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Abstract. Cosmic-ray neutron sensing (CRNS) is a power-
ful technique for retrieving representative estimates of soil
water content at a horizontal scale of hectometres (the “field
scale”) and depths of tens of centimetres (“the root zone”).
This study demonstrates the potential of the CRNS technique
to obtain spatio-temporal patterns of soil moisture beyond
the integrated volume from isolated CRNS footprints. We
use data from an observational campaign carried out between
May and July 2019 that featured a dense network of more
than 20 neutron detectors with partly overlapping footprints
in an area that exhibits pronounced soil moisture gradients
within one square kilometre. The present study is the first
to combine these observations in order to represent the het-
erogeneity of soil water content at the sub-footprint scale as
well as between the CRNS stations. First, we apply a state-
of-the-art procedure to correct the observed neutron count
rates for static effects (heterogeneity in space, e.g. soil or-
ganic matter) and dynamic effects (heterogeneity in time,
e.g. barometric pressure). Based on the homogenized neutron
data, we investigate the robustness of a calibration approach
that uses a single calibration parameter across all CRNS sta-
tions. Finally, we benchmark two different interpolation tech-
niques for obtaining spatio-temporal representations of soil
moisture: first, ordinary Kriging with a fixed range; second,
spatial interpolation complemented by geophysical inversion
(“constrained interpolation”). To that end, we optimize the
parameters of a geostatistical interpolation model so that the
error in the forward-simulated neutron count rates is min-
imized, and suggest a heuristic forward operator to make
the optimization problem computationally feasible. Compar-

ison with independent measurements from a cluster of soil
moisture sensors (SoilNet) shows that the constrained in-
terpolation approach is superior for representing horizontal
soil moisture gradients at the hectometre scale. The study
demonstrates how a CRNS network can be used to generate
coherent, consistent, and continuous soil moisture patterns
that could be used to validate hydrological models or remote
sensing products.

1 Introduction

1.1 The retrieval of soil water content from cosmic-ray
neutrons

The observation of soil water content remains a scientific
challenge. Many methods allow the pointwise measurement
of soil water content, but their spatial representativeness is
limited when the small spatial measurement support (on the
order of centimetres) (Blöschl and Grayson, 2000) is con-
fronted by high small-scale variability of soil moisture. Re-
mote sensing can, in turn, provide area-integrated measure-
ments, but is typically limited by issues such as shallow pen-
etration depths, low overpass frequencies, and interference
from vegetation and surface roughness, to name only a few.

Over the past decade, cosmic-ray neutron sensing (CRNS)
has been established as a powerful option for retrieving
volume-integrated estimates of soil water content (Zreda
et al., 2008; Desilets et al., 2010; Zreda et al., 2012). These
estimates are considered representative of a footprint that ex-
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tends horizontally over several hectometres (the field scale)
and vertically over several decimetres (the root zone) at a
temporal resolution of 3–12 h (Schrön et al., 2018a), depend-
ing on the detector sensitivity and altitude, for instance. The
method relies on measurements of the ambient density of
epithermal neutrons (i.e. energies of 1–105 eV) above the
ground, which is inversely related to the presence of hydro-
gen and hence soil moisture (Köhli et al., 2020).

The soil water content is mostly inferred from the inten-
sity of epithermal neutrons using a transfer function such as
that suggested by Desilets et al. (2010), which requires the
calibration of the parameter N0 based on independent mea-
surements of soil water content in the footprint of a neutron
detector (see Schrön et al., 2017, for a recent synthesis). The
value of N0 is affected by a variety of factors, including the
topography, the spatial heterogeneity of the soil water con-
tent, and the sensitivity of the detector (Fersch et al., 2020a;
Schrön et al., 2018a) as well as the occurrence of hydrogen
in snow (Schattan et al., 2017), vegetation (Baroni and Os-
wald, 2015), lattice water, litter (Bogena et al., 2013), and
soil organic carbon.

1.2 Beyond soil moisture retrieval in isolated sensor
footprints

Until now, CRNS studies have mainly focused on isolated
sensor footprints. As an extension to that approach, CRNS
roving has demonstrated the potential to detect patterns of
soil water content along transects across the landscape (see
e.g. Schrön et al., 2018b). Yet, roving can only produce snap-
shots in time, and the choice of transects is typically limited
by the network of accessible pathways, thus reducing the rep-
resentativeness of soil moisture estimates, with the road ma-
terial becoming a particularly influential factor (Schrön et al.,
2018b).

The present study aims to explore another approach to
continuously monitoring the spatial distribution of the soil
water content at a horizontal scale of hectometres. The main
idea is to cover an area of interest with a dense network
of stationary CRNS sensors and to translate soil moisture
estimates from individual footprints into consistent spatio-
temporal representations of soil moisture across a study do-
main. The term “dense” suggests that the footprints of the
CRNS sensors should ideally overlap, or at least adjoin each
other, which implies that the distances between the sensors
should be on the order of one footprint radius.

In order to allow for such an investigation, a field cam-
paign was carried out from May to July 2019. It featured
more than 20 neutron detectors (that used different detection
techniques and sensitivities and were from different manu-
facturers) in an area of just 1 km2 – the Upper Rott catch-
ment. This area is characterized by strong spatial heterogene-
ity with regard to land use (forest vs. meadows), soil (mineral
vs. organic), and terrain (hill slopes vs. the valley bottom) as
well as the existence of below-ground structures with low

permeability. During the campaign, the soil water content
was highly dynamic: the soils were saturated after an excep-
tionally wet May, which was followed by a general period
of drying in June and July that was interrupted from time to
time by short events of heavy rainfall.

Recently, all data collected in this campaign were made
available to the public (Fersch et al., 2020a). The present
study is the first to explore this unique data set regarding its
potential to retrieve spatio-temporal representations of soil
water content at the hectometre scale.

1.3 Specific objectives

The specific questions addressed in this study are the follow-
ing:

1. Given the heterogeneity with regard to detector sensi-
tivity and the spatial distribution of hydrogen pools, can
we find a joint value of the calibration parameter N0
(Eq. 1) for all CRNS sensors? If so, we could consis-
tently convert observed neutron intensities to soil mois-
ture across all sensors. This requires the homogeniza-
tion of the observed neutron count rates for factors that
are spatially heterogeneous (e.g. vegetation biomass) or
dynamic over time (e.g. barometric pressure). We will
examine how the uncertainty of these factors affects the
robustness of our N0 estimation.

2. What do the differences between the CRNS-based soil
moisture estimates tell us about catchment-scale soil
moisture patterns and their temporal dynamics? To ad-
dress this question, we explore the soil moisture esti-
mates obtained from the observed neutron count rates
using a joint N0 value, and hence the spatio-temporal
variation of soil moisture across the dense CRNS net-
work.

3. How does soil moisture vary within and between the
sensor footprints? To address this question, we examine
two different interpolation techniques. First, the CRNS-
derived soil moisture estimates are interpolated using
ordinary Kriging with a fixed range. Second, we intro-
duce a new approach that extends the concept of spa-
tial interpolation by applying the idea of a geophysi-
cal inversion (see e.g. Zhdanov, 2015). To that effect,
we optimize the parameters of a geostatistical model by
minimizing the disagreement between observed and the
forward-simulated neutron count rates. We compare the
resulting soil moisture maps to independent frequency
domain reflectometry (FDR) measurements from a Soil-
Net cluster.

1.4 Article structure

This article is structured as follows. We briefly introduce the
study site in Sect. 2 and the data used in the present study
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Figure 1. The study area around Fendt, in the headwater catchment of the Rott River. With regard to land cover, the forest, a few settlements,
and a cropland plot are highlighted; the rest is mostly grassland. For instrumentation, we show the locations of the CRNS sensors, which
have a typical footprint radius of 150 m (Schrön et al., 2017)), as well as the locations of the climate gauge, the soil moisture measurements
from the SoilNet, and the manual measurement campaign from 25 to 26 June 2019. Regarding the latter, five manual measurements were
typically carried out in the close vicinity of each CRNS sensor, which is difficult to resolve in this map; the figure uses OSM basemap layers
for waterways, land use, and roads (© OpenStreetMap contributors 2021; distributed under the Open Data Commons Open Database License
(ODbL) v1.0) (OpenStreetMap contributors, 2020).

in Sect. 3 (for a comprehensive description, see Fersch et al.,
2020a). In Sect. 4, we outline the various processing steps re-
quired to address the above research questions (the homog-
enization of neutron counts, the calibration of N0 and the
estimation of the CRNS-based soil moisture series, and the
spatial interpolation of those estimates). We then present and
discuss the corresponding results in Sect. 5 and draw conclu-
sions in Sect. 6.

2 Study site

The Fendt study site, at an altitude of around 595 m a.s.l.,
is located in the headwaters of the Rott River (Fig. 1). The
catchment has an area of about 1 km2 and is part of the
TERENO Pre-Alpine Observatory (Kiese et al., 2018; Fersch
et al., 2018). A main rivulet drains the catchment from south

to north. The hydraulic heads of the shallow aquifers range
from 4 to 0.2 m below the ground, with patchy evidence
of perched groundwater, though systematic observations are
unavailable. The main soil types are Gleysols, Cambisols,
Stagnosols, and Histosols (1 : 25000 soil survey map; Bay-
erisches Landesamt für Umwelt, 2014); the dominant texture
classes (Landesamt für Digitalisierung, Breitband und Ver-
messung, 2018, not surveyed under forest cover) are clay and
loam, with substantial patches of peat. Grassland is the most
important land use (69 %); a mixed, heterogeneously struc-
tured forest (27 %) extends mainly along the eastern slopes
of the catchment. An overview of these properties per sensor
footprint is provided in Table 1.

https://doi.org/10.5194/hess-25-4807-2021 Hydrol. Earth Syst. Sci., 25, 4807–4824, 2021
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Table 1. Overview of the 18 CRNS sensors used in this study, including manufacturer, sensor model, detection technology, sensitivity of the
sensor relative to the calibrator probe (#20), dominant land use (from OpenStreetMap contributors, 2020), soil texture class (from Landesamt
für Digitalisierung, Breitband und Vermessung, 2018, not available under forest cover) and soil type (from Bayerisches Landesamt für
Umwelt, 2014) in the sensor footprint. Please note that the sensor IDs in this table are non-consecutively numbered to maintain consistency
with Fersch et al. (2020a).

ID Manufacturer Sensor model Technology Sensitivity Land use Soil texture Soil type

1 Hydroinnova CRS 2000-B 10BF3 1.190 Forest, meadow Clay Gleysols, Cambisols
2 Hydroinnova CRS 1000 3He 0.452 Crops, meadow Clay, some loam Cambisols, Gleysols
3 Hydroinnova CRS 1000 3He 0.458 Meadow Loam, some clay Cambisols, Gleysols
4 Lab-C NeuSens dual 6Li 4.530 Meadow Clay and loam Gleysols, Cambisols
5 Hydroinnova CRS 1000-B 10BF3 0.670 Meadow Clay Gleysols, Cambisols
6 Hydroinnova CRS 1000-B 10BF3 0.668∗ Meadow, forest Clay Cambisols, Gleysols
7 Hydroinnova CRS 1000-B 10BF3 0.668∗ Meadow Clay, some loam Cambisols. Gleysols
8 Hydroinnova CRS 2000-B 10BF3 1.161 Meadow Loam and clay Gleysols, Cambisols
14 Hydroinnova CRS 2000 3He 0.871 Forest No relevant data Stagnosols, Cambisols
16 Hydroinnova CRS 2000-B 10BF3 1.148 Meadow Clay Stagnosols, Cambisols
17 Hydroinnova CRS 2000-B 10BF3 1.121 Meadow Clay, some peat Gleysols, Histosols
18 Hydroinnova CRS 1000 3He 0.414 Meadow Clay, some peat Gleysols, Histosols
19 Hydroinnova CRS 2000-B 10BF3 1.147∗ Forest No relevant data Gleysols
20 Hydroinnova Calibrator 3He 1.000 – – –
21 Hydroinnova CRS 2000-B 10BF3 1.132 Meadow, forest Clay, some peat Gleysols, Histosols
22 Hydroinnova CRS 2000-B 10BF3 1.168 Forest No relevant data Cambisols, Stagnosols
23 Hydroinnova CRS 2000-B 10BF3 1.127 Meadow, forest Peat, some clay Histosols, Cambisols
24 Hydroinnova CRS 2000-B 10BF3 1.138 Meadow Clay and loam Cambisols, Gleysols
25 Hydroinnova CRS 1000-B 10BF3 0.665 Meadow Loam, some clay Cambisols, Gleysols

∗ Calibrator was not available so the sensitivity was obtained from the average for other sensors of the same model.

3 Data

3.1 CRNS measurements

In total, 24 stationary CRNS detectors were positioned in the
study area from May to July 2019. For various organizational
and technical reasons, some sensors recorded only briefly or
patchily. For the present analysis, we only used the 18 sen-
sors that coherently covered at least the majority of the study
period, including the manual sampling campaign at the end
of June 2019. Table 1 gives an overview of those sensors and
Fig. 1 shows their locations (see Fersch et al., 2020a for de-
tails about the different detector technologies used).

The placement of the CRNS sensors was performed under
a set of scientific, legal, and practical constraints. Some of the
constraints conflicted with each other (Fersch et al., 2020a);
e.g. we aimed to maximize the spatial coverage of the catch-
ment but also the overlap between sensor footprints. As a
compromise, the CRNS sensors were placed more densely in
the north-western part of the study area, where SoilNet ob-
servations were available for comparison (see Fig. 1).

The sensitivities of the detectors used in this study varied
by over an order of magnitude between the most sensitive,
NeuSense Dual, and the least sensitive, CRS-1000. However,
the effective sensitivity could also differ between sensors of
the same type. In order to standardize neutron count rates

across sensors, we consecutively collocated a mobile “cali-
brator” sensor (#20 in Table 1) with most of the stationary
probes for a duration of at least one day.

We used mobile CRNS measurements carried out from 25
to 26 June as another sensitivity reference. During those two
days, a roving CRNS sensor (see Fersch et al., 2020a, for
details) was placed next to the stationary CRNS sensors (ex-
cept for sensors 1, 21, and 22, due to inaccessibility) for a
duration of at least 30 min. The high sensitivity of the roving
CRNS sensor meant that count rates from it were sufficiently
representative that they could be related to the count rates of
the stationary sensors.

3.2 Incoming cosmic-ray neutron flux and
meteorological observations

In order to account for the variation in the incoming cosmic-
ray neutron flux, Schrön et al. (2016) recommend the se-
lection of recordings from neutron monitors that have sim-
ilar cutoff rigidity to the study location. In this study, we
used the monitor at Jungfraujoch to quantify the reference
flux. The data were obtained from the Neutron Monitor
Database (monitor ID “JUNG”, http://www.nmdb.eu, last ac-
cess: 26 July 2021).

The location of the climate gauge at the Fendt site is shown
in Fig. 1. The observed climate variables required for the
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present analysis included precipitation, barometric pressure,
and the relative humidity and temperature of the air recorded
at a temporal resolution of 1 min.

3.3 Local measurements of soil water content and
other soil variables

Local measurements of soil water content and soil bulk den-
sity were required to calibrate the relationship between ep-
ithermal neutron intensity and volumetric soil water content.
The same was true of the verification of soil moisture re-
trievals from observed neutron intensities. During the JFC,
the following measurement techniques were applied to meet
these requirements.

3.3.1 Permanent soil sensor network (SoilNet)

The north-west of the catchment is permanently equipped
with a SoilNet (version 3, SoilNet, 2018), a network of
55 vertical sensor profiles (locations shown in Fig. 1). The
temperature and permittivity are recorded at depths of 5,
20, and 50 cm at intervals of 15 min. Measurements are per-
formed redundantly at each depth with two slightly displaced
sensors. Please see Fersch et al. (2020a) for further details on
how volumetric soil moisture was obtained from permittivity
measurements.

3.3.2 Manual soil sampling and measurement of soil
water content

Vertical measurements were carried out from 25 to
26 June 2019 at depth increments of 5 cm down to a max-
imum depth of 30 cm. A vertical profile was measured right
beside each stationary CRNS sensor using soil cores and
thermogravimetry. Vertical profiles using the same depths
were obtained from manual FDR measurements at another
139 locations at and in-between the stationary CRNS sen-
sors. Figure 1 provides an overview of the sampling loca-
tions. Please see Fersch et al. (2020a) for a comprehensive
description of the sampling scheme, the sample processing
for thermogravimetry, and the conversion of the measured
permittivity to the volumetric water content for the FDR
measurements.

3.4 Vegetation and biomass

For grassland and cropland, above-ground biomass was mea-
sured on three dates (14–16 May, 6 June, and 17 July) at the
same 45 locations, and the water content was determined by
drying to a constant weight at 65 ◦C.

To quantify above-ground biomass in the forest, a different
approach was used. Ground-truth information from 116 sites
with a representative species composition allowed the deriva-
tion of a tree-species map using multitemporal RapidEye im-
agery. In addition, detailed tree-based surveys at 16 plots
(including species, height, and diameter at breast height,

see Fersch et al., 2020a for details) yielded above-ground
biomass estimates. Using stand-height information from LI-
DAR, these estimates were generalized for the entire forested
area (Stockmann, 2020).

4 Methods

4.1 Homogenization of neutron intensities over space
and time

In order to make the observed neutron count rates compara-
ble across space and time, different effects had to be taken
into account, namely the different detector sensitivities, at-
mospheric effects, and the effects of hydrogen pools other
than soil water.

4.1.1 Standardization of sensitivity

Measurements of a collocated calibrator probe (see Sect. 3.1)
served to standardize the CRNS measurements. For the pe-
riod of collocation, the ratio between the corresponding sta-
tionary and mobile neutron counts was defined as the sen-
sitivity factor (constant over time, see Schrön et al., 2018a),
which was then applied to standardize – to the calibrator level
– the neutron intensities recorded by a stationary detector.
When a calibrator collocation was missing, the average value
from other sensors of the same model was used instead (see
Table 1).

4.1.2 Accounting for atmospheric effects

The observed neutron count rates are affected by a range
of dynamic atmospheric variables that need to be accounted
for in order to make the neutron intensities comparable
across time. These dynamic variables include the atmo-
spheric vapour content, barometric pressure, and incoming
cosmic-ray neutron flux. To correct for these effects, we used
the data mentioned in Sect. 3.2. The corresponding stan-
dard correction approach is outlined by e.g. Scheiffele et al.
(2020) (see Appendix A).

4.1.3 Accounting for the effects of vegetation

We assumed that the spatial variability of above-ground
biomass is dominated by the presence of woodland in con-
trast to grassland: the average above-ground dry matter for
grassland and cropland amounted to 0.2 kg m−2, while the
average above-ground dry mass for the forested area was
quantified as 24.4 kg m−2 (Stockmann, 2020). The spatial
variability of forest biomass turned out to be high. However,
its quantification at high spatial resolution (i.e. on the order
of 100 m2) included considerable uncertainties. Therefore,
we decided to use only the average above-ground biomass
estimates for forest and grassland. The corresponding spa-
tial distribution of above-ground biomass (in kg m−2) was

https://doi.org/10.5194/hess-25-4807-2021 Hydrol. Earth Syst. Sci., 25, 4807–4824, 2021
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represented on a regular grid with a horizontal resolution of
10 m. Based on this grid, we computed the weighted aver-
age above-ground dry matter per CRNS sensor footprint us-
ing the horizontal weighting function Wr/r as suggested by
Schrön et al. (2017), and assumed these values to be constant
throughout the duration of the campaign. On that basis, we
accounted for the effect of vegetation on neutron count rates
by following Baatz et al. (2015), who suggested a neutron
intensity reduction of 0.9 % per kg of dry biomass per m2.

4.1.4 Estimating average soil properties per sensor
footprint

As pointed out in Sect. 3.3.2, the vertical distributions of
volumetric water content (θ ), soil bulk density (ρb), soil or-
ganic matter content (SOM), and lattice water content (LW)
were determined at each CRNS sensor using thermogravime-
try. For the volumetric water content, additional vertical pro-
files were measured using the FDR technique. Representa-
tive averages of these variables had to be obtained for each
CRNS footprint in order to estimate N0 (Sect. 4.2). For that
purpose, we first approximated the three-dimensional distri-
butions of soil properties from the available measurements
and then applied the vertical and horizontal weighting func-
tions provided by Schrön et al. (2017) in order to compute
weighted averages. This involved the steps detailed below.

Fitting vertical profiles

In order to generalize the vertical distributions vi of the soil
variables (i.e. θ , ρb, SOM, LW) across the study area, we
fitted a piecewise linear function to each profile and vari-
able. From the soil surface (0 cm) down to a depth of 13 cm,
the function assumed that each variable varied linearly from
vi(0 cm) to vi(13 cm). Below 13 cm depth, the variable was
assumed to remain constant at the value vi(13 cm). This ap-
proach was found to reflect the typical vertical distributions
of all soil variables fairly well while reducing spurious ef-
fects of outliers when the variables were horizontally inter-
polated (see the next section). Examples of profiles are illus-
trated in the Supplement (Figs. S1–S3).

Horizontally interpolating the vertical distribution
parameters

The fitted parameters vi(0 cm) and vi(13 cm) at each profile
location were then interpolated in space using ordinary Krig-
ing with an exponential variogram model and a range of 50 m
(150 m for soil moisture) on a 10× 10 m grid (nugget and
sill were set to 0 and 1, respectively). Based on the verti-
cal distribution function and the interpolated parameters, we
computed the value of each soil variable at 1 cm vertical res-
olution between 0 and 30 cm. It should be noted that, in this
study, we applied ordinary Kriging heuristically rather than
in a formal geostatistical way: stationarity was assumed and
an exponential variogram model with a specific range was

chosen in order to create continuous and plausible spatial
patterns that are robust in areas of extrapolation and in which
spatial autocorrelation was explicitly considered (instead of
the implicit assumptions used in techniques such as nearest
neighbour and inverse distance weighting). The sensitivity of
our results to the range parameter was explicitly investigated
in a Monte Carlo analysis (see Sect. 4.3).

The procedure was modified for soil organic matter and
lattice water because these variables were not determined for
each profile separately. Instead, these variables were deter-
mined for mixtures of samples obtained within areas classi-
fied as “forest on mineral soil”, “other land use on mineral
soil”, or “other land use on organic soil” (see Fersch et al.,
2020a). Hence, the vertical distribution function of each vari-
able was determined for each of these three classes, and, in-
stead of interpolation, the same vertical profile was assigned
to each grid cell based on its membership of one of the three
classes.

Computing the weighted average variable value for each
sensor footprint

In the final step, we used the weighting functions from
Eq. (A1) in Schrön et al. (2017) to compute average values
of the soil variables per sensor footprint. The vertical average
was obtained for each grid cell in the footprint based on the
vertical weighting function Wd and the horizontal distance r
of the grid cell from the sensor. Then the vertical averages
were averaged horizontally based on the horizontal weight-
ing functionWr/r . As the soil variables of interest are param-
eters of the weighting functions themselves, the weighting
procedure was iterated until the average variables converged
(typically after less than five iterations), as recommended by
Schrön et al. (2017).

4.2 Calibration of N0

The soil water content was estimated from the epithermal
neutron count rate using the standard transfer function sug-
gested by Desilets et al. (2010). This required the calibration
of the parameter N0 based on local soil moisture observa-
tions.

θall
g = θg+ θ

som
g + θ lw

g =
a0

N/N0− a1
−a2, θ =

%b

%w
· θg (1)

In Eq. (1), the subscript g indicates gravimetric soil water
(equivalents) in units of kg kg−1; hence, θg is the gravimetric
soil water content, θ som

g and θ lw
g are the gravimetric soil wa-

ter equivalents of soil organic matter and lattice water, θ is
the volumetric soil water content (in m3 m−3), and ρw and
ρb are the density of water (assumed to be 1000 kg m−3)
and the soil bulk density (in kg m−3), respectively. N is the
corrected neutron intensity (in counts per hour, cph) and
N0 (in cph) is the calibration parameter. The shape parame-
ters a0, a1, and a2 can be adapted to specific local conditions,
but they have also proven robust in many previous studies
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(Desilets et al., 2010; Evans et al., 2016; Schrön et al., 2017,
among others). They were set to a0 = 0.0808, a1 = 0.372,
and a2 = 0.115. Please note that water equivalents from veg-
etation (θbio) are not included in the sum on the left since the
effects of vegetation biomass are already accounted for in the
corrected neutron intensity N (see Sect. 4.1.3).

In order to use Eq. (1) to compute θg(N) or θ(N) from
the observed neutron count rate N , θ som and θ lw as well as
the soil bulk density %b need to be independently quantified
as weighted averages for each CRNS sensor footprint (see
Sect. 4.1.4 for details). For any calibration of N0, θ needs to
be independently quantified as a calibration reference that we
refer to as θobs. θobs

i was computed as a weighted average for
each CRNS sensor footprint i from manual measurements
(Sect. 4.1.4).

Usually, N0 is calibrated for a single CRNS sensor at a
particular site. For our dense cluster, however, we calibrated
Eq. (1) by assuming a uniform value of N0 across the study
area. Hence, we optimized N0 by minimizing the mean ab-
solute difference between the average volumetric soil mois-
ture θobs

i , and the corresponding θ(Ni,N0), which can be ob-
tained by solving Eq. (1) for θ and using the corrected neu-
tron intensities Ni :

argmin
N0

18∑
i=1

∣∣∣θobs
i − θ (Ni,N0)

∣∣∣ . (2)

The manual soil moisture measurements were carried out
over two consecutive days, 25–26 June 2019 (see Sect. 3.3).
Hence, the temporally varying parameters (the neutron count
rates Ni , barometric pressure, and humidity) required as in-
puts for the weighting functions and Eq. (2) were obtained by
computing temporal means between 08:00 UTC on 25 June
and 18:00 UTC on 26 June.

4.3 Exploring the uncertainty of N0 calibration

Uncertainties in the N0 estimation arise from errors in the
measurement of soil moisture and neutron fluxes as well as
in the validity and parameterization of functional relation-
ships and underlying assumptions. In order to get a better
idea of both the robustness of our N0 estimate and the un-
certainty of the observed and CRNS-based soil moisture, we
carried out a Monte Carlo analysis in which we repeated the
N0 calibration (see Eq. 2) 200 times, using a set of randomly
disturbed input parameters each time (200 realizations were
performed as they provided sufficiently robust results that did
not change when more realizations were performed). The pa-
rameters and disturbances were as follows:

– Sensor sensitivity. As pointed out in Sect. 4.1.1, the neu-
tron count rates of all sensors were standardized to the
level of a calibrator. Yet, we still found some variability
in the resulting sensitivity factors, even among sensors
of the same type. In the Monte Carlo analysis, we as-

sumed that the sensitivity varied by ±2 % with respect
to the sensitivity level shown in Table 1.

– Averaging period forNi . The definition of the time win-
dow for which the average neutron intensity Ni is cal-
culated is rather arbitrary, particularly since the manual
soil moisture measurements took place over a period of
two consecutive days (from 08:00 UTC on 25 June to
18:00 UTC on 26 June). In order to capture the effect of
the averaging period, we randomly selected 12 h win-
dows within this time span and computed the averageNi
from these windows.

– Dry vegetation matter. The spatial distribution of forest
biomass is more relevant to the present study than that of
grassland. Stockmann (2020) attempted to represent this
distribution by combining allometric approaches with
remote sensing and found that the dry matter mass var-
ied between 13–73 kg m−2, with a relative error of 17 %
at the plot scale. As we used one uniform biomass esti-
mate for the forest area (section 4.1.3), we expect large
local errors. In our Monte Carlo analysis, we varied the
dry matter mass per CRNS footprint within ±20 % of
the estimated value.

– Water equivalent. As pointed out in Sect. 4.1.4, soil
organic matter and lattice water contents were only
determined from mixed samples for three different
land-use/soil combinations. Hence, local values for the
resulting water equivalents could substantially depart
from these average values. We assumed that the esti-
mated values of θ som and θ lw per footprint vary within
±20 % of the initial estimate.

– Kriging range. The choice to use an exponential
variogram model together with a specific Kriging
range for specific variables was made rather arbitrarily
(Sect. 4.1.4). Hence, we varied the Kriging range val-
ues within ±50 % of the original values, resulting in a
sampling interval of 75–225 m for soil moisture and 25–
75 m for bulk density.

– Subsampling from soil profiles. For the N0 calibration,
the vertical soil moisture distribution was sampled at
160 locations in the study area. Given the size of the
area and the number of CRNS sensors, the correspond-
ing sample size per CRNS sensor was quite low com-
pared to previous studies (18 samples per footprint were
recommended by Zreda et al., 2012). In order to analyse
how the availability of sampling locations affected the
N0 calibration, we employed a subsampling approach:
for each Monte Carlo realization, we used only 80 %
of our sampling locations for the interpolation of bulk
density and volumetric soil moisture. These 80 % were
randomly selected from the entire population of loca-
tions.
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4.4 Soil moisture retrieval and spatial interpolation

To improve the signal-to-noise ratio for each CRNS sensor,
we computed the average neutron count rate at intervals of
24 h and then, for each CRNS sensor, converted this averaged
neutron count rate to the daily volumetric soil water content
using Eq. (1) and the calibrated N0. This soil water content
will be referred to as θ(Ni) in the following. These values
were examined as they were considered a first-order repre-
sentation of how the soil water content varied in the study
area over space and time.

In order to represent the spatial soil moisture distribution
within and between CRNS footprints, we interpolated θ(Ni)
to a 10 m× 10 m grid spanning the entire study area. The
grid resolution was arbitrarily selected and does not nec-
essarily reflect the resolution at which the grid effectively
conveys information on the spatial heterogeneity; in other
words, the product should not be interpreted at the scale of
10 m. Still, this comparatively fine horizontal resolution was
needed since some of the subsequent steps required the re-
aggregation (i.e. the averaging) of the spatial soil moisture
estimates inside a CRNS footprint.

Gridded soil moisture estimates were obtained by two spa-
tial interpolation approaches (models), which we will refer to
here as the “unconstrained” and “constrained” models.

4.4.1 Unconstrained model

What we refer to as the unconstrained approach could imply
any kind of modelm that represents the spatial distribution of
the soil moisture θ on the basis of parameter set p. This could
be a geostatistical interpolation approach or, for instance, a
distributed hydrological model.

In this study, for model m, we used ordinary Kriging with
an exponential variogram model (nugget= 0, sill= 1) and a
range parameter of, say, 300 m, using the CRNS sensor lo-
cations as data points for the interpolation. This choice was
fairly arbitrary and subjective but reflects the spatial scale
at which we are interested in representing the variation of
soil moisture. With a given number n of CRNS sensors in
our study area, the resulting model m(p) has n parame-
ters, namely those of the n soil moisture θi at CRNS sen-
sor location i (the data points for the interpolation), the val-
ues of which we set to the CRNS-based soil moisture esti-
mates θ(Ni).

This interpolation approach has one major drawback: it
does not account for the consistency between the obtained
spatial soil moisture distribution (the output of m(p)) and
the neutron intensities observed at the sensor locations (Ni)
(and is hence “unconstrained”). If we were able to simulate
the neutron intensities corresponding to the output of m(p),
we would have a basis to constrain (or optimize) our param-
eters p by maximizing the agreement between the observed
and simulated neutron intensities.

4.4.2 Constrained model

The constrained model m we used is the same as the above
unconstrained model except that we adjust our initial guess
of p such that the disagreement (here the sum of absolute
differences) between the observed neutron count rates Nobs

i

and the simulated count rates N sim
i (obtained from m(p)) is

minimized (Eq. 3):

argmin
p

n∑
i=1

∣∣∣Nobs
i −N

sim
i (m(p))

∣∣∣ . (3)

Figure 2a–f illustrates the idea and effects of a con-
strained model for a simple one-dimensional example with
two CRNS sensors and an (unknown) true soil moisture dis-
tribution (solid black line, Fig. 2a). Figure 2b illustrates the
sensor locations together with their horizontal sensitivity pat-
tern (red shadows). Using a suitable forward operator
(Sect. 4.4.3), we can compute the neutron count rates Nobs

i

that we would expect the sensors to observe based on the
true soil moisture. These Nobs

i constitute the only informa-
tion we have from our CRNS sensors. From these Nobs

i , we
compute the average soil moisture θ(Nobs

i ) based on Eq. (1)
with a known N0 (Fig. 2c). We then apply the unconstrained
interpolation using θ(Nobs

i ) as data points (θnode
i , Fig. 2d).

From the resulting soil moisture distribution (Fig. 2d, dashed
line), we simulate the corresponding N sim

i , again using the
forward operator . In the case of a marked soil mois-
ture gradient, as in this example, the resulting N sim

i and
observed Nobs

i will disagree (Fig. 2e). The reason for this
disagreement is obvious and unsurprising: if we use the
volume-integrated θ(Nobs

i ) as a data point for the interpo-
lation (θnode

i ), we potentially neglect a substantial portion of
spatial variation that is hidden behind this volume average.
Hence, spatial gradients will tend to be systematically under-
represented: here, the unconstrained model underestimates
areas of high soil moisture in the left half of our spatial do-
main and overestimates them in the right half.

In the constrained model, we therefore adjust the values
for θnode

i so that the disagreement betweenN sim
i and the mea-

sured Nobs
i is minimized (Fig. 2f). This optimization prob-

lem could have an infinite number of equally valid solutions.
The problem of equifinality is addressed, however, by us-
ing a local optimization technique (the Nelder–Mead sim-
plex adapted according to Gao and Han, 2012). As our initial
parameter guess for (θnode

i ) is based on θ(Nobs
i ), we expect

the parameter optimization to stay close to this initial guess,
changing by only as much as required to better represent the
local soil moisture gradients. We also expect that the opti-
mization problem will be constrained better in areas where
multiple CRNS sensors significantly overlap. Conversely, the
difference between the initial N sim

i and Nobs
i will probably

be small for CRNS sensor locations that are rather isolated
and distant from others. This is because the interpolated soil
moisture values in the footprint of any isolated (or distant)
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Figure 2. Schematic view of the constrained interpolation model,
illustrated by an idealized example with two CRNS sensors and a
1-D horizontal soil moisture distribution. Symbols are explained in
the main text; note that the spatial domain extends further to the
right but is not shown in full for the sake of clarity.

sensor i will be dominated by θ(Nobs
i ) and less affected by

other sensors.

4.4.3 The forward operator

The constrained model resembles what is generally referred
to as geophysical inversion, i.e. the identification of param-
eters p in a model m by means of inverse simulation: the
observed variable (N ) is obtained from the estimated target
variable (θ ) by means of a physically based forward operator
(i.e. simulation). Hence, p is optimized by minimizing the
disagreement between simulation and observation. This al-
lows further spatial information to be obtained from volume-
integrated observations using our physical understanding of
both the observed system and the observation technique it-
self. On this basis, our constrained approach, as outlined
above, does not entirely qualify as a geophysical inversion
for two reasons. First, we use a geostatistical instead of a
physical model to describe our notion of soil moisture varia-
tion at a specific scale. Second, we use a rather heuristic im-
plementation of the forward operator , which is specified
as follows:

:2m
i 7−→N sim

i , (4)

where the operator simulates the corrected epithermal
neutron intensity N sim

i at a sensor location i using the en-
tire environment of interpolated (modelled) soil moisture val-
ues 2m

i in a 300 m radius around the sensor, leading to a
grid in which each grid cell j has a modelled soil moisture
value θm

j .
Shuttleworth et al. (2013) developed the COSMIC oper-

ator in the context of data assimilation. However, the COS-
MIC operator accounts for only the vertical – not the horizon-
tal – variability of the soil moisture, and is therefore not eli-
gible for our purpose. Neutron transport models, in turn, are
able to track the histories of millions of neutrons by taking
the relevant physical interactions into account, including not
only the effects of soil moisture but also those of e.g. the veg-
etation or topography. Neutron transport models are avail-
able and have proven valid in a wide range of application
contexts. Examples are MCNP (Andreasen et al., 2017) or,
more recently, URANOS (Weimar et al., 2020). Both would
be suitable forward operators for our application except that
their computational cost would be prohibitive: the optimiza-
tion of p requires hundreds of iterations – requiring weeks of
computation time – for soil moisture interpolation at just one
point in time.

Hence, in this work, we followed an intermediate approach
that we have already referred to as heuristic. In our ap-
proach, instead of explicitly simulating the physical interac-
tions of neutrons with the near-surface environment, we use
the horizontal weighting function Wr presented in Eq. (A1)
of Schrön et al. (2017). Wr represents the horizontal sensi-
tivity pattern of a CRNS sensor, which depends on various
somewhat dynamic environmental variables such as the soil
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moisture itself, soil bulk density, vegetation, air humidity,
and barometric pressure. Though Wr was not originally in-
tended to support forward simulation, it is obtained via ex-
tensive neutron transport simulations (Köhli et al., 2015) and
therefore has a sufficient physical basis to serve our main pur-
pose: to quantify, based on the observed neutron intensity at
a particular location i, the relative contributions of soil mois-
ture at different distances from the sensor.Wr does not, how-
ever, directly yield the neutron intensity (formally, we use it
as a spatial filter). Hence, we combineWr with the inverse of
Eq. (1) to obtain the forward operator presented in Eqs. (5)
and (6) below:

N sim
i =

(
2m
i

)
=N0 ·

a0〈
2m
i

〉
·
ρw
ρb,i
+ a2
+ a1 (5)

〈
2m
i

〉
=

∑
j

(
Wr,i,j · θ

m
j

)
∑
j

Wr,i,j
+ θ lw

i + θ
som
i . (6)

4.5 Comparison to the local soil sensor
network (SoilNet)

In order to evaluate the performance of the unconstrained and
constrained interpolation models, the resulting maps of aver-
age daily soil moisture were compared with daily soil mois-
ture maps obtained from the FDR cluster (SoilNet) operated
at the site (Fersch et al., 2020a). This comparison, however,
was not straightforward: while the SoilNet data consist of a
set of observations at specific points in space (with a hori-
zontal support of a few centimetres), the results of the inter-
polation models are spatial soil moisture grids with varying
degrees of vertical representativeness.

The SoilNet observations θFDR
n,z constitute 55 nodes (in-

dex n), each of which provides measurements at three
depths z (5, 20, and 50 cm; two measurements at each depth
are averaged). For each node, we first obtained a continu-
ous vertical profile: we linearly interpolated the measure-
ments at intervals of 1 cm between 5 and 20 cm and between
20 and 50 cm. Between 5 cm and the soil surface, the value
from 5 cm was used. To account for the CRNS penetration
depth, we then computed a weighted vertical average 〈θFDR

n 〉

at each node using the weighting function Wd from Schrön
et al. (2017) (note that Wd depends on the distance r to a
CRNS sensor, which is not unique when multiple CRNS sen-
sors are present; in this work, we used a medium value of
r = 20 m for all SoilNet nodes since the penetration depth
decreases by less than 5 cm within a distance of 100 m from
a CRNS sensor for average soil moisture values of around
0.4 m3 m−3; see Fig. 8 in Köhli et al., 2015). Finally, we hor-
izontally interpolated 〈θFDR

n 〉 to the same grid as the inter-
polated CRNS-based soil moisture using the same ordinary
Kriging approach as used for the interpolation of CRNS-
based soil moisture (exponential variogram with a range of
300 m).

We evaluated the similarity of the spatial soil moisture pat-
terns obtained from the FDR cluster and the interpolation
of θ(Ni) for each day from 20 May to 15 July 2019. We
chose Spearman’s rank correlation of the corresponding soil
moisture grids as a measure of similarity. Using that mea-
sure, we eliminated potential effects of uncertainty in the soil
moisture values obtained from the SoilNet, as the conversion
from permittivity to volumetric soil moisture can be subject
to systematic bias (Mohamed and Paleologos, 2018).

5 Results and discussion

5.1 Can we find a uniform N0 for the entire study area?

The parameter N0 in Eq. (1) accounts for a variety of factors
in the relationship between soil moisture and neutron inten-
sity (e.g. sensor sensitivity and hydrogen pools other than
soil water). N0 should be the same for each sensor if the ob-
served neutron intensities are perfectly homogenized with re-
gard to these effects, and if the calibration reference is error-
free. Based on our homogenization efforts (Sect. 4.1 and
the successful standardization of sensitivity, as documented
in Sect. S2), we estimated an N0 value of 3723 cph with a
mean absolute error of 0.047 m3 m−3 for θ (see Table 2 for
an overview of the calibration input and output). Figure 3a
contrasts CRNS-based soil moisture estimates θ(N) with the
calibration reference θobs. Figure 3b illustrates how well the
relation between gravimetric soil water content θall

g and neu-
tron intensity N corresponds to Eq. (1).

While the agreement is not perfect, the general pattern sug-
gests that CRNS-based soil moisture estimates obtained from
a single N0 can explain a substantial portion of the variabil-
ity in the study area (R2

= 0.69), where soil moisture ranges
from 0.33 to 0.70 m3 m−3. Yet, some sensors display remark-
able disagreement between θobs

i and θ(Ni); this is most no-
table for sensor 7 (−0.15 m3 m−3), but is also seen for sen-
sor 22 (+0.09 m3 m−3), sensor 5 (+0.08 m3 m−3), and sen-
sor 23 (−0.07 m3 m−3).

We would like to put these disagreements into perspec-
tive by providing a better idea of the uncertainties involved
in the N0 calibration on 25–26 June. Based on the Monte
Carlo analysis (Sect. 4.3), Fig. 4 displays the local uncer-
tainty of θ(Ni) and θobs

i (Fig. 4a) as well as the local uncer-
tainty in Ni and θall

g,i (Fig. 4b). Here, the term “local” refers
to the uncertainty for a specific sensor footprint i (please see
the figure caption for details).

The results shown in Fig. 4 can be seen as both un-
favourable and encouraging. The level of local uncertainty
expressed by the vertical and horizontal extents of the dark
grey shaded areas is rather unfavourable. The uncertainty
of θ(Ni) is a location-specific combination of uncertainties,
e.g. of the above-ground forest biomass, the mean Ni (which
was represented by temporal subsampling), and the spatial
distribution of the soil bulk density. The average uncertainty
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Figure 3. Results of the N0 calibration: (a) shows the θ(Ni ) ob-
tained from standardized and corrected neutron count rates Ni ver-
sus the conventional soil moisture estimates θobs

i
, i.e. footprint-

averaged volumetric soil moisture obtained from manual sam-
pling (25–26 June 2019). The grey shadows indicate deviations of
2.5 % and 5 % in θ(Ni ). The bottom panel provides a different per-
spective by plotting Ni versus the observed total gravimetric soil
water content, including water equivalents from soil organic mat-
ter and lattice water; the dashed line indicates the Desilets function,
Eq. (1), with a calibrated N0 = 3723 cph.

of θ(Ni) (i.e. the mean width of the dark grey boxes along the
y axis) amounts to 0.08 m3 m−3. However, there is also some
uncertainty in θobs (the so-called ground truth): 0.03 m3 m−3

on average for the dark grey boxes along the x axis. This un-
certainty mainly results from the limited spatial density of
the measured profiles.

It is encouraging, though, that the estimation ofN0 appears
quite robust, and that there is no evidence to suggest that
N0 is sensor dependent (except for sensor 7). The 25th and
75th percentiles of N0 amount to 3677 and 3733 cph, respec-
tively, which correspond to a range of less than 1.5 % relative
to the optimal value of N0 = 3723 cph (Fig. 4c). The dark
grey boxes that represent the interquartile ranges of θ(Ni),
θobs
i , and Ni clearly overlap with the diagonal (Fig. 4a)

and (in most cases) with the curve of the Desilets function
(Fig. 4b).

The only box that overlaps with neither the diagonal nor
the Desilet function is that for CRNS sensor 7. We there-
fore cannot assume that the N0 value of 3723 cph is valid
for this CRNS location. Currently, we do not have a satisfac-
tory explanation for this: the uncertainties of the vegetation
biomass, soil organic matter, and lattice water around sen-
sor 7 cannot explain this level of disagreement, and it appears
that the sensitivity was successfully standardized for sensor 7
(the neutron intensity from sensor 7 corresponds well to the
rover measurement; see Fig. S4). It is possible, though, that
the reference soil moisture θobs

7 is too high: the soils appear
to become drier towards the west, and a preliminary analysis
of roving data from June 2019 indicates relatively dry con-
ditions along the road south-west of sensor 7 (see Fig. 10
in Fersch et al., 2020a). At the same time, manual measure-
ments were scarce in the western footprint of sensor 7 (due to
access restrictions and technical issues that led to the loss of
manual FDR profiles at five locations), so our estimate θobs

7
might not be representative of the footprint. Still, we do not
have hard evidence to support this hypothesis, so we decided
to exclude sensor 7 from further analysis in the present study.

5.2 Spatial and temporal patterns in CRNS-based soil
moisture

We used the joint N0 value together with a 12 h moving av-
erage of the corrected neutron intensities and Eq. (1) to re-
trieve time series of volumetric soil moisture for the remain-
ing 17 locations over the entire study period (Fig. 5).

Overall, we see strong temporal dynamics of wetting, dry-
ing, and re-wetting that correspond well to the cumulative
difference between precipitation and reference evapotranspi-
ration (the red line in the top panel of Fig. 5). Torrential
rains of about 150 mm during 20–22 May marked the start
of the campaign, with another 50 mm of rain observed un-
til 29 May. During that period, the volumetric soil moisture
exceeded the soil porosity in many locations (marked by the
black+ signs). This is in line with the observation that large
parts of the study area were affected by ponding in the last
week of May. The following drying period until 15 July was
repeatedly interrupted by rainfall events of more than 10 mm
(e.g. on 15 and 20 June and on 1, 7, and 12 July). Still, June
marks the transition from saturated to moderately dry con-
ditions: from 1 to 30 June, soil moisture dropped by 0.2–
0.3 m3 m−3 at each CRNS sensor location (a decrease of be-
tween 25 % to 50 % relative to the soil moisture on 1 June).

The rows in the bottom panel of Fig. 5 are arranged from
top to bottom in order of decreasing average soil water con-
tent during the last week of the campaign (8–15 July). Some
spatial and temporal patterns emerge with this arrangement.
Location 23, located in a large patch of peat soil, stands
out due to its very high soil moisture (permanently above
0.5 m3 m−3 and with an average of 0.71 m3 m−3). At the
other end, there are a group of relatively dry locations in the
western parts of the study area (locations 2, 3, 4, 24, and 25)
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Figure 4. Results of the Monte Carlo analysis: (a) shows θ(Ni) versus θobs
i

, while (b) shows the corrected neutron intensities Ni over
the gravimetric soil water equivalent θall

g,i. The dark grey shaded areas represent the interquartile ranges of these variables based on the
200 realizations in the Monte Carlo analysis. The horizontal and vertical extents of the dark grey shaded areas are used to measure the local
uncertainties in these variables, where the term “local” refers to the uncertainty for a specific sensor footprint i. The light grey shaded areas
in (a) show the inner 90 % of the realizations for illustrative purposes only. (c) shows the distribution of all 200 N0 values, highlighting the
interquartile range in dark red and the inner 90 % in light red. Accordingly, the dark and light red shaded areas in (b) indicate the range of
the Desilets function when using the interquartile range and the inner 90 % of N0 realizations, respectively.

Table 2. Overview of calibration data and results per sensor (variables with an asterisk (∗) were computed as a weighted average per
footprint). ID: sensor ID; Forest: percentage of forest area in the footprint; AGB: above-ground dry matter biomass; N : corrected neutron
count rate averaged over the calibration period; ρb: soil bulk density (note that vertical weighting gives more weight to the top soil, where
the bulk density tends to be lower; cf. Sect. 4.1.4 and Fig. S2); SOM: soil organic matter content; θobs: volumetric soil water content from
manual measurements; θeq: volumetric soil water equivalent (θ som

+ θ lw); θ(N): volumetric soil water content as estimated from Eq. (1).

ID Forest AGB∗ N ρ∗b SOM∗ θobs∗ θeq∗ θ(N)

(%) (kg m−2) (cph) (kg L−1) (kg kg−1) (m3 m−3) (m3 m−3) (m3 m−3)

1 73 18.2 1775 0.96 0.15 0.48 0.11 0.52
2 0 0.4 1959 1.06 0.15 0.34 0.12 0.31
3 0 0.1 1971 1.07 0.14 0.35 0.12 0.31
4 2 0.6 1867 1.01 0.17 0.43 0.13 0.38
5 0 0.4 1831 0.93 0.13 0.34 0.10 0.42
6 17 4.0 1880 1.07 0.15 0.40 0.12 0.40
7 0 0.2 2091 1.07 0.15 0.36 0.12 0.21
8 0 0.1 1789 0.92 0.14 0.45 0.10 0.48
14 92 20.8 1851 0.98 0.15 0.36 0.11 0.41
16 9 2.6 1843 0.96 0.14 0.43 0.11 0.41
17 1 0.4 1765 0.82 0.13 0.48 0.09 0.47
18 1 0.6 1755 0.86 0.15 0.47 0.10 0.50
19 85 13.6 1779 0.99 0.15 0.49 0.11 0.53
21 6 2.1 1659 0.69 0.37 0.57 0.16 0.52
22 88 21.5 1803 0.95 0.14 0.38 0.11 0.47
23 19 4.7 1598 0.56 0.31 0.69 0.10 0.62
24 0 0.1 1997 1.13 0.14 0.34 0.13 0.30
25 0 0.1 1918 1.03 0.13 0.35 0.11 0.35

and a group of less (but still rather) dry locations along the
eastern slopes towards the water divide of the catchment (lo-
cations 6, 14, and 16). In between, we find a series of loca-
tions with intermediate soil moisture levels and pronounced
wetting and drying dynamics over the study period, most
of them strung along the bottom of the central valley of
the Rottgraben (locations 1, 5, 17, 18, and 21) as well as
a drainage line from the eastern slopes (location 19). Loca-

tion 8 is more peculiar: it is very close to the driest locations,
starts off very wet, but also exhibits pronounced drying dy-
namics.

We have to keep in mind the results from Sect. 5.1, which
indicated that there is large local uncertainty in θ(N). Hence,
any ranking that is based on average soil moisture values
should be interpreted with care. Take location 22 for in-
stance: Fig. 3 suggests that θ(N) is probably overestimat-
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Figure 5. Time series of precipitation, reference evapotranspiration,
and estimated soil water content. (a) Cumulative values of precip-
itation P (mm), reference evapotranspiration ET0 (based on FAO,
1998, in mm), and the difference P− ET0 (in mm); the precipitation
depth (mm) obtained at 6 h intervals is shown as blue bars. (b) Soil
moisture θ(Ni) as estimated for each CRNS sensor i; rows are ar-
ranged from top to bottom in order of decreasing average soil water
content during the last week of the campaign (8–15 July). A white
space indicates a period of missing data; black + signs indicate pe-
riods in which the apparent volumetric soil moisture exceeded the
soil porosity, probably due to ponding.

ing soil moisture in this location, which is supported by the
uncertainty range shown in Fig. 4. The dominant source of
uncertainty at location 22 is most likely the above-ground
forest biomass in the near range of sensor 22. Hence, lo-
cation 22 could be around 0.1 m3 m−3 drier than shown in
Fig. 5. However, the change in the rank of a CRNS sensor
location over time (i.e. relative to other locations) should be
less affected by such local (but presumably static) uncertain-
ties. From a hydrological perspective, it might be informa-
tive to examine such changes in rank, as they may indicate
changes in governing hydrological processes. As an example,
location 21 was by far the wettest location in the last week
of May, but only the fourth wettest location in the last week
of the campaign. Similar to location 23, location 21 is char-
acterized by peaty soils with low bulk density and high soil
moisture, but it dries much faster. We hypothesize that during
the heavy rainfall in May, location 21 collected near-surface
interflow from the nearby eastern hillslopes, which, in com-
bination with a local impermeable layer below the peat soils,

led to a local accumulation of water. However, location 21
might not be influenced by the shallow aquifer as much as
location 23, so it dries faster. While this hypothesis remains
as-yet untested, it illustrates how a dense network of CRNS
sensors in a heterogeneous landscape could help us to iden-
tify governing hydrological processes.

5.3 How does soil moisture vary within and between
the sensor footprints?

5.3.1 Spatial interpolation of CRNS-based soil
moisture

In this study, we aimed to use CRNS data to coherently and
continuously represent the catchment-scale variation of soil
water content at a resolution of tens to hundreds of metres,
i.e. the variation within and between CRNS footprints. To ob-
tain daily soil moisture maps, we applied two interpolation
models (Sect. 4.4) – unconstrained and constrained models
– to each day of the campaign. Figure 6 shows examples
of maps for three different dates: 1 June (2 days after the
continued rainfall in May 2019 ended), with very wet con-
ditions; 7 June (after a week of drainage and evapotranspira-
tion), with intermediate wetness; and 30 June (after another
3 weeks of drying), with relatively dry conditions.

The maps obtained using both interpolation models illus-
trate more intuitively what we learned in the previous sec-
tion (Sect. 5.2): that the soils become considerably drier
from the valley bottom of the Rottgraben towards the west-
ern parts and (to a less pronounced but still obvious degree)
towards the eastern hillslopes. Furthermore, the locations of
sensors 19 (at a drainage line) and 8 (in the SoilNet area)
are rather wet. The maps also illustrate well how the drying
of soils progresses spatially during June. At the same time,
Fig. 6 demonstrates the differences between the two interpo-
lation models: as expected, the constrained model enhances
horizontal soil moisture gradients (leading to increased con-
trasts in the bottom panel maps).

The interpolation also allows us to compute a catchment-
wide soil moisture average or to capture the frequency distri-
bution of soil moisture values in the catchment at any point
in time. Figure 7, for instance, shows the median as well as
the inner 50 % and 90 % of the catchment-wide soil mois-
ture values for both interpolation models. While the median
values are almost identical, the models clearly differ at the
tails of the distribution (most clearly for the 5th and 95th per-
centiles). This behaviour is consistent with the expectation
that constrained interpolation enhances gradients.

5.3.2 Comparison of spatial patterns against SoilNet
observations

The area of the SoilNet is particularly suited to a comparison
of the interpolation models regarding their ability to repre-
sent soil moisture gradients. First, the SoilNet allows spatial
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Figure 6. Daily average soil moisture on three different dates (left: 1 June, centre: 7 June, right: 30 June 2019) and for the uncon-
strained/constrained interpolation model (top/bottom row). Also shown are locations and IDs of the CRNS sensors used for the interpolation
(red), the catchment boundary (black line), forest (grey hatching with a black contour), roads (dashed grey line), and the extent of the SoilNet
(dashed white rectangle). The figure uses OSM basemap layers for land use and roads (© OpenStreetMap contributors 2020; distributed
under the Open Data Commons Open Database License (ODbL) v1.0). (OpenStreetMap contributors, 2020).

Figure 7. Catchment-wide median (black line), interquartile range
(dark shadow), and inner 90 % (light shadow) of daily soil mois-
ture values obtained from unconstrained interpolation. The dashed
green lines indicate the corresponding percentiles (5th, 25th, 75th,
and 95th) obtained from constrained interpolation ”(the median of
the constrained interpolation is not shown in addition as it is almost
identical to the unconstrained interpolation); the dashed red lines
show dates used in Fig. 6.

variability to be captured due to its high sampling density.
Second, the density of CRNS sensors is also higher in that
area: the 150 m radii of six sensors (3, 8, 17, 18, 24, 25)
substantially overlap with the SoilNet area. Third, the spatial
heterogeneity of soil moisture in the SoilNet area appears

quite pronounced (generally drier towards the west, with a
wet anomaly at the centre).

For the comparison, we horizontally interpolated the ver-
tically averaged FDR measurements to the same grid as used
before (Sect. 4.5), and used only those parts of the grid that
fell inside the spatial bounding box of the SoilNet. Figure 8
shows an example for 7 June 2019 (when there was inter-
mediate wetness): the SoilNet shows a wet area in its central
part that tends to extend to the north and the north-east as
well as a pronounced progression towards drier conditions in
the south-west and east. The soil moisture gradient from the
centre to the south-west is fairly well captured by the con-
strained interpolation model, particularly in comparison to
the unconstrained model; both models fail to reproduce the
dry region at the eastern edge.

In order to formalize the comparison, Fig. 9a shows the
Spearman’s rank correlation between the daily spatial soil
moisture patterns. Apparently, the constrained model is su-
perior (i.e. more similar to the SoilNet) for the majority of
the study period, namely all of June. Only during the very
wet beginning of the campaign (until early June) does the un-
constrained model seem to outperform the constrained one.
That period, however, has to be interpreted with care, since it
was governed by substantial ponding, which obviously can-
not be captured by the SoilNet sensors but can be detected by
the CRNS network. We can also observe a general decline in
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Figure 8. Daily average soil moisture in the SoilNet area on 7 June 2019, as obtained from the unconstrained interpolation (left panel), the
constrained interpolation (centre panel), and the interpolated SoilNet measurements (right panel). The spatial window corresponds to the
dashed white box in Fig. 6. Black circles: locations of the SoilNet nodes; red numbers: CRNS sensor locations and IDs.

the correlation between the CRNS-based interpolation prod-
ucts and the SoilNet towards the (drier) end of the campaign:
in July, the differences in rank correlation between both in-
terpolation models are rather negligible. Rainfall events tend
to reduce the correlation, which is a well-known issue when
using subsurface sensors as a reference: until rainfall infiltra-
tion advances to the upper SoilNet sensor (at 5 cm depth), the
SoilNet does not register the event, while the CRNS sensors
immediately react to the additional water at the soil surface –
especially when it is close to the surface (Schrön et al., 2017;
Scheiffele et al., 2020).

With regard to the spatial average of daily soil moisture
across the SoilNet area (Fig. 9b), the differences between
the two interpolation models are rather negligible, partic-
ularly in comparison to their disagreement with the Soil-
Net. That fact alone is unsurprising: compared to the un-
constrained model, the constrained model enhances spatial
gradients but it should not systematically affect the spatial
average (Sect. 5.3.1). But what causes the disagreement be-
tween the SoilNet average 〈θFDR

〉 and the CRNS-based av-
erages 〈θ(N)〉, a disagreement that increases during June?
So far, the reasons remain unclear, but we would like to men-
tion three uncertainties. First, the SoilNet measurements at 5,
20, and 50 cm only allow for imprecise characterization of
the vertical soil moisture profile, specifically in the dynamic
upper 20 cm that affect the CRNS signal the most. Second,
any bias in the conversion from permittivity to volumetric
soil moisture might not be homogeneous across the observed
range of soil moisture or soil properties in the SoilNet area
(Sect. 4.5). Third, the weighting functions that were used to
compute the vertical average θFDR

n are not necessarily trans-
ferable to situations of pronounced horizontal and vertical
heterogeneity (Köhli et al., 2015), and hence a known source
of substantial uncertainty (Baroni et al., 2018). For illustra-
tive purposes, Fig. 9b shows the range of computed penetra-
tion depths (D86) for six nearby CRNS sensors; D86 varies
from 14–19 cm in May to about 19–24 cm in July. However,
if we average θFDR uniformly over the upper 30 cm (dashed
green line), the agreement with the CRNS-based averages ap-
pears to be somewhat better. The reasons for this behaviour
remain unclear, but it emphasizes the possible uncertainty re-

Figure 9. (a) The orange (blue) line shows the rank correlation
between the daily average soil moisture pattern of the SoilNet
and the pattern from the unconstrained (constrained) interpolation
of θ(N); blue/orange backgrounds highlight days on which one
model outperforms the other; the dashed black line shows the cu-
mulative precipitation. (b) Average daily soil moisture across the
SoilNet area as obtained from unconstrained/constrained interpo-
lation (orange/blue), the vertically weighted SoilNet observations
(solid green), and an unweighted vertical average of the upper 30 cm
(dashed green); the grey shading represents the range of penetration
depths (D86, the depth within which 86 % of neutrons probed the
soil) in the footprints from the six CRNS sensors closest to the Soil-
Net area (CRNS 3, 8, 17, 18, 24, 25).

garding the vertical representativeness of both the CRNS and
the SoilNet observations.

So, while we have provided evidence that the constrained
interpolation model captures horizontal soil moisture gradi-
ents better than the unconstrained model, the usefulness of
the SoilNet observations in Fendt as reference data appears
to be limited by a range of uncertainties. Future studies might
address this issue by exploring other reference data for such

https://doi.org/10.5194/hess-25-4807-2021 Hydrol. Earth Syst. Sci., 25, 4807–4824, 2021



4822 M. Heistermann et al.: Soil moisture retrieval from a dense CRNS network

benchmark experiences, e.g. roving transects such as those
published by Fersch et al. (2020a).

6 Summary and conclusions

This study is the first attempt to analyse the observations
of a dense CRNS network in a catchment of 1 km2. Us-
ing a comprehensive homogenization process, we demon-
strated the possibility of retrieving soil moisture using a joint
N0 value, capturing characteristic spatio-temporal features of
soil moisture in the study area, and combining elements from
spatial interpolation and geophysical inversion in order to co-
herently, consistently, and continuously represent catchment-
scale soil moisture patterns. In the following, we will high-
light the main lessons of this study as well as its theoretical
and practical implications for future research.

– The standardization of sensitivity is vital but expensive.
Collocating a calibrator probe with most of the CRNS
sensors allowed us to make neutron counts comparable
between different sensor models (as independently ver-
ified using a roving CRNS sensor; see Sect. S2). This
approach is, however, resource intensive: someone has
to move the calibrator, but only after a minimum of 24 h.
It would therefore be helpful, in the future, to systemat-
ically collect and publish sensitivity measurements and
sensor intercomparisons that show the variability in sen-
sitivity between sensor types and between sensors of
the same type. Assuming reasonable temporal stabil-
ity, such a database could support the standardization of
sensitivity in heterogeneous networks and help to quan-
tify the corresponding uncertainties.

– A joint N0 value is a necessary step towards gener-
alization. Our study area features considerable hetero-
geneity in a single square kilometre: organic vs. min-
eral soils, forest patches (with diverse species and age
structures) vs. grassland, the flat valley bottom vs. up-
hill areas, and complex subsurface structures that cause
episodically perched groundwater. This heterogeneity
made it challenging to eliminate the effects of hydrogen
pools other than soil moisture, and to capture the ref-
erence soil moisture required for N0 calibration. Com-
pared to previous experiments with single CRNS sen-
sors, the manual soil sampling campaign was rather
sparse due to limited resources. However, the estima-
tion of a joint N0 value helped us to address these chal-
lenges: it prevented us from overemphasizing specific
(uncertain) features in the data of individual sensors (in
contrast to when each sensor is calibrated individually).
By repeating the N0 estimation in a Monte Carlo anal-
ysis, we confirmed the robustness of the N0 estimate
but also got an idea of the local uncertainties for both
the CRNS-based soil moisture estimate θ(N) and the

reference observations θobs, which we considered the
“ground truth”.

– Dense networks are informative regarding changes in
soil moisture over both space and time. The added value
of a dense CRNS network became particularly appar-
ent as the strong spatial heterogeneity of soil moisture
occurred together with pronounced temporal dynamics
of wetting and drying. The network captured marked
spatial patterns but also indicated that those patterns
varied somewhat over time: when we ranked the loca-
tions according to their average soil moisture, the rank-
ings of some locations remained rather stable while the
rankings of other locations showed pronounced changes
over time. Such changes can be informative with re-
gard to the governing hydrological processes present,
and they demonstrate the added value of dense networks
in comparison to roving CRNS sensors as well as the
need to carefully scrutinize assumptions about the time
invariance of relative spatial patterns.

– Dense networks could be tailored for downscaling and
upscaling. In combination with spatial interpolation
techniques, the dense CRNS network was employed to
represent soil moisture gradients at the scale of tens to
hundreds of metres (within and between CRNS sen-
sor footprints) and to infer the average soil moisture of
the 1 km2 catchment. Future network designs could be
tailored for either downscaling (maximizing the sensor
overlap) or upscaling (maximizing the coverage). The
latter option could be specifically useful to validate hy-
drological models or remote sensing products, or to use
them for upscaling at a larger scale.

– The constrained model is a starting point for a more
general inversion framework in CRNS. The constrained
model interpolates θ(N) under the constraint that the
consistency between the observed neutron count rates
and the resulting soil moisture field is maximized. In
this way, further spatial detail can be obtained from
volume-integrated observations using our physical un-
derstanding of both the observed system and the ob-
servation technology itself. In contrast to a typical geo-
physical inversion, the constrained interpolation uses a
geostatistical instead of a physical model and a heuristic
forward operator instead of a neutron transport model.
We have provided a proof of concept showing how this
approach can improve the representation of horizontal
gradients. The constrained model could hence lead the
way towards a more general inversion framework for
dense CRNS networks. Such a framework could be used
with any type of model m(p) that represents our notion
of soil moisture variation in space, e.g. parametric re-
lationships between soil moisture and proxy variables
or a distributed hydrological model, depending on the
study area and available data. The concept should cer-
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tainly be scrutinized further, for instance by using ad-
ditional reference data (e.g. from CRNS sensor roving)
for benchmarking and by refining the forward operator
for conditions of marked vertical and horizontal hetero-
geneity.

– Dense CRNS networks are expensive but feasible in re-
search environments. They will probably not become
a routine monitoring option in the foreseeable future.
In research, though, they could constitute an important
component for areas of around a square kilometre with,
say, 10–20 CRNS sensors (depending on the research
focus and environment). At that scale, the costs of con-
ventional sensor networks tend to become increasingly
prohibitive, and such measurements are invasive, which
also makes them less versatile in settings with limited
access (e.g. agricultural fields). Dense CRNS networks
could become particularly feasible if they were to be im-
plemented in concerted campaigns, which would allow
research institutions to combine their resources (instru-
mentation as well as ground-truthing resources).

Certainly, this study required some fairly arbitrary deci-
sions, e.g. the choice of interpolation techniques as well as
assumptions about the spatial representativeness of the mea-
sured variables and the sources and ranges of uncertainty.
Step by step, this arbitrariness needs to be reduced in fu-
ture research. But, despite these degrees of freedom, we have
demonstrated how dense CRNS networks can become an-
other valuable option in soil moisture monitoring and hydro-
logical research.

Code and data availability. The data used in this study
are accessible at EUDAT (https://b2share.eudat.eu/records/
282675586fb94f44ab2fd09da0856883) (Fersch et al.,
2020b), and are described in Fersch et al. (2020a).
The data analysis is documented in a Jupyter notebook
(https://doi.org/10.5281/zenodo.4438921 Heistermann, 2021).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-25-4807-2021-supplement.

Author contributions. MH and TF designed the study; MH wrote
the manuscript; TF, MS, and SO co-designed the study and co-wrote
the manuscript. SO proposed the concept of a dense CRNS network.

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The study benefited from the infrastructure of
the Terrestrial Environmental Observatories (TERENO).

Financial support. This research was funded by the Deutsche
Forschungsgemeinschaft (DFG); project 357874777 of research
unit FOR 2694 “Cosmic Sense”.

Review statement. This paper was edited by Nunzio Romano and
reviewed by three anonymous referees.

References

Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M.,
Bogena, H. R., and Looms, M. C.: Status and Perspectives on the
Cosmic-Ray Neutron Method for Soil Moisture Estimation and
Other Environmental Science Applications, Vadose Zone J., 16,
1–11, https://doi.org/10.2136/vzj2017.04.0086, 2017.

Baatz, R., Bogena, H. R., Hendricks-Franssen, H.-J., Huisman,
J. A., Montzka, C., and Vereecken, H.: An empirical veg-
etation correction for soil water content quantification us-
ing cosmic ray probes, Water Resour. Res., 51, 2030–2046,
https://doi.org/10.1002/2014WR016443, 2015.

Baroni, G. and Oswald, S. E.: A scaling approach for the as-
sessment of biomass changes and rainfall interception us-
ing cosmic-ray neutron sensing, J. Hydrol., 525, 264–276,
https://doi.org/10.1016/j.jhydrol.2015.03.053, 2015.

Baroni, G., Scheiffele, L. M., Schrön, M., Ingwersen, J., and Os-
wald, S. E.: Uncertainty, sensitivity and improvements in soil
moisture estimation with cosmic-ray neutron sensing, J. Hydrol.,
564, 873–887, doi10.1016/j.jhydrol.2018.07.053, 2018.

Bayerisches Landesamt für Umwelt: Übersichtsbodenkarte TK25-
Blatt 8132, available at: https://www.lfu.bayern.de/index.htm
(last access: 26 July 2021), 2014.

Blöschl, G. and Grayson, R. (Eds.): Spatial Observations and Inter-
polation, in: chap. 2, Spatial Patterns in Catchment Hydrology –
Observations and Modelling, Cambridge University Press, Cam-
bridge, 17–50, 2000.

Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks-Franssen,
H.-J., and Vereecken, H.: Accuracy of the cosmic-ray
soil water content probe in humid forest ecosystems: The
worst case scenario, Water Resour. Res., 49, 5778–5791,
https://doi.org/10.1002/wrcr.20463, 2013.

Desilets, D., Zreda, M., and Ferré, T. P. A.: Nature’s neu-
tron probe: Land surface hydrology at an elusive scale
with cosmic rays, Water Resour. Res., 46, W11505,
https://doi.org/10.1029/2009WR008726, 2010.

Evans, J. G., Ward, H. C., Blake, J. R., Hewitt, E. J., Morri-
son, R., Fry, M., Ball, L. A., Doughty, L. C., Libre, J. W.,
Hitt, O. E., Rylett, D., Ellis, R. J., Warwick, A. C., Brooks,
M., Parkes, M. A., Wright, G. M. H., Singer, A. C., Boor-
man, D. B., and Jenkins, A.: Soil water content in south-
ern England derived from a cosmic-ray soil moisture observ-
ing system – COSMOS-UK, Hydrol. Process., 30, 4987–4999,
https://doi.org/10.1002/hyp.10929, 2016.

FAO: Crop evapotranspiration – Guidelines for computing crop
water requirements, FAO Irrigation and drainage paper 56,

https://doi.org/10.5194/hess-25-4807-2021 Hydrol. Earth Syst. Sci., 25, 4807–4824, 2021

https://b2share.eudat.eu/records/282675586fb94f44ab2fd09da0856883
https://b2share.eudat.eu/records/282675586fb94f44ab2fd09da0856883
https://doi.org/10.5281/zenodo.4438921
https://doi.org/10.5194/hess-25-4807-2021-supplement
https://doi.org/10.2136/vzj2017.04.0086
https://doi.org/10.1002/2014WR016443
https://doi.org/10.1016/j.jhydrol.2015.03.053
https://www.lfu.bayern.de/index.htm
https://doi.org/10.1002/wrcr.20463
https://doi.org/10.1029/2009WR008726
https://doi.org/10.1002/hyp.10929


4824 M. Heistermann et al.: Soil moisture retrieval from a dense CRNS network

Tech. rep., FAO, available at: http://www.fao.org/3/x0490e/
x0490e00.htm (last access: 26 July 2021), 1998.

Fersch, B., Jagdhuber, T., Schrön, M., Völksch, I., and Jäger, M.:
Synergies for Soil Moisture Retrieval Across Scales From Air-
borne Polarimetric SAR, Cosmic Ray Neutron Roving, and an
In Situ Sensor Network, Water Resour. Res., 54, 9364–9383,
https://doi.org/10.1029/2018wr023337, 2018.

Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper,
V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C.,
Gränzig, T., Förster, M., Güntner, A., Hendricks-Franssen, H.-J.,
Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H., Patil,
A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried, S.,
Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R., Mares,
V., Mollenhauer, H., Völksch, I., and Oswald, S.: A dense net-
work of cosmic-ray neutron sensors for soil moisture observa-
tion in a pre-alpine headwater catchment in Germany, Earth Syst.
Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-
2020, 2020a.

Fersch, B., Francke, T., Heistermann, M., Schrön, M., and Döpper,
V.: A massive coverage experiment of cosmic ray neutron
sensors for soil moisture observation in a pre-alpine catch-
ment in SE-Germany (part I: core data), [data set], EUDAT,
https://b2share.eudat.eu/records/282675586fb94f44ab2fd09,
2020b.

Gao, F. and Han, L.: Implementing the Nelder-Mead simplex al-
gorithm with adaptive parameters, Comput. Optimiz. Appl., 51,
259–277, 2012.

Heistermann, M.: v2.0 cosmic-sense/jfc1-analysis-hess: Af-
ter major revision of the manuscript, [code], Zenodo,
https://doi.org/10.5281/zenodo.4438921, 2021.

Kiese, R., Fersch, B., Bassler, C., Brosy, C., Butterbach-Bahlc, K.,
Chwala, C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn,
C., Klatt, J., Kunstmann, H., Mauder, M., Roediger, T., Smi-
atek, G., Soltani, M., Steinbrecher, R., Voelksch, I., Werhahn,
J., Wolf, B., Zeeman, M., and Schmid, H.: The TERENO Pre-
Alpine Observatory: Integrating Meteorological, Hydrological,
and Biogeochemical Measurements and Modeling, Vadose Zone
J., 17, 1–17, https://doi.org/10.2136/vzj2018.03.0060, 2018.

Köhli, M., Schrön, M., Zreda, M., Schmidt, U., Dietrich, P., and
Zacharias, S.: Footprint characteristics revised for field-scale soil
moisture monitoring with cosmic-ray neutrons, Water Resour.
Res., 51, 5772–5790, https://doi.org/10.1002/2015WR017169,
2015.

Köhli, M., Weimar, J., Schrön, M., and Schmidt, U.: Mois-
ture and humidity dependence of the above-ground
cosmic-ray neutron intensity, Front. Water, 2, 544847,
https://doi.org/10.3389/frwa.2020.544847, 2020.

Landesamt für Digitalisierung, Breitband und Vermessung: Bo-
denschätzung, available at: https://geoservices.bayern.de/wms/
v1/ogc_alkis_bosch.cgi? (last access: 26 July 2021), 2018.

Mohamed, A.-M. O. and Paleologos, E. K. (Eds.): Chapter 16 –
Dielectric Permittivity and Moisture Content, in: Fundamentals
of Geoenvironmental Engineering, Butterworth-Heinemann, Ox-
ford, UK, 581–637, https://doi.org/10.1016/B978-0-12-804830-
6.00016-8, 2018.

OpenStreetMap contributors: Planet dump retrieved from https:
//planet.osm.org (last access: 26 July 2021), available at: https:
//www.openstreetmap.org (last access: 26 July 2021), 2020.

Schattan, P., Baroni, G., Oswald, S. E., Schoeber, J., Fey, C.,
Kormann, C., Huttenlau, M., and Achleitner, S.: Continuous
monitoring of snowpack dynamics in alpine terrain by above-
ground neutron sensing, Water Resour. Res., 53, 3615–3634,
https://doi.org/10.1002/2016WR020234, 2017.

Scheiffele, L. M., Baroni, G., Franz, T. E., Jakobi, J., and Oswald,
S. E.: A profile shape correction to reduce the vertical sensitivity
of cosmic-ray neutron sensing of soil moisture, Vadose Zone J.,
19, e20083, https://doi.org/10.1002/vzj2.20083, 2020.

Schrön, M., Zacharias, S., Köhli, M., Weimar, J., and Dietrich, P.:
Monitoring Environmental Water with Ground Albedo Neutrons
from Cosmic Rays, in: vol. 236, The 34th International Cosmic
Ray Conference, SISSA Medialab, the Hague, the Netherlands,
p. 231, https://doi.org/10.22323/1.236.0231, 2016.

Schrön, M., Köhli, M., Scheiffele, L., Iwema, J., Bogena, H.
R., Lv, L., Martini, E., Baroni, G., Rosolem, R., Weimar,
J., Mai, J., Cuntz, M., Rebmann, C., Oswald, S. E., Diet-
rich, P., Schmidt, U., and Zacharias, S.: Improving calibra-
tion and validation of cosmic-ray neutron sensors in the light
of spatial sensitivity, Hydrol. Earth Syst. Sci., 21, 5009–5030,
https://doi.org/10.5194/hess-21-5009-2017, 2017.

Schrön, M., Zacharias, S., Womack, G., Köhli, M., Desilets, D., Os-
wald, S. E., Bumberger, J., Mollenhauer, H., Kögler, S., Remm-
ler, P., Kasner, M., Denk, A., and Dietrich, P.: Intercomparison
of cosmic-ray neutron sensors and water balance monitoring in
an urban environment, Geosci. Instrum. Method. Data Syst., 7,
83–99, https://doi.org/10.5194/gi-7-83-2018, 2018a.

Schrön, M., Rosolem, R., Köhli, M., Piussi, L., Schröter, I.,
Iwema, J., Kögler, S., Oswald, S. E., Wollschläger, U.,
Samaniego, L., Dietrich, P., and Zacharias, S.: Cosmic-ray
Neutron Rover Surveys of Field Soil Moisture and the
Influence of Roads, Water Resour. Res., 54, 6441–6459,
https://doi.org/10.1029/2017WR021719, 2018b.

Shuttleworth, J., Rosolem, R., Zreda, M., and Franz, T.: The
COsmic-ray Soil Moisture Interaction Code (COSMIC) for use
in data assimilation, Hydrol. Earth Syst. Sci., 17, 3205–3217,
https://doi.org/10.5194/hess-17-3205-2013, 2013.

SoilNet: SoilNet website, available at: http://www.soilnet.de (last
access: 26 February 2020), 2018.

Stockmann, I.: Biomasseschätzung in einem temperierten Mis-
chwald auf der Basis von Höheninformationen und multitem-
poralen RapidEye Daten, University of Potsdam, Potsdam, Ger-
many, 2020.

Weimar, J., Köhli, M., Budach, C., and Schmidt, U.: Large-Scale
Boron-Lined Neutron Detection Systems as a 3He Alterna-
tive for Cosmic Ray Neutron Sensing, Front. Water, 2, 16,
https://doi.org/10.3389/frwa.2020.00016, 2020.

Zhdanov, M. S. (Ed.): Chapter 1 – Forward and Inverse Prob-
lems in Science and Engineering, in: Inverse Theory and Ap-
plications in Geophysics, 2nd Edn., pElsevier, Oxford, 3–31,
https://doi.org/10.1016/B978-0-444-62674-5.00001-3, 2015.

Zreda, M., Desilets, D., Ferré, T. P. A., and Scott, R. L.: Measuring
soil moisture content non-invasively at intermediate spatial scale
using cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402,
https://doi.org/10.1029/2008GL035655, 2008.

Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D.,
Franz, T. E., and Rosolem, R.: COSMOS: the COsmic-ray Soil
Moisture Observing System, Hydrol. Earth Syst. Sci., 16, 4079–
4099, https://doi.org/10.5194/hess-16-4079-2012, 2012.

Hydrol. Earth Syst. Sci., 25, 4807–4824, 2021 https://doi.org/10.5194/hess-25-4807-2021

http://www.fao.org/3/x0490e/x0490e00.htm
http://www.fao.org/3/x0490e/x0490e00.htm
https://doi.org/10.1029/2018wr023337
https://doi.org/10.5194/essd-12-2289-2020
https://doi.org/10.5194/essd-12-2289-2020
https://b2share.eudat.eu/records/282675586fb94f44ab2fd09da0856883
https://doi.org/10.5281/zenodo.4438921
https://doi.org/10.2136/vzj2018.03.0060
https://doi.org/10.1002/2015WR017169
https://doi.org/10.3389/frwa.2020.544847
https://geoservices.bayern.de/wms/v1/ogc_alkis_bosch.cgi?
https://geoservices.bayern.de/wms/v1/ogc_alkis_bosch.cgi?
https://doi.org/10.1016/B978-0-12-804830-6.00016-8
https://doi.org/10.1016/B978-0-12-804830-6.00016-8
https://planet.osm.org
https://planet.osm.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://doi.org/10.1002/2016WR020234
https://doi.org/10.1002/vzj2.20083
https://doi.org/10.22323/1.236.0231
https://doi.org/10.5194/hess-21-5009-2017
https://doi.org/10.5194/gi-7-83-2018
https://doi.org/10.1029/2017WR021719
https://doi.org/10.5194/hess-17-3205-2013
http://www.soilnet.de
https://doi.org/10.3389/frwa.2020.00016
https://doi.org/10.1016/B978-0-444-62674-5.00001-3
https://doi.org/10.1029/2008GL035655
https://doi.org/10.5194/hess-16-4079-2012

	Title
	Abstract
	Introduction
	The retrieval of soil water content from cosmic-ray neutrons
	Beyond soil moisture retrieval in isolated sensor footprints
	Specific objectives
	Article structure

	Study site
	Data
	CRNS measurements
	Incoming cosmic-ray neutron flux and meteorological observations
	Local measurements of soil water content and other soil variables
	Permanent soil sensor network (SoilNet)
	Manual soil sampling and measurement of soil water content

	Vegetation and biomass

	Methods
	Homogenization of neutron intensities over space and time
	Standardization of sensitivity
	Accounting for atmospheric effects
	Accounting for the effects of vegetation
	Estimating average soil properties per sensor footprint

	Calibration of N0
	Exploring the uncertainty of N0 calibration
	Soil moisture retrieval and spatial interpolation
	Unconstrained model
	Constrained model
	The forward operator

	Comparison to the local soil sensor network (SoilNet)

	Results and discussion
	Can we find a uniform N0 for the entire study area?
	Spatial and temporal patterns in CRNS-based soil moisture
	How does soil moisture vary within and between the sensor footprints?
	Spatial interpolation of CRNS-based soil moisture
	Comparison of spatial patterns against SoilNet observations


	Summary and conclusions
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

