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Abstract Machine learning (ML) algorithms are being increasingly used in Earth and Environmental
modeling studies owing to the ever-increasing availability of diverse data sets and computational resources
as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of
ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms,
artificial neural networks and random forest, to analyze a large data set of flood events across Germany
with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic
system functioning. The results of the ML algorithms are contrasted against a parametric approach based
on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted
Feature Importance to derive the influence of models' predictors. This allows us to compare the results of
different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML
models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological
principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we
conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML
and severely hampers its potential for inference. To account for the observed problems, we propose that
when employing ML for inference, this should be made by using multiple algorithms and multiple
methods, of which the latter should be embedded in a cross-validation routine.

1. Introduction
The rapid progress made in the field of machine learning (ML) is arguably the most relevant current devel-
opment for the field of hydrology. Employing ML methods is vital to make use of the increasing amount of
data and to cope with the challenges of climate change and an ever-increasing human impact on the envi-
ronment. ML models like random forest (RF) algorithm and artificial neural network (ANN) are promising
candidates for that end. It is no wonder that ML has, therefore, received a lot of attention (Shen, 2018), with
the majority of studies applying ML models for prediction or classification purposes. Examples are forecast-
ing of urban water demand (Herrera et al., 2010), estimation of flow duration at ungauged sites (Booker &
Snelder, 2012), streamflow classification (Peñas et al., 2014), and simulation (Gudmundsson & Seneviratne,
2015; Shortridge et al., 2016). Regarding the latter, Kratzert et al. (2019) have recently demonstrated the high
potential of ML models for rainfall-runoff modeling, even when applied to ungauged basins.

When compared to traditional statistical models like multiple linear regression, ML models are recognized
to have superior predictive performance (e.g., Elshorbagy et al., 2010; Lima et al., 2015; Shortridge et al.,
2016). However, due to the substantial complexity of a fully trained ML model, their usefulness for under-
standing relevant relationships contained in the data is less clear. To address this challenge, the field of
Interpretable Machine Learning has seen rapid advancement in recent years, and several methods have been
developed (Molnar, 2019). These include, for example, methods based on Permuted Feature Importance
(PFI) (Breiman, 2001a) or Shapley values (Lundberg & Lee, 2017; Shapley, 1988). Note that the two terms
“interpretable” and “explainable” are being used interchangeably in the field of ML and that no unambigu-
ous distinction between the two terms has yet established in literature (compare Gilpin et al., 2018; Rudin,
2019). Therefore, we adopt the more widely used term of “interpretable” ML throughout this work.
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The development of interpretable ML may be particularly important in hydrology due to the generally
nonunique nature of typical hydrological model descriptions. Nonuniqueness is also referred to as
equifinality, meaning that in many situations, very different model structures and/or parameter sets are able
to describe some observed behaviors with equal accuracy (Beven, 2006). As a result, the task of identify-
ing a single best model representation or estimating a unique parameterization is often not possible. This
severely hampers our ability to gain in-depth knowledge about an underlying functioning of the hydrologic
system based on such models (Clark et al., 2011). Causes of this problem include the substantial uncertain-
ties/errors in input/output data sets, the presence of nonlinear, interacting processes of internal complexity,
and the inflexibility in the structure of classic hydrological models (Nearing et al., 2016). This problem exists
despite the fact that hydrological models can be constrained by additional physical information provided
through a priori knowledge of hydrologic system functioning—encoded within both model structure and
states and flux relationships (Clark et al., 2015a, 2015b). Data-driven ML models, on the other hand, typi-
cally do not account for such additional information, which may exacerbate the problem of nonuniqueness.
It is, however, this very flexibility that facilitates ML models to exploit the full information content within
input/output data sets, and thereby makes possible to eliminate, or at least greatly reduce, the model struc-
tural and parameterization errors (Nearing et al., 2016). ML methods are generally considered to be universal
function approximators, meaning they can, in principle, approximate any complex relationship observed
between inputs and outputs (Cybenko, 1989; Hornik, 1991). It is therefore possible that ML methods suffer
less from the aforementioned problem of nonuniqueness.

To investigate this possibility, we present and discuss here the analysis of three data-driven models to a large
hydrological data set of flood events in Germany. We use two ML algorithms, namely, RF and ANN. To
provide better context to the study, we also use a simple statistical model based on multiple linear regres-
sion or linear model (LM) on the same data set. We analyze the magnitudes of around 30,000 flood events
across a range of German basins over the period 1950–2010. The example analysis of flood events was
chosen due to the high relevance of the topic (Jongman et al., 2014; Paprotny et al., 2018), aiming at con-
tributing to the ongoing discussion about what constitutes the most informative predictors of flood events
(Berghuijs et al., 2019). Understanding of the underlying relevant predictors is particularly important due
to the expected changes in flood patterns under climate change (Arnell & Gosling, 2016; Blöschl et al., 2017;
Milly et al., 2002; Winsemius et al., 2015). While precipitation is generally established to have a dominant
impact (Froidevaux et al., 2015; Keller et al., 2018), many recent studies emphasize the role of antecedent soil
moisture conditions in shaping the overall magnitude of flood events (Bennett et al., 2018; Ivancic & Shaw,
2015; Nied et al., 2013). To investigate whether data-driven ML models can help to elucidate the varying
role of different predictor variables, we use here the following methodology: First, we train the aforemen-
tioned data-driven models on the data set of floods across Germany and evaluate their predictive accuracy.
Then, we use the trained models to perform hydrologic inference and check the consistency among differ-
ent models in determining the most important predictors of flood magnitude. The latter is done through
an approach based on Permutation Feature Importance (PFI), introduced by Breiman (2001a). The PFI
method allows to infer the importance of a predictor in a selected model configuration by computing the
drop in prediction accuracy after shuffling its values while keeping the other predictors untouched. Once
this has been repeated for all selected predictors, the drop in accuracy can be used to rank the importance of
predictor variables.

2. Methods
2.1. Data Set
We used a data set comprising 29,248 flood events that were sampled from time series of daily streamflow
of 374 catchments across Germany over the period 1950–2010 (Figure 1). The flood events were identi-
fied by applying a peak-over-threshold approach for each catchment, separately: Subsequent days on which
streamflow exceeded the 98th percentile value of the respective catchment were grouped as one flood event,
and the flood magnitude corresponding to the maximum value (Qf ) was extracted for each event. A set of
predictors was then assigned to all events that includes: first, catchment average preconditions of daily pre-
cipitation (P; mm/day), daily mean soil moisture (SM; %), and daily mean temperature (T; ◦C)—that is, the
mean of these predictors over multiple time periods 𝛿t = [0, 1, 3, 5, 7], going back in time from the day of
Qf . Thus, the hydrometeorological conditions from the day of Qf up to 7 days prior to the flood event were
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Figure 1. Summary characteristics of case study data sets. Left: map of the study area including the study catchments (transparent orange) and corresponding
gauging stations (black dots) as well as the borders of Regions 1 to 4 (solid orange). The shaded background depicts terrain elevation (source: BKG, 2019). Top
right: density distribution of flood magnitude (Qf ) summarized over the four main natural regions. Note that the value range of the x axis is limited from
[0, 120] to [0, 50] for readability. Bottom right: box plots of Qf and relevant predictors across the regions. P1, SM1, and T1 represent the average estimates of
precipitation, soil moisture, and temperature 1 day prior to and on the day of Qf , respectively.

covered. In the following, these dynamic predictors are denoted by their name and the respective time inter-
val, for example, P0, P1, … , P7. Here, P refers to the sum of rainfall and snow melt as simulated by the
mesoscale hydrologic model (mHM) (Kumar et al., 2013; Samaniego et al., 2010). Similarly, SM is based on
mHM simulations (Zink et al., 2017)—reflecting the antecedent root-zone soil moisture conditions over the
catchment for an approx. 2-m soil depth (see Zink et al., 2017, for more details). SM is normalized based on
soil porosity, that is, the actual soil water content divided by porosity, to account for the varying soil textu-
ral properties. Details on the mHM parameterization and modeling concept can be found in Kumar et al.
(2013), Samaniego et al. (2010), and Zink et al. (2017) as well as on the website (www.ufz.de/mhm). Sec-
ond, to complement the above dynamic predictors, a set of 10 different static predictors was extracted for
each catchment. These include average climatic conditions (aridity index and mean annual precipitation),
topography (slope and elevation), geomorphology (channel slope, drainage density, and flow path lengths),
and land cover. For more details on the predictor variables, we refer to supporting information Table S1.

The selected study catchments cover most of Germany except the southwest and some parts in the north
(Figure 1). Catchment size varies between 100 and 8,469 km2, with the majority of the study catchments
(85%) falling below 1,000 km2. The mean catchment size is close to 750 km2. All variables with volumetric
units (e.g., m3/s) were area adjusted and converted to mm/day. The flood data set was further grouped into
four regions to account for spatial variations in the flood generation mechanisms. Grouping followed the
classification of Naturräumliche Gliederung (Natural Regions) as produced by the German Federal Institute
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of Regional Studies (Meynen et al., 1962). This grouping accounts for spatial variation in geomorphological,
geological, hydrological, ecological, and pedological criteria.

In addition to analyzing the difference in spatial variations of flood magnitude, we examined the seasonal
variations by splitting the flood events according to their occurrence during hydrological summer (April
to September) and winter (October to March) season. The resulting data sets are hereafter referred to as
“regional-seasonal data sets,” labeled according to region number and season such as 1S, 1W, or 2S.

Figure 1 presents information on the spatial and density distributions of Qf and relevant predictors. Gener-
ally, Qf is highly left skewed in all regions with decreasing average values when moving from south to north.
This gradient corresponds well to a topographical gradient: from alpine conditions in the southernmost
region, topography varies from mid-elevation mountains in the middle to the lowlands in the northernmost
region. This pattern is also reflected in the corresponding catchment characteristics, that is, average catch-
ment elevation, preevent precipitation P1, aridity index, and drainage density are on average on the higher
end for catchments in the southernmost region as compared to those in the northern regions.

2.2. Model Calibration
On each of the eight regional-seasonal data sets, three data-driven algorithms were calibrated: RF, ANN, and
LM, resulting in a total of 24 model combinations. For LM and RF, a feature selection algorithm was applied
to identify the model structure that produces the best goodness of fit while reducing model complexity. We
split the data set into a training and test subset with a ratio of 3

4
versus 1

4
, following the procedure as proposed

by Hastie et al. (2009). Details on the resulting sample sizes of these split sets can be found in Table S3. The
final prediction accuracy on test data was measured by the coefficient of determination (R2) to ensure the
comparability of efficiency measures between different model combinations.

The LM was implemented in the form of a principal component (PC) regression, where PC analysis (PCA)
was performed on each of the training data sets prior to model calibration. The resulting PCs that explained
95% of the variance in data sets were kept as predictors for the LM. This approach was used to account
for multicollinearity present among the predictor variables (see Figure S4 for more details). The LM model
structures included first- and second-order terms including the interaction components, and corresponding
parameters were identified through a maximum likelihood estimation approach. A stepwise feature selec-
tion approach by Bayesian information criterion (BIC) was used to select the suitable PCs included in the
final model (see Table S2 for more details).

The RF model was calibrated using a recursive feature elimination approach (Guyon et al., 2002): Starting
from a full model that included all 40 predictors, the five least relevant predictors by PFI were excluded at
each iteration. Model performance of the resulting models was assessed by a 10-fold cross-validation scheme
(Stone, 1974), using root-mean-square error (RMSE) as the objective function. To limit model complexity, we
considered only those models that had an RMSE value within a prescribed range of [RMSEmin,RMSEmin ∗
1.01], where RMSEmin denotes the lowest RMSE achieved by any of the RF models. The most parsimonious
one of these, as measured by number of predictors, was selected for interpretation (see Table S2). We used
standard algorithmic parameters as described in the R package “randomForest” (Liaw & Wiener, 2002).

The ANN model was calibrated by virtue of the well-established multilayer perceptron (see Murtagh, 1991),
using a stochastic gradient descent backpropagation with mean square error (MSE) as objective function.
A hold-out sampling approach was applied during model calibration, that is, one fifth of the training data
were used as evaluation data for an early stopping routine to avoid overfitting. Training data were fed into
the ANN model a maximum of 800 times, the so-called epochs, with a batch size of 50. When the objec-
tive function values on the evaluation data stabilized (i.e., 40 epochs passed without any further decrease
in evaluation loss), the step of model calibration was terminated. We considered a range of neural net-
work architectures varying from one to three hidden layers and different number of nodes (see Table S2
for details). For each network architecture, the tuning parameters (i.e., learning rate and momentum) were
optimized as a grid-search hyperparameter optimization problem (Claesen & De Moor, 2015). This resulted
in 336 candidate models for each of the eight regional-seasonal data sets. Finally, all models that fell within
[RMSEmin,RMSEmin ∗ 1.01] of the independent test data sets were collected, and the most parsimonious
one—measured by number of algorithmic parameters (e.g., ANN nodes/layers)—was selected for further
interpretation.
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Figure 2. Prediction accuracy in terms of the coefficient of determination (R2) for all three algorithms on training (top) and test (middle) data sets, estimated
across four regions (1 to 4) and two seasons (S = summer; W = winter). Also shown are the corresponding differences in R2 from training to test data sets
(bottom).

2.3. Model Interpretation by PFI
Given the differences in the underlying algorithmic structure, a direct interpretation and comparison of the
three algorithms is elusive. The inherent structure is simply too complex for the ML models (RF and ANN),
and even for LM, a meaningful retransformation of interactions among PCs to the original input space is not
straightforward. Thus, a method based on PFI was employed to explore the influence of individual predictors
in each of the algorithms. PFI was first introduced by Breiman (2001a) for interpreting RF models and has
recently been extended to the model-agnostic case by Fisher et al. (2019). The underlying principle of PFI
is to shuffle the values of one predictor at a time, while leaving the others untouched. In this way, the ties
between the target and the respective predictor are broken. The more a predictor contributes to the models'
prediction, the stronger the prediction accuracy deteriorates as a result of the shuffling. Thus, the degree
of deterioration serves as a measure of the predictors' importance. For a trained model 𝑓 with p predictors,
predictor matrix X , target vector Y , vector of predictions Ŷ , and an error measure L(Y , Ŷ ), estimation of PFI
follows these steps (Molnar, 2019):

1. Estimate the original model error eorig(𝑓 ) = L(Y , 𝑓 (X)).
2. For each predictor j ∈ 1, … , p, do

• generate permuted predictor matrix Xperm,𝑗
by duplicating X and shuffling the values of feature Xj,

• estimate error eperm,𝑗
= L(Y , 𝑓 (Xperm,𝑗

)), and
• calculate PFI of predictor j as PFI𝑗 = eperm,𝑗

(𝑓 )∕eorig(𝑓 ).
3. Sort predictors by descending PFI.

In this study, we used MSE as error measure L(Y , Ŷ ), following the original implementation for PFI in RF.
The above algorithm was repeated 50 times for each regional-seasonal model on the test data sets to ensure
robustness of results. The PFI values were rescaled as relative feature importance (RFI in %) to ensure the
comparability of results across the different regional-seasonal models in the following way: First, the predic-
tors aridity index and mean annual precipitation were excluded from the PFI analysis, as they only served
as control variables to account for the spatial gradient of average catchment wetness. Second, the PFIs cor-
responding to the remaining predictors were rescaled such that the sum of each models' RFI was 100%. For
the sake of readability, from hereafter, we refer to RFI as the “importance” of specific predictors.

3. Results and Discussion
Generally, all algorithms delivered reasonable prediction accuracy on the test data sets across all regions and
seasons except for two cases (Figure 2). Both ML algorithms outperformed the LM in terms of prediction
accuracy, and of the two ML algorithms, RF achieved higher prediction accuracy in most of the analyzed
regions/seasons. The superiority of RF stems from the fact that it generalized best on the given data set—in
contrast to ANN and LM, it delivered similar mean prediction accuracy on the training and test data sets.
For LM, the model accuracy dropped significantly from training to testing—which highlights the issue of
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overfitting. While the training for RF and ANN was based on a (cross-)validation procedure (i.e., indepen-
dent evaluation data being used during the calibration), the LM calibration was based on the training data
set, only. Some model combinations exhibit higher accuracy on the testing data sets as compared to the
training sample, which is most likely the result of unbalanced sampling of split sets. This may occur when
sampling from a highly skewed distribution, as it is the case here. Despite these differences, in general, we
find a strong correspondence in predicted flood magnitudes among the three models (see Figure S5).

The analysis of residuals revealed that all algorithms were subject to similar challenges. The predictions of
low and medium flood magnitudes were generally more accurate than those of higher magnitude events
(see Figure S6). This is likely due to several reasons, such as the distribution of flood magnitudes gener-
ally being highly (left) skewed. In our analysis, all models had only limited success in capturing the tails
of the distribution. Also worth noting is the issue of measurement uncertainty in discharge observations,
with observational errors generally being higher during the medium to large flood events (Baldassarre &
Montanari, 2009; McMillan et al., 2012).

The analysis resulted in a distribution of importance over all 39 individual predictors of each of the eight
regional-seasonal models for each of the three algorithms (see Figures S7 and S8). To enable an evalua-
tion in an aggregated manner, Figure 3 (top) depicts the mean PFI grouped according to predictor types
(dynamic: P, SM, and T; static) for each of the applied algorithms. The derived mean PFI patterns differed
substantially depending on the algorithm used. While RF and LM mainly relied on precipitation (P) and
catchment attributes for predictions, ANN mostly employed soil moisture (SM). Moreover, we did not see
commonalities with respect to the seasonal signal. Figure 3 (bottom) depicts the importance aggregated to
the regional-seasonal scale, that is, averaged by the predictor group, algorithm, and region. Here, we found
some similarities and also distinct differences in the importance patterns between the algorithms. For RF
and LM, the influence of precipitation (P) decreased from south to north, which was generally in agree-
ment with the trend observed for ANN. Also, for soil moisture (SM), all three algorithms produced a similar
pattern of importance that peaked toward Region 3. With regard to static variables, RF produced a distinct
pattern of increasing importance from south to north while there was an inverse and patchy distribution
for ANN and LM, respectively. For temperature, there was no distinct pattern in any of the analyzed cases.
Similar to before, there was no identifiable pattern in the seasonal signals across the three algorithms. In
the distributions over all individual predictors (see Figures S7 and S8), the only commonality was found
between RF and ANN. There was a gradient in response time, that is, P0 and P1 being assigned higher values
in the southern regions than those in the northern ones.

To summarize, the agreement between the three algorithms is as follows: There is a gradient from south to
north as to how much influence precipitation (P) has on flood magnitude (decreasing) and at which time
lag prior to the respective flood event (increasing). These gradients follow the pattern of decreasing model
accuracy toward the north. This indicates a gradient in system complexity from the southern regions where
flood magnitudes are mostly governed directly by precipitation events, to the northern ones, where the signal
of precipitation is attenuated and flood generation is more complex. Regarding soil moisture (SM), Region
3 is identified to stand out from the other regions.

When contrasting the above findings with the hydrological a priori knowledge as derived in section 2.1,
they are compatible with a basic hydrological interpretation. As presented, there is a topographical gradient
from south to north. Consequently, one of the main drivers of runoff generation and concentration in the
southern regions is the steepness of hillslopes. This results in a direct translation of precipitation events into
flood events, small catchments, and high drainage density that lead to short response times. In the northern
regions, larger catchment area, lower slope, and lower drainage density result in a stronger influence of
infiltration processes and thus longer response times. The uniqueness of Region 3 regarding the influence
of soil moisture, however, cannot be directly connected to common hydrological understanding.

Even though parts of the results can be linked to common hydrological knowledge of the effect that topog-
raphy has on flood magnitude, this interpretation remains tentative in the light of the heterogeneity of
results both in aggregated means and at the scale of individual predictors. Consequently, a more detailed
(hydrologic) interpretation is not possible based on our study results. It is striking how much the importance
of predictors differs between the algorithms, which lets us conclude that the nonuniqueness, or equifinal-
ity, known from classic hydrological modeling concepts, remains a relevant challenge for ML models, too.
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Figure 3. Permutation Feature Importance (PFI) of the predictor groups: precipitation (P), soil moisture (SM), air temperature (T), and static predictors by
season and region. Top: mean values of all predictors in a predictor group across all eight regional-seasonal models, plotted by algorithm. Bottom: mean values
of all predictors in a predictor group, plotted by algorithm and region. The black line depicts the mean of both summer and winter for each of the predictor
groups. Note that the y axis is scaled identically by row, only, to allow for interpretation of the patterns.

This is to say that different model structures yield equally acceptable representations of the observed natural
processes, but these are based on, sometimes strikingly, different parameterizations. In fact, in ML theory,
it is acknowledged that the aim of parameter optimization is and can technically only be to find one of mul-
tiple local minima that are equally close to the global minimum. Finding this global minimum at all costs
makes the optimization prone to overfitting, that is, a poor performance on unseen data, and is thus not a
good strategy (Choromanska et al., 2015). As most ML applications aim at prediction only, this does gener-
ally not pose a problem. However, as this study illustrates, similarly high prediction accuracy from different
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models does not guarantee a similar underlying inference, that is, equally close local minima may still rep-
resent substantial differences in parameterizations. In the ML literature, this phenomenon is referred to
as the Rashomon effect, a term coined by Breiman (2001b) to capture the often elusive nature of interpre-
tative endeavors. Despite this, further research into the topic has rarely been transferred from theoretical
considerations to practical applications. One exception is Semenova and Rudin (2019), who introduced and
investigated the Rashomon set of models with similar accuracy but different degrees of complexity. Like-
wise, Fisher et al. (2019) present model class reliance as a theoretical extension of PFI to the Rashomon set.
And while the field of interpretable ML has started to blossom in the recent past, little attention has been
directed to this topic.

To account for these observed problems, we propose the following strategies to infer knowledge based
on ML models: (1) Multiple algorithms should be calibrated to yield an understanding of a generalized
relationship between input and output data sets. (2) PFI, as a statistical tool, maps the patterns that the
models detected in the data instead of physical principles and might be subject to inherent bias. There-
fore, other model-agnostic methods that have been made available in the recent past like Shapley values
or Local Interpretable Model-agnostic Explanations (LIME) (Lundberg & Lee, 2017; Ribeiro et al., 2016)
should be applied additionally to rule out any bias that is specific to the respective method. (3) Adding to
this, it may be beneficial to derive an estimate of the results' robustness like the local Lipschitz continu-
ity as presented in Alvarez-Melis and Jaakkola (2018) or by computing the importance not after but during
cross-validation. In the case of, say, a 10-fold cross-validation, this can yield an ensemble of 10 potential
importance distributions, which can be interpreted as a measure of robustness of the obtained results.

Our study has been mostly geared toward providing a demonstration of the challenges in applying
data-driven models for inference and thereby raising awareness in the hydrological community not to blindly
rely on a single ML algorithm. Future studies should focus at gaining a more profound understanding of
the underlying processes that promote nonuniqueness of inferential results among different ML algorithms.
Possible extensions of this study could thus be the evaluation of multiple data sets, including simulated
ones, to link data set characteristics to the occurrence of the observed problem. In addition, we consider two
more fields within the topic of statistical learning to be promising candidates for future inference processes:
physics-informed neural networks (see, e.g., Raissi et al., 2020) and causal inference (see, e.g., Runge et al.,
2019), both of which are yet to be transferred to the hydrological community.

4. Conclusion
Interpretable ML is a field that has received significant attention in the recent past and several tools for the
interpretation of these so-called black boxes have been proposed. Of these, PFI has been the most popular
approach to quantify predictor influence. While, previously, PFI was limited to the RF model, this study
makes use of a recently published extension of PFI to the model-agnostic case for the first time in the context
of hydrology. This allows us to compare the results of three different (data-driven) models: RF, ANN, and
multiple linear regression (LM). These models were employed to analyze the influence of dynamic factors
such as precipitation, soil moisture, air temperature, and static catchment attributes on flood magnitudes
in a range of catchments located across Germany.

The predictive efficiency of all three employed algorithms was in a same range—though the two ML algo-
rithms in general exhibited better predictive power, especially on the test data sets and in regions with
relatively lower skill (i.e., northern catchments). Our results reflect the topographical gradient that is present
in the study area insofar as the transformation of precipitation into flood streamflow was detected to be
more direct and comparatively faster in the south German catchments. In the north—where the topograph-
ical differences are less pronounced, prediction of flood events was proven to be more complex, and the
streamflow response to precipitation events is attenuated and slower.

While the combination of all three models' results does allow for inference that corresponds to basic
hydrological concepts, the extent to which the importance of different predictors differs across models is
substantial. Relevant differences in importance can be found across all investigated regions, even though
the models' prediction accuracy is fairly similar. This shows that in ML, too, predictive accuracy does not
necessarily guarantee valid inference. In addition, this demonstrates that the fundamental challenge of equi-
finality in hydrological process representation also exists for ML models. This can severely hamper inference
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based from these algorithms as the causal relationships between input and outputs remain elusive. In anal-
ogy to the classic, mechanistic modeling paradigm where model ensembles are often deployed, based on the
results presented here, we suggest the application of multiple ML algorithms for hydrological system under-
standing. Also, we advise to assess the reliability of the results, for example, by the use of cross-validation
and by comparison against other model-agnostic methods for interpretation of ML algorithms.
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