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Abstract
Plants and some unicellular algae store carbon in the form of transitory starch
on a diurnal basis. The turnover of this glucose polymer is tightly regulated
and timely synthesis as well as mobilization is essential to provide energy for
heterotrophic growth. Especially for starch degradation, novel enzymes and
mechanisms have been proposed recently. However, the catalytic properties of
these enzymes and their coordination with metabolic regulation are still to be
discovered.

This thesis develops theoretical methods in order to interpret and analyze
enzymes and their role in starch degradation. In the first part, a novel descrip-
tion of interfacial enzyme catalysis is proposed. Since the initial steps of starch
degradation involve reactions at the starch-stroma interface it is necessary to
have a framework which allows the derivation of interfacial enzyme rate laws.
A cornerstone of the method is the introduction of the available area function
- a concept from surface physics - to describe the adsorption step in the cat-
alytic cycle. The method is applied to derive rate laws for two hydrolases, the
β-amylase (BAM3) and the Isoamylase (DBE/ISA3), as well as to the Glucan,
water dikinase (GWD) and a Phosphoglucan phosphatase (DSP/SEX4).

The second part uses the interfacial rate laws to formulate a kinetic model
of starch degradation. It aims at reproducing the stimulatory effect of re-
versible phosphorylation by GWD and DSP on the breakdown of the granule.
The model can describe the dynamics of interfacial properties during degra-
dation and suggests that interfacial amylopectin side-chains undergo sponta-
neous helix-coil transitions. Reversible phosphorylation has a synergistic effect
on glucan release especially in the early phase dropping off during degrada-
tion. Based on the model, the hypothesis is formulated that interfacial phos-
phorylation is important for the rapid switch from starch synthesis to starch
degradation.

The third part takes a broader perspective on carbohydrate-active enzymes
(CAZymes) but is motivated by the organization of the downstream pathway
of starch breakdown. This comprises α-1,4-glucanotransferases (DPE1 and
DPE2) and α-glucan-phosphorylases (Pho or PHS) both in the stroma and in
the cytosol. CAZymes accept many different substrates and catalyze numer-
ous reactions and therefore cannot be characterized in classical enzymological



terms. A concise characterization is provided by conceptually linking statisti-
cal thermodynamics and polymer biochemistry. Each reactant is interpreted
as an energy level, transitions between which are constrained by the enzymatic
mechanisms. Combinations of in vitro assays of polymer-active CAZymes es-
sential for carbon metabolism in plants confirmed the dominance of entropic
gradients. The principle of entropy maximization provides a generalization
of the equilibrium constant. Stochastic simulations confirm the results and
suggest that randomization of metabolites in the cytosolic pool of soluble het-
eroglycans (SHG) may contribute to a robust integration of fluctuating carbon
fluxes coming from chloroplasts.

Enzyme kinetics | Enzyme adsorption | Disproportionating Enzyme | Polysac-
charides | Statistical Physics



Zusammenfassung
Stärke hat eine herausragende Bedeutung für die menschliche Ernährung. Sie
ist ein komplexes, wasserunlösliches Glucosepolymer und dient - als eine der
wichtigsten Speicherformen von Kohlenhydraten in Pflanzen - der Aufrechter-
haltung des Energiestoffwechsels. Unterschiedliche Organe enthalten Stärke. In
Knollen und Samen wird die sogenannte Speicherstärke über lange Zeiträume
auf- und abgebaut. Die im Allgemeinen weniger bekannte transitorische Stärke
in Blättern und einigen einzelligen Algen wird in einem täglichen Rhythmus
umgesetzt: Sie wird während der Photosynthese aufgebaut und in der Nacht
abgebaut. Experimentelle Studien haben nachgewiesen, dass die Fähigkeit der
Pflanze, den Abbau transitorischer Stärke zu regeln, essentiell ist, um während
der Nacht das Wachstum der Pflanze zu gewährleisten. Da die Geschwindigkeit
von biochemischen Reaktionen über Enzyme reguliert wird, ist die Aufklärung
ihrer Funktion im Stoffwechsel eine notwendige Voraussetzung, um den kom-
plexen Prozess des Wachstums zu erklären.

Die vorliegende Arbeit stellt einen Versuch dar, die Funktion von Enzymen
beim Stärkeabbau anhand von mathematischen Modellen und Computersi-
mulationen besser zu verstehen. Dieser Ansatz erlaubt es, Eigenschaften des
Systems durch Abstraktion anhand eines idealisierten Abbildes herzuleiten.
Die mathematisch notwendigen Folgerungen dienen der Aufstellung von Hy-
pothesen, die wiederum mit experimentellen Resultaten konfrontiert werden
können. Stoffwechselsysteme sind komplexe Untersuchungsobjekte, bei denen
eine rein qualitative Argumentation schnell an Grenzen gerät, wo mathemati-
sche Methoden die Möglichkeit von Aussagen noch zulassen.

Der erste Teil der Arbeit entwickelt einen theoretischen Rahmen, um Glei-
chungen für die Geschwindigkeit oberflächenaktiver Enzyme herzuleiten. Dies
ist notwendig, da die ersten Reaktionen, die dem Stärkeabbau zugeordnet wer-
den, an ihrer Oberfläche stattfinden. Die Methode wird auf vier essentielle En-
zyme angewandt: zwei abbauende Enzyme (β-Amylase und Isoamylase) und
zwei den Abbau unterstützende Enzyme (α-Glucan,Wasser-Dikinase und Phos-
phoglucan Phosphatase).



Der zweite Teil entwickelt ein kinetisches Modell des Stärkeabbaus unter
Verwendung der hergeleiteten Ratengleichungen. Das Modell bildet die Dy-
namik des Systems realistisch ab und legt nahe, dass ein spontaner Phasen-
übergang an der Oberfläche von geordneten zu weniger geordneten Zuständen
stattfindet. Ferner wird die Hypothese aufgestellt, dass die reversible Modifi-
kation der Oberfläche durch Enzyme besonders in der Anfangsphase des Ab-
baus einen synergetischen Effekt hat, d.h. den Abbau enorm beschleunigt. Dies
könnte beim schnellen Umschalten von Stärkeaufbau zu Stärkeabbau regula-
torisch relevant sein.

Im letzten Teil werden kohlenhydrataktive Enzyme betrachtet, die in der
löslichen Phase die Produkte des Stärkeabbaus weiterverarbeiten. Da diese
sogenannten Transferasen auch in vielen anderen Organismen und Stoffwech-
selwegen vorkommen, wird ein allgemeiner Standpunkt eingenommen. Anhand
von Methoden aus der statistischen Physik wird theoretisch wie experimentell
nachgewiesen, dass diese Enzyme spontan die Entropie innerhalb des Stoff-
wechselsystems erhöhen. Diese Neigung, «Unordnung» zu schaffen, wird vom
Organismus aber paradoxerweise ausgenutzt, um die Weiterverarbeitung von
Kohlenhydraten im Stärkestoffwechsel zu stabilisieren. Dieser Mechanismus er-
öffnet einen neuen Blick auf energie- und entropiegetriebene Prozesse in Zellen.

Enzymkinetik | Enzymadsorption | Disproportionierungsenzym | Polysac-
charide | Statistische Physik
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Chapter 1

Introduction

Darauf kommt es [. . .] an, in dem Scheine

des Zeitlichen und Vorübergehenden die

Substanz, die immanent, und das Ewige,

das gegenwärtig ist, zu erkennen. Denn

das Vernünftige, was synonym ist mit der

Idee, indem es in seiner Wirklichkeit

zugleich in die äußere Existenz tritt, tritt

in einem unendlichen Reichtum von

Formen, Erscheinungen und Gestaltungen

hervor, und umzieht seinen Kern mit der

bunten Rinde, in welcher das Bewußtsein

zunächst haust, welche der Begriff erst

durchdringt, um den inneren Puls zu

finden und ihn ebenso in den äußeren

Gestaltungen noch schlagend zu fühlen.
Grundlinien der Philosophie des Rechts,

Vorrede

G. W. F. Hegel (1770 - 1831)

Since the beginning of the modern age, marked by towering figures like
Nicolaus Copernicus (1473–1543), Galileo Galilei (1564–1642) or René

Descartes (1596–1650), progress in science is inextricably interwoven with
mathematics. Striving for a rigorous foundation of scientific knowledge, mankind
has replaced the gods by natural laws which can be expressed in mathematical



2 Introduction

form. To assert that the laws of nature are written in the language of math-
ematics expresses a fundamental conviction into the correspondence between
rational human thought and the world we live in. This metaphysical stance is
a precondition of doing science as we understand it today.

A central notion of mathematics is quantity. In that sense experimental
scientists, much more severely than theorists, accept the reign of mathematics
– they measure. The better a system, its internal relations and its motion, can
be captured by numbers the more the compelling evidence of order, constancy
and reproducibility inflicts upon us the mathematical viewpoint. Hence, no
wonder that physics, dealing with less complex non-living matter, has reached
a stage where mathematics has become essential. Today, progress in physics
even entails progress in mathematics. In sharp contrast to that, the central
concepts of biology are of qualitative nature, and the laws of living systems still
defy a mathematical formalization. Schwann and Schleiden’s cell theory,
Virchow’s omnis cellula e cellula or Darwin’s theory of natural selection
do not have the form of equations yet. For the time being, we have to limit
ourselves to suitable mathematical models of sub-processes of the living, which
are analyzed in terms of and with respect to their physico-chemical properties.
To extract biological meaning from this type of analysis, it is necessary to step
back again and interpret the results in the light of cellular organization and
evolution. This is the basic strategy pursued in this thesis in the context of
molecular physiology in general and metabolic systems in particular.

As far as I understand it, there is no reductionist program behind this ap-
proach. There is a qualitative difference between living and non-living matter.
But speaking of matter in both cases, I already admit the continuous aspect of
nature. The non-living has produced the living, and the living copes with the
non-living, in that it builds and maintains itself with non-living compounds.
The interesting question is how the constraints which determine the motion
of inanimate subsystems are organized such that they bring about a system
which we call a living one.1

An important subsystem of organisms is metabolism, the set of enzyme-
catalyzed reactions responsible for the transformation of matter. Enzymes,

1Polanyi (1968) speaks of “the laws of physics and chemistry which the organism is
harnessing.”
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that is biological catalysts in the broadest sense but usually proteins, enable
chemical reactions to take place at a controlled rate. They can themselves be
chemically modified in order to alter their activity and thereby control the flux
through metabolic pathways. Thus, in its totality metabolism is integrated and
orchestrated with other cellular processes like signaling, gene and transcript
regulation. However, to assess how a metabolic system could react to a ’signal’
from another subsystem of the organism, an isolated analysis of the possible
behavior of the biochemical reaction system is justified. The intervention by,
for example, a post-translational modification can then be seen as a ’signal’
which forces the pathway into a certain mode.

Enzymes have long been studied for their mechanisms and kinetic proper-
ties (Segel, 1993). However, with the advent of molecular biology and high-
throughput techniques the investigation of enzymes has steadily declined (Holz-
hütter, 2004). The present work is also an attempt to promote the reconsid-
eration of enzymes, since their analysis can still provide unexpected insights
into how organisms put the natural laws into work. Of course, this should
be integrated with the powerful methods which have come to be known as
’systems biology’.

1.1 Mathematical modeling

The physicist Heinrich Hertz (1857-1894) in his book Prinzipien der Me-
chanik gave a clear definition of modeling:

Wir machen uns innere Scheinbilder oder Symbole der äußeren Ge-
genstände, und zwar machen wir sie von solcher Art, daß die denk-
notwendigen Folgen der Bilder stets wieder die Bilder seien von den
naturnotwendigen Folgen der abgebildeten Gegenstände. (Hertz, 1894)

Insofar, there is no difference between pictorial and mathematical models.
However, mathematics encodes the real world in a special way and can look
back to a rich history. Once a mathematical model is formulated, there are
powerful rules of inference which can be used and the results can be decoded
again. In the words of Heinrich Hertz:
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Ist es uns einmal geglückt aus der angesammelten bisherigen Erfah-
rung Bilder von der verlangten Beschaffenheit abzuleiten, so kön-
nen wir an ihnen, wie an Modellen, in kurzer Zeit die Folgen ent-
wickeln, welche in der äußeren Welt erst in längerer Zeit oder als
Folgen unseres eigenen Eingreifens auftreten werden; wir vermögen
so den Thatsachen vorauszueilen [. . .]. (Hertz, 1894)

In biology, the descriptive rather than the deductive tradition is more pre-
vailing than in physics. From physiologists, especially in the 19th century, this
has been frequently criticized (among them the famous botanist Schleiden),
but this was also a time when biology often fell back into vitalism. In con-
trast to that, physics has pursued the reactive rather than the functional or
teleological paradigm (Rosen, 1985). An outcome of this physical tradition
is the mass-action paradigm. Mass-action kinetics provides the basis for the
mathematical modeling of many biological systems, from animal populations
to biochemical reactions (Heinrich and Schuster, 1996; Murray, 2008; Reich
and Sel’kov, 1981; Rosen, 1985).

The modeling of metabolic systems, if we ignore for the moment kinetic
studies of enzymes, dates back at least to the 1960s with the investigations of
Higgins and colleagues (see e.g. Garfinkel et al., 1961). In the 1970s Kacser
and Burns (1995) and Heinrich and Rapoport (1974) pioneered metabolic con-
trol analysis. In the last twenty years many structural methods have been
developed like elementary flux modes and flux balance analysis (Papin et al.,
2004).

Together with the advent of high-throughput techniques the focus was more
on large-scale analysis rather than on individual enzymes. This is also true
for plant science where it is a major aim to find biomarkers or characteristic
metabolite profiles to enhance crop yield or other qualitative traits (Sulpice
et al., 2009). The starch community though has been more concerned with the
biochemistry of their system, since recent discoveries have led to the recognition
of novel mechanisms and pathways (Zeeman et al., 2010).

This thesis owes a lot to these studies and is mainly concerned with model-
ing these newly characterized enzyme-systems and their potential role in me-
tabolism. Details on the modeling approaches will be given in the respective
chapters.
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1.2 Plant growth and diurnal turnover of tran-

sitory starch

A defining feature of plants is that they are autotrophic (Lüttge et al., 2005).
They produce complex organic compounds by consuming CO2, using chemical
energy which is derived from the so-called light reactions. Photosynthetic CO2-
assimilation takes place in specialized organelles, the chloroplasts. In higher
plants and algae it is supposed that this organelle is a product of primary
endosymbiosis with photosynthetically active bacteria. One of the central pro-
cesses in chloroplasts, starch degradation (Smith et al., 2005), is the main focus
of this thesis.

In higher plants, like the model organism Arabidopsis thaliana, photosyn-
thetic CO2-assimilation is localized in leaf cells. Here, the so-called transitory
starch is produced which has to be distinguished according to its function and
turnover period from reserve starch. The latter accumulates continuously and
spatially separated from the site of photosynthesis in plastids of heterotrophic
tissues (e.g. in tubers or endosperms). It is turned over relatively slowly:
in weeks, occasionally even only once in the whole life cycle. Apparently,
its purpose is to support development. The sugars with which the daily en-
ergy metabolism is maintained derive from photosynthesis in the leaves. They
are transported to sink organs in the form of the disaccharide sucrose. How-
ever, during photosynthesis a species-dependent but nevertheless substantial
amount of fixed carbon dioxide is not directed towards sucrose synthesis or
glycolysis but accumulates as assimilatory (or transitory) starch. Under dark
conditions, breakdown of transitory starch becomes the only means for con-
tinuous supply of leaf cells and sink organs with reduced carbohydrates. In
contrast to reserve starch, transitory starch is turned over on a diurnal basis
and its timely synthesis and mobilization is absolutely necessary for mainte-
nance, growth and normal development of the whole organism (Smith and
Stitt, 2007; Zeeman et al., 2007).

Remarkably, Graf et al. (2010) have shown that Arabidopsis is able to adjust
the rate of starch degradation immediately when transferred from light to
dark, such that in a normal photo-period starch is exhausted just at the end
of the night but not before. Thus, although a long-term genetic or post-
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translational control is not excluded, and in fact likely (Kötting et al., 2010),
these findings suggest that there is a considerable regulatory potential in the
metabolic system itself.

In this respect, biochemical studies in the last decade (see Zeeman et al.,
2010, and references therein) clearly show that one can no longer expect to
gain an adequate understanding of the overall physiology if the reactions at the
starch surface are not taken into account explicitly. The phase transition from
a water-insoluble macromolecule to dissolved malto-oligosaccharides involves
several interfacial enzymes. In particular, elucidating the role of reversible
phosphorylation led to a major shift in the view of starch degradation. It was
already known that amylopectin of native starch can contain small amounts
of phosphate mono-esters (Blennow et al., 2002), for example 0.1% - 0.5% of
the glucose moieties in tuber starch from potato is esterified at C-6 and C-3
positions. The role of phosphorylation in leaves was unclear until a protein
known as R1 (Lorberth et al., 1998) has been shown to be responsible for the
Arabidopsis sex1 phenotype, a mutation with starch excess and severe growth
reduction (Yu et al., 2001). The prevalent view is that the crystalline order at
the surface is “disrupted” by phosphate esters (Blennow and Engelsen, 2010),
which supposedly makes the chain ends of amylopectin more susceptible to
hydrolytic attack. However, the mechanisms of the associated phase transitions
are still unclear.

The degradation of transitory starch in chloroplasts of leaf cells during dark-
ness provides essentially maltose, which is exported to the cytosol in order to
support glycolysis as well as sucrose synthesis. Sucrose is the major form in
which carbon is transported to sink organs of plants. By exporting maltose,
using it as a glucosyl donor, plants can bypass the first reaction of glycolysis
(hexokinase) and produce the intermediate glucose-1-phosphate (G1P) via a
soluble heteroglycan pool, SHG (Fettke et al., 2009b). G1P is necessary for
both the downstream processes of glycolysis and sucrose synthesis. These reac-
tions are catalyzed by carbohydrate-active transferases which have the peculiar
property of being relatively unspecific with respect to chain length. Neverthe-
less, they are very important for the metabolism in both plastid and cytosol,
since alterations in their activity lead to a phenotype with reduced growth.
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1.3 Synopsis

The exposition follows the degradation pathway, starting with the first com-
mitted steps catalyzed by interfacial enzymes and closing with a chapter on
downstream metabolism of soluble glycans.

Chapters 2-3 are aimed at developing a kinetic model of starch degradation
taking into account the semi-crystalline insoluble nature of starch. Chapter 2
presents a novel approach to enzymatic processes at interfaces with special em-
phasis on starch phosphorylation and hydrolysis. To date, interfacial enzyme
kinetics is rather poorly covered in computational biochemistry. At first, my
objective was to devise a broadly applicable kinetic scheme to obtain the flux
through biochemical reactions at interfaces, and to apply this scheme to the
major enzymes relevant for starch degradation. This chapter also goes a little
bit more into detail regarding the biological aspects and introduces structural
aspects of starch.

In terms of the framework of interfacial catalysis, a kinetic model of starch
breakdown is formulated in Chapter 3. To date, there is no mathematical
model of C3 metabolism which includes processes at the starch granule sur-
face explicitly (Rios-Estepa and Lange, 2007). Rather, in present models (e.g.
Nägele et al., 2010; Poolman et al., 2000) starch is treated as an external
species. Using data from in vitro experiments I demonstrate that interfacial
dynamics can be incorporated into a kinetic model which allows to ask ques-
tions formerly out of reach.

Finally, the usefulness of a statistical approach to biochemical reaction net-
works at the macroscopic level is demonstrated.2 Chapter 4 is devoted to the
metabolism of polysaccharides and carbohydrate-active transferases in general.
These enzymes play a crucial role in the metabolism of starch and the turnover
of the soluble heteroglycan (SHG) pool in leaf cells. It is shown theoretically
and through experimental results, that the associated reaction systems are
mainly driven by entropic gradients within the metabolite pool.

Notational conventions. Sometimes in modeling it is useful to scale the
quantities. This can serve the reduction of parameters without changing the

2That is, when the size of the system allows to ignore fluctuations (see e.g. Landau and
Lifschitz, 1979).
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properties of the model, but moreover it allows to give the numbers obtained
a clear meaning. The quantities thus become dimensionless (we will deal with
the dimensions length=L, amount=N, mass=M and time=T exclusively). The
scale which is attributed to a given quantity, for example time t, is denoted
with a diamond superscript, that is t� in this case. It is common practice then
to use greek letters for the corresponding dimensionless variable (Aris, 1994):

t→ τ =
t

t�
,

that is the rescaled time τ is measured in multiplicities of t�, whatever this
quantity may be (the choice is not unique). We will follow this recommenda-
tion, however, since many physical quantities are denoted with greek letters
as well, we will use instead x for rescaled quantities whenever this helps in
avoiding confusion.

For concentrations in equations, we will consistently use lower-case italic
letters. For surface concentrations (and in general quantities which are natu-
rally associated with the surface) we will use an asterisk, for example e∗ for
the surface concentration of an enzyme.

A stationary state in an open system is called a steady state and denoted
by [x]ss. A closed system is not traversed by a net flux and the associated
stationary state is a thermodynamic equilibrium, [x]eq. Equilibrium constants
will be denoted by q, which may be unusual for biochemists but is common in
systems biology or computational biochemistry (Heinrich and Schuster, 1996).

Sometimes a parameter appears in a form, where some factor is omitted or
it is time dependent but appears as constants in the equations. These apparent
quantities are usually denoted with x̃.

Other notations are fairly standard and explanations are always given.
The computer algebra system Maxima3 has been used to solve for nonlinear

algebraic equation systems and Matlab R© (R2009a, The MathWorks) for the
numerical calculations.

3Released under the terms of the GNU General Public License and available at
http://maxima.sourceforge.net/.

http://maxima.sourceforge.net/


Chapter 2

Rate laws for interfacial enzymes

with application to enzymes acting

on starch granules

For the existence of any science, it is

necessary that there exist phenomena

which do not stand isolated.
Cybernetics

Norbert Wiener (1894 - 1964)

Transitory starch is a complex macromolecule synthesized during photosyn-
thesis in order to sustain central metabolism and sucrose synthesis throughout
the night. The mobilization is catalyzed by enzymes acting at the starch-
stroma interface. A common problem in metabolic modeling is to correctly
include water-insoluble substrates like starch or cellulose. Often these com-
pounds are treated as external metabolites to circumvent the description of
the phase boundary, which would entail a distinction between the accessible
interface and the inaccessible interior of these compounds. In the case of
starch, however, it has become clear that no adequate understanding of its
turnover and metabolic regulation is in sight if the enzymatic activity at the
interface is ignored (Kötting et al., 2010; Zeeman et al., 2007). In perspective,
an integrated view on processes in solution and interfacial kinetics is necessary.

To this end, this chapter develops a simple yet versatile framework to de-
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rive mechanistically plausible rate laws for interfacial enzymes which can be
readily used in kinetic models of metabolism including interfacial processes.
It is shown that the concept of the available area function can be consistently
integrated into rate laws with an adsorption step. This allows to treat the
sequestration to the interface in a general way. The approach is illustrated for
plastidial surface-active enzymes important for starch degradation. The result-
ing rate laws will be important in modeling starch degradation in Chapter 3.
The analysis of the general interfacial analogue of the Michaelis-Menten equa-
tion suggests some marked qualitative differences for example the nonlinear
dependence on enzyme concentration.

2.1 Introduction

The introductory Section 2.1 presents an overview of interfacial enzymology,
gives a brief account of starch structure and degradation, and, based on that,
discusses the properties of surface-active enzymes acting on insoluble polysac-
charides.

Background. From a basic course or introductory textbook in biochemistry
one may get the impression that metabolic reactions take place exclusively in
aqueous solutions. Only rarely the novice gets a glimpse on the capability of
many enzymes to act at the boundary between two condensed phases, and if
so, mostly in the context of intracellular signal transduction where membrane-
associated proteins catalyze the synthesis of signaling molecules. A closer
inspection reveals, however, that interfacial or heterogeneous reactions abound
in living systems and are usually associated with the most common organic
compounds on earth. Prominent examples of substrates having interfaces at
the meso- to macroscopic scale can be found in all three classes of biomolecules:

• lipid membranes forming the boundary of cells,

• collagen, the most abundant protein in mammals forming fibers in con-
nective tissues,

• cellulose, the most common organic compound on earth being a con-
stituent of plant cell walls and
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• glycogen and starch, the major storage carbohydrates in eukaryotes.

The molecular constituents of these substrates form large aggregates, which
by their very physical nature have to be distinguished from soluble substrates
with respect to enzyme catalysis. This is contrasted in Fig. 2.1, the left panel
showing the more common catalysis in soluble phases and the right panel
catalysis at an interface. The interaction of an interfacial enzyme with the
aggregate precedes the binding of the molecular constituents. This is reflected
by the modular organization of surface-active enzymes. Usually separated
from the catalytic domain they possess a module specific for the substrate
interface. We will consider this in the context of insoluble polysaccharides (see
e.g. Boraston et al., 2004).

It seems that the study of surface-active enzymes was at a height in the 70s
of the 20th century, marked especially by the publication of the Verger-DeHaas
model regarding lipase (see Verger, 1976, for a review) and thorough investiga-
tions on insoluble polysaccharides by Moo-Young and co-workers (Okazaki
and Moo-Young, 1978; Suga et al., 1975), which have by now become classic in
the biotechnological community. The development of models for starch degra-
dation (e.g. Leloup et al., 1991; Tatsumi and Katano, 2005; Tatsumi et al.,
2007) is legging behind owing to the fact that only recently the overriding
importance of enzymes at the starch-stroma interface has been revealed (Köt-

E

E E

a b

Figure 2.1: Homogeneous vs. heterogeneous enzyme catalysis. The
blue circles symbolize substrates and the green circles products. a, In solution,
the enzyme E can readily access and act on substrate molecules which are
smaller than its own size. b, The surface-active enzyme has to interact with
the outer layer of the aggregated substrate.
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ting et al., 2009; Zeeman et al., 2010). One gets the impression that there
was barely any interaction between communities studying different systems
to work out a general framework of interfacial catalysis. Those working on
cellulose (Zhang and Lynd, 2004) and, to a certain extent, on starch are more
bio-technologically motivated, while the lipid community is more concerned
with cell biological aspects. To my knowledge there exists only one textbook
on interfacial enzyme kinetics (Berg and Jain, 2002), introducing some general
aspects but discussing lipid systems exclusively. A short chapter on interfacial
kinetics is contained in the textbook of Marangoni (2003, cf. Chapter 10).

On the experimental side, an important early contribution to heterogeneous
reactions with biomolecules is the work of Trurnit (1954) who studied the re-
action between chymotrypsin and bovine serum albumin at an interface and
introduced the ellipsometer. Recently, Clé et al. (2010) reviewed several tech-
niques useful to monitor the activity of surface-active enzymes, most notably
polysaccharide synthesis, using surface plasmon resonance imaging (see also
Wegner et al., 2004).

As regards chemists and physicists actively involved in their own field of
surface science, there seems to have been no overlap of approaches with bio-
chemists except for the recognition of the classical work of Langmuir (1918).
The studies on protein adsorption by Ramsden (1993) and Fang and Szleifer
(2001) using the random sequential adsorption paradigm (Sec. 2.2 of this thesis
and Evans, 1993; Talbot et al., 2000) and a method based on the free energy
of the system, respectively, can claim a certain biological relevance. Apart
from that, advanced methods have been developed to characterize interfacial
phenomena in general including energetic and thermo-mechanical considera-
tions (Rusanov, 2005) and the description of dynamic changes of interfaces by
growth, etching or chemical reactions (Kolasinski, 2008; Masel, 1996).

Starch structure and metabolism. Starch is an insoluble polysaccharide
composed of the α-d-glucose polymers amylose and amylopectin (Buléon et al.,
1998). The relative amounts of both constituents vary with botanical ori-
gin and physiological conditions. A common estimate for assimilatory starch
in Arabidopsis is 15% amylose to 85% amylopectin (Zeeman et al., 2002).
Amylose is basically a linear α-1,4-linked glucan, while amylopectin is chemi-
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cally comparable to glycogen with glucose residues frequently linked by α-1,6-
glucosidic bonds, forming branching points (for further chemical details see
Damager et al., 2010). However, the chemical similarity to glycogen does not
translate to the structural level. As shown in Fig. 2.2 glycogen is a fairly spher-
ical macromolecule less than 50 nm in diameter and evenly distributed short
branches, while amylopectin side-chains do not hinder each other and originate
from regions with a peculiar clustering of α-1,6-linkages enabling much larger
molecule sizes.

Within starch grains, the side-chains of amylopectin have a mean degree
of polymerization (DP) of 14-18 and form double helices which self-assemble
into clusters with 9 to 17 side-chains (Gallant et al., 1997). While these highly
ordered regions form the crystalline lamellae of starch, the regions made up
by the branching points of amylopectin presumably co-localize with amylose
and form disordered amorphous lamellae (Kozlov et al., 2007). Crystalline and
amorphous lamellae alternate with a periodicity of 9-10 nm, usually forming
so-called semi-crystalline growth rings which can have a thickness of 120-400
nm depending on botanical origin (see Corre et al., 2010, and refs. therein).
As Fig. 2.3 depicts, these again alternate with amorphous growth rings whose

Figure 2.2: Comparison of glycogen and amylopectin. a, A sketch of the
glycogen molecule after Meléndez-Hevia et al. (1993) showing five concentric
tiers and the glycogenin protein (G) in the center. b, Amylopectin molecule
with clustered α-1,6-branchings.
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structural properties are, however, unknown.1 The growth rings are concentric,
the polymer chains being oriented perpendicular to them and the surface of
the granule (Buléon et al., 1998).

The biosynthesis of transitory starch in chloroplasts of mesophyll cells is
known to involve many enzymes with different isoforms. They catalyze elon-
gation, branching and debranching reactions at the starch-stroma interface
to trim amylopectin into the right shape and co-synthesize amylose but as
to this date it remains unclear how they interact to induce a correct granule
assembly (Ball and Morell, 2003).

Certainly, the temporary polymerization of glucose to form a limited num-
ber of starch granules allows the plant to store huge amounts of carbohydrates
in plastids while high osmotic or colloid-osmotic stresses are avoided. In com-
parison to the glycogen molecules, starch grains can reach diameters of 50 µm
and above and can store much higher amounts of glucose in the semi-crystalline
matrix.

Despite this tight packing of glucose polymers in starch, making them al-
most inert towards hydrolytic degradation, the granules are mobilized immedi-

Figure 2.3: Starch granule organization. This schematic view is taken
from Ball and Morell (2003) and slightly modified to illustrate the hierarchical
order of the granule described in the main text.

1Zeeman et al. (2002) reports a peculiar exception regarding Arabidopsis: in the discoid
leaf starch granules of the wild-type no growth rings are visible, but they are present in the
spherical granules of the sex4 mutant.
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ately when leaves are transferred from light to dark (Graf et al., 2010). Several
studies in the last decade have established the crucial role of reversible phos-
phorylation (Blennow and Engelsen, 2010; Blennow et al., 2002) of the granule
surface in achieving this switch. Most notably, Ritte et al. (2002) charac-
terized a surface-active glucan, water dikinase (GWD) which phosphorylates
glucosyl residues, thereby catalyzing an order-disorder transition in crystalline
regions of the interface, stimulating hydrolytic breakdown (Edner et al., 2007;
Ritte et al., 2004). This led to a significant revision of transitory starch me-
tabolism and the abandonment of the prevailing phosporolytic paradigm for
degradation.

Figure 2.4 shows the action mode of the major surface-active enzymes usu-
ally sufficient to catalyze the hydrolytic breakdown of starch. Briefly, this
so-called hydrolytic pathway suggests that mainly the activity of GWD stim-
ulates a downstream exo-acting β-amylase.2 After releasing maltose residues
from non-reducing glucan ends, the phosphoglucan phosphatase SEX4 (DSP)
removes the phosphate esters enabling further degradation by β-amylase and
an endo-acting debranching enzyme (DBE) or isoamylase (Delatte et al., 2006).
The latter is necessary to remove branching points, releasing short linear
oligosaccharides from the starch surface.

GWD

ATP

AMP+Pi
Starch

BAM
DSP

DBEBAM

Figure 2.4: Enzymes act-

ing at the interface during

starch degradation. Rect-
angles indicate glucan dou-
ble helices forming the crys-
talline interface, black dots
glucose residues and red dots
orthophosphate.

2The phosphoglucan, water dikinase (PWD) is not considered here (see Hejazi et al.,
2009). The mutant phenotype is less severe and GWD can be considered as a representative
of dikinases such that the rate law of PWD is expected to closely resemble that of GWD.
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Properties of surface-active CAZymes. Below and in the next chapter, I
will go more into detail, but for now it is appropriate to restrict ourselves to the
following perspective: What are the structural properties making it possible
that the aforementioned surface-active enzymes can attach to the granule?
The crucial elements here are carbohydrate-binding modules (CBMs), non-
catalytic protein domains which recognize and bind carbohydrates (Boraston
et al., 2004; Guillén et al., 2010; Shoseyov et al., 2006). They are currently
classified into 61 families, the largest being CBM48 with over 2,700 proteins
according to the CAZy database (Cantarel et al., 2009).3 The CBMs are
further discriminated in types according to the topology of their ligand-binding
site (Boraston et al., 2004): Type A CBMs are surface-binding CBMs with
high affinity towards crystalline polysaccharides and low affinity to soluble
polysaccharides. Type B CBMs bind (also insoluble) glycan-chains, which are
at the same time substrate of the cognate catalytic module. Finally, lectin-like
Type C CBMs are specific for small sugars up to tri-saccharides.

Since our focus is on enzymes acting at the interface of insoluble polysac-
charides Type A and B CBMs are of particular interest here. Type A CBMs
display a flat hydrophobic surface composed of aromatic amino acids, espe-
cially tryptophan and tyrosin, which is responsible for strong Lifshitz-van der
Waals interactions with sugar rings. Additionally, polar amino acids can en-
gage in hydrogen bonds with flat surfaces of crystalline polysaccharides. These
structural properties make the associated enzymes orders of magnitude more
affine for crystalline substrates than amorphous or soluble ones. This is the
case for certain starch- and cellulose-binding domains (SBDs and CBDs), re-
spectively, for example in GWD (Mikkelsen et al., 2006). Type B CBMs have a
cleft arrangement that makes the enzymes specific for free single chains either
in solution or in amorphous insoluble polysaccharides.

In both cases, an important function of CBMs is first to increase the effective
concentration of the enzyme at the interface. Second, the active site of the
catalytic domain (CD) is positioned in proximity of the polysaccharide chain
through CBMs. After the CD has acted the CBM allows the relocation of the
enzyme at the surface to start a catalytic cycle anew.

Irreversible binding has been reported for some CBMs but this is still a

3Data as of October 22nd, 2010, accessed via http://www.cazy.org

http://www.cazy.org


2.1 Introduction 17

controversial issue. In the literature on interfacial enzymology (Berg and Jain,
2002; Deems, 2000) nearly irreversible binding has been reported for phospho-
lipase A2 acting on small unilammelar vesicles (SUVs). This is referred to as
the ’scooting’ mode, where the enzyme runs through several catalytic cycles
before it eventually dissociates. In contrast to that, if the molecules are rapidly
exchanged between vesicles one speaks of the ’hopping’ mode.

Coming back to CBMs, apart from substrate recognition they probably can
also disrupt the substrate upon binding. Polysaccharide chains in crystalline
regions may be disorganized due to polar interactions or weakening of hydrogen
bonds which enhances availability of the chains. Interestingly, it has been
shown that depending on the molecular order at the substrate binding site,
adsorption of CBMs may be enthalpically driven (in non-crystalline regions,
Boraston, 2005) or entropically driven (crystalline regions, Creagh et al., 1996).

Motivation and outline. The discussion shows that to describe interfacial
enzyme kinetics on insoluble polysaccharides, different physical states at the
interface have to be considered. At a typical heterogeneous interface of car-
bohydrates, certain enzymes will associate with crystalline sites others with
amorphous regions of the substrate. This is recognized in the literature on
modeling cellulose degradation (Zhang and Lynd, 2004) but has not been de-
veloped so far for starch (e.g. Marchal et al., 2003, 2001; Tatsumi and Katano,
2005; Wojciechowski et al., 2001). The present study aims at closing this gap
and allows to integrate different interfacial qualities and adsorption models into
one framework. Owing to the main theme of the thesis, the presentation is
biased towards starch degradation. However, the basic aspects are sufficiently
general as to be applicable to other substrates as well. It should be useful in
both studying in vitro kinetics and introducing interfacial rate laws in models
of metabolism. Given the great disparity of existing approaches to interfa-
cial phenomena, in particular regarding interfacial enzymology, an integrated
perspective may provide a basis for cross-fertilization.

To quantify the activity of enzymes at the interface, properties of the sub-
strate particles as well as the adsorption of the protein at the substrate in-
terface is considered in Section 2.2. The notions of ’specific surface area’ and
’available area function’ are introduced and it is discussed how interfacial re-
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actants can be included in the framework. In Section 2.3 rate laws for four
surface-active enzymes are derived using partial equilibrium mechanisms. The
qualitative differences between the Michaelis-Menten-Henri rate law and its
generic interfacial analogue is discussed.

2.2 Development of the theoretical approach

2.2.1 The substrate interface

A major factor which determines the partitioning of surface-active enzymes
is the bulk interface concentration of the substrate. Thus, we begin with
a discussion on how this quantity can be assessed by specifying geometric
properties as well as properties of the suspension in which the reactions take
place.

Quantifying the interfacial area. In typical experiments with starch from
leaf extracts it is rather difficult if not impossible to measure the surface area of
the starch granules directly. What can be easily monitored instead is the total
mass, Mg, or the mass concentration, mg = Mg/V , of granular material in a
suspension of volume V . A usual method then is to calculate the corresponding
total surface area, Ag, using the formal relationship

Ag = α ·Mg or (2.1a)

ag = αmg, (2.1b)

where ag = Ag/V denotes the bulk interface concentration and the parame-
ter α denotes the so-called specific surface area characteristic for a substrate
suspension. This quantity should encode both the geometry of single granules
and the properties of the granule population. The latter is important since
distributing a given mass to more but smaller particles increases the surface
area and vice versa. Considering the starch population from a certain plant
source, the granules are assumed to have different sizes but shape and material
density, ρ, are the same. The density is usually measured as specific gravity
with reference to water and varies in the range ρ = 1.4 − 1.5 g/cm3 (Buléon
et al., 1982; Tatsumi and Katano, 2005). It may be appropriate here to em-
phasize, that since our model of starch granules assumes a uniform density
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there is no internal anisotropy considered. That is, from any point within
the granular matrix the bulk properties are invariant in any direction. If it is
true, however, that starch can be correctly described by the side-chain liquid-
crystalline model (Waigh et al., 2000a,b) and the internal structure becomes
decisive for a specific modeling purpose, the approximation of isotropy cannot
be uphold anymore. Rather, one would have to include as an additional ob-
servable at least the so-called director, a unit-vector which can be associated
with each coordinate within the liquid-crystal giving the orientation of the
molecules (Landau and Lifschitz, 1979).

For uniform particles, it is convenient to use the spheroid as a geometri-
cal model to approximate (and restrict) possible shapes. Following Tatsumi
et al. (2007), consider an assay with Ng granules having equatorial and polar
diameters of di and h · di, respectively, where i = 1, . . . , Ng and h is the polar
diameter factor (see Fig. 2.5). The specific surface area reads

α =
6z

ρ

∑
i d

2
i∑

i d
3
i

, (2.2)

where

z =


{(h/2ε) ln[(1 + ε)/(1− ε)] + 1/h}/2 if h < 1,

1 if h = 1,

z = [(arcsin ε′)/ε′ + 1/h]/2 if h > 1,

(2.3)

is a dimensionless factor encoding the shape in terms of h, the eccentricities
being defined by ε :=

√
1− h2 and ε′ :=

√
1− h−2. Figure 2.5 summarizes the

properties of the geometrical model used here and contrasts it with a picture
of Arabidopsis starch granules. Such images can be evaluated to determine
empirical values for h and d to calculate z.

The sums in Eq. (2.2) quantify the influence of the granule size distribution,
denoted {di}, where the sum is taken over all granules in an assay. In vivo,
the number Ng can often be readily estimated. Chloroplasts of Arabidopsis,
for example, contain about five granules, or even only one in the ssiv mu-
tant (Zeeman et al., 2010). The picophytoplanktonic green alga Ostreococcus
tauri contains only one granule in its single chloroplast (Ral et al., 2004). The
number of granules in in vitro assays is usually not known exactly, rather a
size distribution of a fraction of the whole assay sample is detected. It can be
measured using size exclusion chromatography (SEC) as in Witt et al. (2010)
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Figure 2.5: Geometrical model for starch granules. An electron micro-
scopic picture of Arabidopsis thaliana starch shows the flat spheroid-like shape
of the granules (kindly provided by AG Steup, University of Potsdam). The
shape factor z is plotted against h which quantifies the deviation from a sphere
(i.e. h = 1).

or an apparatus based on the Coulter principle as in Hejazi et al. (2009) or
Tatsumi et al. (2007).4 Gidley et al. (2010) discuss some of the current issues
in reliably measuring starch size distributions.

The data available so far indicate, that the size of granules can be well de-
scribed by a log-normal distribution, which can be specified by the distribution
through mean µ and standard deviation σ. In the case of a continuous readout
or a fitted curve, Eq. (2.2) can be reformulated as

α =
6z

ρ

〈d2〉
〈d3〉

, (2.4)

where 〈·〉 denotes the arithmetic mean of the respective variable over the whole
assay sample. In fact, these quantities are the second and third (raw) moments
of the distribution, respectively (Gnedenko, 2005). Assuming a log-normal
distribution, the rth moment of a random variable X is given by 〈Xr〉 =

4Examples are flow cytometry (FCM) and scanning ion occlusion spectroscopy (SIOS,
Roberts et al., 2010).
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exp[rµ+ (r2/2)σ] and we get5

α =
6z

ρ
e−(µ+(5/2)σ). (2.5)

In their discussion of log-normal distributions Limpert et al. (2001) suggest
to use the “back-transformed” parameters µ∗ = eµ and σ∗ = eσ to describe
the data. The first is identical to the median and the second is the so-called
multiplicative standard deviation describing the shape. In terms of both, the
specific surface area reads

α =
6z

ρµ∗σ
5/2
∗
, (2.6)

which is shown in Fig. 2.6 for two different shapes. On the one hand, it
illustrates that for a fixed size distribution given by a pair (µ∗, σ∗) (a point
in the plane of Fig. 2.6a and Fig. 2.6b, respectively) the specific surface area
is increased for flatter granules. On the other hand, for a given granule and
distribution shape (fixed z and σ∗) the specific surface area increases if the
granule diameter is decreased, for example during degradation.

Given a size distribution measurement on a representative subset of the sam-
ple, the specific surface area can be calculated using the maximum-likelihood
estimators of µ∗ and σ∗ (Limpert et al., 2001).

1 3 5 7 9 11 13 15

Median µ*

1

2

3

M
. 
st

a
n
d
a
rd

 d
e
vi

a
tio

n
σ

*

1.1 0.9 0.7 0.5

0.3

0.1

1 3 5 7 9 11 13 15

Median µ*

1

2

3a b

0.3

0.5

0.7
0.9

1.1

(µm) (µm)

Figure 2.6: The specific surface area for a log-normal granule size

distribution. Values for specific surface area in the contour plot are to be
multiplied by 1012 µm2/g. a, Plot for a suspension of spherical granules (z =

1). b, The same plot for flat spheroids with z = 7 (i.e. h ≈ 0.1). As a typical
value for starch density ρ = 1.5 g/cm3 = 1.5 · 10−12 g/µm3 has been used.

5Weisstein, Eric W. “Log Normal Distribution.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/LogNormalDistribution.html

http://mathworld.wolfram.com/LogNormalDistribution.html
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Description of interfacial heterogeneity. For the adsorption process,
surface chemical heterogeneity can be described by a distribution of patches,
each type of patch having a characteristic interfacial energy profile (see Rams-
den, 2002, and Fig. 2.7 at p. 23 below). This profile, depending on both the
considered enzyme and the local interfacial quality, characterizes their interac-
tion. Some regions of the surface may even turn out to be effectively irrelevant
for an enzyme.

Given the discussion of the biochemistry of surface-active CAZymes, a
model should include at least two types of patches, crystalline and amorphous
regions, whose surface fractions are denoted ωcr and ωam, respectively. Al-
though the microscopic realization of each phase can be different, this seems
to become relevant only after the enzyme has been adsorbed. In the two-state
system it holds ωcr + ωam = 1 and the total surface area simply reads

Ag = ωcrAg + ωamAg. (2.7)

Whenever necessary, an extension of this phenomenological description to more
types of patches is straightforward. In the treatment below we will simply
speak of the relevant surface area fraction ω for a single enzyme. In the general
case, it will be convenient to introduce an enzyme-patch function, F i

j , whose
values are defined by

F i
j =

1 if enzyme j binds to patch i,

0 otherwise.
(2.8)

2.2.2 Adsorption kinetics

In this section we will turn from the properties of the substrates to the kinetics
of adsorption of surface-active enzymes. The adsorption, or physisorption to
be more precise, of an enzyme (the adsorbate) on a substrate’s surface (the ad-
sorbent) is mainly governed by interfacial energies between the protein, water
and the substrate. Contributions of Lifshitz-van der Waals (LW), electrostatic
(el) and solvation or electron donor-acceptor (da) forces can be distinguished.
Ramsden (2002) reports that LW forces are roughly the same for different
proteins but the solvation forces, in aqueous systems usually established by
hydrogen bonding, can differ considerably. However, aromatic amino acid
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residues (i.e. LW interactions) of CBMs can contribute significantly to the
specificity towards interfacial regions, and since both the protein and the sub-
strate interface may carry net charges, electric double layer effects could play
an important role in localizing proteins (Goldenberg and Steinberg, 2010).

All interfacial forces contribute to the distance-dependent interaction poten-
tial, U(r), where r denotes the protein-surface distance. As depicted in Fig 2.7,
its qualitative profile is characterized by the activation energy for adsorption,
Uads, the distance r0, where the energy becomes negative for an incoming par-
ticle and the adhesion energy, Uadh, at the distance of closest approach radh.
The interaction profile determines the associated rate coefficient of adsorption
according to (Ramsden, 2002):

ka = kD

[∫ ∞
r0

(
eU(r) − 1

)
dr

]−1

, (2.9a)

with the dimensions (L=length, T=time) given by

[ka] = LT−1, and

[kD] = L2T−1
.

(2.9b)

kD is the diffusion coefficient of the enzyme in the bulk phase given by the
Einstein relation (Glaser, 1996)

kD = µDkBT (2.9c)

where µD denotes the mobility, kB is the Boltzmann constant and T is the
temperature.

U

r

k a

Uads

Uadh r0

radh

Figure 2.7: The interaction potential between adsorbate and adsor-

bent. These potential energy shapes are often associated with the rates of
processes (Hänggi et al., 1990).
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In the following, I will derive the kinetic equation for adsorption which also
serves in introducing important notions in interfacial kinetics. The aim is to
bring to the fore the connections between the more biochemically motivated
approach and the physico-chemical concepts as expressed for example in the
treatment of Ramsden (2002).

Single enzyme adsorption. Protein adsorption can be considered as a re-
versible bi-molecular reaction between the enzyme in the soluble phase, E,
and a ’relevant ligand’ (Deems, 2000) at the interface. As the interface ap-
pears effectively as a continuum for the protein in solution (Ramsden, 2002),
it is appropriate to interpret ’relevant ligand’ as a corresponding adsorption
site, S∗E (Masel, 1996):

E + S∗E
ra−⇀↽−
rd

E∗, (2.10)

where the asterisk always denotes an interfacial species and ra and rd are the
adsorption and desorption rates, respectively. Note, that the adsorption site
is a pseudo-species that is used to envision the surface as a lattice which looks
different for each adsorbate. Figure 2.8 illustrates this lattice at the substrate
surface. The area of an adsorption site for the enzyme E is called the parking
area AE occupied upon adsorption. Since we will assume a spherical protein
shape with diameter dE, the parking area is roughly AE ≈ d2

E.
At first, we will allude to this classical conception of Langmuir and show

adsorption
site for E

adsorbent (substrate)
surface

adsorbate (enzyme) E

Figure 2.8: Langmuir’s concept of adsorption.
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afterward how the result can be generalized in a straightforward way. In any
case, only monolayer adsorption is considered, that is a protein cannot adsorb
upon already adsorbed proteins. Multilayer adsorption may play a role if inter-
actions between adsorbed and dissolved proteins target enzymes to the inter-
face.Compared to the usual treatment, I have (a) not excluded the possibility
that the surface area may change, and (b) considered surface heterogeneity, as
introduced above.

In formulating the ODEs describing reaction (2.10), the rate balance is ap-
plied to bulk concentrations (i.e. with respect to the whole reactor). Regarding
interfacial species, it is advisable to implicitly use the time derivative of the
amounts (dimension N) first. By convention (see Section 1.3) we use lower-case
letters for concentrations of species’ in their natural environment. Thus, the
natural concentration of E is denoted e, having dimension [e] = NL−3, and
correspondingly e∗ is a surface concentration, [e∗] = NL−2. These quantities
change according to

de

dt
= −ra + rd,

1

V

d (Age
∗)

dt
= +ra − rd,

(2.11)

where, according to mass action kinetics, the rates for reaction (2.10) are given
by

ra = k̃aes
∗
Eag and (2.12a)

rd = kde
∗ag. (2.12b)

Since the rates have dimension NL−3T−1, those of the rate constants result in
[kd] = T−1 and [k̃a] = N−1L3T−1. By comparison, the latter is not identical
to the rate constant given in (2.9b), k̃a 6= ka, but the relationship will emerge
below. Due to the balance equations the conservation relation

e0 = e+ age
∗ (2.13)

holds and algebraically determines one of the variables in terms of the other
via the initial bulk concentration of enzyme e0. In the following, we will
concentrate on the ODE for the interfacial species. Applying the rule for
differentiating products and rearranging terms yields

de∗

dt
= k̃aes

∗
E − (kd + rg) e∗, (2.14)
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where the growth rate of the interfacial reaction space

rg :=
1

Ag

dAg

dt
, [rg] = T−1, (2.15)

has been introduced.6 Next, the concentration of adsorption sites s∗E has to be
determined. We first introduce the maximum enzyme concentration per unit
area

e∗max = 1/ (NAAE) , (2.16)

which depends solely on the enzyme’s parking area, AE, and the Avogadro
constant NA. In terms of this quantity, the concentration of free adsorption
sites can be written as

s∗E =
Aav

g

Ag

e∗max, (2.17)

where the available surface area, Aav
g 6 Ag, depends on the fraction of the sur-

face relevant for adsorption and the excluded surface area, Aex
g , due to already

occupied sites:
Aav

g = ωAg − Aex
g . (2.18)

In the Langmuir model, the excluded surface area is proportional to the
number of adsorbed enzymes with the parking area being the proportionality
constant,

Aex
g = AE · n∗E

= AE · (e∗AgNA) ,

= θEAg.

(2.19)

In the last transformation, (2.16) has been used to introduce the dimensionless
fractional surface coverage defined by (Marangoni, 2003)

θE :=
e∗

e∗max
, θE ∈ [0, 1]. (2.20)

With (2.18) and (2.19) the adsorption site concentration (2.17) can be written
as

s∗E = (ω − θE) e∗max, (2.21)

6Kacser and Burns (1995) and Heinrich and Schuster (1996) define the growth rate
analogously for a changing three-dimensional reaction space.
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and the balance equation (2.14) for the interfacial species reads

de∗

dt
= k̃ae

∗maxe (ω − θE)− (kd + rg) e∗. (2.22)

Replacing (2.21) in the adsorption rate (2.12a) establishes, by comparing di-
mensions, the link to (2.9a),

ka = k̃ae
∗max. (2.23)

To simulate the temporal behavior it is advised to nondimensionalize the
system, so that the numbers are not arbitrary but have a clear intrinsic mean-
ing. We will introduce the association constant of adsorption Ka = ka/kd with
[Ka] = L (sometimes the inverse dissociation constant, Kd, is more convenient
to use). With the scaling in Table 2.1 the dynamic system (2.11) can be recast
in the form,

dθE

dτ
=
(
e0 − agθE

)
(ω − θE)− (1 + %g) θE, (2.24)

Up to the initial conditions θ0
E and e0, the quantities ω and ag uniquely deter-

mine all solution trajectories. Here, these quantities figure as parameters, but
if we were to simulate the dynamics with a changing substrate area, additional
ODEs for them would be required. We set dτθE = 0 to see what the limiting
behavior would look like. The quasi-steady state coverage reads then:

θss
E =

ωess

1 + ess + %g

. (2.25)

Without change in surface heterogeneity, this quasi-steady state is time-inde-
pendent only if the surface area grows or shrinks exponentially, dtAg ∝ Ag,
since then %g = const. holds according to (2.15). In the case of a constant
surface area (%g = 0), or if the growth rate is assumed to be very slow compared

Table 2.1: Scaling for the dynamic system of a single adsorbed enzyme.

Dimensional quantity Scale Non-dimensional quantity

Time t t� = 1/kd τ = tkd

Surface concentration e∗ e∗� = e∗max θe = e∗/e∗max

Bulk concentration e e� = e∗max/Ka e = eKa/e
∗max

Interface concentration ag a�g = 1/Ka ag = agKa

Growth rate rg r�g = kd %g = rg/kd
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to the desorption rate constant of the enzyme (hence %g ≈ 0) the system
approaches the equilibrium state

θeq
E =

ωeeq

1 + eeq
, (2.26)

with saturation coverage θ∞ = ω. Here the relevant surface area is half covered
if eeq = 1, that is eeq = e∗max/Ka. As expected, equation (2.26) reduces to the
classical Langmuir adsorption isotherm for ω = 1:

θeq =
eeqKa

e∗max + eeqKa

. (2.27)

The adsorption dynamics for a single particle is illustrated in Fig. 2.9. It
shows that the relaxation time and the equilibrium coverage are altered by
higher enzyme loadings while the saturation coverage is determined by ω.

The available area function. What makes the adsorption rate discussed
so far specifically Langmuirian is in fact the functional dependence on the
coverage. It is advised here to express the rate in the general form

ra = kaeφag. (2.28)

We see that the Langmuirian model is simply realized by setting φ = ω− θE.
As indicated above (see Eq. 2.19), the critical assumption leading to this result
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Figure 2.9: Adsorption dynamics and equilibrium for a single particle

due to Langmuir. The simulations were performed according to Eq. (2.24).
a, Dynamics for fixed relevant surface fraction, ω = 0.5, but different initial
values for enzyme loading e0 showing the higher coverage in equilibrium with
higher enzyme loading. b, A fixed loading of e0 = 5 has been chosen and
different available surface fractions ω showing the change in the saturation
coverage. In all simulations %g = 0 and ag = 1 hold.
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is that the excluded surface area depends linearly on the surface coverage. This
is strictly valid only if the adsorption sites are independent and the adsorbed
molecules do not interact with each other. In physics the quantity φ is known
as the available area (surface) function (Ramsden, 2002; Talbot et al., 2000)
or the sticking probability (Evans, 1993). Like the coverage, its value varies in
the range [0, ω], however, it is always complementary to the coverage and gives
the probability of finding an empty site upon impingement. The advantage
of using the kinetic scheme (2.28) lies in the easy adaptation to more com-
plicated adsorption models by formally replacing the corresponding available
area function.

For example, a physically more realistic model of monolayer adsorption is
random sequential adsorption (RSA, see e.g. Evans, 1993). It is not presup-
posed that the proteins adsorb onto well-defined neighboring sites to arrange
perfectly, but the surface is treated as a continuum. As indicated, for pro-
teins this is indeed the case regardless of the nature of the surface (Ramsden,
2002). RSA can describe the realistic phenomenon that the surface may be
’jammed’ although it is not fully covered. The saturation coverage for RSA
is θ∞ ≈ 0.547 (Talbot et al., 2000), considerably lower than in Langmuir’s
model where θ∞ = 1. For RSA a further increase is not possible since any free
space at the surface is individually too small to accommodate an additional
molecule.7 In the 1D case, known as the car-parking problem, the model has
been solved for φ exactly, but only approximate solutions are known in the 2D
case (Talbot et al., 2000). Basically, in contrast to Langmuirian adsorption
the excluded surface does not depend linearly on the coverage but is expanded
in powers of θ. For disks of a defined size adsorbing on a plane surface the
available area function results in (Schaaf and Talbot, 1989)

φ = 1− 4θ +
6
√

3

π
θ2 +

(
40√
3π
− 176

3π2

)
θ3 +O

(
θ4
)
, (2.29)

where O is the Landau symbol.8 RSA can be generalized to treat polydisperse
mixtures (Olson and Talbot, 2000), cooperative effects and conformational

7Interestingly, the saturation coverage of particles following RSA approaches that of
Langmuir-type adsorption if the proteins cluster to form a tight-packed crystalline layer at
the surface (Ramsden, 2002).

8O(θ4) means that this term is growing at most in the order of four around θ = 0

(Amann and Escher, 1998, Chapter 4).
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changes upon adsorption (Talbot et al., 2000), aspects which may be relevant
for proteins.

Competitive adsorption. An important generalization of the model which
can be conveniently implemented using the available area function is competi-
tive adsorption. This is a most relevant setting for interfacial enzyme kinetics,
since in many cases the activity of several enzymes is relevant to catalyze
reactions on insoluble substrates. Consider a mixture of, say, m interfacial en-
zymes. The corresponding dynamic system is a straightforward generalization
in the case of a homogeneous interface. For j = 1, . . . ,m we have

dej
dt

= ag

[
−

de∗j
dt

]
,

de∗j
dt

= ka,jejφ− (kd,j + rg) e∗j ,

(2.30)

where the available area function mediates the dynamic competition for adsorp-
tion sites by coupling the ODEs. Within the classical Langmuirian frame-
work, the adsorption sites are independent and Aex

g is linear in the coverage of
each interfacial species, resulting in

φ = 1−
m∑
j=1

θj. (2.31)

Generalizing competitive adsorption to heterogeneous interfaces can be achie-
ved using the enzyme-patch function (2.8). Competition for adsorption sites is
now confined to those enzymes which bind to the same type of patch, respec-
tively. If an enzyme binds to more than one type of patch one has to introduce
corresponding interfacial concentration variables for each patch, which slightly
complicates the dynamic equations. We will write e∗ij or θij, respectively, for
an enzyme j adsorbing to patch i. The available area function is now defined
for each patch type, i ∈ {1, . . . , p}, separately:

φi = ωi −
m∑
j=1

F i
jθ
i
j, (2.32a)

or in matrix notation

φ = ω − (F ◦ θ) 1(m×1), (2.32b)
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where φ and ω are (p× 1) matrices, F and θ are (p×m) matrices and 1 is a
vector with m rows and only ones as entries. The Hadamard product, A ◦ B,
is defined for matrices of the same dimensionality and is simply the entrywise
ordinary product, that is A ◦ B = {aij · bij} (Horn and Johnson, 1985). The
dynamic system (2.30) now including surface heterogeneity reads

dej
dt

= ag

[
−

p∑
i=1

de∗ij
dt

]
,

de∗ij
dt

= F i
j

[
kia,jejφ

i −
(
kid,j + rg

)
e∗ij
]
,

(2.33a)

and can be written as a single equation for the (p × m) matrix of surface
concentrations together with the conservation relation,

de∗

dt
= F ◦

[
(dgφ) ka (dge)−

(
kd + rg1(p×m)

)
◦ e∗

]
,

e = e0 − ag

(
1(1×p)e

∗)T . (2.33b)

Here, (dgφ) and (dge) denote square diagonal matrices with the entries given
by the vectors φ and e, respectively. As done before, it is appropriate to
express this result in terms of coverages by choosing e∗i�j = e∗max

j for a given
enzyme j and i = 1, . . . , p.

Note, that in analogy to the non-competitive case the equilibrium coverages
can be given by the condition

[θij]
eq =

φi

Ki
d,je
∗max
j

[ej]
eq =

φi

K̃i
d,j

[ej]
eq. (2.34)

For simulations, a choice for the time scale t� is reasonable the better it ensures
the approximation %g ≈ 0. We take the largest desorption rate constant in
the system, setting t� = 1/maxij{kid,j} which results in relative desorption
constants κid,j = kid,j/maxij{kid,j} satisfying κid,j ≤ 1. Concerning the bulk
enzyme concentrations, ej → ej, in analyzing competitive adsorption one may
normalize to the total enzyme loading given by

et =
m∑
j=1

e0
j . (2.35)

After some elementary calculations (see Appendix A) we arrive at
dθ

dτ
= F ◦ [(dgφ) Λa (dge)− θ] ◦ κd,

e = e0 − ag (dge∗max)
(
1(1×p)θ

)T
,

(2.36)
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where all scalings are summarized in Table 2.2.

Equation (2.36) shows that the values in κd solely determine the relaxation
time, whereas the parameters appearing in the bracket, that is Λa and (im-
plicitly) ωi, determine the equilibria. Figure 2.10 illustrates the relaxation to
equilibrium of a system with three enzymes adsorbing on a substrate with two
different interface qualities. Enzyme 1 binds to patch type 1 (θ1

1 6= 0) and
enzyme 2 to patch type 2 (θ2

2 6= 0), whereas the third enzyme adsorbs onto
both patches (θ1

3 6= 0 and θ2
3 6= 0) but with different affinities (Λ1

a,3 > Λ2
a,3).

An interesting aspect of the temporal profile is that the slow adsorption of
enzyme 2 on patch 2 (κ2

d,2 = 0.1) leads to a temporary overshoot in the ad-
sorption of the fast enzyme 3 on the same patch. Such dynamic behavior
resulting from separation of characteristic times of the adsorption process may
have a physiological significance if enzymes have to act sequentially at the
substrate interface. It is more efficient then if they do not hinder each other

Table 2.2: Scaling for the dynamic system describing competitive adsorption.

Dimensional quantity Scale Non-dimensional quantity

Time t t� = 1/maxij{kid,j} τ = t ·maxij{kid,j}
Surface concentrations e∗ij e∗�j = e∗max

j θij = e∗ij /e
∗max
j

Bulk concentrations ej , e0j e�j = et e = eKa/e
∗max

Interface concentration ag a�g = et/maxj{e∗max
j } ag = ag maxj{e∗max

j }/et
Growth rate rg r�g = maxij{kid,j} %g = rg/maxij{kid,j}
Ki

a,j = kia,j/k
i
d,j [Ki

a,j ]
� = e∗max

j /et Λia,j = Ki
a,jet/e

∗max
j

e∗max
j [e∗max

j ]� = maxj{e∗max
j } e∗max

j = e∗max
j /maxj{e∗max

j }
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and competition for adsorption sites is minimized.

2.2.3 Concentration of interfacial reactants

Description of the complete catalytic cycle of an interfacial enzyme requires
a thermodynamically consistent but at the same time convenient choice for
the concentration units of interfacial reactants. Two features should be em-
phasized here. First, the encounter of enzyme and reactant takes place in a
two-dimensional reaction space, hence the rate is determined by surface con-
centrations. Secondly, the reactants interact and constitute a condensed phase,
so they probably behave non-ideally.

Most models (Burns et al., 1982; Eaton and Dennis, 1976; Holtzapple et al.,
1984; Tatsumi and Katano, 2005; Verger, 1976) of interfacial enzyme catalysis
use the surface number density (or surface concentration, i.e. moles per area)
for interfacial reactants. This complicates the description if heterogeneous
reactions lead to a significant erosion of the substrate. In this case, the interface
is moving which entails virtual replenishment fluxes (Chu and Bazant, 2007;
Gan et al., 2003) due to the mass balance

M∗ = M tot −M int −Maq, (2.37)

where M tot is the total substrate mass, Maq is the dissolved mass, and M int

is the undissolved mass not in contact with the aqueous phase. M∗ is called
the excess mass contained in the dividing surface (a mathematical concept in-
troduced by Gibbs, reviewed in section 3.1 in Rusanov, 2005) remaining if the
mass of the two bulk phases is subtracted. Consider Fig. 2.11a, which exem-
plifies the situation for a single granule. Two bulk phases can be distinguished,
the aqueous phase (aq) and the solid (s) granule phase, divided by a moving
interface.

If replenishment of the interface from the bulk phase is overlooked (as
in (Converse and Optekar, 1993)) the model in fact only describes the reactants
at the outermost monolayer but not those which are ’digged out’ during degra-
dation. This may be approximately valid for initial rate assays but it is not
realistic for longer time scales which are usually also considered in metabolic
models.
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Interface motion
during degradation

Granule (s)
Released
molecules (aq)

a

Excess mass
efflux Jr

b

ARAR

Figure 2.11: On the choice of interfacial reactant concentration units.
a, Motion of the dividing surface at the interface separating the aqueous phase
(aq) from the solid (s) granule phase. Degradation leads to a decreasing ex-
cess mass (i.e. of the mass confined to the dividing surface) which has to be
accounted for by introducing an appropriate replenishment flux Jr. b, When
using mole fractions, instantaneous replenishment is assumed and the area AR

occupied by any interfacial reactant is the same and independent of the total
interface area.

The complication introduced by replenishment fluxes can be circumvented if
the total surface number density of reactants c∗max remains constant through-
out the process, that is

c∗max =
∑
k

c∗k = const. (2.38)

This is a good approximation if each reactant is assumed to occupy the same
effective area AR at the dividing surface, see Fig. 2.11b, for then the total
number density is given by

c∗max = (NAAR)−1 . (2.39)
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Observe the formal similarity to the calculation of e∗max, Eq. (2.16). Thus,
the independence of c∗max on changes in the total interface area allows to scale
the number particle densities to introduce mole fractions:

χ∗k =
c∗k

c∗max
. (2.40)

Hence, we will use mole fractions for the concentration of interfacial reactants
which amounts to assuming that replenishment occurs instantaneously.

In their discussion (see Theory Box 3.2 in Berg and Jain, 2002), Berg and
Jain point out that interfacial reactants occupying different areas can be han-
dled by area correction factors to introduce activity coefficients. These account
for nonidealities to first order in the mole fractions.

2.3 Rate laws

General considerations. A biochemical rate law describes the flux through
an enzymatic reaction in terms of reactants, effectors and the amount of en-
zyme present. The functional relation between these quantities are derived
from detailed mechanisms in the form of elementary reaction steps endowed
with mass action kinetics. Using additional assumptions regarding the time
scales of these steps it is possible to eliminate the enzyme intermediates. This
can either be achieved by the rapid-equilibrium approximation (REA) or the
quasi-steady state assumption (QSSA). Both are satisfied under certain con-
ditions, however, never throughout the whole reaction progress (Beard and
Qian, 2008). Expressions for the rates of enzyme-catalyzed reactions for a va-
riety of mechanisms and the techniques to derive them are discussed in depth
in standard textbooks on enzyme kinetics, for example Segel (1993). They
usually have the form of a fraction with polynomials in numerator, N , and
denominator, D:

v =
N

D
. (2.41)

In general, it is a good advice to derive rate laws using the REA first: the result-
ing expressions have sometimes less terms than those derived with the QSSA,
and most parameters can be interpreted as equilibrium constants, which are
often readily accessible experimentally (Alberty, 2008). If these rate laws con-
sistently fail to reproduce experimental data they can be replaced by QSSA
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rate laws. An approach increasingly used to simplify the modeling of large
metabolic networks is to assume generic or convenient rate equations for en-
zymes, whose mechanistic details are missing or supposedly unimportant for
the question at hand (Bulik et al., 2009; Liebermeister and Klipp, 2006).

Starch-degrading enzymes. In the following, rate laws for the most im-
portant surface-active enzymes in transitory starch degradation will be de-
rived. Since adsorption does not involve the cleavage or formation of chemical
bonds it is reasonable to assume a fast turnover of enzymes between the aque-
ous and insoluble phase such that this subsystem may be considered close to
equilibrium and is only adiabatically perturbed by the slower catalytic steps.
Moreover, an interesting aspect of using the REA rather than the QSSA is
that the absolute amounts on both the interface and the aqueous phase can
still change. The intermediary enzyme complexes not involved in adsorption
will be assumed to be in a QSS.9 An appropriate scheme to derive these hy-
brid rate laws has been devised by Cha (1968). Care must be taken, since
the catalytic cycle of interfacial enzymes involves reaction spaces of different
dimensionality.

All enzymes discussed here act on polymeric substrates. Due to the more
or less random attack many reactants with different degrees of polymerization
(DP) and phosphate ester positions would have to be distinguished. In order
to avoid a zoo of variables and to highlight the basic structure of the rate laws I
restricted myself to certain substrate groups, members of which are assumed to
have the same specificity towards their enzyme. According to the action mode
depicted in Fig 2.4 (p. 15)and more precisely in Fig. 2.12 we may distinguish
the following interfacial substrate groups:

• native maltodextrin chains, either in helical (Gh∗) or random coil (Gc∗)
conformation

• (singly) phosphorylated maltodextrin chain (pG∗)

• partially degraded phosphodextrin (pGx∗)

9In computational biochemistry this is called the standard QSSA, sQSSA. Schnell and
Maini (2003) give a very useful overview of different QSSAs and compare their range of
validity.
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• partially degraded dextrin (Gx∗) and

• β-limit dextrin-like stubs (Gb∗) of DP2 and DP3

The rate laws are derived in the order of the complexity of the mechanism,
starting with the endo-acting debranching enzyme (isoamylase), followed by
the dual-specificity phosphatase SEX4 which acts on interfacial as well as sol-
uble phosphodextrins. Both are assumed to bind to amorphous patches only,
whereas the mechanism of the exo-acting β-amylase allows for adsorption to
both amorphous and crystalline regions. Finally, the glucan, water dikinase
exemplifies a catalytic cycle where two of the enzyme intermediates are parti-
tioned between interface and solution.

2.3.1 Debranching Enzyme (DBE)

Background. Plants have two types of debranching enzymes, limit-dextri-
nase (LDA, EC 3.2.1.142) and isoamylase (EC 3.2.1.68, glycoside hydrolase
family 13, GH13) of which three isoforms exist. During the night, LDA and
the isoform ISA3 are active on β-limit dextrin-like substrates. ISA3 has been
shown to be localized at the granule interface (Delatte et al., 2006) and acts
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Figure 2.12: Reactions of interfacial and dissolved reactants catalyzed

by surface-active enzymes. Interfacial species and species in solution are
highlighted by a green and blue background, respectively.



38 Rate laws for interfacial enzymes

on Gb∗ as indicated in Fig. 2.12. These short side-chains are products of the
hydrolytic activity on the α-1,4-bonds of amylopectin branches, whereas DBEs
are necessary to remove the branches by hydrolyzing α-1,6-bonds. This makes
further bonds in a deeper layer accessible for continued starch degradation.
Most likely, maltosyl and maltotriosyl residues are released by ISA3 (Zeeman
et al., 2010).

Probably, a CBM48 is present in ISA3 as it is in most isoamylases from
archaea and bacteria according to the CAZy database (Cantarel et al., 2009).
The preferred adsorption region for this CBM is amorphous, since the enzyme
acts in branched regions of amylopectin unable to form double helices.

Mechanism and rate law. The mechanism of the surface-active DBE,
ISA3, is sketched in Fig. 2.13a. Reaction 1 is the adsorption step. Since the
DBE acts on all interfacial substrates except for the helical glucans, Gh, S∗i is
used as a short-hand to avoid blowing up the scheme. Reaction 2 is the associ-
ation with the interfacial substrate and reaction 3 the irreversible release of the
product. Thus, the interfacial cycle resembles a classical irreversible uni-uni
reaction, which becomes more obvious in the corresponding partial equilibrium
mechanism depicted in Fig. 2.13b. This diagram is the first step in deriving
rate laws for partial equilibrium mechanisms according to Cha (1968). The
rapid equilibrium segment, E−⇀↽−E∗, is condensed into a single node, X. This
pseudo-species has the concentration x = e + age

∗ and, as can be seen, the
arrow ensuing from this intermediate is weighted by a fractional concentration
factor f ∗E. Together with the complementary factor fE and taking E as the
reference species, these factors read

fE =
e

e+ age∗
=

1

1 + age∗/e
=

1

1 +Kaφamag

, (2.42a)

f ∗E =
age
∗

e+ age∗
=

age
∗/e

1 + age∗/e
=

Kaφ
amag

1 +Kaφamag

, (2.42b)

where in the last transformation the equilibrium relation for adsorption,[
e∗

e

]eq

= Kaφ
am, (2.43)

has been exploited (see previous section). Of course, the fractions making up
the whole equilibrium segment have to sum up to unity, fE + f ∗E = 1.



2.3 Rate laws 39

Figure 2.13: Catalytic mechanism of the surface-active debranching

enzyme (DBE). Diagrams are applied to each interfacial substrate S∗i . a,
The full mechanism with adsorption (k±1) and interfacial uni-uni reaction
(k±2, k∗cat). b, The condensed mechanism, where the enzyme forms E and
E∗ are part of a rapid equilibrium segment, X, and f ∗E is the relevant fractional
concentration factor.

Next, the QSSA is applied to the condensed diagram. Here and in the
following sections, the concentration of enzyme intermediates, for example the
complex sE∗i , is always denoted as csE∗i

. Since the rate laws, v(DBE|Si), are given
by the net flux through the rate-limiting catalytic step,

v(DBE|Si) = kcatag[csE∗i
]ss, (2.44)

we need to determine the steady state concentration of the interfacial com-
plexes denoted by the superscript ss.10 This is done by setting the correspond-
ing balance equations to zero,

dcsE∗i

dt
= 0, (2.45)

leading to
0 = k2,iχS∗i

f ∗E
x

ag

− (k−2,i + kcat) csE∗i
− rgcsE∗i

. (2.46)

This is solved for [csE∗i
]ss and [x]ss, additionally using the equation expressing

the conservation of enzyme concentration,

e0 = x+ ag

∑
i

csE∗i
. (2.47)

10Note, that the rate is defined for the whole reactor, that is per unit volume.
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The computer algebra system Maxima11 was used to carry out the algebraic
calculations. Assuming again that the interfacial growth rate, rg, is slow
with respect to both the enzyme desorption rate constant, k−1, and the two-
dimensional association rate constant k2 and replacing the fractional concen-
tration factor f ∗E in the solution yields the rate law

v(DBE|Si) =
k∗cate

0 · φ
amag

Kd

χS∗
i

KS∗
i

1 + φamag

Kd

(
1 +

∑
i

χS∗
i

KS∗
i

) . (2.48)

The phenomenological half-saturation concentrations (Michaelis constants),

KS∗i
= (k−2,i + k∗cat) /k2,i, (2.49)

are dimensionless corresponding with the use of mole fractions and [k∗cat] = T−1.
The rate law has a particularly simple and reasonable form, the interfacial

reactants appearing in a term analogous to soluble rate laws (1 + . . .) but
multiplied with the concentration of the available interface, φamag, relative to
the dissociation constant Kd. As shown in Section 2.2.2, the available area
function depends on the enzyme loading. This is setting the interfacial rate
laws apart from standard rate laws, and the associated effects on the catalytic
turnover will be discussed below after the remaining rate laws are presented.

2.3.2 Phosphoglucan phosphatase (DSP or SEX4)

Background. SEX4 (EC 3.1.3.48) is a protein of approximately 45 kDa with
a catalytic dual-specificity phosphatase (DSP) domain at its amino terminus
and a CBM48 at the carboxy terminus (Kooi et al., 2010; Niittylä et al., 2006).
Until very recently the DSP motif was thought to be responsible for hydrolyzing
phosphotyrosine and phosphoserine/-threonine substrates only. It came as a
surprise when repeatedly it was demonstrated that nonproteinaceous molecules
such as phosphoglucans (see e.g. Tagliabracci et al., 2007; Worby et al., 2006)
may be targeted as well. These findings show that the DSP domain is rather
unspecific with respect to the nature of the esterified molecule and that the
CBM determines the preferred target of SEX4. A CBM is also present in a
functionally similar vertebrate enzyme called laforin, which essentially makes

11http://maxima.sourceforge.net/

http://maxima.sourceforge.net/
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these the only phosphatases known to date to be active on carbohydrates.12

Hejazi et al. (2010) have shown that SEX4 is not inhibited by crystalline but
soluble maltodextrins indicating that the preferential binding site at the starch
interface are amorphous regions. This is consistent with ISA3 which also has
a CBM48 and targets amorphous regions as well.

Mechanism and rate law. SEX4 is active on interfacial (pG∗ and pGx∗)
as well as dissolved (pG and pGx) phosphoglucans. Hence, four catalytic cy-
cles have to be considered resulting in the same number of rate equations.
Considering the catalytic cycles in the soluble and the insoluble phase en-
sures the correct denominator polynome, D, which both fluxes must have in
common. As emphasized before, I restricted myself to the generic case of
singly-phosphorylated phosphoglucans. In experiments with crystalline mal-
todextrins as substrates, these make up approximately 90% of the phosphoglu-
cans, the rest being at most triply-phosphorylated (Hejazi et al., 2009). The
analysis of sex4 mutants suggests (Kötting et al., 2009), that this dominance
of singly-phosphorylated phosphoglucans may also be expected in vivo. More-
over, we do not distinguish between C6- and C3-phosphate esters both of which
can be hydrolyzed by SEX4 (Hejazi et al., 2010). In the same publication it
has been shown that glucans above a certain DP, especially maltoheptaose,
can inhibit SEX4 activity. In Fig. 2.14a, showing the assumed mechanism of
SEX4, this effect is considered. The rate-limiting and irreversible hydrolysis
of the phosphoester bond is assumed to proceed with the same rate constant,
kcat and k∗cat, respectively, regardless of the DP. Hydrolysis at the interface is
deemed irreversible also because the inorganic phosphate, Pi, is immediately
released into the aqueous phase and thus virtually inaccessible to E∗.

12For the sake of completeness, I refer to Gentry et al. (2007) who shows that laforin
has a CBM20 and orthologues are also found in protists. These findings suggest that since
very early in evolution the metabolism of complex carbohydrates in general and the cyclic
turnover of insoluble carbohydrates in particular are tied to phosphorylation.
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Figure 2.14: Catalytic mechanism of the carbohydrate-active dual-

specificity phosphatase SEX4. a, The mechanism comprises four enzyme-
phosphoglucan complexes, pgE∗ and pgxE∗ in the interface and pgE and pgxE
in the aqueous phase. Accordingly, two inhibitory complexes, gE and gxE,
with unphosphorylated glucans are included. b, The associated partial rapid
equilibrium mechanism with one rapid equilibrium segment comprising the
adsorption step.

To calculate the net fluxes

v(DSP|pG∗) = kcatag[cpgE∗ ]
ss, (2.50)

v(DSP|pGx∗) = kcatag[cpgxE∗ ]
ss, (2.51)

v(DSP|pG) = kcat[cpgE]ss, (2.52)

v(DSP|pGx) = kcat[cpgxE]ss, (2.53)

six balance equations and the conservation relation given in Table 2.3 have to
be solved for the QSS concentrations of the intermediates in Fig. 2.14b. The
rate and phenomenological constants appearing in the equations are summa-
rized in Table 2.4.

The fractional concentration factors are formally the same as in (2.42a),
but both of them appear now in the partial rapid equilibrium mechanism.
The algebraic calculation yields the following denominator polynome which all
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Table 2.3: Balance equations for the QSS and conservation relation of
SEX4/DSP. The superscript (ss) is omitted as well as the growth rate term,
assuming %g ≈ 0.

Species Equation

cpgE∗ 0 = χpG∗f∗Ex/ag −KpG∗cpgE∗

cpgxE∗ 0 = χpGx∗f∗Ex/ag −KpGx∗cpgxE∗

cpgE 0 = pg fEx−KpGcpgE

cpgxE 0 = pgx fEx−KpGxcpgxE∗

cgE 0 = Ki,GcpgE − cgE + g/qG fEx

cgxE 0 = Ki,GxcpgxE − cgxE + gx/qGx fEx

All e0 = x+ ag (cpgE∗ + cpgxE∗) + cpgE + cpgxE + cgE + cgxE,

Table 2.4: Elementary rate and phenomenological constants for SEX4/DSP.

Parameter Dimension†

k±2, k±3, k±4, k±6, k5, k7 T−1

k−5, k−7 N−1L3T−1

k∗cat, kcat T−1

KpG∗ = (k−2 + k∗cat) /k2 1

KpGx∗ = (k−3 + k∗cat) /k3 1

KpG = (k−4 + kcat) /k4 NL−3

KpGx = (k−6 + kcat) /k6 NL−3

Ki,G = kcat/k5 1

Ki,Gx = kcat/k7 1

qG = k5/k−5 NL−3

qGx = k7/k−7 NL−3

† N=amount, L=length, T=time

rates have in common:

DDSP = 1 +
g

qG

+
gx

qGx

+ (Ki,G + 1)
pg

KpG

+ (Ki,Gx + 1)
pgx

KpGx

+
φamag

Kd

(
1 +

χpG∗

KpG∗
+
χpGx∗

KpGx∗

) (2.54a)
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The numerators for the different catalytic cycles read

N(DSP|pG∗) = k∗cate
0 · φ

amag

Kd

χpG∗

KpG∗
, (2.54b)

N(DSP|pGx∗) = k∗cate
0 · φ

amag

Kd

χpGx∗

KpGx∗
, (2.54c)

N(DSP|pG) = kcate
0 · pg
KpG

, (2.54d)

N(DSP|pGx) = kcate
0 · pgx
KpGx

. (2.54e)

2.3.3 β-amylase (BAM)

Background. BAM (EC 3.2.1.2, GH14) occurs in Arabidopsis in a total of
at least nine isoforms, which seem to have versatile functions, in metabolism
as well as in sugar signalling (Fulton et al., 2008). The catalytically active
isoforms bind to the non-reducing end of malto-oligosaccharides and cleave
off maltose residues, that is BAMs are exo-acting amylases. Experimental
studies (Ishikawa et al., 2007) and computational approaches (Hanson, 1962;
Nakatani, 1997) suggest that the enzyme releases maltose residues repetitively
before it dissociates. The processivity may depend on the degree of polymer-
ization but as well on chemical modifications of the substrate. Of particular
relevance is the position of phosphate esters. The enzyme cannot work past
the phosphate and dissociates before the full glucan can be hydrolized. This
is where the DSP activity becomes so important to remove the phosphate
enabling further hydrolytic degradation.

In Arabidopsis, the dominant isoform localized at the starch-stroma inter-
face is a 61 kDa protein called BAM3. It is not clear if a CBM is present
in plant BAMs but according to the CAZy database possible candidates are
CBM20 and CBM25, both of which have been demonstrated in BAMs from
other sources to have the capacity to bind starch. As the in vitro activity of
BAM3 on soluble glucans is much higher compared to granules it seems that
BAM3 preferably localizes in amorphous regions of the interface. However,
Edner et al. (2007) have shown that BAM3 is able to release a limited amount
of maltose from native unphosphorylated granules which are practically inert
for the endo-acting isoamylase. This hints at the accessibility of non-reducing
chain ends even in crystalline regions. Thus, BAM3 may be a surface-active en-
zyme with a disorganizing effect upon adsorption and consequently adsorption
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to crystalline regions will not be excluded in the rate law.

Mechanism and rate law. According to Fig. 2.12 BAM3 is assumed to act
on three distinct substrates upon adsorption, native chains in helical (Gh∗) or
coil (Gc∗) state, respectively, partially degraded chains (Gx∗) and undigested
but phosphorylated chains (pG∗). We will assume that BAM3 does not disso-
ciate from the substrate unless it has degraded the substrate to Gb and pGx,
respectively. The DP of these products and the number of released maltose
residues of course depends on the initial DP and the position of the phosphate.
The study of Hanson (1962) suggests how this model can be further refined
if necessary, however, it seems that if it is desired to treat such polymeric
systems in depth to cover all potential species it is rather appropriate to take
full advantage of probabilistic (e.g. as done in Wojciechowski et al., 2001, or
Chapter 4 of this thesis) or rule-based deterministic approaches (Feret et al.,
2009; Harmer et al., 2010).

As the mechanism in Fig. 2.15 shows, maltose (G2) is considered as a rele-
vant competitive end-product inhibitor of BAM in solution (Ki = 11.5− 11.7

mM, Damme et al., 2001; Lizotte et al., 1990), while the phosphodextrin and
maltodextrin stubs are potential inhibitors at the interface. We ommit the sol-
uble substrates (G, pG and Gx) of BAM in order not to distract from the main
approximation made. Of course, they will appear in the rate law together with
the corresponding Michaelis constants. The rates for cleavage of the different
substrates in the amorphous region are given by

v(BAM|Gc∗) = k3ag[cgcE∗ ]
ss, (2.55a)

v(BAM|Gx∗) = k6ag[cgxE∗ ]
ss, (2.55b)

v(BAM|pG∗) = k8ag[cpgE∗ ]
ss, (2.55c)

and for helical glucans by

v(BAM|Gh∗) = k12ag[cghE∗ ]
ss. (2.55d)

The balance equations to be solved are given in Table 2.5 and the associated
parameter are explained in Table 2.6. As the rapid equilibrium segment now
comprises three species,

x = e+ ag (e∗am + e∗cr) , (2.56)
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Figure 2.15: Catalytic mechanism of β-amylase (BAM). a, The catalytic
cycles comprise interfacial substrates only and two adsorption steps (k±1 and
k±10). b, The associated partial rapid equilibrium mechanism with one rapid
equilibrium segment comprising both adsorption steps.

the fractional concentration factors are given by

fE =
1

1 +Kam
a φamag +Kcr

a φ
crag

, (2.57a)

f am
E =

Kam
a φamag

1 +Kam
a φamag +Kcr

a φ
crag

, (2.57b)

f cr
E =

Kcr
a φ

crag

1 +Kam
a φamag +Kcr

a φ
crag

. (2.57c)
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The result is a somewhat long but structurally straightforward expression for
the denominator which all rates have in common:

DBAM = 1 +
g2

qmt

+
g

KG

+
gx

KGx

+
pg

KpG

+
φamag

Kam
d

[
1 +

χGb∗

qGb∗
+
χpGx∗

qpGx∗

+ (K i1,Gb∗ + 1)
χGc∗

KGc∗
+ (K i2,Gb∗ + 1)

χGx∗

KGx∗
+ (K i,pGx∗ + 1)

χpG∗

KpG∗

]
+
φcrag

Kcr
d

(
1 +

χGh∗

KGh∗

)
.

(2.58)

The numerators for the interfacial activities are

N(BAM|Gc∗) = k∗cat,Gc∗e
0 · φ

amag

Kam
d

χGc∗

KGc∗
,

N(BAM|Gx∗) = k∗cat,Gx∗e
0 · φ

amag

Kam
d

χGx∗

KGx∗
,

N(BAM|pG∗) = k∗cat,pG∗e
0 · φ

amag

Kam
d

χpG∗

KpG∗
,

N(BAM|Gh∗) = k∗cat,Gh∗e
0 · φ

crag

Kcr
d

χGh∗

KGh∗
.

(2.59)

For the hydrolysis in solution we have

N(BAM|G) = kcat,Ge
0 · g

KG

,

N(BAM|Gx) = kcat,Gxe
0 · gx
KGx

,

N(BAM|pG) = kcat,pGe
0 · pg
KpG

.

(2.60)

2.3.4 Glucan, water dikinase (GWD)

Background. In contrast to the enzymes discussed above, the catalytic cycle
of GWD is partitioned between both the aqueous phase and the interface. The
enzyme binds to starch in a catalytically active, phosphorylated form and has
to desorb after esterification of an interfacial glucan to activate itself again in
the soluble phase by using ATP. GWD does not act on glucans in solution and
it seems necessary that the substrate is present in an aggregated form with a
certain degree of molecular order. Hence, stable association with crystalline
regions precedes glucan phosphorylation. The starch-binding domain (SBD),
identified as a family 20 CBM (Christiansen et al., 2009; Mikkelsen et al., 2006)
is responsible for the interfacial localization.
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Table 2.5: Balance equations for the QSSs of intermediates in the catalytic
cycle of BAM. The superscript (ss) is omitted as well as the growth rate term,
assuming %g ≈ 0.

Species Equation

cgcE∗ 0 = χGc∗f
am
E∗ x/ag −KGc∗cgcE∗

cgxE∗ 0 = χGx∗famE∗ x/ag −KGx∗cgxE∗

cpgE∗ 0 = χpG∗famE∗ x/ag −KpG∗cpgE∗

cpgxE∗ 0 = K i,pGx∗cpgE∗ − cpgxE∗ +
χpGx∗

qpGx∗
famE∗ x/ag

cgbE∗ 0 = K i1,Gb∗cgcE∗ − cgbE∗ +
χGb∗

qGb∗
famE∗ x/ag +K i2,Gb∗cgxE∗

cghE∗ 0 = χGh∗f crE∗x/ag −KGh∗cghE∗

cmtE 0 = g2fEx− qmtcmtE

All e0 = x + cgE + cgxE + cpgE + cmtE +

ag (cgcE∗ + cgxE∗ + cpgE∗ + cpgxE∗ + cgbE∗ + cghE∗)

Mechanism and rate law. Figure 2.16 shows the supposed mechanism of
GWD and the partial equilibrium counterpart. In the soluble phase the au-
tophosphorylation of GWD takes place by transfer of the β-phosphate of ATP
and release of AMP and the γ-phosphate (Ritte et al., 2002). The resulting
phosphohistidine intermediate is the only form able to catalyze the phospho-
transfer to interfacial glucans. However, it is acid- and heat-labile and can
dissociate into free enzyme and orthophosphate. This creates a ’leak’ of phos-
phate, which has been shown to result in waste of ATP if no carbohydrate
acceptor is present (Hejazi et al., 2010, and M. Steup, pers. comm.). This flux
is included as an essentially irreversible loss of phosphate by the reaction step
with the rate constant k7 in Fig. 2.16. The exact mechanism of GWD is not
known, but a free pyrophosphoryl enzyme intermediate could not be detected
to date. Therefore, I basically adopted a mechanism which has been proposed
for a very similar enzyme, the phosphoenolpyruvate synthetase (Berman and
Cohn, 1970a,b; Mikkelsen et al., 2004). It is simplified here in that intercon-
versions of enzyme complexes in the soluble phase are not considered explicitly
if no reactant is released. Such intermediates usually do not have any effect
on the kinetic form of the rate laws, although the phenomenological constants
are then composed of distinct microscopic constants.

The net flux through the reaction is determined by both the rate of auto-
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Table 2.6: Elementary rate and phenomenological constants for BAM.

Parameter Dimension†

k±2, k±4, k±5, k±7, k±9, k±11, k−13 T−1

k13 N−1L3T−1

kcat,Gc∗ = k3 T−1

kcat,Gx∗ = k6 T−1

kcat,pG∗ = k8 T−1

kcat,Gh∗ = k12 T−1

KGc∗ = (k−2 + k3) /k2 1

KGx∗ = (k−5 + k6) /k5 1

KpG∗ = (k−7 + k8) /k7 1

KGh∗ = (k−11 + k12) /k11 1

K i,pGx∗ = k8/k9 1

K i1,Gb∗ = k3/k4 1

K i2,Gb∗ = k6/k4 1

qpGx∗ = k9/k−9 1

qGb∗ = k4/k−4 1

qmt = k−13/k13 NL−3

KG NL−3

KGx NL−3

KpG NL−3

† N=amount, L=length, T=time

catalytic phosphorylation and glucan phosphorylation

vGWD = k2[catpE]ss + agk5[cgpE∗ ]
ss. (2.61)

Table 2.7 summarizes the relevant balance equations for the quasi-steady state
intermediates, where the concentration of the rapid equilibrium segments are
given by

x = e+ age
∗ and (2.62)

x′ = cpE + agcpE∗ , (2.63)

respectively, and the associated fractional concentration factors with the solu-
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Figure 2.16: Catalytic mechanism of glucan, water dikinase (GWD).a,
The catalytic cycle involves soluble and interfacial intermediates. ATP is hy-
drolyzed to AMP and orthophosphate Pi to generate the autophosphorylated
enzyme pE. After phosphorylation of a helical interfacial glucan Gh∗ the un-
phosphorylated enzyme E∗ desorbs which completes the cycle. b, The associ-
ated partial rapid equilibrium mechanism has two rapid equilibrium segments,
X and X′.

ble enzyme intermediate being the reference species read

fE =
1

1 +Ka,Eφcrag

, (2.64a)

f ∗E =
Ka,Eφ

crag

1 +Ka,Eφcrag

, (2.64b)

fpE =
1

1 +Ka,pEφcrag

, (2.64c)

f ∗pE =
Ka,pEφ

crag

1 +Ka,pEφcrag

. (2.64d)

The associated rate constants relevant for the partial equilibrium mechanism
are explained in Table 2.8.

Defining phenomenological constants as given in Table 2.8 we obtain the
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Table 2.7: Balance equations for the QSSs of intermediates in the catalytic
cycle of GWD. The superscript (ss) is omitted as well as the growth rate term,
assuming %g ≈ 0.

Species Equation†

catpE 0 = a3 (1− f∗E)x−KatpcatpE

cpgE∗ 0 = χ∗Ghf
∗
pEx

′/ag −K∗GhcpgE∗

x′ 0 =
k̃aut

K∗Gh − k̃∗cat
catpE + agcpgE∗ − x′

K∗Gh − k̃∗cat

[(
χ∗Gh − k̃leak

)
f∗pE + k̃leak

]
All e0 = x+ x′ + catpE + agcgpE∗

† Phenomenological constants as given in Table 2.8 and for legibility k̃aut = kaut/k4, k̃leak =

kleak/k4, etc. are used.

following numerator and denominator for the GWD rate law:

NGWD = e0kaut
a3

Katp

(
1 + 2

k∗cat

kleak

φcrag

Kd,pE

χ∗Gh

K∗Gh

)
,

DGWD = 1 +
a3

Katp

(
1 +

kaut

kleak

)
+

(φcrag)2

Kd,EKd,pE

χ∗Gh

K∗Gh

k∗cat

kleak

+
φcrag

Kd,pE

[
a3

Katp

χ∗Gh

K∗Gh

(
kaut

kleak

+
k∗cat

kleak

)
+

a3

Katp

kaut

kleak

+
χ∗Gh

K∗Gh

k∗cat

kleak

]
+
φcrag

Kd,E

.

(2.65)

Table 2.8: Elementary rate and phenomenological constants for GWD.

Parameter Dimension†

k1 N−1L3T−1

k−1, k4, k−4 T−1

kaut = k2 T−1

k∗cat = k5 T−1

kleak = k7 T−1

Katp = (k−1 + k2) /k1 NL−3

K∗Gh = (k−4 + k5) /k4 1

† N=amount, L=length, T=time
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2.3.5 The interfacial analogue of the Michaelis-Menten

equation

As indicated above, the most interesting aspect of the interfacial rate laws is the
occurence of the available area function. To study its role within the framework
developed here we may formulate an interfacial analogue of the Michaelis-
Menten-Henri (MMH) equation (Segel, 1993) with a rapid adsorption pre-
equilibrium in the form of a specific activity as

v

e0
=

k∗catφagχ
∗

KdK∗m + φag (K∗m + χ∗)
, (2.66)

or in terms of mass concentration of the substrate

v

e0
=

k∗catφαmgχ
∗

KdK∗m + φαmg (K∗m + χ∗)
. (2.67)

In this rate law the interface enters via its concentration, ag, the interfacial
reactant mole fraction, and the fraction of relevant unoccupied surface area,
φ. The latter quantity renders the saturation term dependent on the enzyme
concentration. Thus, while in soluble kinetics the active site of the enzyme
becomes saturated but the rate increases linearly with enzyme concentration
according to vmax, we may here also observe the opposite phenomenon of satu-
ration of the substrate interface. Remember, that the coverage for which φ→ 0

can be well below unity as for example the RSA model indicates (Sec. 2.2.2).
In general, Fig. 2.9 suggests, that surface ’jamming’ may happen if the binding
of the enzyme to the interface is too tight or the enzyme loading is too high.

To analyze this further, it is necessary to elucidate how φ depends on the
system parameters during catalysis. This can fortunately be done exactly in
the case of a single enzyme and Langmuirian adsorption, using the four re-
lations given in Table 2.9. They were solved simultaneously for eeq, which is
the enzyme concentration relative to the interface concentration, for the cov-
erages of the free interfacial enzyme, θeq

E , and the interfacial enzyme-substrate
complex, θeq

ES, and φ. Even for this most basic example, the result is a rather
complicated looking equation, where the arguments enter the function in a
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nonlinear fashion. Introducing polynomes in ω we get

φ(e0,Λd, ω, χ
∗, K∗m)

=
1

2

[√
ω2 + 2

(
K∗mΛd

(K∗m + χ∗)
− e0

)
ω +

(
K∗mΛd

(K∗m + χ∗)
+ e0

)2

+ ω −
(

K∗mΛd

(K∗m + χ∗)
+ e0

)]
,

(2.68)

nevertheless, it is not easy to immediately infer the effect on the available area.
It is expected that during catalysis the value of φ may drift, since it depends
on quantities which may change in time, either because of the activity of the
enzyme directly (changing χ∗) or due to secondary effects which change the
interface concentration (due to degradation) or the relevant surface fraction ω
(e.g. through phase transitions between the crystalline and amorphous state).
The dynamics of these factors will be discussed in the next chapter. For now,
setting ω = 1 allows to consider the available area as a function of two variables
and one parameter, the interfacial Michaelis constant K∗m. The two-variable
dependency can be conveniently analyzed graphically. Figure 2.17 shows the
results for K∗m = 1.0 and K∗m = 0.1. As expected, a decrease is observed for
higher loadings and tighter adsorption and the decrease is more steep for lower
Michaelis constants, that is for higher affinity towards the interfacial reactant.

Apart from the graphical analysis, it is useful to derive some exact results
about the qualitative properties. Using Maxima one can validate that

lim
e0→∞

φ = 0, (2.69)

Table 2.9: Algebraic relations to determine the available area function.

Equation† Description

θeqE = eeqφ/Λd Adsorption equilibrium
φ = ω − θeqE − θ

ss
ES Langmuirian available area function

e0 = eeq + θeqE + θssES Enzyme conservation
0 = χ∗θeqE −K

∗
mθ

ss
ES QSS for interfacial complex ES∗

† Scalings: e(0)� = age
∗max, K�d = ag



54 Rate laws for interfacial enzymes

0 1 2 3 4 5 0

1

2
0

0.2
0.4
0.6
0.8

1

φ

e_
0

(age
max

)

Λd (ag)

φ

0
0.2
0.4
0.6
0.8
1

0 1 2 3 4 5 0

1
0

0.2
0.4
0.6
0.8

1

φ

e_
0 (agemax)

χ

φ

0 1 2 3 4 5 0

1

2
0

0.2
0.4
0.6
0.8

1

φ

e_
0 (agemax)

Λd (ag)

φ

0 1 2 3 4 5 0

1
0

0.2
0.4
0.6
0.8

1

φ

e_
0 (agemax)

χ

φ

0
0.2
0.4
0.6
0.8
1

a b

dc

Figure 2.17: Available area function in the generic interfacial rate

law. All plots are done setting ω = 1. a, φ = φ(e0,Λd) with fixed K∗m = 1 and
χ∗ = 1. b, φ = φ(e0,Λd) with fixed K∗m = 0.1 and χ∗ = 1. c, φ = φ(e0, χ∗)

with fixed K∗m = 1, Λd = 1. d, φ = φ(e0, χ∗) with fixed K∗m = 0.1, Λd = 1.
Michaelis constant of K∗m = 0.1 results in a sharper decrease in approaching
φ = 0.

for any value of the remaining parameters. As e0 is a scaled quantity relative
to ag the result applies to both e0 → ∞ and ag → 0. Vice versa, when no
enzyme is present or ag →∞ we get

φ(e0 = 0) = ω. (2.70)

Moreover, as expected the available area vanishes if ω = 0,

φ(ω = 0) = 0. (2.71)

A biologically interesting limiting case is that of irreversible adsorption. This
can be calculated by setting the desorption constant to zero which yields

φ(Λd = 0) = ω − e0, (2.72)

showing that the available area only depends on the relevant surface fraction
and the enzyme loading in this case.
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The question is how this limiting behaviors interfere with the other quan-
tities in the generic rate law (2.66). A significant difference to the MMH rate
equation can be derived for the maximum velocity, since

vmax = lim
ag→∞

v =
k∗catχ

∗ · limag→∞ φ

limag→∞ (KdK∗m/ag + φ (K∗m + χ∗))
· e0

=
k∗catχ

∗

(K∗m + χ∗)
· e0

= k̃∗cat · e0.

(2.73)

Thus, the apparent catalytic rate constant, k̃∗cat, turns out to be reduced and
can even change during the course of reaction due to its dependence on the
interfacial reactant mole fraction. In the same vain, we may look at the rate
as e0 is increased. Taking the corresponding limit of (2.66), using (2.69) and
L’Hospital’s rule to resolve the indetermined product (∞ · 0) shows that

lim
e0→∞

v =
k∗catagχ

∗

KdK∗m
lim
e0→∞

(
e0 · φ

)
=
k∗catagχ

∗

KdK∗m
(∞ · 0)

=
k∗catagχ

∗

KdK∗m
lim
e0→∞

(e0)′

(1/φ)′

=
k∗catagχ

∗

KdK∗m

1

0

=∞,

(2.74)

where the prime indicates the derivative with respect to e0.
Thus, although the surface may become saturated the rate is unbounded

for increased enzyme loading as for the MMH rate law. However, it should be
emphasized that due to φ the increase of the rate with e0 cannot be expected
as linear anymore. To further analyze this and other qualitative properties,
it is interesting to look at the elasticities of the interfacial rate equation and
compare them with those of the MMH equation. Scaled elasticities of an
enzymatic reaction rate, v, are defined as (see Heinrich and Schuster, 1996)

ε-elasticity: εvx =
x

v

∂v

∂x
, (2.75)

with respect to the concentration, x, of a metabolite and as

π-elasticity: πvp =
p

v

∂v

∂p
, (2.76)
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with respect to a parameter p. They quantify the local effect of the respective
quantities on the reaction rate, the ε-elasticities in particular being interpreted
as apparent kinetic orders of the rate with respect to metabolites (Fell, 1992).
Table 2.10 summarizes the results and compares them to the elasticities of the
MMH rate law wherever this makes sense.

Note, that the elasticity towards the available area function is strictly pos-
itive similar to the enzyme loading observed for the classical MMH velocity
equation. With respect to the latter, observe that πve0 ≈ 1 if the associated
elasticity of the available area function πφe0 approaches zero, that is if φ be-
comes insensitive towards e0. Fig. 2.17 suggests, however, that φ becomes
rather independent from enzyme loading only for very high loadings.

2.4 Discussion

Summary. This chapter develops a framework to derive interfacial rate laws.
Section 2.2.1 introduces the interface concentration as a substrate observable.
This is augmented by a phenomenological description of surface heterogene-

Table 2.10: Elasticities for MMH and interfacial rate law.

Enzyme in solution Surface-active Enzyme†

v =
kcate

0s

Km + s
=

k∗cate
0φasχ

∗

KdK∗m + φas (K∗m + χ∗)

εvs,as
Km

Km + s
(εφas + 1)Γ

εvχ∗ not defined (εφχ∗ + 1 +
φas
Kd

)Γ

εvφ not defined 1

πve0 1 πφe0Γ + 1

πvKm,K∗
m

− Km

Km + s
(πφKm∗ − 1− φas

Kd
)Γ

πvKd
not defined

[
πφKd
− 1− πφKd

φas
Kd

(Kd − 1)(K∗m + χ∗)

]
Γ

† Γ =
KdK

∗
m

KdK∗
m+φas(K∗

m+χ∗)
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ity, enabling a distinction between amorphous and crystalline patches. Sec-
tion 2.2.2 develops the framework of competitive adsorption of enzymes using
the concept of the available area function. Section 2.2.3 argues for the mole
fraction as the appropriate variable for interfacial reactants. In Section 2.3 rate
laws for the most important starch-degrading enzymes are derived. This is fol-
lowed by a discussion of the qualitative properties of the interfacial analogue
to the classical Michaelis-Menten-Henri velocity equation.

The kinetic modeling of enzymatic reactions on soluble substrates is a topic
very well developed. It has a rich history of more than a hundred years in which
many different mechanisms have been studied and sophisticated mathematical
treatments have been presented. As the metabolic maps found in databases
like KEGG (Ogata et al., 1999) or the different BioCyc databases (Caspi et al.,
2007) become more and more complete the role of enzymes will come into focus
again, since it is not enough to know which reactions occur in a cell but at which
rate, and when and how they can be regulated. Thus, a proper understanding
of biological systems requires capturing the dynamic aspects and enzymes are
the major players here.

In this respect, what frequently causes trouble when trying to translate a
map in the databases into a mathematical model, are those reactions associated
with macromolecules. For example in KEGG one may find

Starch <=> 1,4-alpha-D-Glucan + Maltose (2.77)

for the β-amylase. The difficulty in assigning a meaningful stoichiometry to
this reaction is apparent, not to speak of a suitable free energy of reaction
and rate law. If one cannot simply ignore these reactions and wants to sur-
pass a purely phenomenological non-mechanistic description, it is important
to clarify the concentration measures relevant for such reactions. Since the
macromolecules are usually much larger than proteins, the associated cata-
lysts are surface-active enzymes and the concentration of the interface in the
bulk reaction space becomes decisive.

In this chapter, I have shown a straightforward approach to derive interfacial
rate laws for enzymatic mechanisms of any complexity including the possibility
of heterogeneous interfaces. This was achieved by

(a) introducing the available area function into enzyme kinetics to capture
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different adsorption models in one framework,

(b) modifying the available area function to include the relevant surface frac-
tions ω for the Langmuirian case,

(c) describing the interfacial reactants through their molar fractions assum-
ing a uniform density at the dividing surface, and

(d) applying the method of Cha (1968), assuming partial equilibrium mech-
anisms.

The rate laws have a particularly straightforward form. This property is useful
when building larger metabolic models, where the interaction of the enzyme
with effectors or different substrates has to be considered. The rate laws can be
easily adapted much like the usual rate laws derived with the rapid equilibrium
assumption (Segel, 1993).

The new approach to interfacial catalysis has been applied to enzymes in-
volved in starch degradation to derive rate laws which will be used in the next
chapter. To my knowledge, this is the first time that rate laws have been
derived for the glucan, water dikinase and phosphoglucan phosphatase SEX4
consistent with the fact that they catalyze interfacial reactions.13

On the one hand, enzyme adsorption has been studied using the Langmuir

model in many kinetic studies. For example, it was used for lipases (Burns
et al., 1982), cellulases (Medve et al., 1994; Zhang and Lynd, 2004), α-amylases
(Leloup et al., 1991) and glucosidases (Tatsumi and Katano, 2005). Converse
and Optekar (1993) use the Langmuir approach implicitly in their study
of competitive adsorption. Medve et al. (1997) and Medve et al. (1998) have
applied a combined Langmuir-Freundlich isotherm which is analogous to a Hill
equation used to describe cooperative adsorption. Also the binding domains
were studied, for example starch binding domains (SBDs) in Guillén et al.
(2007); Mikkelsen et al. (2006) and Wayllace et al. (2010).

However, none of these studies has used the concept of the available area
function. I believe that the introduction of this framework to derive rate

13A model of GWD kinetics was published earlier in Kartal and Ebenhöh (2008). How-
ever, I decided not to reproduce it here, since it was very simplified, less mechanistic treat-
ment. As a preliminary stage which is implicit in the more appropriate and detailed account
given in this thesis it may be considered obsolete.
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laws is an aid in unifying different approaches to surface-active enzymes. The
proposed rate laws have the desirable property that the effects of different
assumptions on adsorption can be readily tested without changing the form
of the equations. Recently, Levine et al. (2010) have applied RSA in a model
of cellulose hydrolysis but no rate laws have been derived and the temporal
evolution was studied with a large set of kinetic equations and additional
stochastic simulations. The approach presented here is sufficiently abstract
such that it does not suffer from being tailored to a specific enzyme-substrate
system. Of course, as we have seen no exact solution may be available for φ in
a complicated system and what remains to be done in the future is to develop
applicable approximation schemes which can also be tested for experimentally.

Originally developed for a description of gas particles adsorbing onto well
defined solid surfaces it is clear that the underlying assumptions of Lang-

muir’s approach cannot capture all the complexities of proteins interacting
with a complex and possibly eroding substrate interface (see e.g. Tzafriri et al.,
2002). Nevertheless, as a landmark in the study of interfacial reactions it is
widely acknowledged as being a reasonable first approximation. An additional
virtue of this approach is that it allows to derive exact formulae expressing
qualitative properties of the interfacial rate law.

The analogue of the MMH rate law as derived here can be confronted with
interfacial rate laws found in the literature. Most notably, the rate laws used
for lipases (Deems, 2000) and for pretreated biomass (cellulose), for example
the HCH-1 model (see Brown and Holtzapple, 1990; Holtzapple et al., 1984)
are suitable for a comparison to Eq. (2.66) (see Table 2.11).

Table 2.11: Comparison of generic rate laws for surface-active enzymes.

Reference Specific activity (v/e0) Approximation

This work
k∗catφagχ

∗

KdK∗m + φag (K∗m + χ∗)
REA and QSSA

Deems (2000)
kcatcLχ

∗

KLK∗m + cL (K∗m + χ∗)
QSSA

Brown and Holtzapple (1990)
ks

K + ϕs+ εe0
QSSA
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The velocity equation discussed in Deems (2000) is formally similar the
equation derived in this work with the sole but significant difference that the
bulk concentration of the ’relevant ligand’ cL replaces the term φag. As Deems

points out, “the bulk concentration of anything that holds the enzyme to the
surface must be included in this term, whether it be a discrete molecular
species or a general surface term.” This term could be difficult to specify
and more importantly it does not involve any inhibitory effect of the enzyme
concentration as it is the case when φ is used (see Fig. 2.17). Indeed, adsorption
is here merely an ordinary ligand interaction necessarily taking place upstream
of the true catalytic step. Upon binding the ligand, the interfacial substrate
concentration χ∗ is altered. Thus, this is not a true adsorption model.

In this respect, the HCH-1 rate law is more appropriate. The inhibitory
effect of higher enzyme loadings is indeed captured in the HCH-1 model by
the term εe0, where ε denotes the number of cellulose sites occupied by an
adsorbed or complexed enzyme. This is introduced because the authors count
the total substrate basically as (in our nomenclature) s = sf + ε(ae∗ + ac∗sE),
where sf is the concentration of free sites. The term ϕ which they define as
the ratio of free to total adsorption sites is not identical to the available area
function. It has been derived for the particular mechanism used by Holtzapple
et al. (1984) and cannot be adapted to, for example, RSA. Moreover, without
modifactions the HCH-1 model cannot be applied when different interfacial
qualities are present. This is also the case if different interfacial reactants have
to be considered, since there is no distinction made between the interface and
interfacial reactants.

Some aspects (e.g. interfacial heterogeneity) which are not captured by
the rate laws compared here are sometimes treated in kinetic models where
the intermediary steps of the catalytic cycle are incorporated explicitly (cf.
the review from Zhang and Lynd, 2004). This has the obvious drawback of
generating a model with many parameters and variables and the enzyme rate
is ’hidden’ in the differential equations. Consequently, many of these models
are tailored towards biotechnological applications in reactors and are of little
use if one aims at constructing kinetic models of metabolism.

In view of these considerations, the existing rate laws are unsatisfactory and
too rigid for the purpose of modeling starch-degrading enzymes. In contrast,
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the consequent use of the available area function allows to develop models
in which the different elements, adsorption and interfacial catalysis, can be
elaborated individually making extensions and hypothesis-testing easier in the
future.

From an applied viewpoint, a remaining task is to develop a (maybe graphi-
cal) scheme enabling experimentalists to readily extract information on param-
eters in the interfacial rate law. Regarding the mathematical analysis, it could
be well worth to analyze further in which cases certain approximations are
justified, for example the combined adsorption equilibrium and QSS assump-
tions. This requires the application of more sophisticated tools like singular
perturbation techniques (Murray, 2008).
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Chapter 3

Modeling leaf starch degradation

by surface-active enzymes: the

role of interfacial phase transitions

and reversible phosphorylation

Almost any plausible proposed relation

among aspects of nature is likely to be

true in the sense that it occurs (although

rarely and slightly). Yet all models leave

out a lot and are in that sense false,

incomplete, inadequate. The validation of

a model is not that it is “true” but that it

generates good testable hypotheses

relevant to important problems. A model

may be discarded in favor of a more

powerful one, but it usually is simply

outgrown when the live issues are not any

longer those for which it was designed.
The strategy of model building in

population biology

Richard Levins, 1966

In the last decade, interfacial enzymes have been shown to be essential for
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the breakdown pathway of leaf starch. This led to the establishment of a novel
hydrolytic pathway which dominates the carbon flux from starch during the
night. However, the hydrolytic enzymes alone are insufficient to provide the
mobilization at an extent necessary to sustain normal growth rates. Reversible
phosphorylation supposedly triggers phase transitions at the interface stimu-
lating hydrolytic attack. Currently, there exists no dynamic model of these
processes and it is difficult to assess how the complicated physical processes
could interfere with metabolic regulation.

Building on the framework and the rate laws for interfacial catalysis derived
in the previous chapter, a kinetic model of leaf starch degradation is formulated
and analyzed. I restrict myself to the in vitro case, since the focus is on the
basic mechanistic questions here and the most reliable data on that is from
these experiments.

First, the model suggests that spontaneous helix-coil transitions of nonphos-
phorylated interfacial glucans take place. These transitions are supported by
phosphorylation. The decreasing crystallinity leads to a sequestration of hy-
drolytic enzymes at the surface, hence degradation is stimulated. The extent
of this stimulation is quantified by the degree of synergy in a multi-enzyme
system. It is shown that the stimulatory effect is time-dependent. Interest-
ingly, the positive effect of reversible phosphorylation on hydrolysis is more
pronounced in early phases of degradation. This hints at the regulatory role
of phosphorylation in early phases of degradation and suggests that its main
function is in supporting rapid transition from starch synthesis to degradation.

3.1 Introduction

Leaf starch degradation has proved to be a formidable example of how bio-
chemical and physical processes are entangled (Blennow and Engelsen, 2010).
The activity of enzymes at the starch-stroma interface forces us to go beyond
the paradigm of enzymes acting in solution. The last chapter has developed a
reformulation of interfacial catalysis by enzymes, elaborating a clear distinction
between phenomena linked to adsorption alone and to catalysis at the inter-
face. Here, we will show how these rate laws are incorporated into a kinetic
model of starch degradation. The model aims at simulating how enzymatic
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catalysis changes physical properties of bulk matter, the starch grain interface.
Thus, we will study a macroscopic effect of biochemical reactions which goes
beyond the mere alteration of concentrations.

Background. The enzymes which have been explained in the last chapter
are also those most thoroughly investigated in experiments. In particular,
the following investigation aims at reproducing in silico the stimulatory effect
observed when the enzymes act in concert. We quantify this by introducing
the degree of synergy Ξ, defined for a set of enzymes Z = {E1, . . . , E|Z|}, where
|Z| denotes the number of enzymes. Basically, it relates the amount of glucose
equivalents released if all enzymes in Z are present to the sum released by
certain subsets of Z. We only require that the subsets do not overlap and that
the union of the subsets covers the whole set Z. Formally, we can use the
concept of the power set P(Z), which comprises all possible subsets of Z as
elements, denoted Z1, Z2, etc. Now, in accordance with the informal definition
above, we may define a subset of P(Z) by

W ⊂P(Z) :
⋃
i

Wi = Z ∧
⋂
i

Wi = ∅, (3.1)

where Wi ∈ W . Furthermore, let n(A) denote the amount of glucose equiva-
lents released by a set of enzymes A. Then the degree of synergy of an enzyme
set Z relative to a set W can be compactly written as

Ξ(Z;W ) =
nZ∑
i n(Wi)

. (3.2)

This quantity can also be time-dependent which is considered in the simula-
tions in Section 3.3.

In experiments (Edner et al., 2007; Kötting et al., 2009), the glucose equiva-
lents are quantified after certain time periods to see if the concerted activity of
dikinases, phosphatases and amylases yields more product. To illustrate this,
the experimental degrees of synergy after 90 min from Edner et al. (2007, see
Figure 3.1a, data kindly provided by M. Steup) relative to individual enzymes
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read

Ξ({GWD, BAM}; {{GWD},{BAM}}) = 2.3

Ξ({GWD, ISA}; {{GWD},{ISA}}) = 0.8

Ξ({BAM, ISA}; {{BAM},{ISA}}) = 2.7

Ξ({BAM, ISA,GWD}; {{BAM},{ISA},{GWD}}) = 5.2

(3.3)

The stimulatory effect (Ξ > 1) when endo- and exo-acting enzymes co-operate
is apparent, being even more pronounced when phosphorylation by GWD takes
place. Interestingly, the released amounts can become even higher if dephos-
phorylation by SEX4 takes place simultaneously, see Fig. 3.1b which depicts
results from Kötting et al. (2009). That is, the degree of synergy increases
if turnover of interfacial phosphate is increased. These experiments, amongst
others, have established the crucial role of reversible phosphorylation for starch
degradation.

Using a very basic model it will be analyzed if spontaneous helix-coil tran-
sitions are present at the interface and if these are possibly triggered by phos-
phorylation. In Section 2.1 on starch structure some remarks were already
made on the disorganizing effect of phosphorylation. Native glucans at the
interface form double helices, which are stabilized by hydrogen bonding. This
is reflected by certain dihedral angles between the α-1,4-glucosidic bonds com-
patible with helix formation. There are findings (Blennow and Engelsen, 2010;
Hansen et al., 2009) indicating that phosphorylation of a glucosyl residue in-
duces strain in a vicinal α-1,4-glucosidic linkage. By presumably making the
helical state energetically unfavorable this increases the transition probability
into the random coil state. There seems to be a difference depending on which
of the C-atoms is phosphorylated, however, this was inferred by using an iso-
lated maltose molecule as a model (Hansen et al., 2009). Thus, these findings
cannot really preclude that phosphate esters at both C-3 and C-6 position af-
fect the order in crystalline lamellae. We will include helix-coil transitions as
part of a kinetic model of the biochemical system.

Kinetic modeling paradigm. In a system where chemical reactions take
place the amounts of species change but not in an arbitrary fashion. It was
one of the path-breaking findings of Antoine Lavoisier (1743–1794) that
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Figure 3.1: In vitro experiments from literature on the stimulation

of starch degradation by GWD and SEX4. a, Figure from Edner et al.
(2007) showing the release of glucans after 90 min for different combinations
of surface-active enzymes. The released amount is counted in glucose equiva-
lents. White bars are controls without ATP, black bars are measurements with
0.25 mm ATP. b, A similar experiment from Kötting et al. (2009) confirming
the additional stimulation of degradation by simultaneous dephosphorylation
via SEX4/DSP. Active enzymes are highlighted by a cross. Measurements are
normalized to the highest value of glucose measured in the supernatant after
60 min.

the produced amounts are stoichiometrically coupled. The stoichiometry in a
biochemical reaction network with m metabolites and r reactions is compactly
encoded in a stoichiometric matrix N of dimension m×r (Heinrich and Schus-
ter, 1996). Each entry of the matrix, νij, gives the stoichiometric coefficient of
the ith reactant in the jth reaction.

The stoichiometric matrix is important in describing the temporal change in
metabolite concentrations c = (c1, . . . , cm)T in terms of a kinetic model, since
at any instance of time it maps the vector of fluxes or reaction rates,

v(c,k) = (v1, v2, . . . , vr)
T ,

where k denotes the vector of parameters, onto the rates of change of metabo-
lite concentrations,

d

dt
c = (

d

dt
c1,

d

dt
c2, . . . ,

d

dt
cm)T .
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The corresponding balance equations for the m metabolites can be written as
a single matrix equation,

(dgP)
dc

dt
= Nv(c,k). (3.4)

Here, (dgP) is a diagonal matrix with P = (P1, . . . , Pm) being the partition
coefficients. Given a reference volume, V0, Pi := Vi/V0 denotes the relative
volume of the compartment in which the ith metabolite resides (Beard and
Qian, 2008, p. 235).

Since the reaction rates depend on the concentrations, the kinetic model (3.4)
is an ordinary differential equation system for the concentrations. Solving this
model means deriving the set of global trajectories c1(t), . . . , cm(t), character-
izing the dynamics of the system. The changing state can also be envisioned
as a point moving in the m-dimensional state space of the system.

Due to nonlinearities in the rate equations, finding analytic solutions is a
hopeless endeavor for realistic metabolic systems.1 A valid strategy then is
to simulate a limited set of trajectories in order to identify how qualitative
properties depend on model parameters. An important qualitative property
is the existence of stable attractors, that is regions (or submanifolds) of the
state space to which the dynamical system eventually relaxes after a transient
period (Aris, 1994; Heinrich and Schuster, 1996). Most notably, it is of inter-
est to analyze stationary states, determined by setting dtc = 0, for stability.
This has been done in numerous computational studies of metabolism (see
e.g. Heinrich and Schuster, 1996; Rapoport et al., 1976; Reich and Sel’kov,
1981) and can be applied also to an experimentally given stationary state by
combining kinetic and structural methods (Grimbs et al., 2007).

However, if the time scale of interest is the diurnal carbon balance in plants
no steady state is approached which is especially true for the amount of starch
in chloroplasts. The decrease in granule mass is accompanied by a transient
change in metabolite levels (Fulton et al., 2008; Gibon et al., 2006; Stitt et al.,
1985). While at the end of the night no steady state is reached yet, the whole
background of the system shifts dramatically, since the photosynthetic appa-
ratus, the Calvin-Benson Cycle and starch synthesis are turned on. Therefore,

1Usually, by analytic solution we mean that the functions ci(t) can be expressed either
implicitly or explicitly in terms of elementary functions or in the form of a power series.
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the following analysis concentrates on time-dependent observables and quali-
tative properties of temporal profiles.

Motivation and outline. The major interfacial enzymes in starch degrada-
tion seem to have been characterized and some pictorial models have emerged
on their action mode (Delatte et al., 2006; Edner et al., 2007; Fulton et al.,
2008; Hejazi et al., 2010). Increasingly, the presence of regulatory modifica-
tions is revealed, however, there are still some conflicting findings (Kötting
et al., 2009). The aim here is to demonstrate that a dynamic model can fur-
ther elucidate properties of interfacial catalysis and the potential function of
reversible phosphorylation. A future prospect for models incorporating inter-
facial processes is to guide new experiments.

Section 3.2 gives the kinetic balance equations for in vitro degradation,
derives the ODEs for the variables describing the interface quality and ad-
sorption, and discusses how the helix-coil melting rate is included. Section 3.3
shows simulations with realistic system parameters from literature to find mag-
nitudes of kinetic constants which reproduce the synergistic effect of interfacial
catalysis. This effect is studied in more detail to formulate a hypothesis for
the role of reversible phosphorylation.

3.2 Balance equations

The dynamic model to simulate the degradation by surface-active enzymes is
based on the action mode as depicted in Fig. 3.2 which is basically the same as
given in Fig. 2.12 with the sole modification that it includes the spontaneous
melting of interfacial glucans. The 20 balance equations for both soluble and
interfacial reactants are summarized in Table 3.1. In total, the model considers
31 variables. Three of the remaining 11 variables are describing the concen-
trations of ATP, AMP and Pi, while the other eight variables, which will be
discussed below, consist of the two available area functions (φcr and φam) and
the six surface-associated fractional concentration factors (f ∗s).

Every reactant is considered in an even- and odd-numbered form. This
is necessary to include the possibility that ISA can release both maltose and
maltotriose by acting on G2b∗ and G3b∗, respectively. The corresponding
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degrees of polymerization of undigested branches are denoted DP0
eve and DP0

odd.
We assume that the parity remains constant for the interfacial helical glucans
Gh∗, that is

χ∗Gheve
= par · χ∗h, and (3.5a)

χ∗Ghodd
= (1− par) · χ∗h, (3.5b)

where par is a parameter between 0 and 1. Due to conservation, an additional
algebraic relation holds true for the total molar fraction of helical glucans at
the interface, given by

χ∗h = 1− χ∗Gceve
− χ∗Gcodd

− χ∗pGeve
− χ∗pGodd

− χ∗pGxeve
− χ∗pGxodd

− χ∗Gxeve
− χ∗Gxodd

− χ∗G2b − χ∗G3b.
(3.6)

pG*

pGx*

Gx*

Gb*G2/G3

Pi

BAM

DSP

DSP

Gx

pGx

pG

G

DBE

BAM

G2
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DBE

DBE

DBE

DBE

DSP

DSP

BAMG2

BAM

BAM

Gc*

Gh*pGWD

BAM

Figure 3.2: Action mode of interfacial enzymes including spontaneous

helix-coil transition.

Another algebraic relation is valid for the interface area concentration ag

due to mass balance in vitro. Let ck(t) denote the concentrations of dissolved
glucans at time t, and M(k) and DPk the corresponding molar mass and
degree of polymerization, respectively, than the total mass concentration in
the aqueous phase is given by

maq(t) =
∑
k

M(k)ck(t) = M(AGU)
∑
k

DPkck(t), (3.7)
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Table 3.1: Balance equations of the kinetic model for in vitro starch degrada-
tion.

Interfacial reactants

dχ∗Gceve/dt = ṽ(DSP|pG∗
eve)
− ṽ(BAM|Gc∗eve)

− ṽ(ISA|Gc∗eve)
+ ṽMeve

dχ∗Gcodd
/dt = ṽ(DSP|pG∗

odd)
− ṽ(BAM|Gcodd) − ṽ(ISA|Gc∗odd)

+ ṽModd

dχ∗pGeve
/dt = ṽ(GWD|Gh∗

eve)
− ṽ(DSP|pG∗

eve)
− ṽ(BAM|pG∗

eve)
− ṽ(ISA|pG∗

eve)

dχ∗pGodd
/dt = ṽ(GWD|Gh∗

odd)
− ṽ(DSP|pG∗

odd)
− ṽ(BAM|pG∗

odd)
− ṽ(ISA|pG∗

odd)

dχ∗pGxeve
/dt = −ṽ(DSP|pGx∗

eve)
+ ṽ(BAM|pG∗

eve)
− ṽ(ISA|pGx∗

eve)

dχ∗pGxodd
/dt = −ṽ(DSP|pGx∗

odd)
+ ṽ(BAM|pG∗

odd)
− ṽ(ISA|pGx∗

odd)

dχ∗Gxeve
/dt = ṽ(DSP|pGx∗

eve)
− ṽ(BAM|Gx∗

eve)
− ṽ(ISA|Gx∗

eve)

dχ∗Gxodd
/dt = ṽ(DSP|pGx∗

odd)
− ṽ(BAM|Gx∗

odd)
− ṽ(ISA|Gx∗

odd)

dχ∗G2b/dt = ṽ(BAM|Gc∗eve)
+ ṽ(BAM|Gh∗

eve)
+ ṽ(BAM|Gx∗

eve)
− ṽ(ISA|G2b)

dχ∗G3b/dt = ṽ(BAM|Gcodd) + ṽ(BAM|Gh∗
odd)

+ ṽ(BAM|Gx∗
odd)
− ṽ(ISA|G3b)

Soluble reactants

dcATP/dt = −v(GWD|Gh∗
eve)
− v(GWD|Gh∗

odd)

dcAMP/dt = v(GWD|Gh∗
eve)

+ v(GWD|Gh∗
odd)

dcPi/dt = v(GWD|Gh∗
eve)

+v(GWD|Gh∗
odd)

+v(DSP|pGeve)+v(DSP|pGodd)+v(DSP|pGxeve)+

v(DSP|pGxodd) +v(DSP|pG∗
eve)

+v(DSP|pG∗
odd)

+v(DSP|pGx∗
eve)

+v(DSP|pGx∗
odd)

dcGeve/dt = v(DSP|pGeve) − v(BAM|Geve) + v(ISA|Gc∗eve)

dcGodd
/dt = v(DSP|pGodd) − v(BAM|Godd) + v(ISA|Gc∗odd)

dcpGeve
/dt = −v(DSP|pGeve) − v(BAM|pGeve) + v(ISA|pG∗

eve)

dcpGodd
/dt = −v(DSP|pGodd) − v(BAM|pGodd) + v(ISA|pG∗

odd)

dcpGxeve/dt = −v(DSP|pGxeve) + v(BAM|pGeve) + v(ISA|pGx∗
eve)

dcpGxodd
/dt = −v(DSP|pGxodd) + v(BAM|pGodd) + v(ISA|pGx∗

odd)

dcGxeve
/dt = v(DSP|pGxeve) − v(BAM|Gxeve) + v(ISA|Gx∗

eve)

dcGxodd
/dt = v(DSP|pGxodd) − v(BAM|Gxodd) + v(ISA|Gx∗

odd)

dcG2/dt = νGevev(BAM|Geve) + νGodd
v(BAM|Godd) + νpGeve

v(BAM|pGeve) +

νpGodd
v(BAM|pGodd) + νGxevev(BAM|Gxeve) + νGxodd

v(BAM|Gxodd) +

νG∗
eve
v(BAM|Gc∗eve)

+ νG∗
odd
v(BAM|Gcodd) + νG∗

eve
v(BAM|Gh∗

eve)
+

νG∗
odd
v(BAM|Gh∗

odd)
+ νpG∗

eve
v(BAM|pG∗

eve)
+ νpG∗

odd
v(BAM|pG∗

odd)
+

νGx∗
eve
v(BAM|Gx∗

eve)
+ νGx∗

odd
v(BAM|Gx∗

odd)
+ v(ISA|G2b)

dcG3/dt = v(BAM|Godd) + v(BAM|Gxodd) + v(ISA|G3b)

where M(AGU) is the molar mass of an anhydroglucose unit (AGU, see Ta-
ble 3.2 at p. 79). Hence, the interface concentration corresponds with granule
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mass according to

ag(t) = αmg(t) = α
(
m0

g −maq(t)
)

= α

(
m0

g −M(AGU)
∑
k

DPkck(t)

)
(3.8)

In the simulations, we will make the simplifying assumption that the specific
surface area fulfills α ≈ const.. This is a valid approximation for the initial
phase of degradation which is of major interest here.

Dynamics of glucan species. The balance equations for the soluble species
have a common form with the rate laws basically given as in Section 2.3.
The different stoichiometric coefficients appearing in the balance equation for
maltose, cG2, are due to the action of BAM3. The number of maltose release
per repetitive hydrolysis on a single species depends on

1. the DP of the substrate,

2. intrinsic constraints of the mechanism of BAM, and

3. the position of the phosphorylated glucosyl in a phosphoglucan.

Regarding the second aspect, structural data (Fulton et al., 2008) indicate
that a glucan with at minimum DP 4 is needed to act, that is odd glucans are
usually hydrolyzed up to maltotriose. Furthermore, β-limits with a maltosyl
branch cannot be further hydrolyzed, since this would necessitate the cleavage
of a α-1,6 bond. With respect to phosphoglucans, it is not known if there is
a preferred position for the phosphate, whether it is rather placed close to a
branching point or to the non-reducing end (M. Steup, pers. comm.). We in-
troduce the parameter posP as a positive integer indicating the phosphorylated
glucosyl residue of undigested species counted from the non-reducing end. For
the initial simulations a value of posP = 4 is assumed, but subsequently the
effect of changing this parameter on the degree of synergy is analyzed. The
position of the phosphate is important, since hydrolysis of phosphorylated glu-
cans (pG or pG∗) presumably stops one or two glucosyl residues before the
phosphorylated residue is reached (Kötting et al., 2009). The discussed con-
straints entail the following stoichiometric coefficients for maltose release per
attacked branch:
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• for soluble reactants we have (sup denotes the least upper integer bound
of the number in brackets)

– νGeve = DP0
eve/2,

– νGodd
=
(
DP0

odd − 3
)
/2,

– νpGeve = sup[(posP− 3) /2],

– νpGodd
= sup[(posP− 3) /2],

– νGxeve =
(
DP0

eve − 2 · νpGeve

)
/2,

– νGxodd
=
(
DP0

odd − 2 · νpGodd
− 3
)
/2,

• and for interfacial reactants

– νG∗eve
=
(
DP0

eve − 2
)
/2,

– νG∗odd
=
(
DP0

odd − 3
)
/2,

– νpG∗eve
= sup[(posP− 3) /2],

– νpG∗odd
= sup[(posP− 3) /2],

– νGx∗eve
=
(
DP0

eve − 2 · νpGeve − 2
)
/2,

– νGx∗odd
=
(
DP0

odd − 2 · νpGodd
− 3
)
/2.

The balance equations for the interfacial reactants are written in terms
of mole fractions, hence the rate laws are modified. Consider the case of a
single enzyme where the bulk concentration of an interfacial reactant changes
according to

d (agc
∗)

dt
= v. (3.9)

A rearrangement similar to that in Eq. (2.14) and division by the total surface
number density c∗max = (NAAR)−1 yields

d (χ∗)

dt
= ṽ − χ∗rg, (3.10)

where the interface growth rate rg will again be assumed to be very small such
that the second term is negligible. Thus, the modified rate laws are formed by

ṽ =
v

agc∗max
. (3.11)
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The equations for the native coiled side chains involve additional rates,
ṽMeve and ṽModd, for the transition from helical to random coil conformation
(M stands for melting). We will break down the probably more complicated
process to one that includes only the essential ingredients of a cooperative
transition. It can be depicted as the following scheme:

GWD

DSP

pG*Gh*Gc*
vM

+

Here, the spontaneous transition from the helical (Gh∗) to the random coil
(Gc∗) conformation with the rate vM is thought of as a reversible process
being stimulated by phosphorylated glucans (blue arrow). All phosphorylated
(pG∗ an pGx∗) and degraded glucans (Gx∗ an Gb∗)2 are assumed to be in the
coiled state only. The outcome of the simulations will be compared to the case
when vM = 0. In general one would expect that without such transitions a
higher interfacial phosphorylation is necessary to make the surface susceptible
to hydrolytic attack. The helix-coil melting rate can be written for both even
and odd glucans in a form generally applied for cooperative processes (cf.
Sec. 2.4 in Reich and Sel’kov, 1981):

vM = kM · (agc
∗
Gh) · T · p. (3.12)

Here, kM is of dimension [kM] = T−1, setting the characteristic time of the
melting process, and the term

T =

(
1− Γ

Γeq

)
, (3.13)

determines the reaction direction and its distance from equilibrium, where

Γ =
χ∗Gc

χ∗Gh

denotes the mass action ratio. The signal term p models the stimulatory effect
on melting exerted by phosphoglucans. Introducing the signal quality s (>1

2A certain chain length is necessary to establish stable hydrogen bonding (see O’Sullivan
and Perez, 1999).
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for activator, <1 for inhibitor), the half-effect constant KP and the coefficient
of cooperativity n, the signal term reads

p =
1 + s · (c∗P/KP)n

1 + (c∗P/KP)n
, (3.14)

where

c∗P = c∗maxχ∗P = c∗max
(
χ∗pGeve

+ χ∗pGodd
+ χ∗pGxeve

+ χ∗pGxodd

)
(3.15)

is the surface concentration of all phosphorylated species at the interface. Note,
that p = 1 if s = 1 (i.e., if the signal is neutral) or c∗P = 0. Eq. (3.14) can be
written in terms of mole fractions using Eq. (3.15) resulting in

p =
1 + s · (χ∗P/ΛP)n

1 + (χ∗P/ΛP)n
, (3.16)

where
ΛP =

KP

c∗max
.

Finally, the melting rate in terms of the change of mole fractions reads

ṽM =
1

agc∗max
vM (3.17)

= kM · χ∗Gh · T · p. (3.18)

Dynamics of available area functions and surface fractions of en-

zymes. While the right-hand sides of the ODEs for the reactants have a
common form, the ODEs for the variables associated with the adsorption pro-
cess need to be explained. On the face of it, it may seem contradictory to
consider changing concentration factors, since we are using rate laws derived
precisely under the condition of equilibrating adsorption. The reason why
time-dependency of the available area function has to be considered is the
presence of enzymatic processes which alter the interfacial properties. Phos-
phorylation and hydrolysis will reduce the crystalline surface fraction ωcr and
concomitantly increase ωam. These quantities enter the available area func-
tions φcr and φcr, see Eq. (2.32a), thus we have to derive ODEs which tell us
how these variables precisely change.

The transition from crystalline to amorphous surface patches may be sup-
ported by spontaneous helix-coil transitions Gh∗
Gc∗. It may be counteracted
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by enzymatic dephosphorylation of pG∗ and removal of the stubs G2b∗ and
G3b∗, enabling the emergence of crystalline substrates Gh at the interface. To
not complicate matters, we assume that the crystalline surface fraction ωcr is,
at any instant of time, proportional to the molar fraction of helical glucans χ∗h
(proportionality constant=1). Hence for the associated rates of change we get

dωcr

dt
=

dχ∗h
dt

= −
∑
k

dχ∗k
dt

and (3.19)

dωam

dt
= +

∑
k

dχ∗k
dt

, (3.20)

consistent with the condition ωcr + ωam = 1. The sum of derivatives of the
interfacial species,

∑
k

dχ∗k
dt

, is given by summing up the associated right-hand
sides of the equations given in Table 3.1. Therefore, the derivative of the
available area function is given by

dφcr

dt
=

d

dt

[
ωcr −

∑
j

F cr
j

(
θcr
j +

∑
c

[θcr
j,c]

ss

)]

= −
∑
k

dχ∗k
dt
−
∑
j

F cr
j

dθcr
j

dt
,

(3.21a)

and analogously

dφam

dt
= +

∑
k

dχ∗k
dt
−
∑
j

F am
j

dθam
j

dt
. (3.21b)

F cr
j is the enzyme-patch function and the derivative of the sum

∑
c[θ

cr
j,c]

ss, taken
over all enzyme intermediates c in the catalytic cycle of enzyme j, vanishes
because of the QSSA.

Apparently, in order to integrate the ODEs we must know the time deriva-
tives of the surface coverages θcr

j and θam
j . Here it is important to realize that

any variation in the coverages is constrained by the equilibrium condition (see
Eq. 2.34)

[θij]
eq

[ej]eq
=

φi

K̃i
d,j

. (3.22)

The right-hand side is an apparent equilibrium ’constant’ for enzyme j adsorb-
ing onto patch i. Thus, a changing available area function φi entails a changing
equilibrium constant of adsorption, which means that the ratio of [θij]

eq to [ej]
eq

is altered. This interdependency can be used to eliminate [ej]
eq, employing the
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fact that according to the rate laws the whole rapid-equilibrium segment is
in a quasi-steady state, hence xj = [xj]

ss. Since the fractional concentration
factors of a segment always sum up to unity we get

[θij]
eq = fj[xj]

ss φi

K̃i
d,j

=

(
1−

∑
i

f ij

)
[xj]

ssφi

K̃i
d,j

(3.23)

where it shall be understood that f ij refers to the adsorbed fraction of the rapid-
equilibrium segment. With the last equation we can calculate the derivative
dtθ

i
j to be replaced in Eqs. (3.21a) and (3.21b) yielding the differential equa-

tions

dφcr

dt
= −

∑
k

dχ∗k
dt

+ φcr
∑

j F
cr
j

[xj ]
ss

K̃cr
d,j

dfcr
j

dt

1 +
∑

j

[
F cr
j

[xj ]ss

K̃cr
d,j

(
1− f cr

j − f am
j

)] , (3.24a)

dφam

dt
= +

∑
k

dχ∗k
dt
− φam

∑
j F

am
j

[xj ]
ss

K̃am
d,j

dfam
j

dt

1 +
∑

j

[
F am
j

[xj ]ss

K̃am
d,j

(
1− f cr

j − f am
j

)] , (3.24b)

The QSS concentrations [xj]
ss were basically already determined in finding the

solution for the rate laws. The remaining unknowns are the rates of change
dtf

cr
j and dtf

am
j . These derivatives are obtained by dividing the equations

describing the fast adsorption dynamics (see Eq. 2.33a) by the slow variable
[xj]

ss giving

df cr
j

dt
= F cr

j · k̃cr
a,je
∗max
j ·

[
agφ

cr
(
1− f cr

j − f am
j

)
−Kcr

d,jf
cr
j

]
, (3.25a)

df am
j

dt
= F am

j · k̃am
a,j e

∗max
j ·

[
agφ

am
(
1− f cr

j − f am
j

)
−Kam

d,j f
am
j

]
. (3.25b)

Let us recapitulate why the extra ODEs (3.24a) to (3.25b) are necessary.
The rapid equilibrium segment is considered in equilibrium after a fast ini-
tial transient. However its apparent equilibrium constant is drifting due to
processes on the slow time scale (the metabolic reactions) which affect the
available area function. The rapid subsystem obeys this perturbation. It
adapts the fractional concentration factors almost immediately and remains in
equilibrium. In a certain sense, the available area function figures as a field
or reservoir variable for the equilibrating adsorption process, like for example
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temperature does for any chemical reaction. Thus, in contrast to rate laws
derived solely with the QSS assumption the partial equilibrium mechanism
admits changes in surface coverages to be considered, whether due to degrada-
tion in general or due to interfacial phase transitions which change the relevant
surface fractions ωi.

3.3 Simulations

Model parameters. Table 3.2 below summarizes the parameters used for
the simulations. The experimental setting with amounts of ATP, starch and
enzymes is according to Kötting et al. (2009) while the extra parameters in
the Table are necessary to obtain derived quantities.

Figure 3.3 shows a randomly generated granule size distribution typical for
the parameters chosen in Table 3.2. Similar distributions can be found for
starch granules of other botanical origin (Tatsumi and Katano, 2005). The
artificial distribution is used along with the value for the shape factor z and
the density ρ to calculate the specific surface area α of the random sample
according to Eq. (2.4).

Another derived parameter is the enzyme parking area. Assuming a spheri-
cal molecule shape, the molecule radius can be calculated using the molecular
mass of the respective enzyme, m(Ej), and the value around which the partial
specific volume, νB, clusters for proteins (Ramsden, 2002), hence

rj =

(
3

4π
m(Ej)νB

)1/3

, (3.26)

giving the parking areas as Aj = π · r2
j .
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Figure 3.3: Typical granule size

distribution. Randomly gener-
ated log-normal distributions us-
ing lognrnd of the Matlab Statis-
tics Toolbox with µ = 1.5 µm,
σ2 = 0.02 and a sample of 1000.
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Table 3.2: Fixed system parameters for fitting model to in vitro starch degra-
dation.

Simulation parameter Value Reference

Total volume V 120 µL Kötting et al. (2009)
Substrates
ATP concentration a03 = 1 mm Kötting et al. (2009)
Starch mass M0 = 2.5 mg Kötting et al. (2009)

(≡ 15, 432 nmol Glc)
Granule size distribution µ = 1.5 µm, σ2 = 0.02 Zeeman et al. (2002)
Granule shape z = 2 (h ≈ 1/4) Zeeman et al. (2002)
Granule density ρ = 1.5 g cm−3 Buléon et al. (1982)
Parity interfacial glucans par = 0.5 see text
DPs of native side chains DP0

eve = 16 see text
DP0

odd = 15

Effective area‡ AR = 8.5 ∗ 10−17 cm2 Buléon et al. (1998)
Average phosphate position posP = 4 see text
Molar mass anhydroglucose unit M(AGU) = 162 g mol−1 periodic table
Enzymes
Partial specific volume of proteins νB = 0.74 cm3 g−1 Ramsden (2002)
Adsorption constant§ k̃cr,ama,j = 60 · 105 M−1min−1 Wegner et al. (2004)
Molecular mass AtGWD m(GWD) = 157 kDa www.uniprot.org

AtSEX4/Laforin m(DSP) = 40 kDa Niittylä et al. (2006)
AtBAM3 m(BAM) = 61 kDa www.uniprot.org

AtISA3 m(ISA) = 80 kDa Delatte et al. (2006)
Initial mass concentration m0

GWD = 16.6 µg mL−1 Kötting et al. (2009)
m0

DSP = 16.6 µg mL−1

m0
BAM = 16.6 µg mL−1

m0
ISA = 8.3 µg mL−1

Helix-coil transition
Characteristic rate kM = 106 min−1 fitted values
Equilibrium constant Γeq = 10−2

Signal quality s = 1.1

Half-effect constant ΛP = 10−1

Coefficient of cooperativity n = 2

‡ The given value represents an estimate of the lower bound on the effective area occupied
by an interfacial reactant. It assumes the unit cell area of the B-type allomorph where
at maximum four side-chains can pack, see Fig. 3 in Buléon et al. (1998).
§ Value represents the expected order of magnitude.

www.uniprot.org
www.uniprot.org
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With the given set of system parameters the kinetic parameters of the model
have been varied, in order to reproduce the stimulatory effects of combining
different surface-active enzymes observed experimentally, see Fig. 3.1. That is
the fitting was done comparing the released amount of glucose equivalents. I
opted for a rather coarse fitting by hand to see at which orders of magnitude the
parameters have to be, particularly in relation to each other. If a model has too
many parameters, there is always the danger of over-fitting. Beyond a certain
degree, computer-precision is artificial and does not convey any useful extra
information (Aris, 1994; Heinrich and Schuster, 1996). The glucan release
showed only very little standard deviations when different size distributions
were used, randomly generated with one and the same mean and variance.
The fitted values of the kinetic parameters will be discussed at the end of this
section and are given in Table 3.3 at p. 88.

Including helix-coil melting leads to better approximation of exper-

imental results. Figure 3.4 compares the temporal glucan release in a sys-
tem assumed without helix-coil melting (Fig. 3.4a) with a system, where this
spontaneous process is present.

In both cases a stimulatory effect is observed. However, the non-melting case
shows a drastic deviation from experimental results: First, there is an unrealis-
tically large gap between those combinations comprising BAM+GWD plus at
least one other enzyme (solid brown, orange and green curves) and the remain-
ing settings, respectively. Second, the higher release of BAM+GWD+DSP (or-
ange) compared to BAM+ISA+GWD (brown) contradicts experimental find-
ings qualitatively, see Fig. 3.1b.

In contrast to that Fig. 3.4b, calculated using the same kinetic parameters,
concurs qualitatively with the experimental findings. Like in Fig. 3.1b, the
enzyme combinations can be separated into more or less four ranges according
to the released amounts. The separation becomes more pronounced with the
extent of reaction, illustrating that the results also depend on the time of mea-
surement. For example, the stimulatory effect of adding GWD to BAM+ISA
(brown) is only visible before≈300 min. After that, interfacial phosphorylation
rather limits further release compared to BAM+ISA (blue). The interpreta-
tion is that the phosphate esters prevent a high processivity of BAM, which
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Figure 3.4: Time-resolved glucan release by interfacial enzyme com-

binations favors model with interfacial helix-coil transitions. Simula-
tions over 600 min using a granule size distribution resulting in α = 5.2571 ·104

cm2g−1. The dashed vertical line indicates an early time point. a, Tempo-
ral profiles of total release without helix-coil transition (i.e. vM = 0) shows
mostly a linear increase. Maximally ∼550 glucose equivalents are released
which amounts to ∼3.5% of the whole mass as given in Table 3.2. b, The same
picture with interfacial glucan melting producing more realistic results in the
early phase. The separation into basically four groups of combinations also
seen in experiments is indicated by the numbers. The BAM curve is hidden
behind the BAM+DSP curve. Approximately 8% of the whole mass is released
when all enzymes are present.

effectively reduces the amount of β-limit dextrin like stubs. These, however,
are the preferred substrates of ISA which thus shows a decreased activity. In
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the remaining part only the model with spontaneous melting is analyzed.

Figure 3.5 compares the glucan release after 100 min (values at the vertical
line in Fig. 3.4b) to the values from Kötting et al. (2009). The results are
qualitatively in good agreement but in the simulations the stimulatory effect
of DSP is less pronounced than in experiments.
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Figure 3.5: Simulation results

after 100 min are qualitatively

comparable to experiments.
As in Kötting et al. (2009), see
Fig. 3.1, the release is normalized
to the maximum. The placing of
the labels shows that the assays
can be grouped similarly according
to the release of glucose equivalents
both in experiment (indicated by
height of the labels) and simula-
tion.

Degree of synergy and the role of reversible phosphorylation. Fig-
ure 3.6 shows the degree of synergy depending on time. For the simulated
time span, combining all four enzymes results in a ≈10-fold higher release
compared to the sum released by the individual enzymes. However, the syner-
gism of the hydrolytic set (see blue curve) is steadily increasing and eventually
rises above that of BAM+ISA+GWD (brown). A general observation is, that
combinations with GWD have a local maximum early during degradation and
subsequently decrease. An exception is BAM+GWD+DSP (orange) which,
however, will come to halt if only β-limit like stubs are left, since these can
only be removed by ISA. In contrast to that, combining exo- and endo-acting
amylases has a more positive effect when longer time periods are considered.

To look at this more closely Fig. 3.7 shows for a longer time span the degree
of synergy Ξ(Z;W ) with Z being the full set of enzymes and W comprising
the hydrolytic subset {BAM,ISA} and the subset {GWD,DSP}. This confirms
that the stimulatory effect of reversible interfacial phosphorylation is maximal
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Figure 3.6: Degrees of synergy change during starch degradation. The
glucan release for the enzyme sets is normalized according to the definition of
the degree of synergy, Eq. (3.2) at p. 65, summing the release of the individual
members in the denominator. Exactly the same data set as in Fig 3.4b is used.

in the early phase of degradation. The peak is slightly increased and delayed
if the phosphate ester is consistently positioned more closely to the branching
point (higher posP!), but qualitatively the curves are similar. Thus, the model
confirms that reversible phosphorylation has unambiguously a positive effect,
but in addition to that it allows to suggest a refinement: namely that reversible
phosphorylation is especially important for a rapid onset of degradation, which
allows for roughly the 3-fold amount of glucosyl residues to be mobilized in
comparison to hydrolysis alone. Physiologically, a rapid switch from starch
synthesis to degradation could be important for the diurnal regulation of car-
bon allocation (Graf et al., 2010).

Time course of variables. Finally, we take a look at how the reactants and
the associated interfacial quantities change during degradation and discuss the
fitted kinetic parameters.

Figure 3.8a confirms that the major products released are maltose and mal-
totriose with considerably less maltotriose (Edner et al., 2007). Phosphoglu-
cans with a phosphate ester close to the non-reducing end (pGx) are also
present but only in minute concentrations not visible in the plot. Much higher
levels of maltose compared to other malto-oligosaccharides are also found in
vivo in wild type Arabidopsis leaves (Critchley et al., 2001).
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Figure 3.7: Stimulatory effect

of reversible phosphorylation

is mainly in the early phase

of starch mobilization. The
time-dependency of the degree of
synergy Ξ of the full enzyme set
relative to the (hydrolytic) sub-
set {BAM, ISA} is shown. Values
above Ξ = 1 indicate stimulation.
The curves differ in the phosphate
position. Simulations are done
with the model including helix-coil
melting.

Figure 3.8b shows an effectively linear decrease of helical glucans with a
concomitant increase in partially degraded phosphoglucans. The remaining
reactants make up only around 1% of the surface. This suggest that DSP-
catalyzed hydrolysis of phosphate esters may become more and more limiting
for exo-acting amylases during the course of reaction.

In Fig. 3.8c the temporal change in the surface-bound fractions of the rapid
equilibrium segments are shown. The adsorption reaction is in equilibrium,
which has been tested and confirmed during numerical integration by simul-
taneously printing out a term which has to be one after an initial transient.
During most of the time span (until ≈600 min) the equilibria of GWD and
pGWD do not shift. In vitro experiments show that a virtually constant
partition of enzymes between both phases is reached after approximately ten
minutes, which is very rapid compared to catalytic turnover (M. Hejazi, pers.
comm.).

GWD is almost exclusively in the soluble phase, that is the unphosphory-
lated form desorbs very quickly and is not residing at the interface in significant
amounts. In contrast to that, pGWD is almost exclusively localized at the in-
terface (corresponding f ∗ ≈100%). This is reasonable, since otherwise pGWD
could become hydrolyzed and the catalytic cycle would burn ATP without
turning over carbohydrates (Hejazi et al., 2010). Approximately 40% of BAM
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Figure 3.8: Temporal evolution of soluble and interfacial quantities

in in vitro starch degradation. a, Major forms of carbohydrates in the
soluble phase are maltose and, to a smaller extent, maltotriose. Partially
digested phosphoglucans (pGx) are also present, but the very small amounts
are not visible at the range of the plot. b, At the interface the fraction of helical
glucans (Gh∗) decreases linearly accompanied by a significant increase only in
the partially digested phosphoglucan side-chains (pGx∗, both even and odd in
similar amounts). c, The adsorbed fractions of the rapid equilibrium segments
are shown. The colors distinguish the enzymes. Note, that GWD and pGWD
belong to separate segments, while both the crystalline- and amorphous-bound
BAM belong to the same segment, see the mechanisms in the last chapter. See
the discussion in the main text for the behavior around 600 min. d, The
free crystalline area decreases while the amorphous area increases almost at
the same rate. The sum shows the slow change in the total available area
indicating that throughout the reaction approximately 10% of the interface is
occupied by enzymes.
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is adsorbed at crystalline regions in the beginning, a value which decreases
with decreasing crystallinity of the surface (see Fig. 3.8d). Concomitantly,
BAM localized to amorphous patches increases. Interestingly, it does so at
the same rate as DSP, although the dissociation constants (see Table 3.3) and
their e∗max values differ. Presumably this dynamic pattern reflects the tight
cooperation between both enzymes, where BAM produces from phosphoglu-
cans (pG∗) the preferred substrate (pGx∗) of DSP, and DSP has to act in
order to produce Gx∗. The surface bound fraction of the debranching enzyme
is steadily increasing to almost 100%.

Figure 3.8d shows that the available area on the crystalline phase changes
complementary to that associated with the amorphous phase. The curve show-
ing the sum indicates that approximately only 10% of the total available area
is occupied by enzymes throughout degradation.

At around 600 min, the time when the crystalline region almost vanishes,
a sharp transition takes place in the fractional concentration factors, where I
encountered some numerical problems with negative values which I could not
resolve. Presumably, this is related to the stiffness of the ODE system, since
different time scales are considered simultaneously. Therefore, a cautionary
remark regarding the trajectories after this time point is necessary although
in some simulations done with other parameter sets this problem was not
observed.

It seems most probable, however, that the QSS assumptions force the sim-
ulation to comply with conservation relations which may produce negative
values when the crystallinity (i.e. χ∗h), hence the associated fractional con-
centration factors for crBAM and GWD, approach zero. There is an indi-
cation that indeed this is the reason: I tried the option NonNegative of the
Matlab ODE solver to force non-negative values with the result that this
violated conservation relations, for example the available area function in-
creased above one. It may be that at low values of crystallinity changes in
the quasi-steady state concentrations of the enzyme-complexes are not negli-
gible anymore (see Eq. 3.21a at p. 76, where this was assumed). As already
mentioned, approximations exploiting time scale considerations are powerful
but never valid throughout the whole reaction progress. Singular perturbation
techniques (Bender and Orszag, 1999) can be used to analyze when certain
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approximations break down. See also the discussion in Ciliberto et al. (2007)
for these issues especially relating to conserved quantities.

Regarding the kinetic parameters shown in Table 3.3 we will focus attention
on the comparison of affinities to interfacial substrates (i.e. the interfacial K∗m
values) which are shared among enzymes. For example, the simulations suggest
that Gc∗ and Gx∗ are more readily bound by BAM than by ISA. BAM has
also a higher affinity to long phosphoglucans (pG∗) than DSP and ISA. On the
other hand, partially degraded phosphoglucans are bound rather by DSP than
by ISA, whereas BAM is rather inhibited by these (small value of q∗pGx, see
rate equation denominator, p. 47) and by the β-limit dextrin like stubs (q∗Gb).

3.4 Discussion

Summary. This chapter demonstrates the applicability of interfacial rate
laws developed in Chapter 2. To this end a kinetic model is formulated in
Section 3.2. The analysis of interfacial processes in Section 3.3 suggests the
existence of spontaneous helix-coil transitions of the interfacial amylopectin
side-chains as a mechanistic explanation for the experimentally observed (Ed-
ner et al., 2007; Kötting et al., 2009) synergistic effect when dikinase, phos-
phatase, as well as exo- and endo-amylases act in concert. Based on the model
results, a reasonable guess is that reversible phosphorylation is especially ef-
fective in initiating starch mobilization whereas in the long run the hydrolytic
enzymes take over.

The preceding section has demonstrated that the rate laws proposed can
be used to describe biochemical reactions at interfaces. Although some un-
certainties about the parameter values remain, it is possible to reproduce, at
least semi-quantitatively, experimental findings. To verify the reliability of the
rate laws and analyze some basic characteristics of the interfacial reactions
it was necessary to exploit the best data available which is why I restricted
myself to in vitro experiments. To my knowledge, this is the first model of
starch degradation which thoroughly studies interfacial dynamics and consid-
ers the cooperation of starch-degrading enzymes. Since it relies on the rate
laws derived by myself it is of course also the first one using rate laws with the
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Table 3.3: Comparison of coarsely fitted kinetic parameters for simulation of
in vitro starch degradation. N/D Not Defined.

Parameter† GWD DSP/SEX4 BAM DBE/ISA

kcat kaut = 103 1 103 N/D
kleak = 10−2

k∗cat 5 1 103 103

‡K̃cr
d GWD: 1 N/D 10−2 N/D

pGWD: 10−5

K̃am
d N/D 10−3 5 · 10−4 10−4

Katp 10−3 N/D N/D N/D
KG N/D N/D 10−2 N/D
KGx N/D N/D 10−2 N/D
KpG N/D 10−1 10−2 N/D
KpGx N/D 10−2 N/D N/D
qmd N/D 1 N/D N/D
qmt N/D N/D 101 N/D
K i,G N/D 10−3 N/D N/D
K i,Gx N/D 10−3 N/D N/D

K∗Gh 10−3 N/D 104 N/D
K∗Gc N/D N/D 10−2 105

K∗Gx N/D N/D 10−1 105

K∗G3b N/D N/D N/D 10−4

K∗G2b N/D N/D N/D 10−4

K∗pG N/D 1 10−1 105

K∗pGx N/D 10−6 N/D 105

q∗Gb N/D N/D 10−4 N/D
q∗pGx N/D N/D 10−2 N/D
K∗i,Gb N/D N/D 10−5 N/D
K∗i,pGx N/D N/D 10−5 N/D

† Simulations were carried out using the units µmol, g, cm throughout. For the dimensions
see Sections 2.3.1–2.3.4 describing the rate laws. Usually, parameters have dimensions
associated with the reaction space in which the interactions take place.
‡ Kd,j = K̃d,j/e

∗max
j

available area function.
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A general observation is that there exist almost no kinetic models of chlo-
roplast metabolism which incorporate starch breakdown at all (Morgan and
Rhodes, 2002; Rios-Estepa and Lange, 2007). In Poolman et al. (2000), for ex-
ample, starch breakdown is considered as a single (moreover phosphorolytic!)
step. The absence of mathematical models which consider the reactions at
the interface explicitly is of course due to the fact that these processes were
simply unknown until very recently. Surely, the coming years will evidence an
increasing effort to tackle this system with modeling.

The degree of synergy, is a quantity which frequently has been studied in
cellulose degradation (Zhang and Lynd, 2004). Both, Converse and Optekar
(1993) and Zhang and Lynd (2006) are good examples and suggest further
investigation of the starch system, for example the dependence of synergistic
kinetics on enzyme loading. Here, it has been studied how it depends on
reaction time, different enzyme combinations and the phosphate position.

As the elucidation of the role of interfacial enzymes in starch metabolism
is ongoing, new physiological problems will emerge, which can hopefully be
tackled by the methods provided here.
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Chapter 4

Carbohydrate-active enzymes

exemplify entropic principles in

metabolism

Eine Theorie ist desto eindrucksvoller, je

größer die Einfachheit ihrer Prämissen ist,

je verschiedenartigere Dinge sie verknüpft

und je weiter ihr Anwendungsbereich ist.

Deshalb der tiefe Eindruck, den die

klassische Thermodynamik auf mich

machte. Es ist die einzige physikalische

Theorie allgemeinen Inhalts, von der ich

überzeugt bin, daß sie im Rahmen der

Anwendbarkeit ihrer Grundbegriffe

niemals umgestoßen werden wird (zur

besonderen Beachtung der

grundsätzlichen Skeptiker).
Albert Einstein (1870 - 1955)

The nocturnal breakdown of transitory starch provides dissolved malto-oli-
gosaccharides (MOS) which are further metabolized in stroma and cytosol
to support downstream pathways like glycolysis and sucrose synthesis. In
this respect, it is noteworthy that many reactions taking place in MOS me-
tabolism consist only of transfers of glucosyl residues. The plastidial 4-α-
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glucanotransferase (GTase) shuffles glucosyl residues mainly between two mal-
totrioses to produce glucose and maltopentaose as a substrate for BAM (Critch-
ley et al., 2001). Maltose is the primary product of starch degradation directed
to the cytosol (Niittylä et al., 2004), while only a minor fraction is exported
as glucose. Intriguingly, a second cytosolic GTase takes up maltose imme-
diately, producing glucose and transferring the second glucosyl residue to a
heterogeneous pool of soluble glycans (Fettke et al., 2006, 2009b). Yet another
transferase, albeit phosphorolytic, is able to withdraw the glucosyl residue in
the form of Glucose-1-phosphate (G1P), which is fed into central metabolism.
Certainly, this shuffling of glucose is not superfluous in an evolved system, how-
ever, to this date there is no conclusive theory regarding the regulatory role
of such a pathway design. The enzymes themselves seem to be unregulated
although DPE2 and α-glucan-phosphorylase are subject to post-translational
modifications (Kötting et al., 2010). Moreover, these enzymes are relatively
unspecific with respect to the size of the α-1,4-linked glucans and thus cannot
be associated with any single reaction. Thus, one has to take into account the
whole reaction system mediated by GTases.

The following chapter outlines a way to consistently characterize carbohydrate-
active transferases and the associated reaction systems. Although their im-
portance is recognized, glycans are notoriously difficult to analyze due to their
structural and functional diversity (Seeberger, 2005). This is mirrored by the
versatile action patterns of CAZymes, which accept structurally distinct gly-
cans as substrates and often act iteratively. A combinatorial explosion of reac-
tions is observed, making classical enzyme assays problematic. In Section 4.2
a statistical thermodynamics approach is proposed, which elucidates the piv-
otal role of entropy for both the equilibrium and temporal patterns of these
reaction systems. Each reactant is interpreted as an energy level, transitions
between which are constrained by the enzymatic mechanisms. Application
to combinations of in vitro assays of polymer-active CAZymes essential for
carbon metabolism in plants confirmed the dominance of entropic gradients
(Section 4.3). Supported by stochastic simulations our results suggest how
randomization of metabolites may contribute to robustness of metabolic func-
tions (Section 4.4).

Based on the theoretical predictions, the experiments were designed and
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conducted together with Sebastian Mahlow from AG Steup, University of
Potsdam. It is appropriate here to emphasize that a much larger part of
the experimental work is due to him. Details on the experiments are given
in Appendix B. On the theoretical side there was a fruitful interaction with
Oliver Ebenhöh and Alexander Skupin.

4.1 Introduction

Background. Polysaccharides constitute the most abundant biopolymers
found in nature but are far less investigated than proteins and nucleic acids.
They govern a remarkably wide range of functions, including carbon and energy
storage (Ball and Morell, 2003; Zeeman et al., 2010), mechanical stabilization
of cells or tissues (Cosgrove, 2005), cell-cell or cell-protein interactions (Varki,
2007) and organelle division (Yoshida et al., 2010). They have recently at-
tracted considerable interest as renewable energy source (Himmel et al., 2007;
Zeeman et al., 2010), and serve as starting materials or additives for many
technological applications (Takaha and Smith, 1999).

Biosynthesis and -degradation of polysaccharides involve the concerted ac-
tion of numerous CAZymes (Cantarel et al., 2009; Davies and Henrissat, 2002),
each of which can act on an enormous number of distinct substrates (Coutinho
et al., 2003). They typically catalyze a very specific reaction pattern and as a
result, catalyze a complex network of reactions involving a potentially infinite
number of different chemical species. Evidently, a classical description in terms
of Michaelis-Menten parameters and a single thermodynamic equilibrium con-
stant is insufficient to describe the complex reaction patterns and the resulting
equilibrium distributions. Nevertheless, this simplistic approach was applied
for example in Schmidt and John (1979), where bacterial glucanotransferases
were incubated with varying amounts of maltodextrins of different lengths and
glucose levels observed after a certain incubation time (10–30 minutes) were
taken as a measure of the reaction velocity. From the resulting Lineweaver-
Burk plots, Michaelis parameters vmax and Km were estimated. However, the
observed glucose levels depend on the concerted action of all proceeding reac-
tions, regardless whether they act on the initially applied substrate or re-utilize
products of previous reactions. Moreover, the apparent vmax values are biased
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by the fact that the equilibrium distribution is different for different initial
substrates. Similarly, the Km values do not only reflect binding affinities of
the initially applied substrate but result from a multitude of reactions. Tak-
ing these difficulties into account, it becomes apparent that interpretations of
parameters derived in analogy to classical, highly substrate specific enzymes
are problematic.

Comprehensive models based on differential equations would require the in-
troduction of one equation for each substrate species which is unfeasible due to
potentially infinite numbers. Novel rule-based approaches (Feret et al., 2009)
have intended to overcome this limitation and increase numerical tractability,
but despite a vast amount of experimental studies (Colleoni et al., 1999b; Jones
and Whelan, 1969; Kakefuda and Duke, 1989; Lin and Preiss, 1988; Steichen
et al., 2008) and some attempts to model the kinetics of CAZymes (Allen
and Thoma, 1976a,b; Nakatani, 1999; Thoma, 1976; Thoma et al., 1971), a
generally applicable theoretical description is still lacking.

Systems with potentially infinite states are consistently described in the
framework of statistical thermodynamics (Landau and Lifschitz, 1979). In-
terpreting the distinct chemical species as different energy states, the reac-
tant mixture can be described as a statistical ensemble (Alberty, 2003; Flory,
1944). In this thermodynamic view, enzymes mediate transitions between dif-
ferent states and the enzymatic mechanisms define how these transitions are
constrained. This concept allows the development of a consistent formalism in
which the entropy of the entire reactant mixture is highlighted as an important
thermodynamic driving force of the reactions. To develop and experimentally
validate our concept, we focus on enzymatic interconversion of α-1,4-d-glucans.
Each distinct substrate, hence different energy state, can be characterized by
the number of glucose residues, denoted as degree of polymerization (DP).
This offers a straightforward generalization to reaction systems in which bond
enthalpy is not conserved. Taking the energies of formation into account, the
equilibrium is determined by a minimum in Gibbs free energy (Alberty, 2003).
A generalization to other glucans and transferases is straightforward.

While former applications of minimizing the Gibbs energy are restricted to
single reactions or based on numerical methods (Alberty, 2003), our approach
enables analytic solutions even for complex systems where it is essential to
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take into account all constraints of the system, including those arising from
the enzymatic mechanisms. Thus, we show that the equilibrium distributions
of CAZymes can be characterized uniquely by the coefficient β of the resulting
Boltzmann-like distribution of degrees of polymerization, which serves as a
generalization of equilibrium constants.

4.2 Development of the theoretical approach

In this section, we provide a deductive derivation of the proposed formalism.
As a starting point we use a general formula for the Gibbs free energy of a
mixture of dilute solutions in water. With this strategy, we first develop a
general formalism and subsequently apply this formalism in Section 4.3 to
arrive at formulas valid for different plant CAZymes of importance in starch
degradation.

4.2.1 Background

The second law of thermodynamics implies that in an isolated system the en-
tropy can only increase and assumes a maximum if the system is in equilibrium.
As a consequence, a chemical reaction taking place in an isolated system (a
reaction without heat production), the driving force must be an increase in
entropy.

For a closed system σ, which is in contact to a thermal reservoir Θ the total
change of entropy is the sum of the changes of entropy in the system and its
environment (see for example Craig, 1992),

∆Stot = ∆Sσ + ∆SΘ. (4.1)

The change of entropy in the reservoir at a given temperature T is given by

∆SΘ =
∆UΘ

T
, (4.2)

where the internal energy UΘ of the reservoir is a thermodynamic state variable.
If additionally the pressure p is constant, as is usually assumed for biochem-
ical reactions, then the change in reservoir energy is exclusively derived from
enthalpy changes within the reaction system, ∆UΘ = −∆Hσ. Thus, for closed
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chemical reaction systems the second law asserts that

∆Stot = ∆Sσ −
∆Hσ

T
≥ 0. (4.3)

In equilibrium, ∆Stot = 0 and the total entropy is maximized, Stot → max.
With the definition of the Gibbs energy of the reaction system,

Gσ = Hσ − TSσ, (4.4)

the equilibrium condition that the total entropy is maximized can equivalently
be formulated as the condition that the Gibbs energy of the system is mini-
mized, Gσ → min.

4.2.2 General formalism

Gibbs energy of a dilute solution mixture and generalised mixing

entropy. We begin with a general expression for the Gibbs energy of a dilute
solution in which different substances i are dissolved with ni moles in N moles
solvent (Landau and Lifschitz, 1979, Eq. (87,3)):

G = Nµ◦ +RT
∑
i

ni ln
ni
eN

+
∑
i

niψi, (4.5)

where e is Euler’s number, R is the universal gas constant, T the temperature
and µ◦ is the chemical potential of the pure solvent. The constants ψi are
independent of the concentrations and are characteristics of the solutes i. They
are directly related to the chemical potentials µi which, by definition, are given
by

µi =
∂G

∂ni
= RT ln

ni
N

+ ψi. (4.6)

To introduce common units of concentrations, we denote by c◦ the concen-
tration of the solvent and by ci the concentration of the solutes, measured
in the same standard unit. Typically, concentrations are measured in moles
per liter (M), resulting in c◦ = 55.5M for pure water. The quantities of the
concentrations are related to the particle numbers quantified in moles by

ci
c◦

=
ni
N
. (4.7)

This implies that for a solute present in one standard unit concentration
(ci = 1M), ni/N = 1/c◦. Thus, according to Eq. (4.6), the standard chemical
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potential of solute i reads

µ0
i = ψi −RT ln c◦. (4.8)

Therefore, Eq. (4.5) can be written as

G = N ·

[
µ◦ +RT

∑
i

ci
c◦

(
ln
ci
c◦
− 1
)

+
∑ ci

c◦
ψi

]

=
N

c◦
·

[
c◦µ◦ +

∑
i

ciµ
0
i +RT

∑
i

ci (ln ci − 1)

]
. (4.9)

The expression

Gf =
N

c◦

[
c◦µ◦ +

∑
i

ciµ
0
i

]
(4.10)

depends only on the standard chemical potentials of the solvent and solutes
scaled by their respective concentrations. The value of Gf , however, is indepen-
dent on the fact whether the substances are present in a mixture or in separate
containers. To illustrate how the Gibbs energy changes as a result of mixing
various solutions, we consider K different containers with N/K moles solvent.
In each container only one type of solute is dissolved with concentration Kci.
The Gibbs energies of the separate containers are

Gi =
N

Kc◦
[
c◦µ◦ +Kciµ

0
i +RT Kci (lnKci − 1)

]
. (4.11)

After mixing these containers, the resulting mixture will contain N moles
solvent in which the K different solutes are dissolved with concentrations ci.
Due to the mixing process, the Gibbs energy will decrease,

∆mixG = G−
∑
i

Gi = −RT N lnK

c◦

∑
i

ci = −T∆S̃mix. (4.12)

This decrease of Gibbs energy results from an increase in mixing entropy.
Defining

S̃mix = −RN
c◦

∑
i

ci (ln ci − 1) , (4.13)

and using (4.10) allows to compactly rewrite Eq. (4.9) as

G = Gf − T S̃mix. (4.14)

This notation illustrates the two contributions to the Gibbs energy resulting
from the mere abundance (Gf) of the substances in solution and their mixing
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(S̃mix). This separation of the Gibbs energy is only defined up to an additive
constant. Simultaneously redefining Gf → Gf − k and S̃mix → S̃mix + k leaves
Eq. (4.14) unchanged and also does not influence the position of the extrema.

Since G and S̃mix, as defined in Eqs. (4.10) and (4.13), are extensive quan-
tities directly proportional to the total system size, extremal values do not
depend on the volume. Without loss of generality we therefore consider sys-
tems with one standard unit volume and in the following set N = c◦.

Chemical reactions in a mixture of solutions. Consider the general
chemical reaction ∑

i

νiAi = 0, (4.15)

in which Ai are the involved chemical species and the νi are the stoichiometric
coefficients, denoting how many molecules are consumed (negative) or pro-
duced (positive) per reaction. Introducing the extent of reaction, ζ, the con-
centration changes that result from an infinitesimal progress in the reaction
are given by dci = νidζ. Thus, the associated change in Gibbs energy (4.14) is

dG = dGf − TdS̃mix

=

[∑
i

νiµ
0
i − T

(
−R

∑
i

νi ln ci

)]
dζ. (4.16)

The contribution dGf reflects the changes of the Gibbs free energies as a result
from the chemical conversion of substances. This quantity is independent on
the amount of chemical species. The concentration dependent contribution
−TdS̃mix takes into account that the composition of the reaction mixture, and
thus the mixing entropy, will also change as a result of the chemical reactions.
By definition, the Gibbs free energy of reaction is

∆rG :=
∂G

∂ζ
=

∑
i

νiµ
0
i − T

[
−R

∑
i

νi ln ci

]
,

(4.17)

= ∆rG
0 − T∆rS̃mix.

The standard Gibbs free energy of reaction,

∆rG
0 =

∑
i

νiµ
0
i , (4.18)
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holds when all reactants are present in one unit concentration. In this case,
∆rS̃mix = 0.

It is important to note that the entropy change ∆rS̃mix exclusively results
from the change of the composition of the reaction mixture as a consequence of
the chemical reaction. This expression does not include the molar entropies,
si, which reflect the dispersal of energy within the molecules and which, of
course, do also contribute to the Gibbs free energy in quantities proportional
to the respective amounts of chemical species. However, the effect of molar
entropy change is implicitly taken into account via the term Gf : The standard
molar entropies, s0

i , are related to the standard Gibbs energies of formation,
∆fG

0
i , by

∆fG
0
i = ∆fH

0
i − Ts0

i , (4.19)

where the ∆fH
0
i are the standard enthalpies of formation. Further, the stan-

dard Gibbs free energy of reaction is related to the standard Gibbs energies of
formation by

∆rG
0 =

∑
i

νi∆fG
0
i . (4.20)

Comparing this expression with Eq. (4.18) shows that

dGf =

(∑
i

νi∆fG
0
i

)
dζ. (4.21)

Therefore, Gf can be expressed as

Gf = const.+
∑
i

ci∆fG
0
i (4.22)

demonstrating how this quantity includes the molar entropies through the
Gibbs energies of formation. It is highly useful to express the Gibbs free
energy as

G = const.+
∑
i

ci∆fG
0
i − T S̃mix, (4.23)

because the energies of formation ∆fG
0
i represent experimentally accessible and

tabulated quantities. Note, that the energies of formation encompass proper-
ties of the solvent like pH, temperature and ionic strength. If their values have
to be considered as independent (or reservoir) variables, appropriate thermo-
dynamic potentials can be defined by Legendre transforms. See Alberty (2003)
for an excellent elaboration on this.
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4.2.3 General solution and equivalence to law of mass

action

To demonstrate that the presented formalism is equivalent to the classical
treatment of reaction equilibria, and to illustrate how chemical equilibria can
be determined in general by our formalism, we again consider a general reaction
of the form (4.15). This reaction implies a constraint on the values of the
concentrations, since they cannot change completely arbitrary. This constraint
is most generally written in terms of a conserved quantity∑

i

qici = C, (4.24)

where the coefficients qi are determined through the condition (see e.g. Heinrich
and Schuster, 1996) ∑

i

qiνi = 0. (4.25)

In equilibrium, G assumes a minimum. Therefore, the equilibrium con-
centrations can be identified by determining the minimum of G under the
constraints given by Eq. (4.24). This can be achieved using the method of
Lagrangian multipliers. We define the function

L(ci;α) =
∑
i

ciµ
0
i +RT

∑
i

ci(ln ci − 1)− α
(∑

qici − C
)
. (4.26)

A necessary condition for the minimum of G under the given constraints is
that all partial derivatives vanish:

0 =
∂L

∂ci
= µ0

i +RT ln ci − αqi. (4.27)

Thus
0 =

∑
i

νi
∂L

∂ci
=
∑
i

νiµ
0
i +RT

∑
i

νi ln ci − α
∑
i

qiνi. (4.28)

The last term equals zero because of relation (4.25). With Eq. (4.18) it
follows that

∆rG
0 +RT

∑
i

νi ln ci = 0 ⇔
∏
i

cνii = e−
∆rG

0

RT , (4.29)

which is identical to the law of mass action. Of course, the formalism is
consistent with ∆rG = 0 in equilibrium as is clear from a comparison of (4.29)
with (4.17).
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4.2.4 Systems with constant numbers of reactants

For a reaction system which conserves the total number of reactants, ctot =∑
ci is constant. The equilibrium distribution can be found by identifying the

minimum of the molar Gibbs energy

g =
G

ctot
=
c◦µ◦

ctot
+
∑
i

ci
ctot

µ0
i +RT

∑
i

ci
ctot

(ln
ci
ctot

+ ln ctot − 1). (4.30)

Introducing the molar fractions χi = ci/c
tot, this can be compactly written as

g = const.+
∑
i

χiµ
0
i +RT

∑
i

χi lnχi = const.+
∑
i

χi∆fG
0
i −TSmix, (4.31)

where, in analogy to Eq. (4.23), the standard Gibbs energies of formation,
∆fG

0
i , and the entropy of mixing,

Smix = −R
∑
i

χi lnχi, (4.32)

have been introduced.
This description highlights the equivalence of a chemical reaction system

with conserved total number of reactants and the well-known Boltzmann dis-
tribution for identical particles in statistical physics. The reacting molecular
species i represent different energy states with the associated energy ∆fG

0
i .

Correspondingly, the molar fractions χi can be interpreted as the probabilities
that a particle is in state i.

This analogy is very powerful since the complete mathematical formalism
that has been developed for statistical physics can directly be applied to such
reaction systems. However, the reaction systems considered here in general
underlie further constraints imposed by the stoichiometries of the enzyme cat-
alyzed reactions.

4.2.5 Systems with conserved energy

A special class of reaction systems is realized by enzymes catalyzing energeti-
cally neutral reactions (as the disproportionating enzymes, see section 4.3 be-
low), for which the standard Gibbs energy of reaction, ∆rG

0, equals zero (Tewari
et al., 1997). In this case, the sum of the Gibbs energies of formation remains
constant and Eq. (4.31) further simplifies to

g = const.− TSmix. (4.33)
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It becomes apparent that in this kind of system the equilibrium is exclusively
determined by a maximum of the entropy of mixing Smix. Without further
constraints, a uniform distribution of concentrations over all possible species i
would be expected. However, due to the chemical constraints, this is in general
not the case. The structure of the constraints considered here (conservation of
inter-molecular bonds) leads to a distribution of the exponential family and can
be specified as a Boltzmann distribution, since a reflecting boundary condition
holds (we will see what that means). Here, the total (conserved) number of
bonds assumes an analogous role to the total energy of an isolated system of
identical particles, which is characterized by the system’s temperature. We
will exploit this analogy in the next section for the calculation of equilibrium
distributions of selected systems.

4.3 Application to plant CAZymes

The example systems discussed in this section all act on polydisperse mixtures
of α-1,4 linked polyglucans. Every different polyglucan is uniquely identified
by its degree of polymerization, DP. Throughout this section, we will denote
the molar fractions by χk, where k denotes the number of α-1,4-glucosidic
linkages, which means that k = DP− 1. We introduce this notation for conve-
nience to exploit the analogy to statistical thermodynamics, where usually the
state with the lowest energy carries the index 0. Here, χ0 denotes the molar
fraction of glucose, the simplest molecule within the polydisperse mixture pos-
sessing no inter-sugar linkage. All CAZymes discussed are important in plant
carbon metabolism and their characterization is backed up with experimental
verifications of the predictions. We will start with the paradigmatic case of
DPE1.

4.3.1 Disproportionating enzyme 1 (DPE1)

Background. In bacteria and plants the transfer of glucosyl chains between
α-1,4-d-glucans is an integral part of glucan metabolism. The correspond-
ing enzymes are members of the glycoside hydrolase family 77 and classified
as α-1,4-glucanotransferases (GTase, EC 2.4.1.25). Since the first discovery
in potato juice, plant biologists are more familiar with the term dispropor-
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tionating enzyme or D-Enzyme (Peat et al., 1953), while in bacteria similar
enzymes with a different action pattern are often designated as amylomaltases.
A fairly comprehensive review of the characteristic action pattern of GTases
with different specificities is given in Takaha and Smith (1999).

Basically, a pair of saccharides yields a disproportionated pair of products
in a bi-bi reaction, retaining the overall number of α-1,4-linkages and glucose
residues. The readily reversible reactions can be written as

Gn + Gm 
 Gn−x + Gm+x, (4.34)

where the index denotes the DP and x = 1, 2, 3 is the number of transferred
glucosyl residues. In this scheme, Gn represents the glucosyl donor, whereas
Gm figures as the acceptor molecule, the equality n = m being allowed in
general.

The prevalent mechanistic model of the catalytic cycle largely stems from
detailed structural studies on glucanotransferases from bacteria, especially
from the genus Thermaceae (Barends et al., 2007). The ping-pong mecha-
nism (Segel, 1993) is briefly summarized in Scheme 4.1, not going too much
into detail. Most notably, the mechanism shows that acceptor binding can be
thought of as an integral part of catalyzing the disproportionation reaction,
avoiding hydrolysis to occur.

Equilibrium distribution. The reaction system consisting of all reactions
of type (4.34) is constrained by two conserved quantities. Every reaction con-
verts two substrate molecules in two product molecules and thus the total
number of reactant molecules is conserved. Further, in every elementary step
one α-1,4-glucosidic linkage is opened and another is formed. Thus, the to-
tal number of linkages also remains constant. With the notation introduced
above, these constraints can be written as∑

k

χk = 1 (4.35)∑
k

k · χk = b. (4.36)

Here, b is the average number of linkages. This number is defined by the
average degree of polymerization, DPini, of the initially applied substrates. If,
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Figure 4.1: Mechanism of D-

enzyme (DPE1). a, Upon binding
the donor (Gn) a positional isomer is
formed, in which the more or less ran-
dom alignment of the polymer defines
the scissile glucosidic bond x (counted
from the non-reducing end N) between
subsites -1 and +1. b, An amino acid
residue (most likely glutamin) acting
as an acid/base catalyst protonates
the oxygen atom of the scissile bond,
and the associated C-1 is attacked by
a nucleophilic residue to form a β-
glycosydic bond. Through a planar
oxocarbenium-like transition state this
results in a covalent glycosyl enzyme
intermediate and the first product
Gn−x is released. c, An acceptor Gm

binds to the exposed positive subsites
with its non-reducing end towards the
saccharide to be transferred. d, Ac-
ceptor binding is thought to release
the acid/base catalyst from an unpro-
ductive positioning, upon which the
deprotonation of the 4-OH group of
the acceptor triggers the nucleophilic
substitution of the enzyme to form an
α-1,4-glycosydic bond, thus leading to
the second product Gm+x.

for example, the enzyme is incubated with maltotriose (G3, corresponding to
χ2), then b = 2. In general, b = DPini − 1 holds.

The bond enthalpy of α-1,4-glucosidic linkages is independent on the link lo-
cation within the polymer and the standard Gibbs reaction energy equals zero,
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∆rG
0 = 0 (Tewari et al., 1997). It can therefore be assumed with high con-

fidentiality that the sum of the energies of formation of the molecules within
the system remains constant and DPE1 represents a system with conserved
energy (see Subsection 4.2.5). For such a system, the equilibrium distribu-
tion is obtained by identifying the maximum of the entropy of mixing (4.32)
under constraints (4.35) and (4.36). To the best of our knowledge Nakatani
(1999) was the first to propose, based on stochastic simulations, that in equi-
librium the DP distribution has maximal entropy. The statistical description
presented here rigorously proves that this must indeed be the case, being a
direct consequence of the second law of thermodynamics. In analogy to the
general treatment outlined in Section 4.2.3, we define the Lagrange function

L(χk;α, β) = −
∑
k

χk lnχk − α

(∑
k

χk − 1

)
− β

(∑
k

k · χk − b

)
(4.37)

and set the partial derivatives to zero,

0 =
∂L

∂χ0

= −(lnχ0 + 1)− α, (4.38)

0 =
∂L

∂χk
= −(lnχk + 1)− α− k · β. (4.39)

This yields
χk = χ0 · e−kβ = χ0 y

k, (4.40)

where y = e−β is introduced for convenience. This result demonstrates that in
equilibrium the molar fractions of different DPs are exponentially distributed.
The specific values for χ0 and y are determined from the constraints, where it
is convenient to exploit the analogy to the formalism in statistical physics and
introduce the partition function Z =

∑
yk, such that

χ0 =
1

Z
and b =

y

Z

∂Z

∂y
. (4.41)

These expressions fully characterize the equilibrium distribution. The entropy
in equilibrium is

Seq = Smix/R = −
∑
k

χ0y
k ln(χ0y

k)

= − lnχ0 − b ln y

= lnZ − ln y · ∂ lnZ

∂ ln y
.

(4.42)
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These expressions are valid regardless of the precise range over which the
sums in Eqs. (4.35), (4.36) and (4.37) have to be extended. To realistically
characterize the biochemical reaction system catalyzed by DPE1, the sums
must be extended over all possible DPs which are accessible to the enzyme.
In particular, DPE1 catalysis transfers of glucose, maltose and maltotriose,
corresponding to x = 1, 2, 3 in (4.34). The evolving reaction scheme with a
pure substrate DPini is shown in Figure 4.2, where each reaction step consists
of a transfer from a donor, following a dashed arrow, to an acceptor, following
a solid arrow of the same color. The reaction system exhibits a fast combina-
torial explosion. The lower limit of glucose as smallest maltodextrin induces
a symmetry break in the reaction system which corresponds to a reflecting
boundary condition. This is visible in Scheme 4.2 in the third step, where
fewer donor paths than acceptor paths exist. Mathematically, this asymmetry
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Figure 4.2: Scheme of the DPE1 mediated reaction system. DPE1
mediates transfers of glucose, maltose and maltotriose units, i.e. x = 1, 2, 3.
In each reaction step the system follows an arbitrary dashed and solid arrow
of the same col-our simultaneously. This leads to a combinatorial explosion
of the reaction system. The lower limit of DP leads to a reflecting boundary
condition for G1 which causes the Boltzmann distribution.
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is the underlying reason for the observed exponential equilibrium distributions.

We assume that all glucans of arbitrary DPs can be metabolized. In this
case, the sums extend over all integers and the resulting expressions have a
particularly simple form. The partition sum reads

Z =
∞∑
k=0

yk =
1

1− y
. (4.43)

It follows that

χ0 =
1

b+ 1
and y =

b

b+ 1
. (4.44)

The latter expression characterizes β in terms of the initial conditions and
generalizes the equilibrium constant.

Thus, the equilibrium distribution is

χk = (1− y)yk = (1− e−β)e−βk = (e−β − 1)e−β·DP. (4.45)

Clearly, for all values of b =DPini +1, y < 1 implying that β is always positive,
hence the exponential decay is predicted to decrease when the average initial
degree of polymerization, DPini, increases. In the limit of very long initial DPs,

lim
b→∞

y = 1. (4.46)

The entropy in equilibrium amounts to

Seq = −
∞∑
k=0

χk lnχk = (b+ 1) ln(b+ 1)− b ln b. (4.47)

These predictions have been tested by incubating DPE1 with defined mal-
todextrins. The reactions were followed until no change in the patterns was
detectable and the reaction system apparently reached equilibrium. The glu-
can patterns confirm the prediction that an exponential distribution is ap-
proximated and that the factor β, characterizing the equilibrium distribution,
depends only on the average initial DPs (Fig. 4.3a-c) Furthermore, the ob-
served distributions quantitatively confirm the predicted decrease of β with
increasing DPini (Fig. 4.3d, e). From the observed glucan patterns the experi-
mental entropy can be calculated which also is in accordance with the predicted
entropy in equilibrium (Fig. 4.3f).
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Figure 4.3: DPE1 maximizes entropy in vitro. a-c, All DP patterns obey
the theoretically expected exponential distribution (4.45) where the exponen-
tial factor β depends on the initial substrates, as demonstrated by maltotriose
G3 (black in a), maltotetraose G4 (red in b) and maltopentaose G5 (blue in
c). The distributions are independent of how DPini is realized since in each
panel the distributions obtained by 50:50 mixtures of Gn−m and Gn+m (m = 1

in a and b, m = 2 in c) are indistinguishable from the patterns obtained for
Gn. d, Comparison between the experimental results (dots) and the theoreti-
cal predictions (solid lines) in a semi-log plot demonstrates the differences of
the coefficients β (corresponding to the slopes) for different initial substrates.
e, Agreement of observed and predicted β demonstrates the entropic mech-
anism of glucanotransferases. f, The experimentally determined equilibrium
entropies Seq (dots) in dependence on the average initial degree of polymer-
ization DPini match with the values predicted by formula Eq. 4.47, indicated
by the solid line. (All error bars denote standard deviation of 3 independent
experiments.)

Quasi Equilibrium without maltose and time scales of relaxation.

The classical experiments on D-enzyme from Peat et al. (1957, 1956), Walker
and Whelan (1957) and especially Jones and Whelan (1969) have shown that in
the digest of D-enzyme malto-oligos of different length can be detected but that
DPE1 from white potato is incapable of utilizing maltose as glucosyl donor nor
does it form maltose. These findings led to the rule of “forbidden” linkages that
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later was applied to DPEs from other species, such as Arabidopsis thaliana (Lin
and Preiss, 1988) and Chlamydomonas reinhardtii (Colleoni et al., 1999a,b).

However, our measurements (Fig. 4.4) clearly demonstrate that this rule
is not valid for recombinant DPE1 from A. thaliana. Presumably, this dis-
crepancy is due to differences in the length of the incubation period. As
revealed by our measurements, approximately 10 minutes after incubation a
quasi-stationary state is reached in which maltose is undetectable. This “quasi-
equilibrium” is close to the true equilibrium of a system which excludes maltose
from being utilized. Subsequently, the maltose level rises and approaches its
theoretically predicted equilibrium concentration after several days. These
data are consistent with the assumption that 4-α-glucanotransferases prefer
distinct glucan binding modes (Nakatani, 1999; Suganuma et al., 1991; Takaha
and Smith, 1999). Based on this view, a stochastic model was developed with
only two kinetic parameters reflecting the interaction of the different subsites
of the enzyme with glucosyl residues(see Sec. 4.4). The observed time-resolved
glucan patterns can be reproduced under the sole assumption that glucosyl
transfers occur with an 800-fold smaller probability than transfers of maltosyl
or maltotriosyl residues (Fig. 4.4a). In the vicinity of the quasi-equilibrium,
the mixing entropy (Fig. 4.4b) increases more slowly, while steadily evolving
towards the predicted maximum entropy state. Our simulations demonstrate
that the kinetics of DPE1 can appropriately be characterized by three values,
a rate constant reflecting maximal turnover, and two constants reflecting the
different subsite affinities (Thoma et al., 1971). Experimentally, these values
are not accessible through simple incubation experiments in analogy to the
classical treatment of enzymes catalyzing single reactions but rather require
monitoring of the entire reactant mixture.

On time scales on which observed amounts of maltose are very small, we can
approximately assume that maltose acts neither as substrate nor as product of
DPE1. This assumption allows to calculate analytically the quasi equilibrium
distribution and the corresponding entropy for this intermediary state which is
assumed after ∼10 minutes and prevails approximately for several hours. For
this, maltose (k = 1) has to be excluded from the sums. Thus, the partition
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Figure 4.4: Low binding affinity for maltose induces a quasi equilib-

rium distribution. a, The experimental time course (dots) shows the gen-
eration of the different glucans for DPE1 incubated with maltotriose, demon-
strating that maltose is produced on a slower time scale compared to the other
glucans. Stochastic simulations (solid lines) assuming an 800-fold reduced
probability for the transfer of single glucosyl residues compared to maltosyl
and maltotriosyl residues accurately reproduce the data. b, The increase in
entropy exhibits two time scales. In the first phase, the entropy rapidly in-
creases towards a quasi equilibrium state without detectable maltose. The dot-
ted line at Sqeq indicates the predicted equilibrium entropy for a constrained
system not capable of producing maltose (see Fig. 4.5). The second phase is
characterized by a much slower relaxation towards the real equilibrium Seq

(dashed line). (All error bars describe standard deviation of 3 independent
experiments.)

sum is

Z =
∞∑
k=0
k 6=1

yk =
1− y + y2

1− y
=

1

χ0

. (4.48)

Relations (4.41) define the implicit equation determining y from b,

b =
y

1− y
· 2y − y2

1− y + y2
=

y

1− y
+

2y2 − y
1− y + y2

. (4.49)

To test the assumption that maltose is produced with a smaller time scale
and that the results in Fig. 4.4 are not caused by unspecific reactions, DPE1
was incubated with pure maltose. The resulting experimental time course is
shown in Figure 4.5a by dots and corresponding simulations by lines.

The temporal changes in the experimental data could be described rather
well by simulations with the same parameters as for the case with DPini = 3
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Figure 4.5: Action of DPE1 incubated with maltose G2 as initial sub-

strate DPini only. a, The temporal glucan patterns can be described by
simulations using the same parameters as in Fig. 4.4. Since maltose is the
exclusive glucan source, only the slowest time scale dominates the process and
no quasi equilibrium is observed. b, As predicted, an exponential equilibrium
distribution is experimentally observed (red bars). The logarithmic scale (in-
set) shows that the predicted (blue line) and the observed distributions (red
dots) show slight deviations where the predictions are still in the error limits
taking technical errors into account.

shown in Fig. 4.4 which are given in in Section 4.4. The difference is that
no quasi-equilibrium is observed since conversion of G2 is the limiting step
and thus only the slow time scale is observable. The small deviations of the
data from the simulations for large times are also visible in the equilibrium
distributions shown in panel b. In the inset, the data (red dots) are plotted
on a semi-logarithmic scale and additionally compared with the theoretical
predictions (blue line) by Eq. (4.41). Interestingly, the simulations approach
an equilibrium reflecting the theoretical predictions, hinting at a systematic
deviation which might result from technical errors of the measurements.

4.3.2 Disproportionating enzyme 2 (DPE2)

Background. DPE2 catalysis the transfer of a single glucose residue from
one α-1,4-linked glucan to another. It therefore also belongs to the class of en-
ergetically neutral enzymes (Subsection 4.2.5) and obeys the constraints of con-
served number of molecules (4.35) and conserved total number of bonds (4.36).
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However, if, as our and other (Steichen et al., 2008) experimental findings sug-
gest, maltose (χ1) never acts as an acceptor of glucosyl residues and maltotriose
(χ2) never acts as a donor, DPE2 effectively obeys a third constraint, namely
the conservation of the sum of glucose and maltose molecules,

χ0 + χ1 = p, (4.50)

where p is determined by the initially applied glucose and maltose. The DPE2
mediated reaction scheme is shown in Figure 4.6 where the separation of the
glucose-maltose pool from the pool of larger DPs is shown by the red dashed
line which is not crossed by any possible reaction path. In each DPE2 reac-
tion step, one arbitrary donor reaction (dashed arrows) occurs simultaneously
with one arbitrary acceptor reaction (solid arrows). Starting from an initial
substrate mixture of maltohexaose and maltose, the 5 first possible reactions
are shown in Scheme 4.6, where in each step the reaction system follows a
dashed and a solid line simultaneously. Here, the conservation of the glucose/-
maltose pool from the longer polyglucans results in an additional symmetry
break, or reflecting boundary condition, causing the exponential equilibrium
distribution.

Equilibrium distribution. Again, the maximal entropy is determined us-
ing the method of Lagrangian multipliers. We define the Lagrangian

L(χk;α, β, γ) =−
∑
k

χk lnχk

− α

(∑
k

χk − 1

)

− β

(∑
k

k · χk − b

)
− γ(χ0 + χ1 − p)

(4.51)

and set the partial derivatives to zero:

0 =
∂L

∂χ0

= −(lnχ0 + 1)− α− γ, (4.52)

0 =
∂L

∂χ1

= −(lnχ0 + 1)− α− β − γ, (4.53)

0 =
∂L

∂χk
= −(lnχk + 1)− α− k · β for k ≥ 2. (4.54)
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Figure 4.6: Scheme of the DPE2 mediated reaction system. Each DPE2
reaction step consists of one donor and one acceptor reaction depicted by a
dashed and a solid arrow, respectively. Due to the restriction that maltose is
never an acceptor and maltotriose is never a donor, the maltose and glucose
pool is separated from the other DPs as shown by the red dashed line. The
scheme exhibits all possible reaction pathways starting from the two indicated
initial substrates maltohexaose and maltose, where in each step one arbitrary
solid and one arbitrary dashed path is taken.

Defining y = e−β it follows that

χ1

χ0

= y and χk = χ2 · yk−2, (4.55)

showing that the DPs again follow an exponential distribution. The difference
to DPE1 is that the ratio χk+1/χk = y is not observed for the ratio χ2/χ1.
Constraints (4.35) and (4.50) imply

χ0 =
p

1 + y
and χ2 = (1− p)(1− y). (4.56)

Constraint (4.36) allows to derive the formula

b− 2(1− p) = p · y

1 + y
+ (1− p) · y

1− y
, (4.57)

from which y can be determined from the initial conditions b (average number
of bonds) and p (initially applied molar fraction of glucose and maltose).
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Figure 4.7: Predicted equilibrium distributions of the degree of poly-

merization (blue) and experimental validation (red) of DPE2. The
temporal relaxation of the measured distribution towards the predicted one
for an initial 40:60 mixture of maltose (G2) and maltoheptaose (G7). The two
separated pools exhibit different time scales. While the small pool of G1 and
G2 is very close to equilibrium after one day, the larger pool needs around 15
days caused by the larger configuration space.

These predictions were tested experimentally by incubating DPE2 with an
initial mixture containing 40% maltose and 60% maltoheptaose. The experi-
mentally observed DP distributions are plotted for several time points in Fig-
ure 4.7 as red bars. Clearly, the approached equilibrium closely matches the
theoretically predicted equilibrium distribution depicted by the blue lines in
Figure 4.7.

4.3.3 DPE1 + Hexokinase

As an example system in which the total energy of formation is not con-
served,the combined action of DPE1 and hexokinase (HK) is considered. This
particular combination has been chosen to study the effect of an exothermic
reaction on the distribution of glucans produced by isenthalpic reactions. A
great advantage is that the degree of reversibility of the HK reaction can be
experimentally controlled by adding different amounts of ATP. Because the
HK reaction diminishes the glucose pool accessible to DPE1 but keeps the
number of inter-glucose bonds constant, the equilibrium patterns are shifted
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towards larger DPs.
Additional to reactions (4.34), hexokinase catalysis the conversion

Glc + ATP↔ G6P + ADP, (4.58)

with a standard Gibbs energy of reaction ∆g. We denote again a polyglucan
with k linkages by χk, glucose-6-phosphate by u, ATP by a3 and ADP by a2.
Four conserved quantities give rise to side constraints:

Total number of molecules:a2 + a3 + u+
∑
k

χk = 1 (4.59)

Conservation of interglucose linkages:
∑
k

kχk = b (4.60)

Conservation of adenosine moieties:a2 + a3 = A (4.61)

Simultaneous production of ADP and G6P:a2 − u = B. (4.62)

The molar Gibbs energy of formation can be written as

gf = const.+ u ·∆g (4.63)

and the mixing entropy reads

Smix = −R

[
a2 ln a2 + a3 ln a3 + u lnu+

∑
k

χk lnχk

]
. (4.64)

The equilibrium distribution is now determined by identifying the minimum
of the Gibbs free energy (4.31)

G = gf − TSmix (4.65)

under the constraints (4.59)–(4.62). Setting the partial derivatives of the La-
grange function

L(a2, a3, u, χk;α, β, γ, δ) =gf − TSmix

+ α

(
a2 + a3 + u+

∑
k

χk − 1

)

+ β

(∑
k

kχk − b

)
+ γ(a2 + a3 − A)

+ δ(a2 − u−B)

(4.66)
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to zero, we get

a2

a3

= e−
δ
RT = z,

u

χ0

= e−
∆g
RT · e

δ
RT =

k0

z
and

χk
χ0

= e−
kβ
RT = yk, (4.67)

where
y = e−

β
RT , z = e−

δ
RT and k0 = e−

∆g
RT . (4.68)

The constraints (4.59)–(4.62) yield the equations

a3(1 + z) = A, (4.69)

χ0

(
k0

z
+

1

1− y

)
= 1− A, (4.70)

χ0 ·
y

(1− y)2
= b (4.71)

and
Az

1 + z
− χo ·

k0

z
= B. (4.72)

From Eqs. (4.70)–(4.72), the two variables χ0 and z can be eliminated to result
in one single equation which implicitly determines the equilibrium distribution
parameter y:

b · 1− y
y

[
k0(1− y) ·

(
A

B + 1− A− b · 1−y
y

− 1

)
+ 1

]
+ A− 1 = 0. (4.73)

This equation implicitly defines β as a function of the initial concentrations
and the equilibrium constant of the HK reaction. The equation has been
numerically solved to determine the equilibrium parameter β which was used
to compare experimental and theoretical results in Fig. 4.8. Additional results
from the set of experiments are plotted in Figure 4.9.

Our results concur with earlier findings (Kakefuda and Duke, 1989; Walker
and Whelan, 1959) on the DPE1-mediated synthesis of amylose which now
experience a quantitative theoretical explanation. Moreover, this scenario ex-
emplifies a situation with relevance in vivo when DPE1 is active while simul-
taneously the glucose molecules are subject to the action of other enzymes,
such as the plastidial HK or the glucose transporter. When the plastidial HK
or the glucose exporter is active, this results in a sequestration of glucoses
from the DPE1-mediated transfer reactions. Under these conditions, DPE1
mediates an energy-independent elongation of glucans and thereby provides
substrates for the plastidic α-glucan phosphorylase or even supports starch
synthesis directly. The latter conjecture is consistent with the phenotype of
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Figure 4.8: Influence of the Hexokinase activity on the equilibrium

distribution of DPE1. In the presence of hexokinase (HK), the DPE1-
mediated equilibrium distribution depends on the applied amount of ATP, the
Gibbs energy of the HK reaction and the average initial degree of polymer-
ization, DPini. a, The equilibrium distribution of DPE1, incubated with 500
nmol maltotriose (G3) and 125 nmol ATP (red) is shifted towards longer DPs
compared to the distribution without ATP (blue). The semi-logarithmic plot
(inset) shows that observed (circles) and predicted (lines) distributions are in
good agreement. b, In systematic experiments the ATP level was varied be-
tween 0 and 500 nmol leading to an ATP/glucan ratio between 0 and 1 for
the two different initial substrates G3 (black) and G7 (magenta). From dis-
tributions corresponding to those in panel a, the equilibrium parameter β was
determined by fitting to data (symbols) and compared with the theoretical
prediction (lines) according to Eq. (4.73). Predictions were calculated with
the experimentally determined average equilibrium constant of the HK reac-
tion. Shadowed regions describe the corresponding standard deviation of 4
independent experiments. (All error bars correspond to standard deviation of
3 independent experiments.)

a C. reinhardtii mutant lacking a functional DPE1 which displays aberrant
starch synthesis (Colleoni et al., 1999a,b).

4.3.4 α-glucan phosphorylase

Background. The enzyme α-glucan phosphorylase catalyzes the transfer of
a single glucose residue from the non-reducing end of a glucan onto inorganic
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Figure 4.9: Further results on the influence of Hexokinase on the

equilibrium distribution. a, Distributions for DPini = 3 with [ATP] =

0 nmol (black) and [ATP] = 250 nmol (red) corresponding to a ratio
R=[ATP]/[glucan] of 0 and 0.5 respectively. b, Distributions for DPini = 7

with [ATP] = 0 nmol (black) and [ATP] = 125 nmol (blue) corresponding
to a ratio R=[ATP]/[glucan] of 0 and 0.25 respectively. (Error bars indicate
standard deviation of 3 independent experiments.)

phosphate to form glucose-1-phosphate. The general reaction is (Steup and
Schächtele, 1981)

Pi + Gn ↔ G1P + Gn−1, (4.74)

Apparently, this enzyme also conserves the total number of molecules. How-
ever, since the bond enthalpies of the α-1,4 glucosidic linkages in polyglucans
and the phosphoester bond in glucose-1-phosphate are different, the total en-
ergy of formation is not a conserved quantity. As a consequence, the equilib-
rium distribution will be determined by a combined effect of minimizing the
Gibbs energy of reaction and maximizing the entropy.

Equilibrium distribution. We denote by ∆g the change in Gibbs energy
when breaking one mole of α-1,4 glucosidic linkages and simultaneously closing
one mole of phosphoester bonds. The molar fractions of inorganic phosphate
Pi and of glucose-1-phosphate are denoted by u and v, respectively. We assume
that phosphorylase can be active on glucans with a minimal number of bonds,
denoted m. As above, we denote with χk the molar fraction of the glucan with
k bonds. The total energy of formation of the reaction mixture (per mole) is
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thus
gf = const.+ u ·∆g (4.75)

and the mixing entropy reads

Smix = −R

[
u lnu+ v ln v +

∑
k

χk lnχk

]
. (4.76)

The equilibrium distribution is determined by identifying the minimum of the
Gibbs free energy (4.31) under the constraints

total number of molecules: u+ v +
∑
k≥m

χk = 1, (4.77)

conservation of bonds: v +
∑
k≥m

kχk = b, (4.78)

conservation of phosphate groups: u+ v = p. (4.79)

These constraints are analogous to the three constraints (4.35), (4.36) and
(4.50) which apply to DPE2. Indeed, they formally become identical if u is
identified with χ0, v with χ1 and m = 2. The main difference is that here the
Lagrange function

L(u, v, χk;α, β, γ) =v ·∆g +RT

[
u lnu+ v ln v +

∑
k

χk lnχk

]

+ α

(
u+ v +

∑
k

χk − 1

)

+ β

(
v +

∑
k

kχk − b

)
+ γ(u+ v − p)

(4.80)

contains the molar change in Gibbs energy ∆g. Here, introducing

y = e−
β
RT and k0 = e−

∆g
RT (4.81)

and setting the partial derivatives to zero yields

v

u
= y · k0 and

χk+1

χk
= y for k ≥ m. (4.82)

An analogous calculation to that performed in Section 4.3.2 yields

u =
p

1 + yk0

and χm = (1− p)(1− y) (4.83)



120 Entropic principles in metabolism

and y is determined by solving the equation

b−m · (1− p) = p
yk0

1 + yk0

+ (1− p) y

1− y
. (4.84)

The implicit formula (4.57) for DPE2 represents a special case of Eq. (4.84)
when k0 = 1, which corresponds to identical bond energies (∆g = 0). The
analogous structure of the solutions is not surprising considering the parallels
in the constraints that the respective enzymes observe. In both, the number
of molecules as well as the number of bonds is conserved and both obey an
additional, third, constraint. In the case of DPE2, the sum of the glucose and
maltose moieties is conserved, in the case of phosphorylase the conservation
of phosphate groups results in a conserved sum of the moieties of inorganic
phosphate and glucose-1-phosphate.

To test our theoretical approach experimentally, we start with the left side
of Eq. (4.74). Recombinant phosphorylase was incubated with 250 nM G7 and
12.5 µM Pi. Together with Eq. (4.84), this extreme ratio of 1:50 enables a fine
fitting of the unknown k0 which depends on the change in Gibbs energy by
Eq. (4.81). As shown in Figure 4.10b by the red bars, the high Pi concentration
leads to a very steep experimental distribution of DP. The small amount of
detected G3 indicates either some contamination of the initial substrate or a
quasi equilibrium caused by essentially smaller binding rates for G4 similar
to the scenario described in the main text for DPE1 binding to maltose. For
the prediction we assume m = 3 and exclude the contribution of G3 to the
molar fraction, finding that k0 = 0.19 describes the data sufficiently well. The
logarithmic plot in the inlet illustrates how the slope decreases with decreasing
k0 from k0 = 0.4 (black line), k0 = 0.19 (blue line) to k0 = 0.1 (dashed line).

In further experiments the right side of Eq. (4.74) was used as a starting
point and incubated phosphorylase with G1P and the polyglucans G4 and
G7, respectively. The resulting patterns are shown in Figure 4.10c. Both dis-
tributions include again a minor fraction of G3. Besides this, the comparison
demonstrates again the dependence of the distribution on the initial conditions.
The logarithmic plot in panel c demonstrates the Boltzmann-like distributions,
and the comparison with the theoretical predictions shown by the solid lines
again validate the theoretical approach for systems with a net change in en-
thalpy. This underlines the meaning and importance of the coefficient β as a
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general equilibrium parameter, since it allows for an estimation of the change
in Gibbs energy.
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Figure 4.10: Equilibrium distributions of the degree of polymerization

for phosphorylase experiments. a, Schematic representation of the mech-
anism of phosphorylase. From a polyglucan one glucose residue is reversibly
transferred to orthophosphate, producing glucose 1-phosphate. b, The exper-
imental distribution (red bars) for a 1:50 mixture of DPini = 7 and Pi exhibits
a steep decrease. From the theoretical prediction Eq. (4.84) shown in blue, we
can fit the unknown k0 parameter as 0.19. The inlet shows the logarithmic
data (red) and further predictions for k0 = 0.1 (dashed) and k0 = 0.4 (solid).
c, Comparison between G4 (black) and G7 (red) incubated with G1P demon-
strates the dependence on the initial substrate. d, Both distributions obey
an exponential distribution as shown by the logarithmic plot. The agreement
of experiments (dots) and theoretical predictions (lines) validates the theo-
retical approach. (Error bars indicate standard deviation of 3 independent
experiments.)
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4.4 Simulation: in vitro reactions and a mini-

mal model of SHG metabolism

In order to complement and substantiate the experimental and analytical re-
sults, a stochastic algorithm to simulate coupled chemical reactions has been
employed (Gillespie, 1977). This approach enables the kinetic characterization
of the glucan patterns and thereby elucidates the effect of different affinities
between enzymes and substrates on the concentration trajectories.

4.4.1 Algorithm

The algorithm simulates the reaction systems by a discrete number of polyglu-
can molecules and enzymes which interact through enzyme-substrate complex
formation and enzymatically catalyzed chemical conversions. In analogy to
classical thermodynamics, each glucan Gn, n denoting the degree of polymer-
ization, DP, can be interpreted as a defined energy state which may be occupied
by an arbitrary number of particles (see Figures 4.2 and 4.6).

In the reaction systems catalyzed by DPE1 and DPE2, the enzymes catalyze
transfers of x glucose units from one molecule to another corresponding to the
general reaction scheme

Gn + Gm
DPE←→ Gn−x + Gm+x ,

where the entropic principle implies the mixing of the corresponding occupa-
tion numbers, until the equilibrium distributions as described in Sections 4.3.1
and 4.3.2 are reached.

The algorithm simulates this mixing of discrete occupation numbers and
exploits the dynamic memory allocation of the vector class in C++ that enables
simulations of unlimited chain lengths. A two-step sequential mechanism, hav-
ing basically two types of rate constants, turned out to be sufficient to simulate
the temporal patterns:

E + Gn
kb−→ EGn (4.85)

EGn + Gm
kt−→ Gn−x + Gm+x + E, (4.86)

where E denotes a free enzyme, EGn the enzyme-donor complex, and kb and
kt are the rate constants of donor binding and the glucosyl transfer, respec-
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tively. The rate constant kb may depend on x, kb(x), reflecting the different
probabilities of forming positional isomers (Thoma et al., 1971). A positional
isomer is defined by the alignment of the donor polymer at the enzyme subsite,
which already determines one of the products, Gn−x.

Former studies reported that DPE1 catalysis maltosyl and maltotriosyl
transfers only (x = 2, 3), whereas we have shown here, that also single glu-
cose units can be transferred although with a much smaller rate. Taking into
account that from maltose (G2) only glucosyl residues (x = 1), and from mal-
totriose only glucosyl and maltosyl (x = 1, 2) residues can be transferred, the
experimental data could be fitted well with simulations using the parameters
kt = kb(x = 2, 3) = 0.2 s−1 and kb(x = 1) = 0.00025 s−1.

The algorithm can be summarized as follows:

1. In dependence on the propensities, a Gn is randomly chosen to bind
to a free enzyme E (Eq. (4.85)) or to an enzyme-oligoglucan complex
EGn (Eq. (4.86)) leading to a positional isomer or a transfer reaction,
respectively.

2. If the reaction corresponds to donor binding the binding probability of a
glucan depends on the number of glucosyl residues which will be trans-
ferred.

3. In the catalytic step, x glucosyl residues are transferred, the processed
glucans are released and the enzyme returns into its free state.

Simulations of the Phosphorylase and of the DPE2–Phosphorylase (see be-
low) systems are implemented in an analogous flavor.

4.4.2 Entropy-induced robustness in cytosolic SHG me-

tabolism

The developed algorithm is able to reproduce both the experimental equilib-
rium distributions as well as the temporal changes in the reaction patterns
as demonstrated in Section 4.3. Furthermore, simulations allow us to investi-
gate the role of enzymes generating mixing entropy in non-equilibrium open
systems. Here, we want to exemplify this for carbon metabolism in plants.
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The degradation of transitory starch in chloroplasts of leaf cells during dark-
ness (Fettke et al., 2009a; Sulpice et al., 2009) provides essentially maltose,
which is exported to the cytosol in order to support glycolysis as well as su-
crose synthesis. Glycolysis is the ubiquitous pathway of energy metabolism to
produce chemical energy equivalents in form of ATP and NADH, and sucrose
is the major form in which carbon is transported to sink organs of plants. It
turns out that by exporting maltose, using it as a glucosyl donor, plants can
bypass the first reaction of glycolysis (hexokinase) and produce the intermedi-
ate glucose-1-phosphate (G1P) via a soluble heteroglycan pool, SHG (Fettke
et al., 2009b). G1P is necessary for both the downstream processes of glycolysis
and sucrose synthesis.

It has been hypothesized that the SHG pool has a buffering function and
supports the integration of carbon fluxes but it is not known by which mecha-
nism to explain this. In this respect, it is interesting that a significant fraction
of SHG consists of polyglucans, which serve as substrates for DPE2 and cytoso-
lic α-glucan phosphorylase (Pho), two ’entropic enzymes’ characterized in this
work. Thus, it is tempting to suggest that the entropy-driven maintenance of
a polydisperse pool by these enzymes provides an explanation for the putative
role of SHG in buffering carbon fluxes.

A minimal model which mimics the physiological scenario found in the cy-
tosol of plant leaves during darkness is shown in Figure 4.11a. In order to
study the role of the SHG pool, we compare this system to an alternative one
which does not exploit entropy gradients. Consider a noisy maltose input re-
sulting from a spatially inhomogeneous plastidial export of maltose (G2) into
the cytosol. A single process consuming G1P represents the activity of down-
stream processes. We study the output performance for two mechanisms: 1)
Maltose is converted into glucose and G1P by the concerted action of the en-
tropic enzymes DPE2 and Pho; 2) Maltose is directly split by a single reaction
according to, G2 + Pi ←→ G1 + G1P, which could for example be catalyzed by
maltose phosphorylase (MPho, EC 2.4.1.8). In contrast to system 2, system 1
is to a large extent driven by entropic gradients (see Sections 4.3.2 and 4.3.4,
respectively).

The downstream activity represented by the G1P output rate differs for the
two systems. As shown in Figure 4.11b, the MPho system (red) strongly follows



4.4 Stochastic simulation 125

G     + Gn−1    m+1

2 1G  + P              G  + G1P
MPho

Pho
n                               n−1G  + P               G      + G1P

G  + Gn m

                            

DPE2

SHG buffer

Noisy maltose input

Metabolism / Growth

Downstream

No buffer

 0

 200

 400

 0  200  400
D

o
w

n
s
tr

e
a

m
 a

c
ti
v
it
y
 (

G
1

P
/s

)

Maltose influx (G2/s)

no SHG buffer
SHG buffer

 0

 250

 500

 5000  7000  9000  11000

D
o

w
n

s
tr

e
a

m
 a

c
ti
v
it
y
 (

G
1

P
/s

)

Time (s)

no SHG buffer (MPho)
SHG buffer (DPE2 + Pho)

a b

c

Figure 4.11: Entropic enzymes induce metabolic robustness. a, We
compare the downstream activity of a system with the entropic enzymes DPE2
(blue) and Pho (magenta) catalyzing the turnover of a SHG pool with a sys-
tem which directly converts a fluctuating maltose input into glucose (G1) and
glucose-1-phosphate (G1P) using maltose phosphorylase (MPho, red). b, The
simulated temporally resolved output activity indicates that the higher entropy
due to the SHG pool smears out the large fluctuation of the noisy maltose influx
while the MPho system follows the fluctuations fastly. The difference becomes
dramatic in the case of very small maltose influx, where the downstream ac-
tivity of the MPho system stops abruptly whereas the SHG buffer system can
still provide energy from the pool of larger glucans. c, The dependence of the
G1P output on the maltose input demonstrates that the SHG pool acts as a
buffer and ensures a robust support of downstream metabolism with carbon
even under large and rapid external fluctuations, whereas the MPho system
reacts strongly to changes in influx.

the noisy input leading to large fluctuations in downstream activity, whereas
the increased internal entropy due to the SHG buffer (blue) dampens the the
fast fluctuations in analogy to a low pass filter. Although the MPho system
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can reach higher output rates, the SHG system exhibits a larger physiological
robustness because, in case of starvation it can for a limited time still provide
energy from buffered glucans with larger DPs. This is visible by the exponential
damping of metabolic activity after setting the influx to very small values at
around 8000 s in panel b.

Analyzing the dependence of the output on the maltose influx into the
(cytosolic) system in panel c, demonstrates that the SHG system exhibits a
rather constant metabolic activity independent of the influx strength as long
as the temporal average of input does not vary too much. In contrast, the
MPho system reacts nearly immediately to changes in the input as shown
by the linear relation. These simulation results provide a strong hint that the
enzymatic exploitation of entropy gradients to increase polydispersity provides
the mechanistic basis for the integrating and buffering function of the metabolic
system mediating SHG turnover.

4.5 Discussion

Summary. In plant carbohydrate metabolism, transfer of glucosyl moieties
is a crucial process in pathways providing sugars for energy metabolism. The
quantitative description of the responsible enzymes in isolation is met with
problems, since a comprehensive characterization requires the simultaneous
monitoring of a multitude of reactants. Thus polymer-active enzymes like the
GTases do not fit into the classical Michaelis-Menten scheme.1 Section 4.2
develops the theoretical framework in order to characterize the equilibrium
of CAZyme-mediated reaction systems and emphasizes the mixing entropy of
the reactant distribution. This is applied in Section 4.3 to prove that GTases
(DPE1 and DPE2) catalyze entropy-driven reaction systems. Also Pho and a
system combined with HK is shown to be tractable. The analytical results are
confirmed by experiments and supported by stochastic simulations. The latter
approach is explained in Section 4.4 and a model is formulated to explain the
function of the cytosolic SHG pool as a low pass filter.

1Chetkarov and Kolev (1984) proposed a model of hydrolytic enzymes acting on polymers
where both the maximal rate and the Michaelis-Menten constant turn out to be time-
dependent.
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We have shown that reaction systems catalyzed by carbohydrate-active
transferases can be comprehensively characterized by the entropy of the chain
length (DP) distribution of the reactants and their Gibbs energies of forma-
tion. The statistical description is illuminating since it allows to treat enzymes
which catalyze many distinct reactions simultaneously. Moreover, constraints
in the reaction pattern which arise from the enzyme mechanism and its subsite
structure can be consistently incorporated. By this it was possible to explain
the temporal patterns observed for DPE1 and DPE2. The stochastic approach
to CAZymes has been especially pursued by Nakatani (Nakatani, 1997, 1999,
2001, 2002).

The DPE reactions occur without noticeable net enthalpy changes since the
total number of glucosidic bonds remains constant and every inter-sugar link-
age contains approximately the same enthalpy (Goldberg et al., 1991). This
raises the question of the reaction’s driving force. To the best of our knowledge
Nakatani (1999) was the first to propose that in equilibrium the DP distribu-
tion has maximal entropy. Our statistical description rigorously proves that
this must indeed be the case, being a direct consequence of the second law
of thermodynamics applied to dilute solutions. This entropic principle en-
tails that the molar fractions of the different DPs approach an exponential
distribution. The corresponding exponential factor β fully characterizes the
equilibrium distribution of CAZyme-mediated reaction systems and thus rep-
resents an adequate generalization of the classical equilibrium constant. While
the equilibrium constant is q = 1 for every individual reaction (Tewari et al.,
1997), the functional form of β is determined by constraints imposed by the
enzymatic mechanism and reveals the dependence on the initial conditions.
It is predicted to decrease when the average initial degree of polymerization,
DPini, increases.

We expect that the principle of constrained entropy maximization provides
a sound framework applicable to “entropic” enzymes beyond the examples pre-
sented herein. One possible example with relevance for plant physiology is the
transketolase (TK) which catalyzes several transfer reactions in the Calvin-
Benson Cycle (or reductive pentose phosphate cycle) in chloroplasts (Stitt
et al., 2010). Recently, Raines (2010) has proposed a TK-centric viewpoint
of the Calvin-Benson Cycle and it would be interesting to see if the entropic
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viewpoint could provide any insights here as well.
The empiric observations which led us to a description of polysaccharide

equilibria in terms of distribution functions resemble those found by Alberty
and Oppenheim (1986) for the homologous series of alkanes and alkenes. How-
ever, by putting the emphasis on entropy and the dispersal of reactants, our
approach rather follows the philosophy expressed by Wicken (1978) and Craig
(1992). Note, that every flux, whether mechanical, electrical or chemical, is
a thermodynamically irreversible process and insofar dissipates energy and
increases the system’s entropy. Whereas usually the associated increase in
entropy is attributed to mere “friction”, that is transformation of chemical en-
ergy into heat, the inquiry at hand considers the dispersal of energy among the
reactants. Especially in the case of isenthalpic transglycosilations, the bond
energy is then retained in a useful form in the biochemical system. Thus,
entropy increase per se does not lead to a waste of energy.

Frequently misinterpreted, entropy has been an elusive concept ever since
its introduction by Rudolf Clausius.2 Even up to this day foundational
studies are concerned with explaining the second law (Esposito and Van den
Broeck, 2010; Lieb and Yngvason, 1999; Mackey, 1989; Uffink, 2001). Ulti-
mately, the entropy law is based on the statistical motion of a large number
of microscopic bodies. Nevertheless, macroscopic thermodynamics as devel-
oped by Gibbs has proven to be successful again and again and will remain a
cornerstone of the natural sciences (Landau and Lifschitz, 1979). Although a
more detailed treatment using statistical mechanics is possible (see e.g. Flory,
1944), a macroscopic approach is often preferable, since it does not rely on a
specific model of the microscopic realization of a system or as Callen puts it,

predictions should be drawn from the most general and least detailed
assumptions possible. Models, endemic to statistical mechanics,
should be eschewed whenever the general methods of macroscopic
thermodynamics are sufficient. (Callen, 1985)

Entropy, in terms of which a rigorous criterion for equilibrium is formu-
lated, is a Janus-faced concept since it is also seen as a key in developing a
non-equilibrium theory. It is sometimes stated that thermodynamics, as it

2see e.g. http://entropysite.oxy.edu/

http://entropysite.oxy.edu/
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refers to its classical form, is a misnomer and that it should rather be called
thermostatics. This is attributed to the fact that all observables in this theory
are defined for equilibrium only. However, the outcome of change from one
equilibrium state to another can be assessed. Also, it is possible to predict
in which direction a system will move if a certain constraint (a ’plug’) is re-
moved. In our in vitro system, the ’plug’ consists of a practically infinitely
high activation energy, and it is ’removed’ by supplying enzymes which open
up a feasible path for the reaction. Moreover, the deceleration in the temporal
increase of the mixing entropy in the DPE1 system (cf. Fig. 4.4) became more
clear because we knew exactly which entropy the system should approach if
DPE1 would not use maltose.

Thus, equilibrium thermodynamics is useful to interpret dynamics, but in-
deed, the path taken by a changing system cannot be synthesized using this
framework. For this we had to use stochastic simulations based on Gillespie’s
algorithm (Gillespie, 1977). To date, there is no rigorous variational principle
(like maximum entropy) accepted for non-equilibrium systems which would
provide a solution to this problem. Onsager (1931) provided first steps but the
subsequent development of irreversible thermodynamics based on the principle
of local equilibrium and extremal entropy production density has been criti-
cized due to logical flaws and contradictory consequences (see the discussion
in Jaynes, 1980). The most promising candidates for the future seem to be the
principle of maximum caliber (Ghosh et al., 2006; Jaynes, 1980) and thermo-
dynamics based on the second entropy formulation (Attard, 2009). Both share
the emphasis on the probability of micro-trajectories.

It can be expected that a clarification in this field would be a great leap
forward both for understanding classical thermodynamics3 and processes in
living systems.

As an example, we studied a dynamic property of an open metabolic system
using a stochastic model. Regarding the role of different GTases and phospho-
rylases in vivo, several studies have provided a wealth of information to re-

3“Human anatomy contains a key to the anatomy of the ape. The intimations of
higher development among the subordinate animal species, however, can be understood
only after the higher development is already known.” (Marx, 1983, translation from
http://www.marxists.org)

http://www.marxists.org
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construct the pathway of starch degradation (Colleoni et al., 1999a; Critchley
et al., 2001; Fettke et al., 2006; Lu and Sharkey, 2004; Lu et al., 2006). From
an evolutionary perspective we have posed the problem of why the downstream
pathway is found to have such a peculiar design involving a heteroglycan pool
in the cytosol. D. E. Atkinson, who introduced the adenylate energy charge,
gave a characterization of the interplay between physiology and evolution. His
statement would rather loose in clarity if it were to be rephrased:

Evolution is the purposeless process by which purpose and function
arise. [. . .] It must be evident that any attempt to deal separately
with function and evolution is a particularly unfortunate example
of the establishment of a distinction where there is no difference.
[. . .] Evolution occurs through selection of function. [. . .] A pa-
leontologist or taxonomist whose only concern is with the details
of structure for their own sake, without regard to function, is as
limited in his view as is a biochemist who is interested only in the
physical or kinetic properties of enzymes, without regard to the sig-
nificance of those properties in the complex evolved interrelations
of the living cell. (Atkinson, 1977)

Backed up by our thermodynamic approach and using stochastic simulations
we have proposed that the entropy-driven turnover of the SHG pool realizes
the function of a low pass filter, translating a fluctuating maltose input from
the chloroplasts into a constant provision of carbohydrates for downstream
pathways. This provided interesting hints as to the buffering function of the
SHG pool, but a non-equilibrium theory would definitely allow to infer more
general results.

In conclusion, our concept offers a shift in perspective by suggesting that cel-
lular metabolism is organized as an intricate interplay of energy- and entropy-
driven processes. Apparently, living cells have evolved to use internal entropy
gradients constructively, using multifarious polymer-active enzymes which ef-
ficiently produce and consume polydisperse pools of metabolites.



Chapter 5

Conclusions

But who am I to doubt or question the

inevitable being

For these are but a few discoveries

We find inside the Secret Life of Plants
Stevie Wonder

Throughout this treatise the reader will have noticed that the author is
optimistic regarding the important role physical methods and principles can
have in understanding living systems and metabolism in particular. As long as
we are totally aware what physics can tell us, we will never fall into the pit of
reductionism and maintain a systems viewpoint. Such reductionism would be
wrong since it neglects the semantic gap between different scientific theories.
Biological processes do have a physical correlate, but that does not mean
necessarily that a better understanding of a system is reached if the biological
explanation is replaced by a physical one. The physical realization is a
crucial but not the only aspect of a biological function. One could equally
well argue that biology is the higher truth, since living systems can control the
constraints of their physico-chemical subsystems for survival.

In my opinion, it should be our goal to emphasize the unity of science
by showing that their exist transitions between the disciplines. The interfa-
cial catalysis of starch degradation is one interesting example. We have seen
that interfacial enzymes of plant carbohydrate metabolism can almost immedi-
ately trigger spontaneous physical changes on the meso- to macro-scale. These
changes feed back to the adsorption of the enzyme. Based on this system we
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could formulate the hypothesis that reversible phosphorylation at the interface
is an effective system to rapidly adjust the starch degradation. The regulatory
principles to control the synergistic effect remain to be shown but it is hoped
that even more sophisticated methods from surface science can make it into
the biochemistry of interfacial enzymes. The framework using the available
area function is hopefully a good starting point.

Another example where physics has provided insight is the case of entropy-
driven transferases. I think with this we could provide a convincing rationale
for some peculiar properties of DPEs observed in the literature over the last
decades. Moreover, it proved to be a relatively simple system in which the 2nd

law of thermodynamics can be quantitatively observed over time.
The latter work, I believe, has much more potential and we may have seen

only the tip of the iceberg. I cannot think of an example where entropy has
been discussed in the context of metabolism in the way it was done here. Usu-
ally, entropy is associated with self-assembly processes and ligand interactions
but not with enzymatic reactions.

In conclusion, one may say that in a time with a great fragmentation of
science one should now and then try to bring together different concepts and
elaborate these in conjunction. In the long run, I do not see any other possi-
ble lingua franca than mathematics, whatever structure it may have in the
future.
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Nondimensionalizing balance

equations for competitive

adsorption on a heterogeneous

interface

Consider the equation for the interfacial species in (2.33b),

de∗

dt
= F ◦

[
(dgφ) ka (dge)−

(
kd + rg1(p×m)

)
◦ e∗

]
.

First, it is easy to nondimensionalise the bulk enzyme concentrations and the
desorption constants, leading to

= F ◦
[
(dgφ) ka (dge) et −max

ij
{kid,j}

(
κd + %g1(p×m)

)
◦ e∗

]
.

Next, the left-hand side is nondimensionalized by multiplying the equation
with 1/maxij{kid,j} and with (dge∗max)−1 from the right (since the enzyme
concentrations are organized columnwise in the matrix e∗):

dθ

dτ
= F ◦

[
(dgφ)

ka

maxij{kid,j}
(dge)

(
dg

e∗max

et

)−1

−
(
κd + %g1(p×m)

)
◦ θ

]
.

Now, we (Hadamard) multiply ka with kd ◦ k−d = 1(p×m), where k−d is the
Hadamard inverse, to introduce the matrix of association constants:

= F ◦

[
(dgφ) (κd ◦Ka) (dge)

(
dg

e∗max

et

)−1

−
(
κd + %g1(p×m)

)
◦ θ

]
.
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According to a rule for the Hadamard product (Lemma 5.1.2 in Horn and
Johnson, 1991, p. 304) the term on the left-hand side in the brackets can be
rewritten as

(dgφ) (κd ◦Ka) (dge) = (dgφ)κd ◦Ka (dge) ,

where the usual matrix product takes precedence over the Hadamard product.
Permuting the diagonal matrices to the right of the Hadamard product allows
to introduce the rescaled association constants, Λi

a,j, leading to

dθ

dτ
= F ◦

[
(dgφ)κd ◦Λa (dge)−

(
κd + %g1(p×m)

)
◦ θ
]
.

Hadamard multiplication with κ−
d ◦κd = 1(p×m) from the right and exploiting

associativity and distributivity laws yields

= F ◦
[
(dgφ)κd ◦ κ−

d ◦Λa (dge)−
(
1(p×m) + %gκ

−
d

)
◦ θ
]
◦ κd.

Again, we look at the left term in the brackets. Applying the rule referred to
above yields

(dgφ)κd ◦ κ−
d ◦Λa (dge) = (dgφ)

(
κd ◦ κ−

d

)
I(m×m) ◦Λa (dge)

= (dgφ) 1(p×m) ◦Λa (dge)

= (dgφ)
(
1(p×m) ◦Λa

)
(dge)

= (dgφ) Λa (dge) ,

where I(m×m) is the usual identity matrix with only ones in the diagonal and
zero otherwise. Finally, Eq. (2.36) results from substituting this and setting
%g = 0. The conservation relation is nondimensionalized by using elementary
matrix rules for the transpose.
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Materials and methods

Chemicals. ATP was purchased from Roche (product no. 10519979001, Ger-
many). Maltose (product no. EC 200-716-5), α-glucans, glucose 1-phosphate
(product no. EC 260-154-1) and glycogen (from oyster, type II) were ob-
tained from Sigma-Aldrich (Taufkirchen, Germany). Commercial maltodex-
trins (product no. EC 232-940-4) were separated into larger (50-60%[v/v])
and smaller (60-70%) sized compounds by precipitation with varying concen-
trations of ethanol following precrystallization (Hejazi et al., 2009).
Recombinant proteins. Recombinant plastidial α-glucan phosphorylase
(Pho1) from Oryza sativa was expressed and purified as described elsewhere
(Fettke et al., 2010).
Cloning. For cloning of dpe1 (At5g64860) and dpe2 (At2g40840) from Ara-
bidopsis thaliana, total RNA was isolated from leaves (100 mg fresh weight
each) by using the Nucleo Spin RNA Plant Kit (Machery-Nagel; Düren, Ger-
many).

For first strand cDNA synthesis encoding DPE1, the SuperScript II Re-
verse Transcriptase (Invitrogen, Darmstadt, Germany) and a specific 3’ primer
(5’-3’): AAGCCGTCCGTACAATGACAAAAGATCTCT were used following
the instructions of the manufacturer. The resulting cDNA was then amplified
by PCR using the EcoRI and XhoI linked primers (5’ forward primer [5’-3’]:
GAATCCGATGGAGGTCGTTTCGAGTAATTC and 3’ reverse primer [5’-
3’]: CTCGAGAAGCCGTCCGTACAATGAACCAAG) that include the com-
plete cDNA except the predicted transit sequence (135 bp from the start). In
a final volume of 50 µl, the PCR reaction mixture contained 2 µl of the re-
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verse transcription mixture and Phusion Taq Polymerase (Finnzymes, Espoo,
Finland). Subsequently, the 2,2 kb dpe1 encoding fragment was subcloned
into pGEM T-easy vector (Promega, Mannheim, Germany). Finally, the dpe1
fragment was restricted by EcoRI/XhoI and ligated to the expression vector
pET23b (Novagen, Darmstadt, Germany).

For cloning of dpe2, first strand cDNA was synthesised by using the 3’
primer (5’-3’): TTATGGGTTTGGCTTAGTCGAGCCATTGGC (see above)
and was then amplified by HF Polymerase (product no. 11732650001, Roche,
Mannheim, Germany) by use of the following primers: 5’ forward primer
(5’-3’): ATGATGAATCTAGGATCTCTTTCGTTGAG and 3’ reverse primer
(5’-3’): TTATGGGTTTGGCTTAGTCGAGCCATTGGC. Subsequently, the
dpe2 encoding cDNA was ligated to the pGEM-T Easy vector. Subcloning was
performed by the Gateway Technology (Invitrogen, Darmstadt, Germany) fol-
lowing the instructions of the manufacturer. Subsequently, the pDONR221 was
recombined with the attB1- and attB2 flanked dpe2 cDNA (primers: attB1
[5’-3’]: AAAAAGCAGGCTTAATGATGAATCTAGGAT and attB2 [5’-3’]:
AGAAAGCTGGGTATGGGTTTGGCTTAGTCG). Finally, the PCR prod-
uct was cloned into pDEST17.

DPE1 and DPE2 were expressed in E.coli BL21 (DE3) harboring the plas-
mid pET23b and pDEST17, respectively. Cells were grown in LB medium con-
taining 100 µg/ml ampicillin at 37˚C until the suspension reached an OD600

of approximately 0.8. Following the addition of IPTG (final concentration 1
mM) the suspension was cooled to 18˚C and incubated over night. Cells were
harvested, washed with 50 mM Tris-HCl (pH 7.5), resuspended in grinding
buffer (20 mM NaH2PO4, 500 mM NaCl, 2.5 mM DTT, 20 mM imidazole and
1% [v/v] protease inhibitor cocktail III [Calbiochem, Darmstadt, Germany],
pH 7.4).and sonicated on ice. Following centrifugation (20 min at 20000 g)
the supernatant was passed through a nitrocellulose filter (pore size 0.45 µm)
and the filtrate was loaded onto a HisTrap-HP-column (1 ml; GE Healthcare,
München, Germany). For elution, a stepwise increasing imidazole concentra-
tion (up to 500 mM, dissolved in grinding buffer) was used. Fractions contain-
ing the desired protein were combined, concentrated and were then transferred
to storage buffer (50 mM Hepes-KOH, pH 7.5, 1 mM EDTA, 2 mM DTT),
using Amicon Ultra-4 centrifugal filter-unit concentrator (MWCO 30000, Mil-
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lipore, Schwalbach am Taunus, Germany). Finally, glycerol was added (final
concentration of 20% [v/v]) and aliquots were frozen at -80˚C.
Capillary Electrophoresis (CE). Glucans were separated from denatured
proteins by using a centrifugal filter device (YM-30; Microcon, Millipore,
Schwalbach am Taunus, Germany) and were freeze dried. Each sample was
diluted in 2µl 0.2 M 8-aminopyrene-1,3,6-trisulfonic acid (APTS) in 15% [v/v]
aqueous acetic acid plus 2 µl 1 M Na-cyanoborohydride. Following incubation
(4 h at 37˚C) and 250- to 500fold dilution with water, the labeled samples
were applied to CE using a PA-800 (Beckman Coulter, Krefeld, Germany).
Protein concentrations. Soluble proteins were quantified using Bio-Rad
protein assay (Bio-Rad, München, Germany). BSA served as standard (Roth,
Karlsruhe, Germany).
Photometric assay of the activity of recombinant DPE1 and DPE2

(PA). Activity was measured using a slightly modified version of the coupled
photometric assay described by Lu et al. (2006). For DPE1 maltotriose (final
concentration 2 mM) served as substrate. The assay of DPE2 contained mal-
tose (2 mM maltose) and glycogen from oyster (1 mg/ml; final concentrations
each).
Long-term assay of the recombinant transferases (LTA). For LTA, all
reaction mixtures containing 0.025% [w/v] sodium azide were incubated at
30˚C for several days. The following reaction mixtures were used: a) DPE1
or DPE2 (25 mU each; 100 µl final volume) were incubated with 500 nmol
α-glucans, 2.5 mM citrate-NaOH (pH 7.0). In some experiments, the citrate
buffer was replaced by 25 mM Hepes-KOH pH 7.0. Under these conditions the
same α-glucan patterns were observed. b) DPE1/ATP: DPE1 (25 mU DPE1
each; 100 µl final volume), 25 mM Hepes-KOH (pH 7.0), 6.5 mM MgCl2, 500
nmol maltotriose or maltoheptaose, 0 to 500 nmol ATP and 500 mU hexoki-
nase (from yeast, Roche, Mannheim, Germany). c) Pho1/G1P: Pho1 (0.5 µg
each; 100 µl final volume), 25 mM Hepes-KOH (pH 7.0) 1 µmol G1P, 250
nmol maltotetraose or 250 nmol maltoheptaose. d) Pho1/ Pi: Pho1 (0.5 µg;
100 µl final volume), 25 mM Hepes-KOH (pH 7.0), 250 nmol maltoheptaose,
12.5 µmol orthophosphate.

All enzymes were replaced by a fresh preparation every day. At intervals,
aliquots (equivalent to 50 nmol α-glucans) were withdrawn and reactions were
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terminated by heating (95˚C for 5min).
Patterns of α-glucans. Patterns of α-glucans were monitored by capillary
electrophoresis (CE) following coupling to APTS.
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