

VIRTUALIZING PHYSICAL SPACE

Sebastian Lennard Marwecki

Hasso Plattner Institute, Department of

Digital Engineering, University of Potsdam

Dissertation submitted in partial fulfillment

of the requirements for the degree of

– Dr. rer. nat –

Computer Science, Human-Computer Interaction

January 2021

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution-NonCommercial-ShareAlike 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this license visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Advisor:
Prof. Dr. Patrick Baudisch (Hasso Plattner Institute)

Reviewers:
Prof. Dr. Harald Reiterer (University of Konstanz)
Prof. Dr. Florian ‘Floyd’ Mueller (Monash University, Melbourne)

Members of the committee:
Prof. Dr. Andreas Polze (Hasso Plattner Institute, head of committee)
Prof. Dr. Robert Hirschfeld (Hasso Plattner Institute)
Prof. Dr. Felix Naumann (Hasso Plattner Institute)

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-52033
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-520332

 “The ideal space must contain elements of magic,

 serenity, sorcery and mystery.”

― Luis Barragan

“Berlin-Charlottenburg, 1 room, 38m2, 1089€/month”

― Immobilienscout.com

i

ABSTRACT

The true cost for virtual reality is not the hardware, but the physical

space it requires, as a one-to-one mapping of physical space to virtual

space allows for the most immersive way of navigating in virtual reality.

Such “real-walking” requires physical space to be of the same size and

the same shape of the virtual world represented. This generally prevents

real-walking applications from running on any space that they were not

designed for.

To reduce virtual reality’s demand for physical space, creators of

such applications let users navigate virtual space by means of a treadmill,

altered mappings of physical to virtual space, hand-held controllers, or

gesture-based techniques. While all of these solutions succeed at

reducing virtual reality’s demand for physical space, none of them reach

the same level of immersion that real-walking provides.

Our approach is to virtualize physical space: instead of accessing

physical space directly, we allow applications to express their need for

space in an abstract way, which our software systems then map to the

physical space available. We allow real-walking applications to run in

spaces of different size, different shape, and in spaces containing

different physical objects. We also allow users immersed in different

virtual environments to share the same space.

ii

Our systems achieve this by using a tracking volume-independent

representation of real-walking experiences — a graph structure that

expresses the spatial and logical relationships between virtual locations,

virtual elements contained within those locations, and user interactions

with those elements. When run in a specific physical space, this graph

representation is used to define a custom mapping of the elements of the

virtual reality application and the physical space by parsing the graph

using a constraint solver. To re-use space, our system splits virtual

scenes and overlap virtual geometry. The system derives this split by

means of hierarchically clustering of our virtual objects as nodes of our

bi-partite directed graph that represents the logical ordering of events of

the experience. We let applications express their demands for physical

space and use pre-emptive scheduling between applications to have

them share space. We present several application examples enabled by

our system. They all enable real-walking, despite being mapped to

physical spaces of different size and shape, containing different physical

objects or other users.

We see substantial real-world impact in our systems. Today’s

commercial virtual reality applications are generally designing to be

navigated using less immersive solutions, as this allows them to be

operated on any tracking volume. While this is a commercial necessity

for the developers, it misses out on the higher immersion offered by real-

walking. We let developers overcome this hurdle by allowing

experiences to bring real-walking to any tracking volume, thus

potentially bringing real-walking to consumers.

iii

ZUSAMMENFASSUNG

Die eigentlichen Kosten für Virtual Reality Anwendungen entstehen

nicht primär durch die erforderliche Hardware, sondern durch die

Nutzung von physischem Raum, da die eins-zu-eins Abbildung von

physischem auf virtuellem Raum die immersivste Art von Navigation

ermöglicht. Dieses als „Real-Walking“ bezeichnete Erlebnis erfordert

hinsichtlich Größe und Form eine Entsprechung von physischem Raum

und virtueller Welt. Resultierend daraus können Real-Walking-

Anwendungen nicht an Orten angewandt werden, für die sie nicht

entwickelt wurden.

Um den Bedarf an physischem Raum zu reduzieren, lassen

Entwickler von Virtual Reality-Anwendungen ihre Nutzer auf

verschiedene Arten navigieren, etwa mit Hilfe eines Laufbandes,

verfälschten Abbildungen von physischem zu virtuellem Raum,

Handheld-Controllern oder gestenbasierten Techniken. All diese

Lösungen reduzieren zwar den Bedarf an physischem Raum, erreichen

jedoch nicht denselben Grad an Immersion, den Real-Walking bietet.

Unser Ansatz zielt darauf, physischen Raum zu virtualisieren:

Anstatt auf den physischen Raum direkt zuzugreifen, lassen wir

Anwendungen ihren Raumbedarf auf abstrakte Weise formulieren, den

unsere Softwaresysteme anschließend auf den verfügbaren physischen

iv

Raum abbilden. Dadurch ermöglichen wir Real-Walking-

Anwendungen Räume mit unterschiedlichen Größen und Formen und

Räume, die unterschiedliche physische Objekte enthalten, zu nutzen.

Wir ermöglichen auch die zeitgleiche Nutzung desselben Raums durch

mehrere Nutzer verschiedener Real-Walking-Anwendungen.

Unsere Systeme erreichen dieses Resultat durch eine Repräsentation

von Real-Walking-Erfahrungen, die unabhängig sind vom gegebenen

Trackingvolumen – eine Graphenstruktur, die die räumlichen und

logischen Beziehungen zwischen virtuellen Orten, den virtuellen

Elementen innerhalb dieser Orte, und Benutzerinteraktionen mit diesen

Elementen, ausdrückt. Bei der Instanziierung der Anwendung in einem

bestimmten physischen Raum wird diese Graphenstruktur und ein

Constraint Solver verwendet, um eine individuelle Abbildung der

virtuellen Elemente auf den physischen Raum zu erreichen. Zur

mehrmaligen Verwendung des Raumes teilt unser System virtuelle

Szenen und überlagert virtuelle Geometrie. Das System leitet diese

Aufteilung anhand eines hierarchischen Clusterings unserer virtuellen

Objekte ab, die als Knoten unseres bi-partiten, gerichteten Graphen die

logische Reihenfolge aller Ereignisse repräsentieren. Wir verwenden

präemptives Scheduling zwischen den Anwendungen für die

zeitgleiche Nutzung von physischem Raum. Wir stellen mehrere

Anwendungsbeispiele vor, die Real-Walking ermöglichen – in

physischen Räumen mit unterschiedlicher Größe und Form, die

verschiedene physische Objekte oder weitere Nutzer enthalten.

Wir sehen in unseren Systemen substantielles Potential. Heutige

Virtual Reality-Anwendungen sind bisher zwar so konzipiert, dass sie

auf einem beliebigen Trackingvolumen betrieben werden können, aber

aus kommerzieller Notwendigkeit kein Real-Walking beinhalten. Damit

entgeht Entwicklern die Gelegenheit eine höhere Immersion

herzustellen. Indem wir es ermöglichen, Real-Walking auf jedes

Trackingvolumen zu bringen, geben wir Entwicklern die Möglichkeit

Real-Walking zu ihren Nutzern zu bringen.

v

DECLARATION OF AUTHENTICITY

I declare that all material presented is my own work, or collaborations

in which I was always the scientific lead, or fully and specifically

acknowledged wherever adapted from other sources. This dissertation

has not been previously submitted, in part or whole, to any university

or institution for any degree, diploma, or other qualification.

Some ideas and figures have been previously published. Specific

chapters and sections that directly derived from these publications are

listed in the following:

Ich erkläre, dass es sich bei allen vorgestellten Materialien um meine

eigene Arbeit bzw. um Kollaborationen handelt, bei denen ich stets die

wissenschaftliche Leitung innehatte, oder die vollständig und spezifisch

anerkannt werden, wenn sie aus anderen Quellen adaptiert wurden.

Diese Dissertation wurde bisher weder ganz noch teilweise an

irgendeiner Universität oder Institution für irgendeinen Abschluss, ein

Diplom oder eine andere Qualifikation eingereicht.

Einige Ideen und Bilder sind bereits veröffentlicht. Hier gelistet sind

die Kapitel und Sektionen, die direkt aus diesen Veröffentlichungen

abgeleitet sind:

vi

▪ Chapter 3 was published and presented as: Sebastian Marwecki,

Maximilian Brehm, Lukas Wagner, Lung-Pan Cheng, Florian ‘Floyd’

Mueller, and Patrick Baudisch. 2018. VirtualSpace - Overloading

Physical Space with Multiple Virtual Reality Users. In Proc. CHI ‘18,

Paper 241.

▪ Chapter 4 was published and presented as: Sebastian Marwecki,

Andrew D. Wilson, Eyal Ofek, Mar Gonzalez Franco, and Christian

Holz. 2019. Mise-Unseen: Using Eye Tracking to Hide Virtual Reality

Scene Changes in Plain Sight. In Proc. UIST ’19, pg. 777–789.

▪ Chapter 5 was published and presented as: Sebastian Marwecki and

Patrick Baudisch. 2018. Scenograph: Fitting Real-Walking VR

Experiences into Various Tracking Volumes. In Proc. UIST ’18, pg.

511–520.

Sebastian Marwecki

Potsdam, January 15th 2021

vii

ACKNOWLEDGEMENTS

More than work, a thesis requires the opportunity and privilege to apply

it. I wish to thank all the people who gave me this opportunity, the ones

who advised me professionally, and the ones who supported me

personally. Here I present my quixotic attempt at expressing my

gratitude to them to do their effort some justice.

I owe this thesis to numerous people at HPI. Foremost, I want to

thank my supervisor Professor Patrick Baudisch. Thank you for your

many lessons, lessons in research vision, in teaching, lessons in distilling

and conveying structured thought, and in critical thinking. True, also

lessons in resilience, but more importantly the insight that research is

only truly outstanding if focused. I admire and I have learned from your

dedication to computer science and research. Thank you for your

continuous belief in the importance of this work.

I thank the whole human-computer interaction lab at HPI. To the

ones who arrived with me, Robert Kovacs and Thijs Roumen: thank you

for the many times we could support each other as colleagues. To the

ones who came after, Jotaro Shigeyama, Shohei Katakura, Abdullah

Muhammad: thank you for learning from one another. To the ones who

came before, Lung-Pan Cheng, Oliver Schneider, Pedro Lopes, Stefanie

Müller, Alexandra Ion: the same. And thank you for proving that one’s

viii

effort will eventually pay off. It was a pleasure to work with and among

all of you.

The students at HPI rightfully rank amongst the best and it is

humbling to work with them. Thank you Maximilian Brehm for your

persistency and your ideas which shaped VirtualSpace. It shows. Thank

you Hendrik Bomhardt, Georg Tennigkeit, Jannis Bolik, Lukas Wagner,

Lisa Ihde, and especially Lukas Fritzsche, who I could create all the

improbable prototypes with, some of which found their way into this

thesis. Thank you Moritz Loos, and Klara Seitz, Jan-Tobias Matysik,

Alexander Popiak, and Max Jendruk for your work on Stuff Haptics –

this project rocks because of you.

The research school on service oriented systems engineering has

provided me with the opportunity to spend the last years on this topic.

They guided me with an abundance of ideas and references. I thank all

its members and especially its Professors Andreas Polze, Felix Naumann

and Robert Hirschfeld, as well as Sabine Wagner for all their effort and

enabling me throughout. I thank the helpdesk, the staff at HPI for all the

small and large things we do not notice often enough.

Thanks to all the people who helped shaping my mind the right way

along the way. Thanks to Professor Harald Reiterer, thanks to Professor

Florian ‘Floyd’ Mueller, thanks to all my old lab mates everywhere,

thanks to Professor Narcís Parés at Universitat Pompeu Fabra, thanks to

the folks at Microsoft Research: Andy, Eyal, Christian and Mar. Thanks

for all the exemplary portrayals of what it is a researcher should do.

Working in research entails a certain probability for setbacks. I want

to thank my family for their relentless support, thanks to my mum, to

my brothers Daniel and Simon, and my granny, my favorite proof reader.

Thanks to my Lindy Hop crew, my friends, and all people who enabled

this unknowingly. And thank you Natalie, for everything.

Lastly, I also thank you, dear reader, for your interest. This work is

dedicated to the spaces of yours it may occupy – in your shelves, clouds,

calendars, and in your heads.

ix

TABLE OF CONTENTS

Abstract ... i

Zusammenfassung ... iii

1 Introduction ... 13

1.1 Virtualizing physical space, an example 17

1.2 Virtualization in the history of computing 18

1.3 Contribution .. 20

1.4 Structure of this dissertation ... 21

2 Related work .. 23

2.1 Real-walking and space compression techniques 23

2.2 Passive haptics in mixed reality ... 25

2.3 Procedurally generated mixed reality ... 27

3 Virtualizing physical space for concurrent use 33

3.1 VirtualSpace: Overloading space with multiple users 33

3.2 VirtualSpace algorithm .. 39

3.3 Example applications ... 43

3.4 Design considerations for applications 45

3.5 Implementation and hardware ... 47

x

3.6 User study .. 47

3.7 Conclusion on concurrent use of virtualized space 53

4 Virtualizing props for concurrent use .. 54

4.1 Synchronized use of physical props for haptic feedback 55

4.2 Multi-purposing of props through covert scene changes......... 56

4.3 Conclusion on concurrent use of virtualized props 60

5 Virtualizing the extent and shape of physical space 61

5.1 Scenograph: 1:1 experiences for any physical space 61

5.2 Our tracking volume-independence data structure 63

5.3 Scenograph algorithm .. 66

Step 1: Take in given physical space .. 67

Step 2: Pack virtual objects into given space 68

Step 3: Re-use space by splitting spatial nodes 68

Step 4: Instantiate the experience .. 71

5.4 Implementation and hardware ... 71

5.5 User study .. 72

5.6 Conclusion on space-independent experiences 77

6 Virtualizing sets of props within physical space 79

6.1 Stuff-Haptics: 1:1 experiences for any set of props 79

6.2 Our space- and prop-independent data structure 82

6.3 Stuff-Haptics extended algorithm .. 85

Step 1: Take in geometry of physical props 86

Step 2: Map virtual objects onto geometry 87

Step 3: Handle insufficient props and space 90

Step 4: Instantiate the experience .. 95

6.4 Implementation ... 96

6.5 Technical evaluation, assessing parametric designs 96

6.6 User studies ... 98

6.7 Conclusion on space- and prop-independence 101

xi

7 Conclusion and Discussion .. 103

7.1 Summary .. 103

7.2 Benefits of virtualizing physical space 104

7.3 Open challenges .. 108

7.4 Final remarks ... 113

8 References .. 114

12

13

1 INTRODUCTION

The true cost for virtual reality is not the hardware it requires, it is

physical space.

The most immersive way of navigating through virtual reality is to

allow users to freely walk in the physical world. This one-to-one

mapping of the user’s physical motion to the motion in the virtual world

is known as real-walking [95]. Real-walking leads to the highest levels of

immersion when compared to simulated walking using treadmills [20]

or to virtual locomotion techniques such as teleportation [11] or walking-

in-place [93].

One would expect real-walking to become the dominant navigation

technique, but this is far from true. Virtual reality arcades that employ

real-walking, such as The Void [101] or Dreamscape [25], among others,

have not caught on the same way consumer-grade virtual reality

hardware has, such as Oculus [72] or Vive [100]. These tracking systems

are capable of enabling real-walking in a room-sized tracking volume.

Instead of requiring users to go to the setup, these systems allow users

to bring virtual reality experiences into their preferred environments,

specifically their living rooms. However, when looking at experiences

available for room-scale virtual reality, surprisingly few use real-

walking. Most experiences still employ simulated walking or virtual

locomotion techniques, despite the reduced experience. How can this be?

14

The reason is that while creators tailor real-walking experiences to fit

onto tracking spaces of specific size and shape, only a minority of

consumers have that exact tracking space available.

For creators the typical workflow demands real-walking

experiences to be designed with specific physical tracking volumes in

mind. The workflow is to initially determine the size and shape of the

available tracking volume, such as the creator’s research lab or some

standardized installation, and then design the virtual world for that

volume accordingly. Because of this, virtual reality experiences tend to

be specific to the size and shape of the tracking volume they were

designed for.

For most consumers real-walking is being made impractical due to

its high demand of physical space. For most consumers the rent for

example of 4m x 4m surpasses the cost of a virtual reality headset and

tracking system in a matter of a few months. If any, consumers’ available

physical space varies widely. Only 0.3% of Steam users can dedicate this

amount of space to virtual reality use [87]. The problem is further

aggravated as systems such as Steam require dedicated tracking spaces,

which are rectangularly shaped and also free of any physical objects,

while users’ physical environments tend to be obstructed with physical

objects, resulting in various shapes of free space.

As a consequence creators do not design for real-walking. Creators

of virtual reality experiences at home are faced with a choice: (1) to

artificially narrow down their market by designing for niche tracking

volumes or (2) abandon real-walking – creators have picked the latter.

Instead they let users navigate by teleporting around, sacrificing the

added immersion real-walking offers, with games that employ real-

walking being the exception [94] or still in development [92]. We find

ourselves in a situation where users have paid for a virtual reality

system capable of real-walking but have essentially no real-walking

contents even if they have space available. Creators cannot afford to

Introduction | 15

create multiple instances of their content for various tracking volumes.

The current approach of designing experiences that are tailored to users’

individual tracking volumes becomes impossible and creators design for

small spaces to reach a broader audience.

Researchers have proposed several techniques to reduce the space

demands of real-walking. These techniques, however, still mandate

specific tracking volumes. Redirected walking [74] folds long walking

paths into a finite tracking volume and has sparked a field of research,

but still requires very large installations to take effect (4m x 10m).

Impossible spaces [89] folds virtual geometry and also considerably

reduces space requirements. Neither approach ultimately addresses the

problem that applications still assume a fixed tracking volume.

The most promising approach is to automatically reshape virtual

environments to fit arbitrary room shapes. A substantial step in this

direction is Oasis [85], which enables customization of virtual worlds to

whatever physical space the user has available. Users scan their tracking

volume with a depth camera, and from this data, Oasis creates a static

virtual location that fits into the space. This makes it easier to fit real-

walking content into arbitrary room shapes.

The reason that also this technique has not been adopted by creators

lies in the workflow described earlier, in which creators co-design

virtual experiences and the physical space they occupy. Simply put,

creators still use space to express any virtual experience. This often

entails a narration, or story. Procedural content for real-walking virtual

reality as of now has little means of describing such experiences

independent of space or offering fallbacks in cases where content for

narration does not fit into the physical space available. While research

has shown how to adapt virtual environments, it has yet to show how to

create any adaptable experience.

16

Figure 1: (a) Traditionally, designers of real-walking experiences have specific tracking

volumes in mind. This rendition of the fairy tale ‘Goldilocks and the three bears’ consists

of three 25m2 locations filled with interactive assets (‘bowls of porridge’, ‘bears’ chairs’,

‘bears’ beds’). Users change locations using corridors as portals [87]. Unfortunately,

specifying the tracking volume prevents the experience from running on smaller tracking

volumes. (b) Our software tool uses a tracking volume-independent representation of

real-walking experiences to instantiate experiences for tracking volumes of different size

and shape. Here we use our system to map ‘Goldilocks’ to an L-shaped 8m2 space. While

maintaining the narrative structure, it splits the three locations into six smaller ones, each

fitting the new tracking volume.

This thesis addresses the question in how far real-walking experiences

can be created independently of the physical space they occupy. We

cannot change the invariant in our problem, the various sizes and shapes

of tracking volumes available to consumers. However, we can address

the second part of the problem, the creators’ workflow of co-designing

virtual experiences and the space they occupy. Creators should still be

able to design any narration they want to convey. However, these

experiences should neither consume exorbitant amounts of space, nor

should they require specific shapes of space, or the absence or presence

of specific physical objects in that space.

Our approach will be to demonstrate that space can be virtualized.

Real-walking experiences that run on such virtualized physical space are

independent of the size and shape of the physical space the user has

available and any physical objects that the user contains within that

space, and they allow for any expressive storyline that their creators

envision. By making real-walking experiences independent of any

particular tracking volume, virtualized physical space provides the

missing component for making real-walking experiences available to

consumers.

a b

Introduction | 17

1.1 V IRTUALIZING PHYSICAL SPACE , AN EXAMPLE

Figure 1 shows an example of a real-walking experience that runs on

virtualized physical space, ‘Goldilocks and the three bears’. This

experience is enabled by one of our software systems. We achieve two

of our primary goals, firstly providing independence from the amount

and shape of physical space, and secondly allowing for expressive

storylines. However, it still assumes that the physical space is devoid of

physical objects, or props for short.

Figure 2 shows an extension of this software system. We achieve our

third goal and enhance the example of ‘Goldilocks’ to incorporate

whatever props users have available within their tracking volumes.

Figure 2: (a) The user invokes our virtual reality experience, ‘Goldilocks and the three

bears’, in their regular living environment, which is full of physical objects, like tables,

chairs and countertops filled with appliances. (b) Our software tool translates this

physical environment into our virtual ‘Goldilocks’ experience and provides real-walking

by shaping its virtual environment to the physical space available, it provides passive

haptics by automatically lining up relevant virtual objects with physical objects of

matching haptic qualities, such as the ‘bears’ three bowls of porridge’ with the physical

water kettle, and ‘papa bear’s chair’ with the physical table. (c) In another room, our

software tool redesigns the virtual experience on the fly. (d) It now places the ‘bowls of

porridge’ onto the physical window sill above the physical heater and the chair onto the

physical living room table.

ca

b d

18

1.2 V IRTUALIZATION IN THE HISTORY OF COMPUTING

Our approach of making real-walking experiences independent from

available physical space is inspired by this evolution of computing itself.

In the 1950s and 60s, the invention of operating systems made

application programs independent of the physical hardware. Instead of

requiring application programs to run on ‘bare-metal’ and accessing

systems resources directly, operating systems allow applications to run

on arbitrary computers and architectures by providing an abstraction of

the underlying physical hardware, so that applications access their

system’s resources through an application programming interface.

For example, instead of accessing the systems physical memory

directly, applications refer to addresses of virtual memory, which the

operating system then maps to the system’s actual physical memory

using a memory management unit. This simple mechanism of managing

space has allowed computer systems to deal more gracefully with

limitations of physical memory space. For example, it allowed computer

systems to load programs larger than the actual physical memory, or to

load multiple programs into the same memory at once.

Figure 3: The invention of operating systems made application programs independent

of the underlying physical hardware. This thesis makes real-walking applications

independent from physical space.

We very much still live in the 1950s with regard to how today’s virtual

reality systems deal with space. These systems still access their primary

resource, physical space, directly and with all the resulting limitations;

dedicated

physical hardware

developer

application

1960s

developer

application

arbitrary

physical hardware

operating

system

dedicated

physical space

real-walking

experience

2020s

real-walking

experience

arbitrary

physical space

virtualized

physical space

Introduction | 19

physical space can be used by a single user only, if an experience

requires more space than available it simply fails, and so on. Every real-

walking application today is basically an embedded system. The

problem that application developers have faced before the onset of

operating system translates directly to the problem that creators of real-

walking applications face today. It now is the impracticability of

developing for various amounts and shapes of physical space, and

various sets of physical props. Real-walking applications still directly

access their physical resources without any layer of abstraction.

This thesis takes paradigms of operating system paradigms that

drove the evolution in computing and applies them to real-walking

applications. We will introduce abstractions between real-walking

experiences and physical space, the main resource for virtual reality. In

our systems, real-walking experiences do not access space directly

anymore, but instead access space through a range of application

programming interfaces. This allows our software systems, which detail

parts of a larger ‘space operating system’, to manage physical space.

Virtualization eased, but also changed software development.

Consequently, developing for virtual instead of physical space is

different. Creators of real-walking applications today use space to

express their desired user experience, similar to programmers having

used assembler or machine code. With our approach, creators will not

program on ‘bare-metal’ anymore, instead they express the experience

on a higher level that is independent of physical space, similar to the

development of languages such as C or Fortran. By first principle

analysis creators primarily want to convey a story to the users, a

concatenation of events that entail user choices and stage-setting.

Arguably space has been the most intuitive tool for this so far. However,

a story can be expressed using different tools than space. We define a

tracking volume-independent representation of real-walking

experiences, which creators produce through an interface. Through this

representation, real-walking experiences become modular and re-useable.

20

Our systems work with these independent representations of real-

walking experiences to manage physical space. One of our systems is

akin to a space memory management unit. Instead of managing

independent processes on the same memory, it manages users

immersed in different virtual environments and their access to the same

physical space. Schedulers, namely fixed priority pre-emptive

scheduling, manage these multiple applications over time. Our systems

deal with differently sized and shaped physical space, as found in space

fragmentation. We take in the idea of device drivers so that virtual

objects can map to arbitrary physical props. Our systems compile real-

walking experiences by arranging virtual objects for specific spaces, they

link groups of compiled and assembled objects together and they load

them onto physical space.

Altogether, virtual reality systems that inherit the benefits of

operating systems can deal more gracefully with limitations of physical

space. For example, experiences access virtual space to have more space

than physically present, multiple experiences can share the same

physical space, and most importantly, experiences can run on different

sets of physical hardware.

1.3 CONTRIBUTION

Our main contribution is providing an abstraction layer between real-

walking experiences and the physical space they use, by drawing from

the field of operating systems. At the core of this abstraction is a tracking

volume-independent representation of virtual reality experiences that

offer real-walking or passive haptics, as expressed by creators. This

representation can be interpreted through our software systems to be

instantiated in any tracking volume, specifically tracking volumes that

can be shared with other people (VirtualSpace), that can have any size

and shape (Scenograph), that contain limited sets of physical props

(Mise Unseen) or arbitrary sets of physical props or room geometry

(Stuff-Haptics).

Introduction | 21

Making real-walking experiences independent of the user’s physical

space will have substantial commercial impact for virtual reality systems,

as the problem of requiring specific physical spaces has all but stopped

the proliferation of real-walking due to developers’ reluctance to require

users to have access to that space. Future virtual reality applications will

run on a wide range of installations and will soar past current limitations

by accessing additional virtual space, sharing resources, and building on

re-useable high level descriptions of real-walking content.

1.4 STRUCTURE OF THIS DISSERTATION

This dissertation is structured as follows:

In chapter 2 we introduce relevant research on related work,

specifically the subjects of real-walking, passive haptics, and procedural

content in mixed reality.

In chapter 3 we describe how to apply virtualization to achieve

concurrent use of physical space. We present overloading, a technique

that allows multiple users immersed in different real-walking

experiences to share the same physical space at the same time. Our

system divides the overall tracking space into computationally

determined individual tiles and one to each application. Frequent

maneuvers then allow applications to incentivize users to walk across the

entire physical space, thereby progressing each application’s narrative

and to prevent users from noticing that they are confined to a tile. This

strategy enables our system to achieve packings of high density, such as

four users in 16m2.

In chapter 4 we describe how to achieve concurrent use not only

with physical space, but with physical props as well. We show different

techniques to efficiently use physical props into virtual reality

experiences. The first technique allows multiple users immersed in

different virtual worlds synchronously to use the same physical prop.

The second technique maps multiple potential virtual objects to single

22

physical prop at runtime by utilizing the concept of inattention

blindness together with eye-tracking data.

In chapter 5 we present how virtualization makes real-walking

experiences independent of the extent and shape of physical space. We

represent real-walking experiences with a complex storyline in a way

that is agnostic to any tracking volume. This representation is not spatial

until instantiated into tracking volumes that can have any size and shape.

This allows creators of real-walking experiences to define storylines

independent of space, and it allows users to instantiate the experience to

whatever tracking volume they have available.

In chapter 6 we present how to apply virtualization to achieve

independence not only with regard to space, but also to the physical

props contained within, so that more spaces can be used by the same

real-walking experience. We build on our existing systems so that

storylines for real-walking applications can remain complex and they

can still run in tracking volumes of arbitrary size and shape, while

additionally they can now contain any set of physical props. These can

be limited and uncurated set of props, specifically stuff already found in

the home, such as hairdryers, half-used candles, etc. It allows for

different sets of props as well as switching props at runtime. It

specifically also allows creators to choose between different automated

solutions for handling limited prop sets; re-using props or altering the

storyline. Our system achieves this by combining a story’s structure and

its parametric models into a space- and prop-independent

representation of a real-walking experience.

In chapter 7 we conclude this thesis by discussing the impact of

virtualizing physical space on a broader level, sketching out future uses,

and outlining key directions for future research.

23

2 RELATED WORK

This thesis builds upon work on multiple fields: real-walking and space

compression techniques, passive haptics and opportunistic use of props,

and procedurally generated content for mixed reality including its

layouting algorithms and data structures for representing story

narratives.

2.1 REAL-WALKING AND SPACE COMPRESSION TECHNIQUES

While walking in virtual reality can be enabled by omni-directional

treadmills [20, 82], it is largely simulated with virtual locomotion

techniques such as walking-in-place [93] or teleportation [11]. However,

researchers agree that real-walking, a continuous one-to-one mapping

of physical to virtual locomotion, leads to the highest user satisfaction

[95]. Real-walking has high space requirements, which researchers have

tried to reduce with several techniques, such as resetting [103], which

rotates or repositions users once they hit the tracking volume’s borders.

However, as these techniques perceptibly interrupt or alter the one-to-

one mapping of physical to virtual movement, the immersive quality of

real-walking is reduced. This is explained by the fact that users

inherently prefer to rely on known real-world concepts when learning

and applying any interaction technique, see Blended Interaction [47]. This

very much includes walking for virtual locomotion.

24

The following approaches reduce space requirement for real-walking,

either by altering the one-to-one mapping, by altering the virtual

environment, or by sharing physical space.

ALTERING THE MAPPING OF PHYSICAL TO VIRTUAL MOTION

There exists a multitude of virtual locomotion techniques [56], all of

which in one way or another alter the motion mapping.

For example, Seven league boots [45] virtually scale the user’s

movements to cover a larger virtual area while walking.

Razzaque et al. [74] found that redirected walking, which folds long

walking paths into a finite tracking space, can lower the amount of space

required for walking in virtual reality (Figure 3). This breaks the one-to-

one mapping only unperceivably. Redirected walking benefits from the

a priori knowledge of the virtual environment, onto which the walking

paths can be mapped, as a vast body of research shows [12, 22, 41, 90].

Even with the constraint of a priori setting of walking paths, this

approach is sub-perceptible only for large tracking volumes (e.g., 4m x

10m [74]). For smaller spaces, complementary fallback techniques such

as resetting [103] are needed, which disrupt the walking experience.

Figure 3: Techniques like redirected walking [72] compress space and reduce space

demand. (a) This technique folds virtual walking paths (blue) into finite tracking volumes

(red), so that (b) virtual environments can appear larger than the tracking volume the

user has available.

a b

Related work | 25

ALTERING THE VIRTUAL ENVIRONMENT

In impossible spaces, Suma et al. [89] lets virtual rooms unnoticeably

overlap to compress space (Figure 4). As impossible spaces uses change

blindness [88], it requires large amounts of space to be sub-perceptible

(9m x 9m [88]). However, even when the overlap is noticeable this

technique still enables enjoyable experiences, like the commercially

available game Unseen Diplomacy, a game with relative success [94] that

uses only a fairly small space (4m x 3m). Impossible spaces can be

combined with redirected walking [53].

Figure 4: Impossible spaces [89] compresses (a) this space by (b) letting room 1 and 2

overlap. The different rooms are loaded into the environment at runtime, while the user

is in the corridor below.

SHARING PHYSICAL SPACES

Real-walking naturally extends to multiple users. Sra et al. [86]

developed virtual reality applications that allow sharing the same

physical space between multiple users in the same virtual environment,

albeit at a virtual distance. Redirected walking has been shown to also

apply to multiple users [5, 43], but still has a relatively high risk of

collisions.

2.2 PASSIVE HAPTICS IN MIXED REALITY

Passive haptics [40] increases immersion in virtual reality by making all

virtual objects in a virtual scene tangible through co-located physical

props. Hinckley et al. pioneered the concept by using generally passive

a b

26

and low-fi props. Passive haptics can enhance the sense of presence

(Figure 5). In a study by Hoffman [42], participants in virtual

environment could guess an object’s properties, such as the weight of a

teapot more accurately if it had been given a physical representation. In

a study by Insko [44], participants immersed in a virtual environment

crossed a virtual pit by balancing on a ledge. Behavioral presence, heart

rate, and skin conductivity were affected more if the ledge was created

using a physical wooden plank.

Figure 5: Passive haptics [40] matches (a) a virtual environment with (b) matching

physical counterparts (physical props).

Passive haptics is used in augmented reality as well. Low et al. project

different virtual worlds into the same physical room using Styrofoam

walls [58]. VHMR allows to both see and touch virtual objects [96].

Passive haptics requires physical objects that match virtual

geometries to align prior to interaction. This limits their use to pre-

constructed places such as labs or virtual reality arcades, such as The

Void [101] and others [25, [106]]. Passive haptics experiences have not

caught on for home use, as such experiences will not be run often

enough to justify the expense, time and storage effort for new passive

haptics props for every new experience.

RE-CONFIGURABLE AND RE-USABLE PROPS

Props can be re-configurable or assembled from scratch. VirtualBricks [4]

and TanGi [28] are sets of small props that form versatile larger props.

This configuration takes time and does not scale well. TurkDeck [15]

a b

Related work | 27

allows for large-scale passive haptics, but requires human actuators as a

trade-off.

Props can be re-used. Haptic Retargeting [6] matches multiple small

objects onto only one prop by altering the mapping of physical to virtual

body motion. AutoTurk [13] uses the impossible spaces approach [87] to

re-use props.

OPPORTUNISTIC USE OF PROPS

Instead of requiring specific physical props, researches have

opportunistically paired virtual objects with arbitrary objects or even

household items. Opportunistic controls [37], for example, connect the

displayed environment to physical surfaces that are re-purposed to

provide haptic responses to specific widget-like digital controls, such as

sliders and buttons. Using a physical tabletop as an interface, ZuneBuggy

[67] was an early example of how physical properties can be integrated

into virtuality.

Combining opportunistic use with passive haptics, substitutional

reality [79] investigated the limits of mismatches between physical and

virtual objects (Figure 6a+b). One way to tackle the resulting mismatch

of virtual-to-physical object pairing is by redirecting users’ movement

with retargeting touches [107], quite similar to redirected walking, a

concept that has been re-used [17, 49]. Another way to tackle the

mismatch is to adapt the virtual environment. Annexing Reality [39]

defines its virtual content parametrically, analyzes the environment for

small suitable props, and opportunistically assigns objects as passive

proxies by evaluating its shape.

2.3 PROCEDURALLY GENERATED MIXED REALITY

An alternative solution to reducing space demand by breaking the

mapping of physical to virtual motion, is to alter or altogether generate

the virtual world. Procedural generation is used in games [38]. Mourato

et al. [66], for example, created variations of 2D games (platformers)

28

based on the analysis of original game segments. Procedural content can

be used in mixed reality as well. For example, Vasylevska et al.’s flexible

spaces [97, 98] automates impossible spaces [89].

An important step in that vein has been taken in Oasis [85]. The

system builds a full model of a physical environment to then

procedurally generate a virtual environment the user can walk through

(Figure 6c+d). This concept has been reused, for example in Reality

Skins [78] and others [80], which carries a virtual scene (underground

tunnels, spaceships) across large physical environments preserving the

multiple constraints of both physical and virtual objects.

DreamWalker [105] applies the idea of procedural worlds to outdoor

environments, VRoamer [16] to rogue-like games spanning over large

indoor environments. This widens the possibilities for mixed reality

setups.

SCANNING PHYSICAL ENVIRONMENTS

Procedural generated content requires a scan of the user’s physical

surroundings. Scanning physical environments is a well-researched area.

Oasis [85] uses a Project Tango to obtain a point cloud. Many other

devices can provide similar functionality, for example household

robots [23]. Scanning can be improved with 3D semantic parsing [3] to

derive individual objects (as point clouds or meshes) or by using shape

retrieval [54] to derive the correct models and, possibly, also material

properties. Another option is to obtain this information through smart

objects [26].

SPATIAL LAYOUTING FOR PROCEDURAL MIXED REALITY

Procedural content requires automating spatial layouting. This is

achieved using a constraint solver and parametric descriptions of virtual

content.

Manual methods exist, such as in ARchitect [59], which requires its

users to (once) layout virtual content within a physical setting. Related

Related work | 29

work also suggests a half-automated generative design process (e.g.,

DreamRooms [102], or Project Mars [61]), blending skillsets of human

designers and computers. These automations use constraint-based

algorithms [27, 62]. Annexing Reality [39] uses a Hungarian algorithm

for the best global mapping. For larger immobile props the user touches,

Flare [33] analyzes a given captured 3D geometry for generating levels

for racing games using a random walk algorithm. More broadly, there

also exists automated spatial layouting of avatars for cinematography

[60], an idea that found its way to consumer applications [29].

Figure 6: (a) Substitutional reality [79] transforms this physical living room into (b) this

virtual environment, opportunistically using objects for passive haptics. (c) Oasis [85]

automates this approach, by scanning this physical corridor to then generate (d) this

virtual environment. This approach does not yet allow for complex storytelling within

those generated environments.

STORY REPRESENTATIONS IN PROCEDURAL MIXED REALITY

Such generated virtual ‘siblings’ have also not yet caught on for home

use. One reason is that they do not maintain a storyline across physical

environments. Any story arguably mandates certain virtual objects to be

present. If one of these story elements fails to map onto a limited prop

set, then this story simply cannot be conveyed to the user at this location.

Spatial layouting is part of any story and any storytelling medium.

In movies it is referred to as ‘staging’ or ‘blocking’, in games as

‘environmental storytelling’ [81].

a

b

c

d

30

While spatial layouting can be automated during procedural generation

of content for these media, a challenge remaining is the “quantification

of [user] experience,” according to Yannakakis et al. [104]. Such

“experience-driven” procedural content has not yet been extended to

real-walking.

Next to spatial layouting creators of real-walking content want to

convey an ‘experience’ to their users, a ‘narration’ or a ‘story’. We here

define these expressions as a structure describing all possible orderings

of events and user interactions that can unfold in a virtual experience.

Research has already found data structures for stories. Graph-based

story representations are used in a variety of contexts, for example in

location-based narratives [63], where geolocations are matched onto a

given story graph to convey an experience to the user, or interactive

narratives, such as in Storyspace [10]. However, in current content editors

for commercially available products today, such as Source 2 for the

virtual reality game Half Life Alyx [83] or REDkit for The Witcher 3 [75],

storytelling is still very much intertwined with spatial layouting, see

Figure 7. As described before in chapter 1, experiences are designed with

a fixed tracking volume in mind.

Figure 7: In content editors, such as Source 2 [83], creators design experiences within a

space that is fixed, by applying scripts onto objects and characters in a manually

designed virtual environment. The workflow is (a) define the required space (red line), (b)

place virtual objects onto that space, and (c) define a succession of events involving those

objects.

c

a
b

Related work | 31

This interleaving of storytelling and spatial layouting of present-day

content editors is a problem for real-walking applications which play in

user spaces that vary. A content editor for real-walking has two

constraints instead of one. First, we need to maintain a given story

structure, for which the solution normally are content editors that

combine manual spatial layouting and experience design. Second, we

need to account for limitations in tracking volume, for which the

solution is procedural content generation for automating the spatial

layouting. Procedural content solves the first constraint of limitations in

tracking volume by quickly generating variance in the virtual scenery,

but it is usually not used for story focused experiences.

A solution to this problem solves both of these constraints.

In a solution to this problem a user should be able to experience a

story in any way or ordering possible, while being in different physical

environments. Approaches such as Oasis solve spatial layouting through

procedural generation, but without enabling such elaborate storytelling.

If a story mandates a certain virtual object to be present, but it fails to

map onto the limited prop set, then the story simply cannot be conveyed

to the user at this location.

In a solution to this problem a creator should be able to design any

story, while still using procedural generation for spatial layouting. A

solution would be scalable, meaning it would work for any experience-

driven application with real-walking. It is possible to create a single

story that carries over different physical environments, such as in Reality

Skins [69]; however, they are not scalable in that sense.

Maintaining user interactions has been solved in other areas.

Supple++ [32] is a tool for automatic UI generation. It maintains ordering

of all possible interaction sequences, here called “traces”, similar to our

objective of maintaining a story. The tools’ objective is to incorporate 2D

space constraints while preserving functionality. This directly translates

to our constraints, tracking volume limitations and preservation of the

32

narrative and virtual experience. Similar to our virtual object placement,

it is “impossible to compute the cost of a layout without knowing all the

interface elements comprising that layout.” This then requires

“modifications to the optimization algorithm.” As in Supple and similar

GUI generating systems [8, 71] we use a high-level structure to maintain

these “traces” [32] and let the automated spatial layouting be influenced

by this structure.

33

3 VIRTUALIZING PHYSICAL SPACE

FOR CONCURRENT USE

In this chapter we apply virtualization of physical space to require less

space per user. We present overloading, a technique that allows

concurrent use of space, so that multiple users immersed in different real-

walking experiences can share the same physical space at the same time

without being aware of each other. We describe and evaluate

VirtualSpace, our software system implementing this technique.

3.1 V IRTUALSPACE : OVERLOADING SPACE WITH MULTIPLE USERS

VirtualSpace is designed to give each user the illusion of being in

possession of the entire physical space. As illustrated in Figure 8,

VirtualSpace accomplishes this by containing each user in a subset of the

physical space at all times, which we call tiles; app-invoked maneuvers

then shuffle tiles and users across the entire physical space. This allows

apps to move their users to where their narrative requires them to be

while hiding from users that they are confined to a tile. We show how

this enables VirtualSpace to pack four users into 16m2. In our study,

presented in chapter 4, we found that VirtualSpace allowed participants

to use more space and to feel less confined than in a control condition

with static, pre-allocated space.

34

Figure 8: (a) This user is playing a badminton app. His side of the court fills the entire

4x4m tracking volume. (b) This other user is playing a Pac-Man game mapped to the

same tracking volume. (c) VirtualSpace allows both users to share the same tracking

space, without being aware of the other user. To keep users from running into each

other, VirtualSpace limits each app to non-overlapping tiles at any given time. Client

apps handle this in a way transparent to their users. The badminton app, for example,

always makes the user’s virtual opponent return the ball to locations inside the tile

currently assigned to the app. (d) By reassigning tiles frequently, VirtualSpace moves

users across the entire space, thereby seemingly allowing for unrestricted walking.

In the example in Figure 8, two users share the same 4x4m physical

space, while being tracked using a virtual reality tracking system (Vive

[100]). Both users are in their own, separate virtual environments.

(a) The green user is immersed in a badminton app, while (b) the blue

user experiences a Pac-Man game.

The key point is that both apps are mapped to the entire physical

space, meaning that VirtualSpace allows each app to be designed under

the assumption that the user has physical access to the entire 4x4m space.

And that is true, albeit not necessarily at every particular moment, as

VirtualSpace limits each app to a different non-overlapping tile of space.

Client apps handle this in a way transparent to their user. The

a

c

b

d

Virtualizing physical space for concurrent use | 35

badminton app, for example, makes the user’s virtual opponent return

the ball always to locations inside the tile currently assigned to this app.

V IRTUALSPACE MANAGES PHYSICAL SPACE USING MANEUVERS

To allow users to still complete their narrative and to prevent users from

noticing that the system is confining them, VirtualSpace employs what

we call maneuvers.

Figure 9: Users are confined into tiles that VirtualSpace changes using maneuvers. (a) The

rotation maneuver allows apps to move their user to the adjacent tile. This way users do

not feel confined. (b) Similarly, the switch maneuver allows two apps to switch tiles.

Figure 9a shows an example, here with four users in the same 4x4m

tracking space, which is the configuration we used in our user study.

When the user plays Pac-Man, the app needs to progress towards the

area with the remaining pellets, but the segmentation into tiles prevents

this progression. The player’s app thus requests access to the desired tile,

here the tile that is adjacent in clockwise order. As shown in Figure 9,

VirtualSpace can provide the Pac-Man app with this access by rotating

the entire field of all four users in clockwise direction. We call this the

(clockwise) rotation maneuver.

Every maneuver comes with a certain start-up delay that allows all

apps to get their users ready and every maneuver takes place at a certain

movement speed. In this example, the apps may agree on a three-second

delay and a one second transition speed.

a b

36

As shown in Figure 10a, the Pac-Man app prepares for the maneuver by

offering a virtual reward (the red cherry), yet it prevents the user from

getting there by blocking the path using a ghost. Meanwhile the

badminton app plays a slow ball to get the player synchronized with the

timing of the upcoming maneuver.

Now the maneuver starts and every app moves their user to the new

target position, here the next tile clockwise. The badminton app serves

the user a stop ball that brings the player forward towards the net. As

shown in Figure 10b, the Pac-Man app sends a ghost that chases the

player down the corridor.

Figure 10: (a) The Pac-Man app guides users to follow the clockwise rotation maneuver

by offering a virtual reward, here a cherry. (b) It prevents users’ movement by placing

ghosts in their way.

VirtualSpace allows for changing the rotation order and for rotations

involving a subset of users. For two users we call this a switch maneuver.

This enables applications to move their users freely around the tracking

space while others can stay at specific preferred areas.

FOCUS MANEUVERS ALLOW FOR FAST MOVEMENTS

Rotation maneuvers are sufficient in that it never takes more than two

revolutions to send a user to any tile. Rotations take time though, which

is not always compatible with game action sequences that require fast,

large, and erratic movements of a user. To enable such movement

sequences, VirtualSpace offers the focus maneuver. This maneuver

allows a single app to temporarily take over most of the tracking space.

Figure 11 shows an example when the badminton app uses a Focus

a b

Virtualizing physical space for concurrent use | 37

maneuver to allow its user to hit the birdie in the center of the court in a

quick succession of ball exchanges.

Figure 11: The focus maneuver temporarily provides the badminton app with control

over most of the physical space. The other apps go into a defocus state.

While the one app has the focus, all other apps contain their users in a

small amount of space at the rim of the tracking volume by providing

them with a stationary task, e.g., by trapping the user in a corner (Pac-

Man), or multiple moles appearing in the same bushes (Whac-A-Mole).

Focus maneuvers obviously take place at the expense of all other

apps, so that focus maneuvers are only possible when all other apps

agree to it. We added a possibility for economic models to attach to this

process, so that apps can attach an added value (credits, money) to their

maneuver request.

Figure 12: VirtualSpace allows for in-app purchases. (a) Here the Pac-Man user can collect

a blue pill which lets VirtualSpace value that app higher. That allows for a focus maneuver,

which can be used to (b) chase the ghosts.

a b

38

V IRTUALSPACE ALLOWS USERS TO JOIN OR LEAVE IN REAL-TIME

VirtualSpace is designed to run continuously with users joining or

leaving at any time, any reasonable number of users and any

combination of apps. Additional users can join as long as there is enough

free space and leave at any time, thereby freeing up space. VirtualSpace

continues to offer the same maneuvers irrespective of the number of

users, while the tile size remains the same. If free space is available, apps

can move on to empty areas without triggering a multi-user maneuver.

As shown in Figure 13b, an app can request a maneuver, e.g. a rotation,

without having another user move.

Figure 13: Internal assignment of tiles, displayed as an overlay of real-time data. (a)

VirtualSpace handles configurations of fewer than four users. (b) If free space is available,

apps can perform different maneuvers at the same time, until (c) all space is allocated,

then maneuvers need syncing.

a b

c

Virtualizing physical space for concurrent use | 39

STRATEGIC VERSUS TACTICAL APPROACH

One of the main insights we generated during development is that we

found a top-down strategic approach of space management to work

much better than the bottom-up tactical approach. In the tactical

approach collisions are detected by extrapolating movement and then

notifying apps to avoid collisions. The strategic approach of managing

movement, while somewhat constricting freedom of real-walking

applications, circumvents collisions by design and allows for much

tighter packing densities. Simulations of bottom-up approaches that

require high precision analytical planning with virtual humans (such as

ORCA [7]) perform significantly worse. By relying on the described tile-

based approach we further avoid deadlocks, where multiple users are

crunched in one corner.

FALLBACK VISUALIZATIONS

The assumption is that the apps succeed at confining their users to their

tiles and at guiding their users to the agreed-upon target tiles. As with

any real-walking system this may fail, e.g., when users simply ignore the

system and walk into other users’ tiles. VirtualSpace handles this

situation like most real-walking systems (such as Vive [100], or [72]) by

(1) rendering a cage around the currently available walking area, before

the user might exit and if the user does, (2) draws the outline of the users,

so they can see each other and stop.

3.2 V IRTUALSPACE ALGORITHM

VirtualSpace runs with any app implementing its API. Apps can work

in any combination, with multiples of a single app or all different apps.

The API is outlined in the following:

40

VirtualSpace API

classes:

– Tile{Vector2[] area}

– Frame{Tile tile, float time}

– Maneuver{Frame[] frames}

– Tick{float duration, float variance}

– Valuation{float weight, float preparationTime, float executionTime}

functions :

– Vector2[] ProvideProbabilityDistribution ()

– Tick[] ProvideTicks ()

– void AdaptToTicks(float[] ticks)

– Valuation[] Evaluate (Maneuver[] maneuvers)

– 𝐯𝐨𝐢𝐝 𝐄𝐱𝐞𝐜𝐮𝐭𝐞(𝐌𝐚𝐧𝐞𝐮𝐯𝐞𝐫 𝐦𝐚𝐧𝐞𝐮𝐯𝐞𝐫)

VirtualSpace’s API acts in the following five stages:

INITIAL POSITIONING

When an app registers with VirtualSpace, the system arranges its place

in the tracking volume, coordinating it with the other apps that are

already running. Figure 14 shows an example. Here, the badminton app

predicts an uneven spatial probability distribution for its user, as users

tend to go back to the baseline whenever they can. Let us assume now

that we have for example a second badminton user (playing against a

separate AI). If two badminton apps were placed in identical orientation,

it would result in frequent collisions. VirtualSpace avoids this by

requesting a sample of each app’s spatial probability distribution. Then,

the system tries out all possible positions and orientations of the apps to

minimize overlap. In this example, the system decided to rotate the

second badminton app by 180 degrees.

Virtualizing physical space for concurrent use | 41

Figure 14: Spatial probability distribution. (a) Spatial probability distribution based on

three minutes of gameplay of the badminton app (axis lengths: 4m). (b) VirtualSpace

places the first badminton user without rotational offset. (c) The second badminton user

is placed at a 180-degree angle, minimizing the overlap in their probability distributions.

RANKING AND SELECTING MANEUVERS

To help VirtualSpace perform maneuvers fitting all apps, each app

informs VirtualSpace about the usefulness for each potential maneuver.

The system deduces the potential maneuvers using a simple state

machine (e.g., after the focus maneuver the system is in the ‘focus’ state,

no rotation maneuver is possible, but a defocus or switch maneuver). Apps

then valuate potential maneuvers. The badminton app, for example,

generally values those maneuvers highly that allow bringing the user

back to baseline, to previously unused areas, or larger areas in case of a

fast past rally, as seen in Figure 15b. Pac-Man’s erratic movements or

badminton’s reach typically require more space, leading to higher

valuations of larger areas, or areas where there are more uneaten pellets

(Figure 15f). Additionally, apps provide the system with information on

how fast they can comply with the suggested maneuver. They provide

the preparation time (delay until the maneuver starts, in which incentive

is placed) and the execution time (time for moving tiles, in which users

follow incentives). This information can also be provided in linear

dependencies (e.g., preparation and execution time add to a specific

value). For example, Pac-Man gives the sum of preparation time and

maneuver duration by computing the average player speed.

VirtualSpace processes this information using a linear solver [35].

a b c

42

Figure 15: (a) The badminton app wants to play a fast paced rally. (b) It values more space

more highly, as given through the focus maneuver. (c) Staying in front of the net has a

lower value and (d) switching places has a higher value. (e) For Pac-Man, when only a

few pellets are left, those areas are valued higher (f).

The system now decides which maneuver to invoke. It adds up the

utility for each maneuver reported by each app and picks the maneuver

that maximizes utility across apps. A focus maneuver for the first app,

for example, implies three corresponding defocus maneuvers for the

other users, which might not have the same utility as a rotation. The

system also tries to ensure that apps receive similar utility over time and

tries to avoid maneuvers subject to timing mismatches between apps.

SCHEDULING MANEUVERS AND SYNCHRONIZING APPLICATIONS

The scheduling we utilize is fixed-priority pre-emptive scheduling, a

common scheduling system for real-time applications. Other schedulers,

such as round-robin, would have resulted in lower utility for the apps,

as apps cannot lead their users where they need them to be, or, such as

shortest-remaining-time, cannot be used, as unpredictable variations in

apps task times need to be taken into account.

When the system decides on the maneuver to perform, it also needs

to determine the time until the maneuver can start, i.e. when the

applications are ready. In badminton for example, this should be within

the narrow time frame when the enemy AI can hit the birdie and the app

can show the trajectory to the impact point. To ensure this, the system

synchronizes the apps by using what we call ticks, events in which apps

have the possibility to influence their user’s movement. In the example

25

50100 100

a c e

b d f

a

b

c

d

e

f

Virtualizing physical space for concurrent use | 43

of badminton, a tick is the moment the enemy AI hits. The moment that

the system starts a maneuver should be when application ticks are in

sync. The applications constantly provide information on their ticks

using linear conditions, in badminton for example ticks occur once every

full exchange. Each tick is given an allowed variance (which for our apps

increases over time) together with a preference (e.g., badminton prefers

quick exchanges but can let the AI play differently to synchronize). Ticks

are synchronized by the system sending back master ticks, which the

apps adapt to. The system can then compute the delay time, whose

requirements were sent with the maneuver evaluations (see above).

When a synced tick is then the same as the delay time, VirtualSpace can

start the maneuver as we now ensured that every app can direct its users

at that time.

APPS FOLLOW SELECTED AND SCHEDULED MANEUVERS

The system informs apps about the upcoming maneuvers. It does so by

sending a sequence of what we call frames, information about assigned

areas at given times, from which apps can derive the need to place

incentives. The system computes assigned areas, the tiles, as Voronoi

tessellations to keep them convex, this enables apps to easily compute

which paths their user can walk on. Apps respond to maneuvers by

placing rewards and obstacles inside their virtual environment, thus

guiding the user to the next tile.

The whole process described in this section is executed multiple

times in parallel, to ensure quick interaction rates. While apps

synchronize for the next maneuver, they already evaluate the next

couple of maneuvers. This queue length is determined by the apps

themselves.

3.3 EXAMPLE APPLICATIONS

We have implemented four apps to run with VirtualSpace. Here we

show how the API is implemented.

44

Figure 16: We have implemented four apps to run with VirtualSpace. (a) Badminton,

(b) Pac-Man, (c) Space Invaders, (d) Whac-A-Mole. All apps that implement the API of

VirtualSpaces work together in any combination.

BADMINTON

A user plays badminton against an AI. The user sees the birdie’s

trajectory as soon as the AI hits, and an estimated trajectory before that.

We display the trajectory at all times to avoid the natural tendency of

users to walk towards the court’s center. We made the virtual field

slightly larger than the tracking area as users would optimize their

movement and not walk onto the side of their field. When valuating

maneuvers, badminton valuates larger areas stronger for quick ball

exchanges that do not need to sync, also areas where the user has not yet

hit that often, and areas with higher overlap to the court’s service line.

The minimum preparation time is the maximum time of a ball-exchange

(dynamically computed), the minimum duration of the maneuver is

based on the velocity of the birdie.

PAC-MAN

As in the traditional Pac-Man, the user’s goal is to collect all yellow

pellets in a labyrinth. Ghosts position themselves so that the user does

not pass into another user’s area. Cherries provide additional points and

c
a b

c d

a b

c d

Virtualizing physical space for concurrent use | 45

thus draw users towards the next tile. They focus the user’s attention

using a distinct sound and a halo effect. When valuating maneuvers,

Pac-Man valuates higher areas with more yellow pellets. The blue pill

from Pac-Man serves as an in-app purchase (Figure 12); when collecting

it, for a short duration the app valuations are generally higher than the

ones of other applications.

SPACE INVADERS

As in the original arcade game, the user controls a spaceship to shoot

enemy ships. Enemy ships are placed on all four sides of the

environment. An area with protective blocks incentivizes the player to

be in a certain area. Space Invaders valuates maneuvers that require the

user to walk more. Preparation time uses a fixed delay and the duration

is capped by the player’s maximum walking speed.

WHAC-A-MOLE

The user is placed within a fenced area and is given a hammer to hit

moles that spawn from the ground. Negative incentives, like flowers, are

used to counteract the urge of users to walk towards the center. Audio

cues given by the moles taunt the user to look towards them, in case the

user faces the wrong way. Whac-A-Mole valuates areas higher where

fewer moles have been hit. Preparation time and duration are similar to

Space Invaders.

3.4 DESIGN CONSIDERATIONS FOR APPLICATIONS

For creators of VirtualSpace applications, the following guidelines

should be taken into account.

PLANNING AND REACTING

The design of apps is driven by two constraints: planning and reacting.

VirtualSpace benefits from apps planning ahead of time and being able

to react quickly. For a set of apps to run within the system, it must be

assured that the apps react to the maneuvers that result from their own

46

planning. Thus, the reaction time of the slowest application must be

smaller to the planning time of the app least capable of planning. As an

example, in our badminton app the worst possible time to perform a

maneuver is right after the AI hits, as the app needs another full

exchange (roughly two seconds), to influence the user again, so the

reaction time is two seconds. It provides its valuations two exchanges

ahead, taking roughly four seconds. If the badminton app was not able

to do that, the birdie would not arrive where the app would want it to

be. In Pac-Man, ghosts would need to travel too fast, etc.

INCENTIVE CONSIDERATIONS

Applications should always be able to place incentives inside the users’

field of view, additionally to using audio cues. Also, both negative and

positive incentives should be used – we found positive incentives (e.g.,

the birdie or moles) to work better for maneuvers, while negative

incentives, such as the Pac-Man ghost, work better for keeping users

within their area if no maneuver is active. If applications do not provide

negative incentives, fallback routines from VirtualSpace happen more

often, which lowers immersion.

COGNITIVE PROCESSING DELAY

Every app affords a different cognitive load to the user, so users’ reaction

time heavily depends on cognitive processing of the given incentives.

For example, space invaders’ protective obstacles start to move 400ms

before the maneuver starts, giving the user a time to process and react.

The other apps, which we also intentionally based on existing games to

lower reaction times, are quite similar. In Pac-Man, the cherry, as a

strong positive incentive, pops up seconds before the maneuver starts,

but only when it does, do the ghosts give way for the user to collect it.

Pac-Man needs to allow for additional cognitive processing, as it

includes more numerous game elements. We found iterative testing

Virtualizing physical space for concurrent use | 47

crucial for deducing the correct lead for placing incentives in the virtual

environment, as various factors contribute to human reaction time [50].

3.5 IMPLEMENTATION AND HARDWARE

The applications were developed in Unity3D. The backend uses C# with

the libraries Clipper [18], Protobuf [73] and Gurobi [35]. To allow

researchers to replicate our work, we provided the full source code of

VirtualSpace and the apps in C#/Unity3D [99]. The space is tracked

using the Vive Lighthouse system with eight trackers [100]. The tracking

information is forwarded via UDP to head-mounted displays (four

GearVRs with Samsung S6 running Android) as shown in Figure 17.

Figure 17: VirtualSpace’s setup.

3.6 USER STUDY

To better understand the resulting experience of allowing VirtualSpace

to manage actual virtual reality apps, we conducted a user study in

which we compared VirtualSpace against the most commonly used

approach, i.e., static pre-allocation of space ([3] uses a similar baseline).

Our main hypothesis was that VirtualSpace provides more space

coverage per user. Additionally, we assumed that VirtualSpace

improves the experience, measured in ratings of confinement,

enjoyment and presence.

48

INTERFACE CONDITIONS

There were two space allocation conditions. In the VirtualSpace condition,

we tested our system with the described maneuvers. In the pre-allocated

condition each participant was confined to a static tile (no maneuvers).

We did not use whole space allocation as an additional baseline

condition, in which participants take turns in using the whole space, as

this assumes unlimited space for each app, which outperforms any

technique.

In both conditions, participants walked in a 4x4m space, with a

safety boundary of 60 cm between allocated areas. We deemed this

boundary length sufficient after initial pilot studies.

TASK AND PROCEDURE

Participants were split into groups of four with each given one of the

four games described above. Prior to the tasks, participants had one

minute of training, in which they were playing their game alone in the

tracking volume. Each group had two sessions, one for each space

allocation condition. The order of conditions was counterbalanced.

During the first session, participants played their app for five minutes,

while the first space allocation strategy was applied. Participants then

filled in a questionnaire about their experience containing two questions:

“How much did you enjoy the experience?” and “How confined did you

feel?” (Likert scale, 1-7) and the realism subscale of the presence

questionnaire [104]. During the second session, participants played the

same app again for five minutes, while the other space allocation

strategy was applied (within-subject design) and then again filled in

another questionnaire. Each participant thus played their app twice, five

minutes in each session, only using one app.

PARTICIPANTS

We recruited 16 participants from our organization (9 female, 7 male,

age 28.8 ± 3.1 years), forming four groups. Seven participants had prior

Virtualizing physical space for concurrent use | 49

experience with virtual reality (one had experienced real-walking). The

remaining nine participants had never tried virtual reality before.

RESULTS

As shown in Figure 18, users felt more confined in the pre-allocation

condition, while VirtualSpace provided a greater sense of freedom

(p < .05, t(15) = -1.79, one-sided). However, we could not observe a

statistically significant difference in enjoyment (p = .12, t(15) = 1.20, one-

sided).

Figure 18: Participants felt more confined in the static pre-allocation condition, while

VirtualSpace provides a greater sense of freedom.

Space coverage was measured using the position of the tracked head

mount throughout one session given a 30cm radius. Accounting all users,

in the VirtualSpace condition 52 rotation maneuvers were conducted, 10

focus maneuvers, and 3 switch maneuvers. This led to significantly

larger space coverage of 15.51 m2 ± 2.01 per user in the VirtualSpace

condition when compared to the space coverage of 3.46 m2 ± 1.02 per

user in the control condition (p < .001, t(15) = 21.12, one-sided). Figure 19

depicts these results.

5.19 3.884.75 4.88

1

2

3

4

5

6

7

enjoyment perceived confinement

*

q
u
e
st

io
n
n
a
ir
e

ra
ti
n
g

VirtualSpace pre-allocation

50

Figure 19: The four apps’ space coverage for all participants (apps by initials).

(a) Participants covered more space using VirtualSpace than when using (b) a static pre-

allocation (axis lengths: 4m).

For our analysis, we define a collision as a mutually unintended contact

of two participants. We observed 7 collisions in total. Two collisions

occurred in the first group, none in the second, two in the third and three

in the fourth. We recorded differences between apps; the badminton app

was involved in six collisions while the remaining apps were only

involved in three collisions or less. All collisions occurred after a

participant remained standing still when their tile moved; participants

were absorbed in their experience, but did not follow the given incentive

or the fallback visualization. Collisions occurred mostly during the first

minutes of gameplay, and further inspection revealed training effects;

participants were less likely to breach (measured as the time ratio of

being outside one’s assigned tile, see Figure 20) if they had already

experienced the app in the control condition (p < .05, t(14) = 2.28, one-

sided).

Despite participants occasionally experiencing the fallback

mechanisms to keep them within their designated area, results did not

show a significant difference in the realism subscale of the presence

questionnaire [104] between conditions (p = .38, t(15) = 0.90, two-sided).

a

b B W S P

Virtualizing physical space for concurrent use | 51

Figure 20: Participants compliance varied. Those who experienced the control condition

first (group 2+4) were less likely to breach through their assigned areas, suggesting a

training effect. Also, certain apps seem to keep their users within their tiles more

effectively (apps by initials).

QUALITATIVE FEEDBACK

Participants felt they had more space and made comments such as: “I

just enjoyed having more space”, “In the beginning [pre-allocation] it

was not only more boring, but I felt way more cramped”.

Participants remarked that they trusted the system when apps kept

participants within their assigned areas. However, when users did not

recognize the incentive and reacted too late or apps needed to rely on

the fallback to keep participants in place, participants’ trust decreased:

“The trust into the system was relatively high, that you do not walk into

one another”, “It then comes at quite a shock when they [fallbacks] pop

up“, “I actually felt safe – until that [collision] happened”, “I felt I

reacted too slowly”.

Participants commented on the other users’ participation. “Actually,

I liked knowing that there were other people”, “I would not play this

alone, so it was actually even fun to maybe hit somebody”.

D ISCUSSION

Our main finding is that VirtualSpace outperforms static pre-allocation

of space, as users feel less confined and can cover more space. This is

true even for high user densities such as for our four users within 16m2.

This density is an improvement over related work on space reduction

techniques for real-walking in virtual reality, such as redirected

0

0.1

0.2

0.3

1 2 3 4group

lik
e
lih

o
o

d
 o

f

b
re

a
ch

e
s B

P

W

S

52

walking [74] or dynamic layout generation for overlapping virtual

spaces [98], in which individual space requirements are of a far greater

magnitude.

We believe our overloading technique can be used not only as an

alternative, but also as a complement to space compression techniques.

Researchers [3, 43] have already shown that redirected walking can

apply to multiple users, while again using relatively large areas, which

VirtualSpace can help to utilize more effectively. VirtualSpace on the

other hand could use redirection techniques to orient users, instead of

relying on in-game mechanics.

Our current system can be extended to more space, more users, and

more types of applications. The shown apps were isolating experiences,

as is typical for virtual reality. VirtualSpace can naturally be extended to

multi-user applications, mobile scenarios, and spaces of different shape

or size. Since primarily rotation maneuvers have been carried out, a

more even coverage of space still seems possible. Increasing the size of

the tracking space while maintaining user density could also improve

ratings, as the effect of real-walking might prove higher in larger areas

on enjoyment and perceived confinement. Even though apps can move

users anywhere within the tracking space, getting there may be subject

to a delay. Along the same lines, apps have to be able to generally

comply when another app requests a maneuver. We found this to be

more acceptable for apps with short interaction cycles, such as casual

games or sports games rather than story-driven games, such as

adventure games. We imagine, although not tested yet, that

VirtualSpace can run only one story-driven app with strong constraints

together with any number of casual games with softer constraints.

For our study we used some pre-existing metrics (collisions [5],

presence [104]) and some that we specifically developed (perceived

confinement, breach ratio, space coverage). To make their results

comparable, we propose that future work also use these metrics.

Virtualizing physical space for concurrent use | 53

3.7 CONCLUSION ON CONCURRENT USE OF VIRTUALIZED SPACE

VirtualSpace is a novel software system that makes real-walking more

space-efficient by having users immersed in different virtual reality

experiences share the same physical space. VirtualSpace achieves this by

containing each app in a smaller tile. Frequent maneuvers allow apps to

incentivize their users to walk across the entire physical space, thereby

allowing each app to progress its narrative and to prevent users from

noticing that they are confined to a tile. This strategy enables

VirtualSpace to achieve packings of the unprecedented density of

four users in 16m2, as we demonstrated in our user study.

This technique of overloading physical space will help real-walking

applications expand to different scenarios such as mobile virtual reality,

where space needs to be shared with other people, or application

domains requiring space with high interaction rates, such as e-sports, as

demonstrated with our demo apps.

We have argued that VirtualSpace can be expanded to more users

and other tracking volumes. However, applications using overloading

are still designed with a fixed tracking volume in mind, in our case 16m2.

As argued in the introduction, this makes overloading unsuitable for a

lot of setups in the home; either applications do not make use of possible

surplus space the user has available, or it does not even run at all for

tracking volumes that do not fit the required 16m2. Another limitation is

that VirtualSpace primarily focuses on arcade-style applications without

much focus on story, and applications still assume a space devoid of

physical objects. We also assume spaces to be devoid of any physical

objects. In the following chapters we show how to remedy these

shortcomings.

54

4 VIRTUALIZING PROPS FOR

CONCURRENT USE

We have presented how real-walking experiences can be instantiated in

tracking volumes that are shared across users. In this chapter we show

how the concept of concurrent use cannot only be applied to physical

space, but to physical objects as well, or props.

Physical props have benefit of potentially providing passive haptics

to their users. Passive haptics [40] increases immersion in virtual reality

by making all virtual objects in the scene tangible through co-located

physical props. Passive haptics props are typically used in virtual reality

arcades (e.g., The Void [101] and others [25]) and have not caught on for

home use, as such experiences will not be run often enough to justify the

expense, time and storage effort for new passive haptics props for every

new experience.

We want to reduce this cost by requiring fewer physical props per

virtual object. We show two techniques. The first is a synchronized use

of props across users. The second is multi-purposing a single prop,

requiring only one physical prop for multiple virtual objects in a single-

user environment.

Virtualizing props for concurrent use | 55

4.1 SYNCHRONIZED USE OF PHYSICAL PROPS FOR HAPTIC FEEDBACK*

The term human actuation [12] describes the idea of providing force

feedback to users through people, here called human actuators. Mutual

human actuation [14] is a variation of the idea of human actuation and

works without dedicated human actuators. The key idea is to have pairs

of users immersed in different virtual worlds that provide human

actuation to each other at the same time through the use of shared props.

This is similar to VirtualSpace. We find that the idea of overloading

applies not only to physical space, but to physical props as well; we

allow multiple users immersed in different experiences to share the same

physical prop at the same time without being aware of each other.

Five different types of props enable different types of force-feedback.

The first, continuous force, we show in Figure 21.

Figure 21: Continuous force using a rod with string and handle. (a) The user, alone in his

virtual world, is trying to pull a huge creature out of the water. He feels how the creature

is struggling and pulling on his fishing rod. (b) At the same time, this other user, also

alone in her virtual world, is struggling to control her kite during a heavy storm, which is

whipping her kite through the air. (c) While users’ experiences of force might suggest

the presence of a force feedback machine, they instead experience force feedback using

a shared prop that transmit forces between them.

*This section (text and images) is derived from: Lung-Pan Cheng, Sebastian Marwecki,

and Patrick Baudisch. 2017. Mutual Human Actuation. In Proc. UIST '17, pg. 797–805.

It was already presented in Lung-Pan Cheng. 2018. Human Actuation. We shortly

summarize this work here, due to co-authorship and overlap with the topic of

managing physical resources.

a b c

56

Figure 22 shows enabling passive haptics through rearranging props.

The same prop is used multiple times.

Figure 22: Rearranging physical props, here boxes from plastic and foam. (a) One user is

waiting for a series of pillars to rise in order to allow her to cross the pit ahead of her. As

she lowers her right foot to probe the space below, she can feel the void. Once she sees

that the pillar has fully risen, she can step on it. (b) In the meanwhile, the other user is

solving a puzzle that requires him to place numbered boxes on matching tiles. In reality,

one user places boxes for the other.

There are three other types of force feedback (see [14]). These are:

moving (using a chair), impact (using a foam stick), and contactless

sensations (using a foam board).

4.2 MULTI-PURPOSING OF PROPS THROUGH COVERT SCENE CHANGES

Another technique for having multiple virtual objects share one physical

prop is through unnoticeable manipulation of the virtual scene. We

implemented a software tool called Mise-Unseen that applies such

unnoticeable runtime changes to any virtual environment by means of

eye tracking. Mise-Unseen thereby makes efficient use of physical

objects by mapping multiple virtual objects to them.

This technique is similar to impossible spaces [88], which achieves re-

use of physical space by re-routing the user to new rooms, so that

changes to the virtual environment happen outside the user’s view.

Mise-Unseen applies these changes also inside the user’s field of view

without them noticing.

a cb

Virtualizing props for concurrent use | 57

Figure 23 shows and describes how Mise-Unseen re-uses a prop for

multiple virtual medieval tools and weapons inside this forge

environment.

Figure 23: Passive haptics enabled by eye-tracking. (a) In this forge environment, the user

may pick up any of the two weapons on the table. (b) However, only one physical prop

is available. The weapons are already clustered around the prop, but neither one is

mapped onto it. (c) The user looks at an axe a2 on the wall informing Mise-Unseen that

the user probably more interested in axes than hammers. (d) The spatial memory model

is a weighted graph that represents all objects w, a1, a2 as nodes. As the user looks at

weapons, the weights change to represent internalized (here allocentric) distances

between objects. (e) Mise-Unseen now shifts the axe onto the physical prop. (f) The user

picks up the axe virtually and (g) physically.

Creators who want to tell a story with a limited physical prop set would

require such a software tool. Of course, creators could try to manipulate

the virtual scene outside the users view, but the user may freely look

a b c

d e

f g

58

around the scene and therefore might observe a change while it is

happening. As the field of view of headsets will become even larger in

the future, these changes will become even more noticeable. Today’s

commercial virtual reality headsets have a field of view of up to 120°

horizontal and we expect them to eventually reach the maximum of

human vision (~180° horizontal). Contrast this to traditional

cinematography, where the creator (the director) fully controls the

viewpoint and camera focal length. There are other problems, for

example the user could remember the scene being different or even

anticipate a change.

The whole purpose of our software tool is to prevent the user from

noticing exactly those changes, to not break the user’s perceived

consistency of the scenery. Our tool covertly injects these changes to the

displayed content inside the user’s field of view. Mise-Unseen leverages

gaze tracking to create models of user attention, intention, and spatial

memory to determine if and when to inject a change and combines these

models with a variety of masking techniques (e.g., change saliency,

distractors, etc.). These changes are completely authored and can be

used by any application.

Figure 24: Mise-Unseen prevents anticipation, observation, and recall of a scene change

using five attention models together with visual masking techniques. Our different

example applications make use of a different sub-set of these five models.

Virtualizing props for concurrent use | 59

Figure 25: (a) Mise-Unseen uses eye-tracking in virtual reality headsets to hide otherwise

obvious changes that occur inside the user’s field of view. (b) Mise-Unseen injects those

changes (arrow) while the user is focusing elsewhere (circle): For example, we move the

jigsaw pieces using a cross-fade to help the user. (c) We match the virtual axe’s position

to the haptic prop following the detected user interest. (d) We swap the gallery painting

to adapt to the user’s detected interest in modern art. (e) We shift storage racks while

walking to adapt to a lack of physical space. (f) We can reduce motion sickness during

teleportation by blending static images outside the fovea. (g) We can update hints to

prevent the user from solving this riddle without deducing its solution. (h) We hide the

low fidelity of this ‘explosion’.

Figure 24 shows the tool’s internal layering of these models, to prevent

observation of the change when it is happening, recall after it has

happened and anticipation when it is about to happen.

Figure 25 shows the system’s other uses through example

applications. Figure 25e sketches out how to re-use space using eye-

tracking. In the storage room environment the user is walking towards

two lines of storage racks. Mise-Unseen shifts the rack that the user

appears more interested in, so that the user can walk through. Instead of

a b c

d e

f g h

60

matching weapons onto a prop, one of two walking paths are matched

onto space.

4.3 CONCLUSION ON CONCURRENT USE OF VIRTUALIZED PROPS

We have shown two techniques that map physical props onto multiple

virtual objects. The first is overloading, but for physical props, and the

second is unnoticeably injecting runtime changes to virtual

environments. These techniques illustrate how physical resources such

as props can be used concurrently.

However, our virtualization of physical props is only partial. The

two techniques can be embedded inside production pipelines for real-

walking experiences, but they still require authoring with somewhat of

an a-priori knowledge of which props to use, similar to VirtualSpace

which requires knowledge of the tracking volume’s size and shape. This

contrasts with the idea of full virtualization. Similar to related work,

such as annexing reality [39], we gain some level of abstraction by

adapting virtual objects to the shape of given physical props. Props

cannot be fully arbitrary and creators must still require props that fall

into the scope of these techniques.

We made concurrent use of physical props and physical space

possible. In the next chapter we show how to achieve an independence

between complex real-walking experiences and any given physical

space.

61

5 VIRTUALIZING THE EXTENT AND

SHAPE OF PHYSICAL SPACE

When developing a real-walking virtual reality experience, creators

generally design virtual locations to fit a specific tracking volume.

Unfortunately, this prevents the resulting experience from running on a

smaller or differently shaped tracking volume.

In this chapter we address this issue. In accordance to our analogy

to virtualization and operating systems we provide an abstraction layer

between any virtual reality experience and the physical space it occupies.

This requires a tracking volume-independent representation of real-

walking experiences. This is the core of Scenograph, the software system

we describe and evaluate in the following.

5.1 SCENOGRAPH : 1:1 EXPERIENCES FOR ANY PHYSICAL SPACE

The core of Scenograph is a tracking volume-independent

representation of real-walking experiences. Instead of designing for a

tracking volume of specific size and shape, Scenograph lets designers

specify an experience independent of the tracking volume. Scenograph

instantiates the experience to a tracking volume of arbitrary size and

shape. Based on the representation of the experience, Scenograph splits

virtual locations into smaller ones while maintaining any narrative

62

structure (Figure 1, page 16). During instantiation Scenograph applies

space compression techniques like impossible spaces [88]. In our user

study, participants’ ratings of realism decreased significantly when we

used existing techniques to map a 25m2 experience to 9m2 and an L-

shaped 8m2 tracking volume. In contrast, ratings did not differ when we

used Scenograph to instantiate the experience.

The interface to Scenograph is an editor in which application

designers define the unfolding of their real-walking experience, which

we can define as the sum of all possible interaction sequences with

virtual objects and their arrangement in virtual locations, or scenes to be

more general.

Figure 26: (a) Our adaptation of the fairy tale ‘Goldilocks and the Three Bears’, in which

Goldilocks maliciously enters the home of the three bears, eats their porridge, sits on

their chairs and sleeps in their beds. (b) The user in our tracking space of 5m x 5m.

EXAMPLE APPLICATION : GOLDILOCKS AND THE THREE BEARS

We demonstrate this process through an example application based on

the 19th-century fairytale ‘Goldilocks and the three bears’ ([84], see

Figure 26 for our design). Naturally, Scenograph allows for the design

of any application that can be procedurally generated, ‘Goldilocks’ is a

good example, as the narrative unfolds within one connected environ-

ment, a ‘dark forest’, the ‘three bears’ home’ within that forest, and an

‘upstairs bedroom’ of that home (see Figure 1).

a b

Virtualizing the extent and shape of physical space | 63

5.2 OUR TRACKING VOLUME- INDEPENDENCE DATA STRUCTURE

Internally, Scenograph represents the experience as a bipartite graph,

specifically, a petri-net. As such it has transitions and nodes. Nodes are

either spatial or logical. The spatial nodes are the scenes of the experience,

in our case of Goldilocks the three scenes ‘dark forest’, ‘three bears’

home’, and ‘upstairs bedroom’. The logical nodes are the states that

enable story progression when the user interacts with certain objects, for

example after eating ‘little bear’s porridge’, the user changes into the

‘tired’ state, so that they can now interact with the ‘chairs’. These ‘chairs’

and ‘bowls of porridge’ are transitions which connect the two kinds of

nodes, the virtual objects in the scenes. Transitions pass tokens between

input and output nodes. In Figure 27 we see that the ‘porridge’ is a

transition that takes tokens away from the ‘hungry’ state. Transitions

that pass tokens between spatial nodes are corridors that, similar to

portals in [88], enable unperceivably switching between scenes. The first

‘door’ for example, passes tokens from the ‘forest’ (spatial) and ‘curious’

(logical) nodes to the ‘home’ (spatial) and ‘hungry’ (logical) node.

Figure 27: Scenograph encodes all possible interaction sequences in a petri-net. (a)

Spatial nodes define the virtual scenes, such as this ‘three bears’ home’. (b) Logical nodes

express states, such as Goldilocks being ‘hungry’. (c) Transitions, here a ‘porridge’, let

users switch states and scenes, they populate the virtual scenes as objects.

A petri-net is suitable for encoding any direction a narrative may take

(see Figure 28). This data structure can be expressed in any environment

the application is developed in, here we used Unity3D/C# (see

implementation section).

a
b

c

64

Figure 28: Examples of different narrative arrangements. (a) Sequence: the ‘porridge’,

‘chair’ and ‘bed’ are accessed in a set order. (b) Concurrency: eating the ‘porridge’ allows

using the ‘chair’ and the ‘bed’. (c) Conflict: the user needs to decide between one of the

‘chairs’. (d) Merge: only eating all ‘bowls of porridge’ makes Goldilocks ‘tired’.

(e) Synchronization: sitting on the ‘chair’ and eating the ‘porridge’ is necessary before

sleeping in the ‘bed’. (f) Confusion: a mixture of conflict and merge, using the ‘bed’

denies eating the ‘porridge’ or sitting in the ‘chair’.

Scenograph adapts the scenes to the available space by splitting the

nodes into multiple instances – this is the core value of the system. As

shown before in Figure 1 (page 16)Figure 29, limiting the tracking

volume from 25m2 to 8m2 results in splitting the ‘home’ node into four

nodes. Figure 29 shows how limiting it to the L-shaped 12m2 results in a

split into two nodes, as that space does not fit all three ‘bowls of porridge’

and three ‘chairs’. Scenograph re-links the transitions to maintain

narrative structure. Scenograph takes the petri-net and the available

tracking volume as input and transforms them into the new layout.

a b c

d e f

Virtualizing the extent and shape of physical space | 65

Figure 29: Scenograph splits the ‘home’ node into two as the designed for 25m2 get

reduced to an L-shaped 12m2. (a) This node has six transitions (three bowls of porridge

followed by three chairs). (b) The bowls of porridge are placed in the first (upper) node,

the chairs in the second, as they are interacted with after the bowls of porridge.

The end-user has no knowledge of Scenograph’s data structure. The

system merely requires a specification of the user’s tracking volume in

the form of a polygon. This specification can be provided by a range of

tracking technologies. The designer provides the volume-independent

representation of the experience.

AUTHORING TRACKING VOLUME- INDEPENDENT EXPERIENCES

To create an experience, the designer must define all possible interaction

sequences, i.e., the connections between spatial nodes, logical nodes,

and transitions. This specification follows a bipartite graph structure, as

nodes and transitions can only connect to each other, not to themselves.

After creating the necessary virtual objects of the experience (3D models,

animations, etc.), the designer connects transitions to nodes and vice

versa by clicking on the corresponding objects in the editor’s graph

representation (Figure 30).

a b

66

Figure 30: The designer authors the Goldilocks experience by connecting nodes and

transitions. (a) For the user to interact with the ‘beds’ after ‘little bear’s chair’, the designer

connects the ‘chair transition to a state (‘sleepy’), (b) and that state to the ‘beds’. (c) The

final narrative structure.

Scenograph can also attribute multiple transitions to the same virtual

object. In Figure 30, for example, one side of the 3D model of the big bed

is considered ‘mama bear’s bed’, the other side ‘papa bear’s bed’. A

staircase can be used for ‘going upwards’ and ‘going downwards’, etc.

The classic Goldilocks fairy tale is sequential (like most stories).

Goldilocks eats the porridge, sits on the chairs, then lies on the beds. She

always starts with the item of papa bear, then mama bear and finally the

small bear. In our rendition of Goldilocks, we instead chose to allow for

user decisions: any porridge is edible until small bear’s porridge is eaten,

sitting on any chair is possible until the user sits on small bear’s chair,

etc. A sequentially told story in Scenograph would provide an easy to

solve problem (cut off the story when we run out of space, then split the

location node). Scenograph usefulness increases with the complexity of

the narrative, for example, when user decisions are involved, since the

problem of where to split the nodes is then non-trivial. On the other end

of the spectrum, if there is no logical connection at all (all objects can be

interacted with anytime without consequences or story progression),

then the decision where to split the node would be arbitrary.

5.3 SCENOGRAPH ALGORITHM

Scenograph runs with any app that provides the graph structure

described above. The following five steps describe Scenograph’s

algorithm in detail.

a b c

Virtualizing the extent and shape of physical space | 67

Step 1: TAKE IN GIVEN PHYSICAL SPACE

Scenograph requires a specification of the given tracking volume in the

form of a polygon, as well as the resolution into which the space gets

virtualized, which is provided by the application. In our lab setup we

have 5m x 5m available, and our example applications is designed for a

resolution of 1m x 1m so that Scenograph tessellates the space into 5 x 5

tiles (Figure 31).

Figure 31: (a) Our tracking volume of 5m x 5m and a sub-space of an L-shaped 8m2.

(b) Scenograph tesselates the area using ‘Goldilocks’ resolution of 1m x 1m to either 25

or 8 tiles, the configuration we used for our user study. (c) Many other sizes and shapes

are possible.

The generated chunks of tiles are allocated to the system for the

generation of the virtual scenes. Different physical setups will thus

result in different scenes (Figure 32). Note that each experience requires

a minimum size based on its largest virtual object, e.g., for Goldilocks

this is the sofa with 2m x 2m. Scenograph allows to switch setups at

runtime, for example if space gets occupied or freed up suddenly. In this

case Scenograph re-instantiates the experience, however, it maintains

the current logical and spatial nodes (e.g., ‘frightened’ and ‘upstairs

bedroom’).

Figure 32: Scenograph takes various tracking volumes as input, such as (a) this living

room. (b) Scenograph then instantiates the experience.

a b c

a b

68

Step 2: PACK VIRTUAL OBJECTS INTO GIVEN SPACE

Scenograph requires its applications to declare the space requirements

for the virtual objects the transitions are paired with. Space requirements

entail the object’s length and width as hard constraints, and placement

preferences (close to a wall, middle of the room, etc.) as soft constraints

with a cost function.

Figure 33: (a) A ‘porridge’ is a virtual object that requires 1m2, (b) ‘papa chair’ needs 4m2

and a wall, (c) ‘little bed’ 1m x 2m and a corner, (d) a generic corridor-portal connecting

scenes takes 1m2 and a corner.

Scenograph now needs to determine if all nodes can support their

transitions, i.e., if the virtual objects’ can be packed together onto the

space the scene is given. The system offers different packing algorithms,

(best-fit, using simulated annealing), or random placement (first-fit,

using random placement). Given a smaller or differently shaped

tracking volume, the packing algorithm might not find a solution and

the node is then not able to support its transitions. In Figure 29 we

cannot pack three ‘bowls of porridge’ and three ‘chairs’ into L-shaped

12m2, thus Scenograph splits the ‘home’ node into two.

Step 3: RE-USE SPACE BY SPLITTING SPATIAL NODES

To determine the number of splits per node and the distribution of

transition onto split nodes, Scenograph uses divisive hierarchical

clustering. The distance computation between transition pairs, required

for our hierarchical clustering, uses a simple semi-decision technique

(distance of 1 if two transitions can be interacted with in any order, 2 if

one transition needs to be interacted with after the other, 3 for neither).

a b c d

Virtualizing the extent and shape of physical space | 69

Scenograph now needs to evaluate which clustering to take for each

node.

Scenograph cannot linearly iterate through each node separately to

find the right clustering, as some virtual objects need to be instantiated

on the same tiles in more than one scene (transitions with different

spatial nodes as input and output, such as a door). This means that

Scenograph needs to consider all possible clusterings for all nodes in

parallel, making the packing problem 3-dimensional (width, depth,

occurrence in nodes).

Scenograph iterates through all possible clustering in an informed

manner. The number of clusters and therefore the potential connected

scenes to consider is exponential in the number of virtual objects. Our

hierarchical clustering does not reduce this amount, it merely sorts all

potential clusterings based on the conceptual distance between

transitions. The number of virtual objects and thus of potential clusters

is different for each scene. For example, our three nodes have one

transition (‘forest’ has a door leading to ‘home’), eight transitions (‘home’

has 3 ‘bowls of porridge’, 3 ‘chairs’, 1 ‘door’, 1 ‘stairway’) and three

transitions (‘upstairs bedroom’ has 2 ‘beds’, 1 ‘stairway’), leaving 20 + 27

+ 22 = 512 possibilities. Each possibility corresponds to a certain

clustering depth per node, which we represent using a mixed radix

numeric system (e.g., 112613 corresponds to splitting the second node in

two). We iterate through this numeric system linearly first based on the

checksum of this clusterings number (to reduce the number of nodes)

and then on its order within the hierarchical clustering (maximizing

proximity of virtual objects that are also conceptually close).

After finding the right split of nodes, additional transitions might

need to be generated to connect them (Figure 34). This problem has

multiple solutions (e.g., sequence, loop, full connection, etc.). However,

as a tradeoff, added transitions lead to a linear decrease of available

space per cluster (to a maximum of number of clusters – 1 for full

connection). This makes this decision a design problem and

70

consequently the application designer defines how scenes should be

connected, our example application uses a sequence.

Figure 34: These four 4m2 nodes can be linked in (a) a sequence, (b) a loop, (c) completely.

Algorithm 1: Re-use of space

Input: 𝑃 – storyline as petri-net (contains nodes, contains transitions as

virtual objects with placement rules), 𝑀 – mapping of 𝑃 onto given

physical space

Output: scene splits based on 𝑃 and 𝑀

𝑁 ⃪ 𝐺𝑒𝑡𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒𝑠(𝑃)

𝑟 ⃪ 𝐺𝑒𝑡𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛()

𝑠 ⃪ 𝐺𝑒𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑆𝑝𝑎𝑐𝑒(𝑟)

for each 𝑛 in 𝑁 do

– 𝑉 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛)

– 𝑑 ⃪ 𝑃. 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑉)

– for each 𝑣𝑎 , 𝑣𝑏 in 𝑉 with 𝑎 ≠ 𝑏 do *

– – 𝑅𝑎 ⃪ 𝑣𝑎 . 𝐺𝑒𝑡𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑅𝑢𝑙𝑒𝑠()

– – for each 𝑟 in 𝑅𝑎 do

– – – if 𝑣𝑏 = 𝑟. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡() then

– – – – 𝑑(𝑎, 𝑏) ⃪ 0

– – – end if

– – end for

– end for

– 𝑔 ⃪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚(𝑑, 𝑉)

– 𝐶 ⃪ 𝐺𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑆𝑜𝑟𝑡𝑒𝑑(𝑔)

– while 𝑀. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉, 𝑃) do *

– – 𝑐 ⃪ 𝐶. 𝑁𝑒𝑥𝑡()

a b c

Virtualizing the extent and shape of physical space | 71

– – 𝑁𝑐 ⃪ 𝑛. 𝑆𝑝𝑙𝑖𝑡𝑁𝑜𝑑𝑒 (𝑐)

– – for each 𝑛𝑖 in 𝑁𝑐 do

– – – 𝑉𝑖 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛𝑖)

– – – if 𝑀. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉𝑖, 𝑃) then

– – – – 𝑃. 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑁𝑜𝑑𝑒(𝑛, 𝑁𝑐)

– – – end if

– – end for

– end while

end for

for each 𝑛 in 𝐺𝑒𝑡𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒𝑠(𝑃) do

– 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐𝑒𝑛𝑒(𝑛)

end for

Step 4: INSTANTIATE THE EXPERIENCE

The virtual scenes are now generated. Each virtual object is placed onto

the space the packing algorithms allocated for it. Afterwards, the rest of

the scene is generated. While an application may create the visuals for

each scene itself, Scenograph offers some default procedural generation

algorithms to create the scene automatically. The application just

provides the decorative objects, walls, floors, etc., together with

placement constraints (e.g., a wall element with a window cannot be

used next to occupied tiles). Scenograph loads and unloads scenes

dynamically depending on the users’ interaction with the virtual objects

or where they walk. Scenograph uses corridors similar to impossible

spaces to connect scenes [88], which serve as portals or locks. The L-

shaped 12m2 space in Figure 29 can thus be used twice to fit the ‘bowls

of porridge’ as well as the ‘chairs’. Less overlap makes the technique less

perceptible. However, since we focus on small spaces, Scenograph here

fully overlaps the scenes.

5.4 IMPLEMENTATION AND HARDWARE

The system was implemented in C#, the example application and editor

interface in Unity3D. We used ALGLIB [2] for clustering. Participants

72

wore a backpack PC for tether-less virtual reality. For tracking we used

the VIVE system [100]. To allow researchers to replicate our work, we

provided the full source code online [77].

5.5 USER STUDY

Scenograph can fit experiences into tracking volumes with different

physical sizes and shapes. To validate this, we let Scenograph instantiate

our ‘Goldilocks’ experience for different tracking volumes. We

compared these instantiations to two commonly used locomotion

techniques for small tracking volumes (see Figure 35): motion scaling, the

altered mapping of users’ physical to virtual motion (similar to Seven-

League-Boots [45]), and teleportation, a form of artificial locomotion [11].

We hypothesized that Scenograph would receive higher ratings of

realism and enjoyment.

INTERFACE CONDITIONS

We compared six conditions.

In large-square, we contained every scene of the narrative in a single

volume by allocating a total of 5m x 5m to the application. No split of

any location nodes and no motion scaling needed to be applied. This

condition emulates the best possible situation as every scene can

incorporate all virtual objects.

In small-square-Scenograph we allocated 3m x 3m, emulating a

smaller tracking volume where splitting the experience is necessary as

not all virtual objects fit into the space.

In small-shape-Scenograph we allocated the small space in the form of

a L-shape (8m2), emulating variable shape of users’ tracking volume.

In small-square-scaled we rendered the same 25m2 virtual world as in

large-square but applied a motion mapping of 1:5/3 to all translations of

the participant so that only 3m x 3m are needed.

Virtualizing the extent and shape of physical space | 73

In small-shape-scaled we also rendered the 25m2 virtual world, but for 2m

x 2m tracking volume, the smallest quadratic shape fitting into the L-

shape of small-shape-Scenograph, for a 1:5/2 motion mapping.

In small-teleport, we rendered the same 25m2 virtual world as in large-

square but enabled a teleport mechanism: users could point to any virtual

position and teleport themselves to it. The limited tracking volume, here

our small 3m x 3m, was visualized like in most real-walking systems

(such as Vive [100], or Oculus [72]) by rendering chaperone bounds.

Figure 35: (a) Our first control condition implements a teleport functionality and displays

chaperone bounds to keep users from leaving the tracking volume. (b) The participant

travels by clicking or by walking. (c) Our second control condition, scaled motion,

changes the mapping of physical motion (solid line) to virtual motion (dashed line).

APPARATUS

The study took place in our 5m x 5m empty lab space (Figure 31). The

experience we used was the ‘Goldilocks’ application described earlier.

Participants could interact with the virtual objects of the application

(transitions, see system section) with their hand controller.

TASK AND PROCEDURE

We gave participants a summary of the story and let them experience

the virtual reality application before testing, so it was familiar prior to

all conditions. Each participant then traversed once through each

condition for a total of six sessions. The order of the conditions was

randomized for each user. Each session took about two minutes to

complete. After each session, participants filled in a questionnaire.

a b c

74

MEASUREMENTS

The questionnaire contained two statements to complete on a 1-7 Likert

scale: “I enjoyed the experience (not at all-very much)” and “Moving

around felt (artificial-natural)” for our measures enjoyment and realism.

PARTICIPANTS

We recruited twelve participants from our organization (six female, six

male, mean age 23.6 sd 3.6 years). Seven of the participants had previous

experience with virtual reality, two of whom with real-walking. The

remaining five participants had never tried virtual reality before.

HYPOTHESES

Our hypotheses compared Scenograph to both control conditions: For

small spaces, we hypothesized the Scenograph conditions would be

perceived as more realistic and enjoyable than the scaled conditions for

both square (H1) and shape (H2). The Scenograph conditions would be

perceived as more realistic and enjoyable than the teleport condition (H3,

H4). The small-square-Scenograph condition would be perceived as less

realistic and enjoyable than the large-square condition (H5).

RESULTS

This section reports Bonferroni-corrected p-values. T-tests (applied as

suggested by [70]) are one-sided.

Figure 36 shows our main finding. As hypothesized, the Scenograph

condition outperformed the scaled conditions in both space setups square

(p < .05, t(11) = 3.22), supporting H1, and shape (p < .001, t(11) = 9.88),

supporting H2. Scenograph conditions performed better than the teleport

control (both p < .01, t(11) = 6.23), supporting H3 and H4. Surprisingly,

no difference was found between large-square and small-square-

Scenograph (p = .73, t(11) = 1.27), so H5 cannot be supported in terms of

realism (underlining the system’s effectiveness).

Virtualizing the extent and shape of physical space | 75

Figure 36: Participants rated the Scenograph conditions more realistic than both control

conditions scaled motion and teleport (bars show std. error).

Enjoyment was generally high, the large-square space condition

unsurprisingly scored the highest (mean 5.8, sd 0.9) together with small-

teleport (5.8 sd 1.1). The Scenograph conditions performed almost equally

well for small-square (5.6 sd 0.9), and small-shape (5.6 sd 1.1). The scaled

conditions scored lower for both small-square (4.8 sd 1.5) and small-shape

(4.3 sd 1.5), so that the difference in mean scores was significant for small-

shape (p < .05, t(11) = 3.61), supporting H2. We did not find support for

the remaining hypotheses in terms of enjoyment, notably again H5

(p = .80, t(11) = 1.2).

To make our results comparable for future studies, we want to

report on the distance walked by the users. On average, users walked

37.0m in the large-square condition, 28.0m in small-square-Scenograph,

29.0m in small-shape-Scenograph, 22.3m in small-square-scaled, 14.2m in

small-shape-scaled, 13.4m in small-teleport.

QUALITATIVE FEEDBACK

Participants found walking experiences generated by Scenograph to be

most “realistic” (P3, P7, P8) as movement felt most “natural” (P3, P7).

76

One participant stated that changing rooms was sometimes “irritating”

(P2), another found the experience got “harder” (P6).

Participants found teleportation to be “very artificial, but cool” (P6,

P12). Others stated that the chaperone bounds broke immersion (P8, P9).

One participant argued for its naturalness due to its “familiarity” (P1).

Motion scaling was perceived as “non-intuitive” (P5, P6, P7) and

“uncomfortable” (P2, P4, P12). Participants liked the experience better if

it was “less fast” (P10). Some participants enjoyed it as it was “like in a

movie, but not natural” (P9), though “it became more natural over time”

(P8).

D ISCUSSION

Our main finding is that Scenograph can create real-walking experiences

in virtual reality for tracking volumes of any size and shape.

Scenograph’s experiences were rated more realistic than two commonly

used locomotion techniques, namely instant teleportation [11] and scaling

the mapping of physical to virtual motion (e.g., [45]). This leads us to

conclude that Scenograph degrades more gracefully with limitations of

tracking volume with qualitative feedback supporting these findings.

Space compression impacts realism differently than enjoyment.

Both teleportation and motion scaling still provided enjoyable

experiences to the participants. Also, the size of the tracking volume did

not measurably impact enjoyment (comparing 9m2 to 25m2). The

number of participants might have played into not discovering the

hypothesized differences. It seems, however, that even when space

compression is high and becomes more perceivable to the user (teleport,

stronger motion scaling, higher overlap of impossible spaces) it affects

realism first rather than enjoyment. Only when the compression

becomes very high (motion scaling for L-shaped 8m2) does it also impact

enjoyment. Based on our results, we can thus only make claims about

Scenograph’s impact on realism.

Virtualizing the extent and shape of physical space | 77

The study design has some limitations. No set of control conditions

exists that can sufficiently represent the broad spectrum of available

locomotion techniques. We chose our control conditions as mere

representatives of those existing techniques; motion scaling as one

instance of locomotion techniques which distort the mapping of physical

to virtual motion (instead of, e.g., redirected walking [74]) and

teleportation as one instance of virtual locomotion techniques (instead

of, e.g., walking-in-place [93]). It can be argued that virtual locomotion

always comes at the cost of perceived realism and that the motion

mapping can be optimized, as for example done in seven-league-boots [45].

A great way of optimizing is by knowing about the intended destination

of travel, which make these techniques particularly suitable for

sequential narratives (seven-league-boots scales motion and redirected

walking alters the yaw rotation towards the direction of travel). For that

reason, we imagine that these or similar techniques can play into future

iterations of the system. As of now, our study showed that Scenograph

is a working system that supports end-users in any tracking volume and

compares well to the chosen control conditions.

5.6 CONCLUSION ON SPACE- INDEPENDENT EXPERIENCES

We have presented Scenograph, a novel software system that supports

the design of real-walking experiences, which can adapt to any tracking

volume’s size and shape. For creators, who generally design experiences

to fit a specific tracking volume, this allows them to define experiences

with complex storylines independent of the users physical space, and it

allows users to run these experiences in whatever space they have

available. The core of Scenograph is a tracking volume-independent

representation of real-walking experiences. This representation is not

spatial until instantiated. Scenograph instantiates the experience after

splitting the locations into smaller ones while maintaining narrative

structure. In our user study, participants’ ratings of realism decreased

significantly when existing techniques were used to map a 25m2

78

experience to 9m2 and an L-shaped 8m2 tracking volume. In contrast,

ratings did not differ when Scenograph was used to instantiate the

experience.

We have the idea of virtualizing physical space further and, apart

from sharing resources, we now enable space-independent real-walking

in complex experiences. Scenograph thus provides another crucial

component for making real-walking experiences available to consumers.

There is a final limitation. We assume spaces devoid of any physical

objects which arguably are found inside most users’ tracking volumes.

In the next chapter, we show how virtualization of sets of such physical

objects can be achieved.

79

6 VIRTUALIZING SETS OF PROPS

WITHIN PHYSICAL SPACE

We now have gathered almost all attributes for a full virtualization of

physical space. We allow for concurrent use of tracking volumes,

concurrent use of one prop, and we allow complex experiences to run in

tracking volumes of arbitrary size and shape. We now also want

experiences to run in physical spaces that contain arbitrary sets of

physical props, so that experiences can truly run anywhere.

This chapter directly builds on the last as it extends our abstraction

layer between virtual reality experience and the arbitrary physical

spaces they can occupy, so that these spaces can contain any set of

physical props. This is the goal of Stuff-Haptics, the software system that

extends Scenograph and which we describe and evaluate in the following.

6.1 STUFF-HAPTICS : 1:1 EXPERIENCES FOR ANY SET OF PROPS

We present Stuff-Haptics, a software tool that provides consistent

experiences across limited, uncurated sets of physical props. Unlike

traditional passive haptics experiences, Stuff-Haptics does not require

the set of physical props to be premeditated, and allows experiences to

run anywhere, specifically in users’ homes with stuff already found in

the home, such as hairdryers, half-used candles, etc. Stuff-Haptics

80

accomplishes this with a prop-independent representation of the

storyline,which consists of the narrative structure of events and the

spatial layouting rules for mapping of virtual content onto the available

physical prop set. Stuff-Haptics lays out the virtual objects onto an

annotated scan of the stuff in users’ homes. Given limited sets of props,

Stuff-Haptics offers different solutions to best preserve the experience,

either through re-use of props or by pruning the storyline to still fit the

most important story elements. In our user studies, Stuff-Haptics both

successfully ran the same experience for different users’ prop sets and

ran different passive haptics experiences on the same prop set.

EXAMPLE APPLICATIONS

We continue to demonstrate our approach using ‘Goldilocks and the

three bears’ as our main example, as shown previously in Figure 2 on

page 17, and which we now detail in Figure 37.

For creators, Stuff-Haptics allows them to define the spatial

layouting and narrative structure of a story. For example, the relative

placement rules of virtual objects onto props (‘papa bear’s chair’ is

bigger than ‘mama bear’s chair’) and logical progression (after sitting in

the ‘small bear’s chair’, Goldilocks can go to the ‘upstairs bedroom’). It

specifically also allows creators to choose between different automated

solutions for handling limited prop sets; re-using props or altering the

storyline. For users, Stuff-Haptics allows for different sets of props as

well as switching props at runtime.

To show that Stuff-Haptics extends to other experiences as well, we

further add two more example experiences (Figure 38). Our ‘The Golden

Key’ includes a warming fire place and some stairs to walk on to reach

a key to then progress into the next level. Our ‘Mona Lisa Heist’

experience includes touching a showcase and afterwards some pictures

on the wall.

Virtualizing sets of props within physical space | 81

Figure 37: (a) The user invokes a virtual reality experience, ‘Goldilocks and the three bears’

in their regular living environment. Our software tool Stuff-Haptics provides passive

haptics to the experience by automatically lining up relevant virtual objects with physical

props of matching haptic qualities, such as the ‘bears’ three bowls of porridge’ with the

physical water kettle, and ‘papa bear’s chair’ with the physical table. (b) When the user is

walking through their kitchen they are ‘Goldilocks’, a little girl that finds herself lost in the

woods, and stumbles across the home of the three bears. (c) In the three bears’ home,

Goldilocks sees the bears’ three bowls of porridge and finds one to be ‘too hot’, another

‘too cold’ and the third ‘just right’ – the user feels the heat of the porridge as they hold

one hand over the kitchen’s water kettle. Stuff-Haptics places the ‘too hot’ porridge

closer to the physical water heater to be physically hotter than the ‘just right’ porridge.

Goldilocks, then tired, tries to sit down on the different chairs. The first one feels ‘too big’

– the user sits down on the kitchen table. (d) Back in reality, when a flatmate needs to

use the kitchen, our user moves on to another room. (e) Stuff-Haptics redesigns the

virtual experience on the fly. It now places the chair onto the physical living room table.

The story continues, another chair is ‘still too big’ – Stuff-Haptics placed the ‘too big’

chair onto the physical table instead of the ‘too small’ one. After sitting on the chairs,

Goldilocks is tired. (f) Goldilocks enters the upstairs bedroom, finds the first bed ‘too

hard’, another ‘too soft’ and the third ‘just right’ – Stuff-Haptics placed the ‘just right’ bed

onto this physical sofa and the ‘too hard’ again on the table, so that the user lies down

on the sofa. (g) As the user lies down, Goldilocks falls asleep, and when the bears return

home, Goldilocks wakes up and runs away.

water kettle bears’ porridge

kitchen table

papa bear’s chair

heater, window sill

living room table

bears’ porridge

papa bear’s chair

ba

dc

gf

e

82

Figure 38: Other Stuff-Haptics experiences. (a) Here some virtual stairs and a fire map to

these physical chairs and heat-lamp. (b) For another user the chairs are mapped onto

the physical sofa. (c) This art gallery maps onto the physical walls.

6.2 OUR SPACE- AND PROP- INDEPENDENT DATA STRUCTURE

Stuff-Haptics combines a story’s structure and its parametric models

into a space- and prop-independent representation of a real-walking and

passive haptics experience.

The placement constraints and parametric models inform the

layouting process. The storyline informs the handling of insufficient

props, such as splitting of environments for re-use, similar to re-use of

space, as previously detailed in chapter 5, step 3 (”Re-use space by

a

b

c

Virtualizing sets of props within physical space | 83

splitting spatial nodes”). We show how those placement constraints and

storyline now inform each other for their specific tasks.

The procedural generation of a virtual environment requires a

valuation of possible mappings from virtual content onto the scan of the

physical environment. This requires a description of the range of

matching props (sets) for each virtual object (set). We follow a similar

approach as in previous work [32, 39] and use parametric model

descriptions together with a constraint solver to place virtual content.

We added material tags (such as ‘surface elasticity’, or ‘heat emission’)

for a better haptic experience.

AUTHORING PROP- AND SPACE INDEPENDENT EXPERIENCES

Figure 39 shows the ‘bears’ beds’, one example of such a parametrically

defined virtual object set that can be authored.

Figure 39: We extend our authoring pipeline with defining procedural content. (a) By

hovering over ‘little bear’s bed’ we preview its parametric description. (b) This popup

window details all parameters and current fitness values for ‘little bear’s bed’. (c) We

change the valuation for ‘surface elasticity’ to get a somewhat soft ‘bed’.

a b

c

84

In the example of ‘little bear’s bed’, different props can be considered

somewhat functional substitutes such as tables, sofas, etc. The fitness

value assigned to each prop depends on the material properties of the

physical counterpart (does the prop have a certain ‘surface elasticity’),

its absolute positioning properties (does the surface it is mapped to have

accessible height), and its relative positioning properties (is it close or far

from the other bed counterparts). Figure 39c shows that ‘little bear’s bed’

requires a ‘surface elasticity’ of ideally 0.5 as a material property of

fitting geometry (here we define surface elasticity within a range of 0 to

1, each surface in the room scan is annotated with such a value). ‘Little

bear’s bed’ further requires a surface of certain height (~0.5m), size

(~1m2), size ratio and horizontal alignment. Ideally it also differs in size

from the other beds. Here we describe the additional constraint that it

needs to have a relative size of ~0.5 compared to ‘mama bear’s bed’

(which again defines its own constraints, and so on). Using these rules

Stuff-Haptics can match the bed for example to a couch in our user’s

living room, or a chair in the kitchen. If a fit seems bad, parameters can

be further tweaked. The Goldilocks experience is based on a total of 91

of such parametric rules formulated by the experience designer.

Other objects work similarly. For the user to feel its warmth, ‘mama

bear’s porridge’ uses the kitchen’s water kettle, or the window sill above

the heater in the living room. For the user to sit down, ‘papa bear’s chair’

uses the kitchen table or the table in the living room. ‘Papa bear’s chair’

needs to be bigger than the others, ‘little bear’s bed’ needs to be softer,

‘mama bear’s porridge’ needs to be colder, etc. Stuff-Haptics offers a

total of 28 different placement rules (easily extendable in the source

code). The 13 virtual objects in Goldilocks have a total of 91 rules, with

the ‘porridge’ defining the least amount with 4 and ‘mama bear’s bed’

defining the most with 9. These rules can be applied to other experiences.

The virtual staircase in ‘The Golden Key’, for example, consists of a

maximum of five steps, each of which encompasses a set of soft

Virtualizing sets of props within physical space | 85

constraints. The first step requires a horizontal surface of certain height,

aspect ratio and material properties. Consecutive steps additionally

require its predecessor to be placed within a certain horizontal and

vertical distance and are not instantiated when those requirements are

not met, so that the mapping algorithm might find a match in a sofa, but

not in a shelf.

Some objects are virtual only, without physical counterpart, such as

the bears themselves, as Goldilocks does not touch or interact with them

anyway, or ‘little bear’s chair’, which breaks under Goldilocks weight

and might be better suited for complementing haptic rendering devices.

Those objects still define their own constraints (‘little bear’ is placed on

the floor next to its ‘bed’, ‘parent bears’ are downstairs next to the ‘bowls

of porridge’ and ‘chairs’). Some virtual objects are not strictly relevant

but support others, such as the table placed underneath the porridge.

6.3 STUFF-HAPTICS EXTENDED ALGORITHM

Stuff-Haptics runs with any app that provides both Scenograph’s graph

structure and the parametric design of virtual content as described

above. Together they form the tracking volume-independent

representation of real-walking experiences. The following four steps

provide detailed description how Stuff-Haptics extends Scenograph’s

algorithm (please compare with the four steps of Scenograph’s

algorithm in chapter 5).

Stuff-Haptics takes in (1) the geometry of the physical props and the

representation of a story (as a petri-net) and its content (as parametric

placement rules). It then (2) maps that content onto the physical

geometry. In the next (3) step, it handles the case of ill-fitting or limited

physical prop set by splitting the virtual environments, or pruning the

storyline to still instantiate parts of the story. Finally (4), Stuff-Haptics

adapts and/or generates the virtual models and environment(s).

The main contributions of this chapter are in step 2, altering the

mapping function with relevant information from the story, and in

86

step 3, handling the case of insufficient props. The main insight is that

we can merge the two approaches, parametric models for spatial

layouting and story descriptions for re-use of resources. We do not

provide contributions in any other step, but will also go into detail about

them, pointing to related work if necessary, to give the reader an

overview on the general process.

Step 1: TAKE IN GEOMETRY OF PHYSICAL PROPS

The procedural generation of a virtual environment requires a scan of

the physical environment containing the shape of the tracking volume

and the shape of the physical props. Next to the shape of the props, their

material properties such as heat emission or elasticity are useful, as they

can be used later in step 2 to better match the virtual affordances. For

example, the ‘bears’ porridge’ fits better onto hot surfaces, ‘papa bear’s

bed’ fits better onto a hard surface.

Scanning physical environments is a well-researched area, as

described in the related work section, chapter 2 (“scanning physical

environments”). We thus extrapolate one step further and assume

tracking is not an issue. We use Vive trackables [100] and pre-modelled

meshes as a placeholder for this technology (Figure 40). We leave any

discussion of the scanning process to the body of existing research.

Figure 40: (a) We manually draw out the surfaces of the room. (b) We then annotate

material properties, such as heat emission or elasticity.

a b

heat emission: 0°
surface elasticity: 0.57

Virtualizing sets of props within physical space | 87

Step 2: MAP VIRTUAL OBJECTS ONTO GEOMETRY

Stuff-Haptics now automatically matches the virtual objects onto the

physical geometry at hand.

In the following we show an internal view of Stuff-Haptics as it

layouts the different elements (bowls of porridge, chairs, beds) of our

example application onto the two different example environments; the

user’s kitchen (Figure 41) and the living room (Figure 42).

Figure 41: (a) Stuff-Haptics takes in the user’s kitchen to generate the different story

locations, such as (b) the ‘bear’s home’. (c) The annotated scan of the kitchen. Stuff-

Haptics starts out by mapping the bowls of porridge on the countertop and water kettle.

(d) The ‘bears’ chairs’ cannot share the same prop, but (e) the ‘bears’ beds’ in the

‘bedroom’ can re-use the table

Our implementation uses a constraint solver and parametric

descriptions of virtual content, as suggested by the related work

described above, but integrates the story structure in the process.

c ed

a b

88

Figure 42: (a) For the living room, Stuff-Haptics re-generates the story locations, such as

(b) the ‘bear’s bedroom’ and re-layouts the elements, (c) the ‘bowls of porridge’,

(d) ‘chairs’, and (e) ‘beds’.

Our algorithm takes in an annotated scan of the physical environment

and simplifies it by extracting only relevant (big enough) surfaces. In a

pre-processing step for the mapping, for every virtual object, our

algorithm first dismisses any surface which would not provide a fit. For

example, the ‘bears’ beds’ could not be placed on a vertical surface, such

as a wall.

In each processing step Stuff-Haptics calculates a new fit for each

virtual object using a stochastic method, the covariance matrix

adaptation evolution strategy (CMA-ES [36]). Note that each virtual

object set, such as the ‘bear’s porridge’, is really comprised of a set of

objects, such as three ‘bowls of porridge’ and a ‘table’. The optimization

runs separately for every virtual object set, but it runs simultaneously

across sets to account for interdependencies between object sets. For

c ed

a b

Virtualizing sets of props within physical space | 89

example ‘mama bear’ stands next to the ‘table’, and ‘papa bear’s bed’

must be larger than ‘mama bear’s bed’.

Algorithm 2: Map virtual objects to physical surfaces

Input: 𝑆 – scan of the physical environment (as annotated surfaces), 𝑃 –

storyline as petri-net (contains nodes, contains transitions as virtual

objects with placement rules)

Output: mapping 𝑀 from 𝑃 onto 𝑆

𝑉 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠()

for each 𝑣𝑖in 𝑉 do

– 𝑀(𝑣𝑖) ⃪ 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑣𝑖, 𝑆)

– 𝑜𝑖 ⃪ 𝐶𝑟𝑒𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑣𝑖, 𝑆)

end for

𝐴 ⃪ 𝐴𝑚𝑜𝑢𝑛𝑡𝑁𝑜𝑑𝑒𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑃, 𝑉)

for each 𝑜𝑖 where 𝑜𝑖. 𝑆𝑡𝑖𝑙𝑙𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑖𝑛𝑔() do

– 𝑠𝑖 ⃪ 𝑜𝑖 . 𝑆𝑎𝑚𝑝𝑙𝑒𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆)

– 𝑓 ⃪ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝑠𝑖) =>

– – 𝐿 ⃪ {}

– – 𝑅𝑖 ⃪ 𝑣𝑖 . 𝐺𝑒𝑡𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑅𝑢𝑙𝑒𝑠()

– – for each 𝑟 in 𝑅𝑖 do

– – – 𝑒𝑣𝑎𝑙 ⃪ 𝑟. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑠𝑖)

– – – 𝑣𝑟 ⃪ 𝑟. 𝐺𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡()

– – – 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 ⃪ 𝐴(𝑣𝑟)/ 𝑀𝑎𝑥(𝐴)

– – – 𝐿. 𝑎𝑑𝑑(𝑒𝑣𝑎𝑙 ∗ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒)

– – end for

– – 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝑠𝑖) ⃪𝐿𝑜𝑔𝑆𝑢𝑚(𝐿)

– – if 𝑓 > 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝑀(𝑣𝑖)) then

– – – 𝑀(𝑣𝑖) ⃪ 𝑠𝑖

– – end if

end for

for each 𝑣𝑖 in 𝑉 do

– if 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖, 𝑀(𝑣𝑖)) < 𝑣𝑖 . 𝑇ℎ𝑟𝑒𝑠(𝑀(𝑣𝑖)) then

– – 𝑀(𝑣𝑖)⃪ {}

– end if

end for

90

Our algorithm uses the graph-based story structure to weight virtual

objects more heavily in the global optimization, which are more relevant

for story progression. Virtual objects are ranked by the amount of logical

states they affect. For example, it is more relevant to find a good fit for

‘little bear’s bed’ than for the other beds. The reason Stuff-Haptics finds

this out is that the bed changes the ‘sleepy’ and ‘bears back home’ states.

After lying down in the ‘little’ bed, Goldilocks falls asleep and finds

herself waking up after the bears have returned home.

Step 3: HANDLE INSUFFICIENT PROPS AND SPACE

In practice, a lack of matching physical props prevents mixed reality

experiences from running everywhere. If it is essential for the user to feel

‘warm porridge’ or sit on ‘bears’ chairs’ and insufficient props are

available, the story cannot take place. We here propose some solutions

based on Stuff-Haptics prop-independent representation of the

experience.

SOLUTION 1: RE-USE PROPS AND SPACE

We can apply our idea from before, splitting spatial nodes to re-use

space, onto the re-use of props. Figure 43a-c shows how ‘Goldilocks’

requires three virtual beds, but it may be that fewer physical props exist

that fit the parametric design, say just one sofa. That prop then can be

assigned to all beds. This contradicts some placement rules, such as

‘papa bear’s bed’ should be the hardest, but it maps all beds onto the

environment. Stuff-Haptics automatically splits the ‘bedroom’ into three

connecting ones by modifying the Scenograph algorithm from chapter 5

(page 68) as follows:

Virtualizing sets of props within physical space | 91

Algorithm 3: Re-use props and space

Input: 𝑃 – storyline as petri-net (contains nodes, contains transitions as

virtual objects with placement rules), 𝑀 – mapping of 𝑃 onto current

physical environment

Output: scene splits based on 𝑃 and 𝑀

𝑁 ⃪ 𝐺𝑒𝑡𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒𝑠(𝑃)

for each 𝑛 in 𝑁 do

– 𝑉 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛)

– 𝑑 ⃪ 𝑃. 𝐺𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥(𝑉)

– for each 𝑣𝑎 , 𝑣𝑏 in 𝑉 with 𝑎 ≠ 𝑏 do *

– – 𝑅𝑎 ⃪ 𝑣𝑎 . 𝐺𝑒𝑡𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑅𝑢𝑙𝑒𝑠()

– – for each 𝑟 in 𝑅𝑎 do

– – – if 𝑣𝑏 = 𝑟. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡() then

– – – – 𝑑(𝑎, 𝑏) ⃪ 0

– – – end if

– – end for

– end for

– 𝑔 ⃪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑒𝑛𝑑𝑟𝑜𝑔𝑟𝑎𝑚(𝑑, 𝑉)

– 𝐶 ⃪ 𝐺𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑆𝑜𝑟𝑡𝑒𝑑(𝑔)

– while 𝑀. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉, 𝑃) do *

– – 𝑐 ⃪ 𝐶. 𝑁𝑒𝑥𝑡()

– – 𝑁𝑐 ⃪ 𝑛. 𝑆𝑝𝑙𝑖𝑡𝑁𝑜𝑑𝑒 (𝑐)

– – for each 𝑛𝑖 in 𝑁𝑐 do

– – – 𝑉𝑖 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛𝑖)

– – – if 𝑀. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉𝑖, 𝑃) then

– – – – 𝑃. 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑁𝑜𝑑𝑒(𝑛, 𝑁𝑐)

– – – end if

– – end for

– end while

end for

for each 𝑛 in 𝐺𝑒𝑡𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒𝑠(𝑃) do

– 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐𝑒𝑛𝑒(𝑛)

end for

* These are the main modifications to the original algorithm

92

Figure 43: (a) This room contains just one sofa. (b) The ‘upstairs bedroom’ contains three

‘bears’ beds’, not all of which will fit onto the sofa. (c) Solution 1: Stuff-Haptics splits the

‘bedroom’ into three connected locations and re-uses the sofa for all three ‘beds’.

(d) Solution 2: Stuff-Haptics prunes ‘Mama bear’s bed’ and ‘Papa bear’s bed’ out of the

narrative so that our Goldilocks experience only contains the most important ‘little bear’s

bed’ for the user to lie down on.

SOLUTION 2: DELETE VIRTUAL OBJECTS AND PRUNE THE STORYLINE

Creators might not want to split the virtual environment. Stuff-Haptics

offers to automatically remove less relevant story objects to free up

props and space for more relevant objects. This relevance is measured

by the impact of the deletion on the story graph, similar to when we can

only find a bad fit for a virtual object.

Figure 43d shows an example. Using ‘little bear’s bed’ enables the

state ‘bears back home’ and is more important than ‘mama bear’s bed’

or ‘papa bear’s bed’. All beds find their best match in the sofa. Instead

a

c

b

d

Virtualizing sets of props within physical space | 93

of splitting the ‘upstairs bedroom’ into three, only ‘little bear’s bed’

appears in the story.

Whenever Stuff-Haptics disables an object it avoids logical

deadlocks by backtracking. In our example, using the ‘stairs’ to flee from

the ‘bedroom’ requires the ‘bears back home’ state to be active, which

happens by using ‘little bear’s bed’. Using the stairs is now also possible

even when the bed cannot be mapped. By simply walking into the

bedroom, the bears return home and the experience can continue.

Algorithm 4: Prune storyline

Input: 𝑃 – storyline as petri-net (contains nodes, contains transitions as

virtual objects with placement rules), 𝑀 – mapping of 𝑃 onto current

physical environment

Output: pruned transitions in 𝑃

𝑁 ⃪ 𝐺𝑒𝑡𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑁𝑜𝑑𝑒𝑠(𝑃)

for each 𝑛 in 𝑁 do

– 𝑉 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛)

– 𝐴 ⃪ 𝐴𝑚𝑜𝑢𝑛𝑡𝑁𝑜𝑑𝑒𝑠𝐶ℎ𝑎𝑛𝑔𝑒𝑑(𝑃, 𝑉)

– while 𝑀. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉, 𝑃) do

– – (𝑣𝑎, 𝑣𝑏) ⃪ 𝑀. 𝐺𝑒𝑡𝐹𝑖𝑟𝑠𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑉, 𝑃)

– – if 𝐴(𝑣𝑎) < 𝐴(𝑣𝑏)

– – – 𝑃. 𝑅𝑒𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑎, 𝑛)

– – else

– – – 𝑃. 𝑅𝑒𝑚𝑜𝑣𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑣𝑏 , 𝑛)

– – end if

– – 𝑉 ⃪ 𝑃. 𝐺𝑒𝑡𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠𝑂𝑓𝑁𝑜𝑑𝑒(𝑛)

– end while

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑐𝑒𝑛𝑒(𝑛)

end

While this solution allows the experience to still run, some basic shaped

props should exist to be able to instantiate enough relevant parts of the

experience. For Goldilocks this is a horizontal surface of certain size for

94

the ‘beds’ and ‘chairs’ and a heat source for the ‘porridge’. All the objects

in the narrative structure have an importance for the story, which, if

removed, decrease the overall fitness value. This overall value is also

reduced by the valuations of each mapping. The software tool compares

this total fitness value to a threshold set by the application to decide

whether or not to run that application in the given physical environment.

SOLUTION 3: EFFICIENT USE

In chapter 4 we have already proposed several techniques to map one

prop to multiple potential candidates. The case here matches the

requirements for injecting unnoticeable runtime changes.

In a mixed approach those techniques can be applied at runtime in

Step 2, the layouting process (page 87). In this case the virtual objects can

be clustered around their physical counterparts, e.g. the virtual bowls of

porridge are placed around the heat source.

Related work on this topic suggests to alter the one-to-one mapping

of physical to virtual body motion, e.g. Haptic Retargeting [17], to match

multiple objects onto only one prop. As discussed before, breaking this

mapping leads to a potential decrease of immersion.

However, sometimes re-use can be achieved through design. By

stacking the three bowls of porridge we distance them further from the

heat source, which takes care of the requirement of three different

temperatures. If more heat sources had been available, the bowls of

porridge would have been able to use those as well.

SWITCHING PROPS – USE STORY PROGRESSION

Props might become unavailable at runtime, or new props come in, or

users need to switch environments altogether. In these cases Stuff-

Haptics recomputes the layout. The current story progression informs

all relevant algorithms, i.e. tokens distribution in the petri-net. Figure

42c shows an example of this, where the user already interacted with the

‘porridge’. The porridge now has a low importance in the layouting

Virtualizing sets of props within physical space | 95

process and could be mapped almost anywhere, as users are unlikely to

feel the porridge again. Here Stuff-Haptics can make due with the

somewhat less fitting solution of the window sill above the heater.

Step 4: INSTANTIATE THE EXPERIENCE

As the final step, Stuff-Haptics generates virtual scenery around the

mapped virtual objects.

ABUNDANCE OF PROPS – OBFUSCATE PROPS

There are nearly always props that an experience has no use for. To

prevent users from running into them, the application provides virtual

objects for each scene that Stuff-Haptics automatically places to

obfuscate the prop (Figure 44).

Figure 44: (a) The scan of the user’s kitchen as annotated surfaces of props. (b) Goldilocks’

‘dark forest’ has no use for these props so it obfuscates them with bushes and rocks. (c)

To cover these props our ‘Mona Lisa Heist’ experience uses warning tape and signs.

D IFFERENT SHAPES OF PROPS – PROCEDURAL MODELING

Stuff-Haptics uses two approaches to build virtual models. In a top-

down approach, we morph existing virtual content into the desired

a b

c

96

shape using free-form-deformation. We found the top-down approach

quite easy to model, but virtual models will not fit onto a lot of props. In

a bottom-up approach, we assemble the virtual model from scratch.

Figure 45 shows an example of a virtual staircase, designed with the

bottom-up approach, that fits both our physical chairs and our physical

sofa. The bottom-up approach, while harder to model for, affords a

broader range of physical counterparts and is known as procedural

modeling (e.g., [62]), here applied to mixed reality and passive haptics.

Figure 45: These virtual chairs fit on both (a) the chair and (b) the sofa.

DANGEROUS PROPS – PREVENT TOUCH VIA HARDWARE

While Stuff-Haptics discourages users from touching certain objects, for

example through obfuscation, users wearing head-mounted displays

still tend to become unaware of their physical surroundings. Some users

might still reach into the virtual fire, whereas they would never reach

inside, for example, a toaster that emits that heat. Similar to VirtualSpace

we can only provide fallback visualizations when users decide to ignore

audiovisual guidance we provide through the experience.

6.4 IMPLEMENTATION

Stuff-Haptics is implemented in C# as a plug-in for Unity3D. We

integrated the open source genetic algorithm CMA-ES [19] based on [36].

For assessing parametric design we use a 3D model database [46].

6.5 TECHNICAL EVALUATION , ASSESSING PARAMETRIC DESIGNS

Creators might not be able to intuit the correct parameters for spatial

placement. We implemented an approach based on example models to

a b

Virtualizing sets of props within physical space | 97

allow for quick evaluation of the design, inspired by related work such

as Project MARS [61] and others [31]. We included a subset of 206 3D

models from Lim et al.’s library of IKEA furniture [46, 54], removing

redundant models, and imported them into Stuff-Haptics with

simplified 3D meshes. By passing a virtual object through this database

its parametric design can be accessed by the amount of furniture fitting

to the virtual object. Figure 46 shows some examples. 78 pieces of

furniture achieved the same or a better value for the showcase shown

below, 120 pieces achieved the value of the staircase, only 4 achieved the

value of the pictures, which may suggest further work on the design.

Figure 46: (a) The desk matches the virtual showcase. (b) The wardrobe matches the

virtual pictures. (c) The sofa matches the virtual staircase.

a

b

c

98

6.6 USER STUDIES

We conducted two user studies to verify that Stuff-Haptics algorithm

works.

USER STUDY 1: EVALUATING DIFFERENT ENVIRONMENTS

In the first study we tested Stuff-Haptics as a whole and ran ‘Goldilocks’

for five users in different rooms (kitchen, living room, bedrooms, storage

room). We collected the qualitative feedback of participants to evaluate

Stuff-Haptic’s ability to effectively instantiate Goldilocks for different

users’ homes.

APPARATUS

We tested our tool as described in the previous chapters to map

‘Goldilocks’ onto users’ different physical props (couches, beds, tables,

countertops). We used solution 2: prune the storyline for the case of limited

props. We used a tether-less virtual reality setup (VIVE [100]).

TASK AND PROCEDURE

Participants experienced the whole ‘Goldilocks’ story and rated it

afterwards.

MEASUREMENTS

Participants rated the ‘Goldilocks’ experience on a 1-7 Likert scale (not

at all – very much). Fit: “The experience fits well into my home/room.”

Realism: “The experience felt realistic.” Enjoyment: “The overall

experience is enjoyable.”

PARTICIPANTS

We recruited five participants (3 male, 2 female, mean age 32.0 ± 2.3 sd).

Four of the participants had previous experience with virtual reality

headsets, one of them with passive haptics.

Virtualizing sets of props within physical space | 99

RESULTS

Participants enjoyed Goldilocks (mean rating 6.4/7 ± 0.9 sd). They found

the experience only somewhat realistic (mean rating 3.8/7 ± 0.8 sd), but

found it to fit well into their home environment (mean rating 5.4/7 ± 0.9

sd). The experience successfully ran in all setups using different rooms

and different props, such as tables, countertops, sofas, windowsills, or

beds. Heat sources were an exposed lamp, a tea kettle, a water kettle, a

candle in a jar. Some objects failed to map: the ‘parent bears’ failed three

times, the ‘bowls of porridge’ once did not have a heat source.

QUALITATIVE FEEDBACK

 For some objects, participants were positively surprised by the added

haptics (”the bed felt stunning, it was really soft”, 2 similar). Participants

stated that Goldilocks “works very well” (2 similar). However, they

found visuals to not always match to the haptics (“I could reach through

the chair a bit”, 2 similar) and realism to be “influenced by the optic and

lack of sound” (1 similar). Some objects were not occluded (“something

was in the way I could not see”, 1 similar) and that occlusion objects

were not diverse enough (“surprisingly many books”, 1 similar).

USER STUDY 2: EVALUATING DIFFERENT EXPERIENCES

We conducted an earlier user study in a controlled lab environment to

show that Stuff-Haptics works for a broad range of virtual content, i.e.,

also for our experiences ‘The Golden Key’ and the ‘Mona Lisa Heist’.

INTERFACE CONDITIONS

We compared two conditions.

In Stuff-Haptics, we instantiated the virtual objects of our

experiences ‘The Golden Key’ (staircase, fire, wind) and the ‘Mona Lisa

Heist’ (pictures, showcases) onto a fixed prop set (sofa, walls, heat lamp,

fan).

100

In baseline, we preserved the form of the generated virtual objects, but

did not assign physical props to them.

APPARATUS

We conducted the study in our 25m2 lab using a tether-less virtual reality

setup (VIVE [100]).

TASK AND PROCEDURE

Participants went through both experiences for each condition and rated

each virtual object afterwards resulting in a total of 10 ratings per

participant (2 conditions, 2 and respectively 3 virtual objects). The order

of experiences and conditions was randomized.

MEASUREMENTS

Participants rated virtual objects on a 1-7 Likert scale (not at all – very

much). Realism: “This object felt realistic.” Enjoyment: “This object is

enjoyable.”

PARTICIPANTS

We recruited 14 participants from our organization (4 female, 9 male, 1

not stated, mean age 24.4 ± 3.2 sd). 8 of the participants had previous

experience with virtual reality headsets, 3 of them also with passive

haptics.

HYPOTHESES

We hypothesized that Stuff-Haptics would provide higher ratings than

the baseline condition for each virtual object for both realism (H1) and

enjoyment (H2).

RESULTS

Stuff-Haptics provided a higher mean rating than our baseline for both

realism (p < .001, t(13) = 6.94, mean ratings 5.0/7 ± 2.2 sd vs. 3.2/7 ± 3.7 sd),

as well as enjoyment (p < .001, t(13) = 4.88, mean ratings 5.3/7 ± 1.8 sd vs.

Virtualizing sets of props within physical space | 101

3.7/7 ± 3.8 sd) supporting both H1 and H2. We found no differences

between virtual objects of the two experiences.

QUALITATIVE FEEDBACK

Participants found objects to mostly correlate with their expectation and

were positively surprised when encountering haptic effects (“Hey! this

feels really warm”, “I can even sit here”).

D ISCUSSION

As our main finding, we conclude that Stuff-Haptics is able to generate

different virtual reality experiences with passive haptics in limited,

uncurated physical environments, specifically users’ homes. Our first

study indicates that the same passive haptics experience (‘Goldilocks’)

runs for different users’ prop sets. Our second study shows that Stuff-

Haptics can run different passive haptics experiences.

The studies have some major limitations. Our first study was

conducted with only a handful of participants and shows preliminary

results at best, while our second study, while showing that we could

successfully use Stuff-Haptics to instantiate our experiences, mainly

measured the effect of passive haptics.

We can thus only state that Stuff-Haptics can successfully instantiate

experiences and can map multiple experiences to the same environment

and the same experience to multiple environments. We cannot make

claims on the external validity, i.e., the scaling to a broad bandwidth of

applications.

6.7 CONCLUSION ON SPACE- AND PROP- INDEPENDENCE

We presented Stuff-Haptics, a software tool that maintains a consistent

storyline across different tracking volumes containing uncurated and

limited sets of physical props. At its core, Stuff-Haptics uses a space- and

prop-independent representation of a real-walking and passive haptic

experience to generate its interconnected virtual world, re-using space

and props. This representation combines the graph-based narrative

102

structure from Scenograph and the parametric design that describes

virtual objects’ spatial layout as well as material properties. Stuff-

Haptics uses this representation to lay out the virtual objects onto an

annotated scan of the available prop set. To account for limitations in the

available prop set, Stuff-Haptics re-uses props or prunes the narrative

structure where needed. Our technical evaluation shows that Stuff-

Haptics design can be assessed. In our user studies, Stuff-Haptics both

successfully ran the same experience for different users’ prop sets and

ran different passive haptics experiences on the same prop set. Stuff-

Haptics may thus help creators to design passive haptics experiences

independently from users’ prop sets and provides a necessary step to

bringing procedurally generated passive haptics experiences closer to

users’ homes.

With this project we seem to have now covered all relevant aspects

for a full virtualization of physical space, so that real-walking

experiences can take place anywhere. In the last chapter we will discuss

the benefits and limitations of our work, and outline approaches for

consecutive future work.

103

7 CONCLUSION AND DISCUSSION

In this chapter, we bring this work to its conclusion. We first summarize

the work presented so far. We then zoom out to discuss the benefits of

virtualization of physical space, checking whether our results hold up

against our analogy of virtualization in computing history. We will close

this thesis by focusing on open questions and challenges.

7.1 SUMMARY

The main cost for real-walking in virtual reality is not its hardware but

the physical space it demands. In this thesis we interpret physical space

as a resource that we can virtualize and thus manage.

We propose the concurrent use of physical space to reduce the space

demand per user. Applications with different users immersed in

different experiences need to adhere to the API of our software system

VirtualSpace to synchronously share the same space (chapter 3). For the

concurrent use of physical props, applications need to follow the API of

Mise-Unseen, a software tool that dynamically adapts virtual

environments based on runtime demands, such as providing passive

haptics to a certain virtual object (chapter 4). This concurrent use makes

the use of resources more efficient, similar to a memory manager in an

operating system where multiple programs have access to the same

physical memory.

104

To render applications not only more cost-effective, but independent of

specific physical resources, we have proposed a tracking-volume

independent representation of the real-walking experience. The first

part of the representation is a petri-net for representing the

connectedness of those virtual objects through logical progression in an

experience (chapter 5). Our software Scenograph uses hierarchical

clustering on the petri-net to split virtual environments into multiple

interconnected instances to then generate the virtual experience. The

second part of this representation is the parametric description of virtual

objects the experience contains (chapter 6). Our software Stuff-Haptics,

which extends Scenograph, uses a constraint solver for spatial layouting

of those virtual objects onto given geometry. The combination of

automatic layouting and splitting of virtual scenery based on this

representation allows our software to run complex experiences in

various tracking volumes, like an operating system that is able to run

programs on various machines.

7.2 BENEFITS OF VIRTUALIZING PHYSICAL SPACE

For users virtualization of physical space means that, for any real-

walking experience, their physical space can be shared with other people

immersed in different virtual realities (VirtualSpace), their physical

props can be multi-purposed (Mise Unseen), their physical space can

have any size and shape (Scenograph) and contain arbitrary sets of

physical props (Stuff-Haptics).

For creators virtualization of physical space means that they can

express experiences with the same complexity as before, while not

designing them with a fixed tracking volume in mind.

This work extends the field of procedural content for mixed reality.

Procedural content for home and other un-curated environments has

been proposed in substitutional reality [79] or Oasis [85]. Algorithms for

spatial layouting have been proposed in annexing reality [39] or Flare [33].

We similarly believe that the only way real-walking can be achieved is

Conclusion and Discussion | 105

by generating the virtual world onto the physical one, as otherwise we

need to break the immersive one-to-one motion mapping.

Making real-walking experiences independent of the user’s physical

space will have substantial commercial impact for virtual reality systems.

Users have the benefit of using all their space, creators do not need to

require users to have certain space and can tell more complex stories.

Future virtual reality applications will run on a wide range of

installations and will soar past current limitations by accessing

additional virtual space, sharing resources, and building on re-useable

high level descriptions of real-walking content.

We project virtualization of physical space to impact people’s lives

in the following ways:

APPLICATIONS WILL BE ENTERTAINING AND PRODUCTIVE

We believe that applications do not need to be productive to hold value.

That being said, mixed reality applications of this nature can put user

effort to a productive use, for example by applying it to training

scenarios, or educational purposes.

We have developed a mixed reality application that holds another

value, by having users perform physically demanding tasks as a

byproduct of game play. In Tower Pretense, users virtually play a “tower

defense”-style game while as a side product they physically carry

moving boxes up a staircase, as shown in Figure 47.

Tower Pretense contains a strategic element in that players choose the

order in which to carry up batteries. Rather than shooting monsters,

players set up stationary weapons that shoot monsters. Each wave of

monsters requires a different set of turrets to be activated, since each

turret takes down only one type of monster. Players may choose to play

tactically by getting a battery from the turret just below, deactivating it,

and activating the next turret that eliminates the current wave of

monsters, or strategically by planning ahead and positioning surplus

batteries where they are likely to be needed next. Carrying 𝑛 boxes up

106

𝑚 flights of stairs allows for (𝑚𝑛)! ∗ ∏ (𝑘! (𝑛 + 𝑘)!)⁄𝑚−1
𝑘=0 [34] strategies;

for 8 boxes and 4 flights of stairs this allows for 1.5 trillion different

strategies.

Figure 47: (a) Monsters attack (b) the player’s home base and need to be stopped. (c) The

turrets along their path can stop the monsters, as long as (d) they have batteries to power

them. (e) The player thus (f) grabs batteries and (g) places them into the next turret’s

battery compartment. (h) The corresponding turret (here the red turret) is activated and

(i) starts killing the corresponding red monsters. (j) The player activates more and more

powerful turrets located further and further up the stairs. (k) Once the most powerful

(green) turret is activated, it takes down the green boss monster. (m) This requires all

batteries though, so that players ultimately find themselves carrying their batteries all the

way up to the top in order to win the game. (n) Switching back to the physical world, we

see that each battery was represented by a moving box as a passive haptics prop, which

the player carried to the top of the staircase. (o) The moment players win the game, they

have thus also moved their entire household.

Ahn’s Games with a Purpose [1] already established the idea of gamers

providing labor for a third party. We investigate how to apply this

general idea of games with a purpose to mixed reality applications.

Unlike gamification [65] or serious games [64], in which users find

themselves scored and incentivized as in a game, users are actually

a

b

c

d

h

i

j

k l

m

e

f g

n o

Conclusion and Discussion | 107

playing a game, often unaware of its purpose, such as generate training

data for machine learning, as in Foldit [30]. Mixed reality games have a

long tradition of leveraging elements of the physical surrounding to

enhance users’ virtual experiences, as summarized in the related work

(chapter 2, page 27), or to enhance users themselves, for example

through exergames [68]. We suggest that by virtualizing physical space

the opposite direction is possible as well, leveraging elements of the

virtual surrounding to enhance users’ physical world.

USERS WILL RUN EXPERIENCES ON PUBLIC PHYSICAL SPACES

In the future mixed reality gaming will take place in public and other

shared spaces [16] or even city-wide applications [105] – walking

simulators which put storytelling front and center, like Dear Esther [21],

are a current trend in the gaming industry. This trend might benefit from

virtualizing physical space.

If applications will be put to a productive use, as stated above, and

be able to run in public spaces, such applications will then also pursue

objectives of public interest, such as cleaning up public parks.

REAL-WALKING EXPERIENCES WILL BE CREATED ON THE FLY

Our work adds to an overarching trend currently happening in content

development, the ever-shortening life-cycle and production time of

virtual content. Development tools have been democratized, as seen in

commodified game editors such as the Unity and Unreal Engines, but

also in applications that are itself ecosystems for other applications, such

as Dreams [24] or Little Big Planet [55]. Applications offer their content

as a service, and let their users both consume and develop that content

themselves through rapid application development and micropayments.

Especially mixed reality applications will benefit from this trend, as

they require more design effort. Experiences will adapt or be generated

onto given geometry more quickly. Either content creation is so quick it

can be crowdsourced, generated just-in-time by users, or data-driven

108

AI’s will outrun humans in the creation. Creators of small development

teams are incentivized to join this trend, as discoverability in the market

today is an issue which localized experiences to certain public places

might help mitigate.

7.3 OPEN CHALLENGES

Further advances in procedurally generated mixed reality experiences

are needed to get the attention of a majority of creators.

DESIGNING WITH ALL TRACKING-VOLUMES IN MIND , OR : F INDING

A HIGH-LEVEL LANGUAGE FOR REAL-WALKING EXPERIENCES

As mentioned throughout this work, experiences are usually designed

with a fixed tracking-volume in mind. Our solution is arguably a bit

more difficult to design for, as it requires creators to design for all

tracking-volumes in mind. To help creators intuit the correct parametric

design, future research should try to support them in areas of procedural

modeling, such as modeling by example [31].

The best way of designing with all tracking-volumes in mind is by

having a design language that is non-spatial. This would be a more

abstract, high-level language, quite akin to abstractions that have been

presented to programmers after the development of concurrent

programming. Atomic constructs would tackle the mismatch between

concepts in programmer’s head, and those expressed in code.

These abstractions could be supported by advances in automated

storytelling. Automatic storytelling is a field of research, for example by

creating dialogue [48], and has found its way into public awareness

through art pieces [91], but cannot compete with human creativity, due

to the admittedly complex design space. We project that these efforts

will find prosperous use in story-driven real-walking applications that

have a more limited design spaces, due to natural limitations of the

physical space it occurs in. The physical setting itself will inform the

story that is told, while the story informs the procedural content that is

Conclusion and Discussion | 109

generated onto the physical setting. We see these kind of convergences

of opposing goals elsewhere, for example in SLAM, a technique to

localize a user’s position and orientation and its spatial frame of

reference. Runtime changes through eye-tracking may also have

implications for storytelling as advances in narrative are now possibly

contingent on where one looks.

After finding higher levels of abstraction, generating a story in the

future will be as simple as writing code like this:

Outlook: A high-level language for real-walking experiences

var story = new Story();

story.underlying_theme = “sense of completion”;

story.people = {“mentor”, “student”, “team”}

story.setting = “institute”;

story.progression = “classic three act structure”;

var scan = GetSemanticScan();

story.GenerateWorld(scan);

story.Start() ;

AVOIDING OVER-CONSTRAINED REAL-WALKING EXPERIENCES

Our systems cannot improve all real-walking scenarios. Our systems use

the degrees of freedom that an experience provides. For example, it may

not matter to the Goldilocks designer where the ‘chairs’ are in relation

to the ‘bowls of porridge’, and Scenograph can place them in different

scenes. However, if the designer specifies that each chair must be next

to its porridge, then the system cannot optimize – the problem is over-

constrained. This holds true for any experience with strong spatial

constraints, say in a soccer simulation where the goal must be in a fixed

relation to the other goal or to the corner flags. In VirtualSpace, if

multiple applications must have a certain spot in the tracking volume,

there is no solution. Our systems buy their advantages through a certain

110

flexibility on the side of their applications. Over-constrained problems

are more of a natural limitation than an open challenge, however, future

work could address how engaging real-walking experiences with a

solvable amount of constraints can be formulated.

ENSURING USER SAFETY

We acknowledge that our systems might pose a certain physical risk. In

the user study of VirtualSpace a total of seven collisions occurred.

Related work [5, 9] achieved a reduction of collisions of over 58% in a

simulated framework with much lower user density – although we have

not conducted a collision baseline due to safety risks, we assume this

compares well, but agree that no collisions are more desirable. In Stuff-

Haptics’ user study, participants criticized situations in which they did

not trust the system’s placement of virtual objects due to tracking

irregularities and mapping that places virtual objects more than 2-3cm

off their designated geometry.

We can argue that a certain risk may contribute to positive

experiences for some participants, as “too close a distance” between

users can be an intriguing game element [69]. However, as a general rule

a lack of trust impacts enjoyment.

Having users with different mindsets or player types [7] might pose

an additional challenge, as explorative and/or social types might

deliberately walk into unintended areas, which happened during all of

our studies.

Another challenge is to ensure that users not only follow, but notice

and comprehend a given visual incentive. Research on user

visualizations [52, 76] in shared space addresses this issue only in part.

REDUCING SETUP COST

While Stuff-Haptics enables the use of various props, certainly not all

passive haptics environments will provide enough props for every

single experience. Of course, this is the exact problem Stuff-Haptics

Conclusion and Discussion | 111

addresses by providing different means (re-using props, altering

storyline) to gracefully degrade the experience and preserve designers’

intent as closely as possible despite physical shortcomings. However,

some props might need to be turned on by the user, such as the water

kettle, while other props might stand in unfavorable positions. Figure

38c (page 82) shows one example where the turned sofa provides a better

fit for the virtual showcase. One direction of future work could support

users in spending less time setting up props. Another approach is to rely

on smart objects [26]. Another interesting research direction would be

to integrate this setup into the same or a different application and make

it a byproduct of the activity itself.

SEMANTIC SCANNING AND OBTAINING MATERIAL PROPERTIES

Our systems require a matching virtual twin for each prop. As Stuff-

Haptics considers the shape of props as well as their material properties,

this virtual twin ideally also describes material properties (such as heat

emission, softness, etc.). Participants’ individual remarks on material

mismatches underline the necessity of fitting virtual objects correctly

onto those material properties.

Research has suggested approaches for obtaining room scans, e.g.

using point clouds [85], which can be enhanced with shape retrieval [54]

or semantic parsing [3] to obtain material properties, or using smart

objects so that props provide the information themselves [26]. Future

work could bind more complex machinery into the haptic experience,

such as elevators or moving stairways. Similar to drivers that describe

hardware functionality, a networked or on-prop solution will let users

re-purpose those props at home or in public spaces.

MERGING PROCEDURAL MIXED REALITY WITH OTHER LOCO-

MOTION TECHNIQUES AND DEVICES

We think our solution takes pre-existing ones a step further. Virtual

locomotion techniques, such as redirected walking [74] still require

112

specific amounts of space to work. Locomotion devices, such as

treadmills, small [20] or room-scale [82], require costly hardware.

Procedural mixed reality, especially in public spaces, is the only way one

can experience limitless real-walking and passive haptics in a cost-

efficient manner.

One challenge for procedural content is dealing with virtual objects

that are supposed to be somewhat dynamic. Static objects, such as the

‘little bear’s bed’ we can generate onto static geometry. Dynamic objects

are more difficult – ‘little bear’s chair’ should break, and ‘little bear’s

porridge’ should be eaten, according to the story. Rendering haptic

effects using real-world objects will not always generate a solution.

To avoid this problem, procedural content can be used in

conjunction with synthetic solutions. Experiences then use procedural

content to generate the virtual world and its static objects, and use haptic

rendering devices to support dynamic objects and haptic effects,

especially devices that potentially can be used in mobile contexts as

mixed reality will take in public spaces. Examples of these devices are

based, for example, on electric muscle stimulation [57], which derive

energy for actuation from the user’s body, or on servo-motors [51], that

can be word on the body. On the other hand, these haptic rendering

devices fail reliably when rendering grounded, static objects. The reason

is that a machine that actuates needs to be on par with what it simulates.

A wall is never truly rigid [57] if the device is not grounded, so that

opportunistic use of physical props seems to point into the more feasible

direction. Again, both approaches have their unique sets of upsides, so

that we project a hybrid model to emerge – synthetic generation of

haptic effects through hardware, opportunistic use of physical space and

static props through virtualization of physical space.

OTHER CHALLENGES

Solutions to all aforementioned challenges are needed to avoid another

virtual reality winter, as happened after its invention in the 60’s by Ivan

Conclusion and Discussion | 113

Sutherland. Further advances include developments in display

technologies to include a versatile optical focus of lenses and

waveguides to make rendering visual effects on the body more

perceptible and thus haptic effects more meaningful. Research also

needs to address the design challenge of shared literacy of mixed reality

applications, so that users can intuit which objects to touch. Extending

the concept of virtualization to remote collaboration scenarios is a

challenge to enable ‘co-walking’ over a distance.

7.4 F INAL REMARKS

We set out to solve real-walking for virtual reality by pushing the idea

of procedural content for mixed reality in uncurated and arbitrary

physical spaces. We achieved this by applying one of computer science’s

oldest tools, virtualization, to physical space. This enabled us to run

complex real-walking experiences anywhere.

We hope to advance the way we tell stories to each other. Any

medium tends to govern the story told with it; books tell stories through

writing, graphic novels tell stories visually, movies add motion, games

include users’ choices and abilities. Once a medium reaches the ability

to tell stories, one of our primal instincts, we use it. By enabling

storytelling in procedurally generated mixed reality we hope to have

laid some groundwork for mixed reality to reach users’ homes.

114

8 REFERENCES

[1] Luis von Ahn. 2006. Games with a Purpose. Computer 39, 6: 92–94.

https://doi.org/10.1109/MC.2006.196

[2] Alglib, cross-platform numerical analysis and data processing library.

Retrieved January 15, 2021 from http://www.alglib.net/

[3] Iro Armeni, Ozan Sener, Amir Zamir, Helen Jiang, Ioannis Brilakis,

Martin Fischer, and Silvio Savarese. 2016. 3D Semantic Parsing of Large-

Scale Indoor Spaces. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 1534-1543. 10.1109/CVPR.2016.170.

[4] Jatin Arora, Aryan Saini, Nirmita Mehra, Varnit Jain, Shwetank Shrey,

and Aman Parnami. 2019. VirtualBricks: Exploring a Scalable, Modular

Toolkit for Enabling Physical Manipulation in VR. In Proceedings of the

2019 CHI Conference on Human Factors in Computing Systems

(CHI ’19). Association for Computing Machinery, New York, NY, USA,

Paper 56, 1–12. https://doi.org/10.1145/3290605.3300286

[5] Mahdi Azmandian, Timofey Grechkin, and Evan Suma Rosenberg. An

evaluation of strategies for two-user redirected walking in shared

physical spaces. In Virtual Reality (VR), Los Angeles, CA, pp. 91-98.

https://doi.org/10.1109/VR.2017.7892235

References | 115

[6] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and

Andrew D. Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of

Passive Haptics for Enhanced Virtual Reality Experiences. In Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems (CHI

'16). ACM, New York, NY, USA, 1968-1979. https://doi.org

/10.1145/2858036.2858226

[7] Richard Bartle. 1996. Hearts, Clubs, Diamonds, Spades: Players who suit

MUDs. Journal of MUD research. 1(1), 19-58.

[8] Blaine A. Bell and Steven K. Feiner. 2000. Dynamic space management

for user interfaces. In Proceedings of the 13th annual ACM symposium on

User interface software and technology (UIST ’00), 239–248.

https://doi.org/10.1145/354401.354790

[9] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. 2011.

Reciprocal n-body collision avoidance. In Robotics Research - The 14th

International Symposium ISRR, Springer Tracts in Advanced Robotics,

vol. 70, Springer-Verlag, May 2011, pp. 3-19. https://doi.org/10.1007/978-

3-642-19457-3_1

[10] Mark Bernstein. 2002. Storyspace 1. In Proceedings of the thirteenth

ACM conference on Hypertext and hypermedia (HYPERTEXT '02).

Association for Computing Machinery, New York, NY, USA, 172–181.

https://doi.org/10.1145/513338.513383

[11] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey.

2016. Point & Teleport Locomotion Technique for Virtual Reality. In

Proceedings of the 2016 Annual Symposium on Computer-Human Interaction

in Play (CHI PLAY '16), 205-216. https://doi.org/10.1145/2967934.2968105

[12] Haiwei Chen, Samantha Chen, and Evan Suma Rosenberg. 2018.

Redirected Walking Strategies in Irregularly Shaped and Dynamic

Physical Environments. In 25th IEEE Conference on Virtual Reality and 3D

User Interfaces (VR ‘18). Workshop on Everyday Virtual Reality.

116

[13] Lung-Pan Cheng, Li Chang, Sebastian Marwecki, and Patrick Baudisch.

2018. iTurk: Turning Passive Haptics into Active Haptics by Making

Users Reconfigure Props in Virtual Reality. In Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems (CHI '18). ACM, New

York, NY, USA, Paper 89, 10 pages. https://doi.org/10.1145/

3173574.3173663

[14] Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017.

Mutual Human Actuation. In Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology (UIST '17).

Association for Computing Machinery, New York, NY, USA, 797–805.

https://doi.org/10.1145/3126594.3126667

[15] Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick

Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick

Baudisch. 2015. TurkDeck: Physical Virtual Reality Based on People. In

Proceedings of the 28th Annual ACM Symposium on User Interface

Software & Technology (UIST ’15). Association for Computing

Machinery, New York, NY, USA, 417–426. https://doi.org/10.1145/

2807442.2807463

[16] Lung Pan Cheng, Eyal Ofek, Christian. Holz and Andrew. D. Wilson.

2019. VRoamer: Generating On-The-Fly VR Experiences While Walking

inside Large, Unknown Real-World Building Environments. In IEEE

Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan,

2019, pp. 359-366.

[17] Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew

D. Wilson. 2017. Sparse Haptic Proxy: Touch Feedback in Virtual

Environments Using a General Passive Prop. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems (CHI '17). ACM,

New York, NY, USA, 3718-3728. https://doi.org/10.1145/

3025453.3025753

References | 117

[18] Clipper, Open source freeware library. Retrieved January 15, 2021 from

http://angusj.com/delphi/clipper.php

[19] CMA Evolution Strategy. Retrieved January 15, 2021 from http://cma.

gforge.inria.fr/

[20] Rudolph P. Darken, William R. Cockayne, and David Carmein. 1997.

The omni-directional treadmill: a locomotion device for virtual worlds.

In Proceedings of the 10th annual ACM symposium on User interface software

and technology (UIST '97), 213-221. http://doi.org/10.1145/263407.263550

[21] Dear Esther. Retrieved January 15, 2021 https://www.thechineseroom.

co.uk/games/dear-esther

[22] Zhi-Chao Dong, Xiao-Ming Fu, Chi Zhang, Kang Wu, and Ligang Liu.

2017. Smooth assembled mappings for large-scale real walking. ACM

Trans. Graph. 36, 6, Article 211 (November 2017), 13 pages.

https://doi.org/10.1145/3130800.3130893

[23] Doomba, from Rich Whitehouse. Retrieved January 15, 2021 from

http://www.richwhitehouse.com/index.php?postid=72

[24] Dreams. Retrieved January 15, 2021 from https://www.mediamolecule.

com/ games/dreams

[25] Dreamscape. Retrieved January 15, 2021 from http://www.

dreamscapeimmersive.com/index.html

[26] Benjamin Eckstein, Eva Krapp, Anne Elsässer, and Birgit Lugrin. 2019.

Smart Substitutional Reality: Integrating the Smart Home into Virtual

Reality. Entertainment Computing. 100306. 10.1016/j.entcom.2019.100306.

[27] Barrett Ens, Eyal Ofek, Neil Bruce, and Pourang Irani. 2015. Spatial

Constancy of Surface-Embedded Layouts across Multiple Environments.

In Proceedings of the 3rd ACM Symposium on Spatial User Interaction

(SUI ’15). Association for Computing Machinery, New York, NY, USA,

65–68. https://doi.org/10.1145/2788940.2788954

118

[28] Martin Feick, Scott Bateman, Anthony Tang, André Miede, and Nicolai

Marquardt. 2020. TanGi: Tangible Proxies for Embodied Object

Exploration and Manipulation in Virtual Reality. arXiv preprint

arXiv:2001.03021

[29] Fragments, AR Game. Retrieved January 15, 2021, from https://www.

asobostudio. com/games/fragments

[30] Foldit | Solve Puzzles for Science. Retrieved January 15, 2021 from

https://fold.it/portal/

[31] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min,

William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin.

2004. Modeling by example. In ACM SIGGRAPH 2004 Papers

(SIGGRAPH ’04). Association for Computing Machinery, New York, NY,

USA, 652–663. https://doi.org/10.1145/1186562.1015775

[32] Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S. Weld. 2007.

Automatically generating user interfaces adapted to users' motor and

vision capabilities. In Proceedings of the 20th annual ACM symposium on

User interface software and technology (UIST '07). ACM, New York, NY,

USA, 231-240. https://doi.org/10.1145/1294211.1294253

[33] Ran Gal, Lior Shapira, Eyal Ofek and Pushmeet Kohli. 2014. FLARE: Fast

layout for augmented reality ap-plications. In Proceedings of the 13th IEEE

International Symposium on Mixed and Augmented Reality (ISMAR '14) 207-

-212. http://doi.org/10.1109/ISMAR.2014.6948429

[34] K. Gorska and K. A. Penson. 2013. Multidimensional Catalan and related

numbers as Hausdorff moments. Retrieved January 15, 2021 from

http://arxiv.org/abs/1304.6008

[35] Gurobi, Linear Solver, Academic License. Retrieved January 15, 2021

from http://www.gurobi.com

[36] Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing

Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (eds.).

References | 119

Towards a new evolutionary computation. Advances in estimation of

distribution algorithms. pp. 75-102, Springer.

[37] Steven J. Henderson and Steven Feiner. 2008. Opportunistic controls:

leveraging natural affordances as tangible user interfaces for augmented

reality. In Proceedings of the 2008 ACM symposium on Virtual reality

software and technology (VRST '08). ACM, New York, NY, USA, 211-218.

http://dx.doi.org/10.1145/1450579.1450625

[38] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and

Alexandru Iosup. 2013. Procedural content generation for games: A

survey. ACM Trans. Multimedia Comput. Commun. Appl. 9, 1, Article

1 (February 2013), 22 pages. http://dx.doi.org/10.1145/2422956.2422957

[39] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing Reality:

Enabling Opportunistic Use of Everyday Objects as Tangible Proxies in

Augmented Reality. In Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 1957-

1967. http://dx.doi.org/10.1145/2858036.2858134

[40] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. 1994.

Passive real-world interface props for neurosurgical visualization. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (CHI '94), Beth Adelson, Susan Dumais, and Judith Olson (Eds.).

ACM, New York, NY, USA, 452-458. http://dx.doi.org/10.1145/191666.

191821

[41] Christian Hirt, Markus Zank, and Andreas Kunz. 2018. Preliminary

Environment Mapping for Redirected Walking. In 25th IEEE Conference

on Virtual Reality and 3D User Interfaces (VR ‘18). IEEE.

https://doi.org/10.3929/ethz-b-000253659

[42] H. G. Hoffman. 1998. Physically Touching Virtual Objects Using Tactile

Augmentation Enhances the Realism of Virtual Environments. In

Proceedings of the Virtual Reality Annual International Symposium

(VRAIS '98). IEEE Computer Society, USA, 59.

120

[43] Jeannette E. Holm. 2012. Collision prediction and prevention in a

simultaneous multi-user immersive virtual environment. PhD diss.,

Miami University. Retrieved January 15, 2021 from https://etd.

ohiolink.edu/

[44] Brent Edward Insko. 2001. Passive Haptics Significantly Enhances

Virtual Environments. Ph.D. Dissertation. The University of North

Carolina at Chapel Hill. Advisor(s) Frederick P. Brooks, Jr.. AAI3007820.

[45] Victoria Interrante, Brian Ries and Lee Anderson. 2007. Seven League

Boots: A New Metaphor for Augmented Locomotion through Mode-

rately Large Scale Immersive Virtual Environments. In Symposium on 3D

User Interfaces, Charlotte, NC, 2007, pp. https://doi.org/10.1109/

3DUI.2007.340791

[46] IKEA database. Retrieved January 15, 2021 from http://ikea.csail.

mit.edu/

[47] Hans-Christian Jetter, Harald Reiterer, and Florian Geyer. 2014. Blended

Interaction: understanding natural human---computer interaction in

post-WIMP interactive spaces. Personal Ubiquitous Comput. 18, 5 (June

2014), 1139–1158. https://doi.org/10.1007/s00779-013-0725-4

[48] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan

Jurafsky. 2016. Deep reinforcement learning for dialogue generation.

arXiv preprint arXiv:1606.01541 (2016).

[49] Luv Kohli. 2013. Redirected Touching. Ph.D. Dissertation. University of

North Carolina at Chapel Hill, Chapel Hill, NC, USA. Advisor(s)

Frederick P. Brooks, Jr.. AAI3562754.

[50] Robert J. Kosinksi. 2013. A Literature Review on Reaction Time. Clemson

University.

[51] Robert Kovacs, Eyal Ofek, Mar Gonzalez Franco, Alexa Fay Siu,

Sebastian Marwecki, Christian Holz, and Mike Sinclair. 2020. Haptic

PIVOT: On-Demand Handhelds in VR. In Proceedings of the 33rd Annual

References | 121

ACM Symposium on User Interface Software and Technology (UIST '20).

Association for Computing Machinery, New York, NY, USA, 1046–1059.

DOI:https://doi.org/10.1145/3379337.3415854

[52] Jérémy Lacoche, Nico Pallamin, Thomas Boggini, and Jérôme Royan.

2017. Collaborators awareness for user cohabitation in co-located

collaborative virtual environments. In Proceedings of the 23rd ACM

Symposium on Virtual Reality Software and Technology (VRST '17). ACM,

New York, NY, USA, Article 15, 9 pages. https://doi.org/10.1145/

3139131.3139142

[53] Eike Langbehn, Paul Lubos, and Frank Steinicke. 2018. Redirected

Spaces: Going Beyond Borders. In 25th IEEE Conference on Virtual Reality

and 3D User Interfaces (VR ‘18). Demo.

[54] Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba. 2013. Parsing

IKEA Objects: Fine Pose Estimation. In Proceedings of the 2013 IEEE

International Conference on Computer Vision (ICCV '13). IEEE Computer

Society, Washington, DC, USA, 2992-2999. http://dx.doi.org/10.1109/

ICCV.2013.372

[55] Little Big Planet. Retrieved January 15, 2021 https://www.

mediamolecule.com/games/littlebigplanet

[56] Locomotion Vault. Retrieved January 15, 2021 from https://

locomotionvault. github.io/

[57] Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and

Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in

Virtual Reality by Means of Electrical Muscle Stimulation. Proceedings of

the 2017 CHI Conference on Human Factors in Computing Systems.

Association for Computing Machinery, New York, NY, USA, 1471–1482.

DOI:https://doi.org/10.1145/3025453.3025600

[58] Kok-Lim Low, Greg Welch, Anselmo Lastra, and Henry Fuchs. 2001.

Life-sized projector-based dioramas. In Proceedings of the ACM

122

symposium on Virtual reality software and technology (VRST '01). ACM,

New York, NY, USA, 93-101. http://dx.doi.org/10.1145/505008.505026

[59] Chuan-en Lin, Ta Ying Cheng, Xiaojuan Ma. 2020. Architect: Building

interactive virtual experiences from physical affordances by bringing

human-in-the-loop. In Conference on Human Factors in Computing Systems

(CHI). New York, NY, USA: ACM. doi:10.1145/2839462.283948

[60] Amaury Louarn, Marc Christie, and Fabrice Lamarche. 2018. Automated

staging for virtual cinematography. In Proceedings of the 11th Annual

International Conference on Motion, Interaction, and Games (MIG ’18).

Association for Computing Machinery, New York, NY, USA, Article 4,

1–10. https://doi.org/10.1145/3274247. 3274500

[61] Project Mars, Unity Labs. Retrieved January 15, 2021 from

https://unity.com/ unity/features/mars

[62] Paul Merrell, and Dinesh Manocha. 2010. Model Synthesis: A General

Procedural Modeling Algorithm. In IEEE Transactions on Visualization

and Computer Graphics, vol. 17, no. 6, pp. 715-728, June 2011. doi:

10.1109/TVCG.2010.112

[63] David E. Millard, Charlie Hargood, Michael O. Jewell, and Mark J. Weal.

2013. Canyons, deltas and plains: towards a unified sculptural model of

location-based hypertext. In Proceedings of the 24th ACM Conference

on Hypertext and Social Media (HT ’13). Association for Computing

Machinery, New York, NY, USA, 109–118. https://doi.org/10.1145/

2481492.2481504

[64] Ho Ming Lau, Johannes H. Smit, Theresa M. Fleming, and Heleen Riper.

2017. Serious Games for Mental Health: Are They Accessible, Feasible,

and Effective? A Systematic Review and Meta-analysis. Frontiers in

Psychiatry 7: 209. https://doi.org/10.3389/fpsyt.2016.00209

[65] Alberto Mora, Daniel Riera, Carina Gonzalez, and Joan Arnedo-Moreno.

2015. A Literature Review of Gamification Design Frameworks. In 2015

7th International Conference on Games and Virtual Worlds for Serious

References | 123

Applications (VS-Games), 1–8. https://doi.org/10.1109/VS-GAMES.2015.

7295760

[66] Fausto Mourato, Fernando Birra, and Manuel Próspero Dos Santos. 2013.

The Challenge of Automatic Level Generation for Platform Videogames

Based on Stories and Quests. In Proceedings of the 10th International

Conference on Advances in Computer Entertainment - Volume 8253 (ACE

2013), Dennis Reidsma, Haruhiro Katayose, and Anton Nijholt (Eds.),

Vol. 8253. Springer-Verlag New York, Inc., New York, NY, USA, 332-343.

http://dx.doi.org/10.1007/978-3-319-03161-3_24

[67] ZuneBuggy MSR TechFest Demo 2007 by Andrew D. Wilson. Retrieved

January 15, 2021 from https://channel9.msdn.com/Blogs/Rory/

Microsoft-Research-TechFest-XNA-a-depth-sensing-camera-an-LCD-

projector-and-some-genius

[68] Florian Mueller, Rohit Ashok Khot, Kathrin Gerling, and Regan

Mandryk. 2016. Exertion Games. Foundations and Trends® in Human–

Computer Interaction 10, 1: 1–86. https://doi.org/10.1561/1100000041

[69] Florian Mueller, Sophie Stellmach, Saul Greenberg, Andreas Dippon,

Susanne Boll, Jayden Garner, Rohit Khot, Amani Naseem, and David

Altimira. 2014. Proxemics play: understanding proxemics for designing

digital play experiences. In Proceedings of the 2014 conference on

Designing interactive systems (DIS '14), 533-542. https://doi.org/

10.1145/2598510.2598532

[70] G. Norman: Likert Scales, level of measurements, and the “laws” of

statistics. In Advances in Health Sciences Education 15, 5, 625-632, 2010.

https://dx.doi.org/10.1007/s10459-010-9222-y

[71] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,

Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. 2002.

Generating remote control interfaces for complex appliances. In

Proceedings of the 15th annual ACM symposium on User interface software

124

and technology (UIST '02). ACM, New York, NY, USA, 161-170. DOI:

https://doi.org/10.1145/571985.572008

[72] Oculus System. Retrieved January 15, 2021 from https://www.

oculus.com/

[73] Protocol Buffer, Contract Based Serializer. Retrieved January 15, 2021

from https://github.com/mgravell/protobuf-net

[74] Sharif Razzaque, Zachariah Kohn, and Mary C. Whitton. 2001.

Redirected walking. In Proceedings of EUROGRAPHICS 9, 105-106.

[75] REDkit. Retrieved January 15, 2021 from https://redkitwiki.cdprojektred.

com/Welcome+to+the+REDkit+Wiki

[76] Anthony Scavarelli and Robert J. Teather. 2017. VR Collide! Comparing

Collision-Avoidance Methods Between Co-located Virtual Reality Users.

In Proceedings of the 2017 CHI Conference Extended Abstracts on Human

Factors in Computing Systems (CHI EA '17), 2915-2921.

https://doi.org/10.1145/3027063.3053180

[77] Scenograph, Online Repository. https://github.com/sebastianmarwecki/

Scenograph

[78] Lior Shapira and Daniel Freedman. 2016. Reality Skins: Creating

Immersive and Tactile Virtual Environments. In IEEE International

Symposium on Mixed and Augmented Reality (ISMAR), Merida, 2016, pp.

115-124.

[79] Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. 2015.

Substitutional Reality: Using the Physical Environment to Design

Virtual Reality Experiences. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems (CHI '15). ACM, New

York, NY, USA, 3307-3316. http://dx.doi.org/10.1145/2702123.2702389

[80] Keng Hua Sing and Wei Xie. 2016. Garden: A Mixed Reality Experience

Combining Virtual Reality and 3D Reconstruction. In Proceedings of the

References | 125

2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems (CHI EA '16), 180-183. https://doi.org/10.1145/2851581.2890370

[81] Harvey Smith, Matthias Worch. What Happened Here? Environmental

Storytelling, Online Lecture. GDC Vault. Retrieved January 15, 2021,

from https://www.gdcvault.com/play/1012647/ What-Happened-Here-

Environmental

[82] J. L. Souman, P. Robuffo Giordano, M. Schwaiger, I. Frissen, T.

Thümmel, H. Ulbrich, A. De Luca, H. H. Bülthoff, and M. O. Ernst. 2008.

CyberWalk: Enabling unconstrained omnidirectional walking through

virtual environments. ACM Trans. Appl. Percept. 8, 4, Article 25

(November 2011), 22 pages. https://doi.org/10.1145/2043603. 2043607

[83] Source 2. Retrieved January 15, 2021 from https://developer.

valvesoftware.com/wiki/Source_2

[84] Robert Southey. 1839. The Story of The Three Bears. In Fairy Tales and

Other Traditional Stories, Lit2Go Edition. Accessed April 1, 2018 from

http://etc.usf.edu/lit2go/68/fairy-tales-and-other-traditional-

stories/5105/the-three-bears/.

[85] Misha Sra, Sergio Garrido-Jurado, Chris Schmandt, and Pattie Maes.

2016. Procedurally generated virtual reality from 3D reconstructed

physical space. In Proceedings of the 22nd ACM Conference on Virtal Reality

Software and Technology (VRST '16), 191-200. https://doi.org/10.1145/

2993369.2993372

[86] Misha Sra. 2016. Asymmetric Design Approach and Collision

Avoidance Techniques For Room-scale Multiplayer Virtual Reality. In

Proceedings of the 29th Annual Symposium on User Interface Software

and Technology (UIST ’16 Adjunct), 29–32. https://doi.org/10.1145/

2984751.2984788

[87] Steam VR blog post from 10 Nov, 2017. Retrieved January 15, 2021 from

https://steamcommunity.com/app/358720/discussions/0/3505325361035

14259/?ctp=3

126

[88] Evan. A. Suma, Seth Clark, David Krum, Samantha Finkelstein, Mark

Bolas and Zachary Warte. 2011. Leveraging change blindness for

redirection in virtual environments. In 2011 IEEE Virtual Reality

Conference, Singapore, 2011, pp. 159-166. https://doi:10.1109/

VR.2011.5759455

[89] Evan A. Suma, Zachary Lipps, Samantha Finkelstein, David M. Krum,

and Mark Bolas. 2012. Impossible Spaces: Maximizing Natural Walking

in Virtual Environments with Self-Overlapping Architecture. IEEE

Transactions on Visualization and Computer Graphics 18, 4 (April 2012), 555-

564. http://dx.doi.org/10.1109/TVCG.2012.47

[90] Qi Sun, Li-Yi Wei, and Arie Kaufman. 2016. Mapping virtual and

physical reality. ACM Trans. Graph. 35, 4, Article 64 (July 2016), 12 pages.

https://doi.org/10.1145/2897824.2925883

[91] Sunspring. Retrieved January 15, 2021 from https://www.thereforefilms.

com/sunspring.html

[92] Tea For God. Retrieved January 15, 2021 from https://void-room.itch.io/

tea-for-god

[93] James N. Templeman, Patricia S. Denbrook and Linda E. Sibert. 1999.

Virtual Locomotion: Walking in Place through Virtual Environments. In

Presence 8(6), 598-617. https://doi.org/10.1162/105474699566512

[94] Unseen Diplomacy VR real-walking game. Retrieved January 15, 2021

from http://store.steampowered.com/app/429830/Unseen_Diplomacy/

[95] Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony

Steed, Mel Slater, and Frederick P. Brooks, Jr. 1999. Walking > walking-

in-place > flying, in virtual environments. In Proceedings of the 26th annual

conference on Computer graphics and interactive techniques (SIGGRAPH '99),

359-364. https://doi.org/10.1145/311535.311589

[96] James Vallino and Christopher Brown. 1999. Haptics in augmented

reality. In Proceedings IEEE International Conference on Multimedia

References | 127

Computing and Systems (IEEE Comput. Soc), 195–200.

http://doi.org/10.1109/MMCS.1999.779146

[97] Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas and Evan A.

Suma. 2013. Flexible spaces: Dynamic layout generation for infinite

walking in virtual environments. In 2013 IEEE Symposium on 3D User

Interfaces (3DUI’13), 39–42. https://doi.org/10.1109/3DUI.2013.6550194

[98] Khrystyna Vasylevska and Hannes Kaufmann. 2017. Compressing VR:

Fitting Large Virtual Environments within Limited Physical Space. In

IEEE Computer Graphics and Applications, vol. 37, no. 5, pp. 85-91, 2017.

https://doi: 10.1109/MCG.2017.3621226

[99] VirtualSpace, Online Repository. https://github.com/HPI-VirtualSpace

[100] Vive and Vive Trackers. Retrieved January 15, 2021 from https://

www.vive.com/us/vive-tracker/

[101] The Void. Retrieved January 15, 2021 from https://www.thevoid.com/

[102] Ariel Weingarten, Ben Lafreniere, George Fitzmaurice, and Tovi

Grossman. 2019. DreamRooms: Prototyping Rooms in Collaboration

with a Generative Process. In Proceedings of the 45th Graphics Interface

Conference on Proceedings of Graphics Interface 2019 (GI’19). Canadian

Human-Computer Communications Society, Waterloo, CAN, Article 19,

1–9. https://doi.org/10.20380/GI2019.19

[103] Betsy Williams, Gayathri Narasimham, Bjoern Rump, Timothy P.

McNamara, Thomas H. Carr, John Rieser, and Bobby Bodenheimer. 2007.

Exploring large virtual environments with an HMD when physical

space is limited. In Proceedings of the 4th symposium on Applied perception

in graphics and visualization (APGV '07), 41-48. https://doi.org/

10.1145/1272582.1272590

[104] Bob G. Witmer and Michael J. Singer. 1998. Measuring Presence in

Virtual Environments: A Presence Questionnaire. Presence:

128

Teleoperators and Virtual Environments 7(3), 225-240.

http://doi.org/10.1162/105474698565686

[105] Jackie (Junrui) Yang, Christian Holz, Eyal Ofek, and Andrew D. Wilson.

2019. DreamWalker: Substituting Real-World Walking Experiences with

a Virtual Reality. In Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology (UIST ’19). Association for

Computing Machinery, New York, NY, USA, 1093–1107.

https://doi.org/10.1145/3332165. 3347875

[106] Zero Latency. Retrieved January 15, 2021 from

https://zerolatencyvr.com/

[107] Yiwei Zhao and Sean Follmer. 2018. A Functional Optimization Based

Approach for Continuous 3D Retargeted Touch of Arbitrary, Complex

Boundaries in Haptic Virtual Reality. In Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems (CHI '18). ACM, New

York, NY, USA, Paper 544, 12 pages. https://doi.org/10.1145/

3173574.3174118

	TITLE
	Imprint

	ABSTRACT
	ZUSAMMENFASSUNG
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	INTRODUCTION
	VIRTUALIZING PHYSICAL SPACE, AN EXAMPLE
	VIRTUALIZATION IN THE HISTORY OF COMPUTING
	CONTRIBUTION
	STRUCTURE OF THIS DISSERTATION

	RELATED WORK
	REAL-WALKING AND SPACE COMPRESSION TECHNIQUES
	PASSIVE HAPTICS IN MIXED REALITY
	PROCEDURALLY GENERATED MIXED REALITY

	VIRTUALIZING PHYSICAL SPACEFOR CONCURRENT USE
	VIRTUALSPACE: OVERLOADING SPACE WITH MULTIPLE USERS
	VIRTUALSPACE ALGORITHM
	EXAMPLE APPLICATIONS
	DESIGN CONSIDERATIONS FOR APPLICATIONS
	IMPLEMENTATION AND HARDWARE
	USER STUDY
	CONCLUSION ON CONCURRENT USE OF VIRTUALIZED SPACE

	VIRTUALIZING PROPS FORCONCURRENT USE
	SYNCHRONIZED USE OF PHYSICAL PROPS FOR HAPTIC FEEDBACK*
	MULTI-PURPOSING OF PROPS THROUGH COVERT SCENE CHANGES
	CONCLUSION ON CONCURRENT USE OF VIRTUALIZED PROPS

	VIRTUALIZING THE EXTENT ANDSHAPE OF PHYSICAL SPACE
	SCENOGRAPH: 1:1 EXPERIENCES FOR ANY PHYSICAL SPACE
	OUR TRACKING VOLUME-INDEPENDENCE DATA STRUCTURE
	SCENOGRAPH ALGORITHM
	IMPLEMENTATION AND HARDWARE
	USER STUDY
	CONCLUSION ON SPACE-INDEPENDENT EXPERIENCES

	VIRTUALIZING SETS OF PROPSWITHIN PHYSICAL SPACE
	STUFF-HAPTICS: 1:1 EXPERIENCES FOR ANY SET OF PROPS
	OUR SPACE- AND PROP-INDEPENDENT DATA STRUCTURE
	STUFF-HAPTICS EXTENDED ALGORITHM
	IMPLEMENTATION
	TECHNICAL EVALUATION, ASSESSING PARAMETRIC DESIGNS
	USER STUDIES
	CONCLUSION ON SPACE- AND PROP-INDEPENDENCE

	CONCLUSION AND DISCUSSION
	SUMMARY
	BENEFITS OF VIRTUALIZING PHYSICAL SPACE
	OPEN CHALLENGES
	FINAL REMARKS

	REFERENCES

