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Abstract
A digital filter is introduced which treats the problem of predictability versus time

averaging in a continuous, seamless manner. This seamless filter (SF) is charac-

terized by a unique smoothing rule that determines the strength of smoothing in

dependence on lead time. The rule needs to be specified beforehand, either by expert

knowledge or by user demand. As a result, skill curves are obtained that allow a pre-

dictability assessment across a whole range of time-scales, from daily to seasonal,

in a uniform manner. The SF is applied to downscaled SEAS5 ensemble forecasts

for two focus regions in or near the tropical belt, the river basins of the Karun in

Iran and the São Francisco in Brazil. Both are characterized by strong seasonality

and semi-aridity, so that predictability across various time-scales is in high demand.

Among other things, it is found that from the start of the water year (autumn), areal

precipitation is predictable with good skill for the Karun basin two and a half months

ahead; for the São Francisco it is only one month, longer-term prediction skill is just

above the critical level.
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1 INTRODUCTION

Since about a decade, the field of seamless weather predic-
tion has experienced quite active development (Palmer et al.,
2008; Bauer et al., 2015; Brunet et al., 2015; Vitart and
Robertson, 2018). This was due to both a deeper understand-
ing of the underlying nonlinear dynamics of the system, as
well as greater computational capacity to run the correspond-
ing numerical weather prediction (NWP) models. Originally
used for the interface between weather and climate (Palmer
et al., 2008; Shukla et al., 2009), the word “seamless” now
refers to efforts of unifying prediction systems (initializa-
tion, parametrization, numerics) across all time-scales. This
study emphasizes predictions ranging from days to seasons,
specifically from lead times of 1 to 180 days, as produced

by the latest seasonal prediction system SEAS5 of the Euro-
pean Centre of Medium-range Weather Forecasts (ECMWF)
(Johnson et al., 2019). Potential atmospheric predictabil-
ity at seasonal time-scales is grounded in, mostly coupled,
atmosphere–ocean processes, such as the El-Niño–Southern
Oscillation or the Madden–Julian Oscillation, that are them-
selves predictable at those time-scales (Rowell, 1998). Land
processes such as soil moisture, snow cover and vegetation
also play a role (Robertson and Vitart, 2019).

Depending on variable and region, to each prediction lead
time there tends to be associated a characteristic time-scale
whose variations are optimally predicted. As shown in fig. 1d
of Reichler and Roads (2003) or fig. 2 of Buizza et al. (2015)
for the 30 days lead time, for example, the 60 days average
is better predicted than the 30 days average, as the former
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obviously better eliminates unpredictable features that propa-
gate with periods less than those 60 days. A systematic study
of the dependence of forecast skill on time-averaging and
lead-time was undertaken by Zhu et al. (2014); they employ
for a lead time of 𝜆 a time averaging window of width 𝜆.
A similar approach was taken by Ford et al. (2018); their
averaging window is given by the Poisson distribution, with
the single parameter 𝜆 as lead time. Since mean and variance
of the distribution are equal to 𝜆, their approach resembles
that of Zhu et al. (2014). Finding the optimum aggregation
scale is a non-trivial problem, since very often the underlying
process time-scales are uncertain, and the problem comes
down to a trial-and-error exercise. But that is not the subject
here. Instead, similar to the Zhu et al. (2014) and Ford et al.
(2018) approaches (cf. also Wheeler et al. (2017)), but more
flexible, the scales are prescribed in terms of a seamless filter
(SF), as detailed in section 2.2. Basically, the SF would be a
standard low-pass filter that retains frequencies only below
some cut-off value, but its characteristics change with grow-
ing lead time, in a way so as to filter, in the standard setting,
for increasingly lower frequencies with growing lead time.
But in contrast to the Zhu et al. (2014) and Ford et al. (2018)
approach, the rate of increase in the SF is fully configurable
and governed either by expert knowledge or by user demand.

A more objective method of specifying time-scales exists
for larger-scale problems, such as hemispheric or global, by
decomposing the spatial and lead-time information into dom-
inant modes of predictability (DelSole and Tippett, 2009a;
2009b). Our focus regions are too small for this to be applied,
however.

Early on, it was understood that seasonal predictability
is concentrated on the Tropics (Stockdale et al., 2018). But
extratropical predictability, mainly through influence from
stratospheric variability, has recently come into the focus as
well (Kirtman and Pirani, 2008; Sigmond et al., 2013; Sun
and Ahn, 2015). Here we study daily to seasonal predictabil-
ity in two regions in or near the tropical belt, with climates
that are partly arid: the São Francisco basin (SFB, [41◦W,
11◦S], 617,812 km2) in northeast Brazil and the Karun basin
(KB, [49◦E, 32◦N], 65,230 km2) in southwest Iran. Weather
and climate of the SFB are mainly influenced by the South
American monsoon system (Silva and Kousky, 2012); the
semi-arid climate of the KB, on the other hand, sees influ-
ence from Mediterranean cyclones and the Indian summer
monsoon (Alijani, 2002; Yadav, 2016). For both regions the
rainy season, during which all the reservoirs are being refilled,
lasts from October–November to March–April, for which
corresponding predictions are therefore most relevant.

2 METHODS AND DATA

The downscaling of the seasonal predictions follows a
perfect-prognosis approach, which belongs to the standard

procedures of climate downscaling: Using a set of observed
local station data (section 2.4) and observed (i.e. analysed)
atmospheric fields (section 2.5), a statistical model is
calibrated (section 2.1). To obtain the local seasonal predic-
tions, the model is applied to the same set of fields, but as
predicted by an atmosphere–ocean model (section 2.5) (which
is assumed to contain a perfect representation of the atmo-
spheric fields). Finally, the seamless filter (section 2.2) is
applied to each station record, both as observed and as pre-
dicted, and their areal mean values are compared to estimate
the prediction skill.

2.1 Expanded downscaling
It is well known that using large–scale, gridded atmospheric
fields directly is not recommended when comparing with sta-
tion data, but to employ some form of adjustment instead,
such as downscaling. Here we use Expanded Downscaling
(XDS), which is a regression-based approach that simulates
local events as close to and as consistent with the prevail-
ing atmospheric circulation as possible. In deviation from
classical regression, the error minimization is done under
the constraint to preserve local covariability (of variables
and stations). This preservation of covariability renders XDS
particularly useful for applications related to hydrological
extremes, such as floods and droughts (Bürger, 2002; see
also Bronstert et al., 2007). XDS has been thoroughly vali-
dated, in numerous climate impact studies as well as for local
weather forecasts, and it performs relatively well in compar-
ison to other methods (Bürger et al., 2012). In those studies,
for local station data such as temperature and precipitation, a
mix of atmospheric upper-level and surface predictor (regres-
sor) fields has been proven most appropriate, as detailed in
section 2.5. With a focus on extremes, XDS is most appropri-
ate for the daily time-scale. In this study the daily local and
atmospheric series described in sections 2.4 and 2.5 are used
as predictands and predictors, respectively.

2.2 The seamless filter
It is common folklore that daily weather becomes fundamen-
tally unpredictable beyond about 2 weeks lead time, according
to the famous result on nonlinear error growth known as the
butterfly effect (Lorenz, 1972). But as mentioned in section
1, predictions beyond this limit are nevertheless possible if
adequate aggregations in time (or space) are formed. For
seamless predictions, therefore, one would like to have this
done automatically, that is, increasingly aggregating data with
growing lead time. Zhu et al. (2014) achieve this by catego-
rizing lead times and aggregation levels into a few classes,
such as “1d1d” and “2w2w”, referring to lead- and aggrega-
tion times of 1 day and 2 weeks, respectively. Instead of using
categories, we have designed a digital filter that does the same
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F I G U R E 1 The seamless filter characteristic. It describes the

dependence of the smoothing (the cut-off period A (days) of a

corresponding low-pass filter) on the forecast lead time (see formula)

continuously for all lead times. This seamless filter (SF) is
now described in more detail.

Noting that any aggregation level can be realized by a
smoothing (low-pass) filter with characteristic cut-off period,
we define a mapping, A: [0,Tx] → [0,Ax], that assigns to any
forecast lead time d, 0 ≤ d≤Tx, a suitable cut-off period A(d).
The mapping parameters are the two maxima of lead time Tx
and cut-off period Ax, plus one shape parameter 𝜉 that governs
the growth of A with d:

𝐴(𝑑) = 𝐴𝑥 −
𝑇𝑥 − 𝑑

(𝑇𝑥 − 1)𝜉
(𝐴𝑥 − 1). (1)

It is designed so that A(Tx) =Ax and, for 𝜉 = 1, A(1) = 1.
Similar realizations of the mapping are certainly possible;
they only should roughly follow the dependence as depicted in
Figure 1. In general, the SF design requires a balance between
forecast skill and forecast detail (amplitude), which would
translate to balancing expert knowledge and user needs. For
example, the filter with (Tx = 180 days, Ax = 180 days, 𝜉 = 1)
is essentially the setting used by Zhu et al. (2014) and
Ford et al. (2018). In this study, “standard” parameters of
Tx = 180 days (6 months), Ax = 150 days, and 𝜉 = 2.4 are
used; what this means concretely will be shown in an example
further below.

From this basic aggregation law A, the SF is constructed
as follows: suppose a sequence of forecasts, x(d), is given
with growing lead time d, 1 ≤ d≤ Tx. For each d we form
the filtered series �̃�d(t), t= 1,… ,Tx, which is obtained from
x(d) by applying a conventional low-pass filter with cut-off
period A(d). We thus obtain Tx filtered copies of the original
series x(d) or, by taking those as rows of a quadratic matrix, a

F I G U R E 2 Example of the SF as applied to a 180-day forecast

of areal P for Iran, issued on 1 December. Top: Raw and low-pass

filtered series with three different cut-off periods, using a zero-phase

(non-causal) Butterworth filter. Bottom: The SF (heavy black) of the

series. The dots illustrate how SF is constructed from the filtered series

above. The SF parameters are: Tx = 180, Ax = 90, 𝜉 = 1

corresponding Tx × Tx matrix. The diagonal of that matrix,

𝑥SF(𝑑) = 𝑥𝑑(𝑑) (2)

defines the seamless filter SF. Note that by operating on
the whole series, Equation 2 cannot be realized as a lin-
ear digital filter (like most smoothing filters themselves, e.g.
Butterworth), it is not even finite, nor is it time invariant;
its computational complexity is nevertheless feasible. The
desired result of applying SF to a sequence of forecasts is
that with increasing lead time, the forecasts are increasingly
smoothed up to the longest forecast with maximum smoothing
at cut-off period Ax. The single low-pass filters are realized by
using a Butterworth filter of order 3, run in forward–backward
mode (Gustafsson, 1996) to avoid any time shifts (phase lags).
The content of Equation 2 is illustrated in the example of
Figure 2.

As promised, I give an example of a forecast issued on
1 November and valid for 1 December, i.e. with a lead
time of 30 days. For that lead, the above SF characteris-
tic (Tx = 180 days, Ax = 150 days, 𝜉 = 2.4) corresponds to a
cut-off period of 52 days. This means that the user or expert
is interested, for that specific lead, in the rainfall amount
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F I G U R E 3 The study regions of the Karun, Iran, and the São Francisco basin, Brazil, along with their respective precipitation stations

of a 52-day period centred about 1 December (i.e. between
4 November and 26 December). This amount is obtained
from the 180 days predictions of 1 November as provided by
SEAS5/XDS, by applying the SF to each predicted station.
The expected skill of the areal average forecast can be read
from the figures below (this being the subject of the current
study).

The display of SF-based, or seamless, predictability
depending on lead time, as presented here, may at first look
somewhat surprising, and may violate one's expectations of
prediction skill decreasing monotonically with lead time. By
looking at a range of time-scales, one is faced with the compli-
cated superposition of different physical processes that have
their own predictability. For example, sea-surface tempera-
ture in the tropical Pacific has a fairly high predictability on
seasonal time-scales due to the El Niño–Southern Oscillation,
likely higher than corresponding variability on the daily or
weekly scale. Seamless predictability, hence, does not auto-
matically decrease with lead time; it may indeed increase, as
our examples show.

One may object that smoothing will inflate the reported
skill by using future information that is not available at
issue time. This argument does not apply. At issue time, the
(SEAS5) forecasts themselves only use information that is

F I G U R E 4 P climatology (mm⋅day-1) for the focus regions

available then (this applies strictly only to the operational
mode; in reforecast mode, future information is available but
not used). The same applies to the downscaling. For the skill
evaluation one can use all information from the forecasts,
including data from beyond the valid time (e.g. for filtering).
While such data are available for the (SEAS5/XDS) predictor
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F I G U R E 5 Observed and ERA5/XDS-downscaled areal P for the KB, for the year 1995

at issue time, for the predictand they become available only
later, which is when the smoothing filter can be applied (i.e.
in hindsight).

Note that our notion of “lead” is centred about the point of
interest, extending both into the past and into the future (the
reason we used a zero-phase filter). This can be circumvented
by formulating a filter that is causal in a reversed sense, so
that only future information (relative to valid time) is used,
meaning: for the valid time 1 June and a 3-month average,
use only the months June, July and August (which would be
3m3m in the terminology of Zhu et al. (2014) for forecasts
issued on 1 March). Likewise, by using a causal filter, a
“1-month lead” involves only past information (relative to
valid time), like forecasting average May rainfall on 1 May,
valid 1 June. As the examples show, the question of lead time
is basically a semantic one.

2.3 Potential predictability
As a validation for the downscaled ensemble spread, the
approach of Buizza (1997) to estimate potential predictabil-
ity (PP) may serve. It rests on the assumption that at any
given lead time, the ensemble spread is a perfect representa-
tion of the prevailing uncertainty. In other words, the actual
observations are indistinguishable from any of the ensemble
members. This allows the assessment of PP in the ideal case
of a perfect model with perfect initial uncertainty. Conversely,
discrepancies between potential and actual predictive skill
give a measure of the deviations from those ideal conditions.
It is worth noting that while the meteorological ensemble

is designed to represent the true atmospheric uncertainty,
including initial conditions and physical parametrizations, the
local ensemble, as obtained from coupling a downscaling
scheme to the atmospheric fields, may well diverge from the
true local uncertainty (whose structure is anyway different
from the grid-point errors), for example, if the downscaling
scheme is mis-configured.

To estimate PP, a “perfect ensemble” system is formed
from the original ensemble by selecting one member at
random as the verifying analysis, cf. Buizza (1997); this pro-
vides a representative distribution of the potential skill of the
prediction.

2.4 Focus regions
We use two focus regions, the Karun basin in southwest
Iran and the São Francisco basin in Brazil, as shown in
Figure 3 along with the weather stations used in this study.
As evident from Figure 4, the rainy season lies between
October–November and March–April for both regions, with
a very pronounced seasonal cycle, making their climate
semi-arid. During the wet period reservoirs are re-filled,
and that is the time for which seasonal predictions are most
important. Both basins are near the tropical belt of best sea-
sonal predictability. For the KB, between 1983 and 2015,
43 stations measure daily minimum (Tn) and maximum (Tx)
temperature and precipitation (P). For the SFB, between 1981
and 2017, daily mean temperature (T) is also measured, alto-
gether for 65 stations. We include temperature here because
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XDS simulates P–T covariability, which provides an extra
constraint on the local data.

2.5 ERA5 and SEAS5 from ECMWF
As fully described by Molteni et al. (2011), the integrated
forecasting system (IFS) of the ECMWF is a fully coupled
model that predicts the global atmosphere–ocean system up
to 180 days in advance. The new ERA5 reanalysis (Hersbach
and Dee, 2016) (also based on IFS) serves to provide the cur-
rently best approximation of what can be called atmospheric
observations. Uncertainty is modelled using a sophisticated
set of perturbations, both of initial conditions and parameters,
and simulating an ensemble of 25 members.

During a hindcast or forecast experiment by any NWP
model, no observational input is allowed or available, respec-
tively, to serve as a corrective. The model will therefore tend
to evolve from its initial state at zero lead time into its own cli-
mate, which will more or less differ from observations. This
climate drift becomes visible already after just a few days,
and increasingly so with the forecast horizon approaching
seasonal. This is also the case for SEAS5, although the drift
is already smaller than in the predecessor version SEAS4
(Stockdale et al., 2018). Obviously there is a need to correct
for this drift, which was done as described in Appendix S1,
cf. Figures S1–S4.

SEAS5 data are available for the years 1981 to the present
(or in our case 2018). As predictors for the downscaling (cf.
section 2.1) we use upper-level and surface fields from ERA5
and SEAS5: at pressure levels of 700, 850 and 1,000 hPa
we use temperature, specific humidity, and the wind vectors,
together with precipitation at the surface (that is, gridded
ERA5 and SEAS5 precipitation). For the KB we use the area
between (40◦E, 20◦N) and (60◦E, 40◦N), and for the SFB
the sector between (50◦W, 35◦S) and (25◦W, 5◦S), all in 1◦

resolution. The fields are projected onto the dominant princi-
pal components, and from the resulting predictor time series
the most important ones, 260 for SFB and 124 for KB, are
selected using a least angle regression (Hastie et al., 2005)
for the areal mean of all local variables. These serve as input
to the XDS downscaling.

3 RESULTS AND DISCUSSION

Downscaling validation is done for the respective areal mean
P series. The seamless seasonal predictions are evaluated
using the corresponding SF versions. For all predictions
(issued 1 January, 1 February, etc.) the skill of each lead
time (i.e. a particular day) is accordingly estimated from
those years between 1981 and 2018 when observations and
predictions are available for that particular day; for the KB
and the SFB that gives a sample size of 33 and 37 days,
respectively, in all years. We may assume that the 33 and 37

data pairs are independent (ignoring multi-annual random
variations), which results in a critical correlation value of
𝜌= .40 and 𝜌= .38 at a significance level of 1% (which we
use throughout).

3.1 Karun basin
3.1.1 ERA5/XDS validation
Figure 5 shows for the KB and the year 1995 daily areal P
as observed and as downscaled by ERA5/XDS. The strong
annual cycle is well matched, even single events are repro-
duced with high accuracy; the actual scale of events is some-
times over- and sometimes underestimated, a consequence of
the built-in feature of XDS to preserve local covariability, cf.
section 2.1 and section S2 in Appendix S1. For the full val-
idation period (1983–2000), this results in a correlation of
𝜌= .72 for daily de-seasonalized and normalized P using the
Normal Quantile Transform (NQT) (cf. Appendix S1) P. The
analogous result for downscaled T is shown in Figure S5 in
Appendix S1, showing a very high accuracy with a correlation
of 𝜌= .96.

For completeness, a comparison is made between the
downscaled and the “raw” gridded P fields from ERA5.
As shown in Figure S8 in Appendix S1, compared to the
grid-point-based areal mean P, based on the convex hull of the
station locations, the downscaled version performs consider-
ably better, as revealed by correlations of 𝜌 = .53 vs. 𝜌 = .85,
underpinning the need for downscaling.

3.1.2 SEAS5/XDS local predictions
For the KB, the local authorities issue monthly-to-seasonal
predictions (or “outlooks”) in rolling releases per month,
starting with the beginning of the water year in October (in
the form of monthly (“O”), seasonal (“OND”), or semi-annual
(“ONDJFM”) forecasts. This roughly corresponds to the lead
times of 15 days (SF = 27 days), 45 days (SF = 74 days), and
90 days (SF = 121 days).

We start by showing in Figure 6 the correlation skill
obtained for the 180 days area and ensemble mean forecasts
issued on the first of October and November. Unsurpris-
ingly, the SF-processed forecasts are essentially all above the
corresponding unfiltered daily scores (those fall below the
significance level of 0.4 already after a week or so). The fil-
tered October predictions remain skilful (𝜌> .6) for almost
a season, dropping below significance only in January and
staying there. The November predictions start with a some-
what higher skill (𝜌> .8), then drop off to insignificant levels
in December, but increase again to fairly large skill values
(𝜌∼ .7). Moreover, like in all other cases, after about 4 months
lead time the skill curves do not change much anymore. This
is a simple consequence of the SF characteristic, for which
the smoothing effect becomes less distinguished after that
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F I G U R E 6 Correlation skill for the raw (thin) and seamless (heavy) areal and ensemble mean forecasts issued on 1 October (top) and 1

November (bottom). For each issue and lead time, correlations are estimated from the years 1983–2015, which results in a critical value of 0.4 (see

text), displayed by the grey confidence band. The SF characteristic curve is shown as inset

time; to be able to distinguish greater lead times, a flatter SF
characteristic must be used.

Why are the two predictions valid for December so dif-
ferent? Looking at the SF characteristic, one sees that the
October predictions employ almost a 100-days smoothing for
December, whereas that filtering is below 50 days for the
November predictions. So apparently one can predict the sea-
son around 1 December more skilfully from October than
(approximately) the month of December from November.
This is supported by looking at seasonal predictions (with
very strong smoothing, cf. Figure S9 in Appendix S1); they
show a much higher skill especially for the November fore-
casts. Note, however, that due to the strong smoothing the
predicted amplitude is much less in that case. The higher skill
is evident from the time series shown in Figure 7; it shows nor-
malized observations and ensemble-mean predictions valid
for 1 December; due to the different smoothing (95 days vs.

54 days), observations slightly differ between the panels. It
is obvious that the longer-lead October predictions are much
better than those of November. Especially around the years
1985, 2000 and 2010, differences are noticeable, with large
discrepancies in the November predictions.

It turns out that the failure to predict December rainfall
from November is actually caused by the downscaling. As
shown in Figure S10 in Appendix S1, there is no drop in skill
for the (raw) gridded SEAS5 rainfall data, even without drift
correction. Although this failure seems to be an exception
(see Appendix S1), further analysis is needed to understand
that discrepancy.

It is of interest whether and how strong the skill depends
on the fact that the ensemble mean is considered. To that
effect, we re-plot the correlation skill for the October ensem-
ble mean predictions, and compare it to the skill of the single
members. For comparison, we do the same for the February
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F I G U R E 7 Example observations (black line) and deviation to the ensemble mean forecasts (filled area) for the fixed valid time 1 December,

for forecasts issued 1 October (top) and 1 November (bottom), with correlations of .60 and .21, respectively. The data are normalized, so that the

deviation (area) can be used to compare correlations (inversely)

predictions. In Figure 8 the October predictions show that for

short leads of under about a week, the ensemble mean per-

forms like an average member, as is to be expected. After that,

however, up until about 2 months, the ensemble mean is better

than any single member (except for one short period for one

member around late October). The single and ensemble mean

skills settle to their final value after about 4 months, which for

the mean is not significant (𝜌< .4) and, probably randomly,

within the spread of the single skills. With respect to PP,

the initial skill is expectedly much larger, this gap indicating

the error in initial conditions. The November–December high

skill of the mean is strikingly different from the fairly low PP

skill, pointing again to a mismatch between real and predicted

uncertainty. In a way, the February ensemble mean prediction

shows the reverse behaviour: starting with very good initial

skill (𝜌> .8), the skill drops early below significance (also for

single members) but regains significant values after mid-April

and ultimately converges to high values of about 0.6. Unlike

the October case, the PP skill is highest at all lead times, which

indicates an overall higher consistency between real and pre-

dicted uncertainty (i.e. prediction error and ensemble spread).

Most interestingly, for long leads the ensemble mean again

outperforms all the members, whereas in the shorter range

(mid-February to March) the mean has average skill, simi-

lar to the long-lead October predictions. It appears, thus, that

skilful prediction of the ensemble mean is directly linked to

that mean being more skilful than all members.

This may be verified when looking at all months, as in

Figure 9. One notices that when the ensemble mean skill
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F I G U R E 8 Comparison of seamless correlation skill of single

members (grey) vs. the ensemble mean (thick black), for the 1 October

(top) and 1 February (bottom) predictions. For comparison, the

potential predictability skill is also shown (thin black)

is significantly high for a range of leads, as in the Febru-
ary, March, October and November predictions, it is indeed
also higher than all members. Vice versa, if it is low, then it
tends to be lower than several members, as is evident from
the long-lead predictions of June, August and December.
For almost all months and lead times, PP skill is at least as
high as the ensemble mean, with two major exceptions: the
shorter-lead October and the longer-lead November predic-
tions (see above), which again points to inconsistent predic-
tion ensembles for those months.

3.2 São Francisco basin
3.2.1 ERA5/XDS validation
Figure 10 shows observed and ERA5/XDS simulated areal
P for the SFB. It is obvious that the seasonal cycle is some-
what weaker as compared to the KB (with its extended dry
period), but still considerable, and it is well reproduced by the
downscaled ERA5. This includes the main events, which are
sometimes over- and sometimes underestimated, like for the
KB. The respective de-seasonalized, NQT-normalized corre-
lations for the validation period 1981–1999 are: 𝜌= .70 (P),
𝜌= .78 (Tn), 𝜌= .78 (T), 𝜌= .79 (Tx). Time series are shown
in Appendix S1 (Figures S6 and S7).

3.2.2 SEAS5/XDS local predictions
Compared to the important October/November skill of the
KB, corresponding skill for the SFB (cf. Figure 11) is less
satisfactory. As skill is already low for zero lead time, this
may indicate a rather bad initialization for those months;
note that predictions issued in autumn are by far the worst
for all variants (gridded with and without drift-correction,
XDS downscaled, cf. Figure S10 in Appendix S1). The
medium-term November forecasts are somewhat better, while
the long-term forecasts are just above the significance level.
For the other months, skill values are often better, as demon-
strated in Figure 12. Predictions are skilful when issued in
the months from February to June, almost equally for all
leads (except for the February case), in accordance with pre-
vious studies (Hastenrath et al., 2009 and references therein).
The mentioned behaviour, that the ensemble mean prediction
skill is significantly high if and only if it is higher than all
members, is violated only for the May and July predictions,
which are skilful but slightly smaller than some members.
PP skill is higher in practically all significant cases. As an
example, we show in Figure 13 a comparison of the predic-
tions valid for 1 November, issued in June (SF = 148 days)
and October (SF = 55 days). The higher skill is visible for
the longer-lead June forecasts. The medium-term October
forecasts are especially bad in the years before 2000.

A figure comparing the ensemble mean skill to that of the
single members and to the PP, as in Figure 8, is shown in
Appendix S1 (Figure S12).

3.3 Discussion
We need to understand the high prediction skill for long leads
that is seen for both basins. A good example where both pre-
dictions are similarly high is for February. Both start quite
skilful (𝜌> .8), then level off in March, and regain high skill
(𝜌> .6) up until the end of the forecast period. Forecast-
ing for June involves a lead-time of 4 months or ∼120 days,
which translates into an SF smoothing of about 140 days,
representing a valid time from spring to the summer months.
Inspecting climatology, rainfall for that period is to a larger
portion determined by spring rainfall. If that is well predicted,
the corresponding skill would be extended into the sum-
mer months and “smoothed” with their own skill. We have
checked prediction skill confined to April alone, by employ-
ing a seamless filter with a much weaker, roughly monthly,
smoothing, using (Ax = 30, 𝜉 = 100.0), and compare it to our
standard filter (Ax = 150, 𝜉 = 2.4) in Figure 14. For the KB,
there is indeed monthly skill for March and, marginally, for
July. For the SFB, on the other hand, monthly skill is quite
strong throughout from February to July. So at least for SFB,
the high skill values that we have seen for the original SF can
be explained from the monthly skill already.
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F I G U R E 9 For KB, all 12 monthly seamless prediction skills for the ensemble mean (thick black) and potential predictability (thin black),

along with the range of the single members (grey)

F I G U R E 10 Similar to Figure 5, for the SFB

4 CONCLUSIONS

The seamless filter (SF) is introduced here as a tool to present

daily to seasonal forecasts in a concise and continuous way,

with lead time and time-scale varying consistently. The rule

after which they vary – how time-scale (smoothing) increases
with lead time – needs to be specified beforehand from
expert knowledge or user demand. Applicability of the SF,
and corresponding skill, was tested using ECMWF's SEAS5
system and 180-day forecasts for two river basins in Iran (KB)
and Brazil (SFB). Being station-based, the forecasts, after
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F I G U R E 11 Like Figure 6, for the SFB

the required downscaling (here done by XDS), fit easily to
existing water management strategies.

The water year for both basins starts in October–November
and ends in March–April the following year. Ideally, one
would like to have skilful long-term predictions starting some
time in autumn. According to Johnson et al. (2019), fig. 20,
both regions lie at the boundary of skilful tropical predictions
(DJF, 1-month lead). This is consistent with Figures 6 and 12
here. For the KB, predictability extends further in to the water
year with increased smoothing up until April. For the SFB,
the same is not true since predictability is not clearly above
the significance level. Greater predictability is seen starting
with the January forecasts and higher medium-term skill, and
extending to the full 180-day range (and strong smoothing)
for the February to June predictions.

The character of this study is mostly methodological, yet
a word of caution is in place with respect to so many fore-
cast skill outcomes, across multiple locations, lead times, and

time-scales, that entail enough statistical degrees of freedom
from which “skilful” predictions are easily detected based
on pure chance. One must shy away from overemphasizing
them, or if not, scrutinizing them carefully with respect to
physical plausibility and internal consistency. This was done
only briefly here (e.g. Figures 7 and 13) but should be done
elsewhere with greater diligence.

The study can be extended in three obvious directions.
(a) By focusing solely on areal mean precipitation, spa-
tial patterns varying within the season and, correspondingly,
within the forecast period are ignored. For example, in the
SFB (with more than 20◦ latitude) the rainy season trav-
els from Tres Marias, then to Sobradinho, and finally to
Itaparica (personal communication, Francisco Vasconcelos
Júnior, FUNCEME); this should be accounted for in a refined
assessment. (b) The current study evaluates ensemble mean
forecasts, which helped to somewhat reduce the complexity
of the problem. The next step is to extend the evaluation to
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F I G U R E 12 Like Figure 9, for the SFB

F I G U R E 13 Similar to Figure 7, the June (top) and October

(bottom) seamless predictions valid 1 November, for the SFB

a fully probabilistic setting that assesses local forecasts along
with their uncertainty. (c) The SF aggregation is currently
formulated as a simple form of averaging (or Butterworth
smoothing). When a greater focus on real events is intended,
that may not be enough. In that case, one may employ a more

F I G U R E 14 For both basins, seamless February forecast skills

with two different SF characteristics, one with strong (solid) and one

with weak smoothing (dashed)

refined statistic, such as the likelihood of events per time
range, or their expected intensity, or any statistical measure
that may fit to that time range. With the current set-up this can
be implemented easily.



252 BÜRGER

ACKNOWLEDGEMENTS, SAMPLES, AND
DATA
Local station data were kindly provided, for the KB by
Husain Najafi, in cooperation with the Iranian Meteorological
Organization and the Khuzestan Water and Power Organi-
zation, and for the SFB by Francisco das Chagas Vascon-
celos Junior from the Foundation Cearense for Meteorology
and Water Management (FUNCEME). GB received gener-
ous funding from the German Federal Ministry of Education
and Research initiative “Globale Ressource Wasser (GRoW)”
within the project SaWaM (http://grow-sawam.org/). I am
indebted to two anonymous reviewers who helped to improve
this article. All code can be inspected at https://gitlab.com/
gbuerger/SaWaM.

ORCID

Gerd Bürger https://orcid.org/0000-0003-3539-2975

REFERENCES

Alijani, B. (2002) Variations of 500 hPa flow patterns over Iran and
surrounding areas and their relationship with the climate of Iran.
Theoretical and Applied Climatology, 72, 41–54. https://doi.org/10.
1007/s007040200011.

Bauer, P., Thorpe, A. and Brunet, G. (2015) The quiet revolution of
numerical weather prediction. Nature, 525, 47–55.

Bronstert, A., Kolokotronis, V., Schwandt, D. and Straub, H. (2007)
Comparison and evaluation of regional climate scenarios for hydro-
logical impact analysis: general scheme and application example.
International Journal of Climatology, 27, 1579–1594.

Brunet, G., Jones, S. and Ruti, P.M. (2015) Seamless Prediction of the
Earth System: From minutes to months. Geneva, Switzerland: World
Meteorological Organization.

Buizza, R. (1997) Potential forecast skill of ensemble prediction and
spread and skill distributions of the ECMWF ensemble predic-
tion system. Monthly Weather Review, 125, 99–119. https://doi.org/
10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2.

Buizza, R., Leutbecher, M. and Thorpe, A. (2015) Living with the but-
terfly effect: a seamless view of predictability. ECMWF Newsletter
145, 18–23.

Bürger, G. (2002) Selected precipitation scenarios across Europe. Jour-
nal of Hydrology, 262, 99–110.

Bürger, G., Murdock, T., Werner, A., Sobie, S. and Cannon, A. (2012)
Downscaling extremes – An intercomparison of multiple statistical
methods for present climate. Journal of Climate, 25, 4366–4388.

DelSole, T. and Tippett, M.K. (2009a) Average predictability time. Part
I: Theory. Journal of the Atmospheric Sciences, 66, 1172–1187.

DelSole, T. and Tippett, M.K. (2009b) Average predictability time. Part
II: Seamless diagnoses of predictability on multiple time scales.
Journal of the Atmospheric Sciences, 66, 1188–1204. https://doi.org/
10.1175/2008JAS2869.1.

Ford, T.W., Dirmeyer, P.A. and Benson, D.O. (2018) Evaluation of
heat wave forecasts seamlessly across subseasonal timescales. npj
Climate and Atmospheric Science, 1, 1–9. https://doi.org/10.1038/
s41612-018-0027-7.

Gustafsson, F. (1996) Determining the initial states in forward-backward
filtering. IEEE Transactions on Signal Processing, 44, 988–992.

Hastenrath, S., Sun, L. and Moura, A.D. (2009) Climate prediction for
Brazil's Nordeste by empirical and numerical modeling methods.
International Journal of Climatology, 29, 921–926. https://doi.org/
10.1002/joc.1770.

Hastie, T., Tibshirani, R., Friedman, J. and Franklin, J. (2005) The ele-
ments of statistical learning: data mining, inference and prediction,
2nd ed. New York, NY: Springer-Verlag.

Hersbach, H. and Dee, D. (2016) ERA5 reanalysis is in production.
ECMWF Newsletter, 147(7), 5–6.

Johnson, S.J., Stockdale, T.N., Ferranti, L., Balmaseda, M.A., Molteni,
F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Bal-
samo, G., Keeley, S.P.E., Mogensen, K., Zuo, H. and Monge-Sanz,
B.M. (2019) SEAS5: the new ECMWF seasonal forecast system.
Geoscientific Model Development, 12, 1087–1117. https://doi.org/
10.5194/gmd-12-1087-2019.

Kirtman, B., and Pirani, A. (2008) WCRP position paper on seasonal
prediction. WCRP Informal Report No. 3/2008, ICPO Publication
No. 127.

Silva, V.B.S. and Kousky, V.E. (2012) The South American mon-
soon system: climatology and variability. In: Wang, S.-W.
and Gillies, R.R. (Eds.) Chapter 5 in Modern Climatology.
Norderstedt, Germany: IntechOpen.

Lorenz, E.N. (1972) Predictability: Does the flap of a butterfly's wings
in Brazil set off a tornado in Texas? . Washington, DC: American
Association for the Advancement of Science.

Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Fer-
ranti, L., Magnusson, L., Mogensen, K., Palmer, T.N. and Vitart,
F. (2011) The New ECMWF Seasonal Forecast System (System
4). Technical Memorandum 656, Reading: European Centre for
Medium-Range Weather Forecasts.

Palmer, T.N., Doblas-Reyes, F., Weisheimer, A. and Rodwell, M. (2008)
Toward seamless prediction: calibration of climate change projec-
tions using seasonal forecasts. Bulletin of the American Meteorolog-
ical Society, 89, 459–470.

Reichler, T. and Roads, J. (2003) The role of boundary and initial condi-
tions for dynamical seasonal predictability. Nonlinear Processes in
Geophysics, 10, 211–232.

Robertson, A.W. and Vitart, F. (2019) Sub-seasonal to Seasonal Predic-
tion: The gap between weather and climate forecasting. Amsterdam,
Netherlands: Elsevier.

Rowell, D.P. (1998) Assessing potential seasonal predictability with an
ensemble of multidecadal GCM simulations. Journal of Climate, 11,
109–120.

Shukla, J., Hagedorn, R., Miller, M., Palmer, T.N., Hoskins, B., Kinter,
J., Marotzke, J. and Slingo, J. (2009) Strategies: revolution in climate
prediction is both necessary and possible: a declaration at the world
modelling summit for climate prediction. Bulletin of the American
Meteorological Society, 90, 175–178.

Sigmond, M., Scinocca, J.F., Kharin, V.V. and Shepherd, T.G. (2013)
Enhanced seasonal forecast skill following stratospheric sudden
warmings. Nature Geoscience, 6, 98–102. https://doi.org/10.1038/
ngeo1698.

Stockdale, T., Johnson, S., Ferranti, L., Balmaseda, M. and Briceag,
S. (2018) ECMWF's new long-range forecasting system SEAS5.
Reading: ECMWF Newsletter, 154, 15–20.

Sun, J. and Ahn, J. (2015) Dynamical seasonal predictability of the Arc-
tic Oscillation using a CGCM. International Journal of Climatology,
35, 1342–1353.

http://grow-sawam.org/
https://gitlab.com/gbuerger/SaWaM
https://gitlab.com/gbuerger/SaWaM
https://orcid.org/0000-0003-3539-2975
https://orcid.org/0000-0003-3539-2975
https://doi.org/10.1007/s007040200011
https://doi.org/10.1007/s007040200011
https://doi.org/10.1175/1520-0493(1997)125%3C0099:PFSOEP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1997)125%3C0099:PFSOEP%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1997)125%3C0099:PFSOEP%3E2.0.CO;2
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1175/2008JAS2869.1
https://doi.org/10.1038/s41612-018-0027-7
https://doi.org/10.1038/s41612-018-0027-7
https://doi.org/10.1002/joc.1770
https://doi.org/10.1002/joc.1770
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.5194/gmd-12-1087-2019
https://doi.org/10.1038/ngeo1698
https://doi.org/10.1038/ngeo1698


BÜRGER 253

Vitart, F. and Robertson, A.W. (2018) The sub-seasonal to seasonal
prediction project (S2S) and the prediction of extreme events. npj
Climate and Atmospheric Science, 1, 3.

Wheeler, M.C., Zhu, H., Sobel, A.H., Hudson, D. and Vitart, F. (2017)
Seamless precipitation prediction skill comparison between two
global models. Quarterly Journal of the Royal Meteorological Soci-
ety, 143(702), 374–383. https://doi.org/10.1002/qj.2928.

Yadav, R.K. (2016) On the relationship between Iran surface temperature
and northwest India summer monsoon rainfall. International Journal
of Climatology, 36, 4425–4438.

Zhu, H., Wheeler, M.C., Sobel, A.H. and Hudson, D. (2014) Seamless
precipitation prediction skill in the tropics and extratropics from a
global model. Monthly Weather Review, 142, 1556–1569.

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of this article.

How to cite this article: Bürger G. A seamless filter
for daily to seasonal forecasts, with applications to
Iran and Brazil. Q J R Meteorol Soc.
2020;146:240–253. https://doi.org/10.1002/qj.3670

https://doi.org/10.1002/qj.2928

	Title
	Abstract
	Keywords
	1 Introduction
	2 Methods and Data
	2.1 Expanded downscaling
	2.2 The seamless filter
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	2.3 Potential predictability
	2.4 Focus regions
	2.5 ERA5 and SEAS5 from ECMWF

	3 Results and Discussion
	3.1 Karun basin
	3.1.1 ERA5/XDS validation
	3.1.2 SEAS5/XDS local predictions
	Figure 6
	Figure 7
	Figure 8

	3.2 São Francisco basin
	3.2.1 ERA5/XDS validation
	3.2.2 SEAS5/XDS local predictions

	3.3 Discussion
	Figure 9
	Figure 10

	4 Conclusions
	Figure 11
	Figure 12
	Figure 13
	Figure 14

	Acknowledgements, Samples and Data
	References

