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Abstract

In the living cell, the organization of the complex internal structure relies to a large
extent on molecular motors. Molecular motors are proteins that are able to convert
chemical energy from the hydrolysis of adenosine triphosphate (ATP) into mechanical
work. Being about 10 to 100 nanometers in size, the molecules act on a length scale,
for which thermal collisions have a considerable impact onto their motion. In this way,
they constitute paradigmatic examples of thermodynamic machines out of equilibrium.

This study develops a theoretical description for the energy conversion by the molec-
ular motor myosin V, using many different aspects of theoretical physics. Myosin V
has been studied extensively in both bulk and single molecule experiments. Its stepping
velocity has been characterized as a function of external control parameters such as nu-
cleotide concentration and applied forces. In addition, numerous kinetic rates involved
in the enzymatic reaction of the molecule have been determined. For forces that exceed
the stall force of the motor, myosin V exhibits a ’ratcheting’ behaviour: For loads in the
direction of forward stepping, the velocity depends on the concentration of ATP, while
for backward loads there is no such influence.

Based on the chemical states of the motor, we construct a general network theory that
incorporates experimental observations about the stepping behaviour of myosin V. The
motor’s motion is captured through the network description supplemented by a Markov
process to describe the motor dynamics. This approach has the advantage of directly ad-
dressing the chemical kinetics of the molecule, and treating the mechanical and chemical
processes on equal grounds. We utilize constraints arising from nonequilibrium thermo-
dynamics to determine motor parameters and demonstrate that the motor behaviour
is governed by several chemomechanical motor cycles. In addition, we investigate the
functional dependence of stepping rates on force by deducing the motor’s response to
external loads via an appropriate Fokker-Planck equation. For substall forces, the dom-
inant pathway of the motor network is profoundly different from the one for superstall
forces, which leads to a stepping behaviour that is in agreement with the experimental
observations. The extension of our analysis to Markov processes with absorbing bound-
aries allows for the calculation of the motor’s dwell time distributions. These reveal
aspects of the coordination of the motor’s heads and contain direct information about
the backsteps of the motor. Our theory provides a unified description for the myosin V
motor as studied in single motor experiments.
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1 Introduction

1.1 A first glance at molecular motors

This study characterizes the stepping dynamics of myosin V, a linear molecular motor
that converts chemical energy into mechanical work by means of an enzymatic reaction.
In general, an enzyme is a protein that acts as a catalyst to a chemical reaction by
supporting the conversion of a chemical substrate into its product.

In the cell, thousands of different molecules are constantly being converted through
chemical reactions. Among these, enzymatic reactions play an important role as they
enhance and therefore select a specific chemical reaction. This establishes a hierarchy
of chemical reactions in the cell. The series of these reactions are called metabolic
pathways. The set of all pathways constitutes the metabolic network, which is of basic
importance for the homeostasis, or self-regulation, of an organism. Another particular
feature of an enzymatic reaction is its tuneability with respect to a variety of external
parameters like the chemical environment and the temperature. The function of an
enzyme can, in addition, be regulated by co-factors, helper molecules that enhance or
suppress its activity. A variety of enzymes that perform different tasks and are linked
through their substrates or products thus establish a highly elaborate, yet controlled
process. A comprehensive discussion of the molecular biology of the cell including all its
complex processes can be found in the book of Alberts [1]. For condensed information
about enzymatic processes in the cell, we refer to the atlas of biochemical pathways [2]
and a map of the metabolic pathways [3].

Molecular motors fall into a category of enzymes that are able to generate mechanical
motion, ranging from cargo transport to the induction of fluid flows or molecule assembly.
The cellular machinery comprises a fascinating variety of motors such as ion pumps,
cargo transporting motors, or machines for the manipulation of DNA. Each of these
motors has a specific and often very elaborate fashion to perform its task despite the
noisy environment it is exposed to. The size of molecular machines, typically several tens
to a few hundred nanometers, is on a length scale of the physical world where random
collisions with surrounding molecules govern the motion of a free particle.

Linear molecular motors move along the different filaments that form the cytoskeleton,
the complex structure that constitutes the solid part of the eucaryotic cell. It consists
of mainly two types of filaments, microtubules and actin. The microtubules are oriented
from the centrosome with their positive end towards the cell periphery. They lead to a
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1.1. A FIRST GLANCE AT MOLECULAR MOTORS

Figure 1.1 : Examples of motor proteins in the cell. (a) Conventional kinesin and dynein
serve as cargo transporters in opposite directions along microtubules. (b) Kinesin is a
linear motor, whose two heads walk in a hand-over-hand fashion in steps of 8 nm along
microtubules. (c) Muscle contraction is caused by by the power stroke of myosin II
attached to actin in a sarcomere unit. The nonprocessive myosin II detaches after each
power stroke. (d) The rotary motor F0F1-ATPase. For a substrate concentration that
results in ATP hydrolysis, to motor drives a proton flux through a rotary motion of
its subunits. With changing the substrate concentration, the motor performs a proton-
driven synthesis of ATP. Figure adapted from [4], with the original sources listed on the
right hand side.
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CHAPTER 1. INTRODUCTION

network of actin filaments that stabilizes the cell shape. Kinesin and dynein are linear
molecular motors that transport cargo along microtubules, whereas the motors myosin
V and VI move in opposite directions along actin filaments. The nonprocessive myosin
II serves as a linker of the actin network.

Fig. 1.1 shows a selection of motor proteins in the cell. Kinesin and dynein, depicted
in panels (a) and (b), walk along microtubules in opposite directions in a hand-over-hand
fashion, and may be attached to the same cargo. Panel (c) shows the most prominent
relative of myosin V, myosin II, typically referred to as the muscle myosin. Besides
its function as a linker in the cytoskeleton, it is involved in the contraction of muscles.
By means of a stroke, driven by ATP hydrolysis, an assembly of myosin II motors on
actin causes a sliding motion of the filaments that leads to muscle contraction. In (d),
a rotary motor, the F0F1-ATPase, is shown. It serves, depending on the concentration
of its substrate and products, either as a proton pump that is fueled by ATP hydrolysis
or a proton-driven machine for ATP synthesis.

A common element to all motor proteins is that they consume a fuel, typically ATP
or GTP, that releases energy by means of a chemical reaction and is used by the motor
to perform its work. The biological details of molecular motors exhibit all features of
nature’s ingenious diversity, but their function is based on fundamental principles of
energy conversion, for instance, enzymatic activity.

Molecular motors pose a challenge for researchers ranging from experiment to theory,
from biology to chemistry and physics. The fascination arising from molecular motors is,
last but not least, based on the fact that their work in progress can nowadays be observed
by means of advanced experimental techniques in high resolution and real time. This
level of insight has been around only two decades, and is taken further as different
elaborate methods of modern microscopy are combined to investigate biomolecules.

1.2 The physics of molecular motors

The physics to describe the function of the cellular machinery is the physics of nonequi-
librium thermodynamics. Therfore, molecular motors provide a live example of a ther-
modynamic machine far from equilibrium.

Experimentally, an in vitro observation allows for separation of the motor from its
natural environment, the cell, and testing it in a controlled fashion with a limited set
of parameters. From a theoretical point of view, the motor provides an example of
a dynamical system with non-negligible thermal noise. This is of particular interest
with respect to the formulation of thermodynamic rules, the constraints they evoke for
the system, and its fluctuation theorems. The motor is exposed to a flux of energy to
and from other systems, a situation which poses the fundamental difficulty of defining
entropy for systems out of thermodynamic equilibrium. In case of stationarity, this
definition becomes feasible, and the interplay of chemical and mechanical energy along
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1.2. THE PHYSICS OF MOLECULAR MOTORS

with the production of entropy can be accessed. A variety of concepts established for
nonequilibrium thermodynamics have been formulated with respect to molecular motors,
like fluctuation theorems [5], the Onsager reciprocal relations [6] or the motor efficiency
[7, 8, 9]. A general approach to molecular motors both experimentally and theoretically
can be found in the book of Howard [10].

For the theoretical treatment of the cellular machinery, two complementary concepts
have emerged in the past years. One approach is based on a continuous description called
thermal ratchets, and the other one, used in this work, relies on discrete chemomechanical
networks. General reviews of these concepts can be found in [11, 12, 13, 14, 15].

The description of the motor as a thermal ratchet provides a simplistic approach based
on minimal parameter input to generate a directed motion [16]. With a focus on the
motor’s motion that is modelled through an effective potential, the chemical reaction
is used to trigger a motion by inducing a change of the potential in form of a periodi-
cally changing signal. This signal facilitates the motor’s mechanical displacement into a
given direction and thus results in a directed motion. Ratchets are continuous in time
and space, and their mathematical treatment, apart from a few simple cases, can turn
rather elaborate. As the underlying potentials may not be accessible to experiment, the
ratchet’s parameters sometimes can not directly be mapped onto experimental observ-
ables.

The use of an enzymatic network to model the motor’s motion relies on a set of
chemical states that form the network. Both the chemical reaction and the motor’s
motion are treated on an equal footing through transitions between these states. One
assumption that allows for this procedure relies on the separation of timescales of the
chemical reactions and the motor’s mechanical transitions. A second requirement is
that thermal equilibrium is acquired for each designated state, which means that after
a transition from one state to another, the system relaxes into thermal equilibrium on a
timescale that is fast compared to the transition in itself. Compared to thermal ratchets,
the amount of the model’s parameters, like transition rates, rises with the complexity of
the network. It is, however, possible to relate these parameters to measurable quantities
that can in principle be accessed experimentally, and in most cases have indeed been
measured. As the network description is discrete in space, the identification of relevant
states that connect dominating pathways to the enzymatic reaction is crucial for the
network’s quality. This problem is similar to finding a good finite approximation to an
infinite Hamiltionian in quantum mechanics, and often, the techniques used rely on an
educated guess that is taken with respect to the system’s inherent constraints like its
symmetries.

In our approach to molecular motors [17, 18], the constraints are posed by thermo-
dynamics, and the educated guess has a footing on experimental observations. Our
guidance to find a network description follows the principle of Occam’s razor, entia non
sunt multiplicanda sine necessitate - entities must not be multiplied beyond necessity.
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CHAPTER 1. INTRODUCTION

1.3 Experimental characterization of the molecular
motor myosin V

In a chemomechanical description, the motor is treated as a system whose motion is
characterized by its center of mass and its ability to move forward by means of passing
through several interacting chemical states. One can think of the motor as a moving
particle with a specific internal functionality, which corresponds to the level of obser-
vation as given in single-molecule experiments carried out with optical tweezers. Its
performance is captured by a sequence of chemical reactions with mechanical transitions
that constitute different pathways the motor explores for its work. We are therefore
interested in chemical and stepping variables of the motor rather than its atomic or
molecular details. Myosin V is a motor protein that processively moves along actin

Figure 1.2 : Cell function of myosin V. The figure depicts a neuron with a dentritic
spine, a membrane protrusion that receives input from a synapse. For strengthening
(yellow flash), the synapses need to be supplied by membrane pieces and receptors
(AMPA). Through influx of Ca2+ at the spines, the myosin V is activated. At the
dendrite shaft, it binds, at the recycling endosome, to a protein (red and yellow bead)
containing AMPA receptors (lila). Subsequently, it transports cargo into and along
spines through processive motion on actin filaments to mediate insertion of the receptors
at the cell surface. In the subsynaptic region, the actin filaments are not oriented and
thus allow for transport in various directions. Figure adapted from [19].

filaments in a hand-over-hand fashion. By virtue of its extraordinary step size of 36
nm, it has experienced deep interest since the first observations of its processive motion
[20, 21]. A great variety of experimental methods has been applied for the characteri-
zation of the molecule ranging from bulk chemokinetic experiments to single-molecule
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1.3. EXPERIMENTAL CHARACTERIZATION OF THE MOLECULAR MOTOR MYOSIN V

methods with both fluorescence techniques and optical traps. It is believed to serve as a
cargo transporter, but little is known about the actual details of its function. However,
it has been discovered only recently that myosin V is part of the molecular machinery
in neurons that is responsible for the regulation of active transport of receptors into
synapses [22, 23, 19], as illustrated in Fig. 1.2.

Myosin V is approximately 100 nm in size, and consists of a tail domain that binds
the cargo, a light chain neck region and two lever arms of the motor that are build of 6
IQ motifs, i. e., calmodulin binding sequences of amino acids, with heads at their ends.
The heads are responsible for both binding to the motor’s track, the actin filament, and
for energy conversion. Each head has a nucleotide binding pocket that is able to bind
ATP and support its hydrolysis. Fig. 1.3 sketches some important experiments for the
motor‘s characterization and a schematic drawing of the motor in panel (e).

The knowledge about the motor has been summarized in numerous reviews, [28, 29,
30, 31, 32, 33, 34, 35]. They include the coupling of its fuel consumption to its motion,
its stepping details, like the distribution of step sizes, waiting times and thus velocities,
as a function of a variety of control parameters. The latter are primarily nucleotide
concentration and an external load force, but the influence by the length of its lever
[36, 37, 38, 39] or the regulatory impact of Ca2+ have also been tested [40, 41, 42].

Most of the stepping properties of the molecule have been investigated using optical
traps [43, 44, 45, 46, 47], where an external force can be exerted on the molecule via
a roughly micrometer-sized polystyrene bead that is attached to myosin V, as sketched
in Fig. 1.3 (a). The motor walks on an actin filament that is immobilized on a glass
coverslip with myosin II or held in a second trap by its ends. In feedback traps, it is
possible to keep the external force at a constant level. The bead is observed using an
optical microscope that is usually coupled to a quadrant photodiode. A particularly
elaborate feedback trap is used for the experimental observations in [47], where the
motion of the bead in both vertical and horizontal direction is monitored at a resolution
of nanometers. The data set for kinetic rates that form the main input to our model is
based on the work of de la Cruz [48]. These are the rates of binding or release of ATP,
ADP and phosphate. They are quantified using techniques to determine the kinetics of
chemical reactions: The equilibrium binding constants for single-headed constructs of
myosin V both in the presence and absence of actin are measured using a quench and a
stopped flow apparatus with fluorescent titration.

The structural information about myosin V, with an example shown in Fig. 1.3 (b),
stems from cryoelectronmicroscopy [25]. It directly visualizes the frozen motor molecules
that can be attached to their tracks and initialized the debate about the motor’s pow-
erstroke or telemark conformation [49]. One way to explicitly monitor the motion of
the molecule is the use of fluorescence microscopy, where both the motor and the actin
filament are fluorescently labelled, as shown in panel (c). The newest highly spectac-
ular experiment that directly observes the molecule at work includes movies that have
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CHAPTER 1. INTRODUCTION

Figure 1.3 : Experiments carried out with myosin V and a schematic view of the
molecule. (a) Sketch of a feedback-controlled optical trap. A bead (green) is captured
in a laser trap (brown), thus allowing to extert forces up to several pN on the myosin V,
that is fixed to the bead and moves along the immobilized actin filament. Monitoring the
position of the bead results in the grey/black signal, and the feedback signal of the trap
is shown in black. Taken from [24]. (b) Structure of a folded and thus inactive state of
myosin V as observed in cryoelectromicroscopy [25]. (c) Fluorescently labelled myosin V
molecules (green) moving along actin filaments (red), and their overlap (yellow), taken
from [26]. (d) Time-series of video-imaging of moving myosin V by high-speed atomic
force microscopy [27] The molecule has performed a step in the last picture. (e) Sketch
of myosin V with indication of its molecular details.
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been obtained with rapid atomic force microscopy [27], providing high-resolution images
of the moving motor. A snapshot of the motion is shown in Fig. 1.3 (d). Taking the
scale down to molecular details, conformational changes in the actin-binding region have
been observed using fluorescence resonance energy transfer (FRET) [50]. In addition,
Molecular Dynamics (MD) simulations have been used to investigate the conformational
changes in the molecule’s head upon the binding of nucleotides [51].

The details of the stepping mechanism that are observable due to the molecule’s large
step size have been elucidated in an elaborate fashion and conclude on the mechanism
as being a combination of a power stroke and a subsequent diffusive search of the next
binding site on the filament [52]. This mechanism is perceptible as substeps of the motor,
which have been characterized by various groups [53, 47, 54, 55, 56]. Fluorophore and
quantum dot labelling or the use of gold nanoparticles allow for the direct observation
of the motor’s hand-over-hand motion [57, 58, 59].

1.4 Outline of the thesis

This thesis is organized as follows.

Chapter 2 provides the theoretical framework of Markov processes and Markov chains
with absorbing boundaries. We link the kinetics of an enzyme to a stochastic process,
and show how the concept of stationarity can be used to calculate the motor’s dynamic
properties. For calculation of the stationary state of a given network, we introduce the
corresponding matrix algebra and a method from graph theory. Finally, the theory of
Markov chains with absorbing states will be used to determine dwell time distributions,
i. e., the distribution of waiting times between two successive steps of the motor.

Chapter 3 gives an overview about thermal ratchets and sets the mathematical basis
for deduction of mechanical stepping rates from the Fokker-Planck equation.

Chapter 4 deals with the application of the theory for the molecular motor myosin
V. A network representation for the stepping motion of the motor is established based
on experimental observations.

Chapter 5 focuses on macroscopic observables like the average velocity of the motor
subject to different external parameters like the concentration of nucleotides or an ex-
ternal force. These quantities are calculated and compared with experimental data. In
particular, the functional form of transition rates that are not accessible experimentally
is deduced from basic physical principles.

Chapter 6 turns to the distributions of dwell times that can be determined analyti-
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CHAPTER 1. INTRODUCTION

cally when splitting our network representation into single cycles. The influence of these
as a function of an external load force is discussed and compared with results from sim-
ulations obtained for the complete network representation.

Chapter 7 concludes with a summary and provides an outlook into further prospects
of the field. Different extensions of the model to capture further characteristic proper-
ties of myosin V will be discussed.

Appendix A deals with the details of the network’s stationary state. Appendix B contains
further information about the network properties in relation to experimental informa-
tion. Appendix C provides information about the Gillespie algorithm, that has been
used for the simulation of dwell time distributions. Appendix D gives the full form of
the analytical solutions of the dwell time distributions.

13



 



2 Networks

This chapter motivates the use of networks for the description of enzymatic activity. It
contains a short introduction to the enzymatic networks and their kinetics, followed by
some aspects of graph theory, with the formal definitions restricted to our specific needs.
To determine the stationary states of the master equation, we use a graph-theoretical
method based on probability fluxes that are related to a method used by Kirchhoff [60].
Thereafter, we establish a connection to nonequilibrium thermodynamics, that relates
the probability fluxes of discrete networks to the enzyme kinetics of molecular motors.
Finally, we discuss the algebraic formalism for Markov processes, that can be found,
for instance, in van Kampen [61], and its extension to Markov chains with absorbing
states to describe the mathematical foundations for the calculation the motor’s dwell
time distribution.

2.1 Enzymatic networks

The activity of an enzyme or molecular motor can be described as a series of chemical
reactions that involves the binding and release of chemical species, which results in their
transformation from educts to products and vice versa. These chemical reactions may
lead to conformational changes of the molecule that result in the motor’s motion.

The motor typically moves along its filamentous track in a discrete fashion. Thus, its
position can be specified by a discrete, one-dimensional coordinate that is parametrized
along the filament. At a specific position, the motor can attain different conformational
states, and have a different chemical composition at its catalytic domains. As a catalytic
domain, the so-called nucleotide binding pocket, typically binds a single nucleotide, one
can characterize the state of the molecule by the chemical state of its binding pocket. An
empty binding pocket that supports ATP hydrolysis may bind an ATP molecule, which
is cleaved to an ADP*P complex with subsequent release of phosphate, with bound
ADP remaining, and the release of ADP leads to the empty pocket again. The possible
chemical states are thus characterized by bound ATP, ADP*P, ADP, or an empty state,
which leads to the chemical reaction cycle shown in Fig. 2.1 (a). The corresponding
states are denoted by T (ATP bound), Θ (ADP*P bound), D (ADP bound), and E
(empty). In principle, the binding pocket can have more than one conformational state
that belongs to a bound nucleotide. As these conformational states require experimental
knowledge about the molecular details of the binding pocket, and can not be resolved in
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2.1. ENZYMATIC NETWORKS

single-molecule experiments, we rely on a description with a state space determined by
its chemical states. Moreover, it is hard to experimentally distinguish the ATP cleavage
and phosphate release, i.e., the transition between the states T→ Θ→ D, one combines
the state Θ into the transition T→ D, as shown in Fig. 2.1 (b) [11]. The remaining three

E
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T T

TD T D
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ADP

ATP
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ADP

ATP
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E
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Figure 2.1 : Chemical networks for a single (a, b) catalytic domain and for two domains
(c), with chemical transitions between the states in both directions, with arrows indi-
cating the direction of hydrolysis. (a) Four chemical states characterized by an empty
(E) domain, with ATP or ADP bound (D, T), and with the complex ADP*P (Θ). (b)
Reduced version of the network where the cleavage transition and phosphate release have
been combined into a single transition T → D. (c) For M = 2 catalytic domains, the
chemical network consists of 3M = 9 states. When identifying the two domains as the
heads of a molecular motor moving along a filament towards the right hand side (grey
line), the trailing and the leading head can be associated with the left and right domain.

states of the binding pocket are thus denoted by T, D, or E, and the transitions between
these states happen by binding or release of ATP, ADP, or phosphate. The extension
to a motor molecule with multiple nucleotide binding pockets M , leads to a chemical
state space that is composed by all 3M combinations of the chemical states of the single
pockets, as shown in Fig. 2.1 (c) for M = 2. Adding a spatial coordinate to the system
to incorporate the motor’s position leads to a network that consists of repeated copies of
the chemical network along xi, with mechanical transitions connecting specific chemical
states. For a motor that moves in a hand-over-hand fashion, a mechanical transition
is characterized by the interchange of the leading and the trailing head, such that the
possible mechanical transitions for the network shown in Fig. 2.1 can happen between
the states DT 
 TD, ET 
 TE, and ED 
 DE, as well as EE 
 EE, DD 
 DD,
and TT 
 TT. As a motor repeatedly moves along its filament, and all chemical states
can be attained at each position, we will impose periodic boundary conditions on the
spatial coordinate of the system. The specific form of a network representation will be
discussed in chapter 4.

Prior to discussing the general properties of networks, let us outline the motor’s dy-
namics. We characterize the motor by chemical states, with both chemical and mechani-
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CHAPTER 2. NETWORKS

cal transitions between two connected states taking place in a stochastic manner. These
states form a probabilistic network, for which the probability Pi(t) to find the motor in
state i at time t evolves according to a master equation

d

dt
Pi(t) = −

∑
j

∆Jij(t), (2.1)

with

∆Jij(t) ≡ Pi(t) ωij − Pj(t) ωji (2.2)

being the local excess fluxes through the transition between two states i and j, where
the transition rate ωij is given by the number of transitions from i to j per unit time.
In the case of continuous energy supply and stepping, the motor resides in a steady
state, which allows for calculation of its macroscopic properties like stepping velocity or
hydrolysis rate. In the steady state, the probabilities P st

i of the motor do not depend on
time,

d

dt
P st

i = 0, (2.3)

and the dynamics of the system is determined by the corresponding steady state fluxes
J st
ij . We will return to the transition rates ωij in chapter 4, where they will be discussed

in detail with respect to myosin V, and in the following focus on the graph-theoretical
properties of networks.

2.2 Elements of graph theory

A graph G= G(V, L) consists of two finite sets V = {v1, ...vn} and L = {l1, ...lm}, where
V contains n elements called vertices or nodes, and L is a two-element subset with m
elements called links or edges connecting the nodes. An introduction into graph theory
can be found in the book of Volkmann [62]. The graphs used throughout this work are
connected graphs, i. e., graphs that do not contain isolated subgraphs.

A connection between two nodes i and j is established by two directed edges or di-
edges |ij〉 and |ji〉. Between two connected nodes, transitions with rates ωij and ωji take
place. In graph theory, these rates are referred to as weights of the graph. The degree
ki of a node i is given by the number of edges connected to that node. A cycle C of a
connected graph G consists of a subset of nodes with degree two.

For the specification of connections between the vertices {v1...vn} of a graph G, we
define a discrete map called adjacency matrix A = Aij with elements Aij that contain
the number k = 0, 1, ... of links connecting two nodes j and j. The adjacency matrix
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2.2. ELEMENTS OF GRAPH THEORY

A is a square matrix of order n, and its Laplacian or connectivity matrix C = Cij is
defined by the difference of the graph’s degree matrix, a diagonal matrix with elements
given by the degrees ki, and its adjacency matrix,

Cij =


ki, for i = j,

− 1 for i 6= j and i, j connected

0 otherwise.

(2.4)

If the transitions ωij are understood as the weights of a graph, the connectivity matrix C
is identical with the matrix T associated with the master equation, as will be discussed
in section 2.5.

Let us turn to Kirchhoff’s method for the calculation of the steady state distribution
of the Master equation, Eq. (2.1). The inspiration to utilize it in the present work arises
from its application in the context of enzyme kinetics by T. Hill [63] and a network
formulation for the molecular motor kinesin by Lipowsky and coworkers, as reviewed
e.g. in [11].

The steady state that we will use for the characterization of the motor‘s motion can
be obtained from the spanning trees Ts of a given graph G. A spanning tree Ts is a
subgraph of G that contains all vertices vi ∈ V and a subset of edges li ∈ V such that
Ts is connected but does not contain any cycles. Here, s refers to the different trees that
belong to the same graph G. A subset of Ts that contains solely edges pointing towards
a given node i is called a directed or rooted spanning tree ~T is . An example for a graph

G, a spanning tree Ts associated with that graph and a directed spanning tree ~T is is
shown in Fig. 2.2. The transition rates ωij that belong to the graph define a measure

Ω(~T is ) on each of directed spanning tree ~T is given by

Ω(~T is ) =

~T is∏
|kl〉

ωkl. (2.5)

The sum of all measures of the directed spanning trees associated with a certain node
i, Ωi =

∑
s Ω(~T is ), is directly related to the steady state probability distribution of the

system. The steady state probability P st
i for a given state i corresponds to the fraction

of all measures associated with state i, Ωi, with respect to the total number of measures
of all states,

∑
i Ωi,

P st

i =
Ωi∑
i Ωi

=

∑
s Ω(~T is )∑
i,s Ω(~T is )

, (2.6)

and
∑

i Ωi acts as a normalization factor.
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Ts

23 32

3 4

12

56

7

(a) (b) (c)

G T 3
s

Figure 2.2 : (a) A graph G that contains i = 6 vertices or nodes, with connections
established by pairs of directed edges, |ij〉 and |ji〉, as illustrated for the nodes 2 and
3. (b) One of the spanning trees Ts that belong to G and the corresponding directed

spanning tree ~T is for node i = 3 (c).

Hence, the inspection of directed spanning trees of a given graph leads to the steady state
probability distribution in an intuitive way. As the number of spanning trees increases
dramatically with the complexity of the underlying graph, the feasibility of this concept
is restricted to rather small systems. The construction of spanning trees, however, is
convenient because of its intimate linkage to network cycles.

There is no straightforward way for the construction of spanning trees, but their total
number for a given graph can be calculated with the use of Kirchhoff’s matrix-tree
theorem. The theorem is based on the Laplacian matrix C associated with a connected
graph G. Let G have n vertices, and let λ1, λ2, · · · , λn−1 be the non-zero eigenvalues
of C. Then the number of spanning trees of G is

m(G) =
1

n
λ1λ2 · · ·λn−1. (2.7)

In Fig. 2.3, the Laplacian matrix and the corresponding eigenvalues λi are shown for
the graph that has been used before. Using Eq. (2.7), we find that m(G) = 16, which
can be easily seen for the example, because the subgraphs consisting of nodes 1, 2, 3, 4
and 2, 5, 6, 7 have four spanning trees each and the total number of trees for the graph
involves 4 · 4 = 16 combinations of these.
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3 4

12

56

7

G

C =



2 −1 0 −1 0 0 0
−1 4 −1 0 −1 0 −1

0 −1 2 −1 0 0 0
−1 0 −1 2 0 0 0

0 −1 0 0 2 −1 0
0 0 0 0 −1 2 −1
0 −1 0 0 0 −1 2



λi =
{

0, 2−
√

2, 2, 2, 4−
√

2, 2 +
√

2, 4 +
√

2
}

Figure 2.3 : Example graph G (left panel), with the corresponding Laplacian matrix C
and the eigenvalues λi associated with C in ascending order (right panel).

2.3 Network cycles and probability fluxes

We will now turn to the concept of cyclic probability fluxes as a step towards the de-
scription of the dynamics of enzymatic networks. A graph can be split into two subsets,
one of which contains one of its spanning trees and the other one the set of edges {κν}
that belong to the graph, but not the spanning tree,

G = {κν} ∪ Ts. (2.8)

These edges κν are called chords. Adding a chord to a spanning tree Ts results in a graph
that has exactly one closed pathway or cycle C, and the resulting graph is formed by the
cycle and tree-like branches T Cνs . The addition and subtraction of cycles is defined by

Cν ⊕ Cγ = Cν ∪ Cγ − Cν ∩ Cγ (2.9)

Cν 	 Cγ = Cν \ Cγ + Cν ∩ Cγ. (2.10)

For a given spanning tree, each chord added to this tree leads to a different cycle. The
set {Cν} of all cycles obtained by adding a single chord to the spanning tree provides a
so-called fundamental set of cycles. It has the property that any cycle in a network can
be constructed by linear combination of cycles from its fundamental set. A fundamental
set is not unique, as different spanning trees can lead to different sets of fundamental
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cycles. Each cycle consists of a closed loop of nondirected edges. A closed loop of
directed edges within a given cycle carries an orientation d, where d can be positive (+)
or negative (−). As our approach is based on directed probability fluxes along these
cycles, it is convenient to define a directed cycle Cdν or dicycle formed by a set of directed
edges {|ij〉 , |jk〉 , ...}. For d = (+), we have C+

ν = {|12〉 , ... |ij〉 , |j1〉} and for d = (−),
we have C−ν = {|j1〉 , |ji〉 , ... |12〉}, respectively. Throughout this work, we will use a
short notation for both cycles and dicycles, given by

Cν = 〈12..ij1〉 (2.11)

C+
ν = |12...ij1〉 (2.12)

C−ν = |1ji...21〉 . (2.13)

In analogy to Eq. (2.5), the measure Ω(Cdν ) of a directed cycle along both directions is
given by

Ω(C+
ν ) =

C+ν∏
|ij〉

ωij and Ω(C−ν ) =

C−ν∏
|ij〉

ωij =

C+ν∏
|ij〉

ωji. (2.14)

For the addition and subtraction of the measures around cycles, the combination of Eqs.
(2.9, 2.10) and (2.14, 2.14) leads to

Ω(C+
ν ⊕ C+

γ ) = Ω(C+
ν )Ω(C+

γ ) and (2.15)

Ω(C+
ν 	 C+

γ ) =
Ω(C+

ν )

Ω(C+
γ )
. (2.16)

In the following, let us establish the connection between the steady state probability
fluxes, J st

ij , and the measure Ωi. In addition, the definition of dicycles allows for determi-
nation of a cyclic probability flux ∆J st(Cdν ). Starting from the master equation, Eq. (2.1)
in the stationary state, we have, in combination with Eq. (2.6) a steady state probability
flux, ∆J st

ij , which is given by

∆J st

ij = P st

i ωij − P st

j ωji (2.17)

=
1∑
i Ωi

(Ωiωij − Ωjωji) (2.18)

=
1∑
i Ωi

(∑
ν

cij,ν
(
Ω(C+

ν )− Ω(C−ν )
)∑

s

Ω(~T Cνs )

)
. (2.19)

Here, cij,ν is an index that determines the sign of the contribution to the probability flux,
where ν stands for the cycles of the graph G. It is +1 if the transition |ij〉 is part of C+

ν ,
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and -1 if it belongs to C−ν , and 0 if |ij〉 is not part of the cycle. Note that this requires
some care about the definition of the orientation d, as all cycles that are part of G have
to be oriented with consistent handedness. In our description, d = + corresponds to
counterclockwise and d = − to a clockwise orientation. Through inspection of Eq. (2.19),
one can define a cyclic probability flux as

∆J st(Cν) =
1∑
i Ωi

(
Ω(C+

ν )− Ω(C−ν )
)∑

s

Ω(~T Cνs ). (2.20)

This infers that any flux through a given edge can be expressed as a linear combination
of probability fluxes of dicycles ∆J st(Cν).

Cycle completions

An important connection between the cyclic probability fluxes and macroscopically ob-
servable quantities can be established when focusing on the completion of trajectories
along specific di-cycles for a stochastic process in the stationary state. The probability
fluxes through a cycle C can be split into their dicycle contributions,

∆J st(Cν) = J st(C+
ν )− J st(C−ν ). (2.21)

These dicycle fluxes are, for long observation times t, linked to the average number of
cycle completions via 〈nC±(t)〉 ≈ ∆J st(C±ν )t [64]. The mean time for a cycle completion
is given by

τC± =
t

〈nC±(t)〉
=

1

∆J st(C±)
, (2.22)

and the average number of effectively completed cycles after a time t can again be split
into the contribution from the dicycles,

〈nC(t)〉 = 〈nC+(t)〉 − 〈nC−(t)〉 =
t

τC+
− t

τC−
. (2.23)

Let us turn back to enzyme kinetics, where the enzyme’s work is described as a
sequence of chemical states with transitions that correspond to chemical reactions. As
the enzyme in itself is not altered by the chemical reaction, a closed pathway can be
identified as one catalytic cycle of the enzyme. Thus, the enzyme’s velocity is related to
the number of cycle completions,

v = ` lim
t→∞

nC
t
. (2.24)
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The variance σ2
nC

(t) =
〈
(nC(t)− 〈nC(t)〉)2〉 can be used to obtain the diffusion constant

of the process, given by

D = lim
t→∞

σ2
nC

(t)

2t
. (2.25)

To quantify the competition between drift and diffusion in a stochastic system, the Peclet
number Pe = `v/2D can, in this way, be determined for the network. In the context of
molecular motors, the randomness parameter, given by its inverse, r = 1/Pe, is more
common. In the case of a random walk on a single cycle, the diffusion constant can
be calculated analytically from the transition rates ωij, as shown by Derrida [65]. The
evaluation of the variance of stepping trajectories measured for a molecular motor and
the conclusions about the underlying process can be found in [66].

2.4 Nonequilibrium thermodynamics

Stationarity and balance conditions

Here, we discuss the relation between biochemical thermodynamics and kinetics, and es-
tablish a connection between kinetic parameters that describe processes far from equilib-
rium with thermodynamic quantities that characterize the system in equilibrium. These
relations have first been deduced for chemical networks and are known as the Haldane re-
lations, as emphasized by Hill [63], and have been extended for general chemomechanical
networks by Liepelt and Lipowsky [67].

True equilibrium is, in our formulation, the total the absence of steady state probability
fluxes, ∆J eq

ij = 0 for all egdes 〈ij〉. Consequently, ∆J eq(Cν) = 0 for all ν. The vanishing
local and cycle fluxes lead to a formulation of detailed balance that is based on cyclic
fluxes,

Ω(C+
ν )

Ω(C−ν )

∣∣∣∣
db

= 1 or ln
Ω(C+

ν )

Ω(C−ν )

∣∣∣∣
db

= 0 for all ν, (2.26)

respectively. In contrast to the local formulation of detailed balance,

ωij
ωji

∣∣∣∣
db

=
P eq

j

P eq

i

, (2.27)

Eq. (2.26) does not include the probability distribution. For true equilibrium, the transi-
tion rates must obey Eq. (2.26). If this is not the case, the system contains non-vanishing
cyclic probability fluxes, which can be seen from Eq. (2.20). A message to remember is
that non-zero cyclic fluxes constitute a sign of a system out of equilibrium.
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Entropy production

Our final goal is to link the dynamics of the steady state to thermodynamic properties
of the system. The formulation of entropy for networks that have a dynamics described
by the master equation is discussed in [68, 69, 70] and has been adressed in the context
of kinesin [71, 72]. Gibb’s entropy postulate or the definition of Shannon entropy reads

S = S(t) = −kB

∑
i

Pi(t) lnPi(t), (2.28)

with the derivative

d

dt
S(t) = −kB

∑
i

∂tPi(t) lnPi(t) =
kB

2

∑
i,j

∆Jij(t) ln
Pi(t)

Pj(t)
. (2.29)

With using the second law of thermodynamics, one can split this sum into parts referred
to as the production of internal and external entropy, S i and Se, where

∂tS
i =

kB

2

∑
i,j

∆Jij(t) ln
Pi(t)ωij
Pj(t)ωji

and (2.30)

∂tS
e = −kB

2

∑
i,j

∆Jij(t) ln
ωij
ωji

. (2.31)

These two terms represent the entropy production and the flux of entropy that arises
from the heat flux of the surrounding medium. In the steady state, the change in entropy

equals zero, d
dtS(t) = 0. Then, the entropy flux out of the system into the environment

is equal to the production of entropy, and we have

∂tS
i =

kB

2

∑
i,j

∆J st

ij ln
ωij
ωji

=
kB

2

∑
ν

∆J st(Cν)
∑
i,j

cij ν ln
ωij
ωji

(2.32)

=
∑
ν

∂tS
i(Cν) =

∑
ν

(
∂tS

i(C+
ν ) + ∂tS

i(C−ν )
)
, (2.33)

where Eq. (2.33) defines the mean rate of entropy production along a pathway Cν . By
integration over the time interval [0, τC±ν ], which corresponds to the average time it takes
for one cycle completion along its direction d = ±, we obtain the amount of entropy
that is produced, on average, during the completion of a single dicycle,

∆S i(C±ν ) =

∫ τC±ν

0

∂tS
i(C±ν )dt = kB ln

C±ν∏
|ij〉

ωij
ωji

= ±kB ln
Ω(C+

ν )

Ω(C−ν )
. (2.34)
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As the transition rates ωij are positive, Eq. (2.34) can turn negative. This feature stems
from the fact that a cycle can be completed in its less favourable direction. Eq. (2.33)
can be used to determine the mean rate of entropy production,

∂tS
i(Cν) = kB∆J st(Cν) ln

Ω(C+
ν )

Ω(C−ν )
≥ 0. (2.35)

The equality holds in the case of equilibrium, which can be seen from the condition
for the equilibrium detailed balance given by Eq. (2.26). The production of entropy
for closed trajectories has been used with respect to of kinesin [72, 73, 11], and for
special cases of cyclic networks in [74]. Under the assumption that each state has an
identical entropy, the entropy production has been quantified for systems with arbitrary
trajectories [5].

Energy balance

The concept of entropy production turns out a powerful and descriptive tool for the
enzyme kinetics of molecular motors. A linear molecular motor walks along its track in
a processive manner, by means of chemical energy that is released in a chemical reaction,
in this case, hydrolysis of ATP. The change in internal energy is thus quantified by the
balance of chemical energy, mechanical work and heat release. Fig. 2.4 sketches this
exchange of energy by viewing the motor as a system coupled to different reservoirs,
like the nucleotide concentration, the temperature T and a force F . In a stationary
state of the motor, its internal energy does not change during completion of a cycle, i.e.,
the motor can attain a set of internal states it repeatedly visits during an enzymatic
turnover. For a closed trajectory on a cycle C+

ν or C−ν , the first law of thermodynamics
reads

∆U(C±ν ) = ∆µ(C±ν )−∆W (C±ν )−∆Q(C±ν ) = 0, (2.36)

where U(C±ν ) is the internal energy, µ(C±ν ) is the chemical energy, W (C±ν ) is mechanical
work and Q(C±ν ) the heat. The chemical energy balance along a path C±ν during a
reaction can be quantified by the energy µα the motor gains or loses by binding a
specific nucleotide α, and the number ∆nα(C+

ν ) = n+
α (C+

ν )− n−α (C+
ν ) of nucleotides that

is bound (+) or released (−) during the revolution of a cycle,

∆µ(C+
ν ) =

∑
α

µα∆nα(C+
ν ). (2.37)
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Motor

ADP[ ] P[ ]

ATP[ ]
T

F

QW

Figure 2.4 : Motor as a system connected to different energy reservoirs. For the motor,
the in- and outflux of chemical energy is controlled by the presence of nucleotide con-
centrations of ATP, ADP and P. It is coupled to a thermal reservoir, and can exert or
be influenced by a force F . The red arrows indicate the flux of energy. The motor gains
chemical energy by ATP hydrolysis, and releases ADP and P. It is able to perform a
work W , and releases thermal energy Q.

The mechanical work performed along a closed path can be characterized in a similar
way,

∆W (C+
ν ) = −F

∑
β

`β∆nβ(C+
ν ). (2.38)

Here, F is an external load applied to the motor, and ∆nβ(C+
ν ) = nfβ(C+

ν ) − nbβ(C+
ν )

corresponds to the difference of forward (f) and backward (b) steps of length `β.
Because of microscopic reversibility, we have n+

α (C+
ν ) = n−α (C−ν ) and likewise n−α (C+

ν ) =
n+
α (C−ν ), and thus ∆µ(C+

ν ) = −∆µ(C−ν ). The same holds for the mechanical work, where
the direction of steps changes when following the reverse path, f → b, or nfβ(C−ν ) =

nbβ(C+
ν ) and nbβ(C−ν ) = nfβ(C+

ν ). Therefore, ∆W (C+
ν ) = −∆W (C−ν ).

The amount of heat that is released during motor motion in the stationary state is given
by

∆Q(C±ν ) = −T∆Se(C±ν ) = T∆S i(C±ν ). (2.39)

The second law of thermodynamics in the cycle formulation, Eq. (2.36) can be combined
with the principle of entropy production, Eq. (2.29) into

ln
Ω(C+

ν )

Ω(C−ν )
=

1

kBT

(
∆µ(C+

ν )−∆W (C+
ν )
)
, (2.40)
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for any cycle Cν . Eq. (2.40) constitutes a generalization of detailed balance for non-
equilibrium steady states, [72]. For each cycle of the network, it imposes one constraint
to the transition rates of the underlying network.
The equilibrium situation, Eq. (2.26), is fulfilled for the case where both the stepping
and the chemical reactions are equally likely in the forward and the backward direction.
We then have, for all ν, ∆µ(C+

ν ) = ∆W (C+
ν ) = 0. The case where the chemical energy

difference balances the difference in work, ∆µ(C+
ν ) = ∆W (C+

ν ), where the energy dif-
ference is not necessarily equal to zero, is given by the stall condition in the context of
molecular motors.
Eq. (2.40) reflects the features of the second law of thermodynamics. A positive balance
that is obtained in the case where the cycle C+

ν dominates over C−ν corresponds to heat
release. The dominance of C+

ν states that the process is more prone to evolving along the
positive direction of the cycle, i.e., the system evolves spontaneously into the direction
where heat is released. In the context of a molecular motor, we will have a directed
motion of the molecule through the supply of ATP in the absence of an external load.

2.5 Networks with absorbing states

So far, we have shown how networks are used to model the motion of a molecular
motor that constitutes a system out of thermal equilibrium. The concept of stationarity
allows for calculation of the steady state properties of the motor. For more detailed
information about the motor’s kinetics, it is instructive to analyze the distributions of
the motor’s waiting times rather than its step velocity. As a single molecule experiment
typically monitors the motor’s motion as a discrete, equally spaced displacement, the
distributions of dwell times between the steps can be directly accessed and provide
the probably most valuable source of experimental data. For the analytical calculation
of these distributions, the Markov formalism is extended to networks with absorbing
boundaries. Prior to the introduction of such boundaries, let us outline the correspoding
matrix algebra for Markov processes.

Matrix formulation

The master equation introduced in the beginning of this chapter, as given by the com-
bination of Eq. 2.1 and 2.2, reads

d

dt
Pi(t) = −

∑
j

Pi(t) ωij − Pj(t) ωji. (2.41)
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It can be cast into a matrix form

d

dt
P(t) = P(t)T, (2.42)

where P(t) is a vector with components Pi(t) and T is a transfer matrix that is defined
as

Tij =


∑

i ωij, for i = j,

− ωij for i 6= j and i, j connected

0 otherwise.

(2.43)

The formal solution to 2.42 is given by

P(t) = exp(tT)P(0). (2.44)

As T, in general, is not symmetric, a solution in term of eigenvectors and eigenvalues is
not feasible for all matrices T. The networks we deal with in this work, however, obey
detailed balance, as we have discussed in the course of section 2.4. In this case, the
matrices T fulfill a symmetry condition such that 2.44 can be solved by diagonalization
of T, a procedure that we will discuss further below.

Note that the formulation of the equation in terms of T is discrete in a strict sense,
but can be validated by splitting the continuous process into small time steps ∆t. A
fundamental property of the master equation is, that it has a stationary solution, that
is valid for infinite times irrespective of the initial condition P(0). By use of the above-
mentioned discretization procedure, the existence of the stationary solution is assured
by the Perron-Frobenius theorem. The steady state probability distribution Pst is given
by the null space of T, i. e., the eigenvector that belongs to the zero eigenvalue λ0 = 0.
A detailed discussion of these properties can be found in [61], where the matrices T are
referred to as the class of W-matrices.

Dwell time distributions

For an unrestricted random walk on a discrete network, the time in between two succes-
sive steps of a molecular motor is analogous to the time it takes for a random walker to
start, at time t = 0, from a given site i and reach another specific site j at time t. The
probability distribution for this time can be obtained using a random walk that has one
or more absorbing boundaries. The process starts at a fixed site i at t = 0 and is stopped
when reaching an absorbing state j. The average time is also referred to as the mean
first-passage time of the process. The simplest example of a probability distribution is
the exponential distribution, which is obtained for a Markov chain that consists of only
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two states, an initial state 0 and an absorbing state 1 that are connected through the
transition rate ω ≡ ω01. A fundamental treatment of the formalism of mean first-passage
times can be found in the book of van Kampen [61]. Here, we follow the route of [75]
using an approach based on matrix algebra.

For a given Markov chain X(t) with t ≥ 0, that has N discrete states, let the first
n states be transient and the remaining N − n states be absorbing. We denote the
conditional probability for the process to dwell in state j at time t given that it started
in state i at time t = 0 by Pij(t). The corresponding master equation reads

d

dt
Pij =

∑
k 6=j

(Pikωkj − Pijωjk) , (2.45)

where ωij is the transition or jump rate from state i to state j. The steady state solution
to Eq.(2.45) is given by P st

ij = 0 for any transient state 1 ≤ i ≤ n, with the normalization

condition
N∑
k=n

P st

ik = 1. For an absorbing state k, the steady state solution is equal to the

probability for being absorbed in state k given that the walk started in state i,

P st

ik = Pr{Xabs = k | X(0) = i}, (2.46)

where ’abs’ stands for absorbing. The dynamics of the process prior to absorption is iden-
tical to the dynamics of the unrestricted Markov process. Prior to reaching a boundary,
the random walk proceeds with an exponentially distributed waiting time in every tran-
sient state i,

ψi(t) =
1

τi
exp(−t/τi) (2.47)

with an average dwell time τi = 1/
∑

j ωij. The process starts in a state i, sojourns in
each state according to the probability

Pij =
ωij∑
j ωij

, (2.48)

until it is eventually absorbed in state k. The time for absorption in any of the states
n < k ≤ N when starting in state i is given by the lower bound for the time to reach
the respective state,

tabs

i = min{t ≥ 0, X(t) = k ≥ n | X(0) = i}. (2.49)

This time is referred to as the dwell time of the process.
To obtain the distribution of dwell times, consider the probability that absorption in
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any of the states n...N takes place prior to a given time t, i. e.,

Pr{tabs ≤ t} =
N∑
k=n

Pik(t). (2.50)

This probability can also be expressed as [76, 77]

Pr{tabs ≤ t} =

∫ t

0

ρabs

i (t′) dt′ =

∫ t

0

N∑
k=n

Ṗik(t
′) dt′ (2.51)

Here, ρabs
i (t) =

∑N
k=n Ṗik(t) is the probability density for absorption with an initial

transient state i. The average time to absorption is then given by

τ abs

i = 〈t〉i =

∫ ∞
0

t′ ρabs

i (t′) dt′. (2.52)

The formalism introduced above refers to the case of absorption in any of the absorbing
states n < k ≤ N . For absorption in a specific state k, one has to find the subset of
those walks that start in i and are absorbed in k, i. e., the conditional probability

Pij|k = Pr{X(t) = j | X(0) = i,Xabs = k} (2.53)

for an initial transient state i < n and the absorbing state k ≥ n. It is given by the
fraction of walks that start in i, sojourn in j and are absorbed in k,

Pij,k(t) = Pr{X(t) = j, Xabs = k | X(0) = i} = Pij,k(t)P
st

jk (2.54)

with respect to all walks that start in i and are absorbed in k, see Eq. (2.46),

Pij|k =
Pij,k(t)

P st
ik

=
Pij(t) P

st
jk

P st
ik

. (2.55)

Consequently, the conditional probability density distribution ρabs

i|k (t) that refers to Pij|k
is defined as

Pr{tabs

i|k ≤ t} = Pik|k(t) ≡
∫ t

0

ρabs

i|k (t′)dt′. (2.56)

Using Eq. (2.55) and P st
kk = 1, one gets

ρabs

i|k (t) = Ṗik|k(t) =
Ṗik(t)

P st
ik

. (2.57)
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The conditional distribution of probability density is thus given by the time-dependent
derivative of the probability, Ṗik(t), rescaled with the steady state probability for ab-
sorption, P st

ik. The probability densities for the conditional process and the original one
are connected via

ρabs

i (t) =
N∑
k=n

P st

ikρ
abs

i|k (t). (2.58)

The average absorption time can be decomposed in the same manner,

τ abs =
N∑
k=n

P st

ikτ
abs

i|k , (2.59)

with

τ abs

i|k =

∫ ∞
0

t′ ρabs

i|k (t′) dt′ (2.60)

being the conditional average time to absorption.

Let us now turn to the method for the calculation of the time-dependent transition
probabilities Pij(t), and thus Ṗik(t), to obtain an explicit solution to the conditional
distributions of dwell times. To determine the conditional distribution of dwell times,
ρi|k(t), one needs to find both the steady state probability P st

ik and the time dependent

distribution Ṗik(t), which can be obtained by solving the time-dependent master equa-
tion, Eq. 2.45. Let T be the matrix of the given network that contains all transient states
1...n as defined in 2.43. Let then T0 be the matrix that contains the N − n absorbing
states, defined as

T 0
ij =

{
− ωij for i, j connected and j absorbing

0 else.
(2.61)

The matrix of the transition probabilities that contains the solutions of the unrestricted
master equation is given by

P(t) = Q−1 exp (−Λt) Q. (2.62)

Here, Q and Q−1 are the matrices in the transformation diagonalizing the matrix T,

Λ = Q−1TQ, (2.63)

where Λ is a diagonal matrix of the n eigenvalues λi that belong to T, and Q is con-
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structed from the eigenvectors of T.
The derivative of the time-dependent probability distribution to arrive in an absorbing

state k, Ṗik(t), is, in general, given by the probability to jump into that state from a
neighbouring site, times the transition rate into the absorbing state. Hence,

Ṗik(t) =
∑
m,j

(T 0)TkmPmj(t)Iji, (2.64)

where I is an n-by-n identity matrix, for an initial state i and an absorbing state k. The
corresponding steady state solution follows by integration,

P st

ik =

∫ ∞
0

Ṗik(t)dt. (2.65)
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3 Motors in continuous space

In this chapter, we take a continuous approach to the motion of a molecular motor. The
description of the motor’s motion as a driven diffusing particle against a load force results
in a class of models called ratchets, the mechanisms of which are briefly discussed. As
the spatial displacement of the particle is governed by a potential rather than a stepping
rate, these models can be used to obtain physical information about the particle’s escape
over a potential barrier, a classical problem [78, 79] that is of fundamental interest in the
context of enzyme kinetics [80, 81, 82, 83, 84]. Here, we aim to arrive at a discretization
of the continuous description for the particle’s motion which follows the line of [85]
and allows to deduce mechanical transition rates that are valid for a wide range of
external load forces. The discretization procedure enables us to implement the rates
into networks.

3.1 Brownian motors

Using a continuous description for the motor’s motion leads to a class of models that
are called non-uniform ratchets. In biological physics, these ratchets have been studied
in a detailed way to explain the motion of molecular motors, as reviewed in [15]. Many
fundamental properties of stochastic motion can be addressed with these models, with
a focus on the mechanical displacement of the particle and an implicit treatment of the
chemical details. The term ’ratchet’ was motivated by Feynman, as a Gedankenexperi-
ment where a directed motion arises from thermal fluctuations [86]. He showed that the
thermal ratchet coupled to a single heat bath did not perform work in agreement with
the second law of thermodynamics.

A fluctuating force from, e. g., thermal collisions may help the particle to overcome
the potential barrier, but as this happens with equal probability in both directions, the
average motion of the process is zero. A net motion arises for switching the potentail on
and off periodically, which enables the motor to perform work.

Thermal ratchets are described with an overdamped Langevin equation for the motion
of a particle in an external potential V (x, t) and noise ξ(t)

ζfr

∂

∂t
x = − ∂

∂x
V (x, t) + ξ(t), (3.1)
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3.1. BROWNIAN MOTORS

where ζfr is a friction coefficient, and ξ(t) is a randomly fluctuating force from the thermal
environment. In the case of white noise, we have

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2kBT δ(t− t′) (3.2)

and the Langevin equation can be reformulated as a Fokker-Planck-equation. The de-
tailed treatment of these important formulations of stochastic processes can be found in
a variety of textbooks, [61, 78, 79, 87]. The rectification of the Brownian motion can

off

on

on

g(t)

Figure 3.1 : Example of a fluctuating potential ratchet with signal g(t), that periodically
switches between states 1 (on) and 0 (off). When the signal is turned off, the particles
can freely diffuse and are redistributed in the potential once the signal is turned on again,
as indicated by the arrows. This mechanism leads to a net motion of the particles.

be achieved many ways [14]. In the context of molecular motors, the external potential
V (x, t) that governs the particle’s motion can be rewritten in terms of an inherent po-
tential U(x, t) and a load force F as V (x, t) = U(x, t) − Fx, as reviewed in [88]. With
explicitly addressing the time-dependence of the process, we have

V (x, t) = U(x)g(t)− Fx, (3.3)

where g(t) influences the potential U(x, t). One now introduces periodically fluctuating
functions g(t), which leads to a ’fluctuating potential’ ratchet. By the periodical change
of g(t), one defines two states where the particle is subject to different external potentials.
Fig. 3.1 shows the example of a fluctuating potential ratchet, that switches between
free diffusion and a confining potential. The switching between these states defines a
transition rate, and can explicitly be incorporated into the Fokker-Planck equation for
the problem to yield a set of reaction-diffusion type of equations. The mathematical
feasibility of these equations is facilitated by the fact that the time-dependence for
fluctuating potential ratchets can be restricted to the switching signal between potentials
that themselves do not depend on time.
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CHAPTER 3. MOTORS IN CONTINUOUS SPACE

3.2 Chemical and mechanical transitions

The situation described above can be expanded to an arbitrary number of different
potentials. In the context of a molecular motor, these potentials can be seen as different
chemical states that the motor attains when it is bound to the filament. The binding of a
nucleotide affects the interaction between the filament and the motor, by strenghtening
or weakening the attachtment to the filament. In this way, one can think of each state
as having a different potential the motor is exposed to. The motor can be described as
a particle moving along a spatial coordinate x with its chemical state characterized by
a potential specified by a coordinate m. This means that for each location x, a defined
set of chemical reactions described by the coordinate m can take place.

The probability density Pm(x, t) for the particle to be in position x and the chemical
state m at time t determines the dynamics of the system. At a given position x, the den-
sities can change through either diffusion, characterized by the lateral current Jm(x, t),
or transitions between different chemical states, that results in a transition current with
density Im(x, t). The probability densities satisfy the continuity equation

∂Pm(x, t)

∂t
+
∂Jm(x, t)

∂x
= Im(x, t). (3.4)

The lateral currents Jm(x, t), depend on the underlying potential of molecular inter-
action, Um(x), and, if applied, the external force F . This defines an effective force
potential

Vm(x) =
1

kBT
(Um(x)− Fx) (3.5)

for each chemical state m. A translation along the spatial coordinate x while keeping the
chemical state m fixed exposes the motor to the force −∂Um(x)/∂x, which corresponds
to a ratchet mechanism.

Using the effective potential 3.5, the continuity equation 3.4 can be rewritten and
formulated in terms of a Fokker-Planck equation, which results in the lateral current

Jm(x, t) = −Dm

[
∂

∂x
Vm(x) +

∂

∂x

]
Pm(x, t) (3.6)

= −Dm exp (Vm(x))
∂

∂x
[exp (Vm(x))Pm(x, t)] . (3.7)

Here, Dm is an effective ’small scale’ diffusion coefficient. A linear molecular motor
typically moves along a filament that has a repeated structure, with a periodicity ` that
corresponds to the motor’s step size. Thus, the potentials and lateral currents obey
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3.3. FROM CONTINOUS TO DISCRETE SPACE

periodic boundary conditions of the form

Pm(x, t) = Pm(x+ `, t) (3.8)

Jm(x, t) = Jm(x+ `, t). (3.9)

The current densities Im(x, t) can be transformed into a gain and loss equation,

Im(x, t) =
∑
n6=m

(−Pm(x, t)Ωnm(x) + Pn(x, t)Ωnm(x)) , (3.10)

where Ωnm(x) are transition rate functions for the transition from state n to state m.
Summing up Eq. 3.10 over all chemical current densities results in

∑
m Im(x, t) = 0,

because each term comes up twice and with opposite sign.

The total probability density, Ptot(x, t), and the total lateral current, Jtot(x, t), are
obtained by summation over all internal states,

Ptot(x, t) ≡
∑
m

Pm(x, t) and Jtot(x, t) ≡
∑
m

Jm(x, t). (3.11)

For the total probability density, the continuity equation is given by

∂Ptot(x, t)

∂t
+
∂Jtot(x, t)

∂x
=
∑
m

Im(x, t) = 0. (3.12)

The latter equality reflects the probability conservation of the motor being in a chemical
state bound to the filament, which is implicitly included in the construction of the model.
Within our framework, the situation of motor unbinding from the filament will not be
used in the context of the continous models.

3.3 From continous to discrete space

The transition rate functions Ωnm(x), do, in general, depend on the spatial coordinate
x. According to the discrete stepping of the motor, one can assign discrete positions xk
with k = 1...K to the transition rate functions,

Ωnm(x) ≡
∑
k

`Ωωnm(xk)δ(x− xk), (3.13)

where `Ω is a localization length, δ(x) is Dirac’s delta function and ωnm(xk) are transition
rates. In this way, the energy landscape governing the motor’s motion is essentially
mapped onto a two-dimensional lattice with a chemical coordinate m and a spatial
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m

xSpatial coordinate

coordinate
Chemical

Continuous potential

x

m

k

Figure 3.2 : Discrete lattice of states with chemical coordinate m and spatial coordinate
xk. At the right hand side, a continous potential is shown to illustrate the original
energy landscape. A transition along the chemical coordinate m leads to a change in
the potential the motor is exposed to. Here, the potentials differ considerably in height,
while the potentials along the spatial coordinate x repeat periodically.

coordinate xk, as illustrated in Fig. 3.2. At the moment, we do not specify the exact
mapping of these discrete locations onto the motor’s filament, but discuss general aspects
of this discretization. The confinement to specific sites in terms of delta functions allows
for analytical solution for various stochastic models of this type [85, 84].

Let us turn to the stationary case, that corresponds to ∂Pm/∂t = 0, which through
Eq. 3.11 implies stationariy for the total probability aswell, ∂Ptot(x, t)/∂t = 0. From the
continuity equation (3.12), it directly follows that the total lateral current Jtot(x, t) is
constant. The integration of the FPE formulation for the current density, Eq. 3.6, yields

Pm(x) = Pm(x′)e(x′,m|x,m) = −Dm

∫ x

x′
Jm(y)e(y,m|x,m) (3.14)

with exponential functions that depend on the transition potentials Vm(x),

e(x,m|y, n) ≡ exp (Vm(x)− Vn(y)) =
1

e(y, n|x,m)
. (3.15)

From the functional equation of the exponential function, it directly follows that the
e(x,m|y, n) obey a product rule of the form

e(x1,m|x2,m)e(x2,m|x3,m) = e(x1,m|x3,m). (3.16)

The normalization condition is imposed on one spatial repeat of the potential, that with
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the use of periodic boundary conditions is given by∫ x1+`

x1

Ptot(x) dx =

∫ x1+`

x1

∑
m

Pm(x) dx ≡ 1 (3.17)

This implements the requirement of one motor to be completely localized within a pe-
riodic repeat of the filament. This form of normalization defines a motor velocity given
by v = `Jtot.

Detailed balance

In the absence of both an external force and enzymatic activity, the system obeys detailed
balance, which we again indicate by use of the superscript ’db’, such that Pm(x) = P db

m (x)
and Ωnm(x) = Ωdb

nm(x). The detailed balance condition, in this way, reads

P db

m (x)Ωdb

nm(x) = P db

n (x)Ωdb

nm(x). (3.18)

As a consequence, the transition current density vanishes, as can be infered from Eq. 3.10.
The absence of an external force, F = 0, leads to a vanishing current Jm(x, t) for each
chemical state m. In this way, Eq. 3.6 can be easily solved to yield

Pm(x, t)eq ∼ exp (Um(x)/kBT ) , (3.19)

which is the Boltzmann weight for the equilibrium probability distribution. Using this
weight together with Eq. 3.18 leads to a balance for the transition rate functions,

Ωdb

nm(x) = e(1/kBT (Um(x)−Un(x)))Ωdb

nm(x) = e(Vm(x)−Vn(x))Ωdb

nm(x). (3.20)

For transition rate functions that are localized and parametrized in terms of delta func-
tions, as done in Eq. 3.13,

ωdb
mn(xk)

ωdb
nm(xk)

= e(Vm(xk)−Vn(xk)), or ln
ωdb
mn(xk)

ωdb
nm(xk)

= Vm(xk)− Vn(xk). (3.21)

Note that this relation holds for F 6= 0, i. e., for situations out of equilibrium.

Local currents

Up to now, we have set up the framework for mapping the energy landscape for the
motor’s motion onto a two-dimensional network with a chemical coordinate m and a
spatial coordinate xk. For transition rates between neighbouring states, we outline the
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calculation of the corresponding local currents. Let us define the local transition current
at a fixed lattice site xk, from state m to n,

Jmn ≡ Pm(xk)ωmn(xk)`Ω ≥ 0. (3.22)

The corresponding current from state n to m is given by Jnm(xk). These are the two
currents through a di-edge along the chemical coordinate, and the total current through
this edge is given by Jmn(xk)−Jnm(xk). After a calculation that is based on the integra-
tion of the continuity equation and the formulation of local transition density currents in
terms of probabilities, Eq. 3.10, one can use the local currents between chemical states
m and n to determine a relation for the transition currents between neighbouring spatial
sites xk and xk+1,

Jm(xk, xk+1) = Jm(xk−1, xk) +
∑
n 6=m

(−Jmn(xk) + Jnm(xk)) . (3.23)

Reformulation of Eq. 3.14 with using neighbouring coordinates xk and xk+1 for x and
x′, leads to spatial transition currents of the form

Jm(xk, xk+1) = Pm(xk)
em(xk, xk+1)

Em(xk, xk+1)
− Pm(xk+1)

1

Em(xk, xk+1)
, (3.24)

with

E(x, y) = 1/Dm

∫ y

x

dz em(z, y) = 1/Dm

∫ y

x

dz exp(Vm(z)− Vm(y)). (3.25)

The structure of Eq. 3.24 has the structure of a master equation, when identifying the
terms

ωf(k, k + 1) =
em(xk, xk+1)

Em(xk, xk+1)`Ω

(3.26)

ωb(k + 1, k) =
1

E(xk, xk+1)`Ω

, (3.27)

as the forward (f) and backward (b) transition rates of the system. Note that the rates
have to be rescaled by `Ω in order to turn the corresponding probabilities dimensionless.
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4 The molecular motor myosin V

4.1 Introduction

Myosin V is a processive molecular motor that moves along actin filaments in discrete
steps of 36 nm [20]. This processive motion is tightly coupled to the hydrolysis of adeno-
sine triphosphate (ATP) [89]. The molecule has a catalytic domain at each of its two
heads and proceeds in a ’hand over hand’ fashion towards the barbed end of the actin
filament [57]. The coordination of hydrolysis between the two heads is thought to be
crucial for the processive motion and the high duty ratio of the motor [90, 54]. For
external forces opposing the forward motion of the motor that do not exceed its stall
force, i.e., the force at which the motor does not exhibit any net motion, a dominant
chemomechanical cycle has been identified. The molecule mainly dwells with both heads
strongly bound to the filament, with adenosine diphosphate (ADP) bound to both cat-
alytic domains. After release of ADP from the trailing head, ATP binding to the empty
domain takes place. This leads to weakening of the actomyosin bond, which in turn
allows for unbinding of the head from the actin filament. Subsequently, the free head
finds its way to the next binding site via a power stroke, and a subsequent diffusional
search until encounter with the next binding site [52], where it rebinds and hydrolyses
the ATP molecule [54] to an ADP*P complex with subsequent release of P (phosphate).
For high concentrations of ATP, the release of ADP is the rate limiting step of this
turnover cycle.

Extensive research has been done on the step size distribution of the molecule [20], its
dwell times [44], and its backstepping behaviour [91]. Moreover, the release of ADP has
been proposed to be different for the leading and the trailing head of the molecule [92, 93].
Reported data on the stall force range from 1.5 to 3.0 pN for various concentrations of
ATP [20, 26, 46, 53, 91]. Three different force regimes have to be distinguished: Assisting
forces as well as resisting forces below and above the stall force Fs of the motor. For
resisting forces that exceed stall, myosin V has been proposed to act as a mechanical
ratchet [46]: When stepping backwards in a forced manner, the stepping velocity does
not seem to depend on the concentration of ATP, while this is not the case for the
forward motion of the motor under assisting forces.

A variety of theoretical models has been proposed for myosin V, such as a kinetic model
[94], and a treatment of the molecule implementing the elastic properties of its lever arms
[95]. A stochastic algorithm for the fit of dwell time distributions has been proposed
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by [77], and the molecule serves as a model mechanism to evaluate its properties in
terms of efficiency [9]. A recent study [96] performs a Brownian dynamics simulation of
the forward motion of myosin V, with the aim to investigate the substepping behaviour
that has been reported by different groups [47, 53]. A generic class of discrete models
addresses the substepping behavior [97] and the reaction of enzymatic activity to high
forces [98]. The models, however, are either based on a large number of parameters or do
not investigate the force dependence of the myosin V stepping behaviour. In addition,
none of them investigates the role of backward steps quantitatively, especially the step
ratio and the ratcheting behaviour of the myosin V.

Here, we use a network representation deduced from the enzymatic activity of the
myosin motor to explain several sets of experimental data, including those on backward
steps. Our approach is based on previous work [11, 67] that provides a general frame-
work for the chemomechanical coupling of molecular motors which is consistent with
nonequilibrium thermodynamics.

4.2 Network representations

During processive motion, the motor can attain several states, specified by its location
on the motor filament and the chemical composition of its nucleotide binding pockets.
The transitions between these states involve binding or release of ATP, ADP or P, or
a mechanical displacement. For the definition of discrete motor states that separate
the chemical reaction from the step, two requirements have to be fulfilled, i) thermal
equilibrium has to be reached on a timescale much shorter than the chemical reaction
takes place and ii) the step in itself has to be much faster than the reaction. This is
indeed the case for the myosin V molecule, where the hydrolysis rate is on the order
of 10 /s and the mechanical step takes only a few ms to be completed [48, 59, 47]. A
single catalytic domain of the motor can contain bound ATP, ADP, or ADP*P, or it
can be empty. When combining the ADP*P state with the transition between the ATP
and the ADP state, as discussed in chapter 2, each of the two catalytic sites of the
motor can attain 3 states that we denote by T (ATP bound), D (ADP bound), and E
(empty). This state space for a single motor head leads to 3x3=9 possible states for the
two heads. These 9 states are connected by 18 chemical and 6 mechanical transitions.
A chemical transition corresponds to the binding or release of a nucleotide, while a
mechanical transition results in the interchange of the two motor heads. In general, the
possible mechanical transitions are, without specification of the step direction, EE 

EE, DD 
 DD, TT 
 TT, ET 
 TE, DT 
TD, and DE 
 ED.

Fig. 4.1 shows the chemical network of myosin V repeated with periodic boundary
conditions along a filament coordinate x with a discrete spacing of ` = 36 nm. The
chemical transitions connect the nine states of the network, while the mechanical tran-
sitions connect two copies of the network separated by a step of size `. Only those
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Figure 4.1 : Chemomechanical network for myosin V at different binding sites x of the
filament, represented by a thick grey line. The nine states, that are repeated periodically
along the filament with a spacing of ` = 36 nm, are defined by the chemical composition
of the nucleotide binding pockets of the two motor heads. A head with bound ATP
or ADP is denoted by T or D, an empty head by E. Both the E and D states are
strongly bound to the actin filament, whereas the T state is only weakly attached [48], as
indicated by the gap between the T heads and the filament. All transitions between two
connected states can occur both in the forward and the backward direction. Chemical
transitions are drawn as solid lines (blue), with arrows indicating the direction of ATP
hydrolysis. The broken lines (red) correspond to the mechanical transitions as observed
experimentally, with the arrows pointing towards the forward stepping direction [46, 47],
i.e., towards the barbed end of the actin filament.

mechanical transitions are included that have been observed in experiments, namely EE

 EE and TD 
 DT.

The network shown in Fig. 4.1 contains 36 chemical and 4 mechanical transitions
which lead, in general, to a rather large number of possible pathways or motor cycles. In
the following, we identify the dominant pathways of the motor and, in this way, reduce
the network description. This procedure enables us to minimize the number of model
parameters and to construct a theory which, on the one hand, describes a large set
of experimental data as obtained by different groups and, on the other hand, can be
improved if new experimental data become available.

The simplest chemomechanical network that takes both mechanical transitions TD

DT and EE 
 EE into account is displayed in Fig. 4.2. Apart from the two mechanical
transitions, this network contains six chemical transitions, each of which may proceed in
the forward or backward direction. As shown in the following, the available experimental
data allow us to determine the corresponding transition rates for vanishing load force in
a unique manner.
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With the use of periodic boundary conditions for the network, each state can be re-
visited on a closed path. A network cycle consists of a set of states that are directly con-
nected and have, as a starting and end point, either the same state or the corresponding
copy at a neighbouring lattice site of the network. A cycle with a primed state indicates
that it contains a mechanical displacement `. The network thus can be characterized by
three cyclesM, E and F , two of which contain a stepping transition. Each of these cycles
is composed of two directed cycles, i. e., the forward cycles F+ = |1234′〉, E+ = |256〉,
M+ = |55′〉 and their corresponding backward cycles F− = |4′321〉, E− = |652〉, and
E− = |5′5〉, see App. A. The chemomechanical cycle F (DD 
 ED 
 TD 
 DT 

DD) is the one discussed previously in various experimental studies [44, 54], and contains
both chemical and stepping transitions. The ratcheting cycleM contains only the step-
ping transition EE
 EE, corresponding to the experimental result in [46] where myosin
V was observed to step at superstall forces in the EE state. The third cycle, E (EE 

ET
 ED), is a dissipative cycle, that connects the two stepping cyclesM and F along
two different pathways, one involving ATP hydrolysis, and the other binding of ADP.

The experimental consensus for coordination of the motor’s heads is a gating effect
that leads to an increased rate of ADP release for the trailing head compared to the
leading head [90, 54]. This effect is implicitly included in the network by focusing on
the chemomechanical cycle F for substall load forces, with omitting ADP release from
the leading head in the state DD. Including pathways with the state omitted here, DE,
as discussed in [99], does not change the quantitative results, a point that we address in
App. B.

Myosin V exhibits rather different stepping behavior for load forces below and above
the stall force. Our analysis as described below shows that this difference arises from
different cycles of the network being dominant for different force regimes. The chemo-
mechanical cycle F , which couples the mechanical forward steps TD → DT or |34′〉 to
ATP hydrolysis, is dominant for forces below the stall force. In this regime, the motor
also exhibits some backward steps DT → TD or |4′3〉 but these backwards steps are
immediately followed by forward steps. Thus, these backward steps are not coupled to
ATP synthesis, a process that is rather unlikely for typical nucleotide concentrations.
The mechanical slip cycle M dominates for forces above the stall force. In the latter
regime, the motor walks backwards in a processive manner. The stall force itself is de-
termined by the competition between the chemomechanical cycle F and the mechanical
slip cycle M.

It is instructive to compare these operation modes of myosin V with those of kinesin.
For the latter motor, the sub- and superstall regimes are governed by two different chemo-
mechanical cycles, one of which couples mechanical backward steps to ATP hydrolysis
[67]. The latter coupling has also been discussed for myosin V [99]. In the case of kinesin,
the competition between the two chemomechanical cycles leads to a stall force that is
essentially independent of ATP concentration [67], in agreement with single molecule
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data. In contrast, the experimentally determined values for the stall force of myosin V
lie within a relatively broad range [20, 53, 26, 91, 46]. Therefore, at present, the myosin
V data do not provide strong evidence for the relevance of another chemomechanical
cycle that couples backward steps to ATP hydrolysis. The data for these arguments are
given in App. B.
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Figure 4.2 : Reduced network for the motion of myosin V, consisting of three copies of
six states i = 1...6 connected by transitions |ij〉 from state i to state j, that form three
pathways F , E , and M. The chemomechanical forward cycle F consists of the states
〈1234′〉, that contain both chemical and mechanical transitions, while the dissipative or
enzymatic slip cycle E with states 〈256〉 is purely chemical. The ratcheting cycleM, on
the other hand, consists only of the mechanical stepping transitions |55′〉, |5′5′′〉, and so
on. Each state is characterized by the chemical composition of the two motor heads, the
one on the right hand side being the leading one. The solid lines (blue) are the chemical
transitions for the indicated species X=ATP, ADP, or P, while the broken lines (red)
show the stepping transitions. The arrows refer to the direction of forward stepping and
ATP hydrolysis, respectively.

Let us briefly outline the considerations that lead to the chemomechanical step cycle
F . Because of the high binding affinity of ATP to myosin [48], the motor heads are,
for saturating concentrations of ATP, very likely to attain the T state before binding
to the filament. As the motor is strongly bound to the filament both in the E and D
states but only weakly bound in the T state [48], and ATP hydrolysis is fast compared
to ADP release, the motor will end up in the states DE, ED, or DD when binding to
the filament to start its processive run. Experiments indicate that the molecule dwells
in the DD state for most of the time between two succesive steps [44, 90]. Starting
from this state, the release of ADP can lead to two states, ED or DE. For two-headed
myosin constructs, the rate of ADP release in the myosin motor has been investigated
extensively and is thought to differ for the trailing and the leading head of the motor
[92, 100]. The different experiments present highly diverse data, but agree that the rate
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of ADP release for the leading head is much slower than for the trailing head. This
observation is taken into account by omitting the state DE from the network and will
be discussed in more detail as the gating mechanism. In the state ED, both heads are
strongly bound to the filament. The binding of an ATP molecule to the trailing head
leads to the TD state, which, through weakening of the actomyosin bond, is followed
by a mechanical step. This results in an interchange of the two heads and in the state
DT, and subsequent hydrolysis leads to the state DD and the completion of the forward
stepping cycle F .

Before we discuss the functional form of the chemical and mechanical transitions, we
focus on the network dynamics that allow us to determine characteristic properties of
the motor’s motion.

4.3 Motor dynamics

As discussed in chapter 2, the motor’s motion can be characterized by the master equa-
tion 2.1 for the network shown in Fig.4.2. It connects the probability to find the motor in

a given state i with the corresponding local excess flux, d
dtPi(t) = −

∑
j ∆Jij(t), where

the fluxes ∆Jij(t) = Pi(t) ωij − Pj(t) ωji contain the transition rates ωij, see 2.2.

In general, the transition rates ωij can depend on both on the load force component

parallel to the filament, F = ~F‖, and the molar concentrations [X], where X denotes
the molecular species ATP, ADP or P. Thus, the transition rates have the general form

ωij ≡ ωij,0 Φij(F ) with Φij(0) ≡ 1 (4.1)

which defines the zero-force transition rates ωij,0 and the force-dependent factors Φij(F ).
Moreover, the transitions that include binding of an X-molecule with X = ATP, ADP
and P depend on the molar concentration [X] which implies

ωij,0 ≡ κ̂ij [X] for X − binding
≡ κij for X − release .

(4.2)

The transition rate constants κ̂ij have the dimension 1/(sµM) whereas the transition
rates κij have the dimension 1/s.

In the case of the steady state, given by 2.3, the motor moves persistently through
a continuous supply of energy. The steady state fluxes Jstij for our network description
have been calculated using Kirchhoff’s method, and are given explicitly in Appendix A.
Every time the motor undergoes a stepping transition, it performs a step with length
` = 36 nm. The average velocity of the motor is thus given by the probabilistic flux
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through the two stepping transitions |34′〉 and |55′〉,

v = `(∆Jst34′ + ∆Jst55′). (4.3)

In the following, we discuss the energetic balance of the motor, which can be specified
in a quantitative manner in terms of network dicycles Cdν with orientation d = ±1, as
discussed in section 2.3.

4.4 Cyclic fluxes and balance conditions

The entropy that is produced during the revolution of a cycle can be readily connected
to the work performed by the motor. For each dicycle, the average entropy ∆S can be
calculated through 2.34. In the steady state, the internal energy, which arises from the
chemical reaction and mechanical work during the processive motion of the motor, does
not change on a cycle Cdν of the network, ∆U(Cdν ) = 0. As can be infered from 2.40,
the first law of thermodynamics together with the heat ∆Q(Cdν ) = T∆S(Cdν ) released by
the motor during one completion of the dicycle Cdν leads to a balance condition for this
dicycle as given by

kBT ln

ν,±∏
|ij〉

(
ωij
ωji

)
= Ech(C±)−Wme(C±). (4.4)

Here, Ech(Cdν ) and Wme(Cdν ) are the chemical energy supplied to the motor and the me-
chanical work performed by the motor, respectively, during one completion of dicycle
Cdν .

The chemical energy ∆µ can be expressed in terms of the chemical potential difference
∆µ that arises from addition of one ATP molecule to the system and the subsequent
release of one ADP and phosphate, which is, for dilute solutions, given by

∆µ = kBT ln

(
Keq

[ATP]

[ADP][P]

)
, (4.5)

with Keq ' 4.9× 1011µM being the equilibrium constant of the reaction.
For each of the three cycles F , M, and E of the network shown in Fig. 4.2, Eq. (4.4)
leads to a balance condition. For the cycles F and E , we obtain, for F = 0,

Keq =
κ12κ̂23κ34′κ41

κ̂21κ32κ4′3κ̂14

=
κ25κ̂56κ62

κ̂52κ65κ̂26

. (4.6)

For F 6= 0, substracting the balance condition for F = 0, Eq. (4.6) from Eq. (4.4), and
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using Eq. (4.1) leads to the general balance condition

Φ12Φ23Φ34′Φ41

Φ21Φ32Φ4′3Φ14

= exp

(
− `

kBT
F

)
(4.7)

for the force-dependent factors Φij. Here, we have used that Wme(F+) = `F . The
enzymatic cycle E consists of chemical transitions only, and we thus have Wme(E+) = 0
and, as a consequence,

Φ25Φ56Φ62

Φ52Φ65Φ26

= 1. (4.8)

Since the ratchet cycleM does not contain any chemical transition, we have, for F = 0,

κ55′ = κ5′5, (4.9)

which reflects the fact that there is a priori no preferred direction for the motor to
perform a forward or a backward step in the state EE. For the chemomechanical cycle
F , we take

Φ12Φ23Φ41

Φ21Φ32Φ14

= 1, (4.10)

which is based on the assumption that the displacement of the center of mass of the
motor upon ATP hydrolysis and synthesis is negligible. Then, the balance conditions
for the cycles F and R read, for F 6= 0,

Φ34(F )

Φ43(F )
=

Φ55′(F )

Φ5′5(F )
= exp

(
− `

kBT
F

)
. (4.11)

We use the convention that negative values of F correspond to assisting forces , which
act in the preferred direction of forward stepping, i. e., the plus- end of the actin filament,
while resisting forces are described by positive values of F . A widely used parametriza-
tion for the force dependence of the stepping transitions |ij〉 is given by [97, 67]

Φij(F ) = exp

(
−θij

`

kBT
F

)
for forward and (4.12)

Φji(F ) = exp

(
(1− θij)

`

kBT
F

)
for backward steps, (4.13)

where 0 < θij < 1 is a fit parameter. This parametrization does not apply to the limit
of large forces. In particular, when the motor motion arises solely from the mechanical
cycle M, the parametrization (4.12) and (4.13) would lead to an exponential increase
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of the stepping rate, which does not correspond to the expected behavior of the energy
barrier and the experimental observation. The failure of this parametrization is due to
the fact that Eq. (4.12) is only valid if the deformation energy arising from the force
exerted on the motor is much smaller than the energy barrier that has to be overcome to
perform a step. We thus keep the parametrization given by Eq. (4.12) and (4.13) only for
the stepping rates of the chemomechanical cycle F , ω34 and ω43. The force dependence
of the stepping transitions ω55′ and ω5′5 is calculated from the escape of a particle over
a potential barrier using the Fokker-Planck-equation, as shown in the following section.

4.5 Functional form of mechanical stepping rates

To obtain stepping rates valid for a large range of load forces, we use, as discussed in
chapter 3, a coarse graining approach that is based on the discretization of the continuous
Fokker-Planck-equation. The stepping rates calculated in this way automatically fulfill
the correct balance condition. A different method based on calculations of the mean first
passage time can be found in [78, 79]. We start from a Fokker-Planck-equation for the

x x+lx−l

Uba

Figure 4.3 : Periodic sawtooth potential with slope −Uba/`, barrier height Uba and
periodicity `.

diffusion of a particle over a potential V (x) along a continuous variable x. For simplicity,
we take a sawtooth potential U(x) with period `, height Uba, and slope Uba/`, and impose
periodic boundary conditions on the potential. Here, the chemical coordinate is m = 1.
The simplest discretization of the continuous equation consists in assigning lattice sites
to the potential in two successive minima, i. e., at locations xn = n` and xn+1 = (n+1)`
for integer n, as indicated in Fig. 7.4. U(x) is then given by

U(x) = −Uba

`
(x− n`) for n` ≤ x < (n+ 1)` (4.14)

49



4.6. SPECIFICATION OF TRANSITION RATES

The transition rates between two neighbouring sites xn and xn+1 are calculated as

ωn, n+1 =
e(xn, xn+1)

E(xn, nk+1)`Ω

, (4.15)

ωn+1, n =
1

E(xn, xn+1)`Ω

, (4.16)

as given in 3.26 and 3.27, with

e(x, y) = exp

(
1

kBT
(x− y)F

)
(4.17)

and

E(x, y) = 1/D

∫ y

x

dz exp(V (z)− V (y)), (4.18)

where D is a diffusion constant, `Ω a localization and V (x) = 1
kBT

(U(x) + Fx) is the
forced potential, with F > 0 being a backward force. Note that E(x, y) holds for x < y,
with both x and y being from one interval of the potential. For the sawtooth potential
as given by 4.14, the forward and the backward transitions have the form

ωn, n+1 =
D

kBT
· Uba − F`

`2
·

exp
[
− `
kBT

F
]

1− exp
[

1
kBT

(F`− Uba)
] , (4.19)

ωn+1, n =
D

kBT
· Uba − F`

`2
· 1

1− exp
[

1
kBT

(F`− Uba)
] (4.20)

(4.21)

where we have set `Ω = `. The rates automatically obey the requirement that ωn, n+1

ωn+1, n
=

exp(− `
kBT

F ). In this way, a backward step in the ratchet has the rate ω55′ = ωn, n+1 and
a forward step is given by ω5′5 = ωn+1, n. By definition, we then have κ55′ = ω55′(F = 0)
and κ5′5 = ω5′5(F = 0), respectively.

4.6 Specification of transition rates

For vanishing load F = 0, we use the ATP binding rates κ̂23 and κ̂56 as well as the phos-
phate release rates κ41 and κ62 as determined experimentally for single-headed myosin
V in [48]. The two motor heads of myosin V are believed to be coordinated by a gating
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mechanism that leads to an increased rate of ADP release at the trailing head compared
to the leading head [54, 101]. The reduced network considered here involves the tran-
sition |12〉 with ADP release from the trailing head and the transition |25〉 with ADP
release from the leading head, see Fig. 4.2. Therefore, in our theory, the gating mech-
anism is incorporated via the transition rate ratio ζ ≡ κ25/κ12. We find that average
motor properties such as the motor velocity v, the ratio q of forward to backward steps,
and the run length ∆x can be well described for ζ-values within the range 1/10 . ζ . 1,
consistent with the experimental data in [101]. However, a detailed comparison of cal-
culated and measured dwell time distributions leads to the specific choice ζ = 1/10, as
discussed in chapter 6. In addition, the ADP binding rates, κ̂21 and κ̂52, are taken to
have the values measured in [44]. In addition, we use the rates for ADP binding, κ̂21

and κ̂52, measured in [44]. Therefore, the only unknown chemical rates in the chemo-
mechanical cycle F and the enzymatic slip cycle E happen to be the ATP release rates,
κ32 and κ65, and the phosphate binding rates, κ̂14 and κ̂26. The rate of ATP release is
rather small and thus difficult to measure [102]. In the absence of direct measurements
of the ATP release rate for myosin V, we make the plausible assumption that this rate is
in the same order of magnitude as the corresponding rate for myosin II. The latter rate
has been determined experimentally and is in the order of 10−5 s−1 [103]. It turns out
that increasing this rate by up to three orders of magnitude does not significantly change
our calculations, with the exception of the stepping velocity as a function of phosphate
concentration, as discussed in the next section.

We use the zero-force balance condition, Eq. (4.6), to determine the phosphate binding
rates κ̂14 and κ̂26. For the chemomechanical cycle F , the balance condition for F = 0
leads to

κ̂14 =
κ̂23κ34′κ41κ12

κ̂21κ4′3κ32Keq

, (4.22)

whereas it implies

κ̂26 =
κ25κ̂56κ62

κ̂52κ65Keq

. (4.23)

for the enzymatic slip cycle E . It follows directly from these conditions that κ̂14 6= κ̂26.
The latter inequality reflects the differences in the chemical transitions |14〉 and |26〉.
First, the phosphate is released from the leading head during |14〉 but from the trailing
head during |26〉. Second, the other head is in the D state during |14〉 but in the E
state during |26〉. Inspection of Eq. (4.22) and (4.23) shows that the rates of phosphate
binding in the cycles F and E , κ̂14 and κ̂26, are proportional to each other and satisfy
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the relation

κ̂14 = κ̂26
κ34′

κ4′3
. (4.24)

The zero-force rates for the mechanical steps, κ34′ and κ4′3 describe the motor’s tendency
to move in the forward or backward direction, respectively. For the forward stepping
rate κ34′ , we use a value deduced from simulations [96], and extract the backward step-
ping rate κ4′3 by comparison of our calculations with the measurements in [91] using
a procedure explained further below. Once the mechanical stepping rates have been
determined, the phosphate binding rate κ̂14 follows from the balance relation (4.22).
The force dependence of the transition rates ωij is contained within the force-dependent
factors Φij(F ) as defined by Eq. (4.1). These factors satisfy the balance conditions as
described in the previous section, and provide constraints on ratios of the factors Φij(F )
but do not determine the force-dependence of the individual factors. In addition, the
force dependence Φij(F ) of the chemical transition rates is, in general, not accessible
to experiment. In single headed constructs of myosin V, the force dependence of the
binding and dissociation rates of ADP has been investigated [93]. For a single head,
the ADP dissociation rate increases for assisting forces and decreases for resisting forces,
and the ADP binding rate decreases for both forces. The implications of these latter
observations for the behavior of double-headed myosin are not obvious, however, since
internal strain may significantly influence the force exerted on the catalytic site of the
molecule [54] and reduce this force dependence to some extent. For the force-dependent
factors Φij(F ) of the chemical rates, we use the parametrization

Φij(F ) =
1 + exp(−χij `

kBT
F ′)

1 + exp(χij
`

kBT
(F − F ′))

(4.25)

which involves the dimensionless parameter χij and the characteristic force F ′. The
force-dependent factors Φij as given by Eq. (4.25) satisfy Φij(0) = 1 as required by Eq.
(4.1), fulfill the obvious conditions 0 ≤ Φij(F ) ≤ ∞ for all F , and decay to zero for large
resisting loads F > 0. For F ′ = 0, the expression (4.25) reduces to the force-dependent
factors Φij as previously used in [67] to describe the single motor data for kinesin. A
nonzero value of F ′ as introduced here represents a threshold value for the load force F .
Indeed, this load force needs to exceed the characteristic force F ′ in order to have an
appreciable effect on the chemical transitions.

We find that the available single motor data can be described if only two chemical
transition rates are taken to be force-dependent, namely the rates of the transitions |56〉
and |52〉 for ATP and ADP binding to the leading head. For these two transitions, we
chose the parametrization as given by Eq. (4.25) with F ′ = 1.6 pN, comparable to the
internal strain estimated in [54], and χ56 = χ52 = 4. The latter equality is imposed
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by the balance condition 4.8 since all other chemical transition rates are taken to be
force-independent with Φij(F ) ≡ 1, see Table 5.2. It is tempting to interpret the force-
dependence of the rates for ATP and ADP binding to the leading head in terms of
elastic deformations of the motor molecule. Indeed, if the motor is exposed to the load
force F , the leading head should experience a larger elastic stress and, thus, a larger
deformation compared to the trailing head. If this deformation induced a partial closure
of the nucleotide binding pocket of the leading head, binding of both ATP and ADP
would be suppressed.
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5 Stepping dynamics

5.1 Motor velocity in the absence of load

The stepping velocity of the motor, given by Eq.(4.3), has the general form

v = v(F, [ATP], [ADP], [P]), (5.1)

i.e., it depends both on the load force F and on the nucleotide concentrations [ATP],
[ADP], and [P]. For F = 0, the mechanical step cycle M does not contribute to the
stepping velocity. In the limit of vanishing ADP and P, the stepping velocity arises
predominantly through the chemomechanical cycles F+ and the enzymatic slip cycle
E+, while the backward cycles F− and E− are suppressed. The competition between
the two dicycles F+ and E+ is governed by the competition of the rates ω23 and ω25

corresponding to ATP binding by the trailing head and to ADP release from the leading
head, respectively. For saturating values of [ATP], the ATP binding rate associated
with F+ is large compared to the ADP release rate of E+, and the network can be
reduced to the forward cycle F only. For this uni-cycle network, the velocity exhibits
the Michaelis-Menten-like behaviour as given by

v = `∆Jst34′ =
1

Ω
κ41κ12κ̂23κ34′

(
[ATP]− [ADP][P]

Keq

)
≈ vsat · [ATP]

KM + [ATP]
, (5.2)

with Ω being a normalization constant that contains terms that are multilinear in [ATP],
[ADP] and [P]. Here, KM is the effective Michaelis constant and vsat the saturation
velocity for large ATP concentration, and the second asymptotic equality in (5.2) applies
to the limit of small product concentrations, i.e., small [ADP] and [P]. The calculated
values for vsat and KM are presented in Table 5.1, where we have used the transition
rates specified in Table 5.3. Using the complete network, we can also calculate the
stepping velocity as a function of other control parameters. Fig. 5.1 shows the velocity
dependence on one of the nucleotide concentrations [X] with X=ATP, ADP, or P in
the absence of load and when keeping the other two concentrations fixed. In general,
the experimental choices for the fixed concentrations were taken to be low [ADP] and
[P] and saturating [ATP], as shown in the inset of Fig. 5.1. For experiments carried
out in the absence of ADP and phosphate, we chose a minimal value of [ADP]=[P]=0.1
µM if not specified differently to account for small amounts of ADP or P that may be

55



5.1. MOTOR VELOCITY IN THE ABSENCE OF LOAD

0 200 400 600 800 1000
[X] [µM]

0

0.2

0.4

0.6

0.8

v/
v sa

t

X=ATP             [26]
X=ATP             [104]
X=ATP             [105] 
X=ADP             [26]
X=ATP, [ADP]=[P]=0.1 µM
X=ADP, [ATP]=1 mM, [P]=0.1 µM
X=P, [ATP]=1 mM, [ADP]=0.1 µM

Figure 5.1 : Stepping velocity v/vsat in units of the saturation velocity vsat as a function
of different nucleotide concentrations [X] as described in the inset. The experimental
data are taken from Refs. [104, 105, 26]. The blue line shows the Michaelis-Menten-like
increase in velocity with increasing [ATP], for [ADP]=[P]=0.1 µM , and agrees well with
the experimental values measured by different groups (blue symbols). The green line
represents the dependence on [ADP] at saturating concentration of ATP, [ATP]=1mM ,
and low phosphate concentration, [P]=0.1 µM . An increasing [ADP] concentration
reduces the stepping velocity, since the flux of the reverse dicycle F− increases and, thus
reduces the dicycle excess flux ∆J(F+) as described by Eq. (2.21). We have rescaled the
velocity by the saturating velocity because different experimental groups have reported
different saturation velocities vsat. Indeed, the myosin V construct studied in Ref. [26]
was found to exhibit the saturating velocity vsat = 550 nm/s, a value considerably higher
than the value vsat = 450 nm/s measured by other groups [20, 44, 104, 45, 53].
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Experiment Forward cycle F
vsat 400-500 nm/s 412 nm/s

[20, 44, 104, 45, 53]
Km 12µM [44] 10.8µM

Table 5.1: Comparison of saturating velocity vsat and Michaelis constant KM as deter-
mined experimentally in Refs. [20, 44, 104, 45, 53] and calculated via Eq. (5.2) for the
reduced uni-cycle network that consists only of the forward cycle F in Fig. 4.2.

present in experiments without being monitored. The influence of varying this minimal
value to up to 1 µM is neglibible, see App. B. As can be inferred from Fig. 5.1, the
calculated velocity dependence on [ATP] is in good agreement with the data. Moreover,
our model captures the inhibiting effect of ADP on the stepping velocity, as measured in
Ref. [26]. Increasing the P concentration, with saturating [ATP] and low [ADP], inhibits
the stepping velocity in a way that is comparable to the effect of ADP. This inhibition,
however, is leveled out for a higher value of the ATP release rate, which has been fixed
to that of myosin II due to lack of experimental information. Increasing the ATP release
rate leads of a decrease of the P binding rate as a consequence of the balance condition
(4.6), and thus to a weakening of the inhibiting effect on the velocity.

5.2 Motor velocity and step ratio in the presence of load

We now address the dependence of the motor’s stepping velocity on force F , where we
distinguish two force regimes, below and above the stall force Fs. For assisting forces
and resisting forces that do not exceed Fs, the behavior of myosin V qualitatively agrees
with the behavior of kinesin [106]. The motor velocity is rather insensitive to assisting
forces and does not significantly change compared to the case of zero force [45, 46]. For
superstall resisting forces, the step velocity turns out to be essentially independent of the
concentration of ATP. Data for the motor velocity as obtained by several experimental
groups is shown in Fig. 5.2, where we compare experimental findings with the results
of our model calculations. In the network description considered here, the velocity is
governed by the competition between the mechanical slip or ratcheting cycle M and
the chemomechanical forward cycle F . This competition is strongly influenced by the
binding rate of ATP. It can be understood by inspection of the branching points of the
network, corresponding to the states 2 and 5 in Fig. 4.2. For the chemomechanical cycle
F to be dominant, the transition rates ω25 and ω26 branching off to cycle M in state
2 have to be small compared to the rates within F . Since the ATP binding rate ω23 is
large for saturating [ATP], the dicycle F+ is very robust for large [ATP]. Moreover, the
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Figure 5.2 : Stepping velocity v as a function of external load force F as calculated from
the complete network in Fig. 4.2. We use the sign convention that positive values of F
correspond to resisting forces. The full lines represent our theoretical results, the symbols
correspond to the experimental data as obtained by several groups [20, 45, 46, 53, 91].
These data were obtained for [ATP]≥ 100 µM (blue symbols), [ATP]= 10 µM (red
triangles), and [ATP]= 1 µM (green asterisks). The green, blue, and red lines describe
the theoretical results for 1, 10, and 1000 µM ATP, respectively, with [ADP]=[P]=0.1
µM . The theoretical value of the stall force is Fs ' 2 pN with a weak dependence on
[ATP]. This value lies within the range −1.6 pN . Fs . 2.5 pN as found experimentally.
For forces F < Fs, the motor velocity depends on [ATP], while it becomes independent
of [ATP] for F � Fs, in agreement with the measurements in Ref. [46].
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dissipative cycle E supports this effect: For large [ATP] ≥ 15 µM , the rapid rates of
ATP binding and P release, κ̂56[ATP] and κ62, strongly drive the system towards F+,
while the considerably slower rate κ25 of ADP dissociation leads from state 2 towards
M.

In state 5, the mechanical stepping rates ω55′ for the strongly bound state EE compete
with ATP binding. This suggests that the ATP binding rate ω56 should decrease with an
increasing load force opposing the natural stepping direction of the motor. For switching
between the two cycles F and M, a minimal requirement is that the rates of ATP and
ADP binding, ω56 and ω52, in the enzymatic slip cycle E vanish in the limit of large
resisting forces. This requirement is fulfilled by the force dependence as given by (4.25)
with F ′ = 1.6 pN and χ56 = χ52 = 4 as mentioned before. In this way, the other
chemical rates need not depend on force, and we set χij = 0 for these, as summarized in
Table 5.2. The force parametrization of the ADP binding rate takes two experimental
observations into account. On the one hand, a decrease of the binding rate for single-
headed constructs of Myosin V has been observed as a function of external load [93], but
it has been argued, on the other hand, that in double-headed molecules, internal strain
weakens this effect for forces up to the stall force [54] which has been incorporated into
the parametrization (4.25) via the force scale F ′. For forces above stall, i.e., F > Fs,
the occupation probability in the ratchet cycle rises, and the velocity is given by

v w `∆Jst55′ , (5.3)

while for F < Fs, we have

v w `∆Jst34′ . (5.4)

Fig. 5.2 shows calculations for three different concentrations of ATP, i.e. , for [ATP]=1,
100, and 1000 µM with the concentrations of both ADP and P again fixed to 0.1µM .
As for the case of vanishing load force, the velocity depends, up to the stall force, on
the concentration of ATP. For superstall forces, this behaviour changes, and the velocity
becomes independent of the ATP concentration. For superstall forces, the ratchet or
mechanical slip cycleM determines the behaviour of the step velocity. The velocity in-
creases roughly linearly with force, which reflects the fact that the mechanical transition
rates ω55′ and ω5′5, given by Eq. (4.19) and (4.20) are in the regime where the external
force exceeds the barrier for performing a step in the EE state. The height of the po-
tential barrier, Uba, and the effective diffusion constant D, are found to be Uba = 20 kBT
and D = 4.7 · 102 (nm)2/s. The parameters that we used for the force dependences are
summarized in Table 5.2. A detailed view of the ratchet behaviour is shown in Fig. 5.3,
which compares our results with the data of [46]. The step velocity is shown as a function
of [ATP] for F = ± 5 and F = ±10 pN. For assisting forces, F = −5 and −10 pN, the
motor velocity is similar to the force-free case, while the ratchet behaviour is reproduced
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Figure 5.3 : Ratcheting behaviour as measured in [46] (symbols) compared to the the-
oretical results (lines). The figure shows the absolute value of the motor velocity |v|, as
a function of [ATP] for superstall forces F = ±5 and ±10 pN. The blue symbols and
lines correspond to assisting loads, and the green ones to backward loads. The circles
are for F = ±5pN, diamonds for F = ±10 pN. For backward loads, our theory leads
to velocities that do not depend on [ATP]. For 5 pN backward load, the velocity (green
dashed line) is in good agreement with the data, while for 10 pN pull, the theoretical
velocity is lower than the experimental one. In the case of forward forces, the theoretical
velocity matches the data qualitatively. Note that the blue dashed and the solid line
are identical. For very low values of [ATP], the calculated velocity is underestimated,
which might be due to the fact that [46] report, even in the absence of an external load,
considerably higher stepping velocities at low [ATP] compared to other groups [104, 105].

by our model for resisting forces as given by F = 5 and 10 pN.

For further extraction of motor parameters, we use the ratio of forward to backward
steps, as measured in [91] and shown in Fig. 5.4. The average step ratio q which is
defined by the number of forward over the number of backward steps, can be calculated
from the network theory via

q =
P st

3 ω34′ + P st
5 ω55′

P st
4′ ω4′3 + P st

5′ ω5′5
. (5.5)

For the network consisting of the forward cycle F only and F < Fs, the ratio of forward
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Force dependence Transition rate ωij Parameter Value

Fueled stepping ω34′ , ω4′3 θ 0.65
Forced stepping ω55′ , ω5′5 Uba 20 kBT

D 4.7 · 102 nm2/s
ATP binding and release, F ω23, ω32 χ23, χ32 0
ATP binding, E ω56 χ56, F

′ 4, 1.6 pN
ATP release, E ω65 χ65 0
ADP binding and release, F ω12, ω21 χ12, χ21 0
ADP binding, E ω52 χ52, F

′ 4, 1.6 pN
ADP release, E ω25 χ25 0
P binding and release, F ω14, ω41 χ14, χ41 0
P binding and release, E ω26, ω62 χ26, χ62 0

Table 5.2: Parameters for the force depencence of the mechanical transitions and the
ATP binding and release rate. The corresponding functions are specified in the main
article.

over backward steps reduces to

q =
P st

3 ω34′

P st
4′ ω4′3

≈ 1 +
ω41

ω4′3
(5.6)

in the limit of small [P] and [ADP], and using κ3′4 � κ4′3. Note that, in the case of a
single chemomechanical cycle, the stall force is reached only when the hydrolysis rate
vanishes, i. e., the motor’s chemical action is inhibited. This feature is a shortcoming
of all uni-cycle models as first pointed out in [67]. Keeping in mind that the step ratio
given by Eq. (5.6) holds for forces well below stall, we use it to determine the backward
stepping rate for F = 0 to be κ4′3 = 0.65 s−1. Moreover, using the exponential force
dependence of Φ4′3(F ) as given by Eq. (4.13), we obtain the parameter value θ = 0.65.
The transition rates κij and κ̂ij that have been determined experimentally and through
our calculations as well as those obtained from the balance conditions are summarized
in Table 5.3.

5.3 Run length

To determine the run length of the motor, we take the DD state as the most probable
state for detachment, because the motor spends most of its dwell time between two
subsequent steps in this state. The probability of detachment is then given by the
probability to be in the state DD, P1, times an unbinding rate ωu, which leads to the
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Figure 5.4 : Inverse step ratio q−1 of backward to forward steps as a function of load
force F . The red, green, and blue lines were calculated using Eq. (5.5) for [ATP]=10,
100, and 1000 µM , respectively, with constant [ADP]=[P]=0.1 µM . For resisting forces
that do not exceed Fs, the step ratio is in good agreement with the experimental data
(red circles) as obtained in Ref. [91]. Note that this ratio is virtually independent of
[ATP] for forces up to 1.6 pN.

run length

∆x =
v

P1ωu
. (5.7)

Fig. 5.5 shows the runlength as a function of the nucleotide concentration with an
unbinding rate ωu = 0.4 s−1. In [26], the experimentally determined run length does
not significantly change with increasing the concentration of ATP. In our theory, the
run length increases strongly for small [ATP] and then saturates above [ATP]' 40µM.
In contrast, the data in [26] show a monotonic decrease in run length with increasing
ADP concentration, which is correctly reproduced by our calculation, see Fig. 5.5.
These results have been obtained without the use of any fitting parameter except for the
unbinding rate ωu. Since the motor state with bound ATP is more weakly bound to the
filament, one would intuitively expect that unbinding occurs primarily from the states
TD and DT. These latter states have, however, a relative low occupation probability,
and unbinding from these states does not lead to a run length that decreases with
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Rate κij, κ̂ij Value Ref.

ATP binding(?) κ̂23, κ̂56 0.9 (µMs)−1 [48]

ATP release(?) κ32, κ65 2 · 10−5 s−1 [103]

ADP binding(?) κ̂21, κ̂52 4.5 (µMs)−1 [44]

ADP release(?) κ12 12 s−1 [48]
ADP release(‡) κ25 1.2 s−1 -

P binding(†) κ̂14 0.65 (µMs)−1 -
κ̂26 6 · 10−7 (µMs)−1 -

P release(?) κ41, κ62 250 s−1 [48]

Step κ34′
(??) 7000 s−1 [96]

κ4′3
(‡) 0.65 s−1 -

κ55′
(‡), κ5′5

(‡) 1.5 · 10−8 s−1 -

Table 5.3: Transition rates for the motor network displayed in Fig. 4.2 for F = 0, i.e., in
the absence of external load. The values have been obtained from experimental data (?),
from simulations (??), the balance conditions (†), and by comparison of our calculations
with the experimental data (‡). The experimental values in Refs. [48] and [44] have been
obtained for monomeric and dimeric myosin V, respectively. A significant discrepancy
is found between these two myosins for the binding rate of ADP, which was estimated
to be 10− 12 (µMs)−1 for monomeric myosin V. In Ref. [96], the value for the stepping
rate is referred to as the tethered diffusion rate.

increasing ADP concentration as in Fig. 5.5. This unbinding rate is at the lower bound
of experimental values reported for single-headed myosin V with and without external
load, 1.5 - 20 s−1 [101, 55]. For dimeric myosin, a dissociation rate of 0.004 s−1 has been
reported [48]. For substall forces, we find that in the limit of low concentrations of ADP
and P, the run length does not depend on force, which is in agreement with experimental
observations [45].

5.4 Aspects of chemomechanical coupling

To characterize the chemomechanical coupling of the motor, let us introduce quantities
that address the relationship of chemical and mechanical motor properties. The motor’s
chemical activity is reflected by the hydrolysis rate h. It is given by the flux through
the transitions of the network that involve ATP hydrolysis, |41〉 and |62〉,

h = ∆J st

41 + ∆J st

62. (5.8)
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Figure 5.5 : Run length ∆x as a function of different nucleotide concentrations [X] as
described in the inset. The solid curves were calculated using Equ. (5.7), the symbols
represent experimental data from Ref. [26].

As, in our network, the cycles F , E andM solely share edges and do not have common
transitions, the flux through two edges that belong to the same cycle is identical. Thus,
we have ∆J st

41 = ∆J st

34′ , and comparison with v = ∆J st

34′+∆J st

55′ leads, in the case that the
fluxes in the cycles E and M can be neglected, to a hydrolysis rate that is proportional
to the step velocity, v ' h. This can be easily seen by inspection of the cycle F , where,
on average, every forward step leads to the hydrolysis of an ATP molecule. To compare
the hydrolysis rate to all steps irrespective of the direction of motion, let us define the
total number of steps, nf+b, given by

nf+b = nf + nb = P3ω34′ + P4ω4′3 + P5ω55′ + P5′ω5′5. (5.9)

It is a measure for the mobility of the motor and illustrates, for instance, whether the
application of an external load leads to a decreased velocity through the occurrence of
backsteps or the reduction of forward steps. The coupling parameter

λ =
h

nf+b
(5.10)
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Figure 5.6 : Characterization of the chemomechanical coupling for the network as a
function of external load, for different concentrations of ATP in the range of 1-1000 µM .
(a) The hydrolysis rate h exhibits, for forces up to Fs, the same qualitative behaviour as
the stepping velocity. It rises with increasing [ATP] and decays to zero with an increasing
resisting force F . (b) Total number of steps, nf+b, up to Fs, follows the same pattern.
It almost vanishes for the stall force, and rises linearly for F > Fs as a sign of forced
backward stepping. (c) The coupling parameter λ = h/nf+b shows the relationship
between hydrolyzed ATP molecules and the total number of steps. For F = 0 and
[ATP]=1µM , λ ∼ 1.1 as a sign of deviations from tight coupling. For comparison, the
coupling parameter for a single cycle F is shown as a dashed line. It is λ = 1 for F = 0
for all values of [ATP]. For the single cycle, the coupling parameter λ does not depend
on [ATP].

relates the hydrolysis rate h to the total number of steps, nf+b. As a consequence, λ = 1
for the case of tight coupling where every hydrolysis of an ATP molecule actually leads
to a step. The influence of dissipative or slip cycles results in λ > 1. For λ < 1, there
are more steps than hydrolyzed molecules, a situation given when the motor steps by
means of a mechanical cycle.

Fig. 5.6 shows the hydrolysis rate h, the total step number nf+b and the coupling λ of
our network as a function of the external force for different concentrations of ATP. For
forces up to the stall force, Fs, the qualitative behaviour of both the hydrolysis rate h
and the total number of steps nf+b agrees with the velocity v, see panels (a) and (b). For
the regime where the external force exceeds stall, F > Fs, the hydrolysis rate decays to
zero, while the nf+b rises linearly with increasing force. For F < Fs, the hydrolysis and
the step number are almost identical with the results obtained from the network given
by the cycle F . A notable difference occurs in the coupling parameter λ. It is shown in
Fig. 5.6 (c), where λ for the network given by the single cycle F is shown for comparison.
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First, the existence of the mechanical cycleM leads, for small concentrations of ATP, to
deviations from tight coupling. Second, the coupling for the complete network decreases
more rapidly than the one for F .

The decay of λ in the complete network depends on the parameters that govern the
decay of the force function Φ56(F ) and Φ52(F ) for ATP and ADP binding, χ56, χ52 and
F ′. In our calculations, we use χ56 = χ52 = 4 and F ′ = 1.6 pN. The variation of these
parameters results in slight changes of λ in the regime of Fs. For values of χ56 down to
' 1, the decay of λ and the splitting into is shifted towards higher values of F in an
interval of 0.5 pN. For χ56 < 1, the superstall step velocity turns [ATP]-dependent. For
F ′ > 1.6, the deviations of λ with respect to the single cycle F set in at higher forces.

The motor efficiency η is a quantity that relates the chemical to the mechanical energy.
In the context of a single motor cycle, it is defined as

η =
Fv

∆µ
. (5.11)

This definition is reasonable for the case where v ' h, which is strictly fulfilled for a
single network cycle only. For networks that contain more than one cycle, can thus
define an efficiency that is rescaled by the hydrolysis rate, h, as

ηh =
Fv

∆µh
. (5.12)

Fig. 5.7 shows the efficiencies η and ηh as a function of load force, for different values
of [ATP]. Both of them exhibit a maximum for a value of F 6= 0, which means that the
motor has a region of optimal performance that is adjusted to the case of a small resisting
load. This property is certainly useful in a cellular environment, where hindrance of the
motor’s activity is probably a more rule than an exception. The location of the maxima,
however, is different, as η reaches is maximum for a value of 1 pN where a rapid decay
of the velocity sets in, while the maximum of ηh is located close to the stall force Fs.
This is not surprising as in the regime where the system’s behaviour is close to that of
a single cycle F only, ηh is rising linearly, because of v ∼ h, and, as ∆µ is fixed through
the ATP concentration, the quantity reflects the rising resisting force F . For values of
F > Fs, the efficiencies turn negative. We do not restrict η to positive values because its
turn towards negative values is a sign for the motor’s change in direction. The definition
of ηh seems reasonable only as long as ηh > 0, because the hydrolysis rate h decays to
zero as F increases and ηh turns singular.

The average quantities discussed here, like the velocity v and the hydrolysis rate h of
the motor, depend, in general, on the chemical potential ∆µ defined by 4.5 through the
product concentrations [ATP], [ADP] and [P] , and the load force F . Let us characterize
the balance between the chemical energy ∆µ and the external load F specified by the
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Figure 5.7 : Efficiency η (a) and rescaled efficiency ηh (b) as a function of external force,
for [ATP]=1, 10, 100, and 1000µM . (a) The efficiency η exhibits a maximum that shifts
towards smaller values of the resisting force F with increasing [ATP]. This is related to
the fact that the maximal efficiency is reached before rapid decay of the step velocity
sets in. The dashed line separates the negative values for η that are a notion of forced
backward stepping. (b) The rescaled efficiency is constant in a regime of force where
the velocity is tightly coupled to the hydrolysis rate. As the stall force Fs is approached,
rapidly decays to zero as Fs is reached. Note that, as the concentration of ATP rises,
there is a shift of the force where ηh = 0 towards higher values, which corresponds to a
variation in Fs with [ATP].

stall condition, i. e., vanishing velocity, v = 0. For a single cycle, the relationship between
∆µ and F is linear, which can be seen from inspection of v = 0. We briefly demonstrate
this for the cycle F , where the vanishing velocity leads to

v = `∆J34′ = 0, (5.13)

which is equal to the condition

ω12ω23ω34ω41 = ω21ω32ω43ω14. (5.14)

Using ωij = ωij,0Φij(F ) and rearranging Eq. 5.14 leads to

Φ34

Φ43

=
κ21κ32κ43κ14

κ12κ23κ34κ41

[ADP][P]

[ATP]

Φ21Φ32Φ14

Φ12Φ23Φ41

(5.15)
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By using the balance conditions 4.6 and 4.7, this results in

exp

(
`

kBT
F

)
= Keq

[ATP]

[ADP][P]
= exp

(
∆µ

kBT

)
(5.16)

From the latter equality, one can see that `F = ∆µ, as shown in Fig. 5.8 (dashed line).
In previous work, it has been shown that the presence of several chemomechanical cycles
has an impact on the relationship between these two quantities [73]. As a consequence of
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Stall forces from experiments

Figure 5.8 : Rescaled chemical potential ∆µ as a function of external force F for a
vanishing velocity, v = 0. The solid lines correspond to the complete network, and the
dashed line shows the relation 5.16 for a network given by the cycle F . The stall force
data determined by different groups [20, 44, 53, 45, 46, 47, 91], are shown as circles. The
influence of the cycles E andM leads to a decoupling of ∆µ and F , for small amounts of
[ADP] and [P], as shown by the blue, green, and grey lines. Here, for small values of ∆µ,
the stall force is zero irrespective of the chemical potential. As [ADP] is increased to 400
µM (red line), the behaviour agrees with the result for a single cycle in the regime of
−0.5 < F < 2pN. For F ∼ 2 pN, a regime with increased slope of the curve is reached,
which, in turn, leads to a smaller variation of Fs in the range of ∆µ > 15 than for the
single cycle. Our results lie within the range of the experimental data.

5.16, the stall force Fs in a single cycle must vanish as ∆µ tends to zero. This is not the
case for kinesin, and a model of several chemomechanical cycles leads to a regime where
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Fs is independent of ∆µ, see [72, 73]. As discussed in Appendix B, a clear conclusion
about the relationship between ∆µ and F based on the data can not be drawn. The
model thus contains the single cycle F that is active for F ≤ Fs without the addition of
pathways that would couple, for instance, a backward step and hydrolysis in one cycle.
Let us turn to the influence of the of the full network, that includes the enzymatic slip
cycle E and the mechanical cycle M by evaluation of the relation between ∆µ and F
for v = 0, shown in Fig. 5.8. The implicit relation given by the condition v = 0 can
not be solved analytically, and we thus present a numerical relation here. Fig. 5.8 shows
the rescaled chemical potential ∆µ = ∆µ

kBT
as a function of an external load force F for

different values of [ADP] and [P], together with experimental data for the stall forces
reported by several groups [20, 44, 53, 45, 46, 47, 91], as specified in more detail in
App. B. For small resisting forces up to ' 1.5 pN, the relation is almost linear. For the
different concentrations, there is an offset for F = 0, i. e., the curve rises rapidly to a
minimal value of ∆µ before the increase with force sets in. This feature arises from the
dissipative cycle E and is a notion from the deviations from tight coupling, as also seen
for the coupling parameter λ. With low concentrations of [ADP] and [P] (blue line),
and for forces very close to zero, F ' 0, the chemical potential rises rapidly such that
the motor can be chemically active in the absence of force, which is not the case for
tight coupling given by the single cycle F (blue dashed line). With rising [ADP] and
[P] (green, grey and red line), the rise of ∆µ and thus the activity of the cycle E is
suppressed. For resisting forces that exceed 1.5 pN, the behaviour of the full network
differs considerably from the single cycle F . For all concentrations, the curves enter a
regime of an increased slope, which leads to a smaller variation of the corresponding
stall forces with increasing ∆µ in contrast to the single cycle. This observation is in
agreement with the experimental data.
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6 Dwell time distributions

The dwell times governing the mechanical displacement between two successive steps of
myosin V have been determined experimentally for different nucleotide concentrations
and external load forces [44, 45]. In this chapter, we calculate them using the formalism
of Markov chains with absorbing boundaries based on a simple scheme related to the
network cycle F . It is valid for the motor motion for forces that do not exceed stall,
F < Fs. For F > Fs, the dwell distribution is calculated using the mechanic step cycle
M. A comparison with the complete network allows to quantify the gating effect of the
motor. In addition, we are able to observe features arising from different conditional
or co-steps of the motor that agree with results from complex numerical simulations
for single-headed myosin V constructs [77]. They contain direct information about the
motor’s backsteps.

6.1 Reduced network

For the calculation of dwell time distributions that separate two steps of the motor,
let us recall the chemomechanical network of myosin V, as shown in Fig. 6.1 (a). A
forward step starting at site x corresponds to a positive displacement towards the site
x + `, and a backward step ends at site x− `, respectively, and the motor can undergo
a set of chemical transitions at each location xi. To distinguish more clearly between
forward and backward steps, a state i will be indicated by i′′, i, and i′ corresponding
to its location at sites x − `, x, and x + `, respectively. In this way, a transition |ij′〉
between two states i and j involves a forward step, while a transition |ij′′〉 corresponds to
a backward step. Prior to discussing a reduced version of the network shown in Fig. 6.1
(b), let us outline the arguments for the separation of the network cycles in different
regimes of force.

Both the chemomecanical cycle F and the mechanical cycle M contain mechanical
transitions that connect the states DT 
 DT and EE 
 EE. As discussed in chapter
5, stepping arises predominantly by means of the forward cycle F in the absence of an
external load, and governs the motor’s motion for forces below the stall force of the
motor, F < Fs. For high backward forces, F > Fs, stepping takes place by means of the
mechanical cycle M.

In this chapter, we separate the network into two subsets and consider each of them
in the corresponding regime of external load. This separation is justified in a regime of
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Figure 6.1 : (a) Original form of the network with dots pointing towards the direction
of forward stepping or ATP hydrolysis. (b) Network with two absorbing states (red),
constructed from the original network consisting of one copy of the chemomechanical
cycle F , with absorption into the two neighbouring states 3′′ and 4′. The arrows indicate
the direction of the transition, and transitions with rates ' 0 are shown in grey. A walk
can start in state 3 or 4, which corresponds to a completed backward and a completed
forward step, and can be absorbed in either of the two states 3′′ and 4′. The dwell times
separating two steps are thus governed by the sub-processes 44′, 33′′, 43′′ and 34′, that
correspond to two successive forward steps, two successive backward steps, a backward
after a forward step and vice versa.
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external load where the cumulative transition probability for a given cycle is' 1. Fig. 6.2
shows the cumulative occupation probability in the cycles F andM, P st

F =
∑

i∈F P
st
i and

P st
M = P st

5′ , as a function of an external load force F , with a saturating concentration of
ATP and limiting concentration of ADP, and P, [ADP]=[P]=0.1 µM . Note that P st

F and
P st
M only weakly depend on nucleotide concentrations and the regime of intermediate

forces is valid for all concentrations considered in this work. Here, P st
i is the steady

state probability of the network shown in Fig. 6.1 (a). For forces below the stall force,
F < Fs, we have P st

F > P st
M, and for F > Fs, the situation is reversed, P st

F < P st
M. In an

intermediate regime of Fs±0.2 pN, both cycles are active, while for forces that do not lie
withing this range, either one of the cycles completely governs the system. For assisting
forces and forces that do not exceed the stall force, F < Fs, the chemomechanical cycle
F governs the stepping process, while for high resisting forces F � Fs, the forced
stepping takes place by means of the mechanic cycle M. This separation of network

F
M

Figure 6.2 : Occupation probabilities P st
F and P st

M of the network cycles F and M for
[ATP]=2 mM and [ADP]=[P]=0.1 µM . The chemomechanical cycle F dominates for
forces below and the mechanical cycle M for forces above the stall force, Fs = 2 pN. In
a transition regime of 1.8 ≤ F ≤ 2.2 pN, indicated by the horizontal lines, both cycles
influence the system, while only one cycle is active for forces that are outside of this
range.

cycles allows for determination of the networks with absorbing states related to the cycles
F and M. They correspond to the different trajectories between states of the motor
that are directly connected to a mechanical transition in the two network cycles. One
consists of the states that belong to the chemomechanical cycle F , with the neighbouring
states 3′′ and 4′ being absorbing, as shown in Fig. 6.1 (b), and the other one is given by
state 5, with the neighbouring states 5′′ and 5′.

The dwell times between successive steps can arise from two different trajectories on
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these networks. The dwell time of the motor starts just after a step has been completed,
i. e., it has an initial state that is directly linked to a mechanical transition. One possible
starting state for a dwell trajectory is DT, as it is reached directly after a forward step.
Starting from this state, the subsequent possible mechanical displacements that can be
observed are given by either a direct backward step through the transition |43′′〉 or the
trajectory |41234′〉 that leads to a forward step. Likewise, the pathways including a
mechanical transition when starting in the state TD are given by either a direct forward
step |34′〉 or a backward step following the trajectory |32143′′〉. For the state EE as an
initial state, there are always two possibilities of a direct mechanical transition, in either
a backward |55′′〉 or a forward direction |55′〉.

The dwell time between two neighbouring sites x and x ± ` is thus governed by the
distribution for completing a step after starting in either of the states 3 or 4 and ending
up in either 3′′ or 4′ for forces F < Fs, and for starting in 5 and ending up in 5′ or 5′′

for high resisting forces, respectively. A Markov process corresponding to the absorbing
network in Fig. 6.1 (b) can now start in state 4 and sojourn a time τi in every state
i, until it eventually reaches state 4′, where it is being absorbed after taking a forward
step. The distribution of dwell times between two successive forward steps is then given
by the probability distribution for a random walk that starts in state 4 and is absorbed
in state 4′. Correspondingly, two successive backward steps are given by a walk starting
in 3 and ending up in 3′′.

We use the network in Fig. 6.1 (b) as well as the one that consists of the state EE
with two absorbing states to test for the agreement with experimentally determined
dwell time distributions. The advantage of the network related to the cycle F is that
it contains only the parameter θ for the force dependence of the step rate. For the full
version of the network, we determine the distribution of dwell times from a simulation
using the Gillespie algorithm [107]. The details of the simulation are given in App. C. In
the next section, we will discuss the conditional distributions of dwell times associated
with the reduced network.

6.2 Conditional dwell time distributions

The overall dwell time distribution consists of several distributions arising from different
pathways that describe the conditional steps of the motor. The four possible walks for
the network shown in Fig. 6.1 refer to transitions connecting two subsequent forward or
backward steps, |34′〉 and |43′′〉, or a backward following a forward step and vice versa,
|33′′〉 and |44′〉.

The transition rates ωij that occur in the reduced network shown in Fig. 6.1 are partly
accessible to experiment, or fixed by balance conditions that, as a consequence of the
laws of thermodynamics, emerge for every cycle of the chemomechanical network, as
discussed in section 2.4. Inspection of Table 5.3 shows that in the chemomechanical
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Absorbing network rates ωij Value Ref.

ATP binding(?) ω23 0.9·[ATP](µMs)−1 [108]

ATP release(†) ω32 0 -

ADP binding(?) ω21 4.5·[ADP](µMs)−1 [44]

ADP release(?) ω12 12 s−1 [48]

P binding(†) ω14 0 -

P release(?) ω41, ω62 250 s−1 [48]

Step ω34′
(??) 7000 exp(−0.65 `

kBT
F ) s−1 [96]

ω43′′
(‡) 0.65 exp(0.35 `

kBT
F ) s−1 -

Table 6.1: Transition rates ωij for the network with absorbing boundaries related to the
cycle F . The values for F = 0 have been obtained from experimental data (?), from
simulations (??), balance conditions (†), and the calculations discussed in chapter 4 (‡).
For the stepping rates, we use the force dependence obtained in 4.

cycle F , the rates for ATP dissociation and P binding in the case of [P]' 0, are very
small, ω23 ' ω14 ' 0. The absence of phosphate agrees with the experimental condi-
tions for the data used here [45]. For simplification, we set these rates to zero in our
calculations. As a consequence, the possibility of two subsequent backward steps given
by the transition |33′′〉 vanishes. The transition rates which remain unchanged with
respect to the complete network and occur in the absorbing network are summarized in
Table 6.1 to illustrate that all chemical rates are taken from experiment, and the only
force-dependent rates are the stepping rates ω34′ and ω43′′ .

The steady state probabilities, as given by Eq. 2.65 read, for the forward cycle F ,

P st

44′ =
ω41

ω41 + ω43

(6.1)

P st

34′ = 1 (6.2)

P st

43′′ =
ω43

ω41 + ω43

(6.3)

P st

33′′ = 0. (6.4)

They can be used to define a new Markov chain that refers to the sequence of forward
and backward steps, as carried out explicitly in [76]. The latter process has a steady
state that refers to the probability of taking a forward or a backward step, respectively,
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which is given by the probabilities

πst

f =
P st

34′

P st

34′ + P st

43′′
(6.5)

πst

b =
P st

43′′

P st

34′ + P st

43′′
. (6.6)

As shown in [76], average quantities of the motor like the ratio of forward and backward
steps

q =
πst
f

πst
b

=
ω41 + ω43

ω43

(6.7)

can be expressed using these probabilities. With the use of Eqs. 2.64 and 2.65, the dwell
time distributions for the four co-steps can be explicitly calculated and compared to the
experimental data in [44, 45].

The distributions for forward and backward steps, ρabs
f (t) and ρabs

b (t), read

ρabs

f (t) = Ṗ44′(t) + q−1Ṗ34′(t) (6.8)

ρabs

b (t) = qṖ43′′(t) (6.9)

with the overall distribution ρabs(t) = ρabs
f (t) + ρabs

b (t). The full analytical form of the
distributions is given in App. D.

The dwell time distribution in itself is given by a sum of weighted exponentials with
the eigenvalues λi as decay rates. The tail of the dwell time distribution thus is governed
by the smallest eigenvalue λmin = min(λi) [61]. The eigenvalues for the network F read

λ1,2 =
1

2

(
ω12 + ω21 + ω23 ±

√
(−ω12 − ω21 − ω23)2 − 4ω12ω23

)
(6.10)

λ3 = ω34 (6.11)

λ4 = ω41 + ω43 (6.12)

Let us outline those external conditions where the minimal eigenvalue can directly been
assigned to a given chemical rate. In the case of [ADP]' 0, the first two eigenvalues
reduce to λ1 = ω23 and λ2 = ω12. The eigenvalues λ1,2 do not depend on an external
load force, while λ3,4 contain force-dependent forward and backward stepping rates. For
a resisting force F > 0, the decrease of the stepping rate will contribute to the tail of
the distribution, once ω34 reaches the order of ω12 in the case of saturating ATP and a
low concentration of ADP. For F = 1.1 pN, we have ω34 ≈ ω12, i. e., in this regime of
force the forward stepping rate will turn limiting to the motor’s motion.
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6.3 Absence of load: the gating effect

Fig. 6.3 shows the total distribution of dwell times, ρabs(t), for F = 0 and different nu-
cleotide concentrations using the transition rates shown in Table 6.1 and the experimen-
tal data from [44]. In order to compare our results with the experimentally determined
distributions reported in [44, 45], we have rescaled the experimental data such that the
area covered by the histogram is normalized.
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Figure 6.3 : Dwell time distributions calculated from the cycle F for different nucleotide
concentrations shown as solid lines (blue), and the corresponding experimental data
(cyan bars) taken from [45], with distributions and data normalized for comparison. If
not indicated differently, experiments are performed in the absence of ADP and P, and
in the calculations we set [ADP]=0.1 µM and [P]=0 µM (see text). (a) Dwell time
distribution for saturating ATP concentration, [ATP]=2 mM . (b) For 400 µM of ADP
and 2 mM of ATP, the distribution broadens and thus indicates the inhibiting effect
of ADP on the stepping velocity. (c, d) Limiting amount of ATP, 10 and 2 µM . The
symbols show simulated data without a gating (green dots) and gating with a 10-fold
decelerated ADP release from the motor’s leading head (red dots).

As the histogram shows the actual stepping events rather than a distribution, this
procedure is justified if the histogram bins are sufficiently small, which is the case for

77
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the data in [44, 45], where each histogram consists of more than one hundred events. For
F = 0 and [ATP]=2mM , and [ADP]' 0 (Fig. 6.3 a), our results are in good agreement
with the data. We have λmin = ω12 = 12s−1, and the tail of the distribution thus
reflects the rate of ADP release. With the addition of ADP, the distribution broadens
significantly, which reflects the inhibiting effect of ADP on the motor’s motion, a fact
that is experimentally well established [108, 26, 53].

For a limiting amount of ATP (Fig. 6.3 c, d), the step velocity is, in case of the absence
of [ADP] and ω34/ω43 � 1, governed by the rate of ATP binding. Note that there is
a minor discrepancy between the theoretical curve and the experimental values, that
arises from the experimental uncertainty for the rate of ATP binding, ω23. The rate
constant κ̂23 (µMs)−1 used throughout this work has been determined in the presence
of actin, i. e., for the actomyosin complex. Increasing this rate to 1.9 (µMs)−1, the one
given in the absence of actin, i. e., for myosin only [48], leads to a better agreement of
the distribution and the data. However, this rate would result in a Michaelis constant
KM that is contrary to the experimental value.

From comparison with simulations for the complete network, Fig. 6.1 (a), we can, in
addition, quantify the gating effect. For low [ATP], the ATP binding transition |23〉
competes with the transition for ADP release from the front head, |25〉. Neglecting the
gating effect by assuming equal rates of ADP release for both heads leads to discrepancies
between the experimental data and the calculations (green dots). These vanish for a
gating with ξ = ω12/ω25 ≥ 10 (red dots), which sets the upper level for the gating effect
in agreement with the experimental observations [54, 92]. Let us point out here that all
theoretical curves show a steep peak for dwell times ≤ 0.01 s, which is beyond the time
resolution of the experimental setup and is barely seen in Fig. 6.3. These refer to rapid
events and will be discussed in more detail in the context of an external force.

6.4 Presence of load: backward stepping

Let us consider the behaviour of the distributions subject to external load. For assisting
forces, the motor’s motion remains unaltered, while for resisting forces that exceed the
stall force, it acts as a mechanical ratchet by means of forced stepping through the
mechanical cycle M. Fig. 6.4 shows the dwell distributions for different regimes of
external load, for F = −5 and F = 1 pN, where the forward stepping cycle F governs
the stepping behaviour, and F = 5 pN, where the mechanical cycle M is dominant to
the motor’s motion.

With the presence of an external load, the distributions change through the force-
dependent forward and backward stepping rates ω34 and ω43 with the force factor θ =
0.65. The eigenvalues λ1,2 do not depend on an external load force, while λ3,4 contain
the stepping rates ω34 and ω43. For a resisting force F > 0, the decrease of the stepping
rate will contribute to the tail of the distribution, once ω34 reaches the order of ω12 in
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Figure 6.4 : Dwell time distributions for assisting, substall resisting and superstall load
forces, F = −5 pN (a), F = 1 pN (b) and F = 5 pN (c) for 2 mM [ATP], 0.1 µM
[ADP] and zero phosphate. The bars show the experimental data taken from [45], and
the lines show the distributions obtained using the single network cycles F for F ≤ Fs (a
and b, blue) andM for F ≥ Fs (c, magenta). As before, the data and the distributions
have been normalized. (a) For F = −5 pN, the dwell distribution is virtually identical
with the one for F = 0, indicating that an external assisting load does not alter the
motor’s chemomechanical stepping mechanism, and the distribution of dwell times is
captured by the forward stepping cycle F . (b) For F = 1 pN, the overall distribution of
dwell times (solid line) shows a significant peak for dwell times up to 0.02 s, indicating
the presence of backward steps. In the distribution of forward steps (dashed line),
this peak is absent, and the distribution agrees with the data, which indicates that the
experimental evaluation might lack events associated with backward steps. (c) For F = 5
pN, the distribution of dwell times follows a single exponential function (magenta line)
as a result of the purely mechanical motion arising in the mechanical cycle M. In the
experiment, the result has been fitted with a single exponential decay, although a decay
of the function for small dwell times and thus the existence of further limiting states can
not be ruled out.
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the case of saturating ATP and a low concentration of ADP.
For F = −5 pN (a), we find a good agreement between our results and the experi-

mental data. This consolidates the fact that for assisting forces, the stepping behaviour
is virtually unaltered with respect to F = 0, as discussed in [45]. All the theoretical
curves show a steep decay of rapid events for short times ≤ 0.01 s, the time resolution of
the experimental setup [45]. Yet, they occur in simulations for single-headed myosin V
constructs [77]. These events turn to larger dwell times for with an increasing resisting
force. For a force of F = 1 pN (b), they exceed the experimental resolution of 0.01 s
(blue line). The maximum at short times stems from the distribution of backward steps,
ρb(t), and reflects the decrease of the forward stepping rate ω34. The experimental data,
however, agree with the distribution of forward steps, ρf (t) (brown line). The amount of
backward stepping events in [45] might have been insufficient to capture the behaviour
of ρb(t). On the other hand, these fast events directly refer to the forward stepping rate,
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Figure 6.5 : Dwell time distributions for forces that cover the intermediate regime 1.8 pN
< F < 2.2 pN, in a range of F = −1.4 pN to F = 2.4 pN, in steps of 0.2 pN, simulated
using the complete network from Fig. 4.2. The nucleotide conditions have been fixed
to [ATP]=2 mM , [ADP]=[P]=0.1 µM . The shape of the distribution resembles, for 1.4
and 1.6 pN, the shape of the distributions for forces that are below these values. The
distribution broadens as approaching a vanishing step velocity of the motor at the stall
force Fs ' 2 pN, where the sharp peak of short events vanishes and turns into a single
exponential distribution, whose slope rises with increasing the load force, as seen for
F = 2.2 and F = 2.4 pN. Note that the simulation is based on ≈ 106 events.

that might be affected by a more complex mechanism, like the reversal of the motor’s
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power stroke [55]. For high resisting forces, the mechanical cycle M is dominant to the
motor’s motion. The motor steps in a forced manner, and as the forward stepping rate
ω55′ ' 0 in this regime, the dwell time distribution reduces to an exponential distribution
with the rate ω55′′ for F = 5 pN, as shown in Fig. 6.4 (c). It agrees with the experimental
data, although a decay of the distribution for short times and thus the existence of a
’hidden’ state can not be ruled out.

In the regime of intermediate forces, the dwell time distributions are given by an
overlap of the two cycles F and M, as shown in Fig. 6.5. From the simulations, we
find a smooth transition in a region of 0.2 pN around the stall force. This switching is
a feature specific to our parametrization that exhibits a smooth transition restricted to
a rather narrow regime of force, i.e., between F = 2.0 and F = 2.2 pN, where the peak
of rapid events vanishes and the distribution turns into a single exponential function.
With an increasing force up to the stall force Fs, the broadening of the distribution is a
signature of the decaying step velocity, and its rise for F > Fs is a notion of its increase.
To further characterize the switching between the two step cycles in more detail, it
would be interesting to investigate the regime of this transition around the stall force in
more detail. The observation of two distinct types of distributions would consolidate the
network property that the ratchet behaviour of the motor is driven by a fundamentally
different process than the usual enzymatic step cycle of the motor.
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7 Summary and further perspectives

7.1 Chemical kinetics of myosin V

We have studied the stepping properties of the molecular motor myosin V as a function
of nucleotide concentration and external load in a quantitative way. Using a relatively
simple network, we have described the motor’s motion for forces both below and above
the stall force. A network description that includes one main catalytic cycle reproduces
both the step velocity and the run length as a function of nucleotide concentration in
quantitative agreement with experimental findings, as shown in Figs. 5.1 and 5.5. The
latter result for the runlength does not depend on any fitting parameters except for the
unbinding rate ωu.

The motor’s motion as a function of external load force is governed by the force
dependence of the mechanical stepping rates below stall, whereas the chemical transition
rates do not significantly depend on force in this regime. As can be infered from the ratio
of forward to backward steps, see Fig. 5.4, the occurrence of backward steps at substall
forces can be explained by an increasing ratio of the backward to forward stepping rate in
the single step cycle F which arises from the decreasing probability of forward stepping.
This motor property of myosin V differs from the corresponding one of kinesin, for which
another chemomechanical cycle acts to increase the probability for backward steps.

For backward forces that exceed the stall force, our network description captures the
ratcheting behaviour of the motor, as shown in Fig. 5.2. The forced backward stepping
arises from the mechanical cycle M with step rates that have been derived using a
discretized version of the Fokker-Planck-equation, see Eq. (4.19) and (4.20).

Switching the operation mode of the motor from the chemomechanical cycle F to the
mechanical ratchet cycle M for large load forces F should be useful if myosin V and
kinesin are attached to the same intracellular cargo particle as observed experimentally
in [109] and considered theoretically in [110]. In these latter studies, the myosins and
kinesins moved along the same filament. If the myosins are in contact with actin filaments
whereas the kinesins move along microtubules as discussed, e. g., in [111], the switching
from the chemomechanical cycle F to the mechanical ratchet cycleM allows the myosins
to stay in touch with the actin filaments even if the kinesins pull in the opposite direction
and generate forces of the order of their stall force, which is about 7 pN.

The competition between the chemomechanical cycle F and the mechanical cycle
M essentially depends on the binding rates of ATP and ADP in the enzymatic cycle E .
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Both rates decrease for a high load force, while the other chemical rates need not depend
on force. For substall forces, the force dependence of ADP binding and release as well as
of ATP binding is believed to be weak for dimeric myosin V [54, 55, 101]. The decrease
of the binding rates for superstall forces could arise from a deformation of the molecule.
For this regime, an inhibition of the powerstroke of myosin V has been observed, which
can lead to the decline of its catalytic function. A possible mechanism is provided by
a partial closure of the nucleotide binding pocket of the leading head, when the motor
molecule experiences superstall load forces. It remains to be seen if such a molecular
mechanism can be corroborated by further experimental studies.

7.2 Dwell time distributions

We have calculated the dwell time distributions of the molecular motor myosin V by
splitting our network description into single motor cycles that are dominant in different
regimes of an external force. For a range of 0.2 pN around the stall force, an intermediate
regime arises where both cycles compete with each other. For forces below this regime,
the dwell time distributions can be determined using a network with two absorbing
boundaries as shown in Fig. 6.1, and can be separated into the distributions of forward
and backward steps. We quantify the intermediate regime using a Gillespie algorithm,
and use the mechanical cycle M to determine the dwell times for forces that exceed
stall.

For the distributions obtained for F = 0 and different nucleotide conditions, shown in
Fig. 6.3, we find good agreement with the experimental data. In addition, we are able
to quantify the gating effect that is thought to be the primary cause for the molecule’s
coordination of heads. At low concentrations of ATP, the simulation results for the
complete network agree with the data as well as the analytical distribution for the cycle
F choosing an ADP release rate from the leading head that is 1/10 of the value for the
trailing head.

In the presence of load, we compare the data with the distributions arising from the
cycles F andM. For superstall forces, the distribution is governed by a single exponen-
tial decay, while it is multi-exponential for the cycle F . All distributions calculated using
the cycle F exhibit a peak that refers to fast events, which broadens in the presence
of a resisting force. It can be associated with the distribution of backward steps, and
has not been observed experimentally. For small resisting load forces, the experimental
data agree with the distribution of forward steps rather than with the full distribution,
which may be due to the lack of data for backward stepping, as indicated in Fig. 6.4. For
the intermediate regime, we have used a simulation algorithm to examine the transition
between the two cycles F and M. We find that the transition regime is given by the
overlap of the two distributions, which is a notion of effective switching between these
cycles.
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The simple chemomechanical model serves as an interpolation between the use of a sim-
ple two-state model, that cannot be a priori connected to experimental transition rates,
and simulations that are based on very complex kinetic schemes, but rely on a num-
ber of fit parameters. We observe the same characteristic behaviour of the distribution
of dwell times that has been calculated to fit distributions of single-headed myosin V,
[77, 101], with a rapidly decaying peak for small dwell times, followed by a broader peak
for intermediate dwell times. This reinforces the hypothesis that the behaviour of the
stepping motor is based, for forces up to the stall force, on a single chemomechanical
cycle, which is coordinated by the force-dependent release of ADP.

7.3 Power stroke and collective behaviour of molecular
motors

In the past months, fundamental experimental progress has been achieved in character-
izing the power stroke of myosin V. The influence of the lever arm on the ADP release
rate from the trailing and the leading head through its strain-dependence has been in-
vestigated in [36]. The direct observation of the molecule’s telemark configuration a few
years ago [112] has been taken to a new level through video imaging using rapid atomic
force microscopy, supporting a study of the force generation through conformational
changes at the actin binding site that has been carried out with FRET [50]. It would
be interesting to address, from a theoretical point of view, the question how this power
stroke affects the stepping mechanism of the molecule, like, for instance, its substeps.
These have been addressed in numerous experiments [53, 47, 54, 55, 56] but with dif-
ferent conclusions with respect to substep sizes. An instructive, albeit slightly outdated
comment on the topic is given in [113]. In a study with exceptionally high resolution
[47], the effect of [ATP] on three substeps of the myosin V has been observed, the first of
which has a duration that depends on the concentration of ATP. This step is associated
with a power stroke conformation of the motor: It is thought that upon binding of and
ATP molecule, a conformational change is discussed to induce the prestroke position of
the motor, and weaken the binding affinity of the trailing head. A theoretical analysis
should certainly establish a connection of this step with the study of the power stroke
and its reversal [55].

A further aspect that needs to be clarified is the detailed mechanism of a backward
step, and how it is influenced by the power stroke and its eventual reversal. The mecha-
nism of the forward step is given by a combination of the stroke and a diffusion [52, 96],
but what is the nature of the mechanism that governs in backward step? Is it a direct
reversal of the forward step or is it enabled only in the case the power stroke is inhib-
ited? The quantitative discussion of these issues can lead to a better understanding of
the details of the myosin’s step in itself.
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Finally, let us turn the focus from small, sub-step length scales, to those exceeding the
motor’s step size where the collective behaviour of molecular motors starts to play a role.
An interesting feature that is specific to the myosin V is the ratcheting mechanism. What
benefit could it have for the motor traffic of both single and interacting molecular motors?
To elucidate the consequence of the ratcheting mechanism, it would be interesting to
test tug-of-war scenarios between myosin V and VI, a motor moving into the opposite
direction of the actin filament. A stochastic tug-of-war for motors that are attached
to the same cargo, but move in different directions can result in directed transport, as
demonstrated in [114]. Kinesin has a stall force of 7 pN and thus can exert load forces
that are in the superstall regime of the myosin V. If both a kinesin and a myosin V
motor are attached to the same cargo, the myosin’s defensive modus operandi might
ensure the molecule to remain bound to its track until it detaches from the cargo. This
behaviour could thus help to improve the efficiency of cellular cargo transport without
any external regulatory control.

7.4 The world outside the test tube

Because of recent development and refinement of experimental procedures, it is nowa-
days possible to track down molecular motors, in their natural environment, the cell.
With quantum dots attached, myosin V has been observed inside HeLa cells and cells of
the actin cortex at the level of single-molecule studies [115, 116, 117]. The cargo domain
influences the structural state of myosin V [118], which raises the question how the mo-
tion of myosin V is regulated in the cellular environment by other factors than nucleotide
concentrations and forces. Ca2+ is known to regulate the active state of myosin V, and it
would thus be interesting to investigate aspects of motor trafficking as a function of the
calcium level. Moreover, the motor is not alone: Myosin V has to maneuver through its
cellular environment upon interaction with microtubules and kinesin, as investigated in
[119, 120, 109, 110]. The motor’s own tracks, actin filaments, are covered with numerous
motors moving in both directions, and obstacles such as the Arp 2/3 junction. It remains
an open question how the cell deals with coordination of these interacting machines to
ensure a functioning and stable system of cargo transportation. Do collective transport
phenomena such as traffic jams have a higher function in the cell? Kinesin traffic, for
instance, has been proposed to affect the depolymerization of microtubules through ac-
cumulation at the filament’s end [121]. Many aspects about the chemical surrounding in
the living cell that determine the operational regime of molecular motors remain open.
The ATP concentration might vary inside a cell, but it is unclear whether it can reach a
sufficiently low level that is rate-limiting to the motor’s motion, and what effect it could
have in the cell to collectively slow down motors. In addition, little is known about how
densely motors are packed on the filament. There is sparse quantitative information
about filament and motor densities in living organisms, such that it is not possible to
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specify how crowded the environment of the motors is, and at which level they interact
for transport. Addressing these questions both experimentally and theoretically will
help to better understand the fascinating structure of the complex transport system in
the cell. In this way, molecular motors can broaden the insight into the matter that
constitutes life.
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A Spanning trees for the
chemomechanical network

In this work, we deal with several copies of a given chemical network that are connected
by mechanical transitions, see Fig. 4.2. A path completion in the network takes place
along trajectories that either connect two identical copies of a chemical state or the
chemical state in itself, which is due to the periodic boundary conditions used for the
system. One of the network cycles,M, solely consists of mechanical transitions and thus
constitutes a pathway of identical forward and backward transitions with the stepping
rates ω55′ , ω5′5′′ ... and ω5′5, ω5′′5′ ..., respectively, related by the balance condition 4.11.
The number of mechanical transitions given by the corresponding di-edges in this path-
way is 2N , where N is the number of copies used for the network.
The network’s dynamics properties should clearly be independent of the number of copies
used for the network description. In the following, we use a simple example to illustrate
how to deal with varying the number of copies for a given network, a single copy of
which contains a loop.

The stochastic process for a network with a loop, is, in contrast to discrete time
Markov processes, not well defined in the theory of Markov processes in continuous
time, which exclude a transition leading from a state back to itself, and the transition
matrix of the system can not be given. An extension to two copies of the network splits
the state the loop belongs to into distinct copies, i. e., formally different states, and the
Markov process can be recovered. Using the graph-theoretical approach by Kirchhoff,
the step velocity through the self-loop can still be determined, in case the construction
of a spanning tree is understood as considering all edges pointing towards a certain
node. A loop thus forms two spanning trees, given by its two di-edges, which implicitly
incorporates a differentiation of the state, as an orientation of the loop defines a stepping
direction.

In Fig. A.1 (a), a network is shown that consists of three chemical on one mechanical
transition, represented by solid and dashed lines. Panels (b) and (c) show the extended
version of the network that consists of two and three of its copies. Let us now illustrate
that the total velocities calculated from these networks are identical. Let A, A′ and A′′
be the network cycles for the chemical transitions, and ΩAi the measures for the spanning
trees as defined in 2.5 for the network cycle only, while we use Ωi for the full network. By
definition, we have equal transition rates within the network cycles, ωij = ωi′j′ = ωi′′j′′ , if
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Figure A.1 : Illustration of network extension from one to three copies, with chemical
transitions shown as solid and mechanical transitions as dashed lines. Each edge contains
two directed transitions that are oriented with opposite directions to each other. (a)
Network that consists of three states, with the third one having a loop that corresponds
to a stepping transition. (b, c) Two and three copies of the same network, with N = 2
and N = 3, where the prime indicates a different spatial location. The transition rates
in the new copies remain unchanged with respect to the original network. The cycles
enclosed by chemical rates are denoted byA, A′ andA′′, while the mechanical transitions
form the cycles BN , where N = 1, 2, 3.

follows that ΩAi = ΩA
′

i′ = ΩA
′′

i′′ . Now, let BN be the cycle that is enclosed by mechanical
transition, where N = 1, 2, 3 indicates the network with the corresponding number of
copies. To distinguish between a forward and a backward step, we label the rates along
the positive direction of B by an (f) and those along the negative direction by a (b).
The stepping velocity in Fig. A.1 (a) is given by

v = `(ωf33 − ωb33)
Ω3∑
i Ωi

= `(ωf33 − ωb33)
ΩA3∑
i Ω
A
i

. (A.1)

The latter equality holds because we have

Ω3 = ΩA3 (ωf33 + ωb33) (A.2)

and ∑
i

Ωi =
∑
i

ΩAi (ωf33 + ωb33). (A.3)

The loop that forms the cycle B1 is an artificial projection of the displacement onto
a single site, but works for calculations because of assigning an oriented displacement
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to the mechanical transitions. To investigate two copies of the network, N = 2, the
chemical states are repeated and assigned a spatial position that corresponds to x and
x′ = x + `, separated by one mechanical transition. To close the structure periodically,
a second mechanical transition with the stepping oriented in the opposite direction has
to be included to ensure successive forward or backward stepping. These two transitions
form the cycle B2. The velocity for the network with N = 2 is now given by the flux
through both of the mechanical transitions,

v = `
(
ωf33′Ω3′ − ωb3′3Ω3 − ωb33′Ω3′ + ωf3′3Ω3

) 1∑
j Ωj

. (A.4)

Here, the index j runs through all states of the network, j = 1, ..3, 1′...3′. This expression
can be again simplified by explicit calculation of the Ωj, which, for the states 3 and 3’,
are given by

Ω3′ = ΩA3 · ΩA
′

3 · (ωb33′ + ωf33′) (A.5)

and

Ω3 = ΩA
′

3 · ΩA3 · (ωb3′3 + ωf3′3). (A.6)

The sum over all states of the network, consequently, reads

∑
i

Ωi = ΩA
′

3 (ωb3′3 + ωf3′3)

(∑
i

ΩAi

)
+ ΩA3 (ωb33′ + ωf33′)

(∑
i′

ΩA
′

i′

)
. (A.7)

As ωf33′ = ωf3′3 and ωb33′ = ωb3′3 in accordance with the definition from the network
extension, the velocity yields

v = 2`(ωb33′ + ωf33′)(Ω
A
3 )2 1

2ΩA3
∑

i Ω
A
i

= `(ωf33 − ωb33)
ΩA3∑
i Ω
A
i

. (A.8)

The extension to the network with N = 3 is straightforward. As the expressions are
somewhat lengthy, we omit the calculation here and conclude with pointing out that
the orientation of the stepping transition, is, in contrast to the case where N = 1, 2
implemented in the network through the order of the states |33′3′′〉.

The smallest network that can be given for the Myosin V stepping behaviour includes
a self-loop, as shown in Fig. A.2 (a). In our definition, stepping through a di-edge that
corresponds to a forward transition is equivalent to the transition |55′〉, and likewise, |5′5〉
refers to a backward transition. In this way, a cycling velocity through this transition can
be determined by running through the loop. As can be seen in the previous calculation,
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that the steady state given by Ωi

∑
i Ωi of the underlying Markov process does not depend

on the rates given by the loop, and the stepping velocity given by the cycle M is given
by their difference, v ∼ ω55′ − ω5′5. In the case of zero force, we have ω55′ = ω5′5, and
the purely mechanical step cycle M does not contribute to the total stepping velocity;
it corresponds to a diffusion process. The network used throughout this work has been

ATP

ADP

P

mech.

E E

D DDE
TE

D TT D

(b)

ATP

P

ADP

ADP

P

ATP

5

6
12

3 4

F

E

M

(a)

Figure A.2 : Single copy of the network with three cycles F , E and M (a) and the
corresponding set of spanning trees (b). (a) The full representation of the network is
shown in the upper panel, with the corresponding graph in the lower panel. Its edges are
color-coded such that the dashed, dark red lines correspond to mechanical transitions,
ATP binding and release rates are shown in blue, and green and light red stand for
ADP and P, respectively. (b) The spanning trees consist of all possible combinations of
spanning trees for the single cycles F , E and M. Going from left to right, all spanning
trees for a fixed part of F are shown. Note that the edge that forms the mechanical
cycleM results in two distinct spanning trees as both di-edges point towards the rest of
the graph independently. These sets are separated by the vertical grey line. Going from
top to bottom, the four spanning trees of trees of F are passed through.

extended to contain three identical copies of a set of chemical states, as shown in Fig. 4.2.
To keep the amount of spanning trees manageable, we show them for a single copy of
the network. The Ωi to obtain the corresponding steady state probability distribution,
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P st
i = Ωi

∑
i Ωi, read

Ω1 = (ω32ω21(ω43 + ω41) + ω34ω41(ω21 + ω23))(ω52ω62 + ω56ω62 + ω65ω52)(ω55′ + ω5′5)

Ω2 = (ω43ω32(ω12 + ω14) + ω41ω12(ω34 + ω32))(ω52ω62 + ω56ω62 + ω65ω52)(ω55′ + ω5′5)

Ω3 = (ω12ω23(ω43 + ω41) + ω14ω43(ω21 + ω23))(ω52ω62 + ω56ω62 + ω65ω52)(ω55′ + ω5′5)

Ω4 = (ω23ω34(ω12 + ω14) + ω21ω14(ω34 + ω32))(ω52ω62 + ω56ω62 + ω65ω52)(ω55′ + ω5′5)

Ω5 = (ω43ω32(ω12 + ω14) + ω41ω12(ω34 + ω32))(ω62ω25 + ω26ω65 + ω65ω26)(ω55′ + ω5′5)

Ω6 = (ω43ω32(ω12 + ω14) + ω41ω12(ω34 + ω32))(ω52ω26 + ω56ω26 + ω25ω56)(ω55′ + ω5′5),

with the normalization factor
∑

i Ωi. As each Ωi contains the factor (ω55′ + ω5′5), one
can easily see that Ωi/

∑
i Ωi does not depend on (ω55′ , and ω5′5).
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B Network properties and additional
experimental information

In this section, the basic ideas leading to our minimal model are discussed in more
detail with respect to experimental findings that lead to qualitative insight rather than
numerical input to the network. In our description, the existence of additional pathways
is not ruled out a priori, and here, some arguments how omitted pathways are effectively
incorporated, or do not change general properties of the results considered here, are
given. We proceed with summarizing the experimental results that address the force
dependence of chemical transition rates. Finally, we review additional experimental
control parameters that could be included into the network.

B.1 Additional pathways and properties of Fs

As has been pointed out in chapter 5.4, a single chemomechanical network cycle has the
inherent property that the stall force tends to zero as the energy supply to the motor is
decreased, i. e., a vanishing hydrolysis rate h forces the stall force Fs to vanish because
of the linear relationship between hydrolysis rate and motor motion. This property has
been discussed in section 5.4. In the limit of a network that consists of the single cycle
F only, one has thus to keep in mind that it has this property, although it need not
necessarily be true for the real system. In the experimental community, it is generally
assumed that the stall force does not depend on the supply of chemical energy, but a
summary of experimental data of the stall forces measured for myosin V does not lead
to a clear conclusion. The experimental values for the stall force of myosin V, that have
been carried out under different experimental conditions, are shown in Fig. B.1 (a).
Two groups, Mehta and Uemura, [20, 53] report a rather large stall force around 3 pN.
Both of these do not use a feedback clamp, which means that the motor works steps
against an increasing force until it either halts or detaches after several steps. There is
no clear distinguishment between stall and detachment force. Furthermore, the group of
Kad [91] refers to a “force prior to detachment“ rather than a stall force. We point out
here that the experiments carried out by the Rief group [45, 46] report rather low stall
forces, Fs ' 1.6 pN, but, as a contrast, measure stepping velocities for a limiting amount
of ATP, [ATP]=1 µM that typically are considerably higher, v ' 100 nm/s, than these
determined by other groups [104, 105], where v = 10−30 nm/s. When considering these

95



B.1. ADDITIONAL PATHWAYS AND PROPERTIES OF FS

stall forces as a function of the corresponding ATP concentrations given in terms of the
chemical potential ∆µ̄, one can, in principle, get an information about the functional
relationship between Fs and ∆µ̄. As can be infered from Fig. B.1 (b), the spread of the
data does not allow for a clear conclusion. To calculate the chemical potential ∆µ̄, one
has to fix the concentrations of [ADP] and [P]. We show the potential for two different
limiting concentrations that are above our threshold value of 0.1µM , [ADP]=[P]=0.5µM
(red circles) and 1µM (cyan circles) to illustrate that the impact of this limiting value
of the two concentrations does not influence the chemical potential significantly.
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Figure B.1 : (a) Experimental values of the stall force Fs for different concentrations
of [ATP], measured by different groups [20, 44, 53, 45, 46, 47, 91]. All constructs are
from chick brain, except the one by Kad [91], which is murine, with actin filaments
stemming from rabbits. (b) Stall force values in terms of the rescaled chemical potential
∆µ̄ = ∆µ/kBT and force F̄ = `F/kBT . The concentrations of phosphate and ADP
have not been reported for these experiments, and are typically assumed to be small.
We use two values for [ADP] and [P], [ADP]=[P]=0.5 µM (red circles) and 1 µM (cyan
circles). The solid line corresponds to vanishing velocity, v = 0, and hydrolysis rate,
h = 0, as given by a single cycle F . A conclusion about a variation of stall force with
[ATP] concentration can not be drawn due to the spread in the data.

The existence of additional cycles that influence the motion of myosin V are thus not
ruled out, but our network suggest that this influence might be small. In the regime of
resisting forces up to the stall force Fs, two possible pathways are shown in Fig. B.2. The
first cycle, shown in orange, involves a hydrolytic reaction upon backward stepping and
introduced the state DE into the system, as reviewed in [99], while the green one involves
the states TE and DE. These cycles contain the common backward stepping transition
TD→ DT along their direction of hydrolysis. What both cycles have in common is that
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their preferred direction, indicated by arrows, involves ADP release from the molecule’s
leading head. This release rate, through gating, is slower than for the trailing head. But
even if it were not, the influence of both cycles for small forces can not be distinguished
from the main cycle F because all cycles share, in the backward direction, the same
the rate-limiting step, namely the backward stepping transition. We have checked that,

D D

D TT D

DE

T E

D E

P

ADP

ATP

12

3 4

F

Figure B.2 : A network that consists of the chemomechanical cycle F , with additional
pathways for backward stepping, shown in orange and green. The orange pathway is
based on the idea of reversing the symmetry of the motor’s motion. The chemical
pathway followed for the trailing head, that leads to a forward step, has an analogue
for the leading head, connected with a backward step, given by the cycle DD → DE →
DT → TD → DD. As discussed in the text, the existence of such a pathway can not be
ruled out, but fits experimental data only with the use of additional parameters. The
green cycle, given by the pathway TD → TE → DE → DT → TD is motivated by the
idea to have a backward step connected to a hydrolysis that does not lead to slip cycles
in the chemomechanical step cycle F .

without further parametrization, the existence of these cycles, single and in combination,
does not change our central qualitative results like the step ratio and the force-velocity
relationship. While it would change the relation between ∆µ̄ and F̄ , these changes occur
for values of control parameters that are not accessed in typical experiments, like sub
micro-molar concentrations of ATP. As the backward stepping rate, ω4′3, has been fixed
through a fit to the experimental step ratio, its value can still capture effects of ’hidden’
cycles.

A shortcoming of the orange cycle in Fig. B.2 is that it leads to inconsistency with
experiment: The existence of a hydrolytic transition prior to a step leads, without further
parametrization, to a decay in step velocity as a function of resisting load force that
is more rapid than the one observed experimentally. Thus, our model enforces the
assumption that weakening of the actin bond leads to rapid detachment of the trailing
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head and that hydrolysis is supported with a head being attached to the filament. Taking
the orange pathway into account would thus require a force dependent rate of hydrolysis
that decreases for the leading head with a resisting force and, in the same time, increases
for the trailing head. In the network presented here, such a parametrization is not
necessary to explain the data up to the stall force. Moreover, the connection of these
states with the mechanical cycle M would require the use of even more parameters.

In general, the force dependence of transition rates is an issue that is not trivial to
treat both experimentally and theoretically. The functional changes in a complicated
molecular complex like the myosin’s binding pocket subject to a distorting force can
not, at least not without limitations for the regime of force, be generalized into a simple
physical framework, like Kramer’s theory. Neither can they be determined experimen-
tally in a straightforward manner because a direct observation would have to address
an isolated chemical state, which usually is not feasible. Let us now briefly discuss the
most important experimental findings about the force dependence of chemical transition
rates.

B.2 The effect of load force on nucleotide binding

The rate of ADP binding and release as a function of load

To investigate the effect of gating, i. e., an accelerated rate of ADP release from the
molecule’s trailing head compared to the leading head, the response of single-headed
Myosin V constructs to external load has been studied [101, 93]. Both binding and
release of ADP are sensitive to load, and they change in an irregular way. In [93], the
ATP binding rate decreases for both assisting and resisting forces, while ADP release
is enhanced in the case of assisting forces and decreases for resisting forces, as shown
in Fig. B.3. As the measurement contains both E and D states, these rates have been
determined from a fit to a three state model of actomyosin binding and unbinding in [93].
Experiments carried out with double-headed Myosin, however, do not necessarily find
this effect. It is thought that through intramolecular tension the molecule experiences
different forces at the leading and the trailing head, when bound to the actin filament.
An externally applied force acts in a backward direction on the leading head, while it
is assisting for the trailing head. Thus, the ADP release is thought to be accelerated at
the trailing head with respect to the leading head [90, 92]. Elasticity calculations in [95]
show that the intramolecular tension can lead to internal forces up to ' 2 pN. Thus, a
resisting external load would have to first overcome this tension prior to acting on the
molecule. In [45], a significant force dependence of the ADP binding and release rates
is ruled out for the double-headed motor for forces that do not exceed stall.
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Figure B.3 : Forces acting on double - and single- headed myosin V constructs (a) and
ADP dissociation and binding subject to an external force tested on a single-headed
Myosin V construct, as measured in [93] (b). (a) The upper panel shows the external
force applied to a cargo attached to the molecule, as well as internal forces that arise
from intramolecular strain, Fint, acting in opposite directions on the leading and the
trailing head, respectively. The exact impact of F on the heads is not resolved up to
date. The lower panel indicates a force exerted onto a single head, with a direction that
directly affects the motor head. (b) In the experiment [93], the green solid lines indicate
an assisting force towards the barbed end of the actin filament (F<0 throughout this
work), and backward loads towards the pointed end of the filament are shown in green.
The dashed lines limiting the shaded areas sketch the uncertainty of the result. Upper
panel, ADP dissociation rate. When pulled backwards (red line), the dissociation of
ADP decreases exponentially, while it increases for assisting load. The value for F = 0
agrees with the findings in [48]. Lower panel, ADP binding rate. The rate of ADP
binding decreases for both assisting and resisting forces. The figure is taken from [93].
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The rate of ATP binding and release as a function of load

In [54, 55], the authors conclude that the ATP binding rate does only weakly depend
on force for resisting forces up to 2 pN. In our calculations, the force dependence of the
ATP binding rate sets in at forces that are in the range of the stall force Fs, for binding
to an empty trailing head, where the leading head is empty. In [46], the step velocity for
resisting forces that exceed the stall force does not significantly depend on [ATP]. The
rate of ATP binding varies over two orders of magnitude with ATP concentration, being
limiting to the step velocity for low [ATP]. In the network, a step velocity for superstall
forces that does not depend on [ATP] is thus only feasible by i) a purely mechanical
stepping cycle,M , and ii) the decay of the ATP binding rate with force. In the network
cycle F , the nucleotide binding and release need not depend on force to maintain the
ratchet behaviour which arises through the decrease of the binding rates of ATP and
ADP in the enzymatic slip cycles E .

The set of chemical rates that decay to zero with an external load is not unique.
A forced stepping behaviour is characterized by a nonzero velocity in the mechanical
cycle M. To achieve this, a fraction of the rates competing with the cycle M need to
decrease with resisting force. Formally, the requirement that v 6= 0 as F →∞ holds for
different subsets of rates, e. g. P and ATP binding in the enzymatic cycle E . The decay of
chemical rates with an external load has to be in accordance with the balance conditions,
which forces for introduction of unknown parameters into the system. It is thus certainly
reasonable to restrict the decaying rates to a minimum. A strict mathematical analysis
of how to achieve the limit of a nonvanishing velocity for large resisting forces is not
feasible, because the asymptotic behaviour of the velocity with an increasing resisting
force is determined by whether a chemical rate decays to zero, and how fast it does so
or remains constant, and this information is not available for most of the chemical rates.
The set of rates we have used for force-dependence, the binding of ATP and ADP in E ,
leads to a mechanical ratchet that is both independent of [ATP] and [ADP], where the
latter dependence in the regime of superstall forces has not been tested experimentally
so far.

B.3 Experimental conditions

Biological experiments tend to be as diverse as life in itself. The attempt to explain
experimental data demands for some care about the details of experimental conditions,
because they may, in general, affect the results. Three major classes of experimental
settings can be given as follows. First, there are measurements of double-headed and
single-headed myosin V constructs, with the latter sometimes differing in the length
of IQ motifs, i.e., the length of the lever arm [36, 37, 38, 39]. Second, the constructs
stem from various organisms. The actin filaments typically are from the rabbit sceletal
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muscle, while the myosin V is chick brain [45, 44, 20, 53, 46], and murine [91]. Third, the
chemical environment in which the Myosin V has been tested may differ, e.g., there are
different buffers, and different ionic strengths. Experiments with Myosin V are typically
carried out at room temperature. To keep the ionic strength at constant level, different
buffers are used, typically ' 1 mM EDTA, ' 4 mM MgCl2, and the solution has a pH
of 7.4 [26, 45]. KCl is a salt typically added to the experiments to mimick the chemical
environment of the cell, it content varying from 25 -100 mM . In few experiments [91, 55],
the salt conditions are controlled by using the physiological concentration of phosphate
of up to ' 40 mM , which is the ionic equivalent of ca. 92 mM KCl. The run length
depends both on the KCl and phosphate concentration [26], and [55] find that [P] does
not influence their findings about the myosin’s power stroke significantly. The influence
of [P] on the step ratio has been tested [91], but the vast majority of myosin experiments
does not monitor [P] dependence as the corresponding concentrations are assumed to be
small. The influence of Mg2+, that, together with water, is involved in the hydrolysis
of ATP, and Ca2+, which influences the active and inactive state of the molecule and is
known to bind to the molecule’s lever has been investigated in [40, 41, 42].
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C The Gillespie algorithm

The analytical calculations presented in this thesis have been crosschecked with simula-
tions based on a Gillespie algorithm [107]. In addition, this algorithm has been used to
calculate the distribution of dwell times for our network representation. In the following,
we outline the structure of the algorithm along with an overview about the simulation
parameters.

1. Set all rate constants for the transition rates ωij, and calculate the corresponding
dwell times in each state, τi = 1/

∑
j ωij. Set an initial state. Note that the

extraction of data can start only once the system has equilibrated to avoid influence
from the starting state. Here, the initial state has been chosen as the DD state,
because the occupation probability for this state in the stationary distribution
is more than 90 %, and stationarity is reached after only a few steps. For the
distribution of dwell times, one might want to circumvent the time for equilibration.
This can be done by chosing an initial state with a probability according to the
stationary distribution of network, as pointed out in [77]. Chose a simulation time.
In our system, the simulation time has been set to perform ' 106 steps.

2. Set the system time to zero.

3. Initialize a jump from the present state i by drawing a random number nr from the
interval [0, 1]. Here, we have used a Mersenne Twister random number generator,
which was initialized with the process ID to ensure that each realization of a run
would differ. The probability to jump to a specific state i from state j is given by
τiωij, and the probabilities for all states branching off i are normalized.

4. Assign an interval of size τiωij in [0,1] to each state j connected to i and compare the
intervals successively with the random number nr. For reasons of speed, intervals
should be sorted in order of decreasing size. If nr lies within the interval, accept
the move to the new state j, if it lies outside, reject it.

5. Draw a random number tnrj that is exponentially distributed with the average of
the new state, τj. An exponentially distributed random number can be obtained
by inverse transform sampling: An equally distributed random number nr is drawn
from the interval ]0,1] and tnrj is determined as tnrj = − ln(r)τj. Note that nr 6= 0
is required in order to have a well-defined logarithm.
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6. Update the time by adding the dwell time tnr to the system time.

7. Return to step 3 and repeat the procedure until the simulation time is reached.
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Figure C.1 : Stepping trajectories obtained with the Gillespie algorithm for different
nucleotide concentrations and forces. The slope of the trajectory corresponds to the
motor’s velocity. Two different realizations are shown for each control parameter to
indicate the variability of displacement. In the absence of force, F = 0, we first vary the
ATP concentration. The blue lines are for a saturating concentration of ATP, while the
cyan and orange lines are for limiting ATP concentration, [ATP]=10 µM and [ATP]=1
µM , respectively. The green line shows stepping for saturating ATP under a resisting
force of 1.5 pN. One can clearly see that with decreasing [ATP], the dwell times of the
motor rise, while in presence of an external load, backstepping events occur in addition.

The algorithm mimicks a stochastic process on a given network with 1...N states with
specified transition rates ωij for going from state i to j. One can thus access all average
quantities that have been obtained analytically, and additional information like higher
moments of waiting times or cycle completions, as well as dwell time distributions that
are outside the reach of an analytical solution. The stationary distribution of the process
is extracted by monitoring the time the motor spends in each state j and averaging over
i) a long run time or ii) many realizations such that the fraction of time spent in
each state j with respect to all possible states 1...N can be determined. By recording
the positions j the particle visits as a function of the stepping time, and recording
each displacement, a stepping trajectory for the algorithm can be obtained, and the
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corresponding distribution of dwell times is then given by a histogram of the times
separating these events. Fig. C.1 shows different trajectories that have been obtained
for our network, see Fig. 4.2 with different nucleotide concenrations with and without
a resisting load. For each concenration, two trajectories are shown. The slope of the
trajectories now corresponds to the stepping velocity of the motor, and the distance by
which two realizations of a run are separated indicate the dispersion of the process.
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D Explicit solutions of the dwell time
distributions

We give the explicit solutions of the time-dependent derivatives of the network proba-
bilities Pij(t) that determine dwell time distributions as given in chapter 6, as used in
6.8 and 6.9.

Ṗ44′(t) = ω12ω23ω34ω41 · (D.1)

[−e−tω34 ·B1

−e−t(ω41+ω43) ·B2

−e−
1
2
t(ω12+ω21+ω23+A) · B

(+)

D

+e−
1
2
t(ω12+ω21+ω23−A) · B

(−)

D
]

Ṗ43′′(t) = ω43e
−t(ω41+ω43)

Ṗ34′(t) = ω34e
−tω34 , (D.2)

with the coefficients

A =
√

(ω12 + ω21)2 + ω2
23 (D.3)

B1 =
1

(ω34 − ω41 − ω43)
·

1

(ω12(ω23 − ω34) + ω34(−ω21 − ω23 + ω34))

B2 =
1

(−ω34 + ω41 + ω43)
·

1

(ω12(ω23 − ω41 − ω43)− (ω21 + ω23 − ω41 − ω43)(ω41 + ω43))
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B(±) = −ω2
12 − ω2

21 − 2ω21ω23 − ω2
23 + (D.4)

ω21ω34 + ω23ω34 + ω21ω41 + ω23ω41 −
2ω34ω41 + ω21ω43 + ω23ω43 − 2ω34ω43 +

±A(ω21 + ω23 − (ω34 + ω41 + ω43)) +

ω12(−2ω21 + ω34 + ω41 + ω43 ± A))

D = 2A(ω12(ω23 − ω34) + ω34(−ω21 − ω23 + ω34))

(ω12(ω23 − ω41 − ω43)− (ω21 + ω23 − ω41 − ω43)(ω41 + ω43)).
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E List of symbols

Latin symbols

A Adjacency matrix p. 17
Aij Elements of an adjacency matrix p. 17
abs Index for absorption p. 29
C Cycle p. 17
Cdν Dicycle with orientation d = ± p. 21
cij,ν Index for the orientation of a cycle with respect to

a related excess flux, with values 0, 1, -1 p. 21
d Orientation of a dicycle, d = ± p. 21
D Diffusion constant p. 22
Dm Small scale diffusion coefficient in a chemical state m p. 35
db Index for detailed balance p. 23
e(x, n | y,m) Exponential function that depends on the potential difference

between chemical states n to m at locations x and y p. 37
eq Index for equilibrium

F Component of the load force ~F that is parallel
to the actin filament p. 25

F ‘ Force scale used in the force functions for chemical transitions p. 52
Fs Stall force of a molecular motor p. 41
G Graph p. 17
g(t) Stochastic quantity influencing a potential U(x) p. 34
h Average hydrolysis rate of the motor in the steady state
Im(x, t) Transition current density in a chemical state m p. 34
Inm n-by-m identity matrix p. 32
J st
ij Steady state flux from state i to j p. 17

∆J st(Cν) Steady state excess flux on a cycle p. 21
∆J eq Equilibrium flux for the states i and j p. 23
∆Jij Local excess flux J between two states i and j p. 17
Jm(x, t) Lateral current in a chemical state m p. 34
Jtot(x, t) Total lateral current for all internal states p. 36
kB Boltzmann’s constant p. 24
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` Step length of the motor p. 22
`β Step length of a step β p. 26
`Ω Localization length associated with Ωnm(x) p. 36
li Edge of a graph p. 18
nf+b Total number of motor steps p. 63
n±α (C±ν )) Number of binding (+) / release (-)

of nucleotide species α per dicycle p. 26

nf,bβ (C±ν )) Number of forward (f) / backward (b) steps

of type β per dicycle p. 26
nr Equally distributed random number p. 103
〈nC±(t)〉 Average number of cycle completions at time t p. 22
〈nC(t)〉 Average number of dicycle completions at time t p. 22
P Matrix of solutions Pij to the unrestricted master equation p. 31
P eq

i Equilibrium probability for the motor to be in state i
Pi(t) Probability to find a motor in state i p. 16
P st
i Steady state probability for the motor to be in state i p. 17
Pij(t) Probability for a motor to dwell in state j

given that it started in state i at t = 0 p. 28
Pij|k Conditional probability for absorption

with initial state i and absorbing state k p. 30
Pij,k(t) Fraction of walks that start in i sojourn in j

and are absorbed in k p. 30
P st
ik Steady state probability for the motor

to be absorbed in k given that it started in state i p. 29
Pe Peclet number p. 23
Pr{...} Probability for an event to happen under

the condition specified in {...} p. 29
Pm(x, t) Probability density for a chemical state m
Ptot(x, t) Total probability density for all internal states
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APPENDIX E. LIST OF SYMBOLS

Q Matrix constructed of eigenvectors of T p. 31
Q−1 Inverse of Q p. 31
Q(C±ν ) Thermal energy of a cycle C±ν p. 25
r Randomness parameter p. 23

s Index for the different spanning trees associated with a graph p. 18
S(t) Entropy p. 23
S i Internal entropy p. 24
Se External entropy p. 24
∆S i(C±ν ) Average entropy production during a dicycle completion p. 24
t Time p. 16
tabs
i Time for absorption or dwell time when starting in a state i p. 29
T Temperature p. 25
T Transfer matrix
T0 Matrix that contains the absorbing states p. 31
T 0
ij Matrix that contains the absorbing states with entries ij p. 31
Ts Spanning tree of a graph G p. 18
~T is Directed or rooted spanning tree pointing towards a node i p. 18
U(C±ν ) Internal energy of a cycle C±ν p. 26
U(x,t) Potential of molecular interaction

that depends on a continous spatial coordinate x and time t p. 34
U(x) Time-independent potential of molecular interaction

that depends on a continous spatial coordinate x p. 34
Um(x) Potential of molecular interaction in a chemical state m p. 35
v Average stepping velocity of the motor in the steady state p. 22
vi Vertex of a graph p. 18
V (x, t) External potential that depends on

a continous spatial coordinate x and time t p. 33
Vm(x) Effective force potential of molecular interaction

in a chemical state m p. 35
W (C±ν ) Work connected to a cycle C±ν p. 25
x Continous, one-dimensional spatial coordinate p. 34
xk Discrete position at with index k within a position x and x+ `

on the filament p. 36
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〈12..ij1〉 Transitions for a network cycle without orientation p. 21
|12...ij1〉 Transitions for a network cycle along its +-direction p. 21
|1ji...21〉 Transitions for a network cycle along its −-direction p. 21
|ij〉 Transition from state i to state j p. 21
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APPENDIX E. LIST OF SYMBOLS

Greek symbols

δ(x) Dirac’s delta function p. 36
ζfr Friction coefficient p. 33
ζ Ratio of transition rates κ25/κ12 p. 50
η Efficiency p. 66
ηh Efficiency rescaled with the hydrolysis rate p. 66
θ Parameter for the functions Φij(F )

of the stepping rates in the cycle F p. 48
κij Transition rate at F = 0 for

nucleotide release and mechanical stepping p. 46
κ̂ij Transition rate at F = 0 for nucleotide binding p. 46
κν Chord p. 19
λ Coupling parameter p. 64
λ0 Zero eigenvalue of matrix T p. 28
λi i-th eigenvalue associated with matrix T p. 19
Λ Diagonal matrix with eigenvalues λi to S on the diagonal p. 31
µ(C±ν ) Chemical energy of a cycle C±ν p. 26
µα Chemical energy gained or released

by binding or release of a nucleotide species α p. 26
ξ(t) Stochastic noise in the Langevin equation, white in our case p. 33
ρabs
i (t) Probability density for absorption with initial state i p. 31
ρabs

i|k (t) Conditional probability density distribution

to start in i and being absorbed in k p. 30
σ2
nC

(t) Variance associated with the completion of a network cycle p. 22
τC± Mean time for a cycle completion in the cycle’s direction ± p. 22
τi Average dwell time in a state i p. 29
τ abs

i|k (t) Conditional average absorption time to start in i

and being absorbed in k p. 31
Φij(F ) Function for the force dependent part of the transition rate ωij

from state i to state j p. 46
ωij Transition rate from state i to state j p. 17
χij Parameter for the functions Φij(F ) of the chemical transitions p. 52
ψi(t) Exponential distribution of waiting times in a state i p. 29
ωnm(xk) Transition rate from chemical state n to m

associated with location xk p. 36

Ωi Sum of all measures for a directed spanning trees ~T is
for a given node i p. 19

Ω(~T is ) Measure for a directed spanning tree p. 18
Ωnm(x) Transition rate functions for transition from state n to state m p. 36
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Abbreviations

ADP Adenosine diphosphate p. 10
[ADP] ADP concentration p. 47
ATP Adenosine triphosphate p. 3
[ATP] ATP concentration p. 47
D Chemical state with bound ADP p. 16
DNA Deoxyribonucleic acid p. 5
E Empty state p. 16
FPE Fokker-Planck equation p. 34
FRET Fluorescence Resonance Energy Transfer p.10
GTP Guanosine triphosphate p. 7
IQ Calmodulin binding sequence of amino acids p. 9
MD Molecular Dynamics (simulations) p. 10
P Phosphate p. 15
T Chemical state with bound ATP p. 16
Θ Chemical state with bound ADP*P p. 16
[P] Phosphate concentration p. 47
RNA Ribonucleic acid p. 7
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dependent stepping kinetics of myosin-V. Biophysical Journal, 88:4402, 2005.

[46] J. Gebhardt, A. E-M. Clemen, J. Jaud, and M. Rief. Myosin-V is a mechanical
ratchet. Proceedings of the National Academy of Sciences of the United States of
America, 103:8680, 2006.

[47] G. Cappello, P. Pierobon, C. Symonds, L. Busoni, J. C. M. Gebhardt, J. Prost,
and M. Rief. Myosin V stepping mechanism. Proceedings of the National Academy
of Sciences of the United States of America, 104:15328–15333, 2007.

[48] E. de La Cruz, A. M. Wells, S. S. Rosenfeld, M. E. Ostap, and H. L. Sweeney. The
kinetic mechanism of myosin V. Proceedings of the National Academy of Sciences
of the United States of America, 96:13726, 1999.

[49] M. L. Walker, S. A. Burgess, J. R. Sellers, F. Wang, J. A. Hammer III, J. Trinick,
and P. J. Knight. Two-headed binding of a processive myosin to f-actin. Nature,
405:804, 2000.

[50] M. Sun, M. B. Rose, S. K. Ananthanarayanan, D. J. Jacobs, and C. M. Yengo.
Characterization of the pre-force-generation state in the actomyosin cross-bridge
cycle. Proceedings of the National Academy of Sciences of the United States of
America, 105:8631, 2008.

[51] M. Cecchini, A. Houdusse, and M. Karplus. Allosteric communication in Myosin
V: from small conformational changes to large directed movements. PLoS
Computational Biology, 4:1, 2008.

[52] K Shiroguchi. Myosin V walks by lever action and Brownian motion. Science,
316:1208, 2007.

118



Bibliography

[53] S. Uemura, H. Higuchi, A. O. Olivares, E. M. de la Cruz, and S. Ishiwata.
Mechanochemical coupling of two substeps in a single myosin V motor. Nature
structural & molecular biology, 11:877, 2004.

[54] C. Veigel, S. Schmitz, F. Wang, and J. R. Sellers. Load-dependent kinetics of
myosin-V can explain its high processivity. Nature cell biology, 7:861, 2005.

[55] J. Sellers and C. Veigel. Direct observation of the myosin-Va power stroke and its
reversal. Nature structural & molecular Biology, 17:590, 2010.

[56] T. Okada, H. Tanaka, A. Hikikoshi Iwane, K. Kitamura, M. Ikebe, and
T. Yanagida. The diffusive search mechanism of processive myosin class-v mo-
tor involves directional steps along actin subunits. Biochemical and Biophysical
Research Communications, 354:379, 2007.

[57] A. Yildiz, J. E. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin.
Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localiza-
tion. Science, 300:2061, 2003.

[58] D. M. Warshaw, G. G. Kennedy, S. S. Work, E. B. Krementsova, S. Beck, and K. M.
Trybus. Differential labeling of myosin V heads with quantum dots allows direct
visualization of hand-over-hand processivity. Biophysical Journal : Biophysical
Letters, page L30, 2005.

[59] A. R. Dunn and J. A. Spudich. Dynamics of the unbound head during myosin V
processive translocation. Nature structural & molecular biology, 14:246, 2007.
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