
UNIVERSITY OF POTSDAM

DEPARTMENT OF LINGUISTICS

BACHELOR THESIS

COMPUTATIONAL LINGUISTICS B.SC.

Visualization Approaches for
Coherence Relations

Author:

Olha Zolotarenko

Supervisors:

Dr. Dipl.-Ing. Julián Moreno Schneider

Peter Bourgonje

28. Oktober 2020

Unless otherwise indicated, this work is licensed under a Creative Commons License
Attribution 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this license visit:
https://creativecommons.org/licenses/by/4.0

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-51699
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-516997

Contents

1 Introduction 1

2 Coherence Relations 1

3 Annotation Procedures and Associated Issues 3
3.1 What is annotation? . 3

3.2 The goals of annotation visualizations 4

3.3 General requirements of visualization tools 5

4 Possible Structures of Text Representation 6
4.1 Possible structures for coherence relations 6

4.2 Issues in representing coherence relations 7

5 Towards Visualization Approaches for Coherence Relations 8
5.1 Simple HTML tools . 8

5.1.1 Coloring and highlighting spans 8

5.1.2 Brackets . 10

5.2 displaCy . 12

5.3 D3 . 14

5.4 brat . 16

5.4.1 Data used and their format . 16

5.4.2 brat features . 18

5.4.3 The architecture of brat visualization 19

5.4.3.1 Directory infrastructure 19

5.4.3.2 Backend . 19

5.4.3.3 Frontend . 23

6 Outlook 24

7 Conclusion 26

I

List of Figures

Figure 1: An example of visualized RST tree by ANNIS 6

Figure 2: Bootstrap labels: an example of one relation 9

Figure 3: Bootstrap labels: an example of two relations 9

Figure 4: Bootstrap labels: an example of multiple overlapping annotation

spans . 10

Figure 5: ANNIS-style square brackets visualization example 10

Figure 6: ANNIS-style square brackets visualization example 11

Figure 7: Visualization using displaCy Named Entity Visualizer 12

Figure 8: Visualization using displaCy Dependency Visualizer (default ren-

dering scheme) . 12

Figure 9: Visualization using displaCy Dependency Visualizer (manual ren-

dering with options) . 13

Figure 10: Visualization using d3-annotation . 14

Figure 11: An example of a relation annotated with brat 16

Figure 12: Zoomed relation in brat . 18

Figure 13: Discontinuous connective shown with brat 18

Figure 14: Main page of the web app . 23

II

List of Tables

Table 1: The PDTB-3 Sense Hierarchy . 2

Table 2: Browser compatibility of brat . 21

III

List of Listings

1 Fragment of an annotated text from PCC (maz-0002.xml) 4

2 Code example for bootstrap labels . 9

3 ANNIS-style square brackets code . 11

4 Python function for displaCy Named Entity Visualizer 13

5 The document data object of brat . 17

6 The collection data object of brat for defining entity types 17

7 Fragment of the parser output . 20

8 Including brat in the project . 20

9 An example of the CSS styled boxes for the annotation 24

IV

Zusammenfassung

Die hier vorliegende Arbeit stellt einen Versuch dar, den Visualisierungsansätzen in

dem Feld der annotierten Diskursrelationen nahezukommen und durch Vergleich

verschiedener Programmierwerkzeuge eine anforderungsnahe Lösung zu finden.

Als Gegenstand der Forschung wurden Kohärenzrelationen ausgewählt, welche ei-

ne Reihe an Eigenschaften aufweisen, die für viele Visualisierungsmethoden her-

ausfordernd sein können. Die Arbeit stellt fünf verschiedene Visualisierungsmög-

lichkeiten sowohl von der Anwendungs- als auch von der Entwicklungsperspektive

vor. Die zunächst getesteten einfachen HTML-Ansätze sowie das Softwarepaket

displaCy zeigen das unzureichende Niveau für die Visualisierungszwecke dieser

Arbeit. Die alternative Implementierung mit D3 würde die Voraussetzungen zwar

optimal erfüllen, sprengt aber deutlich den Rahmen des Projektes. Die gewählte

Hauptmethode wurde als Single-Web-Anwendung konzipiert und verwendet das

Annotationstool brat, welches die meisten definierten Voraussetzungen für die Re-

präsentation der Kohärenzrelationen erfüllt. Die Anwendung stellt die im Text an-

notierten Kohärenzrelationen graphisch dar und bietet eine Filterfunktion für ver-

schiedene Relationstypen an.

V

1 Introduction

Visualization is a powerful tool for exploring data and analyzing different kinds of

problems. It helps to model algorithms, generalize results and provide new perspec-

tives. There are many different visualization approaches, depending on the type of

data and purpose of visualization, but they all have one point in common: they are

created primarily for human visual perception.

The nature of human visual perception is a complex topic and has been of

particular interest in relation to data visualization and graphical user interfaces

(GUIs). There have been many scientific studies on the superiority of the human

visual system in comparison to other perceptual systems. Some have indicated that

pictures are more likely to be remembered than words (Grady, McIntosh, Rajah,

and Craik, 1998; Standing, Conezio, and Haber, 1970). This phenomenon, known

as the "picture superiority effect" (Paivio, 1971), has been shown in numerous ex-

periments (e.g., Curran and Doyle, 2011) and is prominent in visualization tasks.

However, the exact explanation for the effect remains debated.

In addition to the potential evidence of the cognitive advantage of visualiza-

tion, there is a famous example of how the presentation of non-visualized numeri-

cal data might be unclear at first sight: Anscombe’s quartet is a dataset of nearly

identical mean, variance and correlation values which have surprisingly different

distributions when presented in a visual form (Anscombe, 1973). This case shows

how visualized data could be beneficial for quick analysis and recognizing the main

trends in a dataset. However, researchers sometimes use this advantage to mislead

their audience by distorting a dataset’s measurement axes (Stewart, 2019).

In this thesis, I attempt to explore possible uses of visualization in the fields

of discourse analysis and linguistic annotation. More specifically, I attempt to find

an approach to present coherence relations and to define the main criteria for visu-

alizing this type of data.

2 Coherence Relations

This section defines the terms coherence and coherence relations. Bußmann (Stede,

2018, p. 24) defines coherence as "a semantic-cognitive meaningful context of a text

which can be represented in the form of semantic networks of concepts and rela-

tions". Coherence could be considered complementary to cohesion, but while cohe-

sion refers to unity within a text or sentence on the surface level, coherence refers

to a deep internal connection between text parts (Stede, 2018, p. 132).

In discourse analysis, a relation is defined as a certain semantic connection

between two sentences. There are two types of coherence relations based on the dis-

1

tance between the units being measured: local and global coherence (Stede, 2018,

p. 24). Local coherence appears between clauses in a single sentence and between

neighboring sentences, whereas global coherence composes the text topic. In my

research, I focused on the local coherence relations of different senses and types ac-

cording to the theoretical framework of the Penn Discourse TreeBank (PDTB) pre-

sented in Table 1 (Webber, Prasad, Lee, and Joshi, 2019, p.17). In addition to the

PDTB framework, there are several other theories concerning discourse relations

and, in particular, coherence. The most prominent are the Rhetorical Structure

Theory (RST) (Mann and Thompson, 1988), the Cognitive approach to Coherence

Relations (CCR) (Sanders, Spooren, and Noordman, 1992) and the Segmented Dis-

course Representation Theory (SDRT) (Asher, Asher, and Lascarides, 2003).

Table 1: The PDTB-3 Sense Hierarchy

2

Because the data from the parser (see Section 5.4.1) used for this project is

based on the PDTB 2.0 relation types (Prasad et al., 2008), I define these data ac-

cording to this version of the PDTB. The framework specifies the following relation

types: explicit, implicit, alternative lexicalization (AltLex), entity relation (EntRel)

and no relation (NoRel). The latter three labels are used for cases in which an

implicit connective could not be provided.

The classification of coherence relations is sometimes defined based on the

surface evidence of coherence. If a connective appears in a text, it is recognized as a

signal of a coherence relation between the units that it joins. The majority of cases,

though, are coherence relations with no apparent connective (Stede, 2018, p. 133).

Examples 2.1 and 2.2 illustrate implicit and explicit relations, the most important

types of coherence relations:

(2.1) Because I got all wet in the rain, I had to go back home to change my clothes.

(2.2) I got all wet in the rain. I had to go back home to change my clothes.

The first sentence has an explicit marker of a coherence relation: "because", a

connective of the sense "reason". The sentence can be rephrased to omit the word

"because", as shown in the second sentence. The other relation types - alterna-

tive lexicalization, entity relation and no relation - are discarded as they are not

returned by the parser used as input for the visualization.

3 Annotation Procedures and Associated Issues

It is crucial to determine the procedure from which coherence and coherence rela-

tions result and the type of data in which they appear. We say that the data - text -

is annotated or parsed (Carstensen et al., 2010, p.276) and that the resulting data

structure (hierarchical or shallow) can be stored and used for different purposes.

3.1 What is annotation?

In linguistics and computational linguistics, empirical databases known as cor-
pora play a central role in programming, testing and research. They are collec-

tions of speech or writing consisting of linguistic data, annotations and metadata

(Carstensen et al., 2010, p. 482).

In general, linguistic annotation involves the association of descriptive or ana-

lytic notations with linguistic data (Ide and Pustejovsky, 2017). In corpora, annota-

tions are seen as analytical layers of the data consisting of segments and linguistic,

as well as extra-linguistic, information. Among morphologic, syntactic, semantic

and other types of annotations, there are also discourse-related annotations, which

are of particular interest for this research. These can contain information about

3

coreference phenomena, information structure or discourse relations. Among these

we can find coherence relations, the focus of this research.

One of the typical formats used for annotations is XML (Extensible Markup

Language). An example of such format from the Potsdam Commentary Corpus

(PCC) is given in Listing 1 (Stede and Neumann, 2014).

1 <?xml version="1.0" encoding="UTF -8"?>
2 <?relations relSet="Martin1992" lexURL="jar:file: /..."?>
3 <discourse >
4 <unit type="ext" id="3">Trommeln gehört halt zum Geschäft .</unit

>
5 <unit type="ext" id="5">
6 <unit type="int" id="3">
7 <connective id="3" relation="contrast">Doch</connective >
8 unterm Strich stehen Brandenburgs Schulen ganz gut da .
9 </unit>

10 </unit>
11 </discourse >

Listing 1: Fragment of an annotated text from PCC (maz-0002.xml)

Discourse relations can be annotated according to different styles and the-

ories, from RST trees to PDTB-style annotations, which will be discussed in the

following sections. When attempting to model similar kinds of relation types, these

approaches can be hard to compare. Some attempts of combining both styles and

enriching PDTB-styled annotations look promising, while also revealing the com-

plexity of the subject (Bourgonje and Zolotarenko, 2019).

3.2 The goals of annotation visualizations

The approach to data visualization described here is motivated more by science

than artistic beauty. Hence, in this project, I pursue the following goals for the

visualization:

• Presentation and communication of information
A graphic representation of data is created primarily to communicate rela-

tions behind the data. In the case of this thesis, I want to present parsed text

data and reveal coherence relations to human viewers.

• Convenient analysis of data
As already discussed, raw data can be misleading at first sight. A good visu-

alization of data could therefore facilitate and speed up data analysis. Anno-

tated relations presented graphically could also be beneficial for educational

purposes.

4

• Easier debugging of the tools behind represented data
During development of any kind of programms, large amounts of raw textual

and numerical data might be difficult to interpret, and it may be even more

difficult to foresee potential errors in the data. Visual analysis could help

in interpreting these data and quickly finding these potential errors, thereby

opening new avenues for further research.

3.3 General requirements of visualization tools

There are some general requirements for visualized data (coherence relations in the

case of this thesis) besides stylish presentation of the research results. Butz (2009)

defines several points as challenging:

• Layout and positioning
The layout of presented data, as well as relative positioning of the elements,

play an important role in the easy comprehension and interpretation of data.

Thus, when presenting textual data and their annotations, the layout needs

to be as simple as possible in order to prevent unnecessary distractions. The

visualization has to be effective in terms of giving convenient access to the

data and having a clear structure. In the case of annotated relations, the

visualization is expected to present these in such a way that each relation

and its components can be easily distinguished and analyzed.

• Scale
Performance of the implementation is as important as the layout. It could

be determined by executing software performance tests giving a measure for

scalability, reliability and resource usage of a particular program (Beneken,

Ernst, and Schmidt, 2016, p.753).

• Navigation and interaction
Another requirement is enabling a convenient user experience and achieving

the purpose of use. Applying other tests, such as usability or accessibility

tests, could provide insights into the user experience with the program. Vi-

sualizations (static or dynamic) are, for example, expected to load quickly, be

responsive and act according to the user’s requests, such as filtering and stor-

ing results, scaling, navigating or applying manual changes.

Some other specific requirements which apply to this project are:

• Software model
The desired tool has to be open-source.

5

• Programming effort
Solving object-specific representation problems with this tool must be possible

within a reasonable amount of time and programming effort.

4 Possible Structures of Text Representation

Modelling discourse relations of a particular text accurately could require complex

representation structures that we are currently unable to think of. However, there

are several possible structures which would be suitable for the visualization pur-

poses in this thesis.

4.1 Possible structures for coherence relations

The first possible structure is a simple, flat representation of a text. "Flat" refers to

an approach which works with the text in a given dimension without adding any

additional layers like other methods described in this section. These flat repre-

sentation structures use color, highlighting, subscripts or any other visual tools to

mark borders of chunks and relations between them. Examples of such approaches

are very easy to implement, though they lack robustness with certain complexities

of relations.

The second possible structure, which is postulated by many approaches, is a

tree-like representation of a text (see RST [Mann and Thompson, 1988]). "Tree" is

a term from graph theory, defined as a connected, acyclic, undirected graph. A tree-

like representation of a text would be shown as a set of child vertices with segments

connected to a certain relation types or senses (see Figure 1 visualized by ANNIS

[Krause and Zeldes, 2016]).

Figure 1: An example of visualized RST tree by
ANNIS

6

However, the tree approach could be complicated by relations between non-

adjacent segments (Stede, 2018, p. 149) or other factors. This will be discussed in

the following section.

Finally, there are hybrid representation approaches, which combine flat and

tree-like visualizations. These approaches have many advantages in clarity of pre-

senting coherence relations, allowing the user to reach some degree of complexity

and to avoid certain problems, which will be discussed later in this thesis.

4.2 Issues in representing coherence relations

There are many complexity levels which are crucial to consider when developing a

good visualization of coherence relations. The most important of them - discontin-
uous segments, overlapping relations and n-arity of relations - are explained in this

section.

• Discontinuous segments
The simplest relations, at least in terms of visualization, consist of adjacent

segments joined by a simple connective. However, relations sometimes occur

between non-adjacent segments, or the arguments or connectives are simply

not continuous. In the lexicon of German discourse connectives (Stede, 2002),

there are continuous vs. discontinuous connectives and single vs. phrasal con-

nectives. The connective "aber" (German for "but") is an example of a simple,

continuous connective, whereas "dadurch, dass" (German for "as a result of

that") is an example of a discontinuous connective and has to be marked as

such in an appropriate way.

• Overlapping relations
Sometimes, annotation reveals segments that are involved in several rela-

tions.

(4.1) Trommeln gehört halt zum Geschäft. Doch unterm Strich stehen Bran-

denburgs Schulen ganz gut da. Zum einen wurden nach der Wende

fast alle Schulbuchbestände ausgetauscht, zum anderen müssen sich

märkische Eltern am Buchkauf beteiligen.

In Example 4.1, there are two relations:

– Explicit.Comparison.Concession.Arg2-as-denier:
1. Segment: Trommeln gehört halt zum Geschäft.

2. Segment: Doch unterm Strich stehen Brandenburgs Schulen ganz gut

da.

– Explicit.Expansion.Conjunction:
1. Segment: Doch unterm Strich stehen Brandenburgs Schulen ganz gut

7

da.

2. Segment: Zum einen wurden nach der Wende fast alle Schulbuchbestände

ausgetauscht, zum anderen müssen sich märkische Eltern am Buchkauf

beteiligen.

These two relations have the segment "Doch unterm Strich stehen Branden-

burgs Schulen ganz gut da" in common, which we call "overlapping".

• N-arity of relations
Normally, discourse relations are binary or ternary. Binary relations include

two segments and ternary, three. In the PDTB, the explicit relations consist of

three segments - two arguments and a connective. The implicit relations are

binary, having only two arguments and no connective. Potentially, relations

may involve more segments or, in some cases, fewer than two relations, due

to particular parser settings, which should be considered when choosing an

appropriate visualization method.

5 Towards Visualization Approaches for

Coherence Relations

It is important to find a proper way to efficiently show coherence relations while

dealing with the issues described above. The main tool used in this project - brat -

best meets the requirements for showing coherence relations and will be discussed

in more detail in Section 5.4. However, other tools are discussed first in order to

compare them to brat. This will provide a better understanding of the problems

related to the visualization of coherence relations while justifying the choice of the

main approach.

Section 5.1 describes simple HTML tools available for visualization purposes,

Section 5.2 presents the visualization package displaCy and Section 5.3 provides a

detailed overview for the implementation of the visualization library D3.

5.1 Simple HTML tools

5.1.1 Coloring and highlighting spans

The first simple method that could be used for visualization is highlighting or color-

ing spans with bootstrap labels. The following contextual label classes which could

be used within a element of HTML code:

• .label-default

• .label-primary

8

• .label-success

• .label-info

• .label-warning

• .label-danger

Figure 2 shows the bootstrap labels style for the visualization of a single rela-

tion. The code for it is provided in Listing 2. The spans are easy to identify by color

even though there are no labels marking them as the first argument, the second

argument or the connective.

Figure 2: Bootstrap labels: an example of one relation

1 <div class="container">
2 Trommeln gehört halt zum

Geschäft.
3 Doch
4 unterm Strich stehen

Brandenburgs Schulen ganz gut da.
5 </div>

Listing 2: Code example for bootstrap labels

Figure 3 shows a similar example as shown above, but with two relations.

As the relations do not overlap, they are still easy to distinguish but the problem

with labelling remains. This could be solved by using some kind of label informa-

tion given below the annotation itself. This solution might become inconvenient if

the number of relations increases (even with different colors, the boundaries of the

relations become unclear). Furthermore, the information on the relation type and

sense is not presented, but could be included by some descriptive means similar to

label names.

Figure 3: Bootstrap labels: an example of two relations

9

Figure 4: Bootstrap labels: an example of multiple overlapping annotation spans

A more complex example with overlapping spans is shown in Figure 4. Al-

though the solution for the labelling problem could be similar to the example in

Figure 3, the overlapping of spans or complete relations makes the annotation un-

clear and difficult to interpret.

These examples have shown the following drawbacks to using bootstrap labels

to highlight and color spans:

• Interpretation
The annotations become hard to interpret as the number of spans and/or re-

lation grows.

• Relations boundaries
There is no convenient method of displaying boundaries of the annotated re-

lations.

• Annotation labels
Information on spans and relations is separated from the annotation.

• Discontinuous units
There is no possibility to show discontinuous units.

5.1.2 Brackets

The second method in this section refers to ANNIS 1, a "web browser-based search

and visualization architecture for complex multilayer linguistic corpora with di-

verse types of annotation" (Krause and Zeldes, 2016). It has an information struc-

ture visualization whose style could be convenient to use for visualization of coher-

ence relations. One of the examples implemented in the research for this thesis

is shown in Figure 5. The brackets are defined by spans before and after using

internal CSS style (see Listing 3).

Figure 5: ANNIS-style square brackets visualization example

1 https://corpus-tools.org/annis/visualizations.html

10

https://corpus-tools.org/annis/visualizations.html

1 <style type="text/css">
2 .custom {
3 font -family: sans -serif;
4 color: black;
5 font -size :20px;
6 }
7

8 span:before {
9 content: ’[’;

10 font -size :30px;
11 color:steelblue;
12 }
13

14 span:after {
15 content: ’]’;
16 font -size :30px;
17 color:steelblue;
18 }
19 </style >

Listing 3: ANNIS-style square brackets code

As relation complexity increases, this method tends to show behavior similar

to the HTML labels method. Figure 6 presents the annotation with two familiar

overlapping relations from Section 4.1. Although the annotation labels are inte-

grated in the visualization, the brackets and the annotated relations are difficult to

distinguish.

Figure 6: ANNIS-style square brackets visualization example

The brackets method has shown the following disadvantages, which should be avoided

when displaying coherence relations:

• Interpretation
The annotations remain hard to interpret as the number of spans/relation

grows due to high complexity of the brackets clusters.

• Relations boundaries
Although the relation boundaries are implemented in this method, it is diffi-

cult to distinguish, as well as code, the opening and closing brackets in order

to interpret the annotation.

11

• Annotation labels
Information on spans and relations is implemented as subscripts after the

closing bracket. Although a convenient solution for a small number of rela-

tions that have neither overlapping nor discontinuous spans, they make the

visualization more complex, rather than help explain it.

• Discontinuous units
There is no possibility to show discontinuous units.

5.2 displaCy

DisplaCy2 is a visualizing package of spaCy, a free, open-source library for advanced

Natural Language Processing (NLP) written in Python. The package offers two pos-

sibilities for visualization: Dependency and Named Entity Visualization. Figures

7 and 8 show visualizations of Example 4.1. Figure 7 presents the Named Entity

Visualizer with highlighted relation spans.

Figure 8 shows an attempt at using the Dependency Visualizer, which results

in some disadvantages for displaying discourse relations. Selected spans are not

marked and the image in the Scalable Vector Graphics (SVG) format must be ren-

dered manually via the options parameter (Figure 9, for comparison, is adjusted

manually), which is not always suitable for longer texts.

Figure 7: Visualization using displaCy Named Entity Visualizer

Figure 8: Visualization using displaCy Dependency Visualizer (default
rendering scheme)

2 https://spacy.io/usage/visualizers

12

https://spacy.io/usage/visualizers

Figure 9: Visualization using displaCy Dependency Visualizer (manual rendering with options)

The displaCy visualization was set up using Python script bottle_displacy

.py. As the name suggests, the web framework applied for displaCy is Bottle. Alter-

natively, Flask can be used as a microframework for starting development server

and debugger. Once the Bottle script is up and running, the visualization can be

found under the specified localhost and port. The main function for the displaCy

Named Entity Visualizer is given in Listing 4.

1 def displacy_visual_ents ():
2 colors = {"ARG1": "linear -gradient (90deg , #aa9cfc , #fc9ce7)",
3 "INT": "linear -gradient (203deg , #e0eed4 , #f6ec00 , #4

e7a27)",
4 "CONN": "linear -gradient (203deg , #f6ec00 , #ff8647 , #

e32400)"}
5 options = {"ents": ["ARG1", "ARG2", "CONN"], "colors": colors}
6 ent_input = [{"text": "... Some text to visualize here ...",
7 "ents": [{"start": 182, "end": 217, "label": "ARG1"},
8 {"start": 218, "end": 222, "label": "CONN"},
9 {"start": 223, "end": 278, "label": "ARG2"}],

10 "title": "Sentence 1"}]
11 html = displacy.render(ent_input , style="ent", manual=True ,

options=options)
12

13 # Example of exporting the image
14 doc = nlp("Trommeln gehört halt zum Geschäft . Doch unterm

Strich stehen Brandenburgs Schulen ganz gut da .")
15 svg = displacy.render(doc , style="dep")
16 output_path = Path("./ images/sentence.svg")
17 output_path.open("w", encoding="utf -8").write(svg)
18

19 return html

Listing 4: Python function for displaCy Named Entity Visualizer

The function for the Dependency Visualizer named displacy_visual_deps,

which generates the images shown in Figures 7 and 8, can also be found in the

mentioned Bottle script.

13

Using displaCy in the field of coherence relations leads to the following con-

clusions:

• Spans and default rendering
The displaCy package has good visualization possibilities: entities and depen-

dencies. Dependencies are modelled for short spans, though (words, POS tags,

etc.), and default rendering is not properly displayed for large spans.

• Overlapping and discontinuous entities
DisplaCy cannot show overlapping relations and discontinuous entities, which

is very important for the objective of this project.

• Lacking of structure for discourse relations
Manual tweaking of displaCy is convenient and well-documented. However,

it is not designed to deal with discourse relations and it makes it hard to meet

all the needs of visualizing them. A combination of both the Named Entity

and Dependency Visualizer would be a perfect strategy to visualize coherence

relations using spaCy tools.

SpaCy has other tools with powerful features for natural language processing

and annotation. For instance, Prodigy3, which is powered by active learning, seems

to offer good features to annotate dependencies and relations, but must remain a

topic for later research as it is not open source.

5.3 D3

Another possible visualization method which offers high levels of customization is

the purely javascript d3-annotation by Susie Lu4. This method uses the D3.js li-

brary and gives annotations a new perspective with built-in annotation types. Fig-

ure 10 shows a possible visualization of an explicit comparison relation for a portion

of Example 4.1.

Figure 10: Visualization using d3-annotation

3 https://prodi.gy/features/dependencies-relations
4 https://d3-annotation.susielu.com

14

https://prodi.gy/features/dependencies-relations
https://d3-annotation.susielu.com

The suggested implementation uses the D3 module to position annotation el-

ements over SVG with the text. This is done according to the following algorithm:

• SVG Container
An SVG container is created in the script part.

• SVG Text Element
SVG text element is added to the SVG container.

• SVG Container <– SVG Text Element Attributes
Text element and their attributes are added to SVG container:

– coordinates x and y

– text

– font family

– font size

– positioning of the text

– text color

• Text coordinates
To calculate the coordinates of a text or subtext the following features need to

be estimated:

– coordinates x and y

– width and height of the text or subtext

– top, right, bottom, left coordinates of the text or subtext

It is critical that the font properties are correct, as the location of the text or

subtext depend on the font family and size.

• Annotation object
Annotation object is created (constant variable annotations)

• Annotation features
Annotation features are defined. The following features were used in this

implementation to mark the spans and construct the relation:

– d3.annotationCalloutRect and

– d3.annotationCalloutElbow

• Features of annotation types
For each annotation type there are following features specified:

– x and y are absolute coordinates of an object, which give the position of

the data point to which the annotation refers.

15

– dx and dy are relative coordinates, which indicate a shift along the x- or

y-axis on the position of an element or its content.

• Building annotation
d3.annotation() is called to build the annotation

Apart from relatively high scripting effort comparing to the tools which only

need to be embedded into the project, d3-annotation has some potentially important

properties:

• Layout and aesthetics
It has a high degree of freedom of styles, forms and complexity of constructed

annotations.

• Pure javascript
The entire annotation visualization can be scripted using one language, which

is a potentially important feature.

Since choosing d3-annotation would mean implementing a whole annotation

tool from scratch and it goes beyond the required programming effort, it would be

best suitable to explore it in another project.

5.4 brat

The main approach used in this thesis is based on the brat rapid annotation tool5,

a web-based tool for text annotation (Stenetorp et al., 2011). This tool allows for

convenient embedding of the visualized annotations in other projects.

Figure 11: An example of a relation annotated with brat

5.4.1 Data used and their format

The output of the German Shallow Discourse Parser6 of Peter Bourgonje was used

as a base for exploring the visualization strategies. The parser is the result of a PhD

dissertation (to appear), individual components of which are published in the pa-

pers „Explicit Discourse Argument Extraction for German“ (Bourgonje and Stede,

2019) and „Identifying Explicit Discourse Connectives in German“ (Bourgonje and

Stede, 2019).

5 http://brat.nlplab.org
6 https://github.com/PeterBourgonje/GermanShallowDiscourseParser

16

http://brat.nlplab.org
https://github.com/PeterBourgonje/GermanShallowDiscourseParser

The visualization implementation with brat uses JSON format for both input

data of the parser and its converted version, in order to suit brat internal format.

For proper embedding brat needs two objects to be defined: the collection data object
with defined properties of entity types; and the document object with text, entities

and relations to be visualized. Listings 5 and 6 show these objects for a minimal

example with one explicit relation.

1 const docData = {
2 "text" : "Das Büchergeld Die Litanei ist nicht neu : " +
3 "Eltern beschweren sich über veraltete Schulbücher , " +
4 "Kommunen jammern über leere Kassen und " +
5 "Schulbuchverlage beklagen Umsatzeinbrüche . " +
6 "Trommeln gehört halt zum Geschäft . " +
7 "Doch unterm Strich stehen Brandenburgs Schulen ganz gut da .

",
8 "entities" : [["E1", "Arg1", [[182 , 217]]] ,
9 ["E2", "Arg2", [[223 , 278]]] ,

10 ["E3", "Connective", [[218, 222]]]
11],
12 "relations": [["R1",
13 "Explicit.Comparison.Concession.Arg2 -as-denier",
14 [["1", "E1"],
15 ["2", "E2"]]]
16]
17 };

Listing 5: The document data object of brat

1 const collData = {
2 entity_types: [{
3 type : "Arg1",
4 labels : ["Arg1", "Arg1"],
5 bgColor: "#7fa2ff",
6 borderColor: "darken"
7 },
8 {
9 type : "Arg2",

10 labels : ["Arg2", "Arg2"],
11 bgColor: "#9FF781",
12 borderColor: "darken"
13 },
14 {
15 type : "Connective",
16 labels : ["Con", "Con"],
17 bgColor: "#FA5858",
18 borderColor: "darken"

17

19 }]
20 };

Listing 6: The collection data object of brat for defining entity types

5.4.2 brat features

Brat is a powerful annotation tool with a wide range of useful features. The full list

of them can be found on their web page. Some of the most important features for

this project are listed below:

• High-quality visualization at any scale
The annotation elements of brat maintain high quality at any scale which is

crucial for annotated relations. An example of a zoomed relation is shown in

Figure 12.

Figure 12: Zoomed relation in brat

• Rich set of annotation primitives
Brat has a good variety of annotation primitives, which are especially use-

ful when dealing with discourse relations. As described on the brat website,

the primitives provide marking for text spans (e.g., entity annotation), binary

relations, equivalence classes, n-ary associations (e.g., event annotation) and

attributes. They can be applied together in any combination to define spe-

cific annotation tasks. Figure 13 shows how brat deals with the problem of

discontinuous segments; the dotted line and red highlighted spans mark the

discontinuous connective "entweder...oder" (German for "either...or").

Figure 13: Discontinuous connective shown with brat

• Wide browser support
The brat tool also has an important technical feature for web apps: wide

browser support (see also brat browser compatibility in Table 2).

18

5.4.3 The architecture of brat visualization

The visualization of coherence relations with brat is implemented with a web app

in the form of a single-page application (SPA). It is designed to be used offline with-

out a constant connection to the central server. The input content is dynamically

updated in response to user actions.

To describe the architecture of the implementation, the topics directory in-

frastructure, backend, frontend and data conversion are discussed in the following

sections.

5.4.3.1 Directory infrastructure
The project structure consists of main directories for javascript, CSS and for the

data converter. The project is also available as a GitHub repository7.

brat

converter

js

brat.js

css

style_brat.css

index_brat.xhtml

5.4.3.2 Backend
The backend of the web app includes getting the output data and converting it, the

brat embedding and the javascript file for website functionality which defines the

filtering of the displayed relations.

Parsed input data
As mentioned in Section 5.4.1, the input data for this application is the output of the

German Shallow Discourse Parser. It is provided as a JSON file with the structure

presented in Listing 7. The structure is almost identical to the file format of the

CoNLL-2015 Shared Task on Shallow Discourse Parsing (Xue et al., 2015).

Each relation is stored under a unique id and contains attributes like docID,

sense, type, arg1, arg2 and connective of the parsed relation. The attributes

arg1, arg2 and connective also have the subattributes character span list, raw

text and token list. The most important attributes which must be converted are

sense, type and character span list of each argument and connective.

7 https://github.com/zolotarenko/VisualizationOfCoherenceRelations

19

https://github.com/zolotarenko/VisualizationOfCoherenceRelations

1 [{"ID": 1,
2 "DocID": "09 -01 -2020 _13 :03:49",
3 "Sense": "Comparison.Concession.Arg2 -as-denier",
4 "Type": "Explicit",
5 "Arg1":
6 {"CharacterSpanList": [[182, 217]],
7 "RawText": "Trommeln gehört halt zum Geschäft .",
8 "TokenList": [[182 , 190, 27, 1, 0],
9 [191, 197, 28, 1, 1],

10 [198, 202, 29, 1, 2],
11 [203, 206, 30, 1, 3],
12 [207, 215, 31, 1, 4],
13 [216, 217, 32, 1, 5]]},
14 "Arg2":
15 {"CharacterSpanList": [[223, 278]],
16 "RawText": "unterm Strich stehen Brandenburgs Schulen ganz gut

da .", "TokenList": [[223, 229, 34, 2, 1],
17 [230, 236, 35, 2, 2],
18 [237, 243, 36, 2, 3],
19 [244, 256, 37, 2, 4],
20 [257, 264, 38, 2, 5],
21 [265, 269, 39, 2, 6],
22 [270, 273, 40, 2, 7],
23 [274, 276, 41, 2, 8],
24 [277, 278, 42, 2, 9]]},
25 "Connective":
26 {"CharacterSpanList": [[218, 222]],
27 "RawText": "Doch",
28 "TokenList": [[218 , 222, 33, 2, 0]]}} ,

Listing 7: Fragment of the parser output

Brat embedding
One of the big advantages of brat is how simply it is embedded in other projects.

Some main technical features will be listed in this section.

• Installation
In this project, brat is used as an embedded stand-alone serverless visualiza-

tion method. Once downloaded, brat is fully configured to work using just two

lines in the script box as shown in Listing 8 (the dependencies need to match

the systems paths and brat location).

1 <link rel="stylesheet" type="text/css" href="./brat -v1.3
_Crunchy_Frog/static/style -vis.css"/>

20

2 <script type="text/javascript" src="./brat -v1.3 _Crunchy_Frog/
client/lib/head.load.min.js"></script >

Listing 8: Including brat in the project

• Data transport
brat uses the following techniques for data transport:

– JSON - both for annotation configurations and for data to be visualized

– AJAX - a technique for asynchronous data transfer without reloading of

the existing page (Beneken et al., 2016, p.733).

• Client-side scripting
The main programming languages of brat are:

– JavaScript: central scripting language: head.js was needed to load its

scripts in parallel (can be also adjusted to load in another way)

– XHTML 1.0: mainly needed for embedding the annotation SVG, other-

wise the embedding won’t show up properly

– CSS: used for styling the annotations

• Browser compatibility8

The main requirement for the web browser is that the document should be

XHTML compliant (SVG image embedding mentioned previously). Compat-

ibility for several popular browser versions supporting visualization and/or

editing is displayed in Table 2.

Table 2: Browser compatibility of brat

Converter
As mentioned in Section 5.4.1, the input data for the brat web app needs to be

converted to match the brat-specific document object format. For this purpose, the

Python script convert_input_brat.py is used. The script takes two files as input:

the text file, which needs to be converted to a one-line string; and the parser output

in JSON format, as follows:
8 http://brat.nlplab.org/embed.html

21

http://brat.nlplab.org/embed.html

python3 convert_input_brat.py text-file file-parsed

The formats of the entities and relations have to be converted as given below.

• The entities (arguments and connectives)

[${ID}, ${TYPE}, [[${START}, ${END}]]]

• The relations

[${ID}, ${TYPE}, [[${ARGNAME}, ${TARGET}],

[${ARGNAME}, ${TARGET}]]]

The procedure of conversion is mostly iterative. The script is taking every

parsed relation from the input and is extracting entities (arguments and connec-

tives) with their character span lists as well as relations consisting of the corre-

sponding type and sense and entity segments (see Listing 5). The output of the

script is also a JSON file which can be used as brat input document object.

JS script
The programming core of the web application is brat.js. It implements the filter-

ing functionality of the visualization, renders the relations to be presented on the

main page and styles the page with a loader. The filtering types and senses in the

given document are implemented with the following algorithm:

• Checking and unchecking
Checking and unnchecking events are being tracked and passed to the filter-

ing function.

• Selecting and deleting relations
All selected relations and corresponding entities (arguments and connectives

in case of explicit relation) need to be found in the input object and then added

to the JSON object to be handed over to brat. An unchecking event triggers

another search and deletes specified relations to be hidden from the visual-

ization.

• Filtering
In this implementation, filtering occurs when types and senses are mixed in

the selection (e.g. the user wants only the explicit contingency relations from

all the explicit relations to be displayed).

• Rendering
Once all of the relations are selected and filtered, brat can be called with

Util.embed, which returns the embedded visualizer’s dispatcher object.

22

5.4.3.3 Frontend

• GUI - main page
The main page is implemented with the functionality to filter relations (their

types and senses) and the visualization itself (see index_brat.xhtml). Check-

ing the corresponding checkboxes on the left side of the main page filters the

types and senses. The annotation visualization is placed in the center and

takes up most of the GUI. There is also an "About" popup page that provides

some additional information on this project.

Figure 14: Main page of the web app

• CSS style for the page
The page style of the web app is set using external CSS (see style_brat.css

file). The main attributes described in the file are:

– Headings, subheadings and background

– Boxes for annotation, checkboxes and title (Listing 9 provides an exam-

ple of the CSS style of the annotation box and shows how to make the

box fit the content of the annotation)

– Loader (styled as an animated spinner)

– Footer (contains information on the rights of the project and the year of

developing).

– "About" page (styled as popup page to maintain focus on the annotation

visualization)

23

1 /* Annotation */
2 .box2 {
3 background -color: transparent;
4 overflow: auto;
5 padding: 40px;
6 font -family: ’Work Sans ’, sans -serif;
7 height:fit -content;
8 }

Listing 9: An example of the CSS styled boxes for the annotation

6 Outlook

The purpose of this section is to offer possible improvements for the implemented

visualization web app. These suggestions can be categorized into two groups: im-

provements of the existing brat visualization and improvements of the general fur-

ther developmental stages.

• Interactive input
Getting rid of hard-coded data would be the first important step to improve

customization flexibility and accessibility of the implemented app. Due to

limited availability of the parser, the input data is stored in a JSON variable

that has to be manually replaced. The suggested solution is to take input

data from the parser or other source and perform an automatic conversion,

thereby avoiding a manual data transfer. This could be completed with a

simple API call to the parser and to the converter. Alternatively, the converter

could be integrated into the parser in order to provide the format required,

without additional steps. In addition, it is important to include an input form

(a text field) in the web page script so that users can paste in text they want

to visualize with the app.

• Ternary relation to include connectives
In the current version of the implementation, connectives are sometimes hard

to assign to a relation. Ternary relations, rather than binary relations with

only argument spans, would improve the readability of annotations.

• Additional information by moving the mouse over annotation ele-
ments
The parser provides more information on the relations and arguments than

displayed in the current implementation. Those attributes, like id, raw text or

token list, could be useful for debugging or analyzing data and could be easily

accessed when implemented in the GUI (e.g., as brat normalization).

24

• Optimization of filtering functionality
At the current stage, the filtering function seems to be excessively long and

could be optimized in terms of readability and performance.

• More functionality for debugging module
Since the web app could also be used as a debugging tool, it would be use-

ful to have some functions like statistics - number of different relation types

or senses, the total number of tokens covered in the relation argument - or

warnings for empty spans.

• Possibility of live customization the brat visualization
Another nice feature would be an interactive settings panel for changing the

colour of the spans, font size, font family or other elements.

The following ideas may help to develop the project further:

• More styles
Embedding more visualization styles may offer more variety and help to ana-

lyze the data from another perspective. This could be implemented as a filter

or selection option.

• More functions apart from visualization
Some functions such as exporting the shown annotation to different formats

(PDF, JPG, PNG etc.) for further use would be beneficial on later stages of the

project.

• Expanding project to include larger discourse structures
As mentioned in Section 2, this project focuses on local coherence. The next

step in visualizing larger discourse structures would be including global co-

herence and showing hierarchical relations between longer text spans.

25

7 Conclusion

Visualizations improve and elevate human perception of data. This thesis has

demonstrated how the graphical presentation of discourse relations is easier to in-

terpret than raw data. The implemented visualization web app is a step towards

exploring and using graphical presentations of discourse annotations for different

purposes. Implementation of custom visualizations for a single project is a very

difficult task, and often goes beyond the scope of the project. Hence, being familiar

with the existing tools, their potential facilities and techniques before building a

custom visualization could be very beneficial and time-saving.

Developing the web app with brat has illustrated how convenient it can be to

embed a tool and customize it for specific needs. Brat meets most of the require-

ments for visualizing coherence relations: It addresses the overlapping relations

and entity spans, manages to display discontinuous units, is an open-source tool

and embeds easily into new projects. Several other visualization methods - d3-

annotation, displaCy and the more straight-forward HTML tools - were compared

to the existing implementation with brat.

Section 6, Outlook, gives some suggestions for further developing as the project

has currently only basic functionality and can be extended when needed.

26

Bibliography

Anscombe, F. J. (1973). Graphs in Statistical Analysis. The American Statistician,

27(1), 17–21. doi:10.1080/00031305.1973.10478966

Asher, N., Asher, N. M., & Lascarides, A. (2003). Logics of conversation. Cambridge

University Press.

Beneken, G., Ernst, H., & Schmidt, J. (2016). Grundkurs Informatik: Grundlagen

und Konzepte für die erfolgreiche IT-Praxis-Eine umfassende, praxisorien-

tierte Einführung (Auflage von 2015).

Bourgonje, P., & Stede, M. (2018). Identifying Explicit Discourse Connectives in

German. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and
Dialogue (pp. 327–331). Melbourne, Australia: Association for Computational

Linguistics.

Bourgonje, P., & Stede, M. (2019). Explicit Discourse Argument Extraction for Ger-

man. In Proceedings of the 21st International Conference on Text, Speech and
Dialogue, Ljubljana, Slovenia. Retrieved from https : / / link . springer. com /

chapter/10.1007/978-3-030-27947-9_3

Bourgonje, P., & Zolotarenko, O. (2019). Toward cross-theory discourse relation an-

notation. In Proceedings of the Workshop on Discourse Relation Parsing and
Treebanking 2019 (pp. 7–11).

Carstensen, K., Ebert, C., Ebert, C., Jekat, S., Langer, H., & Klabunde, R. (2010).

Computerlinguistik und Sprachtechnologie: Eine Einführung. 3. überarb. u.
erw. Aufl. Heidelberg: Spektrum. Akademischer Verlag.

Curran, T., & Doyle, J. (2011). Picture superiority doubly dissociates the ERP corre-

lates of recollection and familiarity. Journal of Cognitive Neuroscience, 23(5),

1247–1262.

Grady, C. L., McIntosh, A. R., Rajah, M. N., & Craik, F. I. (1998). Neural correlates

of the episodic encoding of pictures and words. Proceedings of the National
Academy of Sciences, 95(5), 2703–2708.

Ide, N., & Pustejovsky, J. (2017). Handbook of linguistic annotation. Springer.

Krause, T., & Zeldes, A. (2016). ANNIS3: A new architecture for generic corpus

query and visualization. Digital Scholarship in the Humanities, 31(1), 118–

139.

Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a func-

tional theory of text organization. Text, 8(3), 243–281.

27

https://dx.doi.org/10.1080/00031305.1973.10478966
https://link.springer.com/chapter/10.1007/978-3-030-27947-9_3
https://link.springer.com/chapter/10.1007/978-3-030-27947-9_3

Paivio, A. (1971). Imagery and verbal processes. New York, NY: Holt, Rinheart

& Winston. Paivio, A. 1986. Mental representation: A dual-coding approach.

New York, NY: Oxford University Press.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A. K., & Webber,

B. L. (2008). The Penn Discourse TreeBank 2.0. In LREC. Citeseer.

Sanders, T. J., Spooren, W. P., & Noordman, L. G. (1992). Toward a taxonomy of

coherence relations. Discourse processes, 15(1), 1–35.

Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures:

Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 73–

74.

Stede, M. (2002). DiMLex: A lexical approach to discourse markers.

Stede, M. (2018). Korpusgestützte Textanalyse: Grundzüge der Ebenen-orientierten
Textlinguistik. Narr Francke Attempto Verlag.

Stede, M., & Neumann, A. (2014). Potsdam Commentary Corpus 2.0: Annotation

for Discourse Research. In LREC (pp. 925–929).

Stenetorp, P., Topić, G., Pyysalo, S., Ohta, T., Kim, J.-D., & Tsujii, J. (2011). BioNLP

Shared Task 2011: Supporting Resources. In Proceedings of BioNLP Shared
Task 2011 Workshop (pp. 112–120). Portland, Oregon, USA: Association for

Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/

W11-1816

Stewart, M. (2019). The Power of Visualization in Data Science. Retrieved May 16,

2019, from https:/ /towardsdatascience.com/the- power- of- visualization- in-

data-science-1995d56e4208

Webber, B., Prasad, R., Lee, A., & Joshi, A. (2019). The Penn Discourse Treebank

3.0 Annotation Manual. Philadelphia: University of Pennsylvania. Available

online: https://catalog ?

Xue, N., Ng, H. T., Pradhan, S., Prasad, R., Bryant, C., & Rutherford, A. (2015).

The CoNLL-2015 Shared Task on Shallow Discourse Parsing. In Proceedings
of the Nineteenth Conference on Computational Natural Language Learning -
Shared Task (pp. 1–16). doi:10.18653/v1/K15-2001

28

http://www.aclweb.org/anthology/W11-1816
http://www.aclweb.org/anthology/W11-1816
https://towardsdatascience.com/the-power-of-visualization-in-data-science-1995d56e4208
https://towardsdatascience.com/the-power-of-visualization-in-data-science-1995d56e4208
https://dx.doi.org/10.18653/v1/K15-2001

	Title
	Imprint

	Contents
	List of Figures
	List of Tables
	List of Listings
	Zusammenfassung
	Introduction
	Coherence Relations
	Annotation Proceduresand Associated Issues
	What is annotation?
	The goals of annotation visualizations
	General requirements of visualization tools

	Possible Structures of Text Representation
	Possible structures for coherence relations
	Issues in representing coherence relations

	Towards Visualization Approaches for Coherence Relations
	Simple HTML tools
	Coloring and highlighting spans

	displaCy
	D3
	brat
	Data used and their format
	brat features
	The architecture of brat visualization
	Directory infrastructure
	Backend
	Frontend

	Outlook
	Conclusion
	Bibliography

