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Abstract

With ongoing anthropogenic global warming, some of the most vulnerable components of the Earth
system might become unstable and undergo a critical transition. These subsystems are the so-called
tipping elements. They are believed to exhibit threshold behaviour and would, if triggered, result in
severe consequences for the biosphere and human societies. Furthermore, it has been shown that cli-
mate tipping elements are not isolated entities, but interact across the entire Earth system. Therefore,
this thesis aims at mapping out the potential for tipping events and feedbacks in the Earth system
mainly by the use of complex dynamical systems and network science approaches, but partially also
by more detailed process-based models of the Earth system.

In the first part of this thesis, the theoretical foundations are laid by the investigation of networks of
interacting tipping elements. For this purpose, the conditions for the emergence of global cascades are
analysed against the structure of paradigmatic network types such as Erdős-Rényi, Barabási-Albert,
Watts-Strogatz and explicitly spatially embedded networks. Furthermore, micro-scale structures are
detected that are decisive for the transition of local to global cascades. These so-called motifs link the
micro- to the macro-scale in the network of tipping elements. Alongside a model description paper,
all these results are entered into the Python software package PyCascades, which is publicly available
on github.

In the second part of this dissertation, the tipping element framework is first applied to components
of the Earth system such as the cryosphere and to parts of the biosphere. Afterwards it is applied to
a set of interacting climate tipping elements on a global scale. Using the Earth system Model of In-
termediate Complexity (EMIC) CLIMBER-2, the temperature feedbacks are quantified, which would
arise if some of the large cryosphere elements disintegrate over a long span of time. The cryosphere
components that are investigated are the Arctic summer sea ice, the mountain glaciers, the Green-
land and the West Antarctic Ice Sheets. The committed temperature increase, in case the ice masses
disintegrate, is on the order of an additional half a degree on a global average (0.39–0.46 ˝C), while
local to regional additional temperature increases can exceed 5 ˝C. This means that, once tipping has
begun, additional reinforcing feedbacks are able to increase global warming and with that the risk of
further tipping events.

This is also the case in the Amazon rainforest, whose parts are dependent on each other via the so-
called moisture-recycling feedback. In this thesis, the importance of drought-induced tipping events
in the Amazon rainforest is investigated in detail. Despite the Amazon rainforest is assumed to be
adapted to past environmental conditions, it is found that tipping events sharply increase if the drought
conditions become too intense in a too short amount of time, outpacing the adaptive capacity of the
Amazon rainforest. In these cases, the frequency of tipping cascades also increases to 50% (or above)
of all tipping events. In the model that was developed in this study, the southeastern region of the
Amazon basin is hit hardest by the simulated drought patterns. This is also the region that already
nowadays suffers a lot from extensive human-induced changes due to large-scale deforestation, cattle
ranching or infrastructure projects.

Moreover, on the larger Earth system wide scale, a network of conceptualised climate tipping ele-
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ments is constructed in this dissertation making use of a large literature review, expert knowledge
and topological properties of the tipping elements. In global warming scenarios, tipping cascades
are detected even under modest scenarios of climate change, limiting global warming to 2 ˝C above
pre-industrial levels. In addition, the structural roles of the climate tipping elements in the network
are revealed. While the large ice sheets on Greenland and Antarctica are the initiators of tipping cas-
cades, the Atlantic Meridional Overturning Circulation (AMOC) acts as the transmitter of cascades.
Furthermore, in our conceptual climate tipping element model, it is found that the ice sheets are of
particular importance for the stability of the entire system of investigated climate tipping elements.

In the last part of this thesis, the results from the temperature feedback study with the EMIC CLIMBER-
2 are combined with the conceptual model of climate tipping elements. There, it is observed that the
likelihood of further tipping events slightly increases due to the temperature feedbacks even if no
further CO2 would be added to the atmosphere.

Although the developed network model is of conceptual nature, it is possible with this work for the
first time to quantify the risk of tipping events between interacting components of the Earth system
under global warming scenarios, by allowing for dynamic temperature feedbacks at the same time.
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Zusammenfassung

Bei fortdauerndem anthropogenem Klimawandel, könnten einige der vulnerabelsten Komponenten
des Erdsystem instabil werden und in einen anderen Zustand übergehen. Diese Komponenten des
Erdsystems sind die sogenannten Kippelemente. Bei ihnen wird angenommen, dass sie einen Kipp-
punkt besitzen ab dem sie in einen qualitativ anderen Zustand übergehen können. Sollte das passieren,
hätte das schwerwiegende Konsequenzen für die Biosphäre und menschliche Gesellschaften. Des
Weiteren ist gezeigt worden, dass Kippelemente keine isolierte Reigionen oder Prozesse sind, son-
dern über das gesamte Erdsystem hinweg interagieren. Das Ziel dieser Arbeit ist es daher, die Wahr-
scheinlichkeit für Kippereignisse sowie deren Feedbacks im Erdsystem zu quantifizieren. Zu diesem
Zweck kommen vor allem Frameworks aus der Wissenschaft komplexer Systeme und Netzwerke zum
Einsatz. Für einige Teilaspekte dieser Arbeit wird aber auch ein detaillierteres und prozessbasierteres
Erdsystemmodell verwendet.

Im ersten Teil dieser Arbeit werden die theoretischen Grundlagen gelegt, indem komplexe Netz-
werke bestehend aus interagierenden Kippelementen untersucht werden. Hier werden Voraussetzun-
gen für das Auftreten globaler Kippkaskaden anhand der Struktur paradigmatischer Netzwerktypen
analysiert. Diese Typen sind Netzwerke wie Erdős-Rényi, Barabási-Albert, Watts-Strogatz Netzwerke
oder auch explizit räumlich eingebettete Netzwerke. Darüber hinaus sind bestimmte Mikrostrukturen
in Netzwerken dafür entscheidend, ob sich eine lokale Kaskaden auf das globale Netzwerk ausbrei-
ten kann. Diese Strukturen sind das Bindeglied zwischen der Mikro- und der Makroebene des Netz-
werks und werden Motive genannt. Zusammen mit einer Publikation zur Modellbeschreibung, werden
alle diese Ergebnisse im Python-Softwarepaket PyCascades veröffentlicht, das auf github öffentlich
verfügbar ist.

Im zweiten Teil dieser Dissertation wird das Kippelementframework zunächst auf Kompenenten des
Erdsystems angewendet wie der Kryosphäre und Teilen der Biosphäre, und danach auf globaler Skala
für interagierende Klimakippelemente. In einem ersten Schritt werden mit dem Erdsystemmodell
mittlerer Komplexität CLIMBER-2 die Temperaturfeedbacks ermittelt, die entstehen würden, wenn
große Gebiete der Kryosphäre auf lange Sicht eisfrei werden. In dieser Berechnung werden das ark-
tische Sommermeereis, die Gebirgsgletscher, der grönländische und der westantarktische Eisschild
berücksichtigt. Die quantifizierte Temperaturerhöhung liegt in der Größenordnung von einem halben
Grad zusätzlicher globaler Erwärmung (0.39–0.46 ˝C). Lokale bis regionale Temperaturerhöhungen
können allerdings 5 ˝C übersteigen. Wenn also das Kippen einiger Elemente begonnen hat, bedeutet
dieses Ergebnis, dass Temperaturfeedbacks in der Lage sind, das Risiko weiterer Kippereignisse zu
erhöhen.

Dies ist auch der Fall im Amazonasregenwald, dessen Unterregionen über den sogenannten Feuchtig-
keits-Recycling-Feedback miteinander in Beziehung stehen und voneinander abhängen. In dieser Dis-
sertation wird die Bedeutung von Kippereignissen im Detail untersucht, die aufgrund von Dürrepe-
rioden zustande kommen. Obwohl man davon ausgehen kann, dass der Regenwald sich an zurück-
liegende und gegenwärtige Klimabedingungen angepasst hat, kann festgestellt werden, dass die Häu-
figkeit von Kippereignissen stark zunimmt, wenn die jeweilige Trockenperiode eine gewisse Inten-
sität übersteigt und damit die Anpassungsfähigkeit des Amazonasregenwalds überschritten wird. In
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solchen Fällen steigt auch die Häufigkeit von Kippkaskaden unter allen Kippereignissen auf 50%
(und mehr) an. In dem Modell, das in dieser Studie entwickelt wurde, zeigt sich, dass der Südosten
des Amazonasbeckens am stärksten von den simulierten Trockenheitsmustern betroffen ist. Das ist
gleichzeitig die Region, die bereits heute stark unter anthropogener Veränderung leidet, unter anderem
aufgrund von großflächiger Abholzung, Viehzucht oder Infrastrukturprojekten.

Zudem wird in dieser Dissertation auf der größeren, erdsystemweiten Skala ein Netzwerk konzep-
tionalisierter Klimakippelemente aufgebaut. Zu diesem Zweck wird eine umfangreiche Literatur-
recherche durchgeführt, die zusammen mit Expertenwissen und den topologischen Eigenschaften der
Kippelemente in die Studien mit einfließt. In Klimawandelszenarien können dann Kippkaskaden
beobachtet werden, selbst wenn die globale Erderwärmung auf 2 ˝C über dem vorindustriellen Niveau
begrenzt werden kann. Außerdem werden die strukturellen Rollen der Klimakippelemente im Netz-
werk ermittelt. Während die großen Eisschilde auf Grönland und der Westantarktis viele Kipp-
kaskaden initiieren, ist die Atlantische Umwälzzirkulation für die Weitergabe vieler dieser Kaskaden
verantwortlich. In unserem konzeptionellen Modell für Klimakippelemente wird darüber hinaus fest-
gestellt, dass die Eisschilde von besonderer Bedeutung für die Stabilität des Gesamtsystems sind.

Im letzen Teil dieser Dissertation werden die Ergebnisse der Feedbackstudie (CLIMBER-2-Studie)
zusammengebracht mit dem konzeptionellen Klimakippelementmodell. Dabei zeigt sich, dass die
Wahrscheinlichkeit zusätzlicher Kippereignisse aufgrund der berücksichtigten Temperaturfeedbacks
auch ohne das Zuführen eines zusätzlichen CO2-Eintrags in die Atmosphäre leicht ansteigt.

Trotz der konzeptionellen Natur des entwickelten Netzwerkmodells, ist es mit dieser Arbeit erstmals
möglich eine Risikoabschätzung über das Auftreten von Kippkaskaden im Erdsystem vorzunehmen.
Darüber hinaus können, unter der Annahme globaler Erwärmungsszenarien, auch dynamische Tem-
peraturfeedbacks berücksichtigt werden.
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Chapter 1

Introduction

Look at the world around you. It may seem like an immovable implacable place. It is not. With the
slightest push – in just the right place – it can be tipped.

Malcolm Gladwell

1.1 The foundations of Earth system science
The Earth can be viewed as a complex system (Fan et al., 2020). It consists of a geosphere, biosphere
and anthroposphere component (Steffen et al., 2020). On top of that it has been proposed that the
living components themselves have a self-regulating and self-perpetuating nature by interacting with
their environment such that they make the Earth itself to a more habitable place. This hypothesis is the
so-called GAIA hypothesis that was formulated more than 40 years ago by James Lovelock and Lynn
Margulis (Lovelock and Margulis, 1974). However, this self-organised life support may be threat-
ened as the Earth has entered a time, where humans truly have become a geological force (Steffen
et al., 2015; Zalasiewicz et al., 2019). During the Holocene in the last 11,700 years, unusually stable
climatic conditions have enabled the rise of civilisations and provided home to more than 7 billion
people. Meanwhile direct human impact has become measurable in many places around the world,
for instance through a decline in biodiversity, an increase in extreme weather conditions or global
warming (Rahmstorf and Coumou, 2011; Stocker et al., 2013; Brondizio et al., 2019). The human
ability to significantly impact the Earth system in its entirety increases steadily and is nowadays seen
as one of the dominant forces that drives the climate system, giving rise to a new age of time: the An-
thropocene (Crutzen, 2002; Steffen et al., 2015; Zalasiewicz et al., 2019). To address one of the most
fundamental threats that humanity is exposed to, the international community agreed in Paris 2015 to
limit global warming to well below 2.0 ˝C above pre-industrial levels until 2100 (Paris Agreement,
2015).
Therefore, human forces have to be taken into account in contemporary Earth system analysis and
could be represented by a dynamic and co-evolutionary relationship between anthropogenic and nat-
ural forces. More recently, the inherent co-evolution between the Anthroposphere and the climate
system has been re-emphasised as a basis of state-of-the-art Whole Earth system analysis (Donges
et al., 2017; Steffen et al., 2020). This kind of Earth system analysis was put forward more than 20
years ago as the second Copernican revolution (Schellnhuber, 1999). In contrast to the first Coperni-
can revolution, the author argues that macroscopes instead of microscopes for Earth system scientists
are required to be able to assess the Earth in a genuine and perceptually independent way. Thereby
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1 Introduction

three principles are distinguished: (i) The ‘bird’s eye’ principle: Measuring the Earth system from
distance, as for instance with satellites, (ii) The ‘Lilliput’ principle: Shrinking the Earth to an ex-
aminable size, as e.g. in small-scale models or experiments, and (iii) The digital-mimikry principle:
Simulating the Earth by the use of mathematics, equations and process understanding.
More broadly spoken, there are three main methodologies to gain scientific knowledge, namely the
triad of observation (measurement), experiment (laboratory) and simulation (modelling). In the Earth
system sciences, observational data can be gained by satellites (e.g. the TRMM dataset; Huffman
et al., 2007), instrumental data and reanalysis products (e.g. the NCEP-NCAR dataset; Kalnay et al.,
1996). To look further back into the past than just a couple of decades, paleo climate archives can
be investigated such as ice cores (e.g. Jouzel et al., 2007), speleothems (e.g. Cheng et al., 2016) or
tree rings (e.g. Zhao et al., 2019). On the experimental side, classical laboratory experiments can
be performed (such as the measurement of the ice flow law; Glen, 1958), but also experiments that
take place in nature itself such as rainfall exclusion or fire experiments in tropical rainforests (Brando
et al., 2008; Silvério et al., 2013). The third strategy to investigate the Earth system are computer
simulations, i.e., modelling the Earth system. Since major parts of this thesis make use of models and
develop them, the main focus will lie on those modelling perspectives.

1.1.1 Hierarchy of Earth system models
In principle, there are three different classes of model complexity in Earth system sciences that each
serves a specific purpose (see Fig. 1.1). The first class of models are conceptual models whose dy-
namics are in many cases based on one or several equations or dynamical rules. There are many
examples of conceptual models for the Earth system or components of it, but some well-known his-
torical examples are ocean box-models, ice age oscillation models or energy-balance models (e.g.
Stommel, 1961; Budyko, 1969; Sellers, 1969; Saltzman and Maasch, 1988).
At the other end of the spectrum of complexity is the Earth system model class of
general circulation models (GCMs). GCM-type models solve the basic equations of motion (Navier-
Stokes equation) for the oceans, the atmosphere and also posses model-dependent components for the
land-surface and sea ice. Typically, GCMs are the models of highest complexity and are computation-
ally expensive. However, some processes, e.g. for clouds or storm tracks, need to be parameterised
additionally since their physical details are partially unknown or uncertain as of yet (Stocker et al.,
2013). GCMs are the models that are used in coupled model intercomparison projects (CMIP) for
the IPCC reports. They aim to simulate the response of global climate to increasing greenhouse gas
emissions (Taylor et al., 2012; Stocker et al., 2013; Eyring et al., 2016).
In between these two model groups of very low and very high complexity are the
Earth system models of intermediate complexity (EMICs). EMICs make use of particular simplifi-
cations to physical processes with an increased use of parametrisations and deliberate downscaling
of the vertical and horizontal resolution of the climate system (Claussen et al., 2002; Weber, 2010;
Flato, 2011).
In my thesis, I have made extensive use of EMICs and conceptual models. However, in light of
the existence of more complex GCM-like models, the question can be raised as of why simplified
modelling approaches are worth following at all.

1.1.2 Role of EMICs and conceptual models for Earth system science
Since EMICs are computationally less expensive than GCMs, they are the prime candidate for calcu-
lating long-term simulations, by at the same time being able to run larger ensembles of simulations.
While GCMs are usually run for some hundreds of years, EMICs allow for climate simulations over
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1.1 The foundations of Earth system science

Figure 1.1: Model hierarchy of comprehensive models (GCMs), EMICs and conceptual models with respect to
the number of interacting Earth system components (Integration), the number of processes explicitly modelled
(Processes) and the detail of description of these processes. Figure taken from Claussen et al. (2000).

several thousands of years up to the simulation of glacial cycles for millions of years (e.g. Ganopolski
et al., 2016; Willeit et al., 2019). As such they close the gap between the fully complex GCMs and
purely conceptual models (Claussen et al., 2000, 2002), see Fig. 1.1. Nowadays, a range of powerful
EMICs exists and is under further development (e.g. Petoukhov et al., 2005; Eby et al., 2013; Zick-
feld et al., 2013). Further, EMICs are explicitly part of the IPCC-AR5 to assess the long-term climate
change (Stocker et al., 2013). This illustrates the usefulness of EMICs (Weber, 2010) for various
research questions on the Earth system, which include but are not limited to climate change (e.g. Eby
et al., 2013; Zickfeld et al., 2013), human-Earth system interactions (e.g. Ganopolski et al., 2016) or
instabilities of parts or the entire Earth system (e.g. Rahmstorf et al., 2005; Lucarini and Bódai, 2019).

Further, it is also debated whether Earth system models becoming more and more complex can always
better represent the physical properties of the climate system in case the ensemble size has to be
limited due to computational constraints at the same time. In contrast, it has been argued that simpler
models such as EMICs or conceptual models could be advantageous if large and carefully chosen
ensembles are employed (Stainforth et al., 2007; Daron and Stainforth, 2013).

Unlike EMICs, conceptual models aim to describe the essential properties of the modelled system
with only one or a few components. A very typical approach are dynamic models based on dif-
ferential equations. In my view, conceptual models can be viewed as the macroscopes among the
three classes of Earth system models, putting particular spotlight on the modelled system. Especially,
where knowledge is sparse and uncertainties are large, conceptual models can help creating some
understanding about a particular system by focussing on its main and most important properties. One
prominent example, where more complex approaches traditionally have difficulties or are just being
developed, is the modelling of nonlinearities in the climate system, particularly concerning climate
tipping elements. Therefore, conceptual models informed by complex systems are a promising strat-
egy to help answering questions along nonlinear climate phenomena.
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1 Introduction

1.2 Climate tipping elements in the Anthropocene
As long as anthropogenic climate change has not come to a halt, the integrity of some of the
most important regions and processes on Earth, which ensured our livelihood under the past
very stable climate, are endangered (see Fig. 1.2). These vulnerable regions are the so-called
climate tipping elements (Lenton et al., 2008). They comprise cryosphere components such as
the large ice sheets on Greenland or Antarctica, circulation patterns such as monsoon systems or
the Atlantic Meridional Overturning Circulation (AMOC) as well as biosphere components such
as the Amazon rainforest or coral reefs. In the Anthropocene, humans are changing the world at
an unprecedented speed (Steffen et al., 2015), putting the integrity of many tipping elements at
risk since they can qualitatively alter their state within a small parameter change once they have
been brought close to their critical threshold (tipping point). Their disintegration would have
severe consequences for the biosphere and for human societies as a whole. The tipping elements are
suspected to transgress their critical threshold at a certain level of warming (Schellnhuber et al., 2016).

With ongoing global warming, it has been proposed that the Earth system could potentially be forced
over the boundary of the very stable current Holocene climate state from the last 11,700 years and
transgress onto a trajectory towards a hothouse state with far higher temperatures than in the Holocene
or during the last 1.2 million years (Steffen et al., 2018; Lenton et al., 2019). It is further suggested
that some tipping elements already show early warning signs of a potential disintegration (Stocker
et al., 2013; Lenton et al., 2019; Wang and Hausfather, 2020). For instance cryosphere components
such as the West Antarctic Ice Sheet, the Greenland Ice Sheet, the Arctic summer sea ice and mountain
glaciers show strongly declining trends in observations (Leclercq et al., 2011; Stroeve et al., 2012;
Gardner et al., 2013; Shepherd et al., 2018; Rignot et al., 2019; Sasgen et al., 2020; Shepherd et al.,
2020). At the same time, oceanic systems such as the overturning strength of the AMOC becomes
weaker or biosphere components such as the Amazon rainforest are under increasing pressure from
anthropogenic activities (Nobre et al., 2016; Caesar et al., 2018; Lovejoy and Nobre, 2019). Further,
the climate tipping elements are not isolated but interact across scales in space and time (Kriegler
et al., 2009; Rocha et al., 2018). This means, due to the interaction, positive internal feedbacks, and a
potential irreversibility for some tipping elements, a possible tipping might be difficult to countermand
once the individual thresholds of the tipping elements have been crossed.

1.3 Complex systems and network approaches to nonlinear cli-
mate science

Major parts of this dissertation exploit techniques from complex dynamical systems and network
approaches to inform the conceptual modelling of the climate system. Complex networks are an
extremely flexible tool, which has been applied successfully to many different fields in science rang-
ing from biology, ecology, the energy system up to sociology (Albert and Barabási, 2002; Newman,
2003). They have been utilised in the synchronisation of nonlinear oscillators (Zou et al., 2013),
neuroscience (Ashwin et al., 2016), food webs (Gross et al., 2009), climate dynamics (Donges et al.,
2009) or in the description of social contagion phenomena such as opinion dynamics or disease prop-
agation (Brockmann and Helbing, 2013; Wiedermann et al., 2020).
A typical way to model tipping elements in complex systems science is to view them as entities that
possess multiple stable states with a potential to a state transition. Following Ashwin et al. (2012) and
Halekotte and Feudel (2020), tipping of a system can be separated into four groups. (i) Bifurcation-
induced tipping (B tipping), where a slow changing parameter induces a critical transition across a
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1.3 Complex systems and network approaches to nonlinear climate science

a)                                                                                 b)

Groups of tipping elements

Global warming level from 2006 – 2015 compared to 1850 – 1900

Figure 1.2: a) Tipping elements in the Earth system grouped along their potential tipping points with respect
to global warming levels above pre-industrial. b) Range of critical levels of global warming in which tipping
elements could be tipped. In red, the Anthropogenic global warming is shown comparing 1850–1900 with
2006–2015. This value lies at 0.9 ˝C above pre-industrial levels (Masson-Delmotte et al., 2018). Following
recent developments, abrupt and irreversible changes in the climate system might start at lower temperature
thresholds than previously thought (Lenton et al., 2019). Figure adapted from Steffen et al. (2018) for panel (a)
and Schellnhuber et al. (2016) for panel (b).

bifurcation point, i.e., tipping point (Examples: Cessi, 1994; van Nes et al., 2014). (ii) Noise-induced
tipping (N tipping), where random fluctuations lead to leaving the attractor (Examples: Thompson
and Sieber, 2011; Ritchie and Sieber, 2017). (iii) Rate-induced tipping (R tipping), where the system
cannot keep track of the slow changing attractor due to rapid changes in the forcing (Examples:
Ashwin et al., 2017; Alkhayuon and Ashwin, 2018). (iv) Shock-induced tipping (S tipping), where
a sufficiently large perturbation kicks the system out of its basin of attraction (Halekotte and Feudel,
2020).
In my dissertation, I focus on bifurcation-induced tipping apart from two minor examples in [P1]
and [AP1] (see Sects. 2.1 and 5.1) where noise-induced tipping events play a role. A bifurcation is
a qualitative state change in response to a (small) change of a critical parameter c over its tipping
point ccritical. An example for a fold-bifurcation with the critical parameter c and the tipping point
ccritical is shown in Fig. 1.3a. Along these lines, the notion of interacting tipping elements in complex
networks has gained increasing attention (Eom, 2018), where the dynamical structures are represented
by certain entities as nodes and their interactions as edges in the network (Fig. 1.3b). The respective
dynamical equation representing this behaviour can be written as

fCusp, ipxq “ dxi “
«
´ai pxi ´ x0,iq3 ` bi pxi ´ x0,iq ` ci ` d

Nÿ

j“1
Aijxj

ff
dt` σdW. (1.1)

The state of a tipping element i is denoted by xi. ai, bi and x0,i are parameters. ci is the critical
parameter that invokes a state transition as soon as its critical value ccritical is surpassed (see Fig. 1.3a).
The last term in brackets denotes the coupling to other tipping elements. In this case, a linear form
is chosen with a given strength d and the adjacency matrix Aij (see Fig. 1.3b). Aij “ 0 if there is
no connection between node i and j, and Aij “ 1 if there is a connection. The last term in Eq. 1.1
represents the noise, where σ stands for the level of the noise and W describes the Wiener process.
Overall, tipping elements, whether interacting or not, are not restricted to tipping processes in the
climate sense (Lenton et al., 2008; Kriegler et al., 2009), but they also appear in various other con-
texts such as ecology, finance, or politics (Scheffer et al., 2001; May et al., 2008; Brummitt et al.,
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a)                                                                                               b)

Figure 1.3: a) (Fold-)Bifurcation diagram of an exemplary tipping element with two stable states, in this case
exhibiting a fold-bifurcation once the critical parameter c surpassed its critical value ccritical. b) Network of
nodes, where the nodes represent individual tipping elements and the edges represent interactions between
them. This figure is adapted and extended from [P6] (see Sect. 2.6).

2015). However, in the climate system, nonlinear (tipping) dynamics have been applied as threshold
or binary models to the entire Earth system as well as to specific subsystems, e.g. to the Amazon
rainforest (Gaucherel and Moron, 2017; Zemp et al., 2017). For the climate system much progress
has been made in more comprehensive Earth system modelling during the last decades, but neverthe-
less they cannot yet comprehensively propagate all uncertainties in the climate tipping elements due
to computational limitations (e.g. Wood et al., 2019). Although there exist conceptual models of two
interacting tipping elements (Dekker et al., 2018), there is no general framework or model of inter-
acting tipping elements available as of now. A reason might be that parts of the interaction structure
is not yet fully understood and partially explicitly based on expertise from respective specialists (e.g.
Kriegler et al., 2009).
Out of all these reasons, it is crucial to understand the dynamics of interacting tipping elements as
well as their potential to undergo dangerous tipping events, for instance in triggering tipping cascades.
This dissertation is dedicated to elaborate on specific questions along these lines (see Sect. 1.4).
According to that, this dissertation contributes to some of the Hilbertian questions (Schellnhuber
et al., 2004, page 9) posed for Earth system sciences with respect to nonlinear climate phenomena
(see also Sect. 4).

1.4 Research questions and scope of this thesis
Tipping elements can be decisive for the determination of stability in complex systems. Furthermore,
network interactions between tipping elements can lead to nonlinear and potentially dangerous tipping
events among certain subsystems, even before their actual tipping point is reached. Therefore, the
following set of guiding questions arises:

RQ1: What are the conditions under which tipping cascades can emerge in interacting complex sys-
tems? What are the implications for the stability of that system?

Following this question, this can be specified for the Earth’s climate system. In many cases, tipping
elements possess reinforcing feedbacks once they commence tipping. This applies to climate system
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components such as the large ice sheets on Greenland and Antarctica via the melt-elevation feedback
and marine ice sheet instabilities (Schoof, 2007; Levermann and Winkelmann, 2016). Further, the
tipping elements also exert feedbacks directly on the global mean temperature via fast-climate feed-
backs such as albedo, water vapour, lapse rate and clouds feedbacks. These fast climate feedbacks
are especially important for the cryosphere components since their albedo would change drastically
in case they become ice-free. This leads to the following question:

RQ2: How large are the temperature feedbacks of the large cryosphere components on a regional and
global level?

Feedbacks are also internally important for other sub-components of the Earth system such as the
Amazon rainforest via the moisture-recycling feedback (Aragão, 2012). At this point, it could be
asked for the Amazon rainforest:

RQ3: Under which conditions can tipping events occur in the Amazon rainforest and in a set of
tipping elements in the Earth system? Which role do tipping cascades play in that regard? How
strongly do feedbacks affect the occurrence of tipping events of further tipping elements?

This is not only an important question for the Amazon rainforest as a particular tipping element in
the climate system, but also for a larger set of interacting climate tipping elements. For them, the
question as of how temperature feedbacks would increase the likelihood for tipping, combines RQ2
with RQ3.

In order to answer these research questions, I employed different methodologies ranging from com-
plex systems science to Earth system modelling with an EMIC. Therefore, this work is separated into
two different parts (see Fig. 1.4). In the first major part of my thesis (Theory & Methodologies),
a generic model is developed (PyCascades), which is able to simulate tipping elements on different
network interaction structures [P1]. With this generic model, fundamental properties of deterministic
and stochastic tipping elements are investigated on several generic and spatially embedded network
[P2, P3]. Building on these methodological advances, the second major part of my thesis (Climate
tipping elements) deals with applications to the Earth’s climate tipping elements. First, selected
components in the Earth system are investigated such as cryosphere elements [P4] and the Amazon
rainforest [P5], and after that, a set of climate tipping elements [P6, P7]. In [P4], the Earth system
Model of Intermediate Complexity (EMIC) CLIMBER-2 (Petoukhov et al., 2000; Ganopolski et al.,
2001) has been used to determine the global mean temperature feedback. To investigate the potential
for tipping events and cascades, the conceptual network model PyCascades (developed in [P1–P3]) is
first applied to the Amazon rainforest [P5] and then to interacting climate tipping elements [P6, P7],
Lastly, the temperature feedback values from [P4] are applied to the conceptual Earth system model
developed in [P6, P7] to determine as to whether the tipping events significantly change under these
additional temperature increases (see chapter 3).

The structure of my dissertation is depicted in Fig. 1.4. The following chapter 2 constitutes the main
body of my dissertation and is built around these seven aforementioned articles. Before the original
manuscripts of the respective publications, I will give a short summary of the content, the authors,
journal and author contributions for each article. The original bodies of the seven publications are
deposited in the main part of this dissertation, comprising my most substantial contributions to this
dissertation. In chapter 3, the main results composed of all publications of this dissertation will be
summarised and the research questions posed above will be answered. In the discussion (chapter 4),
I will put my findings into the larger research context, name limitations and provide an outlook on
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potential future lines of research.

Lastly, four further contributions to publications are deposited in the Appendix (see chapter 5 and
Fig. 5.1), elaborating further on the Theory & Methodologies and (Climate) tipping elements parts.
The first contribution deals with the high connectivity limit of conceptualised tipping elements. There,
it has been observed that cooperativity emerges under a sufficiently large connectivity of single tipping
elements. They can then be aggregated to one large overarching tipping element [AP1] (see Sect. 5.1).
Upon all theoretical and methodological thoughts from this dissertation [P1-P3, AP1], there is a
discussion on what is meant by a ‘tipping cascade’ since the concept of tipping cascades is understood
differently by different research communities [AP2] (see Sect. 5.2). Furthermore, another study with
a smaller contribution of mine deals with an observed hysteresis of the Amazon rainforest, as has been
found in a global vegetation model [AP3] (see Sect. 5.3). The last small contribution concerns the
structure and dynamics of social tipping processes, also in contrast to natural tipping elements [AP4]
(see Sect. 5.4). This part also represents an outlook of this thesis in the way that tipping elements are
not limited or restricted to certain natural systems, but reach far beyond.
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Enables the

study of

[P2] Dynamics of tipping 
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Figure 1.4: Overview of the sub-projects in my dissertation divided into Theory & Methodologies and Climate
tipping elements (divided into Interactions within the Earth system and Amazon rainforest).
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Chapter 2

Original manuscripts

I now believe that this theory tells us something quite general about the way complex systems, not just
ecological systems, change over time. And collapse is usually part of the story.

Crawford Stanley (Buzz) Holling

The main part of this thesis is based on seven articles. Four articles are published, one is accepted,
another is in review, and one is to be resubmitted. Each article is a stand-alone contribution with
an introduction, results, methods and conclusions as well as references. In this chapter, I give an
overview of these individual articles together with a short summary of its contents, authors, journal
and author contributions. If applicable, the supplementary information of the articles can be found
directly after the respective manuscript.
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2.1 Modelling nonlinear dynamics of interacting tipping ele-
ments on complex networks: the PyCascades package rP1s

Authors
Nico Wunderling, Jonathan Krönke, Valentin Wohlfarth, Jan Kohler, Jobst Heitzig, Arie Staal, Sven
Willner, Ricarda Winkelmann, Jonathan F. Donges

Status
Accepted at European Physical Journal Special Topics (January 2021). Pre-print available in the
arXiv under: arXiv:2011.02031

Short summary
With this manuscript, the open source software package PyCascades is introduced (available
under the doi: 10.5281/zenodo.4153102). PyCascades is written in Python and is able to simulate
networks of paradigmatic tipping elements, e.g., tipping elements that have a fold-bifurcation or a
Hopf-bifurcation. Tipping cascades can be simulated on various standardised network types such as,
among others, Erdős-Rényi, Barabási-Albert or Watts-Strogatz networks. Furthermore, PyCascades
hosts the possibility to be coupled to the software package sdeint, which also is a Python-written
open source software tool. In this combination, different types of tipping elements with noise are
implemented and can be used with PyCascades. The types of noise that are supplied are Gaussian,
Lévy and Cauchy noise. Additionally, it is shown how PyCascades can be applied to various spatially
explicit networks of tipping elements, for instance to an atmospheric moisture-recycling network
of the Amazon rainforest, to a network of four climate tipping elements and to the global trade
network. In these examples, two important features of PyCascades are demonstrated: (i) The use of
another differential equation (other than the two predefined differential equation types) and (ii) The
combination with a large-scale Monte Carlo ensemble approach to propagate uncertainties that are
present in the desired application.

Author contributions
Nico Wunderling designed the study together with Ricarda Winkelmann and Jonathan Donges. Nico
Wunderling performed the simulations and prepared the figures for this work with contributions from
Jonathan Krönke (in the section: Structure of the core of PyCascades) and Valentin Wohlfarth (in the
section: International Trade Network). Nico Wunderling led the writing of this work with inputs from
all authors. Jonathan Krönke developed the software package PyCascades with inputs and extensions
from Jan Kohler, Valentin Wohlfarth and Nico Wunderling. Jonathan Donges supervised this study.
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Abstract. Tipping elements occur in various systems such as in socio-
economics, ecology and the climate system. In many cases, the in-
dividual tipping elements are not independent from each other, but
they interact across scales in time and space. To model systems of
interacting tipping elements, we here introduce the PyCascades open
source software package for studying interacting tipping elements (doi:
10.5281/zenodo.4153102). PyCascades is an object-oriented and easily
extendable package written in the programming language Python. It
allows for investigating under which conditions potentially dangerous
cascades can emerge between interacting dynamical systems, with a fo-
cus on tipping elements. With PyCascades it is possible to use different
types of tipping elements such as double-fold and Hopf types and inter-
actions between them. PyCascades can be applied to arbitrary complex
network structures and has recently been extended to stochastic dy-
namical systems. This paper provides an overview of the functionality
of PyCascades by introducing the basic concepts and the methodology
behind it. In the end, three examples are discussed, showing three dif-
ferent applications of the software package. First, the moisture recycling
network of the Amazon rainforest is investigated. Second, a model of
interacting Earth system tipping elements is discussed. And third, the
PyCascades modelling framework is applied to a global trade network.

a Correspondences should be addressed to nico.wunderling@pik-potsdam.de or
donges@pik-potsdam.de
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1 Introduction

In the recent years complex systems research has increasingly focused on the matter
of tipping points [1, 2, 3] since they occur in many different systems including ecosys-
tems, over economics, the Earth’s climate system and social systems [4, 5, 6, 7, 8,
9, 10]. Tipping points are the critical thresholds of tipping elements, where a small
perturbation can be sufficient to invoke a qualitative change of the whole system.
Whether such qualitative changes can be seen as something desirable or undesirable
depends a lot on the context: for instance, a potential transition of climate tipping ele-
ments towards a potential “hothouse” state might be dangerous for humanity [11, 12],
while a rapid transition towards a sustainable future lies well within the scope of
desired tipping events [13]. However, oftentimes tipping elements do not exist in iso-
lation, but interact across scales in time and space [14, 15] such as connected lakes
in ecology [16, 17], in the adoption of new technologies in the economy [18] or the
climate tipping elements in the Earth system [19]. Since several decades, networks
are an established tool for the description of complex systems [e.g., 20, 21]. Complex
networks are structures that represent certain entities as their nodes and their in-
teraction as their edges. They have been used, for example, to model oscillators in
power grids [22], food webs [23], interactions of climate system components [24] and
the collaboration network of scientists [25]. Critical behaviour has also been revealed
on the network level. For instance, it has been shown that the likelihood of developing
diabetes depends of the criticality of excitable tissue in the Langerhans Isles of the
pancreas [26].

Since there is increasing interest in modelling interacting tipping elements within
the context of complex systems [27, 28, 29], we bring these two strands of research
together since tipping elements on networks can not only tip themselves but also imply
tipping of neighbouring systems or even the network as a whole. Building upon recent
developments in studying interacting nonlinear dynamics on complex networks [30,
31, 32, 33, 34], we here introduce the unified Python package PyCascades.

In Chapt. 2, we describe how PyCascades can be installed and what the pack-
age contains (Sect. 2.1). Further, we describe the general structure of our package
(Sect. 2.2), the building blocks of nonlinear dynamical systems, namely the tipping
elements and their interaction structure (Sect. 2.3) as well as the network types na-
tively included in the package (Sect. 2.4) and lastly, the extension to several types of
stochastic tipping elements (Sect. 2.5). Thereafter, we apply our modelling framework
to three different examples (Chapt. 3). First, we use our model to simulate tipping
cascades in the Amazon rainforest, which is connected by a network of atmospheric
moisture flows (Sect. 3.1). Second, we show how PyCascades can be extended to large
scale Monte Carlo ensemble studies such that many uncertainties can be propagated
(Sect. 3.2). Third, we exchange the fundamental differential equation that has been
used in the two earlier examples to model tipping cascades in an economic example
of a global trade network (Sect. 3.3). Lastly in Chapt. 4, we shortly summarise the
functionalities of PyCascades.

2 Methods

This chapter describes the basic features that are supplied by PyCascades from the in-
stallation and the structure of the package to the fundamental features that have been
developed. Here, a tutorial can be found that guides the interested reader through
the most important first steps to simulate tipping cascades on interacting tipping ele-
ments (doi: 10.5281/zenodo.4153102). Furthermore, the code for each of the following
fundamental features and the three applications is provided there.

2.1 Modelling nonlinear dynamics of interacting tipping elements on complex networks rP1s
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2.1 Installation and package structure

PyCascades can be installed via the command line using the pip-command

pip install pycascades==1.0.11.

Alternatively, the package can directly be downloaded via the website following the
zenodo-doi: 10.-5281/zenodo.4153102. The layout of the file structure of PyCascades
can be found in Tab. 1. Important files, which led to the outcomes of this work,
are listed and described there. A dedicated tutorial has been developed, guiding the
interested reader through some important first steps and features of the software
package. For the Amazon rainforest application and the climate tipping elements
application, further readme-files have been added in the respective directory. There, it
is explained how the respective simulations can be started and evaluated. Additionally,
the plot scripts for these two applications are deposited.

1 The current version of PyCascades is stored at https://pypi.org/project/pycascades/.
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2.2 Structure of the core of PyCascades

PyCascades provides a convenient framework to solve differential equations on com-
plex networks, i.e., it describes the dynamics of states of nodes in such a network as
well as their interactions. The basic assumption is that the dynamics of tipping ele-
ments can be separated into one part for the isolated dynamics of the tipping element
and another part representing the interaction terms (see Sect. 2.3 for more details).
For that, it builds on SciPy differential equation solvers [35] for the dynamics and on
NetworkX [36] to generate the underlying network.

The core of PyCascades is structured as follows (see Fig. 1). It provides the two
classes tipping_element and coupling that implement the two described types of
dynamics. From these classes that can be viewed as references, concrete classes for
tipping elements and interactions can be derived. Currently, PyCascades provides the
classes cusp and hopf derived from tipping_element and linear_coupling derived
from coupling. Other types of tipping elements or couplings can be implemented in an
analogous way. The class tipping_network which is derived from the DiGraph class of
NetworkX is used to combine different tipping_element and coupling objects into
a network and identify each tipping_element object with a node and each coupling
object with a link. Finally, an evolve class is provided with methods to integrate the
resulting ODE system or to trigger tipping events.

2.3 Different types of tipping elements and interactions

Through the tipping_element class in PyCascades different types of tipping elements
can be defined and coupled together. Each tipping element can be described by its
individual dynamics fi and the interaction term gi, i.e., the coupling to other tipping
elements. This yields

τi
dxi
dt
“ fipxiq ` gipxq, (1)

where xi represents the state of the respective tipping element. τi stands for a typical
timescale of tipping. The direct interaction term gipxq is assumed to be separable into
the summands

gipxq “
ÿ

j

gijpxi, xjq, (2)

linking the tipping elements i and j.

In principle, any kind of tipping element can be supplied in the tipping_element
class of PyCascades, but as of now, there are two kinds of tipping elements prede-
fined that are ready to be used and implemented. These two tipping elements are
elements that possess a Cusp-bifurcation or a Hopf-bifurcation [37]. The first pre-
implemented tipping element is the Cusp-differential equation, which has been used
in many contexts before to model nonlinear transitions between two alternative stable
states [15, 38]. The normal form of its differential can be written as

fCusppxq “ dx

dt
“ ´a px´ x0q3 ` b px´ x0q ` c. (3)

Here, a, b ą 0 and x0 represents a shift on the x-axis. The parameter c is the critical
parameter, which invokes a shift from a lower stable state to an upper stable state
as soon as the critical value ccrit, high is surpassed. The other way round, when c
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is diminished, a state transition from the upper to the lower stable state occurs at
ccrit, low. Eq. 3 has the normal form of a fold-bifurcation and has, as a paradigmatic
model, been applied in many different areas such as systems in ecology, climate science
and economics [15, 29, 31, 39, 40]. For the special case that a “ 4, b “ 1 and x0 “ 0.5,
the two stable states are located at x1 “ 0 and x2 “ 1 for c “ 0. The critical parameter
lies at ccrit, high “ ´ccrit, low “

ap4b3q{p27aq “ a
4{p27 ¨ 4q « 0.19. The bifurcation

diagram of this equation is shown in Fig. 2a.
The second tipping element that is provided by PyCascades is a Hopf-bifurcation.

The normal form in polar coordinates of this bifurcation can be written as

fHopf, rprq “ dr

dt
“ `

µ´ r2˘ ¨ ra

fHopf, φpφq “ dφ

dt
“ b

(4)

with the parameters a and b. Here, the Hopf-bifurcation is given in polar coordinates
with the radius r and the angle φ. Importantly, µ is the critical parameter and a
bifurcation from a stable fixed point to a stable limit and an unstable fixed point
occurs when µ crosses zero from below. The bifurcation diagram is shown in Fig. 2b.
Applications of Hopf-bifurcations have been found, for instance, in predator-prey cy-
cles in Lotka-Volterra systems or in the Hodgkin-Huxley model of neurons [41, 42]. In
the climate system, there exist conceptual models that represent the El-Niño South-
ern Oscillation as a Hopf bifurcation [43, 44] based on a model by Zebiak & Cane
(1987) [45].

Next, for the interactions, any type of coupling can in principle be used and
implemented in PyCascades. However, for the moment only linear interactions are
considered

gipxq “
Nÿ

j“1

Aijxj . (5)

If there is a connection between tipping element i and j, then Aij ‰ 0, otherwise
Aij “ 0. In Fig. 2c-f, we show an example how tipping cascades can emerge from the
coupling between two tipping elements for the case of two cusp-differential and for
the case of one cusp coupled to the normal form of a Hopf-bifurcation.

2.4 Paradigmatic network types of interacting tipping elements

With PyCascades it is possible to investigate the dynamics of tipping and tipping
cascades in larger directed networks. These types of networks can either be explic-
itly spatially embedded (see Chapt. 3) or well-known predefined network models
such as the Erdős-Rényi model, the Barabási-Albert model or the Watts-Strogatz
model [46, 47, 48]. Originally, the network models that are inbuilt in python’s network
package NetworkX are undirected for Watts-Strogatz networks and Barabási-Albert
networks, while we require directed networks. Additionally, it might also be helpful or
necessary to be able to determine a certain average degree. Therefore, a generalisation
of these two networks types has been developed. (i) Watts-Strogatz network: A regular
network is created where each node i is connected to its m closest neighbours in both
directions. m must be an even integer and the average degree 〈k〉 “ m. m is chosen in
such a way that the average degree of the resulting network is larger than the desired
average degree. Then, links are randomly deleted until the desired average degree is
reached. Lastly, each of the remaining links is rewired with the desired rewiring prob-
ability as in the usual Watts-Strogatz model. (ii) Barabási-Albert model: First, two
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nodes are bidirectionally coupled. Each further node is, again, bidirectionally coupled
to one already existing node i with the probability p “ pkin

i `kout
i q{přmn amnq, where

kin
i is the in-degree and kout

i is the out-degree of node i. With amn, the sum of all
edges in the network is denoted. In the end, the average degree 〈k〉 depends on the
stochastic network. Therefore, it can happen that the actual average degree 〈k〉 of
the network exceeds or falls below the desired average degree kdes. While 〈k〉 ă kdes,
another link is added between two randomly selected nodes i and j. While 〈k〉 ą kdes,
a link between two randomly selected nodes i and j is deleted. For comparison of the
construction of these network models, see also Krönke et al.(2020) [30]. Examples for
a realisation of these three network types and an exemplary tipping cascade in those
can be found in Fig. 3.

2.5 Stochasticity in tipping elements

In the real-world, systems often underlie fluctuations, which under certain circum-
stances can cause critical transitions, called noise-induced tipping. Numerous promi-
nent examples can be found in dynamical systems such as in electronics, optics or
neurons, but also in ecology and in the Earth’s climate system [49, 50, 51, 52, 53].
Therefore, we decided to create a class for a stochastic version of the cusp tipping
element (Eq. 3) for additive noise

fCusp, stoch. “ dx “
”
´a px´ x0q3 ` b px´ x0q ` c

ı
dt` σdW. (6)

Here, σ denotes the noise level and dW {dt describes the Wiener process or Brownian
motion. In the case of random white noise (Gaussian white noise) as used here, W is
sampled from a Gaussian distribution. To implement stochastic differential equations,
python’s SciPy function odeint has been replaced by sdeint [54]. sdeint has several
algorithms implemented, which are able to solve stochastic differential equations.
Here, and in the provided version of PyCascades, an order 1.0 strong stochastic Runge-
Kutta algorithm is employed [55].

Furthermore, Gaussian noise distributions are not necessarily able to describe all
types of fluctuations in real-world systems since in reality noise might be correlated
or not be standard normally distributed. Besides Gaussian noise, PyCascades allows
to compute systems with Lévy and Cauchy noise (see Fig. 4). These types of noise
(Lévy, Cauchy) may be more suitable for describing extreme events than Gaussian
noise, however, in the implemented form they still remain uncorrelated. It has been
found that the probability of jumping between the two stable states in a double-
well potential is impacted by single strong extreme events from those α-stable noise
distributions [56]. For instance, it has been proposed that this might have been of
relevance for climate system states on a millennial time scale during the last glacial
period as was observed in ice-cores [57]. Also, transitions triggered by extreme events
emerging from Lévy-distributions in other nonlinear climate system components such
as the Amazon rainforest or the thermohaline circulation have been investigated, as
well as transitions in gene expression processes in molecular biology [58, 59, 60].
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The distributions for Gaussian, Lévy and Cauchy noise in PyCascades are taken
from python’s SciPy libraries

pGausspxq “ 1?
2πσ2

¨ exp
ˆ
´ x2

2σ2

˙

pLévypxq “ 0.5 ¨ pLévy, pos. ` 0.5 ¨ pLévy, neg. “
“ 0.5 ¨

c
σ

2πx3
¨ exp

´
´ σ

2x

¯
` 0.5 ¨

c
σ

2π |x|3 ¨ exp
ˆ
´ σ

2 |x|
˙

pCauchypxq “ 1

σπ
¨ σ2

σ2 ` x2 ,

(7)

where σ is the standard deviation and the mean value µ ” 0.

3 Applications

In this section, we show three examples of how PyCascades can be applied to real-
world systems. The first application is the moisture-recycling network of the Amazon
rainforest, where we introduce PyCascades on a spatially embedded network. In the
second application in a subset of interacting climate tipping elements, we combine
the PyCascades modelling framework with a large-scale setup of Monte Carlo sim-
ulation to show how numerous uncertainties in parameters can be propagated sys-
tematically. The third application, a global trade network of more than 5 000 nodes
and 400 000 links, complements our analysis by simulating tipping cascades with a
modernised, economically motivated differential equation (see Eq. 10) replacing the
Cusp-differential equation (see Eq. 3).

3.1 The Amazon rainforest

It is suspected that the Amazon rainforest is a tipping element in the Earth’s cli-
mate system [4], which might approach a tipping point due to various anthropogenic
pressures including climate change, fires and land-use change [61, 62, 63]. The Ama-
zon rainforest might exhibit multistability at certain rainfall levels, as suggested by
conceptual models and observational data [64, 65, 66, 67, 68]. This implies that rain-
forest patches may transition to a savannah-like state when the rainfall drops below
a certain critical level. These rainforest patches depend on each other, as rain is
re-evaporated by the trees and thus preserved in the system through atmospheric
moisture recycling [69, 70] (see Fig. 5a). This means that the Amazon rainforest is an
excellent example of how tipping cascades can travel through a system, which can be
modelled with PyCascades. We divide the Amazon into 0.5ˆ0.5˝ (appr. 50 km) grid
cells and assume that each is an interacting tipping element that can be described
by the Eqs. 3 and 5. For simplicity, we chose ai “ bi “ 1 and x0,i “ 0 for all tipping
elements and further assume that the critical parameter is only dependent on the
rainfall a rainforest cell receives, which tips in case the received rainfall is less than
the critical rainfall. Then, the critical parameter ci and the coupling gipxq can be
denoted as

ci “ c0 ¨ Ri ´ 〈R〉
Rcrit ´ 〈R〉

gipxq “ 1

2

c0
Rcrit ´ 〈R〉

Nÿ

j“1

δRain
ij .

(8)
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Here, Ri is the rainfall in cell i, 〈R〉 is the average rainfall over the whole Amazon
basin and Rcrit is the critical rainfall. Further, c0 “

a
4{27 if a “ b “ 1 and x0 “ 0.

Lastly, δRain
ij is the moisture transport in mm/yr from cell j to cell i. Since the distance

between the two stable states is 2, a prefactor of 1/2 is required to re-normalise the
coupling. We choose the critical rainfall Rcrit to be 1700 mm/yr for all cells, which
is approximately the value below which the alternative savannah state becomes more
resilient than the rainforest state [71]. The atmospheric moisture recycling simulations
used in this work were performed by Staal et al. (2018) [72] for the years 2003–2014
and assembled into a network by Krönke et al. (2020) [30]. In this simplified example,
we assume that if a forested grid cell tips, moisture recycling via that cell stops. We
performed a tipping experiment for each year between 2003 and 2014 and averaged
the results over this period. We find tipping events in several parts of the Amazon
basin which cascade to other forest patches (Fig. 5b–d). This analysis illustrates how
PyCascades can be applied to simulate tipping events and cascades in a real-world
network of interacting tipping elements.

3.2 Climate tipping elements

Apart from the Amazon rainforest, there exists a range of processes and systems
in the Earth’s climate system that exhibit threshold behaviour [4]. These tipping
elements contain biosphere components (e.g. Amazon rainforest, coral reefs), large-
circulation patterns (e.g. Atlantic Meridional Overturning Circulation, monsoon sys-
tems) or cryosphere components (e.g. Greenland Ice Sheet, West Antarctic Ice Sheet).
Under ongoing global warming, many of them are at risk of transitioning into an alter-
native, tipped state at lower levels of global warming than previously though [12, 73].
Such transitions would have dangerous consequences for humanity and biosphere in-
tegrity in the Earth system [11, 12]. There is an additional risk that tipping elements
are strengthened by reinforcing, positive feedbacks within the climate system such
that cascades might be triggered, potentially up to a planetary-scale tipping cascade
that could push the Earth towards a “hothouse” state [11]. Moreover, the tipping
elements in the climate system are interacting and there is a subset of five tipping
elements where the interaction structure has been made explicit by an expert elici-
tation [19]. This network and their interactions have been used by some studies to
investigate the risk of tipping cascades in the climate system, but also to quantify
economic damages exerted by interacting tipping elements [27, 33, 74].

Here, we show how PyCascades can be used to simulate tipping events in four
of the five aforementioned tipping elements: the Greenland Ice Sheet (GIS), the
West Antarctic Ice Sheet (WAIS), the Atlantic Meridional Overturning Circulation
(AMOC) and the Amazon Rainforest (AR). For these four tipping elements, there
exist conceptual models of their nonlinear behaviour with respect to a forcing pa-
rameter [64, 66, 75, 76, 77], which can be traced back to increases in levels of global
warming above pre-industrial [73]. Therefore, we can arguably model these four ele-
ments by

dxi
dt
“

»
——————–
´x3i ` xi `

a
4{27

Tcrit, i
¨∆GMT

loooooooooooooooooomoooooooooooooooooon
Individual dynamics term

`
ÿ

j
j‰i

sij
4
pxj ` 1q

loooooooomoooooooon
Interaction term

fi
ffiffiffiffiffiffifl

1

τi

with i “ tGIS, WAIS, AMOC, ARu .

(9)
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Here, ∆GMT is the increase of the global mean temperature, Tcrit, i the critical tem-
perature at which a certain tipping element transgresses its baseline state, sij the
interaction strength between the tipping elements and τi the time a certain tipping
event needs. Each sij has a certain physical meaning, for instance, the freshwater
entry from the GIS weakens the AMOC, while a weaker AMOC cools the northern
hemisphere at the same time [e.g. 78]. The typical tipping time scales τi are cho-
sen to be 4900, 2400, 300 and 50 years at 4 ˝C above pre-industrial levels of global
warming for GIS, WAIS, AMOC and AR, respectively. For more details, see Fig. 6
and please be referred to Wunderling et al. (2020) [31]. The parameter uncertainties
and a potential interaction structure are shown in Figs. 6 and 7. In Eq. 9, there are
many parameters with uncertainties, for instance at which temperature Tcrit, i a crit-
ical transition occurs or how strong the interactions sij are. While upper and lower
limits are given in the literature [19, 73], their uncertainty need to be propagated
thoroughly. For this purpose, we use a large scale Monte-Carlo ensemble based on the
latin hypercube sampling (LHS) method pyDOE [79]. The LHS is a sampling method
that generates initial conditions that can be used in a Monte Carlo ensemble. They
cover the state space of all uncertain parameters to a higher degree than random
sample generation and are therefore better suited to create Monte Carlo ensembles
in higher-dimensional systems. In Figs. 6 and 7, we demonstrate that constructing a
large-scale Monte Carlo ensemble can be combined with simulating tipping cascades
with PyCascades. In the critical temperatures Tcrit, i and the interaction strengths
sij are 11 parameters with uncertainties (see Fig. 6). Upon that, we construct an
ensemble of 1000 initial conditions.

In Eq. 9, we assume that the interaction term is 25% as important as the individual
dynamics term. Thus, the interaction strength sij is divided by 4 in Eq. 9. While
this poses a hypothetical scenario, it allows us to estimate the likelihood of tipping
of certain element at a certain increase of the global mean temperature ∆GMT. For
2 ˝C, we find that the likelihood of tipping is around 50% for the GIS and WAIS, while
it is significantly lower for the AMOC (around 25%) and the AR (less than 5%). There
is a relatively high likelihood that GIS and WAIS tip since their critical temperature
is lowest and there is a strong interaction link from GIS to WAIS. Therefore, the
likelihood of tipping is lower for the AMOC, but the uncertainty is higher due to the
strong negative feedback loop with GIS. Lastly, the AR has a very low likelihood of
tipping since it is only connected to the other tipping elements via one uncertain link
from AMOC.

3.3 International Trade Network

In the third example, we apply the PyCascades framework of interacting tipping
elements to the International Trade Network. We construct the network from the
EORAmulti-regional input-output (MRIO) database [80] as also done in other studies
[81, 82]. The database, which has also been subject to static analyses [83], consists
of 188 countries with 27 economic sectors each, and includes the annual monetary
flows between these sectors and regions. We interpret the individual sectors in each
country as nodes of a network, and the flow fij in the MRIO table as the weight for
each directed link from node j to i. In our analysis, we use the data for the year 2012.
Following previous analyses [81, 82, 84], we also use a threshold of 106 US-$ such that
we exclude unrealistically small flows.

Propagation of economic losses on the trade network has previously been stud-
ied, for instance, with the Acclimate model [84]. This model interprets the economic
sectors in each country as firms producing a commodity specific for the respective
sector. Each firm does so using other commodities as inputs with specific, fixed
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proportions according to a Leontief production function [85] as also used in sim-
pler input-output models. These fixed proportions are taken from the multi-regional
input-output (MRIO) table underlying the construction of the trade network, which
constitute the baseline state (untipped state) of the model. If, for instance, the trans-
portation sector in a country receives an input of ten billion US-$ from the oil sector
and 90 billion US-$ from the machinery sector, it might have an output of 110 bil-
lion US-$ according to the MRIO table such that the created surplus would be 10
billion US-$. However, the according sector always produces according to these pro-
portions using nine times as much “machinery commodity” as “oil commodity”, and
produces ten percent more “transportation commodity” than the sum of its inputs.
If a firm receives only a certain fraction of the baseline state of a commodity due to
some perturbation, the firm’s output is limited to the same fraction of the baseline
output. However, in the Acclimate model firms have idle capacities, i.e. the ability
to temporarily produce more than their baseline output, if they have the necessary
inputs and demand is high. The dynamics of this anomaly model are focused on
perturbations around the baseline state with each agent aiming for maximum profit
and minimum costs under local circumstances. After a shock or perturbation ceases
the model returns back to the baseline state, which constitutes an equilibrium of the
model’s dynamics.

Tipping is not at the centre of the Acclimate model whose scope, as an anomaly
model, vanishes for very large perturbations such as bankruptcies. We here, thus,
define a simple dynamic for tipping on the trade network while keeping the linear
Leontief production assumption for small perturbations, whereas nonlinear dynamics
are assumed for larger perturbations. Nonlinear behaviour and tipping is common in
economic networks, for instance in the banking sector [86, 87]. The nodes in the trade
network are only to be perceived as representative firms, i.e., aggregates of national
sectors, which consist of a variety of connected actors – so each node represents a
network itself and might show nonlinear as well as tipping behaviour. The standard
form of a tipping element defined by the Cusp-differential equation (see Eq. 3) is
not well suited for this purpose. Instead, we are here looking for a new differential
equation with the following properties:

1) The state xi of a node i should represent its productivity that is between 0 (no
production) to 1 (full production).

2) The element should react almost linearly to small perturbations as in the Accli-
mate model.

3) For large perturbations there should be a collapse of the productivity, including
tipping and hysteresis.

To meet these criteria, we propose the differential equation

dxi
dt
“ ri ´ xi ´ a

?
x ¨ exp p´bxiq ` wlogxi ¨ p1´ xiq , (10)

where a and b are parameters and ri is the limiting relative input as in the Leontief
production function. The bifurcation diagram is given in Fig. 8a. The first two terms
in equation 10 represent a linear response to perturbations, similar to the Acclimate
model (see the dotted line in Fig. 8a). The third term is responsible for the nonlinear
behaviour, causing tipping and hysteresis (see the dashed line in Fig. 8a). However, an
economic tipping element defined by these three terms would be inherently unstable.
Even small perturbations would finally lead to a collapse of the node since pertur-
bations are almost always growing due to the structure of the network. However, we
know that the trade network is not that fragile. Therefore, we add a logistic growth
term to the differential equation to stabilise the network on the individual node level
with the weight wlog. Here, we argue that a certain flexibility in substituting inputs
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exists. Within limits, it is therefore possible to return to the original production due
to the logistic growth term. To illustrate an example, we choose a “ 4, b “ 10 for
the parameters in Eq. 10. Therefore, the two bifurcation points lie at r1 “ 0.4 and
r2 “ 0.6. The strength of the logistic growth term is chosen as wlog “ 0.2 (see the
blue line in Fig. 8a).

In order to calculate the input term represented by ri, every flow is normalised
to the sum of flows from nodes of that sector to the target node. So the new weight
wc,sÑi of a link from sector s in country c to node i is given as

wc,sÑi “ fc,sÑiř
k fk,sÑi

. (11)

With this, we can write the coupling term for the differential equation as

ri “ min
s in sectors

# ÿ

c in countries

wc,sÑi ¨ xc,s
+
. (12)

To simulate cascades, we start with all nodes in the untipped state, here xi “ 1
for all nodes i. We select a random starting node and tip it by setting its productivity
to zero and then evolve the system with PyCascades. We exemplify this for a cascade
between three countries, where one node has been tipped artificially (see Fig. 8b). The
graph illustrates how the cascade propagates within and across the different countries
forming densely connected network communities. Once the cascade reaches a country,
most of that country’s nodes tip almost at the same time. However, this gradual and
sequential propagation of a tipping event is only one pattern of cascading behaviour
observed. In Fig. 9, we show cascades for 30 different start nodes, chosen such that a
wide range of different tipping cascades can be observed. Fig. 9a shows the number
of tipped nodes, and Fig. 9b the average node state xxy “ 1

N

řN
i xi.

4 Conclusion

In this work, we have outlined the software package PyCascades, which is designed
for simulating nonlinear dynamics, in particular tipping behaviour of interacting sys-
tems. For that purpose, two different types of tipping elements (Cusp and Hopf-
bifurcation type models) are provided in PyCascades as well as different paradigmatic
complex network types (Erdős-Rényi, Barabási-Albert, Watts-Strogatz networks) and
a stochastic version of the tipping elements supplying Gaussian, Lévy and Cauchy
noise. PyCascades is written in the programming language Python and is written
with an object-oriented architecture such that it remains flexible and can easily be
adapted or extended to further applications or theoretical problems.

However, a distinct limitation is, as of now, that only systems can be investigated,
where the individual dynamics part can be separated from the interaction part. We
also suspect that there is considerable potential for improvement in some technical
details. For instance, more interaction types or multiplicative noise could be imple-
mented. Another distinct constraint of PyCascades is that only paradigmatic dynam-
ics of tipping elements are implemented. In particular, it would be highly desirable
to develop process-based tipping elements depending on the respective application.

All in all, due to modular setup, PyCascades has the potential to contribute
to relevant questions about the emergence of tipping cascades in various contexts,
ranging from economics, ecology, climate science and beyond.
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Fig. 1. UML class diagram of the core of PyCascades that depicts structure and depen-
dencies of PyCascades’ functionalities separated in the different python classes. The class
tipping_network is derived from the DiGraph class of the NetworkX package [36]. It ag-
gregates instances of the general classes tipping_element and coupling. The evolve class
is associated with one instance of the tipping_network class and simulates the evolution
of the complex dynamical system which is implemented by the concrete tipping_element
and coupling objects with their specific parameters. For simplicity, only classes and class
members important to the understanding of the PyCascades core are shown.
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Fig. 2. The bifurcation diagrams of the pre-implemented tipping elements are shown, which
possess a Cusp- or a Hopf-bifurcation, respectively (panels a) and b)). Further, two examples
of tipping events are shown, once for the case where no tipping cascade emerges (panels c)
and d)), and once where a tipping cascade emerges (panels e) and f) ). a) Bifurcation diagram
of a fold-bifurcation (see Eq. 3). b) Bifurcation diagram of a (supercritical) Hopf-bifurcation
(see Eq. 4). c) Two cusp differential equations with the parameters a1 “ a2 “ 4, b1 “ b2 “ 1,
x0, 1 “ x0, 2 “ 0.5 and c1 “ 0.2, c2 “ 0. Thus, the first tipping element is slightly pushed
over its upper critical value and a state transition occurs. d) One cusp, initialised as in
panel c), and one tipping element that possibly could undergo a Hopf-bifurcation (a “ 1,
µ “ ´1). In the panels c) and d), there is no interaction between the tipping elements, i.e.,
Aij “ 0 @i, j. e) and f) Same as in panel c) and d), but with A21 “ 0.5 such that the second
tipping element (Cusp-2, Hopf) is coupled to the state of the first element (Cusp-1, Cusp).
Therefore, in the lower panels a tipping cascade of two fold-bifurcations or, respectively, a
tipping cascade of one fold- and one Hopf-bifurcation can be observed.
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a)                                                      b)                                                c)

d)                                                         e)                                                            f)

Fig. 3. The three paradigmatic and pre-implemented network types are shown together
with an example of a tipping cascade in this network. Exemplary network structure with
15 nodes and an average degree of 3 for a) an Erdős-Rényi network, b) a Watts-Strogatz
network (rewiring probability: 0.15) and c) a Barabási-Albert network. Exemplary tipping
cascades for a network of 15 nodes, an average degree of 3, where each node is represented
by a Cusp-tipping element (see Eq. 3) with a “ 4, b “ ´1, x0 “ 0.5 for all nodes. The
couplings between the nodes are alternately set to 0.2 and ´0.4 for interaction 1, 2, 3, etc..
Then, at t “ 0 one randomly chosen node i is set to the upper state by choosing ci “ 0.2
such that tipping cascades can emerge. The number of tipped elements are shown for d)
an Erdős-Rényi network, e) a Watts-Strogatz network (rewiring probability: 0.15) and f) a
Barabási-Albert network.

a)                                                                     b)                                                    c)

Fig. 4. Noise-induced tipping events with respect to different types of noise (Gauss, Lévy,
Cauchy) that are available in PyCascades. Simulation of one Cusp-tipping (a “ 4, b “ 1,
c “ x0 “ 0) element with stochastic noise (see Eq. 6) of the following type: a) Gaussian
noise (σ “ 0.25, see Eq. 7), b) Lévy noise (σ “ 1.0, see Eq. 7) and c) Cauchy noise (σ “ 1.0,
see Eq. 7).
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Fig. 5. Tipping cascades in a conceptual model of the Amazon rainforest connected via an
atmospheric moisture recycling network. a) Sketch of the network of interacting rainforest
patches in the Amazon rainforest. Precipitation rains down over some parts of the rainforest
and parts of it are re-evapotranspirated and transported further by the wind (atmospheric
moisture transport). b)–d) Exemplary tipping experiment on a 0.5ˆ0.5˝ grid, where each
grid cell represents one rainforest patch. The colourbar represents the likelihood of tipping
averaged over the years 2003–2014. We show a comparison between b) coupling switched
on (see Eq. 8), c) coupling switched off (see Eq. 8 with gipxq ” 0 @i) and d) the difference
between the panels b) and c). For each year in the study period (2003-2014), we performed
one such tipping experiment, and the results shown are an average over this period.
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Fig. 6. Construction of the simulation ensemble to cover a large part of the phase space. a)
Uncertainties in the critical temperatures [73] and b) interaction strengths [19] are put into
a latin hypercube sampling algorithm [79] to construct suitable initial conditions (c)) that
cover a larger part of the state space than normal random sampling would.

2 Original manuscripts

32



22 Will be inserted by the editor

+
–

GIS 
melt

AR 
dieback

WAIS 
melt

++

+

+–

+–

a)                                                                         b)

Fig. 7. Tipping cascades in a conceptual model of climate tipping elements. a) Inter-
action structure of four tipping elements (Greenland Ice Sheet: GIS, West Antarctic Ice
Sheet: WAIS, Atlantic Meridional Overturning Circulation: AMOC, AR: Amazon rainfor-
est). Destabilising interactions are depicted in red, stabilising interactions are depicted in
light blue and uncertain interactions are shown in black. b) Likelihood for the respective
tipping element to transgress its stable branch computed by running Eq. 9 into equilibrium.
The error bar shows the standard deviation arising from the nine different possibilities of
constructing the network. There are two uncertain links since their direction of interaction
is unclear, meaning they could be stabilising, destabilising or zero, i.e., r´, 0,`s. Permuting
these three options, gives nine different network structures and for each of them, we simulate
1000 ensemble members. We chose a scenario, where ∆GMT “ 2 ˝C above pre-industrial
levels.
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Fig. 8. Tipping cascades in a conceptual model of interacting countries in the International
Trade Network . a) Bifurcation diagram for the proposed economic tipping element defined
by equation 10. b) Tipping cascade between three different countries starting at the red
start node at t “ 0. The colour of the nodes represents the time at which a certain sector in
that country tips and the colour of the arrows indicate the targeted country.
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Fig. 9. Tipping cascades with the economic tipping element defined by equation 10 on the
normalised trade network. The cascade depicted in Fig. 8 is plotted in red. a) Number of
tipped nodes over the course of the simulation time. Cascades either lead to tipping of almost
all nodes (global tipping) or the dynamics of the tipping cascade stops growing after very
few nodes are tipped. b) Average node state xxy over the course of the simulation time. At
the onset of the tipping cascade, the average stage shows a sharp decline. Since a decline in
the average state does not automatically mean that nodes were tipped, some average state
time series stabilise while others show a global cascade.
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Short summary
In this work, it is examined in detail under which conditions tipping cascades can emerge for various
different network topologies such as Erdős-Rényi, Barabási-Albert or Watts-Strogatz networks. With
the use of PyCascades, the dependence of tipping cascades on the network size, the average network
degree, clustering and reciprocity is shown. In addition, a spatially explicit network is constructed
using atmospheric moisture recycling data within the Amazon rainforest. It is found that the onset of
tipping cascades is shifted towards lower coupling strengths between the individual tipping elements
compared to an Erdős-Rényi network. In order to understand the network structures that lead to this
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Dynamics of tipping cascades on complex networks

Jonathan Krönke,1,2,* Nico Wunderling ,1,2,3,† Ricarda Winkelmann ,1,2 Arie Staal ,4 Benedikt Stumpf ,1,5

Obbe A. Tuinenburg ,4,6 and Jonathan F. Donges 1,4,‡
1Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association,

14473 Potsdam, Germany
2Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

3Department of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
4Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden

5Department of Physics, Free University Berlin, 14195 Berlin, Germany
6Copernicus Institute, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands

(Received 9 May 2019; revised manuscript received 15 January 2020; accepted 18 March 2020;
published 29 April 2020)

Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy,
and engineering. Tipping points are critical thresholds in system parameters or state variables at which a
tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be
modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes,
interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in
one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network
topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model
for tipping points are conducted on Erdős-Rényi, Watts-Strogatz, and Barabási-Albert networks. Additionally,
we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest
and compare the results to those obtained for the model networks. We furthermore use a directed configuration
model and a stochastic block model which preserve certain topological properties of the Amazon network to
understand which of these properties are responsible for its increased vulnerability. We find that clustering and
spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These
results could be useful to evaluate which systems are vulnerable or robust due to their network topology and
might help us to design or manage systems accordingly.

DOI: 10.1103/PhysRevE.101.042311

I. INTRODUCTION

In the last decades the study of tipping elements has
become a major topic of interest in climate science. Tipping
elements are subsystems of the Earth system that may pass
a critical threshold (tipping point) at which a tiny perturba-
tion can qualitatively alter the state or development of the
subsystem [1]. However, tipping points also occur in various
complex systems such as systemic market crashes in financial
markets [2], technological innovations [3], or shallow lakes
[4] and other ecosystems [5]. Understanding their dynamics
is thus crucial not only for climate science but also for other
disciplines that use complex systems approaches.

Many tipping elements are not independent of each other
[6]. In such cases, if one tipping element passes its tipping
point, the probability of tipping of a second tipping ele-
ment is often increased [7], yielding the potential of tipping
cascades [8] via domino effects with significant potential

*kroenke@pik-potsdam.de
†Author to whom correspondence should be addressed:

wunderling@pik-potsdam.de
‡Author to whom correspondence should be addressed:

donges@pik-potsdam.de

impacts on human societies in the case of climate tipping
elements [9]. In this study, we investigate the dynamics of
complex networks of interacting tipping elements. A tipping
element is described by a differential equation based on the
normal form of the cusp catastrophe, which exhibits fold
bifurcations and hysteresis properties. The interactions are
accounted for by linear coupling terms. Many environmental
tipping points can be described as fold bifurcations [10] and
prototypical conceptual models that exhibit fold bifurcations
have been developed for the thermohaline circulation [11],
the Greenland ice sheet [12], and tropical rainforests [13]
among others. Coupled cusp catastrophes have been studied in
detail for two or three subsystems [6,14,15] or in combination
with Hopf bifurcations [16]. On the other hand, threshold
models for global cascades on large random networks have
been investigated [17].

Here, we study cascades in complex systems with continu-
ous state space that are moderate in size yet large enough for
statistical properties of the complex interaction networks to
become relevant. Cascades in complex systems with continu-
ous state space have been investigated, for example, for power
grids [18,19]. We use a paradigmatic coupled hysteresis model
based on the normal form of the cusp catastrophe. Employ-
ing different network topologies such as Erdős-Rényi (ER),
Watts-Strogatz (WS), and Barabási-Albert (BA) networks as

2470-0045/2020/101(4)/042311(9) 042311-1 ©2020 American Physical Society
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well as networks generated from moisture-flow data on the
Amazon rainforest, we investigate the effect of topological
properties of the network. We find that networks with a
large average clustering coefficient are more vulnerable to
cascading tipping and discuss how this is connected to the
occurrence of small-scale motifs such as direct feedback and
feed-forward loops. We consistently observe that networks
with spatial organization like the small-world and Amazon
networks are more vulnerable than strongly disordered net-
works.

II. THE MODEL

A. System

In our conceptual model, a tipping element is represented
by a (real) time-dependent quantity x(t ) that evolves accord-
ing to the autonomous ordinary differential equation

dx

dt
= −a(x − x0)3 + b(x − x0) + r, (1)

where r is the control parameter and a, b > 0. The parameters
a and b control the strength of these effects, respectively,
and x0 controls the position of the system on the x axis.
The equation thus has one stable equilibrium for |r| > rcrit

and a bistable region for −rcrit < r < rcrit (see the bifurcation
diagram depicted in the box in Fig. 1).

We describe the characteristic behavior of Eq. (1): If the
system state is initially in the lower stable equilibrium (x ≈ 0)
and r is slowly increased, eventually at r = rcrit a tipping
point is reached and a critical transition to the upper stable
equilibrium (x ≈ 1) occurs. If r is afterwards decreased, the
system state stays on the upper branch and, only at r = −rcrit ,
tips down to the lower branch again. Equation (1) is a minimal
model for ecosystems with alternative stable states and hys-

FIG. 1. Illustration of a tipping network. Each node represents
a tipping element with a corresponding state variable xi. A directed
link corresponds to a positive linear coupling with strength d . The
effective control parameter r̃i of a node depends on the state of the
nodes it is coupled to. The equilibria with respect to the effective
control parameter are qualitatively illustrated in the box.

teresis [5] but can also be used to conceptualize other systems
with similar properties such as the thermohaline circulation
and ice sheets [12,20].

Next, we consider a directed network of N interacting
tipping elements as a linearly coupled system of ordinary
differential equations,

dxi

dt
= −a(xi − x0)3 + b(xi − x0) + ri + d

N∑
j=1, j �=i

ai jx j

︸ ︷︷ ︸
r̃i (x1,x2,...,xN )

,

(2)

where d > 0 is the coupling strength and

ai j =
{

1 if there is a directed link from element j to element i,
0 otherwise. . (3)

For simplicity, we use the same parameters a and b for all
tipping elements in the network. An illustration of such a
system with several tipping elements is depicted in Fig. 1.
Similar systems have been studied with diffusive coupling
focusing on hysteresis effects [21].

We briefly review the behavior of two tipping elements
with unidirectional coupling (X1 → X2) [6]. The elements
of the adjacency matrix are a21 = 1 and a12 = 0, which
means that element 1 has an effect on element 2 but there
is no effect in the other direction. As r1 is slowly increased,
it approaches its tipping point at rcrit and eventually tips
from x− to x+. The effective control parameter r̃2 is thus
increased by �r̃ = d (x+ − x−). For r2 = 0, a tipping event
in the second element is induced if �r̃ > rcrit and there-
fore if the coupling strength exceeds a critical threshold of
dc = rcrit

x+−x−
.

B. Network models

To investigate the effect of the network topology on tipping
cascades we use different network models: We use three
well-known models, the Erdős-Rényi model [22], the Watts-
Strogatz model [23], and the Barabási-Albert model [24]. We
slightly extend the latter two models such that we are able to
generate and compare directed networks with a controllable
average degree 〈k〉 = 〈kin + kout〉. Furthermore, we use mod-
els to control the reciprocity and average clustering coefficient
as well as a directed configuration model and a stochastic
block model. All network models are briefly discussed in the
following paragraphs.

(i) The ER model is a simple random network model,
where a directed link between two elements i and j is added
with probability p. The resulting average degree is 〈k〉 ≈
p(N − 1).
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(ii) The WS model is usually used to generate networks
with large clustering coefficients but small average path
lengths to resemble the small-world phenomenon [25]. We
implement a directed WS model as follows: Initially, a reg-
ular network is generated where each node i is connected
in both directions to its m nearest neighbors, e.g., nodes
i + 1, i − 1, . . . , i + m

2 , i − m
2 . Therefore, m has to be an

even integer and the average degree of the resulting regular
network is equal to m. In order to generate networks with
arbitrary average degree, m is chosen such that the average
degree of the resulting regular network is larger than the
desired average degree. Then, until the average degree of
the network matches the desired average degree, links are
randomly deleted. Finally, each of the remaining links is
rewired with probability β, similar to the usual WS model
[23]. With increasing rewiring probability β the generated
network becomes more and more random.

(iii) The BA model is used to generate scale-free networks,
i.e., networks with a power-law degree distribution. We im-
plement a directed BA model as follows: We start with two
bidirectionally coupled nodes. Every additional node is in
both directions connected to an already existing node i with

probability p = kin
i +kout

i∑
m,n amn

. When the specified network size N is

reached, the average degree 〈k〉 ≈
∑

m,n amn

N is compared to the
desired average degree. If the average degree is smaller than
the desired average degree, links between randomly selected

nodes i and j are added with probability p = kin
i +kout

i +kin
j +kout

j

2
∑

m,n amn

until the average degree matches the desired average degree.
Otherwise, if the average degree is greater than the desired
average degree, links are randomly deleted as in the WS
model.

(iv) To generate networks with arbitrary reciprocity R, we
initially generate an ER network where all links are reciprocal
(R = 1). Afterwards, links are randomly chosen and rewired
until the desired reciprocity is achieved.

(v) The procedure to generate networks with arbitrary
average clustering coefficent C is similar. Initially a network
with only reciprocal triangles between three randomly chosen
nodes is generated. Afterwards links are randomly chosen and
rewired again until the desired average clustering coefficient
is achieved. That way, we are able to generate networks with
an average clustering coefficient between C = 0.05 and C =
0.35. Note that the reciprocity is also large for networks with
a large average clustering coefficient.

(vi) A directed configuration model can be used to generate
networks with arbitrary average in and out degree. Links are
randomly assigned to node pairs where the corresponding in
and out degree has not been reached before [26].

(vii) Finally, stochastic block models (SBMs) are used
to generate networks with community structures. For each
(directed) combination of communities there is a separate link
probability, which is usually high within the community and
low between two communities [27].

C. Simulation procedure

We use the system given in Eq. (2) and conduct cascade
simulations on different network topologies. The parameters
of the equation are chosen such that rcrit = 0.183 and for
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FIG. 2. Cascade simulations on ER networks of different sizes,
an average degree of 〈k〉 ≈ 5, and a coupling strength of d = 0.2.
The time evolution of the fraction of tipped elements is shown.

r = 0 the two stable equilibria are x− = 0 and x+ = 1 for
all elements. The resulting parameters are a = 4, b = 1, and
x0 = 0.5. Consider a network with N tipping elements and a
topology that is described by the adjacency matrix A = (ai j ).
Initially, ri = 0 and xi = 0 for all i = 1, . . . , N . The algorithm
of a cascade simulation is the following:

(1) Choose a random starting node m of the network.
(2) Slowly increase rm (rm → rm + �r).
(3) Let the system equilibrate, e.g., integrate the ODE

system until ẋi < ε for all i = 1, . . . , N .
(4) Check whether at least one element tipped. If not, jump

back to step 2. Otherwise, count the total number of tipped
elements.

The algorithm stops when the starting node m tips, which
is always the case. We normalize the total number of tipped
elements (minus 1 for the starting node) by the number of
nodes that can be reached on a directed path from the starting
node (the size of the out component). We call the resulting
number cascade size L. Note that due to the normalization a
small disconnected component where all elements tip is also
considered as a cascade with size L = 1 even though only
a small number of elements was tipped. The ODE system
was integrated with the function scipy.integrate.odeint
from the SCIPY python package [28]. In all simulations, �r =
0.01 and ε = 0.005 were used. Examples of tipping cascades
with size L = 1 are shown in Fig. 2 for ER networks with
different-sized N .

III. RESULTS AND DISCUSSION

A. Cascades on generic network topologies

We start with cascade simulations on networks generated
with the ER model. For any parameter combination we gen-
erate 100 different networks and simulate one cascade on
each network. We use the average cascade size from these
simulations as a measure of the vulnerability of the corre-
sponding network structure, ranging from robust (〈L〉 = 0) to
highly vulnerable (〈L〉 = 1) networks. The dependence of the
average cascade size with respect to the coupling strength is
shown in the upper panel in Fig. 3 for random networks with
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FIG. 3. Network size dependency of critical coupling strength in
ER networks with 〈k〉 ≈ 5. Upper panel: Average cascade size with
respect to the coupling strength in the transition region. Each average
is calculated from 100 cascade simulations on different randomly
generated networks with N = 100. Error bars indicate the standard
error. Lower panel: Approximate critical coupling strength (coupling
strength where 〈L〉 ≈ 0.5) with respect to the network size N . The
dashed line indicates the critical coupling strength dc ≈ rcrit = 0.183
for a simple unidirectional coupling of two elements.

a fixed average degree 〈k〉 ≈ 5. For low coupling strengths
(d � 0.1) the network is not affected by the externally induced
tipping of one element and the average cascade size remains
0. With increasing coupling strength, a transition from robust
to vulnerable networks is observed. From the analysis of the
unidirectional system, a sharp transition at d ≈ rcrit would be
expected for all networks. However, only for N → ∞ does
the transition become more and more steep and approximately
approach rcrit . For networks of finite size, the onset of the tran-
sition is shifted to lower coupling strengths with decreasing
network size. We hypothesize that the reason for this is two
effects: The first effect is the destabilization of the system by
feedback loops (X1 � X2), which can lead to a decrease in the
tipping point rcrit of certain nodes. The second effect is due to
the gradual change in the state of a tipping element X3 that is
coupled to another element (X1 → X3). When the element X1

tips, the state of the element X3 will be slightly altered even if
it does not tip. If it is coupled to another element X2, however
(X2 → X3), the effective control parameter of element X3 will
be slightly increased, by an increment of the order �r̃ ∼ d2.
Therefore an additional indirect coupling with one intermedi-
ate node, called a feed-forward loop, will decrease the critical
coupling strength dc of the target node. But how can the size
dependence of the critical coupling strength be explained?
The reason for this is the following: With increasing network
size while fixing the average degree, the relative density of
the motifs decreases, and thus, for N → ∞, the destabilizing
effect of the motifs vanishes. Therefore, the critical coupling
strength dc approaches the critical coupling strength of a
unidirectionally coupled system. If, in contrast, we fixed the
link density, the relative density of motifs would increase and
thus the critical coupling strength would probably decrease
with increasing network size.

FIG. 4. Dependence of the transition region on the reciprocity R
(left panel) and on the clustering coefficient C (right panel). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

To test this hypothesis, cascade simulations on networks
with different reciprocities and average clustering coefficients
are conducted. The reciprocity is the number of reciprocated
links (ai j = a ji = 1) divided by the total number of links
in the network. Thus, the reciprocity measures the relative
amount of feedback loops in the tipping network. The average
clustering coefficient is the number of triangles a node is part
of divided by the potential number of triangles averaged over
all nodes [29]. Therefore, the average clustering coefficient is
strongly related to the number of feed-forward loops. Simu-
lation results for different reciprocities R can be seen in the
left panel in Fig. 4. As expected, for networks with a high
reciprocity, the transition region is shifted to lower coupling
strengths. As can be seen, however, the dependence on the
reciprocity is rather weak. Simulation results for networks
with different average clustering coefficient C are shown in
the right panel in Fig. 4. It can be clearly seen that the vulner-
ability to tipping cascades is significantly increased for high
average clustering coefficients. There are eight motifs that
contribute to the average clustering coefficient in a directed
network, two (indirect) feedback loops and six feed-forward
loops [30]. We suspect that the effect of indirect feedback
loops is smaller than the effect of direct feedback loops for
d < 1. Therefore, we conclude that feed-forward loops are
mainly responsible for the increased vulnerability of networks
with large average clustering (see Fig. 4).

We also observe a transition of the average cascade size
when the coupling strength is held constant at d = 0.15 and
the average degree is varied (Fig. 5). In this case the transition
is shifted to higher average degrees when the network size
increases, because a higher average degree is necessary to
yield the same relative density of destabilizing motifs.

Cascade distributions for 〈k〉 ≈ 5 and selected coupling
strengths at the onset, in the center, and at the end of the
respective transition region are shown in Fig. 6. We find
a bimodal distribution of very small cascades (L ≈ 0) and
very large cascades (L ≈ 1). For networks with small-world
and scale-free topology generated with the WS model with
β = 0.1 and the BA model, respectively, we observe similar
transitions of the average cascade size. For the scale-free
topology, the large cascades are distributed around an average
size 〈L〉 < 1. This can be explained by the preferential attach-
ment mechanism. Through this mechanism a large number of
weakly connected elements develop which can only be tipped
when the coupling strength is very high (d � rcrit).
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FIG. 5. Network size dependency of the critical average degree
kc in ER networks with d = 0.15. Upper panel: Average cascade
size with respect to the average degree in the transition region.
Each average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100. Error bars indicate the
standard error in both panels. Lower panel: Approximate critical
average degree (average degree where 〈L〉 ≈ 0.5) with respect to the
network size N .

Now we focus on the effect of the network topology. For
all network models, the transition from robust to vulnerable
networks is shifted to lower coupling strengths when the aver-
age degree is increased (Fig. 7). The topology of the network
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FIG. 6. Distributions of cascade sizes L for different network
topologies. A random topology generated with the ER model (first
row), a small-world topology generated with the WS model and β =
0.1 (second row), and a scale-free topology generated with the BA
model (third row). Each distribution is an average of 10 distributions
with 100 cascade simulations on different networks with N = 100
and 〈k〉 ≈ 5. The (almost-invisible) error bars indicate the standard
error across the 10 distributions. Three coupling strengths for each
network topology are shown: one where almost no cascades occur;
one where in about half of the simulations cascades are triggered;
and one where in almost all simulations cascades are triggered.
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FIG. 7. Average cascade size 〈L〉 with respect to average degree
〈k〉 and coupling strength d for three network topologies. Random
networks generated with the ER model (left), small-world topology
networks generated with the WS model and β = 0.1 (center), and
scale-free networks generated with the BA model (right). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

has a significant effect on this shift of the transition region for
sparse networks (〈k〉 ≈ 5). For networks with small-world and
scale-free topology, the transition is shifted to lower coupling
strengths compared to the simple random topology generated
with the ER model. For the scale-free topology the transition
width is also significantly increased for 〈k〉 ≈ 5. For denser
networks (〈k〉 � 19), the differences between the network
topologies are less pronounced.

We further investigate in which way the rewiring in the WS
model decreases the vulnerability of the network. In Fig. 8
the shift of the transition region to higher coupling strengths
with respect to the rewiring probability β can be clearly seen.
The increase in the critical coupling strength mainly occurs
between β = 0.1 and β = 1. The lower panel in the figure
again demonstrates how this corresponds to the decay of the
average clustering coefficient C. Thus, we again conclude
that tipping networks with an increased average clustering
coefficient such as small-world networks (but also spatially
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FIG. 8. Shift of the transition (upper panel) and average clus-
tering coefficient C (lower panel) with increasing rewiring proba-
bility β for WS networks with N = 100 and 〈k〉 ≈ 5. The shift of
the transition towards higher coupling strengths for high rewiring
probabilities corresponds to the decrease in the average clustering
coefficient. The extent of the small black circles in the lower panel
exceeds the standard error, which is therefore not visible.
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structured networks [31]; see Sec. III B) are especially vulner-
able to cascades and that the average clustering coefficient is
a good indicator of the vulnerability of a network topology.

B. Cascades on spatial network topologies
from moisture-flow data

To investigate the effects of spatial organization of the
network on vulnerability with respect to tipping cascades,
we apply our model to network topologies generated from
data of atmospheric moisture flows between different forest
cells in the Amazon. On a local scale, the Amazon may
exhibit alternative stable states between rainforest and sa-
vanna, with tipping points between them depending on rainfall
levels [32–35]. Models that capture the basic mechanisms
also reveal a bifurcation structure with hysteresis and saddle-
node bifurcations with rainfall level as the control parameter,
comparable to our conceptual model [36]. On a regional
scale, the forest enhances rainfall through the “transpiration”
of groundwater to the atmosphere; local-scale tipping may
thus increase the vulnerability of remote forest patches by
allowing less local precipitation to be passed on to other
patches because the transpiration capacity of savanna is lower
than that of forest. Therefore, the Amazon can be thought of as
a spatial network of local-scale tipping elements. Note that the
Amazon as a whole is often viewed as a tipping element [37].
In our framework, vulnerable regimes where tipping of single
cells induces large cascades correspond to such threshold be-
havior of the large-scale Amazon system. Complex-network
approaches such as a cascade model inspired by the Watts
model [17] have been applied to observation-based data on
Amazon forest patches [38]. Here we analyze the effect of
the network structure of transpired-moisture flows for the
Amazon that were calculated by Staal et al. [39], aggregated
to a single year (2014) on 1◦ spatial resolution.

As our analysis is focused on the effect of the network
topology, we neglect the actual moisture-flow values and use
a homogeneous coupling strength analogous to the above
simulations. This makes the simulation results less realistic
and applicable, however, we do not aim to draw conclusions
about the Amazon system. Rather, we want to compare the
network topology to common random networks and identify
topological effects on the vulnerability of tipping networks
with respect to tipping cascades.

To generate and compare networks with arbitrary average
degree, similar to the random network topologies above, we
calculate a moisture-flow threshold from a specified average
degree. Only when the moisture flow between two cells ex-
ceeds the threshold are these cells connected with a link in the
corresponding direction. If a large average degree is specified,
the threshold becomes small and the resulting network will
be dense. That way we are able to generate networks with an
arbitrary average degree from the data. An example network
with 〈k〉 = 5 is depicted in Fig. 9.

The average cascade size is calculated by conducting one
cascade simulation with each node of the generated network
as the starting node and averaging over the cascade size. We
generate networks from data with a 1 × 1◦ grid (N = 567)
and with a 2 × 2◦ grid (N = 160) and 〈k〉 = 5. The average
cascade size of ER networks with the same size is shown for
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FIG. 9. Spatially organized network generated from atmospheric
moisture-flow data (2 × 2◦-grid resolution) of the Amazon rainfor-
est. The threshold is chosen such that 〈k〉 = 5. Total rainfall values
for each node in 2014 are shown in the background.

comparison (upper panel in Fig. 10). For the Amazon network,
the onset of the transition from robust to vulnerable networks
is shifted to the lower coupling strength of d ≈ 0.08 compared
to the ER network. In contrast to the ER networks there is
no strong size dependency. However, a small shift to lower
coupling strengths is observed.

Additionally to the Amazon moisture-flow network ob-
tained by thresholding, we generate networks with a directed
configuration model [26] and a stochastic block model [27] to
isolate the effects of the degree sequence and the community
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FIG. 10. Average cascade size 〈L〉 with respect to coupling
strength for different networks with an average degree of 〈k〉 = 5.
Upper panel: Results for the networks generated from the moisture-
flow data with 1 × 1◦-grid resolution (567 nodes) and 2 × 2◦-grid
resolution (160 nodes). For comparison, simulation results for ER
networks with the same network sizes are shown. Lower panel:
Simulation results for a directed configuration model and a stochastic
block model are compared with the results of the Amazon network
and the ER networks with N = 160 for all networks. Error bars indi-
cate the standard error. Note that the standard errors for the original
moisture-flow networks are smaller than for the other network types.
The reason is that all moisture-flow simulation results are based on
the same network, whereas the other results are based on different
randomly generated networks.
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FIG. 11. Distribution of cascade sizes analogous to the above
distributions for different networks generated from moisture-flow
simulations of the Amazon rainforest (N = 160). Note that there is
no standard error indicated (error bars) for the original moisture-flow
networks, as there is only one distribution due to the deterministic
network generation procedure.

structure of the network, respectively. For the directed
configuration model, we specify the joint degree sequence
of the Amazon network. For the SBM, we apply a Girvan-
Newman algorithm to the original Amazon network [40].
The algorithm progressively removes edges with the highest
edge betweenness, i.e., those rare links that connect separate
communities. When the network breaks into two components,
we calculate the elements of the probability matrix (fraction of
links over possible links for the corresponding combination of
components). With the probability matrix and the component
sizes, we then generate a random network with the SBM.

In the lower panel in Fig. 10, the transition of the con-
figuration model and the SBM is compared to the original
Amazon network and the ER network with N = 160. Al-
though the vulnerability of the network is increased in both
cases compared to the ER model, neither of the topological
properties alone, degree sequence or community structure,
sufficiently explains the early onset of the transition in the
original Amazon network.

Cascade distributions for the coarse resolution (2 × 2◦
grid) are depicted in Fig. 11. They show that already for
values of d ≈ 0.1, cascades with two typical cascade sizes
occur for the original Amazon network. With increasing
coupling strength the frequency of these cascades increases
and the cascade size is shifted to higher values. Comparing
this observation to the network in Fig. 9 suggests that these
cascades correspond to the two subclusters in the north and
southwest regions of the Amazon rainforest. These subregions
form clusters that are much more strongly connected than
the rest of the network and are thus much more vulnerable
to tipping cascades. Interestingly, separate tipping of sub-
clusters is not observed for the networks generated with the
SBM, implying that some relevant topological property of
the spatially structured Amazon network, for example, the
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FIG. 12. Average cascade size 〈L〉 with respect to average de-
gree and coupling strength for different networks generated with
moisture-flow simulations of the Amazon rainforest (N = 160).

anisotropy of the link direction due to atmospheric wind
patterns, might still be missing. The robust and vulnerable
regimes of the networks are shown in Fig. 12. Consistent with
the above results, we observe a shift of the transition to lower
coupling strengths with increasing average degree 〈k〉 where
the transition is smooth for the Amazon network and steep for
the configuration model and the SBM. Similarly to the random
network topologies, the differences are only relevant for the
sparse regime below 〈k〉 � 19.

IV. CONCLUSION

The aim of our study was to assess the effect of the network
topology on the vulnerability of tipping networks to cascades.
This is not only important for understanding the effect that
the tipping of potential tipping elements in the climate system
might have on the complete Earth system, but also of high
relevance for other fields that use complex system approaches.
We found that networks with large average clustering coeffi-
cients and spatially structured networks are more vulnerable
to tipping cascades than more disordered network topologies.
This implies that the risk of a cascade’s being triggered could
be surprisingly high for real-world networks where large
clustering is common. Furthermore, we found that the effect
of the network topology is relevant only for relatively sparsely
connected networks. The analysis of the Amazon network
suggests that the structure of the forest-climate system in the
Amazon might yield subregions that are especially vulnerable
to tipping cascades. A detailed study using actual moisture
flows could investigate the question whether the Amazon rain-
forest consists of separate subregional-scale tipping elements.
Generally, heterogeneity in the parameters, for example, the
temporal and spatial scales or the coupling strengths of the
ODE system stated in Eq. (2), could have a further influence
on the results [41].
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ABSTRACT

In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of
stylized tipping elements. We compare the properties of cascades in Erdős–Rényi networks and an exemplary moisture recycling network of
the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the
zero loop, and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical
coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling
strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled
feed forward loops coincide with a strong 90% decrease in the critical coupling strength. For the highly clustered moisture recycling network
in the Amazon, we observe regions of a very high motif occurrence for each of the four investigated motifs, suggesting that these regions
are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erdős–Rényi network. This
emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142827

Tipping elements are nonlinear systems, where a small pertur-
bation can be sufficient to induce a qualitative change in the
whole system as soon as a critical threshold (tipping point) is
crossed. Coupled tipping elements exist, for instance, in con-
nected lake systems, in the Earth’s climate system, or in social
systems. Here, we investigate networks of interacting tipping ele-
ments, where each node consists of a stylized tipping element and
explore important interaction structures on the microscale of the
network, the so-called motifs. Such motifs in complex networks
have been found in multiple systems such as cell metabolism, food
webs, or neural networks and are known to be significantly over-
expressed in real-world compared to random networks. However,
motifs have not yet been studied extensively in complex networks,

where nodes have their own dynamics. In our study, we find that
tipping cascades occur more often at locations with a high motif
frequency revealing locations (nodes) of decreased robustness.

I. INTRODUCTION
Methodologies from complex networks science have gained

increasing attention since they have successfully been applied to
a broad range of different fields ranging from physical sciences,
biology, or ecology to information transfer, energy systems, and
sociology.1 In many cases, network nodes are reasonably repre-
sented by continuous, nonlinear dynamical systems as, for instance,
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in oscillators in power grids, population dynamics in food webs, or
synchronization of nonlinear oscillators.2–4 More recently, one focus
of research shifted to the investigation of interacting tipping ele-
ments. Tipping elements are systems in which a small perturbation
can lead to a qualitative change in the system in case a critical value
(tipping point) is surpassed. Tipping elements have been identified
in the Earth’s climate system5 and also in various other contexts
such as finance, politics, ecology, or climate.6–9 In the Earth’s sys-
tem, tipping elements can interact across scales in time and space,9–11

which could, in principle, lead to feedbacks, domino effects,12 and
ultimately to a hothouse state.13

Lately, these two approaches, complex networks and tipping
elements, have been linked together in a conceptual approach to
study cascading failures on networks.14,15 Here, each node of such
a network is a tipping element and has its own dynamics com-
pared to other studies where the cascading failure has been studied
with discrete states of network nodes and a fixed threshold beyond
which the failure of the respective node is induced.16,17 The links
of the network then consist of any arbitrary positive or negative
coupling, potentially with different weights, between the network
nodes. This procedure yields a set of connected differential equa-
tions that can be described well by a network approach. If the
network nodes are indeed tipping elements, the occurrence of tip-
ping cascades, the failure of at least two nodes together, can be
investigated. The dependence of cascades based on different inter-
action structures resembling the structure of paradigmatic network
types such as Erdős–Rényi, small-world, or scale-free networks has
been assessed.14 However, as we find here, in a certain regime of
coupling strengths between the nodes, the dynamics of the whole
network are dominated by local structures within the network.
These sub-structures are the so-called motifs.

Contrasting other recent publications reflecting the influence
of the general network topology of cascading failures in com-
plex networks18–21 and how local interaction patterns determine
the dynamics of their larger parent networks,22–24 this work aims
to reveal how these local, small-scale structures condition tipping
cascades within the whole system.

The notion of motifs has been introduced by Milo et al.25 as
the basic building blocks of complex networks. It has been shown
that motifs can be identified, for instance, in food webs,26 authorship
attribution27 up to transcriptional networks that control the expres-
sion of genes,28 e.g., in tumor suppressors or E. coli.29–32 The so-called
feed forward loop is an essential motif in such networks since it is sig-
nificantly overexpressed in these real-world networks compared to
typical random graphs.25 Furthermore, the feed forward loop motif
has been used to identify functionally important nodes in various
real-world networks through the aggregation of several such motifs
into clusters. This has been investigated, among others, in transcrip-
tion networks of E. coli, online Wikipedia networks, or air-traffic33

and hints at a special role of this motif as it efficiently passes system
dependent information forward.

Here, we examine how selected microstructures within an
Erdős–Rényi network of tipping elements significantly alter the
occurrence of tipping cascades and with that the stability of
the whole network (Fig. 1). We investigate these features on
Erdős–Rényi networks since their properties are controllable and
reproducible. Furthermore, we look at the scaling behavior of the

motif occurrence, and we are able to predict critical couplings in
dense Erdős–Rényi networks, which can be traced back to cou-
pled feed forward loops. Additionally, we compare our results
for this to a real-world example, the moisture recycling net-
work structure of the Amazon rainforest, and point out important
differences.

II. METHODS

A. System of differential equations
In this study, the dynamics of each of the nodes in the network

follows the autonomous ordinary differential equation,

dx

dt
= −a(x − x0)

3 + b(x − x0) + c, (1)

when interactions are ignored. Here, c is the critical individual forc-
ing parameter, a, b > 0, and x0 represents a shift in the x axis.12,14

This equation is unistable below a certain critical parameter ccrit, low

and above ccrit, high. In between, the system is bistable, and state tran-
sitions occur via a saddle-node bifurcation at ccrit, low and ccrit, high.
Equation (1) is a minimal example for continuous dynamical sys-
tems that possess two distinct stable states. Hence, this model
can act as a paradigmatic model and has been applied to ecosys-
tems such as shallow lakes but also ice sheets or the thermohaline
circulation.6,34–36 The bifurcation diagram of one of these tipping
elements is shown in Fig. 1(a).

We connect these tipping elements via a linear coupling term
such that Eq. (1) becomes

dxi

dt
= −a(xi − x0)

3 + b(xi − x0) + ci + r

N
∑

j=1,j6=i

Aijxj, (2)

where r > 0 is the global coupling strength between the elements and
Aij is one if there exists a link from node j to i and it is zero otherwise.
Thus, the networks considered here are directed; however, couplings
of the node to itself are not considered. In our network, we use a = 4,
b = 1, and x0 = 0.5 for all nodes (i.e., tipping elements) such that the
stable states xi are at 0 or 1, respectively, if ci = 0. If not stated oth-
erwise, we simulate all our results on Erdős–Rényi networks37 of size
100. This means that our work here is based on the network frame-
work developed by Krönke et al.14 However, Krönke et al.14 touch on
important global features of the model, whereas this work empha-
sizes how small-scale structures change the behavior of the entire
network. Furthermore, the system is assumed to be in equilibrium as
soon as the change in the state of no tipping element exceeds 0.005
per time step.

B. Definition of a tipping cascade
In the investigated networks, we define a tipping cascade as

the joint transgression of at least two tipping elements in the net-
work. To check if a tipping cascade can occur at a certain coupling
strength r, a randomly chosen source node i is tipped by shifting
its individual forcing parameter ci above its threshold of ccrit, high

=

√

4
27

· b3

a
≈ 0.193. The individual forcing parameter of all other

nodes cj is kept at zero such that a cascade can only be caused
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FIG. 1. (a) Bifurcation diagram of a single node (tipping element) in the network. If not stated otherwise, the network size is 100 nodes. Each of these nodes has two stable
states, where the stable state is dependent upon the critical parameter r . If the critical parameter is increased over a threshold, a saddle-node bifurcation occurs. (b)–(e)
Motifs that reduce the minimal necessary critical coupling strength within the network and lead to tipping cascades. In case the source node (light blue) is tipped, the target
node (light red) will tip earlier due to the specific local network structure and the additional coupling from the intermediary node(s) and thus triggers a cascade at lower
coupling constants than it would be the case if we would only consider a pair of source nodes and target nodes. (b) Feed forward loop: This motif is a strong motif that reduces
the critical coupling strength significantly to 0.162 (from 0.183; see Fig. 2). (c)–(e) Weaker motifs (secondary feed forward loop, zero loop, and neighboring loop) that reduce
the minimal necessary coupling strength only slightly to around 0.180, where each of the three weaker motifs individually reduces the critical coupling strength to 0.180. The
feed forward and the secondary feed forward loop function over aggregation effects of coupling, while the zero loop and the neighboring loop function over reinforcement
feedbacks shown as light red and green colored boxes.

by the coupling of the tipped node to other nodes in the network.
With this setting, the cascade simulations in this work are con-
ducted as follows: First, the critical value ci of source node i is slowly
increased (in steps of 0.01) until 0.193 is surpassed such that this
node tips. Then, the simulation is integrated forward in time using
python’s scipy.integrate.odeint until an equilibrium is reached. The
equilibrium condition is that 1xi < 0.005 in two consecutive time
steps for each node i = 1, . . . , N in the network. Thus, the cascade
simulations are conducted as in Krönke et al.14

Note that if node i tips at ccrit, high, i ≈ 0.193, its stable state
in the upper branch is approximately at xcrit, high, i ≈ 1.05, slightly
higher than 1.0 [see Fig. 1(a)]. If then node i is coupled to another
node k (and no other connections are considered for the moment),
the coupling term of Eq. (2) pointing to node k would be Cplk
= r

∑N
j=1,j6=k Akjxj = r · xcrit, high, i ≈ r · 1.05. Cplk surpasses the crit-

ical value of 0.193 such that node k would tip as soon as the
coupling strength r is larger than r = rcrit ≈ 0.183 [see Fig. 1(a) and
Eq. (2)].

C. Network motifs
Some of the most important features in networks are small-

scale motifs,25,33 where a tipped node (source node) has a primary
direct impact on a target node but also a secondary, indirect impact
over intermediary nodes. The number of nodes in between a source
and a target node over intermediary nodes is called a secondary
impact path length. Thus, a connection of a source node over one
intermediary node to a target node would have a secondary impact
path length of two. In Figs. 1(b)–1(e), we show all motifs that have a
secondary impact path length of two (feed forward loop) and three
(secondary feed forward loop, zero loop, and neighboring loop). In
the case of the zero loop, the intermediary node is also the source
node. The critical coupling strength of the feed forward loop to
tip the target node is reduced from 0.183 to 0.162; for the weaker
motifs, it is reduced to 0.180 for each of the motifs individually, as
we found by simulations. The two types of feed forward loops reduce
the critical coupling strength over aggregation effects toward the tar-
get node, while the zero loop and the neighboring loop do this via
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reinforcement loops. The underlying dynamical mechanism is that
feed forward loops decrease the critical coupling strength more than
weaker motifs. They also contribute more to the average cluster-
ing coefficient, which is linked to a decrease in the critical coupling
strength.14 Hence, on a macro-scale, if there are more feed forward
loops, the critical coupling strength decreases, while the clustering
increases. This is more of a correlation, not a causation.

D. Real-world application: The Amazon rainforest
network

The Amazon moisture recycling network is a network of atmo-
spheric water flows within the Amazon rainforest. The Amazon
can be seen as a network of tipping elements14,38 where forests may
locally tip to a state of low tree cover, depending on rainfall levels.39 If
an area contains a forest, evaporation is higher than without a forest,
as trees can access deep groundwater that they release to the atmo-
sphere in a process called transpiration. Because this atmospheric
water rains down over other parts of the forest, forest transpiration is
a mechanism by which tipping elements are connected. This cycling
of forest transpiration to rainfall was simulated by Staal et al.40 and
analyzed as a network.14,38 Our nodes are the forests within areas of
a size of 2◦ × 2◦. We use the simulated transpiration flows between
these nodes for the year 2014. For further details on the methods
behind the simulations, we refer to Staal et al.40

III. RESULTS

A. Motifs in sparse networks
We find that particularly in Erdős–Rényi networks, motifs can

significantly reduce the critical coupling strength that is necessary
to start a cascade. In Fig. 2, the occurrence of cascades σ is shown
vs the coupling strength r, where vertical lines indicate the coupling
strength where a tipping cascade is expected for the respective motif
or motif group. The actual fingerprint of the respective motif can
be observed in step-like features in cascade occurrences σ toward
higher coupling strengths. If the network has an average degree
of one, two, or three, these reductions can be seen clearly for the
feed forward loop as well as for the weak motifs [the secondary
feed forward loop, the zero loop, and the neighboring loop; see
Figs. 2(a)–2(c)]. Toward higher average degrees, two things can
be found: first, cascade occurrence increases, and second, the cou-
pling strength r at which cascade occurrences are different from zero
decreases. For instance, at an average degree of eight, cascades can
already be found for a coupling strength around 0.12, whereas for
an average degree of two, this coupling strength is around 0.16 [see
Figs. 2(b) and 2(h)]. This might be due to the fact that combina-
tions of different or the same motifs point to the same target node
(see, for instance, Fig. S3 in the supplementary material). Since the
reduction of the critical coupling strength for the feed forward loop
is larger than for the weaker motifs, it remains visible up to higher
average degrees (〈k〉 = 7; see Fig. 2). With increasing average degree,
the networks show an increasing likelihood of cascade occurrences
and size of the cascade (Fig. S1 in the supplementary material).
The frequency of cascades does not reach 100% for average degree
one (around 60%), two (about 90%), and three (about 99%) even if
the coupling is above 0.183, the coupling value at which a pair of

two tipping elements tip (single coupling in Fig. 2). The reason is
that for low average degrees, the Erdős–Rény network is not in the
connected regime, meaning not all nodes are part of the giant com-
ponent. Consequently, for low average degrees, some nodes cannot
be involved in the tipping cascade as they do not hold any couplings,
i.e., their in-degree is zero.

How often are motifs expected in random networks? The pro-
portion of networks with the respective motif depending on the
average degree is sharply ascending [Fig. 3(a)]. Here, we compare
the simulation (points and error bars) to the theory (dashed lines)
and obtain a good match. In the simulation, the occurrence is the
probability to find the respective motif at an arbitrarily chosen node.

The theoretically derived values can be obtained with the fol-
lowing considerations: for an Erdős–Rényi network with an average
degree

〈

k
〉

, each node is expected to have
〈

k
〉

neighbors that it is
linked to. Thus, the number of possible pairs between any two neigh-

bor nodes is given by
(〈k〉

2

)

=
〈k〉·(〈k〉−1)

2
. In a directed network, this

number needs to be multiplied by 2 such that the number of possi-
ble links is given by Npossible links =

〈

k
〉 (〈

k
〉

− 1
)

. The probability that
at least one event Ai occurs out of N independent events is given by

P
( N
⋃

i=1

Ai

)

= 1 −
(

1 − p
)N

(3)

for a fixed probability p that one independent event occurs. In an

Erdős–Rényi network, p =
〈k〉
N−1

, where N is the size of the network.
This leads to

Pfeed forward loop = 1 −
(

1 − p
)Npossible links

= 1 −

(

1 −

〈

k
〉

N − 1

)〈k〉(〈k〉−1)

(4)

to have at least one feed forward loop at any node of the network.
Similarly, this approach can be used for the neighboring loop. There
are, on average,

〈

k
〉 (〈

k
〉

− 1
)

possibilities that neighbor to neighbor
nodes form a feedback such that it results in a neighboring loop.
Accordingly, we have

Pneighboring loop = Pfeed forward loop = 1 −

(

1 −

〈

k
〉

N − 1

)〈k〉(〈k〉−1)

.

(5)

For the zero loop
〈

k
〉

possible links that need to be considered for
reconnecting any neighbor node back to the source node such that
the probability of at least one occurrence is given by

Pzero loop = 1 −

(

1 −

〈

k
〉

N − 1

)〈k〉

. (6)

Finally, we compute the probability for the secondary feed for-
ward loop. We know that the number of neighbors-of-neighbors is
〈

k
〉 (〈

k
〉

− 1
)

excluding the source node as a neighbor. Each of these
neighbors-of-neighbors has

(〈

k
〉

− 1
)

possibilities to link to a specific
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FIG. 2. The effect of the coupling strength on
the proportion of networks that show any cas-
cading effect. The critical coupling strength to
start a cascade for the feed forward loop is
0.162, for the three weaker motifs is 0.180, and
for the single coupling is 0.183. Since each of
the weaker motifs reduces the critical coupling
strength to 0.180, it is not possible to separate
these three motifs from its tipping cascade pat-
tern. The error bars show the standard deviation
of 10 simulations and 100 simulated networks.
In total, 1000 runs with Erds–Rényi networks
of size 100 were computed. (a) Has average
degree 1, (b) has average degree 2, (c) has aver-
age degree 3, (d) has average degree 4, (e)
has average degree 5, (f) has average degree 6,
(g) has average degree 7, and (h) has average
degree 8.

target node such that we get

Psecondary feed forward loop = 1 −

(

1 −

〈

k
〉

N − 1

)〈k〉(〈k〉−1)
2

. (7)

This is the probability of obtaining at least one secondary feed
forward loop at any given node in the network.

The occurrences of the feed forward loop, the neighboring
loop, and the secondary feed forward loop increase sharper than
the occurrence of the zero loop with an increasing average degree
such that at an average degree of 9, the first three motifs occur in
practically every Erdős–Rényi network of size 100 [Fig. 3(a)].

The simulated occurrences of the motifs match reasonably
well with the theory. However, for the feed forward loop and the
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FIG. 3. (a) Motif occurrence in a random network of size 100 together with their theoretically expected values (dashed lines). The theoretical formulas are found in Eqs. (4)–(7).
(b) Scaling of the occurrence of the feed forward loop for networks of size 10, 100, and 1000. Theory from Eq. (4). The other motifs’ scaling behavior can be found in Fig. S2
of the supplementary material. Error bars in both panels show the error in the occurrence in 1000 realizations grouped as 10 × 100 samples.

secondary feed forward loop, our theory slightly overestimates the
occurrence of these motifs for an intermediate occurrence probabil-
ity. This is probably due to the fact that out-degrees smaller or equal
to 1 at a certain node are neglected in the respective equations [i.e.,
in Eqs. (4) and (7)]. However, in fact, the source node of both motifs,
the feed forward loop and the secondary feed forward loop, requires
an out-degree of at least two. Otherwise, these motifs cannot exist.

The scaling of the frequency of the feed forward loop for net-
works of size 10, 100, and 1000 shows that for larger networks,
the occurrence of motifs requires higher average degrees, for the-
ory and simulations [Fig. 3(b); for other motifs, see Fig. S2 in the
supplementary material]. The scaling behavior of the other three
motifs (the zero loop, the neighboring loop, and the secondary
feed forward loop) can be found in Fig. 2 of the supplementary
material. The observed scaling dependency of the motif occurrence
in Erdős–Rényi networks can also be interpreted as a dependency

on the clustering coefficient C of the networks since C =
〈k〉
N−1

in
Erdős–Rényi networks, since the clustering coefficient is inversely
proportional to the network size N.

B. Motifs in dense networks
The occurrence of single motifs plays a crucial role for

the occurrence of tipping cascades in sparse networks. For an
Erdős–Rényi network of size 100, this is the case for average degrees
of 6 or below (see Fig. 2). However, single motifs cannot explain the
drop in the critical coupling strength for denser networks. The crit-
ical coupling strength for the initiation of cascades lies well below
0.050 in dense networks, which is way below the critical coupling
strength of a feed forward loop (rcrit feed forward loop = 0.162; see the
transition zone in Fig. 4). Above the transition zone, more than
90% of all networks show tipping cascades and below it, less than
10% show cascades. To explore the strength of the effect of mul-
tiple motifs, construction rules for N-fold feed forward loops and
N-fold coupled feed forward loops were designed (see Fig. 3 in the
supplementary material). Subsequently, numerical simulations of

isolated multiple motifs were conducted to assess the critical cou-
pling thresholds (triangles in Fig. 4). The isolated, multiple motifs
exhibit significantly reduced critical coupling strengths, and it can,
therefore, be expected that, in turn, their occurrence in Erdős–Rényi
networks decreases the critical coupling strength for tipping cas-
cades.

The critical coupling strength of a 98-fold coupled feed forward
loop (r98-fold coupled feed forward loop = 0.016) matches the critical coupling
strength of the transition zone of a fully connected network. This
means that the critical coupling compared with the single critical
coupling strength of two nodes (rcrit = 0.183) drops by 91%. It has
to be remarked that the critical coupling values of manifold motifs
are shown against their multiplicity (the lower x axis in Fig. 4), while

FIG. 4. The critical coupling strength vs the N-foldness of motifs. The critical cou-
pling strengths are shown as colored triangles for the feed forward loop and the
coupled feed forward loop (the lower x axis). The transition zone is the zone where
between 10% and 90% of all networks show a cascading effect (orange shading).
Above the transition zone, more than 90% of all networks show cascading effects
(red shading) and below less than 10% (yellow shading). These measures are
shown with respect to the average degree of the network (the upper x axis). For
dense Erds–Rényi networks, thematch between the transition zone and the N-fold
coupled feed forward loop is high. This means that the coupled feed forward loop
seems to be a good explanation for the drop in the critical coupling strength for
densely connected random networks.
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the critical values corresponding to the transition zone are plotted in
relation to the average degree (the upper x axis in Fig. 4). Thus, this
does not provide direct information which N-fold motif occurs at
what average degree, but the comparison between the critical value

of the N-fold coupled feed forward loop and the observed critical
coupling strength in the Erdős–Rényi shows a very good match for
networks with high densities of

〈

k
〉

> 50 and is as such a very likely
explanation for the observed drop in the critical coupling strength.

FIG. 5. Comparison between tipping
cascades in Erds–Rényi networks (blue)
and in the Amazon rainforest (green)
depending on the coupling strength r for
(a)–(h) average degrees from 1 to 8. For
both network types, the size is 160 nodes.
The error for the Erds–Rényi networks
is the standard deviation of 10 bundles
of simulations, where each bundle con-
sists of 100 tipping cascade experiments
(compare to Fig. 2). For the moisture recy-
cling network, we simulate cascades for
each of the 160 nodes and compute the
average number of experiments, where a
cascade is observed.
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C. Motifs in a real-world application: The Amazon
rainforest

Motifs also foster connectivity in real-world networks, for
instance, in medicine, food webs, or the world wide web, carrying
information forward.26–29 Basically, each network consists of cer-
tain motif structures that might be essential for the dynamics of
the whole graph. One such example could be the moisture recy-
cling network of the Amazon rainforest. It has been proposed that
the Amazon rainforest is a tipping element with respect to the local
precipitation,5,41 which is suggested by conceptual models42 and data
suggesting multistability of the rainforest,39,40,43 also on the regional
scale.

Here, we construct a moisture recycling network in the Ama-
zon rainforest and use the moisture flow data from tree transpira-
tion on a 2◦ × 2◦ resolution over the Amazon basin for the year
2014. The data have been created in Staal et al.40 Each node rep-
resents a 2◦ × 2◦ patch of the rainforest, and each link represents

the atmospheric moisture transport from forest transpiration from
one cell to another. To be able to compare the moisture recycling
network with random networks, we construct the network in such a
way that the average degree is the same as for the Erdős–Rényi case.
For instance, if we aim for an average degree of 5 in the network, we
only set the 160 × 5 = 800 strongest moisture transport links. Since
this procedure favors strong connections, some weaker teleconnec-
tions between grid cells that are further away are lost. However,
the dominant links remain such that the main network topology is
preserved.

The coupling strength of these links is then set to the same
value, and the remaining connections are set to zero. Other effects
are also neglected in this network since the aim is here to focus on
the local and regional microstructures of the moisture recycling net-
work and making it comparable to random networks. With these
simplifications, we intend to investigate the structure and the pos-
sible implications it could have, instead of realistically modeling the

FIG. 6. Number of motifs that point to a certain location in the 2◦ × 2◦ grid. Two regions with different vulnerability regimes can clearly be distinguished for all four investigated
motifs. (a) Feed forward loop, (b) zero loop, (c) neighboring loop, and (d) secondary feed forward loop. The average degree is 5 and the number of nodes is 160. Note the
different colorbar scales between the sub-plots.
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tipping behavior of the Amazon rainforest. Similar approaches on
viewing the Amazon rainforest as a complex network have been used
earlier in literature studies.38,44 In these studies, it is shown that forest
loss might be self-amplified in the Amazon basin if moisture recy-
cling in the network is reduced, e.g., due to deforestation, and might
lead to adverse cascading effects.

We evaluate the critical coupling that is necessary to start a
cascade comparing the occurrence of tipping cascades between ran-
dom networks and the moisture recycling network in the Amazon
rainforest depending on the coupling strength (Fig. 5; compare with
Fig. 2). We reveal jumps in the occurrence of cascade effects in the
moisture recycling network when the coupling exceeds the critical
strength of the feed forward loop. This is already the case for very
sparse networks at low average degrees, which hints at a highly clus-
tered network with very localized motif structures (see also Fig. 6).
Due to this structure, the moisture recycling network shows sig-
nificantly more cascade effects at coupling strengths below 0.183
(single coupling) for low average degrees. For the other, weaker
motifs, a step-like structure in the tipping cascades of the Ama-
zon rainforest can hardly be noticed. Thus, these motifs only play
a minor role in comparison with those in Erdős–Rényi networks.
The highly clustered moisture recycling network facilitates the likeli-
hood for combinations of micro-motifs that significantly elevate tip-
ping cascades at lower couplings than in random networks. Hence,
our results provide additional evidence that the Amazon network
is more vulnerable than random networks following up on other
aspects investigated in an earlier study.14 For the same reason, more
cascades occur in random networks than in the moisture recycling
network for high coupling strengths (greater than 0.183) at the same
average degree, since some parts of the Amazon rainforest network
remain unconnected, because links between the closely connected
clusters of highly connected areas are rare.

In the remainder of this section, we show results for an average
degree of 5, but the results are robust against other average degrees
(see Fig. S4 in the supplementary material). Basic motifs in the Ama-
zon rainforest occur approximately ten times more often than in the
random network (Table I). This is due to the high connectivity in
the Amazon rainforest in some regions of the network, while oth-
ers are barely connected at all (Fig. 6). The clustering coefficient
also hints at this network property of the Amazon network since
it is one magnitude higher than in the Erdős–Rényi network (0.297
vs 0.031 ± 0.001). An overexpression, especially of the feed forward
loop, has also been found in other real-world networks in biology or

TABLE I. Comparison of the occurrence of a motif between the Amazon rainfor-

est network with an average degree of 5 (and network size 160) with the respective

Erds–Rényi networks, both with a network size of 160 and an average degree of 5.

The clustering coefficient of the Erds–Rényi network is 0.031± 0.001 and 0.297 for

the Amazon network.

Number of motif occurrence Amazon rainforest Erdős–Rényi

Feed forward loop 2 378 123 ± 2
Zero loop 168 25 ± 1
Neighboring loop 1 499 149 ± 6
Secondary feed forward loop 11 831 723 ± 13

technology,25 suggesting an enhanced information or material flow
through this network structure.

In Fig. 6, the occurrence of the four motifs is mapped. There are
two major regions where motifs occur more frequently than others.
The first major region is located in the north of the rainforest and
the second in the south-west. These regions with a high occurrence
of motifs, most importantly the feed forward loop, rely more on
tree transpiration than other parts of the rainforest. However, even
though the moisture transport link strength varies from connection
to connection in our network (from 10 to a bit more than 100 mm
per year), the number of motifs, especially for the feed forward loop,
indicates a reduced stability against tipping cascades. Thus, it can
be expected that these regions are more vulnerable than others in
terms of changing rainfall conditions such that potential cascades
could emerge faster.

IV. DISCUSSION AND CONCLUSION
In this study, we found that network motifs are able to dissemi-

nate critical transitions of tipping elements to further network nodes
and can thus foster the emergence of tipping cascades. We worked
out how motifs decrease the critical coupling strength that is neces-
sary to start a cascade and quantified the occurrence of simple but
decisive microstructures. We detected that feed forward loops, the
strongest three-node motif in our study, occur in sparse networks,
thus suggesting the existence of important hub nodes that tend to
be more vulnerable than others and are prone to start a cascade.
This seems to be of special importance also for real-world networks
since feed forward loops are often significantly overexpressed, which
has been found in the Amazon moisture recycling network example
here. Similar findings have been made in other systems reported in
the literature.25 It is also stated in the literature that six types of feed
forward loops exist, which are combinations of the motifs described
in this paper, i.e., one or more zero loops on top of a feed forward
loop. These specific combinations could be interesting to be investi-
gated in future research in more detail due to the importance of the
feed forward loop motif. However, we restricted our analysis to the
four fundamental motifs since it is their fingerprint that is observed
in the tipping cascade experiments (see Fig. 2). Additionally, we find
in our experiments that the critical coupling strength in densely con-
nected Erdős–Rényi networks is more than 90% lower compared
to the single coupling of two tipping elements due to coupled feed
forward loops. Thus, we are able to understand the occurrence of
tipping cascades in sparse and dense random networks.

In the Amazon rainforest application, the location of motifs
is highly clustered in distinct areas of the rainforest, thus indicat-
ing increased vulnerability in these locations. There, tipping cas-
cades can emerge there at lower couplings than they could for
Erdős–Rényi networks. In turn, this would also imply that reforesta-
tion in these regions is more effective.

However, this conclusion is limited by the simplified nature of
the Amazon network realization in this study and could be exam-
ined further by the usage of the actual moisture recycling values in
a more in-depth study. Since the model employed here is simpli-
fied and conceptual, the question remains if the role of motifs would
change under more realistic model realizations or other dynamics
on the nodes themselves.
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In turn, it might be insightful to investigate the role of motifs
on other fully dynamic systems that are connected via a network
structure, for instance, in food webs, transcriptional networks, or
Earth system components.

SUPPLEMENTARY MATERIAL
See the supplementary material for more details on the scal-

ing for the weaker motifs (the zero loop, the neighboring loop,
and the secondary feed forward loop) in parallel to the feed for-
ward loop [Fig. 3(b)]. Furthermore, details on multiple motifs and
the degree dependency of the feed forward loop in the moisture
recycling network are shown.
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nodes, medium cascades 5 ´ 50 nodes and big cascades more than 50 tipped nodes. Each point
was evaluated from 1000 Erdős-Rényi networks with N = 100 and the standard deviation of
occurrence are shown as error bars.
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Figure S. 3 Examples for five fold coupled motifs as evaluated in Fig. 4 in the main manuscript.
a) 5-fold neighboring loop, b) 5-fold feed forward loop and c) 5-fold coupled feed forward loop.
The target nodes are fully connected between each other. For better visibility, the couplings
from the source node are blue and the orange from the intermediary node and feedback loops
are shown by a double headed arrow. All arrows have the same coupling strength. Furthermore,
there are five target nodes since this motif is symmetric towards these nodes.
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Global warming due to loss of large ice masses and
Arctic summer sea ice
Nico Wunderling 1,2,3✉, Matteo Willeit1, Jonathan F. Donges 1,4 & Ricarda Winkelmann 1,2✉

Several large-scale cryosphere elements such as the Arctic summer sea ice, the mountain

glaciers, the Greenland and West Antarctic Ice Sheet have changed substantially during the

last century due to anthropogenic global warming. However, the impacts of their possible

future disintegration on global mean temperature (GMT) and climate feedbacks have not yet

been comprehensively evaluated. Here, we quantify this response using an Earth system

model of intermediate complexity. Overall, we find a median additional global warming of

0.43 °C (interquartile range: 0.39−0.46 °C) at a CO2 concentration of 400 ppm. Most of

this response (55%) is caused by albedo changes, but lapse rate together with water vapour

(30%) and cloud feedbacks (15%) also contribute significantly. While a decay of the ice

sheets would occur on centennial to millennial time scales, the Arctic might become ice-free

during summer within the 21st century. Our findings imply an additional increase of the GMT

on intermediate to long time scales.
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Extensive changes have been observed in large-scale cryo-
sphere elements during the last decades such as the Arctic
summer sea ice, mountain glaciers, the Greenland and West

Antarctic Ice Sheet1–5.
From the late 1970s to the mid-2000s, the Arctic summer sea

ice area has declined by more than 10% per decade, as satellite
measurements reveal1. If this trend continues, the Arctic could
become ice-free in summer for the first time within the 21st
century. Projections with CMIP-56 (Coupled Model Inter-
comparison Project Phase 5) models show that this could be the
case as early as 2030 to 2050 for higher emission scenarios such as
RCP8.5 (Representative Concentration Pathway)7. Some GCMs
(global circulation models) show an ice-free Arctic for the first
time within this century also for the moderate emission scenarios
at a warming of 1.7 °C above pre-industrial8,9. Furthermore,
observations reveal that the Arctic summer sea ice declines faster
than expected in experiments from GCMs1.

At the same time, mountain-glaciers world-wide have
retreated, with an average weight equivalent ice loss of approxi-
mately 250 ± 30 Gt per year between 1901 and 20092,10. This
translates, in the same time span, into a loss of 21% of the gla-
ciated volume of mountain glaciers worldwide, excluding (Sub-)
Antarctic peripheral glaciers, as found in model simulations11.
During this time, it is estimated that approximately 600 glaciers
have disappeared and many more are likely to follow in the future
(IPCC-AR5, Chapter 46). 36 ± 8% of today’s glacier mass is
already committed to be lost in response to past greenhouse gas
emissions12 and it has been found that many mountain glaciers
are currently in disequilibrium and will be subject to further ice
loss13.

Moreover, both the West Antarctic and the Greenland Ice Sheet
have lost mass at an accelerating pace in the past decades3–5. With
progressing global warming, ice loss from the polar ice sheets and
subsequent sea-level rise is expected to further increase14,15.
Beyond a critical temperature threshold, large parts of the
Greenland Ice Sheet might melt, accelerated by positive feedbacks
such as the ice-albedo and melt-elevation feedbacks16,17. From
model simulations, this threshold temperature is suggested to
range between 0.8 and 3.2 °C above pre-industrial levels18.

Parts of the West Antarctic Ice Sheet might already have
crossed a point of instability: the grounding lines of several gla-
ciers in the Amundsen basin are rapidly retreating and have likely
become unstable, causing sustained ice discharge from the entire
basin which could lead to more than 1 m of global sea-level rise19.
Similar dynamics might be induced in other parts of the Antarctic
Ice Sheet and could eventually lead to its complete disintegration
under unmitigated climate change20.

Anthropogenic climate change has already caused a rise in
global mean temperature (GMT) by 0.9 °C comparing 1850–1900
to 2006–201521, with observable impacts on the cryosphere ele-
ments mentioned above6. It has also been suggested that these
regions are likely to change dramatically with ongoing climate
warming and some of these changes are suspected to possess
some degree of irreversibility22,23.

Following these recent developments of the cryosphere com-
ponents, it seems possible that they might be lost at lower tem-
peratures than commonly thought, potentially as low as 1.5 °C
above pre-industrial levels23. The disintegration of these elements
is associated with feedbacks that impact back on GMT, for
instance via a change in albedo, clouds or lapse rate, among
others, which has not been quantified comprehensively so far.
Therefore, we assess the additional global warming caused by
disintegration of the Greenland Ice Sheet, the West Antarctic Ice
Sheet, the mountain glaciers and the Arctic summer sea ice.
Although the Arctic summer sea ice is implemented in more
complex Earth system models and its loss part of their simulation

results (e.g. in CMIP-5), it is one of the fastest changing cryo-
sphere elements whose additional contribution to global warming
is important to be considered. Therefore, we compute and sepa-
rate its contribution to GMT increase. On the other side, the
temperature feedbacks of ice sheets like Greenland, West Ant-
arctica and mountain glaciers are not yet fully integrated in
assessments such as CMIP-5.

We base our simulations on the Earth system model of inter-
mediate complexity, CLIMBER-224,25 because it is computa-
tionally efficient and allows a systematic analysis of the decay of
the cryosphere components. CLIMBER-2 includes atmosphere,
ocean, sea ice, vegetation and land-ice model components and has
been applied extensively to understand past and future climate
changes26,27.

In large ensembles of equilibrium model simulations, con-
strained by fast climate feedbacks strength from global circulation
models28 (see “Methods”), we compare the long-term GMT
change in idealised scenarios, where the cryosphere elements are
removed, to scenarios where they remain intact. The uncertainty
in the additional warming in our simulations is constrained by
the uncertainty of the feedback strength in the GCM simulations
which we used to mimic the more complex behaviour of GCMs28

(Supplementary Fig. 1). To change the feedback strengths, we
alter CLIMBER-2 model parameters that act on the strength of
the feedbacks themselves, particularly in the structure of the
troposphere and the clouds (atmospheric changes) as well as in
the snow albedo (see Supplementary Table 1). With reasonably
altered parameters in CLIMBER-2, we arrive at an equilibrium
climate sensitivity of 2.0–3.75 °C for our ensemble leading to
smaller temperature responses than the full range from CMIP-5
(2.0–4.7 °C) or CMIP-6 (1.8–5.6 °C) would29. Details on the
calibration process are given in the methods section: uncertainty
estimates.

In our experiments the state of the Greenland Ice Sheet, the
West Antarctic Ice Sheet and mountain glaciers is simply pre-
scribed in the model and affects both, ice cover and topography.
In our simulations for the Arctic summer sea ice, the albedo
during the summer months (June, July, August) is lowered to
average values for open ocean waters instantaneously similar to
Blackport and Kushner30, while keeping the computation of ice-
covered areas dynamic, such that the experiment does not violate
energy and water conservation.

In this study, we find that global warming is amplified by the
decay of the Earth’s cryosphere as expected from theory and
quantify the contribution of each of the four cryosphere com-
ponents. We further separate the GMT response into contribu-
tions from albedo, lapse rate, water vapour and clouds in terms of
perturbation of the net radiation at the top of the atmosphere31.
Here, we focus on the purely radiative effects and neglect fresh-
water contributions to feedbacks and warming. Thus, our esti-
mates are long-term equilibrium responses when the large ice
masses are disintegrated. However, transient warming responses
would be reduced due to freshwater input from the West Ant-
arctic and Greenland Ice Sheet on centennial time-scales32–35.

Results
Additional global and regional warming. We consider several
different climate scenarios, with atmospheric CO2 concentrations
ranging from the pre-industrial 280 ppm up to 700 ppm and run
the model forward until it reaches equilibrium. If not stated
otherwise, our findings are shown for a reference simulation at a
fixed CO2 concentration of 400 ppm in equilibrium after 10,000
years. 400 ppm corresponds to an equilibrium GMT increase of
1.5 °C above pre-industrial in CLIMBER-2 simulations. Upon
this, we evaluate the additional regional and global warming
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caused by the large-scale loss of the Arctic sea ice during summer,
mountain glaciers, and the polar ice sheets. While this ad-hoc loss
of the ice masses poses a hypothetical scenario, it allows us to
separate the additional warming through the ice-climate feed-
backs from other effects. In our experiments, we report the
median value of the ensemble and the brackets represent the
interquartile range unless stated otherwise.

In our simulations, we find that global warming is increased by
the decay of the Earth’s cryosphere. The disintegration of the
Arctic summer sea ice and the retreat of mountain glaciers, the
Greenland and the West Antarctic Ice Sheets together cause an
additional GMT increase of 0.43 °C (0.39–0.46 °C) for a baseline-
scenario of 1.5 °C warming above pre-industrial levels, which
translates into an additional warming of 29% (26–31%).

Locally, the loss of each element induces a very strong warming
signal, which is consistent with previous studies on polar and
Arctic amplification36,37. Local warming around the cryosphere
components is up to 5 °C stronger, particularly around Greenland
and West Antarctica (Fig. 1a). However, the ice loss causes
significant warming also in lower latitudes, with values of 0.2 °C
around the equator.

The warming results from our simulations are consistent in
magnitude and polar amplification with past warm periods,
particularly the Mid-Pliocene Warm Period, during which the
large ice sheets were at least partially disintegrated38,39. Still, the
distribution among the feedback processes in these paleoclimate
states remains uncertain.

Under ongoing global warming, further ice loss is to be
expected for all of the four cryosphere components considered

here; however, the corresponding time scales differ by several
orders of magnitude. While substantial ice loss from Greenland
or Antarctica might be triggered by anthropogenic climate change
within the current century, these changes would manifest over
several centuries to millennia15. Ice-free Arctic summers on the
other side might already occur in the next decades1,7,9. Therefore,
we also consider the regional warming caused solely by the loss of
the Arctic summer sea ice (Fig. 1b). The additional warming in
the Arctic region on a yearly average accounts for more than 1.5 °
C regionally and for 0.19 °C globally. The meltdown of the Arctic
sea ice and its regional warming effect is also simulated by CMIP-
5 runs dependent on the future anthropogenic CO2 forcing
scenarios, the RCP scenarios6,9.

With CLIMBER-2, we are able to distinguish between the
respective cryosphere elements and can compute the additional
warming resulting from each of these (Fig. 2). The additional
warmings are 0.19 °C (0.16–0.21 °C) for the Arctic summer sea
ice, 0.13 °C (0.12–0.14 °C) for GIS, 0.08 °C (0.07–0.09 °C) for
mountain glaciers and 0.05 °C (0.04–0.06 °C) for WAIS, where
the values in brackets indicate the interquartile range and the
main value represents the median. If all four elements would
disintegrate, the additional warming is the sum of all four
individual warmings resulting in 0.43 °C (0.39–0.46 °C) (thick
dark red line in the Fig. 2). Our results regarding the amount of
warming are of comparable magnitude to previous efforts
computed for late Pliocene realisations (PRISM) of the ice
sheets40,41. Both studies show a pronounced warming in the
proximity of the locations where ice is removed, which is in good
agreement with our results (see Fig. 1 and Supplementary Fig. 2).
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Fig. 1 Regional warming due to feedbacks. a Regional warming for the whole Earth if Arctic summer sea ice (ASSI) in June, July and August, mountain
glaciers (MG), Greenland Ice Sheet (GIS) and West Antarctic Ice Sheet (WAIS) vanish at a global mean temperature of 1.5 °C above pre-industrial. b Same
as in (a) with an additional zoom-in of the Arctic region if only the Arctic summer sea ice vanishes, which might happen until the end of the century. The
light blue line indicates the region of removed Arctic summer sea ice extent, where its concentration in CLIMBER-2 is 15% or higher. In all panels, the
average additional warming on top of 1.5 °C is shown in absolute degree.
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The disintegration of all elements at the same time can very
closely be approximated by the sum of single elements
disintegrated indicating that their effects on GMT add up
linearly. This can be found in Fig. 3, where we also show the
warming for CO2 concentrations from 280 to 700 ppm. Fig. 2
highlights the additional warming of 1.5 °C above pre-industrial.

Warming from the Arctic summer sea ice. We obtain that the
warming results are independent from the CO2 concentration

forcing between 280 and 700 ppm apart from the Arctic summer
sea ice (see Fig. 3a), which shows a decreasing additional warming
for higher CO2 concentrations (Fig 4). This can, in turn, be
explained: In CLIMBER-2 simulations we find, with increasing
prescribed CO2 concentrations corresponding to increasing GMT,
that the Arctic summer sea ice area declines in a linear way, which
was also found in observational records42 and in GCM simula-
tions9. For a CO2 concentration of 400 ppm corresponding to
1.5 °C in CLIMBER-2 above pre-industrial GMT levels, the
additional warming is 0.19 °C (0.16–0.21 °C). The actual minimal
sea ice cover observed by NERSC (Nansen Environmental &
Remote Sensing Center) as an average area from 1979 to 2006 is
on the order of 5.5–6.5 × 106 km2 which would correspond to a
warming of approximately 0.15 °C in our simulations (see Fig. 4).
In Supplementary Fig. 3, we show the sea ice area over the course
of 1 year for the control and the perturbed run.

Radiative perturbations at the top of the atmosphere. For each
cryosphere element, we are able to deconvolve the net change of
radiative perturbations at the top of the atmosphere into several
components that affect the radiative balance of the Earth: water
vapour, clouds, lapse rate and albedo. These factors can be
quantified in CLIMBER-2 (Table 1).

The values for water vapour, lapse rate and clouds in Table 1
can to a very good approximation directly be interpreted as
feedback factors once they are divided by the respective warming,
e.g., by 0.43 °C in case all investigated cryosphere elements are
removed. However, it is important to note that the perturbation
arising from albedo changes is both, a forcing and a feedback. The
forcing component originates from the prescribed removal of the
cryosphere elements. On the other side, the feedback component
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Fig. 2 GMT increase through disappearance of cryosphere elements. The
additional warming for the cryosphere components is shown for a scenario
consistent with global warming levels of 1.5 °C. Radially outward, the
temperature anomaly is displayed which arises from the disappearance of
the cryosphere elements. The thick dark red line indicates the maximum
effect of additional warming in case all cryosphere elements lose stability.
All values are the medians of the ensemble.
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Fig. 3 Linearity of additional warming due to disintegration of cryosphere elements. Additional warming plotted against CO2 concentration.
Disintegration of of cryosphere components separately for (a) the Arctic summer sea ice, (b) the mountain glaciers, (c) the Greenland Ice Sheet, (d) the
West Antarctic Ice Sheet, (e) the sum of all additional warmings from the separately disintegrated cryosphere elements and (f) the disintegration of all four
elements at the same time. The grey bars match the red bars within their errors which means, according to CLIMBER-2, that the warming effect of singular
disintegrated cryosphere elements can linearly be added up to the effect of all four elements disintegrated at the same time. Here we show median,
interquartile range and full ensemble spread for each CO2 concentration. The upper horizontal axis shows the temperature increase above pre-industrial,
where a least-square fit converting CO2 concentration to temperature with python’s function scipy.optimize.curve_fit was used. The respective fitted
temperatures arise from full ensemble simulations at prescribed CO2 concentrations, but without removed cryosphere elements.
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derives from responses of the surface albedo to the additional
warming as for instance through changes in the extent of snow
covered area or changes in vegetation cover. Thus both, the
feedback and the forcing contribute to the measured radiative
perturbation quantified in Table 1.

Change in surface albedo is the dominant additional radiative
perturbation for each considered cryosphere element. It is mainly
caused by the albedo change of large ice-covered areas from ice to
other non ice-covered surface types, but also by other land cover
changes. In total around 55% of the radiative perturbations can be
attributed to the change of the albedo.

Two more additional radiative perturbations which are
evaluated together as they are anti-correlated are the lapse rate
and the water vapour fast climate feedback28,31. The lapse rate
change arises from non-uniform temperature changes in the
vertical atmospheric column and subsequent changes in outgoing
longwave radiation. The water vapour change describes the
capacity of the air to sustain water vapour in the air. The capacity

to sustain water vapour is increased by 7% per degree of warming
as can be computed using the Clausius–Clapeyron equation.
Since the GMT is increasing through the removal of the
cryosphere elements, the air can sustain more water vapour
which then in turn leads to an additional warming. Together, the
additional radiative perturbation of water vapour and lapse rate
combine for approximately 30% of the complete radiative
perturbation.

For the cloud feedbacks, the IPCC AR5 and newer studies
hypothesised that the feedback from clouds is likely positive6,43 as
we also find here. It is responsible for 15% of the total radiative
perturbation.

Within our experimental setting, it can be expected that the
radiative perturbation from albedo changes is very high due to the
prescribed removal of the respective cryosphere element.
However, the radiative perturbation related to different fast
climate feedbacks such as water vapour, lapse rate and clouds
also play an important role as drivers of additional warming.
Together they account for more than 40% of the total radiative
perturbation on average.

Similar investigations on the additional radiative perturbation
from albedo changes have been performed for the removal of
Arctic sea ice. For a removal of one month during summer an
additional radiative perturbation of 0.3W/m2 is reported44 which
is in good agreement with Flanner et al. (2011)45. We find a
slightly higher value of 0.49W/m2 for albedo plus clouds value
when the Arctic summer sea ice is removed (Table 1). This value
probably is higher since we have low sea ice for approximately
five months (Supplementary Fig. 3) in our perturbed experiments
instead of one as in Hudson44, but parts of the deviation might
also be due to the slightly different experimental setup.

In Supplementary Fig. 4a, we show the latitudinal distribution
of the additional radiative perturbation at the top of the
atmosphere. The contribution from albedo as well as from lapse
rate and water vapour are higher in polar regions and thus
contribute to polar amplification which is also apparent in the
corresponding zonal mean surface warming (see Supplementary
Fig. 4b). On the other hand, the additional cloud feedback does
not strongly contribute to polar amplification in our simulations.
These trends for clouds and albedo have also been found by other
studies36,46. Further studies mention that the lapse rate feedback
plays a major role in polar amplification47. This seems to be the
case here as well (see Supplementary Fig. 4a), but we can only
make this statement for the combined feedbacks of lapse rate and
water vapour since we do not separate them in our analysis.

Discussion
Our results concern short and long term effects on GMT due to
the disintegration of cryosphere elements which experienced
significant changes within the last decades and are likely to also
change strongly in the future due to global warming.

Table 1 Drivers of warming as seen from the top of the atmosphere.

Cryosphere element LR + WV [W/m2] Clouds [W/m2] Albedo [W/m2] All changes [W/m2]

ASSI 0.20 (0.17–0.23) 0.08 (0.07–0.09) 0.41 (0.35–0.47) 0.69 (0.59–0.79)
GIS 0.14 (0.13–0.16) 0.06 (0.05–0.07) 0.22 (0.20–0.25) 0.43 (0.39–0.47)
WAIS 0.05 (0.04–0.05) 0.04 (0.03–0.05) 0.10 (0.08–0.11) 0.18 (0.16–0.21)
MG 0.09 (0.08–0.10) 0.04 (0.03–0.05) 0.16 (0.14–0.17) 0.28 (0.26–0.32)
All 0.45 (0.41–0.49) 0.17 (0.16–0.19) 0.72 (0.66–0.78) 1.35 (1.22–1.46)

ASSI Arctic summer sea ice, GIS Greenland Ice Sheet, WAIS West Antarctic Ice Sheet, MG Mountain glaciers.
The additional radiative perturbation for the fast climate feedbacks as evaluated in CLIMBER-2 at a global warming of 1.5 °C above pre-industrial for disintegration of the respective element given as
changes in W/m2. The values are given as median and interquartile range (in brackets) of the ensemble. The “LR + WV” column represents the lapse rate and water vapour additional radiative
perturbation column together as they are anti-correlated and thus not independent57. Note that the albedo forcing values refer to both, a forcing and a feedback. The forcing part is the removal of the
cryosphere components and the feedback part comprises changes in vegetation and snow cover in response to the additional warming.
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Fig. 4 Additional warming due to meltdown of Arctic summer sea ice. Box
whiskers plot of global mean temperature (ΔGMT) versus Arctic summer
sea ice area with error boxes (error bars) representing the interquartile
range (full spread) of the ensemble at the according GMT over the
CLIMBER-2 ensemble runs. The additional warming when the Arctic
summer sea ice disappears is represented by a second y-axis computed via
a least-square fit from the corresponding summer sea ice area. The
relationship between summer sea ice area and additional warming is
slightly nonlinear. This means that a doubling of the ice area does not quite
translate into a doubling of the additional warming. The x-axis shows
ΔGMT above pre-industrial computed via a GMT-CO2 concentration least-
square fit. The shaded area shows the mean Arctic sea ice area as observed
by NERSC (Nansen Environmental & Remote Sensing Center) from 1979 to
2006, where the uncertainty indicates one standard deviation:
6.0 ± 0.5 × 106 km2.
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On shorter time scales, the decay of the Arctic summer sea ice
would exert an additional warming of 0.19 °C (0.16–0.21 °C) at a
uniform background warming of 1.5 °C (=400 ppm) above pre-
industrial. On longer time scales, which can typically not be
considered in CMIP projections, the loss of Greenland and West
Antarctica, mountain glaciers and the Arctic summer sea ice
together can cause additional GMT warming of 0.43 °C
(0.39–0.46 °C). This effect is robust for a whole range of CO2

emission scenarios up to 700 pm and corresponds to 29% extra
warming relative to a 1.5 °C scenario.

In fact, some feedbacks will also be at play before the complete
disintegration of the large ice sheets, for instance due to increased
ice-drainage from the Amundsen region in West
Antarctica19,48,49. Furthermore, it has been shown for WAIS and
GIS that transgressing their critical thresholds is likely not
reversible due to hysteresis effects18,50,51.

The additional commitment to global warming that we study
here represents a long-term, mean-field effect which is separated
from possible direct interactions between the elements such as the
freshwater input into the thermohaline circulation from the large
ice sheets. In other words, the disintegration of the ice sheets has
a direct increasing temperature impact on the GMT via the
feedbacks quantified here.

Methods
Earth system model. For our analysis, we use the Earth system model of inter-
mediate complexity (EMIC) CLIMBER-224,25 on a coarse spatial resolution of
10 × 52° (lat × lon) resolution. CLIMBER-2 includes a 2.5-D dynamical-statistical
atmosphere and a multi-basin, zonally averaged ocean model including sea ice as well
as a dynamic model of the terrestrial biosphere. CLIMBER-2 also includes a model for
ice sheets, a global carbon cycle model and an atmosphere surface interaction coupler,
which are not used in this study since ice sheets and atmospheric CO2 are prescribed
in our experiments. In CLIMBER-2, changes in the cloud fraction are possible. Apart
from that, cloud top height can change following changes in the height of the tro-
popause. The cloud optical thickness parameterisation includes a dependence on the
cumulus cloud fraction in addition to a prescribed increase of optical thickness with
latitude. With this representation of clouds, CLIMBER-2 is able to reproduce the
planetary albedo as observed from CERES (see Supplementary Fig. 5)52. We benefit
from the use of an EMIC as it is highly computationally efficient and allows for a
systematic analysis of the impact of disintegration of the cryosphere elements on
GMT. With CLIMBER-2 we are able to distinguish different feedbacks and are able to
run a robustness analysis using systematic parameter studies. CLIMBER-2 is a good
representative of other EMICs53.

Model initialisation. In preparation of the model runs, we set up the ice sheets
inbuilt in CLIMBER-2. For distinguishing the West and East Antarctic Ice Sheet, we
created a mask based on the Antarctic drainage basins54. We also included a
mountain glacier mask with data from the Randolph glacier inventory55. Since we are
interested in the climatological behaviour of the disintegration of one or more of the
cryosphere elements, we artificially change the setup of CLIMBER-2 depending on
which element we remove: In case of WAIS and GIS, the topography of the ice sheet
itself is removed together with the ice sheet as the height of the ice sheet is several
thousand metres thick and thus might play an important role on the feedbacks. The
albedo is replaced by the albedo of bare land or ocean (where appropriate) at first, but
can then change freely into any kind of vegetation or snow cover during the simu-
lation run. For our simulations, isostatic rebound is neglected.

For the Arctic summer sea ice and the mountain glaciers, the topography is not
taken into account as either the height of the ice or the spacial extent of high
thickness regions is very low. To remove the Arctic summer sea ice during the
summer months (June, July and August: JJA), the surface covered by sea ice is
darkened and the albedo in this region is replaced by the ocean albedo. With this
procedure the energy conservation law is not violated since the ice is not just
removed and still retains its function as boundary layer between ocean and
atmosphere. Thus we are able to compute the effect of summer sea ice in an
energetically self-consistent manner. Note that CLIMBER-2 is mass conserving.
Our procedure is similar to the experimental setup of Blackport and Kushner30,
who also reduce albedo values of the sea ice instantaneously. They do this for the
whole year and all sea ice compared to our setup, where the albedo is changed only
in the northern hemisphere in the summer months.

Model calibration. To emulate the behaviour of more complex general circulation
models (GCMs) we created a model ensemble by perturbing several parameters
with the target to cover the range of strength of the fast climate feedbacks found by

Soden and Held28 using an ensemble of GCMs. Equally, this could have been done
with the feedbacks stated in the IPCC assessment report 5 (AR5), but changes in
the reported feedback strengths are small except for the cloud feedback which is
less well constrained in AR5 (see IPCC on page 819 for a direct comparison
between AR5 values and the values given in Soden and Held28). Thus, our
ensemble and our results can be expected to stay the same. The fast climate
feedbacks include the water vapour, the lapse rate, the cloud and the albedo
feedback. Each of our 39 ensemble members, that we end up with, is constructed
from a pair of simulations: one control run at 280 ppm and one perturbed run at a
CO2 doubling of 560 ppm. We then compute the magnitude of the fast climate
feedbacks between these pairs of runs (see Supplementary Fig. 1a). Here, we
evaluate the feedbacks using the partial radiation perturbation method31,56. In this
method partial derivatives of model top of the atmosphere radiation with respect to
changes in model parameters (such as water vapour, lapse rate and clouds) are
determined by diagnostically rerunning of the model radiation code.

The water vapour feedback added to the lapse rate feedback is supposed to lie in
the range of 0.8–1.2W/m2/K. These two feedbacks are evaluated together as they
are correlated negatively28,57. The cloud feedback is supposed to range between 0.3
and 1.1 W/m2/K and the albedo feedback between 0.2 and 0.45 W/m2/K.
Furthermore, we put a constraint on the minimal summer sea ice cover in the
northern hemisphere to 1.5–6.5 km2 (see Supplementary Fig. 1d). In Soden and
Held28, the albedo value is constraint to values between 0.2 and 0.4 W/m2/K, but in
our calibration run, it is necessary to increase the upper limit to 0.45 W/m2/K since
vegetation shifts are considered and otherwise the ensemble gets distorted to small
summer sea ice values in the control run.

On top of the fast climate feedbacks, we require each ensemble member (each
pair of runs) to possess an equilibrium climate sensitivity above 1.5 and below
4.5 °C, where the equilibrium climate sensitivity is the global warming per doubling
of atmospheric CO2 concentration (see Supplementary Fig. 1b). It is important to
note that our ensemble members span the range from 2.0 to 3.75 °C. This leads to
smaller temperature response ranges than the full range from 1.5 to 4.5 °C would.
Furthermore, a last constraint is applied at a CO2 concentration of 280 ppm.
The temperature difference between the runs with perturbed parameters and the
reference run with unperturbed parameters (brackets in Supplementary Table 1)
should be less or equal than ±1.0 °C (see Supplementary. Fig. 1c). After the
application of all these constraints, we find 39 pairs of runs that match our
restrictions.

For covering the uncertainty ranges of the feedbacks we perturb parameters (within
their experimental uncertainty range) influencing lapse rate together with the water
vapour, cloud and albedo feedbacks similarly to Deimling et al.57 (Supplementary
Table 1). With this procedure, we are able to reconstruct the uncertainty ranges of the
four fast climate feedbacks stated in Soden and Held28 fairly well.

Uncertainty estimates. We used these 39 calibrated runs, which also represent the
uncertainty of our results, as initialisation for our large-scale ensemble simulations.
For each of the cryosphere elements, i.e., WAIS, GIS, Arctic summer sea ice and
mountain glaciers, as well as all together, we performed the following experiments:
(i) Control runs: the respective cryosphere element(s) is/are kept and (ii) experi-
ment runs: removed cryosphere element(s).

We performed the experiments in (i) and (ii) for different atmospheric CO2

concentrations as external forcing. We chose the CO2 concentration parameter
since it is the one which is most probably increasing in future climate change
scenarios. Each of the experiments is performed as a long term equilibrium run for
10,000 simulation years with today’s boundary conditions, i.e., astrophysical
parameters like eccentricity and obliquity, and fixed CO2 concentration. The results
are taken as the mean over the last 4000 simulated years since this cancels out
minor fluctuations in the equilibrium state. In the end we subtract the experimental
run (ii) from the control run (i) to retrieve the temperature difference. Since we are
reporting these differences between perturbed (experimental) and control run
throughout the main manuscript, the uncertainties given as interquartile ranges are
small, also compared to the calibration (see Supplementary Fig. 1). This means that
our CLIMBER-2 ensemble is robust against the same perturbations in the
cryosphere components. We constructed our ensemble aiming at covering a range
of sensitivities and different strengths of the feedbacks by the variation of the
parameters in Supplementary Table 1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
There is no comprehensively documented code for the Earth system model CLIMBER-2
available owing to a lack of comprehensive technical description, but the code is available
upon request from M.W.
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Supplementary Figure 1 | CLIMBER-2-GCM calibration. a, Calibration mea-
surements for the cloud (red), the albedo (cyan) and the water vapour together with the
lapse rate feedback (purple) constrained using the GCMs from Soden & Held(2006)1.
The exact values that we constrained for are 0.8 – 1.2 W/m2/K for the water vapour
together with the lapse rate feedback, 0.3 – 1.1 W/m2/K for the cloud feedback and 0.2
– 0.45 W/m2/K for the albedo feedback. Note that not all climate feedbacks cover the
whole range of possible limits shown as black errorbars1,2. b, An additional constraint
due to the equilibrium climate sensitivity when CO2 concentration is doubled (black) is
applied. The equilibrium climate sensitivity is restricted to 1.5–4.5 ˝C. c, Another con-
straint (green) is applied for a reference run at a concentration of ppCO2q “ 280 ppm
compared with a perturbed parameter run at the same CO2 concentration. This results
in: |Treference ´ T280| ď 1, 0˝C. d, A final constraint is applied to the minimum sea ice
area in the northern hemisphere which is supposed to be between 1.5´6.5ˆ106 km2. This
constraint is applied to prevent too low sea ice areas at a CO2 concentration of 280 ppm.
For all the calibration runs, the parameters from supplementary Table 1 were varied.
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Parameter Varied range (Mean) Source
Γ0: Temp. lapse rate parameter 4.7´ 5.2 p5.0q ¨ 10´3 Eq. 23

Γ1: Temp. lapse rate parameter 3.6´ 4.4 p4.0q ¨ 10´5 Eq. 23

Γ2: Temp. lapse rate parameter 0.7´ 1.3 p1.0q ¨ 10´3 Eq. 23

OD1: Cloud optical depth parameter 9.5´ 10.5 p10.0q App. 7.34

OD2: Cloud optical depth parameter 7.5´ 8.5 p8.0q App. 7.34

DpACO21q: Integral transmission of atm. 0.3´ 0.65 p0.5q Eq. 33

c1: Cloudiness height parameter 0.178´ 0.188 p0.183q Eq. 343

αsnow: Diffusive new snow albedo 0.85´ 1.0 p0.95q Fig. 25

Supplementary Table 1 | Parameters for calibration of CLIMBER-2. Varied
parameters in CLIMBER-2 in order to reconstruct GCM-uncertainty ranges of feedbacks1.
Procedure of varying parameters similar to Deimling et al.(2006)4.
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All cryosphere elements removed

0 1 2 3 4 5 6 7 8 9 10
Additional warming above GMT due to feedbacks [°C]

Supplementary Figure 2 |Warming including the Antarctic Ice Sheet. For a bet-
ter comparability to literature6,7, we ran a simulation, where we removed all the cryosphere
elements: West Antarctica, Greenland, Arctic summer sea ice, mountain glaciers and East
Antarctica. We find a strong warming in the proximity of the locations where ice is re-
moved, which is in good agreement with literature, see also Fig. 4e in Lunt et al. (2012)7.
However, both studies from the literature used an ice sheet reconstruction for the late
Pliocene (PRISM), which includes the loss of most of Greenland and West Antarctica,
but also of substantial parts of East Antarctica. With these prescribed ice sheets Lunt et
al. (2012)7 found a global warming of 0.7 ˝C, where we find 0.2 ˝C, but the discrepancy
comes mainly from East Antarctica, which is still intact in our simulations in the main
manuscript (see Fig. 1). With the additional removal of the East Antarctic Ice Sheet at
a CO2 concentration of 280 ppm, we find an additional warming of 0.82 ˝C.
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Supplementary Figure 4 | Zonal distribution of additional radiative perturba-
tion and surface warming. a, Contributions from different causes of additional radia-
tive perturbation, where we compare the perturbed run (without cryosphere elements)
with the control run (with cryosphere elements) for all 39 runs at a CO2 concentration
of 400 ppm. The additional radiative perturbation is strongest in the polar regions. b,
Zonal mean surface warming over latitude with a strong warming in polar regions. The
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Supplementary Figure 5 | Comparison of zonal mean of planetary albedo be-
tween CERES and CLIMBER-2. Planetary albedo in CLIMBER-2 and CERES
data8 are in good agreement, a, for the months JJA and b, for the months DJF. The
CLIMBER-2 data is shown as the full ensemble spread, where the straight line indicates
the median of the ensemble, the dashed line the interquartile range and the shaded area
the full ensemble spread. The data is cut at 65 ˝S during JJA since no planetary albedo
values are available at this time due to the Antarctic night. The CERES data deviates
at this edge from the CLIMBER data due to the observational sparse data close to the
Antarctic night region. For the same reason, the data is cut due to the Arctic night in
panel b.
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Tipping elements are nonlinear subsystems of the Earth system that can poten-4

tially abruptly and irreversibly shift if environmental change occurs. Among5

these tipping elements is the Amazon rainforest, which is threatened by an-6

thropogenic activities and increasingly frequent droughts. Here, we assess how7

extreme deviations from climatological rainfall regimes may cause local forest-8

savanna transitions that cascade through the coupled forest-climate system.9

We develop a dynamical network model to uncover the role of atmospheric10

moisture recycling in such tipping cascades. We account for the heterogeneity11

in critical thresholds of the forest caused by adaptation to local climatic con-12

ditions. Our results reveal that, despite this adaptation, increased dry-season13

intensity may trigger tipping events particularly in the southeastern Amazon.14

Moisture recycling is responsible for one-fourth of the tipping events. If the15

rate of climate change exceeds the adaptive capacity of some parts of the for-16

est, secondary effects through moisture recycling may exceed this capacity in17

other regions, increasing the overall risk of tipping across the Amazon rain-18

forest.19
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The Amazon rainforest is the most biodiverse terrestrial ecosystem and plays a fundamental role20

in regulating the global climate1,2,3. However, human-induced impacts and climatic extremes21

are increasingly threatening the forest’s integrity and the services it provides4,5,6. Furthermore,22

changes might not be gradual, but could be rather abrupt due to nonlinear interactions, as sug-23

gested by simulation studies7,8, data-based approaches9,10, conceptual models11,12 and long-24

term experiments13. Parts of the Amazon rainforest may be bistable, meaning that they could25

tip to an alternative state of low tree cover9,10. Indeed, the Amazon has been suggested to be26

a tipping element in the Earth system14 and might be at risk of approaching or exceeding its27

tipping point4,15,16. This tipping point can be crossed when the conditions become too dry. Po-28

tentially, this could occur due to declining average precipitation levels or with increasing dry29

spells and severity of extreme droughts17,18,19,20. Changes in precipitation regimes are already30

occurring over southern Amazonian regions where the length of the dry season has been in-31

creasing by 1 month since the middle of the 1970’s19,21. A lengthening and strengthening of32

the dry season in southern Amazonia has also been confirmed by other model studies from33

CMIP5 simulations as well as empirical precipitation models22,23. In regions where dry periods34

last longer than four months, this would severely impact vital functions of the Amazon rainfor-35

est4,22.36

37

The Amazon is not a uniform forest as trees can adapt to local climatic conditions, for in-38

stance through variable rooting strategies24,25. This can lead to different absolute forest mortal-39

ity thresholds with respect to precipitation and drought conditions on local to regional scales.40

Forest adaptation can therefore ensure that plants will operate close to their physiological max-41

imum, but this creates vulnerabilities when the climate changes faster than the ecosystem can42

respond to26. In case of this inadequate response, regional climatic changes can be accelerated43

by the forest itself, because trees contribute to precipitation regionally.44
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45

Trees recycle part of the precipitated moisture through continental moisture recycling27,28. They46

do so by extracting water from deeper soil levels and releasing it through their leaves (transpi-47

ration) and by directly re-evaporating precipitation from their leaves (interception evaporation).48

The total amount of moisture recycling accounts for up to half of the precipitation over the49

Amazon basin and moisture is recycled up to six times28,29,30,31. Thus, the rainforest depends on50

itself, and precipitation and evapotranspiration cycles promote cascading forest growth29. The51

positive interplay between the forest and regional precipitation implies that local perturbations52

can propagate through the system via reduced moisture recycling. In other words, the Amazon53

rainforest can be considered a network of local tipping elements that are connected via moisture54

recycling.55

56

The loss of the moisture flows among different parts of the Amazon as a result of state transi-57

tions can increase vulnerabilities remotely and exacerbate tipping events since the forest would58

then no longer be adapted to the prevailing conditions32,33. Recent severe droughts such as in59

2005 and 2010 already impacted the rainforest34,35, but without causing major state transitions60

of vegetation cover. While the rainforest might be able to withstand incidental droughts, the61

adaptations may become insufficient when such droughts become the new climate normal. In-62

deed, it has been projected that the major drought event of 2005 might occur more frequently,63

up to nine out of ten years by 206036,37. By reconstructing the dynamical moisture recycling64

networks from the recent past, we can study how climate change may exceed the adaptation65

capacity of the forest and subsequently trigger tipping points that cascade through the Amazon66

rainforest system.67

68

Here, we integrate for the first time in a dynamical network model the tipping behaviour of69
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the Amazon forest, atmospheric moisture flows from evapotranspiration to precipitation and the70

adaptation of the forest to annual precipitation and droughts (Fig. 1). Specifically, we combine71

a dynamical system model to represent empirically obtained forest tipping points with regard to72

mean annual precipitation (MAP) and drought intensity (MCWD: Maximum Cumulative Water73

Deficit). We assume that the forest is adapted to its local values of MAP and MCWD over74

30 years. To account for possible spatial variability in the adaptation levels, we construct an75

ensemble of size 100 for each investigated year. We construct this moisture recycling network76

using output from Lagrangian atmospheric moisture tracking simulations and a global hydro-77

logical model (see methods)29,30,38.78

79

We simulate a range of different future conditions, imposing average climatic conditions that80

resemble the conditions observed in each year from 2004 to 2014, during which the Amazon81

experienced two “droughts of a century” (2005 & 2010)39. We analyse Amazon rainforest cells82

as local-scale tipping elements of the moisture recycling network on a resolution of 1˝x1˝ to83

assess their impact on the Amazon-wide system stability. Using this approach, we provide a84

bottom-up quantification of Amazon system stability, aiming to reveal where cascading effects85

of moisture recycling have the potential to induce domino effects in forest cover loss.86

87

Results88

Tipping due to drier conditions. To investigate a range of drought intensities and precipitation89

anomalies, we study the extent of the tipped area with respect to Z-scores, which represent how90

many standard deviations the conditions are away from the mean across 1974-2003. We find91

a close correlation between ZMCWD and the tipped area, where a higher index reflects a larger92

tipped area (see Fig. 2a). The years 2005, 2007 and 2010, which are the years with the largest93

ENSO ONI indices40, show the largest tipped area. Overall, we find that the number of tipped94
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Figure 1 | Nonlinear effects and moisture recycling network in the Amazon rainforest. a,
Dynamical property of each 1˝x1˝ cell of the rainforest depicted as state of rainforest cell (forest
cover) versus MAP value. The state of the rainforest is limited by full forest cover (1.0) and
no forest cover (-1.0). Between these two stable states, there is a tipping process as soon as
the MAP value has fallen below its adaptation specific MAPcrit value. Since we are focussing
on drought triggered tipping events from forest to non-forest states in this study, each cell can
only exist on the occupied states (brown), but not on the unoccupied states (grey). The blue
arrow depicts a potential reduction in precipitation that is sufficient to trigger a tipping event
in this specific cell. b, Same as in a for MCWD. c, Exemplary moisture recycling network:
the rainforest cells are interconnected via a moisture recycling network due to precipitation and
evapotranspiration. Through this mechanism effects of reduced tree cover can be promoted and
tipping cascades are possible. d, Moisture recycling network for the hydrological year 2014
thresholded for links above 10 mm/yr to remain visibility. In the simulation results, links above
1 mm/yr are used. The dominant flow direction comes from the Atlantic ocean through easterly
winds, reaches the Andes, and is then bend southward along the Andes. Moisture recycling
links based on separate months can be found in Supplementary Figs. 1 and 2 comparing the
year 2014 with the extreme drought year 2010.
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cells is significantly higher for the years 2005 and 2010 than for the other years (see Fig. 2a).95

Both droughts have been termed a “once in a century drought”41. 2010 shows the highest vul-96

nerability pattern, despite a lower ZMCWD index than for 2005. The reason might be that the97

2010 drought was spatially more extensive than the one in 2005. In 2010, 3.0ˆ106 km2 ver-98

sus 1.9ˆ106 km2 in 2005 showed rainfall anomalies of one standard deviation less than during99

the decadal climatological mean35. From a tipping point of view, 2010 causes the highest vul-100

nerabilities, whereas 2005 is the most extreme year from a rainfall (from oceanic background)101

perspective within our study period29. This suggests that the drought anomaly pattern is more102

important for the stability of the rainforest than the extremity of moisture inflow itself.103

104

We separate tipping events into primarily induced tipping events from MAP or MCWD and105

secondary events from network effects (tipping cascades). Our model shows that between 10%106

and 60% of the tipping is due to the cascading effects from the moisture recycling network107

depending on the drought strength (see network effects in Fig. 2b). The cascading effect is108

especially strong for the years that show the strongest drought signatures (2005, 2007 & 2010).109

This is probably due to the fact that many cells are shifted towards their tipping point and some110

of them over it. Then, in succession of this tipping and the subsequent further reduction of the111

moisture transport, many more cells in these years transgress their calculated threshold. In turn,112

if droughts intensify in the future, cascading tipping may increase disproportionally.113

114

We also compared these results with the results of an only MAP-based normalised drought in-115

dex ZMAP analogous to Eq. 2, but find no correlation between the tipped area and the MAP116

based index (see Supplementary Fig. 3).117

118

Vulnerability maps. Over the course of the evaluated time span from 2004´2014, one region119
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Figure 2 | Vulnerability of the rainforest against MCWD-based drought intensity. a, The
total tipped area is shown over the course of the normalised drought index based on the MCWD
Z-score. The tipped area represents the number of tipped cells in the model where each 1˝x1˝

cell has an area of approximately
`
111 km2

˘
. b, The additional tipped area due to network

effects for each year is shown in percentage of the tipped area in panel a. This shows the effects
of cascading transitions which are on the order of 10% to 60% depending on the evaluated
hydrological year. The same analysis has been performed for a MAP based index, but no
correlation was found (see Supplementary Fig. 3).
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shows increased patterns of vulnerability (see likelihood of vulnerability in Fig. 3a). This region120

is located in the southeastern Amazon, and caused by the combination of MCWD anomalies121

and network effects. As expected from Fig 2, the likelihood of the vulnerability patterns varies122

strongly from year to year (see Supplementary Fig. 4), but the vulnerable region in the southeast123

is a recurrent phenomenon across all years.124

We investigate the vulnerable regions in detail since, in our model, small changes in the state125

already have an impact on the moisture recycling network, even though the respective cell126

does not tip. This can be realised if the environmental conditions shift a rainforest cell in our127

model close, but not over, its tipping point. Therefore, we define a shift towards the tipping128

point without an actual tipping event as the closeness to tipping. We find that this closeness to129

tipping is high in the southeast of the Amazon basin and in the subsequent dominant downwind130

direction towards the Andes. The largest average shifts towards the tipping point are located131

around and close to the most endangered region in the southeast (see Fig. 3). The reason is that132

these cells are already tipped in most cases and do not contribute to the average closeness to133

tipping (see Fig. 4a), but that is expressed by the high variability among the ensemble members134

(see southeastern region in Fig. 4b).135

Although tipping points are thresholds by definition, the effects on the Amazon forest-rainfall136

system already occur before MCWD or MAP reaches that point. Droughts, even if these do137

not cause tipping of the forest, can have significant impacts on photosynthesis and evapotran-138

spiration that may last for years42,43. A threshold-only model cannot account for these effects.139

In our model, however, evapotranspiration scales with distance to the tipping point. In other140

words, when a forest becomes drier it generates less evapotranspiration, an effect that may cas-141

cade through the system. Thus, even though our approach is conceptual, it allows us to identify142

which areas are most vulnerable to the invisible effect of the moisture recycling network. The143

magnitude of this effect is on the order of 20% for many regions apart from the central Amazon144
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Figure 3 | Vulnerable regions and tipping reason. a, The likelihood of tipping as an average
over all ensemble members and all evaluated years from the hydrological years 2004 to 2014.
The southeastern region is more vulnerable than other regions. In Supplementary Fig. 4, the
yearly resolution results? can be found. b, Overall tipping reason averaged over the entire
Amazon basin with error bars as the standard deviation over all years and all 100 ensemble
members. A version separated into the future drought conditions from 2004 to 2014 can be
found in Supplementary Fig. 5 for all these potential future drought scenarios. MAP does not
contribute to tipping events (probability is less than 0.1%) and is thus omitted from this figure.
c, Tipping reason map: MCWD, d, Tipping reason map: Network (Cascading effects of the
moisture recycling network). Note that panel a is the sum of the panels c and d.
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and a small region in the very south of the Amazon. This represents an average evapotranspira-145

tion decrease of approximately 10% due to a shift towards the tipping point in the southeastern146

Amazon region (see Fig. 4a).147
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Figure 4 | Average shift towards the tipping point (Closeness to tipping). a, Mean shift to
the tipping point as an average over all ensemble members. It can be seen that the shift is larger
southern part of the Amazon rainforest such that these regions are the most vulnerable ones. b,
Standard deviation of a over all ensemble members. Note that cells are only accounted for if
and only if the cell is not in the tipped regime in the respective simulation run. A second colour
bar indicates the reduction of evapotranspiration due to changes in the state on average (panel
a) together with its standard deviation (panel b). A version separated into the future conditions
from 2004-2014 can be found in Supplementary Fig. 6.

The tipping reason and cascading effects. We reveal that, over the whole set of drought condi-149

tions, the direct effect of MCWD-induced tipping is prevalent (76.3˘8.5%) over the 23.6˘8.5%150

that are due to cascading failure (see Fig. 3b). Moreover, transitions of the forest due to MAP as151

a primary reason are nearly completely negligible, they are responsible for less than 0.1% of all152

tipping events. On the other hand, the effect of cascading failure is considerably affecting the153

Amazon of up to a one-fourth of cells that tip additionally, on average, with large spread from154

year to year over the study period (see Supplementary Fig. 5).155

The network effects are especially strong close to the region of direct MCWD-induced tipping156

11

2 Original manuscripts

90



and downwind from that (Fig. 3c, d). MCWD is the most important reason for tipping events157

in the southeast, whereas MAP is not responsible for many tipping events (see Fig. 3a, b).158

Overall, the region in the southeast is vulnerable with respect to MCWD since this region has159

a relatively low interannual variability (standard deviation) of MCWD, while the intra-annual160

variability (mean) MCWD value is high (see Supplementary Fig. 7c, d).161

162

Discussion163

We estimate that tipping cascades may be responsible for around a one-fourth (23.6˘8.5%) of164

the tipping events in the Amazon rainforest following droughts. These cascades occur even165

when the forest is adapted to local climatic conditions. The reason is that drying is amplified166

by the moisture losses that result from such tipping. Loss of forest cover causes a reduction167

in evapotranspiration, which affects precipitation levels regionally. By constructing a dynami-168

cal network of forest cells connected by forest-induced moisture flows estimated from detailed169

atmospheric moisture flow simulations, we reveal how and where the Amazon is vulnerable170

to tipping cascade effects. Tipping due to fluctuating dry-season intensity (as measured by171

MCWD) is the dominant primary tipping reason (76.3˘8.5%) compared to fluctuations in an-172

nual rainfall. With a potential increase of future extreme drought events36,37,44, the average173

regional climate will be drier and some parts of the rainforest might thus be set under imminent174

risk of instability and could transgress into a less or non forest-covered state. We uncover that175

tipping events occur most frequently in southeastern Amazon (Fig. 3). This is also the region176

that is affected by three other factors. First, extended tipping cascades can be expected due to177

local interaction structures and reduced downwind moisture transport (Figs. 3 and 4). Second, it178

is also one of the regions located along the “arc of deforestation” and therefore already suffers179

from the pressure of human-induced activities, such as deforestation, ranching and extensive180

agriculture45,46. And third, this region as well as the whole Amazon rainforest is threatened by181
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road infrastructure projects47,48,49 and lack of environmental policies50,51.182

183

In our study, we also find that potential future extreme drought conditions with a higher MCWD184

anomalies show a considerably larger tipped area. Cascading tipping events are more pro-185

nounced under these circumstances (Fig. 2). These are the drought conditions that can be186

expected from mid-century onwards if climate change progresses in a business-as-usual sce-187

nario37. The highest tipping signal in our model coincides with the strongest El-Niño ONI188

indices during the period 2004-201441. It is known from the literature that El-Niño related189

droughts and other variability patterns affect the stability of the rainforest and tropical vegeta-190

tion18,52,53. If the anomalies associated El-Niño events intensify as projected by CMIP (Coupled191

Model Intercomparison Project) simulations and perturbed physics models54,55,56, this would192

endanger substantial portions of the Amazon basin57. However, uncertainties remain whether193

strong El-Niño events might become more frequent in the future climate58.194

195

Further human-induced changes such as deforestation also affect the evapotranspiration nega-196

tively which might then increase the frequency and severity of droughts together with ongo-197

ing climate change30,33,59,60. Overall, our results emphasise the relevance of the atmospheric198

moisture recycling network as an ecosystem service whose (partial) breakdown, combined with199

an increased number of climate-change induced extreme droughts, could trigger substantial200

changes across the Amazon basin.201

Furthermore, moisture export supplies systems that are thousands of kilometres away, implying202

that forest-induced moisture export is an ecological service for regions beyond the Amazon203

rainforest itself. Altogether, preserving the Amazon and its ecological services are of utmost204

importance for local, regional and global climate stability.205
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Methods206

Data. The network was constructed using atmospheric moisture tracking simulations by Staal et207

al. (2018)29. In that study, tree transpiration across South America during 2003-2014 was esti-208

mated and its atmospheric trajectories subsequently simulated using a Lagrangian atmospheric209

moisture tracking model with simulation time steps of 0.25 hours. The model output is on a210

monthly basis on 0.25˝ resolution. Here, we reconstructed those simulation results by taking211

the moisture recycling ratios between 0.25˝ grid cells, building monthly networks of moisture212

flows between each pair of cells of a certain resolution for the Amazon region and aggregat-213

ing them to 1˝ ˆ 1˝ grid cells. In addition to tree transpiration, we also included interception214

evaporation from tree canopies, taken from Staal et al. (2020)30. We thus obtained temporally215

varying monthly networks of forest-induced moisture flows across the Amazon. For details on216

the Lagrangian moisture tracking scheme, we refer to Staal et al. (2018)29.217

Monthly precipitation and evapotranspiration data for 2003-2014 on 0.25˝ resolution were taken218

from the Global Land Data Assimilation System (GLDAS) version 2.161. For 1974-2003 we219

used GLDAS2.0 since GLDAS2.1 data does not go back until 1974.220

Note that all our simulations are based on hydrological years instead of calendar years due to221

the hydrological cycle over the Amazon basin.222

223

Computation of MAP and MCWD. The mean annual precipitation (MAP) is derived from the224

monthly precipitation values for each cell. The MCWD index is here defined as the absolute225

value of the most negative value of cumulative water deficit (CWD) reached over a hydrological226

year227
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CWDk “ CWDk´1 ` Precipitationk ´ Evaporationk

max pCWDkq “ 0

MCWD “ abs pmin tCWDk,CWDk`1, ...,CWDk`12uq ,

(1)

where k is the number of the month in the hydrological year. We make use of the actual mea-228

sured regional evaporation values, whereas other studies have chosen a fixed evaporation value229

of 100 mm in each month to compute MCWD5,35. We also resimulated all results with a fixed230

evaporation of 100 mm/month and find that this leads to a decreased tipping due to MCWD.231

Thus, the southeastern region is less vulnerable to tipping, but the qualitative results are in232

agreement (see Supplementary Figs. 10d and 12.).233

234

Computation of theZ-score TheZ-score is used to find the ranges of future conditions that we235

are simulating in this work. We simulate ranges from current conditions up to extreme droughts236

that are 3.5 standard deviations away from the mean (see Fig. 2). The MCWD based Z-score is237

computed by238

ZMCWD “ MCWDpyearq ´ µMCWD

σMCWD
. (2)

Here, µMCWD and σMCWD are the average and standard deviation of the calibration period from239

1974-2003. MCWDpyearq is the average MCWD of the specific investigated year (see methods:240

Computation of MAP and MCWD). For comparison, the Z-score based on MAP is computed241

(see Eq. 3) and plotted for comparison, but there is no relationship between tipped area and a242

higher MAP based score visible (see Supplementary Fig. 3):243

ZMAP “ MAPpyearq ´ µMAP

σMAP
. (3)

244

245
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Adaptation and computation of critical thresholds. For the purpose of computing local adap-246

tation values, we use a calibration dataset from GLDAS from the hydrological years 1974 to247

2003. From there, we compute the 30-year long term mean of MAP and MCWD values to-248

gether with their standard deviations (see Supplementary Fig. 7). The critical value for MAP249

and MCWD where a state transition occurs is then computed for each grid cell i as250

MAPcrit,i “ µMAP,i ´ αi ¨ σMAP,i

MCWDcrit,i “ µMCWD,i ` αi ¨ σMCWD,i.
(4)

µi is the mean, σi the standard deviation of cell i and αi an adaptation factor that determines the251

exact value of the tipping point.252

This procedure leads to the effect that regions with a high MAP as for instance in the central253

Amazon region can only be sustained at higher MAP values compared to other, typically drier254

regions as for instance in the south of the Amazon basin or close to the Andes region. The same255

arguments are valid for MCWD, with regional differences to MAP. Furthermore, higher vari-256

ability, i.e., a higher standard deviation, in a region leads to higher adaptation percentage wise257

(training effect). In contrast to potential landscape methods as used in earlier studies17,32, this258

procedure has the advantage that it is able to specifically assess sustained periods of changing259

MAP and MCWD conditions on a local scale.260

261

Dependence on adaption values. With our setting, we can now compute what would happen262

under sustained conditions that resembles the yearly conditions observed in a particular hy-263

drological year of our study period from 2004 to 2014. In our experiments, we assume that264

each cell starts with full forest cover (state = 1.0) at t “ 0. If we are taking, for instance the265

precipitation, evaporation and moisture recycling network of a certain year, then we will find266

some cells that are unstable since their MAP or, mostly, their MCWD value is below the critical267

value which is defined with the timeseries from 1974-2003 (see Supplementary Fig. 8). If this268
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is the case, this cell transgresses its threshold and becomes forest cover free which then leads269

to reduced moisture recycling since the moisture transport value is multiplied by the fraction270

of forest cover. This means that the moisture transport value is set to zero when a forested cell271

tipped. This can then drive further cells towards or across their tipping point such that cas-272

cading events can be expected. In case a cell is only driven towards, but not over its tipping273

point, the effects on moisture recycling and tree cover are still accounted for assuming that the274

response of the vegetation is linearly represented by the state, instead of this effect being zero275

as in threshold-only models32.276

The critical values depend on the level of local adaptation αi (see Eq. 4). Thus, it can be ex-277

pected that a higher adaptation factor leads to a lower number of tipped rainforest cells. In278

a calibration experiment for adaptation factors between 1.0 and 3.0 standard deviations and a279

constant adaptation factor for all cells i (αi “ α @i), we find that the tipped area indeed goes280

down with increased adaptation factors (see Supplementary Fig. 9). The difference between281

experiments where we allow cascading effect (blue) and do not (red) is shown in green. In282

reality, the true value of adaptation of a certain cell is unknown and might vary from location283

to location. That is why a new ensemble of simulations with increased robustness is required284

and the constant adaptation factor hypothesis (α “ αi @i) is dropped in favour of an ensemble285

approach where αi is varied locally. Thus, we create an ensemble of 100 members for each year286

in the study period.287

288

Construction of ensemble. Eq. 4 determines the critical values for MAP and MCWD for each289

1˝x1˝ cell separately. The critical value is dependent on the local average value as well as the290

variability of the 30 years before the study period (GLDAS data from 1974-2003). The exact291

critical value is determined by the adaptation factor α and must in turn be chosen appropriately.292

Therefore, we assume that a cell is on average able to remain in the same state under MAP293
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and MCWD conditions that are two standard deviations away from their mean, i.e., from their294

“experiences” during the last 30 years. However, the exact value of adaptation is uncertain and295

might be different in different regions, also due to several factors that we do not model explicitly296

in this work. But we take this into account by drawing the individual adaptation values αi for297

each cell i from a β-distribution that is centred at 2 standard deviations and ranges from 1 to 3298

standard deviations299

β px, a, bq “ pσupper ´ σlowerq ¨ xa´1p1´ xqb´1

ż 1

0

ta´1pt´ 1qb´1dt

` σlower. (5)

Here, we use σupper “ 3.0 and σlower “ 1.0 for the upper and lower bounds. We choose300

a “ b “ 2.5 which ensures that, on average, 75% of all values lie between 1.5 to 2.5 stan-301

dard deviations and 12.5% lie between 1.0 to 1.5 or between 2.5 to 3.0 standard deviations,302

respectively. This means that 75% lie in the central interval and 25% outside (75-25-rule). We303

have chosen a β-distribution since it is the analogy of a normal distribution for a fixed interval.304

With that procedure we construct an ensemble of 100 members of which three examples can be305

found in Supplementary Fig. 10. If not stated otherwise, all results shown are from the average306

over the 100 ensemble members.307

308

Network of coupled nonlinear differential equations. We use a combination of nonlinear309

differential equations together with a complex network to describe the state of the rainforest310

cells and their interactions. We use this approach instead of a threshold approach since we311

want to be able to account for partial changes in the state and their effects on the network.312

For instance such changes can be critical for the tipping of cells that are not coupled directly,313

but via an intermediary cell, where partial changes are decisive for the emergence of a tipping314

cascade. Indirect effects have been found to account for 10% and more, already in very simple315

interaction structures in so called motifs62.316
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In the differential equation approach in this work, we model the main hydrological parameters317

and the stability of the rainforest, but no further parameters such as biotic variables. The main318

hydrological properties are the precipitation (MAP), the MCWD and the moisture recycling.319

Following the reasoning above, we describe the mathematical details in the remainder of this320

section.321

322

Each 1˝x1˝ cell is represented by a differential equation of the form323

dxi
dt
“ x3i ´ xi ` Fcrit pMAPi,MCWDiq , (6)

where xi stands for the state of the rainforest cell and can be interpreted as the fraction of the tree324

cover. The shape of this function can be see in Supplementary Fig. 11. Furthermore, Eq. 6 has325

the normal form of a saddle-node bifurcation and is a simple form of a differential equation with326

two stable states. Such equations have been suggested to model dynamics in various contexts327

such as economics, ecology or the Earth system63,64,65. The two states are stable depending on328

the value of the critical function Fcrit where +1.0 stands for full tree cover and ´1.0 for the329

alternative state without full tree cover. Such an alternative state could be a savanna like state330

or completely treeless. It is not possible for a cell to have lower tree cover values than 0% or331

values higher than full forest cover such that the state xi is limited to the interval r´1.0, 1.0s.332

The advantage of choosing state limits of ´1.0 and `1.0 is that the critical value then remains333

analytically representable and has the specific value Ccrit “
a

4{27 (see Supplementary Fig. 11).334

This value is derived from the discriminant of the polynomial of Eq. 6 and more details can be335

found in literature64,66. For other state limits such as between 0.0 and 1.0, this would have336

to be dropped since the parameters in front of the cubic and linear terms of Eq. 6 would be337

different. Therefore, we decided for prefactors of 1.0 in front of the cubic and the linear term338

such that the state limits are ´1.0 and `1.0. As soon as the critical value of Ccrit is reached339
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by Fcrit a state transition will occur since the upper stable state becomes unstable and only the340

lower stable state remains stable. For more details on this equation and the critical value, see341

e.g. Wunderling et al. (2020) or Klose et el. (2020)62,64.342

In our case, the rainforest cells are not independent, but interact via moisture recycling such that343

Eq. 6 becomes344

dxi
dt
“ x3i ´ xi ` Fcrit pMAPi,MCWDiq `

Nÿ

j“1
j‰i

Mji p∆MAPji,∆MCWDjiq xj
2
. (7)

Here, the entries of the critical matrixMji p∆MAPji,∆MCWDjiq represent the strength of the345

moisture recycling link between two grid cells from j to i. The state xj must be divided by346

2 since the distance from minimum to maximum state is 2. Similar forms of the network and347

the differential equation have already been used in earlier studies in the literature, but in a way348

more simplified form compared to this work62,38.349

350

Computation of the critical function. While the shape of each cell is represented by Eq. 6, the351

determination of the critical function with respect to MAP and MCWD remains. The critical352

function Fcrit pMAPi,MCWDiq is computed in two steps. Firstly, for MAP353

Fcrit pMAPiq “ Ccrit ¨ MAPi ´ µMAP,i

MAPcrit,i ´ µMAP,i
, (8)

where µMAP,i is the average value of that specific cell over the course of 30 years from the354

GLDAS calibration dataset (see Supplemenentary Figs. 6 and 7). The critical value MAPcrit,i is355

also computed from this dataset using Eq. 4. MAPi is the actual precipitation value in the cell356

within the evaluation period, for instance the value of the year 2010 in this cell for the case that357

the (drought) conditions of the year 2010 are investigated. Secondly, for MCWD358

Fcrit pMCWDiq “ Ccrit ¨ MCWDi ´ µMCWD,i

MCWDcrit,i ´ µMCWD,i
. (9)
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Although both equations (Eqs. 8 and 9) are in principle not limited, we restrict them to the359

interval r0, Ccrits since the critical value for tipping of Eq. 6 is reached at Ccrit such that higher360

values are not necessary to tip a certain cell.361

Then, the critical function Fcrit pMAPi,MCWDiq is computed as362

Fcrit pMAPi,MCWDiq “ max tFcrit pMAPiq ,Fcrit pMCWDiqu`

`
ˆ

1´ max tFcrit pMAPiq ,Fcrit pMCWDiqu
Ccrit

˙
¨min tFcrit pMAPiq ,Fcrit pMCWDiqu .

(10)

Again, the values of Eq. 10 are restricted to the interval r0, Ccrits since a state change occurs as363

soon as the upper value of the interval, i.e. Ccrit, is reached. The first term of Eq. 10 is sufficient364

to determine the critical function Fcrit pMAPi,MCWDiq if Fcrit pMAPiq or Fcrit pMCWDiq are365

smaller than zero or larger than Ccrit. In case Fcrit pMAPiq and Fcrit pMCWDiq are larger than366

zero, but smaller than Ccrit, both terms of Eq. 10 are required. The second term takes the addi-367

tional effect of the smaller of the two factors (from Eqs. 8 and 9) into account such that this is368

represented in the dynamics of Eq. 10. Then, partial state changes (even without tipping) affect369

the state of the rainforest cell and with that also the moisture recycling values (see curvature370

before tipping point in the sketch in Fig. 1a, b). This is an advantage of a fully dynamic model371

such as this, while threshold-only models would not be capable of doing this.372

An example could be that Fcrit pMAP1q “ Fcrit pMAP2q “ 1
2
¨Ccrit due to respective MAP values373

for two cells at the same time. Then it makes sense that the state of these two cells that have374

exactly this critical value with respect to MAP is not the same in case they have a different value375

with respect to their MCWD values. Let us assume that cell 1 has Fcrit pMCWD1q “ 1
4
¨Ccrit and376

cell 2 has Fcrit pMCWD2q “ 1
16
¨ Ccrit. Then, the second term of Eq. 10 takes these differences377

between the cells 1 and 2 into account shifting cell 1 a bit closer to its tipping point than cell 2378

such that the reduction effect on the respective outgoing moisture recycling links is stronger for379

cell 1 than for cell 2.380

381
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Computation of the critical matrix. In analogy to Eqs. 8 and 9, we define the critical matrix382

for MAP as383

Mji p∆MAPjiq “ Ccrit ¨ ∆MAPji

MAPcrit,i ´ µMAP,i
:“Mji, MAP, (11)

where ∆MAPji represents the difference of the mean annual precipitation arising from the384

moisture recycling link δji from cell j to cell i. Thus: ∆MAPji “ ∆MAP pδjiq “ δji, MAP.385

386

For MCWD we have387

Mji p∆MCWDjiq “ Ccrit ¨ ∆MCWDji

MCWDcrit,i ´ µMCWD,i
:“Mji, MCWD, (12)

where ∆MCWDji “ ∆MCWD pδji, MAPq is the potential increase of MCWD in response to388

the moisture recycling link δji, MAP from cell j to cell i. Note that the moisture recycling link389

δji, MAP can reduce the precipitation, while the evaporation (which also goes into the computa-390

tion of the MCWD value, see Eq. 1) remains constant.391

392

Then, analogously to Eq. 10, the complete critical matrix is computed as393

Mji p∆MAPji,∆MCWDjiq “Mji, MAP `
ˆ

1´Mji, MAP

Ccrit

˙
¨Mji, MCWD (13)

if Fcrit pMAPiq ą Fcrit pMCWDiq or394

Mji p∆MAPji,∆MCWDjiq “Mji, MCWD `
ˆ

1´Mji, MCWD

Ccrit

˙
¨Mji, MAP (14)

if Fcrit pMAPiq ă Fcrit pMCWDiq.395

396

Resolution independence. To check for robustness of our results, we recomputed our simu-397

lations with respect to the finer and coarser resolutions of 0.5˝x0.5˝, 1.5˝x1.5˝ and 2˝x2˝ (see398

Supplementary Figs. 10 and 12). For that purpose, we scale the minimal moisture recycling399
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value connecting to rainforest cells with the area of a cell. In case of a resolution of 0.5˝x0.5˝
400

we take all moisture recycling values of more than 0.25 mm/yr into account, for 1˝x1˝ we take401

all values above 1.0 mm/yr into account, for 1.5˝x1.5˝ all values above 2.25 mm/yr and for402

2˝x2˝ all values above 4.0 mm/yr. Overall, we find that the vulnerability patterns are at the403

same location in the southeast (compare Fig. 3a with Supplementary Fig. 12a, b, c). Thus, the404

qualitative pattern is the same. The absolute values also show a close quantitative match within405

their standard deviations for resolutions of 1˝x1˝ or coarser (see Supplementary Fig. 13a, b).406

The finer the resolution is, the higher the tipped area tendentially is. This is due to the fact that407

a higher resolution resolves cells to a finer level. These cells are then able to tip individually,408

whereas on a coarser resolution these cells are subsumed under one cell which is then still sta-409

ble. Also, the scaling of the moisture recycling connections that we take into account might410

play a role for the increased tipping when the resolution becomes finer. Further note that we411

decreased the ensemble size for the resolution of 0.5˝x0.5˝ from 100 to 10 ensemble members412

due to computational constraints.413

414

Notes on colour maps. This paper makes use of perceptually uniform colour maps developed415

by F. Crameri67.416

417

Data and Code availability. The data and code that support the findings of this study are avail-418

able from the corresponding authors upon reasonable request.419

420
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g h i
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Supplementary Figure 1 | Moisture recycling network 2014. a´l, Monthly
moisture recycling network links with a strength of 1 mm/month. This threshold has
been chosen to preserve visibility. Values are shown for the hydrological year 2014, i.e.,
from October 2013 (panel a) to September 2014 (panel l). Compare to drought year 2010
(see Supplementary Fig. 2).
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d e f
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j k l

Supplementary Figure 2 | Moisture recycling network 2010. a´l, Monthly
moisture recycling network links with a strength of 1 mm/month. Values are shown for
the drought year 2010. Panel a represents October 2009 and panel l represents September
2010. Compare with Supplementary Fig. 1 for the year 2014.
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Supplementary Figure 3 | Vulnerability of the rainforest against a MAP-based
Z-score. a, The total tipped area is shown over the course of the mean annual precipita-
tion based Z-score measured in standard deviations in analogue to the MCWD drought
index (see main manuscript’s Fig. 2 and Eq. 1). b, The additional tipped area due to
network effects for each year is shown in percentage of the tipped area in panel a. Over
the course of the study period, we probe a range from around ´1.5 to `0.5 standard
deviations of precipitation (i.e., on average, wetter years than in the calibration period).
We do not find a correlation between the MAP based Z-score and the tipped area or the
network effects as for the MCWD Z-score.
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Supplementary Figure 4 | Endangered regions on a yearly resolution. Risk
maps for the likelihood of instabilities separated for the hydrological years 2004 (panel a)
to 2014 (panel k). The mean of these vulnerability maps is shown in the main manuscript
(Fig. 3a).
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Supplementary Figure 6 | Closeness to tipping on a yearly resolution. Closeness
to tipping separated for the hydrological years 2004 (panel a) to 2014 (panel k). The plain
light beige cells in the middle of dark red regions in the southeastern Amazon reflect that
this region is tipped for all 100 ensemble members. At this region, the closeness to
tipping cannot be evaluated since the respective cells are already shifted beyond their
tipping point, while the closeness to tipping only measures the average shift towards (but
not beyond) the tipping point. The summary of these vulnerability maps is shown in the
main manuscript (Fig. 4).
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Supplementary Figure 7 | Determination of the critical values. a, Average
mean annual precipitation (MAP), b, Standard deviation of MAP, c, Average maximum
cumulative water deficit (MCWD), a, Standard deviation of the average MCWD. All
panels show values from the hydrological years 1974 to 2003 derived from GLDAS which
are used to compute the critical values of each grid cell located in the Amazon basin.
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logical years 2004-2014). The data is aggregated on a yearly basis and averaged over the
whole Amazon basin. The average MCWD over the study period is plotted in orange
(right y-axis).
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Supplementary Figure 10 | Ensemble of starting conditions. a´c, Three examples
of initial conditions for the local adaptation factor αi for the 567 cells in the Amazon
rainforest basin at a resolution of 1˝x1˝. The values are β-distributed according Eq. 5 in
the main manuscript.
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Supplementary Figure 12 | Regional resolution dependences. a, Same as Fig. 3
in the main manuscript, but for a resolution of 2˝x2˝, b, for a resolution of 1.5˝x1.5˝

and c, for a resolution of 0.5˝x0.5˝. We find quantitative agreement with the results in
Fig. 3a (see also Supplementary Fig. 13). d, Same as in Fig. 3 in the main manuscript for a
resolution of 1˝x1˝, but for a constant monthly evaporation of 100 mm/month to compute
the MCWD instead of using the observed values. The MCWD has been computed like
this earlier in literature1,2 which is why we want to show a comparison of our results ot
this. In the southeast less cells tip compared to Fig. 3a of the main manuscript since the
evaporation rate is set constant to 100 mm/month (compare with Supplementary Fig. 13).
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Abstract. With progressing global warming, there is an increased risk that one or several tipping elements in the climate system

might cross a critical threshold, resulting in severe consequences for the global climate, ecosystems and human societies. While

the underlying processes are fairly well understood, it is unclear how their interactions might impact the overall stability of the

Earth’s climate system. As of yet, this cannot be fully analysed with state-of-the-art Earth system models due to computational

constraints as well as some missing and uncertain process representations of certain tipping elements. Here, we explicitly5

study the effects of known physical interactions among the Greenland and West Antarctic ice sheets, the Atlantic Meridional

Overturning Circulation (AMOC) and the Amazon rainforest using a conceptual network approach. We analyse the risk of

domino effects being triggered by each of the individual tipping elements under global warming in equilibrium experiments.

In these experiments, we propagate the uncertainties in critical temperature thresholds, interaction strengths and interaction

structure via large ensembles of simulations in a Monte-Carlo approach. Overall, we find that the interactions tend to destabilise10

the network of tipping elements. Furthermore, our analysis reveals the qualitative role of each of the four tipping elements

within the network, showing that the polar ice sheets on Greenland and West Antarctica are oftentimes the initiators of tipping

cascades, while the AMOC acts as a mediator transmitting cascades. This indicates that the ice sheets, which are already at risk

of transgressing their temperature thresholds within the Paris range of 1.5 to 2 ◦C, are of particular importance for the stability

of the climate system as a whole.15

1 Introduction

1.1 Tipping elements in the climate system

The Earth system comprises a number of large-scale subsystems, the so-called tipping elements, that can undergo large and

possibly irreversible changes in response to environmental or anthropogenic perturbations once a certain critical threshold in20
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forcing is exceeded (Lenton et al., 2008). Once triggered, the actual tipping process might take several years up to millennia

depending on the respective response times of the system (Hughes et al., 2013; Lenton et al., 2008). Among the tipping ele-

ments are cryosphere components such as the continental ice sheets on Greenland and Antarctica, biosphere components such

as the Amazon rainforest, boreal forests and coral reefs as well as large-scale atmospheric and oceanic circulation patterns

such as monsoon systems and the Atlantic Meridional Overturning Circulation (AMOC). With continuing global warming, it25

becomes more likely that critical thresholds of some tipping elements might be exceeded, possibly within this century, trigger-

ing severe consequences for ecosystems, infrastructures and human societies. These critical thresholds can be quantified with

respect to the global mean temperature (GMT), resulting in three clusters of tipping elements that are characterised by their

critical temperature between 1–3 ◦C, 3–5 ◦C, and above 5 ◦C of warming compared to pre-industrial temperatures, respec-

tively (Schellnhuber et al., 2016). The most vulnerable cluster, which is already at risk between 1–3 ◦C of warming, includes30

several cryosphere components, specifically mountain glaciers as well as the Greenland and West Antarctic ice sheets. Recent

studies suggest potential early-warning indicators for these tipping elements, showing that some of them are approaching or

might have already transgressed a critical threshold (Lenton et al., 2019; Caesar et al., 2018; Nobre et al., 2016; Favier et al.,

2014).

35

1.2 Interactions between climate tipping elements

The tipping elements in the Earth system are not isolated systems, but interact on a global scale (Lenton et al., 2019; Kriegler

et al., 2009). These interactions could have stabilising or destabilising effects, increasing or decreasing the probability of

emerging tipping cascades, and it remains an important problem to understand how this affects the overall stability of the

Earth system. Despite the considerable recent progress in global Earth system modelling, current state-of-the-art Earth system40

models cannot yet comprehensively simulate the nonlinear behaviour and feedbacks between some of the tipping elements

due to computational limitations (Wood et al., 2019). Furthermore, the interactions between tipping elements have only par-

tially been described in a framework of more conceptual, but process-based models, and our current understanding of the

interaction structure of tipping elements is partly based on expert knowledge. For a subset of five tipping elements, an expert

elicitation was conducted synthesising a causal interaction structure and an estimation for the probability of tipping cascades to45

emerge (Kriegler et al., 2009). These studied tipping elements were the Greenland Ice Sheet, the West Antarctic Ice Sheet, the

Atlantic Meridional Overturning Circulation (AMOC), the El-Niño Southern Oscillation (ENSO) and the Amazon rainforest

(see Fig. 1 and Fig. S3). Although this network is not complete with respect to the physical interactions between the tipping

elements and the actual set of tipping elements themselves (Wang & Hausfather, 2020; Lenton et al., 2019; Steffen et al., 2018),

it presented a first step towards synthesising the positive and negative feedbacks between climate tipping elements. To our best50

knowledge, a systematic update of this assessment or a comparably comprehensive expert assessment has not been undertaken

since Kriegler et al. (2009).

Based on the network from this expert elicitation and a Boolean approach based on graph grammars, an earlier study found

that the strong positive-negative feedback loop between the Greenland Ice Sheet and the AMOC might act as a stabiliser to the

2
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Earth system (Gaucherel & Moron, 2017). Also, using the interaction network data of Kriegler et al. (2009), it has been shown55

that large economic damages due to tipping cascades could arise with respect to the social cost of carbon, using a stochastic

and dynamic evaluation of tipping points in an integrated assessment model (Cai et al., 2016). Other studies also quantified

the economic impacts of single climate tipping events and tipping interactions (Lemoine & Traeger, 2016; Cai et al., 2015). In

the light of recent studies that hypothesise a considerable risk of current anthropogenic pressures triggering tipping cascades,

up to a potential global cascade (towards a so-called “hothouse state” of the Earth system) (Lenton et al., 2019; Steffen et al.,60

2018), we here aim at developing a conceptual dynamic network model that can assess whether interactions of tipping elements

have an overall stabilising or destabilising effect on the global climate state. As such, we view our approach as an hypotheses

generator that produces qualitative scenarios (rather than exact quantifications or projections) that can then be further examined

by more process-detailed Earth system models. In this way, the results of this study can lay the foundations and possibly guide

towards a more detailed analysis with more complex models or data-based approaches.65

1.3 Constraints from current observations and paleoclimatic evidence

Observations over the past decades show that several tipping elements are already impacted by progressing global warm-

ing (Wang & Hausfather, 2020; Lenton et al., 2019; IPCC, 2014; Levermann et al., 2010). Ice loss from Greenland and West

Antarctica has increased and accelerated over the past decades (Shepherd et al., 2018; Khan et al., 2014; Zwally et al., 2011).70

Recent studies suggest that the Amundsen basin in West Antarctica might in fact have already crossed a tipping point (Favier

et al., 2014; Rignot et al., 2014). The grounding lines of glaciers in this region are rapidly retreating, which could induce

the Marine Ice Sheet Instability and eventually lead to the disintegration of the entire basin (Mercer, 1978; Weertman, 1974).

Paleoclimate records suggest that parts of Antarctica and larger parts of Greenland might already have experienced strong ice

retreat in the past, especially during the Pliocene as well as during Marine Isotope Stages 5e and 11 (Dutton et al., 2015).75

It has also been shown that the AMOC experienced a significant slow-down since the mid 20th century (Caesar et al., 2018),

potentially due to freshening of the North Atlantic ocean by increased meltwater influx from Greenland (Bakker et al., 2016;

Böning et al., 2016). An AMOC slow-down has likely also occurred during the last deglaciation in the Heinrich event 1 and

Younger Dryas cold periods, as proxies from sea surface and air temperatures as well as climate model simulations suggest (Ritz80

et al., 2013).

The Amazon rainforest is not only directly impacted by anthropogenic climate change, including the increased risk of exten-

sive drought events or heat waves (Marengo et al., 2015; Brando et al., 2014), but also by deforestation and fire (Thonicke

et al., 2020; Malhi et al., 2009). This increases the likelihood that parts of it will shift from a rainforest to a savannah state85

for instance through diminished moisture recycling (Staal et al., 2018; Zemp et al., 2017). It is suspected that the Amazon

rainforest could be close to a critical extent of deforestation which might, together with global warming, suffice to initiate such

a critical transition (Nobre et al., 2016). This could put 30–50% of rainforest ecosystems at risk of shifting the rainforest to
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tropical savannah or dry forests (Nobre et al., 2016). On a local to regional point of view, the potential for critical transitions in

the rainforest is further examined by more recent studies (Staal et al., 2020; Ciemer et al., 2019).90

1.4 Structure of this work

Following the introduction, in Sect. 2, we provide an overview of the biogeophysical processes governing the individual

dynamics and interactions of the four tipping elements considered here, and how these are represented in our conceptual

network model. We also describe the construction of the large-scale Monte-Carlo ensemble which enables us to propagate the95

parameter uncertainties inherent in the modelled tipping elements and their interactions. In Sect. 3, we explore how the critical

threshold temperature ranges of the tipping elements change with increasing overall interaction strength. It is also shown which

tipping elements initiate and transmit tipping cascades, revealing the characteristic roles of the tipping elements in the Earth

system. We also discuss the distinct nature of ENSO as a potential tipping element, and present results of a robustness analysis

including this additional tipping element in our network model. Sect. 4 summarises the results and discusses the limitations of100

our approach. It also outlines possible further lines of research concerning tipping element interactions and risks of emerging

tipping cascades with more process-detailed models.

2 Methods

In the following, we present our dynamic network approach for modelling tipping interactions and cascades in the Earth

system. In Sect. 2.1, we motivate the use of a stylised equation to represent climate tipping elements in a conceptual manner.105

This equation exhibits a double-fold bifurcation (see Fig. 2)

dxi
dt

=
[
−x3

i +xi + ci
] 1

τi
. (1)

Here, xi indicates the state of a certain tipping element, ci is the critical parameter and τi the typical tipping time scale with i=

{Greenland Ice Sheet, West Antarctic Ice Sheet, AMOC, Amazon rainforest}. This approach has already been used frequently

for qualitatively describing tipping dynamics in different applications and network types and has been applied to systems in110

climate, ecology, economics and political science (Klose et al., 2020; Krönke et al., 2020; Wunderling et al., 2020a; Dekker et

al., 2018; Brummitt et al., 2015; Abraham et al., 1991).

To describe the tipping elements’ interactions, we extend Eq. 1 by a linear coupling term (Klose et al., 2020; Krönke et al.,

2020; Brummitt et al., 2015) to yield

dxi
dt

=




Individual dynamics term︷ ︸︸ ︷
−x3

i +xi + ci +

Coupling term︷ ︸︸ ︷
1

2

∑

j
j 6=i

dij (xj + 1)




1

τi
, (2)115

and describe the physical interpretation of these interactions between the tipping elements in Sect. 2.2. While the first term

(individual dynamics term) determines the dynamical properties of each individual tipping element, the second term (coupling

4
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Figure 1. Interactions between climate tipping elements and their roles in tipping cascades. The Greenland Ice Sheet, West Antarctic Ice

Sheet, Atlantic Meridional Overturning Circulation (AMOC) and the Amazon rainforest are depicted together with their main interac-

tions (Kriegler et al., 2009). The links between the tipping elements are colour-coded, where red arrows depict destabilising and blue arrows

depict stabilising interactions. Where the direction is unclear, the link is marked in grey. A more thorough description of each of the tipping

elements and the links can be found in Tables 1, 2 and in Sect. 2. Where tipping cascades arise, the relative size of the dominoes illustrates in

how many ensemble members the respective climate component initiates (red domino) or occurs in tipping cascades (blue domino). Standard

deviations for these values are given in Figs. S1(a) and (b). Generally, the polar ice sheets are found to more frequently take on the role as

initiators of cascades than the AMOC and Amazon rainforest.
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term) describes the effects of interactions between tipping elements. If the prefactors in front of the cubic and the linear term are

unity as in Eq. 2 and the additive coupling term is neglected (dij = 0 for all i, j), the critical threshold values where qualitative

state changes occur are ci 1,2 =±
√

4/27 (Klose et al., 2020). The system described by this differential equation is bistable120

for values of the critical parameter between c1 and c2 and can here be separated into a transitioned and a baseline state, where

xi =−1 denotes the baseline state and xi = +1 the completely transitioned one (see Fig. 2).

Building on these model equations, in Sect. 2.3, we describe the fully parameterised model and its parameters as it is used in

this study. Specifications of how tipping cascades are evaluated and time scales are chosen can be found in Sects. 2.4 and 2.5.

Lastly, our large scale Monte Carlo ensemble approach for the propagation of parameter and interaction network uncertainties125

is described in Sect. 2.6.

2.1 From conceptual to process-detailed models of climate tipping elements

In the conceptual network model investigated in this study, the main dynamics of each of the tipping elements are condensed

to a non-linear differential equation with two stable states representing the current (baseline) state and a possible transitioned

state capturing the qualitative dynamics of generalised tipping elements (see Eq. 1). This serves as a stylised representation for130

the Greenland Ice Sheet, the West Antarctic Ice Sheet, the AMOC and the Amazon rainforest. We here focus on these four out

of a larger range of tipping elements in the cryosphere, biosphere and oceanic and atmospheric circulation patterns that have

been suggested in the literature (Schellnhuber et al., 2016; Scheffer et al., 2009; Lenton et al., 2008). In this study, we do not

consider a possible “backtipping” (or hysteresis behaviour) of climate tipping elements, since the forcing represented by global

mean temperature anomalies is only increased, but never decreased in our experiments. It is clear that the representation of a135

complex climate tipping element with all its interacting processes as well as positive and negative feedbacks in a stylised cusp

bifurcation model is a strong simplification. In the following, we elaborate on why such a cusp bifurcation structure (Eq. 1)

can nonetheless be assumed to capture the overall stability behaviour for these four tipping elements (Bathiany et al., 2016),

before we introduce more mathematical details of our dynamical systems approach in Sect. 2.3.

1. AMOC: Early conceptual models introduced in the 1960s showed that the AMOC could exhibit a cusp-like behaviour,140

using simplified box models based on the so-called salt-advection feedback (Stommel, 1961; Cessi, 1994). Many exten-

sions and updates to this well-known box model approach have been put forward, each confirming the potential multi-

stability of the AMOC (e.g. Wood et al. (2019)). More complex Earth system models including EMICs (e.g., CLIMBER)

and AOGCMs (e.g., the FAMOUS and HadGEM3 models) have shown hysteresis behaviour which is qualitatively sim-

ilar to Eq. 1 (Mecking et al., 2016; Hawkins et al., 2011; Rahmstorf et al., 2005). Furthermore, paleoclimatic evidence145

suggests a bistability of the AMOC: In paleoclimate records, Dansgaard-Oeschger events (see e.g. Crucifix, 2012) have

been associated with large reorganisations of the AMOC (Ditlevsen et al., 2005; Timmermann et al., 2003; Ganopolski

& Rahmstorf, 2002), where ice core data links the events to sea-surface temperature increases in the North Atlantic.

Even though there are considerable uncertainties, literature estimates suggest the level of global warming sufficient for

tipping the AMOC between 3.5–6.0 ◦C (Schellnhuber et al., 2016; Lenton, 2012; Levermann et al., 2012; Lenton et al.,150
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2008), with the risk of crossing a critical threshold considerably increasing beyond 4 ◦C above pre-industrial temperature

levels (Kriegler et al., 2009).

2. Greenland Ice Sheet: Previous studies have shown that a double fold-like bifurcation structure for the ice sheets can arise

from the melt-elevation feedback (Levermann & Winkelmann, 2016) as well as from the Marine Ice Sheet Instability

and other positive feedback mechanisms (e.g., DeConto & Pollard, 2016; Schoof, 2007). In particular, dynamic ice sheet155

model simulations have identified irreversible ice loss once a critical temperature threshold is crossed (Toniazzo et al.,

2004), leading to multiple stable states and hysteresis behaviour for the Greenland Ice Sheet (Robinson et al., 2012;

Ridley et al., 2010). In Robinson et al. (2012), the critical temperature range for an irreversible disintegration of the

Greenland Ice Sheet has been estimated between 0.8–3.2 ◦C of warming above pre-industrial global mean temperature

levels. Paleoclimate evidence further suggests that there have been substantial, potentially self-sustained retreats of the160

Greenland Ice Sheet in the past. It has, for instance, been simulated that the Greenland Ice Sheet can disintegrate in case

warmer ocean conditions from the Pliocene are applied to an initially glaciated Greenland (Koenig et al., 2014). Further,

Greenland was nearly ice-free for extended interglacial periods during the Pleistocene (Schaefer et al., 2016). Sea-level

reconstructions further suggest that large parts of Greenland could have been ice-free during Marine Isotope Stage 11

and the Pliocene (Dutton et al., 2015).165

3. West Antarctic Ice Sheet: Compared to the case of the Greenland Ice Sheet, different processes make the West Antarctic

Ice Sheet susceptible to tipping dynamics. Since large parts of West Antarctica are grounded in marine basins, changes

in the ocean are key in driving the evolution of the ice sheet. The Marine Ice Sheet Instability can trigger self-sustained

ice loss where the ice sheet is resting below sea-level on retrograde sloping bedrock (Weertman, 1974; Schoof, 2007).

This destabilising mechanism is possibly already underway in the Amundsen Sea region (Favier et al., 2014; Joughin170

et al., 2014). Once triggered, a single local perturbation via increased sub-shelf melting in the Amundsen region could

lead to wide-spread retreat of the West Antarctic Ice Sheet (Feldmann & Levermann, 2015). Further, a recent study

shows strong hysteresis behaviour for the whole Antarctic Ice Sheet, identifying two major thresholds which lead to a

destabilisation of West Antarctica around 2◦C of global warming, and large parts of East Antarctica between 6–9◦C of

global warming (Garbe et al., 2020). It is likely that the West Antarctic Ice Sheet has experienced brief but dramatic175

retreats during the past five million years (Pollard & DeConto, 2009). Prior collapses have been suggested from deep-

sea-core isotopes and sea-level records (Gasson, 2016; Dutton et al., 2015; Pollard & DeConto, 2005).

4. Amazon rainforest: Conceptual models of the Amazon identified multi-stability between rainforest, savannah and treeless

states, leading to hysteresis (Staal et al., 2016, 2015; Van Nes et al., 2014). This hysteresis has been found to be shaped by

local-scale tipping points of the Amazon rainforest and its resilience might be diminished under climate change until the180

end of the 21st century (Staal et al., 2020). More complex dynamic vegetation models also found alternative stable states

of the Amazon ecosystem (Oyama & Nobre, 2003) and suggest that rainforest dieback might be possible due to drying

of the Amazon basin under future climate change scenarios (Nobre et al., 2016; Cox et al., 2004, 2000). Observational

data further supports the potential for multi-stability of the Amazon rainforest (Ciemer et al., 2019; Hirota et al., 2011;
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Staver et al., 2011). While it remains an open question whether the Amazon has a single system-wide tipping point, the185

projected increase in droughts and fires (Malhi et al., 2009; Cox et al., 2008) is likely to impact the forest cover on a local

to regional scale, which might spread to other parts of the region via moisture-recycling feedbacks (Zemp et al., 2017,

2014; Aragão, 2012). It is important to note that in contrast to the ice sheets and ocean circulation, the rainforest is able

to adapt to changing climate conditions to a certain extent (Sakschewski et al., 2016). However, this adaptive capacity

might still be outpaced if climate change progresses too rapidly (Wunderling et al., 2020c). A dieback of the Amazon190

rainforest has been found under a business-as-usual emissions scenario (Cox et al., 2004), which would be equivalent to

a global warming of more than 3 ◦C above pre-industrial levels until 2100 (≈3.5–4.5 ◦C (see also Schellnhuber et al.,

2016)), mainly due to more persistent El-Niño conditions (Betts et al., 2004).

2.2 Physical interpretation of tipping element interactions

Based on these conceptual models as well as building on first coupled experiments with a discrete state Boolean model195

(Gaucherel & Moron, 2017) and economic impact studies (Cai et al., 2016; Lemoine & Traeger, 2016; Cai et al., 2015),

we here describe the interactions of the four tipping elements in a network approach using a set of linearly coupled, topolog-

ically equivalent differential equations (Kuznetsov, 2004). In the following we go through the different main interactions of

the four tipping elements considered here and expand on the underlying physical processes. Overall, the additional literature

supports and refines the results from an early expert elicitation (Kriegler et al., 2009).200

1. Greenland Ice Sheet→ AMOC: Increasing freshwater input from enhanced melting of the Greenland Ice Sheet can lead

to a weakening of the AMOC, as supported by observations, paleoclimate evidence as well as modelling studies (Caesar

et al., 2018; Robson et al., 2014; Driesschaert et al., 2007; Jungclaus et al., 2006; Rahmstorf et al., 2005). Between 1992

and 2018, the Greenland Ice Sheet has lost around 3900±342 Gt of ice (Shepherd et al., 2020). This ice loss has strongly

accelerated in recent years (Sasgen et al., 2020), and Greenland has been subject to several extreme melt events in the205

past decade alone (Tedesco & Fettweis, 2020; Nghiem et al., 2012; Tedesco et al., 2011). At the same time, an AMOC

weakening of 15% (3±1 Sv) has been observed since the 1950s (Caesar et al., 2018). This weakening has at least partially

been attributed to freshwater influx into the North Atlantic deep water formation regions due to enhanced melting from

Greenland. Paleoclimatic records further suggest that the AMOC could exist in multiple stable states, based on observed

temperature changes associated with meltwater influx into the North Atlantic (Blunier and Brook, 2001; Dansgaard et210

al., 1993). Therefore, it is likely that a tipping of the Greenland Ice Sheet would lead to a destabilisation of the AMOC

(see Fig. 1).

2. AMOC → Greenland Ice Sheet: Conversely, if the AMOC weakens, leading to a decline in its northward surface heat

transport, Greenland might experience cooler temperatures (e.g. Jackson et al., 2015; Timmermann et al., 2007; Stouffer

et al., 2006), which would have a stabilising effect on the ice sheet. With the global climate model HadGEM3, it has been215

shown that temperatures in Europe could drop by several degrees if the AMOC collapses, regionally up to 8 ◦C (Jackson

et al., 2015). A cooling trend in sea surface temperatures (SST) over the subpolar gyre, as a result of a weakening AMOC,
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has been confirmed by recent reanalysis and observation data (Caesar et al., 2018; Jackson et al., 2016; Frajka-Williams,

2015; Robson et al., 2014). This “fingerprint” translates a reduction in overturning strength by 1.7 Sv per century to

0.44 K SST-cooling per century (Caesar et al., 2018). AMOC regime shifts between weaker and stronger overturning220

strength during the last glacial period have been associated with large regional temperature changes in Greenland, for

example during Dansgaard-Oeschger or Heinrich events (Barker and Knorr, 2016). Moreover, there is paleoclimatic

evidence from 3.6 million years ago that a weaker North Atlantic current as part of the AMOC fostered Arctic sea-ice

growth which might have preceded continental glaciation in the northern hemisphere at that time (Karas et al., 2020).

Based on these findings, we assume that a weakening of the AMOC would have a stabilising effect on the Greenland Ice225

Sheet (see Fig. 1).

3. West Antarctic Ice Sheet → AMOC: It remains unclear whether increased ice loss from the West Antarctic Ice Sheet

has a stabilising or destabilising effect on the AMOC (see Fig. 1). Swingedouw et al. (2009) identified different pro-

cesses based on freshwater hosing experiments into the Southern Ocean, which could be associated with a melting West

Antarctic Ice Sheet (Swingedouw et al., 2009). Using the EMIC LOVECLIM1.1, the authors found both enhancing and230

weakening effects on the AMOC strength:

First, deep water adjustments are observed. This means that an increase of the North Atlantic Deep Water formation is

observed in response to a decrease in Antarctic bottom water production due to the conducted hosing experiment. This

mechanism has been termed the so-called bipolar ocean seesaw. Second, salinity anomalies in the Southern Ocean are

distributed to the North Atlantic, which dampens the North Atlantic Deep Water formation (compare to Seidov et al.,235

2005). Third, the North Atlantic Deep Water formation is enhanced by a strengthening of southern hemispheric winds

in response to a southern hemispheric cooling. The reason for the stronger winds is the greater meridional temperature

gradient between a cooler Antarctic region (due to the hosing experiment) and the equator. This effect has been termed

the Drake Passage effect (Toggweiler & Samuels, 1995).

Overall, the first and the third mechanism tend to strengthen the AMOC, while the second process would rather lead240

to a weakening of the AMOC. The specific time scales and relative strengths of these mechanisms are as of yet un-

clear (Swingedouw et al., 2009). In a coupled ocean-atmosphere model, a slight weakening of the AMOC was detected

for a freshwater input of 1.0 Sv in the Southern Ocean over 100 years (Seidov et al., 2005). However, other studies sug-

gest a stabilisation of the AMOC if influenced by freshwater input from the West Antarctic Ice Sheet due to the effects

from the bipolar ocean seesaw by decreasing Antarctic Bottom Water formation as described above (Swingedouw et al.,245

2008).

4. AMOC → West Antarctic Ice Sheet: The interaction from the AMOC to the West Antarctic Ice Sheet is destabilising

(see Fig. 1). In case the AMOC shuts down, sea surface temperature anomalies could appear since the northward heat

transport is diminished significantly. This could then lead to a warmer south and colder north, as observed in modelling

studies (Weijer et al., 2019; Timmermann et al., 2007; Stouffer et al., 2006; Vellinga & Wood, 2002). A model intercom-250

parison study for EMICs and AOGCMs found a sharp decrease of surface air temperatures over the northern hemisphere,
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while a slight increase over the southern hemisphere and around the Antarctic Ice Sheet has been observed (Stouffer et

al., 2006). In their study (Stouffer et al., 2006), a forcing of 1.0 Sv was applied to the northern part of the North Atlantic

Ocean. Therefore, we set this link as destabilising in the interaction network mdoel (see Fig. 1).

5. Greenland Ice Sheet↔ West Antarctic Ice Sheet: The direct interaction between the Greenland and the West Antarctic255

Ice Sheet via sea level changes can be regarded as mutually destabilising, however with different magnitudes (see Fig. 1).

It is a well-known phenomenon from tidal changes that grounding lines of ice sheets are varying (e.g. Sayag & Worster,

2013). Therefore, the Greenland Ice Sheet and the West Antarctic Ice Sheet could influence each other by sea level rise

if one or the other cryosphere element would melt. Gravitational, but also elastic and rotational impacts would then

enhance the sea level rise in case one of the huge ice sheets would melt first, since then only the other ice sheets exerts260

strong gravitational forces on ocean waters (Kopp et al., 2010; Mitrovica et al., 2009). The impact of this effect would be

larger if Greenland becomes ice-free earlier than West Antarctica, since many marine terminating ice shelves are located

in West Antarctica, but the interaction is destabilising in both directions (see Fig. 1).

6. AMOC→ Amazon rainforest: Lastly, the interaction between the AMOC and the Amazon rainforest is set as unclear (see

Fig. 1). It is suspected that the intertropical convergence zone (ITCZ) would be shifted southward in case the AMOC265

collapses. This could cause large changes in seasonal precipitation on a local scale, and could as such have strong impacts

on the Amazon rainforest (Jackson et al., 2015; Parsons, 2014). In the Earth system model ESM2M, it has been found

that a strongly suppressed AMOC, through a 1.0 Sv freshwater forcing, leads to drying over many regions of the Amazon

rainforest (Parsons, 2014). However, some regions would receive more rainfall than before. On a seasonal level, the wet

season precipitation is diminished strongly, while the dry season precipitation is significantly increased (Jackson et al.,270

2015; Parsons, 2014). This could have consequences for the current vegetation that is adapted to this partially strong

seasonal precipitation. But overall, it remains unclear whether the influence from a tipped AMOC on the precipitation

in South America has a reducing or increasing influence. Instead, it might differ from locality to locality and is set as

unclear in our study (see Fig. 1).

2.3 Dynamic network model of interacting tipping elements275

In this subsection, we describe the details of the employed dynamic network model, the foundations of which are given

by Eqs. 1 and 2. The critical parameter ci of tipping element i is modelled as a function of global mean temperature, i.e.,

ci =
√

4
27 · ∆GMT

Tlimit, i
, where Tlimit, i is the critical temperature and ∆GMT the increase of the global mean temperature above

pre-industrial levels. This parameterization implies that a state change is initiated as soon as the increase of GMT exceeds the

critical temperature ( ∆GMT
Tlimit, i

> 1, see Table 1). In addition, we model the physical interactions between the tipping elements280

as a linear coupling (first order approach). The coupling term 1
2

∑
j dij (xj + 1) consists of a sum of linear couplings to other

elements xj with dij = d · sij/5. It is necessary to add +1 to xj such that the direction (sign) of coupling is only determined
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by dij and not by the state xj . Thus, Eq. 2 becomes

dxi
dt

=


−x

3
i +xi +

√
4

27
· ∆GMT
Tlimit, i

+ d ·
∑

j
j 6=i

sij
10

(xj + 1)




1

τi
. (3)

Here d is the overall interaction strength parameter that we vary in our simulations and sij is the link strength based on the285

expert elicitation (Kriegler et al., 2009) (see Table 2 & Sect. 2.6). The prefactor 1/10 sets the coupling term of Eq. 3 to the

same scale as the individual dynamics term by normalising sij when d is varied between 0.0 to 1.0. The geophysical processes

behind the interactions between the tipping elements are listed in Table 2 and are described and referenced in Sect. 2.2.

Tipping element ∆Tlimit (◦C)

Greenland 0.8 – 3.2

West Antarctica 0.8 – 5.5

AMOC 3.5 – 6.0

Amazon rainforest 3.5 – 4.5

Table 1. Nodes in the modelled network of interacting tipping elements. For each tipping element in the network (see Fig. 1), a range of

critical temperatures ∆Tlimit is known from literature review (Schellnhuber et al., 2016). Within this temperature range, the tipping element

is likely to undergo a qualitative state transition.

In this network of tipping elements, very strong interactions exist, as detailed above. For each tipping element, there are two290

potential reasons for a state transition, either through the increase of GMT or through the coupling to other tipping elements

(Fig. 2(a)).

The overall interaction strength d is described as a dimensionless parameter (see Eq. 3) that is varied over a wide range in our

simulations, i.e., for d ∈ [0;1], to account for the uncertainties in the actual physical interaction strength between the tipping

elements. This way a range of different scenarios can be investigated. An interaction strength of 0 implies no coupling between295

the elements such that only the individual dynamics remain. When the interaction strength reaches high values around 1, the

coupling term is of the same order of magnitude as the individual dynamics term. In principle, more complex and data- or

model-based interaction terms could be developed. However, while some interactions (e.g. between Greenland Ice Sheet &

AMOC) have been established with EMICs such as CLIMBER-2 and Loveclim as well as GCMs (Wood et al., 2019; Sterl et

al., 2008; Driesschaert et al., 2007; Jungclaus et al., 2006; Rahmstorf et al., 2005), other interactions are less well understood300

potentially leading to biased coupling strengths (see also Sect. 2.2). Due to the sparsity of data concerning tipping interactions

in the past, it remains challenging to extract the interaction parameters from paleoclimatic evidence. We here therefore attempt

to include the full uncertainty ranges concerning the different model parameters and interaction strengths. To this end, we run

large ensembles of simulations over long time scales. This is important since the disintegration of the ice sheets for instance
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Interaction link Maximum link strength sij (a.u.) Physical process

Greenland→ AMOC +10 Freshwater influx

AMOC→ Greenland −10 Reduction of northward heat transport

Greenland→West Antarctica +10 Sea-level rise

AMOC→ Amazon rainforest ±2 up to ± 4 Changes in precipitation patterns

West Antarctica→ AMOC ±3 Increase in meridional salinity gradient (−),

Fast advection of freshwater anomaly

to North Atlantic (+)

West Antarctica→ Greenland +2 Sea-level rise

AMOC→West Antarctica +1.5 Heat accumulation in Southern Ocean
Table 2. Interaction links in the network of tipping elements. For each link in the network of Fig. 1, there is a strength and a sign for each

interaction of the tipping elements. The sign indicates if the interaction between the tipping elements is increasing or decreasing the danger

of tipping cascades. Following Kriegler et al. (2009), the strength sij gives an estimate in terms of increased or decreased probability of

cascading transitions (Kriegler et al., 2009). E.g., if Greenland transgresses its threshold, the probability that the AMOC does as well is

increased by a factor of 10 (see entry for Greenland → AMOC). Then a random number between +1 and sGreenland→AMOC = +10 is

drawn for our simulations and used for sij in Eq. 3. The other way round, the probability that Greenland transgresses its threshold in case

the AMOC is in the transitioned state is decreased by a factor of 1
10

. Then a random number between −1 and sAMOC→Greenland =−10 is

drawn. The main physical processes that connect pairs tipping elements are described in this table and in Sect. 2.2. The link strengths are

grouped into strong, intermediate and weak links. Note that in the expert elicitation (Kriegler et al., 2009), there has been an estimation of

the maximum increase or decrease of the tipping probability in case the element which starts the interaction is already in the transitioned

state. For example, the link between Greenland and AMOC is given as [1; 10] in Kriegler et al. (2009) and is here modelled as a randomly

drawn variable between 1 and 10 for sij . An example for an unclear coupling would be the link between West Antarctica and AMOC which

is given as [0.3; 3] in Kriegler et al. (2009) which we translate into an sij between −3 and 3. In general, the values are drawn between 1 and

the respective maximum value sij if the interaction between i and j is positive or between −1 and the negative maximum value sij if the

interaction between i and j is negative.
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would play out over thousands of years (Winkelmann et al., 2015; Robinson et al., 2012). Due to computational constraints,305

studying such an ensemble of millennial-scale simulations is typically not feasible with more complex Earth System Models.

We propagate the considerable uncertainties linked to the parameters of the tipping elements and their interactions with a

large-scale Monte-Carlo approach (see Sect. 2.6).

2.4 Parameterisation of the tipping elements’ intrinsic time scales

The four tipping elements in the coupled system of differential equations form a so-called fast-slow system (Kuehn, 2011)310

describing a dynamical system with slowly varying parameters compared to fast changing states xi. We include the typical

transition times τi from the baseline to the transitioned state in Eq. 3 based on literature values (Lenton et al., 2008; Robinson

et al., 2012; Winkelmann et al., 2015), setting the tipping time scales for the Greenland Ice Sheet, West Antarctic Ice Sheet,

AMOC and the Amazon rainforest to 4900, 2400, 300 and 50 years for a reference warming of 4 ◦C above pre-industrial GMT,

respectively. The tipping time scale is calibrated at this reference temperature in the case of vanishing interaction between the315

elements. After calibration, the tipping time is allowed to scale freely with changes in the GMT and the interaction strength d.

We integrate all model simulations to equilibrium, such that the simulation time is at least 20 times larger than the longest

assumed tipping timescale of 4900 years. Since the actual absolute tipping times derived from our model simulations are

difficult to interpret, our results should not be taken as a projection of how long potential tipping cascades would take to unfold.

Rather, following our conceptual approach, we are interested in the relative differences (not the absolute values) between the320

typical tipping times as they can be decisive as to whether a cascade emerges or not. Therefore, the figures below show model

years in arbitrary units (see Figs. 2 and 3).

2.5 Modelling protocol and evaluation of tipping cascades

In our network model, if the critical temperature threshold of a tipping element is surpassed, it transgresses into the transitioned

state (Fig. 2(a)) and can potentially increase the likelihood of further tipping events via its interactions: for instance, the325

increased freshwater influx from a disintegration of the Greenland Ice Sheet can induce a weakening or even collapse of

the AMOC (Fig. 2(b)). In our model simulations, we consider increases of the global mean temperature from 0 up to 8 ◦C

above the pre-industrial average, which could be reached in worst-case scenarios as the extended representative concentration

pathway 8.5 (RCP 8.5) by year 2500 (Schellnhuber et al., 2016; IPCC, 2014).

For each tipping element, we start from the baseline (non-tipped) state (where xi is negative). Global warming or interactions330

with the other parts of the climate system can then cause the element to tip into the transitioned state (see Fig. 2). When the

critical parameter reaches
√

4
27 from below (i.e., when ∆GMT reaches Tlimit, i), the stable baseline state xi reaches − 1√

3
in

case of an autonomous tipping element. Therefore, the threshold for the baseline state is defined as x−i =− 1√
3

. If the critical

parameter increases above
√

4
27 , the state xi is larger than x−i , the stability of the lower stable state is lost and a state transition

towards the upper stable x+
i occurs. Correspondingly to the lower stable state x−i , the stable transitioned state is defined for335

states xi > x+
i = + 1√

3
.
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We identify and define tipping cascades at a fixed interaction strength d and GMT as the number of additionally tipped elements

in equilibrium (as defined above) after an incremental GMT increase of 0.1 ◦C. The tipping element with critical temperature

threshold closest to the GMT at this point, is counted as the initiator of the cascade. All tipping elements that appear in a

particular cascade are counted as an occurring tipping element in that tipping cascade.340

With increasing global mean temperature and interaction strength, generally more tipping cascades occur (Fig. 3). However,

the size, the timing and the occurrence of cascades can also depend critically on the specific initial conditions (Wunderling et

al., 2020b), which are not varied in the experiments presented here. In an exemplary simulation, we show how in one realisation

of our Monte Carlo ensemble at low interaction strength, a global mean temperature increase from 1.5◦C to 1.6◦C triggers the

Greenland Ice Sheet to transition to an ice-free state (Fig. 3(a)). For larger interactions strengths, the West Antarctic Ice Sheet345

as well as AMOC might then also tip as part of a tipping cascade that was initiated by the Greenland Ice Sheet in this case

(Fig. 3(b-c)). The initial conditions and parameters for the specific example of Fig. 3 can be found in supplementary Table S1.

Figure 2. Schematic overview of the generalised tipping element and time-series of a tipping cascade. (a) Exemplary bifurcation diagram of

a tipping element with two stable regimes: The lower state indicates the stable baseline regime, the upper state the stable transitioned regime.

In case of the Greenland Ice Sheet, for instance, these correspond to its pre-industrial, almost completely ice-covered state (stable baseline

regime) and an almost ice-free state (stable transitioned regime), as can be expected on the long-term for higher warming scenarios (Robinson

et al., 2012). There are two ways how a tipping element can transgress its critical threshold (unstable manifold) and move into the transitioned

state, either by an increase of global mean temperature or via interactions with other climate components. In both cases, the tipping element

converges to the stable transitioned regime indicated by the red hollow circles. (b) Exemplary time series showing a tipping cascade of two

elements. Here, Greenland transgresses its critical temperature (Tlimit, Greenland) first, i.e., would become ice-free. Through its interaction with

the West Antarctic Ice Sheet, the West Antarctic Ice Sheet then transgresses the unstable manifold in vertical direction (following the path

of the red upward directed arrow in panel (a)). This example is based on a scenario with global mean temperature increase of 1.6 ◦C above

pre-industrial levels and an interaction strength d = 0.16 (see also Fig. 3).
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Figure 3. Time series of tipping cascades. Exemplary time series of states for each of the four investigated tipping elements, here simulated

until equilibrium is reached. For comparability reasons, the parameter settings for the time series are the same (exact parameters can be found

in Table S1) and all time series are computed for ∆GMT increases of 1.4, 1.5, 1.6 and 1.7 ◦C above pre-industrial (columns). Couplings are

constant for each row. Tipping cascades as shown here are defined as the number of transitioned elements at a fixed interaction strength and

∆GMT compared to the simulation with a slightly higher ∆GMT (∆GMT increase by 0.1 ◦C), but same interaction strength. If, between

these two simulations, some of the tipping elements alter their equilibrium state, then a tipping cascade of the respective size occurred and is

counted as such. (a) Singular tipping event for an interaction strength of 0.08. Tipping occurs at 1.6 ◦C. (b) Tipping cascade of size two for

an interaction strength of 0.16. (c) Tipping cascade of size three for an interaction strength of 0.24. For other initial conditions, interaction

strengths and global mean temperatures (∆GMT) tipping cascades of size four can occur, too. Additionally, we marked the baseline and the

transitioned regime as grey hatched areas. Between the hatched areas, the state is not stable and a critical state transition occurs. In the lower

grey area, the element is called to be in the baseline regime and in the transitioned regime in the upper grey region.
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2.6 Monte Carlo sampling and propagation of uncertainties

Since the strength of interactions between the tipping elements is highly uncertain, a dimensionless interaction strength is350

varied over a wide range in our network approach to cover a multitude of possible scenarios. To cope with the uncertainties in

the critical threshold temperatures and in the link strengths between pairs of tipping elements (see Eq. 3, Tables 1 and 2), we

set up a Monte-Carlo ensemble with approximately 3.7 million members in total.

This Monte Carlo ensemble is generated as follows: for each combination of global mean temperature ∆GMT and overall

interaction strength d, we create 100 realisations of randomly drawn parameter sets for critical threshold temperatures Tlimit,i355

and interaction link strengths sij based on the uncertainty ranges given above (see Tables 1 and 2). Since our model has 11

parameters with uncertainties (4 critical threshold temperature parameters and 7 interaction link strength parameters), we use

a latin-hypercube sampling to construct a set of parameters for each ensemble members such that the multidimensional space

of sampled parameters is covered better than with a usual random sample generation (Baudin, 2013).

We also sample all 9 different interaction network structures which arise when we permute all possibilities (negative, zero,360

positive) arising from the two unclear links between AMOC and Amazon rainforest, and between West Antarctica and the

AMOC (see Table 2 and Fig. 1). For each of these 9 network structures, we compute the same 100 starting conditions that we

received from our latin-hypercube sampling. Thus, in total, we compute 900 samples for each GMT (0.0 − 8.0 ◦C, step width:

0.1 ◦C) and interaction strength (0.0− 1.0, step width: 0.02) combination resulting in a large ensemble of 3.7 million members

overall.365

Our approach is conservative in the sense that there are several destabilising interactions which are not considered here (Lenton

et al., 2019; Steffen et al., 2018). Further, by sampling uncertain parameters from a uniform distribution, we are treating lower

and higher threshold temperatures as well as strong and weak link interactions equally, potentially resulting in a more balanced

ensemble. Additional knowledge about the critical threshold temperatures and interaction link strengths would considerably

improve our analysis.370

3 Results

3.1 Shift in effective critical threshold temperatures due to interactions

Owing to the interactions between the tipping elements, their respective critical temperatures (previously identified for each

element individually, see Fig. 4(a)) are effectively shifted to lower values (except for Greenland, see Figs. 4(b) and (c)). For375

West Antarctica and the AMOC, we find a sharp decline for interaction strengths up to 0.2 and an approximately constant

critical temperature range afterwards. The effective critical temperature for the Amazon is only marginally reduced due to the

interactions within the network, since it is only influenced by the AMOC via an unclear link.
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In particular, the ensemble average of the critical temperature at an interaction strength of d= 1.0 is lowered by about 1.2 ◦C

(≈40%) for the West Antarctic Ice Sheet, 2.75 ◦C (≈55%) for the AMOC and 0.5 ◦C (≈10%) for the Amazon rainforest,380

respectively (see Fig. S2). This is likely due to the predominantly positive links between these tipping elements (see Fig. 1).

In contrast, the critical temperature range for the Greenland Ice Sheet tends in fact to be raised due to the interaction with

the other tipping elements, accompanied by a significant increase in overall uncertainty. This can be explained by the strong

negative feedback loop between Greenland and the AMOC that is embedded in the assumed interaction network (see Table 2,

see also Gaucherel & Moron (2017)). On the one hand, enhanced meltwater influx into the North Atlantic might dampen the385

AMOC (positive interaction link), while on the other hand, a weakened overturning circulation would lead to a net-cooling

effect around Greenland (negative interaction link). Thus, the state of Greenland strongly depends on the specific parameter

values in critical threshold temperature and interaction link strength of the respective Monte-Carlo ensemble members.

Overall, the interactions are more likely to lead to a destabilisation within the network of climate tipping elements with the

exception of the Greenland Ice Sheet.390
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Figure 4. Shift of critical temperature ranges due to interactions. (a) Critical global mean temperatures for each of the four investigated

tipping elements without taking interactions into account (as reproduced from literature; Schellnhuber et al. (2016)). Grey bars indicate the

standard deviation arising when drawing from a random uniform distribution between the respective upper and lower temperature limits.

These bars correspond to the critical temperature ranges in case of zero interaction strength in panels (b) and (c). (b, c) Change of critical

temperature ranges with increasing interaction strength for the Greenland Ice Sheet and West Antarctic Ice Sheet (panel (b)) and the Atlantic

Meridional Overturning Circulation (AMOC) and the Amazon rainforest (panel (c)). The standard deviation of the critical temperatures for

each tipping element within the Monte Carlo ensemble is given as respective colour shading.
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3.2 Risk of emerging tipping cascades

Tipping cascades occur when two or more tipping elements transgress their critical thresholds for a given temperature level (see

Sect. 2.5). We evaluate the associated risk as the share of ensemble simulations in which such tipping cascades are detected.

For global warming up to 2.0 ◦C, tipping occurs in 61% of all simulations (Fig. 5(a)). This comprises the tipping of individual

elements (22%) as well as cascades including 2 elements (21%), 3 elements (15%) and 4 elements (3%; see Fig. 5(b)). Since the395

coupling between the tipping elements is highly uncertain, we introduce an upper limit to the maximum interaction strength

and vary it from 0.0 to 1.0 (see Table 3). The highest value of 1.0 implies that the interaction between the elements is as

important as the nonlinear threshold behaviour of an individual element (see Eq. 3). For lower values, the interaction plays a

less dominant role. We find that the occurrence of tipping events does not depend significantly on the maximum interaction

strength – however, the cascade size decreases for lower values.400

Maximum interaction
strength d No tipping (%) Tipping (%)

Cascade sizes (%)
1 2 3 4

1.0 39 61 22 21 15 3

0.75 39 61 26 18 14 2

0.50 39 61 31 15 14 1

0.25 39 61 42 13 6 0

0.10 39 61 56 5 0 0

Table 3. Share of tipping events in ensemble simulations. For different maximum values of the interaction strength d (first column), the share

of ensemble simulations is shown that have a tipping event or cascade (third column) within the Paris limit until the global mean temperature

increase reaches 2.0 ◦C above pre-industrial. This means that 61% of all ensemble members contain a tipping event or cascade, while 39%

do not (second column) if all interaction strengths until 1.0 are considered (see Figs. 5(a, b)). Overall, the fraction of tipping events stays the

same and does not decrease for lower maximum interaction strengths. However, the distribution of tipping events and cascade sizes changes,

i.e., the number of large cascades decreases with lower maximal interaction strength. This is shown in the split last column that displays the

share of cascades of size one, two, three and four.

Tipping cascades are first induced at warming levels around 1 ◦C above pre-industrial GMT, where the lower bound of the

critical temperature range for the Greenland Ice Sheet is exceeded. The bulk of tipping cascades, however, is found between

1 and 3 ◦C GMT increase. This is true for all cascade sizes (see Fig. 5(c, d, e)). For temperatures above 3 ◦C GMT increase,

cascades occur less frequently since most of the tipping elements already transgress their individual threshold before this

temperature is reached. The most prevalent tipping cascades of sizes two and three, as simulated in our network approach,405

consist of cascading transitions between the ice sheets and/or the AMOC, summing up to 80% of all tipping cascades of sizes

two or three (Fig. 5(f)).
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Figure 5. Tipping cascades for all interaction strengths between 0.0 and 1.0. (a, b) For global warming up to 2.0 ◦C above pre-industrial

levels, the colour shading illustrates the fraction of model representations in the Monte-Carlo ensemble without tipping events (grey), with

a singular tipping event (purple) and with cascades including two (red), three (dark orange) and four (light orange) elements. (c, d, e)

Occurence of tipping cascades of size two, three, and four as a function of global mean temperature increase. The counts are normalised to

the highest value of the most frequent tipping cascade (in cascades of size two). (f) Dominant cascades of size two and three for temperature

increases from 0 − 8 ◦C above pre-industrial. Other cascades are not shown, since their relative occurrence is comparatively much smaller.

The standard deviation represents the difference between the possible ensemble realisations of the interaction network (see Sect. 2.3). Hence,

it tends to be larger for cascades where unclear interaction links are involved, e.g., for the AMOC-Amazon rainforest cascade (compare Fig. 1

and Table 2).
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3.3 Different roles of tipping elements

For each of the four tipping elements, we systematically assess their role within the network model, generally distinguishing

between initiators (triggering a cascade), followers (last element in a tipping chain) and mediators (elements in-between).410

We find that in up to 65% of all ensemble simulations, the Greenland Ice Sheet triggers tipping cascades. At the same time, it

occurs as frequently in cascades as the other tipping elements (around 29% of all cases, see Fig. 1). Thus, we call Greenland

a dominant initiator of cascades. Following this argument for Greenland, the West Antarctic Ice Sheet is both an initiator and

mediator of cascades, since it occurs often in cascades (31%) and, likewise, often acts as the initiator (23%). Although the

frequency of occurrence in cascades is very similar for the AMOC as for the two large ice sheets, it is a dominant mediator of415

cascades since it does not initiate many cascades (13%). Lastly, the Amazon rainforest is a pure follower in cascades because

it is only influenced directly by the AMOC and cannot influence any other tipping element itself in our model due to the

given interaction network structure (see Fig. 1). The reason why the ice sheets often act as initiators of tipping cascades in our

model is likely because their critical threshold ranges tend to be lower than for the other tipping elements (see Fig. 4a). Many

cascades are then passed on to other tipping elements, especially the AMOC. Thus, the role of the AMOC as the main mediator420

of cascades can be understood from a topological point of view since the AMOC is the most central network element with

many connections to the other tipping elements. As such, the AMOC connects the two hemispheres and can be influenced by

both the Greenland Ice Sheet and the (West) Antarctic Ice Sheet as is also suggested by literature (Wood et al., 2019; Ivanovic

et al., 2018; Hu et al., 2013; Swingedouw et al., 2009; Rahmstorf et al., 2005).

3.4 Structural robustness and sensitivity analysis including ENSO425

While many tipping elements (including the ice sheets, AMOC and Amazon rainforest) to a first approximation exhibit a

transition between two or more alternative stable states, often described by the paradigmatic double-fold bifurcation (Scheffer

et al., 2009; Lenton et al., 2008) as discussed above, tipping of the El-Niño Southern Oscillation (ENSO) rather could imply a

transition from irregular oscillatory occurrences to a more permanent state of strong El-Niño conditions (Dekker et al., 2018;

Lenton et al., 2008; Kriegler et al., 2009). In coupled experiments for AMOC and ENSO with conceptual models, it was found430

that a changing AMOC could trigger a tipping of ENSO (Dekker et al., 2018; Timmermann et al., 2005). Overall, changes in

the frequency of major El-Niño events seem likely, also based on intermediate complexity and conceptual models (Dekker et

al., 2018; Timmermann et al., 2005), but whether this poses the possibility of a permanent El-Niño state remains debated. A

more frequent occurrence of El-Niño events could have strong impacts on global ecosystems up to a potential dieback of the

Amazon rainforest (Duque-Villegas et al., 2019).435

While some studies emphasise the uncertainty about future ENSO changes (Kim et al., 2014; Collins et al., 2010), another

study found that the frequency of El-Niño events could increase twofold in climate change scenarios in simulations of the

CMIP3 and CMIP5 climate model ensembles as well as in perturbed physics experiments (Cai et al., 2014). Also, some ENSO

characteristics appear to respond robustly to global warming (Kim et al., 2014; Power et al., 2013; Santoso et al., 2013), such

as an intensification of ENSO-driven drying in the western Pacific and rainfall increases in the central and eastern equatorial440
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Pacific due to nonlinear responses to surface warming (Power et al., 2013). Moreover, from an observational point of view,

it was found that the global warming trend since the early 1990s has enhanced the Atlantic capacitor effect which might

lead to more favourable conditions for major El-Niño events on a biennial rhythm (Wang et al., 2017). Paleoclimate evidence

from the Pliocene (5.3–2.6 Myr before present) with atmospheric CO2 levels comparable to today’s conditions suggests that

there may have been permanent El-Niño conditions during that epoch (Fedorov et al., 2006; Ravelo et al., 2006; Wara et al.,445

2005). However, it must be noted that the Pliocene was different in terms of the continental configuration compared to today.

Particularly, the Panama gateway was open for at least part of the Pliocene resulting in tropical interactions between Atlantic

and Pacific ocean waters (Haug & Tiedemann, 1998).

Given the particular uncertainties regarding ENSO compared to the other tipping elements considered in our analysis, we

excluded it and its interactions with the other tipping elements in the main analysis above. However, we performed a compre-450

hensive structural robustness and sensitivity analysis including ENSO as a tipping element (see also Supplementary Figs. S3 –

S8): For this purpose, we choose to represent ENSO in the same way as the other tipping elements, although the use of Eq. 1

is not entirely appropriate for ENSO. Rather, the potential tipping behaviour could be conceptualised by a Hopf-bifurcation

(i.e., a transition from a limit cycle leading to oscillating behaviour to a stable fixed point attractor) instead of a fold bifurca-

tion (Dekker et al., 2018; Timmermann et al., 2003; Zebiak & Cane, 1987).455

A typical transition time of 300 years is chosen, the critical temperature threshold lies between 3.5–7.0◦C above pre-industrial

levels (Schellnhuber et al., 2016) and our analysis is based on simulations of 11 million ensemble members arising from the

27 different network combinations from the three unclear links AMOC→ Amazon rainforest, West Antarctica→ AMOC and

Amazon rainforest → ENSO (see Fig. S3). The interactions including ENSO are described in detail in the Supplement (see

Tab. S2 and description there).460

Our robustness analysis reveals that the roles of the tipping elements remain qualitatively the same: the ice sheets remain

strong initiators of tipping cascades (in 40% of cases for the Greenland Ice Sheet, and 28% of cases for the West Antarctic

Ice Sheet). The AMOC mainly acts as a mediator and only initiates 5% of all cascades (see Fig. S3). In this extended network

of tipping elements, ENSO tends to take on an intermediate role. Since it is strongly coupled to the Amazon rainforest, it

initiates many cascades including the Amazon rainforest, especially at temperature levels above 3 ◦C (see Fig. S4). But apart465

from that, ENSO also mediates tipping cascades from the AMOC to the West Antarctic Ice Sheet or the Amazon rainforest.

Generally, we also find that the interactions destabilise the overall network of tipping elements apart from the Greenland Ice

Sheet (Figs. S5 and S6). The change in the critical temperature range for the Amazon rainforest is larger and is shifted more

towards lower temperature levels due to the influence from ENSO. Overall, the model results remain robust, also with respect

to the occurrence and size of tipping cascades (see Fig. S7), suggesting a certain degree of structural stability of our analysis.470

4 Discussion and Conclusions

It has been shown previously that the four integral components of the Earth’s climate system mainly considered here are

at risk of transgressing into undesirable states when critical thresholds are crossed (Schellnhuber et al., 2016; Lenton et al.,
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2008). Over the past decades, significant changes have been observed for the polar ice sheets, as well as for the Atlantic

Meridional Overturning Circulation (AMOC) and the Amazon rainforest (Lenton et al., 2019). Should these climate tipping475

elements eventually cross their respective critical temperature thresholds, this may affect the stability of the entire climate

system (Steffen et al., 2018).

In this study, we show that this risk increases significantly when considering interactions between these climate tipping ele-

ments and that these interactions tend to have an overall destabilising effect. Altogether, with the exception of the Greenland

Ice Sheet, interactions effectively push the critical threshold temperatures to lower warming levels, thus reducing the overall480

stability of the climate system. The domino-like interactions also foster cascading, nonlinear responses. Under these circum-

stances, our model indicates that cascades are predominantly initiated by the polar ice sheets and mediated by the AMOC.

Therefore, our results also imply that the negative feedback loop connecting the Greenland Ice Sheet and the AMOC might

not be able to stabilise the climate system as a whole, a possibility that was raised in earlier work using a boolean modelling

approach (Gaucherel & Moron, 2017).485

While our conceptual model evidently does not represent the full complexity of the climate system and is not intended to

simulate the multitude of biogeophysical processes or to make predictions of any kind, it allows us to systematically assess the

qualitative role of known interactions of some of the most critical components of the climate system. The large-scale Monte

Carlo approach further enables us to systematically take into account and propagate the substantial uncertainties associated

with the interaction strengths, interaction directions and the individual temperature thresholds. This comprehensive assessment490

indicates structurally robust results that allow qualitative conclusions, despite all these uncertainties.

In our Monte Carlo approach employed for propagating parameter uncertainties, we assume that all parameters including

critical threshold temperatures and interaction link strengths are statistically independent. However, this is likely not the case

in the climate system where for example interaction link strengths associated with the AMOC to Greenland and West Antarctica

would be expected to be correlated. Further analyses would have to consider the effects of such interdependencies.495

Overall, this work could form the basis of a more detailed investigation using more process-detailed Earth System Models that

can represent the full dynamics of each tipping element and their interactions. Major advances have been made in developing

coupled Earth System Models, however, computational constraints have so far prohibited a detailed interaction analysis as is

presented in this work. In the future, these more complex climate models might be driven with advanced ensemble methods

for representing and propagating various types of uncertainties in climate change simulations (Daron & Stainforth, 2013;500

Stainforth et al., 2007), which would comprise a significant step forward in the current debate on nonlinear interacting processes

in the realm of Earth system resilience. Some examples of relevant processes that could be investigated with more complex

models are the following: First, the changing precipitation patterns over Amazonia due to a tipped AMOC, i.e., whether

rainfall patterns will increase or decrease and whether this would be sufficient to induce a tipping cascade in (parts of) the

Amazon rainforest. This would shed more light on the interaction pair AMOC-Amazon rainforest. Second, the influence of505

the disintegration of the West Antarctic Ice Sheet on the AMOC could be further studied by introducing freshwater input into

the Southern Ocean surrounding the West Antarctic Ice Sheet similar to the hosing experiments that have been performed for

the Greenland Ice Sheet (Wood et al., 2019; Hawkins et al., 2011; Rahmstorf et al., 2005). Here, some studies suggest that
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freshwater input into the Southern Ocean at a modest rate would not impact the AMOC as much as freshwater input into the

North Atlantic (Ivanovic et al., 2018; Hu et al., 2013; Swingedouw et al., 2009), while higher melt rates could have more severe510

impacts on the AMOC (Swingedouw et al., 2009). With carefully calibrated coupled ice-ocean models, including dynamic ice

sheets (e.g. Kreuzer et al., 2020), ice-ocean tipping cascades could be studied in more detail.

Further, the timescales for potential tipping dynamics need to be more rigorously explored in contrast to the conceptual ap-

proach used here. It is important to note that the transition of one tipping element has a delayed effect on the other elements,

especially in the case of the comparatively slowly evolving ice sheets. Their temperature threshold is lower than for the other515

tipping elements considered here and their disintegration would unfold over the course of centuries up to millennia (Winkel-

mann et al., 2015; Robinson et al., 2012; Lenton et al., 2008). Therefore, meltwater influx into the ocean and changes in sea

level would affect the state of other tipping elements only after a significant amount of time. Our analysis of emerging tip-

ping cascades therefore needs to be understood in terms of committed impacts over long time scales due to anthropogenic

interference with the climate system mainly in the 20th and 21st centuries, rather than short-term projections.520

Finally, it appears worthwhile to perform an updated expert elicitation along the lines of Kriegler et al. (2009), where additional

interactions, tipping elements and a better understanding of the interaction strengths would help to narrow down the space of

possible scenarios and uncertainties that have been investigated here.
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Parameter group Parameter Initial value

Critical temperatures (◦C)





Tlimit, Greenland 1.6

Tlimit, West Antarctica 5.0

Tlimit, AMOC 5.5

Tlimit, Amazon rainforest 3.8

Strong links (a.u.)





Greenland→ AMOC 0.64

AMOC→ Greenland −0.57
Greenland→West Antarctica 0.77

Intermediate links (a.u.)





AMOC→ Amazon rainforest 0.0

West Antarctica→ AMOC 0.0

Weak links (a.u.)





West Antarctica→ Greenland 0.13

AMOC→West Antarctica 0.12

Table S 1. Exemplary initial values that have been used to construct the timeseries in Figs. 2 and 3 in the main manuscript. All initial values

are random numbers drawn from a uniform distribution with a latin-hypercube sampling algorithm (Baudin, 2013) between their respective

limits (see Tabs. 1 and 2). The random numbers for the links have already been multiplied with 1/10× sij (see Table 2). The exemplary

timelines were computed using a network without considering the uncertain links (AMOC → Amazon rainforest and West Antarctica →
AMOC), whose link strengths are set to zero.
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Figure S 1. Role of tipping elements in cascades. (a) Relative frequency in percent of occurrence of a certain tipping element in a tipping

cascade (hatched bars). The standard deviation is computed by evaluating the deviation between reasonable network settings (see Sect. 2.7).

(b) Relative frequency in percent that a certain tipping element causes a tipping cascade (coloured bars). We define that the cause of a

cascade is the element, whose critical temperature is closest to the temperature at which the cascade takes place. Again the error bars show

the standard deviation between different network settings as in (a). It must be noted that the Amazon rainforest cannot initiate a tipping

cascade since it has no outgoing link (see Fig. 1). (c) Count versus global mean temperature increase at which a tipping cascade occurs

divided into the respective four tipping elements. (d) Same as in (c), but for the tipping element which causes the cascade. N.B.: (c) and (d)

are set to the same scale normalised to the highest value in the histogram.
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Figure S 2. Difference in critical temperatures with respect to the interaction strength. Difference of critical temperatures in ◦C (left panels)

and % (right panels) compared to the respective initially drawn critical temperature for the four investigated tipping elements: (a, b) Greenland

Ice Sheet, (c, d) West Antarctic Ice Sheet, (e, f) AMOC and (g, h) Amazon rainforest. The standard deviation from the ensemble members is

shown as respective colour shading.
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Structural sensitivity analysis including ENSO

In this section, we perform a structural sensitivity analysis by taking ENSO into account as a tipping element since it is debated

whether and to which extent ENSO should be seen as a tipping element (discussion see main manuscript in Sect. 3.4). Below

and in Tab. 2, we elaborate on additional references regarding the interactions that include ENSO, equal to the other interactions

in the main manuscript (see Sect. 2.2).5

1. AMOC → ENSO: There are two contradicting impacts representing the influence of the AMOC on ENSO: (I) Oceanic

Kelvin waves could start from a colder north Atlantic and travel towards the south. In western Africa, Rossby waves could

then be produced travelling in northern and southern direction, which are then converted back into Kelvin waves that

move into the Pacific sea. This would intensify the Pacific thermocline and thereby dampen the amplitude of ENSO (Tim-

mermann et al., 2005). (II) When the AMOC becomes weaker, the northern tropical Atlantic would become cooler and10

northerly trade winds would be strengthened over the northeastern tropical Pacific. It has been suggested that this could

lead to a southward shift of the ITCZ (Zhang & Delworth , 2005). Simultaneously, it is argued that Rossby waves are sent

into the northeast tropical Pacific, which would strengthen ENSO (Dong & Sutton, 2005). Summarised, it is believed that

process (II) is more powerful than process (I). Moreover, it has been found in more complex Earth system models that a

weakening of the AMOC indeed reinforces the variability of ENSO (Dekker et al., 2018; Sterl et al., 2008). Therefore,15

this link is set as destabilising (see Fig. S3).

2. ENSO → Amazon rainforest: It has been proposed that droughts due to climate variabilities (such as ENSO) could

harm the Amazon rainforest and its integrity (Holmgren et al., 2013, 2006; Malhi & Wright, 2004). With PlaSim, an

Earth system model of intermediate complexity, a permanent El-Niño state would severely threaten major parts of the

Amazon basin since the forest might suffer from restricted water access in South America (Duque-Villegas et al., 2019).20

Therefore, we set this link as destabilising (see Fig. S3).

3. ENSO → West Antarctic Ice Sheet: There is evidence for heating oceanic effects from El-Niño in the Amundsen and

Ross Sea region, while La Niña phases would have the opposite oceanic effect. However, the atmosphere could offset

the oceanic effect (Bertler et al., 2006). In addition to that, observations have shown that ice shelves gain height, but

lose mass during major El-Niño events in the Amundsen and Ross Sea region (Paolo et al., 2018). In particular, a large25

surface melt event, that was associated with a strong El-Niño event, took place in 2016 (Nicolas et al., 2017). Still, the

interaction between ENSO and West Antarctica is one of the interactions with the highest uncertainty (as also noted in

Kriegler et al., 2009). Furthermore, some studies suggest that the frequency of El-Niño events increase with ongoing

global warming (Cai et al., 2014). Thus, we set this interaction destabilising (see Tab. S2 and Fig. S3).

4. ENSO → AMOC: It has been argued by evaluating reanalysis data that water vapour transport out of the tropical At-30

lantic is increased (Schmittner et al., 2000). There is contradicting evidence suggesting that El-Niño conditions might

or might not have a strengthening impact the deepwater formation in the north Atlantic and with that the strength of the
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AMOC (Spence & Weaver, 2006; Schmittner et al., 2000). This illustrates that this interaction pair is less well under-

stood than others. Therefore, we consider this link as being of low strength, but with a stabilising (negative) sign since

there is only evidence for this direction of interaction (see Fig. S3 and Tab. S2).35

5. Amazon rainforest → ENSO: The moisture recycling feedback would be stopped in case the Amazon rainforest tips to a

large portion (Boers et al., 2017; Zemp et al., 2017; Aragão, 2012). Since it is unknown as to whether this would have

an impact on the formation of El-Niño events, this link is set as unclear and its uncertainty is propagated in our Monte

Carlo ensemble (see Fig. S3). The strength of this interaction is set very weak due to its possibly very limited impact on

ENSO (see Tab. S2).40

Edge Maximal link strength sij (a.u.) Physical process

ENSO→ Amazon rainforest +10 Drying over Amazonia

ENSO→West Antarctica +5 Warming of Ross and Amundsen seas

AMOC→ ENSO +2 Cooling of North-East tropical Pacific with thermo-

cline shoaling and weakening of annual cycle in EEP

ENSO→ AMOC −2 Enhanced water vapour transport to Pacifics

Amazon rainforest→ ENSO ±1.5 Changes in tropical moisture supply

Table S 2. Edges in the network of tipping elements that include ENSO. The values are given in analogy to Tab. 2 of the main manuscript.
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Figure S 3. Interactions between climate tipping elements and their roles in tipping cascades. The Greenland Ice Sheet, West Antarctic Ice

Sheet, Atlantic Meridional Overturning Circulation (AMOC), El-Niño Southern Oscillation (ENSO) and the Amazon rainforest are depicted

together with their main interaction pathways (Kriegler et al., 2009). Same as in Fig. 1 in the main manuscript, but including ENSO as a

tipping element.
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Figure S 6. Difference in critical temperatures with respect to the interaction strength including ENSO. The panels show the same as in

Fig. S2 without ENSO. The results are similar apart from the Amazon rainforest that shows more reduction in its critical temperature level

due to its strong interaction with ENSO.
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Abstract
Tipping elements in the climate system are large-scale subregions of the Earth that might possess
threshold behavior under global warming with large potential impacts on human societies. Here,
we study a subset of five tipping elements and their interactions in a conceptual and easily
extendable framework: the Greenland Ice Sheets (GIS) and West Antarctic Ice Sheets, the Atlantic
meridional overturning circulation (AMOC), the El–Niño Southern Oscillation and the Amazon
rainforest. In this nonlinear and multistable system, we perform a basin stability analysis to detect
its stable states and their associated Earth system resilience. By combining these two
methodologies with a large-scale Monte Carlo approach, we are able to propagate the many
uncertainties associated with the critical temperature thresholds and the interaction strengths of
the tipping elements. Using this approach, we perform a system-wide and comprehensive
robustness analysis with more than 3.5 billion ensemble members. Further, we investigate dynamic
regimes where some of the states lose stability and oscillations appear using a newly developed
basin bifurcation analysis methodology. Our results reveal that the state of four or five tipped
elements has the largest basin volume for large levels of global warming beyond 4 ◦C above
pre-industrial climate conditions, representing a highly undesired state where a majority of the
tipping elements reside in the transitioned regime. For lower levels of warming, states including
disintegrated ice sheets on west Antarctica and Greenland have higher basin volume than other
state configurations. Therefore in our model, we find that the large ice sheets are of particular
importance for Earth system resilience. We also detect the emergence of limit cycles for 0.6% of all
ensemble members at rare parameter combinations. Such limit cycle oscillations mainly occur
between the GIS and AMOC (86%), due to their negative feedback coupling. These limit cycles
point to possibly dangerous internal modes of variability in the climate system that could have
played a role in paleoclimatic dynamics such as those unfolding during the Pleistocene ice age
cycles.

1. Introduction

During the last decades, the field of tipping elements has become a major point of interest in complex
systems and network science [1, 2]. They have been used in the description of various fields such as in
financial markets, technological progress, ecology or in climate science (e.g., [3–6]). Tipping elements can
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interact across scales in space and time [7] which could potentially lead to catastrophic domino effects [8]
or, for instance, lead to a hothouse climate state in the case of climate tipping elements [9].

In the climate system, tipping elements are subregions of the Earth system that can exhibit threshold
behavior, where a small forcing perturbation can be sufficient to invoke a strong non-linear response of the
system that can qualitatively change the state of the whole region or system due to internal, self-enforcing
feedbacks [6]. Climate tipping elements comprise systems from the cryosphere (e.g. Greenland, Antarctic
Ice Sheet, Permafrost), the biosphere (e.g. Amazon rainforest (AMAZ), coral reefs) and large-scale
circulation systems (e.g. Monsoon systems, AMOC) [6, 10]. Their potential tipping to alternative states
would be associated with severe impacts on the biosphere and threaten human societies [11].

It has been suggested that several climate tipping elements are at risk or on the way of transgressing into
an undesired state even at global warming levels below the 2.0 ◦C goal of the Paris agreement [10–12].
Among others, tipping elements that already show warning signals of degradation at present times [11, 12]
are: the West Antarctic Ice Sheets (WAIS) where parts in the Amundsen Bay (Pine Island & Thwaites
region) are suspected to have been destabilized [13–15], the AMOC which experienced a major slowdown
of 15% from 1950 to now [16], the AMAZ which might approach a tipping point due to climate change and
deforestation [17]. Critical deforestation ratios might lie between 20% to 40%, where current deforestation
is reaching 20% [17, 18]. Furthermore, the GIS loses mass at an accelerating pace [19, 20] and the frequency
of major El–Niño events are suggested to increase twofold and strong El–Nino Southern Oscillation
(ENSO) effects will occur more often as global warming continues [21, 22]. However, others highlight that
large uncertainties are related to future changes of ENSO and whether major El–Niño events will become
more frequent or intense under global warming [23, 24].

Furthermore, contradicting a common misunderstanding, tipping elements do not necessarily tip
immediately after the crossing of their tipping point, but their tipping time trajectory might take very long
and appear smooth [25]. For instance for the large ice sheets, the disintegration time scale could be on the
order of several centuries up to millennia as has been suggested by modeling studies [26–28].

For most of the tipping elements, there is a critical temperature range at which they are suspected to
leave their current safe state separating the climate tipping elements into three groups [10]. The first group
comprises elements that might transgress their state within the limits of the Paris agreement (Paris, 2015) of
2 ◦C above pre-industrial and with that, these are the most vulnerable climate tipping elements with respect
to global warming. This group contains mainly cryosphere elements (Arctic summer sea ice, WAIS, GIS and
Alpine glaciers) as well as the Coral reefs that are likely to be lost even when global warming is restricted to
2 ◦C above pre-industrial. The second group might tip at temperatures above 3 ◦C (for instance the AMAZ,
AMOC or ENSO) and the most resilient group only at temperatures around 5 ◦C above pre-industrial or
higher (e.g., parts of the Antarctic ice sheet, permafrost or Arctic winter sea ice).

However, the tipping elements in the climate system are not independent of each other, but connected
[11, 29] and the knowledge about the exact interaction structure is sparse and partially based on experts
that, for instance, suggested an interaction structure, including sign and strength, for a subset of five tipping
elements: the GIS, the WAIS, the AMOC, the AMAZ and the ENSO [29]. Behind each connection between
two tipping elements within this subset, there is a physical process or set of processes (see table A.1). For
instance the impact of the GIS on the AMOC due to freshwater input from melting ice slows down the
AMOC on the one hand and a weakening AMOC on the other hand cools latitudes in the northern
hemisphere. Note that this subset network of tipping is neither complete in the number and selection of
tipping elements, nor is it comprehensive in the possible connection pathways and their potential strength
between the tipping elements. There are also earlier investigations on tipping points [30] and the
interaction of tipping points [31, 32] in the context of economic damage and the social cost of carbon using
further developed versions of the integrated assessment model DICE [33, 34]. Here, Cai et al (2016) [31]
explicitly base their findings on the interactions of tipping elements from the expert elicitation in Kriegler
et al (2009) [29].

Following the elaborations above, in this work we aim at investigating the resilience of various attractors
for interacting climate tipping elements and we want to elucidate the role that different tipping cascades
have in that regard. The approach put forward here can easily be adapted to more tipping elements and
further interaction structures once they are more comprehensively understood (see also [35]).

We explore the stability landscape and the dynamics of a subset of five tipping elements represented by
normal form fold bifurcations based on known interactions across scales in time and space between these
tipping elements (figure 1) [29]. These five tipping elements are the GIS and WAIS, the AMOC, the ENSO
and the AMAZ [29]. We introduce the model of interacting tipping elements in section. We use the concept
of basin stability [36] in order to determine the basin sizes of various attractors of this multistable system
(see section 2). Based on a large-scale Monte Carlo ensemble, this methodology gives an estimate how stable
and resilient various attractors are. It has been applied to many dynamic systems before such as power grids,
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Figure 1. (A) World map with connections shown for five tipping elements where the interaction structure is known from an
expert elicitation [29, 43]. Each link represents a physical mechanism and has a certain strength (see supplementary table A.1).
A positive arrow implies an effect that drives the tipping element closer to its tipping point, a negative arrow drives the tipping
element away from its tipping point and a question mark stands for an unclear direction. (B) (Fold) Bifurcation diagram of each
of the tipping elements without coupling. On the x-axis, the average global warming required for tipping is shown in degrees
above pre-industrial global mean temperature levels for the respective tipping element.

neuronal models and further nonlinear systems [37–41]. Furthermore, especially for larger coupling
strengths, Hopf bifurcations can occur, thus invoking oscillatory limit-cycle solutions of the model. For the
detection and quantification of these types of limit cycle attractors, we apply a newly developed bifurcation
algorithm that is able to identify different dynamical properties in complex systems: the Monte Carlo Basin
Bifurcation analysis (MCBB) [42].

In the following, we first introduce the methodological approach of this work: the model of interacting
tipping elements (section 2.2), the basin stability approach (section 2.3), the construction of the large-scale
Monte Carlo ensemble (section 2.4) and the Monte Carlo Basin Bifurcation analysis (section 2.5). Then, we
evaluate the basin volume in our model (section 3.1) and quantify the occurrence of limit cycles in our
model (section 3.2). Lastly, the results with respect to the climate system are discussed and summarized in
sections 4 and 5.

2. Methods

For the purpose of investigating the dynamical properties of the subset of five tipping elements, we further
developed a conceptual network approach that is fully dynamic and captures the main nonlinear dynamical
properties of tipping elements [35, 44, 45]. The actual physical processes behind the tipping elements are
not explicitly modeled to maintain an accessible and controllable structure. The modeling of complex
systems using conceptual approaches is a popular tool and has been successfully applied to, among others,
ecology, social systems or epidemiology [5, 46, 47].

2.1. Tipping elements and interactions
Given that, despite major advances, current EMICs (Earth system models of intermediate complexity) and
GCMs (global circulation models) are not yet able to fully represent the nonlinear behavior of some Earth
system components together with their interactions, but physics based models and equations as well as
paleo climate observations suggest the existence of such properties for many tipping elements as for
instance the GIS and (West) Antarctic ice sheet [26, 28, 48, 49], the AMOC [50–54], the AMAZ [55–59] or
the ENSO [60, 61], the conceptual approach chosen here demonstrates an option how to model interactions
between tipping elements. Thus, we put this model forward as a first step towards a more process-detailed
assessment of tipping elements and their interactions. This also emphasizes that future research could focus
on developing more complex, emulator- or EMIC/GCM-like models of tipping elements to investigate their
nonlinear interplay such as has recently been developed for the Antarctic ice sheet [49].
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While we have described why we use a conceptual description of the main dynamics of the tipping
elements directly above, we outline the physical mechanisms of there interactions hereafter. Although some
interactions between the tipping elements are better understood and evaluated than others, we describe the
physical mechanisms of all of them in the following separated into destabilizing (+), stabilizing (−) and
unclear links (?) (see figure 1). This description aims to provide a basic physical understanding, but cannot
resolve the problem of how strong exactly each of these interactions is. Therefore, the interaction structure
is kept as described later in equation (5) with the multiplicative interaction strength factor d.

(a) Destabilizing interactions:

1. GIS → AMOC: when the GIS starts to melt, it has a diminishing influence on the overturning
strength of the AMOC due to freshwater input into the North Atlantic. This has been observed in
modeling studies [16, 51, 62, 63] and in observations [64].

2. AMOC → WAIS: when the AMOC collapses, sea surface temperature anomalies arise due to the
collapse of the northward heat transport of the AMOC. This results in a cold north and a warm
south of the equator as shown by modeling studies [65–68].

3. GIS → WAIS (and vice versa): the shift of grounding lines due to changing sea level is a well-known
phenomenon from tidal changes (e.g. [69]). Thus, if the sea level rises due to global warming, the
floating ice shelves could be lifted which is likely to result in grounding line retreat. Furthermore,
gravitational changes as well as elastic and rotational effects might then amplify the sea level change
if one of the large ice sheets disintegrates first because the gravitational attraction then only emanates
from the other, remaining ice sheet [70, 71]. The effect would be stronger if Greenland melts first
since the WAIS has more marine terminating glaciers and ice shelves.

4. AMOC → ENSO: there are two opposing effects that have proposed, which describe how the AMOC
might influence the ENSO: (i) it has been suggested that oceanic Kelvin waves originate from a
colder North Atlantic and travel southward. Then, in western Africa, Rossby waves would be emitted
towards the north and the south, which are then translated back into Kelvin waves that travel into
the Pacific ocean. This effect would deepen the Pacific thermocline and weaken the amplitude of
ENSO [60]. (ii) With a weaker AMOC, the northern tropical Atlantic would in turn become cooler
and northerly trade winds would be intensified over the northeastern tropical Pacific. It has been
argued that this could result in a southward displacement of the Pacific ITCZ leading to a sea surface
temperature anomaly [72]. At the same time, it is argued that Rossby waves are sent into the
northeast tropical Pacific [73]. This would intensify ENSO due to wind stress interaction from
AMOC. Overall, it is believed that mechanism (ii) is stronger than mechanism (i) [60]. Furthermore,
it can be extracted from complex Earth system models that a decrease in AMOC intensity indeed
strengthens the variability of ENSO [61, 74].

5. ENSO → AMAZ: literature studies suggest that droughts related to climate variabilities such as the
ENSO can affect the stability of the AMAZ [75–77]. Using an EMIC, it has been found that a
permanent El–Niño state would endanger substantial portions of the Amazon basin due to a
reorganization and reduction of water access in the south American tropics via teleconnections [78].

6. ENSO → WAIS: the interaction between ENSO and the WAIS is one of the least certain interactions
as has already been stated in Kriegler et al (2009) [29]. Nevertheless, there are hints for warming
oceanic effects from El–Niño in the Amundsen and Ross Sea region, while La Niña would cool this
region. At the same time, atmospheric effects could have an opposite effect, which would offset the
oceanic effect [79]. Besides that, it has been found with satellite observations that ice shelves gain
height, but yet lose mass during El–Niño events in the Amundsen and Ross sea region [80]. While
the primary driver of melt in west Antarctica is the warm ocean water below ice shelves, an extended
period of surface melting has been observed during January 2016, which is likely promoted by the
strong El–Niño event in this year [81]. Since it is expected that the frequency of major El–Niño
events will increase during climate change [21], we set this interaction positive (see table A.1 and
figure 1).

(b) Stabilizing interactions:

1. AMOC → GIS: for a decreasing overturning strength of the AMOC, the northern hemisphere is
cooled since the heat transport towards the north Atlantic would be weakened. This has been
observed in modeling studies [16, 65, 66, 82].

2. ENSO → AMOC: using reanalysis data, evidence has been found that the transport of water vapor
out of the tropical Atlantic is enhanced [83]. Comparing La Niña and El–Niño conditions, it was
found in this study that El–Niño conditions lead to a stronger northern AMOC on a multi-decadal
timescale. However, another study questions this finding and does not find a strong impact on the
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deepwater formation from AMOC [84]. Therefore, this interaction is less well established from
literature and therefore considered of low strength, but with a negative sign (see figure 1 and
table A.1).

(c) Unclear interaction direction:

1. AMOC → AMAZ: when the AMOC shuts down, the intertropical convergence zone (ITCZ) is likely
dislocated southward, leading to large changes in seasonal precipitation on a local to regional degree.
This might then impact parts of the AMAZ [68, 82, 85]. Still, it is unknown as to whether this
interaction is positive or negative and might differ from region to region. Therefore, this link is set as
unclear (see figure 1).

2. WAIS → AMOC: a literature study using a coupled ocean-atmosphere model found a decrease in the
AMOC for high freshwater inputs from the WAIS [86]. However, another study detected a
stabilization of the AMOC if influenced by freshwater input from west Antarctica. This is ascribed to
the effects from the bipolar ocean seesaw due to decreasing Antarctic bottom water formation [87].
With an EMIC, is has been found from using freshwater input experiments into the southern ocean
that different processes could enhance or slow down the AMOC [88]: (i) the deep water adjustments
via the bipolar ocean seesaw tend to intensify the NADW formation. (ii) The NADW is strengthened
by southern hemispheric wind increase representing an ocean-atmosphere interaction. (iii) Salinity
anomalies from the southern ocean are distributed to the north Atlantic weakening the NADW
(compare to [86]). Overall, the processes (i) and (iii) strengthen the AMOC and process (ii) weakens
it. However, the exact time scale and efficiencies of these processes have been rated unknown as of
yet [88].

3. AMAZ → ENSO: under a dieback of the AMAZ, the moisture supply to the atmosphere will
significantly change, also since the atmospheric moisture recycling feedback over the Amazon basin
would break down [89–91]. However, it is unclear whether and to which extent this would then
impact ENSO.

2.2. Model
In our conceptual model, we divide the dynamics xi of the considered tipping elements i into their
individual dynamics fi (xi) and a direct interaction term gi(�x) ≡ gi(x). This yields

τiẋi = fi (xi) + gi(x), (1)

where τ i is the typical time that passes when a tipping element undergoes a critical transition from one state
to another. We model the individual dynamics of each of the tipping elements with the general tipping
approach (CUSP equation [8, 92])

fi (xi) = −aix
3
i + bixi + ci ai, bi, ci ∈ R, (2)

where ai > 0 and bi > 0. Assuming additive separability of the interactions between the tipping elements
and linear interactions, the interaction term gi(x) becomes

gi(x) =
∑

j

gij(xi, xj)
linear
=

interactions

∑

j

Aijxj. (3)

Here, Aij is the interaction structure and strength, which is set to zero if there is no connection between the
tipping elements i and j. Altogether, equation (1) becomes

τiẋi = −aix
3
i + bixi + ci +

∑

j

Aijxj. (4)

Each tipping element xi following this equation possesses two fold bifurcations at ±
√

(4a3
i )/(27bi) and has

already been investigated in theoretical works on tipping cascades [92], but also in various contexts where
nonlinear behavior is important as for instance in policy, environmental issues, economy or climate [8, 93].
For these equations exist a framework that allows to investigate tipping cascades on larger networks with
regard to their interaction structure in the network as well as microstructures that are decisive for finding
emergent tipping cascades [44, 45].

In our model, we specify the interaction structure and strength term Aij by setting it equal to a
multiplicative factor d times the actual link strength sij between each pair of tipping elements. Therefore,
Aij = d/10 · sij. The link strength values sij are taken from the expert elicitation [29]. The factor 1/10 is used
for normalization reasons since then d ∈ [0, 1]. If we now additionally set a = 1, b = 1 and
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ci =
(√

4/27/Tlimit, i

)
· ΔGMT, the tipping elements are described by the following nonlinear, ordinary

differential equation (all parameters of equation (5) are explained in the tables A.1 and A.2)

dxi

dt
=

⎡
⎢⎢⎣−x3

i + xi +

√
4/27

Tlimit, i
· ΔGMT +

d

10
·
∑

j
j�=i

sij

(
xj + 1

)
⎤
⎥⎥⎦

1

τi
. (5)

Here, xi is the state of the tipping element (see figure 1(B)) and i stands for the considered tipping elements
i = GIS, WAIS, AMOC, ENSO, AMAZ. We choose these five tipping elements since their interaction
structure is known from an expert elicitation [29]. The increase of the global mean temperature above
pre-industrial is denoted by ΔGMT, Tlimit,i is the critical temperature threshold of the respective element.
The last term is the coupling term, where d is a general multiplicator that determines the strength of the
interaction term in comparison to the other, individual dynamics terms. The parameter d is varied between
0, meaning no interactions, and 1, where the interactions become as important as the individual dynamics.
Following this, one might tend to assume that the individual dynamics of the tipping element influences the
tipping element more than the interaction effect. This might make smaller coupling parameters more
realistic than higher ones. In equation (5), sij is the link strength that is based on the expert elicitation [29]
and τ i is a typical timescale at which a certain tipping element transgresses its state.

This typical tipping time scale ranges from decades for the AMAZ to several millennia for the large ice
sheets (see appendix table A.2). Then, our system of differential equations is integrated forward in time
using scipy.odeint [94] until more than 20 times the GIS’s typical transition time scale has passed. This is
equal to 100 000 years simulation time. This is the time when equilibrium is reached in the simulations.
However, we are not intending to compute an exact time scale for tipping or tipping cascades here, but we
are rather interested in the system’s attractors and their stability properties. This is why we denote model
years in arbitrary units instead of giving an exact time, also since this would be beyond the scope of this
conceptual model (see figure 1(A)). Note that we adapted the link from ENSO to AMOC from uncertain to
negative compared to the original results of the expert elicitation on tipping element interactions [29] since
there is only a dampening process known in literature [43].

There are considerable uncertainties associated with this approach, especially with the critical
temperature at which a certain tipping element transgresses its state Tlimit,i as well as in the strength of the
interactions sij. The uncertainties of these two parameters are shown in the appendix tables A.1 and A.2.
Thus, with equation (5), we model tipping events and cascades under certain conditions of global warming
(GMT) and the interaction strength (d).

2.3. Basin stability
We are interested in the stability properties of different attractors within the state space. An appropriate tool
to investigate the stability landscape of such states is the so-called basin stability [36, 39]. Basin stability is a
nonlinear stability measure for the resilience of an attractor to disturbances. Where traditional measures
such as the computation of Lyapunov exponents or master stability functions rely on linear approximations
in reaction to small perturbations [95, 96], basin stability approaches can also consider large perturbations.
Such perturbations can occur in Earth system components such as the large ocean circulations or the
AMAZ [36, 97]. The basin stability is an established algorithm focusing on the stability landscape of the
entire phase space, while other nonlinear stability measures such as survivability [41], stability threshold
[98], constrained basin stability [99] and topology of sustainable management [100] approaches focus on
the stability of parts of the state space or desired regimes in it. Therefore, basin stability computations are a
first step that aims to quantify the stability of different attracting states, but do not aim to study potential
desired regimes as would be required for the other mentioned methods. The concept of basin stability has
been applied to many multistable systems. Examples comprise the AMAZ [36], the stability in networks of
power grids [37], neuronal models [38] and further nonlinear systems such as in coupled network systems
[39], oscillators [101, 102] or chimera states [103]. While basin stability can widely be applied, it has its
limitations, for instance in cases where basins become too peculiar, e.g. for riddled basins with holes [40].
Since this is not the case in our model of interacting climate tipping elements, we utilize basin stability in
this work.

An attractor A is defined as the minimal compact invariant set A ⊆ X, where X is the entire state space
[104]. B(A) ⊆ X is the basin of attraction of A which comprises all states from which the system converges
to A. The basin stability or the basin volume V(A) is then quantified as the probability that a system will
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return to a certain attractor A after a perturbation

VB(A) :=

∫

R
1B(A)dμ ∈ [0, 1], (6)

where 1B(A) is 1 in case x ∈ B(A) and 0 otherwise. μ is a measure on the state space X that encodes the
relevance of a certain perturbation and our knowledge about the system. The estimation of the integral in
equation (6) can be difficult, but in our system it can be assumed that the estimation of the basin volume
can be estimated via a Monte Carlo ensemble. The total volume of a basin of attraction is then measured as
the fraction of simulations with randomly chosen initial conditions that end up in that certain attractor
N(A) over the total number of initial conditions N(Ω)

V(A) = P(A) = N(A)/N(Ω). (7)

Here, P(A) is the probability that a random initial condition ends up in the basin of attractor A. To assign
the basin volume V(A) with the probability P(A), it is required that the space of initial conditions is
covered well and uniformly. Therefore in this work, it is necessary to extend the classical concept of basin
stability since it is not only required to sample the space of initial conditions sufficiently well, but also to
sample over the uncertainties in the model parameters themselves (see tables A.1 and A.2). Thus, we need
to set up a very large-scale Monte Carlo ensemble of several billion ensemble members whose construction
details can be directly found below.

2.4. Monte Carlo ensemble to compute basin stability
In order to apply the concept of basin stability in a meaningful way, the state space must be covered well
enough. However, in this application, the parameters of the models have uncertainties themselves in the
critical temperature thresholds and the interaction strength and structure. This means, we need a way of
covering the many uncertainties in these various parameters as well as the state space itself. Therefore, it is
necessary and useful to combine basin stability with a large scale Monte Carlo sample that covers an
adequate extent of the phase space and parameter space. This is what explain in the hereafter.

The basic Monte Carlo ensemble without the extension for basin stability is set up as follows: for each
pair of global mean temperatures (GMT) and interaction strengths d, there is a sample of size 100
constructed with initial conditions from the uncertainty range in Tlimit,i and sij using a latin hypercube
algorithm [105] (see tables A.1 and A.2). Latin hypercube sampling is an extension to the usual random
sampling and is used to improve the space coverage of initial conditions. Therefore, the space of initial
conditions is separated into its dimensions, i.e., the number of different initial parameters (here [17], see
tables A.1 and A.2). Then, it is secured that only one sample occurs in each axis hyperplane (compare to the
N-rooks problem in mathematics). We apply this sampling procedure for each of the 27 different network
setups that arise from the permutation (positive, negative, zero) of the three uncertain links (AMAZ →
ENSO, AMOC → Amazon and WAIS → AMOC, see figure 1(A)). This then leads to 2700 samples. These
2700 samples are computed for each global mean temperature increase up to 8 ◦C above pre-industrial
which can be reached in business as usual scenarios RCP8.5 extended from 2100 to 2500 [10] in steps of
0.1 ◦C and coupling constant d between 0.0 and 1.0 in steps of 0.02 accounting for 864.000 simulation runs.

The extension of the Monte Carlo ensemble, integrating basin stability is detailed below: the basin
stability of the system for each of these 864.000 samples is computed by permuting the initial state of each
of the five tipping elements within its limit, i.e., between the untipped (x = −1.0) and the tipped state
(x = +1.0). The state variables of the five tipping elements result in a five dimensional state vector

vecbasin stability, i = {xGreenland ice sheet(0), xAMOC(0), xwest Antarctic ice sheet(0),

xENSO(0), xAmazon rainforest(0)} ,

where vecbasin stability, i ∈ [−1.0; +1.0] for each tipping element. However, vecbasin stability,i cannot be permuted
in a completely random way, but each of its five dimensions needs to be permuted in an independent way
since there is a strong nonlinearity at state equal zero for each of the five dimensions. Of course, in principle
if there would be infinite computational resources, we would not need to take this nonlinearity into
account, but would be able to increase the size of the Monte Carlo ensemble even further. But since this is
not the case, we need to ‘manually’ account for this important nonlinear property. This means that the sign
of each state must be equally probable, i.e.:
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Figure 2. (A)–(C) Timelines at GMT = 2.5 ◦C above pre-industrial levels and d = 0.15 with different initial conditions (ICs) as
used to probe basin stability. (A) IC = [−1, −1, −1, −1, −1] (today’s initial conditions, no element is tipped at t = 0),
(B) IC = [−0.6, −0.7, 0.1, −0.5, 0.9], (C) IC = [0.9, 0.4, −0.9, 0.1, 0.3].

Psign = P(−, −, −, −, −) = P(+, −, −, −, −) = P(−, +, −, −, −)

= · · · = P(+, +, +, −, +) = P(+, +, +, +, −) = P(+, +, +, +, +)

= 1/32 = 0.031 25.

(8)

This can be achieved when random starting conditions are drawn from each of the 32 combinations of
Psign. Hence, for each of the 32 combinations, we chose 10 different initial conditions ending up with 320
different settings. For the 320 randomly chosen perturbations (i.e., the initial conditions of the tipping
elements), we again used a latin hypercube algorithm [105]. That means it fulfils the condition that each of
the 32 different possible signs of the initial conditions in their five-dimensional subspace (one dimension
for each tipping element) is covered equally often.

Altogether, we employ a very large ensemble of simulations to compute the basin stability of
Ntotal = 320 · 864.000 = 3.569.184.000 ≈ 3.6 · 109 samples. How the final state can depend on the initial
conditions is shown exemplary for three timelines in figures 2(A)–(C).

2.5. Monte Carlo basin bifurcation analysis
Coupling nonlinear ODEs as in the model described here, invokes the possibility of further types of
bifurcations besides fold bifurcations. Here, we utilize Monte Carlo basin bifurcation analysis [42] to
uncover system attractors and estimate their basins of attraction finding Hopf-bifurcations and thus
oscillating solutions converging to limit cycle attractors. MCBB is a novel, numerical approach to analyze
multistable systems, quantify and track their asymptotic states in terms of their basins of attraction by
utilizing random sampling and clustering methods. Since MCBB is based on Monte Carlo ensembles and
we are interested in a quantitative measure of interesting dynamical properties (here occurring limit cycles,
i.e., Hopf-bifurcations), it is a well suited method for our purposes. It has also been applied to other
nonlinear systems such as the Dodds–Watts model, the Kuramoto model or Stuart–Landau oscillators [42].

MCBB aims to find classes of attractors that collectively share the largest basins of attractions of the
system. Similar attractors, at different parameter values, have to share similar values of invariant measures ρ

and the difference of theses measures has to smoothly vanish if the parameter difference goes to zero. If this
is the case they are regarded as being part of the same class of attractors. Ntr trajectories of the system, here
140 000, with randomized initial conditions and parameters are integrated. In order to identify the different
classes of attractors, suitable statistics Si are measured on every system dimension for every trajectory, here,
the mean, variance and the Kullbach–Leibler divergence to a normal distribution. Hence, for every statistic
i, Si is a Ntr × 5 matrix. A distance matrix of each trajectory to each other is computed from these statics
with

Dij =
3∑

k

wk

5∑

l

|Sk,il − Sk,jl| + w4|p(i) − p(j)|, (9)

where p(i) is the control parameter used to generate the ith trajectory and wi are free parameters of the
method, here [1; 0.5; 0.5; 1] which is the default recommendation for these parameters. This distance
matrix is used as an input for a density-based clustering algorithm such as DBSCAN which can find if this
notion of continuity between different trajectories exists and thus each cluster corresponds to a different
class of attractors. For further details on MCBB, refer to [42]. When applying this to the conceptual model
for climate tipping points, not only the different possible states of tipped elements are found, but also
different classes of oscillating states induced by Hopf-bifurcations are found. For the MCBB analysis, the
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parameter uncertainties were varied randomly within the same bounds as for the previously described basin
computations. The initial conditions of five tipping elements were chosen to all start at −1, i.e., not tipped
for the results presented in the main text, and at random between −1 and +1 for the results presented in
the appendix. The computations are performed with the Julia library MCBB.jl.

3. Results

3.1. Basin stability
We compute the basin stability of each potential state that could be governed by the network of five tipping
elements. The present day state could be considered as some kind of safe state for the Earth system when all
five tipping elements are in a negative state. On the other hand there could be a state where all five tipping
elements reside in the positive, tipped state. In between there are intermediate scenarios, where some
tipping elements already crossed their thresholds and others did not. In figure 3, we show the average basin
stability for each of these six possible situations, i.e., with zero, one, two, three, four and five tipped
elements. In this experiment, we perturbed the initial conditions of all tipping elements at the same time.
The fraction of initial conditions that end up in the respective basin are plotted as the color.

In general, we observe that the size of the basin of attraction for higher global warming levels becomes
larger for a higher number of tipped elements as would be expected. For high levels of warming, the basin
of five tipped elements dominates.

For increasing interaction strength, the volume of the basins with three or less tipped elements decreases
(figures 3(A)–(D)). Contrasting this, the basin volume with four tipped elements increases with increasing
interaction strength, while the basin for five tipped elements first increases and then decreases again
(figures 3(E) and (F)). The last issue is due to the strong negative feedback loop between the GIS and the
AMOC. In such cases of high coupling, the AMOC tips, but safeguards the GIS which reaches the untipped
regime for global mean temperature increases above 4 ◦C and interaction strengths above 0.5. This poses a
hypothetical scenario which would only be realistic if the interaction strength between Greenland and
AMOC is very high, but this behavior has also been observed in experiments of tipping cascades earlier
[35].

For instance, in the basin volume plot of zero, one or two tipped elements, the number of states that
equilibrate in this state is very small (figures 3(A)–(C)). For temperature increases above 2 ◦C the associated
basin volume is close to zero for all interaction strengths. At the same time, the size of the basin decreases
for higher coupling strengths.

The uncertainties of the basin volumes are quantified as standard deviation in the appendix (figure B.1).
We find that uncertainties generally increase for a higher amount of tipped elements as well as for higher
interaction strengths. The standard deviation is highest for small temperature increases and high coupling
strengths since here, the attractors depend on the initial conditions in terms of the critical temperature
thresholds and initial coupling constants (see table A.1). The basin of four and five tipped elements show a
regime of increased standard deviation for temperatures around 2 ◦C–5 ◦C above pre-industrial and
interaction strength parameters of more than 0.2. This is probably due to the fact that in this regime the
state of the GIS has a large variation because of its strong negative feedback loop to AMOC. Thus, whether
this element tips, also depends a lot on the explicit initial conditions of the state as well as on parameters
(see tables A.1 and A.2). Outside and around this regime, the uncertainty is smaller since either Greenland
is not tipped with high certainty for lower temperature increases (below 2 ◦C) or tipped with high certainty
at higher temperature increases (above 5 ◦C).

There exists a narrow range of global mean temperature increases when single tipping elements can
transgress their state without triggering a tipping cascade. This range is mostly located below 1 ◦C above
pre-industrial for low coupling strength and well below 1 ◦C for higher interaction strengths (see
figures 3(B) and B.2). If we separate this response into the respective singular tipping elements, we can see
that above an interaction strength of 0.2–0.4, the GIS and ENSO cannot tip without causing a cascade due
to their strong interactions links to AMOC or the AMAZ, respectively (for more details see appendix B).

Additionally, we investigate some important intermediate states in more detail, where some elements are
in the tipped regime, while others are not. It was found that several tipping cascades of size two and three
are more frequent than others, for instance a tipping cascade between the GIS and the WAIS is more likely
than, for instance, a cascade between the AMOC and the AMAZ [35]. Thus, we investigate the basin volume
that corresponds to such cascades.

We find that the ice sheets appear to be of particular importance for the stability of the Earth system in
our model because they have a high basin stability in both, when exactly two and exactly three elements are
tipped (figures 4 and 5). Although a potential disintegration of the ice sheets can take several centuries up

9

2.7 Basin stability and limit cycles in a conceptual model for climate tipping cascades [P7]

185



New J. Phys. 22 (2020) 123031 N Wunderling et al

Figure 3. Basin volume for each number of tipped elements in dependence of interaction strength and global mean temperature
increase. (A)–(F) Basin volume of 0 to 5 tipped elements.

to millennia, states including tipped ice sheets seem to be more stable than states without tipped ice sheets.
This is also consistent with the earlier result that the large ice sheets are the initiators of many cascades in
the studied model [35].

In case exactly two elements are tipped (figure 4), the basin of the GIS and the WAIS is the only one
which has increased basin volume for low interaction strength and global warming levels of 1 ◦C–3 ◦C
above pre-industrial. This would represent a scenario in which, both, the GIS as well as the WAIS are
triggered and become ice free on long time scales without a tipping of the AMOC. This could for example
be the case when global warming is higher than necessary to safeguard the large ice sheets, but low enough
such that the time of their disintegration is slow enough such that the freshwater input into the AMOC does
not stop their functioning.

In parallel, if exactly three elements are tipped, the combinations that include the GIS and the WAIS
have a higher basin stability at low interaction strength. Here, global warming levels are up to 4 ◦C above
pre-industrial (figure 5).

We compare the basin volumes of these scenarios, where exactly two or three tipping elements are in the
tipped regime and the large ice sheets are among these tipped elements (see figure 6). We observe that the
basin volume is highest between 1 ◦C–4 ◦C above pre-industrial levels for an interaction strength of 0.1. We
find that the basin volume is largest at intermediate interaction strengths d (mainly below 0.2) for a global
mean temperature increase of 2 ◦C above pre-industrial levels. We also reveal that the basin volume for two
tipped ice sheets (red curve) is lower than for exactly three tipped elements including the two ice sheets
(other curves). Since many basin volumes of exactly two or three tipped elements are very close to zero (see
figures 4 and 5) and the basin volumes including tipped ice sheets are different from zero, this emphasizes
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Figure 4. Basin stability for exactly two tipped elements for all pairs of tipping elements [panel (A) to (J)]. Most of the basin
volumes are very small, but the joint basin of the GIS and the WAIS for low interaction strength and the joint basin of the AMOC
and the WAIS for high interaction strength and low temperature is increased. The abbreviations in the title stand for: Greenland
Ice Sheet (GIS), West Antarctic Ice Sheet (WAIS), Atlantic Meridional Overturning Circulation (AMOC), El-Niño Southern
Oscillation (ENSO) and Amazon rainforest (AMAZ).

again that the ice sheets could be of special interest for the resilience of the Earth system with respect to
tipping dynamics.

Furthermore, some basin volumes are increased for low to intermediate levels of global warming and
high interaction strengths (above ≈ 0.5). It is likely that such scenarios are less realistic since, either such a
low increase of the global mean temperature is improbable, or such high interaction strength would pose
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Figure 5. Basin stability for exactly three tipped elements [panel (A) to (J)]. The volume of basins is large, where the GIS and the
WAIS are included, for low interaction strength and global warming levels of up to 4 ◦C above pre-industrial.

the unlikely scenario that interactions are as important as the individual dynamics of the tipping elements.
This would be the case when the interaction strength d approaches 1.0 (see figures 4 and 5 and compare to
equation (5)).

3.2. Oscillatory states
Furthermore, from the basin stability results we aim to separate off limit cycle attractors in the state space.
The results from MCBB [42] identify the parameter regimes where Hopf Bifurcations occur and the tipping
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Figure 6. Basin volume for selected tipping elements residing in the tipped and untipped regime for (A) an interaction strength
of d = 0.10 and (B) a global mean temperature increase of 2.0 ◦C above pre-industrial levels. The shaded colors represent the
standard deviation arising from the 27 different network setups due to the structural uncertainties of the network of tipping
elements (compare section 2.4 and see figure 1(A)). The standard deviation increases with increasing interaction strength d in
panel (B) since the equilibrium state depends on the initial conditions of the respective ensemble member. This equilibrium state
is influenced significantly more for higher interaction strengths, but due to stabilizing, destabilizing and unclear links in the
network of tipping elements, the change of the equilibrium states fluctuates more and shows a higher uncertainty. Therefore, the
standard deviation increases. The same is valid for panel (A) at a region where (parts) the critical temperature ranges Tlimit,i are
located for many of the tipping elements, that is mainly between 2 ◦C–4 ◦C above pre-industrial.

Figure 7. Oscillating states in case the initial conditions of all tipping elements are [−1, −1, −1, −1, −1]. For random initial
conditions, see figure C.1. (A) Occurrence of oscillating states with respect to global warming and interaction strength parameter
d. (B) Dependence of limit cycles and their main type on the temperature increase at high interaction strength (dashed magenta
line in panel (A). (C) Dependence of limit cycles and their main type on the coupling strength at a temperature increase of 2 ◦C
above pre-industrial (dashed blue line in panel A). (D) Example time series for a limit cycle of AMOC and GIS.

elements start to show Kadyrov oscillations. Such Kadyrov oscillations have already been found in the early
literature on dynamical systems of the CUSP type [92]. As shown in figure 7 for initial conditions at −1 for
all tipping elements, this is most prominently the case for large interaction strengths and medium
temperature increase values. Here, about every tenth solution is oscillating. This is due to the fact that
uncertainties are largest in these regimes. For smaller interaction strength values, limit cycles can still occur
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but are much rarer with an occurrence at about 1% of all solutions. Of all these limit cycle oscillations
almost all (95%) have a significant amplitude (standard deviation > 0.1) in at least one tipping element.
The most common limit cycles are simultaneous oscillations of AMOC and GIS as shown in figure 7(D).
They make up about 86% of all oscillating states found. The reason for this predominant oscillation is that
there is a strong negative feedback loop between the GIS and the AMOC via freshwater input from
Greenland that weakens the AMOC, while on the other side a weaker AMOC cools the northern
hemisphere (see e.g. [16, 29]). Still, whether such oscillations could indeed exist in the climate system
remains speculative, but in principle there is evidence of oscillatory behavior in paleo data of the Earth
system [106, 107].

4. Discussion

We find that the only dominating stable state in the long term, for large temperature increases around and
above 4.0 ◦C above pre-industrial levels, is the one with four or five tipped elements. Our results emphasize
that the ice sheets could be of special importance for the stability of the climate system regarding their
increased basin volume in case more than one element is tipped. Based on the known interactions from
Kriegler et al [29] this makes sense, since the interactions between the ice sheets, especially from Greenland
to west Antarctica, are strong due to potentially rising sea level that might cause grounding line retreat [69].

Of course, the ice sheets interact with global modes of ocean variability like the AMOC and reduce its
overturning strength, but in our model these interactions are not sufficient to tip the AMOC over in many
cases. These states with disintegrated ice sheets are especially relevant exhibiting a high basin volume for
intermediate climate warming scenarios consistent with the climate target of the Paris agreement that aims
at limiting global warming to well below 2 ◦C above pre-industrial levels [108]. Limit cycle oscillations
between the tipping of some elements have been detected at some rare parameter configurations, mainly
between the GIS and the AMOC. Although it remains unclear whether such (Kadyrov) oscillations have
occurred in the climate system, they point to possible relevant internal modes of variability in the climate
system. In principle such limit cycle behavior could have played a role in paleo climate dynamics such as in
the Pleistocene ice age cycles [106, 107]. Further, the individual dynamics are not the sole determinant of
the final state of the tipping elements since the network effects can cause additional tipping events. Through
this network interaction, it is therefore possible that cascades of tipping events emerge, even before the
actual critical temperature threshold for some of the tipping elements is reached [35].

5. Conclusion

In this work, we study a conceptual model of five climate tipping elements based on a system of coupled,
nonlinear differential equations. We investigate the stability of different dynamical regimes with respect to
its stable states applying the concept of basin stability using a very large-scale Monte Carlo simulation of
more than 3.5 billion ensemble members. Following that approach, we are able to propagate the numerous
uncertainties thoroughly which are associated with the critical temperature thresholds and interaction
strengths. With a Monte Carlo basin bifurcation analysis tool, we detected oscillatory states within our
system.

We observe that the largest basin volume is that of the basin, where all five tipping elements are in the
transgressed state, especially for large levels of global warming. We also detect that the ice sheets are of
special importance for the stability of states, where the large cryosphere components reside in the
transgressed state, while the other tipping elements do not. We also detect Hopf-bifurcations for few
parameter configurations (0.6%), mainly taking place between the GIS and the AMOC (86%).

Our complex dynamical networks approach strongly simplifies the nature of tipping elements as well as
their interaction structure. However, it can serve to integrate simplified concepts of tipping elements until
coupled, process-based models are developed that can resolve the respective nonlinearities in the Earth
system in more detail since current state-of-the-art Earth system models cannot yet model all these
nonlinearities due to a lack of comprehensive process-understanding and computational constraints. It is
further important to note that some studies have hypothesized that major changes in ENSO are possible
[60, 61] based on conceptual models [109, 110], but however, whether this is evidence for a permanent and
potentially even irreversibly tipped ENSO remains uncertain and debated. Surely, ENSO exerts strong
feedbacks onto the climate system that will increase if major El–Niño events become more frequent, for
instance through strong drying trends over Amazonia. Furthermore, in earlier research we found that the
main results of our model remain robust under the omission of ENSO such that we decided to investigate
the more complex case and included ENSO here, even though the use of equation (5) is only a topologically
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equivalent dynamical equation (for more details see [35]). While some literature studies present ENSO
among the list of potential tipping elements [6, 10, 29], it still remains uncertain whether ENSO is a tipping
element in a strict sense.

Overall, our network approach can easily be adapted to further tipping elements as soon as their
interaction structure would be understood. It is also possible to probe the effect of different structural
interaction hypotheses to further tipping elements within the scope of an uncertainty analysis, as has
already been performed here for three interaction links. Further, the results of our study motivate that it
could be worthwhile to look into the dynamics in more detail using process-detailed Earth system models.
Especially the role of the large sheets in the stability landscape and oscillations between climate system
components could be of interest. Even though, there is some knowledge about the interaction structure
present in literature (see section 2.1), a new expert elicitation might be worthwhile because the knowledge
about the interactions between the tipping elements has surely widened since the original expert elicitation
from Kriegler et al (2009) [29].
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Appendix A. Parameter uncertainties

In the following tables (tables A.1 and A.2), we list the critical temperatures Tlimit,i for the respective tipping
element and the interactions between them together with their uncertainties.

Appendix B. More basin stability results

Here, we show the standard deviation of the basin volume for 0 to 5 tipped elements (figure B.1) and the
basin volume for one specific tipped element (figure B.2) to complement the results from figure 3.

Appendix C. Oscillatory regimes for random initial conditions

Here, we show the results of a MCBB analysis for random initial conditions (figure C.1). We find that limit
cycles occur more frequently when the initial conditions are randomly shuffled.
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Table A.1. Each interaction in the network of figure 1 has a specific link strength range and a specific physical
process that is connected to the respective interaction. The link strength ranges are computed from literature
values [29, 43] such that they can be used in equation (5). For a more in depth description please be referred to
Wunderling et al (2020) [35].

Interaction Link strength range sij (a.u.) Process

Greenland → AMOC [+1;+10] Freshwater inflow
AMOC → Greenland [−1;−10] AMOC breakdown, Greenland cooling
Greenland → west Antarctica [+1;+10] Grounding line retreat
ENSO → Amazon rainforest [+1;+10] Drying over amazonia

ENSO → west Antarctica [+1;+5] Warming of ross and amundsen seas
AMOC → Amazon rainforest [±2;±4] Changes in hydrological cycle
West Antarctica → AMOC [±1;±3] Increase in meridional salinity gradient (−),

Fast advection of freshwater anomaly
To north atlantic (+)

AMOC → ENSO [+1;+2] Cooling of north-east tropical pacific with thermo-
Cline shoaling and weakening of annual cycle in EEP

West Antarctica → Greenland [+1;+2] Grounding line retreat
ENSO → AMOC [−1;−2] Enhanced water vapor transport to pacific
AMOC → west Antarctica [+1;+1.5] Heat accumulation in southern ocean
Amazon rainforest → ENSO [±1;±1.5] Changes in tropical moisture supply

Table A.2. Critical temperature range Tlimit,i of the five tipping elements as taken from the literature [10], see also equation (5). The
typical tipping time scale τ i is given in model years (in arbitrary units) since it is beyond the scope of this model to make predictions
about the exact tipping times. However, certain differences in tipping times as used here can be decisive whether a tipping event occurs
or not. For more information see Wunderling et al (2020) [35].

Tipping element Tlimit,i (◦C) τ i [a.u.]

Greenland 0.8–3.2 4900
West Antarctica 0.8–5.5 2400
AMOC 3.5–6.0 300
ENSO 3.5–7.0 300
Amazon rainforest 3.5–4.5 50
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Figure B.1. Standard deviation over the 27 different network realizations of the basin volume normalized to one for each
number of tipped elements [panels (A)–(F)] in dependence of interaction strength and global mean temperature increase. Mean
values can be found in figure 3.
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Figure B.2. Basin stability for single elements showing that the basin volume for the AMOC, WAIS and AMAZ are qualitatively
similar since it is possible that only this particular element tips. However, for ENSO and the GIS this is not the case. It can only
very rarely happen that these elements tip on themselves for high interaction strength even at low temperature increases since
both of them possess a very strong link to another element that they would draw along into the tipped state. For ENSO, this is the
AMAZ and for the GIS it is the AMOC. Note that the color bar is different for panel (A) to improve visibility.
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Figure C.1. Oscillating states for random initial conditions. Limit cycles occur more often than for initial conditions at −1 for all
tipping elements. On the other side, the limit cycle oscillation between the AMOC and the GIS is still dominating.
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Chapter 3

Results

The world is reaching the tipping point beyond which climate change may become irreversible. If
this happens, we risk denying present and future generations the right to a healthy and sustainable
planet – the whole humanity stands to lose.

Kofi Annan

In my dissertation, I have extensively used and developed complex systems’ methods to apply them
to questions relevant for nonlinear processes in Earth system science. The scope of this thesis is to
improve the understanding of tipping elements and their interactions by methodological advances.
It also aims at addressing specifically the research question as to whether interactions between tip-
ping elements in the climate system might drive the tipping elements towards potentially dangerous
tipping events or cascades. Therefore, my dissertation is divided into two major parts: Theory &
Methodologies and Climate tipping elements (see Fig. 1.4). The main developments and results from
my dissertation can be found in the following list and will be detailed in the paragraphs and sec-
tions thereafter (see Sects. 3.1 and 3.2). Finally, the results will be summarised and an answer to the
research questions will be given (see Sect. 3.3).

rP1–P3s The Python based model PyCascades has been developed facilitating future studies on inter-
acting tipping elements in complex networks. This model is publicly available under the doi:
10.5281/zenodo.4153102. With this model, properties of tipping cascades have been deter-
mined, ranging from the robustness of the entire network conditioned by micro-scale motifs to
the conditions of the emergence of global cascades and phase transitions (see Sect. 3.1).

rP4s The temperature feedback from large cryosphere elements such as the Arctic summer sea ice,
the mountain glaciers, and the Greenland and West Antarctic Ice Sheet have a magnitude of
around half a degree (0.39–0.46 ˝C) of additional global warming. Local additional warming
patterns can exceed 5 ˝C over Greenland and West Antarctica (see Sect. 3.2.1).

rP5s Drought-induced tipping events in the Amazon rainforest can be evoked by potentially drier
future conditions due to climate change, especially in the southeast of the Amazon basin.
Thereby, tipping cascades through atmospheric moisture recycling, connecting different parts
of the Amazon rainforest, are an important amplifier of such tipping events, outpacing the adap-
tation of the Amazon rainforest to current and past environmental conditions (see Sect. 3.2.2).

rP6, P7s The role of the climate tipping elements in cascading transitions has been revealed. While the
large ice sheets act as the initiators of tipping cascades, the AMOC is the transmitter. From
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this point of view, but also from a basin stability perspective, the large ice sheets are of special
importance for the stability of the climate system in general (see Sect. 3.2.3).

rAP1–AP4s Further results, structured in four additional working packages, are briefly listed in the follow-
ing and elaborated in the Appendix (see chapter 5). [AP1]: Emergence of cooperativity in
interacting tipping cascades with noise. [AP2]: Distinction between three different types of
tipping cascades (two phase cascade, domino cascade, joint cascade). [AP3]: Hysteresis in the
Amazon rainforest in a global dynamic vegetation model. [AP4]: Definition of social tipping
processes and differences between natural and social tipping phenomena.

3.1 Theory & Methodologies
In the first major part of my dissertation, I have laid the theoretical and methodological ground for
the investigation of tipping events and cascades in the Earth system and one of its subcomponents,
the Amazon rainforest.

During recent years and decades, a focus of research has shifted towards tipping points as they
occur in many different systems (Gladwell, 2006; van Nes et al., 2016; Milkoreit et al., 2018).
Examples can be found in ecology, economy, the Earth’s climate system or social systems (Lenton
et al., 2008; May et al., 2008; Tàbara et al., 2018). The interest in modelling interacting tipping
elements with models motivated from complex systems research has increased recently (Brummitt
et al., 2015; Eom, 2018; Klose et al., 2020). In this work, we fill the gap of these two newly arising
research strands (interactions and tipping elements) and bring them together in an easily extendable
and flexible software package PyCascades (see Sect. 2.1 [P1]). PyCascades is a modelling package
written in Python that is able to simulate the dynamics of interacting tipping elements on complex
networks. Two different types of tipping elements are pre-implemented, a tipping element with a
Hopf-bifurcation normal form and a tipping element with a Cusp-bifurcation normal form. Tipping
elements can be put on arbitrarily defined network structures, but there are also three paradigmatic
network types explicitly pre-implemented that can be used out of the box. These are Erdős-Rényi,
Barabási-Albert and Watts-Strogatz networks (Erdös and Rényi, 1959; Watts and Strogatz, 1998;
Barabási and Albert, 1999). Motivated by numerous prominent examples where noise-induced
tipping can occur (Kondepudi et al., 1986; Gammaitoni et al., 1998; Thompson and Sieber, 2011;
Ashwin et al., 2012, 2017), it is possible to simulate tipping events and cascades by adding noise to
the normal form of the tipping elements. For that purpose, PyCascades has been linked to the open
source software package sdeint (Aburn and Ram, 2017). While only additive noise is implemented in
the current version of PyCascades, we leave the decision of which type of noise (based on respective
SciPy functions (Virtanen et al., 2020)) should be used to the modeller: Gaussian, Lévy and Cauchy
based noise are possible. Besides these stylised models, three concrete applications are showcased in
this piece of work. First, tipping events in the Earth’s climate system are investigated. Second, in the
Amazon rainforest, tipping cascades are caused by cascading effects that are transported further by
atmospheric moisture recycling. Since these two examples are only briefly outlined and exemplified
in this paper, please be referred to Sect. 3.2 and Sects. 2.5–2.7 [P5–P7], where these applications are
discussed and elaborated in much more detail. The third application of PyCascades deals with tipping
cascades in a model of an international supply chain based on the EORA multi-regional input-output
database (Lenzen et al., 2012).

As noted above, dynamical systems from various backgrounds possess two different, distinguishable
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states that are connected via a bifurcation (see e.g. Brummitt et al., 2015). Using Pycascades and its
pre-defined function for the Cusp-bifurcation normal form, such tipping elements can be described by
Eq. 1.1 by neglecting the noise term. While it has been argued that the resilience of such networks of
tipping elements depends on the topology of networks (Eom, 2018), the conditions for the emergence
of global tipping cascades have not been extensively studied. Using networks of tipping elements, we
address questions around this problem in detail in three pieces of work (see Sect. 2.2 [P2], Sect. 2.3
[P3] and Sect. 5.1 [AP1]).

To investigate different network types, directed versions of the Barabási-Albert and the Watts-
Strogatz network have been developed in [P2]. We also included a spatially embedded network of
atmospheric moisture flows within the Amazon rainforest. The Amazon rainforest is an ecological
system, which can be represented as a network of tipping elements (Hirota et al., 2011; Staver et al.,
2011; Zemp et al., 2017). While the individual cells (here on a 2˝x2˝ grid) represent forest covered
or non-forest covered states such as a savannah or a treeless state, the interactions arise from the
atmospheric moisture recycling values, that have been quantified in literature (Staal et al., 2018).
Therefore, the Amazon rainforest is modelled here as a network of tipping elements that interacts
via the moisture recycling network. In [P2], we found that clustering and spatial organisation are
indicators for increased network fragility to tipping cascades. Under such very common conditions
in real-world networks, e.g. in the moisture recycling network of the Amazon rainforest, tipping
cascades can develop under much weaker coupling strengths d than in random networks. This
observation has been confirmed by a directed stochastic block model and a configuration model, with
which it is possible to isolate the effects on tipping cascades that degree sequence and community
structure have. The models for the stochastic block model and the configuration model have been
taken from literature (Holland et al., 1983; Newman et al., 2001; Newman and Girvan, 2004).
However, for all network types, the aforementioned differences between the network types vanish
as soon as the network is not sparsely connected, but more densely. Under such circumstances, the
tipping behaviour converges to the same dynamical behaviour for many network types as long as
there do not exist isolated parts of the network. This work emphasises that a study using the actual
moisture recycling values and better elaborated critical values in the Amazon rainforest might be
worthwhile to detect the potential for tipping cascades within the Amazon basin. Therefore, this
study lais the motivation for [P5] (see Sect. 2.5).

In [P2] (and [AP1]), mainly global properties of networks of tipping elements are discussed. However,
there are certain micro-structures (the so-called motifs) within a network that condition the emergence
of global cascades by boosting tipping cascades from a local scale to the entire global network (see
Sect. 2.3 [P3]). Two decades ago, motifs have been introduced as the building blocks of complex
networks (Milo et al., 2002). Among others, they have been identified to be of important functional
relevance in food webs, transcriptional biological networks, but also in tumour suppression (Shen-Orr
et al., 2002; Lahav et al., 2004; Alon, 2007; Stouffer et al., 2012). It has been observed that one crucial
motif is the so-called feed forward loop motif, which is found to be significantly over-expressed in
real-world networks compared to Erdős-Rényi networks (Milo et al., 2002). In this work, we identify
motifs as some of the most important entry points for initiating tipping cascades in a network of
tipping elements. Especially, the so-called feed forward loop motif can strongly reduce the critical
coupling strength that is necessary to initiate a tipping cascade from 0.183 to 0.162, a reduction of
more than 10%. Furthermore, we derive analytic expressions for the likelihood that a certain motif
can be found at a randomly chosen node in Erdős-Rényi networks. Exemplary, for the feed forward
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loop motif, this likelihood is

Pfeed forward loop “ 1´
ˆ
1´ 〈k〉

N ´ 1

˙〈k〉p〈k〉´1q
, (3.1)

with the network size N and the average degree 〈k〉. The necessary coupling strength d to initiate a
tipping cascade is reduced by more than 90% for dense networks. This can be attributed to multiply
coupled feed forward loop motifs. Lastly, the occurrence of motifs in the moisture recycling network
of the Amazon rainforest is quantified, revealing three regions of increased motif occurrence: (i)
the southern Amazon basin, (ii) close to the Andes region and (iii) the north of the Amazon basin.
This hints at regions where very strong network effects are apparent and a higher number of tipping
cascades can be expected. Together with a clustering coefficient that is about a magnitude higher
than in Erdős-Rényi networks, which can explain why tipping cascades occur at much lower coupling
strengths in the Amazon rainforest moisture recycling network than in random networks.

3.2 Climate tipping elements
The second major part of my dissertation deals with tipping elements in the climate system. This
section is divided into three parts, where I would like to start from the cryosphere, through the Ama-
zon rainforest up to a system of interacting climate tipping elements. Thus in the first part, I will
discuss how large specific temperature feedbacks are. The second part discusses tipping cascades in a
particular subsystem of the Earth that can be modelled as a set of interacting smaller tipping elements
on a complex network structure: the Amazon rainforest. And the third part aims to shed light on
the interactions of large-scale climate tipping elements and the risk of cascading tipping. In the last
results section, it will also be discussed as to whether the additional temperature feedback from the
cryosphere elements might induce additional tipping events and diminish the overall stability of the
Earth system (see Sect. 3.3).

3.2.1 Feedbacks from the cryosphere tipping elements
If tipping elements transgress into the tipped state, this can for some tipping elements lead to self-
enforcing temperature feedbacks, which could then drive other tipping elements closer to their critical
threshold. In turn, this could, under unmitigated global warming, ultimately lead to a potential large
scale tipping cascade in several Earth system components (Steffen et al., 2018). For some tipping
elements such as the Amazon rainforest or the Permafrost, the reinforcing temperature feedbacks have
been listed in Steffen et al. (2018). The temperature feedback from the large cryosphere elements,
however, is not quantified there. Therefore, we conducted a comprehensive quantification of the
temperature feedbacks for the large cryosphere elements in case they would disintegrate under future
climate change scenarios (see Sect. 2.4 [P4]). The elements that are investigated are the Greenland
Ice Sheet, the West Antarctic Ice Sheet, the mountain glaciers and the Arctic summer sea ice, plus the
entire Antarctic Ice Sheet in the supplementary information. The recent developments on Greenland,
Antarctica, the Arctic summer ice and the mountain glaciers over the last years and decades reveal
that such a scenario is not necessarily implausible (Shepherd et al., 2020, 2018; Gardner et al., 2013;
Stroeve et al., 2012; Zwally et al., 2011, for more details see Sect. 2.4). While these four regions
are at risk, their disintegration would take place on very different timescales. The large ice sheets
on Greenland and Antarctica could take centuries to millennia to become ice-free (Robinson et al.,
2012; Winkelmann et al., 2015), but the Arctic summer sea ice might be free of ice from mid century
onwards (Notz et al., 2013; Niederdrenk and Notz, 2018; SIMIP-Community, 2020). Using the EMIC
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CLIMBER-2 (Petoukhov et al., 2000; Ganopolski et al., 2001), we quantify the temperature increase
due to the disintegration of the large cryosphere elements to 0.39´0.46 ˝C (0.43 ˝C) at a background
atmospheric CO2 concentration of 400 ppm in CLIMBER-2, equalling 1.5–2 ˝C of global warming.
The interval 0.39 ´ 0.46 ˝C represents the 90% interquartile ranges of the ensemble and the value
in brackets is the median of the ensemble. This value is the global average of the additional global
warming, but regional warming levels differ largely. While over the regions of the removed ice over
Greenland and West Antarctica local warming levels exceed 5 ˝C, the additional warming at lower
equatorial latitudes is on the order of 0.1–0.3 ˝C. Furthermore, in this study, a separation into the
reasons for warming (fast climate feedbacks) is computed. These feedbacks are the albedo, the lapse
rate, the water vapour feedback and the clouds feedback. For a background warming of 1.5–2 ˝C of
global warming, the main driver of additional warming is the albedo feedback, which is responsible
for 55% of the additional warming. This makes sense since the ice over Greenland and Antarctica
as well as the mountain glaciers and the Arctic summer sea ice is artificially removed or masked out,
even though afterwards, the ground is allowed to freely evolve into any types of vegetation (snow
cover, bare soil, etc.). 40% of the additional warming are due to changes in the lapse rate and the
water vapour, while the last 15% of the additional warming are due to the clouds feedback. In the last
results section, we elaborate on whether these additional temperature feedbacks impact the number
of observed tipping elements (see Sect. 3.3 & Donges and Wunderling et al. (2021, in prep.)).

3.2.2 Amazon rainforest
Not only the climate tipping elements compile a (small) network of interacting tipping elements (see
Sects. 2.6 and 2.7 [P6, P7]), but also certain sub-elements can, on a finer level, be understood as
nonlinear entities that are connected via network structures. The Amazon rainforest is among these
tipping elements that have been viewed as a network of tipping elements in the literature (e.g. Zemp
et al., 2017). The nodes of the network are local scale rainforest patches that are vulnerable to chang-
ing environmental conditions such as, among others, mean annual precipitation or the drought sever-
ity. If a critical value of some environmental condition is undercut, then a certain vegetation patch
might not be able to exist as rainforest anymore, but only as savannah or completely treeless under
such conditions (Hirota et al., 2011; Staver et al., 2011). Moreover, it has been found that the regions
of bistability between savannah and rainforest might increase in the Amazon rainforest region under
ongoing climate change (Staal et al., 2020a). At the same time, the edges in such a network represent
the transport of atmospheric moisture transport that arises through transpiration and evaporation at
one site and is transported further by wind to other sites. This atmospheric moisture recycling mech-
anism is vital for the Amazon rainforest as up to 50% of the moisture is recycled and transported
further up to six times (Eltahir and Bras, 1994; Zemp et al., 2014; Staal et al., 2018, 2020b). Further-
more, it has been projected that major droughts might become more frequent under climate change
and occur in nine out of ten years by 2060 (Cox et al., 2008; Duffy et al., 2015). Such a significant
increase in drought frequency, especially in the southern part of the Amazon basin, is confirmed by
state-of-the-art CMIP6 simulations (Cook et al., 2020; Parsons, 2020).
This might then outpace the adaptive capacity of the rainforest and initiate drought-induced tipping
events and cascades. In our work (see Sect. 2.5 [P5]), the potential for tipping cascades is quantified
under a whole range of possible future climatic scenarios based on realistic drought patterns from
the hydrological years 2004–2014. It is found that the vulnerability increases nonlinearily as soon
as a certain threshold in the drought intensity as the control parameter, here measured as Maximum
Cumulative Water Deficit (MCWD), is exceeded. This threshold lies between 2.5 to 3.0 standard
deviations away from the long term average of the drought conditions meaning that for higher
drought indices, the tipped area increases strongly and is up to six times higher than for more modest
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3.2 Climate tipping elements

drought conditions. At the same time, the frequency of tipping cascades increases significantly
and approaches 50% of all tipping events when drought conditions surpass 3.0 standard deviations
beyond the long term average. Surprisingly, the reasons why certain tipping events are observed, is
distributed unevenly between the mean annual precipitation (MAP) as a first control parameter and
the drought intensity as the second control parameter (MCWD index). Over the whole ensemble in
our study, MAP induced tipping is rarely observed (less than 0.1%), whereas MCWD induced tipping
is responsible for the majority of the tipping events (mean˘s.d.: 76.3˘8.5%). Tipping cascades
through atmospheric moisture recycling effects are also important: 23.6˘8.5% of all tipping events
are due to cascading effects. Lastly, the region that seems most affected by drought-induced
tipping is located in the southeast of the Amazon basin. This is a region that already nowadays
suffers from large-scale land-use change such as deforestation (“arc of deforestation”), ranching or
agriculture (Davidson et al., 2012; Pereira et al., 2020).

Besides viewing the Amazon rainforest as a network of interacting tipping elements on a local to
regional scale, another study researches the tropical rainforest systems after further nonlinear prop-
erties by using the state-of-the-art dynamic global vegetation model LPJmL5.1 (see Appendix. 5.3
[AP3]). This is a valuable step into the direction of using more complex Earth system models cou-
pled to dynamic vegetation models since, apart from very few studies using more complex vegetation
models (e.g. Oyama and Nobre, 2003; Cox et al., 2004), most tipping point studies in the Amazon
rainforest rely on conceptual models (e.g. van Nes et al., 2014; Boers et al., 2017; Zemp et al., 2017).

3.2.3 Global Earth system
In the introduction of this thesis (see Sect. 1), it has been noted that some climate tipping elements
are at risk of transgressing their critical thresholds if the levels of global warming exceed current
values (see Fig. 1.2). To investigate the potential risk for tipping events and tipping cascades, we
applied a widely extended version of the software framework PyCascades to a set of interacting
climate tipping elements (see Sect. 2.6 and 2.7 [P6, P7]). Overall, a subset of four to five interacting
climate tipping elements has been investigated: the Greenland Ice Sheet, the West Antarctic Ice
Sheet, the AMOC, the Amazon rainforest and the ENSO. The dynamics of these tipping elements
are based on topologically equivalent representations of their main dynamical properties (Kuznetsov,
2013; Staal et al., 2015; Levermann and Winkelmann, 2016; Wood et al., 2019). This might be seen
as straightforward for the large cryosphere elements, the AMOC and Amazon rainforest, while such
a dynamical behaviour is less clear for the ENSO that would also be better represented by a Hopf
bifurcation (Timmermann et al., 2003). For ENSO, it is even debated whether it should be regarded
as a tipping element in a strict sense under global warming. Some literature sources state that
ENSO effects will occur more frequently under climate change (Cai et al., 2014; Wang et al., 2019),
while others highlight their uncertainties as to whether ENSO event will become more frequent or
intense under global warming (Collins et al., 2010; Kim et al., 2014). For an in-depth discussion see
[P6] (see Sect. 2.6). The interactions between tipping elements have been motivated by an expert
elicitation (Kriegler et al., 2009), but they can also be motivated by more complex models, where
such existing interactions between these Earth system regions have been observed (e.g. Rahmstorf
et al., 2005; Seidov et al., 2005; Swingedouw et al., 2008; Mitrovica et al., 2009; Caesar et al.,
2018; Weijer et al., 2019) (see [P6, P7]). Furthermore, all structural uncertainties in the critical
temperatures and the interaction strengths are propagated using a large-scale Monte Carlo simulation
based on a sophisticated latin-hypercube sampling method to randomise the starting conditions of the
parameters such that the space of initial conditions is covered well (Baudin, 2013). For further details
on the exact mathematical implementation of the tipping elements and their interactions please be
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referred to Sect. 2.6 and 2.7 [P6, P7].

In [P6] (see Sect. 2.6), we find that the reference climate is destabilised with increasing interaction
strength for the West Antarctic Ice Sheet, the AMOC and the Amazon rainforest. In detail, this
means that the critical temperature ranges are decreased by 10% in the case of the Amazon rainforest,
40% for the West Antarctic Ice Sheet and up to 60% for the AMOC when the interactions are of
the same importance as the individual dynamics. Further, the critical temperature increases for
the Greenland Ice Sheet is, on average about 100%. But at the same time its standard deviation
increases largely, too. This is due to the strong negative feedback loop between Greenland and the
AMOC, where freshwater input weakens the AMOC on the one hand and a weaker AMOC cools
the northern hemisphere on the other hand. However, this is not sufficient to safeguard the reference
climate, a possibility that has been raised earlier (Gaucherel and Moron, 2017). Furthermore, we
also reveal the roles of the tipping elements in tipping cascades. While the Greenland Ice Sheet and
the West Antarctic Ice Sheet are initiators of tipping cascades, starting 65% and 23% of all cascades
respectively, the AMOC is a mediator of cascades starting less than 13% of all cascades. Since the
Amazon rainforest has no outgoing links in this reduced network, it can only follow the states of the
other tipping elements. However, in case ENSO is included in our analysis and a structural robustness
analysis is performed, the main qualitative results remain the same. Therefore, most of the tipping
cascades occur at global mean temperature increases between 1–3 ˝C above pre-industrial levels
whether ENSO is taking into account as a tipping element or not. Even though the disintegration
of some tipping elements can require several centuries up to millennia as for instance for the large
cryosphere elements, this emphasises the importance that temperature thresholds should not be
surpassed for an extended period of time.

In a further study [P7] (see Sect. 2.7), we use the concept of basin stability (Menck et al., 2013; Mitra
et al., 2017) to determine the stability of all possible different states in terms of the number of tipped
elements in a huge-scale Monte Carlo simulation of around 3.6 billion ensemble members. Here, it is
found that for high levels of global warming of about 3–4 ˝C above pre-industrial or higher, only the
states with four or five tipped elements have a significant proportion of the basin volume. Therefore,
in our model, only the states with a high amount of tipped elements are stable. Furthermore, the
basin volume of several intermediate states is investigated, where only a certain number of elements
is tipped. This can reveal important intermediary states, where some elements reside in the tipped
regime, while others could be seen as normally functioning in the sense that they are not tipped. In-
vestigating such intermediary states, it is observed that states including tipped cryosphere elements
on Greenland and West Antarctica have a higher basin volume at considerably lower temperature in-
creases (1–3 ˝C above pre-industrial) and potentially more realistic low interaction strengths of about
0.2 or smaller1. This is an interesting result as it reveals the possibility that on the very long term,
states without proper ice sheets on Greenland and West Antarctica could be stable configurations of
the Earth’s climate tipping elements. These are configurations that might also have existed (partially)
during paleoclimatic times such as the Marine Isotope Stages MIS 5e, MIS 11 or the Pliocene (Dutton
et al., 2015; Tierney et al., 2020). Lastly, in this study, we also detect the emergence of limit cycles
(Hopf-bifurcations) under some rare initial conditions: 0.6% of all ensemble members show oscil-
lations. Especially for intermediate temperature increases between 1–4 ˝C above pre-industrial such
oscillating behaviour can be observed. The principal components that oscillate against each other are

1Note that an interaction strength of 1.0 approximately means that the interaction is as important as the individual dynamics
of a specific tipping element. Therefore, lower interaction strength on the order of 0.2 could be more realistic since there
the individual dynamics of the respective tipping element would still be dominant.
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the Greenland Ice Sheet and the AMOC: 86% of all oscillations are between these two elements. The
reason is their strong negative feedback loop, where the Greenland Ice Sheet weakens the AMOC via
freshwater influx, while a weaker AMOC cools the region around Greenland potentially safeguarding
the Greenland Ice Sheet. The existence of such limit cycles remains hypothetical, but in principle
there is paleoclimatic evidence of oscillatory behaviour in the Earth’s climate system (Crucifix, 2012;
Ditlevsen et al., 2020).

3.3 Conclusion and answer to the research questions
In this section, an answer to the research questions will conclude the results part of my dissertation.
In addition, the results will be classified according to their contributions to the respective field of
research.

Interactions of nonlinear dynamical systems

With the software model PyCascades, a contribution could be made to the field of interacting tipping
elements from a complex dynamical systems perspective. The software PyCascades has been devel-
oped, which is able to simulate the dynamics of tipping elements on various types of complex net-
works. The investigated types of networks range from Erdős-Rényi, Barabási-Albert, Watts-Strogatz
networks to spatially embedded ones. By applying this software framework to these networks of
tipping elements, research question RQ1 could be answered (see Sect. 1.4):

A1: The critical interaction strength above which tipping cascades emerge depend on global net-
work parameters such as clustering and spatial organisation. If clustering and spatial organi-
sation are higher, the vulnerability of a network of tipping elements increases. Furthermore,
certain important micro-structures (motifs) indeed decrease the critical coupling strength that
is necessary to initiate a tipping cascade. Therefore, tipping events that occur on a micro level
are translated into the macro scale or even into global cascades by the facilitation of tipping
cascades through local motifs. Lastly, in the large-system limit, global phase transitions and
cooperativity emerge if the connectivity is large enough. This means that a set of different,
stochastic tipping elements behaves like one large aggregated tipping element, comparable to
tipping on different scales, i.e., different aggregation levels.

Temperature feedbacks from the cryosphere as quantified by an EMIC

As noted in the Sect. 1.4, feedbacks can play an important role in stabilising the transgressed state of
the tipping elements once a state transition has begun. By the means of the EMIC CLIMBER-2, the
temperature feedbacks has been studied that a disintegration of cryosphere elements would have on a
regional to global scale (RQ2).

A2: The temperature feedbacks on a global scale are on the order of half a degree of additional
warming. More exactly, the temperature feedback is 0.43 ˝C (interquartile range: 0.39–
0.46 ˝C). The regional levels of additional warming can exceed 5 ˝C over Greenland and West
Antarctica, and 1.5 ˝C over the Arctic region if only the Arctic summer sea ice disappears.
The disappearance of the Arctic summer sea ice poses a realistic scenario until the mid of the
21st century as shown by CMIP5 and CMIP6 models (Notz et al., 2013; Niederdrenk and Notz,
2018; SIMIP-Community, 2020), while other cryosphere elements such as the large ice sheets
take centuries to millennia to disintegrate (Robinson et al., 2012; Winkelmann et al., 2015).
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Interactions of climate tipping elements

Using and extending the developed software framework PyCascades, a response to the research ques-
tions on the stability of components of the Earth system against tipping events and cascades has been
formulated. In particular, the potential for tipping events and cascades in the Amazon rainforest has
been investigated since it can well be represented as a networked system. While the nodes represent
local scale tipping elements, parts of the Amazon rainforest are connected via the mechanism of at-
mospheric moisture recycling. Research question RQ3 for the Amazon rainforest is answered under
the assumption that the rainforest is vulnerable to diminished rainfall, more severe drought conditions
and under the assumption that it is adapted to past environmental conditions.

A3: Amazon rainforest part: Tipping events are increasing sharply if future drought conditions
surpass 2.5–3 standard deviations of past environmental conditions with respect to the MCWD
drought index. On the other side, tipping events are only rarely caused by too less mean annual
precipitation. Remarkably, while the overall mean annual precipitation does not seem to be
an issue, the regional distribution of precipitation and droughts are. Still, the mean annual
precipitation is very important, but the fluctuations of annual rainfall are small compared to
the fluctuations in dry season intensity (MCWD) in our data. Therefore, very few tipping
events triggered by to less mean annual precipitation are observed. Tipping cascades also have
a significant potential to intensify regional rainforest dieback, especially in the southeast of
the Amazon rainforest. Depending on the exact drought conditions, the potential for tipping
cascades can surpass 50% of all tipping events for severe drought conditions. On average,
tipping cascades account for approximately a fourth of all tipping events.

The answer to RQ3 with respect to a set of interacting climate tipping elements is:

A3: Climate tipping elements part: Tipping events in the Earth system most likely start at a global
warming of 1–3 ˝C above pre-industrial levels. At the same increase of the global mean tem-
perature, uncertainties as to whether tipping elements will experience a critical transition are
highest. Beyond these levels of global warming, it is likely that many tipping elements will
reside in the tipped state on the long term. Therefore, the committed damage under these sce-
narios would be large since only the states with many tipped elements are stable. Furthermore,
the roles of the tipping elements in cascading tipping events are revealed. While the large ice
sheets on Greenland and West Antarctica act as the initiators of cascades and are of special
importance for the stability of the climate system, the AMOC is a transmitter of cascades.
Overall, tipping cascades are possible even for intermediate global warming levels between
1–2 ˝C above pre-industrial levels. In our model, 39% of all investigated ensemble members
show such tipping cascades, averaged over the entire large-scale ensemble.

Overall, the answers A2 & A3 impact the resilience of the Earth system with respect to nonlinear
transitions in the climate system or parts of it.
Lastly, the question remains (see Sect. 3.2, RQ3) as to whether these temperature feedbacks indeed
affect the occurrence of tipping events. This question is not answered comprehensively in the current
publications comprising my dissertation, but is dealt with in a paper that is in preparation (Donges
and Wunderling et al., 2021, in prep.). Therefore, we append a short paragraph to answer this
question here without an explanation of the employed model, which has been described in detail in
the publications [P6] and [P7] (see Sect. 2.6 and Sect. 2.7). The model of four interacting climate
tipping elements (Greenland and West Antarctic Ice Sheet, AMOC and Amazon rainforest) of
[P6] and [P7] has been extended with respect to inbuilt temperature feedbacks as they have been
quantified in [P4] (see Sect. 2.4) for a global warming scenario of 1.5–2 ˝C above pre-industrial
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levels. Explicitly, we implemented the temperature feedbacks for the Greenland Ice Sheet and the
West Antarctic Ice Sheet. On top of that, for the Amazon rainforest, a conservative estimation of
the temperature feedback until 2100 has been performed in Steffen et al. (2018). Answering the
second part of RQ3, we find that the likelihood for additional tipping events is slightly increased,
taking into account the temperature feedbacks of the Greenland Ice Sheet, the West Antarctic Ice
Sheet and the Amazon rainforest, compared to the case without these temperature feedbacks (see
Fig. 3.1a). In case, temperature feedbacks for the Arctic summer sea ice and the mountain glaciers
from [P4] are implemented as well, the difference between a scenario with and without temperature
feedbacks is larger (see Fig. 3.1b). However, in both cases, the difference between the two scenarios
is insignificant compared to the large associated uncertainties, leading to the conclusion that it will
be necessary to deepen the understanding of particular components of the Earth system as well as
their interactions and feedbacks. This would help to reduce the uncertainties (see shaded colours in
Fig. 3.1) raised by the various unknowns in interaction strengths, interaction directions and critical
temperature thresholds.

a) b)

Figure 3.1: Number of tipped elements for a scenario of 1.5–2 ˝C above pre-industrial levels depending on
the interaction strength (Donges and Wunderling et al., 2021, in prep.). The same conceptual model with
four interacting climate tipping elements as in [P6] has been used, i.e., the Greenland and West Antarctic Ice
Sheet, the AMOC and the Amazon rainforest. For further details, see [P6] (Sect. 2.6). A scenario including
temperature feedbacks (red) is compared to a scenario without temperature feedbacks (blue) using a Monte
Carlo ensemble approach to correctly propagate all uncertainties, equal to the approach used in [P6] and [P7].
a) The temperature feedbacks used in this study are taken from [P4] (see Sect. 2.4) for the Greenland Ice Sheet
(mean: 0.13 ˝C; uncertainty range: 0.12-0.14 ˝C) and the West Antarctic Ice Sheet (mean: 0.05 ˝C; uncertainty
range: 0.04-0.06 ˝C). The temperature feedback for the Amazon rainforest (mean: 0.05 ˝C; uncertainty range:
0.03-0.11 ˝C) has been taken from Steffen et al. (2018). Therefore, in panel a) only dynamic feedbacks of
simulated dynamics of tipping elements are employed. In panel b), the additional temperature feedbacks from
the Arctic summer sea ice (mean: 0.19 ˝C; uncertainty range: 0.16-0.22 ˝C) and the mountain glaciers (mean:
0.08 ˝C; uncertainty range: 0.07-0.09 ˝C) are also integrated, again taken from [P4].

Overall, my dissertation gave satisfactory answers to the research question posed in Sect. 1.4. Nev-
ertheless, some aspects can be further consolidated with additional experiments or more detailed
process-based models. Moreover, several new questions arose from the presented results (see chap-
ter 4).
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Chapter 4

Discussion & Outlook

Keep in mind that it is hubris to think that we know how to save the Earth: our planet looks after
itself. All we can do is try to save ourselves.

James Lovelock

In my dissertation, I worked on essential compartments of the Earth system that have an inherently
nonlinear behaviour, the climate tipping elements. For this purpose, I used two classes of Earth system
models, (i) the newly developed conceptual model PyCascades and (ii) the EMIC CLIMBER-2. Both
approaches, EMICs and conceptual models, are located on the left hand side of Fig. 1.1, i.e., the
model classes that have a higher level of process integration in comparatively fewer equations than
typical GCMs.
This brings us back to the bigger picture and the question how my work contributes to Earth system
analysis. As mentioned in the introduction, Schellnhuber raised several Hilbertian questions for Earth
system science in the 21st century (Schellnhuber et al., 2004, page 9). This dissertation can contribute
to the progress on three of these questions:

(HI) What are the major dynamical patterns, teleconnections, and feedback loops in the planetary
machinery?

(HII) Is it possible to describe the Earth system as a composition of weakly coupled organs and
regions, and to reconstruct the planetary machinery from these parts?

(HIII) What are the principles for constructing ‘macroscopes’, i.e., representations of the Earth system
that aggregate away the details while retaining all systems-order items?

With the study on climate tipping elements, I embedded the available knowledge on critical elements1

in the Earth system (e.g. Kriegler et al., 2009; Schellnhuber et al., 2016) into a coupled and easily ex-
tendable model (see Sects. 2.1–2.3 [P1–P3]). Building on this conceptual model, I revealed important
dynamical patterns in terms of the climate change that is necessary to trigger tipping events or cas-
cading transitions for a set of interacting climate tipping elements and the Amazon rainforest (see
Sects. 2.5–2.7 [P5–P7]). Further, I determined the temperature feedbacks and fast climate feedbacks
from the disintegration of the cryosphere elements (see Sect. 2.4 [P4]).
Taken together, the studies [P4–P7] contribute to the answer of (HI), i.e. to what the vital patterns
on the planetary scale are. At the same time, this dissertation aims to be a starting point for the

1The question “What are critical elements (thresholds, bottlenecks, switches) in the Earth system?” is actually also a
Hilbertian question. I do not try to work out more details on “what” the critical elements are, but I use the knowledge
that has already been gained from earlier research.
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discussion to (HII). Although the developed model of interacting tipping elements is far from being
comprehensive in many ways, it serves as a possible representation of modelling the (weakly) coupled
organs and regions [...] to reconstruct the planetary machinery (Schellnhuber, 1999, page 9; see also
Sects. 2.6 [P6] and 2.7 [P7]). Lastly, (HIII) is not answered directly, but it has in contrast been one
of the guiding principles during my dissertation. By the use of complex, but conceptual dynamical
systems many details have been aggregated away, while the main dynamical properties were kept.

Limitations & Outlook

Many of the new insights presented in my dissertation rely on results from strongly conceptualised
models of tipping elements. While it is possible to represent the main dynamics of interacting tipping
elements with such models, the mathematical representation of them remains simplified and neglects
their process-detailed physics as of yet. Thus, it would be highly desirable to use fully coupled
complex state-of-the-art Earth system models (such as from the CMIP-family or an EMIC) for all the
studies, but this notoriously remains an open challenge due to a partially incomplete understanding
of some nonlinear properties as well as due to computational constraints (see e.g. Wood et al., 2019).
This means that the dynamics of interacting tipping elements are yet difficult to capture in fully
complex models. However, for some tipping elements there exist yet simplified, but fully dynamic
and process-based (i.e. physics based) models in isolated forms. For instance, these are models
for Arctic ice caps (North, 1984; Herald et al., 2013), the Greenland Ice Sheet (Levermann and
Winkelmann, 2016), the AMOC (Stommel, 1961; Cessi, 1994; Wood et al., 2019), the Amazon
rainforest (Cox, 2001; van Nes et al., 2014; Staal et al., 2015), the ENSO (Zebiak and Cane, 1987;
Timmermann et al., 2003) or the Indian summer monsoon (Zickfeld et al., 2005). However, there
does not yet exist an interacting model of such conceptual, but process-based tipping elements apart
from a coupled model between two tipping elements, the AMOC and ENSO (Dekker et al., 2018).

In my dissertation, I induced critical transitions of the climate tipping elements by keeping the
global mean temperature (GMT) increase constant for conditions of 0–8 ˝C GMT increase above
pre-industrial levels. After the GMT value is chosen, the experiment has been run into equilibrium
for long simulation times. This excludes the possibility that the critical temperature threshold is
surpassed only for some time. But this would open a whole new field of interesting research since it
seems likely that humanity will transgress the critical temperature of some of the tipping elements at
least for some time. This could especially the case for the cryosphere tipping elements (Schellnhuber
et al., 2016). For instance, the critical temperature threshold for the Greenland Ice Sheet might be as
low as 0.8 ˝C above pre-industrial levels (Robinson et al., 2012), while the global warming comparing
1850–1900 with 2006–2015 lies at 0.9 ˝C (Masson-Delmotte et al., 2018) and the Paris Agreement
aims at limiting the warming levels to 1.5-2 ˝C (Paris Agreement, 2015). Such scenarios, where
the critical temperature is surpassed for some amount of time, are called temperature overshoots.
Further, the rate and persistence of extreme events such as heat waves are suspected to increase under
climate change, not only over the Greenland Ice Sheet, but also worldwide (Coumou and Rahmstorf,
2012; Coumou et al., 2013; Mann et al., 2018). The effect of both, extreme events (Serdukova et al.,
2017; Tesfay et al., 2020) and overshoots (Alkhayuon et al., 2019; Ritchie et al., 2019, 2020), has
been investigated in conceptual and isolated climate tipping element models, but to the best of my
knowledge not yet to an interacting set of tipping elements. Thus, the study of the stability under
such conditions remains an interesting open field for future research in several dimensions, from a
theoretical modelling perspective, but also from the climate tipping elements perspective.

Furthermore, it might be of interest to investigate tipping element interactions in more depth since
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parts of my studies relied explicitly on an expert elicitation (Kriegler et al., 2009) from the year 2006.
Therefore, an update of this expert elicitation could be worthwhile as well as an investigation of the
explicit modelling of interactions between tipping elements with EMICs or data based-approaches
such as causal effect networks (Runge et al., 2015; Kretschmer et al., 2016). Lastly, a social compo-
nent could be added to the model of natural tipping elements, creating a model informed from social
modelling and climate tipping element aspects, e.g., combining [P6] (see Sect. 2.6) and the study
from Wiedermann et al. (2020).

Final remarks

In the larger context, my dissertation aims at improving the modelling of interacting nonlinear sys-
tems and applying those models to matters of topical interest within the realm of tipping elements in
the Earth system. Since the knowledge on tipping elements is still fragmentary, further progress in re-
search on tipping elements is clearly desirable. This can be done at the level of complex Earth system
models, in data-based research or, as in this thesis, with conceptual and EMIC modelling approaches.
All these strands of research contribute to the insights on tipping elements and can therefore make
important contributions to a better understanding of some of the most crucial components in the Earth
system.

210



Chapter 5

Appendix

Science never solves a problem without creating ten more.
George Bernard Shaw

In the Appendix, four additional contributions to this thesis are shown as indicated in Sect. 1.4 (see
Fig. 5.1). Of these additional four contributions, one is in review, one is submitted and two are in
preparation in a close-to-final version.

Appendix
NONLINEAR DYNAMICS AND INTERACTIONS OF TIPPING ELEMENTS IN THE EARTH SYSTEM

Enables
Theory & Methodologies

[AP1] Complex networks of 
interacting stochastic tipping 
elements: global phase 
transitions and cooperativity in 
the large-system limit 
J. Kohler, N. Wunderling, J.F. 
Donges, J. Vollmer (in 
preparation, 2020).

[AP2] What do we mean, 
‘tipping cascade’? A.K. Klose, N. 
Wunderling, J.F. Donges, R. 
Winkelmann (in preparation, 
2020).

Climate tipping elements

Amazon 
rainforest

[AP3] Climate-induced hysteresis of 
the tropical forest in a fire-enabled 
Earth system model
M. Drüke, W. von Bloh, B. 
Sakschewski, N. Wunderling, S. Petri, 
M. Cardoso, H.M.J. Barbosa, K. 
Thonicke. European Physical Journal 
Special Topics (in review, 2020).

Social tipping processes

[AP4] Social tipping processes 
for sustainability: An analytical 
framework
R. Winkelmann, J.F. Donges, E.K. 
Smith, M. Milkoreit, C. Eder, J. 
Heitzig, A. Katsanidou, M. 
Wiedermann, N. Wunderling, 
T.M. Lenton (submitted, 2020).

Are rele-
vant for

Figure 5.1: Overview of the additional contributions in my dissertation, also separated into parts on Theory &
Methodologies, Climate tipping elements and as an outlook on Social tipping processes.
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5 Appendix

5.1 Complex networks of interacting stochastic tipping ele-
ments: global phase transitions and cooperativity in the
large-system limit rAP1s

Authors
Jan Kohler, Nico Wunderling, Jonathan F. Donges, Jürgen Vollmer

Status
In Preparation

Short summary
In this study, the dynamics of conceptualised tipping elements with noise are investigated for the
case that the tipping elements are located in the unstable equilibrium at the start of the simulation. It
is shown that the network of interacting tipping elements can be boiled down to the behaviour of one
aggregated and overarching tipping element. The conditions under which this cooperative behaviour
emerges is that the connectivity within the network of tipping elements is sufficiently large. The
connectivity is defined as a measure, which is proportional to the number of nodes in the network,
the average degree and the likelihood of a connection between two nodes. Then, the remaining
differential equation of the aggregated tipping element can be solved analytically and compared to
simulations for different network types (Erdős-Rényi, Barabási-Albert, Watts-Strogatz networks).
Further, it is found that the connectivity can also explain a random number of initial displacements
(i.e. shifts to the tipped state of an arbitrary number of tipping elements) analytically by adding an
additional term to the critical parameter. Overall, we conclude that a system of interacting tipping
elements, which initially reside at an unstable equilibrium, converge to an initially stable aggregated
system.

Author contributions
Jan Kohler, Nico Wunderling and Jürgen Vollmer designed the study. Jan Kohler conducted the
simulation runs. Nico Wunderling prepared the figures. Jan Kohler drafted the manuscript that was
extended by Nico Wunderling and Jürgen Vollmer. All authors discussed the results and further edited
this work. This paper is the partially based on the results of the bachelor thesis of Jan Kohler, who
was (co-)supervised by Nico Wunderling.
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Complex networks of interacting stochastic tipping elements:
global phase transitions and cooperativity in the large-system limit

Jan Kohler,1, 2, ∗Nico Wunderling,2, 3, 4, † Jonathan F. Donges,2, 5 and Jürgen Vollmer1 ‡
1Institut für theoretische Physik, University of Leipzig, 04103 Leipzig, Germany, EU
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3Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany, EU
4Department of Physics, Humboldt University of Berlin, 12489 Berlin, Germany, EU
5Stockholm Resilience Centre, Stockholm University, 10691 Stockholm, Sweden, EU

Tipping elements in the Earth System received increased scientific attention over the last
years due to their non-linear behavior and the risks of fundamental changes adversely
affecting nature and humankind. While being stable over a large range of its parameter
space, a tipping element can undergo a drastic shift in its state upon an additional
small parameter change when close to its tipping point. Recently, the focus of research
shifted towards interactions between tipping elements, in order to explore the effect of
tipping events through a network of tipping elements up to potential global tipping
cascades. Here, we analyze the dynamics of a network of coupled conceptualized tipping
elements with stochasticity and study the response of a system that initially resides in
an unstable equilibrium to the perturbation of a single node. We derive an analytic
solution for small noise levels using a normalization and mean field approach. With
that, we reveal that a system of connected tipping elements can be decoupled and
behaves like a single aggregated tipping element in the case of small noise levels. This
result is robust for a range of different paradigmatic network types such as Erdös-Rényi,
Barabási-Albert and Watts-Strogatz networks. From this approach, we find that the
here newly defined measure of the connectivity consisting of the average degree and
coupling strength, is a central parameter of the system that determines the time scale
of tipping. We demonstrate that shifting the initial position of the tipping elements can
be described as an additive term to the critical parameter. Furthermore, in the limit of
large connectivity, the behavior of an initially unstable system converges to that of an
initially stable system. Thus, this study can contribute to a better understanding of the
collective behavior of connected tipping elements across various disciplines which could
have implications for tipping elements in climate science, ecology or economy.

I. INTRODUCTION

Hysteresis is a hallmark of first-order phase transitions. 
For thermodynamic systems it leads to supercooling and 
superheating with subsequent explosive phase change. 
These rapid phase changes are well-understood for com-
mon thermodynamic phase transition. However, they still 
pose challenges for systems with non-standard in-
teraction rules, like Achlioptas Process (da Costa et al., 
2010; D’Souza and Mitzenmacher, 2010; D’Souza and Na-
gler, 2015; Grassberger et al., 2011; Riordan and Warnke, 
2011), or topography, like processes on networks, where 
hysteresis leads to cascading failure (Buldyrev et al., 
2010; Motter and Timme, 2018; Watts, 2002). Tipping 
processes are also prevalent among many ecological sys-
tems. It has been shown that the Greenland Ice Sheet 
(Robinson et al., 2012), shallow lakes (Scheffer, 1989),

∗ corresponding author: kohler@pik-potsdam.de
† corresponding author: wunderling@pik-potsdam.de
‡ ORCID: 0000-0002-8135-1544

and the Amazon rainforest can be modelled as a net-
work of tipping elements (Krönke et al., 2020; Wunder-
ling et al., 2020; Zemp et al., 2017). Further applications
are in finance, economics and politics (Brummitt et al.,
2015).

Current models of climate change are also formulated
in terms of networks of interacting tipping elements
(Hughes et al., 2013; Lenton et al., 2019; Lenton and
Williams, 2013; Rocha et al., 2018; Steffen et al., 2018).
The interactions provide long-lived metastable states and
rapid cooperative transitions between the states. Often
such a stabilization and cooperation in a tipping event
is caused by positive feedback effects. A popular exam-
ple of such an effect in the Earth System is the surface
albedo of sea ice. A decrease in the surface area cov-
ered with ice due to an increase in global mean tem-
perature decreases the surface albedo which in turn in-
creases the temperature and causes higher rates of melt-
ing (Curry et al., 1995). The intereaction between these
elements leads to cascading behavior when the abrupt
state shift of an element causes the tipping of another
(Kriegler et al., 2009), thus increasing the risk of possible
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global cascades(Lenton et al., 2019; Lenton and Williams,
2013; Steffen et al., 2018). The resulting rapid nonlin-
ear changes of the climate have been predicted almost
40 years ago (Watson and Lovelock, 1983), and they are
currently considered to be one of the greatest risks in the
climate debate (Lenton et al., 2019; Schellnhuber, 2009).

The present paper adds to the ongoing research on the
dynamic behavior of coupled tipping elements by identi-
fying universal behavior in the tipping of large scale sys-
tems. We thus attempt to identify trajectories of large
networks when the cascading process has started.

II. THEORY & METHODS

A. Model

To model tipping cascades interacting tipping ele-
ments are placed in different paradigmatic network types
(Erdös-Renyi, Barabasi-Albert, Watts-Strogatz) and are
coupled linearly. The system’s response to an initial
perturbation is studied. These tipping elements are de-
scribed by a system of differential equations adapted from
(Krönke et al., 2020; Wunderling et al., 2020). A Gaus-
sian white noise is applied to the tipping elements to
model stochastic fluctuations1.

Many natural systems show tipping paired with
hysteresis-like behavior (Brummitt et al., 2015). The be-
havior of such a tipping element is commonly modelled
by differential equations of the form (Klose et al., 2020;
Krönke et al., 2020; Wunderling et al., 2020)

ẋ = −a(x − x0)
3 + b(x − x0) + r (1)

with a · b > 0, the offset x0 and the critical parameter r.

We will show in the following that the dynamics of
a tipping element described by Equation (1) is locally
topologically equivalent to a saddle-node bifurcation. As
a first step, the parameters a and b are subsumed into
a rescaled variable x̃ to effectively simplify the system
of equations. We divide Equation (1) by the constant
parameter b, and introduce the new time variable τ = bt.
After dividing by

√
a
b and introducing x̃ =

√
a
bx, the

rescaled offset x̃0 =
√

a
bx0 as well as r̃ =

√
a
b3 r we find

dx̃

dτ
= −(x̃ − x̃0)

3 + (x̃ − x̃0) + r̃.

1 Note that a Gaussian distribution does not necessarily describe
fluctuations of all parameters in the real world nor are real-world
fluctuations necessarily uncorrelated.

As a next step we substitute χ = x̃−x̃0 and rename the
variables to x, t, r yielding a simplified model description

dx

dt
= −x3 + x + r. (2)

We expect that upon variation of the parameter r
one stable and one unstable fixed point will vanish in
a saddle-node bifurcation leaving the system with only a
single stable fixed point. This can be demonstrated by a

Taylor expansion around the extrema at x = ±
√

1
3 .

The expansion around x = −
√

1
3 yields

ẋ =
(
r − 2

3
√

3

)
+

√
3
(
x +

1√
3

)2
+ O(x3) .

Upon division by
√

3 this can be written as

dx̃

dt̃
= x̃2 + r̃ + O(x̃3)

with the rescaled variables and parameters x̃ =
(
x +

1√
3

)
, t̃ =

√
3t and r̃ =

(
r√
3

− 2
9

)
.

We can proceed analogously for the expansion around

x =
√

1
3 . This shows that the dynamics of the system is

indeed locally topologically equivalent to a saddle-node
bifurcation and upon variation of the parameter r, there
are two saddle-node bifurcations at different critical val-
ues r∗ in which two fixed points vanish. The bifurcation
diagram of a single node including noise can be seen in
Figure 1a.

However, tipping elements are oftentimes not isolated,
but interdependent. We model this by interacting tip-
ping elements in paradigmatic network types. For sim-
plification, we restrict ourselves at first to Erdös-Rényi
networks. Each node k of the network represents a tip-
ping subsystem and is linearly coupled to another node
l �= k from the network with coupling probability p and
coupling strength dkl (see Figure 1b).

Krönke et al. (2020) considered the dynamics of N cou-
pled tipping elements k ∈ [1, . . . , N ] described by

ẋk ≡ dxk

dt
= −a(xk − x0)

3 + b(xk − x0)rk + d
∑

l,l �=k

aklxl,

where d > 0 denotes a constant coupling strength and
aij are elements of the adjacency matrix. This model is
slightly altered here by considering an additive Gaussian
white noise to simulate fluctuations in the parameter rk
and allowing d to take different values for different edges,
such that

dxk

dt
= −a(xk − x0)

3 + b(xk − x0) + rk + dklxl + σ
dWk

dt
,(3)

where dkl > 0 are drawn randomly from a uniform distri-
bution over a given interval with probability p. Einstein
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FIG. 1 Dynamics of the nodes in a network of tipping elements. (a) Bifurcation diagram of Eq. (2) with two stable states
between ccrit, low and ccrit, high. The red solid line shows the stable states that are connected via a saddle-node bifurcation as
soon as the critical parameter c surpasses a certain critical value. The red dashed indicates the unstable equilibrium in between
the two stable stated. The trembling blue line displays the stochastic fluctuations around the stable state that we are using
here, see Eq. (3). (b) Nodes in an exemplary network interacting network of stochastic tipping elements (see Eq. (3)), where
each node is of the form that is shown in panel (a).

notation is used here and in the following, i.e. summa-
tion over any repeated index variable is implied. We
assume spatial homogeneity in this paper meaning that
all nodes follow the same dynamics and have the same
critical parameter value above which they tip into the
other state. Moreover, the parameters are assumed to
change slowly compared to the states variables (fast-slow
systems) (Kuehn, 2011).

Applying the steps introduced above for an individ-
ual tipping element to obtain Equation (2) from Equa-
tion (1), it is straightforward to see that the system in
Equation (3) can be written as

dχk

dτ
= −χ3

k + χk + r̃k + d̃kl(χl + χ0) + σ̃
dWk

dτ

where χk =
√

a
b (xk − x0), d̃kl = dkl

b , σ̃ =
√

a
bσ. Upon

renaming all variables and parameters we find the normal
form of the system

ẋk = −x3
k + xk + dkl(xl + x0) + rk + σ

dWk

dt

:= −x3
k + xk + reff,k + σ

dWk

dt
. (4)

Note that the effect of coupling can be understood as
an additional term shifting the critical parameter of the
system: reff,k = rk +dkl(xl +x0) . The parameter rk can
be described as an external driving force applied to the
elements of the system.

For most parts of this paper we focus on the effects

of coupling and therefore will set the critical value rk =
0 ∀k. In the beginning of the analysis, we will also set
x0 = 0 to simplify the calculations before assessing the
effect of non-zero x0.

By setting x0 = 0 the position x = 0 corresponds to an
unstable fixed point. In the simulation runs for this paper
all nodes are initially placed at x = 0 before one node
is perturbed to start a cascade. Therefore, by setting
x0 = 0 all nodes are initially at an unstable fixed point.
This means that we concentrate on the transient behavior
of tipping elements.

The focus of this paper lies on the dynamics of systems
while tipping. We therefore study cases where the cou-
pling of the system is strong enough such that all nodes
follow the initial displacement of the displaced node.

Setting x0 = 0 and rk = 0, ∀k, we can write Equa-
tion (4) in vector notation in a simplified way by consid-
ering the linear term in the equation as a self-coupling
and subsuming it in a modified coupling matrix D with
dkk = 1 ∀k, dkl = 0 ∀k �= l with probability 1 − p and
with probability p drawn randomly from a uniform dis-
tribution over a given interval, dkl ∈ [0, 2d], ∀k �= l. Here
d = 〈dkl〉 is the average coupling value and a system pa-
rameter.

�̇x = −�x3 + D · �x + σ
d �W

dt
(5)

Krönke et al. (2020) developed the python package
PyCascades to model tipping cascades. We extended
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PyCascades for stochastic differential equations (SDEs)
based on the package sdeint (Aburn, 2017). This pack-
age has been used here to simulate the dynamics of the
present model. To this end, a system of coupled tipping
elements is modelled by creating a directed network using
the python networkx2.3 package (Hagberg et al., 2008).
If not stated otherwise the system has been integrated
up to t = 100 using a step size of Δt = 0.01.

III. RESULTS

A. Asymptotic Behavior

In this section the behavior of the system described by
Equation (5) will be analyzed near its initial and final
state. We make the essential assumption that in this
region all nodes are in approximately the same state, i.e.,

xi ≈ xj ≡ x ∀i, j if

{
xi ≈ 0 ∀i

xi ≈ 1 ∀i
. (6)

This collectivity assumption yields �x = x

⎛
⎜⎝

1
...
1

⎞
⎟⎠ ≡ x�1.

Since D is a random matrix with entries of value dkl ran-
domly distributed on the off-diagonals with probability p,
we can approximate D for large enough systems as hav-
ing entries dp on each of its off-diagonal elements, where
d = 〈dkl〉 is the average value of all coupling strengths.
We thus replace the specific coupling by an averaged cou-
pling of all nodes to all nodes. This can be interpreted
as using a mean-field approach.

We can then rewrite the second term in Equation (5)
by splitting D into D = dp · A + (1 − dp) · IN where A
is a matrix with the value 1 on each entry and IN is the
N-dimensional unit matrix. It can easily be seen that �1
is an eigenvector of A with eigenvalue N , i.e., A ·�1 = N�1.
The vector �1 is obviously also an eigenvector to the N-
dimensional unit matrix with eigenvalue 1.

D ·�1 ≈ (dpA ·�1 + (1 − dp)IN ·�1)

=
[
Ndp + (1 − dp)

]
�1 =

[
(N − 1)dp + 1

]
�1

:= λd
�1

By using the assumption stated in Equation 6 and as-
suming a sufficiently large network, the problem has been
changed to an eigenvalue problem and the modified cou-
pling matrix can be replaced by its dominant eigenvalue

λd = (N − 1)pd = 〈k〉d (7)

with 〈k〉 = (N − 1)p the average degree. This allows the
decoupling of the system of differential equations near its
asymptotic values. It can be seen easily that λd describes
the average accumulated coupling a node in the network
experiences, it is thus a measure of the connectivity of

the network. This supports the findings of Wunderling
et al. (2020) that for systems with high average degree
low coupling strengths are already sufficient to initiate a
tipping cascade.
The decoupled system can thus be described by

ẋk = −x3
k + λdxk + σ

dWk

dt
, ∀k. (8)

For the moment we consider systems in which the de-
terministic dynamics dominates over the stochasticity
and can therefore approximate the Gaussian white noise
to cancel out for large times τ . At large times, the noise-
free system is expected to equilibrate, i.e., ẋk = 0, thus

0 = −x3
eq + λdxeq. (9)

We thus find an unstable fixed point at x∗ = 0 as well
as the non-trivial fixed points x∗ = ±

√
λd. This result

can be compared to the solution for a single tipping el-
ement with stable equilibria at x∗ = ±1. We see that
network size and coupling increase the absolute value of
the position of these stable fixed points since λd > 1
for d > 0 as considered here. Intuitively, this makes
sense when keeping in mind the shape of the bifurcation
diagram in Figure 1. Coupling, dependent on average
degree and coupling strength, increases the value of the
effective parameter reff and, following the bifurcation di-
agram in Figure 1, shifts the position of the stable equi-
librium. Simulation runs for different network sizes verify
the equilibrium position as can be seen in Figure 2.

We used the asymptotic value obtained in this section
to normalize the system. Introducing the dimensionless
variables τ = λdt, χ = x√

λd
, Equation 8 becomes

χ̇k :=
dχk

dτ
= −χ3

k + χk +
σ√
λd

dWk

dτ
. (10)

The dimensionless variable τ is the characteristic time
scale of the tipping process. The dependence on λd

shows, in addition to what Eom (2018) has shown with
respect to the critical parameter, that an increase in av-
erage degree and coupling strength causes a more abrupt
tipping in terms of the time scale.

B. Analytic Solution

In the following an analytic solution for small noise
levels σ√

λd

 1 is developed. In that case the coupled

dynamics of the system dominate over the stochastic be-
havior. We expect that in this deterministic limit the
collectivity assumption given by Equation 6 holds not
only near the start and final values but for the whole
trajectory. The system of equations can then again be
decoupled as seen in the previous section and we can find
an analytic solution for the whole trajectory.
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FIG. 2 Absolute Asymptotic Values vs. Connectivity λd

Asymptotic values of the mean state of all nodes in an Erdös-
Rényi Network of N nodes coupled with d = 0.1, p = 0.25
and σ = 0.1 as a function of

√
λd. The displayed asymp-

totic values are the simulated equivalent of the fixed points
calculated from Equation 9. dkl are drawn from a uniform dis-
tribution dkl ∈ [0, 0.2]. The number of nodes has been varied
over N ∈ [20, 400] yielding the corresponding connectivities
λd. Initially, one node has been displaced by

√
λd to start the

cascade. The error bars represent the standard deviation of
the mean values over 50 realizations of D and �W . For small
networks and large noise the system occasionally tips into the
direction opposite to the perturbation. Hence, we have used
the absolute values of the nodes’ states.

The deterministic version of Equation 10

χ̇k = −χ3
k + χk

has the solution,

χk =
1√

1 + ce−2τ
(11)

where the constant

c = 3e2τc (12)

characterizes the critical tipping time τc, i.e., the time
τ = τc where χk = 0.5.

In the case that coupling dominates the noise, all nodes
in all systems can thus be approximately described in the
same way shifted by a critical time τc.

Figure 3 displays a low-noise tipping system in good
agreement with the given theoretical approach in Equa-
tion (11). To evaluate the deviation from the theoretical
curve the ratio of the simulated and the theoretical data
is plotted. As we found in our simulations, there is a
good agreement of the mean values for times larger than
τ ≈ 0.5. This suggests that due to the initial displace-
ment of one node violating the collectivity assumption
there is a time shift Δτ needed to organize the system

into a collective state. However, upon starting of the
cascade at τ ≈ 0.5 the system follows the theoretical
predictions. The obtained fit parameter c = 2.6 · 104 is
very close to the expected value from Equation (11) for
τ = 0 when the time shift Δτ ≈ 0.5 is considered.
This theoretical behavior holds for different paradigmatic
network topologies such as for Barabási-Albert or Watts-
Strogatz networks. In this paper, directed Barabási-
Albert and Watts-Strogatz networks as they have been
adapted and developed in the PyCascades framework are
used here(Krönke et al., 2020). Barabási-Albert networks
(Barabási and Albert, 1999) are used to model networks
with a number of highly-connected elements. In addi-
tion to the number of nodes N , they are characterized
by the parameter m indicating the average degree of the
network. The degree distribution decays like a power-
law and therefore shows a more pronounced tail than
Erdös-Rényi networks. Watts-Strogatz (Watts and Stro-
gatz, 1998) networks show a large clustering coefficient
and are therefore used to simulate networks that resemble
the small-world phenomenon. Watts-Strogatz networks
with N nodes are characterized by the parameters k and
β indicating the average degree and the rewiring prob-
ability, respectively. Therefore, both of these network
types have properties making them more realistic in the
real world than an Erdös-Rényi network. Tipping behav-
ior on those networks has been analysed more thoroughly
by Krönke et al. (2020). In Figure 4 the trajectory of dif-
ferent randomly generated networks is displayed against
their respective fitted theoretical curve. It can be seen
that in addition to Erdös-Rényi networks, trajectories of
both Barabási-Albert and Watts-Strogatz networks also
follow the expected behavior as derived above. Interest-
ingly, Barabási-Albert networks show a smaller tipping
time τc, suggesting that the existence of hubs, nodes with
a degree greatly exceeding the average, increases the ten-
dency to tip. The ratio of the fitted theoretical curve and
the simulated data show a strong consensus of theory and
data for all network types (see Figure 4).

Thus, an analytic solution for coupled networks sub-
ject to small noise levels has been found that proves its
validity for different paradigmatic network types. The
collective behavior of the nodes can be decoupled if the
connectivity dominates the noise. The collective dynam-
ics can then be described as a single aggregated tipping
element, greatly simplifying the problem. This supports
the findings of Brummitt et al. (2015) that increasing
coupling strength entails synchronous behavior of tipping
elements for a larger set of initial conditions. In analogy,
Hughes et al. (2013) have elaborated on how human in-
teractions increase the connectivity of different elements
in the Earth System. Consequently, looking at strongly
coupled systems is a meaningful and relevant perspective.
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FIG. 3 Total Fit with Low Noise. Mean behavior in an Erdös-Rényi Network of 100 nodes coupled with d = 0.5, p = 0.25 and
σ = 0.1. dkl are drawn from a uniform distribution dkl ∈ [0, 1]. Initially, one node has been displaced by χ = 1 to start the

cascade. The error bars represent the standard deviation over all nodes and 50 realizations of D and �W . (a) The theoretical
trajectory (red) and the mean trajectory of the nodes (blue) are plotted. The value of c has been obtained as a fit parameter
from scipy.curvefit as c = 2.6 · 104. (b) The ratio of the theoretical and the empirical trajectory is plotted over time τ using
Equation (11). If this ratio gives the value 0, no discrepancy between theory and simulations is obtained.

C. Influence of Initial Displacement

For the analysis in the previous sections one node has
been perturbed and set to χk = 1 initially. In this section
the effect of the size of the initial displacement relative
to the number of nodes N in the network is analyzed.

Assuming that initially ν nodes are tipped, i.e., dis-
placed to their equilibrium position χeq = 1, we can find
an expression for c and the critical time τc = τ(χ = 0.5).
Summing over all initial displacements at τ = 0 yields

N√
1 + c

= ν

where N represents the number of nodes in the network.
Therefore

c =
(N

ν

)2

− 1. (13)

Inserting this into the definition of the critical time τc in
Equation (12) yields

τc = −1

2
ln

(3

c

)
= −1

2
ln

( 3
N2

ν2 − 1

)
≈ ln

(N

ν

)
− 1

2
ln(3) .

Including the discussed shift of τ ≈ 0.5 needed to or-
ganize the initial condition into a collective state as has
been discussed above, the formula for the tipping time
yields

τc ≈ ln
(N

ν

)
− 1

2
ln(3) + 0.5. (14)

The effect of the initial displacement on the critical
time τc suggests that the initial displacement shifts the
trajectory along the τ–axis by τc. This suggestion is ver-
ified by Figure 5 showing trajectories for different values
of N

ν shifted by the respective critical time τc obtained as
a fit parameter from Equation (11). Those trajectories
and the critical time follow the theoretical description
of Equation (11) and Equation (14) as can be seen in
Figure 6.

We have thus found a valid description of the effect of a
relative initial displacement N

ν on the average trajectory
of the nodes in the network.

D. Influence of Shift in the Initial Position

Up to now only the case of x0 = 0 in Equation (4)
has been considered as discussed in Section II.A. We will
now focus on the influence of finite x0 on the tipping
dynamics. This section also contains an analysis of the
effect of x0 on the critical point of the system.

To analyze the effect of x0 we consider Equation (4):

ẋk = −x3
k + xk + dkl(xl + x0) + rk + σ

dWk

dt
.

If, like in the previous sections, it is assumed that the
system can be decoupled, i.e., the collectivity assumption
Equation 6 holds, we can write this as

ẋk = −x3
k + λdxk + (λd − 1)x0 + rk + σ

dWk

dt

based on the distributive law of matrix multiplication.
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FIG. 4 Different Network Types. To obtain the displayed trajectories simulations have been run for 100 nodes in Erdös-Rényi,
Barabási-Albert and Watts-Strogatz networks of average degree 〈k〉 = 10. AB and WS networks have been adapted to directed

networks using the PyCascades package (Krönke et al., 2020). Parameters: N = 100, λd = 16, d = λd−1
(N−1)p

≈ 1.5, σ = 0.1.

The couplings dkl are drawn from a uniform distribution dkl ∈ [0, 3]. AB: m = 10. WS: k = 10, β = 0.8. ER: p = 0.1.

The error bars represent the standard deviation over 50 realizations of D and �W . (a) The theoretical trajectory and the
mean trajectory of the nodes are plotted. The value of c has been obtained as a fit parameter from scipy.curvefit as cWS =
2.9 · 104, cAB = 1.6 · 104, cER = 3.2 · 104. (b) The ratio of the the theoretical and the empirical trajectory is plotted over time
τ using Equation (11). If this ratio gives the value 0, no discrepancy between theory and simulations is obtained.
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FIG. 5 Trajectories for Different N
ν
. Calculations have been conducted with d = 0.1, p = 0.25, σ = 0.1, N ∈

{100, 200, 300, 400}, ν ∈ {1, 2, 3}. The couplings dkl are drawn from a uniform distribution dkl ∈ [0, 0.2]. The error bars

represent the error of τc over 50 realizations of D and �W . Trajectories show different values of the relative initial displacement
N
ν

shifted by their respective critical time τc given by Equation (14).

If again, as in Section III.A, the rescaled variables χ =
x√
λd

and τ = λdt are introduced, this becomes

dχk

dτ
= −χ3

k + χk +
(λd − 1)

λd

x0√
λd

+ r̃k +
σ√
λd

dWk

dτ
(15)

with r̃k = rk
λd

√
λd

. This λd–dependence in the critical

parameter causes a more pronounced bistable regime,
i.e. increased global stability, for high connectivities in
agreement with the findings of Dunne et al. (2002). We
will denote this rescaled parameter by rk in the following.
We can see that a finite x0 amounts to a constant shift
in the effective parameter reff of the differential equation
of each node. After the rescaling we introduced in the
previous sections the x0-term shows a 1√

λd
–dependence.

For large λd, therefore, this term becomes negligible and
the system’s behavior can approximately be described as
derived above.

This result is interesting, as it implies that for large
connectivity λd the behavior of a system starting with
all nodes at a stable equilibrium, i.e., x0 = 1, approaches
the behavior of a system starting at the unstable fixed
point x0 = 0.

In the previous sections we have seen that the system
of coupled tipping elements described by Equation (4)

can be decoupled for noises negligible compared to the
connectivity of the system. This suggests that from the
decoupled description in Equation (15) the critical points
of the system should be obtainable by variation of the
parameter rk. It can be seen that the general solution
for critical points of a bifurcation of the form used here

is rcrit = ±
√

4
27 (cf. Klose et al., 2020). The noise term

in Equation 10 can cause the system to cross the critical
point even though the critical parameter value rcrit is not
yet reached.

Considering non-zero x0 in Equation (4), we can see
that in the general case

rcrit = ±
√

4

27
− λd − 1√

λ3
d

x0. (16)

Equation (16) shows that that a non-zero x0 changes
the system behavior like an additional term to the effec-
tive parameter reff of the system. This effect is supported
by the fit displayed in Figure 7. The critical points have
been obtained for different x0 for systems of tipping ele-
ments with λd = 16. The obtained fit clearly shows the
expected linear relation and is in good agreement with
the expected values.
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FIG. 6 Ratio for Different N
ν
. Calculations have been conducted with d = 0.1, p = 0.25, σ = 0.1, N ∈ {100, 200, 300, 400}, ν ∈

{1, 2, 3}. The couplings dkl are drawn from a uniform distribution dkl ∈ [0, 0.2]. The ratio of the trajectory of the different
systems with respect to the theoretical curve obtained by Equation (11) with τc given by Equation (14) is plotted. If this ratio
gives the value 0, no discrepancy between theory and simulations is obtained.

FIG. 7 Critical Points for Different x0. Calculations have
been conducted with λd = 16, p = 0.25, σ = 0.1, N =
100, d = λd−1

(N−1)p
≈ 0.6 and x0 ∈ [0, 2] The couplings dkl are

drawn from a uniform distribution dkl ∈ [0, 1.2]. The critical
points have been obtained from bifurcation diagrams of 50
realizations of D and �W for each value of x0. The fit values
have been obtained using numpy.polyfit in correspondence to
Equation (16).

We conclude that the influence of non-zero x0 on the
trajectory of the system is negligible for strongly coupled
systems. A strongly coupled system initially located at
a stable equilibrium reacts like a system located at an
unstable equilibrium reacts to a perturbation of one of
its nodes. It has also been shown that x0 can be inter-
preted as an additive term to an effective parameter reff

of the system and the critical points of a coupled system
of tipping points are identical to the critical points of the
aggregated tipping element.

IV. DISCUSSION AND CONCLUSION

In this paper a system of coupled tipping elements has
been initially placed at an unstable equilibrium, and the
system’s response to the perturbation of one tipping ele-
ment has been studied.

It has been shown that the multidimensional system of
coupled tipping elements on a network can be decoupled
if the coupling of the nodes dominates over the noise
in the system. The trajectory of the tipping elements
can then be described using a mean-field approach, thus
reducing the number of degrees of freedom to one. The
rescaled state coordinate depends on a measure for the
connectivity of the system developed in the decoupling

5.1 Complex networks of interacting stochastic tipping elements rAP1s
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process. This measure of connectivity also determines
the characteristic time scale of the tipping process of the
system and is therefore of great relevance to cascading
behavior on coupled networks.

However, simplifications have to be kept in mind when
evaluating the findings of this paper. The influence of
global drivers has mostly been ignored in focusing on
what Eom (2018) call “internal stress” on the network.
This would allow for statements on the effect of coupling
on the network dynamics and is based on the assumption
that many global drivers change on a larger time scale
than the state variables (Brummitt et al., 2015; Kuehn,
2011). Non-stationary parameters can cause a fundamen-
tally different system behavior (cf. Vollmer et al., 2014).

The results of this paper suggest that the inclusion of
negative couplings will not qualitatively alter the system
behavior as long as the average coupling strength remains
positive, contradicting a possibility that was raised ear-
lier in the findings of Gaucherel and Moron (2017) regard-
ing climate tipping elements. Still, nonlinear couplings
could change the results and are therefore beyond the
scope of this paper.

Nevertheless, the decoupling approach put forward in
this work allows an effective analysis of cascading behav-
ior on strongly coupled networks, for which we have pro-
vided a comprehensive analytical description that is in
excellent agreement with numerical simulations. Hence,
the present paper adds to the understanding of cascad-
ing behavior by providing a justification to treat coupled
systems of tipping elements like one aggregated tipping
element.
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Abstract. Based on suggested interactions of possible tipping elements in the climate

system, tipping cascades as potential dynamics are increasingly discussed and studied

as their activation may take the Earth system into a hothouse climate state and,

thereby, would impose a considerable risk on human societies and biosphere integrity.

However, there is an ambiguity in the description of tipping cascades within the

literature. Here we study a proposed system of idealized interacting tipping elements

to illustrate how different patterns of multiple tipping emerge from a very simple

coupling of two tipping elements. In particular, we distinguish between a two phase

cascade, a domino cascade and a joint cascade. While a mitigation of a two phase

cascade may be possible and common early warning indicators show some degree

of vulnerability to upcoming critical transitions, the domino cascade may hardly be

stopped once initiated and critical slowing down based indicators fail to indicate tipping

of the following element. These different possibilities on mitigation and anticipation

across the patterns of multiple tipping should be seen as a call to be precise in future

discussions on dynamics arising from tipping element interactions in the Earth system.

Keywords: tipping cascade, domino effect, tipping interactions, cascading regime shifts

1. Introduction

1.1. The idea of tipping cascades

Human-induced impacts on the Earth system increasingly endanger the integrity of

the Earth’s climate system and some of its most vulnerable components and processes,

5.2 What do we mean, ‘tipping cascade’? [AP2]
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the so-called tipping elements [1]. Lately, it has been argued that the risk of potential

tipping events or even cascading transitions up to a global cascade is rising under ongoing

anthropogenic global warming [2, 3]. While this is the case, there is considerable debate

about the nature and description of tipping cascades within the scientific community

itself.

The term cascade is used in various fields to describe a certain class of dynamics

possibly exhibited by interacting (sub-)systems. It describes the sequential occurrence

of similar events (event A is followed by event B), which does not necessarily have to be

causal opposed to when event A directly causes event B. The notion of a domino effect

is sometimes used synonymously to the term cascade. Examples comprise cascading

failures leading to the collapse of power grids as relevant physical infrastructure networks

[4, 5, 6, 7, 8]. Such a cascade may occur as an initial failure increasing the likelihood

of subsequent failures [4], but it emerge with an initial failure directly leading to the

failure of dependent nodes [5].

Similarly, cascading tipping events or regime shifts are increasingly discussed

following the rising awareness of a highly interconnected world [9]. Tipping elements

possibly undergoing a transition into a qualitatively different state after the crossing of

some critical threshold were identified e.g. in ecology and the Earth system [1, 10, 11].

Furthermore, in the Earth system, several interactions between tipping elements were

proposed [12, 13, 14, 15, 16, 17]. For example, the Atlantic Meridional Overturning

Circulation may slow down due to meltwater originating from the Greenland Ice Sheet

[13, 14]. Other examples comprise potential drying over the Amazon rainforest basin,

which is influenced by the Atlantic Meridional Overturning Circulation [16] on the one

hand and the El–Niño Southern Oscillation on the other hand [17]. Motivated by these

and further suggested tipping element interactions, cascading effects arising as potential

dynamics are discussed [2, 3, 18, 19, 20, 21, 22] as a mechanism for creating a potential

planetary-scale tipping point (of the biosphere) [19, 20, 23, 24]. [3] stated that we may

approach a global cascade of tipping points via the progressive activation of tipping point

clusters [25] through the increase of the global mean temperature. This could potentially

lead to a new, less habitable hothouse climate state [2]. However, it remains unclear

whether a cascade-like behavior within the Earth system is promoted by the direction

and strength of the existing feedbacks. Recently, first conceptual steps [26, 27] have

been undertaken to determine whether the network of Earth system tipping elements is

capable to produce global tipping cascades [28, 29]. Using still conceptual, but process-

based models, [30] demonstrated a sequence of tipping events in a coupled system of the

Atlantic Meridional Overturning Circulation and El–Niño Southern Oscillation. Cost

of future climate damages caused by carbon emissions originating from domino effects

of interacting tipping elements were studied in an integrated assessment model [31, 32].

Earlier, the propagation of critical transitions in lake chains as an ecological example

was analyzed, coupling established models of shallow lakes by a unidirectional stream or

diffusion processes [33, 34]. Further examples beyond the biogeophysical Earth system

possibly giving rise to the propagation of critical transitions were proposed such as
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coupled subsystems in the fields of economics and finance [26].

1.2. Descriptions of tipping cascades vary across the literature

However, tipping cascades or, more generally, patterns of multiple tipping discussed

to arise from the interaction of tipping elements are often loosely described suffering

a similar fate as its ancestral ‘tipping point’ concept [35]. We encountered important

differences across the definitions of tipping cascades in the recent literature. These

differences result in particular from the specification of whether causality is a necessary

ingredient for a cascade or not. For example, the event where tipping of one system

causes the tipping of another system is called domino dynamics or tipping cascade

by [18]. The emergence of such a mechanism for the propagation of regime shifts is

underpinned and termed a cascade by [26]. By comparison, the term cascading tipping

is used for a sequence of abrupt transitions in [30] that may not necessarily be causal.

Furthermore, and not restricted to causal events, an effect of one regime shift on the

occurrence of another regime shift is suggested as cascading in [22].

In the following, we relate these varying descriptions of tipping cascades to different

patterns of multiple tipping which emerge from the (linear) coupling of two idealized

tipping elements (Figure 1). Each tipping element depends on its control parameter

(or driver), the variation of which may induce a critical transition from a normal to an

alternative state. In addition, the behavior of each tipping element in terms of its state

influences the control parameter of a coupled tipping element linearly.

2. Patterns of multiple tipping in a model of idealized interacting tipping

elements

The patterns of multiple tipping described below and illustrated in Figure 2 originate

from different specific pathways through the control parameter space of both tipping

elements. During the evolution in the control parameter space, the control parameter c2
of subsystem X2 as following tipping element is kept constant at distinct levels (Figure 2,

going from top to bottom), while the control parameter c1 of subsystem X1 as evolving

tipping element is increased (Figure 2, going from left to right) sufficiently slowly such

that the system can follow its (moving) equilibrium. In other words, by a separation

of the intrinsic system time scale and the time scale of the forcing, the system can be

regarded as a fast-slow system [36], where the change in the forcing of the system is

slow compared to the intrinsic system time scale.

2.1. Two phase cascade (Figure 2A)

An increase of the control parameter c1 across its threshold and the resulting

critical transition of subsystem X1 is not sufficient to trigger a critical transition in

subsystem X2. The system converges intermediately to a stable fixed point (as seen in

the phase space portraits) and only a further increase of the control parameter c1 can

5.2 What do we mean, ‘tipping cascade’? [AP2]
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Figure 1. A & B: Bifurcation diagram of the idealized tipping elements X1 (A) and X2

(B). The respective differential equation is of the form dx1

dt = −x3
1+x1+c1+ 1

2d21(x2+1)

for subsystem X1 and dx2

dt = −x3
2 +x2 +c2 + 1

2d12(x1 +1) for subsystem X2. Note that

for determining the bifurcation diagram of the idealized tipping elements X1 and X2

the coupling term is not taken into account, i.e. the uncoupled case with d21 = 0 and

d12 = 0 is shown here. Below the critical threshold cicrit , i = 1, 2, there exist two stable

fixed points. As soon as the control parameter ci transgresses its critical value cicrit , a

fold-bifurcation occurs and the system tips from the lower (normal) state x∗
i− to the

upper (alternative) state x∗
i+ . C) Sketch of the potential of the two subsystems in case

they do not interact shown as a ball–and–cup diagram.

initiate the critical transition in subsystem X2 by the loss of the intermediately occupied

stable fixed point. Thus, with a limitation of the increase in the control parameter c1, a

full two phase cascade can be mitigated. We can identify the two phase cascade with the

cascade described and simulated in [30]. Within the climate system, a stepwise change

in the oxygen isotopic ratio at the Eocene-Oligocene transition may be interpreted as a

two phase cascade of the Atlantic Meridional Overturning Circulation as the evolving

tipping element and the Antarctic Ice Sheet as the following tipping element [30, 37].

An increasingly slower recovery from perturbations and thus an increase in common
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statistical indicators such as autocorrelation and variance are observed for subsystem X1

on the approach of the two phase cascade in a pre–tipping time span before the critical

transition of subsystem X1 (Supplementary Material Figure S1–S3). In contrast, for

subsystem X2, an increasingly slower recovery from perturbations as well as increasing

autocorrelation and variance can not be detected prior to the critical transition of

subsystem X1 in the pre–tipping time span (Supplementary Material, Figure S1–S3).

However, given the intermediate convergence to a stable fixed point after the critical

transition of subsystem X1 and prior to the critical transition of subsystem X2, an

intermediate time span offers the possibility to indicate the upcoming critical transition

of subsystem X2 in the two phase cascade. A jump to a higher level of the statistical

indicators of subsystem X2 compared to the respective level in the pre–tipping time span

is observed (Supplementary Material, Figure S2–S3). Accompanied by the determined

rotation of the eigenvectors and the change in the eigenvalue magnitude, it becomes

apparent that the jump height in the statistical indicators varies with the level of the

constant control parameter c2 as a consequence of an increasingly slower recovery from

perturbations in the intermediate time span. Apparently, no threshold, i.e. a jump

height above which this following tipping occurs, exists but it rather is a continuous

and relative quantity. Thus, to use this jump height to clearly indicate an upcoming

following transition may be difficult in practice.

2.2. Domino cascade (Figure 2B)

In this case, the increase of the control parameter c1 across its threshold and the

corresponding critical transition of subsystem X1 towards its alternative state is

sufficient to trigger a critical transition of subsystem X2. Note that, in contrast to

the two phase cascade, no further increase of the control parameter c1 is necessary to

observe the domino cascade, but the tipping of one subsystem (the evolving tipping

element) directly causes the tipping of another (the following tipping element). This

corresponds to the description of a tipping cascade given in [18] and [26] and the general

notion of a domino effect including causality [38]. A notable feature is the expected path

of the system in the phase space. Even though the intermediately occupied stable fixed

point involved in the two phase cascade is absent, it still influences the dynamics (see

phase space, Figure 2B) as a ‘ghost’ (e.g. [39, 40, 41, 42]). As demonstrated recently

in a conceptual model, domino cascades may propagate through tipping elements in

the Earth system, for instance between the large ice sheets on Greenland and West

Antarctica and the Atlantic Meridional Overturning Circulation [28].

Such a domino cascade may not be preceded clearly by the increase of the common

early warning indicators and relying on these indicators may lead to an unexpected

following critical transition of the following tipping element. While an increasingly

slower recovery from perturbations and thus increasing autocorrelation and variance as

common statistical indicators are observed for subsystem X1 on the approach of the

domino cascade in the pre–tipping time span (Supplementary Material, Figure S1–S3),

5.2 What do we mean, ‘tipping cascade’? [AP2]
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the statistical indicators for subsystem X2 remain constant though on a higher level

than for the two phase cascade in the pre–tipping time span (Supplementary Material,

Figure S1–S3). However, no clear intermediate time span prior to the critical transition

of subsystem X2 exists allowing for an additional detection of early warning signals as

for the two phase cascades.

2.3. Joint cascade (Figure 2C)

Subsystem X1 and subsystem X2 may tip jointly with a possible trajectory evolving

close to the phase space diagonal for an increase of the control parameter c1 across its

threshold in contrast to the other two tipping cascade types. The critical transitions

of the respective subsystems cannot be distinguished with regard to their order of

tipping. Though the case of a joint cascades has not been treated explicitly in the

recent literature on interacting tipping elements, a similar behaviour may be observed

in spatially extended bistable ecosystems subject to regime shifts as explored by [43, 34].

For both subsystems, a slower recovery from perturbations is expected prior to

their joint tipping (Supplementary Material, Figure S1–S2). While for subsystem X1

autocorrelation and variance increase on the approach of the joint cascade, subsystem X2

exhibits a relatively high constant level of these statistical indicators prior to the

joint cascade indicating the vulnerability of subsystem X2 (Supplementary Material,

Figure S3).

3. Discussion

Studying a system of idealized interacting tipping elements [26, 27], different patterns

of multiple tipping were identified as a two phase cascade, a domino cascade and a joint

cascade.

The various patterns of multiple tipping originating from a model of idealized

interacting tipping elements are related to different, though simplified and specific

pathways through the control parameter space. In the end, the control parameter

evolution determines the emergence of the specific system behavior which may be

a domino cascade, a two phase cascade or a joint cascade. The control parameter

evolution, i.e., the evolution of the forcing, can therefore determine the architecture of

multiple tipping that is observed. Of course, other factors such as the strength and the

sign of coupling are as well decisive for the emergence of tipping cascades. Moreover,

in more complex systems, control parameters can not be treated separately for each

tipping element and drivers may be shared [22].

The different patterns of multiple tipping may have implications for the mitigation

of tipping by controlling their respective drivers. A limitation of the forcing can prevent

the two phase cascade since a critical transition is not sufficient for the spread of a

tipping event to a following subsystem. Instead, the critical transition needs to be

followed by a further evolution of the respective subsystem’s state before a following
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A)

B)

C)

System 1

System 2Two phase 
cascade

Domino 
cascade

Joint
cascade

driven towards

c1 = 0.0

Shift of system 1 towards and over its tipping point

c1 = 0.0

c1 = 0.0

c1 = 0.6

c1 = 0.3

c1 = 0.3

c1 = 
1.15

c1 = 
1.15

c1 = 
1.15

Shift of system
 2 tow

ards its tipping point

Figure 2. Three different types of tipping cascades depicted as three different

situations. From left to right, the critical parameter c1 of subsystem X1 is driven

closer to and over its tipping point (compare to Figure 1). From top to bottom,

the critical parameter c2 of subsystem X2 is also driven closer to, but not across, its

tipping point. In this setting, three different patterns of multiple tipping or cascades

can occur. A) Two phase cascade: the first subsystem X1 tips, is then shifted closer

towards subsystem X2 by an increase of the control parameter c1. Then subsystem X2

tips as well. B) Domino cascade: The subsystems X1 and X2 are closer together

than in the two phase cascade such that a tipping of subsystem X1 (middle panel) is

sufficient to trigger a critical transition in subsystem X2. C) Joint cascade: The two

subsystems are very close to each other such that the beginning of a tipping event

in subsystem X1 immediately causes the tipping of the second subsystem X2 and the

tipping events cannot be distinguished. The respective stable fixed point attractors and

phase diagrams are shown below the domino sketches. Orange dots represent stable

fixed points, while unstable fixed points are given by red dots. The white arrows show

the trajectories in between. The background colour indicates the normalized speed

v =
√

ẋ2
1 + ẋ2

2/vmax going from close to zero (purple) to fast (yellow–green).
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critical transition is initiated. However, in a domino cascade an initial critical transition

of the evolving tipping element is sufficient to trigger a slightly delayed but inevitable

following critical transition.

In addition, the potential success of anticipating the emergence of tipping cascades

through early warning indicators based on critical slowing down [44, 45, 46] was assessed

and demonstrated to differ across the patterns of multiple tipping. Using insights of

[47] and [48] on critical slowing down in multi–component systems in relation to the

eigenvector orientation, it is shown how critical slowing down and common statistical

indicators for the anticipation of critical transitions may emerge from the rotation

of eigenvectors and the change in the eigenvalues’ magnitude (see Supplementary

Material). Thereby, the analysis of statistical properties of the two phase cascade in

[30] is expanded. We found that these common statistical indicators based on critical

slowing down may fail for upcoming domino cascades in a system of idealized interacting

tipping elements. While increasing autocorrelation and variance are observed for the

evolving tipping element on the approach of the domino cascade, constant levels of these

statistical indicators were determined for the following tipping element. In the case of a

two phase cascade or a joint cascade, the critical slowing down based indicators indicate

some degree of vulnerability (or resilience) in the system of interacting tipping elements.

However, their application may be unfeasible in practice. In particular, for the two phase

cascade, the critical transition of the evolving tipping elements is preceded by increasing

autocorrelation and variance of the respective subsystem, while a jump towards a higher

level of the statistical indicators in the intermediate time span is found for the following

tipping element. The joint cascade may be conceivable with a raised but constant

level of autocorrelation and variance for the following tipping element accompanied

by an increase of statistical indicators for the evolving tipping element. With the

slower recovery from perturbations for both tipping elements, correlations between the

subsystems’ time series comparable to the application of spatial early warning signals

[49, 43, 50, 51, 52] may unfold.

As the very specific and simple scenarios of the control parameter evolution

demonstrate that an increase of autocorrelation and variance prior to multiple tipping

events cannot necessarily be expected, these common early warning indicators should not

be relied on as the only way of anticipating critical transitions in systems of interacting

tipping elements. Additionally taking into account often referenced limitations, false

alarms and false positives in the application of critical slowing down based indicators

to individual tipping elements and their critical transitions [53, 54, 55], it seems to

be necessary to invoke a combination of process–based modelling accompanied by

monitoring the system under investigation resulting in predictions as well as data–driven

techniques [54, 55, 56] to detect upcoming multiple transitions and, in particular, the

domino cascade.

Note that the presented discussion is restricted to bifurcation-induced tipping, is

purely deterministic and a sufficiently slow change of the tipping element driver is

assumed. Hence, our examination of tipping cascades excludes noise or rate–induced
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effects which will further influence the presented patterns of multiple tipping. In a

related stochastic system, similar patterns were demonstrated as fast and slow domino

effects [57]. The patterns of multiple tipping are expected to change in response to a

fast change of the tipping element driver which cannot be ruled out given the current

unprecedented anthropogenic forcing of the biogeophysical Earth system [58, 59]. In

addition, superimposed rate-induced transitions may occur [60, 61] as observed for the

Atlantic Meridional Overturning Circulation [62, 63], predator–prey systems [64, 65, 66]

and in the form of the compost–bomb instability [61, 67]. Heterogeneity across the

response of tipping elements to the same control parameter level [24] was neglected but

may influence the overall tipping behaviour of the coupled system [68].

Finally, it is assumed that the long–term behaviour of many real–world systems in

terms of the system’s state such as the overturning strength of the Atlantic Meridional

Overturning Circulation [69, 70], the ice volume of the Greenland Ice Sheet [71]

and the algae density in shallow lakes [72, 73] can be qualitatively captured by the

studied idealized tipping elements featuring a fold bifurcation as tipping mechanism.

However, biogeophysical and biogeochemical processes involved in the behaviour of these

real–world systems and included in some more complex climate models may either give

rise to further types of cascading tipping or may dampen the overall tipping behavior.

4. Conclusion

Different patterns of multiple tipping have been identified in this work. These multiple

tipping patterns may emerge as illustrated in a system of idealized interacting tipping

elements and include the cases of joint cascades, domino cascades and two phase

cascades. As described in [18] and [26] as well as corresponding to the general notion of

a domino effect [38], tipping of one subsystem causes or triggers the tipping of another

subsystem in a domino cascade. In addition, we find a two phase cascade corresponding

to the tipping pattern presented in [30]. While we reveal that it may be possible to find

critical slowing down based early warning indicators for the two phase cascade, such

indicators can fail in the case of a domino cascade.

However, our results are limited by the conceptual nature of the systems

investigated here. In particular, it remains uncertain whether more complex and

process–detailed models of tipping elements might smear out the respective nonlinear

properties due to processes such as noise, interactions to other system components or

further biogeophysical processes that are not modelled here.

Since literature descriptions of cascading tipping dynamics have been ambiguous

in the past and the presented patterns of multiple tipping differ in their possibilities of

mitigation and anticipation, we propose to be precise in future discussions on potential

dynamics arising from the interaction of tipping elements and, in particular, on tipping

cascades. In the future, a quantitative assessment of interacting tipping elements

with an ongoing improvement of their representation in complex (climate) models

e.g. by including interactive evolving ice sheets into Earth system models as well as

5.2 What do we mean, ‘tipping cascade’? [AP2]
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the additional use of paleoclimate data [74] may help to reduce uncertainties on the

emergence of tipping cascades and possible early warning indicators based on process-

understanding. To the end, this may contribute to reflections on the boundaries of

the safe-operating space for humanity, also in terms of the Earth system resilience in

general.
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1. Methods

The assessment of possible early warning of critical transitions in a system of interacting

tipping elements is based on the model of idealized interacting tipping elements. For

simplicity, the analysis is restricted to the simple case of two interacting tipping element

(n = 2) as given by:

x1(t) = a1x1(t) − b1x
3
1(t) + c1 +

1

2
d21(x2(t) + 1) (1)

x2(t) = a2x2(t) − b2x
3
2(t) + c2 +

1

2
d12(x1(t) + 1) (2)

We focus on small coupling strength where the respective coupling terms are kept

smaller compared to the intrinsic tipping element’s dynamic.

We derive insights on critical slowing down in the above system of interacting

tipping elements by the assessment of eigenvectors and eigenvalues based on the main

conclusion of [1] and [2]: It was found that critical slowing down occurs in the direction

of the eigenvector corresponding to the dominant eigenvalue. The system component

closest to the dominant eigenvector exhibits the slowest exponential recovery rate

compared to the other components.

The eigenvalues for the system of two interacting idealized tipping element arise

from the Jacobian J of the system which is given as

J = (a1 − 3b1x
2
1,

1

2
d21;

1

2
d12, a2 − 3b2x

2
2) (3)

where ai, bi = 1, i = 1, 2 in the following. We analyse the orientation of the

eigenvectors vi, i = 1, 2 and the magnitude of the corresponding eigenvalues λi, i = 1, 2
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for the stable fixed point (x∗1− , x∗2−) at the boundary of its stability area in Section 2. The

stability area of the stable fixed point (x∗1− , x∗2−) is the area in the control parameter

space (c1,c2), where this fixed point (x∗1− , x∗2−) exists and is denoted as A(x∗
1− ,x∗

2− ) in

the following. Thereby, we aim to obtain a first indication for critical slowing down

immediately prior to leaving its stability area A(x∗
1− ,x∗

2− ). In addition, in Section 3 we

assess the eigenvector rotation for the fixed point (x∗1− , x∗2−) during the evolution in

the control parameter space as the system approaches the stability area boundary and

the corresponding change in the eigenvalue magnitude. Corresponding to the different

patterns of multiple tipping, a simplified scenario of the control parameter evolution is

used with an (infinitely) slow increase of the control parameter c1 of subsystem X1 from

c100 while keeping the control parameter c2 of subsystem X2 constant (c2 = const.).

The eigenvector rotation and the change in the magnitude of the eigenvalues are in

addition determined for the stable fixed point (x∗1+ , x∗2−) which is involved in the two

phase cascade (compare Figure 2A in main manuscript).

The eigenvector orientation is quantified by the angle αi between the positive x1–

axis and the upper part of the eigenvector vi, i = 1, 2 after a shift of the fixed point to the

origin. The angle αi then varies in the range [0°, 180°], where for αi = 0◦ and αi = 180◦

the eigenvector points to the positive and direction of the x1—axis, respectively. With

αi = 90◦ the eigenvector points to the direction of the x2-–axis.

Finally, to relate the insights on critical slowing down gained by the assessment of

the eigenvectors and eigenvalues to the statistical properties of the different multiple

tipping patterns, we estimate autocorrelation and variance as prominent statistical

indicators from time series generated by the simulation of the system of interacting

tipping elements in Section 4. In the simulations the system approaches the boundary

of the stability area A(x∗
1− ,x∗

2− ) and evolves further by a slow linear increase of the control

parameter c1 of subsystemX1 from c1 = 0 with the ramping rate rc1 = 0.01 while keeping

the control parameter c2 of subsystem X2 constant (c2 = const.). Different levels of the

control parameter c2 = const. resembling certain patterns of (multiple) tipping are

chosen. An ensemble of 100 members is simulated for each pattern of multiple tipping

with a time step ∆t = 0.1.

The time spans which include the tipping processes of one or both subsystems are

disregarded. As a consequence, statistical indicators are determined for the pre—tipping

time span before the tipping of subsystem X1 (and X2 for the domino cascades and a

joint tipping of the subsystems X1 and X2) and, in the case of the two phase cascades,

for the intermediate time span between the tipping of subsystem X1 and the tipping of

subsystem X2. A Gaussian filter with fixed standard deviation is applied to the resulting

separated time series which is chosen such that the long–term trend is removed while

overfitting is avoided [3, 4]. Autocorrelation and variance are determined in a sliding

window approach within a window of a length of half the size of the data set [5, 3]. For

the resulting time series of the statistical indicators, Kendall’s τ coefficient is calculated

to quantify the increase of the early warning indicators [5]. Although not carried out

here, a sensitivity analysis varying the standard deviation of the Gaussian filter and the
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length of the sliding window should follow to test the robustness of the results to these

data processing parameters of the time series [5] as performed by [3, 4] Boulton et al.

(2014) and Thomas et al. (2015).

2. Eigenvector orientation at stability area boundary

Different patterns of multiple tipping arise by leaving the stability area A(x∗
1− ,x∗

2− ).

Proceeding along the stability area boundary results in a change of the eigenvalue

magnitude (Figure S1(a) and (b)) and the eigenvector direction (Figure S1(c)) for

the stable fixed point (x∗1− , x∗2−). In other words, the eigenvalue magnitude and the

eigenvector orientation prior to the emergence of (multiple) tipping vary depending on

the position along the stability area boundary.

For lower parts of the stability area boundary with low levels of the control

parameter c2, the dominant eigenvector v2 with λ2 close to zero is mainly orientated in

x1–direction with α2 ≈ 0◦ (Figure S1(c)). Subsystem X1 is much closer to the dominant

eigenvector than subsystem X2. Is is therefore expected to show the relatively slower

recovery rate for perturbations in the direction of this dominant eigenvector v2 than

subsystem X2 prior to leaving the stability area A(x∗
1− ,x∗

2− ). The other eigenvector v1
with λ1 ≈ −2 is mainly orientated in x2—-direction with α1 ≈ 90◦ (Figure S1(c)).

Proceeding upwards along the boundary of the stability area A(x∗
1− ,x∗

2− ) with

increasing level of the control parameter c2, the dominant eigenvector v2 shows minor

changes in its orientation with a slight increase in α2 (Figure S1(c), case A and B

corresponding to two phase cascade and domino cascade). Subsystem X1 remains closer

to the dominant eigenvector v2. It is therefore expected to show a relatively slower

recovery rate to perturbations in the direction of the eigenvector v2 than subsystem X2

prior to leaving the stability area A(x∗
1− ,x∗

2− ). The other eigenvector v1 shows minor

changes in its orientation with a slight increase in α1 while the corresponding

eigenvalue λ1 increases slightly towards zero (Figure S1(c), case A and B corresponding

to two phase cascade and domino cascade).

For both the two phase cascade (corresponding to the previously presented case A)

and the domino cascade (corresponding to the previously presented case B) a slower

recovery from perturbations in subsystem X2 cannot be expected prior to the tipping of

subsystem X1. However, given that the system intermediately converges to the stable

fixed point (x∗1+ , x∗2−) in the two phase cascade (corresponding to case A) after leaving

the stability area A(x∗
1− ,x∗

2− ) and the corresponding loss of the stable fixed point (x∗1− , x∗2−)

(compare Figure 2A in main manuscript), eigenvalues and eigenvectors for this stable

fixed point may indicate critical slowing down. These are explored in the following

Section 3. On the contrary, for the domino cascade (corresponding to case B) and

regions of the stability area boundary towards a joint tipping of both subsystems, a

possible dead zone (Figure S1(c), case B until case C is reached in terms of the control

parameter c2) for the anticipation of tipping cascades is identified. Note that there is

no stable fixed point that the system may intermediately occupy in the domino cascade

5.2 What do we mean, ‘tipping cascade’? [AP2]
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(compare Figure 2B in main manuscript).

Reaching the upper parts of the stability area boundary with an elevated level of

the control parameter c2, the orientation of the dominant eigenvector v2 changes within

a small range of the control parameter c2 until α2 ≈ 45◦ at the upper corner of the

stability area A(x∗
1− ,x∗

2− ) is reached (Figure S1(c), going to case C corresponding to joint

cascade). Subsystem X1 and X2 get equally close to the dominant eigenvector v2. A

similar recovery rate in subsystem X1 and X2 is therefore expected for perturbations in

the direction of the dominant eigenvector v2 prior to leaving the stability area A(x∗
1− ,x∗

2− ).

The orientation of the other eigenvector v1 shows major changes within a small range of

the control parameter c2 until α = 135◦ is reached at the upper corner of the stability

area A(x∗
1− ,x∗

2− ). In addition, the corresponding eigenvalue λ1 increases until zero is

almost reached (Figure S1(c)).

Based on the expected slow recovery rates for both subsystems X1 and X2

the anticipation of the critical transitions of both subsystems in the joint cascade

(corresponding to the previously presented case B) may be possible.
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Figure 1. Eigenvalues and eigenvectors of the fixed point (x∗1− , x∗2−) for two

bidirectionally coupled tipping elements given by 2 with d21 = 0.2 > 0 and d12 =

0.2 > 0. (a) & (b): Eigenvalues λ1 (a) and λ2 (b) for the fixed point (x∗1− , x∗2−)

depending on the control parameters c1 and c2. (c): Angle αi, i = 1, 2 giving the

direction of the corresponding eigenvectors vi with i = 1, 2 for the fixed point (x∗1− ,

x∗2−) when moving along the boundary of the stability area A(x∗
1− ,x∗

2− ). The colouring

represents the magnitude of the corresponding eigenvalue λi, i = 1, 2.
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3. Eigenvector rotation and statistical indicators during evolution in the

control parameter space

For a full assessment of the development of critical slowing down and the corresponding

evolution of statistical indicators during an approach of the boundary of the stability

area A(x∗
1− ,x∗

2− ) it is not sufficient to consider the magnitude of the eigenvalue and

the direction of the corresponding (dominant) eigenvector at the point of leaving the

stability area A(x∗
1− ,x∗

2− ). The change in the eigenvalue magnitude and the rotation of

the corresponding eigenvector along the path in the control parameter space need to be

analysed.

The eigenvector rotation of the stable fixed point (x∗1− , x∗2−) during the evolution in

the control parameter space with c2 = const. and an increasing control parameter c1 from

c1 = 0 towards the boundary of the stability area A(x∗
1− ,x∗

2− ) follows a general pattern,

which can be separated into two distinct phases I and II (Figure S2, left panel). The

relative length of the phases depends on the level of the control parameter c2 = const.

Note that at the lower and upper bounds of the stability area A(x∗
1− ,x∗

2− ), e.g. for

c2 = 0.344 (Figure S2C, left panel) only one of the phases can be observed.

In the beginning of phase I, the dominant eigenvector v2 is predominantly orientated

in x2–direction. The exact eigenvector orientation quantified by α2 varies with the level

of the control parameter c2 = const. (Figure S2, left panel, comparing A to C). With

increasing control parameter c1, the dominant eigenvector v2 rotates towards α2 ≈ 45◦.

The corresponding eigenvalue λ2 increases slightly towards zero but shows only minor

changes overall (Figure S2, left panel). Hence, starting from an orientation where

the dominant eigenvector is closer to subsystem X2, subsystem X1 and X2 get more

equally close to the dominant eigenvector v2 with increasing control parameter c1. In the

beginning of phase I, subsystem X2 is thus expected to show a relatively slower recovery

from perturbations in the direction of the dominant eigenvector v2 determined by the

eigenvalue magnitude. To the end of phase I, a similar recovery in subsystems X1 and X2

is expected from perturbations in the direction of the dominant eigenvector v2 based on

the eigenvector orientation. The other eigenvector v1 is predominantly orientated in x1–

direction in the beginning of phase I. The exact eigenvector orientation quantified by

α1 varies with the level of the control parameter c2 = const. (Figure S2, left panel,

comparing B to C). With increasing control parameter c1, this eigenvector rotates

towards α1 = 135◦ with the corresponding eigenvalue λ1 being more negative than

the dominant eigenvalue λ2 with λ1 < λ2 (Figure S2).

During phase II, the dominant eigenvector v2 rotates from α2 = 45◦ towards

α2 = 0◦ so that the dominant eigenvector v2 is finally orientated towards the x1–

axis before the stability area A(x∗
1− ,x∗

2− ) is left. Note that the final orientation of

the dominant eigenvector v2 at the stability area boundary varies with the level of

the control parameter c2 = const. (Figure S2, left panel, comparing A to C). The

corresponding eigenvalue λ2 increases with increasing control parameter c1 until it is

very close to zero (Figure S2, left panel). Hence, starting from an orientation where

5.2 What do we mean, ‘tipping cascade’? [AP2]
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the dominant eigenvector is equally close to subsystem X1 and X2, subsystem X1

gets closer to the dominant eigenvector with increasing control parameter c1. In the

beginning of phase II, subsystems X1 and X2 are thus expected to show a similar

recovery from perturbations in the direction of the dominant eigenvector v2 determined

by the magnitude of the corresponding eigenvalue λ2. With a further increasing control

parameter c1, a relatively slower recovery determined by the increased eigenvalue λ2 is

expected in subsystemX1 compared to subsystemX2 from perturbations in the direction

of the dominant eigenvector v2. The other eigenvector v1 rotates from α1 = 135◦ in the

beginning of phase II towards α1 ≈ 120−100◦ at the stability area boundary (Figure S2,

left panel). This eigenvector v1 gets predominantly orientated in x2—direction with

increasing control parameter c1. The corresponding eigenvalue λ1 increases slightly.

The system may converge intermediately to the stable fixed point (x∗1+ , x∗2−)

after leaving the stability area A(x∗
1− ,x∗

2− ) and prior to the following critical transition

in subsystem X2 in the case of a two phase cascade (compare Figure 2A in main

manuscript). The eigenvector rotation and the change of the corresponding eigenvalue

magnitude for this stable fixed point (x∗1+ , x∗2−) during the evolution in the control

parameter space (Figure S2A, right panel) may therefore point to critical slowing

down in subsystem X2. The dominant eigenvector v2 points in x2–direction with

α2 ≈ 90◦ throughout an increasing control parameter c1 (Figure S2A, right panel),

so that subsystem X2 is closest to this dominant eigenvector v2. The corresponding

eigenvalue λ2 is close to zero. As a result, a relatively slower recovery from perturbations

in the direction of the dominant eigenvector v2 is expected for subsystem X2. The other

eigenvector v1 mainly points in x1–direction with α1 ≈ 180◦ and the corresponding

eigenvalue λ1 decreases with increasing control parameter c1 (Figure S2A, right panel).

4. Evolution of statistical indicators

The evolution of autocorrelation and variance in the pre—tipping time span as well as

in the intermediate time span (for the two phase cascade) are related to the described

eigenvector rotation and the change in the eigenvalue magnitude. For the pre—-

tipping time span, the evolution of autocorrelation and variance may be determined

by the eigenvector rotation and changes in the eigenvalue magnitude of the stable fixed

point (x∗1− , x∗2−) when approaching the stability area A(x∗
1− ,x∗

2− ) (Figure S2, left column).

The eigenvector rotation and change in the eigenvalue magnitude of the stable fixed

point (x∗1+ , x∗2−) needs to be taken into account for the evolution of autocorrelation

and variance in the intermediate time span of the two phase cascade (Figure S2, right

column).

In the pre-–tipping time span prior to leaving the stability area A(x∗
1− ,x∗

2− ), an

increase of autocorrelation and variance can be observed for subsystem X1 for all levels

of a constant control parameter c1 with subsystem X1 getting closer to the (rotating)

dominant eigenvector (Figure S3). Regarding subsystem X2, a relatively constant level

of autocorrelation and variance is detected (Figure S3). This level of autocorrelation and
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Figure 2. Evolution of the angel αi with i = 1, 2 giving the direction of the

eigenvectors v1 and v2 for the fixed points (x∗1− , x∗2−) (left column) and (x∗1+ ,

x∗2−) (right column) along different paths within the control parameter space for

two bidirectionally coupled tipping elements given by 2 with d21 = 0.2 > 0 and

d12 = 0.2 > 0. The different pathways within the control parameter space correspond

to the types of multiple tipping emerging from an infinitely slowly increase of the

control parameter c1 of subsystem X1 while keeping the control parameter c2 of

subsystem X2 constant c2 = const. (with A: c2 = 0.15, B: c2 = 0.16849, C: c2 = 0.344).

variance increases with increasing level of the constant control parameter c2 (Figure S3,

going from A to C) corresponding to the increasing magnitude of the eigenvalues with an

increasing level of the constant control parameter c2 (compare Figure S2, left column).

It is therefore aligned to the different patterns of multiple tipping. While a high level of

autocorrelation and variance in subsystem X2 can be observed for a joint tipping with

subsystem X1 (Figure S3C), the level of autocorrelation and variance in subsystem X2

is relatively lower for the domino cascade (Figure S3B) and the two phase cascade

(Figure S3A).

In the case of a two–phase cascade, autocorrelation and variance are determined in

5.2 What do we mean, ‘tipping cascade’? [AP2]
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an intermediate time span which results from the intermediate residence in the stable

fixed point (x∗1+ , x∗2−) prior to the critical transition in subsystem X2 (Figure S3A).

Compared to the pre—tipping time span, a decreasing autocorrelation and variance can

be observed for subsystem X1 after its critical transition. For the autocorrelation and

variance in subsystem X2 a jump to a higher level of the statistical indicators compared

to the level of the statistical indicators in the pre—tipping time span can be observed

(Figure S3A). Resembling the results of [6] the ratio of the autocorrelation and variance

levels in the intermediate time span to the levels in the pre—tipping time span is higher

for a two phase cascade (Figure S3A) than for a single tipping event in subsystem X1

related to the increased magnitude of the corresponding eigenvalue.

0 200 400 600 800
t

0.6
0.7
0.8
0.9
1.0

AR
(1

)

X1 = 0.846
X2 = 0.131

A) Two  phase cascade
X1 = -0.494
X2 = 0.255

A) Two  phase cascade

X1 X2
0 200 400 600 800

t

0.2

0.4

0.6

0.8

1.0

Va
r

1e 4
X1 = 0.814
X2 = 0.089

X1 = -0.423
X2 = 0.237

X1 X2

0 200 400 600 800
t

0.6
0.7
0.8
0.9
1.0

AR
(1

)

X1 = 0.859
X2 = 0.14

B) Domino cascade

X1 X2
0 200 400 600 800

t

0.2

0.4

0.6

0.8

1.0

Va
r

1e 4
X1 = 0.833
X2 = 0.129

X1 X2

0 200 400 600 800
t

0.6
0.7
0.8
0.9
1.0

AR
(1

)

X1 = 0.846
X2 = 0.368

C) Joint cascade

X1 X2
0 200 400 600 800

t

0.2

0.4

0.6

0.8

1.0

Va
r

1e 4
X1 = 0.817
X2 = 0.354

X1 X2

Figure 3. Evolution of autocorrelation (left column) and variance (right column)

along different paths within the control parameter space for two bidirectionally coupled

tipping elements given by 2 with d21 = 0.2 > 0 and d12 = 0.2 > 0. The different

pathways within the control parameter space correspond to the types of multiple

tipping emerging by a slow linear increase of the control parameter c1 of subsystem X1

from c1 = 0 while keeping the control parameter c2 of subsystem X2 constant

(c2 = const.) (with A: c2 = 0.15, B: c2 = 0.16846, C: c2 = 0.344).
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model CM2Mc. By experiments, where the concentration of atmospheric CO2 is increased (impact
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their original state after the CO2 forcing has ceased, i.e., after the impact and the recovery phase.
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Abstract. Tropical rainforests are recognized as one of the terrestrial
tipping elements which could have profound impacts on the global cli-
mate, once their vegetation has transitioned into savanna or grassland
states. While several studies investigated the savannization of, e.g., the
Amazon rainforest, few studies considered the influence of fire. Fire is
expected to potentially shift the savanna-forest boundary and hence
impact the dynamical equilibrium between these two possible vegeta-
tion states under changing climate. To investigate the climate-induced
hysteresis in pan-tropical forests and the impact of fire under future cli-
mate conditions, we employed the Earth system model CM2Mc, which
is biophysically coupled to the fire-enabled state-of-the-art dynamic
global vegetation model LPJmL. We conducted several simulation ex-
periments where atmospheric CO2 concentrations increased (impact
phase) and decreased from the new state (recovery phase), each with
and without enabling wildfires. We find a hysteresis of the biomass
and vegetation cover in tropical forest systems, with a strong regional
heterogeneity. After biomass loss along increasing atmospheric CO2

concentrations and accompanied mean surface temperature increase of
about 4°C (impact phase), the system does not recover completely into
its original state on its return path, even though atmospheric CO2

concentrations return to their original state. While not detecting large-
scale tipping points, our results show a climate-induced hysteresis in
tropical forest and lagged responses in forest recovery after the climate
has returned to its original state. Wildfires slightly widen the climate-
induced hysteresis in tropical forests and lead to a lagged response in
forest recovery by ca. 30 years.
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1 Introduction

Tropical forests play a key role in the Earth’s climate system and provide important
ecosystem services [1]. Being one of the most productive biomes and largest terrestrial
carbon stores, they stabilize global climate and thus the Earth system. By recycling
25-50 % of total rainfall, Amazon rainforests are a huge atmospheric moisture pump,
thereby regulating regional climate by evaporative cooling and conserving soil and
water in South America [2]. Furthermore, tropical forests provide timber, fiber, fuel
wood and non-timber forest products thus ensuring not only local livelihoods [3].
Tropical forests are also the largest global reserve of biodiversity [4, 5]. Today this
crucial functionality is at risk as land use change (LUC) and climate change (CC)
pose an ever growing threat to tropical forests. Logging, slash and burn practises,
drought and temperature stress, as well as increasing fire regimes threaten the sur-
vival of large areas of tropical forests [6, 7, 8, 9, 10].
In particular the interaction between fire, vegetation and climate plays a key role for
the geographic distribution of tropical forests and might lead to a vast transition from
forest to non-forest states, such as savannas and grasslands [11, 12]. In a dense forest,
the closed canopy favors a moist and relatively cool micro-climate, which prevents
fire and stabilizes the forest state [13]. However, increasing fire regimes, through LUC
and CC, degrade forests and decrease canopy closure specifically at the forest perime-
ter [14]. As a consequence, fuel at the forest floor dries out more and grass cover
increases, which in turn increases fire frequency due to easily ignitable fine fuels. In
addition, a grassy environment leads to a dry, hot and windy microclimate, further
increasing fire regimes. Frequent fires are thought to prevent the establishment of new
trees and stabilizing the grassland state [13, 14]. Fire and deforestation can change
vegetation-climate feedbacks in tropical forests in such a way that multiple stable
states are possible implying a hysteresis in the impact and recovery phase of the
system [15, 16]. For example, a disturbance by elevated atmospheric CO2 levels and
hence, higher temperatures, could increase tree mortality, enhance grass growth and
push the system towards a less vegetated state. With fires burning more frequently in
grassland and savanna ecosystems, tree recovery could be prevented under decreasing
temperatures and atmospheric CO2 concentrations, thus leading to a lock-in effect
and bistable states [13]. Similar mechanisms were found for atmospheric moisture
recycling [17] and deforestation [18].
Such system hysteresis is often accompanied by the existence of tipping points, where
relatively small disturbances can cause a transition from one system state to another.
Several previous studies indicate the presence of such tipping points and stable states
in tropical forests [13, 16, 18, 19, 20, 21, 22]. Bistability between grassland and trees
has been investigated by e.g. Baudena et al. [20], using a simple conceptual model.
They found a possible coexistence between grassland and trees. While fire widens
the parameter range for the coexistence it also induces a bistability between for-
est and grasslands. Especially in the transition zones between grasslands and forests
fire-sensitive tipping points exists. This has be shown by Lasslop et al. [13], using
a fire-enabled dynamic global vegetation model (DGVM). Another study identified
three stable states (forest, savanna and grassland) by analyzing remote sensing data
(Hirota et al. [16]). They also found that deforestation to the threshold of 60% tree
cover might lead to a self-propagating shift to an open savanna state. Recently, sev-
eral tipping points of tropical forests for different regions and climatic conditions were
found by Staal et al. [21]. Using integrated remote sensing data, a hydrological model
and atmosphere moisture tracking simulations, they emphasized the importance of
moisture recycling in forests for the spatial extent of tropical forests.

a e-mail: drueke@pik-potsdam.de
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Most of these studies rely on conceptual models, uncoupled simulations or remote
sensing data - hardly ever on Earth system models. However, neither conceptual mod-
els nor standalone DGVMs (not coupled to an Earth system model) can account for
multiple feedbacks between vegetation and climate, and using historical data doesn’t
allow to investigate various scenarios and processes separately. Nevertheless, inves-
tigating the tropical hysteresis by using a fire-enabled and state-of-the-art DGVM
coupled to an Earth system model (ESM) still remains a challenge, because of the
complexity of such a models and computational demands.
In this study, we aimed to investigate the potential for a climate-induced hysteresis
and multiple stable states using the fire-enabled DGVM LPJmL, coupled to the ESM
CM2Mc. Starting from a pre-industrial potential natural vegetation state (vegetation
that establishes under climate and soil conditions in a particular area or grid cell in
the absence of human influence such as land use), we investigated the response of
tropical forests to a linear increase of atmospheric CO2 over a 350-year time span.
In order to study the recovery of the tropical forests, i.e. potential hysteresis and
bistability, we decreased atmospheric CO2 afterwards by the same amount and over
the same time span. The aim of these idealized climate change scenarios was not to
represent a realistic historic or future atmospheric greenhouse gas concentration but
to investigate the response of the model to an extreme warming scenario. In addition,
to disentangle the impact of fire on tree mortality and recovery, we performed simu-
lation experiments with and without fire. The impact of changing climate, forced by
atmospheric CO2, and thus fire on vegetation was quantified by changes in the time
series of average tropical biomass and by evaluating spatial differences between the
different experiments.

2 Methods

2.1 CM2Mc-LPJmL

We used the coupled Earth system model CM2Mc-LPJmL v.1.0 (see Fig. 1), which
combines the fast but coarse-grained atmosphere and ocean model CM2Mc [23] with
the state-of-the-art DGVM LPJmL5.0-FMS [24, 25], using the process-based fire
model SPITFIRE [26] which was recently optimized for South America [27]. An up-
coming publication will give the technical details of the biophysical coupling between
CM2Mc and LPJmL and availability of the code to the scientific community 1.

2.1.1 CM2Mc

CM2Mc is a configuration of the Climate Model 2 (CM2) [28] model framework of the
Geophysical Fluid Dynamics Laboratory (GFDL), which is coupled to the Modular
Ocean Model 5 (MOM5) at a coarse spatial resolution of 3°x3.75° latitude-longitude
[23]. The original configuration of the model includes the global atmosphere and land
model AM2-LM2 [29] with static vegetation. In the configuration of CM2Mc-LPJmL,
the land model LM2 is replaced by the dynamic global vegetation model LPJmL,
while keeping MOM5 dynamically coupled. The model components are connected via
GFDL’s Flexible Modeling System (FMS), which is a software framework to support
the efficient software development, coupling and application of its land, atmosphere
and ocean components [30].

1 submitted to Geoscientific Model Development
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Fig. 1. Schematic overview of the coupling and the model components in CM2Mc-LPJmL.

2.1.2 LPJmL

The Lund-Potsdam-Jena managed Land version model (LPJmL5.0-FMS, based on
LPJmL4.0 [24, 31] and LPJmL5.0 [25]) is a well established and validated process-
based DGVM, which globally simulates the surface energy balance, water fluxes,
carbon fluxes and stocks for natural and managed vegetation forced by climate and
soil input data. LPJmL simulates the establishment, growth, competition and mor-
tality of plant functional types (PFT) in natural vegetation and crop functional types
(CFT) on managed land. Vegetation composition results from changes in foliar pro-
jective cover (FPC) of competing PFTs. The establishment and survival of different
PFTs is regulated through bioclimatic limits and effects of heat, productivity and fire
on plant mortality. These processes enable LPJmL to investigate feedbacks, for ex-
ample, between vegetation and fire. LPJmL simulates water balance [32], impacts of
agriculture [33], wildfires in natural vegetation (SPITFIRE) [26], permafrost [34] and
specified multiple climate drivers on phenology [35]. Recently, by using an optimiza-
tion approach, several important parameters in LPJmL have been newly estimated
[36] and the fire model has been improved by developing a new fire danger index, in
order to obtain a more realistic fire representation [27]. We applied the optimized and
improved SPITFIRE in this study.

2.1.3 Coupling interface

The biophysical coupling of LPJmL in CM2Mc consists of canopy humidity, soil and
canopy temperature, roughness length and albedo, that interact with the atmosphere
in a temporal resolution of one hour. These variables are calculated within LPJmL
and then passed to the coupling software FMS. The coupler provides LPJmL with
the necessary climatic input as i.e. radiation and precipitation (Fig. 1). The spatial
resolution of the atmosphere and ocean is 3° x 3.75° latitude-longitude, while LPJmL
uses its native resolution of a 0.5° x 0.5° latitude-longitude grid. The FMS interpolates
the variables exchanged in both directions, guaranteeing conservation of all scalar and
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vector fields. Thus, the atmospheric input in one grid cell is distributed over several
biosphere grid cells.
In order to couple LPJmL with CM2Mc, several adjustments in LPJmL had to be im-
plemented, including the use of the Penman Monteith scheme [37] for the calculation
of potential evapotranspiration and the modeling of canopy humidity. We furthermore
included the calculation of surface temperature by employing a simple energy balance
parameterization. Roughness lengths and albedo have been calculated as in stand-
alone LPJmL [24]. To counteract a large negative temperature bias in the northern
latitudes we added a more detailed parameterization of the sublimation [38]. In order
to make the LPJmL grid compatible with the FMS grid, a small wrapper library for
the data exchange between LPJmL and the FMS domain was developed.
The detailed description of the coupling between CM2Mc and LPJmL and a thorough
evaluation of the model will be published soon.

2.2 Experimental setup

To ensure our simulation experiments start from an equilibrium of long-term soil and
ocean carbon pools, we used a 5000 years stand-alone LPJmL spin up and restart
files from CM2Mc. This first model spin-up was followed by a second spin-up by run-
ning the fully coupled model for 750 simulation years under pre-industrial conditions
without land use, but with fire disturbance enabled. This second spin-up ensured a
consistent equilibrium between soil, vegetation and climate.
In order to investigate the existence of a climate-induced hysteresis in tropical forests,
we conducted a set of simulation experiments based on the following protocol which
included 3 phases:
1. Impact phase: Linear increase of atmospheric CO2 level by 1% (from 284 ppm) per

year, starting from pre-industrial conditions at 284 ppm over 350 years, reaching
a final CO2 level of 1280 ppm.

2. Recovery phase: Subsequent linear CO2 decrease, according to the impact phase,
reaching 284 ppm after 350 simulation years.

3. Post-recovery phase: 350 additional years with constant CO2 at 284 ppm to es-
tablish the experiment closer to an equilibrium state.

In order to investigate the contribution of fire, we repeated the spin-up and the
3 phases in another set of simulation experiments but with fire disabled (no-fire).
The 1% CO2 concentration increase is an accepted method to force idealised climate
change scenarios [39]. To focus on the main drivers of the climate-induced hysteresis in
an already complex ecosystem, we turned land use off in order to have an undisturbed
potential natural vegetation (since SPITFIRE does not work on managed land, the
inclusion of land use would skew the results), and disabled CO2-fertilization and the
nitrogen cycle within LPJmL. Aerosols, greenhouse gases besides CO2, ozone and
solar irradiance were set to pre-industrial values from 1860, which allowed to isolate
the impact of increasing CO2 and fire on natural vegetation. The experiments were
performed globally, but we analysed simulation results covering the tropical latitudes
30°S to 30°N only.

3 Results and Discussion

3.1 Trajectories of tropical biomass and temperature

In the impact phase of the experiments, where atmospheric CO2 increased from 284
ppm to 1280 ppm over a period of 350 years, average tropical surface temperature
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284
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Fig. 2. (a) Overview of tropical mean land surface temperature for the simulation experi-
ments. Atmospheric CO2 is increasing from 284 ppm to 1280 ppm in 350 years, leading to
warming of 4.1°C in the no-fire (blue line) as well as fire-enabled (red line) experiments,
respectively. In the recovery phase experiments, CO2, and hence tropical surface temper-
ature, decreases again for another 350 simulation years (fire-enabled - orange line; no-fire
- light-blue line). Each experiment is then continued for another 350 simulation years un-
der pre-industrial conditions marking the post-recovery phase (fire-enabled - light grey line;
no-fire - dark grey line). (b) Overview of tropical mean above-ground biomass for the simu-
lation experiments. Atmospheric CO2 is increasing from 284 ppm to 1280 ppm in 350 years,
leading to a decrease in biomass of ca. 20% in the no-fire (blue line) and fire-enabled (red
line) experiments, respectively. In the reverse experiments, CO2 decreases again for another
350 simulation years, followed by an increase in biomass (fire-enabled - orange line; no-fire
- light blue line). Each experiment is then continued for another 350 simulation years under
pre-industrial conditions (fire-enabled - light grey line; no-fire - dark grey line).
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(called temperature, hereafter) increased by ca. 4.1 ℃ with and without fire (Fig.
2a). Alongside the temperature increase in the impact phase, the modelled biomass
decreased by ca. 20% for both experiments (Fig. 2b). Previous studies suggest tem-
perature stress on the vegetation as the cause for this large reduction [40]. Without
fire, the total biomass was ca 25% larger, due to missing combustion and fire-related
tree mortality [41].
In the recovery phase, atmospheric CO2 decreased over another 350 years, until the
starting value of 284 ppm was reached. In the first years of climate recovery, the tem-
perature decrease was rather small, due to a delay in the response of the surface to
the new CO2 values. After ca. 100 years, the temperature decreased faster and finally
reached a value of ca. 0.7 ℃ above the starting value of the impact phase for both
experiments.
This temperature offset occurs for two reasons: 1) The temperature was not yet in
a radiative equilibrium with the new CO2 values, which takes a few years, given no
other interactions between temperature and vegetation [42]. 2) At the end of the
recovery phase the vegetation was in a different state compared to the beginning.
Average vegetation carbon (orange and light blue lines in Fig. 2b) were still ca. 10%
lower than at the beginning of the impact phase. Here, a lower biomass showed less
evaporative cooling, leading to a higher temperature. Both effects, higher tempera-
ture and less biomass, are highly connected and strengthen this offset [43].
In the post-recovery phase of the experiments, atmospheric CO2 was kept constant
at 284 ppm for 350 years, to investigate lagged effects of the reverse trajectory in
the climate-induced hysteresis in tropical forests. In both experiments, the tempera-
ture decreased rapidly over the first 10-20 years, reaching the radiative equilibrium
at the lower CO2 value of 284 ppm. In the remaining ca. 330 years, the temperature
decreased much slower from ca. 0.3–0.4 ℃ to 0.1–0.2 ℃ above the starting value in
the first experiment. Even at the end of the post-recovery phase, the temperature
was still slightly elevated and did not reach its original state yet. Biomass continued
to recover slowly (by ca. 10%) in this last phase. To estimate the rate of recovery,
we subtracted the standard deviation of the last 100 years (where biomass was rel-
atively stable) from the mean of this period. The resulting value has been reached
by the fire enabled experiment (light grey line, Fig. 2b) after ca. 160 years of the
post-recovery phase and by the no-fire experiment (black line, Fig. 2b) after ca. 130
years. Hence, the experiment without fire recovered slightly faster than the experi-
ment with fire disturbance enabled. After 200 years of the post-recovery phase the
biomass was relatively stable for both experiments and approximately as large as in
the initial state.

3.2 Spatial heterogeneity

The response of vegetation and climate in the conducted experiments had a strong
regional variation. Here, we discuss the spatial heterogeneity of how tropical biomass,
vegetation cover type and precipitation responded to the different CO2 trajectories
(fire disturbance included) across the tropics.
In the fire-enabled experiment, temperature was still slightly elevated but average
biomass had recovered after ca. 200 years of the post-recovery phase. This behaviour
can be explained by nonlinear effects in the vegetation-climate interaction in combina-
tion with regionally different biomass changes (Fig. 3). Fig. 3a shows the distribution
of biomass in the state before the impact phase. Here, highest values (25-35 kgC/m2)
were found close to the equator. Savanna areas, as the Cerrado in Brazil or the Sahel
zone, had biomass values of ca. 10-20 kgC/m2. Panels b-d of Fig. 3 show the absolute
difference in biomass comparing the 3 phases, thus areas with a large biomass exhib-
ited the largest magnitude of change. These most affected areas lost almost half of

5.3 Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model [AP3]

253



8 Will be inserted by the editor

Fig. 3. (a) Simulated above-ground biomass (AGB) at the beginning of the experiments at
284 ppm with fire activated. (b) Difference between (a) and the end of the impact phase
after the first 350 years reaching 1280 ppm. (c) Difference between (a) and the end of the
recovery phase after another 350 years reaching 284 ppm again. (d) Difference between (a)
and after 200 years of the post-recovery phase, after simulating another 200 years under
constant CO2 of 284 ppm. (e) Difference of foliar projective cover (FPC) of tropical trees
between the beginning of impact phase and the state after 200 years of the post-recovery
phase. (f) Difference of global precipitation between the beginning of impact phase and the
state after 200 years of the post-recovery phase.
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their respective biomass (10-15 kgC/m2) throughout the impact phase (e.g. Amazon
and African rainforests), but still maintained biomass levels higher than is usually
found in tropical grassland areas of ca. 2-3 kgC/m2. Only a few, cooler regions of-
fered better growing conditions in a 4 ℃ warmer climate, mostly mountain ranges,
such as the Andes. These biomass increases are supported by earlier studies showing
that higher temperatures could lead to a greening of mountainous regions [44]. At the
end of the recovery phase, much of the biomass recovered (Fig. 3c), except northern
Amazon and northern Central-African forests where biomass was still ca. 3-5 kg/m2

lower. Biomass loss affected also African savannas (Fig. 3 b and c). Regions that
gained biomass from elevated temperatures, continued this trend (Fig. 3c).
After atmospheric CO2 levels returned to the pre-impact state, biomass recovery still
required 200 years of the post-recovery phase to reach its original state in most re-
gions (Fig. 3d). Even after these additional 200 years, vulnerable regions, such as the
northern Amazon and savannas in northern Africa, still did not fully recover. Con-
versely, regions such as the Caatinga in north-eastern Brazil, showed an even larger
biomass compared to the beginning of the impact phase. This is due to a slightly
wetter climate, caused by temperature changes, impacting the Atlantic ocean and
hence, the precipitation in northeastern Brazil (Fig. 3f). Similarly, biomass increased
along increasing precipitation in eastern Africa. On the contrary, biomass decreased
in India and China, which is connected to a decrease in precipitation (Fig. 3f). Com-
paring Fig. 3 and Fig. 2b shows, that even with almost completely restored average
biomass after 200 years of the post-recovery phase, regional differences still remained
and the original state was not completely restored.
While biomass was changed throughout the different phases of the experiment, also
the vegetation composition reacted to the impact of changing CO2 concentrations
(Fig. 3e). For some small regions in, e.g., the Brazilian Cerrado and northern Aus-
tralia, the fraction of tropical trees decreased by ca. 0.1 and 0.3 between the start
of the impact phase and the state after 200 years of the post-recovery phase. Hence,
the vegetation cover switched to a more grassy environment. In some mountainous
areas in eastern Africa, the fraction increased by 0.2-0.3, indicating a shift towards
forest. These changes correspond quite well to the differences in biomass (Fig. 3d)
and precipitation (Fig. 3f).

3.3 The hysteresis of the tropical forest

We clearly observed in our study a hysteresis in time between the impact and recovery
phases of the tropical forests. After completing the recovery phase, tropical average
biomass was still decreased by ca. 10% compared to the original value and needed 200
more years at constant CO2 to reach the value it had at the beginning of the impact
phase.
Various regions showed a different response to our experiment ranging from an overall
increase of biomass to an incomplete recovery (decrease) after 200 years of the post-
recovery phase. A transition to another stable state of vegetation cover was, however,
only detected in small regions, which were sparsely vegetated at the beginning. This
was the case for a transition to a more grassy and less woody environment in, e.g.,
the Cerrado or northern Australia and for a transition to a more woody environment
in, e.g., eastern Africa. These shifts went along with changes in the precipitation pat-
terns, as well as increased average tropical surface temperature after 200 years of the
post-recovery phase.
While part of the observed hysteresis was due to the normal recovery time of the veg-
etation after a disturbance, a large part can be ascribed to dynamic changes in the
vegetation-climate interactions: Some regions, as e.g. the northern Amazon, showed a

5.3 Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model [AP3]

255



10 Will be inserted by the editor

very tight vegetation-climate interaction by a strong response to higher temperatures
and a slow recovery. Mountainous regions were able to establish more trees in warmer
climate, which led to more precipitation and stabilized the new vegetation cover. Our
results show, that an impact through elevated atmospheric CO2 concentrations dis-
turbs climate-vegetation interactions and their co-evolution over centuries.
We find, however, that biophysical interactions between climate and vegetation, in-
cluding fire, cannot push complete biomes, such as the entire Amazon rainforest, to
a point beyond recovery. Other perturbations such as deforestation or factors such as
biogeochemical coupling, incl. respective fire effects, might increase the probability of
such tipping events. For example, Lasslop et al. [13], Hirota et al. [16] Baudena et al.
[20] and Staal et al. [21] found tipping points and bistability in the tropical forests
by using different methods. While we used a biophysically fully coupled, fire-enabled
Earth system model for this study and investigated the climate-induced hysteresis,
these studies focused on land use change scenarios alongside climate change using
simpler model approaches, remote sensing data or conceptional models. CM2Mc-
LPJmL employs a state-of-the-art DGVM, which is fully biophysically coupled to an
atmosphere. Hence we have included several positive and negative feedback processes,
including i) the impact of evaporation on the temperature and precipitation, ii) the
impact of roughness lengths, albedo and wind on the temperature, iii) the impact of
shifting PFTs on the water cycle [45] and iv) fire dynamics [26].
Incorporating further important model features would improve our process under-
standing of the climate-induced hysteresis in tropical forests. For instance, account-
ing for the fertilizing effect of elevated atmospheric CO2 concentration on vegetation
growth would most likely lead to overall higher biomass accumulation as anticipated
in this study. We decided to neglect this effect in this study, since CO2-fertilization
can be limited by other factors such as nutrient availability [46] or leaf cooling [47],
which are not accounted for in this model version either. Including related processes
such as the nitrogen cycle [25] and implementing the calculation of explicit leaf tem-
peratures is in the scope of further studies. Furthermore, accounting for natural plant
trait diversity, e.g. a continuum of tree rooting strategies, could reduce simulated
drought stress and thus increase biomass resilience under changing climate [45]. The
inclusion of a realistic land use pattern in the modeling experiments would lead to
less fire and a lower mean biomass at the beginning of the experiments. Since the
parameters chosen to simulate crop growth in LPJmL are similar to the respective
physiological parameters for natural plant types, crop biomass would also decline with
increasing heat stress.
In the experiments of this study, fire had a strong influence on biomass stocks, leading
to about 25% lower biomass throughout all phases of the experiment (Fig. 2b). This
effect of fire has also been shown by Lasslop et al. [41]. Nonetheless, the impact of fire
on the decrease and increase biomass was small in the impact and recovery phase.
Only towards the end of the recovery phase and the first half of the post-recovery
phase, fire slightly delayed the increase of biomass, hence the system needed more
time to reach a near-equilibrium (Fig. 2b). The temperature recovery was however
very similar for both experiments (Fig. 2a). The described hysteresis of vegetation
cover was observed in both experiments with and without fire disturbance. Hence, the
hysteresis does not depend on weather fire is activated or not in the model CM2Mc-
LPJmL. This effect might be due to an imprecise modelling of fire feedbacks in the
model or due to the much larger impact of rapidly increasing heat stress on tropical
biomass, superimposing a smaller fire impact. If a future climate or land use change
leads to a shift of wet tropical rainforest to a grassland state, the rapidly burning
grass could increase the impact of fire.
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4 Conclusion

In this study we present an important step in quantifying the climate-induced hystere-
sis of tropical forests by investigating changes in biomass, following an atmospheric
CO2 perturbation and recovery over the course of 1050 years. We applied the state-of-
the-art fire-enabled dynamic global vegetation model LPJmL, biophysically coupled
to the Earth system model CM2Mc, and simulated the response of potential natural
vegetation and fire to changes in climate feedbacks due to elevated atmospheric CO2.
Our results show a delayed recovery of biomass and temperature due to fire-vegetation-
climate feedbacks, after an impact and recovery phase of 350 years, respectively. It
took another 200 years (post-recovery phase) at constant CO2 level of 284 ppm, to
reach pre-impact temperature and biomass levels. The system response was spatially
heterogeneous, with some regions in the tropics showing an even slower recovery, while
other regions exhibited a larger biomass after 200 years of the post-recovery phase.
Fire generally had a large impact on vegetation stocks and led to a slightly slower
recovery in our experiments.
Biophysical coupling between climate, fire and vegetation, while not considering land
use changes, did not lead to large-scale tipping of tropical forests or alternative sta-
ble states in vegetation cover. Analyzing the climate-induced hysteresis, only a few
smaller regions shifted to a more grassy environment (e.g. Brazilian Cerrado), while
other regions increased their tree cover (e.g. eastern Africa). Smaller regions in the
tropical forests showed a very strong response to CO2 changes and a very slow recov-
ery after several centuries (e.g. the northern Amazon).
By using an Earth system model that accounts for complex vegetation processes, fire
and climate-induced feedbacks the presented study is an important step in evaluating
hysteresis in tropical forests and in quantifying the impact of fire-vegetation-climate
interactions.
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processes decisive for sustainability in the Anthropocene. The developed framework is exemplified
in relevant social processes for sustainability: the FridaysForFuture movement and changes in the
willingness among the population to vote for the Green party in Germany.
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Abstract 

Societal transformations are necessary to address critical global challenges, such as mitigation of 
anthropogenic climate change and reaching UN sustainable development goals. Recently, social 
tipping processes have received increased attention, as they present a form of social change whereby 
a small change can shift a sensitive social system into a qualitatively different state due to strongly 
self-amplifying (mathematically positive) feedback mechanisms. Social tipping processes have 
been suggested as key drivers of sustainability transitions emerging in the fields of technological 
and energy systems, political mobilization, financial markets and sociocultural norms and 
behaviors. 
 
Drawing from expert elicitation and comprehensive literature review, we develop a framework to 
identify and characterize social tipping processes critical to facilitating rapid social transformations. 
We find that social tipping processes are distinguishable from those of already more widely studied 
climate and ecological tipping dynamics. In particular, we identify human agency, social-
institutional network structures, different spatial and temporal scales and increased complexity as 
key distinctive features underlying social tipping processes. Building on these characteristics, we 
propose a formal definition for social tipping processes and filtering criteria for those processes that 
could be decisive for future trajectories to global sustainability in the Anthropocene. We illustrate 
this definition with the European political system as an example of potential social tipping 
processes, highlighting the potential role of the FridaysForFuture movement. 
 
Accordingly, this analytical framework for social tipping processes can be utilized to illuminate 
mechanisms for necessary transformative climate change mitigation policies and actions. 

 
Keywords 
 Social tipping dynamics, social change, sustainability, critical states, network structures, 

FridaysForFuture 
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MAIN TEXT 
 

1. Introduction 
 

There is growing concern that global climate change is reaching a point where parts of the Earth 
System are starting to pass damaging climate tipping points (1): In particular, part of the West 
Antarctic Ice Sheet (WAIS) appears to already be collapsing because of irreversible retreat of 
grounding lines (2, 3) which in turn is expected to trigger loss of the rest of the WAIS (4). Other 
tipping points may be close: A recent systematic scan of Earth system model projections has 
detected a cluster of abrupt shifts between 1.5 and 2.0°C of global warming (5), including a collapse 
of Labrador Sea convection with far-reaching impacts on human societies. The abrupt degradation 
of tropical coral reefs is projected to be almost complete if warming reaches 2.0°C (6, 7). The 
possibility of the global climate tipping to a ‘hothouse Earth’ state has even been posited (8). 
 
Against this backdrop, there is a growing consensus that avoiding crossing undesired climate tipping 
points requires rapid transformational social change, which may be propelled (intentionally or 
unintentionally) by triggering social tipping processes (9, 10) or “sensitive intervention points” (11, 
12). Examples for such proposed social tipping dynamics include divestment from fossil fuels in 
financial markets, political mobilization and social norm change, socio-technical innovation  (9–11, 
13, 14).  Equally, if human societies do not act collectively and decisively, climate change could 
conceivably trigger undesirable social tipping processes, such as international migration bursts, 
food system collapse or political revolutions (15). Social tipping processes have received recent 
attention, as they encompass this sort of rapid, transformational system change (9, 10, 13, 15). 
 
Here we develop an analytical framework for social tipping processes. Drawing upon expert 
elicitation and a comprehensive literature review, we find that the mechanisms underlying social 
tipping processes are categorically different from other forms of tipping, as they uniquely have the 
capacity for agency, they operate on networked social structures, have different spatial and temporal 
scales, and a higher degree of complexity. Following these distinctions, we present a definitional 
framework for identifying social tipping processes for sustainability, where under critical 
conditions, a small perturbation can induce non-linear systemic change, driven by positive feedback 
mechanisms and cascading network effects. We adopt this framework to understand potential social 
tipping dynamics in the European political system, where the FridaysForFuture movement (16) 
pushes the system towards criticality, generating the conditions for shifting climate policy regimes 
into a qualitatively different state. 

 
The proposed framework aims to establish a common terminology to avoid misconceptions, 
including the notions of agency, criticality as well as the manifestation and intervention time 
horizons in the context of social tipping. In this way, the framework can serve to connect literatures 
and science communities working on social tipping, social change, complex contagion dynamics 
and evidence from behavioral experiments (e.g. 14, 17).  

 
2. Background 

 
2.1. Tipping points as social-ecological systems features 

 
We start by reviewing the characterization of tipping points across the natural and social sciences. 
Over the last 150 years, a suite of concepts and theories describing small changes with large 
systemic effects has been developed at the intersection of natural and social sciences. More recently, 
the concepts of tipping points and tipping elements have been broadly adopted by both natural and 
social scientists working within the field of climate change. 
 
While the concept of ‘tipping’ originated in the natural sciences (18, 19), social scientists made 
extensive use of the idea in the 20th century, often without using the terminology of tipping. 
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Famously, Schelling (20), following Grodzins (21), developed a theory of tipping processes to 
explain racial segregation in US neighbourhoods. Granovetter (22) modeled collective behavior as 
a tipping process that depends on passing individual thresholds for participation in riots or strikes. 
Kuran (23) described political revolution in terms of tipping dynamics, while Gould and Eldridge 
(24) distinguish phases of policy change and stability in terms of ‘punctuated equilibrium’. Gladwell 
(25) popularised the concept of ‘tipping points’, exploring contagion effects (“fads and fashions”), 
sometimes triggered by specific events. 
 
Several recent studies have examined tipping processes within contemporary social systems. 
Homer-Dixon (26) and Battison (27) explored the 2008 financial crisis as a tipping phenomenon. 
Nyborg (14, 28) discussed shifts in norms and attitudes, for example regarding smoking behaviors. 
Centola (17) associated tipping points with the “critical mass phenomenon”, wherein 20–30% of a 
population becoming engaged in an activity can be sufficient to tip the whole society. Similarly, 
Rockström et al. (29) highlighted this so-called Pareto effect in the context of decarbonization 
transitions. Kopp et al. (15) distinguished different social tipping elements within the realm of 
policy, new technologies, migration and civil conflict that are sensitive to “climate-economic 
shocks”. Here, a tipping element is a system or subsystem that may undergo a tipping process. 
 
Since the mid 1990s, ecologists and social-ecological systems (SES) researchers have also 
developed an extensive body of research on tipping processes using the terminology of ‘regime 
shifts’ and ‘critical transitions’ (e.g. 30–32). Recognizing the impacts of human development on 
various ecosystems, this body of work often models ecological regime shifts as a consequence of 
social drivers. Less attention, however, has been paid to sudden changes in social systems triggered 
by ecosystem changes.  
 
There is a rich literature on the collapse of past civilizations (e.g. 33, 34) and the potential role of 
tipping points in that (35). Recently, Cumming and Peterson (36) brought this together with work 
on ecological regime shifts, proposing a “unifying social-ecological framework” for understanding 
resilience and collapse. Further, Rocha et al. (37) noted that tipping dynamics can be produced by 
the interactions between climatic, ecological and social regime shifts. 
 
The concept of climate tipping elements introduced by Lenton et al. (1) and Schellnhuber (38), has 
been increasingly adopted within Earth and climate sciences. Climate tipping elements are defined 
as at least sub-continental-scale components of the climate system that can undergo a qualitative 
change once a critical threshold in a control variable, e.g., global mean temperature, is crossed. 
Positive feedback mechanisms at the critical threshold drive the system’s transition from a 
previously stable to a qualitatively different state (1). Other scholars, e.g., Levermann et al. (39), 
suggest a somewhat narrower definition of climate tipping elements by introducing additional 
characteristics, such as (limited) reversibility or abruptness. The tipping elements identified so far 
include biosphere components such as the Amazon rainforest (40–42) and coral reefs (6, 7), 
cryosphere components such as the ice-sheets on Greenland and Antarctica (43), and large-scale 
atmospheric or oceanic circulation systems including the Atlantic meridional overturning 
circulation (44, 45). Their tipping would have far-reaching impacts on the global climate, 
ecosystems and human societies (e.g. 8, 46). 
 

2.2. Social Tipping  
 

In response to the concept of climate tipping points, social scientists are re-engaging with this 
concept yet again, creating an additional layer of tipping scholarship with an emphasis on the need 
for and possibility of deliberate tipping of social systems onto novel development pathways towards 
sustainability (e.g. 11, 47). Scholars argue in particular that the rapid, non-linear change of social 
tipping dynamics might be necessary to speed up societies’ responses to climate change, and to 
achieve the goals of the Paris Agreement. It is this element of acceleration, propelled by positive 
feedbacks, that makes the concept of tipping particularly interesting.  For example, Otto and Donges 
et al. (9) reported expert elicitations identifying social tipping elements relevant for driving rapid 
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decarbonization by 2050. Rapid-paced changes are a distinctive feature potentially differentiating 
tipping dynamics from many other forms of social change, including incremental (policy or 
institutional) changes, or more radical (socio-technical) transitions or societal transformations.  
 
Over the last decade, the literature on deliberate transitions and transformations towards 
sustainability has expanded significantly, exploring the dynamics that lead to the reorganization of 
social, economic or political systems (e.g. 48, 49). In many ways, this literature and the emerging 
work on social tipping are interested in very similar phenomena: fundamental shifts in the 
organization of social or social-ecological systems - a movement from one stable state to another - 
including a change in power relations, resource flows, as well as actor identities, norms and other 
meanings (48). Transformations can be fast, but speed is generally not one of their defining 
characteristics. 
 
This temporal feature of social tipping points - rapidity of change compared to the system’s normal 
background rate of change - combined with the fact that tipping processes can be triggered by a 
relatively small disturbance of the system is motivating scholarship on leverage or ‘sensitive 
intervention points’, e.g. Farmer et al. (12), who identified such potentially high-impact intervention 
opportunities, e.g., financial disclosure, choosing investments in technology and political 
mobilization that may be key for triggering decarbonization transitions. 
 
Based on a bibliometric and qualitative review of these various bodies of literature across the natural 
and social sciences, Milkoreit et al. (10) proposed the following general definition of (social) 
tipping: “the point or threshold at which small quantitative changes in the system trigger a non-
linear change process that is driven by system-internal feedback mechanisms and inevitably leads 
to a qualitatively different state of the system, which is often irreversible.” Milkoreit et al. (10) 
further noted there is a need to recognize and identify potential differences between climatic (or 
ecological) and social tipping processes to gain a deeper understanding of these phenomena.  

 
3. Methods and analytical structure  

 
Given this diverse and nascent field, there is a clear need for consensus as to what defines social 
tipping processes, as well as an understanding of how these processes are similar and diverge from 
dynamics in other non-social systems. Further, there are currently limited examples of social tipping 
elements in the context of sustainability transitions presented within the broader literature (9, 12, 
13, 15). 
 
Here we explore the characterization of tipping processes within the natural and social sciences, 
examining how social and climate tipping processes are differently conceptualized. We draw upon 
a mixed qualitative methodological approach to illuminate these differences and key distinctions.  
Initially, core differences were identified and discussed via expert elicitation (50).  A selected group 
of 25 experts from across the climate and social sciences were invited to take part in an expert 
elicitation workshop, that focused on identifying a common definition for social tipping processes, 
as well as the characterization of their dynamics.  This workshop was convened in June 2018 in 
Cologne, Germany.  The workshop participants were split into cross-disciplinary breakout groups, 
to independently identify the dynamics of social tipping processes.  Then, each of these groups 
reported their findings to the broader plenary, for discussion, consolidation, reconciliation and 
clarification.  The process was then repeated for further clarification within the breakout groups. 
Through this iterative inductive and deductive process, several unique themes and characteristics 
were identified from the broader set of codes, resulting in the key differences in and definition of 
social tipping processes presented below. 

 
Drawing upon the differences identified in the expert elicitation workshop, we then review and 
synthesize the emerging field of social tipping processes, particularly in comparison to the related 
climate and ecological tipping dynamics. We then draw upon these unique characteristics to develop 
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a common definition for social tipping processes, which we explore using the example of the 
FridaysForFuture student movement.  
 

4. Results  
 

4.1. Key differences between social and climate tipping processes 
 

Social and climate systems’ tipping processes exhibit several broad, fundamental differences in 
their structure and underlying mechanisms: (i) agency is a main causal driver of social tipping 
processes, (ii) the quality of social networks and associated information exchange provides for 
specific social change mechanisms not available in non-human systems, (iii) climate and social 
tipping processes occur at different spatial and temporal scales, and (iv) social tipping dynamics 
exhibit significantly more complexity than climatic ones.  
 
Agency: The most important characteristic differentiating social from climate tipping processes is 
the presence of agency. While a significant body of work (e.g. 51), including Latour’s actor-network 
theory (52), addresses different forms and effects of non-human or more-than-human agency, here, 
we focus on a more narrow understanding of agency that is based on consciousness and cognitive 
processes such as foresight, planning, normative-principled and strategic thinking, that allow human 
beings to purposefully affect their environment on multiple temporal and spatial scales. While 
humans have a generally poor track record of utilizing their agentic capacities especially with regard 
to shaping the future (e.g. 53–55), they appear unique in their capacity to transcend current realities 
with their decisions.   
 
Agency in this more narrow sense can be understood as the human capacity to exercise free will, to 
make decisions and consciously chart a path of action (individually or collectively) that shapes 
future life events and the environment (56). The notion of intentionality inherent in the idea of 
agency implies that human actors are not only able to adapt to changes in their environment, but 
also deliberately create such changes. Non-human life forms can also be engaged in deliberate 
changes of their environment (e.g., beavers building dams), but the cognitive quality of these actions 
differs from those of humans, which can be based on different forms of knowledge and meaning 
about the world, moral norms and principles, or ideas about desirable futures. Agency allows 
individuals and societies to be proactive rather than merely responsive in their relationships with 
other humans or the environment through planning, goal setting and strategic decision-making, 
which links decisions and behaviors in the present with consequences and realities in the (distant) 
future (57). 
 
Governance scholars address this social-cognitive capacity for forethought and goal-pursuit in terms 
of anticipation (58) and imagination (10), which can be tied to a set of futuring methods (59, 60). 
The ability to anticipate and imagine futures enables humans and their societies (53, 54)  – as 
opposed to animal communities or ecosystems – to transcend the present and shape the future 
according to our values and goals (61), possibly increasing the prospects for human survival in times 
of fast and significant environmental change (56, 62). Although this ability has been underutilized 
in the past, especially in the context of responding to climate change (63), it is a crucial dimension 
of the human repertoire of tools to create change and to ensure its long-term well-being. 

 
Agency interacts with many of the additional differentiating characteristics we identify below in 
important ways. For example, agency plays a role in the creation of social networks, institutions 
and meaning, i.e., the production of the structures of social systems. These network structures in 
turn enable and constrain agency (e.g. 64, 65). 
 
Physical climate tipping elements, such as ice sheets or ocean circulations, lack that ability to 
intentionally act and adapt. However, the adaptive capacity of ecosystems can be interpreted as a 
form of non-human agency and learning mechanism (66), see also Supplementary Information S2. 
While scholarship on non-human agency, including that of animals, inanimate objects, landscape 
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features or ecosystems (e.g. 67, 68) might expand our understanding of agency, the cognitive 
abilities that characterize human agency, especially long-term and strategic thinking, do not exist 
in the non-human or inanimate worlds. 
 
Social networks: Understanding the nature of social networks is crucial for studying social tipping. 
While both natural (including physical and ecological) and social systems can be structurally 
characterized as networks and studied using a network science approach (69), social systems differ 
from natural systems in the quality of the networks’ nodes and interconnections and the processes 
and dynamics facilitated and impacted by these particular network characteristics. Social systems 
feature additional network levels of information transmission (cultural and symbolic) that are 
largely restricted to human societies compared to natural systems (70). 
 
Network qualities unique to social systems:  
Networks in social and natural systems share various commonalities such as the existence of 
fundamental nodes and links (69). In contrast to most natural systems, however, social networks 
have the capacity to intentionally generate new nodes, which include socially constructed entities 
such as organizations and movements (71). New nodes can be created through cultural, political or 
legal means, as can the rules for their interactions with other existing nodes. Social system nodes 
are unique in that they have richer cognitive realities, particularly agency and forethought.  These 
nodes often have conflicting vested interests, which may be more short-sighted than future oriented. 
 
Relationships in social networks can consist of shared meanings – especially norms, identities and 
other ideas – and a vast variety of cultural, economic and political relationships (e.g., employment, 
citizenship), all of which are not as pronounced or non-existent in less complex human societies 
and nature. Hence, social network links are more diverse than links in natural systems and enable 
different kinds of network processes. For example, links between nodes in social networks are not 
necessarily dependent on physical co-presence, due to technologically enabled connections or the 
presence of more abstract interrelations such as shared norms, values or interpersonal relationships.  
 
Network processes: 
Social network dynamics can be of a purely ideational nature (e.g., the subject of the study of 
opinion and belief dynamics), but also involve material changes (e.g., resource extraction, 
movement and transformation for economic purpose). Markets are unique social networks, 
involving both ideational and material network processes. In the Anthropocene, the intensity and 
speed of socially networked interaction has increased dramatically, largely due to new media, 
digitalization, more efficient means of transportation, lower travel costs, and overall increased 
mobility, which is likely to increase spreading rates, while at the same time affecting the stability 
of the network itself (72–74).  
 
Generally, social tipping can either occur on a given network (e.g., through spreading dynamics 
changing the state of nodes (75) or change the network structure itself (see Figure 1). The structural 
network changes generated by social tipping processes include transitions from centralistic or 
hierarchical to more polycentric (neuromorphic) structures in urban systems, energy distribution 
and generation networks (76, 77). Structural changes can manifest on large and small-scale spatial 
networks across multiple social structure levels. In order to capture these network tipping processes, 
quantifiers from complex network theory such as modularity, degree distribution, centrality or 
clustering can be used (69). 
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Figure 1: Two types of social tipping in a complex network. (A) Social tipping can on the one hand 
be characterized by a contagion process where initially only a few nodes exhibit a certain property 
that then spreads through a large portion of the network. (B) On the other hand social tipping may 
also qualitatively alter the entire network structure from, e.g., a state with closely entangled nodes 
of different states to an almost or full disintegration of the network in smaller disjoint groups. The 
example in (A) shows the spread of an avatar among users in an online virtual world over the course 
of one week after it was first introduced by a small number of users (78). Nodes represent users and 
links represent the imitation of the avatar from one user to another. Yellow nodes denote users that 
have not picked up the avatar, while black nodes indicate those that did. (B) The upper network 
shows the members of the House of Representatives in the 94th United States Congress (January 3, 
1975 to January 3, 1977). Node colors indicate different party membership and links between nodes 
are drawn if the corresponding members agree on 66% of all votes in the considered two-year 
period. The lower network shows the same for the 110th United States Congress (January 3, 2007, 
to January 3, 2009). The transition from a closely entangled to an almost fragmented topology 
indicates a polarisation between Democratic and Republican Party members over time (16).  
 
 
 
Temporal and spatial scales: Scales can differ greatly between social tipping and climate tipping 
processes and are more ephemeral for social tipping than for climate tipping. 
 
Temporally, tipping in social systems manifests more commonly on the scale of months to decades, 
while for the climate tipping elements range from years to millennia. Human actors tend to focus 
on more short-term consequences or outcomes, as complex issues (such as climate change) with 
longer timeframes are often harder to assess (79). Within social systems, fund manager performance 
is evaluated quarterly, politicians often think in electoral cycles, business operates with annual or 
five-year forecasts, while individual practices and dispositions are constantly evaluated and 
reevaluated (80–82). In natural systems, however, it might take decades, centuries or even millennia 
for outcomes of change processes to become detectable (see Figure 2). 
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Both social and climate tipping elements can be ordered spatially (1, 39, 83), although social tipping 
elements cannot always be precisely located geographically. Social scientists and economists have 
long grouped systems and processes as existing on the macro-, meso- and micro-levels (or some 
variation thereof), whereby some social systems (e.g., financial markets, political systems, 
technologies) consist of interdependent subsystems existing on multiple spatial levels. 
 
Social tipping processes can also display spatial-temporal ephemerality. While climate tipping 
elements have a known spatial extent and dimensionality (with often a comparable extent in latitude 
and longitude and a generally much smaller extent in altitude) and have persisted in their current 
stable state for thousands (if not millions) of years, social tipping processes do not have a spatial 
extent or effective dimensionality that is known ex-ante and they can emerge (move into a critical 
state) and disappear (move out of a critical state) over time. 
 
 

 
Figure 2: Examples of spatial and temporal scales for climate and social tipping elements. 

Example climate tipping elements are broadly compiled from Lenton et al. (1), 
Levermann et al. (39), and Schellnhuber et al. (83). Social tipping elements are broadly 
compiled from Kopp et al. (15), Farmer et al. (12), Otto and Donges et al. (9), Hsiang 
(84), Tabara (11) and Lenton (13). 

 
 

Complexity: Social tipping processes occur in complex adaptive systems (85–87) as opposed to 
the complex but non-adaptive physical climate system. As such they can exhibit comparatively 
greater complexity in the (i) drivers, (ii) mechanisms and (iii) resulting pathways of social tipping 
processes, as well as the aforementioned ephemerality in their spatial-temporal manifestations, 
including a potentially fractal and varying dimensionality and a more complex interaction topology 
(88, 89). 
 
Social tipping processes can rarely be linked to a single common control parameter, such as is the 
case with global mean temperature in climate tipping dynamics. For most of the climate tipping 
elements like the ice sheets or the Atlantic meridional overturning circulation, the control variables 
such as local air temperature, precipitation or ocean heat transport, can often be translated or 
downscaled into changes in global mean temperature as one common driver (1, 38). However, for 
social tipping processes, multiple, interrelated factors are often identified as forcing the critical 
transition. For example, shifts in social norms regarding smoking (14) can be linked to several, 
entwined factors, such as policies, taxation, advertising and communication, social feedbacks (e.g., 
via normative conformity), or individual preference changes. Centola et al. (17) show that tipping 
in social convention is possibly explained by a single parameter: the size of the committed 
minority). At larger scales, the collapse of complex civilizations has been linked to multiple 
interacting causes, and whilst disagreement abounds over the balance of causes in particular cases, 
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there is general agreement that multiple factors were at play (33). This kind of causality – multiple 
interacting, distributed causes across varying scales – are a key characteristic of complex systems 
(90), contrasting starkly with conventional notions of causality involving bivariate relationships 
(one cause and one effect). 
 
Further, due to their potential for agency and adaptive plasticity, social systems are open to a larger 
number of mechanisms that could cause a tipping process and various pathways of change that a 
tipping process could follow towards a greater number of potentially stable post-tipping states (91). 
Climate tipping processes are often modeled as bi- or multistable, where the directional outcomes 
of forcing are to some extent known or knowable, e.g., based on paleoclimatic data and process-
based Earth system modelling. Given a specific forcing change, one can predict in what state the 
element will restabilize as well as the “net” effects of the tipping process on larger Earth systems. 
Based on this understanding, the tipping of climate system elements is generally perceived as 
undesirable and often as part of pushing the Earth system out of the “safe operating space for 
humanity” (92, 93). 
 
In contrast, for social systems, it is often unclear what a final stable state of the system will look 
like, or even whether the changes resulting from a tipping process will be normatively considered 
“positive” or “negative”. As Clark and Harley (94) point out, the characteristics of complex-
adaptive social systems, including the diversity of actors and elements and the different outcomes 
generated by local and global interactions, imply that the development pathways of these systems 
are less predictable. Further, a social tipping process can generate new and destroy existing actor 
types (e.g., identities, institutions) and their behaviors. Cross-scale dynamics and local differences 
are important to understand the emergent system structure and change dynamics, but predictive 
capacities, e.g., regarding the timing of a social tipping point or the boundaries between different 
stable states, do not yet exist (94). Hence, the term ‘managing transitions’ is less useful than the 
idea of navigating a transformation pathway. 
 
The political nature of social change processes (95) – different actors within a social community 
pursuing different, sometimes opposing, interests and visions for a reorganization of a social system 
while bringing to bear different resources and strategies – further exacerbate this situation. Actors 
can deliberately generate new feedback dynamics that support or slow change, even after a tipping 
point has been passed, and they can actively work to adjust the direction of change. 

  
 

4.2. Proposed definition of social tipping processes 
 

From the discussion above, it follows that a definition of social tipping process should take a micro-
perspective and incorporate network effects and agency in addition to common tipping 
characteristics already explored in the review by Milkoreit et al. (10). It should also describe the 
timing aspects sufficiently well to understand possibilities for intervention, similar to what Lenton 
et al. (1) suggested for climate tipping elements. Hence we propose the following definition of the 
various terms relevant for studying social tipping processes (see Supplementary Material S1 for a 
more formal mathematical definition suggested for use in simulation modelling and data analysis 
that is consistent with what we put forward here): 
 

Definitions: A ‘social system’ can be described as a network consisting of social agents (or 
subsystems) embedded within a social-ecological ‘environment’. Such a social system is 
called a ‘social tipping element’ if under certain (‘critical’) conditions, small changes in the 
system or its environment can lead to a qualitative (macroscopic) change, typically via 
cascading network effects such as complex contagion and positive feedback mechanisms. 
Agency is involved in moving the system towards criticality, creating small disturbances and 
generating network effects. By this definition, near the critical condition the stability of the 
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social tipping element is low. The resulting change process is called the ‘tipping process. 
The time it takes for this change to manifest is the ‘manifestation time’.1 

 
If a tipping element is already in a critical condition, where the stability of its current state is low, 
there may be a time window during which an agential intervention might prevent an unwanted 
tipping process by moving the system into an uncritical condition (see also SI text S1). Alternatively, 
if a tipping element is not already in a critical condition, there may be a time window during which 
some intervention might move it into a critical condition in order to bring about a desired tipping 
process. 
 
The small change triggering the tipping process could be either (i) a localized modification of the 
network structure (e.g., a change on the level of single nodes, small groups of nodes or links) or of 
the state of agents or subsystems, (ii) small changes of macroscopic parameters or properties, or (iii) 
small external perturbations or shocks. We deliberately do not require the trigger to be a single 
driving parameter. This is because we expect that a social tipping process could be triggered by a 
combination of causes rather than a single cause. Furthermore, a social tipping element may be 
tipped by several different combinations of causes. Consequently, for social tipping elements we 
cannot always expect at this point to identify a common aggregate indicator (such as global mean 
temperature in the case of climatic tipping elements) and a well-defined ‘threshold’ for this indicator 
at which the system will tip (see also the discussion on complexity above). 

 
Note that social tipping as defined here is a unique form of social change, e.g., distinct from climate 
economic shocks (15) and more specific than socio-technical transitions (96, 97). Further, social 
tipping also denotes a shift to a qualitatively different state, and such, is different from standard 
business cycles or causes of seasonality. As such, social tipping presents a particular process of 
social change, where a system undergoes a transformation from one qualitatively different state to 
another, after being in a more critical state and affected by a potentially small triggering event. 

 
4.3. Filtering criteria  

 
We propose several filtering criteria to focus on social tipping processes (i) that have the potential 
to be relevant to global sustainability in future Earth system tractories and (ii) where human 
interventions can occur within a pertinent intervention time horizon on the order of decades and will 
have consequences within a political/ethical time horizon on the order of hundreds of years. 

(i) Relevance of social tipping for global sustainability 
 
The social tipping process can impact a wide array of social systems, such as technological or energy 
systems, political mobilization, financial markets and sociocultural norms. We consider social 
tipping processes to be relevant here that have an impact on the biophysical Earth system or on 
macro-scale social systems. The qualitative change in a ‘relevant’ social tipping process 
significantly affects the future state of the Earth system in the Anthropocene directly or indirectly 
through interactions with other social tipping processes. Relevance can hence be defined in terms 
of impacts on biophysical Earth system properties such as global mean temperature, biosphere 
integrity or other planetary boundary dimensions. For example, tipping dynamics to a political 
system could result in policy regime changes, affecting substantial reductions in greenhouse gas 
emissions (9, 12). Furthermore, we consider social tipping processes that have relevant impacts on 
macro-social systems and can be triggered by changes in the same biophysical Earth systems, for 
example, mass migration due to climate impacts (84, 98). 

                                                             
1 This is analogous to the ‘transition time’ in Lenton et al. (1) . We avoid the term ‘tipping point’ in this definition 
since some of the literature uses it to refer to a point in time while some of the literature uses it to refer to a certain 
state of the system or its environment. 
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(ii) Intervention and ethical time horizons 
We are interested in potential social tipping processes in which humans have the agency to 
substantively intervene. For example, such interventions could be via technological or physical 
capacities of agential or structural actors. This therefore places emphasis on human intervention, 
such as decreasing the likelihood of extreme weather events via mitigation efforts, or triggering 
socio-technological changes towards decarbonization. We define intervention and ethical time 
horizons as follows: 

 
Intervention time horizon  
Human agency interferes with a social tipping element, such that decisions and actions taken 
between now and an ‘intervention time horizon’ could influence whether (or not) the system tips. 
We suggest to consider only social tipping processes with an intervention time on the order of 10 
years (9), which arguably presents a practical limit of human forethought (99) and of future-oriented 
political agency. For example, international governance efforts for global sustainability challenges, 
such as the ozone regime or the Sustainable Development Goals, tend to work with similar time 
horizons. Similarly, social tipping processes for rapid decarbonization to meet the Paris climate 
agreement would have to be triggered within the next few years (9), with ambitious emissions 
reduction roadmaps aiming for peak greenhouse gas emissions in 2020 (29, 100). The intervention 
time horizon is analogous to the ‘political time horizon’ defined for climate tipping elements in 
Lenton et al. (1). 

 
Ethical time horizon 
The time to observe these relevant consequences should lie within an ‘ethical time horizon’. This 
recognizes that consequences manifesting too far in the future are not relevant to the current 
discourse on how contemporary societies impact Earth systems. Such an ethical time horizon could 
consider only social tipping processes which can have relevant consequences within the next 
centuries at most, corresponding to an upper life expectancy of the next generations of children 
born. 

 
4.4. Example of a potential social tipping process: European Climate Change Policy Dynamics Europe 

and FridaysForFuture 
 

Currently, international climate policies, including those of the European Union (EU) are 
insufficient to meet the +1.5°C or +2°C goals of the Paris Agreement (101). While European policy 
makers presume to lead global mitigation efforts and characterize their actions as ambitious (102, 
103), actual policy measures and proposals have been lagging behind this aspiration (104). EU 
countries emit about a tenth of the world’s emissions, and a policy change towards more rapid 
decarbonization would not only have significant direct impacts on the climate system, but likely 
have indirect effects on the policies of other major emitters. But what kinds of sociopolitical 
processes can lead to these necessary changes? Could such changes result from social tipping 
dynamics? 
 
Public opinion is a crucial factor in policy formation, where the public can be understood as a 
“thermostat” signalling what is politically feasible (105, 106). Shifts in public opinion can punctuate 
previously stable and ‘sticky’ institutions, leading to policy change (107). Increased activism and 
public concern regarding climate change can generate new coalitions, or shift the priorities of 
existing ones (108, 109). Here we examine the European political system as an example of and how 
social tipping processes could be triggered as a result of large-scale public activism and social 
movements. 
 
The European political system is composed of networks of agents (i.e., activists, decision-makers 
and organizations) with a range of social and political ties and is structured in nested and 
overlapping subsystems (i.e., national group, transnational political coalitions). Viewed through the 
lens of social tipping, European political dynamics present a ‘social system’, embedded within the 
broader international political and climate change governance community ‘environment’.  Driven 
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by the FridaysForFuture movement (16) (among other things), a groundswell of bottom-up support 
for more proactive climate policies has recently developed among European citizens, resulting in 
routine mass demonstrations and historical wins for Green parties in the 2019 European 
Parliamentary Elections, as well as in federal elections in Austria, Belgium and Switzerland. The 
European political system could be moving towards a critical ‘state’, creating the conditions for a 
tipping process towards radical policy change, bringing European climate policy in line with the 
Paris Agreement. Accordingly, the European political system could constitute a potential ‘social 
tipping element’, where as it nears critical conditions, a small change to the system or its broader 
environment could lead to large-scale macroscopic changes, affected by cascading network 
dynamics and positive feedback mechanisms. Such transformations could involve establishing more 
aggressive mitigation strategies that connect goals (such as remaining below +2°C, 50% emissions 
reductions by 2030, zero carbon emissions by 2050) with measures and pathways that have a 
reasonable chance to achieve them (i.e., investment in negative emission technologies, increased 
carbon taxation policies etc.). 
 
The FridaysForFuture movement has been pushing the European political system towards 
criticality, where it becomes more likely that the system will be propelled into a qualitatively 
different state. The movement was set off and inspired by a single Swedish high school student 
choosing to protest on the steps of the Riksdag for meaningful climate action. Greta Thunberg’s 
protest quickly spread through the European social-political networks until more than a million 
students have been participating in weekly protests. This growing bottom-up pressure on the 
European climate policy-makers (16, 110) has created an opening for significant policy change. 
 
The European political system consists of embedded subsystems at multiple scales. At the national 
scale, for example, the German socio-political system responded strongly to the activities of the 
FridaysForFuture movement. Polling throughout 2019 in Germany suggested that the environment 
was the most important public policy challenge, ahead of other issues, such as the migration and 
financial crises. Drawing upon survey data collected monthly by the Politbarometer, 40–60% of 
Germans responded that the environment was an important problem in the Fall of 2019, a rapid 
increase from roughly 5% in the Fall of 2018 (Figure 3, Panels A and B). Since 2000, rarely more 
than 10% of Germans have viewed the environment as an important problem – a time period which 
includes the emergence of other large environmental movements in Germany, such as protests 
against nuclear energy in response to Fukushima. The specific upward shift in Germans viewing 
the environment as an important problem appears to coincide with the large-scale protests organized 
by FridaysForFuture in March, May and September of 2019. 
 
Similarly, several national Western European Green Parties received historically strong electoral 
support in the May 2019 European Parliamentary Elections (such as in Belgium, Germany, Finland, 
France and Luxembourg). This increased support is also reflected in polling data in Germany, where 
the Green Party has been effectively equal with the conservative  party as the preferred political 
party of German voters in the latter half of 2019 (Figure 3, Panels C and D). Subsequently, Germany 
introduced its first ever federal climate change laws, mandating that the country meet its 2030 goals 
(a ~55% reduction in GHG emissions) and establishing pathways to carbon neutrality by 2050. 
Currently, only a limited set of countries have enacted national climate change laws, and Germany 
is one of the largest and most diverse economies to propose such actions. This presents the 
possibility for policy diffusion and transfer to other states (111), particularly considering the 
influential role Germany plays within the European Union. Climate policy entrepreneurs could 
build upon momentum to further capitalize on windows of opportunity, pushing climate change 
proposals prominently into national and supra-national governmental agendas before the ephemeral 
moment passes (112).  
 
The 2020 COVID-19 pandemic has placed new priorities on the policy agenda, also reflected in 
issue salience of climate change (see also Fig. S1 in Supplementary Materials). As political and 
behavioral responses to COVID-19 have led already to a significant temporary reduction in 
greenhouse gas emissions (113), this shock could be further leveraged to reinforce climate action – 
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future economic recovery packages should set European economies on a pathway towards carbon-
neutrality, rather than return to the old normal (114, 115). Drawing from this social tipping 
framework, the European political system may remain near a critical state. It remains unclear 
whether the COVID-19 shock has supplanted climate change, or whether both remain on the 
political agenda. For example, discussions of a “Green New Deal” remain at the core of COVID-
19 economic recovery plans within the European Union. 

 

 
 
Figure 3: Environment as an issue and willingness to vote for the Green Party in Germany. 
Percentages of potential German voters that list the environment as an important issue for the 
country and willingness to vote for the Green Party (Bündnis 90/Die Grünen) if the election were 
to be held "today". Panels (A) and (C) present monthly survey data from 2000 to September 2020  
Panels (B) and (D) display monthly surveys from August 2018 – September 2020, showing the 
change since the beginning of Greta Thunberg's protest actions. Dotted grey vertical lines display 
days of global strikes organized by FridaysForFuture in March, May and September 2019. Data is 
collected by Forschungsgruppe Wahlen: Politbarometer . 

 
Implications for criticality  

 
The sociopolitical dynamics have likely moved the Germany political subsystem further towards 
criticality, but it remains largely unknown whether this will result in tipping towards a qualitatively 
different state, in Germany or in the broader European political system. Rather, these judgements 
can likely only be made in hindsight, observing whether the system remained stable, moved towards 
criticality or experienced tipping dynamics. Such an analysis in line with the proposed framework 
requires specific process tracing, identifying the key moments, actors, networks, mechanisms 
affecting criticality, the triggering event (threshold), and the positive feedback dynamics propelling 
the system towards qualitative changes.  Much attention is often paid to the specific triggering event, 
but it is rarely one single actor or action which accounts for the entirety of the tipping process. 
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Rather a full account needs to be made of all of the previous and related processes that have further 
placed the system towards criticality, allowing for such changes to become more likely. 
Accordingly, for a tipping process to occur at the scale of the entire European political system, 
moving it into a state of decarbonization that is aligned with the Paris Agreement, a series of 
additional  social movements and protests, or other shifts within the system or the environment, 
may be required. 

 
While we identify the role of FridaysForFuture in creating critical conditions, or potentially 
triggering the social transformations required for global sustainability, recent literature has 
identified further tipping candidates which could have generally “positive” effects on global 
sustainability. For example, divestment and reinvestment present candidates for rapid 
decarbonization and processes to achieve climate targets (9, 12). In this case, intervention times 
range from years to decades, depending on the social structure level (9). Previous studies note that 
the adoption of technologies and behaviors such as rapid uptake of autonomously driven electric 
vehicles (if socially licensed), rapid change in dietary preferences reducing meat consumption and 
associated land-use and climate impacts can follow an epidemic-type model of diffusing across 
social networks (13, 15). 
 
Alternatively, social tipping processes can lead to states of criticality with less desirable outcomes: 
Recently it has been shown that climate change has contributed to the emergence of infections 
carried by mosquitoes, like dengue fever or Zika, which could be accelerated further by increased 
mobility, e.g., through denser air traffic networks (75). The thermal minimum for transmission of 
the Zika virus could in fact give rise to a threshold behaviour (116). Changes to the local 
environment may enact “push” factors, resulting in large scale migrations (117, 118). Further, 
increased global mean temperature has been suggested to increase the likelihood of civil conflicts 
(84). 
 
These social tipping processes are of great interest to policy makers, as it is desirable to potentially 
trigger or facilitate “positive” tipping (11, 13), while at the same time, mitigating the effects of 
potential “negative” outcomes.  

 
 

5. Discussion  
 

Social tipping processes have been recently recognized as potentially key pathways for generating 
the necessary shifts for sustainability. Drawing upon this emerging field, this paper develops a 
framework for characterizing social tipping processes. We find that mechanisms underlying social 
tipping processes are more likely to exhibit the unique characteristics of agency, social-institutional 
and cultural network structures, they occur across different spatial and temporal scales to climate 
tipping, and the nature of tipping can be more complex. Social tipping processes thus present 
qualitatively different characteristics to those shared by climate tipping processes.  
 
Accordingly, this paper develops a common framework for the unique characteristics of social 
tipping processes. We identify social tipping as a process, resultant of a complex system of drivers, 
resulting in shifting a system into a more (or less) critical state. It can thus serve to  structure and 
inform future data analysis and process-based modelling exercises (118, 119). 
 
Even so, while there is an emerging focus on social tipping dynamics (9–13), there remains great 
difficulty in pinpointing tipping events and generalizing the emerging dynamics. Drawing from 
natural tipping dynamics, previous work on social tipping has often focused on identifying specific 
trigger events or critical thresholds in macroscopic system variables in analogy to identifying for 
instance critical temperature thresholds in the context of climate tipping (10). In natural systems the 
underlying dynamics are more deterministic and often can be directly observed, allowing for the 
identification of specific thresholds and events. While social systems comprise a much more open 
and complex system, one that is constantly adapting and where dynamics are often incredibly 
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complex, interrelated and cannot be directly observed. Accordingly, one could observe the same 
event across ten similar social systems, and could potentially observe ten unique outcomes. As such, 
anticipating a specific trigger, making causal inferences, or having generalizability in expected 
effects are all greatly limited within social systems. Further, social tipping points are sometimes 
also understood as a point in time, rather than a point in a complex parameter space. Such an 
approach makes it difficult to identify social tipping processes, as they often do not contain easily 
observable macroscopic thresholds nor temporal markers for change. 
 
Rather, a complex adaptive systems viewpoint is required, understanding the multitude of 
interrelated processes and social structures driving change, and not focusing on a single trigger or 
threshold. Accordingly, our framework proposed here focuses on identifying the processes and 
mechanisms of such change, and not a single triggering event, where the interplay of micro-level 
changes embedded within adaptive structural conditions can affect systemic changes. 
 
The notion of a critical state is central within our framework. Changing conditions to the system’s 
environment can cause it to enter more (or less) critical states, such that a single, or multiplicative 
action, can effect a systemic change. It is these changing conditions, and specifically the processes 
and dynamics underlying them, that are of analytical importance. Drawing upon the analogy of a 
tipping coal wagon (15), it is not the single, specific piece of coal that caused the wagon to tip, but 
rather the processes by which the wagon was filled with enough coal that any single piece (placed 
at a number of different locales) could cause such tipping. Accordingly, the specific triggering event 
of a social tipping process could be somewhat random or arbitrary, as the conditions are critical 
enough such that any event with enough magnitude could have triggered these dynamics. 

 
It is therefore key to focus on the processes and mechanisms underlying the nature of such critical 
states which allow some trigger event to cause contagion dynamics. From social network models, 
we can deduce which kind of structural features make a system less resilient and thus more prone 
to social tipping (119). One example is polarization, where social network models and social media-
based data analyses have shown that in polarized states with nearly disconnected network 
communities which in themselves are highly connected, contagion processes are more likely to 
occur (120–122). Behavioral experiments and corresponding conceptual modelling approaches 
suggest that minority groups can initiate social change dynamics in the emergence of new social 
conventions (17, 119). Furthermore, a rich social science literature has noted an array of factors (i.e. 
political institutions, technological or behavioral adaptation, environmental, normative and 
attitudinal) effective in shifting the social conditions surrounding climate change (14). A better 
understanding of critical states as demanded by our framework may help to identify early warning 
signals that could possibly indicate that a social-ecological system is close to a critical state in 
specific situations (30, 123). 
 
Social tipping processes present a specific type of social change – characteristized by non-linear 
shifting states driving by positive feedbacks – which is similar to, but conceptually distinct from, 
other forms of social change. Similar to how we explore the differences between natural and social 
tipping processes, further research should engage with social tipping in comparison to other forms 
of social change (such as historical institutionalist perspectives, social movements, policy 
feedbacks, complex systems). One of the greatest challenges lies in dealing with multiple, entangled 
drivers of tipping processes on different scales – temporal, spatial or social structural levels – and 
different levels of agency and heterogeneous agents and subsystems. In order to further understand 
the dynamics arising from these various levels of agency, it is crucial to identify examples from 
different subfields (economics, political science, demographics). A key current limitation in 
applying our framework is finding and operationalizing empirical data describing actual spreading 
processes on networks across these different levels, particularly compared to macro-economic data 
and public opinion polls (124), even though first steps in this direction are being made (125, 126). 
Particularly data on the social structures and networks is notoriously difficult to access. While there 
have been advances in developing modeling frameworks (119, 127) to simulate social tipping 
dynamics, linking these theoretical modelling to empirical data and behavioral experiments requires 
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more attention. Even if predictive modeling (i.e., the kind of deterministic, time-forward modeling 
we know from Earth System Models for instance) of such social dynamics in the sense of inferring 
time trajectories is very difficult or even conceptually unfeasible, such process-based modelling of 
social tipping dynamics can be very crucial to understand the nature of critical states also in real-
world social situations. Lastly, we focus here specifically on social tipping processes relevant for 
mitigating climate change, or sustainability more broadly, fitting within the previous literature. But, 
such a framework for social tipping dynamics is generalizable to other areas of study and social 
phenomena (such as the 2020 rapid social movements and public opinion dynamics surrounding 
racial inequality in the United States). 
 
While we explore one example of social tipping in detail, further inquiry is required to test the 
distinctiveness of social tipping processes, as well as the utility of the proposed definition to other 
social tipping processes. Systematizing the types of social tipping processes, and exemplary case 
studies, would help to further illustrate these forms of change. Research is also warranted into 
establishing typical timescales of social tipping; understanding how network structures affect social 
tipping dynamics; identifying typical network structures of systems entering critical states; 
discerning the temporal aspects of how effects travel through different social network structures; 
and gaining a better understanding of the origin of spreading processes. Data acquisition, analysis 
and process-based modelling could all play a role in this research agenda. A wealth of social media 
data is available to study potential social tipping processes. However, this kind of data has mostly 
yet to be adopted within the context of Earth System analysis and tipping dynamics. 
 
Social tipping processes could be decisive for the future of the Earth System in the Anthropocene: 
some rapid shifts in social systems are, in fact, necessary to meet the targets of the Paris Agreement 
and the Sustainable Development Goals (8). While we focus here on processes relevant for future 
trajectories of the Earth system, we suggest that further analysis could use or adapt our definition 
to characterize other types of general social tipping processes (i.e. revolutions or rapid 
transformations). We also recognize that tipping processes within ecosystems present an interesting 
intermediary case between social and physical climate tipping as they typically incorporate 
characteristics from both realms. They are also crucial in determining future trajectories of the Earth 
system (see preliminary discussion in the SI). Understanding, identifying and potentially instigating 
some social tipping processes is highly relevant for the future of the Anthropocene, particularly with 
regard to the potential role in triggering rapid transformative change needed for effective Earth 
system stewardship (9, 11–13). 
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Supplementary Materials 

S1: A mathematical definition of social tipping processes 

In this section, we give a more formal version of the definition of ‘social tipping process’ given in 
the main text, as a reference for mathematically inclined readers. 

After defining what we mean by a social system and its environment, we first classify their 
possible states into critical, unmanageable, uncritical, and tippable conditions, and then finally 
define the notions of prevention time and triggering time. 

By a social system, 𝛴, we mean a set of agents together with a network-like social structure, that 
interacts in some form with the rest of the world, called the environment, 𝐸, of the system, such 
that, if no “perturbation” or deliberate “influence” by some decision-maker occurs, 𝛴 and 𝐸 
together can only follow certain “quasi-inertial” (or “default”) trajectories restricted by the agency 
of the system’s agents. Let 𝑥(%) and 𝑦(%) denote the states that 𝛴 and 𝐸 are actually in at time 𝑡. 

A critical condition for the system is a pair of possible system and environment states, (𝑥∗, 𝑦∗), 
such that there exists another possible pair of states, (𝑥′, 𝑦′), with the following properties: 

1. The state pair (𝑥′, 𝑦′) is no further away in state space from (𝑥∗, 𝑦∗) than a certain “small” 
distance, 𝜖, that represents the possible magnitude of “local” perturbations in 𝛴 (affecting only 
few agents or network links directly) or small changes in 𝐸 that are considered sufficiently 
“likely” to care about, with respect to some suitable distance function 𝑑. In other words, 
𝑑((𝑥′, 𝑦′), (𝑥∗, 𝑦∗)) < 𝜖. 

2. If 𝛴 and 𝐸 were in state (𝑥′, 𝑦′) at any time 𝑡′, there is a quasi-inertial trajectory that would 
move 𝛴 at some later time 𝑡″ > 𝑡′ into some state 𝑥″ that is “qualitatively” different from 𝑥∗. 
This move represents a “global” (i.e., affecting a very large fraction of the agents) and 
“significant” change in the system (but not necessarily in its environment). 

If such a change actually happens, the time point 𝑡′ (not the state!) at which it starts may be called 
the tipping point or less ambiguously the triggering time point, and the system behavior within the 
time interval from 𝑡’ to 𝑡″ is called the corresponding tipping process. An uncritical condition for 
𝛴 and 𝐸 then is any pair of states that is not critical. 

A critical condition is unmanageable for an actor that may influence 𝛴 or 𝐸 in some way if there 
exists a possible pair of states, (𝑥′, 𝑦′), with 𝑑((𝑥′, 𝑦′), (𝑥∗, 𝑦∗)) < 𝜖 and the following property: 

● Assume that 𝛴 and 𝐸 were in state (𝑥′, 𝑦′) at any time 𝑡’ and afterwards the state of 𝛴 and 𝐸 
would follow any trajectory (𝑥(𝑡), 𝑦(𝑡))%2%3 that the actor can force it to follow. Then the 
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resulting trajectory would still move 𝛴 at some time 𝑡″ > 𝑡′ into some state 𝑥″ (which will 
usually depend on the influence exerted) that is qualitatively different from 𝑥∗. 

Similarly, an uncritical condition, (𝑥∘, 𝑦∘), is tippable by a decision maker if there is a possible 
trajectory (𝑥(𝑡), 𝑦(𝑡))%2%3, starting in (𝑥∘, 𝑦∘) at some time 𝑡′, that the decision maker can force 𝛴 
and 𝐸 to follow, and this trajectory would move 𝛴 into some state 𝑥″ at some time 𝑡″ > 𝑡′ that is 
qualitatively different from 𝑥∘ (a tippable uncritical state roughly corresponds to what others call a 
‘sensitive intervention point’ ). 

At any time at which the system is not in an unmanageable critical state, the prevention time is the 
time interval it takes before some quasi-inertial trajectory has moved it into an unmanageable 
critical state. In other words, at time zero it is the largest time interval 𝑇 so that, when no 
intervention takes place until time 𝑇, for all 𝑡 > 0 with 𝑡 < 𝑇, the system would not be in an 
unmanageable critical state at time 𝑡. 

Similarly, at any time at which the system is in a tippable uncritical state, the triggering time is the 
time interval it takes before some quasi-inertial trajectory has moved it into an uncritical state that 
is no longer tippable. In other words, at time zero it is the largest time interval 𝑇 so that, when no 
intervention takes place until time 𝑇, for all 𝑡 > 0 with 𝑡 < 𝑇, the system would not be in a 
tippable uncritical state at time 𝑡. 

We only consider social tipping processes for which the prevention or triggering time is smaller 
than some intervention time horizon. 

S2 Ecosystem tipping as intermediary case 

Ecosystem tipping processes share properties of physical climate tipping dynamics in atmosphere, 
ocean and cryosphere in that they can often be described by a common driver, as well as that of 
deliberative social tipping elements in that they have adaptive capacity, and can therefore be 
regarded as intermediate. But, as previously noted, human agential capacity is far greater than 
those of other species. 

Similarly to human social systems, ecosystems are comprised of interacting living organisms, they 
can be viewed as networks with components that can adapt (e.g., food webs). This is different 
from physical tipping elements such as the cryosphere elements (e.g., melting of permafrost) 
which do not typically exhibit the same networked structures. Within the nominally ‘climate’ 
tipping elements are some major biomes – notably boreal forests, the Amazon rainforest, and 
coral reefs  – that are composed of living organisms and exhibit ecological network structures. 
Indeed changing interactions between the living elements of these systems may be key to tipping 
dynamics – for example epidemic bark beetle infestation of boreal forests triggered by climate 
warming allowing the beetles to complete two life cycles rather than one within a season (128). 
Thus these biotic tipping elements lie towards smaller scale ecosystems in the continuum, and 
tend to be more closely related to social systems in spatial and temporal scales compared to the 
typically much larger and more slowly changing physical climate tipping elements. 

These differences give rise to a proposed ordering of tipping elements, ranging from (1) the 
physical climate tipping elements via (2) ecosystem tipping elements to (3) social tipping 
elements (Table S1). 
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Table S1: Proposed ordering of tipping processes ranging from physical climate tipping 
processes via ecosystem tipping processes to social tipping processes. 

  

Properties 
Physical climate 
tipping processes 

Ecological tipping 
processes 

Social tipping 
processes 

Degree of 
agency 

Low/Absent Intermediate High 

Network 
structure 

Uncommon Common Common 

Temporal-spatial 
scales 

Slower and larger Faster and smaller Faster and 
smaller 

Degree of 
complexity 

Lower Intermediate High 

 
 
Figure S1: 
 

 
Figure S1: Environment and Corona as an important issue in Germany. Percentages of potential 
German voters that list the environment and the Coronavirus as an important issue for the country 
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from August 2018 – September 2020, showing the change since the beginning of Greta Thunberg's 
protest actions. Dotted grey vertical lines display days of global strikes organized by 
FridaysForFuture in March, May and September 2019. Data is collected by Forschungsgruppe 
Wahlen: Politbarometer . 
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J. D. Tàbara, N. Frantzeskaki, K. Hölscher, S. Pedde, K. Kok, F. Lamperti, J. H. Christensen, J. Jäger,
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