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Summary

In Systems Medicine, in addition to high-throughput molecular data (*omics), the wealth
of clinical characterization plays a major role in the overall understanding of a disease.
Unique problems and challenges arise from the heterogeneity of data and require new
solutions to software and analysis methods. The SMART and EurValve studies establish a
Systems Medicine approach to valvular heart disease – the primary cause of subsequent
heart failure.
With the aim to ascertain a holistic understanding, different *omics as well as the

clinical picture of patients with aortic stenosis (AS) and mitral regurgitation (MR) are
collected. Our task within the SMART consortium was to develop an IT platform for
Systems Medicine as a basis for data storage, processing, and analysis as a prerequisite for
collaborative research. Based on this platform, this thesis deals on the one hand with the
transfer of the used Systems Biology methods to their use in the Systems Medicine context
and on the other hand with the clinical and biomolecular differences of the two heart
valve diseases. To advance differential expression/abundance (DE/DA) analysis software
for use in Systems Medicine, we state 21 general software requirements and features
of automated DE/DA software, including a novel concept for the simple formulation
of experimental designs that can represent complex hypotheses, such as comparison of
multiple experimental groups, and demonstrate our handling of the wealth of clinical data
in two research applications - DEAME and Eatomics. In user interviews, we show that
novice users are empowered to formulate and test their multiple DE hypotheses based on
clinical phenotype. Furthermore, we describe insights into users’ general impression and
expectation of the software’s performance and show their intention to continue using the
software for their work in the future. Both research applications cover most of the features
of existing tools or even extend them, especially with respect to complex experimental
designs. Eatomics is freely available to the research community as a user-friendly R Shiny
application.
Eatomics continued to help drive the collaborative analysis and interpretation of the

proteomic profile of 75 human left myocardial tissue samples from the SMART and EurValve
studies. Here, we investigate molecular changes within the two most common types of
valvular heart disease: aortic valve stenosis (AS) and mitral valve regurgitation (MR).
Through DE/DA analyses, we explore shared and disease-specific protein alterations,
particularly signatures that could only be found in the sex-stratified analysis. In addition,
we relate changes in the myocardial proteome to parameters from clinical imaging. We find
comparable cardiac hypertrophy but differences in ventricular size, the extent of fibrosis,
and cardiac function. We find that AS and MR show many shared remodeling effects,
the most prominent of which is an increase in the extracellular matrix and a decrease in
metabolism. Both effects are stronger in AS. In muscle and cytoskeletal adaptations, we see
a greater increase in mechanotransduction in AS and an increase in cortical cytoskeleton in
MR. The decrease in proteostasis proteins is mainly attributable to the signature of female
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patients with AS. We also find relevant therapeutic targets.
In addition to the new findings, our work confirms several concepts from animal and heart

failure studies by providing the largest collection of human tissue from in vivo collected
biopsies to date. Our dataset contributing a resource for isoform-specific protein expression
in two of the most common valvular heart diseases. Apart from the general proteomic
landscape, we demonstrate the added value of the dataset by showing proteomic and
transcriptomic evidence for increased expression of the SARS-CoV-2- receptor at pressure
load but not at volume load in the left ventricle and also provide the basis of a newly
developed metabolic model of the heart.

Zusammenfassung

In der Systemmedizin spielt zusätzlich zu den molekularen Hochdurchsatzdaten (*omics)
die Fülle an klinischer Charakterisierung eine große Rolle im Gesamtverständnis einer
Krankheit. Hieraus ergeben sich Probleme und Herausforderungen unter anderem in Bezug
auf Softwarelösungen und Analysemethoden. Die SMART- und EurValve-Studien etablieren
einen systemmedizinischen Ansatz für Herzklappenerkrankungen – die Hauptursache für
eine spätere Herzinsuffizienz.
Mit dem Ziel ein ganzheitliches Verständnis zu etablieren, werden verschiedene *omics

sowie das klinische Bild von Patienten mit Aortenstenosen (AS) und Mitralklappeninsuf-
fizienz (MR) erhoben. Unsere Aufgabe innerhalb des SMART Konsortiums bestand in
der Entwicklung einer IT-Plattform für Systemmedizin als Grundlage für die Speicherung,
Verarbeitung und Analyse von Daten als Voraussetzung für gemeinsame Forschung. Ausge-
hend von dieser Plattform beschäftigt sich diese Arbeit einerseits mit dem Transfer der
genutzten systembiologischen Methoden hin zu einer Nutzung im systemmedizinischen
Kontext und andererseits mit den klinischen und biomolekularen Unterschieden der beiden
Herzklappenerkrankungen. Um die Analysesoftware für differenzielle Expression/Abundanz,
eine häufig genutzte Methode der System Biologie, für die Nutzung in der Systemmedizin
voranzutreiben, erarbeiten wir 21 allgemeine Softwareanforderungen und Funktionen einer
automatisierten DE/DA Software. Darunter ist ein neuartiges Konzept für die einfache
Formulierung experimenteller Designs, die auch komplexe Hypothesen wie den Vergleich
mehrerer experimenteller Gruppen abbilden können und demonstrieren unseren Umgang
mit der Fülle klinischer Daten in zwei Forschungsanwendungen – DEAME und Eatomics.
In Nutzertests zeigen wir, dass Nutzer befähigt werden, ihre vielfältigen Hypothesen zur dif-
ferenziellen Expression basierend auf dem klinischen Phänotyp zu formulieren und zu testen,
auch ohne einen dedizierten Hintergrund in Bioinformatik. Darüber hinaus beschreiben
wir Einblicke in den allgemeinen Eindruck der Nutzer, ihrer Erwartung an die Leistung
der Software und zeigen ihre Absicht, die Software auch in der Zukunft für ihre Arbeit zu
nutzen. Beide Forschungsanwendungen decken die meisten Funktionen bestehender Tools
ab oder erweitern sie sogar, insbesondere im Hinblick auf komplexe experimentelle Designs.
Eatomics steht der Forschungsgemeinschaft als benutzerfreundliche R Shiny-Anwendung
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frei zur Verfügung.
Eatomics hat weiterhin dazu beigetragen, die gemeinsame Analyse und Interpretation des

Proteomprofils von 75 menschlichen linken Myokardgewebeproben aus den SMART- und
EurValve-Studien voran zu treiben. Hier untersuchen wir die molekularen Veränderungen
innerhalb der beiden häufigsten Arten von Herzklappenerkrankungen: AS und MR. Durch
DE/DA Analysen erarbeiten wir gemeinsame und krankheitsspezifische Proteinveränderun-
gen, insbesondere Signaturen, die nur in einer geschlechtsstratifizierten Analyse gefunden
werden konnten. Darüber hinaus beziehen wir Veränderungen des Myokardproteoms auf
Parameter aus der klinischen Bildgebung. Wir finden eine vergleichbare kardiale Hypertro-
phie, aber Unterschiede in der Ventrikelgröße, dem Ausmaß der Fibrose und der kardialen
Funktion. Wir stellen fest, dass AS und MR viele gemeinsame Remodelling-Effekte zeigen,
von denen die wichtigsten die Zunahme der extrazellulären Matrix und eine Abnahme des
Metabolismus sind. Beide Effekte sind bei AS stärker. Zusätzlich zeigt sich eine größere
Variabilität zwischen den einzelnen Patienten mit AS. Bei Muskel- und Zytoskelettanpas-
sungen sehen wir einen stärkeren Anstieg der Mechanotransduktion bei AS und einen
Anstieg des kortikalen Zytoskeletts bei MR. Die Abnahme von Proteinen der Proteostase
ist vor allem der Signatur von weiblichen Patienten mit AS zuzuschreiben. Außerdem
finden wir therapierelevante Proteinveränderungen.
Zusätzlich zu den neuen Erkenntnissen bestätigt unsere Arbeit mehrere Konzepte aus

Tierstudien und Studien zu Herzversagen durch die bislang größte Kollektion von humanem
Gewebe aus in vivo Biopsien. Mit unserem Datensatz stellen wir eine Ressource für die
isoformspezifische Proteinexpression bei zwei der häufigsten Herzklappenerkrankungen zur
Verfügung. Abgesehen von der allgemeinen Proteomlandschaft zeigen wir den Mehrwert
des Datensatzes, indem wir proteomische und transkriptomische Beweise für eine erhöhte
Expression des SARS-CoV-2- Rezeptors bei Drucklast, jedoch nicht bei Volumenlast im
linken Ventrikel aufzeigen und außerdem die Grundlage eines neu entwickelten metabolischen
Modells des Herzens liefern.
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1 Introduction

Systems Medicine’s main objective is to integrate all relevant biological and medical data
levels to broaden our understanding of pathophysiological mechanisms, prognosis, diagnosis,
and treatment of diseases [1]. The branch of research is similar to Systems Biology and
both are fueled by the emergence of high-throughput data acquisition techniques. Because
of the similarities in objectives, another common short definition is “Systems Medicine is
the implementation of Systems Biology approaches into medical research.” [2]. Systems
Biology gained momentum approximately 10 years before Systems Medicine did, as can be
inferred from the number of publications on the topics as indexed in PubMed (Figure 1.1).
It is assumed that the advancements and solutions for data acquisition and computational
capabilities from Systems Biology can be transferred, adapted, or extended to the challenges
unique to medical research.

Figure 1.1: Count of publications indexed in PubMed from 1988 to today. Queries to
PubMed used to retrieve result counts are "systems medicine"[All Fields] and for reference
the related term "systems biology"[All Fields] on Jan 27, 2021 at https://pubmed.ncbi.
nlm.nih.gov/.

To do so, we need to understand the difference and similarities in both research settings,
as depicted in Figure 1.2. In biomolecular research, a molecular biologist sets up in vitro
experiments, which serve as the basis for high-throughput measurements. For example, cell
or bacterial cultures are treated or serve as control while keeping external conditions identical
(control vs. treated experiment – two-group comparison). As such, the perturbation to the
system under investigation is well-controllable. The metadata to describe the experiment
is limited and structured. The effort is theoretically only limited by human and financial
resources and an experiment may be repeated several times to assess sufficient evidence. In
contrast, in medical research, the clinical scientist plays an additional and crucial role and
the investigation shifts focus towards human tissue or fluids. The specimens are taken after
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undergoing various in vivo perturbations, e.g., high blood pressure. As a result, molecular
profiles are less controllable. The influences are captured in the clinical information and
examination results, which by nature are diverse in the assessed parameters and in the
data type they are stored in, i.e., the digital version. In any case, there are categorical
and numerical parameters that can be grouped into subcategories, or the data consists
of fully unstructured clinical notes. The heterogeneity poses challenges on data storage,
handling, access and also needs to be considered in analyses. Although the term is not
common in the community, we refer to the clinical data as the "clinicome". The setup in
medical research is limited to the accessibility of human specimen.
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Figure 1.2: Overview in the setting in Systems Biology and Systems Medicine. Both
research areas are fueled by high-throughput data (*omes). In biomolecular research,
the data is derived from in vitro perturbed cultured cells or bacteria and is performed by
the molecular biologist in a controlled environment. A dedicated computational biologist
or easy-to-use software solutions are needed for data analysis. In medical research,
the focus shifts towards human specimens, perturbed by the human system’s various
influences before biopsy extraction. Influences are captured in the clinical examination
data (= clinicome) assessed by the clinical scientist.

In both settings, high-throughput data is assessed, which primarily refers to the molecular
*omes (greek for totality), i.e., data artefacts that describe the totality of all molecular
features by reporting their sequence/chemical setup or quantity for one or more biologic
samples. Examples are the exome or the whole genome, which describe the qualitative
variation in a specific subject’s genetic code, or the transcriptome, i.e., the quantitative
profile of gene transcripts that define the cells’ major functions. Both are valuable molecular
information resources that next-generation sequencing (NGS) techniques have enabled.
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Similarly, the proteome, i.e., the abundance of proteins in a specific cell or tissue, is becoming
increasingly available for broad assessment in modern mass spectrometry setups [3]. For
the remainder of the thesis, we refer to the quantitative measurements as high-throughput
quantification (HTQ) data, i.e., data that describe the quantity for every feature of a
molecular level for one or more biologic samples.
Through increasing availability and decreasing costs, HTQ has become a cornerstone

in modern life science research groups [4]. However, the large amounts of molecular
data require computational power and expertise in analysis. For example, raw high-
throughput measurements result in several Gigabytes of data per sample and undergo
intensive pre-processing, e.g., analysis of spectra from mass spectrometry experiments [5]
for proteomics or mapping of RNA sequencing reads in transcriptomics [6]. Interpretation
can be performed within one level of molecular data, e.g., in differential expression analysis,
or by spanning multiple omes, e.g., in network analysis or multi-omics subtype detection.
Furthermore, external knowledge bases can be exploited to support the analysis process
or help in interpretation, e.g., through gene set/pathway enrichment analysis. To fully
exploit the wealth of molecular data, a lab relies on a dedicated computational biologist or
analysis tools easy enough to be operable by the molecular biologist [4].
A common approach to derive insights from HTQ data in Systems Biology, and thus

a starting point for method transfer is differential expression (DE) analysis, also called
differential abundance (DA) analysis in the proteomics field. Inherent to DE/DA analysis
are at least two groups of cell- or tissue samples assumed to show differences in gene/protein
quantity. In the classical sense, the differences result from a single controlled in vitro
perturbation of one group of samples and thus the system under investigation. The
scientific question can be stated as how to find genes/proteins that are differentially
expressed/abundant between the groups under investigation. Initially, large differences
in gene expression measured with microarrays were detected visually. However, when the
technology became more mature and scaled out from less than 50 quantified genes to many
thousands, accurate statistical methods to define difference needed to be developed [7]
and expanded to the various singularities of HTQ data. Many state-of-the-art solutions
adopted generalized linear models (GLM), which provide great flexibility in modeling
the measurement data’s characteristics [8, 9]. Additionally, a large collection of work has
been invested in optimizing data transformation, variance-mean dependency correction,
information sharing across genes, shrinkage, and many more aspects. In biomolecular
research, GLMs are used to model the two-group comparison but are well suited to model
more complex experimental setups.
In medical research, the clinicome describes the causes, influences, and consequences

of the disease. As a primary stakeholder and expert on the clinical data, the clinical
scientist has the deepest knowledge and understanding of patient and disease. From the
clinical scientist’s perspective, there are many ideas and hypotheses on how parameters
from the clinical representation may influence the affected tissue’s molecular profile. As a
result, we need to consider the clinicome for DE/DA model setup. Many of the clinicians’
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questions can be rephrased as "What are the differences in group A vs. group B?" or "Are
there any relationships between protein expression and a continuous clinical parameter?".
Theoretically, it is possible to answer most questions using DE/DA analysis. However, it
usually requires a computational biologist’s work to translate the hypothesis into a valid
design formula, to set up and execute the calculations, and to refine the results into a
condensed overview for the clinical scientist. In contrast to the two-group comparison in
the Systems Biology setup, in Systems Medicine, the proper definition of the design formula
is aggravated by the necessity to include and thus model all reasonable confounding clinical
parameters. As a result, the DE/DA analysis models may likely become very complex,
including the influence of interest and several confounding effects or interactions.
While the aim of method transfer usually refers to statistical methods and machine

learning [10, 11], it is also true for the development of computational platforms and
appropriate medical information technology [12]. Systems Medicine depends on powerful
information technology (IT) platforms that can integrate, process, and analyze the multiple,
heterogeneous biomedical datasets and simultaneously support the workflow of research
consortia and the needs of interdisciplinary teams [13].
In Europe, the Systems Medicine research area profited from CASyM (Coordinating

Systems Medicine across Europe) [14] and EASyM (European Association of Systems
Medicine) [15]. . The two initiatives developed a roadmap to pave the way to distribute more
than 24 million euros to promote Systems Medicine approaches and demonstrate their utility.
Fueled by these efforts and other international initiatives [16], newly founded research
institutes [17], dedicated conferences [18,19], a journal [20], and training courses [21,22]
emerged soon after.
Recently, successful examples of Systems approaches in cardiovascular conditions are

emerging [23]. For example, Schlotter et al. (2018) developed a spatio-temporal molecular
atlas of the human aortic valve. The integration of post-operative molecular imaging and
pathology with proteomics, transcriptomics, and network analysis reveals disease networks
driving calcific aortic valve disease. As there is no treatment available, the authors argue
that the similarity to inflammatory diseases may be exploited to search for a potential
treatment [24].

Due to the complexity of heart failure (HF) and cardiovascular diseases in general with
numerous risk factors, e.g., genetic predisposition or physical inactivity, the disease promises
a strong susceptibility to a patient-specific, Systems Medicine treatment approach [25–27].
The Systems Medicine Approach for Heart Failure (SMART) study is a demonstrator

within the German e:Med initiative to explore and analyze the complex regulatory network
that triggers the course and onset of HF. Similarly, the EurValve study aimed to model
multiple clinical and molecular data modalities to find the best time point for surgical
intervention in heart valve diseases [28]. The common ground for both SMART and
EurValve is their focus on heart valve diseases as the leading cause of HF. The left
ventricle’s proper function relies on mitral and aortic valves to close and open appropriately.
Valve stenosis denotes the valve’s improper opening to ensure blood flow, while valve
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regurgitation denotes improper closing and leakage of the valve. The disturbance of
hemodynamic flow in aortic valve stenosis (AS) and mitral valve regurgitation (MR) causes
chronic cardiac pressure or volume overload, which triggers distinctive forms of cardiac
remodeling. One very prominent adaptation mechanism is left ventricular hypertrophy
(Figure 1.3), i.e., an increase in myocardial mass, typically concentric in pressure and
eccentric in volume overload [29, 30]. In aging populations, the incidence is increasing

Volume overload as in  
MR Normal Heart 

Eccentric hypertrophy 

Concentric hypertrophy 

Cardiomyocyte 

Length 

Width 

Sarcomere 

Pressure overload as in 
AS 

Heart  
failure 

Figure 1.3: The disturbance of hemodynamic flow in AS and MR causes chronic cardiac
pressure or volume overload, which triggers cardiac hypertrophy, i.e., an increase in
myocardial mass, especially in the left ventricle (red). In pressure overload, concentric
remodeling is characterized by a thickening of the left ventricle wall and a decrease in
inner diameter. In eccentric remodeling, as in volume overload, the left ventricle’s inner
diameter widens. MR - mitral valve regurgitation, AS - aortic valve stenosis.

drastically and is becoming a serious health burden. AS and MR are the most frequent
types of valve diseases and have reached an incidence of more than 12% of the population
older than 65 years for AS and 9% for MR [31, 32]. In an adapted compensated state,
patients can remain asymptomatic for years; however, once there is a transition into
HF and patients become symptomatic, the prognosis is poor in both patient groups if
they remain untreated [33]. Furthermore, significant sex differences have been reported
regarding left ventricular hypertrophy, heart failure progression, and valvular heart disease
in general [34,35]. Most knowledge about cardiac adaptation mechanisms in valve disease
is currently available at the organ scale where clinical parameters like ventricular function
or myocardial mass and fibrosis can be investigated with non-invasive imaging methods [36].
Much less is known about human cardiac adaptation mechanisms at the cellular or protein
expression level.

SMART and EurValve represent common characteristics and challenges in (cardiovascu-
lar) Systems Medicine research as depicted by Gietzelt et al. (2016) [10] and summarized
by Kramer et al. (2018) [26]:

1. Both studies provide valuable human specimens from the left ventricle (LV). Therefore,
they are eligible to support the translation of findings from animal models to humans.

2. In order to characterize heart valve diseases, both studies exploit the new possibility
of feasibly measuring multiple *omes in the medical research setting. Molecular
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levels include the genome derived by whole genome sequencing, the transcriptome
derived by RNA sequencing (RNAseq), the proteome derived by shot-gun, label-free
mass spectrometry measurements, and the clinicome in an observational fashion. In
total, 124 individuals are characterized in at least one *ome (Figure 1.4). Of these,
17 individuals constitute a healthy control cohort; 60 subjects were diagnosed with
aortic stenosis and 47 with mitral valve regurgitation.

3. Collaborators and stakeholders in a Systems Medicine consortium form an interdisci-
plinary team of researchers involving clinicians and clinical scientists, mathematical
modelers, computational and molecular biologists as well as software engineers. The
diversity in expertise shall provide a comprehensive picture to gather all necessary
information for clinical decision making, similar to a tumor board. Such a setup
requires strategic efforts and a common ground of basic understanding of each other’s
discipline and formation of shared research hypotheses.

4. Both studies are dependent on new, powerful computational platforms for data
storage, data handling, flow of information, and methodologies for statistical analyses
and integration of heterogeneous data sets.

Both studies are summarized in Figure 1.4. Throughout this thesis, they serve as
representative examples of Systems Medicine approaches.

In summary, the wealth of data in Systems Medicine is large and is characterized by omics
and clinical data. SMART and EurValve are Systems Medicine approaches committed
to exploring heart valve diseases. The transfer of methods and approaches from Systems
Biology is a dedicated aim of Systems Medicine and needs careful consideration of the
unique setup in medical research. Because of the field’s recency, hurdles in pursuing
a Systems Medicine approach and thereby deriving meaningful biomedical results are
high. Additionally, a detailed picture of the molecular setup in healthy human hearts
and the difference in cardiac tissue of hearts under pressure and volume load would help
translate findings from animal models and broaden our general understanding and establish
relationships between the clinical phenotype and the molecular setup. Therefore, our
central aim is to progress towards Systems Medicine by utilizing and advancing
Systems Biology approaches in general and on the specific use case of heart
valve diseases. As such, the thesis is divided into a first part that considers the transfer
of Systems Biology software to enable Systems Medicine approaches and a second part
that disseminates characteristics in heart valve diseases across the molecular and clinical
phenotype.

1.1 Research Questions and Objectives

In this thesis, we address two distinct research questions, one relating to transferring
Systems Biology methods to be used in Systems Medicine from a software development
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perspective and the other addressing particular biomedical insights in human heart valve
disease.

The first question addresses the need for DE/DA analysis software adaptations towards
their use in Systems Medicine settings. The clinical scientist usually has a broad knowledge
of the clinical phenotype and expresses many questions and hypotheses on molecular
processes. The computational biologist knows how to perform the analysis and answer the
questions, but not the resources to work on all of them. In Systems Biology, the lack of a
computational biologist in life science research groups has been addressed by a plethora of
tools or platforms that cover many steps of raw data pre-processing and calculation [4],
e.g., for DE [37–42], DA [43–47] or even differential methylation [48] calculation. However,
they are tailored to the origin of DE/DA analysis in Systems Biology, which assumes
minimal experimental metadata to take into account. As a result, solutions that run all
computation steps in one run are appropriate and there is no dedicated requirement to
handle the extensive clinical/phenotypic data as common in medical research. Furthermore,
no approach has ever been subject to (published) user testing. Usage of current solutions
promotes redundant processing of data and/or restriction of clinical hypotheses towards few
simple designs, thus not leveraging the full potential of both the molecular quantification
data and the clinical phenotype. Additionally, a software solution developed without user
testing may in fact not be valuable to the actual user after all. Therefore, the first research
question is as follows:

Research Question 1: How can automated DE/DA calculation software be adapted to
the wealth of data and the exploratory nature of data analysis in an observational Systems
Medicine setting?

The first part of this thesis aims to determine and implement features and requirements of
a research application, which

(i) is dedicated to handling the clinicome,

(ii) qualifies novice user to interactively define and configure complex hypotheses to be
tested on HTQ data, and which

(iii) automates processing steps while adhering to the scientific standards of best practice
procedures to receive publication-ready results on DE/DA results.

We use a hybrid approach of Design Thinking, scientific software engineering, and
literature research to define features and requirements of DE/DA software for Systems
Medicine. We implement prototypes of such a software and utilize user testing to evaluate
the specific Systems Medicine adaptations concerning the user’s perception and intention
to use.
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In the second part of the thesis, we address the biomedical insights with regard to our
Systems Medicine data set from the SMART and EurValve study:
Cardiac hypertrophy caused by pressure overload (as in AS) or volume overload (as in

MR) result in distinct forms of cardiac remodeling. Because of the difficulty to obtain
human biopsy samples and the only recently emerging large-scale proteomics measurements,
the changes in protein abundance in the myocardium of AS and MR could not be measured
in well-powered studies yet [49]. Furthermore, sex-differences play a role in cardiac
disease [34, 35] but are seldom considered in molecular studies. The majority of knowledge
is gathered from clinical data assessed with non-invasive methods [36]. Attempts at
elucidating the molecular setup in heart valve diseases and the impact of the differing
hemodynamic loads are either based on animal models [50], are very small with regard to
sample size and balance of sexes [49, 51], or cover only a small subset of proteins expressed
in the myocardium [49, 50]. A larger body of extensive human evidence extends our
general knowledge base on the topic and eventually helps to develop new targeted therapy
approaches and avoid interventions that are not efficient in a specific condition or sex.

Research Question 2: How does the myocardial proteome in heart valve diseases differ
from the normal state and between conditions and how do these changes relate to known
clinical characteristics? What are sex-specific changes?

The second part of the thesis aims to obtain deeper insight into condition- and sex-specific
differences in human heart valve disease and relate the extensive proteomic data to clinical
parameters in a well-powered study of human tissue. We gather clinical parameters as
well as deep proteomic measurements from collected tissue samples from the SMART and
EurValve context. We apply differential abundance analysis, gene set enrichment, and
a sophisticated approach of combining the results from different comparisons to derive
shared and condition- and sex-specific proteome alterations and their relationship to clinical
parameters.

1.2 Contributions

The contributions result from collaborative efforts and address parts of the research
questions with regard to software, benchmarks, and biomedical findings. All relevant
research artefacts are summarized in Figure 1.4 and shares in authorship and work effort
are addressed in a dedicated section at the end of the thesis.

The SMART and EurValve projects serve as representative examples. Two benchmarks,
one on indel-detection from RNAseq data and one on unsupervised subgroup detection
(USD) methods, are not the main subjects considered in this thesis but can be acknowledged
in Slosarek et al. (2018) [52] and Appendix C. Although the multi-omics subtypes in AS
found through USD algorithms are not robust, the results influenced analysis directions
and follow-up studies.
As a prerequisite, and as such described in subsection 2.2.1, we define and implement

requirements of an IT platform for Systems Medicine tailored to the specific use case of
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Figure 1.4: Overview on SMART and EurValve data as representatives for a Systems
Medicine setting, derived research artefacts and how they relate to different data sources.
Contributions are grouped to belong to software, benchmarks or being biomedical studies.
MS/MS - tandem mass spectrometry, USD -unsupervised subgroup detection, RNAseq -
RNA sequencing, WGS - whole genome sequencing.

the SMART and EurValve projects. The platform serves as a central hub for data entry,
upload, and storage of Systems Medicine data. It provides infrastructure and tools for
processing NGS raw data and serves as a starting point for embedding the DE/DA research
applications. Principles of the platform are described in:

Milena Kraus and Matthieu-P Schapranow. An in-memory database platform for
systems medicine. In Proceedings of the 9th Int’l Conf. on Bioinformatics and
Computational Biology. ISCA, 2017. [53]

Our research and analysis applications are published in the following articles:

Milena Kraus et al. DEAME – Differential Expression Analysis Made Easy. In 44th
Int’l Conf. on Very Large Data Bases, Workshop on Heterogeneous Data Management,
Polystores, and Analytics for Healthcare, pages 162-174, Springer, 2018 [54]

Milena Kraus, Mariet Mathew Stephen and Matthieu-P Schapranow. Eatomics:
Shiny exploration of quantitative proteomics data. Journal of Proteome Research,
20(1):1070-1078, 2020 [55]

In the thesis, we provide details on the definition and implementation of general require-
ments for DE/DA software. For use in the Systems Medicine context, we develop the
novel flexible experimental design concept and demonstrate our handling of the wealth of
clinicome data within our research applications. We show that novice users, like clinical
scientists, are qualified to explore and test their manifold hypotheses on changes in the
transcriptome based on the samples’ clinical phenotype and gather unique insights into
user impressions, performance expectancy, and intentions to use. Our research applications
DEAME and Eatomics cover or outnumber the majority of functionalities of existing
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tools. Eatomics is freely available to the research community as an easy-to-use R Shiny
application.

Insights contributing to the biomedical knowledge base are described in (first authors
with equal contribution are marked with an asterisk):

Johannes Stegbauer∗, Milena Kraus∗, Sarah Nordmeyer∗ et al. Proteomic analysis
reveals upregulation of ACE2, the putative SARS-CoV-2 receptor in pressure-but
not volume-overloaded human hearts. Hypertension, 76(6):e41–e43, 2020 [56]

Sarah Nordmeyer∗, Milena Kraus∗, Matthias Ziehm∗, Marieluise Kirchner∗ et al.
Myocardial proteome profiling reveals disease- and sex-specific alterations in patients
with aortic valve stenosis and mitral valve regurgitation. Circulation (submitted)

Nikolaus Berndt et al. Cardiokin1: Computational assessment of myocardial metabolic
capability in healthy controls and patients with valve diseases. Circulation (accepted
for publication)

In the SMART and EurValve projects, we assemble, process, and curate data from a
large cohort of living human patients and healthy control donor hearts. Our curated data
set provides quantification for more than 3500 cardiac proteins and more than 80 isoforms,
accompanied by 120 clinical parameters for, in total, 75 human subjects. For a subset of
21 subjects, there is additional data on RNA expression available. The resource is used to
sketch the landscape of disease- and sex-specific alterations in the proteome, transcriptome,
and clinical phenotype in AS and MR. We describe alterations in the proteomic profile
regarding proteins involved in extracellular matrix composition, metabolism, cytoskeleton,
and cell adhesion shared in AS and MR. In general, we show that changes are more
pronounced in AS. We present evidence from human tissue of living individuals for many
observations previously only described in animal models or on the transcriptomic level.
Additionally, we make novel observations in the proteostasis machinery being drastically
reduced in female AS patients and relate the changes to less myocardial mass in females.
Apart from the general landscape, we show the added value of the data set in providing
evidence of increased levels of the putative SARS-CoV-2 virus receptor (ACE2) in pressure,
but not volume loaded myocardial tissue in the proteome and transcriptome. Additionally,
the data enabled the development of a novel cardiac metabolism model (Cardiokin1).

1.3 Thesis Outline

The remainder of the thesis is structured as follows: In chapter 2, we provide the necessary
background information and definitions on Systems Medicine in general as well as common
data sources and queries. Furthermore, the SMART project, which provides the context of
all implementation efforts, is depicted. A short introduction to the biomedical foundations
of the human heart and heart valve diseases is also part of the chapter.
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Chapter 3 provides more detail on the motivation of differential expression software
in Systems Medicine and why related approaches do not suffice the current needs. We
explain our rationale behind the flexible experimental design feature in general and how we
implemented two instances of the feature for DE and DA analysis. We evaluate our work
within a functional comparison to other tools and user testing sessions. We discuss how
our prototypes advance DE/DA analysis towards Systems Medicine by qualifying clinical
and life scientists to perform flexible hypothesis testing using the rich clinical phenotype.

In chapter 4, we elaborate more on factors that have hindered research of human cardiac
proteome alterations in human heart valve disease. We then share our approach and
experimental setup to measure and analyze the clinical, transcriptomic, and proteomic
data. We report disease- and sex-specific changes in protein abundance and clinical imaging
parameters and discuss how these results confirm findings from animal models or open up
new perspectives of human heart valve disease.

Finally, we summarize all findings in chapter 5, answer our two research questions, and
present ideas for future directions in Systems Medicine.
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In this chapter, we provide the necessary background information and definitions on
Systems Medicine in general as well as common data sources and queries. Furthermore,
the SMART project, which provides the context of all implementation efforts, is depicted.
A short introduction to the biomedical foundations of the human heart and heart valve
diseases is also part of the chapter.

2.1 Data and queries in Systems Medicine settings

To understand the full spectrum of a Systems Medicine approach, this chapter introduces
background information on biomedical high-throughput measurements and systems biology
methods, with their potential for reuse in Systems Medicine as well as the representation of
Systems Medicine efforts in current IT infrastructures based on the example of the SMART
consortium.

2.1.1 Data in Systems Medicine

Data in Systems Medicine consortia are mostly molecular data, stemming from high-
throughput omics technologies in combination with a thorough clinical phenotype and
description [11]. This introduction will therefore first establish an overview on the different
molecular and clinical data modalities and their biomedical meaning. After that, every
modality is described in terms of how it is commonly assessed or measured and preprocessed.
Finally, this section helps to understand the digital representation of Systems Medicine data
and therefore input and output characteristics of data used within this thesis. However,
the reader should be very aware of the vast amount of different laboratory instrumentation
and bioinformatics tools available for the creation of data. The exact inputs and outputs
may differ across pipelines and this summary is limited to a very broad, simplified version
of the processes.

Biological meaning of the molecular data
The genome comprises all genetic material of the in our context human cell, i.e., deoxyri-
bonucleic acid (DNA). Chemically, the DNA is a large molecule comprised of two strands
assembled into a double helix and consisting of a sugar-phosphate backbone and four
nucleobases: adenine (A), thymine (T), guanine (G), and cytosine (C). The sequence of
nucleobases encodes instructions for cell functions, development, growth, and reproduction.
The general flow of information is drafted by the general dogma of molecular biology, i.e.,
how the instructions are realized to compose a living being. The sequence of the DNA
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can be copied to DNA (DNA replication) or be transcribed to (messenger) ribonucleic
acid (RNA), which in turn is a template to synthesize proteins (translation). Therefore,
mRNA abundance can be seen as a proxy for protein abundance, although correlation is less
pronounced as expected due to massive post-transcriptional modification and regulation
of mRNA, partially through small- or long non-coding RNAs. Proteins consist of amino
acids (AA) and perform all enzymatic processes and functions in cells, tissues, and organs.
While the DNA is constant across cells of an organism, mRNA, and protein abundance are
tissue or cell type specific. An alteration of sequence in the DNA may result in a change
of sequence of mRNA and thus in the alteration of the protein sequence, structure, and
function. In another mechanism, a genomic variant can lead to higher or lower mRNA
abundance (expression quantitative trait loci, eQTL) and/or altered protein abundance
(protein quantitative trait loci, pQTL). Other popular molecular levels that are not further
concerned in this work are the epigenome, i.e., chemical modifications on the DNA molecule
itself or on proteins engaged in DNA structure, such that mRNA transcription is enabled
or hindered. The metabolome describes the totality and/or abundance of low-molecular
chemical components serving in metabolic processes. The molecular components interact
heavily with each other in a non-random fashion forming large networks of processes, called
pathways, needed for proper functions of the cells, tissues, organs, and ultimately the whole
organism.

Genomic variation
Genomic variation describes any difference of deoxyribonucleic acid (DNA) sequence when
compared to a reference sequence. The genome of a human is approximately 3.2 Giga
bases long. While genotyping arrays are another way of retrieving genomic variation, here
we focus on describing genome sequencing.
Biologic input: To assess genomic variation, a blood or saliva sample is sufficient to

extract DNA from the cells. The DNA is sheared into smaller fragments, multiplied and
chemically modified for subsequent analysis in a sequencer. The sequencer is capable of
detecting the four different bases A, C, T, and G in all multiplied fragments in parallel.
The detected base is written to a file, supplemented with a quality score, i.e. describing
the certainty of the measurement.
Bioinformatics processing: Depending on the sequencing technology the smaller

fragments are of very different length but usually need assembly in order to represent the
original genome. The assembly of fragments, from now on called reads, is guided by the
reference genome, which describes the most common sequence representation of a large
population sample, e.g., the human genome project. The comparison of any given read to
the reference sequence will lead to predominantly perfect matches in sequence. However,
in a process called variant calling, the mismatches are analyzed and classified as being the
result of measurement errors or a true difference in the sample.
Common output: Regardless of the origin of variation, a common digital representation

of genomic variation is the variant call format (VCF). Essentially, the format contains a
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header of metadata describing the fields of the body. Every row of the body represents
a variant, described by 8 mandatory fields of the vcf: CHROM and POS describing the
genomic location, ID containing one or more identifiers, REF and ALT being the reference
and alternative allele sequence, QUAL describing the quality of the call and FILTER
harbouring a flag for the variant to have passed specified filter criteria. The INFO field
holds key value pairs of information on the variant, whereas the FORMAT, the ninth
filed, contains key value pairs describing the information given in the samples’ columns.
Further information can be found at https://github.com/samtools/hts-specs/blob/

master/VCFv4.3.pdf. The size of the VCF depends on multiple factors, e.g., if multiple
samples are listed, which results in more columns, how much additional information on
the variants and samples is given, the handling of large blocks representing the reference
sequence (gVCF) and the origin of variation.
Origin of variation: Germ line variation results from a comparison of the measured

sequence against the reference genome. The variant must have been present in the germ
line of an individual and thus was propagated in all cells of the organism. Approximately
3-5 million germ line variants are found in a whole genome sequencing analysis. In contrast,
somatic variants are the result of a sequence alteration within the genome of a single cell.
In the course of cell division, the alteration is passed to all next generations of that cell.
Multiple alteration events (mutations) can lead to the development of a tumor. In many
tumors, DNA repair mechanisms are corrupted leading to an accumulation of somatic
variants in the tumor tissue. The number of somatic variants differs across cancer types,
but with a range between five to a few thousand when compared to normal tissue of the
same individual, it is still a couple of orders of magnitude lower than germ line variants.

Quantitative transcriptomics
The transcriptome describes the set of all RNA molecules in a cell at a specific point in
time. This includes sequence information, i.e., which parts of the DNA are transcribed,
and quantitative information, i.e., the abundance of RNA molecules. Measurement of the
transcriptome can be realized via microarrays or RNA sequencing. For the remainder of
this thesis we focus primarily on the latter as it is becoming more popular due to higher
accuracy and dropping prices.
Biologic input: RNA is extracted from cells or tissue of interest and fragmented

into smaller pieces. Reverse transcription into more stable cDNA and further chemical
modification is needed to prepare the sample for sequencing, which follows the same process
as described for DNA sequencing.
Bioinformatics processing: The sequence reads need assembly to represent the tran-

scribed regions of the genome (transcripts) guided by a reference genome or transcriptome
sequence. All reads are summarized into a quantity across a defined genomic region, e.g., a
gene, which results in one abundance vector per sample.
Common output: In RNA sequencing, it is most favourable to analyze all samples of

a comparison that originate from one experimental run with the same protocol. Therefore,
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the abundance vectors can be summarized in a matrix of counts of reads detected per
genomic feature and sample.

Quantitative proteomics
As per definition, the proteome is the entirety of all proteins expressed in a cell, tissue
or organism at a specific time and under specific conditions. Depending on the detection
method, also peptide sequence and isoform states may be inferred. Label-free shotgun
proteomics is a variant of quantitative proteomics, i.e., measurement of the abundance of
thousands of proteins from a peptide mixture, replacing the classical method of a Western
Blot by being a lot more sensitive and offering a large coverage of proteins.
Biologic input: In a first step, proteins are extracted from cells or a tissue sample of

interest. A cleaving enzyme digests the proteins into smaller fragments at specific sites.
The peptide mixture is then fractionated based on the peptides chemical properties to
yield an eluted mixture in liquid chromatography. Within the mass spectrometry (MS)
peptides are ionized and undergo further fragmentation in tandem MS. The second MS
detects mass spectra of the peptides. A reference sample containing all potential peptides
of the samples under investigation can be used to guide subsequent detection and increase
coverage.
Bioinformatics process: Peptide spectra function as a fingerprint, which in turn can

be assigned to one or more specific peptides based on a database search. Peptides are
mapped to amino acid sequences of proteins or more specifically assigned to protein groups
sharing sequences.
Common output: The quantitative analysis of proteomics resutls in an intensity

matrix of protein groups vs. samples, which is calculated from spectra per sample as a
measure of peptide/protein abundance.

Clinicome
The clinical phenotype in this thesis serves as the broad term of all patient characteristics
that are assessed at the German Heart Center Berlin and are part of the patient’s health
record at the clinic as necessary for the SMART and EurValve study. However, the clinical
phenotype itself is very diverse in the sense of parameters assessed as well as in the type of
data it is stored in, i.e., its digital version. In any case, the clinicome consists of categorical
and numerical parameters that can be grouped into subcategories or in many cases of fully
unstructured clinical notes.

2.1.2 Differential expression/abundance and enrichment analysis

Gietzelt et al. (2016) state that there are no methods specific for Systems Medicine as the
new field draws ideas from Systems Biology and machine learning [10]. Relating to this
aspect, a typical Systems Biology analysis of transcriptomic and proteomic data includes
DE or DA analysis as well as pathway analysis (PA). Therefore, we introduce the general
process of DE analysis. The mathematical foundation inherent to many state-of-the-art
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DE calculation tools is laid out in greater detail in this section, as it is crucial for the
realization of explorative hypothesis testing. The coarse example may easily be replaced
by a representation of quantitative proteomics data and thus the process is applicable
to DA as well. Pathway analysis and/or gene set enrichment is part of DE/DA result
interpretation and is introduced shortly as well.

DE/DA Analysis Principles
The development of NGS techniques have enabled the usage of microarrays and RNAseq
data as a source for DE analysis. Equivalently, the advances in high-throughput label-free
MS shot gun proteomics are a source of large-scale quantification of proteins. Analysis of
DE is the process of identifying genes that have an altered level of expression in a group
of samples, which is statistically significant when compared to another. Congruently, DA
identifies differences in protein abundance. The differences in expression or abundance
levels may be the result of a disease or other perturbations on the examined cells or tissues.
Therefore, the identification of the differences can lead to biomarkers of a disease [57]
or a transcriptomic or proteomic profile that may be reversed through a new or existing
treatment. For this thesis, we summarize proteomic and transcriptomic quantification data
as HTQ data.

General process of DE analysis
In the following, we briefly describe the process of DE based on an RNAseq experiment.
The high-level process is modelled in Figure 2.1 in Business Process Modeling Notation
(BPMN) and is based on [6]. We need to consider five process steps, namely the wet lab
experiment design and execution, bioinformatics processing of raw data, DE calculation,
and visualization, annotation, and interpretation steps.

Transcriptome intermediate results 

Proteome intermediate results 

Figure 2.1: Generic differential expression process steps, i.e., activities (rounded boxes) and
their resulting data artefacts modelled in BPMN 2.0. Intermediate results of equivalent
processing steps for proteome analysis are also displayed in a greyed out fashion for
more clarity.
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Experimental design and experiment
Inherent to DE analysis are at least two groups of samples that are assumed to show
differences in gene expression. These groups need to be specified before in vitro testing in
order to plan and design the wet lab process, such as treatment with a specific chemical or
drug. As a result, the researcher needs to define a design formula, which resembles the
research hypothesis and is the basis of any DE experiment.

Bioinformatics pre-processing
The sequencing process results in raw reads, i.e., short fragments of the actual genomic
sequence section 2.1.1. Raw reads go through quality control and in some cases need to be
trimmed from adapter sequences prior to alignment. All reads are aligned to a reference
genome or transcriptome. In the best case, all genomic ranges, such as a gene, an exon or
a coding region, are covered by multiple reads after the alignment step. Counting tools
calculate the exact quantity of reads per given genomic range.

DE calculation
DE calculation is the statistical process of finding significant expression differences of two
or more groups as defined in the experimental design. In short, all counts of a genomic
range in one group are compared to the counts of the same range in another group of
samples. The calculation provides information about the fold change, i.e., how much more
counts where found in one group when compared to the other. Additionally, p-values
are given, which are adjusted for multiple testing, as many data sets comprise 10-20 k
genomic regions to compare. A more detailed description of the underlying mathematical
foundations are given in section 2.1.2.

Visualization
Visualization of results is a critical part in DE analysis, as raw and transformed data as
well as DE results are usually high in dimension and therefore need to be displayed in a
comprehensive format. Frequently used techniques are principal component analysis (PCA)
and clustering of data. Both give an impression of similarity between the analyzed samples.
For example, plotting samples on their corresponding first and second principal component
(dimension of largest variation) should result in scatters of samples grouped according to
the experimental design formula. Accordingly, clustering algorithms should be able to
find clusters and a dendrogram resembling the desired study groups. Clustered heatmaps
are specifically popular as they can display sample-to-sample as well as gene-to-gene
relationships and the corresponding normalized and log transformed count values in a
single diagram. Volcano plots depict the p-value versus expression fold change between two
conditions. DE genes are usually highlighted and therefore the plot gives a good overview
of all results. Many more diagnostic plots are used, e.g., as depicted in a bioconductor
workflow [58].
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Annotation and Interpretation
Annotation and interpretation of results is a critical and complex part of the analysis.
Typically, more than 100 genes are found differentially expressed between patient groups.
Regarding the most relevant expression changes, a manual search for function and involved
pathways is performed. GO term annotation and gene set enrichment analysis (GSEA)
help to find perturbed anatomical structures, biochemical processes or pathways in an
automated manner.

Generalizability
Although the process and diagram are tailored for RNAseq data, the general concept
can be transferred to many other quantitative omics measurements. For example, in a
label-free shot-gun MS proteomics setting, the laboratory procedures, measurement, and
also bioinformatics processing differs remarkably; however, a count matrix or a matrix of
intensities can be considered equivalent and can, with the exception of changes in specific
default parameters, be analyzed using the same DE calculation tools, e.g., Limma [8].

Mathematical foundation for DE calculation
For the remainder of the thesis, we define the output of a HTQ experiment, e.g., RNAseq
or label-free MS, as a matrix Y of i rows representing genomic ranges, e.g., genes or
proteins, and n columns of samples. The matrix entry Yi,n indicates the quantification of
the genomic range i for sample n.
Furthermore, we define a matrix Xf as being meta information accompanying the

quantification experiment. The matrix entry Xfn,j denotes the value or level of an assessed
parameter j (columns) for sample n (rows). Selecting parameters and samples of interest
from Xf derives the model matrix X. In the simplest case, e.g., control vs. treated, X can
be reduced to being a vector of zeroes and ones denoting the assignment of samples to the
two groups. Similarly, the simplest case for matrix Y would be a vector of expression values
for one gene for all or a subset of samples. A t-test to assess the truth of the null hypothesis
(H0), i.e., there is no difference in expression between groups of samples, would suffice in
the case that the assumption of normal distribution and equal variances is true. However,
to gain more flexibility with regard to these assumptions and towards including reasonable
amounts of metadata for more accurate statistics, many current implementations of DE
software use GLM in combination with a moderated t-test.

Generalized linear models
The advantage of using GLM is being able to include more sources of variation into the
analysis, as is often useful in the analysis of expression data and to let the distribution of
expression values differ from a normal distribution. The basic linear model in DE analysis
is displayed in Equation 2.1. It consists of a response variable Y1,1 in log2 scale, e.g., the
abundance of a gene product or protein, dependent on an explanatory variable X, e.g.,
belonging to the control or treatment group, β0 being the constant intercept or baseline
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expression in case of X being zero and β1 the coefficient describing the slope by which Y
in- or decreases dependent on X. ε is an individual error term denoting the variation of
the measured data point Y from the group mean.

log2(Y1,1) = β0 + β1X + ε (2.1)

In the simple case of a control vs. treated experiment, the two β coefficients correspond
directly to the group means and the difference of the two specifies the log2 of the fold
change (FC) between them (Figure 2.2).

Figure 2.2: Graphical representation of a generalized linear model in the simple setup of a
control (=0) vs. treated (=1) experiment. The y-axis denotes the expression strengths
in log2 scale, whereas the two β coefficients correspond directly to the group means and
the difference of the two specifies the log2 of the FC between them.

Further explanatory variables, i.e., parameters from the meta information Xf , and coef-
ficients can be added to describe more complex relationships. They can either accompany
the model as covariates that are of no particular interest to the researcher or they function
as additional variables of interest. Every observation of a sample Y gives rise to one more
linear equation, every additional explanatory variable will add another X to the equation
system (Equation 2.2).

log2(


Y1

Y2
...

Yn

) =


1 X1,1 · · · X1,j

1 X2,1 · · · X2,j

...
...

...
1 Xn,1 · · · Xn,j



β0
...

βj

 +


ε1

ε2
...
εn

 (2.2)

The equation may also be written as a shorter formula to be used as input in linear
regression algorithms.

Y ∼ X1 +X2 + · · ·+Xj (2.3)

The formula gives rise to the actual model matrix, which includes the split of categorical
variables with more than two levels (m > 2) into m dummy variables when β0 is set to
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zero.
As Y and X are known, β coefficients need to be calculated to obtain an optimal fit of

a line through the given data points. Methods for the calculation of the coefficients are
manifold and matured over time in the field of DE analysis to adapt to the very specific
characteristics of HTQ data sets. Relevant examples are the use of maximum likelihood
estimation (MLE) in DESeq2 and weighted or generalized least squares methods in Limma.
Additionally, both methods utilize Empirical Bayes methods to adjust for high variance in
the quantification values Y across genomic ranges and utilize sophisticated assumptions on
the distribution of Y .

Test for statistical significance and multiple testing correction
Similar to the sophisticated methods on how to treat Y for best results, DE methods are
optimized to use mean-variance correction or Empirical Bayes methods to correct fold
changes and enable a well-informed statistical test, e.g., moderated t-test or Wald test.
Furthermore, as the number of genomic ranges in many experiments exceeds the thousands
or ten thousands, an effective correction of p-values for testing multiple hypotheses is
employed commonly by using the Benjamini Hochberg (BH) procedure [59].

Pathway analysis and gene set enrichment.
PA is used to map genes found in high throughput molecular experiments to meaningful
categories, i.e., pathways, that facilitate interpretation of the oftentimes overwhelming
results from DE analysis. Input to PA are a knowledge bases, i.e., a collection of genes
biologically linked to each other (gene sets or pathways), output is a list of gene sets
relevant to the condition under study. Further input are gene lists from the experiment,
preprocessed in dependence on the chosen PA method. PA methods are loosely categorized
into over-representation analysis (ORA), functional class scoring (FCS), and pathway
topology methods [60]. ORA and FCS methods are used in different parts of this thesis
and therefore require explanation:
In FCS methods, the full list of genes together with a gene-level statistic is used as

input. In the original sense of GSEA [61] the statistic is based on, e.g., the t-statistic from
DE analysis, which is used to rank the genes in the list. The ranked list is then used to
generate a pathway-level statistic, e.g., an enrichment score (ES). Based on a specific gene
set, the ES is increased relative to the rank, e.g., higher increase when further away from
the median, and decreased if the gene is not contained in the given gene set. As a result,
if genes of a set are spread randomly across the ranked list, the ES will be close to zero,
whereas an accumulation either on top or bottom of the list will result in ES being closer
to 1. p-values and, in the case of multiple tests, false discovery rate (FDR) is calculated
via a random permutation of the ranked list.

In ORA methods, the gene list is trimmed to only contain genes meeting an arbitrary
cutoff, e.g., being above an absolute fold change threshold or being below a p-value threshold
as derived from DE analysis. The overlap of the trimmed list and a given gene set is
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then compared to the overlap of a background list of genes. Fisher’s exact test is used
to calculate if a gene set is over-represented in the trimmed gene set and FDR can be
used to control for multiple testing. No method has been proven to be superior in all
aspects and thus it is up to the user’s preference and use case [62]. GSEA, a very popular
FCS method, was recently extended to being used in a single sample mode (single sample
gene set enrichment analysis (ssGSEA)) [63]. In ssGSEA the ranked list is based on the
actual (relative) expression value of a gene while the output list of significantly enriched
terms is calculated by comparing the mean single sample enrichment score (ssES) of one
group of samples against another. This approach confers the advantage of postponing the
actual comparison of groups to being after pathway analysis and allows for more flexibility.
Furthermore, the ssES can potentially be used as a means of normalization between omics
levels. Please note that there is some confusion in wording and names of PA methods.
Throughout the thesis we use definitions as introduced in Kathri et al. (2012) [60].

2.2 SMART - A Systems Medicine consortium

In the SMART consortium, interdisciplinary experts establish methods for interrelating
parameters and modelling of HF to improve patient care. In a joint effort, the transcriptome,
proteome, cell function, regulating hormones, tissue composition, hemodynamics, and whole
organ function, up to a whole body description of patients suffering from AS are derived by
the consortium members [64]. The process of data assessment and utilization is modelled
in Figure 2.3.

Data is acquired in the course of a dedicated observational study of patients undergoing
a replacement of the left ventricle valve at the heart center. Clinical scientists assess a large
body of parameters from general patient assessment, imaging, hemodynamic evaluation,
and surgery. Biopsy samples, taken at time of surgery, are sent to molecular biology
laboratories to generate data on the transcriptome and proteome. Cell-, whole-organ-, and
multi-scale modellers, located at individual institutes, depend on the parameters assessed
by other consortium members.
As such, Systems Medicine in general is dependent on powerful platforms that can

integrate, process, and analyze the multiple, heterogeneous biomedical datasets and at
the same time support the workflow of research consortia [13]. At the time of project
start in 2015 IT platforms aiming at supporting Systems Medicine need were sparse: The
Georgetown Database of Cancer (G-DOC) was one of the few research platforms already
available, but could not suffice requirements of the SMART project, mainly because design
decisions in G-DOC were tailored for the specific use case of cancer [65]. In contrast, the
San Raffaele Systems Medicine Platform for Non-Communicable Diseases (SR-NCD) was
launched in 2013 with the aim to cover many pre-defined non-communicable diseases for
Systems Medicine [66]. However, at the time of start in SMART the SR-NCD was still in
an early planning stage and thus no usable prototype was available. Similar in name, the
transSMART project is the most promising platform in its aim to enable collaboration
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Figure 2.3: Process of data assessment, analysis, and communication within the SMART
consortium. Key stakeholders and roles are shown as swim lanes and rounded boxes
show process steps, which may be nested. Data is acquired in the course of a dedicated
observational study of patients undergoing a replacement of the left ventricle valve at the
heart center. Clinical scientists assess a large body of parameters, such as hemodynamic
parameters. Biopsy samples, taken at time of surgery, are sent to molecular biology
laboratories to generate data on the transcriptome and proteome. Cell-, whole-organ,
and multi-scale modellers depend on the parameters assessed by other consortium
members. An IT platform serves as a central hub for data storage and processing.
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for precision medicine, through sharing, integration, standardization, and analysis of
heterogeneous data from healthcare and research [67]. Unfortunately, the foundation only
gained momentum after the merge of the i2b2 and the transSMART projects. With the
release of version 17.1, which was developed by a professional IT company, the software
took a major step towards being a reasonable choice for a Systems Medicine platform. As
a result, we needed to provide our own solution within the SMART context. The SMART
IT platform provides the basis for the research applications as described in chapter 3.

2.2.1 Challenges consortium work

Within the SMART consortium we have identified the following challenges in collaborative
work, which relate well to challenges found by Kramer et al. (2018) [26]:

1. Sharing of Data: Individual consortium members require input data from others,
process it, create new output data, and provide it to other researchers. For example,
the heart center collects clinical parameters during a visit of a patient in spread
sheets and sends them to other consortium members, e.g. the proteomics lab, via
email. Changes in these spread sheets are not under version control.

2. Communication: Interdependencies between consortium members require immediate
communication of new data. In the SMART consortium, an electrochemical model of a
cardiomyocyte will be calculated based on proteome and clinical data. Communication
between at least three members of the consortium, e.g., the heart center, the wet lab,
and the proteomics lab, must be established to enable the cardiomyocyte modeller to
work. Any delays in communication decelerate the generation of modelling results.

3. Reproducible Data Processing: Data processing is mostly performed at local lab
sites, which acquire data from samples and process them directly. As a result, the
reproducibility of results is shielded from other consortium members. For example,
differentially expressed genes are computed from raw RNA sequencing data at
the bioinformatics facility. The processing requires domain knowledge, tools, and
computational power. Thus, the processing can not be reproduced by the other
consortium members.

These challenges guided overall platform development.

2.2.2 Implementation of the SMART IT platform

An IT infrastructure facilitates collaborative work within the consortium in various aspects,
such as sharing of data, communication between partners and reproducible processing of
data. In the following we provide details on the data, platform and application layer and
their interplay as shown in the software architecture diagram in Figure 2.4.
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SMART IT Platform
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Figure 2.4: Software architecture of the SMART IT platform. An In-Memory Database
holds hemodynamic parameters and clinical data in general. Additionally, it stores
omics data, modelling parameters, and user and event data. The application layer holds
an event notification routine, a sync client, and importers for different data modalities.
Specific research applications establish data pre-processing pipelines incorporating
various bioinformatics tools and analysis procedures. Researchers/clinicians can access
the applications and trigger data integration.
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Data Layer
The purpose of our SMART IT platform is the integration of selected medical and molecular
data sources. In-Memory Databases (IMDBs) have been shown to be suitable to integrate
various biomedical data sources in a single system, which provides features for the real-time
analysis of data mainly by holding all data in the main memory [68,69]. An IMDB serves
as the central unit to store data and to enable flexible real-time data analysis.

Amongst others, we combine patient metadata, clinical parameters, and different kinds
of *omics data provided by the consortium partners. We utilized a star schema to model
individual entities within the database and allowed their combination as depicted in the
Entity Relationship Diagram in Figure 2.5.

Figure 2.5: Entity relationship diagram depicting SMART data representation. The central
entity of our model is the Patient that performs at least two Visits in the course of
the treatment. At every visit, multiple examinations, and diagnostic procedures, such as
magnetic resonance imaging (MRI) or electro cardiogram (ECG) are performed. At time
of Surgery a Sample is taken, which is used for multiple Experiments by the laboratory
team. Experiments represent any molecular biology lab or modelling procedure, e.g.,
Western Blots, RNA sequencing experiments or multi-scale models.

The central entity of our model is the Patient that performs at least two Visits in the
course of the treatment. At every visit, multiple examinations, and diagnostic procedures,
such as MRI or ECG, are performed. At time of Surgery a Sample is taken, which is used
for multiple Experiments by the laboratory team. Experiments represent any molecular
biology lab or modelling procedure, e.g., Western Blots, RNA sequencing experiments or
multi-scale models, where the corresponding procedure is defined as an attribute. In our
data model, only common attributes, such as an experiment ID, a time point, and a link
to the source file, are directly appended to the experiment. All additional attributes, such

25



2 Background and Preliminaries

as specific experiment conditions and results, are stored as attribute value pairs to allow
flexible extension of our system for further use cases. The majority of data is stored in
columnar format to be able to fully exploit the advantages of using an IMDB. Additionally,
all tables are history tables, which can be used to reproduce any previous state of the
database. History tables are especially useful in an event-driven notification system.

Platform Layer
The data processing logic was transferred from specific tools operated by individual
researchers to the platform layer of our SMART IT platform. Event notifications and
real-time data integration as well as specific processing logic for the SMART data are the
foundation of our platform layer.

The bioinformatics research community has developed a set of software tools for processing
RNAseq data, which need to be executed in a pipeline. For demonstration purpose, we
selected the Tuxedo protocol, which was extended with widely used quality control and
trimming tools [70]. To execute the pipeline automatically by the AnalyzeGenomes
worker framework, we modelled it using the Business Process Modelling Notation (BPMN)
as depicted in Figure 2.6. The notation determines configurable parameters and the

Figure 2.6: A typical bioinformatics pre-processing pipeline for RNAseq raw reads modelled
in BPMN to be executed by the AG worker framework. The notation determines the
execution order of jobs (rounded boxes) and resulting data artefacts.

order in which the individual steps are executed. The boxes represent the incorporated
bioinformatics tools (activities), e.g., TopHat and Trimmomatic. For traditional research,
each of these steps would be executed separately, i.e., each tool loads input data from
the hard disk into memory and writes the results to an output file, which in turn again
is stored on the hard drive. In our approach, input data, intermediate results, and final
results are stored in the database. The user is requested to select patients that will be
analyzed through the user interface. As all the other parameters are pre-configured once
by an expert, e.g., reference genome, number of threads, and the succession of steps is
determined by a pipeline model, the data processing is executed automatically.

Data, which was acquired by individual consortium partners at local sites is synchronized
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automatically to the SMART IT platform using a private ownCloud server instance, which
requires consortium partners to simply store it in a pre-defined folder. As a result, data
integration does not require personal intervention after configuring it once. A cron job
regularly checks for updates in the folder and calls corresponding import jobs to load
data into the database. Clinical parameters are generated and entered throughout the
time of study. Therefore, either an initial bulk load option can be used via the sync

client or changes and additional parameters can be entered via the StudyPI App. Several
stakeholders within the consortium are dependent on timely data provision by other
partners. In our system, an automated notification informs the user in case relevant
data has been added, while limiting the number of separate notifications to a minimum.
Depending on the given roles and permissions, a user can choose to register for notifications
for specific events, e.g., new visit data added, as depicted in Figure 2.7A.

To identify relevant changes per user, the last login time of the user and the time of the
last event occurrence are checked by means of history tables. It is assumed that the user
has acknowledged all relevant data changes after having read the email or having logged in
to the application.

Application Layer
The application layer was designed together with subject matter experts to provide an
easy-to-use, intuitive UI for researchers and clinicians. We followed the guidelines for a
responsive UI to make the platform accessible on desktop and mobile devices equally.

All data artefacts are automatically integrated into the SMART IT platform through a
sync client, which periodically checks for new files and uploads changes to keep all data
up to date. Raw RNA sequencing reads are stored in the FASTQ file format [71] and are
loaded into the database at time of processing.

We created specific application views per user role that have been designed to resemble the
distinct research processes of the consortium member. Additionally, there is a management
view, which presents different editing options depending on the rights within a role. Every
partner signs up to the platform and has a personal user profile. The UI enables several
specific features, such as triggering RNA processing tasks. The entities Patients, Samples,
and Experiments as well as their attributes can be added, edited, and deleted through
our UI in a structured format. Graphical data exploration of phenotypic data is leveraged
through SAP Lumira in an additional app.
The StudyPI app is one of multiple apps that will be available in our platforms. It

resembles the workflow and tasks of the the study’s principal investigator. The principal
investigator assumes primarily management tasks, such as adding and editing new patients
and the corresponding metadata. Furthermore, it includes constant study monitoring, e.g.,
deriving enrolled patients in the respective study groups, and evaluating heart specifics,
e.g., development of myocardial mass after surgery.

The formerly used spreadsheet representation of data was integrated as an online form,
which can, for means of backward compatibility, be downloaded again as a spreadsheet
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Figure 2.7: Selected elements to illustrate the UI and specific functions from the SMART
IT platform. A) Event registration via frontend. B) Auto-completion of medication
options. C) Exported patient data as spreadsheet.

(Figure 2.7C). The principal investigators view on the data is not restricted. A bulk
upload through the synchronization client reduces the need for manual entry of data.
Additional parameters may be added throughout the course of the study. Manual entry is
facilitated through range and type checking of parameters and auto-completion through
the UI (Figure 2.7B).

2.2.3 Summary on SMART IT platform

Our proposed architecture contributes by reducing media breaks, using a central com-
puting infrastructure, streamlining research communication by instant notifications, and
guaranteeing reproducible research by performing data processing within the central com-
puting infrastructure. We developed the platform on the basis of a deep understanding of
the Systems Medicine process in the SMART project. We addressed challenges in basic
consortium work on the setting of the SMART project and deliver a profound basis to
implement a viable computing infrastructure. The platform serves as the basis to develop
and evaluate further research applications as needed in Systems Medicine.

2.3 The human heart and heart valve disease

The human heart provides the whole organism with blood and with it oxygen and nutrients.
Blood circulation is ensured through a complex anatomy consisting of two atria and two
ventricles separated by the septum and connected to the rest of the body by vessels
(Figure 2.8). Blood from the venous system of the body, i.e., low in oxygen, enters the
right atrium via the superior vena cava, flows through the tricuspid valve into the right
ventricle. At contraction the blood is ejected through the pulmonary valve and pulmonary
arteries to the lungs, where it is loaded with oxygen. Coming from the lungs, the blood
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flows through the pulmonary veins into the left atrium and through the mitral valve into
the left ventricle. Again at contraction, the blood is thrown out into the aorta, passing the
aortic valve and thus entering a new round through the body. One heart cycle consists
of a diastole and systole. During diastole, the heart muscle relaxes and widens to allow
enough blood volume to enter the ventricles while pulmonary and aortic valve are closed.
Contraction of the heart muscle leads to a reduction of inner ventricle volume and forces
blood through the pulmonary and aortic valves, while tricuspid and mitral valves are closed
to ensure blood does not flow back towards the lung or venous system.

Figure 2.8: Schematic drawing of the human heart with a description of anatomical struc-
tures and arrows indicating blood flow through the heart. Created by Wapcaplet in
Sodipodi and licensed by GNU Free Documentation License, Version 1.2. https://
en.m.wikipedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg ac-
cessed on 10.02.2020

2.3.1 Cellular and molecular setup of myocardial tissue

Myocardial tissue, as in the two ventricles and septum mainly consists of cardiomyocytes,
cardiac fibroblasts, vessels and capillaries, and extracellular matrix (Figure 2.9). Cardiomy-
ocytes are responsible for muscle contraction, vessels and capillaries provide the tissue
with blood, oxygen, and nutrients, while fibroblasts produce and maintain the extracellular
matrix (ECM), which provides structure to the tissue.

Cardiomyocytes and muscle contraction
The outer cell membrane of cardiomyocytes is called sarcolemma and encloses multiple
strands of myofibrils interspersed with other cell organelles. Cardiomyocytes are connected
via intercalated discs, where adherence junctions and desmosomes are located. Together
they form the area composita, which is responsible for force transmission along the

29

https://en.m.wikipedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
https://en.m.wikipedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg


2 Background and Preliminaries

Cardiomyocyte 

Vessel 
Fibroblast 

ECM 
Myofibril 

Mitochonrion 

T-tubules 

Costamer 

Sarcolemma 

Sarcomere 
Z-disc 

Actin Myosin 

Titin Microtubules 

Intermediate 
filaments 

Sarcoplasmic 
reticulum 

Intercalated disc 

Figure 2.9: Zoom in on the different components of cardiac tissue from the septum. Cellular
components are shown in a cross-section. Connected cardiomyocytes are shown in an
overview as a starting point to zoom into details on cellular organizationion and myofibril
as well as the sarcomere molecular structure.

cardiomyocytes. Costameres represent the point of attachment of cardiomyocytes towards
the ECM. Within the cell membrane, adhesion points are linked to the cytoskeleton, which
consist of cytoplasmic actin, intermediate filaments, and microtubules. The cytoskeleton
plays a crucial role in maintaining cellular stability and reacting to external perturbations
through signal transmission and subsequent remodelling. T-tubules are the main route
for incoming excitation and are in connection with the sarcoplasmic reticulum, which is
responsible for calcium release toward the myofibrils to trigger contraction. Myofibrils
consist of multiple sarcomeres aligned in sequence. As such, sarcomeres represent the
smallest contractile unit of a myofibril. Sarcomeres are flanked by Z-discs, which serve
as anchor points for thick and thin filaments. Thin filaments mainly consist of actin,
tropomyosin, troponin, and nebulin. Thick filaments consist of myosin, which is bundled
through C-proteins and is anchored to the Z-line via the elastic protein titin. Briefly, muscle
contraction is realized through tropomyosin, which is wound along the myosin binding
sites on actin covering them up. Troponin acts on increased calcium levels in releasing
tropomyosin from the binding sites. Myosin to actin bridges can then be formed, which
undergo a conformational change while consuming ATP. Actin and myosin filaments slide
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together in parallel resulting in a shortening of the sarcomere. Mitochondria are providing
the energy necessary for cell metabolism and muscle contraction. The metabolism of
normal cardiac tissue is reliant on fatty acid utilization, to a much lesser extent on glucose.

Fibroblasts and ECM
Within cardiac tissue, fibroblasts are the major producers and maintainers of ECM. ECM
serves as a scaffold to provide structure to a tissue and provides a reservoir of signalling
proteins, which may be released through ECM degradation. Cardiac ECM mainly consist
of collagen type I and III, which in addition to conferring tensile strength and elasticity,
contribute to the transmission of contractile forces. Furthermore, the ECM contains elastic
fibers, fibronectin, proteoglycans, and glycosaminoglycans. Fibroblast transdifferentiation
into secretory and contractile cells, termed myofibroblasts, leads to fibrotic remodelling of
cardiac tissue. Fibrosis is characterized by an increase of collagen I and III.
ECM, but also sarcomeres are subject to constant turnover, i.e., a fragile homeostasis of

degradation and synthesis. Many cardiac pathologies are the result of disturbances in this
balance.

2.3.2 Left ventricular heart valve disease

The left ventricle’s proper function relies on mitral and aortic valves to close and open
appropriately. A valve stenosis denotes improper opening of the valve to ensure blood
flow, while valve regurgitation denotes improper closing and thus a leakage of the valve
(Figure 2.10).

Normal blood flow 
during heart contraction 

A B C 

Figure 2.10: Blood flow in the left heart during contraction under normal conditions (A)
and in aortic stenosis (B) and mitral regurgitation in (C). Used with permission of
Mayo Foundation for Medical Education and Research, all rights reserved.

Regardless of which left ventricle valve is affected, stenosis and regurgitation will result
in hemodynamic overload and mechanical stress, which in turn will result in cardiac
hypertrophy, i.e. an increase in left ventricular myocardial mass. In the case of mitral
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regurgitation, hemodynamic stress manifests in volume overload leading to an increase
of left ventricle inner diameter and an addition of sarcomere units increasing mainly
the length of the cardiomyocyte, i.e., eccentric hypertrophy. In contrast, aortic stenosis
leads to concentric hypertrophy, as the pressure overload leads to addition of sarcomeres
in length and width, an increase in wall thickness, and a smaller left ventricle inner
diameter. Eventually, both conditions may develop towards irreversible heart failure. On
the molecular basis, mechanisms that drive pathological hypertrophy of the heart are
manifold and are distinct of those driving physiological hypertrophy as response to, e.g.,
physical exercise [72].
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Figure 2.11: Overview on the hypertrophic effects of mechanical stress caused by heart
valve diseases. A cross section of the normal heart shows schematic proportions of
the left (red) and right ventricle (blue) and a cardiomyocyte with normal length and
width in relation to sarcomeres. Aortic stenosis leads to pressure overload and mainly
concentric hypertrophy, i.e., a larger width of the ventricle wall and a smaller inner
diameter of the left ventricle, through addition of sarcomeres in length and width. In
contrast, mitral regurgitation leads to volume overload and thus eccentric hypertrophy,
characterized by addition of sarcomeres in length resulting in a larger inner diameter
of the left ventricle. Figure inspired by [72]

Aortic valve stenosis
Aortic valve stenosis is the most common valvular heart disease and describes a narrowing
of the exit of the left ventricle, such that blood flow is abnormal [30]. AS results in the need
of higher pressure generated by the left ventricle during the ejection phase to ensure blood
flow through the aorta into the body (pressure overload). The pressure gradient across
the aortic valve can increase from few mmHG to more than 100. Therefore, the muscular
walls of the left ventricle need to thicken to be able to generate more force, a process
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called myocardial hypertrophy. The process includes an increase of cardiomyocyte size and
protein content, whereas the cells do not necessarily proliferate [29]. In AS, the walls of
the ventricle thicken approximately equally, which is known as concentric hypertrophy [30].
At this stage, the mechanical stress induces fibroblast-mediated production of collagen
and anti-proteases to avoid ECM degradation. ECM deposition results in stiffening of the
ventricle and diastolic dysfunction (or heart failure with preserved ejection fraction HFpEF).
The molecular and cellular changes in left ventricular hypertrophy may eventually lead to
another remodelling process through ECM degradation including LV dilation (widening)
and impaired function which increases the risk for congestive heart failure [73,74].

Mitral valve regurgitation
In mitral valve regurgitation the mitral valve, i.e., the inlet from the left atrium to the left
ventricle, is impaired. In the most common cause of mitral valve insufficiency the valve
leaflets do not close properly during the blood ejection phase of the heart. Remodelling or
change in dimension of the left ventricle are reasons for the valves to not close properly. As
a result, blood will flow back into the left atrium during the ejection phase causing elevated
preload. Due to the increased volume, the left ventricle will stretch up to a point at which
cross bridges between myosin and actin filaments needed for muscle contraction cannot
form properly. The effect is also called volume overload in which contractile efficiency is
impaired especially during diastole (diastolic dysfunction).

As we have now established background knowledge on Systems Medicine/Biology, the
human heart, and the IT platform that forms the preliminaries to our project work, we
may now continue with the description of DE/DA analysis software in Systems Medicine.

33



3 DE/DA Analysis Software in Systems Medicine

In this chapter, we explain how we addressed the research questions regarding DE/DA
analysis software in a Systems Medicine context. In this notion, we elaborate in more
detail on the motivation that led us to explore the topic in greater depth. We then
introduce existing software for automated DE and DA analysis, which are mainly developed
from a Systems Biology perspective. To progress towards Systems Medicine, we identify
general software requirements, user groups and personas. The key requirement of flexible
experimental design is explained conceptually in greater detail. The concept is implemented
in two research applications - DEAME and Eatomics - one tailored to transcriptomic, one
to proteomic data, respectively. The concept is evaluated in user interviews and technology
acceptance studies. We compare how the two applications differ from and advance over
related tools in terms of their functionality. Results are discussed with regard to our stated
research questions, their generalizability, and limitations.

3.1 Motivation

The initial motivation of a DE/DA software was ignited by questions and queries stated
by clinical scientists of the SMART consortium, as for example the following:

Are there differences [in gene expression/protein abundance] in [cardiac tissue
of] patients with and without cardiac hypertrophy? In relation to indexed
myocardial mass in g/BSA? Are the effects different in sex? – a clinical scientist
from the SMART consortium

This question and the remaining questions in section A.1 neatly exemplify the definition
of Systems Medicine. In recent years, many studies, e.g., in the context of Systems
Medicine, included a detailed clinical examination of patients, supported by a molecular
characterization via omics technologies [11]. Oftentimes these studies have an observational,
i.e., a non-interventional character and do not include the effect of an active perturbation,
e.g., testing a new drug or therapy in a controlled environment. Thus, effects on the
molecular level, e.g., in gene expression, are the result of many in vivo factors. These
factors may be of interest or can be regarded as confounding factors, such as batch effects
or other patient specific clinical parameters, which need to be taken into account when
analyzing DE/DA results.
Clinical scientists, i.e., physicians that work in part as a physician but also conduct

research on specific patients, observe these in vivo factors, such as sex or previous diagnoses,
but only have a limited understanding and capability to conduct DE/DA analysis. Contrary,
computational biologists have little insights into clinical practice and thus, their research
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hypotheses are mainly motivated by literature. In order to find and validate a joint
research hypothesis the clinical scientist and the computational biologist must interact and
communicate efficiently. While the computational biologist has little insights with respect
to the patients studied and the resulting hypotheses, the clinical scientist cannot perform
the needed computational processes steps on their own.

As such, the wealth of data as assessed in Systems Medicine settings poses new challenges
to the analysis. Within medical research, it is of interest how the clinical phenotype relates
to the molecular setup of the diseased tissue. To answer the questions, it is required to use
the Systems Biology approach – DE/DA analysis. The generic steps needed for DE/DA
analysis as detailed in section 2.1.2 are well suited for automation. As a result, the lack of
a computational biologist in life science research groups has been addressed by a plethora
of tools or platforms that cover many steps of raw data pre-processing and calculation as
described in the following.

3.2 Related Work

Related approaches are separated into those specialized on processing transcriptomic and
proteomic data. For transcriptomic data, we considered all tools that offer a pre-processing
pipeline, quality control, DE calculation and offer a graphical user interface. We considered
all analysis applications relying on the popular MaxQuant algorithm output and performing
quality control, DA, and enrichment analysis and offer a graphical user interface.

3.2.1 DE tools for transcriptomic HTQ data

Gaur et al. (2017) provide an overview about automated RNAseq analysis platforms and
a short description of their utility [75].
The main aim of RAP [37] is to provide an RNAseq tool that does not need to be installed
on the client side. The web interface provides possibility for data submission and a browsing
facility for results exploration. While the overall appearance seems more user friendly than
command line tools, the platform is suited for users with bioinformatics knowledge that are
able to configure pipelines and interpret results. Furthermore, RAP offers a great variety
of possibilities for analyzing RNAseq data, but does not focus on DE analysis. Especially
visualizations and plots are not available so far.

RNAminer [38] provides three different fully parameterized pipelines that work simul-
taneously while results are consolidated among the pipeline. However, the resulting DE
genes are given as text files and any new hypothesis requires an upload of files and a
manual specification of two groups of samples offering no flexibility in experimental design.
QuickNGS [39] provides many options to analyze a variety of NGS data. As a tool with no
focus on specific use cases, it lacks visualizations and functions that are specific for RNAseq
analysis. Plots are limited to a static clustered heatmap and a PCA plot. Additionally,
experimental design is static and as described within the publication only possible for
two groups (sample and control) plus batch effects. NGS-trex is available through a web
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interface. The tool allows the user to pre-process raw data and to calculate DE results [40].
From what can be discerned from the documentation, there are no visualizations available
and no information on possible experimental design configuration could be found. TRAP is
a web service tailored to analyze RNAseq data from time series experiments [41]. Although
TRAP covers all analysis steps, there is no graphical visualization of results. Wolfien et
al. (2016) implemented TRAPLINE for automated analysis of RNAseq data, evaluation,
and annotation within the Galaxy framework [42,76]. The TRAPLINE workflow is built
to enable experimentalists to analyze data without requiring programming skills [42]. In
addition to pre-processing and DE calculation, it provides several lists of results and help
or links for visualizing data. Additionally, links to annotation and interpretation tools are
given.

3.2.2 DA tools for proteomic HTQ data

Tools for the user-friendly analysis of MS-based proteomics shotgun measurements have
been emerging quickly in recent years as the data has become available to a wider research
community.
Perseus is one of the first and surely one of the hallmarks of proteomics data analysis

platforms, and covers a broad variety of pre-processing and analysis features [43]. Perseus
handles sample annotations in a flexible manner, as many annotation types are supported
and differential testing can be based on these. While model setup for DA analysis allows
multi-group and also a continuous setup, Perseus is written as a stand-alone desktop
application in the C# programming language and is limited to the Windows operating
system.

In order to be platform independent, similar analysis workflows to perform MS proteomics
data analysis are written in R statistical language. Differential Enrichment analysis of
Proteomics data (DEP) is an R package that provides an integrated workflow analysis of
raw MS data as generated by quantitative analysis such as MaxQuant or IsobarQuant [44].
DEP is tailored to suffice a bioinformaticians analysis workflow and addresses the growing
need for user interaction by wrapping the analysis into an R Shiny application.
LFQ Analyst is the most recent addition to Shiny-based applications and wraps many
DEP functions into an automated and interactive workflow. The authors show how the
use of Limma advances over statistics as used in Perseus [45].
iMetaShiny evolved from the iMetaLab project focusing on metaproteomics analysis, but
covers all crucial analysis steps in dashboard configuration instead of a complete work-
flow [47].
All four R-based applications rely on strictly predefined meta information inputs, which is
sufficient mainly for in vitro scenarios.

While these approaches are more or less mature, they are designed in the scope of Systems
Biology. Thus, current analysis applications offer default solutions for simple research
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hypotheses, e.g., case vs. control, as they are very common in in vitro perturbation studies.
More complex designs, as they arise in Systems Medicine, are either not covered in the
standard implementation of a tool or require cumbersome reconfiguration and redundant
calculations.
As a result, we set out to create a research application that (i) enables the novice user

to interactively define and configure complex hypotheses to be tested on HTQ data, and
which (ii) automates processing steps while adhering to the scientific standards of best
practice procedures to receive publication ready results on DE/DA results.

3.3 Methods

We use a hybrid approach of Design Thinking, scientific software engineering, and literature
research to define the DE/DA software for Systems Medicine. We utilize user testing to
evaluate specific features of the software with regard to the user’s perception and intention
to use.

3.3.1 Requirements engineering and feature definition

Many software development methodologies imply that a user already has extensive domain
knowledge to guide the requirements engineering process. In our case, we aim at making a
scientific method available to users that are new to the field. Therefore, we make use of
established methods like Design Thinking and a method specifically tailored to scientific
requirements engineering: Li et al. (2011) developed Domain specific ReqUirements
Modeling for Scientists (DRUMS) model, which introduces the scientific knowledge into
the requirements specification and defines features to describe desirable properties that
are end-user visible and represent an abstract view of the expected solution. As such, a
feature serves as an additional preliminary acquisition layer for requirements engineering.
A feature can be further refined and be detailed by the realizing requirements, which
together form the requirement space [77].
As such, we followed the DRUMS model to outline DE/DA analysis features, the

corresponding features spaces and the comprised requirements. The requirement spaces
are modelled through the Scientific Computing Requirements Model (SCRM) specification.
When mapped to the DRUMS model, the scientific problem and numerical solution of

DE and DA overlap heavily as described in section 2.1.2. As a result, we are able to define
many joint features. However, specific requirements tailored to the underlying data sources
are needed as well. Requirement subclasses, e.g., processes and data flow, are shaped
by best practices and workflow examples reviewed by the scientific community. Conesa
et al. (2016) provide an exhaustive overview of processing steps in RNAseq analysis [6].
Similarly, Poplawski et al. (2015) summarize two well-established workflows from Anders
et al. (2013) [78] and Trapnell et al. (2012) [70] and additionally define evaluation criteria
for a systematic evaluation of user interfaces for RNAseq analysis from a life scientist
perspective [4]. The evaluation criteria serve as a starting point for the definition of
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features, i.e., desirable properties that are end-user visible and represent an abstract view
of the expected solution. In the case of proteome measurements, we derived functional
requirements on processing pipelines from two publications by Tyanova et al. (2016) [5,43]
and informed by two further publications [79, 80]. Based on our literature review, we
compiled a first list of features and requirements.
In order to validate our list of functional requirements, we conducted informal phone

interviews with experts that focus on the analysis of RNAseq data and DE analysis from
different research institutes. We discussed all steps of the technical pipeline to determine
the acceptance of tools within the user community and also assess subjective advantages or
shortcomings of selected programs. This step is crucial to not miss important developments
in the scientific community. The expert interviews guided the selection of tools in cases
where multiple tools suffice the objective quality metric as described in literature.

Furthermore, the new setting of Systems Medicine and many complex hypotheses
necessitated the addition of further features. Throughout ideation and development of the
application we discussed and evaluated several UI prototypes containing the features within
the SMART consortium. The consortium consists, among others, of clinical scientists and
computational biologists. The prototypes are based on RNAseq and clinical data as raised
within the SMART observational study on heart failure patients. As such, we adapted
requirements in an iterative fashion based on user feedback. In this process, we utilized
the ideas of Design Thinking, which provide a process framework asking for constant
communication between developing team, stakeholders, and targeted end users throughout
the software development process [81]; thereby, the user’s perspective essentially shapes
the system to be of actual value.

3.3.2 Personas

We identified and characterized two stakeholders and thus main users of the application:
The clinical scientist who is interested in (i) testing own hypotheses based on daily
observations and assessed clinical parameters and (ii) interpretation of DE/DA results in
the clinical context, e.g., if results point to a disease, a potential treatment or interesting
research directions. All of that should not require any programming skills. Furthermore,
although the clinical scientist usually has many complex hypotheses towards the data,
statistical training to define proper designs is lacking frequently.
The computational Biologist is primarily interested in an accurate and fast pre-

processing pipeline and calculation of DE/DA results. The execution of the pipeline should
require minimum input, configuration and manual tasks. It should allow ad-hoc exploration
and analysis of DE/DA experiment results. Furthermore, the computational biologist
would like to get publication-ready result reports. While the computational biologist has
little insights with respect to the patients studied and the resulting hypotheses, the clinician
cannot properly analyze the data alone. Frequently, the clinician has no experience with
*omics data and therefore does not know what information can be obtained from it.
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3.3.3 User studies

User interviews aim at assessing data to answer research question 2. Testing it with
clinical scientists and computational biologists in an observational Systems Medicine
setting assessed the utility of the working prototype for exploratory DE analysis. For our
analysis, we focus on verifying the achievements of stated software requirements with a
focus on the DE experimental design feature. Namely, R11 – Rapid Experimental Design
Creation, R13 – Interactive Visualization of Results, and general usability are the primary
requirements of interest in our user interviews. The requirements R11 and R13 are covered
via the correct completion of given tasks. The actual empowerment of the user, i.e.,
the ability of conducting an experiment and interpreting the results is concluded from
the completion of the given tasks. The users’ acceptance of the Differential Expression
Analysis Made Easy (DEAME) prototype, i.e., the intention to use, is assessed through
The Unified Theory of Acceptance and Use of Technology (UTAUT) questions [82]. We
adopted the UTAUT model due to the unique research environment, in which there is
less social pressure on the use of a tool and additionally the facilitating conditions are
part of the SMART IT infrastructure and thus a new condition in itself. As a result, we
limited the model to test the performance expectancy, effort expectancy, and the intention
to use DEAME. Assessment of all items is achieved through a mixture of quantitative
and qualitative questions which are acquired via a user questionnaire, testing notes filled
in by the interviewers during the interviews and a screencast of the application, mouse
movements, and voice of the testers following the advice given in Anderson et al. (2010) [83].
Informed consent is obtained from all participants. The testing materials and the interview
procedure are pre-tested for functionality, comprehensibility, and time required for response.

Interview procedure
The interviews are estimated to last at maximum one hour. A one-page study description
(section A.5) and the consent form (section A.5) are sent out to all testers prior to the
interview via email to enable them to read them thoroughly. Both documents are also
provided at the interview site to collect signed consent in person. Interviews are conducted
in calm rooms at the working sites of testers or at Hasso Plattner Institute (HPI) with stable
WiFi connection. Next to the tester, two interviewers are attending the interviews, one
moderator, and one assistant. After a short welcome and introduction of the interviewers,
the testers are asked to select the language of the interview they would feel most comfortable
with to express thoughts and comments while testing the application. Choices are English
or German. All other research artefacts are written and filled in in English. As a first action,
the testers are given room to ask questions on the consent form and after clarification
asked to sign the form and to fill in the first part of the questionnaire. Thereafter, the
testers watch a short introductory video1 explaining the differential expression analysis and
are again given the opportunity to ask questions. The interviewers put a special emphasis

1The video is available for download at: https://www.dropbox.com/s/ltaylxl4skez7ep/TutorialVideo_
Final.mov?dl=0.
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on questions during testing: Any uncertainties regarding the understanding of the tasks
and questions are explicitly asked to be addressed to the interviewers directly, whereas
uncertainties of how to use the application should be solved through the usage of the help
pages within the application. The testers then read the first task given in the questionnaire
and start exploring the application to be able to complete the tasks and answer questions.
After the completion of all tasks, there is room for further questions and remarks

Questionnaire
The questionnaire (see appendix section A.5) comprises three parts. In part I a general
assessment of demographics and background data to characterize the tester population
and their fit into user groups is performed. Testers are selected to fit into the definition
of the two user groups clinical scientist and computational biologist. However, the actual
criteria for inclusion are broader in the sense that anyone with a university or college course
level on gene expression is eligible to be included. Furthermore, the user specifies his/her
profession being a clinician/medical expert, a computational biologist, or other, which had
to be specified.
Part II: The second part of the questionnaire leads the user to the first task to complete

within the application. The task is given as verbalized instructions manner to mimic the
actual hypothesis instead of giving technical instructions. Questions II.1-5 ask for analysis
results, which can only be answered correctly if specific functions within the application
are found, executed, and interpreted correctly. Reasons for incorrect answers are noted by
the interviewers or identified retrospectively in the screen casts (details in section 3.3.3).
Question II.6 tests the understanding of the design matrix in a backward manner, i.e. if
the users can translate the design matrix into a correctly verbalized hypothesis.
Part III tests the translation of a user specified hypothesis. The user is asked to

write down their hypothesis and is then asked to explore the setup of the design matrix
and explore the results. The interviewers note further details regarding the exploration
down. Within Part III, the user also answers the UTAUT questions with a focus on the
variables performance expectancy and effort expectancy using six questions for each item.
Furthermore the intention to use is assessed in four items. More specifically, tick mark
questions in part III.1-14 resemble a Likert scale (-2 = strongly disagree, -1 = disagree, 0 =
neutral, 1 = agree, 2 = strongly agree). Questions 1-4 and 9-11 are formulated positively
while 5-8 and 12-14 are formulated negatively. For example, “The app is easy to use.”
versus "It was difficult to use the app.“. The intention to use is assessed using two more
qualitative questions, giving room for explanation of reasons to use the application or not.

Interview notes
The interview notes refer to a guided sheet, in which the interviewers assessed further
information to characterize the testing (section A.5). Artefacts from the testing notes
include the time needed to complete the tasks, if the tester completed subtasks on their
own or if they needed assistance, the design the tester created to compare to the design
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the tester expressed to want to test and further notes on questions and complications.
Furthermore, we captured the actual computation time to rule out network inconsistencies.

Screencasts and audio recordings
Screencasts and audio are recorded using QuickTime Player (Version 10.4 (855)) and are
only referred to in cases where the interviewers are not able to directly write down all
aspects of the interview, e.g., when the testers are very active or needed help during app
exploration.

3.4 Requirements and Features

Based on our literature and user research, we extracted and summarized features and
requirements of a DE/DA application as listed in Table 3.1. In the following section we
elaborate more on all items in the table and provide greater details for our approach to
the DE/DA design feature.
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Table 3.1: Overview on features, requirements and their detailed specification for a DE/DA application aimed at enabling analysis in a Systems
Medicine setting grouped into categories for better comprehension.

ID Item Specification

System
R1 Straight-forward installation Time required <15 min and very simple or unnecessary (e.g., all-in-one

installer package, feasible just by clicking)

R2 Platform independence The software should be available to the major operating systems
(Windows, MacOS and Linux)

R3 Data security Clinical and expression data, either in a protected remote environment
or the user’s local environment

Pre-processing

R4 Default Configurations Very simple/no configuration (e.g. just file path has to be set by clicking),
default configurations available

R5 Full-fledged pre-processing Major part of pre-processing should be covered
R6 Acknowledged tools Tools should meet scientific state-of-the-art

R7 Independent tools Bioinformatics tools within the processing pipeline need to be independent
from the experimental design

R8 Automated execution Pre-configured pipelines should run automatically

DE/DA design

R9 Handling of meta data The system needs to accept and process an arbitrary amount of meta data

R10 Intuitive formulation of design The translation of the clinician’s hypothesis into an experimental design
matrix needs to be easy

R11 Rapid design creation The clinical scientist should be enabled to create a design fast

R12 Complex designs Complex designs including continuous variables, stratification and covariate
inclusion need to be possible in addition to the simple case vs. control design
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Table 3.1: Overview on features, requirements and their detailed specification for a DE/DA application aimed at enabling analysis in a Systems
Medicine setting grouped into categories for better comprehension.

ID Item Specification

Visualization,
Annotation &
Interpretation

R13 Interactive visualization of results Results of DE calculation are of high dimension and need proper and
interactive visualization.

R14 Enrichment analysis Enrichment analysis should be used as a key strategy to interpret results

R15 Actionable information on results Additional information on DE results need to be provided within
the application context, i.e., publications on regulated genes

Wrap-up
R16 Report generation Detailed report with many intermediate results and graphics
R17 Data download Result and intermediate data needs to be accessible in a structured format

R18 Reproducibility Processing and calculation should be reproducible in a fully automated/
scriptable way

Overall
R19 Documentation Documentation needs to be comprehensive, focused and clear, e.g., help pages,

tutorials and introductory videos.
R20 Example and test data A detailed example and testing data for comprehension needs to be provided
R21 No IT skills needed No or very simple, well-documented command line execution
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Several non-functional requirements, i.e., criteria that shape and constrain the operation
of a system, and therefore the specification of our DE/DA features and functional require-
ments. A common non-functional requirement is Usability. It is important to note, that
"Usability" in the context of software development is mainly defined towards the user UI
design [84] and in many cases assumes that the software is already set up and functional,
but also that the potential user is familiar with the software’s purpose and the usual steps
needed to accomplish a specific goal. As such, the UI design is the main contributor to
a users success and thus satisfaction. In scientific software this might not be the case,
especially when a new user group is supposed to be enabled to perform a task. This need is
well reflected in the evaluation criteria defined by Poplawski et al. (2016) [4]. As such, they
highlight the need for straightforward installation procedure and represent the Learnability
of the scientific problem, it’s mathematical model, and the numerical method (not the
UI) in multiple items, such as help pages, details on when to use which algorithm and
an exhaustive example of usage based on demo data. Additionally, "Usability" is mainly
defined as the software being usable, without dedicated IT skills, such as command line
execution. In fact, a proper, intuitive UI should expand beyond simply avoiding command
line interfaces. Furthermore, scientific standards need to be met in terms of proper docu-
mentation of methods, reporting, and reproducibility. The balancing act between a visually
appealing representation of data and scientifically correct content needs to be performed.
The application’s features need to solve the demands as stated by the clinical scientists, yet
need to fulfill scientific standard with regard to processing requirements. Starting at step
two of the generic process as described in section 2.1.2, necessary features can be mapped
to concern bioinformatics pre-processing, DE analysis, visualization and annotation, and
interpretation. However, the context of Systems Medicine has been included neither in the
development of related platforms, nor in the reviews on current pipelines and user interfaces.
The Systems Medicine context defines the new scientific problem, which constraints the
definition of the pre-processing pipeline and requires a new concept for the experimental
design feature. With regard to annotation and interpretation, there is a remarkable amount
of ready-to-use application programming interfaces (APIs) to choose from, which provide
results that can directly be visualized by the application in the Systems Medicine context.

3.4.1 Requirement space: Pre-processing

The joint pre-processing requirement space for transcriptomic as well as proteomic raw
data is visualized in Figure A.1. The feature’s focus lies in the definition of the data
handling methods, which differ tremendously between the two data sources and are thus
detailed in the implementation parts of the two applications (see section 3.5.1). However,
both data flows handle raw measurement values, i.e., FASTQ files or spectra files (.RAW,
.wiff, .baf, .dat), a reference file in FASTA format and configuration parameters and are
restricted to tools that are independent from the experimental design and can be executed
in an automated fashion, e.g., by a job execution/scheduling framework. The UI needs
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to provide an interface to allow data upload, configure pipeline parameters and to view
quality control plots.
Hardware and performance definitions are hard to specify – Poplawski et al. (2016) [4]

define, e.g., a very good run time for their test data set to be below 48 hours. Furthermore,
they reduce hardware claims to main memory and disc space. A "good" solution would
be remote data handling and analysis and thus requiring no local hardware. However,
the external handling counteracts the definition for data safety, which is best ensured
in the local environment. Both assumptions are not necessarily true. We thus define
our requirements in this regard with a setup on either a safe remote environment, e.g.,
at institutional servers with secure data transfer, to allow good performance of heavy
computations as they are common in raw data pre-processing or a local desktop installation,
which most probably would not accomplish computations in the given time frame, but is
under full control of the user.

3.4.2 Requirement space: DE/DA in Systems Medicine

The SCRM model to define the DE/DA in Systems Medicine requirement space shown in
Figure 3.1 contextualizes requirements listed in Table 3.1 with the corresponding feature
and scientific knowledge space. Although the knowledge space already provides numerical
methods for the solution of the DE/DA in Systems Medicine problem, a proper configuration
of these methods is neglected and reduced to the most basic solution in most published
applications. We therefore specify a new data process space including requirements with
regard to data flow and data definition (lower right hand side in Figure 3.1). Here, the
data flow is expanded to accept the full matrix Xf in addition to the HTQ measurement
matrix Y . The data process space is explained in greater detail in the next paragraph.
All metadata needs to be accessible to the user for cohort definition and design setup

from the user interface. The translation of the users hypothesis into an experimental design
matrix needs to be easy and fast. As many established solutions rely on no ad-hoc or only
static visualization of results, we required our solution to visualization of intermediate
steps for quality control and for result inspection to be manifold and interactive.
The Systems Medicine DE/DA feature requires a software interface to the precedent

bioinformatics pre-processing as it is reliant on the calculated HTQ measurements. Fur-
thermore, the feature provides the results to be used for annotation and interpretation.
Hardware is not necessarily a crucial factor to consider in this feature, as the computational
load is rather limited. However, computational power, and parallelization is needed for the
pre-processing pipeline and in the case of many client requests to the application. The
most popular numerical solutions to DE/DA calculation are implemented in R statistical
language, restricting the feature language to be R or to be able to execute R code.

Concept of flexible experimental design matrix creation
The definitions and concepts of GLM and how to calculate DE or DA are laid out in detail
in section 2.1.2. They provide the basis for the flexible design matrix creation feature.
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Figure 3.1: SCRM diagram of the new requirement space of the DE/DA in Systems
Medicine (SM) analysis feature. The model contextualizes requirements listed in Table 3.1
with the corresponding feature and scientific knowledge space.

We defined matrix Y as being the result of an HTQ experiment and Xf being the
meta information accompanying the experiment. In terms of the DRUMS specification,
Xf and the design matrix represent the new data flow. Parameters from Xf define the
sample cohort and are used to create the experimental design matrix X that corresponds
to the hypothesis of interest. The parameters from Xf may be of numeric or categorical
nature and may exceed the parameters needed for a specific design. The flexibility of the
theoretical possibility to include all parameters given in the meta information Xf into the
design matrix X is encompassed by some disadvantages:

1. Many experimental setups may not need a complex design – simple relationships are
to be tested,

2. A complex design complicates interpretation of results – sometimes dramatically –
and thus would not be suitable for our user group and

3. A complex design with many stratification options tends to produce many small-
sample-number groups, which do not have the statistical power to detect significant
differences.

Therefore, we introduced the constraint of allowing a maximum of two parameters
of Xf needing to define the cohort and contrast of interest. We define the two
parameters as Xf1 and Xf2. The constraint enables us to reduce the possibilities of
design formula setup dramatically while avoiding biologically less relevant or unreasonable
configurations.
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The design formula is generated by (i) selecting and modifying Xf1 and Xf2 to build the
mainParameter and the filterParameter as illustrated in Figure 3.2 and, if needed, (ii)
filtering of samples and adding a reasonable number of covariates, if needed (see Figure 3.3).
Possible initial data types for Xf1 and Xf2 and examples of their modification to are shown
in Table 3.2. Additionally, all categorical parameters and thus also dichotomized represen-
tations of numeric parameters are represented in two or levels. For example, a level

of the parameter Sex is male. Modification in this context means either dichotomization
of the parameter or selection levels of interest. The design matrix X is derived from the
formula and the specification of contrast. We provide a detailed description of possible ways
through the algorithm shown in Figure 3.2 and Figure 3.3, i.e., the process requirement, in
the following paragraphs.

Table 3.2: Description of possible initial data types for Xf1 and Xf2, a full range example
of a parameter, and a corresponding binary representation.

Data type Parameter
Full range example

Binary representation/level
Example

Categorical
binary

Sex
Male/Female

Male = all male patients
Female = all female patients

Numerical Age
0-90 years

Below_x = [0 - x)
AboveAnd_x = [x - 90]

Categorical
exclusive

Blood group
A, B, AB, 0

Blood_1 = A, B, AB
Blood_2 = 0

Case 1: Numeric Xf1

Xf1 being and staying numeric throughout the modification process towards mainParameter

means that a linear relationship between the expression or abundance value and the nu-
meric parameter, e.g., the age, is to be tested. At this point mainParameter may be fully
defined as equivalent to Xf1 and filterParameter as being 0 (follow the left-most path in
Figure 3.2). Further, specification of the cohort can be accomplished through specification
of Xf2, which represents a filter. Thus Xf2 must be categorical, however a numeric Xf2

may be dichotomized (= transformed to a binary representation) by selecting a cut-off
value to divide the cohort into two parts. filterParameter is then equivalent to Xf2.

Case 2: Categorical Xf1

In the case of Xf1 being categorical before or after modification (= mainParameter) a
linear relationship between two levels of the mainParameter is assumed. While levels

are natural in the case of binary data, categorical parameters with more than two levels

require either a merge of several levels to form a new level. If no further stratification
of the cohort is needed, mainParameter and filterParameter are fully defined. Choosing
to stratify, enables the selection of Xf2, which again needs to be dichotomized based on a
cut-off value in order to then be united with Xf1 to form a mainParameter comprising
all possible combinations of levels from Xf1 and Xf2. In this case filterParameter
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is always defined as being zero. The difference between the merge loop in the beginning
and the final unite operation is the variable it relates to. The merge loop relates to a
combination of different levels of Xf1 into one new level, the unite function combines levels
from Xf1 and Xf2.

Completing the formula
In Figure 3.3 we show the completion of the formula after the previous definition of
the mainParameter and the filterParameter. In the numeric case, the cohort needs
reduction to those samples within the selected filter groups. In addition to mainParameter,
p covariates may be selected from Xf to be added to the formula. Samples with missing
data for mainParameter or within the covariates are removed from the cohort at this
point and the formulas are assembled to ∼ 1 + mainParameter + ∑p

l=0C in the case
of mainParameter being numeric and ∼ 0 + mainParameter + ∑p

l=0C in the case of
mainParameter being categorical. The latter is mainly necessary for easy sorting and
definition of contrast.

Contrast specification and design matrix translation
The formula is translated into a design matrix, which in the case of a categorical
mainParameter will result in the creation of a dummy variable for every level of
mainParameter. For covariates the amount of dummy variables can be reduced to one
less than the amount of levels to achieve a full rank design matrix. The last step is the
definition of contrasts, i.e., which groups to calculate the difference of beta coefficients on.
In the case of a numerical mainParameter, no dedicated contrast needs to be specified as
the second coefficient beta1 of the linear model represents the change of the abundance in
relation to one unit of Xf1.

3.4.3 Requirement space: Annotation and interpretation

Enrichment analysis is one of the most common and established methods to summarize
results into comprehensible biological terms. The analysis is based on lists of genes,
sometimes accompanied by a numerical value indicating a ranking as resulting from
previous analysis steps and lists of genes as provided by annotation databases. Actionable
information could be achieved through an interface to a document retrieval system including
natural language processing. The data flow would then consist of key words, e.g., the
gene name of interest, or of full queries representing the context of analysis as given
by the analysis results and clinical meta information. Additionally, interviewed clinical
scientists asked specifically for actionable, additional information on results to be provided
within the application context, i.e., publications on regulated genes. Both requests do
not needs adaption to the Systems Medicine context. Therefore, either implementation of
current libraries or the usage of an application programming interface would be reasonable
requirements. In any case, visualization of results and intuitive interaction possibilities
need to be realized through the user interface.
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Figure 3.2: Schematic representation of model parameter selection and modification. The
selection of Xf1 and Xf2 in dependency to their data type being and staying numeric
or not in combination with other modification option like merging and dichotomizing
leads to a fully defined mainParameter and filterParameter.
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Figure 3.3: Flowchart showing how mainParameter, filterParameter and further specifi-
cations are used to specify, reduce, and complete the definition of the design formula.
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3.5 Implementation

Throughout the iterative development process, we constructed several mockups and pro-
totypes to reach two viable research applications: DEAME for DE and Eatomics for DA
analysis. While both applications conceptually are implementations of the same software
requirements and especially the concept of rapid and flexible experimental design setup,
they differ in a few regards.Table 3.3 summarizes the main differences in application usage
and implementation details.
The primary HTQ data source analyzed in DEAME is RNAseq data. As DEAME is

tailored to be used within the SMART consortium work, active development and code
availability are restricted to the SMART project definition. Implementation decisions are
considering the framework of the SMART IT platform [53] and in a broader sense also
utilized existing software artefacts from the AnalyzeGenomes platform [69].
As the concept of rapid and flexible experimental design creation proved to be well

accepted, we decided to transfer our insights to the implementation of Eatomics, and thus
to make code available publicly and usable for all researchers.
We switch the primary source of HTQ data to come from label-free MS-based shotgun

proteomics, because other parties are working on very mature RNAseq platforms with
large man power (e.g., Chipster). Moreover, proteome data analysis applications are sparse
and as the data source becomes more available the need is growing. Furthermore, despite
the end of the SMART project, the proteomic data assessed until then did not undergo
proper analysis yet and thus Eatomics would benefit the project retrospectively. Details
on how we implement the two applications are given in the following sections.

Table 3.3: Differences and capabilities of the two research applications DEAME and
Eatomics.

DEAME Eatomics

Tool availability SMART/EurValve project
members with data access free

Code availability private public

Access via SMART IT platform,
AnalyzeGenomes R studio, Shiny

Data storage in-memory database file-based

Backend R serve, python, ruby R Shiny modules,
R helper functions

Frontend React R Shiny
Primary HTQ data source RNAseq shot-gun, label-free proteomics

3.5.1 DEAME

The DEAME application is part of the SMART IT platform described in subsection 2.2.1
and in Kraus et al. (2017) [53] and uses resources, such as the worker framework, provided
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by the AnalyzeGenomes platform [69]. In Figure 3.4, the overall software architecture of
the DEAME application and relevant parts of the SMART platform are modelled using
Fundamental Modeling Concepts (FMC) notation. Our React front-end communicates
with the Python back-end via a RESTful API implemented with Flask. The back-end has a
connection to the In-Memory Database that contains data and can execute R scripts in form
of stored procedures. The pre-processing pipeline is executed through the AnalyzeGenomes
worker framework and stores results in the In-Memory Database. A thorough explanation
of all components, i.e., the data, platform, and application layers, is given in the following
sections.

In-Memory Database
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Experimental 

Parameters
Results
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Computational 

Biologist

R

DE Application
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Figure 3.4: Software system architecture of the DEAME application including parts pro-
vided by the SMART and AnalyzeGenomes IT infrastructures [53,69].

Data Layer
An In-Memory Database contains all frequently accessed data: The patient-centric star
schema of the SMART platform is expanded with a section to accommodate the experimen-
tal data (please refer to [53] for further details on the clinical data). Tables for counts, as
they are produced within the pre-processing, are added as well as tables for experimental
parameters, and results of DE calculation. Furthermore, an R client is established to
perform DE calculation within an Rserve instance.

Platform Layer
The platform layer contains the pre-processing pipeline, experimental setup information,
and DE calculation functionality. The split into pre-processing and experimental design
plus DE calculation is a design decision that limited the selection of tools to be used within
the pipeline when compared to the traditional setup as outlined in section 2.1.2. The split
resembles the need given within a clinical setting, where many hypotheses may be tested
and thus, the experimental design for DE calculation is not known before pre-processing of
raw data. As a result, pre-processing and DE calculation are independent from each other.
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Pre-processing pipeline In our architecture the pre-processing is embedded within
the worker framework of AnalyzeGenomes. In Figure 3.5 we describe the pipeline, input,
and output of the individual steps and the order in which they are executed. The boxes
represent applications, i.e., python wrappers around the incorporated bioinformatics tools,
such as TopHat. These programs could be extended and interchanged when new tools
need to be introduced. In our literature review and after interviewing experts in the field,

TopHat

Trimmomatic

FASTQC

STAR featureCounts

Count Matrix

Aligned
Reads

FASTQC

Trimmed
Reads

QC-Report

Raw Reads

QC-Report

Figure 3.5: Specific implementation of the automatic RNAseq pre-processing pipeline to
yield count matrices.

we identified the following tools to be suitable for our first prototype: FastQC [85] for
quality control before and after trimming of reads with trimmomatic [86], Tophat [87]
or STAR [88] for alignment of reads to the reference genome, and featureCounts [89] for
creating count tables from alignment files. In this setup, we avoid redundant pre-processing,
as it is implemented in some of the related tools.

Interactive Visualization and Annotation Many results and intermediate results are
of interest for both the clinician and computational biologist. Quality control as done
by FastQC produces an HTML-file for every sample, which is stored and accessed for
display within the application. Additionally, results from DESeq2, i.e., the list of DE
genes, their p-values, and the complete normalized and transformed count matrix, are
visualized. Interactive heatmaps are implemented via the Clustergrammer software and its
biology-specific extensions to show gene/protein names, cluster statistics and GSEA [90].
Further plots are implemented using the D3 JavaScript library.

Differential expression calculation Differential expression calculation follows the gen-
eral pattern as described in section 3.4.2. However, there are specific adaptions: For
DEAME we did not implement the continuous case for Xf1 and Xf2. As a result, con-
tinuous parameters always require dichotomization. Furthermore, we did not implement
the option to add covariates to the design formula in the DEAME prototype. Clinical
parameters corresponding to Xf and the expression count matrix (Y ) are stored within
the database for reproducibility.
DE calculation is done via DESeq2 [9] within our Rserve instance. DESeq2 is called

from a stored procedure within our in-memory database and requires the raw count
table as generated by our pre-processing pipeline. Furthermore, the stored procedure also
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receives Xf1 and Xf2 for filtered samples and unites them to represent the mainParameter.
The mainParameter is translated into the design formula. All reasonable contrasts, i.e.,
level2 − level1 in the binary case and level2 − level1, level3 − level1, level2 − level4,
level3 − level4 in the categorical case are calculated and send back to the database.

Application Layer
Users can access the DEAME front-end using a web browser. To built the web application
we used React, which is a JavaScript library that controls the mounting and rendering of
components. Additionally, we use Redux to manage the application state. The styling is
mostly defined by React Material-UI and custom styles using the styled components module.
React is a JavaScript library that controls the mounting and rendering of components.
Each component implements different life cycle methods that can manipulate its state.
Information between components is passed as props, whereby one-way data binding is
enforced. Redux introduces a global state that acts as a single source of truth, to which
every component can connect. A component can dispatch an action that possibly makes
a back-end request and propagates the desired change to reducers. Reducers are pure
functions that return the new state or state slice, which is the part of the state they are
responsible for. Components are notified about changes that are accessible in their props.
DEAME’s UI consists of three parts: the experimental design panel is located in the

sidebar, a visualization panel, and a knowledge panel are situated in the main panel.

Figure 3.6: Overview of DEAME’s UI consisting of a sidebar harbouring the experimental
design setup (left) and a main panel showing the visualization panel (right).

Experimental Design Panel The experimental design panel is the main part of the
application as it enables to dynamically choose interesting clinical patient data categories
to be studied in DE analysis (Figure 3.7).

The overall goal is to split the patient population into at least two subgroups based on
the patients’ characteristics. For demonstration purposes, we use data from the SMART
study. Subjects are characterized by a plethora of clinical variables (e.g., sex, height, blood
pressure) that are grouped in categories (e.g., demographics or MRI derived measurements).
Binary and categorical variables can be dragged into the design matrix directly. Categorical
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Figure 3.7: User interface of the experimental design panel in two configured versions. Left:
The parameter Gender is expanded to show the available levels. The levels are
dragged from the list of available parameters into the upper matrix and as such resemble
a proper design. The numbers in brackets denote the count of subjects in belonging to
the respective level. Right: An additional numeric parameter Height is expanded, a
threshold for dichotomization is set to 160 and is used to split the previously two groups
of female/male into four groups based on the subjects gender and height.

variables may be combined within one column of the design matrix. Continuous variables
are split by the user via a slider over the full range of possible values. The design matrix
displays the parameters and levels and calculates group sizes similar to a contingency
table. After the creation of a valid design, i.e., at least three samples in every group, DE
calculation is triggered via the Run Experiment button. Technically, the sidebar is an
own React component that includes the matrix and categories components. Categories
are a list of category components. A category is in turn a list of parameter components,
while a parameter either is a CategoricParameter or a NumericParameter that contains
a NumberSlider. A parameter contains a list of multiple level components. A level can
be dragged and dropped into the HeaderCells of the matrix, implemented using React
DND.

Visualization Panel The main content is a collection of Components, mainly the
Header, Diagrams, Settings, and the Footer. The Header provides options, such as
showing settings and switching to full-screen mode and back. The Diagrams component
receives the experiment and quality control data and renders different diagrams that
are selectable from tabs, currently either ClusteredHeatmap using Clustergrammer or
VolcanoPlot using canvasJS, which shows to be performant with many data points as
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given in DE analysis. A hover over gene names displays a short description. The title that
describes which contrast is currently shown is added above the diagrams. The Settings

component that can be opened from the Header enables the user to adapt different
significance thresholds, which is then reflected in the diagrams. Currently, download of
results is restricted to the capabilities of the Clustergrammer library.

Knowledge Panel Especially the clinical scientists need additional external information
on analysis results. While the Clustergrammer library already supports the retrieval of gene
product definitions, a more complex knowledge panel is envisioned. Instead of querying
for mere gene names, further relationships, e.g., effects of up-regulation or the selected
disease context, should be included in the query to find actionable insights. Examples for
external resources that can be leveraged are search engines such as Olelo [91] for intelligent
PubMed [92] queries or DisGeNet [93] for gene-disease associations.

3.5.2 Eatomics

Eatomics is designed to enable users from a wide range of backgrounds to comfortably
perform (i) quality control of MaxQuant-generated proteomics data and (ii) differential
abundance analysis comparing the difference between any clinical observation of choice.
In this section we provide an overview on how persistent and session data is handled,
how user interface objects and the server function interact according to Shiny’s reactive
programming model and the appearance of Eatomic’s UI.

Data Layer
The application is primarily developed as a standalone R Shiny application that can be
launched from RStudio locally or a Shiny Server. Data is loaded from text files at run time
and may persist in the form of downloadable data tables and the report. To make session
data available between different application components, we made heavy use of Shiny
reactive values objects that essentially are single variables or lists of objects calculated,
refreshed, and stored throughout the analysis; for example, the PCA plot is build on the
first tab panel, then stored as a reactive value and can then be accessed from the download
handler and the report generation function. At the end of a session all temporary data is
deleted.

Application logic
R Shiny applications consist of a UI object and a server function. Both are handed over
to the shinyApp() function which creates the application out of the given UI/server pair.
Reactive sources, such as user input, can be used within reactive conductors, i.e., functions
to calculate results based on the input, and will then inform output objects to be rendered
to the user. In addition to the main application components, there are several modules
and helper functions. Modules are application components, which are reused within the
application several times. They follow the structure of UI/server function pairs and consist
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of reactive elements. For example, the user may want to change text elements, such as title,
subtitle, and caption of a plot before download. The module collects all text inputs and
returns them for application to the plot element. The module is reused for every diagram.
Helper functions are called from within the main application’s server function and do not
require own UI components. Examples are the assembly of plots or data transformation
tasks.

Visualization For the majority of plots, we exploited the great flexibility of the ggplot2
and adjunct libraries. Manipulation on plots and diagrams, e.g., a change in title or subtitle,
only requires a new definition of the text layer instead of recalculating the whole plot. For
the volcano plot we also made use of the plotly library, which wraps accessory data for
further interaction in plots in the UI. For example, as the gene name can be retrieved via
hovering over the data point, there is no need to put labels and thus a lot of noise into the
plot.

Model setup DA analysis is the key component in Eatomics and requires the translation
of a given research hypothesis into a model that well describes the data and a difference of
interest, i.e., the contrast. For Eatomics, we re-iterated on and consequently re-implemented
the model setup as described in section 3.4.2 and applied the logic to be used twice: The
experimental setup module is used to define DA and also to find differences in gene set
and pathway enrichment on the basis of single sample (ss) enrichment scores. ssGSEA
is an extension of conventional GSEA [61,94]. Each ssES represents the degree to which
the genes, i.e., in our context the respective gene product, in a particular gene set are
coordinately up- or down-regulated within a single sample. As such, ssESs represent a
transformation for a given protein abundance data set. Therefore, ssES are equivalent to
an HTQ experiment and may serve as input Y .

In Eatomics, the flow of model setup deviates from the one shown in Figure 3.2 in that
we have not implemented a dedicated merge function. However, it is possible to merge
groups by exploiting the unite function, i.e., select Xf2 = Xf1, and then select the groups
of interest from the resulting combinations of groups. As such, there is only one contrast
defined per model fit. By omitting the merge step and introducing only one contrast per
calculation run, we do not have to filter samples from the model matrix, which results in
the inclusion of all measured samples into the design even if they are not in the specified
contrast. As a result, variance trend correction can be used for a finer estimation of
variance of expression across all samples and the calculation of differences of multi-group
comparisons. However, this is not true for continuous explanatory variables. Samples
missing meta information of the selected variable are excluded. With regard to the results,
contrasts are generated automatically, based on the user-defined groups of interest. In
practice, the first selected group resembles the reference level, while the second group
will be subtracted to calculate fold changes.

For the core of differential abundance calculation, we decided to use the R package
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Limma [8], which is widely used in the differential expression analysis of microarray and
RNAseq data. As stated before, Limma uses generalized linear models to calculate the
relationship of expression values and explanatory variables. As such, it comes with a
dedicated capability of modelling continuous parameters and thus it is perfectly suited
for a wide range of explanatory variables. Although Limma is developed to perform well
on gene expression data, it has been shown to be superior over traditional approaches on
quantitative proteomics data as well [95, 96].

User interface
The Eatomics user interface is structured according to the four functional units:

1. Load and prepare sample metadata and MaxQuant output, as well as perform
quality control.

2. Conduct differential abundance analysis.

3. Calculate enrichment scores per sample using ssGSEA.

4. Conduct differential enrichment analysis.

These functional units are represented in the four tab panels In general, all tab panels
enable to set overall analysis parameters in a left hand sidebar panel, while further plotting
parameters can be set and interactive visualization can be conducted in the main panel
(Figure 3.8). A fifth tab panel holds help pages and a detailed step-by-step tutorial using a
demo data set.

Figure 3.8: General setup of Eatomics’ UI. Four tab panels establish the core functionalities
for the application. Every tab panel is structured into a left hand side, which contains
configuration modules and a main panel for interactive visualization of results. The user
can navigate between functional tab panels through the header band.

Eatomics process flow and user interaction
In this paragraph we want to give a detailed impression on the processes in and user
interaction with Eatomics’ first two tab panels. We only briefly describe the other two, as
the third on ssGSEA calculation is mainly an interface to configure the ssGSEA algorithm
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embedded in our application and the fourth is an instance of the second tab panel with
only minor changes related to the new input data.

In Figure 3.10 we modelled the process and message flow on data loading, pre-processing,
and performing quality control in BPMN 2.0. A screen shot of the UI showing the first panel
is displayed in Figure 3.9 to accompany the process flow. The first part of the process relates
to the load and configure side bar panel of the application, while the expanded sub-processes
depict view, manipulation, and download of plots and diagrams. The user first selects
the protein evidence (proteinGroups) file, which corresponds to the standard output of
the MaxQuant algorithm. It contains at least label-free quantification (LFQ) intensities
or intensity Based Absolute Quantification (iBAQ) values and other information related
to the MS measurements and the algorithms annotations. The file selection triggers the
load function and the provided data is scanned for the "Reverse", "Potential contaminant",
and the "Only identified by site" column per default. Rows containing a "+" in these
columns are removed as they should not be considered in the analysis. Further filtering
requires user interaction: LFQ or iBAQ columns together with the columns ProteinIDs,
Majority ProteinIDs, and Gene names are extracted. Samples can be excluded by name,
or a threshold for a minimum of valid values measured per protein can be set to exclude
proteinGroups not meeting a certain coverage. In the case of multiple proteinGroup

entries per gene name, the user can choose to create unique names for duplicate gene
names by extending them with .x and x being the count of the duplicate or by summing
up intensities of multiple entries. Missing gene names are replaced with the respective
majority protein ID.
Zeroes in the protein evidence are set to NA, i.e., being missing. The result is stored in

the reactive values list as proteinAbundance - original. Missing values can be imputed
using four selected methods: perseus-like resembling Perseus’ ReplaceMissingFrom-

Gaussian [43] function re-implemented in R, knn for k-nearest-neighbour imputation, or
MinDet, and QRILC from the imputeLCMD package [97]. The imputed data set is also
stored for further analysis.
In a next step, the user selects the sample or patient metadata file which is a tab-

separated m× n matrix containing additional information on samples and experimental
design. The metadata file needs to contain a PatientID column, which matches the sample
IDs from the proteinGroups header and one or more named columns with parameters, i.e.
textual/factual/logical or continuous/integer values.
The proteinAbundance and the clinData object are now available throughout the

application for further analysis. They are used to create quality control (QC) plots: a
PCA plot to visualize the main sources of variation, a bar plot for protein coverage across
samples, a box plot for intensity distribution per sample, a sample-to-sample similarity
or correlation heatmap, a missing value density plot, and a cumulative intensities plot
highlighting highly abundant proteins. For plot configuration and update we implemented
several modules as explained in section 3.5.2. For sample-wise plots, the user can select
a parameter to define colors of samples from the clinData object. Additionally, custom
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titles, subtitles, and captions may be entered and thus added to the plots. Every plot can
be downloaded as single portable document file (PDF). In addition to the manipulation of
aesthetics and text of plots, the user can also manipulate plot data, e.g., by selecting specific
principal components for display or configuring the distance measure for the heatmap
(functions are not shown in Figure 3.10).

  

Figure 3.9: Load and Prepare tab panel overview. Within the configuration module on the
left two input files can be uploaded separately. General configurations and adaptions
of the protein abundance data can be set in advance. Examples are the exclusion of
outliers based on coverage or PCA analysis or the selection of an imputation strategy
for missing values. On the right, interactive diagrams, showing for example a PCA or a
sample correlation heatmap (zoom in), can be displayed and manipulated.
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Figure 3.10: Process and message flow between the clinical scientist and Eatomics’ first panel on data load and pre-processing main process
(left) and quality control and visualization (expanded sub-processes on the right). Messages contain input to the calculation as selected by
the user and output objects to be displayed in the UI. Tasks represented as yellow boxes resemble functions implemented in Eatomics.
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When satisfied with data quality and sample selection the user may proceed to the
differential abundance tab panel. The panel enables the user to translate a given hypothesis
on the data into an experimental design and to test the hypothesis.

Our example hypothesis is illustrated in Figure 3.11. We want to investigate the difference

Figure 3.11: Differential Abundance tab panel. On the left hand side the clinical parameters
and levels of interest can be selected from drop down menus for main effect, as a filter
or for stratification. The main panel shows an interactive visualization of a volcano
plot, lists of significant proteins as specified by user-defined thresholds. An in-depth
view of protein abundance can be generated as a box plot.

in protein abundance in female case and male case subjects, while an effect of age may be
possible but is not under investigation. The user selects the first grouping parameter (Xf1)
in this example the the case/control assignment and the sex as second variable (Xf2). Both
are categorical parameters and subject to the schema as shown in section 3.4.2 and are
thus used to define the mainParameter. The respective combined groups (case_female

and case_male) are then selected as contrast specification from a drop down list. Eatomics
automatically relevels the mainParameter and removes samples that lack information from
the clinData object. Together with the covariates, in our example the age at surgery in
years, Eatomics creates the formula and consequently the model matrix as input for the
DA calculation procedure (refer to section 3.4.2 for further details). In addition, the user
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specifies if imputed or original data should be used in DA calculation. Please note that
the same design would have resulted from selecting the sex as first variable and the group
assignment as second parameter. The actual comparison is defined by the selection of
groups, i.e., the contrast, in the last drop down menu. In the case of continuous values for
Xf1 or Xf2 the UI would display a slider to specify a numeric cut-off value.
A volcano plot displays log2 fold changes of proteins versus the respective adjusted

p-values of the defined group comparison with colors used for the distinction between
significant and non-significant results. The significance thresholds can be adjusted directly.
For the visualization of abundance of specific proteins in relation to the sample description,
either box or scatter plots are displayed. For these, we can re-utilize coloring modules as
described for the previous tab panel. In addition to the download of single plots, the user
can now also decide to render a full report containing all experiment details and plots as
well as data tables.

The third tab panel offers an interface to configure ssGSEA algorithm and calculate
ssESs. As mentioned in section 3.5.2 the result of the algorithm represents a transformation
of the input proteinAbundance data towards the selected gene set or pathway. As such,
the calculation is mainly a prerequisite to perform differential enrichment in step 4. The
user selects a gene set file from the list of MsigDB Hallmark, Gene Ontology (GO), all terms
or subsets of GO molecular function, GO biological process, or GO cellular compartment,
Reactome, Biocarta or Kegg to calculate the enrichment score. Alternatively, the user
may provide a custom gene set file in .gmt format by pasting it into the Data/GeneSetDBs

folder of the application. As in the original code, an expert user may set many parameters.
However, for a quick setup the default options from the original publication are implemented.
The resulting ssGSEA scores are stored as files in the user’s local app directory and are
available for calculating differential enrichments.
Using the ssGSEA procedure to calculate single sample enrichment scores enables us

to re-use the DA logic from the second tab panel for differential enrichments. As such,
tab panel four allows the user to apply the research hypothesis directly to the enrichment
scores and find gene sets and pathways that are significantly enriched. In practice, the
UI and process flow is almost identical to the second tab panel. As a difference, the user
has to choose the enrichment score file from those prepared on the ssGSEA tab panel that
then serve as input instead of the poteinAbundance data.

Installation and technology dependencies
We summarize the most important packages Eatomics depends on in section A.3. A full
list can be found in the repository at https://github.com/Millchmaedchen/Eatomics/

archive/master.zip.
The installation procedure for the local instance requires R and we would recommend

also Rstudio, which are available for a multitude of different operating systems. A single
command is needed to start Eatomics from within R studio. The application opens in
the users standard browser similar to a web application. For institutional use, Shiny
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applications are well suited for server installations and scale to serve more users.
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3.6 Evaluation

In this section, we elaborate on the features implemented in DEAME and Eatomics with
regard to the assessed software requirements and in comparison to related approaches.
Furthermore, we evaluate the new concept to introduce the common practice of DE
calculation into the Systems Medicine context in user interviews tailored to test if clinical
scientists and computational biologists are enabled to perform DE analysis.

3.6.1 Comparison of functionality

In this section, we provide an evaluation of DEAME’s and Eatomics’ functionality, i.e.,
which requirements are met so far by both applications and how their compare to other
available tools as introduced in section 3.2.

DEAME
We considered all tools that offer a pre-processing pipeline, DE calculation, and a graphical
user interface as described in section 3.2. RAP, RNAMiner, and NGS-trex are closed
source web applications, while TRAP, QuickNGS, TRAPLINE (as a Galaxy workflow),
and DEAME offer the possibility to setup a private instance. However, to do so the user
needs a considerable amount of programming skills. Thus, R21 only refers to the IT skills
need to perform analysis, not for setup of the application. Due to the large amount of data
and the need for databases to store and efficiently access the data prohibits straightforward
installation processes (R1). As a result, web services are the main option for inexperienced
users. For the user, these web services are platform independent, as they can be accessed
via their browser. Remarkably, the vast majority of the web services do not provide any
information on how data is stored and security is assured. DEAME is populated with data
from the SMART IT platform (subsection 2.2.1), which is secured behind institutional
firewalls. Only members of the consortium were granted access after identity check (R3).
For DEAME, bioinformatics processing of raw RNA reads is completed automatically

from within the SMART IT platform to yield count matrices (R4-R5, R8). The user is
therefore in control to configure, however can decide to use default values if he/she lacks
the domain knowledge. All other tools accomplish the necessary pre-processing in a similar
fashion. However, only the count-based approach, as implemented by RAP, QuickNGS,
NGS-trex, Chipster, and DEAME, renders the tools used in the pipeline to be independent
from the experimental design. This choice of count based pipeline tools does not necessarily
reduce the time to test a single hypothesis, but it avoids redundant pre-processing and
thus eliminates computational overhead as soon as multiple hypotheses are tested.
However, all platforms use tools to meet scientific acknowledged within the research

community (R6).
With regard to DE design DEAME and Chipster are the only tools offering an interface

to configure complex designs. In Chipster, metadata has to be entered by hand and
transformed to numbers to avoid confusion in the statistical evaluation rendering R9
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more cumbersome and error-prone for the clinical scientist. However, simple and complex
designs (R12) including multi-group comparisons, continuous explanatory variables can
be configured in DEAME and Chipster likewise. Chipster even extends towards the
inclusion of covariates and interaction terms. Visualization options for both tools are
comparably well established, although there is no direct interaction in Chipster as plots are
statically rendered and send to be displayed in the front end (R13). Although stated in the
manual, we could not reproduce the enrichment analysis function in Chipster. RNAMiner,
QuickNGS, TRAP, and DEAME offer a direct option for enrichment analysis (R14).
Report generation, data download, and reproducibility are best supported in QuickNGS
and Chipster as they provide a fine granular solution to download data, results, and images
as well as the used workflows and code chunks at any step of the analysis (R16-R18).
Similarly, R19-R21 are well supported in these tools.
Please note, that Chipster’s and QuickNGS’s capabilities were extended in parallel to

the development of DEAME. Both platforms were well funded and equipped with a whole
team of developers. Initially, Chipster was developed to analyze only microarray data it
was equipped with a large range of tools after the first publication in 2011 [98].

The capabilities of these very mature tools however were not suitable for our application
within the SMART consortium at time of active project work.

As a result, DEAME was equipped with similar functionality, covering an interactive
volcano plot and heatmap (R13), which also accomplishes enrichment analysis (R14).
Furthermore, Olelo may be used to retrieve actionable information via literature search
(R15). Report generation (R16) is not possible in DEAME, however result data tables and
images of visualizations can be downloaded (R17). Reproducibility is mainly covered in
the pre-processing pipeline as workflows and configurations are saved in workflow diagrams.
DEAME documentation may be found in a popup window within the application and
concerns usage of the application, rather than an explanation of the statistical methods
used (R19). Example and test data is provided and not IT skills are needed to use the
application.
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Table 3.4: Comparison of applications for RNAseq pre-processing, quality control, differential expression and enrichment analysis, fully
supported partially supported not supported.

ID Item RAP
[37]

RNA-
miner
[38]

QuickNGS
[39]

NGS-
trex
[40]

TRAP
[41]

TRAPLINE/
Galaxy
[42]

Chipster
[98]

DEAME
[54]

R1 Straight-forward
installation

web
service

web
service

web
service

web
service

web
service

web
service

R2 Platform
independence

only linux
System

R3 Data security remote remote remote local remote remote remote

R4 Default
configurations

R5 Full-fledged
pre-processing

R6 Acknowledged
tools

R7 Independent
tools

Pre-processing

R8 Automated
execution

R9 Handling of
meta data
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Table 3.4: Comparison of applications for RNAseq pre-processing, quality control, differential expression and enrichment analysis, fully
supported partially supported not supported.

ID Item RAP
[37]

RNA-
miner
[38]

QuickNGS
[39]

NGS-
trex
[40]

TRAP
[41]

TRAPLINE/
Galaxy
[42]

Chipster
[98]

DEAME
[54]

R10 In-app formulation
of design

R11 Rapid design
creation

DE
design

R12 Complex designs

R13 Interactive
visualization

R14 Enrichment
analysis

Visualization,
Annotation &
Interpretation R15 Actionable

information

R16 Report
generation

Wrap-up
R17 Data download
R18 Reproducibility ?

R19 Documentation

Overall R20 Example and
test data
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Table 3.4: Comparison of applications for RNAseq pre-processing, quality control, differential expression and enrichment analysis, fully
supported partially supported not supported.

ID Item RAP
[37]

RNA-
miner
[38]

QuickNGS
[39]

NGS-
trex
[40]

TRAP
[41]

TRAPLINE/
Galaxy
[42]

Chipster
[98]

DEAME
[54]

R21 No IT skills
neededOverall
source code
availability
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Eatomics
In this section, we compare functions of Eatomics as they relate to our software requirements
and to other available tools as described in section 3.2. Perseus is by far the most mature
related analysis platform, however is only available for the Windows operating system and
thus is not platform independent. In contrast, the Shiny framework aims at providing
easy-to-use web applications and making it inherently easy to deploy the applications at
institutional servers. The concept solves the problem of local and remote instances with
regard to data security. The user may choose to either use the remote server, thus giving
data away to a potentially not trustworthy party, or to stay secure with a local instance
(R3). In addition, an institutional installation may provide secure access to multiple
users. Currently only the source code of SAM and Eatomics are openly available and thus
supporting the straightforward local and platform independent installation (R1, R2).
The pre-processing feature could not be implemented in Eatomics and all other tools,

as they all depend on the popular MaxQuant algorithm, for which the license restricts
incorporation of the algorithm into third party software. Some functions of pre-processing,
e.g., logarithmic transformations and missing value imputation are covered by all tools
(R4-R8).

Visualization, annotation, and interpretation features (R13, R14) are fully supported by
all tools with the only exception of R15, which is actionable information on results. As for
DEAME, Olelo would be a good candidate to retrieve documents, however an interface was
not established yet. Results and intermediate data may be downloaded at least partially in
all applications (R17), while a full report is only available in LFQ Analyst and Eatomics
(R16). Example and test data is available in for all tools (R20), while documentation
varies from being one paragraph in iMetaShiny to detailed manuals and workflows for the
other tools (R19).
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Table 3.5: Comparison of applications for quality control, differential abundance and enrichment analysis of MaxQuant proteomics output data
fully supported partially supported not supported.

ID Item LFQ Analyst SAM Shiny Perseus iMetaShiny Eatomics

System
R1 Straight-forward installation web service web service
R2 Platform independence
R3 Data security remote local/remote local remote local/remote

Pre-processing R4-R8 MaxQuant dependency causes license restrictions

DE/DA design

R9 Handling of meta data

R10 In-app formulation
of design

R11 Rapid design creation
R12 Complex designs

Visualization,
Annotation
& Interpretation

R13 Interactive visualization
R14 Enrichment analysis
R15 Actionable information

Wrap-up
R16 Report generation
R17 Data download
R18 Reproducibility

Overall
R19 Documentation
R20 Example and test data
R21 No IT skills needed

source code available

71



3 DE/DA Analysis Software in Systems Medicine

Metadata handling and design creation feature (R9-R12) are not or only partially
supported in most other tools and resemble the heart of the application. Therefore, we
prepared another table to provide further functional details in Table 3.6.

Table 3.6: Comparison R9-R12 of the DE/DA design feature details of applications for
quality control, differential abundance and enrichment analysis of MaxQuant proteomics
output data, fully supported partially supported not supported.

LFQ Analyst
[45]

SAM Shiny
[46]

Perseus
[43]

iMetaShiny
[47]

Eatomics
[55]

Complex
design

Two-group
Multi-group
Continuous
Time series
Covariates
Filter and
stratification
Interactions

Meta data
handling

Filter on samples
Filter on rows
Accepts more
data than needed
for design
Supports major
meta data types

3.6.2 Examples of utility

In the following, we show and discuss how simple, but also more complex designs can be
configured and executed in Eatomics. We use the demo protein evidence and metadata
set derived from Chen et al. (2018) (see section A.4) to exemplify questions a clinical
scientist could be interested in [99]. For a better understanding, we verbalize a question,
show its deconstruction into a hypothesis type, describe preparation of input data and
in-app configuration necessities in Eatomics and related tools.

Baseline: Two-group comparison
The baseline experiment of a two group comparison as exemplified by the question of How
does protein abundance in failing hearts differ from non-failing hearts? can be answered
by using the Failing Heart parameter in the metadata. Eatomics and Perseus are able
to directly use the given input data, whereas the metadata file needs reduction to only
include the relevant parameter for LFQ analyst and iMetaShiny. SAM needs the most
extensive preparation as the protein abundance and the metadata file need to be merged
and re-coded to represent the desired design. All samples are assigned to either group of
failing or non-failing hearts, thus a removal of samples from both files in not needed in
either case. Within all applications the configuration of the experimental design is simple
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and can be achieved by very few clicks, e.g., selecting the Failing Heart parameter and
the two subgroups within Eatomics and running Analyze.

Complex designs
What are the differences in protein abundance of hearts with a high (preserved) and low
(reduced) left ventricular ejection fraction (LVEF)? reads as simple as the first exam-
ple, however, when the clinical parameters are taken into account, the question is not
deterministic yet. Thus, we show how to answer it thoroughly in Eatomics:

1. Continuous response variable: LVEF (%) was measured for all but one subject
(including normal hearts). Within Eatomics, without input preparation, one can
simply select LVEF (%) from the parameter list and select to use the continuous
response instead of grouping. Results show proteins that differ with regard to LVEF

(%), i.e., which proteins show higher abundance with higher LVEF (%) or lower
abundance respectively. The sample for which no LVEF (%) value is available is
excluded automatically. While the continuous response can not be calculated in
Perseus, iMetaShiny, and LFQ analyst, SAM would require input data manipulation:
removal of protein abundance data from the file and introduction of the continuous
value into the abundance file.

2. Dichotomized response variable: A common procedure when the continuous
response option is not available is to discretize the continuous parameter. The
researcher/clinician needs to set a threshold for discretization, e.g., 40 % to separate
patients with reduced ejection fraction (EF) from those with a preserved EF.

3. Multi-group comparison: Within the Group parameter, the groups HCMrEF and
HCMpEF denote samples from patients with hypertrophic cardiomyopathy (HCM)
with reduced (r) or preserved (p) EF. These two groups can be compared directly in
Eatomics, while not excluding the information from all other samples in the statistical
model. A similar approach can be configured in Perseus or by manipulating input data
in SAM and LFQ analyst. iMetaShiny does not provide an option for multi-group
comparisons.

4. Optional – filter or stratify: The two previous solutions do include the non-failing
heart samples, as LVEF (%) is given for them. However, it might be more interesting
to further specify the question to find the differences in only failing hearts. In the
continuous case, a filter can be used to only include the failing hearts. Similarly, in
the dichotomized case, the stratification would give rise to the comparison of Failing
heart with LVEF (%) < 40 versus Failing heart with LVEF (%) > 40.

In-app usage of discretization, stratification and filtering is only usable in Perseus
and Eatomics. All other tools would require manual input manipulation.
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5. Optional – covariates: The consideration of covariates, such as sex and age, are
crucial especially in clinical observational settings as they may have a major influence
on the protein profile of a tissue. Covariates can be added to the model or their
influence can be calculated by using them as the response variable directly. Covariates
can only be included in LFQ analyst/DEP, SAM and Eatomics, as they use linear
regression based statistics.

In conclusion, all tools can manage the calculation of a simple two group comparison,
but will not suffice when further stratification and/or the inclusion of covariates is needed.
Furthermore, especially when Eatomics is used, users require less time for input data
preparation.

3.6.3 User studies

User interviews are driven by the question of how clinical scientists and computational
biologists perceive the DEAME research application. Thus, user interviews are structured
to characterize the study population, test if a user is enabled to perform a given and a
self-defined task by using the application, and in the last part assess the user’s performance
and effort expectancy as well as the further intention to use.

Characterization of study population
Eight testers (n = 8) completed the full interview procedure and provided complete
questionnaires. Among them there was an equal proportion of males and females, age 35
years on average (+/- 12.7 standard deviation). Two testers categorized themselves as
being computational biologists, two as medical experts/clinicians and three specified their
profession as being a biostatistician, biologist, biochemist or scientist. Seven out of eight
testers never had performed DE analysis themselves, however all of them qualified for being
a tester by showing minimal understanding of gene expression from university experiences
or by being involved in the interpretation or description of results of DE analysis.

Perform a given task
In total, 15 items within the questionnaire and the testing notes filled in by the interviewers
assessed the user’s ability to understand and implement a given task with the help of
the DEAME application. While the questionnaire yielded at assessing how well the user
understood what they did and where to find the information asked for, the testing notes
depict plain functions of the application and if they were found and used or not. The results
are visualized in Figure 3.12A. Six out of eight testers translated the given hypothesis into
the correct design matrix. Seven or all testers used all other functions correctly for the
created hypothesis and thus correctly completed follow-up questions even when a wrong
design was created. All testers successfully translated a given design matrix back to a
research hypothesis correctly. Only one tester managed to zoom into the list of genes.
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Figure 3.12: Results from User Interviews. (A) Test performance on a given task – the
sum of correct executions of a function – is shown with colors denoting the original
library being a custom implementation of DEAME, Clustergrammer or a mixture of
both. (B) Execution times of experimental setup and calculation time with regard to
the given task and the self-created design. The Wilcoxon rank test was used to test
differences in setup times. (C) Frequency polygon plot showing the count of testers
who rated two items on each functional requirement and for usability and one item on
intention to use using a Likert-scale rating (-2 = strongly disagree, -1 = disagree, 0 =
neutral, 1 = agree, 2 = strongly agree). Colors denote items. Ratings to negatively
formulated items are transformed to represent the same scale as positive items and
summarized be represented by one line. All results are compiled from n = 8 interviews.
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With the only exception of zooming into the gene list, all other functions provided by
the Clustergrammer library appear useful within the DEAME application. In general,
testers understood and executed the given task almost error-free and established a good
understanding of functionality and its interpretation, provided that testers had at least a
minimum understanding of gene expression. The functional requirements were met with
regard to a given task.

Performance and user expectation
The applications main aim is to enable users to translate their hypothesis on influences on
gene expression as they may have gathered throughout their research or clinical professional
experience. Thus, it is crucial that testers manage to translate their own hypothesis into
a valid design. The user’s intention to use the application can, according to UTAUT, be
used as a proxy for their actual use.
Seven out of eight testers were able to create their own design matrix and experiment

correctly after verbalizing their hypothesis. The translation of the given hypothesis took 45
(SD +/- 12) seconds on average. The result computation needed 39 (SD +/- 20) seconds
and is not significantly different when the design was self created (Figure 3.12B). The three
outliers in computation time can partly be explained by network connection or database
problems, as the given task for the experimental setup was always identical and always
correctly configured. Additionally, there is no correlation between the computation times
and the complexity of the design (two-group vs. four-group design) or group sizes. The
translation of an own hypothesis took 145 (SD +/- 62) seconds and thus significantly
longer than when a hypothesis was given (Wilcoxon rank test, p < 0.005). A self-created
design includes much more exploration of the available list of parameters and thus a longer
setup time is expected.

Figure 3.12C displays the results to evaluate effort and performance expectancy according
to UTAUT in one frequency polygon plot for rapid design creation (R11), interactive
visualization of results (R13)), usability, and intention to use each. The majority of testers
agree with the statement that experimental design creation was easy for them. Three
votes were neutral or negative, two of them coming from the same tester, who managed
to correctly set up a more complex four group design, which had not been introduced
specifically in the intro or the previous task. Testers were not disturbed by execution times,
even when it took more than twice as long as the mean.
Interactivity of diagrams in general seems to be sufficient, however two testers would

appreciate further interaction possibilities. However, existing visualizations are suitable for
the application. Usability is divided into a subcategory that relates to error recovery, in
which three votes asked for a more exhaustive tutorial or documentation, and efficiency,
in which one vote stated dissatisfaction with how DEAME works when compared to
scientific software they usually use. Needs for further interaction possibilities and elaborate
documentation are in line with the only partially fulfilled requirements (R13 and R19)
as stated in section 3.6.1. As such, only a short tutorial was available at time of testing
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for trouble shooting instead of an explanation of the numeric method running in the
background and its configuration options.
Despite some shortcomings, 79.5% of all ratings were in the positive range of the

scale, demonstrating reassuring positive attitude towards the usage of the application.
Accordingly, the intention to use DEAME is positive in six out of eight testers. In the
qualitative assessment reasons to not use DEAME can be summarized to the already
mentioned need for more documentation of internal methods and fine-tuning options and
current lack of a use case for such a tool. DEAME aims at enabling clinical scientists and
computational biologists to perform rapid testing of a given hypothesis, potentially also as
a communication platform when both users work together.

3.7 Discussion

In Systems Medicine, one approach is to transfer methods from Systems Biology towards
their use in the medical setting. As such, many research consortia assemble detailed clinical
phenotypes, as well as multiple molecular signatures. The relationship of clinical phenotype
and molecular differences are of particular interest. A common analysis strategy in Systems
Biology is differential expression/abundance analysis; and a plethora of software platforms
to aid and automate the analysis have been proposed. However, at the start of the SMART
project, no existing platform had the capability to handle extensive phenotype data and
to enable the user to formulate more complex designs for DE analysis with it. Therefore,
we utilized a hybrid approach of Design Thinking, scientific requirements engineering and
user testing to define a new, viable solution to automated DE analysis software tailored to
Systems Medicine.

21 requirements shape our solution to an automated DE/DA analysis software for
Systems Medicine
We define 21 requirements, of which 12 detail the crucial requirement spaces of bioinformat-
ics pre-processing, DE design, and annotation and interpretation as defined by the general
process of DE/DA analysis and the SCRM/DRUMS model. Another nine requirements
specify the system setup and functions, which are shaped by the specific needs of the
clinical scientist as the target stakeholder.
Special attention is given to the DE/DA experimental design feature, which represents

the heart and the novelty of our approach. The concept and the corresponding requirements
detail how existing mathematical models and numerical solutions from Systems Biology
may be exploited to readily accept complex designs and how metadata needs to be handled
to assemble the design. Furthermore, the user and software interfaces are specified.

Requirements engineering for scientific software is rarely conducted by following dedicated
and appropriate methodologies [100]. The complexity of the scientific domain problem
hampers the proper understanding by professional developers. Additionally, the scientists
who often take over the part of the developer are rarely trained in software development.
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Furthermore, requirements may change drastically over time of development. Li et al.
(2011) [77] established a sophisticated, yet easy to comprehend modeling technique to
capture requirement spaces as features based on the underlying scientific problem with
their SCRM tool. In conjunction with modern methods of Design Thinking for iterative
user feedback and thorough literature search for a deep domain knowledge, we have added
a systematically crafted list of requirements to define automated DE/DA analysis software
in general and in handling the metadata and complex design formulation in particular.
Although we aimed for a systematic approach, the methodology is still underdeveloped
when compared to approaches in commercial software development. This limitation may
challenge the results as, e.g., usability and other non-functional requirements are not
explicitly mentioned or modelled in SCRM/DRUMS. However, user and expert feedback,
as well as the review by Poplawski et al. (2016) [4] helped to fill the gap.
Notably, the requirements may be of practical use in the implementation of HTQ

differential analysis software in general as it is not necessarily bound to a specific source of
molecular data. Based on the here demonstrated use cases of proteomic and transcriptomic
data, the requirements can be deployed to other applications, such as methylation data.
For example, the Champ pipeline [48] reuses the Limma model to calculate differential
methylation and differential hydroxymethylation, however does not yet allow for complex
designs, yet. Future work should address more user research on the specification of the
requirement on “actionable information” for further interpretation of results. Especially
clinical scientists rely on proper interpretation help and were lost quickly when presented
with a large list of results. Manual search for appropriate literature and gene/protein
function in the context under investigation is very cumbersome and may be improved by
the use of information retrieval software. Approaches for natural language processing and
retrieval of meaningful scientific text or production of summaries are manifold, however
their usage is less common and could be promoted via a direct interface from the DE/DA
analysis software.

Two research applications successfully implement our requirements
To put the presented work into practice, we present two research applications – DEAME
and Eatomics – that were implemented on the basis of the stated requirements.
DEAME fulfils most requirements at least partially, with the exception of the report

generation and easy installation procedure. These requirements had less priority in the
limited scope of the SMART project, which ended in March 2019. While we do provide
instructions for deployment within the code repository, it was not a primary goal to open
the application to public use. Instead, authorized users are granted direct access to the web
application hosted at our development facility. Chipster, the only related tool providing an
interface to a more complex design formulation, has been developed in parallel by the CSC,
a professional IT Center for Science, jointly run and funded by the Finnish government
and universities. While not being mature enough to be used for our purpose in 2015,
Chipster has evolved to a versatile platform for various NGS analysis. Chipster lacks a
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proper handling of phenotype data, as data needs to be entered and encoded manually.
Furthermore, complex design formulation is focused on usage by bioinformaticians, which is
not suitable for the clinical scientist. However, as Chipster is still under active development
by IT specialists, the tool will most probably evolve further to be very valuable to the
scientific community.
Within most of the algorithms utilized for our applications, there are many options

to fine-tune the analysis. We purposely do not use many of these options as we believe
they will confuse the clinical scientist as a user. We expect the results set of regulated
genes or proteins to be smaller than within a fine-tuned environment. While this is a
drawback in a detailed analysis of a computational biologist, the clinical scientists we
spoke to are interested primarily in the strong signals and are pleased with a shorter list of
candidate genes/proteins. Apart from this, achieved functionality in DEAME is sufficient
to conduct user experiments on perception and intention to use such an application by
clinical scientists and computational biologists.
Eatomics is even more mature with regard to the 21 requirements and so are many of

the related tools. The reason for their maturity is most probably their head start from
developments established in the analysis of microarray data. Gene expression quantification
was established much earlier following the development of microarrays and RNAseq as
early as 1995 [101]. Label-free MS data started to become feasible ten years later due to
the high complexity of pre-processing and cost of MS measurements [3]. However, DA
software benefited from expression analysis, as the mathematical model is very similar and
thus sophisticated numerical solutions could be transferred successfully from DE to DA
analysis [45,95]. As a result, methods were ready to be wrapped into comprehensive user
interfaces and could be extended and published for the new use case. In 2012, the Rstudio
developers introduced the R Shiny framework, which is tailored to provide a reactive user
interface to R analysis scripts. The framework quickly became popular and was utilized
for all kinds of analysis.
With the exception of Perseus, all considered related tools are Shiny applications

demonstrating the frameworks suitability. In choosing a reactive programming model
as the one implemented in Shiny Eatomics might not be applicable studies with many
samples as data is held in the main memory. As we aim at biopsy samples with extensive
(clinical) annotations, we expect the HTQ data to be limited and metadata to include
sensitive information. Therefore, a local installation may be favourable and can be easily
accomplished in a Shiny application. In the need of scaling to many samples, the limitation
may be overcome by implementing the application on a professional R Shiny server instance
that can utilize multiple cores for calculations. Furthermore, the Shiny server can then be
exploited to balance load and handle a larger amount of client requests. This is also true
for other Shiny applications, however the code base for own or institutional instances are
not available for LFQ analyst and iMetaShiny.

When compared to the DE applications all DA provide an option to upload data instead
of manual entry or to accept more metadata than needed for one design. This trend may
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also reflect the growing need in also handling metadata.
Some functionality is not well supported by neither DEAME, Eatomics or related tools.

Adaptations to the experimental design algorithm and implementations should be easily
adaptable to retrieve interactions and to extend the possibilities of discretization of numeric
beyond two bins. Implementing a possibility for time-series analysis is less straightforward.
Although Limma can be used for time-series analysis by utilizing splines, the required
input metadata needs to include the time dimension and therefore needs an additional
input data specification. Most likely, a time-series analysis would necessitate another tab
panel in Eatomics and for now was postponed to a later release.
For Eatomics’ functional comparison, we took a closer look at details of R9 and R12,

in which the additional functionality of Eatomics becomes more apparent. Here, Perseus’
statistical approach of using multiple pairwise comparisons instead of GLM‘s proves to be
not as versatile. While the method was shown to be less sensitive [45, 95], it also does not
come with the direct possibility to also model continuous explanatory variables, covariates,
interactions, and stratification. Nevertheless, Perseus does provide a versatile software suite
valuable to the Systems Biology community, despite its platform dependency. In Eatomics,
we implemented the design feature slightly different from DEAME: DEAME lets the user
define the contrast, i.e., the two groups to compare, by clicking on the space between the
groups. The testers were not expected to use this option within the experiment. However,
if they did while exploring the application, they were mainly confused and were not able to
comprehend the data anymore as they were expecting to test only one hypothesis instead of
all possible combinations of comparisons. For Eatomics we changed the selection of contrast
to a drop down list, making the choices more obvious. Furthermore, the merge in DEAME
passively results in a filter of samples before DESeq2 is run and thus hindering the method
to retrieve all information needed for shrinkage estimation. For a start, we dismissed the
merge in Eatomics, however the function itself is useful and should be re-implemented in
future versions without a filter.
Also note, that the DA panel is modularized to be reused in the enrichment analysis

panel. By using this setup we further exploit the similarity of the different HTQ data
sets and prove the generalizability of the approach. In the ssGSEA setup, it is possible
to perform enrichment analysis independent from DA analysis. By first transforming the
data towards a gene set representation, it is also possible to merge data sets from different
institutions more easily as the transformation reduces noise. As a result, one can include
samples across batches and thus achieve more power in a statistical analysis of a specific
comparison.

Conclusively, Eatomics, which was developed with a clinical scientist as a user in mind,
does expand the range of functionality towards the Systems Medicine setting by providing
metadata handling and complex design formulation.
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User interviews reveal a positive intention to use
Thus, interviews were performed to test if a user is qualified to perform a given and a
self-defined task by using the DEAME, and to assess the user’s performance and effort
expectancy as well as the intention to use. A mean computation time of half a minute
is fairly long; especially as the R routine itself only takes a couple of seconds. However,
assembly and transfer of data between database, R server, and front-end display need to
be considered. Result computation and thus waiting time for the user may impose a threat
to the usability of the application. Interestingly, testers were satisfied with computation
time and demonstrated patience.

Although there is no baseline time to relate to, we interpret the setup time of the design
for a given task and also for the self-created design as fairly low. We argue that when
considering that it was the first time to use the application. In addition to the task of
configuration, they also had to get familiar with which clinical data is available and how it
is displayed and interacted with. Especially for the self-created design, testers needed to
find the parameters they were interested in. Furthermore, the users were satisfied with the
time they needed to complete the design and felt that it was an easy task. Of note, testers
were very inexperienced; some of which learned the basic concept of the calculation only at
the time of testing. Incomplete documentation on internal methods poses a major threat
to actual usage, which is in line with our crafted requirements and understandable in a
community of users that is engaged in producing reasonable results. Additional usability
errors are unlikely as the optimal number of testers to find usability errors is met [84].

Overall, the testers’ intention to use was positive. In this regard, we need to reiterate on
the usage of the UTAUT framework as its scope of application is not specifically within
testing of scientific software. Therefore, we needed to reduce the model to be applicable,
potentially threatening its validity. However, as the field of scientific software engineering
is rather unexplored, it was the most sensible solution to gather insights on the user’s
perspective. A general threat to the validity of results especially in user interviews with
personal contact is the influence of the researcher him-/herself on the results. The possibility
of testers wanting to do the researcher a favour cannot be dismissed thoroughly in any
such setup. In our sessions, we emphasized that honest feedback is crucial and encouraged
reporting of flaws and concerns. This procedure is a vivid element of Design Thinking and
agile software development in general and we believe that it reduces the possibility of a
positive intention towards the researchers/developers to confound the intention to use the
application.
Eatomics was rudimentary validated in an informal testing session, which was not

eligible to be included in the research results. Here, we asked one member of the SMART
consortium to configure the research questions as introduced in section 3.1 and listed in
section A.1 with the help of Eatomics. It quickly became apparent that many questions
were not readily defined to be tested. As such, the member had to specify and reiterate
on the questions for them to be eligible for testing. While this is only one observation, it
could in the worst case lead to early frustration and quitting the tool before any analysis
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is performed or in the best case to a learning process of how to approach the problem
of DA analysis and deepen the understanding. Still, the tester successfully configured a
valid design to all questions, which represented a large proportion of possible simple and
complex designs.
After taking a short glimpse on results before configuring the next design, the clinical

scientist could decide quickly on one particularly interesting hypothesis for follow up, yet
reported to be surprised how prominent differences observed in the clinical phenotype did
not lead to significant results on the protein level. Further interview sessions to come to a
firm conclusion would be desirable, however could not be fitted to the given time frame.
By offering flexibility in design setup, we do touch general concerns of p hacking, i.e.,

corrupting the calculated p-value by not correcting for the many design setups that may
occur throughout data exploration. We therefore strongly advise the user to stay aware of
the observational nature of the applications, which as all observational studies helps in
exploration and hypothesis generation, while specific findings need validation experiments.
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Chapter 3 demonstrates the Systems Medicine software solutions inspired by clinical
scientists’ questions about the SMART and EurValve project’s molecular data. Although
we considered a multi-omics analysis for the SMART data and found a strong influence of
sex, we also let the clinical scientists explore the full data set using Eatomics. The clinical
scientists observed that the most changes in protein abundance are found between the
three conditions of AS, MR, and control.

As a result, this chapter derives biomedical insights from a joint examination of proteome
and clinicome data as assessed in the SMART and EurValve projects. We provide details on
how data from both studies are acquired, harmonized, processed, and analyzed. We describe
our elaborate study design to compare AS, MR, and healthy controls and disseminate
female and male signatures within a disease group. As such, we shed light on how differences
in mechanical load in heart valve diseases shape the proteomic and clinical phenotype in a
disease- and sex-specific manner.

4.1 Motivation

The SMART project gave rise to a thorough characterization of AS and control (CON)
subjects. However, it was not possible to derive all data sources for all subjects for reasons
beyond my control. For example, for some subjects there was only enough biopsy material
for proteome analysis resulting in their exclusion for RNAseq or exclusion was necessary
after thorough quality control of measured data. An overview of available data and their
overlap for subjects is given in Figure 4.1. The following advantages undermine our decision
to focus on clinicome and proteome analysis:

1. Closeness to phenotype: While the genome and transcriptome provide the instructions,
the cells’ proteins directly confer function and shape the observed phenotype of the
molecular function. Similarly, the clinicome describes the overall organ and whole
body phenotype best.

2. Value of proteomic insight: Deep proteome data is still sparse as hardware and
algorithms for measurement and processing reached maturity approximately ten
years after transcriptome data did.

3. Increase in sample size: Firstly, we arrive at 58 subjects with available clinicome and
proteome data just from the SMART study. Secondly, we gain access to a second
cohort from the EurValve study. Here, 17 subjects are characterized in proteome and
clinicome as well.
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Figure 4.1: Intersection plot of data set combinations for all subjects of the SMART cohort
including AS and CON subjects. Bars denote the number of samples having the exact
combination of data sets as annotated by the connected dots.

4. Validation data: In cases where validation is needed, we can fall back to find further
evidence in the other data sources.

A multi-omics analysis was performed on the SMART data set, i.e., only AS subjects,
and results showed a clear separation of female and male subjects. However, the data set
proved to be too small to yield robust results (Appendix C). Furthermore, the clinical
scientists explored the data and observed that the most protein abundance changes are
found between the two conditions of heart valve diseases and controls.
Heart valve diseases may eventually lead to heart failure when left untreated. In aging

populations, the incidence is increasing drastically and is becoming a serious health burden.
AS and MR are the most frequent types of valve disease and have reached an incidence
of more than 12% of the population >65 years for AS and 9% for MR [31, 32]. AS
and MR cause chronic cardiac pressure or volume overload, which triggers distinctive
forms of cardiac remodeling. One very prominent adaption mechanism is left ventricular
hypertrophy, typically concentric in pressure and eccentric in volume overload (Figure 2.11).

In an adapted compensated state, patients can remain asymptomatic for years; however,
once there is a transition into heart failure and patients become symptomatic, the prognosis
is poor in both patient groups if they remain untreated [33]. Cardiac hypertrophy can be
treated by lowering high blood pressure through different medication mechanisms. For
example, via angiotensin-converting enzyme (ACE) inhibition or angiotensin II receptor
blockage, cardiac remodeling can be slowed down and therefore resembles a first choice
before invasive surgical replacement of the malfunctioning heart valve needs to be consid-
ered. However, it has been shown that ACE inhibition reduces pressure overload-induced
hypertrophy but not volume overload-induced hypertrophy [102]. Furthermore, significant
differences in the characteristics of left ventricular hypertrophy and HF in females and
males are apparent [34,35].
Currently, most knowledge about cardiac adaptation mechanisms in valve disease is
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available at the organ scale, where parameters like ventricular function or myocardial mass,
and fibrosis can be investigated with non-invasive imaging methods [36]. Much less is
known about cardiac adaptation mechanisms at the cellular or protein expression level.
It is important to understand similarities and differences in the adaptation mechanisms
of pressure versus volume load to adjust treatment accordingly. Similarly, sex differences
need to be elucidated to find personalized treatment options eventually.

4.2 Related Work

Because of the challenges to obtaining human left ventricular myocardial tissue samples,
only a few studies and data are available for human heart tissue. If available, transcriptomic
descriptions are common; however, its interpretation is limited because transcript abundance
is an imperfect proxy for abundance and dynamics of the encoded protein [51].
Doll et al. (2017) have developed a deep proteomic map of 16 different anatomical

regions of healthy male human cardiac tissue (n = 3) [103]. Similarly, the Human Protein
Atlas provides a novel resource of an antibody-based healthy cardiac proteome [104,105].
Li et al. (2020) dissect large-scale proteomic and metabolic changes in ischaemic and
non-ischaemic heart failure and consider sex-specific effects in 44 individual hearts [106].
Chen et al. (2018) describe distinct changes in cytoskeletal proteins in 21 failing and
13 non-failing human hearts by utilizing mass spectrometry proteomics. They focus on
the effect of increased microtubule network density in failing hearts and pharmacologic
restoration of contractile function [99]. These recent studies of the deep cardiac proteome
serve the particular research question but are limited to healthy organ donor tissue or
failing hearts.

Proteomic measurements derived from living individuals are characterized by small-scale
quantification or small sample size: Coats et al. (2018) show a targeted analysis of 32
proteins from cardiac biopsies of seven aortic stenosis subjects [49]. Linscheid et al. (2020)
compare cardiac protein expression in both atria and the left ventricle of male subjects
with MR. By providing high-throughput protein quantification of seven biopsies in total,
the authors describe the most extensive large-scale proteomic quantification of in vivo
collected tissue from patients to date [51].

A direct comparison of volume and pressure overload is described in a mouse model by
You et al. (2018) only [50]. Here, six key transcripts and 16 key proteins are measured in
a targeted analysis. The authors conclude pressure overload to have stronger maladaptive
effects than volume overload. In contrast to previous studies using an aortic fistula, the
authors develop an improved model to induce volume overload through aortic regurgitation.
Although animal models are crucial and valuable to gain mechanistic insights, they lack age
and risk factor-associated components of degenerative aortic valve stenosis of the elderly
human being. For example, in a meta-analysis comparing the transcriptomic profiles in
human and murine pressure load-induced hypertrophy, the concordance of changes in both
organisms was surprisingly low [107]. Furthermore, the common practice of using left
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ventricular volume load induced by surgical shunts may not fully mimic the pathophysiology
of MR [50].

In summary, there are few large-scale proteomic quantifications available on tissue derived
from healthy donor hearts or from the severe phenotype of explanted failing hearts. In
these studies, sex-specific effects are evident but considered only when sample sizes allow
to do so. The most extensive study in living human subjects includes seven subjects
with mitral valve regurgitation. The effects of volume and pressure overload in a direct
comparison have only been studied in a targeted approach in likely confined animal models.
A comparative proteomic exploration of pressure and volume-overloaded left ventricular
human myocardium and a direct association to clinical parameters has not been published
yet. Therefore, the differences in disease and sex are not well understood and potentially
more subtle than when comparing a healthy vs. failing heart. Additionally, the data set
would provide a valuable resource of protein expression to other research areas.

Accordingly, the present study aims to obtain deeper insight into heart valve disease-
driven protein expression changes and relate the proteomic data to clinical parameters
in a well-powered study of human tissue. Additionally, we aim to provide a database of
isoform-specific protein quantification data for the research community to explore, form
hypotheses and validate own findings.

4.3 Methods and Study Setup

An overview of the study setup is given in Figure 4.2. Proteins are measured from biopsies
of the left ventricle of 41 patients with AS (female n=21, male n=20), 17 patients with MR
(female n=6, male n=11), and 17 healthy control hearts (CON) (female n=8, male n=9).
Peptides from protein extracts are analyzed by high-resolution tandem mass spectrometry
(LC-MS/MS). A deep reference proteome is used for MS1 matching. Raw data are processed
with MaxQuant and LFQ intensities are used for disease- and sex-specific protein abundance
analyses. Joint analyses are performed on proteomic data and clinical imaging (cardiac
magnetic resonance imaging) phenotypes. A subset of biopsy samples from AS (n=17) and
CON (n=6) are additionally used for quantification in RNA sequencing. The results from
disease-specific differential expression analysis from the transcriptome are used to validate
proteomic findings where necessary.

4.3.1 Biopsy acquisition and distribution

Left ventricle biopsies are extracted at the time of valve replacement surgery, frozen directly
in liquid nitrogen and kept at -80° C. For controls, the cardiac surgeon perfuses the heart
in situ while the organ donor is still on the operating table, with sterile Custodiol® solution
for cardioplegia and multiorgan protection. Then the heart is removed from the donor and
it is placed into ice-cold Custodiol® solution, moved to a separate room where the samples
are then placed into 2 mL cryotubes and into liquid nitrogen. Frozen samples are split and
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Figure 4.2: Study design. Proteins are extracted from biopsies of the left ventricle of 41
patients with AS (female n=21, male n=20), 17 patients with MR (female n=6, male
n=11) and 17 healthy control hearts (CON) (female n=8, male n=9). Protein extracts
are digested to peptides and analyzed by high-resolution tandem mass spectrometry
(LC-MS/MS). A deep reference proteome is used for MS1 matching. RAW data are
processed with MaxQuant and LFQ intensities are used for disease- and sex-specific
protein expression analyses. Joint analyses are performed on proteomic data and clinical
imaging (cardiac magnetic resonance imaging) phenotypes. A subset of biopsy samples
from AS (n=17) and CON (n=6) are additionally used for quantification in RNA
sequencing. The results from disease-specific differential expression analysis are used for
validation of proteomic findings where necessary.
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distributed to the Max Delbrück Center for Molecular Medicine for proteome measurements
and to Berlin Institute of Health Genomics Core Facility for RNA sequencing.

4.3.2 Assessment of the clinicome

Similar to SMART, the EurValve study was partially conducted at the German Heart
Center Berlin (DHZB) following similar protocols in terms of imaging and proteomic data
assessment rendering them well comparable.

Cardiovascular magnetic resonance imaging and post-processing
All cardiovascular MRI examinations are performed using a whole-body 1.5 Tesla MR
system (Achieva R 3.2.2.0, Philips Medical Systems, Best, The Netherlands) using a five-
element cardiac phased-array coil. Post-processing is performed using View Forum (Philips
Medical Systems Nederland B.V; View Forum R6.3V1L7 SP1). Gapless balanced Turbo
Field Echo (bTFE) cine 2-dimensional short axis sequences are obtained using a previously
applied MRI protocol for left ventricular mass, volume, and function [108]. Calculation of
extracellular volume (ECV) follows the procedure as described in Doltra et al. (2014) [109].

ECV = (1− hematocrit) ∗ 1/Tmyopost − 1/Tmyopre

1/Tbloodpost − 1/Tbloodpre

with myo = LV midwall myocardial T1 value and blood = LV blood pool T1 value. Pre and
post refer to the measurement before and after contrast administration. Myocardial fibrous
tissue content, i.e., absolute ECV (aECV), was calculated using the following equations:

aECV = LVmyovol ∗ ECV

LVmyovol = LVmass/1.05

with 1.05 being the constant of myocardial density given in g/ml.

Quality control and data set preparation
Briefly, data, which was entered into the SMART IT platform for the SMART and EurValve
studies is downloaded in key-value format and merged into one file. Key-value format
is transformed into a matrix representation of all available information, only omitting
redundant and detailed textual information. Further data cleansing includes removing
irrelevant details or a summary of values into groups. For example, information on
medication, such as prescription name, dose, or interval, is summarized into binary values
for seven medication groups: anticoagulation, beta-blockers, diuretics, ACE inhibitors,
statins, calcium channel blockers, and angiotensin II receptor blockers, while details are
omitted. For certain parameters, rules of missing data deduction are applied. For example,
if a subject belonging to the SMART cohort did not have a value for the "Dislipidemia"
parameter, the patient did not have the diagnosis and the value could be filled with FALSE,
whereas for the EurValve cohort, the diagnosis status is not known, leaving the value to
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stay NA. Furthermore, some parameters are added or calculated, such as the body mass
index (BMI) and binary representation of the heart being hypertrophic or dilated as defined
by [110].

Statistical analysis
For the study population’s clinical characteristics, we compare the differences with a
two-tailed Student’s T-test in case of normally distributed numerical values or with a
chi-squared test in case of discrete categorical values both from the R stats package (v
3.5.1).

4.3.3 Transcriptome analysis

The Berlin Institute of Health Genomics Core Facility provided us with the protocol they
followed to prepare samples and conduct sequencing to supply us with three technical
replicates of raw FASTQ RNA sequencing data per sample. Parts of the analysis pipeline
(steps from initial merging to gene expression quantification) are implemented and executed
through Layal abo Khayal. I performed all other steps and summarizing quality control
with MultiQC.

Sample preparation and sequencing
Total RNA is extracted from cardiac tissue biopsies utilizing the RNAqueous®-Micro
Kit (ThermoFisher Scientific). RNA integrity is assessed with the High Sensitivity RNA
assay for TapeStation 4200 (Agilent Technologies). All samples are assorted according
to their RNA integrity number values in subgroups for library preparation. Due to low
sample concentrations, library preparation is performed with the SMARTer® Stranded
Total RNA-Seq Kit v2 - Pico Input Mammalian kit (TaKaRa Clontech) according to the
manufacturer’s instructions. In brief, 500 pg of total RNA is used for first-strand synthesis
with random priming. Due to its terminal transferase activity, the reverse transcriptase
adds a few non-template nucleotides to the 3’ end of the complementary DNA, which in
turn serves as an annealing site for the template switching oligo mix.Thereby an extended
template is created, enabling the reverse transcriptase to generate the second strand. After
the first round of PCR that attaches the full-length Illumina adapter sample barcode,
the ribosomal complementary DNA was depleted utilizing ZapR and mammalian-specific
R-probes. ZapR specifically cleaves ribosomal complementary DNA-R-probe hybrids. Non-
degraded fragments are enriched by a second polymerase chain reaction with universal
primers. Purified libraries are quantified by Qubit® 3.0 fluorometer with the Qubit®

High Sensitivity double-strand DNA assay (ThermoFisher Scientific) and analyzed on a
TapeStation 4200 system with the High Sensitivity D1000 ScreenTape® assay (Agilent
Technologies). All libraries are sequenced on an Illumina HiSeq 4000 platform with 100
base pair paired-end reads.
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Raw data processing
RNAseq data is used to quantify gene expression and to extract genomic variation.RNA
sequencing reads are processed to extract long non-coding, short non-coding, and protein-
coding messenger RNA abundance from RNA sequencing raw reads. The following section
documents all details of the processing steps.

Merging, quality control, and trimming
Prior to all analysis, each sample’s technical replicates are merged to yield one FASTQ
file for forward and one file for reverse reads. Quality control is done by fastqc (v 0.11.5)
before and after trimming. Low-quality reads and adapters are removed by Trimmomatic
(v 0.36) in palindrome mode using TruSeq3-PE adapter sequences (2 seed mismatches,
30 palindrome clip threshold, 10 simple clip threshold), a sliding window of 4 bases with
minimum quality of 15, maxinfo target length 45 and strictness 0.5, a min length of 45,
leading and trailing bases with minimum quality of 5, crop to a maximum of 98 bases and
headcrop of 3 bases at the beginning. Only paired reads are considered for further analysis.
Only paired reads are considered for further analysis. FASTQC reports are summarized
using MultiQC (v 1.6), resulting in overall quality reports.

Gene expression quantification
Reads are aligned to the reference genome (Homo-sapiens GRCh38, downloaded from
Ensemble on 23 Jan 2018) using the gene library .gtf file (GRCh38.91 from Ensemble on
23 Jan 2018) by TopHat2 (v2.1.1.Linux_x86_64). The same library file is used for the
final raw count calculation by featureCounts (subread package v 1.5.1) with paired-end
read settings.

The Ensemble BioMart a table (Homo Sapiens, GRCh38.P10) containing the following
attributes: Gene name, Gene description (full gene name), Gene type, Gene ID is used to
assign a biotype to each quantified transcript. The biotype can be one of the four categories
of protein-coding, pseudogenes, long non-coding, and short non-coding 1.

Differential expression analysis
All analyses are performed using R (v 3.5.3). For differential expression analysis, we
removed all samples without concurrent proteome data (n: AS = 17, CON = 6). Counts
are filtered using Limma’s filterByExpr() function with min.count set to 10. Linear
models for the full sample set are calculated using the Empirical Bayes procedures for
residual variance estimation and mean-variance trend correction from Limma (v3.38.3).
The contrast is stated to represent the AS vs. CON design. P-values are multiple-testing
corrected by BH methodology.

1https://www.ensembl.org/Help/Faq?id=468,(accessedon05.02.2019)
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4.3.4 Proteome analysis

Biopsy samples and raw data are processed at the Max Delbrück Center for Molecular
Medicine. For the sake of completeness, we summarize the procedure here. Quality control,
data set preparation, differential abundance analysis, and visualization was planned and
executed by me and discussed in consortia meetings.

Sample preparation
For protein extraction, biopsies are lysed in 200 µl lysis buffer containing: 2% SDS, 50 mM
ammonium bicarbonate buffer, and EDTA-free Protease Inhibitor Cocktail (Complete,
Roche). Samples are homogenized at room temperature using FastPrep-24T M 5G Ho-
mogenizer (MP Biomedicals) with 10 cycles of 20 s and 5 s pause between cycles. After
heating the samples for 5m̃in at 95° C, 5 freeze-thaw cycles are applied. 25 U of Benzonase
(Merck) is added to each sample and after incubation for 30 min the lysates are clarified by
centrifugation at 16,000 g for 40 min at 4° C. Protein concentration is measured (Bio-Rad
DC Protein assay) and 100 µg of each sample is further processed using the SP3 clean-up
and digestion protocol as previously described [111]. Briefly, each sample is reduced with
dithiothreitol (10 mM final, Sigma) for 30 min, followed by alkylation with chloroacetamide
(40 mM final, Sigma) for 45 min and quenching with dithiothreitol (20 mM final, Sigma).
Beads (1 mg) and acetonitrile (70% final concentration) are added to each sample and
after 20 min of incubation on an over-head rotor bead-bound protein are washed with
70% ethanol and 100% acetonitrile. 2 µg sequence-grade Trypsin (Promega) and 2 µg
Lysyl Endopeptidase LysC (Wako) in 50 mM HEPES (pH 8) are added and after overnight
incubation at 37° C peptides are collected, acidified with trifluoroacetic acid and cleaned
up using StageTips protocol [112].

Heart reference sample for matching library
A peptide mix for each experimental group (CON, AS, and MR) are generated by collecting
10 µg peptides from each sample belonging to the corresponding group. Equal peptide
amounts from each group mixture are combined, desalted using a C18 SepPak column
(Waters, 100 mg), and dried down using a SpeedVac instrument. Peptides are reconstituted
in 20 mM ammonium formate (pH 10) and 2% acetonitrile, loaded on an XBridge C18
4.6 mm x 250 mm column (Waters, 3.5 µm bead size) and separated on an Agilent 1290
High-Performance Liquid Chromatography (HPLC) instrument by basic reversed-phase
chromatography, using a 90 min gradient with a flow rate of 1 ml/min, starting with solvent
A (2% acetonitrile, 5 mM ammonium formate, pH 10) followed by increasing concentration
of solvent B (90% acetonitrile, 5 mM ammonium formate, pH 10). The 96 fractions are
collected and concatenated by pooling equal interval fractions. The final 26 fractions are
dried down and resuspended in 3% acetonitrile/0.1% formic acid for LC-MS/MS analyses.
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LC-MS/MS analyses
Peptide samples are eluted from stage tips (80% acetonitrile, 0.1% formic acid), and after
evaporating organic solvent peptides are resolved in sample buffer (3% acetonitrile/ 0.1%
formic acid). Peptide separation is performed on a 20 cm reversed-phase column (75 µm
inner diameter, packed with ReproSil-Pur C18-AQ; 1.9 µm, Dr. Maisch GmbH) using a
200 min gradient with a 250 nl/min flow rate of increasing Buffer B concentration (from 2%
to 60%) on an HPLC system (ThermoScientific). Peptides are measured on an Orbitrap
Fusion (individual samples) and Q Exactive HF-X Orbitrap instrument (reference sample)
(ThermoScientific). On the Orbitrap Fusion instrument, peptide precursor survey scans are
performed at 120K resolution with a 2×105 ion count target. MS2 scans are performed by
isolation at 1.6 m/z with the quadrupole, HCD fragmentation with normalized collision
energy of 32, and rapid scan analysis in the ion trap. The MS2 ion count target is set to
2x103 and the max injection time is 300 ms. The instrument is operated in Top speed
mode with 3 s cycle time, meaning the instrument would continuously perform MS2 scans
until the list of non-excluded precursors diminishes to zero or 3 s. On the Q Exactive
HF-X Orbitrap instrument, full scans are performed at 60K resolution using 3x106 ion
count target and maximum injection time of 10 ms as settings. MS2 scans are acquired in
Top 20 mode at 15K resolution with 1x105 ion count target, 1.6 m/z isolation window,
and maximum injection time of 22 ms as settings. Each sample is measured twice, and
these two technical replicates are combined in subsequent data analyses.

RAW data processing
Data are analyzed using the MaxQuant software package (v1.6.2.6) [5]. The internal
Andromeda search engine is used to search MS2 spectra against a decoy human UniProt
database (HUMAN.2019-01, including isoform annotations) containing forward and reverse
sequences. The search included variable modifications of oxidation (M), N-terminal
acetylation, deamidation (N and Q), and fixed modification of carbamidomethyl cysteine.
Minimal peptide length is set to six amino acids and a maximum of three missed cleavages
is allowed. The FDR is set to 1% for peptide and protein identifications. Unique and razor
peptides are considered for quantification. Retention times are recalibrated based on the
built-in nonlinear time-rescaling algorithm. MS2 identifications are transferred between
runs with the “Match between runs” option, in which the maximal retention time window
is set to 0.7 min. The integrated LFQ quantification algorithm is applied. Gene Symbols
assigned by MaxQuant are substituted with gene symbols of the reported UniProt IDs
from the used FASTA file.

Quality control and data set preparation
LFQ intensities are extracted from the MaxQuant results and filtered to exclude reverse
database hits, potential contaminants, and proteins only identified by site, i.e., proteins
identified only by modified peptides. LFQ intensities are log2 transformed. Homogeneous
sample-wise intensity distribution is checked.
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Total measured proteins, as well as sample-wise coverage, are assessed as counts. The
main axes of variation are calculated in a PCA. Both methods serve as indicators to exclude
samples from the analysis: two samples with particularly low coverage need exclusion as
well as six samples that skew the PCA analysis because of heavy blood contamination.
In human tissue samples, blood contamination is a common artifact, which leads to the
detection of mainly large blood proteins instead of proteins of interest. Samples for which
the percentage of intensity attributed to blood proteins exceeds 40% of summed LFQ
intensity are excluded. Blood proteins are defined by a list from Doll et al. (2017) [103].
Furthermore, we exclude duplicate samples by ensuring equal variance and selecting the
sample with higher coverage.

Missing values are imputed by random draws from a Gaussian distribution with 0.3*stan-
dard deviation and a downshift of 1.8*standard deviation of the observed values per sample.
Furthermore, we employ a filter to exclude proteins detected in less than 50% of samples
of at least one group in the respective comparison.

Differential abundance analysis
Analyses are performed using R (v 3.5.3). All proteins with less than 50% valid values in at
least one compared group are excluded. A moderated t-test with intensity-trend correction
and corresponding Bayesian models for continuous variables are calculated by the Limma
package (v 3.38.3). The model formula represents the condition comparisons AS vs. CON,
MR vs. CON, and AS vs. MR, and sex-stratified comparisons ASmale vs. CONmale,
ASfemale vs. CONfemale, MRmale vs. CONmale, and MRfemale vs. CONfemale. P-
values are multiple-testing corrected by BH methodology. Adjusted p-values of <0.05 are
considered significant.

Table 4.1: Overview on the definition of result subsets from the comparison of conditions.
Table entries denote the direction of effect for significant changes, i.e., ↑ = positive fold
change, ↓ = negative fold change or the effect being n.s. = not significant. AS = aortic
valve stenosis, MR = mitral valve regurgitation, CON = controls.

AS vs CON AS vs MR MR vs CON

condition-specific

↑ ↑ n.s.
↓ ↓ n.s.
n.s. ↓ ↑
n.s. ↑ ↓

shared
↑ - ↑
↓ - ↓

divergent
↑ ↑ ↓
↓ ↓ ↑

differential in AS vs MR n.s. ↑/↓ n.s.
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We define effects of particular interest in the comparison of conditions as described in
Table 4.1. Condition-specific effects are changes found significant in a condition versus
control and versus the respective other condition, while the direction, i.e., negative (down)
or positive (up) fold change, needs to be conserved. The effect in the other condition
vs. CON has to be non-significant (see example in Figure 4.3A). Please note that the
direction of effect in AS vs. MR can be switched to MR vs. AS by converting signs. Shared
effects are mainly defined through the same direction of effect in both conditions when
compared to controls. The effect may, but does not have to be stronger in one condition,
i.e., the effect in AS vs. MR is not considered (example in Figure 4.3B). Differential and
diverging effects consider the AS vs. MR effect, while the effect may be evident only in
that comparison (differential) or show the opposing direction of effects also when compared
to control samples (divergent). An example is shown in Figure 4.3C.

In the sex-stratified analysis, we explore proteins found significant in one sex only within
a condition. We assume that significant changes found in both are also represented in the
condition-specific analysis. The direction of effect is considered in the enrichment analysis,
as further described in section 4.3.4.

Figure 4.3: Examples to illustrate the definition of result subsets for effects in the com-
parison of conditions (A-C) and in the sex stratified analysis (D). Conditions AS =
aortic stenosis = yellow, MR = mitral regurgitation = green, CON = controls = brown,
female = pink, male = blue. Non-overlapping boxes of protein expression in A)-C)
resemble significant changes. Circles in D) resemble the set of significant changes in the
sex-stratified comparisons.
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Enrichment analysis and annotation
Enrichment analysis is performed by gprofiler2 R package (v 0.1.8) with a background
set of all detected proteins and two query sets of all up- or down-regulated proteins
respectively per condition comparison and sex-stratified comparison in order of largest to
smallest absolute fold change against the GO branches biological process (BP), cellular
compartment (CC), and molecular function (MF). P-values are controlled by 5% FDR and
significant terms are filtered for sets in which the intersection size is less than 5% of the
measured proteins of a set and sets of minimum size three. Multiple entries with identical
matched gene lists within a GO branch are reduced to the one with the lowest p-value.
Further reduction of terms for pie charts is achieved via REVIGO using the following
settings: medium reduction, against the homo sapiens database, SimRel similarity measure,
and without an order of terms [113]. Manual category assignments for GO terms are
given in the appendix (Table D.1). Organelle assignments are adopted from Doll et al.
(2017) [103] by mapping UniProt IDs.

4.3.5 Visualization

Schematic drawings are created using the BioRender software. Heatmaps are drawn using
the pheatmap R package (version 1.0.12). Proteins to include in a heatmap are combined
from gene names enriched in GO terms within a category. Condition group means of
log2(LFQ intensities) are centered and scaled protein-wise and clustered with default values.
All other plots are created using ggplot2 (v 3.2.1), ggpubr (v 0.2.5) and cowplot (v 1.0.0)
R packages. Box plots show the median and upper and lower hinges representing the 75th
and 25th percentile. The whiskers extend from one hinge to the largest/smallest value no
further than 1.5 times the interquartile range away. Data outside this range are shown as
outlier points. In many boxplots, individual measurements are jittered within the category
on the x-axis for a better impression of the actual data.
Intersections are visualized using the UpSetR package (v 1.4.0). We select the most

frequent representative of a cluster of redundant terms from the REVIGO annotation for
pie charts. Frequency is the percentage of human proteins in UniProt which are annotated
with a GO term in the GOA database [114], i.e., a higher frequency denotes a more general
term. PCA’s are calculated on unscaled, centered matrices, i.e., the filtered data set for
the transcriptome and the imputed data set for the proteome.
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4.4 Results

This section describes our study cohort concerning their clinical characteristics and summa-
rizes quality control of the transcriptomic and proteomic data. We compare subgroups of
the cohort with regard to differences in their clinical and molecular phenotype and report
condition and sex-specific effects. For better comprehension, we arrange relevant results to
represent biological entities, rather than analytical procedures.

4.4.1 Clinicome - Study cohort

We included 75 human left ventricular myocardial samples in the present study. Samples
were taken from 41 patients with AS and 17 patients with MR during valve replacement
surgery, and 17 healthy cardiac organ donors (CON) without cardiovascular diseases, whose
hearts were not used for transplantation due to non-medical reasons. Patient characteristics
are described in Table 4.2. All condition and sex-specific differences in clinical measurements
are visualized in Appendix B (Figure B.1 and Figure B.2), whereas relevant parameters
are selected to be shown in the respective sections. The pressure gradient from within the
left ventricle across the aortic valve to the aorta is increased in AS, whereas it is normal in
MR subjects. Similarly, the grade of mitral valve regurgitation is moderate to severe in
MR subjects and mild or non-existing in AS subjects.
Aortic valve insufficiency is mild to moderate in both cohorts, such that no further

hemodynamic load contributes to cardiac remodeling. AS and MR show a similar degree
of hypertrophy as denoted by the indexed myocardial mass and compared to the reference
given by Doltra et al. (2014) [109]. The proportion of female and male subjects within
groups is balanced. The left ventricular ejection fraction is reduced slightly in both
conditions. Co-morbidities are sparse in both cohorts and, if present, balanced across
conditions. The age between conditions is different. However, within conditions, the age is
similar between males and females (Appendix B Figure B.3).

Table 4.2: Clinical cohort description. Data are presented as counts (%) or mean ± standard
deviation. Grades are coded in none/mild, moderate, severe. Statistical comparison
between AS and MR is tested by two-sample Wilcoxon-rank test in case of numeric data
and χ2 test in case of categorical data. A reference value is given whenever values for
the CON group are not available. ACE-inhibitor = Angiotensin Converting Enzyme-
inhibitor, AS = aortic valve stenosis, BMI = body mass index, MR = mitral valve
regurgitation;Mean pressure gradient aortic valve describes severity of AS, while the
mitral valve regurgitation describes severity of mitral valve insufficiency and are given in
bold.

Preoperative Parameters AS
n = 41

MR
n = 17

p
CON

n = 17 or
reference

Age, years 68 ± 9 60 ± 14 0.03 44 ± 15
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BMI, kg/m2 28 ± 4 27 ± 3 0.34 25 ± 5
Sex (female), n (%) 21 (51) 6 (35) 0.41 8 (47)
Systolic blood pressure, mmHg 140 ± 19 131 ± 16 0.12 117 ± 21
Diastolic blood pressure, mmHg 74 ± 11 76 ± 14 0.67 74 ± 17
Hypertension, n (%) 27 (69) 11 (65) 1 0
Dyslipidemia 8 (21) 3 (18) 1 0
Diabetes mellitus, n (%) 7 (17) 2 (12) 1 0
Coronary artery disease, n (%) 2 (5) 2 (12) 1 0
Atrial fibrillation paroxysmal 2 (5) 2 (12) 0.71 0
Atrial fibrillation permanent 0 (0) 2 (12) 0.15 0
Left ventricular enddiastolic
volume, ml/m2

73 ± 17 108 ± 35 <0.001 74 ± 11 [109]

Left ventricular myocardial mass,
g/m2

71 ± 20 67 ± 15 0.385 56 ± 9 [109]

Mean pressure gradient
aortic valve, mmHg

56 ± 15 4 ± 8 <0.001 <5 [115]

Mitral valve regurgitation,
frequency of grade

41, 0, 0 0, 10, 7 <0.001 0

Aortic valve insufficiency,
frequency of grade

36, 5, 0 17, 0, 0 0.321 0

Left ventricular ejection fraction, % 60 ± 7.4 64 ± 6.2 0.13 70 ± 6 [109]
Medication: ACE inhibitor, n (%) 15 (37) 5 (29) 1 0
Medication: Beta blocker, n (%) 20 (49) 10 (59) 0.358 0
Medication: Diuretics, n (%) 12 (29) 5 (29) 1 0

4.4.2 Overview on the myocardial transcriptome

Quality control shows that adapter sequences and technical contamination are removed.
Even after trimming, duplication rates are relatively high, which is a less concerning
warning in RNAseq experiments in contrast to DNA, where no single sequence should
cover more than 0.1% of all sequences. The RNAseq library usually is far less diverse.
While checking the duplicated sequences in a manual nucleotide BLAST, we found that
some are common across samples and that they map to mitochondrial and long non-coding
RNA sequences or they do not map at all. Sequences that do not map are dropped in the
alignment process, whereas long non-coding and mitochondrial RNA are potential targets
of interest in our analysis and thus should be kept. Quality control plots on RNAseq data
after trimming are given in Figure B.4. The density of log2 counts per million before
and after filtering of low-count transcripts for AS and CON is plotted in Figure 4.4A and
shows the removal of a large portion of very low-count transcripts, especially in (female)
AS. The filtering step results in homogeneous distributions of log2-transformed counts per
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million per sample (Figure 4.4B). The PCA reveals a clear separation of AS and CON
samples (Figure 4.4C) and large within-group variability more prominent in AS. In the
differential expression analysis, we find 824 genes down-regulated in AS vs. CON and 344
to be up-regulated (Figure 4.4D).
Please note that we use the transcriptomic analysis results only for proteomic result

validation, where appropriate.

4.4.3 Overview on the myocardial proteome

Four samples are excluded from the main analysis because the percentage of LFQ intensity,
which could be assigned to stem from blood particles as defined by Doll et al. (2017) [103],
exceeded 40%. Furthermore, nine samples (proteome measurement ID: C02, C03, C19,
C21, C22, C15, C24, EV11, EV25) are measured from two distinct specimens taken from
the same subject. This duplicate layer of replicates cannot be adequately modeled in
differential abundance analysis, and thus we select the samples with the highest coverage.
Quality control plots before exclusion of samples can be found in (Appendix B Figure B.9).
To facilitate deep proteome analysis for each sample, we generate an ultra-deep heart

reference proteome data set from an equally mixed reference sample consisting of equal
parts of AS, MR, and control samples. Using two-dimensional liquid chromatography prior
to tandem mass spectrometry analysis, we identify a total 8,365 distinct protein groups.
This deep reference proteome is used to match MS2 identification to peptide precursors
across individual runs.
Filtering results in uniform coverage across all samples with an average of 3,561 (+/-

187) proteins quantified per individual sample (Figure 4.5A).
Overall, Myosin Heavy Chain 7 (MYH7), Titin (TTN (major isoform)), and Actin Alpha

Cardiac Muscle 1 (ACTC1) represent the first quartile of total cumulative protein intensity.
Together with Actinin Alpha 2 (ACTN2), these proteins are in line with the top abundant
proteins described in human heart tissue as found by Doll et al. (2017) [103]. Other proteins
typically found in heart tissue like collagens or heat shock proteins are less abundant,
however quantified robustly to be considered for analysis (Figure 4.5B). The PCA analysis
(Figure 4.5C) shows a good separation of AS subjects from MR and CON along the first
PC, while the second PC separates MR from CON. The AS cohort shows larger differences
to the controls and overall higher within-group variability. The intensity distribution after
log2 transformation is uniform over all samples (Figure 4.5D). A significant relationship
between age and protein expression within conditions is not evident, although the covered
range of age is large (Appendix B Figure B.3). The density of values after missing value
imputation shows a slight local maximum at about 24, which can be attributed to imputed
values. The local maximum is highest for female and male AS samples, whereas it is very
similar in MR and CON males and lowest for female MR and CON.
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Figure 4.4: Cardiac transcriptome quantification and analysis summary. A) Density of log2
counts per million before and after filtering of low-count transcripts for AS and CON.
B) Counts per million distribution per sample after log2 transformation and filtering.
C) Principal component analysis (PCA) of filtered log2 counts per million for AS and
CON and both sexes. D) Volcano plot denoting the fold change (FC) and p-values for
the comparisons of AS vs. CON. Significance is given by BH adjusted p-values < 0.05.
AS = aortic valve stenosis, CON = control.
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Figure 4.5: Cardiac proteome coverage and distribution. A) Count of quantified proteins
per sample B) Cumulative protein intensities in % ordered across the respective protein
rank C) Principal component analysis (PCA) of protein measurements displaying all
three conditions and sex assignment. Note: In total four points for male CON and two
points for female CON overlap giving the impression of only 7 male and 7 female CON.
However, all points (9 male CON, 8 female CON) are in the diagram and contribute to
the calculation of the ellipse around the group. D) Intensity distribution per sample after
log2 transformation E) Density of values after missing value imputation in condition
and sex. AS = aortic valve stenosis, CON = control, MR = mitral valve regurgitation.
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4.4.4 Disease- and sex-specific effects in AS and MR

Differential abundance analysis gives rise to significant differences in protein abundance
between each condition compared to a healthy state (AS vs. CON (Figure 4.6A), MR
vs. CON (Figure 4.6B)), as well as directly between the two different heart valve diseases
(AS vs. MR (Figure 4.6C)). By applying a cutoff of BH adjusted p-value of 0.05, our
comparisons result in 1332 (AS vs. CON), 400 (MR vs. CON), and 903 (AS vs. MR)
differentially expressed proteins. Notably, more than two-thirds of changes show a decrease
in protein expression specifically in AS samples, when comparing them to CON and to
MR samples. The higher amount of significant hits and more down-regulation than up-
regulation remain evident in AS even when a downsampled (n = 17) analysis is performed
(see Appendix B Figure B.8). The three-group comparison allows us to define proteins
being

• shared in both conditions

• divergent between conditions and

• specific for one condition

(Figure 4.6D). Shared effects show the same direction of change (270 proteins), while
diverging effects show opposing directions of regulation between conditions and against
control (five proteins). Condition-specific effects are those with a change in protein
abundance in one condition when compared to control and when compared to the other
condition (refer to section 4.3.4 for details). As such, we find 518 changes specific for AS
and 79 changes specific for MR (Figure 4.6D).
We also investigate changes in females and males separately to elucidate sex-specific

effects within both pathologies. When comparing to the sex-matched control, we find 462
proteins with significant differences in female AS samples only (97 up, 365 down) and 235
proteins specific for male AS samples only (116 up, 119 down). In MR, we find 70 proteins
to be regulated only in females (31 up, 39 down) and 82 only in males (67 up, 15 down)
(Figure 4.7A and B).

GO enrichment analysis resulted in 138 GO terms enriched in AS vs. CON, 106 terms
enriched in MR vs. CON, and 25 terms enriched in AS vs. MR. REVIGO summary of all
up and down-regulated GO terms and subsequent manual assignment to six categories reveal
changes mainly in five distinctive categories, which are represented in both pathologies,
however in differing proportions (Figure 4.6E and F):

1. extracellular matrix composition,

2. energy metabolism and mitochondria,

3. proteostasis,

4. cytoskeleton and muscle contraction and
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Figure 4.6: Quantitative analyses of disease- and sex-specific differences in protein abun-
dance. Significance is given by BH adjusted p-values < 0.05. A-C) Volcano plots
denoting the fold change (FC) and p-values for the comparisons of AS vs. CON (A),
MR vs. CON (B) and AS vs. MR (C); D) Scatter plot of fold changes in AS and MR
vs. CON. Colors denote changes that are shared, divergent, or condition-specific. E
+ F) Summary of GO term enrichment analysis from merged up and down-regulation.
Proportions are based on REVIGO [113] summary and the GOA frequency [114] of the
clusters’ most general term, assigned to five categories for AS vs. CON (E) and MR vs.
CON (F).
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Figure 4.7: Quantitative analyses of sex-specific differences in protein abundance. Signifi-
cance is given by BH adjusted p-values < 0.05. A) + B) Scatter plots of fold changes in
AS and MR stratified to sexes. Colors denote changes only significant in either female,
male or in both vs. their sex-matched CON.

5. other terms.

Enriched GO terms and their category assignments are available in Appendix D. En-
richments belonging to the category of other terms are based on 88 proteins with higher
abundance in the diseased groups. Of these, 84% are typical body fluid components. When
considering the different biopsy collection procedures for the sample groups, blood contam-
ination becomes the most probable source of the signal and impedes any interpretation
concerning physiological differences in immune response between the condition and control
group. For a more elaborate explanation and visualization, please refer to Appendix B
Figure B.5. Therefore we do not further examine the biological relevance of the other
terms and focus on disseminating disease and sex-specific effects considering the categories
extracellular matrix composition, energy metabolism and mitochondria, proteostasis and
cytoskeleton, and muscle contraction.

Extracellular matrix composition
ECM confers structural and mechanical support to the tissue and its composition plays
a crucial role in heart disease, especially in cardiac hypertrophy [73]. Proteins related to
ECM are higher in abundance in AS and MR when compared to controls (Figure 4.8A).
The majority of changes are shared in both conditions; however, disease-specific changes are
evident as well. Additionally, more changes are significant in male samples only. A detailed
list of GO terms related to the extracellular matrix is shown in Figure 4.8B. All proteins
mentioned in the following text are labeled within the heat map shown in Figure 4.8A.
Terms like extracellular matrix, glycosaminoglycan binding, and proteoglycan binding

are enriched in both conditions. Within the scope of these broad terms, we find non-fibrillar
collagens (collagen type 6, 12, 14, 18) and matricellular proteins (POSTN, TGFBI) to be
more abundant in both conditions. In addition, we observe concurrent effects in ECM
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Figure 4.8: Disease- and sex-specific differences in abundance of proteins related to ex-
tracellular matrix composition. A) Clustered heatmap showing the condition’s mean
abundance of proteins belonging to ECM related GO terms. Annotation bars denote
significant changes in condition (I) and in sex (II – effect in sex MR, III – effect in sex
AS). B) Combined results of metabolic GO term enrichment analysis on up-regulated
proteins for all three condition comparisons and on proteins found only in one sex of
a condition. GO term names are reduced to a maximum of 40 characters, but are
non-ambiguous.
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glycoproteins (TNXB, FBN1), proteoglycans, such as VCAN and HAPLN1, and four
members of the SLRP (small leucine-rich proteoglycans) class, namely Biglycan (BGN),
Decorin (DCN), and Asporin (ASPN). BGN and DCN are believed to regulate the amount
of collagen and fibrillogenesis in the heart [116].

In AS, we observe a higher amount of fibrillar collagens (e.g., GO:0098643, GO:0098644),
namely type I (COL1A1, COL1A2), which forms thicker and stiffer fibers, as well as
type III (COL3A1), which forms more compliant and elastic fibers. The increase in
collagen types I and III mRNA is already described in AS in human tissue [117]. Here,
we detect an additional increase in collagen type V in AS, which has only been described
in animal studies so far [118–120]. In contrast to the literature [34, 35], in which male
patients with AS show a stronger increase in collagens, we find a similar increase of
collagen type I, III, and V in both female and male AS. In line with findings in pressure-
overloaded hearts of mice, thrombospondin-4 (THBS4) is specifically up-regulated in
AS [121]. Thrombospondin-5 (COMP) is also specifically increased in AS and may belong
to the expression signature of matrifibrocytes, which have been shown to form stiff scar
tissue in infarcted mouse hearts [122]. Similarly, CILP1 (Cartilage intermediate layer
protein 1) is higher in abundance only in AS and is a mediator of cardiac ECM remodeling
and a marker for cardiac fibrosis [123,124].

In MR, we see specific increase of enzymatic proteins like CPA3, CPB2, and CMA1 and
proteins expressed in developing arteries and epithelial cells like FBLN5 and COL6A6.
Furthermore, there is an increase in Annexin 6 (ANXA6), which has been described to
critically regulate the transition of chronic hypertrophied cardiomyocytes to apoptosis in
cultured cardiomyocytes [125]. Interestingly, Cystatin C (CST3), a common serum marker
for chronic heart failure, is increased significantly in MR only.

Interestingly, the only two matrix-metalloproteinases detected are too low in abundance
to compare between groups. Matrix-metalloproteinases are well-described markers of the
progression towards heart failure; however, in our samples, cardiac remodeling does not
exhibit these changes (yet), very similar to results reported by Polyakova et al. (2004)
[126] in human AS samples and Spinale et al. (1998) in pigs [127]. GO term enrichment
of proteins increased in male AS and MR only reveals significant hits related to ECM
composition. In contrast, there are no significant enrichments in females of both conditions
(Figure 4.8B). Among the proteins found increased in males only are members of the ITIH
family, known as ECM stabilizers, e.g., ITIH1, ITIH2, ITIH4 in male AS and ITIH4 in
male MR. Serpin E2 is elevated only in male AS, which is in accordance with a previous
study, where pressure-overload hypertrophy in mice led to up-regulation of Serpin E2
and accumulation of collagens, thus contributing to cardiac fibrosis [128]. Additionally,
fibronectin (FN1), which has been shown to play a prominent role regarding fibrosis and
cardiac function in a heart failure animal model [129], is increased in male AS and MR
only. In line with a more pronounced elevation of fibrosis-associated proteins in male AS,
we find lower levels of STAT3 in female AS, which as a transcription factor is discussed to
be an important contributor to collagen synthesis and cardiac fibrosis [130].
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Figure 4.9: Fibrous tissue content and ECM protein intensity. Comparison of fibrous tissue
content as measured by MRI in AS and MR (A) and only in AS stratified to sex (B).
C) Median log2 of LFQ intensity of all proteins belonging to the ECM. P-values are
calculated via Wilcoxon rank test with two samples between groups (denoted by bracket)
and one sample against the reference mean (no bracket for the normal fibrous tissue
content). Dots represent individual subjects/samples.

Clinical quantitative imaging of extracellular matrix can be performed via T1 map-
ping [131]. In our cohort, a subset of AS and MR patients have are T1 mapped before
surgery. We see higher values for fibrous tissue content in AS and MR compared to pub-
lished data of patients without severe pressure or volume overload [109] without a significant
difference between conditions ( Figure 4.9A and B). Additionally, male AS present a higher
degree of fibrous tissue content when compared to female AS. In Figure 4.9C, we used
organelle annotations as published by Doll et al. (2017) [103] to compare the differences in
log2 transformed LFQ intensity of all ECM proteins in AS, MR, and CON. Concomitant
with the fibrous tissue content, we find an increase in AS and MR vs. control ECM proteins
but no significant difference between conditions.

Energy metabolism and mitochondria
The normal cardiac function relies on a constant high energy supply, which in the healthy
heart is mainly provided by oxidative phosphorylation from fatty acid oxidation [132]. In
our study, proteins involved in energy metabolism are found decreased in AS and MR
compared to healthy samples, with a more pronounced effect in AS and a generally stronger
effect in males for both conditions.

In Figure 4.10A, the clustered heatmap shows the mean abundance of proteins assigned to
energy metabolism and mitochondria-related GO terms. The effects in condition annotation
(I) show that the most significant changes are a decrease in abundance in AS. In MR, the
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effect is less pronounced. However, a few proteins like PYGB, SLCA2A1, and SLC27A6
are increased in both conditions.
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Figure 4.10: Overview on metabolic protein expression and GO enrichment. A) Clustered
heatmap showing the condition’s mean abundance of proteins belonging to energy
metabolism and mitochondria related GO terms. Annotation bars denote significant
changes in condition (I) and in sex (II – effect in sex MR, III – effect in sex AS).
Proteins described in the text are labeled. B) Combined results of metabolic GO term
enrichment analysis on down-regulated proteins for all three condition comparisons
and on proteins found only in one sex of a condition. GO term names are reduced to a
maximum of 40 characters, but are non-ambiguous.

Figure 4.10B shows GO terms summarized under metabolism and mitochondrial dys-
function for the condition and sex-stratified comparisons. Major aspects of metabolism,
especially the tricarboxylic acid (TCA) cycle, respiratory chain, and oxidative phospho-
rylation, are down-regulated in AS and MR. The lower abundance of proteins involved
in fatty acid beta-oxidation and branched-chain amino acid catabolism is mainly seen in
AS. Although most effects are shared among sexes, effects found in male AS and MR
only yield significant enrichments, while those found in females only do not. Among the

107



4 Molecular and clinical characterization of AS and MR

enrichments in males are respiratory chain, branched-chain amino acid catabolism and
TCA are enriched (Figure 4.10B).

In line with the GO term-based analyses, proteins assigned to mitochondria, the major
site of energy generation in cardiac tissue, as published by Doll et al. (2017) [103],
show a significant decrease in median log2 transformed LFQ intensity in AS, but not in
MR Figure 4.11.
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Figure 4.11: Median log2 of LFQ intensity of all proteins with mitochondrial annotation.
P-values are calculated via Wilcoxon-rank test.

We summarize changes in the metabolism in Figure 4.12 for AS and MR. Despite
the decrease of proteins involved in fatty acid beta-oxidation, a major transporter for
long-chain fatty acids (SLC27A6 or FATP6) is up-regulated in AS and MR. Remarkably,
a major glucose transporter in cardiac tissue GLUT1 (SLC2A1) shows a 2.75-fold increase
in AS and 4.8-fold in MR, while the main glucose transporter GLUT4 (SLC2A4) is
1.5-fold increased in CON vs. AS. Also, PYGB, a protein responsible for glycogen
degradation, is higher in abundance in AS. However, changes in the abundance of proteins
involved in glycolysis are seen in only two proteins (PFKM - slight decrease, ENO2,
slight increase). Additionally, PDK4 is decreased 13-fold in AS and 6-fold in MR. PDK4
phosphorylates and thus inactivates pyruvate dehydrogenase (PDH). Less inactivation of
PDH can contribute to increased glucose oxidation and, as a result, pyruvate utilization for
acetyl-CoA generation. Another example of shared up-regulation is SPTLC. The enzyme
is crucial in de-novo synthesis of ceramides and overexpression leads to accumulation of
ceramides and subsequently to changes in the lipid profile, apoptosis, reduction of oxidative
metabolism, and progression of maladaptive remodeling [133].
Down-regulation of sirtuins, i.e., mitochondrial deacetylases, has been implied in mi-

tochondrial dysfunction found in pathological hypertrophy [134]. Sirtuin-3 (SIRT3) is
significantly lower in abundance in AS compared to Control and MR samples. TSPO
(translocator protein) is down-regulated in MR compared to both control and AS. TSPO
belongs to the mitochondrial cholesterol/porphyrin uptake translocator protein family and
has been found to be up-regulated in pressure-overloaded hearts in mice. Preventing TSPO
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Figure 4.12: Summary of metabolic processes derived from enrichment results and selected
key proteins. Colored arrows denote direction of change and the condition the change
is found in: yellow = AS, green = MR.

increase limits the progression of heart failure, preserves ATP production, and decreases
oxidative stress, thereby preventing metabolic failure [135]. TSPO in AS has a positive
fold change, which matches observations in pressure overload by Thai et al.(2018) [135];
however, it misses the significance threshold (adj. p-value = 0.07) in our data. In contrast,
significantly less TSPO in MR might point to an opposing mechanism in volume overload.
Changes in myocardial energy supply affect cardiac function, measured reliably as

ejection fraction in cardiac MRI [36]. In our cohort, we see a lower ejection fraction in
both conditions when compared to published reference values [109], however less severe
in MR (Figure 4.13A). In line with the more pronounced decrease of proteins involved in
male patients’ energy metabolism, cardiac function is better preserved in females, both in
AS and MR (Figure 4.13B).

Proteostasis
Proteostasis describes a balance of biological pathways including protein synthesis, folding,
quality control, trafficking, and clearance, ensuring proper cell function [136]. In our
comparison, proteins related to proteostasis show a major decrease mainly in AS patients
and in particular in female AS samples (Figure 4.14).
Down-regulation in AS samples yields enrichments for translation including ribosomes

and their subunits, protein folding, and quality control, i.e., chaperonin containing T-
complex protein Ring Complex (TRiC, GO:0005832), trafficking such as protein localization
to the endoplasmic reticulum (GO:0070972) (see Figure 4.15). Notably, all subunits of the
TRiC are lower in abundance in AS compared to CON and MR, pointing to an AS-specific
effect. The complex aids in the folding of actin and tubulin, i.e., major parts of the
cytoskeleton. Almost all terms found in AS vs. MR, but not when comparing against
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Figure 4.13: Comparison of ejection fraction in % as measured by MRI in AS and MR
(A) and stratified to sex (B). P-values are calculated via Wilcoxon rank test with two
samples (AS vs. MR, female vs. male, denoted by bracket) and one sample against the
reference mean (no bracket). The reference range consists of the mean (dotted line)
+/- one standard deviation. For A), we show averaged values from female and male
ejection fraction. Dots represent individual subjects.

the controls, are based on proteasome subunits (GO:0000502), i.e., protein degradation
(Figure 4.15). As such, the changes in proteasomal subunits are subtle (also see Appendix B
Figure B.6), but it is the only concept across the whole analysis that is neither shared nor
condition-specific, however not strong enough to be fully divergent between conditions.
Heat shock proteins have been described to play a role in cardiac hypertrophy [137].

The most abundant small heat shock protein in cardiomyocytes αB-Crystallin (CRYAB)
has been shown to suppress pressure overload cardiac hypertrophy in mice [138]. In our
cohort, αB-Crystallin is down-regulated in AS and MR samples. Heat shock protein beta-7
(HSPB7) is a cardioprotective stabilizer for large sarcomere proteins, whereas a loss leads to
autophagic compensation to degrade accumulated protein aggregates [139]. We detect all
three isoforms of HSPB7 robustly in control samples, but significantly less HSPB7 (isoform
1 and 2) abundance in AS and MR samples. Furthermore, Hsp70 (HSPA1B) is found to
be down-regulated in both disease groups, AS and MR, and Hsp70 knockdown has been
described to induce cardiac dysfunction and development of cardiac hypertrophy [140].
Finally, TRAP1/HSP75, known to protect the heart from hypertrophy, was found down-
regulated in AS samples only [141]. Few proteins show up-regulation; among them is
UCHL1, a deubiquitinase just recently described to stabilize epidermal growth factor
receptor, subsequently leading to increased hypertrophy [142].
In the sex-stratified analysis, we recover most translation effects in female AS only

(Figure 4.15). More specifically, effects split into cytosolic translation being decreased
in females and mitochondrial translation being lower in males. For example, 13 out of
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Figure 4.14: Overview on proteostasis protein expression. Clustered heatmap showing
the condition’s mean abundance of proteins belonging to ECM related GO terms.
Annotation bars denote significant changes in condition (I) and in sex (II – effect in
sex MR, III – effect in sex AS). Proteins described in text are labeled.
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teostasis proteins for all three condition comparisons and on proteins found only in one
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31 detected 40S and 27 out of 42 60S ribosomal subunits are changed in females only;
another 9 ribosomal subunits are down-regulated in both. Additionally, we found 16 out of
39 detected subunits spanning all cytosolic translation initiation factor complexes to be
less abundant in females compared to none regulated in males (Figure 4.16). Despite the
loss of power in the sex-stratified analysis, i.e., only half the sample sizes, nine initiation
factor (IF) and ribosomal subunits are only significant in the stratified analysis, not in the
overall condition comparison.
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Figure 4.16: Sex-stratified analysis of ribosomal subunits and translation initiation factors
(IF) in AS. Frequency of cytoplasmic and mitochondrial ribosomal subunits and
translation initiation factors coded through the significant changes found in the sex-
stratified analysis in AS. IF = translation initiation factors.

One particular IF, EIF3A, has already been shown to ameliorate cardiac fibrosis [143]
and shows a 1.8-fold down-regulation in female samples. Lower tRNA aminoacylation (e.g.,
GO:0043039) is enriched in both sexes and thus represented in the AS vs. CON comparison;
however the proteins behind the enrichment reveal cytosolic enzymes in females, whereas
in males the mitochondrial tRNA aminoacylases are less abundant. Protein degradation is
regulated via the ubiquitin-proteasome system and lysosomal autophagy. We find some
evidence of disturbed degradation and neddylation processes in AS samples, as one major
neddylase UBE2M is up-regulated. UBE2M activates the cullin scaffold proteins, which
form a potent ubiquitin ligase complex and are crucial for the degradation of many target
proteins. However, cullins (1,4 and 5) are lower in abundance in AS patients. Similarly,
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several COP9 signalosome subunits, which regulate protein homeostasis in the heart,
are down-regulated in AS. The disturbance of protein homeostasis may lead to cardiac
proteotoxicity.

In female AS patients of our cohort, we see less left ventricular mass, i.e., less hypertrophy,
than in male AS patients despite comparable left ventricular pressure load due to severe
aortic valve stenosis (Figure 4.17).
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Figure 4.17: Comparison of indexed myocardial mass and the mean pressure gradient across
the aortic valve as measured by cardiac MRI in AS stratified to sex. P-values are
calculated via Wilcoxon rank test with two samples (female vs. male, denoted by
bracket) and one sample against the reference mean (no bracket, only for myocardial
mass). Reference ranges for myocardial mass are given as mean (dotted line) ± one
standard deviation [109], and the pressure gradient being < 5 mmHG in healthy
subjects [144]

Furthermore, proteome measurements suggest a reduced cytosolic protein synthesis
capacity in female AS patients, which might be why this difference is seen in myocardial
hypertrophy between male and female patients. Proteasome-related proteins are needed for
cardiac hypertrophy progression and have been discussed as therapeutic targets to prevent
or reduce cardiac hypertrophy [145,146].

Cytoskeletal, adhesion, and contractile proteins
The cytoskeleton plays a crucial role in maintaining cellular stability and reacting to
mechanical stressors through signal transmission and subsequent remodeling. Myofibrils
represent the cardiomyocytes’ contractile entities and are connected to the ECM and
adjacent cells through the cytoskeletal network and adhesion proteins. In Figure 4.18A,
GO terms belonging to the cytoskeleton, adhesion, and muscle contraction enriched in
AS and MR vs. CON are shown. All other comparisons did not yield any significant
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enrichment results. We find terms like actomyosin, contractile fiber, and spectrin-associated
cytoskeleton to be enriched in both conditions. Similarly, the median expression of proteins
belonging to the myofibril and actin-binding proteins as assigned by Doll et al. (2017) [103]
is increased significantly in both conditions when compared to CON (Figure 4.18B).
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Figure 4.18: Functional and organellar assignments of preoteins in the muscle and cytoskele-
ton category. A) Summary of GO term enrichment analysis in condition and sex-specific
analyses. The negative log10 transformed p-value defines the size of circles for terms
enriched in AS vs. CON in yellow and MR vs. CON in green. B) Sample-wise median
log2 transformed LFQ intensities in for all proteins belonging to the actin-binding
proteins and myofibrils in AS, MR and CON. P-values are calculated via Wilcoxon-rank
test.

Shared effects in actin-binding proteins are found, e.g., in protein 4.1 (EPB41, EPB42)
and Filamin A (FLNA), which are both involved in anchoring actin filaments to the
membrane. Alpha-actinin 1, another actin-binding protein, was long considered to be
expressed in endothelium only, however higher abundance in AS and MR would also
support deposition of ACTN1 (see Figure 7F) in cardiomyocytes from patients with aortic
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stenosis and dilated cardiomyopathy [147]. Intermediate filaments, such as vimentin (VIM),
synemin (SYNM), and the nuclear lamin A/C (LMNA), are up-regulated in both conditions.
They act as bridges between cell organelles and the sarcolemma. Furthermore, we detect
the up-regulation of SYNPO2 (Synaptopodin2). Members of the SYNPO family regulate
actin filament assembly, and, e.g., SYNPO2 is known to organize actin bundles in parallel
along the long axis of the cell. Many contraction-associated proteins like tropomyosin
(TPM1, TPM3) and troponins (TNNI1, TNNT2) are higher in abundance, whereas others
are down-regulated (MYH7, MYL5 and 12B, SMPX). Interestingly, many changes in
actomyosin proteins may well be assigned to non-sarcomeric structures such as smooth
muscle cells (MYL12B, MYH11, CNN3) or to non-muscle myosin 2B (MYH10), for which
cardiac remodeling has been described when it is increasingly deposited at costameres in
rats and mice [148].

The abundance of proteins involved in calcium handling is shown in Figure 4.19. CASQ2
(Calsequestrin) is higher in abundance and PLN (Phospholamban) levels are lower in
AS and MR. Ryanodine receptor 2 (RYR2) is decreased in AS only. RYR2 is a crucial
receptor in cardiac calcium-dependent excitation [149]. Additionally, ATP2A2 (SERCA2a),
a calcium pump, is lower in abundance in AS, while HRC (Sarcoplasmic reticulum histidine-
rich calcium-binding protein) is up-regulated. In combination with the changes in myosin
heavy and light chains, these alterations may lead to contractile dysfunction [150].
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Figure 4.19: Median subtracted log2 of LFQ intensity for calcium handling proteins. CASQ2
- Calsequestrin, PLN - Phospholamban, RYR2 - Ryanodine receptor 2, ATP2A2 -
Sarcoplasmic reticulum histidine-rich calcium-binding protein (several isoforms). P-
values are not shown, but for all displayed proteins we find at least one significant
(adjusted p-value of < 0.05) result in one of the condition comparisons performed with
Limma.

Further disparities are evident in the composition of desmosomes and adherens junctions,
i.e., within the intercalated discs over which cardiomyocytes are connected. For example,
PKP2 and alphaE-catenin show higher abundance only in AS. Concerning cell-cell adhesion
in MR, we find desmoglein-2 (DSG2), desmoplakin (DSP), and alphaT-catenin to be up-
regulated specifically.
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Figure 4.20: Up-regulation in protein abundance at the desomosome, i.e., the connection
between two cardiomyocytes, specific for MR in green and AS in yellow. DSG2 -
desmoglein-2, DSP - desmoplakin, PKP2 - Plakophilin-2, CTNNA1 - alpha-catenin,
VCL - vinculin, DES - desmin, DSC1/2 - desmocollin-1 and -2, CTNND1 - Catenin
delta 1, CHD2 - N-cadherin, JUP - Junction plakoglobin. Grey: Detected, but not
regulated.

We find several AS-specific effects (Figure 4.21), such as a decrease of alpha-integrins
(ITGA1, ITGA5, ITGA6, ITGAV) and melusin (ITGB1BP2), which interacts with integrin
beta-1 and which was found to have a protective effect in response to chronic pressure
overload is also down-regulated in AS samples [151].

Figure 4.21: AS-specific changes in in the cytoskeleton and sarcomere. Colors denote a
significant change in the respective protein and arrows indicate on the direction of
change.

Vinculin (VCL) is higher in abundance in AS and is believed to enhance the stiffening
of cells in response to strain, and therefore, cells become less susceptible to further
deformations [152]. With regard to intermediate filaments, we found Nestin (NES) and
Desmin (DES) to be of higher abundance only in AS. Nestin is expressed only during
early heart development [153]. Desmin is the major connector of costameres, desmosomes,
myofibrils, nucleus, and other organelles within the cardiomyocyte and was found up-
regulated in heart failure [99]. Further inspection of the term actin filament bundle
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(GO:0032432), revealed a multitude of proteins involved in actin bundles and stress fiber
formation (FSCN1, PDLIM1, MARCKS) and in transducing mechanical stress signals
towards the nucleus (TRIP6, ZYX, LPP, ABLIM1, SEPT7).
AS-specific alterations in muscle contraction are found, e.g., in MYH3, MYH13, and

MYL6B, which contribute to the enrichment of contractile fibers in AS in general. En-
richment results among down-regulated proteins in AS are based on major cardiac myosin
heavy chain isoforms MYH6, MYH7 in addition to heavy and light chains previously
not believed to be expressed in cardiac tissue (MYL5, MYH4, MYH8). Altered lev-
els of MYH6 and MYH7 manifest in a significantly lower ratio of the two sarcomeric
heavy chains (MYH6/MYH7) only in AS (Figure 4.22), which is compliant with current
literature [154–156].
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Figure 4.22: Ratio of myosin heavy chains MYH6 and MYH7 in AS, MR and CON. P-
values are calculated via Wilcoxon-rank test.

Changes specific in MR (summarized in Figure 4.23) concentrate towards the structures
involved in cell-matrix adhesion (costamere, sarcolemma, glycoprotein complex) and
cytoskeletal proteins just beneath the sarcolemma (cortical cytoskeleton, GO:0030863).
Within the dystrophin-glycoprotein complex, dystrophin (DMD), a dystrophin binding
protein (SNTB2), and a membrane-spanning protein (SGCE) are higher in abundance only
in MR. Actin-binding proteins with an MR-specific increase are mainly anchoring proteins
such as SPTBN1, SPTB, TLN2, EBP41L2, and ADD3. Furthermore, up-regulation of the
actin-binding non-muscle alpha-actinin ACTN4 provides evidence on the reactivation of
fetal actinin forms described in failing hearts [157]. Proteins involved in muscle contraction
show higher levels in MR for MYH2, MYH14 and lower levels for MYH7B, which were
previously considered less important in adult hearts. Up-regulation of MYLK3, a cardiac-
specific myosin light chain kinase, may positively affect contractility in MR [158].
While we did not find changes in the primary cardiac muscle ankyrin repeat proteins,

ANKRD29 (Ankyrin repeat domain-containing protein 29) shows a strong divergent effect
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Figure 4.23: Graphical illustration of regulated proteins belonging to the cortical cy-
toskelelon. The color indicates an MR-specific (green) increase.

between AS and MR, favoring the direction of increase in anchor proteins in MR. However,
little is known about the protein despite its ubiquitous expression.
GO term enrichment of proteins enriched exclusively in sex resulted in a single hit of

the term actin-binding (GO:0003779) in male MR (not shown). However, except for GC,
DST, and PFN2, the enrichment may result from the slight difference in statistical power.

Observations on ACE2
Human ACE2 (angiotensin-converting enzyme 2) is recognized as the main receptor for
SARS-CoV-2. It is expressed in many organs, including the respiratory tract, kidney,
and heart. Thus, some reports suggest that ACE2 plays a role in cardiac SARS-CoV-2
infection [159,160]. ACE2 is the rate-limiting enzyme in the degradation of the fibrogenic
and proinflammatory AngII (angiotensin II) peptide and therefore a major player in
the pathophysiology of heart disease. In patients with AS, ACE2 protein is 4.76-fold
up-regulated compared to controls (adj. P<0.0001) and 4.04-fold compared to MR (adj.
P<0.001). In contrast, in patients with mitral valve regurgitation, ACE2 abundance does
not show any significant differences when compared to controls (Figure 4.24A and C).
To confirm the validity of these results, protein abundance is compared with available
cardiac transcriptomic data of 17 patients with AS and 6 controls from the same cohort.
Equivalent to the proteomic results, ACE2 is significantly (adj. P<0.05) up-regulated
in AS compared to controls (Figure 4.24C). Moreover, there is a significant correlation
between ACE2 protein abundance and messenger ribonucleic acid (mRNA) expression
levels (R=0.6, P<0.01), suggesting a direct link between cardiac ACE2 transcription levels
and the amount of generated ACE2 (Figure 4.24D).

In addition to a relevant pressure gradient across the valve, patients with AS do not have
higher blood pressures than MR. The intensity of ACE2 abundance positively correlates
with the pressure gradient in AS (Pearson correlation coefficient 0.36; p=0.036). Despite
covering a large range of proteins, the abundance of ACE, another major angiotensin-
converting enzyme, is below the detection limit and thus could not be quantified robustly
(Appendix B Figure B.7). ACE mRNA is detected, and expression levels increase in AS
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Figure 4.24: Distinct expression of ACE2, the putative severe acute respiratory syndrome
coronavirus 2 receptor in heart disease. ACE2 expression values from (A) protein
measurements as log2 LFQ intensities (n = 41 AS, MR, 17 CON), and (B) RNA
sequencing as log2 counts per million (n = 17 AS, 6 CON). Individual values per
patient are plotted as dots. Missing values are not shown but were down-shift imputed
for statistical testing. (C) Sample-wise derivation of cardiac ACE2 protein abundance
from the median log2 expression value (set to 0). Each bar represents one sample, while
annotation columns below denote selected baseline characteristics. P-values stem from
the differential analysis results and are BH- adjusted. ARB – angiotensin II receptor
blocker, ACE – angiotensin converting enzyme. (D) Correlation between ACE2 protein
abundance and ACE2 mRNA expression levels with R being the Pearson correlation
coefficient.
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when compared to controls, however not significantly (adj. p = 0.06).

4.5 Discussion

Our curated data set from the SMART and EurValve studies comprises a clinical charac-
terization of 124 subjects in total. Proteomic, transcriptomic, and genomic data further
describe subsets of these individuals. Exploratory analysis motivated us to focus on the
proteome and clinicome.
After overall quality control and data set description, we used differential expression

and enrichment analysis to depict condition- and sex-specific alterations in the proteome
together with corresponding clinical imaging data of human left ventricular myocardial
samples of patients with severe aortic valve stenosis or severe mitral valve regurgitation
and healthy donors. Transcriptomic data was used for validation purposes.

The largest set of deep molecular data from living individuals
Quality control of transcriptomic data showed successful removal of measurement artefacts
and resulted in good quality reads. Filtering and transformation of counts yielded homoge-
neous distributions of read counts across all samples. The preparation of a deep proteomic
reference of more than 8300 protein groups enabled a high mean coverage of more than 3500
cardiac proteins and more than 80 isoforms comparable to or more extensive than related
publications [51, 103]. By providing proteomic data on 58 living subjects, we outgrow
previous studies by a factor of eight [51]. For a subset of 23 subjects, there is additional
data on RNA expression available.

Larger variability in AS subjects
Despite uniform intensity distributions per sample in the transcriptomic and proteomic
data, we observed larger within-group variability in AS proteome and transcriptome and
in MR proteome when compared to controls. Relating to this, Doll et al. (2017) report
stronger per-subject variability in the proteome of atrial fibrillation samples, whereas
control samples are homogeneous. The authors suspect an underlying sub-classification
of atrial fibrillation subjects [103]. The differences in within-group variability can also be
interpreted as greater susceptibility to personal influences in certain pathologies, in our
case in AS and to a lesser extent in MR. These observations can only be ascertained in
larger cohorts and need further evaluation, but if confirmed, they make the need for a
personalized approach to disease even more pressing.

Low count/abundance in (female) AS
The "imputation bumps" that are strongest for AS point to more imputed values in both
female and male AS, comparable to the many filtered low-count transcripts described in
the transcriptomic analysis. However, in contrast to the transcriptomic data, for which all
present transcripts should be "caught", but low counts are less reliable and thus filtered, it
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is common practice to impute missing values in proteomic data (e.g., as implemented in
Tyanova, Stefka et al. (2016) [43]). Here, the reference sample provides evidence for all
protein groups found in the studied tissue. However, the quantity in a sample or sample
groups may lie below the detection limit of the mass spectrometer. Therefore, imputed
values come from a distribution mimicking intensities at the lower detection limit. As such,
we find a higher amount of low abundance proteins, i.e., missing values and low-count
transcripts in AS, especially in females.
Compared to control samples, we find more than twice as many genes and proteins

to be down-regulated in AS. This imbalance is in cohesion with the observation of
low counts/abundance; however, it is rather unexpected with respect to literature, e.g.,
Kararigas et al. (2014) [161]. Interestingly, the effect vanishes in male AS samples but
remains in female AS in our sex-stratified analysis. Several biologic and technical reasons
are probable and thus discussed in the following together with other biologic interpretations
and as part of limitations in section 4.5.

AS and MR represent equal cardiac hypertrophy of differing etiology
Our AS subjects suffer from high systolic left ventricular pressure, whereas patients with
MR are subject to high diastolic volume load. Both cohorts develop a comparable increase
in total myocardial mass, i.e., hypertrophy, but are different in left ventricular end-diastolic
volume and myocardial wall thickness. As such, the cohort represents the two pathologies
well with regard to organ and hemodynamic characteristics [162]. Co-morbidity is fairly
low in general and comparable across conditions. Similarly, relevant medication is taken by
both cohorts to a similar extent. As such, the cohort is well suited to study the proteomic
effects of the differences in mechanical load.

A massive increase in ECM in AS and MR
The massive increase in cardiac ECM in AS is consistent with previous studies, where
chronic pressure overload triggers profibrotic activation and subsequent increase in ECM
and myocardial stiffness [73]. The effect of volume overload on ECM remodelling, as
in MR, is mainly described in animal models so far, but in general not understood at
an equivalent level of detail [73]. Compared to pressure overload, volume overload was
previously associated with ECM degradation and less fibrosis [50,102]. However, fibrosis
is not defined sharply – in most publications, the amount of fibrillar collagen, measured
through staining, is used as a proxy for fibrosis. As such, our finding of an increase of
fibrillar collagens like Collagen I, III, and V specifically in AS and not MR is in accordance
with published findings [163]. Additionally, MR-specific increase in enzymatic proteins and
proteins related to vessel formation is in line with the described activation of proteases,
increased vessel formation, and ventricular dilation in volume-overloaded ventricles [50, 73].
In summary, we find a massive shared increase in ECM in pressure and volume overload in
the proteome and cardiac imaging. However, the major difference lies between proteins
increasing myocardial stiffness to adapt to the increased pressure load in AS and a slight
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increase of ECM-degrading proteins in MR.

Decrease in metabolic proteins strong in MR and stronger in AS
Proper cardiac function is dependent on a high energy supply. In cardiac hypertrophy and
heart failure, energy metabolism changes [164]. We show a decrease of proteins involved
in energy metabolism in AS and MR subjects. The effect is more pronounced in AS –
here, especially the mitochondrial proteins are reduced. A key enzyme, Sirtuin3, inhibits
processes that lead to mitochondrial dysfunction and pathological hypertrophy [134];
however, it is down-regulated specifically in AS.
Additionally, we detect a stronger decrease in male AS subjects. This is also in line

with a former study in which transcriptome characterization detected down-regulation of
oxidative phosphorylation pathway in male, but not in female overloaded ventricles [161].
The disturbance of mitochondrial translation found in male AS offers an explanation for
the strong decrease.

Interestingly, in our cohort, overall male subjects tend towards a higher degree of cardiac
hypertrophy and reduced cardiac function than female patients. Similar sex differences are
seen in a transcriptional profile in a murine model of pressure overload, which showed a
pronounced increase in myocardial hypertrophy and fibrosis in male animals. In contrast,
female animals exhibited less down-regulation of genes related to mitochondrial function
and respiration [165,166].

Proteostasis is reduced in female AS
The maintenance of healthy protein homeostasis, i.e., protein synthesis, folding, quality
control, trafficking, and clearance, ensures proper cell function and is of major importance
in cardiac tissue due to its limited regenerative potential [136]. At the same time, car-
diac hypertrophy relies on increased protein synthesis, which depends among others on
translation initiation factors and ribosomes [143,167].
Notably, AS proteostasis changes are driven by strong downregulation in AS females.

We find exclusive down-regulation of many ribosomal subunits and translation initiation
factors in female AS subjects, which can ultimately decrease protein translation capacity.
Down-regulation of proteostasis proteins in AS women offers a link to lower cardiac

hypertrophy and better cardiac function of female AS than male AS, thus, possibly providing
a molecular explanation for the phenotypic clinical observation. In this context, we need
to discern that an increase in the abundance of a protein, despite the heavy reduction of
transcriptional capacity, points to a strong need for these proteins. All the more intriguing,
we do not find enriched terms among the more than 100 proteins with increased abundance
only in female AS. Even when raising the threshold of significance towards more proteins for
enrichment analysis, there are no hits (not shown). For comparison: we do find significant
GO terms in less than 50 significant proteins up-regulated in male MR. Conversely, no
enrichment means a seemingly random assembly of up-regulation in female AS with regard
to the GO ontology. These proteins require an extensive further manual inspection to
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understand female pressure overload hypertrophy mechanisms.

Druggable targets for the treatment of hypertrophy
A prominent example of a druggable target could be TSPO. Thai et al. (2019) show a
recent approach to regulating the expression of TSPO in mice and re-establishing the
branched-chain amino acid catabolism [135, 168]. TSPO is increased in heart failure;
however, prevention of its increase is associated with better cardiac function and outcome.
Based on our data, inhibition of TSPO may prove to have an effect in pressure overload,
where we find TSPO up-regulated but not in volume overload hypertrophy where we find
no differential regulation.

Bi et al. (2020) identified UCHL1, a deubiquitinase, as a target for hypertrophic therapy
through LDN-57444 in mice undergoing transverse aortic constriction [142]. The latter is a
model for pressure load. As we find UCHL1 increase in both AS and MR, further efforts
in the clinical applicability of LDN-57444 could prove beneficial in both conditions.

Furthermore, proteasomal subunits are not changed compared to controls but increased
in MR vs. AS. The change is subtle but contributes to the debate on the role of the
ubiquitin/proteasome pathway in cardiac hypertrophy. Depre et al. (2006) describe the
proteasome’s activation to promote hypertrophy in mice and highlight the potential to
inhibit the mechanism through epoxomicin [169]. An activated ubiquitin pathway is
associated with a continued decrease in left ventricular function in volume load even after
mitral valve repair [170].

The reduction of hypertrophy is an important goal in drug-based therapy of heart valve
diseases. Therefore, it is essential to understand the underlying mechanisms leading to a
difference in applicability, similar to ACE inhibitors’ ineffectiveness in volume overload
hypertrophy [102].

There are distinct cytoskeletal changes in pressure and volume load
Cytoskeletal changes can cause or be triggered by cardiac dysfunction [164]. The pressure
overloaded myocardium in patients with AS has to cope with pressures of approximately
200-250 mmHg, whereas intraventricular pressures in patients with MR are between 120-150
mmHg. In contrast, end-diastolic volume, which describes the volume load on the heart, is
increased only in MR patients.

In general, we find higher levels of cytoskeletal and contractile proteins to cope with the
increase in mechanical load in both conditions. However, a closer look reveals a major
increase in the cortical cytoskeleton in MR samples. Proteins found exclusively increased
in MR are known to contribute to anchoring the cytoskeletal actin to the sarcolemma and
cross-linking between cytoskeletal entities, thus providing structural integrity to the cell.
Furthermore, alterations in the glycoprotein complex and desmosomal changes point to an
increased interconnectedness towards the ECM and neighboring cardiomyocytes, which
may be an adaptation to increased stretch caused by volume load.

In AS, among the actin-binding proteins, we find many LIM-domain-containing proteins,
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of which many display a role in transducing mechanical stress towards the nucleus. Ad-
ditionally, proteins promoting actin bundles and stress fibers are more prominent in AS.
Pressure load in the heart may have a stronger effect on mechanosensing than volume load.
Changes in contractile proteins do not necessarily stem from the typical adult cardiac

sarcomere. Instead, we found many changes associated with the non-muscle, skeletal,
smooth muscle, and fetal expression profiles. Non-muscle and smooth muscle contractile
proteins may originate from endothelial cells or (myo-)fibroblasts. However, deposition of
increased amounts of, e.g., MYH10, has been detected in cardiomyocytes in animal models
before [148]. A reconsideration of the role of myosin light and heavy chains proclaimed to
be non-cardiac is a reasonable goal for the future. Here, the expression of, e.g., skeletal
myosin heavy chains as found in our data, could also be reproduced by searching in available
databases for normal and failing hearts [99,104].

Towards the fetal gene programme?
A switch back to the fetal gene expression has been observed and discussed as an adaptation
mechanism to various stressors of cardiac tissue, including mechanical load [171,172]. It is
mainly defined by an increase of glucose utilization for ATP generation, as it is common in
the pre-natal heart, instead of predominant reliance on fatty acids, which is common in
the post-natal heart [171].
While proteins involved in fatty acid oxidation are clearly reduced in both conditions,

the evidence for increased glucose utilization is sparse. The expression of the main glucose
transporters GLUT1 and GLUT4 are changed. Contrary to results in mice [173], the
rate-limiting enzyme PFKM shows a slight decrease in abundance in our data. The exact
mechanism and succession of a switch towards glucose utilization are still under current
debate [174]. With our data, we add information on non-failing human hearts. We show
that an increase in glucose transporters, and presumably higher glucose availability, is not
encompassed by a direct increase in glucose metabolic proteins.

Adding to findings related to the fetal gene program, we find evidence on increased levels
of key enzymes of ceramide synthesis, which subsequently would lead to changes in the
lipid profile, apoptosis, reduction of oxidative metabolism, and progression of maladaptive
remodeling [133]. However, for a proper judgement of the actual metabolic processes and
substrate usage, further measurements of, e.g., metabolic fluxes would be needed.

Changes in MYH6/MYH7 ratio are a common marker for a switch to fetal gene expression
as a response to aortic stenosis [154]. The fetal isoform of Troponin I - TNNI1 - shows
a strong increase in AS and MR but has been claimed not to be reactivated regardless
of cardiac condition before [175]. In contrast, Asp et al. (2017) found TNNI1 mRNA
to be highly expressed in one HF patient combined with down-regulation of mRNA of
mitochondrial proteins [176].
The exact mechanism and succession towards the fetal gene program in failing hearts

are not fully understood [172]. In our non-failing hearts, we do see evidence that can be
attributed to a switch to the fetal gene programme.
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Putative SARS-Cov-2 receptor up-regulated only in pressure-overload hypertrophy
In light of the current COVID-19 pandemic, we set out to show the additional benefit
of our data’s availability to the research community. Although not related to our main
research aims, we noticed that Lindner et al. (2020) reported the myocardium affected
by SARS-CoV-2, often [177]. Up-regulation of ACE2 has been reported previously on the
transcriptomic level and in Western Blots in left ventricle tissue collected from obstructive
hypertrophic cardiomyopathy [178] and in five AS samples of single nucleus RNAseq [160].
Here, we provide further evidence of higher ACE2 expression in pressure-overload hy-
pertrophy and additionally no increase in expression in volume-load hypertrophy. The
pathophysiological reason for an increased ACE2 expression in pressure-overload hearts
might be a compensatory mechanism that mediates the well-described antihypertrophic and
antifibrotic actions of ACE2 in the heart [179]. Further research is needed to investigate
whether other pressure load conditions such as arterial hypertension also lead to increased
ACE2 expression and whether such conditions can enhance ACE2 expression also in tissues
of initial SARS-CoV-2 infection, such as the upper airways.

Limitations
The difference in age between controls and patients is a major limitation of the study.
With an increase in age, the risk factors and in vivo perturbations of the cardiac tissue
accumulate. As such, a healthy control group matching in age would have been the
appropriate choice but is hardly available. A derailment of proteostasis proteins and its
interaction with the induction of senescence in cardiomyocytes has been reported [136].
However, we are positive that the described effects are also, if not mainly, the result of
the underlying pathology as the difference in age between AS and MR is significant but
much lower than when compared to controls. Additionally, within conditions, the age
is homogeneous between sexes and a significant continuous relationship between protein
expression and age within conditions was not found (not shown). As such, a sole impact
of age is unlikely as the proteostasis effects are strongest in female AS. However, when
interpreting the data, the effects cannot be completely distinguished.

Blood contamination is an additional confounding factor with implications on interpre-
tation. A biopsy taken at the valve replacement surgery will most probably not be free
from blood and cannot be washed as efficiently as a sample taken from an explanted heart.
Many proteins are of high molecular mass and may sensitively disturb the detection and
quantification of other proteins in a sample. As such, we exclude heavily contaminated
samples after careful consideration and do not interpret enrichments that pointed towards
body fluids. However, as the immune system depends on body fluids, we are impeded
in interpreting the effects of inflammation, which have been identified as a hallmark of
ventricular hypertrophy and are also under differential regulation in sexes [161,180].

Our coverage of protein measurement is high when compared to similar studies. Still, good
coverage of low abundance transcription factors is hard to achieve even with deep proteomic
reference samples. As such, we do not have the potential to uncover full mechanisms
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of a hypertrophic response as described, e.g., by Haque et al. (2017) and Nakamura et
al. (2018) [72, 162]. While we do find expression signatures of downstream effectors of
certain transcription factors, we cannot show the changes in the transcription factor’s
abundance itself. A similar issue is a mechanistic action resulting from post-transcriptional
modifications, such as phosphorylation events, which denote actual activity or inhibition of
a protein’s function.
Additionally, we need to consider that all observations relate to the full tissue, i.e., a

mixture of cells from the biopsy. The exact shares of cellular composition are unknown and,
due to the multiplicity of nuclei inside a single cardiomyocyte, also hard to infer [103]. As
such, all changes in protein abundance may not only be due to a regulation of expression
but also due to composition effects, e.g., a relative increase in fibroblasts.
Lastly, one assumption of the methodological framework in DE/DA analysis, or more

specific in pre-processing of the data, is an equal amount of total RNA or protein in a
sample. A common approach also used by us is to normalize to a uniform distribution and
size of library or cumulative intensities. Normalization methods for HTQ measurements and
their impact are a topic of ongoing debate [181–183]. The procedure most probably results
in a balanced amount of negative and positive fold changes in DE/DA analysis. The strong
deviation from this balance in the transcriptomic and proteomic analysis in the comparison
against AS fits the biologic explanation of reduced transcriptional and translational capacity.
Compositional effects are another reasonable explanation, especially because the effect is
consistent across both information levels. As the measurement techniques for both artefacts
are based on completely different concepts, they are not prone to show the same bias to the
same contamination sources. Additionally, the effect is not seen in MR, which precludes a
bias in sampling. However, an impact of the normalization strategy is hard to dismiss and
may require further attention.
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In this section, we revisit and answer the two main research questions separately and
put our findings into the overall aim of progressing towards Systems Medicine regarding
software solutions and by providing a proteomic landscape for heart valve diseases.

The first part of the thesis aimed at rethinking and adapting automated DE/DA
calculation software to the wealth of medical data and the exploratory nature of analysis
in a Systems Medicine setting.
We used a hybrid approach of Design Thinking, scientific software engineering, and

literature research to define 21 requirements for DE/DA software in general and for Systems
Medicine in particular. As such, the DE/DA software must cover crucial analysis steps, such
as automated pre-processing and quality control, DE/DA design setup, various visualization
options, annotation, and interaction possibilities. Automated pre-processing is ensured
by providing default configuration for full-fledged pipelines of acknowledged, independent
tools and algorithms. Furthermore, the researcher as a user needs functions to assure
reproducible results like reports and data downloads. Overall, the software needs to be
well documented, example and test data need to be available, and in the best case, no IT
skills are needed for usage. A platform-independent straightforward installation procedure
and data security are further requirements to the overall system.
To progress towards use in Systems medicine, we focused on the unique challenges in

medical research, i.e., handling and using the wealth of clinicome data and other molecular
*omes within our SMART IT platform as well as in DE/DA analysis software in general.
We established a specific feature space and algorithmic concept, in which the clinicome
is the basis for defining complex designs for DE/DA, like multi-group comparisons and
continuous variables. Several options for adding covariates, filtering and stratification
are also considered. A design formula is created automatically based on the selected
options, which serves as input for the widely adopted GLMs. Using GLMs, we exploit the
specific extensions tailored to the different kinds of molecular HTQ data. Furthermore,
automated pre-processing and DE/DA analysis are independent of each other, and as a
result, redundant computations can be avoided.
DEAME and Eatomics are implementations of the general requirements and include

instances of the flexible design setup module. Both research applications cover or outnumber
the majority of functionalities of existing tools. While it is a standard requirement to prepare
one experimental setup prior to using a DE/DA analysis tool, DEAME and Eatomics can
handle full phenotypic annotation as it may be available in clinical investigation of biopsy
samples or other observational settings. The utility of the working prototype for exploratory
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DE analysis was shown as it is applied to the need of clinical scientists and computational
biologists. We utilized user testing to evaluate the DE/DA software’s specific features
with regard to the user’s perception and intention to use. We show that novice users, like
clinical scientists, are qualified to configure given and own hypotheses into valid designs
without any prior computational biology knowledge. The intention to use DE/DA software
is high, especially when documentation and help pages are readily available.

The general requirements and our novel experimental design module provide a blueprint
for further development efforts in similar software as it is applicable to a large variety of
HTQ data sets. Since such data sets’ availability rises, the potential user group will expand
likewise. Our user testing insights may be useful for further research and practice when
developing scientific software. In the meantime, Eatomics is freely available to the research
community as an easy-to-use R Shiny application. Therefore, Eatomics may be used in
settings of simple designs, as they are common in molecular biology/Systems Biology, but
also in medical research settings, such as in Systems Medicine. Furthermore, anyone may
reuse the experimental design module or adapt the software to other HTQ data sets.
We believe that our applications may also provide a platform for communication on

DE/DA results between the clinical scientist and the computational biologist.

Because of the difficulty to obtain human biopsy samples and the only recently emerging
large-scale proteomics measurements, the changes in protein abundance in the myocardium
of AS and MR are based on animal models or established in small-scale studies [49].
Furthermore, sex-differences play a role in cardiac disease [34,35] but are seldom considered
in molecular studies.

In the second part of the thesis, we aimed at exploring the human myocardial proteome in
heart valve diseases. We wanted to obtain a deeper insight into condition- and sex-specific
differences in human heart valve disease and to relate the extensive proteomic data to
clinical parameters in a well-powered study of human tissue. Our main findings can be
summarized as follows:

• AS and MR show many shared mechanisms, of which the most prominent are an
increase of ECM and a decrease in metabolism. Both effects are stronger in AS.
Additionally, AS shows a larger variability among subjects in general.

• In muscle and cytoskeletal adaptations, we see a strong increase in mechanotransduc-
tion in AS and an increase in the cortical cytoskeleton in MR. The adaptations may
result from the differences in mechanical stress to the ventricle.

• A strong decrease in proteostasis was revealed to be driven by changes in female AS.
A reduced translational capacity may explain less cardiac hypertrophy and better
clinical outcomes in females.
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• We confirm the expression of several proteins currently under investigation as drug-
gable targets to reduce hypertrophy and add a distinction to their beneficial effects
with regard to etiology.

Although an imbalance of more down-regulation in AS was unexpected, the evidence on
both transcriptomic and proteomic levels preclude potential methodological flaws, such as
the proteomics measurement being sensitive to blood contaminations. Furthermore, age
disparities among groups may influence proteostasis. However, the distinctiveness in female
AS and only slight changes in all other groups make age effects unlikely. Our depiction of
the results highlights mechanisms and proteins that confirm findings from animal models.
Validation resembles a first step in translating findings into clinical care and is a major
objective in Systems Medicine [26]. Furthermore, we elaborate on changes contradicting
current literature, e.g., no increase of ECM in MR, or give hints on blank spots of unknown
courses of events, e.g., the changes towards a fetal gene program in non-failing hearts.

Apart from the general landscape, we show the added value of the data set in providing
evidence of increased levels of the putative SARS-CoV-2 virus receptor (ACE2) in pressure,
but not volume loaded myocardial tissue in the proteome and transcriptome. Furthermore,
the data lead to the development of a novel cardiac metabolism model named Cardiokin1.
Cardiokin1 can unravel differences in the myocardium’s energetic state and help gain
deeper insight into metabolic alterations in different types of heart valve diseases [184].
The full set of proteomic quantification will be available to the research community

within the publication of Nordmeyer, Kraus, Ziehm, and Kirchner et al. [185]. By providing
proteomic data on 58 living subjects, we outgrow previous studies of the human myocardial
proteome by a factor of eight [51].
Our description is by far not exhaustive, as it is out of scope to discuss all significant

effects. However, the data is continuously used to provide evidence on more hypotheses,
e.g., the correlations of sex hormones, protein abundance, and the clinical presentation.
As mentioned in Appendix C, specific patients received a hormonal treatment that may
have changed their clinical and protein expression profile towards the respective other sex.
These specific analysis results are not robust, but further evidence on these mechanisms
is currently generated. The findings could ultimately lead to a re-purposing of existing
hormonal substances to establish the female phenotype and, as a result, a favourable
outcome in the treatment of cardiac hypertrophy. Similarly, other described effects need a
further examination of the underlying mechanisms.
Our addition of extensive human evidence extends our general knowledge base on

heart valve valve disease. It may help guide new targeted therapy approaches and avoid
interventions that are not efficient in a specific condition or sex.

We anticipate that this exciting resource of information about heart valve disease-driven
human myocardial proteome changes will further be exploited in future studies to under-
stand differences in cardiac remodeling better and, thus, improve disease- and sex-specific
therapy concepts in the future.
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5 Conclusion and Outlook

This thesis provides insights into a Systems Medicine approach for heart valve diseases.
The wealth of HTQ data combined with a rich clinical phenotype as a prominent feature
in Systems Medicine was approached in a dedicated IT platform, an extension of DE/DA
analysis software, and an exploration of the myocardial proteomic landscape. Although
the overall background is rooted in Systems Medicine, our work is valid in other research
areas as well and extends the basic knowledge base on heart valve diseases.
The founders of Systems Medicine as a research area struggled to find a definition to

grasp its overarching scope. Instead, they provided a road map to follow along for the
whole expedition or just for a couple of milestones of a short trip. We believe that in
this thesis we have taken a short trip and important steps along this road in advancing a
Systems Biology approach to cope with the new challenges unique to Systems Medicine
and in an addition of knowledge on the molecular basis of heart valve diseases.
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Author Contributions and Credits

A considerable portion of this thesis originates from close collaborative efforts as they are
crucial to Systems Medicine approaches. Citations and references are not sufficient to
create a clear picture. In this section, I provide a dedicated and detailed attribution of
credits to account for the efforts of others and sharpen my own contribution.
All sections not accounted for here are solely written by me - content from others is

properly referenced adhering to scientific standards.
Regarding Chapter 2, the implementation of parts of the SMART IT platform was

subject of a Master’s project led by me and Dr. Matthieu-P. Schapranow. The students
enrolled in the project were Lars Rückert, Friedrich Horschig, Benjamin Reißaus and
Markus Dücker. Several parts may overlap with details given in Kraus et al. (2017) [53].
Major parts of Chapter 3 are subject of other publications, of which I am the first

author, e.g. [54,55]. Especially the sections on related work and implementation details are
drawn from these articles and were expanded to provide more depth within my thesis. The
conceptual approach, a major part of the methods and the generalized requirements, as
well as the results of user testing are unique to this thesis and are my work. User testing
was planned and executed by me, with student assistance from Tamara Slosarek.

My efforts in development and implementation of DEAME was supported by student
assistants Tamara Slosarek, Marius Danner, Ajay Kesar and Akshay Bhushan. The major
implementation work for Eatomics was done by myself with support of my intern Mariet
Mathew Stephens. Whenever needed, we approached Dr. Schapranow for his advice as
supervisor.

Chapter 4 is based on the data acquired in the SMART and EurValve studies. A simplified
version of the process and stakeholders are depicted in Figure 2.3. The Heart Center refers
to the German Heart Center Berlin with Prof. Titus Kühne as principal investigator, Dr.
Sarah Nordmeyer and Dr. Marcus Kelm as responsible clinician scientists, who enrolled
patients and performed or overlooked clinical data assessment. Patient biopsy samples
were collected by Dr. Christoph Knosalla and prepared and distributed for further analysis
by Daniel Lehmann under Prof. Vera Regitz-Zagrosek’s supervision. RNA sequencing was
performed by the Berlin Institute of Health Genomics Core Facility, whereas proteomic
measurements were conducted by Dr. Marieluise Kirchner under supervision of Prof.
Philipp Mertins at the Berlin Institute of Health Proteomics Core facility. Dr. Matthias
Ziehm performed raw data processing, in-depth initial quality control and provided protein
abundance levels for further analysis. Overview analyses as shown in Figure 4.5 were
performed simultaneously, but independently by me and Dr. Ziehm (in rare cases also Dr.
Kirchner) and results were compared and discussed. However, all results shown in this
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thesis (if not stated otherwise in the respective caption) are based on my own analyses.
The analysis strategy was discussed with the whole team. Result interpretation is based
on an initial draft of main biological signals prepared by me, e.g., the main categories for
enrichment terms. Subsequently, Dr. Nordmeyer and me worked in close collaboration to
generate a detailed proteomic landscape. Especially, details of the molecular findings were
written by me and were then reworked by Dr. Nordmeyer. Dr. Nordmeyer provided the
clinical motivation, discussion and conclusions for the study, which were then reworked
by me. Additionally, all co-authors listed on the respective publication [185] hold their
legitimate contribution.
Transcriptomic data was in part processed by Dr. Layal abo Khayal to the point of

generating gene counts. Choice of tools to do so were jointly agreed upon. Overall quality
control and all further analyses, visualization and interpretation of gene expression was
done by me.
Dr. Johannes Stegbauer contributed the clinical motivation for our findings on ACE2

receptor expression and wrote large parts of the publication together with Prof. Kühne [56]
- I conceived and performed the analyses to support the hypothesis and created the figures.
Excerpts from the publication were in part reworked for presentation in this thesis.

In general and if not stated in the respective caption, all figures and tables were conceived
and created by me. I generated most diagrams using R’s ggplot2 and accessory libraries. I
used the BioRender app to create schematic figures - for this purpose a personal academic
license was purchased by the Digital Health Center.
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List of Acronyms

ACE angiotensin-converting enzyme

AS aortic valve stenosis

BH Benjamini Hochberg

BMI body mass index

BP biological process

BPMN Business Process Modeling Notation

CC cellular compartment

CON control

DA differential abundance

DE differential expression

DEAME Differential Expression Analysis Made Easy

DNA deoxyribonucleic acid

DRUMS Domain specific ReqUirements Modeling for Scientists

ECG electro cardiogram

ECM extracellular matrix

ECV extracellular volume

ES enrichment score

FC fold change

FCS functional class scoring

FDR false discovery rate

G-DOC Georgetown Database of Cancer

GLM generalized linear models

GO Gene Ontology
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GSEA gene set enrichment analysis

HF heart failure

HPLC High-Performance Liquid Chromatography

HTQ high-throughput quantification

iBAQ intensity Based Absolute Quantification

IF initiation factor

IT information technology

LFQ label-free quantification

LV left ventricle

MF molecular function

MR mitral valve regurgitation

MRI magnetic resonance imaging

mRNA messenger ribonucleic acid

MS mass spectrometry

NGS next-generation sequencing

ORA over-representation analysis

PA pathway analysis

PCA principal component analysis

PO pressure overload

QC quality control

RNA ribonucleic acid

RNAseq RNA sequencing

SCRM Scientific Computing Requirements Model

SMART Systems Medicine Approach for Heart Failure

SR-NCD San Raffaele Systems Medicine Platform for Non-Communicable Diseases

ssES single sample enrichment score

ssGSEA single sample gene set enrichment analysis
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TCA tricarboxylic acid

UI user interface

UTAUT The Unified Theory of Acceptance and Use of Technology
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A Supporting information on DE/DA analysis software

A.1 Clinically motivated questions towards assessed molecular data (German)

1. Gibt es Unterschiede zwischen Controls Männern und Frauen?

2. Gibt es Unterschiede zwischen allen controls und allen Patienten mit Aortenstenose?

3. Gibt es Unterschiede zwischen controls Männer und Patienten mit Aortenstenosen
Männer?

4. Gibt es Unterschiede zwischen Controls Frauen und Patienten mit Aortenstenosen
(AS und SMART) Frauen?

5. Gibt es Unterschiede zwischen Frauen und Männern der Patienten mit Aortenstenosen
(AS und SMART)?

6. Gibt es Unterschiede zwischen Patienten mit und ohne Medikamente (beta blocker
vs. No cardiac medication)?

7. Nur Smarts: Gibt es Unterschiede zwischen Patienten, die besser oder schlechter
belastbar waren vor OP? (NYHA 1-2 vs 3-4 zum Beispiel)

8. Gibt es Unterschiede zwischen Patienten mit und ohne Hypertrophie? (Myocardial
mass in g/BSA) - ja/nein oder kontinuierlich? ggf. aufgetrennt in Männer und
Frauen

9. Gibt es Unterschiede zwischen Patienten mit guter und schlechter Herzfunktion? (
EF in %; - entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt in Männer und
Frauen

10. Gibt es Unterschiede zwischen Patienten mit viel und wenig Fibrose? (Extra cellular
volume) - entweder ja/nein oder kontinuierlich?ggf. aufgetrennt in Männer und
Frauen

11. Gibt es Unterschiede zwischen Patienten mit vergrößertem und nicht vergrößertem
linken Herzen? (EDV/BSA) - entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt
in Männer und Frauen

12. Gibt es Unterschiede zwischen Patienten mit erhöhtem und nicht erhöhtem NT-
proBNP? - entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt in Männer und
Frauen
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13. Gibt es Unterschiede zwischen Patienten mit niedrigem und hohem Testosteron?
(Dehydrotestosterone)- entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt in
Männer und Frauen

14. Nur Smarts: Gibt es Unterschiede zwischen Patienten mit niedriger und hoher internal
heart power? - entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt in Männer
und Frauen

15. Nur Smarts: Gibt es Unterschiede zwischen Patienten mit niedriger und hoher
myokardialen efficiency? - entweder ja/nein, oder kontinuierlich? ggf. aufgetrennt in
Männer und Frauen

A.2 Model of the preprocessing requirements space

Figure A.1: SCRM diagram of the preprocessing pipeline requirements space.

A.3 Eatomics: Installation and dependencies

The most important packages Eatomics depends on for proper function are: R Shiny [186]
and several add-on packages are used as a general framework to transfer R code for
interactive analysis and HTML display. imputeLCMD [97] and a custom implementation
of the Perseus’ sampling from Gaussian distribution are used for missing value imputation.
The latter function was provided generously by Matthias Ziehm (Orcid ID: 0000-0001-
7074-4054). Limma’s linear models with empirical Bayes estimation for accurate results
in small sample settings are used for differential protein abundance analysis [8]. Model
formulas, i.e., the experimental design is generated with the help of the modelr package [187].
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ggplot2 [188], plotly and gridExtra packages are used for plotting and rmarkdown [189] for
report generation The tidyverse dogma is used whenever reasonable for tidy data usage.
The ssGSEA tab panel wraps the available code (https://github.com/broadinstitute/

ssGSEA2.0) into a user-friendly shiny interface. Eatomics uses four MSigDB gene sets
namely C1, C2, C5 and H to calculate the enrichment score. The installation procedure
for the local instance requires R and R studio, which are available for a multitude of
different operating systems. Furthermore, the R packages devtools, shiny and janitor
need to be installed by the user to then be able to run the application in their R studio
and web browser by using the runUrl() function pointing to the R subdirectory in the
github repository at https://github.com/Millchmaedchen/Eatomics/archive/master.

zip. In the repository, we also provide a list of all other package dependencies. For
institutional use, Shiny applications are well suited for server installations and scale out to
serve more users. The application opens in the users standard browser similar to a web
application.

A.4 Examples of input files needed for Eatomics.

Figure A.2: Examples of input files needed for Eatomics are an evidence file as produced
by the MaxQuant algorithm (left) and a sample description file which may contain as
many parameters as available (right).
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A.5 User Interview Testing Artefacts

Short study description handed to all participants of the DEAME user interviews.

DEAME User Interview 

Study	Description	

Within	the	SMART	study,	a	cohort	of	60	patients	suffering	from	aortic	stenosis	was	
characterized	 in	 multiple	 aspects.	 Aortic	 stenosis	 is	 a	 condition	 where	 the	 aortic	
valve	 loses	 its	 regular	 function.	 Demographic	 data,	 such	 as	 gender,	 age,	 blood	
pressure	values,	used	medication,	ECG	as	well	as	MRI	data	was	collected	resulting	in	
approx.	190	different	patient	features.	

Additionally,	 gene	 expression	 of	 the	 heart	 tissue	 was	 measured	 and	 resulted	 in	
expression	strengths	 for	all	of	 the	>25	thousand	genes.	Within	 the	SMART	project,	
differential	expression	analysis	identifies	genes	that	are	highly	abundant	in	the	heart	
tissue	of	one	group,	while	being	low	in	another.	A	computational	biologist	performs	
the	necessary	calculations.	

The	 medical	 expert	 usually	 states	 the	 questions	 or	 hypothesis	 to	 be	 tested.	 An	
example	 would	 be	 “Which	 genes	 are	 different	 in	 patients	 that	 were	 treated	 with	
beta	blockers,	when	compared	to	patients	not	taking	any	cardiac	medication?”.	

Our	 DEAME	 application	 is	 designed	 to	 help	 both	 medical	 experts	 as	 well	 as	
computational	 biologist	 in	 formulating	 research	 questions,	 perform	 differential	
expression	analysis	and	evaluate	the	results.	

You	will	participate	in	user	tests	of	the	DEAME	application.	The	interview	session	will	
consist	 of	 an	 administrative	 session,	 where	 we	 state	 our	 objectives,	 let	 you	 ask	
questions	and	read	and	sign	the	informed	consent	sheet.	Additionally,	we	will	collect	
some	general	information	on	your	demographics	and	background.	

In	the	second	part,	you	will	watch	an	introductory	video	to	the	SMART	study	and	the	
DEAME	application.	After	that	you	will	be	asked	to	perform	two	tasks	within	DEAME	
and	fill	 in	the	second	and	third	part	of	the	questionnaire.	While	testing	DEAME,	we	
will	record	a	screen	cast,	 i.e.,	a	video	of	the	screen	and	your	mouse	movements	as	
well	as	your	voice.	There	will	be	no	recordings	of	your	image.	The	interviewers	will	
also	take	notes	and	record	the	time.	The	interview	will	take	about	an	hour	of	time.	
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Consent form supplied and signed by all participants of the DEAME user interviews.

DEAME	–	User	Interviews	
	

Consent	to	take	part	in	research	
	

• I.............................................	voluntarily	agree	to	participate	in	this	research	
study.	

• I	understand	that	I	can	withdraw	permission	to	use	data	from	my	interview	
within	two	weeks	after	the	interview,	in	which	case	the	material	will	be	
deleted.		I	understand	that	if	I	withdraw	permission	later	than	two	weeks	
after	the	interview,	the	raw	material	will	be	deleted.	However,	after	two	
weeks	accumulated	and	anonymized	results	may	already	be	in	a	publication	
process	and	thus	it	may	not	be	possible	to	withdraw	the	results.		

• I	have	had	the	purpose	and	nature	of	the	study	explained	to	me	in	writing	
and	I	have	had	the	opportunity	to	ask	questions	about	the	study.	

• I	understand	that	participation	involves	watching	an	introductory	video,	
filling	of	a	questionnaire	and	a	test	of	a	web	application,	which	should	all	take	
approximately	an	hour	of	time.		

• I	understand	that	I	will	not	benefit	directly	from	participating	in	this	research.	
• I	agree	to	my	interview	being	screen-casted.	The	screen	cast	will	capture	

audio	(i.e.	my	voice)	and	a	video	of	the	screen	including	mouse	movements.	
There	will	be	no	video	capturing	my	image.		

• I	understand	that	all	information	I	provide	for	this	study	will	be	treated	
confidentially.	

• I	understand	that	in	any	report	on	the	results	of	this	research	my	identity	will	
remain	anonymous.	This	will	be	done	by	changing	my	name	and	disguising	
any	details	of	my	interview	which	may	reveal	my	identity	or	the	identity	of	
people	I	speak	about.	

• I	understand	that	disguised	extracts	from	my	interview	may	be	quoted	in	a	
dissertation,	conference	presentation	and	published	research	papers.	

• I	understand	that	if	I	inform	the	researcher	that	myself	or	someone	else	is	at	
risk	of	harm	they	may	have	to	report	this	to	the	relevant	authorities	-	they	
will	discuss	this	with	me	first	but	may	be	required	to	report	with	or	without	
my	permission.	

• I	understand	that	signed	consent	forms	and	original	audio	and	screen	
recordings	will	be	retained	on	an	external	hard	drive	without	access	to	the	
internet,	secured	in	a	locked	drawer	for	10	years	after	end	of	the	study.		

• I	understand	that	a	transcript	of	my	interview	in	which	all	identifying	
information	has	been	removed	will	be	retained	for	10	years	after	end	of	the	
study.	

• I	understand	that	under	freedom	of	information	legalisation	I	am	entitled	to	
access	the	information	I	have	provided	at	any	time	while	it	is	in	storage	as	
specified	above.	

• I	understand	that	I	am	free	to	contact	any	of	the	people	involved	in	the	
research	to	seek	further	clarification	and	information.	

	
Milena	Kraus,	Digital	Health	Center,	Hasso	Plattner	Institute,	Rudolf-Breitscheid-Str.	
187,	14482	Potsdam,	Tel.:	+49	331	5509	1366,	Milena.Kraus@hpi.de	

156



A Supporting information on DE/DA analysis software

User questionnaire filled in by all participants of the DEAME user interviews.
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DEAME Questionnaire 
	
	
Name:		_____________________________________________________________________	
	
Gender:	¨	female			¨	male			¨	other	
	
Age:	______			¨	prefer	not	to	say	

Part I  – General  Information 
	
1. What	is	your	profession?	
	

¨	Clinician	/Medical	expert	 	
¨	Computational	biologist					
¨	Other:	_________________	

	
2. Have	you	ever	performed	differential	expression	analysis	(the	whole	computational	

pipeline	starting	from	raw	sequencing	reads	to	a	list	of	differentially	expressed	genes)	
yourself?	

	

¨ Yes	
¨ No	

	
3. Have	you	ever	interpreted	the	results	of	differential	expression	analysis?	
	

¨ Yes	
¨ No	

	
4. Have	you	been	an	author/a	co-author	of	a	research	article	that	included	results	of	

differential	expression	analysis?	
	

¨ Yes	
¨ No	

	
5. Did	your	university	or	college	studies	cover	the	topic	of	gene	expression?	
	

¨ Yes	
¨ No	

	 	



Part I I  –  Complete a given task in the DEAME app 
	
This	part	is	about	using	the	DEAME	app	while	performing	a	pre-defined	task.	Keep	in	mind	
that	we	are	testing	the	app	(not	you),	so	in	case	you	need	any	further	explanation	or	help	
please	first	consult	the	information	given	when	clicking	the	small	question	mark	in	the	upper	
right	corner.	Additionally,	we	would	appreciate	it	if	you	think	aloud	and	tell	us	why	you	are	
performing	which	action.	
	
For	this	task,	we	hypothesize	that	male	patients	that	took	no	cardiac	medication	have	
differentially	expressed	genes	when	compared	to	the	control	study	group.	Execute	an	
experiment	that	compares	the	study	group	of	no	cardiac	medication	against	the	control	
group	while	restricting	the	subjects	to	be	only	male.		
	
	
1. How	many	patient	clusters	were	identified?	
	
_____________________________________________________________					¨	I	don’t	know	
	
2. Do	the	clusters	correspond	to	the	given	comparison	of	no	cardiac	medication	vs.	control?	
	
_____________________________________________________________					¨	I	don’t	know	
	
	
3. Write	down	the	first	sentence	or	bullet	point	of	a	definition	of	a	gene	of	your	choice.		
	
Gene	name:	_________________________________________________________________	
	
Definition:	__________________________________________________________________	
	
____________________________________________________________					¨	I	don’t	know	
	

4. Name	the	most	significant	genes	according	to	the	lowest	p-adjusted	value.	Please	reduce	
the	values	to	include	only	3	digits	after	the	dot.	
	
Downregulated	gene:	________________________________________					¨	I	don’t	know	
	

Fold	change:	____________________________________________					¨	I	don’t	know	
	

P-adjusted:	_____________________________________________					¨	I	don’t	know	
	
Upregulated	gene:	___________________________________________					¨	I	don’t	know	
	

Fold	change:	____________________________________________					¨	I	don’t	know	
	

P-adjusted:	_____________________________________________					¨	I	don’t	know	
	

	 	



Additionally,	perform	a	gene	set	enrichment	analysis	based	on	the	KEGG	(2016)	pathways	
and	export	the	heatmap	as	an	image.	

	
5. Which	KEGG	pathway	shows	the	lowest	pval	and	therefore	is	most	significant?	

	
_____________________________________________________________					¨	I	don’t	know	

	
	

6. Please	write	down	which	groups	are	compared	by	the	following	experimental	designs.		
	

	
	
	
_______________________________	compared	to	________________________________	
	
filtered	to	include	only	_______________________________________________________	
	
_____________________________________________________________					¨	I	don’t	know																																																														

	

	

	

	

_______________________________	compared	to	________________________________	
	
filtered	to	include	only	_______________________________________________________	
	
_____________________________________________________________					¨	I	don’t	know																																																														
	

	



Part I I I  –  Explore the DEAME app 
	
Please	give	us	a	short	note	as	soon	as	you	start	this	part	of	the	questionnaire.	
	
In	this	part	you	create	and	test	your	own	hypothesis.	First,	think	of	a	hypothesis	you	would	
like	to	test	based	on	the	clinical	parameters	given	within	the	app	and	write	it	down	below.	
	
Hypothesis:		
_______________________________	compared	to	________________________________	
	
filtered	to	include	only	(optional)	_______________________________________________	
	
__________________________________________________________________________	
	
Create	and	execute	an	experiment	to	test	your	hypothesis	in	the	DEAME	app.	What	do	you	
conclude	after	an	exploration	of	the	results,	are	genes	differentially	expressed?	Do	you	have	
any	concerns	regarding	the	significance	of	results?	
	
Conclusion:	_________________________________________________________________	
	
__________________________________________________________________________	
	
_____________________________________________________________					¨	I	don’t	know	
	
	
Please	answer	the	questions	below.	
	
	

	 Strongly	
agree	 Agree	 Neutral	 Disagree	 Strongly	

disagree	

1. 	It	was	no	effort	to	translate	my	
hypothesis	into	a	valid	design	matrix.		

¨	 ¨	 ¨	 ¨	 ¨	

2. The	app	provides	an	interactive	
representation	of	the	results.	

¨	 ¨	 ¨	 ¨	 ¨	

3. The	visualization	of	the	results	is	
suitable.	

¨	 ¨	 ¨	 ¨	 ¨	

4. The	app	is	easy	to	use	when	compared	
to	other	scientific	software.	 ¨	 ¨	 ¨	 ¨	 ¨	

5. It	took	a	long	time	until	I	managed	to	
create	a	valid	experiment	design.	

¨	 ¨	 ¨	 ¨	 ¨	

6. I	would	appreciate	additional	interaction	
possibilities	with	diagrams.	

¨	 ¨	 ¨	 ¨	 ¨	

7. The	app	lacks	diagrams	for	a	usable	
visualization.	

¨	 ¨	 ¨	 ¨	 ¨	



	 Strongly	
agree	 Agree	 Neutral	 Disagree	 Strongly	

disagree	

8. It	was	difficult	to	use	the	app	when	
compared	to	the	software	I	normally	use	
for	my	research.	

¨	 ¨	 ¨	 ¨	 ¨	

9. It	is	clear	and	understandable	how	the	
app	works.	

¨	 ¨	 ¨	 ¨	 ¨	

10. 	The	calculation	time	is	acceptable.	 ¨	 ¨	 ¨	 ¨	 ¨	

11. 	As	a	clinician,	I	can	imagine	to	use	the	
app	in	my	work.	 ¨	 ¨	 ¨	 ¨	 ¨	

12. 	A	more	exhaustive	tutorial	would	help	
me	to	better	understand	the	app.	

¨	 ¨	 ¨	 ¨	 ¨	

13. 	The	calculation	time	renders	the	app	to	
be	unusable.	

¨	 ¨	 ¨	 ¨	 ¨	

14. 	I	would	prefer	a	computational	biologist	
to	test	my	hypotheses	over	using	
DEAME.	

¨	 ¨	 ¨	 ¨	 ¨	

 

After	completing	the	questionnaire	until	this	point	you	may	explore	DEAME	further.	The	open	
exploration	is	optional	and	we	encourage	you	to	do	so.	Apart	from	that	you	may	as	well	
complete	the	questions	below	and	finish	the	interview.	 

15. Would	you	keep	using	the	DEAME	app	after	you	tried	it	today?	
	

¨ Yes,	because	____________________________________________________________	
	
_______________________________________________________________________	
	

¨ Maybe,	if	_______________________________________________________________	
	
_______________________________________________________________________	

	
¨ No,	because	____________________________________________________________	

	
_______________________________________________________________________	

	
16. Do	you	think	the	app	is	going	to	help	you	with	your	research?	
	

¨ Yes,	because	____________________________________________________________	
	
_______________________________________________________________________	
	

¨ Maybe,	if	_______________________________________________________________	
	
_______________________________________________________________________	



	
¨ No,	because	____________________________________________________________	

	
_______________________________________________________________________	
	

17. Based	on	your	previous	expertise	in	gene	expression	analysis,	have	you	encountered	any	
content-related	errors	in	the	result	representation?	If	yes,	please	describe,	which.	 	

	
___________________________________________________________________________	
	
___________________________________________________________________________	
	
___________________________________________________________________________	
	
___________________________________________________________________________	
	
___________________________________________________________________________	
	

	
18. How	likely	is	it	that	you	recommend	the	DEAME	app	to	a	colleague,	on	a	scale	from	1	

(not	likely)	to	5	(very	likely)?	
	
¨	1					¨	2					¨	3					¨	4					¨	5	

	
	
19. Have	you	already	tried	out	similar	tools	or	applications?	
	

¨ Yes	
¨ No	

	
20. If	yes,	please	write	down	which	tools:	
	
___________________________________________________________________________	
	
___________________________________________________________________________	
	
___________________________________________________________________________	
	
	
21. What	rate	would	you	give	our	app,	on	a	scale	from	1	(worst	rate)	to	5	(best	rate)?	
	

¨	1					¨	2					¨	3					¨	4					¨	5	
	
	
Thank	you	for	your	participation!	



A Supporting information on DE/DA analysis software

Testing notes filled in by the two moderators during the DEAME user interviews.
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DEAME User Testing – Testing Notes 
	

Tester:	____________________________________________________________________________	

Participant:	________________________________________________________________________	

	

Part	I	–	Welcome,	General	Information	and	Video	Tutorial 
1. Prior	to	interview,	send	out	consent	forms	an	study	descriptions	so	time	is	not	wasted	within	

interview	
2. Prepare	setting	including	to	open	the	app,	the	video,	plug	in	charger	and	mouse,	open	

quicktime	player,	check	for	app	availability	
3. Welcome,	introduce	ourselves	as	testers,	clarify	preferred	language	of	communication		
4. Give	an	overview	on	the	setup	of	the	experiment.		
5. Let	them	read	the	short	intro	and	sign	consent	form	–	while	reading	the	form	the	user	should	

formulate	any	questions.		
6. Let	user	fill	in	the	general	information	part	of	the	questionnaire	
7. Watch	the	video	
8. After	the	video,	ask	if	there	are	any	remaining	questions.		

Part	II	–	Given	Task	
	
Time	needed	to	run	working	experiment	(start	building	the	design	to	clicking	the	run	button):	______	

Time	needed	by	app	for	result	computation:	______________________________________________	
	

The	tester…	 Completed	 Completed	
after	asking	

Not	
completed	

…translated	the	given	hypothesis	into	the	right	
matrix.	

¨	 ¨	 ¨	

…ran	the	experiment.	 ¨	 ¨	 ¨	

…zoomed	in	to	see	the	list	of	genes.	 ¨	 ¨	 ¨	

…hovered	over	genes	to	see	the	definitions.	 ¨	 ¨	 ¨	

…performed	gene	set	enrichment.	 ¨	 ¨	 ¨	

…took	a	snapshot	of	the	heatmap	and	exported	it	
as	an	image.	 ¨	 ¨	 ¨	

…switched	to	volcano	plot.	 ¨	 ¨	 ¨	

…	hovered	over	volcano	plot	icons.	 ¨	 ¨	 ¨	

…identified	p-value	and	fold	change.	 ¨	 ¨	 ¨	

	

	



Notes	(at	least	the	order	of	the	groups	in	the	design):	

__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	
	

 

Part III – App Exploration	

	

Time	needed	to	run	working	experiment	(start	building	the	design	to	clicking	the	run	button):	______	

Time	needed	by	app	for	result	computation:	______________________________________________	

	

The	tester…	 Completed	 Not	completed	

…created	a	valid	design.	 ¨	 ¨	

	

Created	Design:	

	 	
	
	

	

	
	
	

	 	

	
	
	

	 	

	

Notes:	

__________________________________________________________________________________	
	
__________________________________________________________________________________	
	
__________________________________________________________________________________	



	
__________________________________________________________________________________	
	
__________________________________________________________________________________	

	
__________________________________________________________________________________	

	
__________________________________________________________________________________	

	
__________________________________________________________________________________	

	
__________________________________________________________________________________	

	

	

	



B Quality control reports and and additional analyses
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Figure B.1: Overview on clinical parameters from magnetic resonance imaging stratified to conditions.
End-diastolic volume, ejection fraction, fibrous tissue content and myocardial mass of the left ventricle are
described and the mean pressure gradient across the aortic valve. AS = Aortic valve stenosis, EDVi -
end-diastolic volume indexed to body surface area, MR = mitral valve regurgitation. Statistical comparison
was performed via two-sided, two-sample Wilcoxon-rank test. Missing values are not shown and not
included in the statistical test.
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Figure B.2: Overview on clinical parameters from magnetic resonance imaging stratified to sex in AS (A)
and MR (B). End-diastolic volume, ejection fraction, fibrous tissue content and myocardial mass of the
left ventricle are described and the mean pressure gradient across the aortic valve. AS = Aortic valve
stenosis, EDVi - end-diastolic volume indexed to body surface area, MR = mitral valve regurgitation.
Group-wise statistical comparison was performed via two-sided, two-sample Wilcoxon-rank test. Missing
values are not shown and not included in the statistical test.
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Figure B.3: Overview on the age at surgery stratified to sex in AS (left), CON (middle) and MR (right).
AS = Aortic valve stenosis, MR = mitral valve regurgitation, CON = controls. Group-wise statistical
comparison was performed via two-sided, two-sample Wilcoxon-rank test. Missing values are not shown
and not included in the statistical test.
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Figure B.4: Summary reports created by MultiQC for all 33 paired end RNA sequencing FASTQ files after
trimming. A) Mean quality histogram showing the mean quality value across each base position in the
read. B) Sequence counts for each sample showing unique and duplicate read estimation. C) Adapter
content denoting the cumulative percentage count of the proportion of the library which has seen each
of the adapter sequences at each position. D) Per sequence GC content shows the average GC content
of reads. No organism information was given as a reference to fastqc. E) Per sequence quality scores
shows the number of reads with average quality scores. F) The relative level of duplication found for every
sequence.
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Figure B.5: Critical examination of proteins belonging to GO terms which were assigned to the other
terms category (abbreviated as HIR for this figure). Both disease groups showed significant GO term
enrichment of these other terms compared to control. The enrichments are based on 88 proteins with
higher abundance in the disease groups. Of these, 84% are typical body fluid components (secreted,
erythrocyte, hemoglobin, immunoglobins, complement factor etc.). In addition, matching these genes to
an in-house and a published plasma proteome data [190] revealed, that 98% are detected in plasma and
the majority (80%) is found to be highly abundant in plasma (top 200). Considering the different biopsy
collection procedures for the samples groups, blood contamination becomes the most probable source
of signal and impedes any interpretation with regard to physiological differences in immune response
between the disease and control groups. The analysis was performed and diagrams were created by Dr.
Marieluise Kirchner from Berlin Institute of Health, Berlin, DE (orcid ID 0000-0002-7049-534X)
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Figure B.6: Log2 fold changes of detected proteasomal subunits in condition (AS = aortic stenosis, MR =
mitral regurgitation) versus control comparisons.
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Figure B.7: LFQ intensity as measured in the reference sample (a mixture of all available samples) is plotted
for every detected protein based on the overall rank of the protein. Yellow denotes proteins, which are
detected in the samples sufficiently to base analysis on them. Blue dots and labels denote proteins that
were not detected or not sufficiently covered in the sample measurements. Mean coverage and standard
deviation (dashed) are denoted by black lines. The mean sample coverage approximates the detection
limit of our measurements. ACE intensity in the reference sample ranks very close to the limit (ACE rank
= 3582) which is an indicator of a decreased probability of detecting and quantifying ACE in a sufficient
amount of samples robustly.
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Figure B.8: Down-sampled analyses to exclude bias of having more samples in AS. In total 100 times, we
randomly select 17 AS samples from the pool pf 41 AS samples and compare them against the 17 CON
samples in an otherwise identical fashion as described in section section 4.3.4. The average number of
proteins significant in the comparison is 746 ± 179, which is significantly more than in MR (n = 17) vs
CON (n = 17), for which we found 400 significant hits. Additionally, approximately two thirds (64%) of
all significant hits show a decrease in fold change.
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B Quality control reports and and additional analyses

Figure B.9: Summary of sample exclusion because of duplicate measurements and strong blood contamina-
tion. A) Principal component analysis before exclusion of samples. Colors denote the reason for exclusion.
B) Coverage among duplicate biopsy measurements and in relation to overall coverage of AS in yellow,
MR in green and CON in grey. Samples with proteome measurement ID: C02, C03, C19, C21, C22, C15,
C24, EV11, EV25 were excluded bcause of lower coverage when compared to their counter parts. Image
created by Matthias Ziehm (Orcid ID: 0000-0001-7074-4054). C) Summed LFQ intensity of samples before
exclusion of blood contaminated samples. LFQ intensity assigned to blood particles as defined by Doll et
al. [103] are shown in darker grey and samples to be excluded from the main analysis are rendered in
orange.
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C Exploratory comparison of clustering strategies on a Systems
Medicine data set

Unsupervised subgroup detection (USD) is a common approach to stratify tumours into
subtypes. Algorithms utilize the full spectrum of available multi-omics information and
thus aim to provide a holistic picture of the disease. We hypothesize that USD can be
readily applied in other complex diseases as well. Genetic and lifestyle factors may influence
the onset and progression of disease, while gene and protein expression in the heart muscle,
as well as imaging data contain information on the status of the disease. We utilized the
SMART study data to explore

1. the applicability of three established USD algorithms in a complex disease data set
and

2. if the found subgroups are associated to clinical outcome and relevant biological
terms.

As the data set is very small, we do not expect to find robust subtypes. However, small
sample sizes are very common as multi-omics analysis in the medical setting are still mainly
used as demonstrators with small sample sizes. However, means to make sense of the
data are desperately needed and it is of particular interest to evaluate existing solutions
to USD detection on these data sets. Additionally, we hope that USD algorithms might
still be helpful to find interesting patterns and features among patients that lead to new
hypotheses with regard to mechanisms in the disease.

Methods
Available methods are selected when eligible according to the following characteristics:

• Need to perform clustering/unsupervised subgroup detection

• Need to handle mixed-type data

• Generally suitable/tested for biomedical data

Out of a variety of publicly available cluster algorithms, we selected iClusterBayes
(iCB) [191], SNF [192], and clustMD [193] for a comparison and qualitative assessment of
advantages and drawbacks in the application of these algorithms on the SMART data set
of 21 aortic stenosis patients.

The genome, proteome and clinicome (binary, numeric, categorical) are first analyzed by
every algorithm separately (single-omics experiments) and additionally in the respective
tool’s combined mode (multi-omics experiments) for a range of k = 2 to k = 6 possible
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C Exploratory comparison of clustering strategies on a Systems Medicine data set

clusters. As a result, there are 6 datasets x 5 cluster possibilities = 30 solutions per
algorithm in the single-omics mode and 5 solutions per algorithm in the multi-omics setting.
All solutions, i.e., the assignment of samples to clusters, are tested for association to binary
clinical outcome (CO) estimators. Genes and proteins meeting a tool-specific significance
threshold are included in the enrichment analysis against the Gene Ontology database.
Technical evaluation metrics are the completion of process, the run time in seconds and
the mean suggested number of clusters. Biological evaluation metrics are the number of
significant GO terms found through enrichment analysis and the number pf significant
associations to clinical outcome estimators. Additionally, we take a close look on the
actual clusters and important features of the best multi-omics solution. An overview of
the procedure is given in Figure C.1.

Figure C.1: Experimental setup for multi-omics experiments. Every data set is analyzed by every algorithm
separately (single-omics experiments) and once in the respective tool‘s combined mode (multi-omics
experiments) for a range of k = 2 to k = 6 possible clusters. All cluster assignments are tested for
association to the binary clinical outcome (CO) estimators. Genes and proteins meeting a tool-specific
significance threshold are included in the enrichment analysis against the Gene Ontology database.
Technical and biological evaluation metrics are used for comparison.
# – number

Data preprocessing: Whole genome sequencing data is processed according to GATK
best practices and annotated via the variant effect predictor (VEP) plugin dbNSFP.
Deleterious variants (REVEL score < 0.05) are selected and summarized on the gene
level yielding a binary feature of harbouring no deleterious variant (=0) or at least one
(=1). LFQ intensities for protein expression were extracted from the MaxQuant output
file according to [4]. Proteins detected in at least half of the patients are selected, log2-
transformed and missing values are imputed based on a normal distribution of width = 0.3
and downshift = 1.8. Clinical parameters with > 90% valid values are split into being of
numeric, binary or categorical type. The final data sets consists of 3812 numerical features
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for protein expression, 116 genes harbouring at least one deleterious variant for one subject
(i.e., a binary feature), and 46 numerical, 28 binary and 3 categorical clinical features.
Algorithm parameters: Settings are kept close to the suggested default values, but

needed the following adjustments:

• SNF’s K is set to 10.

• iClusterBayes settings: n.burnin = 18000, n.draw = 20000, prior.gamma = 0.5,
sdev = 0.05, thin = 3, pp.cutoff = 0.5, gaussian and binomial priors for respective
numerical and binary data.

• clustMD settings: all six available models are tested for best fit according on scaled
data to estimated Bayesian Information Criterion (BIC), the best model is chosen
to calculate the final result. Kmeans clustering is used to initiate the clustering.
Furthermore, Nnorms=50000 and MaxIter=500.

The suggested number of clusters is calculated based on BIC for iCB, estimated BIC for
clustMD and the eigengap value for SNF.
Clinical outcome: A favourable clinical outcome is defined by reduced hypertrophy,

decrease in NYHA stage or in nt-proBNP or an increase in left ventricular ejection fraction
(LVEF) with regard to a post-surgery examination. All cluster assignments are tested
for association to the binary outcome estimators (favourable outcome = 1) using Fisher‘s
exact test and Benjamini-Hochberg multiple testing correction. An adjusted p-value of <
0.05 is considered to be significant.
Enrichment analysis: Enrichment analysis is performed via enrichR (2.1) against all

Gene Ontology (GO) terms (2018). Only genes and proteins with a posterior probability
of > 0.7 for iCB or a normalized mutual information (NMI) > 0.3 for SNF are included in
the analysis.

Experiments were conducted on a MacBook Pro (8 GB 1867 MHz DDR3, 2.9 GHz Intel
Core i5, 2 cores, OS X El Capitan 10.11.6), R version 3.5.1.

Results
First, we performed a comparison of SNF, iCB and clustMD in a single-omics and a multi-
omics setting and assessed technical metrics such as run time per feature and biological
metrics. The results are summarized in Table C.1.

SNF stays below 1 second of computation time per feature in single omic and multi-omics
mode. Within all tested single omics data sets and all possible k, SNF finds two solutions
that show a significant association to clinical outcome variables after multiple testing
correction: the numeric clinicome data is associated to a decrease in hypertrophy and a
decrease in nt-proBNP at visit 2 when k = 6. There are no significant associations found
in the multi-omics approach. Furthermore, enrichment analysis of relevant genomic and
proteomic features results in six significant GO terms in the single omic and the multi-omics
mode.
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iCB also stays below a second of computation time per feature as long as the feature
number is low as in the single-omics experiment. However, it computation time per feature
triples in the multi-omics setting. The mean number of suggested clusters for a best
solution is two in both experimental modes. Similar to SNF, there are two significant
associations to clinical outcome in the single-omics solutions. We find an association of
the numeric clinicome, when k = 3 to a decrease in hypertrophy and an association of the
proteome (k =4) to a decrease in NYHA class. In the multi-omics mode we again find no
associations to clinical outcome, however there are 75 terms enriched in the GO analysis.

ClustMD requires almost a minute of computation time per feature in the single-omics
experiments, as iCB suggests two clusters to give rise to the best solution, however there
are no significant hits in the clinical outcome and enrichment analysis. clustMD finds no
solution in the multi-omics setting by the process not showing any further activity for at
least a day while not finishing or aborting.
In summary, SNF is fastest and in our setup shows no obvious dependency of feature

number to computation time. iCB’s solutions show the most associations in the biological
evaluation metrics. clustMD is very limited in feature capacity and the implementation is
unstable.

Table C.1: Summary of quantitative metrics for our comparison of SNF, iCB and clustMD.
Results are given for the single and multi-omics experiments. Stars on numbers denote
and association of * the numeric clinicome, when k = 6 to a decrease in hypertrophy and
a decrease in nt-proBNP at visit 2; ** the numeric clinicome, when k = 3 to a decrease
in hypertrophy and an association of the proteome (k =4) to a decrease in NYHA class.

single *ome multi omics
SNF
[192]

iCB
[191]

clustMD
[193]

SNF
[192]

iCB
[191]

clustMD
[193]

Computation time
per feature in sec <1 0.084 58.8 <1 0.299 no solution

Mean suggested
number of clusters 3 2 2 2 2 no solution

Associations to
clinical outcome 2* 2** 0 0 0 no solution

Associations to
Gene Ontology 6 6 0 6 73 no solution

In a second step, we take a closer look at the best solutions found in the multi-omics
setting. There is no solution for clustMD, and a solution both identifying two clusters of
samples by SNF and iCB. Features and cluster assignments of samples are visualized in a
heatmap for SNF in Figure C.2 and for iCB in Figure C.3.
Although SNF and iCB both find two clusters, the assignment of samples to these

clusters does not correspond across algorithms (adjusted Rand index = 0.032) and is
based on different features. Relevant features for SNF are defined by a normalized mutual
information of > 0.3. Only features from the clinicome (numeric and binary) and proteome
meet the criterion. The sex of patients is the only relevant binary feature and almost
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perfectly devides the SNF subtypes one and two. Only two samples deviate from this rule:
AS_34_F, a female, is assigned to the "male" subtype 1 with dihydrotestosterone levels
being above the normal range of females. Similarly, AS_19_M is assigned to the "female"
subtype 2. The patient was treated with testosterone inhibitors due to a history of prostate
cancer. Enrichment analysis of proteomic features driving the separation resulted in terms
for RNA binding, cytosolic ribosomal subunits and focal adhesion.

Sex variable almost perfectly aligns to SNFs 
subtypes.

SNF multi-omics heatmap 
SNF subtypes

male  female
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Figure C.2: Multi-omics heatmap representation of SNF’s results for the two suggested disease subtypes.
Only relevant features (normalized mutual information >0.3) are displayed. Column clusters are defined by
SNF‘s subtype assignment, row clusters are pruned to show two clusters per dataset, based on Euclidean
distance. If only a single feature is selected from a data set (e.g. from binary clinical data) it is displayed
as a single row.

Relevant features for iCB are defined by a posterior probability of > 0.7 and are
found among the genomic, proteomic and clinicome data (see Figure C.3). Among the
genomic variation data, we find deleterious variants for many samples in HRNR, a gene,
which encodes for a protein in the collagen-containing extracellular matrix. According to
the enrichment analysis, iCB subtype 1 shows a low abundance of proteins involved in
collagen fibril organization, muscle contraction and elastic fiber assembly and an increase in
proteins involved in targeting of proteins to the endoplasmic reticulum (ER) and neutrophil
activation involved in immune response. Among the clinical features we find the diagnosis
of bicuspid aortic vales to be relevant. Bicuspid aortic valve is a congenital defect, which is
a risk factor for aortic valve stenosis.
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iCB subtypes

iCB multi-omics heatmap 
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Figure C.3: Multi-omics heatmap representation of iCB’s results for the two suggested disease subtypes.
Only relevant features (posterior probability of >0.7 for iCB) are displayed. Column clusters are defined
by iCB‘s subtype assignment, row clusters are pruned to show two clusters per dataset, based on Euclidean
distance. If only a single feature is selected from a data set (e.g. from binary clinical data) it is displayed
as a single row. ER: endoplasmic reticulum

Discussion and Conclusion
SNF, iCB and clustMD were tested on single and multi-omics data of 21 aortic stenosis
patients. Our results show that SNF and iCB found solutions to any given combination
that in part showed associations to clinical outcome and GO terms. In addition to genomic
and proteomic features, the clinicome showed relevance in both successful multi-omics
clusterings. The interpretation of results is limited by the extremely small sample size,
while the number of features is high (n << p problem). Resulting subtypes are not robust
across algorithms and multi-omics subtypes do not necessarily confer more associations to
clinical outcome than single-omics USD. However, SNF was the fastest algorithm and shows
no obvious dependency of feature number to computation time in our setup. iCB’s solutions
show the most associations in the biological evaluation metrics. clustMD is very limited in
feature capacity, most probably because it models all distributions of available features with
a very elaborate mathematical modes that requires a lot of computational power, especially
in the case of categorical data. Despite the limited possibility of interpretation, the SNF
subtypes remarkably capture differences in sexes also found in the in-depth proteome
analysis in chapter 4. As such, we can recommend to at least try one of the algorithms for
means of hypothesis generation or in larger cohorts, as SNF and iCB are well suited for all
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tested data types and for a large number of features.
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Table D.1: Assignments of GO terms to five categories. ECM = extracellular matrix composition, other
terms, MET = metabolism and mitochondrial functions, MUSC_SKEL = cytoskeleton and muscle
contraction, PROT = proteostasis

ECM other terms MET MUSC_SKEL PROT

GO:0003418 GO:0002455 GO:0006099 GO:0005862 GO:0005788
GO:0030199 GO:0002576 GO:0006119 GO:0016460 GO:0031983
GO:0043062 GO:0002920 GO:0006120 GO:0030016 GO:0000184
GO:0048251 GO:0006956 GO:0006635 GO:0030016 GO:0006413
GO:0090171 GO:0006957 GO:0009060 GO:0042383 GO:0006418
GO:0001527 GO:0006958 GO:0009081 GO:0042641 GO:0006613
GO:0005581 GO:0006959 GO:0022904 GO:0043292 GO:0006614
GO:0005588 GO:0007597 GO:0032543 GO:0043292 GO:0043039
GO:0005589 GO:0010873 GO:0032981 GO:0097517 GO:0045047
GO:0005593 GO:0010903 GO:0033108 GO:0003779 GO:0070125
GO:0005604 GO:0010951 GO:0042775 GO:0008307 GO:0070972
GO:0031012 GO:0015671 GO:0045333 GO:0051371 GO:0140053
GO:0062023 GO:0015701 GO:0046950 GO:0005859 GO:1904869
GO:0071953 GO:0030193 GO:0046952 GO:0016460 GO:0005832
GO:0098643 GO:0030195 GO:0005743 GO:0001725 GO:0005840
GO:0098644 GO:0030300 GO:0005746 GO:0005859 GO:0005852
GO:0098647 GO:0030449 GO:0005759 GO:0097513 GO:0015934
GO:0004857 GO:0031639 GO:0019866 GO:0051764 GO:0015935
GO:0004866 GO:0034371 GO:0030964 GO:0008091 GO:0017101
GO:0004867 GO:0034372 GO:0070069 GO:0014731 GO:0022625
GO:0005198 GO:0042730 GO:0070469 GO:0030863 GO:0022626
GO:0005201 GO:0042744 GO:0098798 GO:0032432 GO:0022627
GO:0005518 GO:0048821 GO:0098800 GO:0043034 GO:0044391
GO:0005539 GO:0050818 GO:0098803 GO:0090665 GO:0003735
GO:0008201 GO:0050819 GO:1990204 GO:0005200 GO:0004812
GO:0030020 GO:0051917 GO:0003987 GO:0017166 GO:0002479
GO:0030021 GO:0051918 GO:0004300 GO:0042805 GO:0006521
GO:0030023 GO:0061045 GO:0005471 GO:0016010 GO:0042590
GO:0043394 GO:0072376 GO:0009055 GO:0090665 GO:0070125
GO:0048407 GO:0072378 GO:0016655 GO:0003779 GO:0140053
GO:0061134 GO:1900046 GO:0050136 GO:1900025 GO:1902036
GO:0097493 GO:1900047 GO:0050136 GO:0002102 GO:1904869
GO:1901681 GO:1904478 GO:0006084 GO:0003779 GO:0008540
GO:0005583 GO:0005577 GO:0006104 GO:0035374 GO:0008541
GO:0098643 GO:0005579 GO:0006551 GO:0030055 GO:0031597
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GO:0038063 GO:0031089 GO:0006573 GO:0044307 GO:1905368
GO:0005587 GO:0031091 GO:0009063 GO:0004812
GO:0098643 GO:0031093 GO:0010257 GO:0002479

GO:0031838 GO:0010510 GO:0006521
GO:0034363 GO:0016054 GO:0042590
GO:0034364 GO:0035383 GO:1902036
GO:0034365 GO:0042773 GO:1904869
GO:0034366 GO:0046395 GO:0008540
GO:0034774 GO:0046459 GO:0008541
GO:0042627 GO:0071616 GO:0031597
GO:0044217 GO:1904182 GO:1905368
GO:0071682 GO:1904183 GO:0000956
GO:0072562 GO:0005750 GO:0001732
GO:0001848 GO:0030062 GO:0002183
GO:0004064 GO:0045261 GO:0006401
GO:0004089 GO:0045271 GO:0006402
GO:0030492 GO:0003954 GO:0006412
GO:0031210 GO:0003985 GO:0006605
GO:0031721 GO:0004473 GO:0006612
GO:0035473 GO:0004774 GO:0019083
GO:0060228 GO:0008948 GO:0043043
GO:0070325 GO:0016408 GO:0090150
GO:0070653 GO:0016615 GO:0140053
GO:0120020 GO:0016878 GO:1904869
GO:0008228 GO:0050136 GO:0005844
GO:0001849 GO:0051287 GO:0016282
GO:0004064 GO:0090482 GO:0033290
GO:0004089 GO:0042788
GO:0002002 GO:0071541
GO:0008228 GO:1990904
GO:0001849 GO:0003743
GO:0002003 GO:0008135
GO:0010951 GO:0016875
GO:0015701 GO:0031369
GO:0044217 GO:0045182
GO:0001848 GO:0090079
GO:0004064 GO:1990948
GO:0004089
GO:0031210
GO:0001849
GO:0002697
GO:0007596
GO:0009611
GO:0010951
GO:0015701
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GO:0015914
GO:0019433
GO:0019835
GO:0034378
GO:0042060
GO:0043687
GO:0043691
GO:0045916
GO:0050817
GO:0051006
GO:0051346
GO:0051919
GO:0061041
GO:0070527
GO:0071830
GO:0090303
GO:0098869
GO:0098883
GO:1904729
GO:2000427
GO:0001652
GO:0030669
GO:0031232
GO:0044216
GO:0046930
GO:0001848
GO:0004064
GO:0004089
GO:0016209
GO:0031210
GO:0043395
GO:0050750
GO:0061135
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