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Advancing the Discovery of Unique Column
Combinations

Ziawasch Abedjan Felix Naumann
firstname.lastname@hpi.uni-potsdam.de

Hasso Plattner Institute, Potsdam, Germany

Abstract. Unique column combinations of a relational database table
are sets of columns that contain only unique values. Discovering such
combinations is a fundamental research problem and has many different
data management and knowledge discovery applications. Existing discov-
ery algorithms are either brute force or have a high memory load and can
thus be applied only to small datasets or samples. In this paper, the well-
known Gordian algorithm [19] and “Apriori-based” algorithms [5] are
compared and analyzed for further optimization. We greatly improve the
Apriori algorithms through efficient candidate generation and statistics-
based pruning methods. A hybrid solution HCA-Gordian combines the
advantages of Gordian and our new algorithm HCA, and it significantly
outperforms all previous work in many situations.

1 Unique Column Combinations

Unique column combinations are sets of columns of a relational database table
that fulfill the uniqueness constraint. Uniqueness of a column combination K
within a table can be defined as follows:

Definition 1 Given a relational database schema R = {C1, C2, . . . , Cm} with
columns Ci and an instance r ⊆ C1 × . . . × Cm, a column combination K ⊆ R
is a unique, iff

∀t1, t2 ∈ r : (t1 �= t2) ⇒ (t1[K] �= t2[K])

Discovered uniques are good candidates for primary keys of a table. Therefore
some literature refers to them as as “candidate keys” [17]. The term “composite
key” is also used to highlight the fact that they comprise multiple columns [19].
We want to stress that the detection of uniques is a problem that can be solved
exactly, while the detection of keys can only be solved heuristically. Uniqueness
is a necessary precondition for a key, but only a human expert can “promote” a
unique to a key, because uniques can appear by coincidence for a certain state
of the data. In contrast, keys are consciously specified and denote a schema
constraint.

An important property of uniques and keys is their minimality. Minimal
uniques are uniques of which no strict subsets hold the uniqueness property:
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Definition 2 A unique K ⊆ R is minimal, iff

∀K ′ ⊂ K : (∃t1, t2 ∈ r : (t1[K
′] = t2[K

′]) ∧ (t1 �= t2))

In principle, to identify a column combination K of fixed size as a unique,
all tuples ti must be scanned. A scan has a runtime of O(n) in the number
n of rows. To detect duplicate values, one needs either a sort in O(n log n) or
a hashing algorithm that needs O(n) space. Both approaches need only sub-
quadratic runtime. Of course, a scan can be aborted with a “non-unique” result
as soon as a duplicate value is detected. Non-uniques are defined as follows:

Definition 3 A column combination K that is not a unique is called a non-
unique.

Discovering all uniques of a table or relational instance can be reduced to the
problem of discovering all minimal uniques. Every superset of a minimal unique is
also a unique and can be readily identified once the minimal uniques are known.
Hence, in the rest of this paper the discovery of all uniques is synonymously used
for discovering all minimal uniques.

The problem of discovering one minimal unique with a maximal number of
columns is NP-complete in the number of columns [8]. Also, the problem of
finding the quantity of all minimal uniques is #P-hard. Both complexity classes
indicate exponential runtimes for the discovery of all minimal uniques in a table.
The exponential complexity is caused by the fact that for a relational schema
R = {C1, . . . , Cm}, there are 2m−1 subsetsK ⊆ R that can be uniques. Actually,
even the result size of the problem can be exponential. In the worst case, there
can be

(
m
m
2

)
minimal uniques, each consisting of m

2 columns.

1.1 Usage of uniques

Uniques help to understand the structure and the semantic properties of tabular
data. Unique discovery is part of the metadata discovery methods for data pro-
filing and has high significance in several data management applications, such
as data modeling, anomaly detection, query optimization, and indexing. These
applications are relevant for data architecture, data design, and database man-
agement. However, tables may contain unknown uniques for several reasons:
experimental origins of the data, lack of support for checking uniqueness con-
straints in the host system for fear that checking such constraints would impede
database performance, or a simple lack of application domain knowledge within
the development team. These reasons are, for instance, quite frequently met in
Life Science databases. Among the very popular genome database Ensembl [4]
and the Protein Data Bank [2], unique and key constraints are only sporadi-
cally available and none of them refer to multiple columns. Understanding and
integrating such databases greatly benefit from methods to discover uniques.

Furthermore, identification of uniques plays an important role in data mining:
first, many data mining approaches could be more efficient by concentrating on
uniques instead of all columns of a table. In the context of bioinformatics, the
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discovery of uniques may lead to detection of unknown principles between protein
and illness origins [12, 18]. The second point of coherence is related to the process
of unique discovery itself. The discovery of all minimal uniques within a relational
instance using only polynomial time in the number of columns and number of
uniques is stated as an open problem in data mining by Mannila [13]. In Sec. 2,
where foundations are presented, the classical data mining algorithm Apriori [1]
is introduced as a reasonable way of approaching the minimal unique problem.
We complete this approach by adapting the apriori candidate generation for
unique discovery solution.

1.2 Related Work

Although the topic of finding or inferring composite keys and functional depen-
dencies appeared ever since there are relational databases, there are only a few
known approaches to the problem of discovering all minimal uniques of a table.
These are discussed in detail in Sec. 2. In the broader area of meta data discovery
however, there is much work related to the discovery of functional dependencies
(FD). In fact, the discovery of FDs is very similar to the problem of discovering
uniques, as uniques functionally determine all other individual columns within a
table. Furthermore, minimality plays an important role in both concepts. There
are several approaches for FD discovery [3, 11]; some include approximative so-
lutions [9, 10, 16]. Most new ideas in this research field follow either an Apriori
or level-wise partitioning approach and require exponential runtime. Mannila
proved that the inference of FDs has exponential runtime in the number columns
as lower bound [14].

On the other hand, knowledge of FDs can be exploited for runtime-efficient
unique discovery. Saeidian and Spencer present an FD-based approach that sup-
ports unique discovery by identifying columns that are definitely part of all
uniques and columns that are never part of any unique [17]. They showed that
given a minimal set of FDs (only one attribute appears on the right side of each
FD; the left side of each FD is irreducible, i.e., removing any part results in a
non-equivalent set; entirely removing an FD also results in a non-equivalent set),
any column that appears only on the left side of the given FDs must be part
of all keys and columns that appear only on the right side of the FDs cannot
be part of any key. This insight cannot be used in the context of our work, as
we assume no prior knowledge of functional dependencies, indexes, or semantic
correlations. However, in Sec. 3 we show that our new algorithm HCA is able to
infer some FDs on the fly and use them for apriori classification of some column
combinations.

Finally, there is the research field of discovering approximate keys within
semi-structured data. Grahne presents an Apriori approach for discovering ap-
proximate keys within XML data [6]. Their algorithm evaluates discovered key
candidates by the metrics support and confidence. The approaches that are in-
troduced as foundations in Sec. 2.2 follow a similar intuition.
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1.3 Contributions

The contributions of this paper toward efficient unique detection are:

1. We analyze, discuss, and categorize existing algorithms and their strengths
and weaknesses.

2. We introduce the new bottom-up algorithm HCA, which outperforms ex-
isting algorithms by multiple factors given a threshold of minimum average
distinctness of the columns. We show how a bottom-up brute force algo-
rithm can be highly optimized by applying the concept of apriori candidate
generation, data- and statistics-driven pruning, and ad-hoc inference of FDs.

3. Furthermore, we present an elegant combination of HCA with the well-known
Gordian algorithm [19], named HCA-Gordian, gaining even more effi-
ciency.

4. We show the advantages of our approaches HCA and HCA-Gordian in a
detailed evaluation comparing them to state-of-the-art algorithms on syn-
thetic and real-world data.

The rest of this paper is organized as follows: In Sec. 2 the most relevant
existing algorithms are described as foundations of our new algorithms. In Sec. 3
we introduce the new bottom-up algorithm HCA and the hybrid solution HCA-
Gordian. We present a detailed evaluation of our algorithms in Sec. 4 and
conclude in Sec. 5.

2 Algorithmic Foundations

In this section, the most important approaches to unique discovery are intro-
duced, distinguishing two different classes: Row-based algorithms are based on a
row-by-row scan of the database for all column combinations. The second class,
column-based algorithms, contains algorithms that check the uniqueness of a col-
umn combination on all rows at once. Such column combinations are generated
iteratively and each of them is checked only once.

2.1 GORDIAN: A Row-based Approach

Row-based processing of a table for discovering uniques requires multiple runs
over all column combinations as more and more rows are considered. It benefits
from the intuition that non-uniques can be detected without considering all
rows of a table. A recursive unique discovery algorithm that works this way is
Gordian [19]. The algorithm consists of three parts:

1. Preorganize table data in form of a prefix tree.
2. Find maximal non-uniques by traversing the prefix tree.
3. Compute minimal uniques from maximal non-uniques.

The prefix tree has to be created and stored in main memory. Each level
of the tree represents one column of the table whereas each branch stands for
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one distinct tuple. The traversal of the tree is based on the cube operator [7],
which computes aggregate functions on projected columns. Non-unique discovery
is performed by a depth-first traversal of the tree for discovering maximum
repeated branches, which constitute maximal non-uniques. Maximality of non-
uniques can be defined as follows:

Definition 4 A non-unique K ⊆ R is maximal, iff all of its strict supersets
K ′ ⊃ K are unique.

After the discovery of all maximal non-uniques, Gordian computes all min-
imal uniques by generating minimal combinations that are not covered by any of
the maximal non-uniques. In [19] it is stated that this step needs only quadratic
time in the number of minimal uniques, but the presented algorithm implies cu-
bic runtime, because for each considered non-unique the changed set of uniques
must be simplified by removing redundant uniques. This simplification requires
quadratic runtime in the number of entries in the actual set of uniques. As the
number of minimal uniques is bounded linearly by the number s of maximal
non-uniques [19], the runtime of the unique generation step is in O(s3).

Gordian benefits from the intuition that non-uniques can be discovered
faster than uniques. Remember, non-unique discovery can be aborted as soon as
one repeated value is discovered among the projections. The prefix structure of
the data facilitates this analysis. It is stated that the algorithm is polynomial in
the number of tuples for data with a Zipfian distribution of values. Nevertheless,
in the worst case Gordian will have exponential runtime.

The generation of minimal uniques from maximal non-uniques marks a seri-
ous bottleneck of the algorithm in case of large numbers of maximal non-uniques.
Indeed, our experiments showed that in most cases the unique generation domi-
nates the entire algorithm. Furthermore, the approach is limited by the available
main memory and must be used on samples for approximate solutions when deal-
ing with large data sets. Although data may be compressed because of the prefix
structure of the tree, the amount of processed data may still be too large to be
maintained in main memory.

2.2 Column-based Approaches

The problem of finding minimal uniques is comparable to the problem of finding
frequent itemsets [1]. The well-known Apriori approach is applicable for mini-
mal unique discovery, working bottom-up as well as top-down. With regard to
the powerset lattice of a relational schema the Apriori algorithms generate all
relevant column combinations of a certain size and verify those at once. Figure 1
illustrates the powerset lattice for the running example in Tab. 1. The effective-
ness and theoretical background of those algorithms is discussed by Giannela
and Wyss [5]. They call their family of algorithms “Apriori-based”, while in fact
they make only minimal use of the Apriori idea. In the following we describe
briefly the features of their algorithms, which will serve as the foundation of our
improved algorithms.
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first last age phone

Max Payne 32 1234
Eve Smith 24 5432
Eve Payne 24 3333
Max Payne 24 3333

Table 1. Example data set
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Fig. 1. Powerset lattice for the example table

Bottom-Up Apriori Bottom-up unique discovery is very similar to the Apri-
ori algorithm for mining association rules. Bottom-up indicates here that the
powerset lattice of the schema R is traversed beginning with all 1-combinations
to the top of the lattice, which is the |R|-combination. The prefixed number k of
k-combination indicates the size of the combination. The same notation is used
for the more specific terms k-unique and k-non-unique.

The algorithm begins with checking the uniqueness of all individual columns.
If a column is a unique, it will be added to the set of uniques, and if not it will be
added to the list of 1-non-uniques. The next iteration steps are based on the so-
called candidate generation. A k-candidate is a potential k-unique. In principle,
all possible k-candidates need to be checked for uniqueness. Effective candidate
generation leads to the reduction of the number of uniqueness verifications by
excluding apriori known uniques and non-uniques. E.g., if a column C is a unique
and a column D is a non-unique, it is apriori known that the combination {C,D}
must be a unique. Thus, k-candidates are generated within the bottom-up ap-
proach by using the previously discovered (k−1)-non-uniques. In their solution,
k-candidates with k > 2 are generated by extending the (k − 1)-non-uniques
by another non-unique column. After the candidate generation, each candidate
is checked for uniqueness. If it is identified as a non-unique, the k-candidate is
added to the list of k-non-uniques. If the candidate is verified as unique, its min-
imality has to be checked. The algorithm terminates when k = |1-non-uniques|.
A disadvantage of this candidate generation is that redundant uniques and du-
plicate candidates are generated. In Sec. 3 we introduce a candidate generation
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that remedies these two problem by adapting the apriori paradigm “every sub-
set of a frequent itemset is also a frequent itemset” in data mining to unique
discovery.

Top-Down and Hybrid Apriori The search for uniques within the powerset
lattice can also work top-down, i.e., beginning with the largest k-candidate, which
is the schema R. If the k-candidate is a non-unique, all of its subsets are also
non-uniques. If the k-candidate is a unique it is still not guaranteed, whether
it is minimal. Therefore, all of its (k − 1)-sized subsets have to be checked for
uniqueness. The same procedure would apply in turn to all those subsets. The
algorithm terminates when the iteration for k = 1 finishes.

Both the Bottom-Up and the Top-Down Algorithm have exponential runtime
in the worst case. However, the worst case of each algorithm is at the same
time the best case for the other algorithm. The hybrid approach combines both
algorithms [5]. The algorithm has a loop from m−1 down to �m

2 � where m is the
number of 1-non-uniques. Column combinations of size k and m−k are checked
for each k ∈ [�m

2 �,m]. By an additional communication channel between the
top-down and the bottom-up part of the algorithm, additional pruning aspects
are possible.

On every pass with k > m
2 , the bottom-up part of the algorithm prunes those

(n − k)-candidates that have no k-unique as a superset, which was previously
discovered by the top-down part of the algorithm. Accordingly, the top-down
part of the algorithm prunes k-candidates, when all of its (n − k)-sized subsets
are supersets of (n − k − 1)-uniques, detected by the bottom-up part in the
previous pass. The hybrid algorithm remains exponential in the worst case.

None of the introduced algorithms so far solve Mannila’s problem of discov-
ering uniques within polynomial time. However, the Apriori approaches provide
enough room for data driven optimizations and can be improved by a more ef-
fective candidate generation. In the following section, we introduce an improved
algorithm combining the advantages of the Apriori and Gordian algorithms.

3 The HCA Approach

Gordian showed remarkable runtime and space efficiency compared with a
brute-force algorithm in their experiments on real world and synthetic datasets [19].
In the following, we introduce the Histogram-Count-based Apriori Algorithm
(HCA), an optimized bottom-up Apriori algorithm, which outperforms Gor-
dian by multiple factors given a threshold of minimum average distinctness. In
principle, the algorithm is based on the bottom-up algorithm presented in 2.2.
We will show that the algorithm can be improved by applying additional prun-
ing possibilities that are enabled by applying an efficient candidate generation,
consideration of column statistics as well as ad-hoc inference and use of FDs.
Finally, we describe how the advantages of our approach can be combined with
advantages provided by Gordian for a hybrid solution.
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3.1 Efficient Candidate Generation

Candidate generation for level-wise apriori approaches is a crucial point for both
bottom-up and top-down approaches. The more candidates can be pruned apri-
ori, the fewer uniqueness checks have to be performed and the better runtime
will be achieved.

Bottom-up Candidate Generation Given a set of k-non-uniques, the näıve
approach for generating (k+1)-candidates is to add non-contained 1-non-uniques
to a k-non-unique. This is the way candidates are generated by the bottom-up al-
gorithm described by Giannella and Wyss [5]. The disadvantage of this approach
is that repeated candidates may be generated: Given the example in Tab. 1, the
combination {first, phone} would be identified as unique after the second pass
of the algorithm. In the same pass, the combinations {first, last}, { first, age},
{last, age}, {last, phone}, and {age, phone} would be identified as non-uniques.
In the third pass, the naive candidate generation would generate the 3-candidates
including {first, last, age} by adding age to {first, last} , {first, age, last} by
adding last to {first, age}, and {last, age, first} by adding first to {last, age}.
These candidates contain the same set of columns and their generation leads
to unnecessary runtime overhead. Detection of repeated combinations requires
the comparison of all generated combinations to each other by considering all
contained columns of the compared combinations.

Furthermore, candidate generation faces another significant problem. Con-
sidering the running example, the generated 3-candidates would include {first,
last, phone} by adding phone to {first, last} and {first, age, phone} by adding
phone to {first, age}. Knowing that {first, phone} is a minimal unique, {first,
last, phone} and {first, age, phone} are redundant uniques and their verification
is futile.

Our candidate generation (Alg. 1) benefits from all optimizations that are
associated with the classical apriori candidate generation in the context of min-
ing association rules [1], so that repeated and redundant candidates are indeed
pruned apriori. A very similar approach is also used for mining inclusion depen-
dencies [15].

The intuition behind our candidate generation is that a (k + 1)-unique can
only be a minimal iff all of its strict subsets are non-uniques. In other words,
a (k + 1)-unique can only be a minimal if the set of k-non-uniques contains all
of the candidate’s k-subsets. This is the adapted intuition of the classical Apri-
ori algorithm. Because a minimality check is much cheaper than a verification
step, we perform this step already within candidate generation. This is done by
creating the union of every two k-non-uniques that are equal in the first k − 1
columns (line 6). For the correctness of this operation, it is necessary that the
columns are sorted lexicographically. From here on we illustrate sorted sets us-
ing square brackets: [C1, C2 . . .]. The sorting can be achieved by considering the
order during the generation. 2-candidates are generated by cross-combination of
all 1-non-uniques. Each new combination is sorted by a simple less-equal com-
parison of its two members. In candidate generations of later passes, the sorting

12



is maintained by retaining the first k − 1 elements in the preexisting order and
a single comparison of the non-equal kth element of the two combined k-non-
uniques (line 9).

A (k+1)-combination is not generated if there are no two k-non-uniques that
conform exactly in the first k − 1 elements. This is correct because it indicates
that one k-subset is not a non-unique. Regarding our example from before, the
redundant candidate [first,last,phone] would not be generated because it requires
the occurrence of the sorted subsets [first,last] and [first,phone] as k-non-uniques
that equal in the first element. However, [first,phone] as a previously discovered
unique is missing.

Unfortunately, the candidate [age, first, phone] is still generated, because
[age, first] and [age, phone] are both known k-non-uniques and can be com-
bined to a 3-candidate. Therefore, we perform a final minimality check on all
remaining candidates that prunes all remaining redundant uniques. The mini-
mality check can be performed in linear time in the number of already discovered
minimal uniques, when using an additional bitmap representation of the column
combinations. A simple OR-operation shows if a combination covers another or
not. The bitmap representation of the uniques has already been proposed for
Gordian. Due to the inherent sortation of the non-uniques, the second impor-
tant benefit of our candidate generation towards the naive approach [5] is the
avoidance of repeated candidates.

Top-down Candidate Generation While the paradigm for generating k-
candidates in the bottom-up approach is that all (k−1)-sized subsets have to be
non-uniques, the paradigm for the top-down approach is that all of the (k + 1)-
sized supersets of a k-combination must be uniques. Recall that the optimized
bottom-up candidate generation generates k-candidates, knowing that at least
two (k−1)-sized subsets are non-uniques. The optimized subsetting approach for
the top-down approach works similar, using two (k + 1)-sized supersets. Unfor-
tunately, here generation of repeated combinations cannot be avoided, because
for a k-candidate there may be up to m − k (k + 1)-sized supersets. Therefore,
a subsequent check for repeated combinations is required.

3.2 Statistics-based Pruning

Real-world data contains semantic relations between column entries, such as cor-
relations and functional dependencies (FDs). Knowledge of such relations and
dependencies can be used to reduce the number of uniqueness checks. Unfor-
tunately, these dependencies are usually not known. Based on retrieved count-
distinct values and value frequencies, HCA is able to discover some FDs on the
fly. In addition, knowledge of the number of distinct values of column combina-
tion and their value distribution allows further pruning by apriori non-unique
detection.

The most efficient way of scanning a combination for uniqueness is to look for
duplicate projections in O(n · log(n)). HCA is based on a hybrid verification scan
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Algorithm 1 candidateGen

Require: nonUniques of size k
Ensure: candidates of size k + 1
1: candidates ← new empty list
2: for i ← 0 to |nonUniques| − 1 do
3: for j ← i+ 1 to |nonUniques| − 1 do
4: non-unique1 ← nonUniques[i]
5: non-unique2 ← nonUniques[j]
6: if non-unique1 [0 . . . k − 2] = non-unique2 [0 . . . k − 2] then
7: candidate ← new k + 1-sized list
8: candidate ← non-unique1 [0 . . . k − 2]
9: if non-unique1 [k − 1] <non-unique2 [k − 1] then
10: candidate[k − 1] ← non-unique1 [k − 1]
11: candidate[k] ← non-unique2 [k − 1]
12: else
13: candidate[k − 1] ← non-unique2 [k − 1]
14: candidate[k] ← non-unique1 [k − 1]
15: end if
16: if isNotMinimal(candidate) then
17: continue
18: end if
19: candidates.add(candidate)
20: end if
21: end for
22: end for
23: return candidates
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that retrieves either the number of distinct values and the histogram of value
frequencies of a combination or only the number of distinct values. A candidate
is a unique if it contains as many distinct values as there are tuples in the table
or if all value frequencies are 1. Regarding our example, column last contains the
frequencies 1 and 3 for “Smith” and “Payne” respectively. It is a non-unique,
because one value frequency is above 1. The retrieval of the histogram is still
in O(n · log(n)), because retrieving distinct count values and value frequencies
need only a sort and a followup scan as it is needed by the duplicate detection
approach. However, the retrieval of these statistics always requires a complete
scan in contrast to the duplicate detection approach, which aborts as soon as
a duplicate is discovered. So, the trade-off is to execute scans that are more
expensive for the retrieval of usable pruning information, but to gain runtime
efficiency by significantly reducing the number of such scans by means of those
apriori retrieved information.

Ad-Hoc Inference of Functional Dependencies The first benefit of the
count-based approach is that FDs can be identified. A functional dependency
X → A allows us to conclude uniqueness statements: Given combinationsX,Y ⊆
R and a column A ∈ R, {X,Y } is a unique if {A, Y } is a unique and X → A.
In addition, if {A,X} is a non-unique and A → B, then {B,X} is also a non-
unique. These statements hold because the dependent side of an FD contains at
most as many distinct values as the determinant side. For a column combination
X and a column A, it holds X → A iff the number of distinct values of X equals
the number of distinct values in the combination {A,X}.

HCA, illustrated in Alg. 2, retrieves those dependencies for all single non-
uniques that are contained by the verified 2-non-uniques in line 36. Note, the
count-distinct values of identified 1- and 2-non-uniques are already known. Thus,
we consider only single columns that are non-uniques. In later iterations, for each
member of a k-candidate it is scanned whether the column is part of a discovered
FD and if so which of the previously defined conclusions can be applied for
the combination with the substituted member. So, it is possible to skip later
scans of k-candidates, which were apriori classified with the help of FDs. FDs
with multiple columns on the left side are ignored because their identification
requires the retention of all count distinct values of the already checked smaller
combinations and too complex look-up structures.

The FD-based pruning takes place after each verification of a current candi-
date by looking for all substitutions that are possible using an existing FD, as
it is shown in the lines 24 and 29. The futility check in line 15 is performed to
omit candidates that were already covered by FDs. Regarding our running ex-
ample, it holds phone → age. Thus, knowing that {first,phone} is a non-unique,
{age,first} must be a non-unique, too. On the other hand knowing that {age,
first,last} is a unique {first,last,phone} must be a unique, too.

Count- and Histogram-based Pruning Another benefit of the count- and
histogram-based approach is the apriori identification of non-uniqueness of a k-
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Algorithm 2 HCA Algorithm

Require: m columns
Ensure: Uniques
1: nonUniqueColumns ← new empty list
2: for currentColumn in columns do
3: if isUnique(currentColumn) then
4: Uniques.add(currentColumn)
5: else
6: nonUniqueColumns.add(currentColumn)
7: storeHistogramOf(currentColumn)
8: end if
9: end for
10: currentNonUniques ← nonUniqueColumns
11: for k ← 2 to |nonUniqueColumns| do
12: k-candidates ←candidateGen(currentNonUniques)
13: currentNonUniques ← new empty list
14: for candidate in k-candidates do
15: if isFutile(candidate) then
16: continue;
17: end if
18: if prunedByHistogram(candidate) then
19: currentNonUniques.add(candidate)
20: continue;
21: end if
22: if isUnique(candidate) then
23: Uniques.add(candidate)
24: for each FD k-candidate→ candidate do
25: Uniques.add(k-candidate)
26: end for
27: else
28: currentNonUniques.add(candidate)
29: for each FD candidate → k-candidate do
30: currentNonUniques.add(k-candidate)
31: end for
32: storeHistogramOf(candidate)
33: end if
34: end for
35: if k = 2 then
36: retrieveFDs()
37: end if
38: return Uniques
39: end for

candidate by considering the value frequencies of its combined (k−1)-non-unique
subsets. In fact, the union of two non-unique combinations cannot be a unique
if the product of the count-distinct values of these combinations is below the
instance cardinality. In a more general case, it is sufficient to identify a value
within one of the (k − 1)-non-uniques that has a higher frequency than the
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number of distinct values within the other (k − 1)-non-unique. In our running
example, the 2-candidate {last,age} can be pruned because the value frequency
of “Payne” is 3 and therefore higher than the number of distinct values in age,
which is only 2. In case the value with the highest frequency equals the number
of distinct values of the other (k − 1)-non-unique, we compare the next highest
value frequency with the count distinct value of a modified view of the other
(k − 1)-non-unique. In the modified view each frequency is decreased by 1 so
that it can be assumed that each distinct value was combined once with the
more frequent value.

This approach has two drawbacks: (i) Such constellation of value frequencies
appears only in early passes of the algorithm; (ii) histograms must be stored in
memory. The remedy for the two drawbacks is to perform histogram retrieval
only for single columns (line 7) and to store only count-distinct values in later
passes. In line 18, for each generated k-candidate, it is checked whether one of
the two combined (k − 1)-non-uniques has a lower count-distinct value than a
value frequency of the additional kth column. Note, for an apriori identified non-
unique there will be no count-distinct value that can be used in the next pass.
Thus, the pruning takes place in at most every second pass of the algorithm.
Nevertheless on relational instances with relatively low average distinctness, it
leads to remarkable performance improvement towards the bottom-up approach
without the histogram- and count-based prunings. This is illustrated among the
experiment results in Sec. 4.

3.3 Combination of GORDIAN and HCA

In Sec. 2, we stated that the unique-generation part of the Gordian algorithm
might be inefficient if the number of discovered non-uniques is high. Indeed,
experiments presented in Sec. 4 show that unique discovery is always remarkably
slow if many uniques are present. By profiling the runtime of Gordian we
could identify the unique generation as the bottleneck. Note, the number of
minimal uniques is linear in the number of maximal non-uniques. At the same
time the non-unique discovery consumed only a fraction of the runtime. Thus,
an intriguing idea is to interlace the non-unique discovery of Gordian with the
candidate generation of HCA.

We combined Gordian with HCA by performing the non-unique discov-
ery of Gordian on a smaller sample of the table and executing HCA on the
entire table. Note that non-uniques discovered within a sample of a relational
instance are also non-uniques for the complete instance and can be used for
pruning candidates during the HCA part of the algorithm. It is thus possible
to smooth the worst case of the bottom-up algorithm by skipping non-uniques
identified by Gordian, and simultaneously to avoid Gordian’s bottleneck of
unique generation.
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4 Evaluation

We tested HCA and its combination with Gordian (HCA-Gordian) against
Gordian itself and the basic bottom-up, top-down and Hybrid Apriori ap-
proaches introduced in Sec. 2. We implemented two different versions of the
bottom-up algorithm: The approach identified by “BU Apriori” uses the candi-
date generation in Alg. 1, and a näıve approach labeled as “Näıve BU” generates
candidates without pruning redundant non-minimal uniques. The “Näıve BU”
is actually the implementation of the Apriori bottom-up algorithm proposed by
Giannella and Wyss [5].

The algorithms were tested on synthetic data as well as real-world data. We
used a self-implemented data generator that provides series of synthetic tables,
each with focus on one important parameter, such as number of columns, number
of rows, or average distinctness of columns. All algorithms, including Gordian,
are self-implemented in Java 6.0 on top of a commercial relational database. The
experiment platform had the following properties:

– Windows Vista (32 Bit) BusinessTM

– Pentium (R) Dual-Core CPU E5200 @2.50 GHz
– JRE limited to 1 GB RAM

4.1 Synthetic Data

We compared the algorithms with regard to increasing number of rows, increas-
ing number of columns, and increasing average distinctness. Note, the generated
tables contain no duplicate tuples. Additional important parameters for the al-
gorithms are the number of uniques and their average size. Unfortunately, both
values are only available after a successful completion of one algorithm. The
generation of random data with specific number and size of uniques is probably
as hard as the problem of discovering the minimal uniques and is an important
challenge for future work. Nevertheless we also analyze these values when looking
at the runtime of each algorithm.

Influence of Number of Rows We generated multiple tables with 20 columns
differing in the row-count. Note, the bigger the table, the lower the average
distinctness might be, because the possibility of repeated values increases with
increasing number of tuples. So, for the table with 10,000 tuples the average
distinctness is 47%, while for the table with 200,000 tuples the value is 3%.
Figure 2 illustrates the runtime of all algorithms with regard to row-counts
between 10,000 and 200,000. In addition to the number of tuples, the number of
uniques for each data set is denoted below the number of rows.

The Top-Down Algorithm is omitted in the diagram, because its runtime was
by magnitudes worse than Gordian. The poor performance of the Top-Down
Algorithm confirms the fact that the bottom-up algorithms perform best. As all
uniques in these experiments are combinations of only few columns, a bottom-up
approach discovers all of them, earlier. The Hybrid Apriori Algorithm performs
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Fig. 2. Runtime with respect to increasing number of rows on datasets with 20 columns
7.5% average distinctness

worse than the bottom-up approaches, but still better than the omitted Top-
Down Apriori Algorithm. The HCA-Gordian performed clearly better than
Gordian. This is probably due to the fact that the relatively high number of
uniques slows down the unique generation step of Gordian, which is avoided
in HCA-Gordian.

Because of the logarithmic scale in Fig. 2, it is possible to further analyze the
fastest algorithms: HCA-Gordian performed the preprocessing with Gordian
for non-unique discovery always on a 10,000 tuple sample. This overhead did
not lead to worsening of the algorithm’s runtime in comparison to the standard
HCA. In fact, there is no obvious runtime difference between HCA and HCA-
Gordian among these data sets. The combination HCA-Gordian leads only to
minor performance improvements over HCA if the processed data has relatively
low distinctness. The following experiments, which focus on distinctness, confirm
this statement. On the data sets with more than 100,000 tuples, both HCA and
HCA-Gordian perform at least 10% better than BU Apriori, which does not
perform HC-based pruning. Note, the bottom-up approaches with our efficient
candidate generation performed always at least 25% better than the Näıve BU.
On the datasets with more than 100,000 rows, the performance gain was above
60%. Furthermore, all bottom-up algorithms outperformGordian on all of these
data sets, because of the small sized uniques and relatively high distinctness.

Table 2 denotes the maximum memory usage of the algorithms with regard
to the table with 100,000 rows. Gordian performs clearly worse than all other
algorithms. The Apriori approaches perform best and are nearly equal. The
memory usage of the HCA-Gordian algorithm is higher than HCA. This is
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caused by the preprocessing with Gordian that needs to create a prefix tree on
sample data.

Algorithm Memory Usage

Gordian 534 MB
HCA-Gordian 71 MB
HCA 20 MB
Bottom-Up Apriori 19 MB
Näıve BU 20 MB
Hybrid Apriori 20 MB

Table 2. Memory usage for 100,000 tuples, 20 columns and 7.5% average distinctness

Influence of Number of Columns The second parameter that influences the
runtime of unique discovery algorithms is the number of columns. Theoretically,
the runtime of any algorithm is exponential in the number of columns, in the
worst case. The algorithms have been tested on data sets consisting of 15 to
25 columns. The data sets each consist of 10,000 tuples and hold an average
distinctness of about 5%.

The experimental results are presented in Fig. 3. As expected, the runtime
of all algorithms increases with the number of columns, but the incline of the
curves is far smaller than exponential. Gordian again performs worse than all
bottom-up approaches. The remarkable runtime decrease on the data set with 20
columns is due to the decrease of the number of uniques from 1,712 to 1,024. This
is a good example for the unpredictability of the runtime of Gordian because
of its high dependence on the number of existing uniques. For the datasets with
more than 21 columns, the runtime of Gordian exploded. The runtime of the
column-based approaches and HCA-Gordian increase steadily in the number
of columns. All algorithm with the efficient candidate generation perform quite
similar on these data sets. Even the Näıve BU performs only slightly worse than
the optimized approaches.

Influence of Average Distinctness The higher the average distinctness of
all columns, the smaller is the size of minimal uniques – in the extreme case,
already individual columns are unique. Thus, also the number of uniques is
expected to be low. On the other hand, if the average distinctness is very low,
minimal uniques become very large – in the extreme case only the entire relation
is a unique. Again, the number of uniques is expected to be low. In between, the
number of uniques is expected to be higher. This behavior can be observed in the
generated data sets: Figure 4 shows the observed average numbers of minimal
uniques for different average distinctnesses (five datasets each) and the observed
average runtimes. The data sets consist of 15 columns and 10,000 tuples and
differ in their average distinctness.
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Fig. 3. Runtime with respect to column numbers

Considering Fig. 4, all algorithms perform better on data with high aver-
age distinctness. With respect to the Apriori algorithms, this can be explained
by the fact that high distinctness results in smaller sized uniques and therefore
fewer passes of the algorithm. For Gordian, the opposite case is expected as it
is based on discovering non-uniques: Lower distinctness should result in faster
discovery of non-uniques and better runtime for Gordian. However, low dis-
tinctness is accompanied by higher number of uniques and non-uniques, which
leads to more overhead during unique generation. This can be observed among
the distinctness values between 0.12% and 2%, where the average unique size
was 7, which is about one half of the number of columns. In fact, the Bottom-Up
Algorithm, HCA, HCA-Gordian, and even the Näıve BU performed better in
this range. Vice versa, the Hybrid Apriori Algorithm performed worst. Regard-
ing the distinctness range below 0.12%, Gordian outperforms the bottom-up
algorithms. The Hybrid Apriori Algorithm outperforms all other algorithms in
this range due to the fact that the average size of uniques is 12 and Hybrid
Apriori checks uniques of this size earlier than all other algorithms. That means
that the Top-Down Apriori Algorithm would have performed even better. In this
experiment scenario, there is no obvious performance gain of HC-based pruning
towards simple Bottom-Up Apriori algorithms, because the number of rows is
not high enough that pruning leads to significant runtime efficiency towards ex-
pensive table scans. HCA-Gordian consistently performs better or at least as
good as HCA and Gordian.

4.2 Real World Data

Real world data may differ in its nature from domain to domain. It contains
unpredictable value distributions and column correlations, such as FDs that are
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Fig. 4. Runtime with respect to different values of average distinctness on tables with
15 columns and 10,000 rows

not producible by a data generator. Table 3 lists four real world tables. The first
three tables were downloaded from the data collecting website factual.com;
the last was kindly provided by film-dienst.de. Table 4 presents the runtime
results for these data sets. HCA and HCA-Gordian outperformed Gordian
on all tables where only one unique was to be discovered, because their bottom-
up approach discovers single column uniques very fast and aborts the search if
no other unique is available. Especially the experiment on the “National File”
table shows the disadvantage of Gordian with regard to scalability, because
the prefix tree did not fit into 1GB main memory. The example with the NFL
Stats that contains also multi-column uniques shows that there are data where
Gordian still performs best – about four times faster than HCA. However, the
hybrid solution HCA-Gordian is not remarkably worse.

Table tuples columns uniques

US places 195,762 19 1
National file 1,394,725 20 1
NFL Stats 42,589 14 10
Movies 55,988 33 1

Table 3. Real world tables with statistics

Summary. All algorithms show strengths and weaknesses for different value dis-
tributions, size and number of uniques. Efficient candidate generation leads to
remarkable runtime improvement of the bottom-up algorithms. The HC-based
pruning methods improve the algorithms on large data sets with low average dis-
tinctness. HCA-Gordian is a significant improvement of the basic HCA having
large tables. HCA-Gordian performs better than Gordian when the number
of detected non-uniques is high and the unique generation part of Gordian
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Table Gordian HCA-Gordian HCA

US places 64.13 s 15.389 s 9.232 s
National file too large 114.919 s 130.239 s
NFL Stats 79.26 s 86.345 s 263.513 s
Movies 24,050.79 s 658.029 s 2.223 s

Table 4. Real world tables with runtime results

dominates the algorithm. Gordian performs best on data with low average dis-
tinctness and small number of uniques. The HCA approaches are much more
memory efficient than Gordian.

5 Conclusions and Future Work

In this paper we elaborated the concepts of uniques and non-uniques, the effects
of their size and numbers, and showed strengths and weaknesses of existing ap-
proaches. Based on the discovered potentials we introduced the new bottom-up
algorithm HCA, which benefits from apriori candidate generation and data- and
statistic-oriented pruning possibilities. Furthermore, we showed a simple way of
combining HCA and Gordian for even better runtime results. We evaluated all
algorithms on generated data as well as on real world data, demonstrating the
advantages of our algorithms over existing approaches. As HCA is a statistics-
based approach, it allows further optimizations based on statistics-driven heuris-
tics for approximate solutions. HCA is also suited for sampling approaches and
then faces the same restrictions as Gordian when it comes to the precision of
the sampling-based results.

Despite the fact that Mannila’s problem statement about creating an algo-
rithm with polynomial runtime in the number of columns and minimal uniques
is still an open problem, the results and insights of this paper constitute further
open directions. The most important issue for further research is approximate
unique discovery.

Another open issue is the need for a flexible and efficient data generator. At
best, a data generator should be able to generate a table that contains a fixed
number of uniques of a certain size and holds specific value distributions for all
columns. Thus, it is possible to evaluate and benchmark algorithms for most
special cases that might occur and identify their strength and weaknesses more
explicitly. Another important challenge in the field of evaluating unique discovery
algorithms is to define more appropriate metrics for approximate algorithms.
Especially with regard to minimal uniques, the metric should consider the size
difference of wrongly identified minimal uniques and its superset or subset that
is the actual minimal unique. So, the metric should be able to distinguish the
retrieval of a non-unique, a non-minimal unique, and a minimal unique.

Finally, the recent proposals for column stores call for unique discovery so-
lutions that benefit from features of a column-based DBMS. Here, the column-
based approach HCA is a promising candidate. Indeed, the applicability and
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performance of unique and FD discovery algorithms might be an interesting
evaluation criterion when comparing the capabilities of column stores with rela-
tional databases.
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