screen, two versions of the full trial 

existed so that each calibration target was shown at all four possible locations. The targets 

were shown on a grey background [180,180,180]. 

In the Verification trials, one calibration target appeared three times in parallel at 3 of the 

5 locations equal to those of the calibration procedure. The locations were selected so that 

they covered at least one top and one bottom location as well as one right and one left location 

to avoid empty halves of the screen (see Figure S3.6). The resulting 6 patterns were randomly 

selected to avoid confounds through learning of the target locations. The targets were shown 

on colored backgrounds.  

Colors. Repetition of the calibration procedure and presentation of the stimuli variants 

occurred with different background colors. The luminance level of the changing colors was 

controlled for by creating them in the CIELAB color space with identical values for 

luminance (L = 73) and subsequently converting them to the RGB color space for 

presentation on the screen. 

The colors and their RGB levels were: 

• blue [147,194,255] 

• red [255,146,146] 

• turquoise [75,214,178] 

• orange [255,168,5] 

• green [185,201,54] 

• pink [240,168,255] 



Supporting Information 
 

 125 

Video examples of the modified calibration targets used in the Spread Trials and videos 

documenting the Preference trials and Verification trials can be viewed here: 

https://osf.io/3k8jp/?view_only=e8075dc7bf0e4ab780c5e620b8f4860f 

 

 

 

 
 
Figure S 3.5: Arrangements of calibration target locations within one Preference trial.  
The grey squares indicate the screen. Each single target showed the identical movement as 
during the calibration procedure. The three combinations of calibration targets lasted 8s each, 
resulting in a total trial duration of 24s. A mirrored version of the full trial alternated with the one 
shown in the trial sequences, so that each calibration target was presented at all four possible 
screen locations. 
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Figure S 3.6: Arrangements of the target locations in the Verification trials.  
The blue squares indicate the size of the screen in one of the background colors. In each trial, 
one of the six calibration targets was presented at 3 screen locations synchronously on a colored 
background. All 6 location combinations that were used in the study in random orders are shown 
here.  



Supporting Information 
 

 127 

 
Table S 3.14 The Sizes of Areas of Interest (AOI) and Periods of Interest (POI) 

Part of the Experiment AOI POI 

Preference trials Four circular areas of 9.2° 
diameter covering the particular 
targets. There was a free space 
between the AOIs of minimum 
1° vertically and 7° horizontally. 

Identical to the trial length, but 
separated into three parts that 
distinguished the distinct 
selections of stimuli presented 
simultaneously. 

Verification trials Three circular areas of 10° 
diameter covering the particular 
targets which were expanding to 
maximal 5°. 

Started 450ms and ended 4700ms 
after stimuli onset. 

Spread trials One circular area of 20° 
diameter, covering the 
maximum stimuli size of 17°. 

Started 800ms after stimulus 
onset. It ended at 300ms before 
the trial terminated because there 
was not enough recorded gaze 
available to perform an analysis 
within the infant group. 

Adult movement tasks Circular areas of 10° diameter 
around the targets. 

Started 300ms after stimulus 
presentation and ended when the 
trial terminated. 

Calibration-Repetition Radius was the largest stimulus 
expansion plus .5° leading to a 
circular area covering 6° in 
diameter. 

Started at 350ms after stimulus 
presentation and ended when the 
trial terminated. 

Note: The sizes of the AOIs differed between the tasks according to the questions that were 
expected to be answered. For example, during the adult movement tasks, we expected a larger 
spread of gaze points (POG) as an effect of movement, that we wanted to capture, while during 
Calibration-Repetition, we chose narrow AOI for the validation of our accuracy measures. The 
starting and ending points of POIs differed between the trial types because they were data driven. 
A POI started when the average of all participants' gaze positions was inside the AOI of the 
specific trial type and ended when the average of the gaze positions was outside the AOI or when 
the amount of recorded gaze points was not sufficient for analysis. 
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3.8.2 S2 Results.  

3.8.2.1 Descriptives for the Joint Adult - Infant Part of the Experiment 

In the part of the study that was performed by both infants and adults, infants successfully 

completed 761 trials (Minfant = 26.2, SD = 10.7, min = 8, max = 42) and adults completed 976 

trials (Madult = 39.4, SD = 3.3, min = 25, max = 40).  

The two measures of precision, the proportion of recorded gaze, and distance change 

between the head and the eye tracking camera following a calibration of the adult and infant 

participants are described in Table S 3.15 for the joint part of the experiment, after exclusion 

of invalid trials (proportion of recorded gaze within a trial below .5). Figure S 3.7 visualizes 

the distribution of the data. 

  

Table S 3.15 Comparison of the Adult and Infant Sample 

Measure Infants  Adults  Difference 

 M SD M SD t-value p 

RMS deg. .022 .008 .011 .002 36.5 <.001 

Dispersion deg. .391 .185 .183 .074 29.2 <.001 

Proportion of gaze .885 .130 .982 .023 -20.3 <.001 

Head distance change* mm 27.6 25.8 3.2 3.4 -25.9 <.001 

Fixation duration ms 529 875 600 755 -7.3 <.001 

 
* Here, the positive distance change between head and camera after calibration is reported, that 
was the dependent variable used in the joint adult - infant part of the experiment. In contrast, in 
the adult movement tasks, we used negative and positive values, indicating reduction and 
increase of the head camera distance.  
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      a.                 b.      c.           d. 

 
Figure S 3.7: Boxplots for the participant groups in the joint part of the experiment.  
(a) Dispersion within a fixation. (b) proportion of recorded gaze. (c) mean distance change (mm) 
between the head and the eye tracking camera after calibration, (d) RMS angular distance of 
500Hz eye tracker samples during fixations.   
 
 

Fixation duration as measured by the eye tracker is shown in Figure S3.8. Note that more 

very short fixations (< 50ms) were recorded for infants. As planned, these short fixations 

remained in our analysis because short fixations are seen as possible indicator of lower 

measuring quality (Wass et al., 2014) and a cutoff can misalign dependent variables (Orquin 

& Holmqvist, 2017). 

 

 
Figure S 3.8: Histogram of fixation duration for adults and infants after exclusion of 
invalid trials. 
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3.8.2.2 Calibration and Validation Error and Number of Validations Completed  

In the joint part of the experiment, we conducted validations of the five calibrated gaze 

points after the calibration was successfully completed. For the validation procedure, we used 

the same calibration target on a differently colored background. Out of the 77 attempts to 

perform a validation with the infant participants, only one was accepted as good by the eye 

tracking device. Five validations had moderate error, and 50 were categorized as poor. 

Twenty-one validations had to be aborted because of inattentiveness and movement of the 

infant. In 83 cases, we did not attempt the validation because inattentiveness was expected to 

occur (see Table S3.16). We only proceeded with the trial sequence after a validation if the 

validation error could be attributed to inattentiveness during validation and not to movement 

after the calibration procedure. If movement occurred, we recalibrated. 
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Table S 3.16 Attempts to Validate Calibration Success 

 
Validation Score a   Completed 

Infant Fair Good Poor Aborted Missing b Sequences c 

ki02 
  

1 1 1 3 
ki03 

  
4 2 2 6 

ki04 
  

1 3 2 4 
ki05 

  
2  1 3 

ki06 
 

1 2 2 3 5 
ki07 

  
1 1 5 6 

ki08 
  

1  2 3 
ki09 2 

 
1  4 5 

ki11 
  

1  1 3 
ki12 

  
1  5 5 

ki13 
   

 4 3 
ki14 

  
1  3 4 

ki15 1 
 

1  2 2 
ki16 1 

 
2   3 

ki17 
  

6  1 6 
ki18 

  
1 3 2 6 

ki20 
  

3  2 4 
ki21 

  
1 4 1 6 

ki22 
  

2  4 5 
ki23 1 

 
1  4 6 

ki25 
  

1  6 6 
ki26 

  
2  7 5 

ki27 
  

1 1 5 6 
ki28 

  
2  3 5 

ki29 
  

1 1 4 4 
ki30 

  
3  3 6 

ki31 
  

3  3 6 
ki32 

  
2 3 1 6 

ki33 
  

2 0 2 2 
Total 5 1  21 83 134 
 

a Good: Errors are generally acceptable. Fair: Errors are moderate, calibration should be 
improved. Poor: Errors are too high for useful eye tracking (EyeLink® 1000 Plus User Manual, 
2015) 
b Because the infant showed inattentiveness, a validation procedure was not attempted. 
c Sequences that were starting with a successful calibration and were included in the analysis. 
The number of sequences is lower than that of the possible validation procedures, because 
sometimes calibrations and validations had to be repeated to start the trial sequence. 
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 Calibration Targets (Infant and Adult Part of the Experiment) 

Table S 3.17. Completed Trials, Means and Standard Deviation of the Accuracy and 
Precision Scores During the Verification Trials 

  Instability1    Dispersion1  
Group Stimuli N2 M  SD   Calibration N2 M  SD  
Adults Bullseye 74 0.489 0.204  Bullseye 75 0.175 0.060 
 Harp 74 0.455 0.203  Harp 75 0.165 0.046 
 Nautilus 73 0.411 0.142  Nautilus 75 0.166 0.050 
 Popflake I 73 0.466 0.253  Popflake I 72 0.167 0.043 
 Purple 74 0.579 0.258  Purple 72 0.196 0.100 
 
 

Medal 73 0.601 0.264  Medal 72 0.163 0.039 

Infants Bullseye 55 0.898 0.327  Bullseye 51 0.350 0.167 
 Harp 51 0.852 0.363  Harp 50 0.376 0.199 
 Nautilus 51 0.778 0.333  Nautilus 47 0.339 0.114 
 Popflake I 52 0.824 0.310  Popflake I 54 0.432 0.239 
 Purple 53 0.856 0.325  Purple 59 0.356 0.142 
 Medal 56 0.884 0.345  Medal 57 0.394 0.189 

 
Notes: Data was aggregated within trials. SD = standard deviation between trials. 
1 Instability was grouped by video stimuli, and the grouping variable for Dispersion was calibration 
target in the Verification trials. Higher values indicate lower precision or accuracy 
2 Number of trials. Even though the adult sample was smaller, more valid trials were obtained.  
 
 

 
Figure S 3.9: Dispersion as a function of head distance change and participant group 
in the Verification trials.  
Note the different group levels on the x- and y-axis. The interaction of head distance change by 
participant group was not predictive for the model (F(1) = .04, n.s.). 
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Table S 3.18 Differences of Gaze Instability between Target Variants during Spread 

Trials 

  High Instability  

 
 
Bin1 

 
 
 Low Instability  
 

ContrRings FacetTwist BlurRings 

β	 SE p β SE p β SE p 

1	 Popflake II   n.s.   n.s.   n.s. 

 SpiralTwist   n.s.   n.s.   n.s. 

 CentBlink .33° .094 < .001 .33° .095 < .001   n.s. 

2	 Popflake II .57° .10 < .001 .35° .093 < .001 .34° .093 < .001 
 SpiralTwist .36° .12 < .01   n.s.   n.s. 

 CentBlink .53° .11 < .001 .32° .095 < .001 .31° .094 < .001 

3	 Popflake II .60° .11 < .001 .50° .10 < .001 .44° .098 < .001 
 SpiralTwist .38° .12 < .01   n.s.   n.s. 

 CentBlink .56° .11 < .001 .46° .10 < .001 .40° .099 < .001 

4	 Popflake II .40° .10 < .001 .36° .10 < .001 .34° .10 < .001 
 SpiralTwist   n.s.   n.s.   n.s. 

 CentBlink   n.s.   n.s.   n.s. 

5	 Popflake II   n.s.   n.s.   n.s. 
 SpiralTwist .30° .11 < .01 .33° .11 < .01   n.s. 

 CentBlink   n.s. .31° .12 < .01   n.s. 

6	 Popflake II   n.s.   n.s.   n.s. 
 SpiralTwist   n.s.   n.s.   n.s. 

 CentBlink   n.s.   n.s.   n.s. 
 

1 The six bins are covering the following time segments: 0.8 – 1.7 s (Bin 1), 1.7 – 2.55 s (Bin 2), 
2.55 – 3.3s (Bin 3), 3.3– 4.15 s (Bin 4), 4.15 – 4.9 s (Bin 5) and 4.9 – 5.7 s (Bin 6). The whole IP 
started at 800 ms and ended at 5700 ms.  
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3.8.3  S3 Discussion.  

The Influence of the Initial Calibration Procedure vs. Head Movement on Precision.  

We suggested, that movement of the infant participants led to noise in the data and a lack 

of statistical power, so that the effect of an initial calibration target on precision of the 

subsequent sequence was only marginal. A tentative post-hoc model selection with the adult 

participants data supports this explanation: there, calibration video as the exclusive predictor 

variable (F(5) = 3.6, p = .02), and head - camera distance as random slope led to the best fit. 

Secondly, in the model that included both participant groups, an increase in head - camera 

distance after calibration significantly augmented the Dispersion scores. Interindividual 

variance in distance change that we estimated in the same model as random slope 

significantly improved the fit compared to a random intercept model (!2(2) = 44, p < .001; 

Figure S3.9). Head - camera distance is recorded by the EyeLink eye-tracking device and 

included as a variable in the output files. It only provides a one-dimensional distance score, 

and does not specify the angle of a movement. In the models referring to the blocks that 

investigated calibration targets, we therefore transformed head - camera distance to only 

positive values, indicating general body movement which, al least, can be seen as critical for 

the camera focus. The precision scores of the verification trials confirm that movement during 

eye tracking has a weakening effect on the detectability of experimental differences. 

Even the minimal movements of the adult participants during the Calibration-Repetition 

trials influenced the accuracy measure Displacement (F(1) = 22.1, p < .001). In spite of the 

instructions they received, adults’ postures became more and more unstable during this last 

block of the experiment. A follow up analysis showed that head distance change was 

positively related to the duration of this task, correlating with rdf 714 = .27, t = 7.4, p < .001. 

Future studies could investigate the usefulness of including changes in head distance or 

calibration success as control variables during Remote Mode infant eye tracking.  

Interestingly, head distance change did not significantly explain variance of the accuracy 

measure Instability in the same Calibration-Repetition trials. This confirms our plan to assess 

accuracy during the joint infant - adult trials mainly independent of interfering movements by 

using Instability as DV. 
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3.8.3.1 Low Accuracy and Precision During Angular Movement  

We argue that low data quality during the Head Movement task of the adult experiment 

may be caused by a combination of angular change and movements. When looking at Figure 

7, one can notice, that head distance change during Head movement stayed in a lower range 

than during Side movement or the control task Fix. Still, Displacement scores were 

significantly stronger affected during this task. In the control task Fix, participants tried to 

keep their upright and frontal head position while involuntary movement occurred. In 

contrast, during Head movement participants were asked to include head turns in their 

movements, and during Side movement, they had to turn their head intermittently and might 

not have returned to the original frontal position as requested. The resulting offset between 

target position and measured POG for those two movement types indicates that angular 

changes in addition to movement may be the cause of the proportionally larger offset between 

POGs and target centers. Together with the elevated RMS scores during the Head movement 

task, these results indicate that the eye-tracker was especially affected by angular movement. 

Future studies could investigate the actual causes for this sensitivity. 
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4.1 Abstract 

An infant's everyday visual environment is composed of a complex array of entities, some 

of which are well integrated into their surroundings. Although infants are already sensitive to 

some categories in their first year of life, it is not clear which visual information supports their 

detection of meaningful elements within naturalistic scenes. Here we investigated the impact 

of on 8-month-olds' search performance using a gaze contingent eye-image characteristics 

tracking search task in which infants had to detect a target patch on a background image. The 

stimuli consisted of images taken from three categories: vegetation, non-living natural 

elements (e.g., stones), and manmade artifacts. Our results showed that infants were better 

able to detect targets belonging to the same category as the background image, particularly if 

targets were also high in luminance contrasts. Furthermore, larger target-background  

differences in scaling invariance and entropy, and also stimulus backgrounds including low 

pictorial depth, predicted better detection performance independent of target luminance. 

Taken together, these results suggest that infants use a combination of categorical- and 

property-related information to parse complex visual stimuli and demonstrate that infants' 

visual processing of naturalistic scenes offers many questions to be investigated in future 

research. 
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4.2 Introduction 

During their first year of life, human infants explore their visual environment in an 

increasingly selective manner (Bronson, 1994; Colombo, 2001). Once they start to be able to 

grasp and crawl during the second half of their first year, their visual attention becomes 

directed to the characteristics and spatial layout of the objects around them (Courage et al., 

2006; Ruff & Rothbart, 1996, 2001), and infants become able to focus on "tasks at hand" 

(Colombo & Cheatham, 2006). Infants' attentional deployment is then already modulated by 

some categorical distinctions (e.g., Mandler & McDonough, 1998a; Quinn, 2011). An infant's 

environment provides diverse visual scenes, in which some entities are well integrated into 

their surroundings, like books scattered across a child’s colorful carpet, or fallen leaves on the 

playground's sand. However, since the visual system of young children is still developing and 

experiences with the variability of objects are sparse compared to that of adults, it is not clear 

which visual information could support a segmentation of static scenes into distinctive 

elements in early life (for a discussion of this problem see e.g., Kellman, 2001).  

By about six months of age, basic low-level visual capabilities have emerged which 

enable infants to distinguish visual pattern within their environment (Aslin & Smith, 1988; 

Braddick & Atkinson, 2011; Kellman & Arterberry, 2007). These include grating acuity (i.e., 

the finest stripes of varying size which can be resolved; e.g., Lewis & Maurer, 2005), 

contrast-sensitivity at higher spatial frequencies (i.e., more narrow changes between light and 

dark regions; Brown & Lindsey, 2009; Pirchio et al., 1978; van den Boomen et al., 2012), and 

orientation (Braddick & Atkinson, 2011; Morrone & Burr, 1986; Slater et al., 1988). These 

basic functions become more detailed and refined during infancy and early childhood and are 

adult-like by around 6 years of age (Almoqbel et al., 2017; Leat et al., 2009; Lewis et al., 

2007; Siu & Murphy, 2018).  

An infant's visual attention can be drawn by strong luminance contrast, complexity, or 

novelty of a visual stimulus' attributes. Similar to adults, infants are likely to orient towards 

locations of a visual scene which stick out from their surrounding due to physically intense 

cues (e.g., Amso et al., 2014; Itti & Koch, 2001; Kwon et al., 2016). Furthermore, visual 

information which provides learning opportunities is an important component of infants' 

attention to objects, visual pattern and events (Fiser & Aslin, 2002; Kirkham et al., 2002). The 

environment provides opportunities to receive, organize, differentiate, and accumulate visual 

information (Fantz & Nevis, 1967). Infants actively select their learning experiences 
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(Oudeyer & Smith, 2016), and learning during visual inspection becomes evident, for 

example, by increased engagement with more complex stimuli (Courage et al., 2006). 

Experience with such information is necessary for the development of the basic visual 

functions mentioned above (Lewis & Maurer, 2005) and provides the basis for higher level 

visual abilities. These include the integration of contour segments (Putzar et al., 2007), and 

the perception of fine detail (i.e., letter acuity; Maurer & Lewis, 2013), all of which support 

visual organization of real-world scenes.  

However, infants also disengage from a stimulus or scene if it contains overwhelming 

levels of intensity or complexity (Aslin & Smith, 1988; Bornstein & Benasich, 1986; Ruff & 

Rothbart, 2001). Thus, an infant's orientation latency is similarly affected by the significance 

or familiarity of the current and characteristics of the new stimulus (L. B. Cohen, 1972; Oakes 

et al., 2002).  

4.2.1 Visual categorization during infancy 

An infant's attention and behavior can also be affected by categorical information. For 

example, visual input which is related to specific categories signaling threat or ambiguity—

including angry faces, snakes, spiders, or plants—causes arousal or reluctance (e.g., C. Elsner 

& Wertz, 2019; Hoehl et al., 2017; LoBue & Adolph, 2019). Other research takes advantage 

of infants' interest in social information and investigates their attention to face stimuli among 

non-social objects using search tasks (for review see: Leppänen, 2016). Together, these 

studies indicate that reactions of infants in their first year are increasingly driven by the 

ecological or cultural relevance of a stimulus' category. Many researchers describe 

categorization during infancy as relying on perceptually formed representations which are 

continuously refined and conceptually enriched (Eimas, 1994; Madole & Oakes, 1999; Quinn 

& Eimas, 2000; Rakison & Yermolayeva, 2010; Westermann & Mareschal, 2012; but see 

Mandler, 2000). Yet, infants are also able to distinguish between objects which are 

perceptually similar but belong to different domains (B. Elsner et al., 2013; Mandler & 

McDonough, 1993; Pauen, 2002). Furthermore, infants also distinguish general categories 

consisting of instances which are heterogeneous in their characteristics—such as plants versus 

artifacts and non-living natural objects (e.g., C. Elsner & Wertz, 2019; Mandler & 

McDonough, 1998b; Wertz & Wynn, 2014) or stimuli differing in the animacy–inanimacy 

domains (B. Elsner et al., 2006; Opfer & Gelman, 2011; Rakison & Poulin-Dubois, 2001).  

Category exemplars in these studies are commonly extracted from their background and 

presented as a single bounded object. There are only few studies which used real-world 



Introduction 
 

 141 

scenes to investigate infants' ability to distinguish content-related visual information (e.g., 

scenes with face-targets: Amso et al., 2014; Frank et al., 2014; Kelly et al., 2019). Moreover, 

given the many reasons why infants might attend to one visual cue but not another—including 

exploration and visual learning—research interested in the early detection of ecologically 

significant visual information might profit from the analysis of visual properties inherent in 

real-world scenes.  

4.2.2 Segmentation of real-world scenes 

Naturalistic categories differ in their visual properties. Several statistical properties have 

been identified which are efficiently processed by the adult visual system (Burton & 

Moorhead, 1987; Field, 1987) and allow instantaneous segmentation and classification of 

naturalistic scenes or the detection of scene elements (e.g., Geisler et al., 2001; Oliva & 

Torralba, 2006). For example, types of scenes differ in the distribution of spatial frequencies 

(Hansen & Hess, 2006; Tolhurst et al., 1992) and their fractal characteristics (e.g., Isherwood 

et al., 2017; Ruderman, 1997). Furthermore, higher level characteristics such as symmetry, 

regularity, or curvature determine the discrimination of ecologically meaningful categories in 

adults (Baumgartner et al., 2013; Long et al., 2017; Schmidt et al., 2017).   

Along with grouping of contour elements (e.g., Elder & Goldberg, 2002), texture 

segregation (i.e., the effortless segregation of texture patches, for a review see: (i.e., the 

effortless segregation of texture patches, for a review see: Landy & Graham, 2004) is seen as 

a major mechanism determining the successful visual organization and identification of scene 

elements (Kellman, 2001; Marr, 1976; Panis et al., 2008). However, when exposed to 

artificial stimuli, infants within the first year of life are rather sensitive to differences in 

luminance, whereas segregation of textures defined by discontinuities in orientation emerges 

only after the end of the first year of life (Sireteanu & Rieth, 1992). Since categorization and 

learning of visual regularities is already present in younger infants, this raises the question of 

whether the segregation of naturalistic textures relies on additional features than those tested 

with artificial stimuli. For example, Balas and colleagues (2018, 2014) showed that by 9 

months of age, infants are sensitive to contrasts between the appearances of naturalistic 

textures and their statistical transformations (Balas et al., 2018; Balas & Woods, 2014). 

Moreover, infants are surprisingly proficient at processing signals indicating depth and 

surface properties provided by graphical stimuli (Kavšek, 2003; Kellman & Arterberry, 2007; 

Yang et al., 2011). This suggests that infants are able to detect some differences in visual 

properties beyond luminance contrast. Given the reviewed literature on infants' attention to 
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visual information and their sensitivity to ecologically significant categories, we were 

interested in identifying how both of these qualities contribute to infants' visual segmentation 

of complex real-world scenes.  

4.2.3 The current investigation 

In the current study, we conducted a visual search task with 8-month-olds including 

images of real-world structures to investigate the effect of different image attributes (e.g., 

visual properties, categories) on scene segmentation (i.e., the detection of a target structure on 

a background structure). In contrast to frequently used stimuli in studies on categorization and 

visual development (i.e., faces, objects, or graphics; for overviews see e.g., Kellman & 

Arterberry, 2007; Quinn, 2011; but: Balas et al., 2018; Balas & Woods, 2014), we included 

photographs depicting homogeneous assemblies of natural entities and artifacts. Such visual 

structures characterize an important proportion of the human environment and were found to 

include visual properties relevant for adult categorization (e.g., Geisler, 2008; Torralba & 

Oliva, 2003).  

We used photographs of three superordinate categories: vegetation, non-living natural 

elements such as rock or water surfaces, and artifacts. We chose these categories because they 

cover important aspects of human environments that are of ecological and social significance, 

and have been so over evolutionary time. For instance, these three categories are part of either 

a natural or a manmade world (e.g., Gelman, 1988; Schlegelmilch, 2012; Walther & Shen, 

2014), they determine the quality and behavioral affordances of a surrounding (e.g., Adelson, 

2001; Schuppli et al., 2016; Smuda, 1986), and they can provide organic or mineral material, 

represent tools, or provide food (e.g., Carrara & Mingardo, 2013; Wertz, 2019). Moreover, 

infants typically have visual contact with a variety of instances of each of these categories 

which provide learning opportunities for some of their aspects. 

 We used an eye-tracking visual search task in which infants had to find a patch of 

one type of image presented on a discrepant background image. This task allowed us to test if 

category membership affects detection. Infants received a reward (i.e., a colorful butterfly and 

sound) when their gaze landed on the visual target patch. The reward was included to 

stimulate visual search and appeared when the infant fixated on the target patch. By the age of 

eight months, infants are able to perform eye movements in order to trigger a reward (Wang 

et al., 2012), and gaze-contingent rewards motivate infants' search in eye-tracking 

experiments if there is no clear pop-out effect for the target (Hessels et al., 2016; Jones et al., 

2014).  
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 To account for the familiarity and perceptual difficulty of the structures depicted in 

our stimuli, we included variables which quantified the categorization of the same images by 

preschool children and adults in a previous study of Schlegelmilch and Wertz (2020). We also 

assessed visual properties selected from research on adult visual categorization of naturalistic 

entities (e.g., Geisler, 2008; Heaps & Handel, 1999; Schmidt et al., 2017) which either 

showed processing advantages in adults, or discriminated statistically between the categories 

used in our study. Finally, we included a measure of luminance contrast. Taken together, the 

variables we expected to predict infants' search performance belonged to three groups: (a) 

content-related visual information, (b) structure-related visual properties, (c) low-level 

salience (see Table 4.6 for descriptions of the variables).  

 

Table 4.6 Definitions of the Visual Properties  

Name Definition Relevance 

  
Content-related variables received from children and adults a 

Assigned 
category 

Judgments about to which 
superordinate category each of the 
images belonged 

Provides estimates of the images' 
generalizability to any of the categories for 
different age groups.  

Perceived 
similarity 

Judgments of visual similarity 
between the images that were 
included as target-background image 
combinations 

Subjective perceptual similarity judgments 
of different age groups. 

  
Computational b 

 

Luminance Mean pixel luminance. The overall lightness or intensity of a 
structure. 

Alpha Steepness of the distribution of 
energy across spatial frequencies  
(1/f alpha), referring to the proportion 
of larger changes to more narrow 
changes between light and dark.  

In natural scenes, alpha values are found to 
lie in a typical range (e.g., Hansen & Hess, 
2006). 
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Deviation Deviation of a spatial frequency 
distribution from the fitted line 
defined by Alpha. Measure of scaling-
invariance (fractality) in a structure's 
spatial changes between light and 
dark (e.g., Burton & Moorhead, 
1987).  

This measure was found to differ between 
artifacts, plants, and natural scenes (Redies 
et al., 2007) 

Entropy Shannon entropy of pixel luminance 
values (Shannon, 1948)   .

Measure of magnitude and predictability of 
informatio  nal content and differentiation

Skew Skew of the pixel luminance 
histogram.  

Referring to impressions of shading and 
lighting (e.g., D. Graham et al., 2016; 
Motoyoshi et al., 2007). 

 Rated c  

Curvature Angular vs. curved.  Perceived curvature supports classification 
between animate and inanimate objects 
(Long et al., 2017; Schmidt et al., 2017). 

Regularity Regular vs. chaotic.  Important characteristic for texture 
discrimination (Heaps & Handel, 1999; Rao 
& Lohse, 1996). 

Symmetry Symmetrical vs. asymmetrical.  Symmetry attracts attention in natural 
scenes (e.g., Açık et al., 2009). 

Depth Plane vs. three-dimensional.  Indicates spatial arrangement of scene 
elements. 

 
a Assessed in sorting tasks with 4–5-year-olds and adults (Schlegelmilch & Wertz, 2020). 
Assigned categories were included as the Euclidian distance between the target-image's and 
background-image's proportional assignments to each of the categories. Similarity judgments 
were transformed to dissimilarity values. 
b Computational properties were assessed with functions implemented in Matlab (version 
R2017b) or provided by literature on image processing (Gonzalez & Woods, 2018) 
c Rated properties were formulated as opposites and judged on a continuous scale by adult 
participants.  

 

We expected that computational and rated visual properties could influence infants' 

search performance in two non-exclusive ways: a) their prominence within a background 

image might hinder the detection of the target; b) stronger differences between a visual 

property in the target patch and the background image might increase detectability of the 

target. We therefore included computationally-assessed properties as difference variables by 

subtracting the background's variance of the property from its target-plus-background's 

variance (Section 1 in S1 Methods). Visual properties based on human ratings had been 
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assessed for entire images (Schlegelmich & Wertz, 2020), so these ratings could not validly 

represent the small regions of the images used as target patch. Consequently, we only 

included the background's rated properties in our analysis.  

Our predictions for the current study were that infants would detect a target patch faster 

(a) if it depicts a category which is distinct from the background category, rather than 

belonging to the same category, and (b) if its visual properties differ more strongly from the 

background properties. 

 

4.3 Methods 

4.3.1 Participants 

The final sample were N =39 eight-month-old infants (age: M = 8 months, 11 days; range 

= 8 months, 0 days to 8 months, 29 days; 18 female), recruited from urban and suburban 

regions of a large European city. We chose 8-month-olds for the current investigation given 

their successful performance on gaze-contingent search tasks in previous studies (Forssman et 

al., 2017; Jones et al., 2014; Wang et al., 2012), and early evidence for distinctions between 

general categories within the second half of the first year of life (Rakison & Yermolayeva, 

2010). An additional two infants were tested but excluded because no data could be assessed 

due to problems with the eye-tracker. All infant participants had normal vision. They were 

recruited from our internal participant database and tested in the Max Planck Institute for 

Human Development, Berlin, Germany. The study was approved by the MPIB Ethics 

Committee and parents gave written consent for their child’s participation. Participants were 

compensated with 10 Euros and a participation certificate. 

4.3.2 Stimuli 

The 27 images which comprised the search stimuli of the current study were selected 

from a set of 60 greyscale images used in the study of Schlegelmilch and Wertz (2020) that 

investigated the impact of visual properties on categorization in preschool children and adults. 

The images depict extracts of real-world structures representing one of the three superordinate 

categories of either vegetation (e.g., foliage, bark, grass), non-living natural elements (e.g., 

water surfaces, rocks), or artifacts (e.g., cloth, office supplies; for examples see Figure 4.15a, 

all images are shown in the supporting information (Figure S 4.11a). Each entity occupies the 
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full size of the image. They were photographed by the first author, or downloaded from 

license-free online image databases.  

 

 
Figure 4.15: Visual properties and their effect on search performance. 
(A) Examples of search stimuli with low and high property values, difference in scaling invariance 
refers to the variable diff_deviation. (B) Properties as functions of search performance. Red lines 
indicate means (success) or regression lines (latency), error bars: SE. Asterisks indicate 
significant contributions of the variable to the full models, see Table 4.8. 

 

The stimuli for the search task each consisted of one background image into which a 

circular patch of a different image was inserted as target. The size of the background image 

measured 1280 × 1024 pixels, leading to 32° × 25.5° of visual angle during presentation (vis), 
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the target patch measured 235 pixel (6° vis) in diameter. Targets were placed at one of 10 

possible locations arranged in a circle with ca. 710 pixel (18° vis) distance to the screen center 

(Figure S 4.10). Each target had a blurred border to prevent that the circular contour of the 

target was used as cue. With the same intention, a pattern of blurred circles along the outer 

contours of the 10 possible target locations was included in each background image (for an 

example, see Figure S 4.10, Figure S 4.11a and b). In order to obtain stimuli with moderate 

target saliency, we applied a salience algorithm to all possible target-background 

combinations and locations, using the statistical software Matlab (version R2017b, 

http://www.mathworks.com). We chose the Graph-Based Visual Saliency algorithm (GBVS; 

Harel et al., 2007) specified for discontinuities in luminance and orientation. GBVS had 

reflected infant gaze patterns well (for a discussion of salience applied in infant research see: 

Kwon et al., 2016). We then chose target-background combinations in which a target was 

quantified as at least moderately salient, but not as the only salient region of the stimulus 

(Figure S 4.11c). 

Target patches and background images either depicted the same or a different category, 

leading to stimuli with congruent categories (e.g., vegetation target on vegetation 

background), or incongruent categories (e.g., artifact target on vegetation background). In the 

previous study with preschool children and adults, depth cues were an important predictor of 

categorization decisions. Because depth differed between categories, we balanced the levels 

of depth in the images we had chosen for the categories, and within the target background 

combinations. We crossed category-congruency (congruent vs. incongruent) with the control 

variable depth-congruence (similarly high levels of depth vs. different levels of depth in the 

target and the background image). This prevented depth being a confound in the analysis of 

category-congruency.  

To make the experiment more engaging for infants, we used three alternating 

monochromatic colors for the search stimuli. This was done by transforming the greyscale 

images to HSL color space with the hues: 90° (green), 210° (blue), 330° (red), using the 

software Adobe Photoshop (Adobe Photoshop CC, Version 2017.0.0). The target and 

background always shared the same color within a stimulus. 

In sum, the target-background combinations of 27 images on 10 possible locations and 

presented in three different colors led to 260 different stimuli that crossed category 

congruency and pictorial depth congruency.  
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4.3.3 Experimental design and procedure 

First, a target sticker was placed on the infant's forehead and the infant was seated in a 

dimmed room in front of the eye-tracker (EyeLink 1000 Plus; SR Research Ltd. 2013 - 2015) 

either in a baby chair (N = 37) with the caregiver right behind, or on their caregiver's lap (N = 

2). A welcome video was played during the set-up of the eye-tracking camera (EyeLink 1000 

Plus High-speed Camera with a 16 mm lens), which was placed approximately 60 cm in front 

of the target sticker as recommended by the manufacturer (EyeLink 1000 Plus User Manual, 

2015). Monocular pupil and corneal reflections were assessed in a sampling rate of 500 Hz. 

The presentation monitor (50” display, with 1280 by 1024 pixel resolution, and 400Hz CMR 

refresh rate) was set at a distance of 140 cm away from the infants’ eyes to approximately fit 

the trackable area of 32° vis by 26° vis in accordance with the manufacturer's suggestion. 

After set-up, the experimenter stepped behind a curtain from where the infant and caregiver 

could be monitored on a video screen and started the experiment.  

At the beginning of the experiment and after at least each eighth trial, five-point 

calibrations were conducted with calibration targets alternating in color, form and sound (for a 

description see Schlegelmilch & Wertz, 2019). The trial started when the average calibration 

error was below 1° vis (see Figure 4.16, and Section 2 in S1 Methods for details).  

 
Figure 4.16: Trial example. 

 

  

1. Animated attention grabber, ends with  
    central fixation (100 ms on area of 2°). 

2. Search panel, duration: 4500 ms, 
    hit: 100 ms fixation on target.  

3. Reward, immediate sound 
    (hit: happy, 2400 ms,  
    miss: neutral, 1000 ms),  
    after 200 ms animated butterfly at target. 
 
4. Search panel fades out.   
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The first five trials of the experiment were practice trials. They started with an easy-to-

detect target patch on a simple background and gradually increased in difficulty. Then, 36 test 

trials were presented in randomized order. In each trial, the color of the stimulus was 

randomly altered (green, blue, and red). Additional easy-to-detect practice trials were initiated 

if it seemed that the infant became unaware of the task after several misses without receiving 

a reward. If the infant became inattentive, showed fatigue, or if the caregiver requested a 

break, we paused the experiment for a few minutes, or terminated the experiment 

prematurely. There were eight versions of the experiment that alternated between participants. 

Each version included a different selection of 36 target-background image combinations taken 

from our 260 stimulus variants. No target or background image was included more than twice 

in one version. To avoid memory effects when an image was repeated, its second occurrence 

was part of a different target-background image combination and used a different target 

location and color. 

 

4.4 Results 

Infants completed a median of 34 trials (range = 26 to 36 trials), with a median of 88% of 

gaze recorded by the eye-tracker per trial (range: 1% to 100%). In the following analysis, we 

included only trials in which infants attended to the stimulus, defined as follows: Trials in 

which infants detected a target (hit) were accepted if they had a minimum of 80% of recorded 

gaze. Trials in which a target was not detected (miss) were accepted if they included at least 

1240 ms of recorded gaze, which was the median of the hit latency for the whole sample. 

These criteria led to Mdn = 32 valid trials per infant (range = 23 to 36). We did not exclude 

recorded gaze with low data quality (i.e., fixations with high dispersion of gaze points; 

Holmqvist et al., 2012), because low-quality fixations for example due to movements can be 

understood as reactions to the stimuli. Fixation dispersion within all hits was Mdn = .17° vis 

(range = 1.03° to 1.3°), whereas in misses it was Mdn = .21° vis, range = 1.01° to 3.68°. 

Infants detected a target in 39% of the trials they attended to, range = 17% to 55%. 

4.4.1 Statistical analysis of search performance 

Was assessed the binarily coded dependent variable (DV) success (hit, miss) and the 

continuous DV latency, which represented the time until a target was detected if it was a hit. 

These two DVs covered infants' reactions to aspects of stimulus salience, detection difficulty 

and background complexity. To account for individual differences, non-normality and 
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unbalanced conditions which are common in infant and eye-tracking data (Kliegl et al., 2011; 

Valuch et al., 2015), we conducted mixed effect models with the R-package lme4 (Bates et 

al., 2015). For the generalized linear effect models (GLMM) on the DV success, we used the 

function glmer and specified a binomial error structure. The units of analysis included as 

random effects on success were participant, background image, and target location. On the 

DV latency, linear mixed effect models (LMM) were conducted with the function lmer. For 

latency, the random effects participant and background image were defined, whereas target 

location did not improve the model fit and was not included (!2(1) = 0.04, n.s.). Residual and 

specification diagnostics were carried out with the R package DHARMa (Hartig, 2020) and 

by inspection of residual plots. Influential cases were diagnosed with regard to DFBetas 

(function influence; R-package lme4). The significance of predictors was assessed by 

comparing the current model with a model reduced by the respective predictor in chi-square 

likelihood-ratio tests (LRT) with the R-function Anova (package car; Fox & Weisberg, 2019).  

To avoid problems of interdependencies between IVs (see e.g., Graham, 2003), we 

reduced the number of IVs in each comparison by conducting separate models for different 

research questions (e.g., the impact of computationally assessed visual properties). For these 

models, we estimated the effect of collinearity by Variance Inflation Factors (VIF; O’brien, 

2007) with the function vif (R-package car; Fox & Weisberg, 2019) and only combined IVs in 

models if VIF values remained below 2.5.  

We tested if stimulus color [green, red, blue] generally affected search performance. The 

comparisons confirmed that color did not predict search performance, success: !2(2) = 1.6, 

n.s.; latency: !2(2) = 3.7, n.s..   

Because movement during remote-mode eye-tracking substantially affects data quality 

(e.g., Niehorster et al., 2017; Schlegelmilch & Wertz, 2019), we calculated the covariate 

movement as the maximum of absolute change in head-camera distance within fixations 

during each presentation of a search stimulus (for details see Section 1 in S2 Results). 

Movement was included as a covariate in all models. 

In our analysis, we were interested in the impact of the predictor variables beyond 

diff_luminance. We therefore included diff_luminance as fixed effect in all models. We also 

included the interaction term between diff_luminance and the other predictor variables if it 

significantly improved the model compared to a model with fixed effects only, as assessed in 

a LRT (R function anova, package stats; R Core Team, 2019). 
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4.4.2 The impact of content-related visual information on detection performance 

4.4.2.1 Category-congruency 

Here, we investigated whether differences between the background category and the 

target category affected search performance. Category-congruency and depth-congruency 

were included in the models as predictors. The GLMM on success also included the 

interaction term between category-congruency and diff_luminance. LRTs on success 

indicated significant contributions of the fixed effect category-congruency (!2(1) = 6.2, p = 

.013) and the interaction term (!2(1) = 8.1, p = .005). As a fixed effect, incongruent 

categories led to a higher probability to detect a target, whereas incongruent categories led to 

a lower probability to detect a target if combined with higher, but not with lower 

diff_luminance (Figure 4.17). In the LMM on latency, category-congruency did not contribute 

to the model, !2(1) = 3.3, p = .068. The control variable depth-congruency neither improved 

the model fit on success (!2(1) = 1.7, p = .192), nor on latency, !2(1) = 1.7, p = .187, Table 

4.7. For an analysis of how category type affected detection of congruent and incongruent 

category combinations, see S3 Discussion.  

 

 
Figure 4.17: Diff_luminance supports the detection of congruent target-background 
categories.  
High diff_luminance is related to higher detection success for congruent categories (blue), 
compared to incongruent categories (red). The fixed effect found for category-congruency—after 
including the interaction term between diff_luminance and category-congruency—increased the 
probability to detect incongruent-category targets by ca. 5%, compared to congruent.  
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Table 4.7 Category-related Properties Predicting Detection Performance 

 GLMM on success  LMM on latency 

Property Log-
Odds 95% CI z p a  b 

(ms) 95% CI t p a 

 Category-congruency       

Diff_luminance 0.49 [0.18, 0.80] 3.09 .002  -82 [-187, 22] -1.54 .126 

Category-congruency -0.55 [-0.98, -0.12] -2.49 .013  -151 [-314, 11] -1.83 .069 

Depth-congruency 0.24 [-0.12, 0.60] 1.31 .192  -121 [-300, 59] -1.32 .188 

Diff_luminance: 
Category-congruency 0.66 [0.20,1.11] 2.84 .005      

Movement -2.38 [-2.83, -1.93] -10.4 < .001  1106 [886, 1326] 9.85 < .001 

          

 Assigned category children       

Diff_luminance 0.68 [0.39, 0.97] 4.64 < .001  -70 [-173, 33] -1.34 .184 

Assigned-category 0.2 [-0.00, 0.41] 1.96 .05  92 [11, 173] 2.22 .027 

Image similarity 0.09 [-0.12, 0.29] 0.82 .414  -85 [-169, -1] -1.99 .047 

Diff_luminance: 
Assigned-category -0.30 [-052, -0.08] -2,66 .008      

Diff_luminance:  
Image similarity -0.13 [-0.39, 0.14] -0.92 .356      

Movement -2.39 [-2.84, -1.94] -10.4 < .001  1062 [841, 1283] 9.43 < .001 

          

 Assigned category adults       

Diff_luminance 0.69 [0.41, 0.97] 4.83 < .001  -87 [-191, 16] -1.66 .099 

Assigned-category 0.24 [0.03, 0.46] 2.2 .028  68 [-13, 149] 1.65 .101 

Image similarity 0.11 [-0.11, 0.32] 0.95 .34  -43 [-131, 44] -0.97 .331 

Diff_luminance: 
Assigned-category -0.32 [-0.53, -0.11] -2.95 .003      

Diff_luminance:  
Image similarity -0.05 [-0.30, 0.2] -0.41 .680      

Movement -2.37 [-2.82, -1.92] -10.3 < .001  1101 [881, 1322] 9.79 < .001 

 
Note. See Section 2 in S2 Results for further analysis and discussion. 
a P-values obtained by chi-square likelihood-ratio tests.  
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4.4.2.2 Previous child and adult categorization variables 

To examine whether the category-congruency analysis was influenced by the difficulty of 

the images, we included variables referring to the distance of category assignments and 

similarity judgments which were assessed in the previous sorting tasks by children and adults. 

These variables were analyzed in separate models for the data received from either children or 

adults. The GLMMs on success also included the interaction terms of category-assignment 

and similarity-judgment with diff_luminance, respectively. The predictive value of children's 

image categorization for infants' detection success marginally missed significance as main 

effect (!2(1) = 3.8, p = .0502), but contributed as interaction term between diff_luminance 

and children's category-assignment (!2(1) = 7.1, p = .008), in that higher, but not lower levels 

of target diff_luminance related to a better detection success in trials with less distinct 

category assignments. Moreover, detection latency was predicted by children's category 

assignments (!2(1) = 4.9, p = .026), indicating that less distinct category assignments to target 

and background images decreased the latency to detect the target. Results of children's 

similarity judgments and adults' variables are provided in Table 4.7.  

4.4.3 The Effect of Visual Properties on Detection Performance 

Target-background differences in computational properties (i.e., diff_deviation, 

diff_alpha, diff_entropy, and diff_ skew) and rated background properties (i.e., curvature, 

depth, regularity and symmetry) were analyzed in separate models. None of the models 

included interaction terms with diff_luminance. This led to four analyses conducted to assess 

the impact of visual properties on infants' search performance. 

In the GLMM of computational properties on success, diff_luminance contributed to the 

model fit with !2(1) = 19.8, p < .001. Of the structure-related predictors, only diff_deviation 

contributed with (!2(1) = 22.2, p < .001), in that higher values of both variables lead to a 

higher probability to detect the target. Latency was predicted by the structure-related property 

diff_entropy, which contributed to the fit of the LMM with !2(1) = 8.5, p = .004. Stronger 

target-background differences in diff_entropy led to a faster detection of the targets (see 

Figure 4.15 and Table 4.8). 

In the GLMMs on success including the rated background properties, diff_luminance 

contributed to the model with !2(1) = 27.9, p < .001 and depth affected the model fit with 

(!2(1) = 4, p = .046), in that higher values of diff_luminance, but lower values of depth, lead 

to a higher probability that a target was detected. Depth also contributed to the fit of the LMM 
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on latency (!2(1) = 11.1, p < .001), with higher values of depth leading to longer detection 

latencies.  

LRTs indicated that no other visual properties affected detection performance, see Table 

4.8 for all results and Figure 4.15 for stimuli examples of significant properties.  

 

Table 4.8 Structure-related Properties Predicting Detection Performance 

 GLMM on success   LMM on latency 

Property Log-Odds 95% CI z p a   b (ms) 95% CI t p a 

  
Computational target-background difference b    

Diff_luminanc
e 0.62 [0.35, 0.90] 4.45 < .001   -42 [-148, 65] -0.76 .446 

Diff_alpha -0.14 [-0.33, 0.05] -1.4 .160   -2 [-93, 90] -0.04 .968 

Diff_deviation 0.55 [0.32, 0.78] 4.71 < .001   -37 [-124, 49] -0.84 .402 

Diff_entropy 0.19 [-0.06, 0.45] 1.5 .134   -128 [-214, -42] -2.92 .004 

Diff_skew 0.09 [-0.1, 0.28] 0.92 .356   -42 [-118, 34] -1.08 .283 

Movement -2.4 [-2.85, -1.95] -10.37 < .001   1071 [850, 1292] 9.50 < .001 

           

 Rated background property       

Diff_luminanc
e 0.70 [0.44, 0.96] 5.28 < .001   -95 [-189, -1] -1.97 .054 

Curvature 0.07 [-0.2, 0.34] 0.51 .611   -11 [-117, 95] -0.2 .844 

Depth -0.31 [-0.61, -0.01] -2 .046   187 [77, 297] 3.38 .004 

Regularity 0.19 [-0.22, 0.6] 0.9 .37   -66 [-220, 88] -0.84 .412 

Symmetry 0.11 [-0.28, 0.5] 0.54 .59   128 [-20, 276] 1.7 .106 

Movement -2.38 [-2.82, -1.93] -10.47 < .001   1078 [857, 1298] 9.58 < .001 

 
Note. Visual properties were included together with the covariate movement as fixed effects. 
a P-values obtained by chi-square likelihood-ratio tests.  
b Assessed as difference between the properties' variance within the background image alone 
and within the background including the target patch, see Section 1 in S1 Methods.  
 

4.4.4 Were Targets Detected by Coincidence? 

In order to investigate whether infants may have fixated on the targets by coincidence, we 

compared the number of fixations during the presentation of the search-stimulus on each of 
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the 10 possible target locations without a target to the number of fixations on the target. A 

GLMM specified for count data on the numbers of fixations with the predictor location (the 

target contrasted to the 10 possible empty target locations) and participant as random effect 

indicated that there were less fixations to any empty target location than to the target itself, 

LRT on the IV location (!2(10) = 599, p < .001), all contrasts p < .001. These results indicate 

that overall, target detection was non-accidental.

 

4.5 Discussion 

Here, we investigated which image characteristics (i.e., category, diff_luminance, 

structure-related visual property) affected 8-month-olds' ability to detect a discrepant image 

patch on a complex background image using a gaze-contingent eye-tracking search task. The 

images depicted one of the three superordinate categories: vegetation, non-living natural 

elements or artifacts.  

Our results indicate that infants attended to combinations of category- and property-

related cues to distinguish complex naturalistic patterns. Although—consistent with the 

previous literature (e.g., Amso et al., 2014)—detection performance was affected to a large 

extent by diff_luminance, we found that a target's categorical information impacted detection 

performance if it was supported by a larger target-background difference in luminance. 

Structure-related visual properties of the images, such as area, entropy and rated depth, were 

less affected by luminance, and predicted detection performance independently.  

In the current study, targets were detected non-accidentally, indicating that infants learned 

to search for the targets and were able to direct their attention to discontinuities in the 

s. The current findings differ from earlier eye-tracking search tasks appearance of the structure

with infants (e.g., Hessels et al., 2016; Kelly et al., 2019) in that targets did not represent a 

delimited object. Instead, photographs of complex naturalistic surfaces or assemblies of 

elements alternated as targets and backgrounds. A target was only defined by it being a 

discrepant structure patch to the background and by leading to a visual reward if looked at. 

(e.g., Therefore, our results are relevant for research on image segmentation and visual search 

Aslin, 2011; Bhatt & Quinn, 2011; Sireteanu et al., 2009)  .

4.5.1 Content-related Information Affected Detection Latency 

In contrast to our expectations, we found that the probability of detecting a high- -target 

was higher if the target belonged to a category which was congruent to the background 
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category, and detection latency was marginally shorter for congruent category combinations. 

Similarly, less distinct category assignments to the target-background image combinations—

as assessed with preschoolers in a recent study by Schlegelmilch and Wertz (2020)—

predicted shorter detection latencies in the current experiment. It was only when the 

interaction terms between diff_luminance and category-related properties were included that 

detection success became slightly facilitated for more distinct category combinations. We 

interpret this as a side effect of the strong facilitation of detection success by high 

diff_luminance for congruent categories (see Figure 4.17, and Section 2 in S2 Results for 

further discussion). The findings for shorter detection latencies for less distinct categories are 

difficult to relate to research suggesting that the segmentation of naturalistic scenes in adults 

is closely linked to categorical information (e.g., Geisler, 2008), because one might expect 

facilitated segmentation for categories as distinct as those used in the current study.  

One explanation for the current result could be that switching attention from one category 

to another category might have been cognitively effortful for the infants. Elsner and 

collaborators (2013) came to a similar conclusion in an oddball paradigm with 7-month-olds. 

EEG recordings revealed that a discrepant-category oddball required more processing 

capacity compared to processing the same-category oddball (B. Elsner et al., 2013). One can 

argue that the presentation of single items in an oddball paradigm differs from the current 

study in that detection of an item is not necessary in the oddball-paradigm. Still, with the 

current search stimuli, processing difficulty of a target caused by a distinct category might 

affect covert attention so that saccades are not initiated as easily by the more distinct target 

category.  

Neuroscientific evidence for the existence of category-selective regions in infants 

provides a further explanation for the delayed detection of more distinct target categories 

(e.g., Cabral et al., 2019; Deen et al., 2017; Farzin et al., 2012; Kriegeskorte et al., 2008). If 

category-selective regions associated with the background image are activated, detecting a 

distinct target category would make a change of the neural activation pattern necessary. The 

infant's behavioral response (i.e., orientation of gaze) might then also reflect the distance 

between the neural representations of the distinct categories (Carlson et al., 2014). Distinct 

locations within the visual processing stream can be presumed for the categories included in 

the current study (Beeck et al., 2019). The categories used in the current study belong to 

domains frequently reported in adult neuro-imaging research (e.g., artificial vs. natural 

objects; Cichy et al., 2014; Haxby et al., 2014). However, category selective brain regions 

mature into childhood and beyond (M. A. Cohen et al., 2019; Dekker et al., 2011; Gogtay et 
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al., 2004) and, in particular, neural specificity associated with the recognition of human-made 

objects and tools show protracted development (Cabral et al., 2019; Deen et al., 2017; Farzin 

et al., 2012), so that detection latency might not only be affected by the distance of the 

representations, but also by their developmental state. 

Post-hoc comparisons of detection latency for all target-background combinations of the 

images' true categories revealed that artifacts led to longer detection latencies compared to 

natural categories (i.e., natural elements and vegetation), independent of their being target or 

background. In contrast, natural categories did not lead to different latencies (see S3 for 

further discussion and results). Therefore, our results suggest that detection latency for 

category-related target-background differences in complex visual scenes in infancy is driven 

by the distance between internal representations of natural and human-made entities (e.g., 

Carlson et al., 2014), or possibly the later maturation of category-selective brain regions 

related to artifacts (e.g., Cabral et al., 2019; Deen et al., 2017).  

In summary, the facilitated detection of  found in the present less distinct target categories

investigation might rely on several non-exclusive explanations. These are (i) infants' tendency 

to detect targets which differed from the background in their level of luminance, supporting 

sensitivity to category-related image properties, (ii) extra cognitive effort when disengaging 

from one category and attending to an incongruent category, (iii) the distance or 

developmental state of neural areas associated with internal representations. Yet, further 

investigations are necessary to obtain better insight into the current pattern of results (for 

further discussion of this problem see S2 Results and S3 Discussion). 

4.5.2 Structure-related Visual Properties Affected Detection Performance 

Target-background differences in area and entropy explained a similar or even higher 

diff_luminance (R2
marginal

 = .042 for amount of variance in detection performance than 

diff_deviation vs. R2
marginal

 = .019 for diff_luminance success; R2
marginal

 = .033 for  on 

diff_entropy vs. R2
marginal

 = .003 for diff_luminance latency; R-function r.squaredGLMM,  on 

package MuMIn; Bartoń, 2019). This is intriguing because infants' attention at this age is 

(e.g., Amso et al., 2014)strongly affected by luminance contrast . One may ask which aspects 

of these particular visual properties facilitated infants' detection of the discrepant target 

 structure.

It is possible that differences in the amount of grey-level shades, and in the amount of 

spatial scales that vary in the properties area and entropy, affected infants' detection 

performance. A structure defined by high area values (i.e., low scaling invariance) is 
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dominated by only some spatial frequency scales, providing similarly shaded regions of 

repetitive sizes, whereas a structure defined by low area includes all spatial frequency scales. 

Structures with high values of entropy include similar numbers of each of the 256 possible 

luminance values of an 8 bit image, while in low entropy high proportions of some luminance 

levels lead to less differentiated shading or more monotonous structure regions. Accordingly, 

higher values of the difference-variables area and entropy—which facilitated infants' target 

detection—were related to disparities between image regions with more fine-grained, 

cluttered patterns and differentiated contrasts, versus less detailed, smoother, or repetitive 

regions. Consequently, infants must have been sensitive to these disparities. This is 

interesting, because one would expect that infants' immature processing of fine detail and 

their lower contrast sensitivity would lead to uncertainty and make it difficult for them to 

detect variability in visual structures that differ in these respective non-matured visual 

ertain visual information might nevertheless be beneficial for aspects. Such sensitivity to unc

the infant because it can support strategic behavioral reactions such as avoidance, further 

exploration, or social referencing (e.g., C. Elsner & Wertz, 2019; Pauen & Hoehl, 2015). 

Sensitivity to uncertain or deficient visual information might also be reflected in infants' 

novelty preference (Fantz & Nevis, 1967) and in young children's choice of actions that 

(Köster et al., 2020; Oudeyer & Smith, 2016; resolve the greatest amount of uncertainty 

Vygotsky, 1978). Perhaps due to these adaptive behaviors, infants were sensitive to visual 

properties that varied in their levels of uncertainty and difficulty, and attended to 

discrepancies within these properties. This would explain how high values of the difference 

variables area and entropy led infants to detect the discrepant target patch. 

However, one may then ask why other difference variables of computational properties 

did not affect target detection performance. For example, alpha represents statistical aspects 

of  naturalistic scenes, and different levels of alpha have even been found to affect adults' 

 (e.g., Hansen & Hess, 2006; Redies et al., processing speed, recognition, and visual memory

2007; Ruderman, 1997; White et al., 2008). Yet, processing advantages of certain alpha levels 

(Ellemberg et al., 2012)during similarity judgments had not been found in younger children , 

Table 4.8and in the current study, alpha did not predict infants' detection performance ( ). It is 

possible that variations in alpha are much more difficult to perceive, because different levels 

of alpha vary in the proportions of spatial scales, but not in the range of the spatial scales 

included in the structure. In contrast to area, the discrimination of alpha levels makes 

(Ellemberg et al., 2012)sensitivity to the full spectrum of spatial scales necessary .   
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 4.5.3 Depth Cues, But Not Shape Predicted Detection Performance 

We found that high rated depth of the background image increased target detection 

difficulty. The dark regions and high contrast contours which are typical for shading-defined 

pictorial depth might have diverted infants' gaze and complicated the detection of the target. 

Infants start to be sensitive to stereoscopic depth and to pictorial depth within a few months 

(Kavšek et al., 2012; Kellman & Arterberry, 2007)after birth . However, a photographic 

representation of complex three-dimensional arrangements might challenge an infant's 

perceptual abilities, and could potentially lead to either disengagement from the task or the 

(Courage et al., 2006; Ruff & Rothbart, 2001)search for further information . Thus, an 

alternative explanation is possible: Infants did not disengage from the depth cues because 

spatial characteristics of scene elements or their arrangement provided opportunities for 

(e.g., Bertenthal, 1996) (Colombo further visual exploration  and attentional learning processes 

& Cheatham, 2006; Courage et al., 2006) that were more rewarding than searching for the 

target.   

Interestingly, none of the other rated properties—which all referred to shape 

characteristics or their arrangement—affected infants' target detection performance. In 

contrast to computational target-background differences, rated properties were only assessed 

for the background image but did not quantify the distinctness between target and 

.background  If infants "understood" the task, they could have ignored background 

properties—as long as these did not interfere with their search by causing difficulty or 

offering more rewarding (explorative) opportunities. One might argue that the high property 

levels did not necessarily provide such difficulty or reward, because they were as interesting 

or difficult for the infant as the opposite low levels, so that all levels of the property similarly 

affected attention. Yet, this explanation is unlikely, because (i) curved shape is preferred to 

(Fantz & Nevis, 1967)angular shape very early in life , (ii) symmetry is processed in a basic 

way by 1-year-olds and could attract attention because it provides learning opportunities 

(Bornstein et al., 1981), and (ii) repeated elements which represent regularity are reliably used 

(e.g., Hessels et al., 2016)as backgrounds in infant search paradigms . As with pictorial depth, 

these findings were obtained with graphical stimuli. Still, their presence in the complex 

naturalistic structures included in the current study did not affect attention as much as depth 

cues did. 

The stronger impact of rated depth compared to shape characteristics on search 

performance can have further reasons: Infants' attention might have been affected by 

 characteristics that are important for segmentation processes. Rated shape, which refers to 
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two-dimensional orientation and form characteristics within the image structure, may not have 

been as relevant as depth cues for this segmentation purpose. In real-world settings, spatial 

arrangements and object shape can be explored by actions such as self-generated motion 

(Atkinson & Braddick, 2013; Kellman & Spelke, 1983) Therefore, which provides parallax . 

visual processing and explorative actions that resolve visual ambiguities are suggested to be 

(e.g., Bertenthal, 1996; Hoffman & Singh, 2012; closely linked during the first year of life 

Kovács, 2000). This is also supported by an early dominance of the dorsal pathway 

(associated with the action related "where" and "how" of vision; Kravitz et al., 2011; Milner 

& Goodale, 2008) compared to the ventral pathway (associated with the "what"; Atkinson & 

Braddick, 2013; Colombo & Cheatham, 2006; Hammarrenger et al., 2003). Communication 

between the dorsal and the ventral visual pathway continues to develop beyond the first 

postnatal year (Ruff & Rothbart, 2001). Thus, visual categorization of scene elements in 

infancy that affords segmentation ability most likely activates spatial and action-related visual 

processing mechanisms, also if it relies on characteristics of the elements' physical shape 

(e.g., Rosch et al., 1976; see also: Anderson et al., 2013; Bertenthal, 1996; Gibson, 2000).  

In contrast to rated depth, the control variable depth-congruency did not predict infants' 

detection performance. Recall that this variable stated if the level of rated depth in the target 

image was the same as in the background image, or differed from it. The lack of depth-

congruency's predictive power might be explained by an insufficient representation of the 

depth rating in the target image patch, which was originally made for the entire image of 

which the target was only one small part. 

 4.6 Limitations and future questions 

It cannot be ruled out that infants used cues to detect the targets beyond those analyzed. 

For example, they might have learned to associate rewards with round areas of a certain 

size—despite our efforts to blur the contours of the targets. This might have led them to 

preferably fixate round salient patches, leading to faster detection if the round patch actually 

included the target. However, we think that such cues did not strongly alter search 

performance, since otherwise, rated background curvature would have affected detection 

significantly, and it did not.  

There are several important and promising issues which were out of the scope of the 

current study, but should be included in future experiments. For example, it would be very 

useful to further investigate infants' gaze and fixation locations during their search on 

naturalistic structures. Gaze paths during misses and hit-trials are of great interest, because 
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they might distinguish between movements related to distress or exploration. Additionally, 

the analysis of fixation locations and durations can offer information about visual 

characteristics which were preferentially looked at. 

In future studies, it might also be useful to add psychophysical search stimuli to the 

experiment that vary in contrast and fine detail. This would allow to better uncover the 

relation between the individual infant's low-level visual abilities and the impact of content- or 

structure-related properties on scene segmentation.  

Finally, a search experiment conducted with infants, preschoolers and adults would 

provide valuable insight into the salience of image characteristics, and how they vary between 

the age groups. This kind of developmental study could also establish whether the faster 

within-category compared to between-category target detection is specific to infants or young 

children.   
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4.7 Conclusion 

The current study revealed that 8-month-olds relied on combinations of luminance 

contrast, content-related, and structure-related visual properties when searching for 

discontinuities in photographs depicting naturalistic surfaces or assemblies of elements. 

Infants were able to learn to search for a discrepant target image patch solely defined by a 

gaze-contingent reward. The results suggest that infants' gaze was largely guided by visual 

, properties relevant for the current task (i.e., search) and by opportunities for exploration

whereas properties related to the analysis of two-dimensional shape characteristics or details 

seemed to have less of an impact. These results allow insight into the kind of visual strategies 

infants employ when confronted with complex visual surroundings. Applied to different age 

groups, such a paradigm can complement research on adult visual processing of categories as 

much as on the development of scene perception and categorization.  

In congruence with other studies using naturalistic images in controlled laboratory 

settings (e.g., Balas et al., 2018; Frank et al., 2014; Kelly et al., 2019) we argue that the 

inclusion of naturalistic images in infant vision research is important and might lead to 

different results than research with artificial objects or graphic stimuli. 
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4.9 Supporting information 

Figure S 4.10. The arrangement of target locations and blurred contours.  

Figure S 4.11. Creation of search stimuli from 27 images.  

 

4.9.1  S1 Methods.  

4.9.1.1 Calculation of difference-variables of the computational properties.  

4.9.1.2 Calibration procedure and trial sequence. 

 

4.9.2  S2 Results.  

4.9.2.1 The effect of movement on detection performance.  

4.9.2.2 The impact of category congruency on detection performance.  

Table S 4.19 Differences in diff_luminance between more or less alike category 

combinations. 

 

4.9.3   S3 Discussion. Detection difficulty of individual categories.  

Figure S 4.12 Target and background categories affecting detection latency. 
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Figure S 4.10: The arrangement of target locations and blurred contours. 
Central pixel coordinates of the ten possible target locations, in equal distance to the screen 
center. The contours around all of the target locations—arranged as circles in a ring— 
 were blurred on each background image, and the target patch was included in one of the circles, 
respectively. 
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Figure S 4.11: Creation of search stimuli from 27 images 
(A) All 27 images of the study are grouped by category in the format in which they were used as 
backgrounds. Within category they are arranged line-wise left to right according to decreasing 
levels of rated depth. Backgrounds include blurred contours of possible target locations. (B) Five 
target patches were sampled from each of the same 27 images. (C) Stimuli with moderate target 
salience were created by placing different target samples at each of the 10 locations and 
comparing the results with a salience algorithm (GBVS; Harel et al., 2014). Targets which were 
salient (indicated in the two examples as orange to red overlay) without being the only salient 
region of the stimulus at the respective location were selected. 
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4.9.1 S1 Methods. 

4.9.1.1 Calculation of Difference-variables of the Computational Properties 

 
We calculated target-background differences of computationally-assessed properties in 

the following way: We first partitioned the background images without the target patch as 

well as the background image including the target patch into squares (size = 256 px by 256 

px) which fitted the size of the target patch. Next, we calculated a property's variance a) 

between the partitions of the background, and b) between the partitions of the background 

including the target patch. Finally, we subtracted the background's variance from the target-

plus-background's variance. This procedure was applied to the 260 stimuli covering all target-

background image combinations and their target locations included in the study. The obtained 

difference variables represented the impact of a target property on the variability of this 

property in the whole stimulus (termed diff_*property-name*). High values of difference 

variables were obtained if a target exhibited very high or very low levels of a property, which 

exceeded the range of the background-image's property-levels in either direction. Low values 

of difference variables resulted from backgrounds in which the levels of a property varied 

between high and low extremes, so that the property level of the target could not substantially 

increase the background's variance. Diff_luminance was assessed in the same way with the 

only difference that we transformed it to its absolute value. If an infant's detection 

performance was predicted by a difference variable, the infant must have been sensitive to 

discontinuities of this property—either within the background image (background difficulty) 

or between background and target (detection facilitation). Note that the impact of a difference 

variable does not provide information about an infant's respective sensitivity for particular 

high or low levels of the property.  
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4.9.1.2 Calibration Procedure and Trial Sequence 

At the beginning of the experiment and after at least each eighth trial, five-point calibrations 

were conducted. Calibrations were accepted if the average error was below 1° vis. Each trial 

included a central attention grabber of 5° vis in diameter. As soon as the infant's gaze rested 

on its central area (2.5° vis in diameter) for 100 ms, one of the search stimuli (i.e., a target-

background image combination) was shown for a maximum of 4500 ms. If the infant's gaze 

rested on the target patch before timeout for at least 100 ms, a rewarding music started to 

play, then a colorful butterfly loomed out of the target's center, and moved to the center of the 

screen. If a target was missed, the butterfly was only shown for a shorter time, accompanied 

by a neutral sound. Directly after the butterflies disappeared, a new trial started. Every fifth 

trial, an attention grabber was shown at a peripheral location in addition to the central 

location. If the infant's gaze was not recorded within the central region of the attention 

grabber—for example because of inattentiveness or changes in the distance between the eyes 

and the eye-tracking camera—an additional calibration was initiated and the camera set-up 

was corrected if necessary. 
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4.9.2 S2 Results 

4.9.2.1 The Effect of Movement on Detection Performance 

Movement of unconstrained participants during remote-mode eye-tracking substantially 

affects data quality (e.g., Hessels, Andersson, et al., 2015; Niehorster et al., 2017; 

Schlegelmilch & Wertz, 2019). However, infants' movements might reflect reactions to the 

complexity or difficulty of a visual stimulus. We therefore assessed the variable movement on 

the basis of values provided by the eye-tracker, calculated as the maximum of absolute 

change in head-camera distance within fixations during the presentation of the search 

stimulus. Movement alone predicted success with !2(1) = 112, p < .001, in that more 

movement related to a lower probability to detect the target, logit = -2.41, 95% CI = [-2.86, -

1.97]. In the LMM of movement on latency however we diagnosed a skewed error structure, 

which we corrected by reducing values of movement during hit-trials larger than the 99% 

percentile (N = 4) to the value of the 99% percentile. After correction, movement contributed 

to the LMM on latency (!2(1) = 97, p < .001) with stronger movement predicting a longer 

time to detect a target, ! = 1.16, 95% CI = [0.93, 1.39]. We included movement as a covariate 

in all models, and outlier correction of movement was applied to all models conducted on 

latency. 

4.9.2.2 The Impact of Category Congruency on Detection Performance 

In sum, six models were conducted to assess the effect of categorization on infants' search 

performance. They revealed that the impact of categorical information on detection 

performance cannot be seen independently from the luminance contrast of a target. This is 

shown by the significant improvement of the GLMMs on success when including interactions 

between diff_luminance and the category-related variables. Indeed, post-hoc t-tests confirmed 

that hit trials included higher levels of diff_luminance in closer compared to more distant 

target-background category combinations, whereas in the full data, there was no difference in 

diff_luminance between more or less distinct category combinations, see Table S 4.19. 

Moreover, shorter detection latency was predicted by children's closer category assignments 

but not by adults' assignments or by category-congruency—in spite of the small luminance 

difference between children's more and less distinct assignments, as shown by the low effect 

size of r = .1. 
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We therefore interpret the facilitating effect of trials including less distinct category 

combinations together with high target luminance contrast as appropriately representing the 

results. In contrast, the facilitating effects of more distinct category combinations, as reflected 

in the fixed effects of category-congruency and adults' assignments on success, was weaker 

and became apparent only in combination with the interaction between diff_luminance and 

category-related properties. It can therefore probably be seen as a side effect of the strong 

facilitating effect of diff_luminance on infants' detection performance.  

 

 

Table S 4.19 Differences in Diff_luminance Between More or Less Alike Category 

Combinations 

Variable Data M low a M high a 95% CI t p r b 

Category-congruency All 0.60 0.67 [-0.16, 0.02] -1.45 .147 .04 

 Hits 0.78 1.09 [-0.52, -0.12] -3.14 .002 .15 

Assigned category children All 0.61 0.64 [-0.11, 0.07] -0.47 .636 .01 

 Hits 0.78 0.98 [-0.38, -0.03] -2.24 .026 .1 

Assigned category adults All 0.58 0.67 [-0.17, 0.00] -1.9 .058 .05 

 Hits 0.69 1.08 [-0.5, -0,21] -4.27 < .001 .2 
 
Note. Comparisons of diff_luminance levels between trials with target-background combinations 
of low or high category alikeness. 
a Low: mean of diff_luminance in trials with incongruent category combinations for category-
congruency, and with distance values ≥ Md for assigned categories; High: trials with 
congruent category combinations for category-congruency, and with distance values < Md 
for assigned categories.   
b Effect size: point biserial r equivalent of Cohen's d 
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4.9.3 S3 Discussion 

4.9.3.1 Detection Difficulty of Individual Categories  

In order to infer if the pattern of detection latency reflects distances between areas related 

to neural representations of target and background categories, we compared detection latency 

 Detection latency should be for all target-background combinations in a post-hoc analysis.

longest for target-background category combinations between artifacts and the other 

categories for the natural-artificial distinction, or between vegetation and the remaining 

categories for the animate-inanimate distinction. We conducted an LMM on latency with 

  target category (t_ category), background category (b_ category), their interaction, and the 

control variables depth-congruency and movement. Participants were included as random 

LRT revealed significant contributions to the model by the IVs t_ category (!2(2) = intercept. 

7.1, p = .029), b_ category (!2(2) = 8.7, p = .013), and the interaction term (!2(2) = 9.8, p = 

.045). The main effects of both target category and background category were motivated by 

longer latencies for artifacts compared to natural elements, respectively. Furthermore, 

contrasts between the target categories on the individual background categories showed that 

congruent target-background combinations were detected faster than incongruent 

combinations. For example, natural-element targets were detected faster on natural elements 

than on artifacts, and artifact targets were detected slower on vegetation and natural element 

backgrounds than the respective category-congruent target (all p < .05; for further results see 

Figure S 4.12). This pattern of results indicates that the inclusion of artifacts in a stimulus led 

to longer detection latencies in contrast to detection latencies for natural categories (i.e., 

natural elements and vegetation) which led to more similar latencies. Therefore, our results do 

not differentiate between the explanations that it might be the distance between internal 

representations of natural and human-made entities, or the immature developmental state of 

the artifact category, which increase detection latency in category-incongruent trials.  
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Figure S 4.12: Target and background categories affecting detection latency. 
Asterisks indicate interaction effects with p values < .05. See main text for further information. 
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Chapter 5  

 

General Discussion 

 

5.1 Summary of Results 

Overall, infants, preschool children, and adults were attending to content-related 

characteristics and visual properties of naturalistic structures in the sorting tasks and the eye-

tracking search task. However, depending on the age group and the kind of categorization 

(classification, similarity judgments, scene-segmentation), overlapping as well as 

distinguishable patterns of content- and structure-related attention were revealed between the 

age groups.  

The methodological study (Study 2) showed that calibration targets with interesting 

centers and low contrast at their periphery, or targets with globally distributed complexity, 

resulted in better gaze recording outcomes. Body movement substantially contributed to gaze 

instability and fixation dispersion, and measurement accuracy was negatively affected by the 

eccentricity of a target’s location. Movement toward the screen particularly increased 

peripheral gaze displacement, and following a target with head turns resulted in less precise 

gaze recordings. Along with other practices that promoted infants' interest in the display, 

these findings were carried over into Study 3, where they supported the assessment and 

analysis of infants' scene-segregation ability.  

5.1.1 Category Membership 

Study 1 yielded a general sensitivity in children to vegetation, which became apparent in 

both tasks: the classification of images, and the similarity judgments of images. Children had 

higher classification sensitivity (assessed with the measure d') to vegetation compared to 

adults when overall performance differences were accounted for, and they showed equally 

high classification sensitivity to vegetation and artifacts compared to natural elements, 

whereas adults were most sensitive to artifacts during classification. During similarity sorting, 

both children and adults judged images as more similar if they depicted vegetation compared 

to the other categories, which did not differ. 
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Infants sensitivity to the categories assessed in the eye-tracking search task (Study 3) 

became evident only when an interaction term between diff_luminance and the binary 

variable category-congruency was included in the model. Then, high levels of diff_luminance 

in combination with congruent categories increased the probability to detect the target, and a 

main effect of category congruency was qualified by the higher probability to detect category-

incongruent targets. The facilitating effect of high diff_luminance in combination with 

category-congruent targets on detection success resulted in a predominant inclusion of high 

diff_luminance targets in the analysis of detection latency, in which congruent target-

background category combinations were detected faster than incongruent.  

Post hoc analysis addressing the effect of each of the respective categories on detection 

latency revealed that longer detection latencies were rather associated with the presence of the 

artifact category in a stimulus, compared to the natural categories (i.e., natural elements and 

. vegetation)—independent of the artifact's inclusion as a target or background category

5.1.2 Visual Properties 

In Study 1, preschool children's assumptions about category membership during 

classification relied less on visual properties than those of adults. Similarly, children's 

similarity judgments were generally less affected by visual properties than those of adults.  

Rated depth was one property that preschool children relied strongly on in both card-

sorting tasks. In the classification task, depth contributed to preschoolers inferences during the 

assignment to categories together with skew, area, and symmetry. Depth also had the highest 

impact on preschoolers' similarity judgments, followed by skew and regularity, whereas 

adults judgments were most strongly affected by regularity, followed by symmetry and area. 

In contrast to their generally weaker reliance on properties during classification, children 

relied on the property area more strongly in their assignments of images to vegetation. 

Moreover, a comparison of the participant groups' similarity judgments revealed that they did 

not differ in their reliance on depth and skew—nor in the equally weak impact of alpha. 

In the infant eye-tracking search task, luminance contrast had a strong impact on 

detection success. However, other visual properties affected detection performance as 

strongly. Namely, stronger rated depth of the background image led to a lower detection 

probability and also to longer detection latencies. Target-background differences in area 

increased detection success, and target-background differences in entropy led to shorter 

detection latencies. 
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Preschool children's and adults' category assignments and similarity judgments assessed 

in Study 1 were included as additional difference-variables in the analysis of infants' search 

performance, respectively. In combination with diff_luminance, less distinct category 

assignments by adults and preschoolers increased the probability to detect the respective 

targets, whereas image similarity did not predict detection success. In contrast, detection 

latency was shorter when target and background images were assigned to less distinct 

categories by preschoolers, or whe they were judged as less similar by preschoolers. Yet, 

latency was not predicted by adults' sorting decisions. 

 

5.2 Did Ecological Significance Affect Categorization? 

5.2.1 The Impact of Category Membership 

The image categories: vegetation, natural elements and artifacts, varied in the strength in 

which they respectively predicted or explained the task performance among the different age 

groups in Study 1 and 3. Figure 5.18 sketches the patterns of impact the particular categories 

had on task performance for infants, preschoolers and adults. By comparing the relative 

importance of the three categories, it becomes obvious that the artifact category increases in 

significance, whereas the natural elements decrease in significance especially during 

classification for the older age groups. It is possible that the specific roles these categories 

acquired are reflected in these patterns: Artifact use becomes more important and specialized 

in everyday life with increasing age, and their classification is a common visual task in adults. 

However, the visual characteristics of the artifact structures (e.g., the pattern of fabrics, or the 

form of noodles), are not an essential part of their use and possibly less attended to during 

similarity judgments. In contrast, everyday experiences with vegetation (e.g., during food 

preparation or gardening) refer strongly to characteristics such as their texture, consistency 

and contours—characteristics that allow classification within the plant category, and which 

may also have guided similarity judgments. A rich representation of plants arises in children 

by preschool age, and the emerging awareness of their utility, their "liveliness", as well as the 

importance of classifying them correctly to avoid harm (e.g., Inagaki & Hatano, 1996; 

Nguyen & Gelman, 2002; Wertz, 2019), may have increased preschoolers' relative attention 

to this category compared to the other categories. 

In contrast, preschool children and adults had a rather low classification sensitivity to the 

natural element category, and this category only had moderate predictive value for similarity 
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judgments. This could reflect the rather passive role of natural elements in providing 

background for other tasks (e.g., as part of a scenery or as ground during locomotion). 

Interestingly, natural elements significantly facilitated target search in infants compared to 

artifacts. This raises the question whether visual structures belonging to this natural category 

are already processed more fluently very early in life—in spite of the assumedly lower 

exposure infants experience to natural elements compared to artifacts, and also in contrast to 

the findings of Ellemberg et al (2012) on late maturation of sensitivity for typical spatial 

characteristics of natural scenes, which depicted natural elements and vegetation. 

Infants' longer detection latencies for stimuli including artifacts are surprising because 

one must assume that for infants, who spend the majority of their time inside homes filled 

with artifacts, human-made objects are very familiar. Yet, vegetation and natural elements 

have visually dominated the ancestral human environment for a much longer time (e.g., 

Schick & Toth, 1994), and their perception might be facilitated even if visual abilities are 

constrained. In addition, categorization of artifacts relies on their purpose or function (Carrara 

& Mingardo, 2013), making visual properties less diagnostic on the superordinate level. 

The differences in relative significance between the categories in infants, children and 

adults were possibly affected by distinct ways of visual processing. These could have referred 

to the structures as background or context (e.g., “stuff”, Adelson, 2001; natural surroundings, 

Geisler, 2008), or could have reflected visual processing necessary for categorical inferences 

(e.g., Binder & Desai, 2011; Mervis & Rosch, 1981; Nosofsky et al., 2018), among others. 

The different relevance these categories have for the respective age groups, accrual of 

experiences, and task-specific factors may have influenced which type of category processing 

occurred. 
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Figure 5.18: Relative importance of categories as Functions of task and age group. 
The relative length of the bars are approximations derived from the respective analyses of 
different dependent variables and therefore do not include comparable units. Overall performance 
differences between adults and preschool children (i.e., main effects of the factor participant 
group) are not shown. 
a Paired contrasts predicted by the LMM on latency. Higher bars indicate shorter latency. 
b Tuckey's contrasts of the interaction between participant group and true category predicted by 
the ANOVA on d‘.    
c Tuckey's contrasts of the interaction between participant group and assigned category, 
predicted by the ANOVA on R2.  

5.2.2 The Significance of Depth Cues 

The property rated depth was of particular significance for infants and children. Yet, the 

significance of pictorial depth on task performance may have been caused by a variety 

reasons in the different age groups. The 4- and 5-year-old preschoolers were equally sensitive 

to depth during classification (i.e., they relied on high levels of depth as indicators for 

vegetation, and on low levels of depth for artifacts). Preschoolers were also sensitive to depth 

in their judgment of visual similarity, which indicates a general awareness of spatial 

characteristics during structure perception. In contrast, infants' sensitivity to rated depth of the 

background image became obvious, in that it hindered target detection.  
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Depth engaged the infants differently than other background properties which might have 

been of similar processing difficulty (e.g., irregular pattern). The literature provides 

contrasting explanations for why depth may have caused a distraction: Perceptual difficulty 

and complexity can lead infants to orient away from a stimulus to avoid overstimulation, 

which is a common regulatory function of attention in older infants (e.g., Rothbart et al., 

2011). Yet, space and depth properties are of actual importance for eight-month-olds who 

start to navigate autonomously. Therefore, engagement in visual inspection and learning 

opportunities may similarly cause distraction from the search. Relevant experience that 

infants had with stimuli (e.g., 3-dimensional depth) can lead to longer inspection of a stimulus 

showing similar properties (e.g., pictorial depth)—the infants' greater expertise may offer 

(Hurley et al., 2010) The fact that children more information on the stimulus to be processed . 

as young as 4-years old successfully relied on depth during classification, but differed from 

the older children in their reliance on regularity, symmetry, and curvature (Section 2.8.5 S5), 

points to an early acquisition of naturalistic pictorial depth and its integration into everyday 

visual tasks (see also: Kavšek et al., 2012). For example, when children are viewing 

photographs, the 3-dimensional shape and arrangement of a structure's elements can only be 

determined if pictorial depth cues are integrated. 

The different meanings of depth for infants (perceptual challenge) and children (particular 

reliance on depth during classification and similarity judgment) might nicely reflect phases 

within the visual acquisition of functionally significant environmental characteristics. The 

importance of depth for perceptual organization and physical shape perception during self 

motion (e.g., Needham, 2000) is seen as a foundation for later object categorization (Atkinson 

& Braddick, 2013; Bertenthal, 1996). Depth was readily available as a visual cue for the 

preschoolers in Study 1. A deeper investigation of infants' reactions to the challenge provided 

by high-rated pictorial depth (e.g., by assessing gaze and movement patterns) in future 

experiments could offer important insight into the development of sensitivities for visual 

properties with ecological significance. 

5.3 The Inclusion of Visual Properties During Categorization 

It became apparent in Study 1, that preschoolers' and adults' inclusion of visual properties 

was affected by the different tasks (classification vs. similarity grouping). For instance, 

properties predicting adult classification reflected a similar pattern as that of the images' true 

categories (qualified by adults' low error rate of 10%), and differed from the properties 

dominating adults' similarity judgments, which referred mainly to variations in the form and 
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size of structure elements. However, in children, reliance on skew and depth was comparably 

strong in both tasks. Next to that, children's task specificity became particularly obvious in 

properties which referred to low-level spatial scales or which made the analysis of shape 

necessary (Figure 2.2Figure 2.7).  

5.3.1 Perceptual Integration of Naturalistic Structure Components 

The strategies used by children and adults in the two categorization tasks may explain the 

difference in which properties they relied upon. These strategies very likely differed in their 

attention to particular hierarchical levels of the visual structures (Kimchi, 2015), leading to a 

more analytic investigation of shape details to solve classification (e.g., Deng & Sloutsky, 

2016; Rosch et al., 1976), compared to a more general view on the images during similarity 

judgments (e.g., configural or shading properties). Additionally, differences in the inclusion 

of properties could have been caused by the density and distribution of available information, 

which was lower during classification with one image viewed at a time, compared to 

similarity sorting with many images presented simultaneously. Children might have been 

more affected by these differences in organizational demands than adults (Hadad et al., 2010; 

Hadad & Kimchi, 2006), so a closer look at visual processes involved in the tasks might 

reveal strategies which enabled children to still solve the tasks. 

In complex naturalistic structures, the perception of shape is part of a hierarchical 

organizational process and relies on several perceptual mechanisms: smaller elements can be 

grouped, compared, segregated, or perceived in their configural relations, leading to more 

global elements with which the operations can be repeated (Kimchi, 2015; Wagemans et al., 

2012). When viewing the structures, attention can optionally focus more on the detailed 

elements, or on more general forms. Adults show evidence for global precedence or coarse-

to-fine processing hierarchies, but also flexibly integrate hierarchical visual information 

depending on context, attentional deployment, or the aspect under investigation (Flevaris & 

Robertson, 2016; Hegdé, 2008). Studies investigating the priority of local versus global image 

features in children frequently used graphical stimuli, in which local details are 

operationalized as identically repeated elements (e.g., characters) arranged to resemble a 

larger bounded form or contour (similar to stimuli introduced in Navon, 1977). With these 

stimuli, processing advantages are commonly found for local detail until at least 8 years-of-

age (e.g., Enns et al., 2000; Kimchi et al., 2005; Scherf et al., 2009), while the integration of 

local into more global levels starts to develop by 4 years-of-age (Vinter et al., 2010). In a 

study using photographs (Balas et al., 2020), the younger children who compared materials of 
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bounded objects likewise showed disproportionally higher costs if small details compared to 

more global features were disrupted, supporting the hypothesis that local superiority still 

extends over middle childhood even for naturalistic images. 

 Yet, as suggested above, and similar to adults, children's preference to process global or 

local graphic features can also be affected by a particular task, the density or number of 

elements, or whether they are object or non-object (reviewed in: Guy et al., 2013; Kimchi, 

2015). Correspondingly, the current results suggest that the preschool children did not follow 

a clear local preference when confronted with complex naturalistic structures. Instead, they 

flexibly focused on different levels of the global-local hierarchy, namely: (a) sensitivity to 

variability in the holistic property regularity increased in importance during similarity 

grouping compared to classification, (b) distinctions of mid-level shape characteristics 

between non-symmetrical versus symmetrical forms were present during classification, but 

reduced during similarity grouping, and (c) sensitivity to the multiple spatial scales differing 

between low versus high area were more dominant during classification than during similarity 

grouping.  

This flexible uptake of different processing hierarchies might have not only supported 

inferences to solve the task, but also reflect adjustments to the children's processing capacities 

or their developing visual abilities. If visual information exceeded the processing capacities of 

a child, easier properties may have been recruited to proceed in the task. Skew or rated 

depth—which do not make shape analysis necessary—were recruited more generally in both 

tasks, whereas mid-level shape features were not integrated into comparisons between several 

images during similarity grouping. The perception of shape might cause particular difficulties 

when viewing naturalistic structures, in which hierarchical levels or figure-ground 

relationships are not clearly defined.  

In addition to shapes, children's analysis of fine detail in properties such as alpha seemed 

to be generally restricted. 

5.3.2 The Case of Deviation: Do Young Children Exploit Incomplete Visual Information? 

With regard to the restricted inclusion of mid-level shape it is surprising that infants and 

children distinguished levels of the property area, which makes sensitivity to spatial-

frequencies at different scales necessary. The property area assesses spatial scales in a more 

abstract way—regardless of their integration into any particular higher level characteristic or 

shape. Therefore, abilities underlying perceptual integration are not as necessary as they are 

for properties defining shape. Yet, immature acuity and contrast sensitivity in infants and 
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young children sets limits to the perception of pattern, including very high or low spatial 

frequencies6 (Atkinson & Braddick, 2013; Ellemberg et al., 1999; Skoczenski & Norcia, 

2002). 

Infants' sensitivity to variations in area, and preschoolers' reliance on area in their 

classification suggests that statistical properties, which are rather abstract and processed pre-

attentively in adults, might be more central to young children. For example, the visual 

structures of a natural surrounding might serve as background or context in adults, whereas in 

young children, variations within these structures offer interesting visual targets (Köster et al., 

2017a). These variations within structures can provide experiences which support visual 

development in infants or the gathering of visual regularities in young children. 

Sensitivity to variations in the abstract visual property area (and entropy in Study 3), 

which include difficult-to-perceive visual information for infants and young children, leads to 

the question: Can uncertain visual information be integrated into categorical distinctions?  

It is possible that image regions of more difficult pattern including fine spatial-

frequencies and contrasts draw attention without the necessity to be processed in full detail. 

Such image regions might function as "perceptual units" as is suggested for proto-objects 

(homogeneous regions in low-level feature maps; Wischnewski et al., 2009). These regions 

could serve as targets for task-driven inferences or provoke further action such as exploration 

or social referencing, even if they are not fully processed—this is supported by theories on 

novelty seeking and proximal development (e.g., Köster et al., 2020; Vygotsky, 1978) as 

outlined in Section 1.2 and 4.5.2. In the case of very small detail which is outside the range of 

spatial acuity, movement towards the stimulus performed by the child would enlarge the 

details easily and solve prior uncertainty. Such reoccurring inferences may provide models for 

similar uncertainties (Friston, 2010; Kayhan et al., 2019; O’Regan & Noë, 2001). 

Additionally, performed actions themselves can serve as representational medium to be drawn 

upon when solving visual tasks (Rakison & Woodward, 2008). Even in adults, the perceptual 

impression of a visual surrounding needs to be built on incomplete visual information due to 

the retinal and neural restrictions of the visual system (e.g., Nassi & Callaway, 2009). 

                                                

 
6 Contrast distinction at low (e.g., < .5 cycles per degree; cpd) and high (e.g., > 20 cpd) spatial 
frequencies are more difficult to perceive than similar contrasts at moderate scales (i.e., 3 – 5 
cpd) in all age groups, and 4- to 5-year-olds' sensitivity was lower than adults by a factor of two 
(Ellemberg et al., 1999). Infants' contrast sensitivity is even more limited at higher spatial 
frequencies (Norcia et al., 1990). 
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Preschoolers, whose visual abilities are further developed as those of infants and who are 

therefore bound to different tasks during their acquisition of environmental regularities might 

draw on such incomplete regions during categorization. Recall that children's reliance on the 

more difficult level of area for classifying vegetation exceeded that of adult's, whereas the 

easier, high level of area significantly predicted children's assignment of artifacts. This makes 

area additionally a property of ecologically significant category distinctions, which can 

further increase its inclusion in perceptual inferences.  

Undoubtedly, the suggestion that categorization can rely on incomplete or difficult-to-

perceive visual property levels needs further investigation. Future developmental studies 

could, for example, experimentally control levels of detail and perceptual difficulty in 

categorization tasks with naturalistic structures.

 

5.4 Relating Infants' Visual Search to Preschoolers' and Adults' Card Sorting 

In the infant eye-tracking search task, two distance-variables were included which derived 

from the card sorting task of preschoolers and adults, respectively. These represented the 

distance between the categories assigned to two images, and the dissimilarity of two images 

as assessed by similarity judgments. The variables were included as an alternative to testing a 

comparison group of adults in the infant eye-tracking task—the originally planned adult data 

collection had been interrupted by the spring 2020 coronavirus pandemic. By testing a 

comparison group of adult participant, we intended to validate the balancing of general target 

salience between conditions. Furthermore, the particular impact of content- and structure 

related properties on infants' search could have been compared and relativized to the adults' 

performance. The current alternative variables from the sorting tasks, which refer to the same 

images as those included in the eye-tracking study, were expected to indicate more general 

overlapping patterns of visual processing between infants, preschoolers, and adults. 

These variables yielded the result that infants detection success was similarly strong 

predicted by the classification decisions of preschoolers and adults—if targets and 

backgrounds differed sufficiently in luminance. Yet, infants' detection latency was only 

predicted by the preschoolers sorting decisions, including their similarity judgments as well as 

their category assignments. This shows that, if 8-month-olds were able to detect a target, the 

factors which determined detection latency were overlapping with the preschoolers' 

perception of the images, but not with the adults. The overlapping predictive value of the 

property depth in infants and preschoolers cannot explain the results, because depth was only 
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assessed for background images in the search task. Neither can related sensitivities to 

variations in luminance and contrast have determined the results, since target luminance did 

not vary in the models on detection latency. Overlapping factors may therefore relate to rather 

general aspects of vision development which are shared between infants and preschoolers.  

So far, the current project suggests three particularities in which young children's 

processing of complex naturalistic structures differed from adults. These are (i) less efficient 

perceptual organization or shape processing, (ii) particular attentional priorities to image 

regions related to variations within the naturalistic scenes which may be of functional 

relevance, and (iii) sensitivities to difficulty or uncertainty within visual structures, provided 

by properties such as area or entropy. Recall, due to the innate tendency to detect novel 

information (e.g., Hunnius et al., 2006), and infants' and young children's attention to visual 

information which is of functional relevance for explorative purposes (e.g., aspects of three-

dimensionality, spatial configurations or surface qualities; Bushnell & Boudreau, 1993), 

young children will attend to visual cues which may not be obvious for adults during 

categorization (e.g., Gibson, 2000; Kovács, 2000)7.  

Additionally, there might be further overlap in infants and preschoolers because they have 

less experience with cultural habits transported by language than older children and adults 

(e.g., Majid et al., 2004), which may also affect scene perception. For example, by school age, 

children more strongly direct their attention towars targets within a scene that are more 

coherent with a cultural habit than in younger children (e.g., more fixations at central 

compared to contextual regions in western cultures; Duffy et al., 2009; Köster et al., 2017a). 

Likewise, young children's categorization is more affected by visual regularities and 

experiences during actions, while older children's and adults' classification is increasingly 

affected by culture and language (Nazzi & Gopnik, 2001; Rakison & Woodward, 2008; 

Westermann & Mareschal, 2012).  

Therefore, several qualitative differences between adult's and young children's 

categorization and visual attention may provide non-exclusive explanations for the relation of 

preschoolers' sorting decisions to infant's search latency. 

                                                

 
7 Interestingly, Tatler et al. (2011) suggested that adults' eye movements during natural behavior 
(in contrast to scene perception in experimental settings) reflect the outcome of long time scales 
of reinforcement learning—anticipations of the results of explorative behaviors or visually guided 
actions—during development. The early sensitivity to functionally significant visual information 
which was present in the current results may be part of this acquisition process.  
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5.5 Which Visual Cues May Have Affected Infants' Particular Reactions to 

Plants in Previous Experiments? 

One of the main inspirations for the current project were previous findings on 6- to 18-

month-olds' reactions to real plants and real-looking artificial plants (i.e., protracted touch, 

increased social information seeking, identification as food source), compared to novel 

artifacts, familiar objects and natural objects (C. Elsner & Wertz, 2019; Wertz & Wynn, 

2014a, 2014b; Włodarczyk et al., 2018). These previous studies showed that infants' 

behavioral reactions reflect adaptations to problems faced by humans when having to decide 

which plants are beneficial and which are dangerous (Wertz, 2019). Can the inferences drawn 

from the current dissertation help to understand which visual characteristics of the real and 

artificial plants were affecting infants' particular behavioral reactions? The answer is difficult, 

because the experiments of the previous studies differed fundamentally in their materials and 

methods from the current work. 

Here, the stimuli were intended to represent vegetation as it occurs in natural 

environments (i.e., as structure-like regions among other more or less complex structures), 

and their lack of defined boundaries, three-dimensionality, and color cues differs from the 

individual plants and the other objects presented in the previous studies. Moreover, Study 3—

which 8-month-old participants are equivalent in their age to the youngest infants of the 

previous studies—was designed to investigate general sensitivity to congruent versus 

incongruent category combinations, but not to a particular category as was attempted in the 

previous studies. Still, post-hoc analysis revealed that infants' sensitivity to target and 

background categories differed between artifacts and the natural categories (i.e., natural 

elements and vegetation). Of the visual properties investigated in Study 3, depth most 

strongly affected search performance in that it hindered target detection. The statistical 

properties area and entropy also affected search performance due to their variations between 

more or less spatial scales and shades. Infants' sensitivity to depth and to area and entropy 

may therefore be carefully related to the results of the previous studies.  

In the previous studies, characteristics of real-looking plants were moulded onto the novel 

artifact stimuli (e.g., their dominant upper part, the green color), to understand if  some of 

these characteristics alone triggered similar behavior as plants did. The novel artifacts also 

differed from plants in other characteristics such as bright colors, artificial materials, or 

higher-level and conceptual features like the lack of a base, crumpled paper instead of leaves, 
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or a cylinder instead of several stalks (the objects are shown in: Wertz, 2019). Despite these 

imitations, the novel artifacts did not elicit similar behavior in infants as plants did. The 

modifications made, though, leave open the possibility that properties on a more abstract level 

were affecting infants' reactions.  

One particular characteristic which was strongly present in the plant stimuli was that their 

upper part consisted of collections of leaves. These leaves additionally showed faintly shaded 

patterns. The spatially distributed particles and the low contrasts possibly provided visual 

processing difficulty to the infants, whose central stereopsis and contrast sensitivity is still 

developing (Ellemberg et al., 1999; Giaschi et al., 2013). Uncertainty or overwhelming 

complexity caused by such difficult visual information can lead to reactions similar to those 

exhibited by the infants in the previous studies, namely social referencing (Pauen & Hoehl, 

2015), or avoidance (e.g., by orienting away from the stimulus; Ruff & Rothbart, 2001). Since 

infants spent more time looking at the plants than the other object types (C. Elsner & Wertz, 

2019), the plants' perceptual complexity might have provided an uncertain but interesting 

counterpart to the infants which increased their attempts to seek for and rely on social 

information, by hesitating to reach out for them directly—it seems adaptive to treat regions of 

the environment which have such uncertain spatial characteristics with care.   

 But there is another of the current findings that could be important here: preschoolers in 

Study 1 included high levels of the property area in their assignments to artifacts, and had the 

tendency to relate low area to vegetation. Recall that high levels of area indicate few spatial 

scales, which can for example be found in an object with an even surface. The current artifact 

structures were defined by high area, whereas the vegetation and natural elements structures 

were rather low in area (Figure S 2.1). That infants in the previous studies treated natural 

objects differently than plants may result from the natural entities' more object-like 

appearance. This can be expected to relate to higher levels of area, which would let them 

appear more similar to artifact objects and more distinct to vegetation. 

The suggestions made here certainly include the possibility that sensitivity to additional 

visual features not captured in the current study may support the elicitation of adaptive 

behaviors. These adaptive behaviors might refer to more specific roles of vegetation (e.g., as 

food source). Color may well be an important additional cue (Fischer, 2012; Gegenfurtner & 

Rieger, 2000), even though it did not affect search performance in Study 3. Furthermore, a 

more direct linking of the projects could provide further insight. For example, an assessment 

of the same visual properties as those investigated here from photographs of the previous 

stimuli objects, together with an analysis of the properties' impact on infants' reactions on the 
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item level, may help to identify visual cues which affected infants' particular reactions to 

plants.  

 

5.6 Limitations and Further Directions 

As outlined in Study 1 and 3, Sections 2.5.5 and 4.6, choices of materials which were 

qualified by their applicability in the current experiments also constrain interpretations of the 

findings. For example, the two-dimensional, monochromatic, and static photographs may lead 

to different responses in young children than the real entities depicted on them (e.g., T. M. 

Gerhard et al., 2016). Furthermore, despite the large number of stimuli with high variability in 

their appearance, the current image set only represents a small excerpt of the variability of 

real entities, and any image selection can lead to unintended biases which may affect the 

results (e.g., Yarkoni & Westfall, 2017). Despite these limitations, images of real-world 

structures are still expected to make valid inferences on visual processing abilities possible, in 

particular on the proccesing of characteristics like category membership and visual properties, 

which was investigated here.  

It will nevertheless be important to scrutinize and particularize several of the current 

inferences in future experiments. Deeper insight into some subjects could then provide 

important contributions to the literature on visual and cognitive development. This suggestion 

applies in particular to (a) the impact of depth cues on children's solving of the visual tasks; 

(b) the possible role of incomplete visual information in young children's visual inferences; 

(c) the seemingly more effortful processing of incongruent relative to congruent categories in 

infants; and (d) the stronger overlap of infants' processing of visual structures with that of 

preschool children compared to adults. Follow-up investigations are especially important 

since the current project is part of a quite novel and seminal field of research.  

The methods and materials chosen here also more generally allow to connect the current 

findings to research in adults which used similar methodological approaches to investigate 

visual categorization ability (e.g., Heaps & Handel, 1999; Schmidt et al., 2017). It could be 

very beneficial to relate early visual processing to adult scene perception and categorization to 

better understand how rapid processing of natural scenery is possible in adults. 
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5.7 General Conclusions 

The current dissertation project investigated the interrelating effects of developing visual 

abilities, visual properties and ecological significance on categorization in infants, preschool 

children, and adults. Photographs of naturalistic structures of the categories vegetation, non-

living natural elements, and artifacts were used as stimuli. We showed that infants and 

preschool children were able to process these complex stimuli and adapt their visual 

inferences to the experimental tasks. All participant groups processed category membership as 

well as visual properties during their inferences. We also found that infants were sensitive to 

discontinuities in pattern-related properties independent of the pattern's luminance contrasts 

when searching for the target structure patch. The results of the categorization studies suggest 

that classification of visual structures, and attention to particular visual properties, is affected 

by the functional or ecological significance these categories and properties may have for the 

respective age groups. A comparison between infants' and preschool children's sensitivity to 

the categories and visual properties implies, that the period between the second half of the 

first year and preschool age must have high impact on the acquisition of models on how to 

identify significant categories. In the current investigation, this achievement was most 

obvious for vegetation. Early sensitivities to the properties of depth and area may have 

become the basis for preschool children's ability to draw on these properties in distinguishing 

vegetation from the other categories. An early more general sensitivity to visual properties 

also highlights the importance of including naturalistic and structure-like stimuli in 

developmental research on visual categorization. Such stimuli reveal particular visual 

competencies in young children, which may not be uncovered by graphic stimuli or images of 

bounded objects. Examples are the dominance of spatial information over shape-related 

information, or sensitivity to differences in perceptual complexity of spatial frequency 

distributions during scene segmentation.  

This dissertation provided examples of coherent experimental settings on different aspects 

of categorization that can be applied to different age groups. Its experimental and explorative 

inferences were intended to stimulate further research. In particular, investigations with 

children, who have not yet reached school age, may promote the understanding of important 

aspects on how regularities of the environment are integrated into visual tasks. Suggestions 

for a transition from more action-related vision in infancy to an increasing influence of 

recognition memory and classification ability on scene perception in older children could then 

be specified (e.g., Bertenthal, 1996; Kovács, 2000). Furthermore, infants' attention directed at 

photographs and their behavioral reactions to visual information may be strongly affected by 
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natural statistics, because these properties transport fundamental information to solve 

environmental tasks—without that fine-grained analysis or recognition memory is necessary 

(e.g., sensitivity to variations in the complexity of entropy and area; see also: Geisler, 2008, 

emphasizing the importance of building hypotheses on scene statistics). Neuroscientific 

methods may help to identify differences in the processing of statistical properties due to their 

respective integration into behavioral strategies or classification-related tasks. 
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