
Digital Engineering Fakultät

Sebastian Kruse | Zoi Kaoudi | Bertty Contreras-Rojas | Sanjay Chawla | Felix
Naumann | Jorge-Arnulfo Quiané-Ruiz

RHEEMix in the data jungle: A cost-based
optimizer for cross-platform systems

Suggested citation referring to the original publication:
The VLDB Journal 29 (2020) 6, pp. 1287 - 1310
DOI: https://doi.org/10.1007/s00778-020-00612-x
ISSN: 1066-8888, 0949-877X

Journal article | Version of record

Secondary publication archived on the Publication Server of the University of Potsdam:
Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät
22
ISSN:
URN: https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-519443
DOI: https://doi.org/10.25932/publishup-51944

Terms of use:
This work is licensed under a Creative Commons License. This does not apply to quoted
content from other authors. To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/.

The VLDB Journal (2020) 29:1287–1310
https://doi.org/10.1007/s00778-020-00612-x

REGULAR PAPER

RHEEMix in the data jungle: a cost-based optimizer for cross-platform
systems

Sebastian Kruse1 · Zoi Kaoudi2 · Bertty Contreras-Rojas3 · Sanjay Chawla3 · Felix Naumann1 ·
Jorge-Arnulfo Quiané-Ruiz2

Received: 7 May 2019 / Revised: 21 January 2020 / Accepted: 12 April 2020 / Published online: 18 May 2020
© The Author(s) 2020

Abstract
Data analytics are moving beyond the limits of a single platform. In this paper, we present the cost-based optimizer of Rheem,
an open-source cross-platform system that copes with these new requirements. The optimizer allocates the subtasks of data
analytic tasks to the most suitable platforms. Our main contributions are: (i) a mechanism based on graph transformations
to explore alternative execution strategies; (ii) a novel graph-based approach to determine efficient data movement plans
among subtasks and platforms; and (iii) an efficient plan enumeration algorithm, based on a novel enumeration algebra. We
extensively evaluate our optimizer under diverse real tasks. We show that our optimizer can perform tasks more than one
order of magnitude faster when using multiple platforms than when using a single platform.

Keywords Cross-platform · Polystore · Query optimization · Data processing

1 Introduction

Modern data analytics are characterized by (i) increasing
query/task 1 complexity, (ii) heterogeneity of data sources,
and (iii) a proliferation of data processing platforms (plat-
forms, for short). Examples of such analytics include:

1 Hereafter, we use the term task without loss of generality.

B Zoi Kaoudi
zoi.kaoudi@tu-berlin.de

Sebastian Kruse
sebastian.kruse@hpi.de

Bertty Contreras-Rojas
brojas@hbku.edu.qa

Sanjay Chawla
schawla@hbku.edu.qa

Felix Naumann
felix.naumann@hpi.de

Jorge-Arnulfo Quiané-Ruiz
jorge.quiane@tu-berlin.de

1 Hasso Plattner Institute, University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

2 Technische Universität Berlin, Einsteinufer 17, Fak. IV, FG
DIMA, Sekr. EN7, 10587 Berlin, Germany

3 Qatar Computing Research Institute, HBKU, Hamad Bin
Khalifa Research Complex, Education City, Doha, Qatar

(i) North York hospital that needs to process 50 diverse
datasets that run on a dozen different platforms [34]; (ii) Air-
line companies that need to analyze large datasets of different
data formats, producedbydifferent departments, and residing
on multiple data sources, so as to produce global reports for
decisionmakers [51]; (iii) Oil and gas companies that need to
process large amounts of diverse data spanning various plat-
forms [10,32]; (iv) Data warehouse applications that require
data to be moved from a MapReduce-like system into a
DBMS for further analysis [24,59]; (v) Business intelligence
applications that typically require an analytic pipeline com-
posed of different platforms [61]; and (vi) Machine learning
systems that use multiple platforms to improve performance
significantly [15,41].
Cross-platform data processingAs a result, today’s data ana-
lytics often need to perform cross-platform data processing,
i.e., running their tasks on more than one platform. Research
and industry communities have identified this need [5,62]
and have proposed systems to support different aspects of
cross-platform data processing [4,7,13,25,27,30]. We have
identified four situations in which an application requires
support for cross-platform data processing [4,40]:

(1) Platform independence: Applications run an entire task
on a single platform but may require switching platforms

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-020-00612-x&domain=pdf

1288 S. Kruse et al.

for different input datasets or tasks usually with the goal
of achieving better performance.

(2) Opportunistic cross-platform: Applications might ben-
efit performance-wise from using multiple platforms to
run one single task.

(3) Mandatory cross-platform: Applications may require
multiple platforms because the platform where the
input data resides, e.g., PostgreSQL, cannot perform the
incoming task, e.g., a machine learning task. Thus, data
should be moved from the platform in which it resides to
another platform.

(4) Polystore: Applications may require multiple platforms
because the input data is stored on multiple data stores,
e.g., in a data lake setting.

Current practice The current practice to cope with cross-
platform requirements is either to build specialized systems
that inherently combine two or more platforms, such as
HadoopDB [2], or to write ad-hoc programs to glue differ-
ent specialized platforms together [7,8,13,26,48]. The first
approach results in being tied to specific platforms, which
can either become outdated or outperformed by newer ones.
Re-implementing such specialized systems to incorporate
newer systems is very often prohibitively time-consuming.
Although the second approach is not coupled with specific
platforms, it is expensive, error-prone, and requires expertise
on different platforms to achieve high efficiency.
Need for a systematic solution Thus, there is a need for
a systematic solution that decouples applications from the
underlying platforms and enables efficient cross-platform
data processing, transparently from applications and users.
Theultimate goalwouldbe to replicate the success ofDBMSs
for cross-platform applications: Users formulate platform-
agnostic data analytic tasks, and an intermediate system
decides on which platforms to execute each (sub)task with
the goal of minimizing cost (e.g., runtime or monetary cost).
Recent research works have taken first steps toward that
direction [25,30,61,63]. Nonetheless, they all lack important
aspects. For instance, none of these works considers differ-
ent alternatives for data movement and as a result they may
hinder cross-platform opportunities. Recently, commercial
engines, such as DB2 [22], have extended their systems to
support different platforms, but none provides a systematic
solution: Users still have to specify the platform to use.
Cost-based cross-platform optimization The key component
for a systematic solution is a cross-platform optimizer, which
is the focus of this paper.Concretely,we consider the problem
of finding an execution plan able to run across multiple plat-
forms thatminimizes the execution cost of a given task. A very
first solution would be a rule-based optimizer: e.g., execute
a task on a centralized/distributed platform when the input
data is small/large. However, this approach is neither practi-
cal nor effective. First, setting rules at the task level implicitly

assumes that all the operations in a task have the same compu-
tational complexity and input cardinality. Such assumptions
do not hold in practice, though. Second, the cost of a task on
any given platformdepends onmany input parameters,which
hampers a rule-based optimizer’s effectiveness as it oversim-
plifies the problem. Third, as new platforms and applications
emerge, maintaining a rule-based optimizer becomes very
cumbersome.We thus pursue a cost-based approach instead.
Challenges Devising a cost-based optimizer for cross-
platform settings is challenging for many reasons: (i) Plat-
forms vastly differ in their supported operations; (ii) the
optimizer must consider the cost of moving data across plat-
forms; (iii) the optimization search space is exponential with
the number of atomic operations in a task; (iv) cross-platform
settings are characterized by high uncertainty, i.e., data dis-
tributions are typically unknown, and cost functions are
hard to calibrate; and (v) the optimizer must be extensible
to accommodate new platforms and emerging application
requirements.
Contributions We delve into the cross-platform optimizer
of Rheem [3,4,47], our open-source cross-platform system
[55].Whilewepresent the systemdesign of Rheem in [4] and
brieflydiscuss the datamovement aspect in [43], in this paper,
we describe in detail how our cost-based cross-platform opti-
mizer tackles all of the above research challenges.2 The idea
is to split a single task into multiple atomic operators and
to find the most suitable platform for each operator (or set
of operators) so that its total cost is minimized. After a
Rheem background (Sect. 2) and an overview of our opti-
mizer (Sect. 3), we present our contributions:

(1) We propose a graph-based plan inflationmechanism that
is a very compact representation of the entire plan search
space, andweprovide a costmodel purely based onUDFs
(Sect. 4).

(2) We model data movement across platforms as a new
graph problem, which we prove to be NP-hard, and pro-
pose an efficient algorithm to solve it (Sect. 5).

(3) We devise a new algebra and a new lossless pruning
technique to enumerate executable cross-platform plans
for a given task in a highly efficient manner (Sect. 6).

(4) We explain howwe exploit our optimization pipeline for
performing progressive optimization to deal with poor
cardinality estimates (Sect. 7).

(5) Wediscuss our optimizer’s design that allows us to seam-
lessly support new platforms and emerging applications
requirements (Sect. 8).

(6) We extensively evaluate our optimizer under diverse
tasks using real-world datasets and show that it allows
tasks to run more than one order of magnitude faster

2 Note that,we have recently equippedRheemwith anML-based cross-
platform optimizer [39].

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1289

Sample

(a) RHEEM plan (b) Execution plan

Map
transform

Map
compute

Reduce
sum & count

Map
update

Table
Source

RepeatLoop

Collection
Sink

Collection
Source

Broadcast
Cache

Sample

RepeatLoop

Map
transform

Map
compute

Reduce
sum & count

Map
update

Collection
Sink

Collection
Source

Table
Source

Collection
Sink

Filter
select

Filter
select

Collection
Sink

Results2Stream

RHEEM operator

Spark execution operator
JavaStreams execution operator

UDF

Input/Output

Postgres execution operator

Fig. 1 A Rheem plan that represents the SGD algorithm of data
extracted from a database (left side) and its execution plan with addi-
tional execution operators for datamovementwhen using three different
processing platforms (right side)

by using multiple platforms instead of a single platform
(Sect. 9).

Finally, we discuss related work (Sect. 10) and conclude
this paper with a summary (Sect. 11).

2 Rheem background

Before delving into the details, let us briefly outline Rheem,
our open-source cross-platform system, so as to establish
our optimizer’s context.Rheem decouples applications from
platforms with the goal of enabling cross-platform data pro-
cessing [4,5]. Although decoupling data processing was the
driving motive when designing Rheem, we also adopted a
three-layer optimization approach envisioned in [5]. One
can see this three-layer optimization as a separation of con-
cerns for query optimization. Overall, asRheem applications
have good knowledge of the tasks’ logic and the data they
operate on, they are in charge of any logical and physical
optimizations, such as operator reordering (the application
optimization layer). Rheem receives from applications an
optimized procedural Rheem plan and produces an execu-
tion plan, which specifies the platforms to use so that the
execution cost is minimized (the core optimization layer).
Then, the selected platforms run the plan by performing fur-
ther platform-specific optimizations, such as setting the data
buffer sizes (the platform optimization layer). Rheem is at
the core optimization layer.

Rheem is composed of two main components (among
others): the cross-platform optimizer and the executor. The
cross-platform optimizer gets as input a Rheem plan and
produces an execution plan by specifying the platform to use
for each operator in the Rheem plan. In turn, the executor
orchestrates andmonitors the execution of the generated exe-
cution plan on the selected platforms. For more details about
Rheem’s data model and architecture, we would like to refer

the interested reader to [4,55]. In this paper, we focus on the
cross-platform optimizer. Below, we explain what Rheem
and execution plans are, i.e., the input and output of the cross-
platform optimizer.
Rheem plan As stated above, the input to our optimizer is a
procedural Rheem plan, which is essentially a directed data
flow graph. The vertices are Rheemoperators, and the edges
represent the data flow among the operators, such as in Spark
or Flink.Rheem operators are platform-agnostic and define a
particular kind of data transformation over their input, e.g., a
Reduce operator aggregates all input data into a single out-
put. Rheem supports a wide variety of transformation and
relational operators, but it is extensible to adding other types
of operators. A complete list of the currently supported oper-
ators can be found in Rheem’s documentation [55]. Only
Loop operators accept feedback edges, thus enabling itera-
tive data flows. A Rheem plan without any loop operator is
essentially a DAG. Conceptually, the data is flowing from
source operators through the graph and is manipulated in the
operators until it reaches a sink operator. As of now, Rheem
supports neither nested loops nor control-flow operators.

Example 1 Figure 1a shows a Rheem plan for stochas-
tic gradient descent (SGD) when the initial data is stored
in a database.3 Data points are read via a TableSource
and filtered via a Filter operator. Then, they are (i) stored
into a file for visualization using a CollectionSink and (ii)
parsed using a Map, while the initial weights are read via a
CollectionSource. The main operations of SGD (i.e., sam-
pling, computing the gradients of the sampled data point(s)
and updating the weights) are repeated until convergence
(i.e., the termination condition of RepeatLoop). The result-
ing weights are output in a collection. For a tangible picture
of the context in which our optimizer works, we point the
interested reader to the examples of our source code.4

Execution plan Similar to a Rheem plan, an execution plan is
a data flow graph with two differences. First, the vertices are
platform-specific execution operators. Second, the execution
plan may comprise additional execution operators for data
movement across platforms, e.g., a Collect operator. Con-
ceptually, given a Rheem plan, an execution plan indicates
the platform the executor must enact each Rheem operator.

Example 2 Figure 1b shows the execution plan for the SGD
Rheem plan when Postgres, Spark, and JavaStreams are
the only available platforms. This plan exploits Postgres to
extract the desired data points, Spark’s high parallelism for
the large input dataset and at the same time benefits from the

3 Please note that a colored printout of this paper is recommended for
a better interpretation of the figures.
4 https://github.com/rheem-ecosystem/rheem-benchmark.

123

https://github.com/rheem-ecosystem/rheem-benchmark

1290 S. Kruse et al.

Fig. 2 The end-to-end
cross-platform optimization
pipeline

Map
parse

Reduce
count

Map
parse

Reduce
count

Plan Operator
Costs

Movement
Costs

Plan
Enumeration

Map
parse

Reduce
count

operator costs
operator costs +
data movement

cheapest
execution plan

Section 4 Section 5 Section 6

(platform-agnostic)
RHEEM plan

Re-optimization
Checkpoints

Section 7

checkpointed
execution plan

Flexible Design
Section 8

low latency of JavaStreams for the small collection of cen-
troids. Also note the three additional execution operators for
data movement (Results2Stream, Broadcast) and to make
data reusable (Cache). As we show in Sect. 9, such hybrid
execution plans often achieve higher performance than plans
with only a single platform: e.g., few seconds in contrast to
5 min.

3 Overview

We now give an overview of our cross-platform cost-based
optimizer. Unlike traditional relational database optimizers,
the only goal of our cross-platform optimizer is to select
one or more platforms to execute a given Rheem plan in
the most efficient manner. It does not aim at finding good
operator orderings, which take place at the application layer
[5]. The main idea behind our optimizer is to split a single
task into multiple atomic operators and to find the most suit-
able platform for each operator (or set of operators) so that
the total cost is minimized. For this, it comes with (i) an
“upfront” optimization process, which optimizes the entire
Rheem plan before execution, and (ii) a set of techniques to
re-optimize a plan on the fly to handle uncertainty in cross-
platform settings.

Figure 2 depicts the workflow of our optimizer. At first,
given a Rheem plan, the optimizer passes the plan through a
plan enrichment phase (Sect. 4). In this phase, the optimizer
first inflates the input plan by applying a set of mappings.
These mappings list how each of the platform-agnostic
Rheem operators can be implemented on the different plat-
forms with execution operators. The result is an inflated
Rheem plan that can be traversed through alternative routes.
That is, the nodes of the resulting inflated plan are Rheem
operators with all its execution alternatives. The optimizer
then annotates the inflated plan with estimates for both data
cardinalities and the costs of executing each execution oper-
ator. Next, the optimizer takes a graph-based approach to
determine howdata can bemovedmost efficiently among dif-
ferent platforms and annotates the inflated plan accordingly
(Sect. 5). It then uses all these annotations to determine the
optimal execution plan via an enumeration algorithm. This

enumeration algorithm is centered around an enumeration
algebra and a highly effective, yet lossless pruning tech-
nique (Sect. 6). Finally, as data cardinality estimatesmight be
imprecise,5 the optimizer inserts checkpoints into the execu-
tion plan for on-the-fly re-optimization if required (Sect. 7).
Eventually, the resulting execution plan can be enacted by
the executor of Rheem.

We detail each of the above phases in the following
(Sects. 4–7). Additionally, we discuss the flexible design of
our optimizer, which allows for extensibility: Adding a new
platform to Rheem does not require any change to the opti-
mizer codebase (Sect. 8).

4 Plan enrichment

Given a Rheem plan, the optimizer has to do some prepara-
tory work before it can start exploring alternative execution
plans. We refer to this phase as plan enrichment. Concretely,
our optimizer (i) determines all eligible platform-specific
execution operators for eachRheem operator (Sect. 4.1); and
(ii) estimates their execution costs (Sect. 4.2).

4.1 Plan inflation

WhileRheem operators declare certain data processing oper-
ations, theydonot provide an implementation andare thus not
executable. Therefore, our optimizer inflates theRheem plan
with all corresponding execution operators, each providing
an actual implementation on a specific platform. Mapping
dictionaries is a basic approach to determine correspond-
ing execution operators, such as in [25,38]. This approach
would allow for 1-to-1 operator mappings between Rheem
and execution operators. However, different data processing
platforms work with different abstractions: While databases
employ relational operators and Hadoop-like systems build
upon Map and Reduce, special purpose systems (e.g., graph
processing systems) rather provide specialized operators
(e.g., for the PageRank algorithm). Due to this diversity, 1-

5 Note that devising a sophisticated cardinality estimation technique is
out of the scope of this paper.

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1291

ReduceBy
sum&count

Map
assign

Map
average

ReduceBy
sum&count

Map
sum&count

[950, 1100]
conf: 95% [2.45s, 3.33s]

conf: 80%

cost
estimate

output cardinality
estimate

Map

GroupBy

ReduceBy ReduceBy

(b)(c)

(a)

(d)

RHEEM operator Spark execution operator JavaStreams execution operator

UDF

(a) Operator mappings

Map

GroupBy

GroupBy
ReduceBy
sum&count

(a) 1-to-1 mapping
(b) 1-to-n mapping
(c) n-to-1 mapping
(d) m-to-n mapping

mappings

(b)

Fig. 3 Rheem plan enrichment: On the top, there are different types
of mappings for the ReduceBy operator, while on the bottom, the
ReduceBy Rheem operator gets inflated using these mappings

to-1 mappings are often insufficient and a flexible operator
mapping technique is called for supporting more complex
mappings.

4.1.1 Graph-based operator mappings

We thus define operator mappings in terms of graph map-
pings. In simple terms, an operator mapping maps a matched
subgraph to a substitute subgraph. We formally define an
operator mapping as follows.

Definition 1 (Operatormapping)Anoperatormapping p →
s consists of a graph pattern p and a substitution function s.
Assume that p matches the subgraph G of a given Rheem
plan. Then, the operator mapping designates the substitute
subgraph G ′ := s(G) for G via substitution function s.

Usually, the matched subgraph G is a constellation of
Rheem operators (i.e., a group of operators following a
certain pattern) and the substitute subgraph G ′ is a corre-
sponding constellation of execution operators. However, we
also have mappings from execution to execution operators;
and mappings from Rheem to Rheem operators. The latter
allows us to consider platforms that do not natively support
certain execution operators.We illustrate this in the following
example.

Example 3 (Mappings) In Fig. 3a, we illustrate an 1-to-
1 mapping from the ReduceBy Rheem operator to the
ReduceBy Spark execution operator, an 1-to-n mapping
from the ReduceBy Rheem operator maps to a constella-
tion of GroupBy and Map Rheem operators which in turn
are mapped to JavaStreams execution operators via an m-
to-n mapping. Such mappings are crucial for considering

JavaStreams as a possible platform for the ReduceBy Rheem
operator, even if there is no ReduceBy execution operator in
JavaStreams.

In contrast to 1-to-1mapping approaches, our graph-based
approach provides a more powerful means to derive exe-
cution operators from Rheem operators. Our approach also
allows us to break down complex operators (e.g., PageRank)
and map it to platforms that do not support it natively. Map-
pings are provided by developers when adding a newRheem
or execution operator. Adding a new platform thus does not
require any change to our optimizer.

4.1.2 Operator inflation

It is worth noting that applying operator mappings to simply
replace matched subgraphs G by one of their substitute sub-
graphsG ′ would cause two insufficiencies. First, this strategy
would always create only a single execution plan, thereby
precluding any cost-based optimization. Second, the result-
ing execution plan would be dependent on the order in which
the mappings are applied. This is because once a mapping
is applied, other relevant mappings might become inapplica-
ble.Weovercomeboth insufficiencies by introducing inflated
operators in Rheem plans. An inflated operator replaces
a matched subgraph and comprises that matched subgraph
and all the substitute graphs. This new strategy allows us
to apply operator mappings in any order and to account for
alternative operator mappings. Ultimately, an inflated opera-
tor expresses alternative subplans inside Rheem plans. Thus,
our graph-based mappings do not determine the platform to
use for each Rheem operator. Instead, it lists all the alterna-
tives for the optimizer to choose from. This is in contrast to
Musketeer [30] and Myria [63], which use their rewrite rules
to obtain the platform each operator should run on.

Example 4 (Operator inflation) Consider again the k-means
example. Figure 3b depicts the inflation of the ReduceBy
operator. Concretely, the Rheem ReduceBy operator is
replaced by an inflated operator that hosts both the original
and two substitute subgraphs.

As a result, an inflated Rheem plan defines all possible
combinations of execution operators of the original Rheem
plan, but, in contrast to [57], without explicitly materializ-
ing them. Thus, an inflated Rheem plan is a highly compact
representation of all execution plans.

4.2 Operators cost estimation

Once a Rheem plan is inflated, the optimizer estimates and
annotates costs to each alternative execution operator (see
the right side of Fig. 3b). It does so by traversing the plan

123

1292 S. Kruse et al.

Resource UtilizationResource Utilization

Resource cost

Operator Cost

Resource costResource Cost

Resource Unit CostResource Unit CostResource Unit Cost

Hardware Specs.
(provided)

#cores=4
cpuMhz= 2700

Cardinality

Parameters
(automatically learned)

Selectivities
(computed or provided)

Resource Utilization

tro

ur

x

cin

ro

costo

Fig. 4 Operator cost estimation process: The cost of an execution oper-
ator depends on the cost of the resources it consumes, which in turn
depend on both the utilization and the cost of each unit. The resource
utilization depends on the input cardinality

in a bottom-up fashion. Note that cardinality and cost esti-
mation are extremely challenging problems—even in highly
cohesive systems, such as relational databases, which have
detailed knowledge on execution operator internals and data
statistics [45]. As Rheem has little control on the underlying
platforms, the optimizer uses amodular and fullyUDF-based
cost model. This is similar to [37], which usedwrapper-based
selectivity and statistics estimators. Rheem also represents
cost estimates as intervals with a confidence value, which
allows it to perform on-the-fly re-optimization. We discuss
how Rheem does such re-optimizations later on in Sect. 7.

4.2.1 Cost estimation

Inspired by Garlic [37], we propose a simple, yet power-
ful UDF-based approach that decouples the cost formulas to
enable developers to intervene at any level of the cost esti-
mation process. Furthermore, this approach also allows both
the developers to define their own objective criteria for opti-
mizing Rheem plans and the optimizer to be portable across
different deployments.

Figure 4 illustrates this cost estimation process, where
the boxes represent all the UDFs in the process. The total
cost estimate for an execution operator o depends on the
cost of the resources it consumes (CPU, memory, disk, and

network), defined as: costo = tCPUo + tmemo + tdisko + tneto . The
cost of each resource tro is the product of (i) its utilization
ro and (ii) the unit costs ur (e.g., how much one CPU cycle
costs). The latter depends on hardware characteristics (such
as number of nodes and CPU cores), which are encoded in a
configuration file for each platform.

Our optimizer estimates the resource utilizationwith a cost
function ro that depends on the input cardinality cin of its cor-
responding Rheem operator. For instance, the cost function
to estimate the CPU cycles required by the SparkFilter oper-
ator is CPUSF := cin(Filter) × α + β, where parameter α

denotes the number of required CPU cycles for each input
data quantumandparameterβ describes somefixed overhead
for the operator start-up and scheduling.

For iterative tasks, the cost of the loop operator depends
on the number of iterations. If the task itself does not specify
the exact number of iterations, a user can still give hints to
the optimizer and provide a rough estimate. If this infor-
mation is omitted, Rheem uses default values and relies
on re-optimization (Sect. 7). Note that discussing different
techniques to estimate the number of iterations of an ML
algorithm, such as [41], is beyond the scope of this paper.

4.2.2 Cost learner

Obtaining the right values for all these parameters in the
cost model, such as the α, β values, is very time-consuming
if it is done manually via profiling. Furthermore, profiling
operators in isolation is unrealistic in cross-platform settings
as many platforms optimize execution across multiple oper-
ators, e.g., by pipelining. Indeed, we found cost functions
derived from isolated benchmarking to be insufficiently accu-
rate.

We thus take a different approach. Rheem provides an
offline cost learner module that uses historical execution
logs from plans covering all Rheem operators to learn these
parameters. We model the cost as a regression problem. The
estimated execution time is t ′ = ∑

i costi (x, ci) where x is
a vector with all the parameters that we need to learn, and
ci is the input cardinalities. Let t be the real execution time,
we then seek x that minimizes the difference between t and
t ′: xmin = argminx loss(t, t ′). We consider a relative loss

function defined as: loss(t, t ′) =
(|t−t ′|+s

t+s

)2
, where s is a

regularizer inspired by additive smoothing that tempers the
loss for small t .

We then use a genetic algorithm [50] to find xmin. In con-
trast to other optimization algorithms, genetic algorithms
impose only few restrictions on the loss function to be min-
imized. Thus, our cost learner can deal with arbitrary cost
functions and one can calibrate the cost functions with only
little additional effort.

4.2.3 Cardinality estimation

Apart from the parameters, which are automatically learned,
and the hardware specifications, the cost model requires as
input the result sizes of each operator. Even though some
underlying platforms may have their own statistics to com-
pute result sizes, our optimizer does not use such statistics
because they are rarely (or never) exposed to the applications.

Our optimizer estimates the output cardinality of each
Rheem operator by first computing the output cardinalities
of the source operators via sampling and then traverses the
inflated plan in a bottom-up fashion. For this, each Rheem
operator is associated with a cardinality estimator function,
which considers its properties (e.g., selectivity and number

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1293

of iterations) and input cardinalities. For example, the Filter
operator uses cout (Filter):= cin(Filter)×σ f , where σ f is the
selectivity of the user’s Filter operator. The cardinality esti-
mator functions are defined once by the developer (or system
administrator) when adding a new Rheem operator.

Users and applications (the ones issuing input queries)
need to provide the selectivity of theirUDF,which is indepen-
dent of the input dataset. Recall that to address the uncertainty
inherent to the selectivity estimation the optimizer expresses
the cardinality estimates in an interval with a confidence
value. Basically, this confidence value gives the likelihood
that the interval indeed contains the actual cost value. For the
selectivities, the optimizer relies on basic statistics, such as
the number of output tuples and distinct values. These statis-
tics are provided by the application/developer or obtained
by runtime profiling, similar to [33,56]. If not available, the
optimizer uses default values for the selectivities, similarly
to [28,37], and relies on re-optimization for correcting the
execution plan if necessary. We intentionally do not consider
devising a sophisticated cardinality estimation mechanism
as this is an orthogonal problem [58]. This also allows us to
study the effectiveness of our optimizer without interference
from cardinality estimation.

5 Datamovement

Selecting optimal platforms for an execution plan might
require to move and transform data across platforms. This
leads to an inherent trade-off between choosing the opti-
mal execution operators and minimizing data movement and
transformation costs. Additionally, in contrast to distributed
and federated databases, a cross-platform setting typically
has completely different data formats, and hence, data trans-
formation costs must be considered. These make planning
and assessing communication in cross-platform settings a
challenging problem. First, there might be several alterna-
tive data movement strategies, e.g., from RDD to a file or
to a Java object. A simple strategy of transferring data via
a file, such as in [30,63], may miss many opportunities for
cross-platform data processing. Second, the costs of each
strategy must be assessed so that our optimizer can explore
the trade-off between selecting optimal execution operators
and minimizing data movement costs. Third, data movement
might involve several intermediate steps to connect two oper-
ators of different platforms, as also stated in [61].

We thus represent the space of possible communication
steps as a graph (Sect. 5.1). This graph representation allows
us to model the problem of finding the most efficient com-
munication path among execution operators as a new graph
problem (Sect. 5.2). We then devise a novel algorithm to effi-
ciently solve this graph problem (Sect. 5.3). A short version
of our data movement strategy can also be found in [43].

5.1 Channel conversion graph

The channel conversion graph (CCG for short) is a graph
whose vertices are data structures (e.g., anRDD inSpark) and
whose edges express conversions from one data structure to
another. Before formally defining theCCG, let us first explain
howwemodel data structures (communication channels) and
data transformation (conversion operators).
Communication channel Data can flow among operators via
communication channels (or simply channels), which form
the vertices in the CCG. A channel can be, for example, an
internal data structure or a streamwithin a platform, or simply
a file. The yellow boxes in Fig. 5 depict the standard chan-
nels considered by our optimizer for JavaStreams, Postgres,
Spark, and Flink. Channels can be reusable, i.e., they can be
consumed multiple times, or non-reusable, i.e., once they are
consumed they cannot be used anymore. For instance, a file
is reusable, while a data stream is usually not.
Conversion operator When moving data from one platform
to another, it might also become necessary to convert a chan-
nel fromone type to another, e.g., convert anSQLquery result
to a data stream. Such conversions are handled by conversion
operators, which form the edges in the CCG. Conversion
operators are in fact regular execution operators. For exam-
ple, Rheem provides the SqlToStream execution operator,
which transforms the result set of an SQL query to a Java
data stream channel. Rheem also uses conversion operators
to deal with semantic integration issues, such as transforming
data from one format to another (e.g., from CSV to TSV).
The benefit of using conversion operators for both data trans-
fer and transformation is twofold: (i) There is less overhead
in the execution pipeline, and (ii) as they are execution oper-
ators, the conversion costs are straightforward to compute
(see Sect. 4.2).
Channel conversion graphWe now formally define the chan-
nel conversion graph below.

Definition 2 (Channel conversion graph) A CCG is a direct
ed graph G := (C, E, λ), where the set of vertices C is the
channels, E comprises the directed edges indicating that the
source channel can be converted to the target channel, and
λ : E → O is a labeling function that attaches the appropriate
conversion operator o ∈ O to each edge e ∈ E .

Rheem provides the CCG with generic channels, e.g.,
CSV files, together with the channels of the supported plat-
forms, e.g.,RDDs.Still developers can easily extend theCCG
if needed as we will see in Sect. 8.

Example 5 Figure 5 shows an excerpt of Rheem’s default
CCG.The yellowboxes (nodes in the graph) are the channels,
while all edges are attached with conversion operators.6

6 For clarity, we do not depict all conversion operators.

123

1294 S. Kruse et al.

Filter
Stream

Broadcast

RDD

JavaStreams

Spark

Channel conversion graph

reusable channel non-reusable channel

JavaStreams operator

Map

root

target2

target1

Spark operator

SinkRelation

Postgres

CSVFile
Flink

Dataset CachedRDD

Collection

Postgres operator

(for clarity we do not show conversion operators in all edges)conversion operator

Fig. 5 A channel conversion graph along with root and target operators
from different platforms. TheMCT problem is to find the most efficient
paths in the graph to connect the output of the root with the input of the
targets

5.2 Minimum conversion tree problem

CCGs allow us to model the problem of planning data move-
ment as a graph problem. This approach is very flexible:
If there is any way to connect execution operators via a
sequence of conversion operators, we will discover it. Unlike
other approaches, e.g., [25,30], developers do not need to pro-
vide conversion operators for all possible source and target
channels. CCGs thus make it much easier for developers to
add new platforms to Rheem and make them interoperable
with the other platforms. Let us further motivate the utility
of CCGs for data movement with a concrete example.

Example 6 Assume the CCG of Fig. 5. Consider now the
Filter operator in our running example (see Fig. 1), whose
output goes to the CollectionSink and Map operators. The
goal is tomove data from a PostgresFilter execution operator
(root) to a JavaSink (target1) and a SparkMap (target2) exe-
cution operator. While the root produces a Relation as output
channel, target1 and target2 accept only a Java Collection
and a (cached) RDD, respectively, as input channels.Multiple
conversions are needed to serve the two target operators.

The CCG also enables the optimizer to use multiple inter-
mediate steps to connect two operators. For example, for
transferring data from Postgres to Flink or Spark in Fig. 5,
there are two intermediate channels involved.Wemodel such
complex scenarios of finding the most efficient communica-
tion path from a root producer to multiple target consumers
as the minimum conversion tree (MCT) problem.
Minimum Conversion Tree ProblemGiven a root chan-
nel cr , n target channel sets Cti (0 < i ≤ n), and the CCG
G = (C, E, λ), find a subgraph G ′ such that:

(1) G ′ is a directed tree with root cr and contains at least
one channel cti ∈ Cti for each target channel set Cti ;

(2) any non-reusable channel in G ′,must have a single suc-
cessor, i.e.,a conversion or a consumer operator;

(3) there is no other subgraph G ′′ that satisfies the above
two conditions and has a smaller cost (i.e., the sum of
costs of all its edges) than G ′. The cost of an edge e is
the estimated cost for the associated conversion operator
λ(e).

Example 7 Assume, in Fig. 5, the root channel is cr :=
Relation and the target channel sets are Ct1 := {Collection}
(for target1) and Ct2 := {RDD,CachedRDD} (for target2).
The minimum conversion tree for this scenario could be: The
Relation root channel is converted to a Java Stream, then to
a Java Collection, which is used to satisfy Ct1 and to be con-
verted to an RDD (thereby satisfying Ct2). Note that this is
possible only because Collection is reusable.

Although our MCT problem seems related to other well-
studied graph problems, such as the minimum spanning tree
and single-source multiple-destinations shortest paths, it dif-
fers from them for two main reasons. First, MCTs have a
fixed root and need not span the whole CCG. Second, MCT
seeks to minimize the costs of the conversion tree as a whole
rather than its individual paths from the root to the target
channels. Our MCT problem resembles more to the Group
Steiner Tree (GST) problem [54]: There, n sets of vertices
should be connected by aminimal tree. However, GST is typ-
ically considered on undirected graphs and with no notion of
non-reusable channels. Furthermore, GST solvers are often
designed for specific types of graphs, such as planar graphs
or trees. These disparities preclude the adaption of existing
GST solvers to the MCT problem. Yet, the GST problem
allows us to show the NP-hardness of the MCT problem.

Theorem 1 The MCT problem is NP-hard.

Proof See “Appendix A.” ��

5.3 Findingminimum conversion trees

Because the MCT problem differs from existing graph prob-
lems, we devise a new algorithm to solve it (Algorithm 1).
Given a CCG G, a root channel cr , and n target channel sets
Ct := {Ct1,Ct2 , ...,Ctn }, the algorithm proceeds in two prin-
cipal steps. First, it simplifies the problem by modifying the
input parameters (kernelization). Then, it exhaustively tra-
verses the graph (channel conversion graph exploration) to
find the MCT. We discuss these two steps in the following.

5.3.1 Kernelization

In the frequent case that several target consumers, e.g., targeti
and target j , accept the same channels,Cti = Ct j , with atmost
one non-reusable channel and at least one reusable channel,
we can merge them into a single set by discarding the non-
reusable channel: Cti, j = {

c | c ∈ Cti ∧ c is reusable
}
.

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1295

Algorithm 1: Minimum conversion tree search.
Input: conversion graph G, root channel cr , target channel sets

Ct
Output: minimum conversion tree

1 Ct ← kernelize(Ct);
2 Tcr ← traverse(G, cr ,Ct ,∅,∅);
3 return Tcr [Ct];

Doing so decreases the number of target channel sets and thus
reduces the maximum degree (fanout) of the MCT, which is
a major complexity driver of the MCT problem. In fact, in
the case of only a single target channel set the MCT prob-
lem becomes a single-source single-destination shortest path
problem.We can thus solve it with, e.g., Dijkstra’s algorithm.

Example 8 (Merging target channel sets) In Fig. 5, target2
accepts the channels Ct2 = {RDD,CachedRDD}. Assuming
that target1 is a SparkReduce operator instead,which accepts
the same set of channels as target2, we could thenmerge their
input channels into Ct1,2 = {CachedRDD}.
Lemma 1 A solution for a kernelized MCT problem also
solves the original MCT problem.

Proof See “Appendix A.” ��

5.3.2 Channel conversion graph exploration

After kernelizing the original MCT problem, Algorithm 1
proceeds to explore theCCG, thereby building theMCT from
“its leaves to the root”: Intuitively, it recursively searches—
starting from the root channel cr—across the CCG for
communication channels that satisfy the target channel sets
Ct ; It then backtracks the search paths, thereby incrementally
building up theMCT. In summary, the graph traversal ofCCG
is composed of three main parts: (i) It visits a new channel,
checks if it belongs to any target channel set, and poten-
tially creates a partial singleton conversion tree; (ii) then, it
traverses forward, thereby creating partial MCTs from the
currently visited channel to any subset of target channel sets;
and (iii) it merges the partial MCTs from the steps (i) and
(ii) and returns the mergedMCTs. The algorithm terminates
when the partial MCTs form the final MCT.

We give more details about the traversal part of our algo-
rithm in “Appendix B.”

5.3.3 Correctness and complexity

Theorem 2 Given a channel conversion graph, Algorithm 1
finds the minimum conversion tree if it exists.

Proof See “Appendix A.” ��
Our algorithmsolves theMCTproblemexactly by exhaus-

tively exploring the CCG graph. This comes at the cost of

exponential complexity: There are (n − 1)! ways to traverse
a full CCG of n channels, and we might need to maintain 2k

partial trees in the intermediate steps, where k is the number
of target channel sets. However, in practical situations, our
algorithm finishes in the order of milliseconds, as the CCG
comprises only tens of channels and is very sparse. Also, the
number of target channel sets k is mostly only 1 or 2 and can
often be diminished by kernelization. More importantly, our
algorithm avoids performance penalties from inferior data
movement plans. However, if it ever runs into performance
problems, one may consider making it approximate inspired
from existing algorithms for GST [20,29]. Yet, we show that
our algorithm gracefully scales to a reasonable number of
platforms (see Sect. 9.5).

6 Plan enumeration

The goal of our optimizer is to find the optimal execution
plan, i.e., the plan with the smallest estimated cost. That is,
for each inflated operator in an inflated plan, it needs to select
one of its alternative execution operators such that the over-
all execution cost is minimized. Finding the optimal plan,
however, is challenging because of the exponential size of
the search space. A plan with n operators, each having k exe-
cution operators, will lead to kn possible execution plans.
This number quickly becomes intractable for growing n. For
instance, a cross-community PageRank plan, which consists
of n = 27 operators, each with k = 5, yields 7.45 × 1018

possible execution plans. One could apply a greedy prun-
ing technique to reduce this search space. However, greedy
techniques cannot guarantee to find the optimal execution
plan, which may hurt performance due to data movement
and start-up costs.

We thus take a principled approach to solve this problem:
We define an algebra to formalize the enumeration (Sect. 6.1)
and propose a lossless pruning technique (Sect. 6.2).We then
exploit this algebra and pruning technique to devise an effi-
cient plan enumeration algorithm (Sect. 6.3).

6.1 Plan enumeration algebra

Inspired by the relational algebra, we define the plan
enumeration search space along with traversal operations
algebraically. This approach enables us to: (i) define the enu-
meration problem in a simple, elegant manner; (ii) concisely
formalize our enumeration algorithm; and (iii) explore design
alternatives. Below, we describe the data structures and oper-
ations of our algebra.

123

1296 S. Kruse et al.

Map ReduceBy Map

Map
assign

assign

GroupBy Map
sum & count

Map
average

Map
assign

Map
average

ReduceBy
sum & count

Scope

Subplan 1

Subplan 2

SparkJavaStreams conversion operator

averagesum & count

Fig. 6 A plan enumeration example of a subplan consisting of 3 oper-
ators: It contains three columns, one for each inflated operator, and two
subplans, one in each row

6.1.1 Data structures

Our enumeration algebra needs only one principal data struc-
ture, the enumeration E = (S, SP), which comprises a set of
execution subplans SP for a given scope S. The scope is the
set of inflated operators that the enumeration has unfolded in
the current step. Each subplan contains execution operators
for each inflated operator in S, including execution opera-
tors for data movement. One can imagine an enumeration
as a relational table whose column names correspond to the
inflated operators contained in the scope and whose rows
correspond to the possible execution subplans.

Example 9 (Enumeration) Figure 6 depicts an enumeration
for the subplan consisting of 3 operators shown in Fig. 3. The
enumeration contains three columns, one for each inflated
operator, and two subplans, one in each row.

Notice that if the scope contains all the inflated oper-
ators of a Rheem plan (complete enumeration), then the
corresponding subplans form complete execution plans. This
admits the following problem formalization.
Plan Enumeration Problem Let E = (S, SP) be the
complete enumeration of a Rheemplan. The goal is to effi-
ciently find SP such that ∃spk ∈ SP, cost(spk) ≤ cost(spi)
∀spi ∈ SP,where cost(spi) includes of execution, data move-
ment, and platform initialization costs.

6.1.2 Algebra operations

We use two main operations, Join (�) and Prune (σ), to
expand an enumeration with the neighboring operators of
its subplans. In few words, Join connects two small enu-
merations to form a larger one, while Prune scraps inferior
subplans from an enumeration for efficiency reasons. Below,
we formally define each of these two operations.
(1) Join is analogous to a natural join in the relational algebra.
It creates a new enumeration whose scope is the union of the
scopes of the two input enumerations andwhose subplans are
all themerged subplan combinations.We formally define this
operation as follows.

Definition 3 (Join) Given two disjoint enumerations E1 =
(S1, SP1) and E2 = (S2, SP2) (i.e., S1 ∩ S2 = ∅),

we define a join E1 � E2 = (S, SP) where S :=
S1 ∪ S2 and SP := {connect(sp1, sp2) | sp1 ∈
SP1 can be connected to sp2 ∈ SP2}. The connect func-
tion connects sp1 and sp2 by adding conversion operators
between operators of the two subplans.

Example 10 (Merging subplans) The enumeration in Fig. 6
could be created by joining an enumeration with scope
S1 = {Map(“assign′′), ReduceBy(“sum&count′′)} with an
enumeration with scope S2 = {Map(“average′′)}. In par-
ticular, the connect function adds conversion operators to
link the two Maps in Subplan 1.

(2) Prune is akin to the relational selection operator. As we
stated earlier, an exhaustive enumeration of all subplans is
infeasible. This operation thus removes subplans from an
enumeration according to some pruning rule, e.g., retaining
only the top-k plans with the smallest costs. We formally
define Prune as follows.

Definition 4 (Prune) Given an enumeration E = (S, SP), a
pruned enumeration is an enumeration σπ(E) := (S, SP′),
where SP′ := {sp ∈ SP | sp satisfies π} and π is a config-
urable pruning criterion.

6.1.3 Applying the algebra

We can now draft a basic enumeration algorithm based on the
Join operation only. For each inflated operator o, we create a
singleton enumeration E = ({o}, SPo), where SPo are the
executable subplans provided by o.We then join these single-
ton enumerations one after another to obtain an exhaustive
enumeration for the complete Rheem plan. This basic algo-
rithm not only lacks an instance of the Prune operation, but
also an order for the joins. We present our choices for both
in the remainder of this section.

6.2 Lossless pruning

To deal with the exponential size of the search space, we
devise a novel pruning technique that is lossless: It will not
prune a subplan that is part of the optimal execution plan.
Our pruning technique builds upon the notion of boundary
operators. These are those inflated operators of an enumera-
tion with scope S that are adjacent to some inflated operator
outside of S. In the enumeration in Fig. 6, Map(“assign′′)
and Map(“average′′) are the boundary operators: They are
adjacent to RepeatLoop and Map(“parse′′), which are not
part of the enumeration (see Fig. 1). The idea behind our
pruning technique is that if there are two execution subplans
for the same enumeration with the same boundary execution
operators, it keeps the one with the lowest total estimated
cost.Rheem uses the geometric mean of the lower and upper
bound of the cost interval as the total estimated cost. Note

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1297

Algorithm 2: Rheem plan enumeration
Input: Rheem inflated plan R
Output: Optimal execution plan spmin

1 E ← {
({o}, SPo) : o is an inflated operator ∈ R

}
;

2 joinGroups ← find-join-groups(E) ;
3 queue ← create-priority-queue(joinGroups) ;
4 while |queue| > 0 do
5 joinGroup = {Eout, E1

in, E
2
in, . . . } ← poll(queue) ;

6 E� ← σ(Eout � E1
in � E2

in � . . .) ;
7 foreach joinGroup′ ∈ queue do
8 if joinGroup ∩ joinGroup′ �= ∅ then
9 update(joinGroup′ with E�) ;

10 re-order(joinGroup in queue);

11 spmin ← the subplan in E� with the lowest cost ;

that Rheem ignores the confidence value at this stage and use
it only for on-the-fly re-optimization.We formally define our
pruning technique below.

Definition 5 (Lossless pruning) Let E = (S, SP) be an enu-
meration and Sb ⊆ S be the set of its boundary operators.
The lossless pruning removes all sp ∈ SP for which there is
another sp′ ∈ SP that (i) contains the same execution oper-
ators for all Sb as sp, and (ii) has a lower estimate cost than
sp.

Example 11 (Lossless pruning) For the enumeration in Fig. 6,
the lossless pruning discards either Subplan 1 or 2 (whichever
has the higher cost), because both subplans contain the
sameboundary execution operators (JavaMap(“assign′′) and
SparkMap(“average′′)).

Note that this pruning technique allows us to not prune
optimal subplans.

Lemma 2 The lossless pruning does not prune a subplan that
is contained in the optimal planwith respect to the costmodel.

Proof See “Appendix A.” ��

6.3 Enumeration algorithm

Using the previously described enumeration algebra and the
lossless pruning strategy, we now construct our plan enu-
meration algorithm. Intuitively, the algorithm starts from
singleton enumerations (i.e., an enumeration of a single oper-
ator) and repeatedly joins and prunes enumerations until it
obtains the optimal execution plan. A good order in joining
enumeration is crucial for maximizing the pruning effective-
ness. Algorithm 2 shows the pseudocode.

Given an inflated Rheem plan as input, it first creates a
singleton enumeration for each inflated operator (Line 1).
It then identifies join groups (Line 2). A join group indi-
cates a set of plan enumerations to be joined. Initially, it

creates a join group for each inflated operator’s output, so
that each join group contains (i) the enumeration for the oper-
ator with that output, Eout, and (ii) the enumerations for all
inflated operators that consume that output as input, Ei

in. For
instance in the inflated plan of Fig. 1, the enumerations for
Map(“assign′′) and ReduceBy(“sum&count′′) form an ini-
tial join group. While the join order is not relevant to the
correctness of the enumeration algorithm, joining only adja-
cent enumerations is beneficial to performance: It maximizes
the number of non-boundary operators in the resulting enu-
meration, which in turn makes our lossless pruning most
effective (see Definition 5, Criterion (i)). To further enhance
the pruning effect, we order the join groups ascending by
the number of boundary operators and add them in a priority
queue (Line 3). Then, we greedily poll the join groups from
the queue, perform the corresponding join, and prune the join
result (Lines 4–6). After joining a set of enumerations Eout

and Ei
in, we first check if these enumerations are members

of other join groups (Line 8). If that is the case, we replace
them with their join result E� and update the priority in the
queue (Line 9–10). This is necessary for reordering the rest
join groups with the new number of boundary operators they
contain. Eventually, the last join result is a full enumeration
for the complete Rheem plan. Its lowest cost subplan is the
optimal execution plan (Line 11).

Our algorithm has been inspired by classical database
optimizers [58] with the difference that the problem we are
solving is not operator reordering. For this reason, we do not
opt for a top-down or bottom-up approach but rather exploit
the entire search space simultaneously. Moreover, our loss-
less pruning is related to the concept of interesting sites [42]
in distributed relational query optimization, especially to the
interesting properties [58]. We can easily extend our prune
operator to account for properties other than boundary oper-
ators. For example, we already do consider platform start-up
costs in our cost model (see the plan enumeration problem
statement in Sect. 6.1). As a result, we avoid pruning sub-
plans with start-up costs that might be redeemed over the
whole plan.
Correctness Our algorithm always finds the optimal execu-
tion plan. The reason behind this is its pruning technique,
which never discards a subplan that is contained in the opti-
mal plan (Lemma 2). We formally state this property in the
following theorem.

Theorem 3 Algorithm 2 determines the optimal execution
plan with respect to the cost estimates.

Proof As Algorithm 2 applies a lossless pruning technique
(as per Lemma 2) to an otherwise exhaustive plan enumera-
tion, it detects the optimal execution plan. ��

123

1298 S. Kruse et al.

7 Dealing with uncertainty

It is well known that poor cardinalities can harm the opti-
mizer [45]. A cross-platform setting is evenmore susceptible
to imprecise data cardinalities due to its high uncertainty,
e.g., the semantics of UDFs are usually unknown. Although
the design of our optimizer allows applications and develop-
ers to supplement valuable optimization information, such
as UDF selectivities, users might not always be willing or
be able to specify them. In this case, default values are used
which may lead to suboptimal plans. To mitigate the effects
of bad cardinality estimates, we reuse our entire optimization
pipeline to perform progressive query optimization [49]. The
key principle is to monitor actual cardinalities of an execu-
tion plan and re-optimize the plan on the fly whenever the
observed cardinalities greatly mismatch the estimated ones.
Progressive query optimization in cross-platform settings is
challenging because: (i) we have only limited control over the
underlying platforms, whichmakes plan instrumentation and
halting executions difficult, and (ii) re-optimizing an ongoing
execution plan must efficiently consider the results already
produced.

We leverage Rheem’s interval-based cost estimates and
and confidence values to tackle the above challenges. The
optimizer inserts optimization checkpoints into execution
plans when it optimizes an incoming Rheem plan for the
first time. An optimization checkpoint is basically a request
for re-optimization before proceeding beyond it. It inserts
these checkpoints between two execution operators when-
ever (i) cardinality estimates are uncertain (i.e., having awide
interval or low confidence) and (ii) the data is at rest (e.g., a
Java collection or a file). Before execution, the optimizer asks
the execution drivers of the involved platforms to collect the
actual cardinalities of their intermediate data structures. The
execution plan is then executed until the optimization check-
points. Every time an optimization checkpoint is reached,
the Rheem monitor checks if the actual cardinalities con-
siderably mismatch the estimated ones. If so, the optimizer
re-optimizes (as explained in previous sections) the remain-
ing plan with the updated cardinalities and already executed
operators. Once this is done, the involved execution drivers
simply resume the executionwith the re-optimized plan. This
yields a progressive optimization that uses the existing opti-
mization pipeline as well as the latest statistics. Notice that
Rheem can switch between execution and progressive opti-
mization any number of times at a negligible cost.

8 Extensibility

Cross-platform environments are characterized by contin-
uous changes as new platforms arise or existing ones get
updated. A cross-platform optimizer needs to take such

changes into consideration in order to be effective. How-
ever, such changes may overwhelm the system administrator
that needs to maintain the system. For this reason, we have
designed our optimizer to be highly extensible to accom-
modate new platforms or updates to existing ones with very
little effort. Rheem users can add new operators, including
data movement operators, and plug-in new platform drivers
without modifying the existing source code of our optimizer.

Our optimizer requires three main elements to work:
(i) cardinality estimates for each Rheem operator as well
as the CPU and memory load of each execution opera-
tor, (ii) mappings from Rheem to execution operators, and
(iii) the channel conversion graph. System administrators can
easily specify these elements when supplying new operators
or integrating new platforms.

First, our UDF-based cost model is an essential part of
the optimizer’s extensibility. Adding a new Rheem operator
requires users to simply extend the abstract Operator class
in Rheem. It is recommended that the user implements a
method of this class for specifying the expected output car-
dinality of the operator. If not implemented, Rheem uses a
default implementation whose value can be adjusted during
the progressive optimization (see Sect. 7). Moreover, when
adding a new execution operator, users have to implement the
ExecutionOperator interface. It is recommended that users
provide a specific method to specify the load that this opera-
tor incurs in terms of CPU andmemory. In case a user cannot
manually specify the cost functions, our offline cost learner
(see Sect. 4.2) allows to learn them from previously executed
tasks.

Second, our flexible mappings make our optimizer easily
extensible. Once a user creates a new execution (or Rheem)
operator, she usually needs to create a mapping from its cor-
respondingRheemoperator to the newexecution operator (or
vice versa). Users can do this by implementing theMapping
interface. This new Mapping implementation specifies a
graph pattern that matches a Rheem operator (or subplan)
as well as defines a transformation function that creates a
replacement operator (or subplan) for the matched operator.

Finally, when plugging a new platform, new communica-
tion channels and conversion operators may be required in
the channel conversion graph. Users can create a channel by
extending the abstract Channel class. Adding a conversion
operator is like adding an execution operator, i.e., an operator
that transforms data from one format to another (e.g., from
RDD to file).

All these elements are given as input to the optimizer, and
thus, system administrators do not need to add or modify any
line of code of our optimizer.

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1299

9 Experiments

Our optimizer is part of Rheem, an open-source cross-
platform system.7 For the sake of simplicity, we henceforth
refer to our optimizer simply as Rheem. We have carried out
several experiments to evaluate the effectiveness and effi-
ciency of our optimizer. As our work is the first to provide a
complete cross-platform optimization framework, we com-
pared it vis-a-vis individual platforms and commonpractices.
For a system-level comparison, refer to [4]. Note that we did
not compare our optimizer with a rule-based optimization
approach for two main reasons. First, defining simple rules
based on the input dataset size, such as in SystemML [15],
does not always work: There are non-obvious cases where
even if the input is small (e.g., 30MB), it is better to use a big
data platform, such as Spark, as we will see in the following.
Thus, rules need to bemore complex and descriptive. Second,
defining complex rules requires a lot of expertise and results
in a huge rule base. For example, Myria requires hundreds
of rules for only three platforms [63]. This is not only time-
consuming, but it is not easily extensible and maintainable
when new platforms are added.

Weevaluate our optimizer by answering the following four
main questions. Can our optimizer enable Rheem to: choose
the best platform for a given task? (Sect. 9.2); spot hid-
den opportunities for cross-platform processing that improve
performance? (Sect. 9.3); and effectively re-optimize an exe-
cution plan on the fly? (Sect. 9.4). Last but not least, we
also evaluate the scalability (Sect. 9.5) and design choices
(Sect. 9.6) of our optimizer.

9.1 General setup

Hardware We ran all our experiments on a cluster of 10
machines: each with one 2GHz Quad Core Xeon pro-
cessor, 32GB main memory, 500GB SATA hard disks,
a 1Gigabit network card, and runs 64-bit platform Linux
Ubuntu 14.04.05.
Processing and storage platformsWe considered the follow-
ing platforms: Java’s Streams (JavaStreams), PostgreSQL
9.6.2 (PSQL), Spark 2.4.0 (Spark), Flink 1.7.1 (Flink),
GraphX1.6.0 (GraphX),Giraph1.2.0 (Giraph), a self-written
Java graph library (JGraph), and HDFS 2.6.5 to store files.
We used all these with their default settings and set the RAM
of each platform to 20GB. We disabled the progressive opti-
mization feature of our optimizer in order to first better study
its upfront optimization techniques. In Sect. 9.4, we study the
effect of progressive optimization.
Tasks and datasetsWe considered a broad range of data ana-
lytics tasks from different areas, namely text mining (TM),
relational analytics (RA), machine learning (ML), and graph

7 https://github.com/rheem-ecosystem/rheem.

mining (GM). Details on the datasets and tasks are shown
in Table 1. These tasks and datasets individually highlight
different features of our optimizer and together demonstrate
its general applicability. To challenge Rheem and allow it to
choose among most of the available platforms, most tasks’
input datasets are stored on HDFS (except when specified
otherwise). We also considered a polystore case where data
is dispersed among different stores (PolyJoin); however,
such cases are easier to handle as the search space becomes
smaller, and we thus omit them from further evaluation.
Cost model To learn the parameters required for the opera-
tor’s cost functions, we first generated a number of execution
logs using a set of 10 training tasks (Grep, InvertedIndex,
SetDifference, SetIntersection, TPC-H Q1 and Q2, PageR-
ank, SVM, Knn, and InclusionDependency) with synthetic
datasets of varying sizes. We then used a genetic algorithm.
Last, as estimating UDFs’ selectivity is out of the scope of
this paper, we assume accurate selectivities for the first sets
of experiments studying the upfront optimization. This gives
us a better view on how Rheem can perform without being
affected bywrong cardinalities estimates. In Sect. 7,we study
the progressive optimization and use estimated selectivities
computed as discussed in Sect. 4.2.3.
Repeatability All the numbers we report are the average of
three runs on the datasets of Table 1. To ensure repeatabil-
ity, we will provide the code of all our experimental tasks,
SQL queries, datasets, and a detailed guideline on how to
reproduce our experiments.8

9.2 Single-platform optimization

Applications might require to switch platforms according
to the input datasets and/or tasks in order to achieve better
performance. We call such a use case platform independence
[40]. We, thus, start our experiments by evaluating how well
Rheem selects a single platform to execute a task.
Experiment setup For Rheem, we forced our optimizer to
use a single platform throughout a task and checked if it
chose the one with the best runtime. We ran all the tasks of
Table 1 with increasing dataset sizes. Note that we did not
run PolyJoin because it requires using several platforms.
For the real-world datasets, we took samples from the ini-
tial datasets of increasing size. We also increased the input
datasets up to 1TB for most tasks in order to further stress the
optimizer. Note that, due to their complexity, we do not report
the 1TB numbers for Word2NVec and SimWords: None
of the platforms managed to finish in a reasonable time. The
iterations for CrocoPR, K-means, and SGD are 10, 100,
and 1000, respectively.
Experiment results Figure 7 shows the execution times for all
our tasks and for increasing dataset sizes. The stars denote the

8 https://github.com/rheem-ecosystem/rheem-benchmark.

123

https://github.com/rheem-ecosystem/rheem
https://github.com/rheem-ecosystem/rheem-benchmark

1300 S. Kruse et al.

Table 1 Tasks and datasets

Task Description #Rheem operators Dataset (size) Default store

WordCount (TM) Count distinct words 6 Wikipediaabstracts (3GB) HDFS

Word2NVec (TM) Word neighborhood vectors 14 Wikipediaabstracts (3GB) HDFS

SimWords (TM) Word neighborhood clustering 26 Wikipediaabstracts (3GB) HDFS

Aggregate (RA) Aggregate query (TPC-H Q1) 7 TPC−H (1–100GB) HDFS

Join (RA) 2-way join (TPC-H Q3) 18 TPC−H (1–100GB) HDFS

PolyJoin (RA) n-way join (TPC-H Q5) 31 TPC−H (1–100GB) Postgres, HDFS, LFS

Kmeans (ML) Clustering 9 USCensus1990 (361MB) HDFS

SGD (ML) Stochastic gradient descent 10 HIGGS (7.4GB) HDFS

CrocoPR (GM) Cross-community PageRank 22 DBpediapagelinks (20GB) HDFS

1

10

100

1000

10000

1 10 100 200 1000

*

1 5 10 25 50 100 1TB

20
2

*

(d) Aggregate

* *
*31

17
14

30
6

30
51

16
46

27
4

39
4

63
3

12
76

21
51

52
99

10
1

10
3

20
6

14
0

24
3

11
2 58

7

15
9

40
3

74
2

* * * *

29
8

Scale factor

Dataset size (%)

>
1

h
o

u
r

>
1

h
o

u
r

>
1

h
o

u
r*

83

14
3

18
7

32
9

48
8

90
4

40
68 79

73

>
10

 h
o

u
rs

>
10

 h
o

u
rs

17
21

7
21

20
6

10 25 50 100 200 400 1TB

(g) SGD (h) CrocoPR

1

10

100

1000

10000

0.1 1 2 3 5 100

12
22

18
38

4
31 46

10
19 51

70 18
85 73

77
39

34 13
4

14
2

31 75

30
3

28
2 31

3
28

6
14

7 32
3

35
2

30
1

29
0 30

9 58
7

40
3 32

1

45
3

46
6

(c) SimWords

* * * ** *

11
51

Dataset size (%)

Dataset size (%)

* * * *
*

45
57

58
44

>
10

 h
o

u
rs

>
10

 h
o

u
rs

10
67

1
10

42
8

1

10

100

1000

10000

100000

10 100 1,000 1TB

(b) Word2NVec

(f) Kmeans

1

10

100

1000

10000

0.1 1 2 3 5 100

23
9

15
22

9
30

67
2

24

41 32
12

64 4862

18
5

12
1

32
5

36 41 56 59

15
4

41
1

14
3

*
*

*

Dataset size (%)

Dataset size (%)

>
1

h
o

u
r

45
06

43
87

>
10

 h
o

u
rs

>
10

 h
o

u
rs

R
un

tim
e

(s
)

1

10

100

1000

10000

1 10 25 50 100 200 800 1TB

R
un

tim
e

(s
)

1

10

100

1000

10000

100000

1 10 100 200 1000

*
*2716

1913

(a) WordCount

(e) Join

*

*
*

JavaStreams Spark Flink Giraph RHEEM*JGraph

3 22

10
7

21
5

17
26

43
1

64

16
0

10

35 43

23

13

31

11
7

3231

*

30
5

18 14 47
34

33
11 21

0 15
2 39

2
26

5

*

Dataset size (%)

Scale factor

*

>
1

h
o

u
r

*

55

* *

80
39 88

60

>
10

 h
o

u
rs

>
10

 h
o

u
rs

26
78

15
26

* * *

* *

50
40

0
51

67
8*

15
71

4

*

*

Fig. 7 Platform independence: Rheem avoids all worst cases and chooses the best platform for most tasks

platform selected by our optimizer. First of all, let us stress
that the results show significant differences in the runtimes
of the different platforms: even between Spark and Flink,
which are big data platform competitors. For example, Flink
can be up to 2.4× faster than Spark and Spark can be up to
2× faster than Flink. Thus, it is crucial to prevent tasks from
falling into such non-obvious worst cases.

The results, in Fig. 7, show that our optimizer indeed
makes robust platform choiceswhenever runtimes differ sub-
stantially. This effectiveness of the optimizer for choosing
the right platform transparently prevents applications from
using suboptimal platforms. For instance, it prevents run-
ning: (i) Word2NVec on Spark for 5% and 100% of its input
dataset. Spark performs worse than Flink because it employs
only two compute nodes (one for each input data partition),
while Flink uses all of them;9 (ii) SimWords on Java for
1% of its input dataset (∼ 30 MB); as SimWords performs
many CPU-intensive vector operations, using JavaStreams

9 One might think of re-partitioning the data for Spark, but this is a
task- and data-specific optimization, which is not the goal of Rheem.

(i.e., a single compute node) simply slows down the entire
process; (iii) WordCount on Flink for 800% of its input
dataset (i.e., 24 GB) and 1TB, where, in contrast to Spark,
Flink suffers from a slower data reduce mechanism;10

(iv) Aggregate on Flink for scale factors higher than 200,
because it tends towrite often to diskwhen dealingwith large
groups (formed by theGroupBy operator); and (v)CrocoPR
on JGraph for more than 10% of its input dataset as it sim-
ply cannot efficiently process large datasets as well as on
Spark and Flink for 1TB whose performance is deteriorated
by the number of created objects. Thus, our optimizer is capa-
ble of discovering non-obvious cases: For example, for the
Word2NVec and SimWords a simple rule-based optimizer
based on input cardinalities would choose JavaStreams for
the small input of 30 MB (i.e., 1% of the dataset). However,
JavaStreams is 7× to 12× slower than Spark and Flink in
these two cases.

10 Flink uses a sorting-based aggregation, which—in this case—
appears to be inferior to Spark’s hash-based aggregation.

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1301

Number of centroids (k) Batch size N. of iterationsScale factorSample size (%)

R
un

tim
e

(s
)

0

60

120

180

240

100
0

65

130

195

260

1
0

110

220

330

440

1
0

425

850

1275

1700

100 200
0

875

1750

2625

3500

100 200
0

250

500

750

1000

10 100 1000
0

150

300

450

600

10 100

(a) Text mining (b) Relational analytics (c) Machine learning (d) Graph mining

Aggregate Join Kmeans SGD CrocoPRWordCount Word2NVec SimWords

JavaStreams Spark Flink Giraph RHEEMJGraph

0

150

300

450

600

1 100 1000

O
u

t
o

f
M

em
o

ry

21
5

31
43

29

22
9

30
24

23

38
4

31 46 31

16
46

27
4 39

4
26

5

63
3

12
76

61
7 33

11
21

0 15
2

15
0 39

2
26

5
26

5

47
6

14
9

16
5

14
9

>
1

h
o

u
r

62
9

16
7 18

7
16

7
92

4
18

3 20
7

18
3

29
0 35

2
30

9
22

29
2 39

2
31

7
22

29
2 43

3
33

0
22

20
6

14
0

18
7

57
11

2

58

>
1

h
o

u
r 44

8 32
9 41

3

Fig. 8 Opportunistic: Rheem improves performance by combining multiple data processing platforms

We also observe that Rheem generally chooses the right
platform even for the difficult cases where the execution
times are quite similar on different platforms. For exam-
ple, it always selects the right platform for Aggregate and
Join even if the execution times for Spark and Flink are
quite similar in most of the cases. Only in few of these dif-
ficult cases, the optimizer fails to choose the best platform,
e.g., Word2NVec and SimWords for 0.1% of input data:
The accuracy of our optimizer is sensitive to uncertainty fac-
tors, such as cost and cardinality estimates. Still, all these
results allow us to conclude that our optimizer chooses the
best platform for almost all tasks and it prevents tasks from
falling into worst execution cases.

Rheem selects the most efficient platform to execute a
task in 46 out of 48 cases.

9.3 Multi-platform optimization

We now study the efficiency of our optimizer when using
multiple platforms for a single task. We evaluate if our opti-
mizer: (i) allows Rheem to spot hidden opportunities for the
use ofmultiple platforms to improve performance (theoppor-
tunistic experiment); (ii) performs well in a data lake setting
(the polystore experiment); and (iii) efficiently complements
the functionalities of one platform with another to perform a
given task (the complementary-platforms experiment).
Opportunistic experiment We re-enable Rheem to use any
platform combination. We used the same tasks and datasets
with three differences: We ran (i) Kmeans on 10x its entire
dataset for a varying number of centroids, (ii) SGD on its
entire dataset for increasing batch sizes, and (iii) CrocoPR
on 10% of its input dataset for a varying number of iterations.

Figure 8 shows the results. Overall, we find that in the
worst case, Rheem matches the performance of any sin-
gle platform execution, but in several cases considerably
improves over single-platform executions. Table 2 illustrates
the platform choices that our optimizer made as well as the
cross-platform data transfer per iteration for all our tasks.We
observe Rheem to be up to 20× faster than Spark, up to 15×
faster than Flink, up to 22× faster than JavaStreams, up to

Fig. 9 JoinX: Rheem
outperforms Postgres by
executing the join and
aggregation in Spark even if
both relations are stored in
Postgres

R
un

tim
e

(s
)

1

100

10000

1 10
Scale factor

ki
lle

d
 a

ft
er

 3
 h

o
u

rs

47 33

42
25

RHEEM

Postgres

2× faster than Giraph. There are several reasons for having
this large improvement. For SGD, Rheem decided to han-
dle the model parameters, which is typically tiny (∼ 0.1 KB
for our input dataset), with JavaStreams, while it processed
the data points (typically a large dataset) with Spark. For
CrocoPR, surprisingly our optimizer uses a combination
of Flink, JGraph, and JavaStreams, even if Giraph is the
fastest baseline platform (for 10 iterations). This is because
after the preparation phase of this task, the input dataset for
the PageRank operation on JGraph is ∼ 544 MB only. For
WordCount, Rheem surprisingly detected that moving the
result data (∼ 82 MB) from Spark to JavaStreams and after-
ward shipping it to the driver application is slightly faster
than using Spark only. This is because when moving data to
JavaStreams Rheem uses the action Rdd.collect(), which is
more efficient than the Rdd.toLocalIterator() operation that
Spark offers tomove data to the driver. For Aggregate, our
optimizer selects Flink and Spark, which allows it to run this
task slightly faster than the fastest baseline platform. Our
optimizer achieves this improvement by (i) exploiting the
fast stream data processing mechanism native in Flink for
the projection and selection operations, and (ii) avoiding the
slow data reduce mechanism of Flink by using Spark for the
ReduceBy operation. In contrast to all previous tasks,Rheem
can afford to transfer∼ 23% of the input data because it uses
two big data platforms for processing this task. All these are
surprising results perse. They show not only that Rheem out-
performs state-of-the-art platforms, but also that it can spot
hidden opportunities to improve performance and to bemuch
more robust.

To further stress the importance of finding hidden cross-
platform execution opportunities, we ran a subtask (JoinX)
of PolyJoin. This task gets the account balance ratio

123

1302 S. Kruse et al.

Table 2 Opportunistic
cross-platform breakdown

Task Selected platforms Data transfer/Ite.

WordCount Spark, JavaStreams ∼ 82 MB

Word2NVec Flink −
SimWords Flink −
Aggregate Flink, Spark ∼ 23% of the input

Join Flink −
Kmeans (k=10) Spark −
Kmeans (k=100, k=1000) Spark, JavaStreams ∼ 6 KB and ∼ 60 KB

SGD Spark, JavaStreams ∼ 0.14 KB × batch size

CrocoPR Flink, JGraph, JavaStreams ∼ 544 MB

R
un

tim
e

(s
)

1

100

10000

Task

WordCount
(sample=100%)

Join
(sf=100)

Kmeans
(k=10)

CrocoPR
(i=10)

JavaStreams Spark Flink
Giraph Rheem

21
5

33
11

47
6

36

24
0

14
9

50

17
4

16
5

34

17
1

14
8

N
o

t
su

p
p

o
rt

ed

N
o

t
su

p
p

o
rt

ed

N
o

t
su

p
p

o
rt

ed

14
9

21
6

66

20
6

12
9

Fig. 10 Rheemoutperforms single platforms even if 8 out of 40workers
are stragglers

between a supplier and all customers in the same nation and
calculates the average ratio per nation. For this, it joins the
relations SUPPLIER and CUSTOMER (which are stored on
Postgres) on the attribute nationkey and aggregates the
join results on the same attribute. For this additional experi-
ment, we compare Rheem with the execution of JoinX on
Postgres, which is the obvious platform to run this kind of
queries. The results are displayed in Fig. 9. Remarkably, we
observe that Rheem significantly outperforms Postgres, even
though the input data is stored there. In fact, Rheem is 2.5×
faster than Postgres for a scale factor of 10. This is because
it simply pushes down the projection operation into Postgres
and then moves the data into Spark to perform the join and
aggregation operations, thereby leveraging the Spark paral-
lelism. We thus do confirm that our optimizer both indeed
identifies hidden opportunities to improve performance and
performs more robustly by using multiple platforms.

Finally, we demonstrate how our optimizer is agnostic to
any heterogeneity of the underlying cluster. To illustrate this,
we emulated 2 struggle nodes (i.e., 8 workers) by running
background applications so that these machines are slowed
down. We also modified the cost model to take into account
straggler nodes. Figure 10 shows the results for one task
of each type. We observe that Spark, Flink, and Giraph are
affected by the straggler nodes which slightly decrease their
performance.

However, even in such a case Rheem manages to choose
the best platform(s) as such information can be incorporated
in it UDF-based cost model.

Rheemwill often make unexpected but ultimately more
efficient decisions to execute a task, e.g., carry out a
join in Spark (to exploit parallelism) even when data
resides on Postgres.

Polystore experiment We now consider the PolyJoin
task, which takes the CUSTOMER, LINEITEM, NATION,
ORDERS, REGION, and SUPPLIER TPC-H tables as input.
We assumed the large LINEITEM and ORDERS tables
are stored on HDFS, the medium-size tables CUSTOMER,
REGION, and SUPPLIER on Postgres, and the small
NATION table on a local file system (LFS). In this sce-
nario, the common practice is either to move the data into
a relational database in order to enact the queries inside the
database [24,59] or move the data entirely to HDFS and use
Spark.We consider these two cases as the baselines.Wemea-
sure the data migration time and the task execution time as
the total runtime for these baselines. Rheem processes the
input datasets directly on the data stores where they reside
and moves data if necessary. For a fair comparison in this
experiment, we set the parallel query and effective IO con-
currency features of Postgres to 4.

Figure 11a shows the results for this experiment. The
results are unanimous: Rheem is significantly faster, up to
5×, than moving data into Postgres and run the query there.
In particular, we observed that even if we discard data migra-
tion times, Rheem performs quite similarly to Postgres. This
is becauseRheem can parallelizemost part of the task execu-
tion by using Spark. We also observe that our optimizer has
negligible overhead over the case when the developer writes
ad-hoc scripts to move the data to HDFS for running the task
on Spark. In particular, Rheem is 3× faster than Spark for
scale factor 1, because it moves less data from Postgres to
Spark. As soon as the Postgres tables get larger, reading them

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1303

R
un

tim
e

(s
)

1

100

10000

Scale factor

1 10 100

(b1) CrocoPR (b2) K-means(a) PolyJoin

0

125

250

375

500

10 100

372

40

358

40

Dataset size (%)

0

100

200

300

400

Dataset size (%)

0.1 2.5 5

139
93

16

133
83

15

RHEEMPostgres Spark Ideal Case

58 47
19

55
8

12
2

11
2

73
54

15
78

16
08

Fig. 11 a Polystore experiment: Datasets are stored in heterogeneous
sources. b Complementary-platforms experiment: Complementing
platforms is indeed beneficial and Rheem achieves this automatically

from HDFS rather than directly from Postgres is more bene-
ficial because of its parallel reads. This shows the substantial
benefits of our optimizer not only in terms of performance
but also in terms of ease of use: Users do not write ad-hoc
scripts to integrate different platforms.

In polystores, Rheem will execute tasks in situ instead
of migrating all data into a common platform.

Complementary-platforms experiment To evaluate this fea-
ture, we consider the CrocoPR and Kmeans tasks. In
contrast to previous experiments, we assume both input
datasets (DBpedia and USCensus1990) to be on Postgres.
As the implementation of these tasks on Postgres would
be very impractical and of utterly inferior performance, it is
important to move the computation to a different processing
platform. In these experiments, we consider the ideal case as
baseline, i.e., the case where data is already on a platform
being able to perform the task. As ideal case, we assume that
the data is on HDFS and that Rheem uses either JavaStreams
or Spark to run the tasks.

Figure 11b shows the results. We observe that Rheem
achieves similar performance with the ideal case in almost
all scenarios. This is a remarkable result, as it needs to move
data out of Postgres to a different processing platform, in
contrast to the ideal case. These results clearly show that
our optimizer frees users from the burden of complementing
the functionalities of diverse platforms, without sacrificing
performance.

Rheem cannot only mix processing platforms to com-
plement their functionalities but also keep performance
similar to the ideal cases.

9.4 Progressive optimization

Weproceed to evaluate the utility of progressive optimization
feature of our optimizer in the presenceof incorrect estimates.

Fig. 12 Progressive
optimization in Rheem
improves performance

R
un

tim
e

(s
)

0

75

150

225

300

68

255

PO off
PO on

Experiment setup We enabled the progressive optimization
(PO) feature of our optimizer. We considered the Join task
for this experiment. We extended the Join task with a low-
selective selection predicate on the names of the suppliers
and customers. To simulate the usual cases where users can-
not provide accurate selectivity estimates, we provide a high
selectivity hint to Rheem for this filter operator.
Experiment results Figure 12 shows the results for this exper-
iment. We clearly observe the benefits of our progressive
optimizer. In more detail, our optimizer first generates an
execution plan using Spark and JavaStreams. It uses JavaS-
treams for all the operators after the Filter because it sees that
Filter has a very high selectivity. However,Rheemfigures out
that Filter has in fact a low selectivity. Thus, it runs the re-
optimization process and changes on the fly all JavaStreams
operators to Spark operators. This allows it to speed up per-
formance by almost 4 times. Last but not least, we observed
during our experiment that the PO feature of Rheem has
a negligible overhead (less than 2%) over using platforms
natively.

Rheem further improves performance notably by re-
optimizing plans on the fly at a negligible cost.

9.5 Optimizer scalability

We continue our experimental study by evaluating the scal-
ability of our optimizer to determine whether it operates
efficiently on large Rheem plans and for a large numbers
of platforms.
Experiment setupWe start by evaluating our optimizer’s scal-
ability in termsof the number of supported platforms and then
proceed to evaluate it in terms of the number of operators
in a Rheem plan. For the former, we considered hypotheti-
cal platforms with full Rheem operator coverage and three
communication channels each. For the latter, we generated
Rheem plans with two basic topologies that we found to be
at the core of many data analytic tasks: pipeline and tree.
Experiment results Figure 13a shows the optimization time
of our optimizer for Kmeanswhen increasing the number of
supported platforms. The results for the other tasks are sim-
ilar. As expected, the time increases along with the number

123

1304 S. Kruse et al.

O
p

tim
za

tio
n

tim
e

(s
)

1

10

100

1,000

Platforms (#)

1 2 3 4 5 6 7 8 9 10

top-1 top-2 top-3
top-5 top-8 no top-k

(a) w.r.t platforms

O
p

tim
iz

at
io

n
tim

e
(m

s)

0

325

650

975

1,300

Operators (#)

0 75 150 225 300

pipeline
tree

(b) w.r.t operators

Fig. 13 Optimization scalability: a Our optimizer performs well for a
practical number of platforms and even better by augmenting a simple
top-k pruning strategy. b It can scale to very large plans

of platforms. This is because (i) the CCG gets larger, chal-
lenging our MCT algorithm, and (ii) our lossless pruning
has to retain more alternative subplans. Still, we observe that
our optimizer (the no top-k series in Fig. 13a) performs well
for a practical number of platforms: It takes less than 10 s
when having 5 different platforms. Yet, one could leverage
our algebraic formulation of the plan enumeration problem
to easily augment our optimizer with a simple top-k prun-
ing strategy, which simply retains the k best subplans when
applied to an enumeration. To do so, we just have to specify
an additional rule for the Prune operator (see Sect. 6.1) to
obtain a pruning strategy that combines the lossless pruning
with a top-k one. While the former keeps intermediate sub-
plans diverse, the latter removes the worst plans. Doing so
allows our optimizer to gracefully scalewith the number plat-
forms, e.g., for k = 8, it takes less than 10 s for 10 different
platforms (the top-8 series in Fig. 13a). Figure 13b shows the
results regarding the scalability of our optimizer in terms of
number of operators in a task. We observe that our optimizer
scales to very large plans for both topologies. In practice,
we do not expect to find situations where we have more than
five platforms and plans with more than hundred operators.
In fact, in our workload the tasks contain an average of 15
operators. All these numbers show the high scalability of our
optimizer.

Rheem scales to a realistic number of platforms and
number of operators in a Rheem plan.

9.6 Optimizer internals

We finally conducted several experiments to further evaluate
the efficiencyof our optimizer.We studyfivedifferent aspects
of our optimizer: (i) how well our pruning technique reduces
the search space; (ii) how important the order is, in which
our enumeration algorithm processes join groups; (iii) how
effective our channel conversion graph (CCG) is; (iv) how
accurate our cost model is; and (v) where the time is spent in
the entire optimization process.

0

2

4

6

8

W
or

dc
ou

nt

S
G

D

K
m

ea
ns

W
or

d2
N

V
ec

Jo
in

X

S
im

W
or

ds

C
ro

co
P

R

none lossless top-1 top-10

0

10

20

30

40

W
or

dc
ou

nt

S
G

D

K
m

ea
ns

W
or

d2
N

V
ec

Jo
in

X

S
im

W
or

ds

C
ro

co
P

R

B
es

t p
la

n
tim

e
es

tim
at

e
(s

)

O
pt

im
iz

at
io

n
tim

e
(s

)

Fig. 14 Efficiency and effectiveness of pruning strategies

0

2.5

5

7.5

10

Task topology

Pipeline Tree

random ordered

O
pt

im
iz

at
io

n
tim

e
(s

)
(a) Join groups order-
ing

0

625

1250

1875

2500

b=
10

00

k=
10

00

k=
10

0

Full CCG HDFS only

Kmeans

b=
1
SGD

i=1
00

i=1
0

CrocoPR

13
6 37

5
15

7

2000

23 23 57 58

49
2

48
8 70

0

70
0

E
xe

cu
tio

n
tim

e
(s

)

(b) CCG effectiveness

Fig. 15 Effect of join groups ordering and CCG. a Join ordering is very
crucial for the tree topology. bOur CCG approach allows for more than
one order of magnitude runtime improvement over a simple file-based
approach

Lossless pruning experiment We proceed to compare our
lossless pruning strategy (Sect. 6) with several alternatives,
namely no pruning at all and just top-k pruning. In contrast
to Sect. 9.5 where we used the top-k pruning to augment our
lossless pruning,we nowconsider it independently. Figure 14
shows the efficiency results of all pruning strategies (on the
left) as well as their effectiveness (on the right), i.e., the esti-
mated execution times of their optimized plans. Note that
we did not use the actual plan execution times to assess the
effectiveness of our enumeration strategy in order to elimi-
nate the influence of the calibration of the cost functions. As
a first observation, we see that pruning is crucial overall: An
exhaustive enumerationwas not possible for SimWords and
CrocoPR because of the large number of possible execution
operators that these plans have. We also found that the top-1
strategy, which merely selects the best alternative for each
inflated operator, is pruning too aggressively and fails in 3
out of 7 times to detect the optimal execution plan. While
the numbers now seem to suggest that the remaining lossless
and top-10 pruning strategies are of the same value, there is a
subtle difference: The lossless strategy guarantees to find the
optimal plan (w.r.t. the cost estimates) and is, thus, superior.
Join groups ordering experiment We start by analyzing the
importance of the join groups order (see Sect. 6.3) by com-
paring it with a random order. Figure 15a shows that ordering

123

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1305

1

100

10000

Task

SGD WordCount

535296 58
30

56
25

48.3
23

1st plan 2nd plan
3rd plan Random100

E
xe

cu
tio

n
tim

e
(s

)

(a) Cost model accuracy

Ta
sk

WC

W2V

JX

CPR

KM

SGD

Optimizer runtime (ms)

0 200 400 600 800 1000 1200 1400 1600

Source inspection
Estimation Enumeration
MCT Miscellaneous

(b) Optimization time break-
down

Fig. 16 aOur cost model is sufficient for choosing a near-optimal plan.
b The average optimization time amounts to around a second, which is
several orders of magnitude smaller than the actual runtime of the tasks

the join groups is indeed crucial for the tree topology. This
is not the case for the pipeline topology, where the process
of ordering the join groups does not seem to exert any mea-
surable influence on the optimization time.

For large, complex Rheem plans, a combination of the
lossless pruning followed by a top-k pruningmight be a valu-
able pruning strategy. While the former keeps intermediate
subplans diverse, the latter removes the worst plans. This
flexibility is a consequence of our algebraic approach to the
plan enumeration problem.
CCG experiment Next, we evaluate the effectiveness of our
channel conversion graph (CCG) approach for data move-
ment. For this experiment, we compare our CCG approach
with an HDFS-based data movement approach, i.e., only
throughwriting to anHDFSfile. Figure 15b shows the results
in terms of runtime. We observe that for k-means, Rheem
can be more than one order of magnitude faster when using
CCG compared to using only HDFS files for data movement.
For SGD and CrocoPR, it is always more than one order of
magnitude faster. This shows the importance of well-planned
data movement.
Cost model experiment We now validate the accuracy of our
cost model. Note that similarly to traditional cost-based opti-
mizers in databases, our cost model aims at enabling the
optimizer to choose a good plan while avoiding worst cases.
That is, it does not aim at precisely estimating the running
time of each plan.

Thus, we evaluate the accuracy of our cost model by deter-
miningwhich plan of the search space our optimizer chooses.
The ideal case would be to exhaustively run all possible exe-
cution plans and validate that our optimizer chooses the best
plan or one close to it. However, running all plans is infea-
sible as that would take already several weeks for the small
WordCount task with only 6 operators. For this reason, in
Fig. 16a we plot for SGD and WordCount the following:
(i) the real execution time of the first three planswith themin-
imum estimated runtime; and (ii) the minimum, maximum,
and average of the real execution times of 100 randomly cho-
sen plans.

We make the following observations: First, the first plan
has the minimum real execution time compared to all other
plans (including the second and third plans). Second, the
first three plans have a better runtime not only compared
to the average real execution time of the randomly chosen
plans, but also compared to the minimum execution time of
the randomly chosen plans. Based on these observations, we
conclude that our cost model is sufficient for our optimizer
to choose a near-optimal plan.
Breakdown experiment Last, we analyze where the time is
spent throughout the entire optimization process. Figure 16b
shows the breakdown of our optimizer’s runtime in its several
phases for several tasks.At first,we note that the average opti-
mization time amounts to slightly more than a second, which
is several orders of magnitude smaller than the time sav-
ings from the previous experiments. The lion’s share of the
runtime is the source inspection, which obtains cardinality
estimates for the source operators of a Rheem plan (e.g., for
inspecting an input file). This could be improved, e.g., by a
metadata repository or caches. In contrast, the enumeration
and MCT discovery finished in the order of tens of millisec-
onds, even though they are of exponential complexity. The
pruning technique is the key that keeps the enumeration time
low, while MCT works satisfactorily for a moderate number
of underlying platforms that we used in our experiments.

10 Related work

In the past years, the research and industry communities have
proposed many data processing platforms [6,9,23,53,64]. In
contrast to all these works, we do not provide a new process-
ing platform but an optimizer to automatically choose among
and combine all these different platforms.
Cross-platform task processing has been in the spotlight
very recently. Some works have proposed different solutions
to decouple data processing pipelines from the underlying
platforms [1,25,27,30,46,61,63]. Although their goals are
similar, all these works differ substantially from our opti-
mizer, as most of them do not consider data movement
costs, which is crucial in cross-platform settings. Note that
some complementary works [31,52] focus on improving data
movement among different platforms, but they do not pro-
vide a cross-platform optimizer. Moreover, each of these
systems additionally differs from our optimizer in various
ways. Musketeer’s main goal is to decouple query languages
from execution platforms [30]. Its main focus lies on con-
verting queries via a fixed intermediate representation and
thus mostly targets platform independence. BigDAWG [27]
comes with no optimizer and requires users to specify where
to run cross-platform queries via its Scope and Cast com-
mands. Myria [63] provides a rule-based optimizer which
is hard to maintain as the number of underlying platforms

123

1306 S. Kruse et al.

increases. In [25], the authors present a cross-platform sys-
tem intended for optimizing complex pipelines. It allows only
for simple one-to-one operator mappings and does not con-
sider optimization at the atomic operator granularity. The
authors in [61] focus on ETL workloads making it hard to
extend their proposed solution with new operators and other
analytic tasks. DBMS+ [46] is limited by the expressiveness
of its declarative language, and hence, it is neither adap-
tive nor extensible. Furthermore, it is unclear how DBMS+
abstracts underlying platforms seamlessly. Other comple-
mentary works, such as [31,52], focus on improving data
movement amongdifferent platforms, but they do not provide
a cross-platform optimizer. Apache Calcite [13] decouples
the optimization process from the underlying processing
making it suitable for integrating several platforms. How-
ever, no cross-platform optimization is provided. Tensorflow
[1] follows a similar idea, but for cross-device execution of
machine learning tasks, and thus, it is orthogonal to Rheem.
Finally, WWHow! envisions a cross-platform optimizer but
for data storage [36].
Query optimization has been the focus of a great amount of
the literature [35]. However, most of these works focus on
relational-style query optimization, such as operator reorder-
ing and selectivity estimation, and cannot be directly applied
to our system. More closely to our work is the optimization
for federated DBMSs. A key aspect in federated DBMSs, as
well as in distributed machine learning systems, is adaptive
query processing and re-optimization [11,12,14,49]. More
specifically, the Rio optimizer [12] is closely related to our
optimizer as it uses the notion of uncertainty for cardinality
estimates and proposes a proactive re-optimization strategy.
The authors in [49] propose a progressive query optimization
technique for relational databases. Nevertheless, the solu-
tions of such works are tailored for relational algebra and
assume tight control over the execution engine, which is not
applicable to our case. Finally, there is work on UDF-based
data flow optimization, such as [33,56], but they all are com-
plementary to our optimizer. One could leverage them to
better incorporate UDFs in our cost models.
MapReduce-based integration systems, such as [24,44],
mainly aim at integrating Hadoop with RDBMS and cannot
be easily extended to deal with more diverse data analytic
tasks and different processing platforms. There are also
works that automatically decidewhether to run aMapReduce
job locally or in a cluster, such as FlumeJava [18]. Although
such an automatic choice is crucial for some tasks, it does
not generalize to data flows with other platforms.
Federated databases have been studied since almost the
beginnings of the database field itself [60]. Garlic [17],
TSIMMIS [19], and InterBase [16] are just three examples.
However, all theseworks significantly differ from ours in that
they consider a single data model and push query processing
to where the data is.

11 Conclusion

We presented a cross-platform optimizer that automatically
allocates a task to a combination of data processing plat-
forms in order to minimize its execution cost. In particular,
we proposed (i) novel strategies to map platform-agnostic
tasks to concrete execution strategies; (ii) a new graph-based
approach to plan data movement among platforms; (iii) an
algebraic formalization and novel solution to select the opti-
mal execution strategy; and (iv) how to handle the uncertainty
found in cross-platform settings. Our extensive evaluation
showed that our optimizer allows tasks to run up to more
than one order of magnitude faster than on any single plat-
form. We acknowledge that this is only a first step toward
real cross-platform optimization. As future work, we may
consider to extend our optimizer to handle different types of
systems, such as machine learning systems or RDF stores.
Futureworkmight also take into accountmemory restrictions
of the platforms. Last but not least, we recently started eval-
uating different optimization techniques in Rheem for data
and ML debugging [21] and plan to extent our cost-based
optimizer to support these cases.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Proofs

We present the proofs of the theorems and lemmas presented
in Sects. 5 and 6.2.

Theorem 1 The MCT problem is NP-hard.

Proof The NP-hard problem of GST [54] can be reduced in
polynomial time to an MCT problem. Recall a GST instance
consists of a weighted graph G with positive edge weights, a
root vertex r , and k subsets (groups) of vertices from G. The
goal of GST is to find a tree G ′ on G that connects r with
at least one vertex of each group. We convert an instance of
GST to MCT as follows. We provide as input to MCT (i) a
channel conversion graph that has exactly the same vertices
and edges with G, (ii) the vertex r as root channel, (iii) the
k groups as target channel sets, and (iv) the edge weights of

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1307

the graph as conversion operator costs. This conversion can
trivially be done in polynomial time. ��
Lemma 1 A solution for a kernelized MCT problem also
solves the original MCT problem.

Proof Assume an original MCT problem Mo with target
channel sets Ct1 , …, Ctk and a kernelized MCT problem
Mk for which those Cti have been merged to a single target
channel set Ct∗.

Now let tk be an MCT for Mk . Obviously, tk is also a
conversion tree for Mo, but it remains to show that it is also
minimum. For that purpose, we assume that tk was not min-
imum for Mo; in consequence, there has to be some other
MCT to for Mo. If to satisfies all target channel sets of Mo

(i.e., the Cti) via the same communication channel c, then to
would also be anMCT forMk , which contradicts our assump-
tion. Specifically, c must be a reusable channel, as it satisfies
multiple target channel sets. In contrast, if to satisfies the tar-
get channel sets of Mo with different channels, then there has
to be at least one reusable channel c′ among them because
we kernelize only such target channel sets that have at most
one non-reusable channel. As c′ alone can already satisfy all
target channel sets of Mo, it follows that to produces more
target channels than necessary and is therefore not minimal,
which contradicts our assumption. ��
Theorem 2 Given a channel conversion graph, Algorithm 1
finds the minimum conversion tree if it exists.

Proof As per Lemma 1, the kernelization does not change
the solution of an MCT problem, so we proceed to prove the
correctness of the graph traversal algorithm—by induction.
Let h be the height of theMCT. If h = 1, the conversion tree,
which is composed of only a root (cf. Algorithm 1, Line 8),
is always minimal as any conversion operator incurs non-
negative costs. Assume an MCT of height h. We prove that
our algorithm can output a tree of height h + 1 that is also
minimal.Whenmerging PCTs two facts hold: (i) any subtree
in the MCT must be an MCT (with its own root); otherwise,
this subtree has a cheaper alternative and the overall conver-
sion tree cannot be minimal; and (ii) we consider all valid
combination of PCTs in the merging phase and hence will
not miss out the most efficient combination. Thus, given an
MCT with height h, the tree with height h + 1 will also be
minimal. ��
Lemma 2 The lossless pruning does not prune a subplan that
is contained in the optimal planwith respect to the costmodel.

Proof We prove this lemma by contradiction. Consider an
enumeration E = (S, SP) and two execution subplans
sp, sp′ ∈ SP. Let us assume that both subplans share the
same boundary operators and use the same platforms, but
sp′ has a lower cost than sp, so that our pruning removes sp.

Algorithm 3: Recursive traversal of MCT of Algo-
rithm 1.
Input: channel conversion graph G, current channel c, target

channel sets Ct , visited channels Cv , satisfied target
channel sets Cs

Output: minimum conversion trees from c to subsets of Ct
4 Function traverse(G, c,Ct ,Cv,Cs)
5 T ← create-dictionary();
6 C ′

s ← {Cti ∈ Ct | c ∈ Cti } \ Cs ;
7 if C ′

s �= ∅ then
8 foreach C ′′

s ∈ 2C
′
s \ ∅ do T [C ′′

s] ← tree(c) ;
9 if Cs ∪ C ′

s = Ct then return T ;

10 Cv ← Cv ∪ {c} ;
11 if reusable(c) then Cs ← Cs ∪ C ′

s ;
12 T ← ∅;
13 foreach (c

o→ c′) ∈ G with c′ /∈ Cv do
14 T ′ ← traverse(G, c′,Ct ,Cv,Cs);

15 T ′ ← grow(T ′, c o→ c′);
16 T ← T ∪ {T ′};
17 if reusable(c) then d ← |Ct | − |Cs | else d ← 1;
18 foreach T ∈ disjoint-combinations(T , d) do
19 T ← merge-and-update(T, T)

20 return T ;

Now assume that the subplan sp is contained in the optimal
plan p. If we exchange sp with sp′, we obtain a new plan p′.
This plan is valid because sp and sp′ have the same boundary
operators, so that any data movement operations between sp
with any adjacent operators in p are also valid for sp′. Fur-
thermore, p′ is more efficient than p because the costs for
sp′ are lower than for sp and besides those subplans, p and
p′ have the exact same operators and costs. This contradicts
the assumption that p is optimal. ��

B Datamovement algorithm details

We now explain in further detail the traverse function of
Algorithm 1. Its pseudocode is shown in Algorithm 3. The
objective of each recursion step is to build up a dictionary
T (Line 5) that associates subsets of the target channel sets,
i.e., Cs ⊆ Ct , with partial conversion trees (PCTs) from the
currently visited channel to those target channels Cs . While
backtracking from the recursion, these PCTs can then be
merged successively until they form the final MCT. Essen-
tially, the algorithm uses an exhaustive approach to build
all PCTs and in the end merge them to construct the MCT
with the least cost. We use the following example to further
explain Algorithm 3.

Example 12 Assume we are solving the MCT problem in
Fig. 5, i.e., cr := Relation, Ct1 := {Collection}, and Ct2 :=
{RDD,CachedRDD}. Also, assume that we have already
made one recursion step from the Relation to the Stream

123

1308 S. Kruse et al.

channel. That is, in our current invocation of traverse,
we visit c := Stream, on our current path we have visited
only Cv = {Relation} and did not reach any target channel
sets, i.e., Cs := ∅.
Visit channel (Lines 6–9) The traverse function starts by
collecting all so far unsatisfied target channel sets C ′

s that
are satisfied by the currently visited channel c (Line 6). If
there is any such target channel set (Line 7), we create a
PCT for any combinations of those target channel sets in C ′

s
(Line 8). At this point, these PCTs consist only of c as root
node, but they will be “grown” during backtracking from
the recursion. If we have even satisfied all target channel
sets on our current traversal path, we can immediately start
backtracking (Line 9). For Example 12, c = Relation does
not satisfy any target channel set, i.e., we get C ′

s = ∅ and we
need to continue.
Forward traversal (Lines 10–16) In the second phase, the
traverse function does the forward traversal. For that
purpose, it marks the currently visited channel c as visited;
and if c is reusable and satisfies some target channel sets
C ′
s , it marks those sets also as satisfied (Lines 10–11). This

is important to let the recursion eventually terminate. Next,
the algorithm traverses forward by following all CCG edges
starting at c and leading to an unvisited channel (Lines 13–
14).

Example 13 Continuing from Example 12 where c :=
Stream, we next visit CSVFile and Collection. Each recursive
call yields another dictionary T ′ of PCTs. For instance, when
invoking traverse on CSVFile, we get T ′[Ct1] = CSVFile
(a PCT consisting only of CSVFile as root). At this point, we
add the followed edge to this PCT to “grow” it (Line 16)
and obtain the PCT Stream → CSVFile. We store all those
“grown” PCTs in T .

Merge PCTs (Lines 17–20) As a matter of fact, none of the
PCTs in T might have reached all target channel sets. For
instance, the above-mentioned PCT Collection → DataSet
is the only one to satisfy Ct1 , but it does not satisfy
Ct2 . Thus, the third and final phase of the traverse
function merges certain PCTs in T . Specifically, the
disjoint-combinations function (Line 18) enumer-
ates all combinations of PCTs in T that (i) originate from
different recursive calls of traverse; (ii) do not overlap
in their satisfied target channel sets; and (iii) consist of 1 to
d different PCTs. While the former two criteria ensure that
we enumerate all combinations of PCTs that may be merged,
the third criterion helps us to avoid enumerating futile com-
binations:When the current channel c is not reusable, it must
not have multiple consuming conversion operators, so d is
set to 1 (Line 17). In any other case, any PCTmust not have a
degree larger than the number of not satisfied target channels
sets; otherwise, the enumerated PCTs would overlap in their

satisfied target channel sets. Note that kernelization lowers
the value of d, which reduces the number of target channel
sets.

Example 14 Assume we are in the step where we visit c =
Collection. Then, we have 4 outgoing conversion edges from
Collection but only 1 non-satisfied target channel set, namely
Ct2 . As a result, we can avoid merging PCTs from all four
edges simultaneously, as the resulting PCT could not be min-
imal.

Eventually, the merge-and-update function com-
bines the PCTs into a new PCT, and if there is no PCT in
T already that reaches the same target channel sets and has
lower costs, the new PCT is added to T (Line 19).

Example 15 Among others, we merge the PCTs Collection
→ DataSet and Collection → RDD in our running example.
When we backtrack (Line 20), the resulting PCT will be
“grown” by the edge Stream → Collection and form the
eventual MCT.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine
learning. In: USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pp. 265–283 (2016)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Sil-
berschatz, A.: HadoopDB: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads. PVLDB 2(1),
922–933 (2009)

3. Agrawal, D., Ba, L., Berti-Equille, L., Chawla, S., Elmagarmid,
A., Hammady, H., Idris, Y., Kaoudi, Z., Khayyat, Z., Kruse, S.,
Ouzzani, M., Papotti, P., Quiané-Ruiz, J.A., Tang, N., Zaki, M.J.:
Rheem: enabling multi-platform task execution. In: SIGMOD, pp.
2069–2072 (2016)

4. Agrawal, D., Chawla, S., Contreras-Rojas, B., Elmagarmid, A.K.,
Idris, Y., Kaoudi, Z., Kruse, S., Lucas, J., Mansour, E., Ouzzani,
M., Papotti, P., Quiané-Ruiz, J., Tang, N., Thirumuruganathan, S.,
Troudi, A.: RHEEM: enabling cross-platformdata processing:may
the big data be with you!. PVLDB 11(11), 1414–1427 (2018)

5. Agrawal, D., Chawla, S., Elmagarmid, A., Kaoudi, Z., Ouzzani,
M., Papotti, P., Quiané-Ruiz, J.A., Tang, N., Zaki, M.J.: Road to
freedom in big data analytics. In: EDBT, pp. 479–484 (2016)

6. Alexandrov, A., et al.: The stratosphere platform for big data ana-
lytics. VLDB J. 23(6), 939–964 (2014)

7. Apache Beam. (2019). https://beam.apache.org. Accessed 2 May
2019

8. ApacheDrill (2019). https://drill.apache.org.Accessed2May2019
9. Apache Spark: Lightning-fast cluster computing (2019). http://

spark.apache.org. Accessed 2 May 2019
10. Baaziz, A., Quoniam, L.: How to use big data technologies to opti-

mize operations in upstream petroleum industry. Int. J. Innov. (IJI)
1(1), 19–25 (2013)

11. Babu, S., Bizarro, P.: Adaptive query processing in the looking
glass. In: CIDR (2005)

12. Babu, S., Bizarro, P., DeWitt, D.J.: Proactive re-optimization with
Rio. In: SIGMOD, pp. 936–938 (2005)

13. Begoli, E., Camacho-Rodríguez, J., Hyde, J., Mior, M.J., Lemire,
D.: Apache calcite: a foundational framework for optimized query

123

https://beam.apache.org
https://drill.apache.org
http://spark.apache.org
http://spark.apache.org

RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems 1309

processing over heterogeneous data sources. In: SIGMOD, pp.
221–230 (2018)

14. Boehm,M., Burdick, D.R., Evfimievski, A.V., Reinwald, B., Reiss,
F.R., Sen, P., Tatikonda, S., Tian, Y.: SystemML’s optimizer: plan
generation for large-scale machine learning programs. IEEE Data
Eng. Bull. 37(3), 52–62 (2014)

15. Boehm,M.,Dusenberry,M., Eriksson,D., Evfimievski, A.V.,Man-
shadi, F.M., Pansare, N., Reinwald, B., Reiss, F., Sen, P., Surve, A.,
Tatikonda, S.: SystemML: declarative machine learning on spark.
PVLDB 9(13), 1425–1436 (2016)

16. Bukhres, O.A., Chen, J., Du, W., Elmagarmid, A.K., Pezzoli, R.:
Interbase: an execution environment for heterogeneous software
systems. IEEE Comput. 26(8), 57–69 (1993). https://doi.org/10.
1109/2.223544

17. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F.,
Fagin, R., Flickner, M., Luniewski, A., Niblack, W., Petkovic, D.,
Thomas, J., Williams, J.H., Wimmers, E.L.: Towards heteroge-
neous multimedia information systems: the garlic approach. In:
Proceedings of the International Workshop on Research Issues
in Data Engineering—Distributed Object Management (RIDE-
DOM), pp. 124–131 (1995)

18. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R.,
Bradshaw, R., Weizenbaum, N.: FlumeJava: easy, efficient data-
parallel pipelines. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI), pp. 363–375 (2010)

19. Chawathe, S.S., Garcia-Molina, H., Hammer, J., Ireland, K.,
Papakonstantinou, Y., Ullman, J.D., Widom, J.: The TSIMMIS
project: integration of heterogeneous information sources. In:
Information Processing Society of Japan (IPSJ), pp. 7–18 (1994)

20. Chekuri, C., Even, G., Kortsarz, G.: A greedy approximation algo-
rithm for the group Steiner problem. Discret. Appl. Math. 154(1),
15–34 (2000)

21. Contreras-Rojas, B., Quiané-Ruiz, J., Kaoudi, Z., Thirumuru-
ganathan, S.: TagSniff: simplified big data debugging for dataflow
jobs. In: SoCC, pp. 453–464 (2019)

22. DB2 hybrid data management. https://www.ibm.com/analytics/
data-management (2019)

23. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

24. DeWitt, D.J., Halverson, A., Nehme, R.V., Shankar, S., Aguilar-
Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query
processing in polybase. In: SIGMOD, pp. 1255–1266 (2013)

25. Doka, K., Papailiou, N., Giannakouris, V., Tsoumakos, D., Koziris,
N.: Mix ’n’ match multi-engine analytics. In: IEEE BigData, pp.
194–203 (2016)

26. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe,
B., Kepner, J., Madden, S., Maier, D., Mattson, T., Zdonik, S.B.:
The BigDAWG polystore system. SIGMOD Record 44(2), 11–16
(2015). https://doi.org/10.1145/2814710.2814713

27. Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M.,
Cetintemel, U., Gadepally, V., Heer, J., Howe, B., Kepner, J.,
Kraska, T., et al.: A demonstration of the BigDAWG polystore
system. PVLDB 8(12), 1908–1911 (2015)

28. Ewen, S., Kache, H., Markl, V., Raman, V.: Progressive query opti-
mization for federated queries. In: EDBT, pp. 847–864 (2006)

29. Garg,N.,Konjevod,G., Ravi, R.:A polylogarithmic approximation
algorithm for the group Steiner tree problem. J. Algorithms 37(1),
66–84 (2000)

30. Gog, I., Schwarzkopf, M., Crooks, N., Grosvenor, M.P., Clement,
A., Hand, S.: Musketeer: all for one, one for all in data processing
systems. In: EuroSys, pp. 1–16 (2015)

31. Haynes, B., Cheung, A., Balazinska, M.: PipeGen: data pipe gen-
erator for hybrid analytics. In: SoCC, pp. 470–483 (2016)

32. Hems, A., Soofi, A., Perez, E.: How innovative oil and gas compa-
nies are using big data to outmaneuver the competition. Microsoft

white paper (2014). http://download.microsoft.com/documents/
en-us/Drilling_for_New_Business_Value_April2014_Web.pdf.
Accessed 2 May 2019

33. Hueske, F., Peters, M., Sax, M.J., Rheinländer, A., Bergmann, R.,
Krettek, A., Tzoumas, K.: Opening the black boxes in data flow
optimization. PVLDB 5(11), 1256–1267 (2012)

34. Data-driven healthcare organizations use big data analytics for big
gains. IBM Software white paper (2019)

35. Ioannidis, Y.E.: Query optimization. ACM Comput. Surv. 28(1),
121–123 (1996)

36. Jindal, A., Quiané-Ruiz, J., Dittrich, J.: WWHow! Freeing data
storage from cages. In: CIDR (2013)

37. Josifovski, V., Schwarz, P.M., Haas, L.M., Lin, E.T.: Garlic: a new
flavor of federated query processing for DB2. In: SIGMOD, pp.
524–532 (2002)

38. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence
for logical analytic flows. In: ICDE, pp. 1060–1071 (2014)

39. Kaoudi, Z., Quiané-Ruiz, J., Contreras-Rojas, B., Padro-Meza, R.,
Troudi, A., Chawla, S.: ML-based cross-platform query optimiza-
tion. In: ICDE (2020)

40. Kaoudi, Z., Quiané-Ruiz, J.A.: Cross-platformdata processing: use
cases and challenges. In: ICDE (tutorial) (2018)

41. Kaoudi, Z., Quiane-Ruiz, J.A., Thirumuruganathan, S., Chawla,
S., Agrawal, D.: A cost-based optimizer for gradient descent opti-
mization. In: SIGMOD (2017)

42. Kossmann, D., Stocker, K.: Iterative dynamic programming: a new
class of query optimization algorithms. TODS 25(1), 43–82 (2000).
https://doi.org/10.1145/352958.352982

43. Kruse, S., Kaoudi, Z., Quiané-Ruiz, J.A., Chawla, S., Naumann,
F., Contreras-Rojas,B.:Optimizing cross-platformdatamovement.
In: ICDE, pp. 1642–1645 (2019)

44. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J.,
Polyzotis, N., Carey, M.J.: MISO: Souping up big data query pro-
cessing with a multistore system. In: SIGMOD, pp. 1591–1602
(2014)

45. Leis, V., et al.: How good are query optimizers, really? PVLDB
9(3), 204–215 (2015)

46. Lim, H., Han, Y., Babu, S.: How to fit when no one size fits. In:
CIDR (2013)

47. Lucas, J., Idris, Y., Contreras-Rojas, B., Quiané-Ruiz, J., Chawla,
S.: RheemStudio: Cross-platform data analytics made easy. In:
ICDE, pp. 1573–1576 (2018)

48. Luigi project (2019). https://github.com/spotify/luigi. Accessed 2
May 2019

49. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H.,
Cilimdzic, M.: Robust query processing through progressive opti-
mization. In: SIGMOD, pp. 659–670 (2004)

50. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press,
Cambridge (1998)

51. Noyes, K.: For the airline industry, big data is cleared for
take-off. http://fortune.com/2014/06/19/big-data-airline-industry.
Accessed 2 May 2019

52. Palkar, S., Thomas, J.J., Shanbhag, A., Schwarzkopt, M., Amaras-
inghe, S.P., Zaharia, M.: A common runtime for high performance
data analysis. In: CIDR (2017)

53. PostgreSQL (2019). http://www.postgresql.org. Accessed 2 May
2019

54. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI
oriented generalization. In: Proceedings of the International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG),
pp. 196–210 (1989)

55. Rheem project (2020). https://rheem-ecosystem.github.io/.
Accessed 10 May 2020

56. Rheinländer, A., Heise, A., Hueske, F., Leser, U., Naumann, F.:
SOFA: an extensible logical optimizer for UDF-heavy data flows.
Inf. Syst. 52, 96–125 (2015)

123

https://doi.org/10.1109/2.223544
https://doi.org/10.1109/2.223544
https://www.ibm.com/analytics/data-management
https://www.ibm.com/analytics/data-management
https://doi.org/10.1145/2814710.2814713
http://download.microsoft.com/documents/en-us/Drilling_for_New_Business_Value_April2014_Web.pdf
http://download.microsoft.com/documents/en-us/Drilling_for_New_Business_Value_April2014_Web.pdf
https://doi.org/10.1145/352958.352982
https://github.com/spotify/luigi
http://fortune.com/2014/06/19/big-data-airline-industry
http://www.postgresql.org
https://rheem-ecosystem.github.io/

1310 S. Kruse et al.

57. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and exten-
sible algorithms for multi query optimization. In: SIGMOD, pp.
249–260 (2000)

58. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database manage-
ment system. In: SIGMOD, pp. 23–34 (1979)

59. Shankar, S., Choi, A., Dijcks, J.P.: Integrating hadoop data with
oracle parallel processing. Oracle white paper (2010). http://
www.oracle.com/technetwork/database/bi-datawarehousing/twp-
integrating-hadoop-data-with-or-130063.pdf. Accessed 2 May
2019

60. Sheth, A.P., Larson, J.A.: Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM
Comput. Surv. 22(3), 183–236 (1990)

61. Simitsis, A.,Wilkinson, K., Castellanos,M., Dayal, U.: Optimizing
analytic data flows for multiple execution engines. In: SIGMOD,
pp. 829–840 (2012)

62. Stonebraker, M.: The case for polystores. ACM SIGMOD Blog.
http://wp.sigmod.org/?p=1629. Accessed 2 May 2019

63. Wang, J., et al.: The Myria big data management and analytics
system and cloud services. In: CIDR (2017)

64. Yang, F., Li, J., Cheng, J.: Husky: Towards a more efficient and
expressive distributed computing framework. PVLDB 9(5), 420–
431 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/twp-integrating-hadoop-data-with-or-130063.pdf
http://wp.sigmod.org/?p=1629

	Title
	Abstract
	Keywords
	1 Introduction
	Figure 1

	2 Rheem background
	Example 1
	Example 2
	Figure 2

	3 Overview
	4 Plan enrichment
	4.1 Plan inflation
	Figure 3
	4.1.1 Graph-based operator mappings
	Definition 1
	Example 3

	4.1.2 Operator inflation
	Example 4

	4.2 Operators cost estimation
	Figure 4
	4.2.1 Cost estimation
	4.2.2 Cost learner
	4.2.3 Cardinality estimation

	5 Datamovement
	5.1 Channel conversion graph
	Definition 2
	Example 5
	Figure 5

	5.2 Minimum conversion tree problem
	Example 6
	Example 7
	Theorem 1

	5.3 Finding minimum conversion trees
	5.3.1 Kernelization
	Algorithm 1
	Example 8
	Lemma 1

	5.3.2 Channel conversion graph exploration
	5.3.3 Correctness and complexity
	Theorem 2

	6 Plan enumeration
	6.1 Plan enumeration algebra
	Figure 6
	6.1.1 Data structures
	Example 9

	6.1.2 Algebra operations
	Definition 3
	Example 10
	Definition 4

	6.1.3 Applying the algebra

	6.2 Lossless pruning
	Algorithm 2
	Definition 5
	Example 11
	Lemma 2

	6.3 Enumeration algorithm
	Theorem 3

	7 Dealing with uncertainty
	8 Extensibility
	9 Experiments
	9.1 General setup
	9.2 Single-platform optimization
	Table 1
	Figure 7
	Figure 8

	9.3 Multi-platform optimization
	Figure 9
	Table 2
	Figure 10
	Figure 11

	9.4 Progressive optimization
	Figure 12

	9.5 Optimizer scalability
	Figure 13

	9.6 Optimizer internals
	Figure 14
	Figure 15
	Figure 16

	10 Related work
	11 Conclusion
	Acknowledgements
	Open Access
	A Proofs
	Theorem 1
	Lemma 1
	Theorem 2
	Lemma 2
	Algorithm 3

	B Datamovement algorithm details
	Example 12
	Example 13
	Example 14
	Example 15

	References

