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Abstract

In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their devel-
opment and productivity. To cope with these conditions, plants can remember a previous stress, which allows them
to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained
at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information
of a past stress during this recovery phase. While the immediate responses to a single stress event have been exten-
sively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level,
memory of a past condition often involves changes in chromatin structure and organization, which may be maintained
independently from transcription. In this review, we will summarize the most recent developments in the field and dis-

cuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.

Keywords: Abiotic stress, chromatin regulation, heat stress memory, histone modifications, priming, transcriptional memory,

vernalization.

Introduction

Plant growth and development are highly dependent on the
surrounding environment, which can have a strong impact on
overall fitness. In order to cope with environmental challenges,
plants have developed a series of responses to different types of
acute abiotic stress, which have been widely studied. To date,
several regulatory pathways have been identified that result
in the activation of genes involved in plant development and
metabolism, which mediate increased tolerance to stress con-
ditions (for comprehensive reviews, see Yamaguchi-Shinozaki
and Shinozaki, 2006; Zhu, 2016; Ohama et al., 2017).
However, in nature, single stress events are not the norm.
Instead, in specific seasons, plants are frequently subjected to
multiple periods of adverse conditions intercalated by times of
recovery. To cope with recurrent stress, plants have developed
the ability to remember a past stress and be better prepared to
survive a subsequent one, a process known as priming (Hilker
et al.,2016). At the somatic level (within the same generation),

the effects of priming can be maintained/memorized for a
few days or weeks, suggesting that information can be stored
during this period (Biurle, 2018). So far, only a few stress-
inducible genes, known as ‘memory/trainable genes’, have
been linked to stress memory (Charng et al., 2006, 2007; Ding
et al.,2012a; Limke et al., 2016; Liu ef al.,2018). Based on their
transcriptional profile, memory genes can be classified into two
groups (Fig. 1): type I—genes that are up-regulated upon a
first stress and show sustained expression during the recovery
phase (Fig. 1B); and type Il—genes that are hyperinduced
upon a recurrent stress (Fig. 1C) (Biurle, 2018). However, how
these genes are regulated and which features distinguish them
from so-called non-memory genes (Fig. 1A) remains to be
elucidated.

Chromatin regulation has recently emerged as a key feature
of plant responses to abiotic stress and it has been associated with
the storage of information of a previous condition, given that
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Fig. 1. Transcriptional behaviour of stress memory genes. (A) Non-
memory genes are induced by stress and their expression quickly
returns to pre-stress levels after the stress subsides; these genes
behave identically upon a first or recurrent stress. (B) Type | memory
genes are characterized by a sustained induction, which is maintained

at elevated levels throughout the memory phase. (C) Type Il memory
genes are induced upon a first stress and hyperinduced upon a recurrent
stress separated by a few days or weeks of recovery under stress-free
conditions. Grey bars represent a stress stimulus of limited duration.

chromatin states may be maintained independently from tran-
scription. Chromatin is composed of positively charged histone
octamers, around which 147 bp of negatively charged DNA is
wrapped, forming nucleosomes (Luger et al., 1997). Each nu-
cleosome consists of an octamer of two molecules of each four
histones, H2A, H2B, H3, and H4, linked by a strand of DNA
with which the linker histone H1 may be associated (Kornberg,
1974; Thoma et al., 1979). Plants have multiple genes coding
for the canonical (more conserved) histone forms, as well as
variants that contain minor differences in their amino acid
sequences and often have distinct functions (reviewed in Jiang
and Berger, 2017). Histones are composed of a globular domain
and an N-terminal tail, which is highly conserved and can be
modified at the post-translational level, resulting in altered pro-
tein charge, thus changing the affinity with which the DNA is
wrapped around nucleosomes. Histone modifications may also
create or occlude binding sites of other chromatin regulators.
Changes in chromatin organization can have a strong impact on
gene expression through the regulation of DINA accessibility for

the transcriptional machinery or for regulatory proteins. Based
on a combined analysis of different features, such as genomic
location, histone modifications, and nucleosome occupancy,
nine chromatin states have been identified in Arabidopsis thaliana
(Sequeira-Mendes et al.,2014).Adding to this complexity, chro-
matin compaction inside the nucleus is not random. Instead,
chromosomes occupy a defined space in the nuclear matrix
and form stable interactions with different nuclear regions (re-
viewed in Gibcus and Dekker, 2013). Interestingly, these do-
mains are often associated with specific chromatin states (Feng
et al., 2014; Liu et al., 2016; Bi et al., 2017) and are therefore
relevant for transcription regulation.

In this review we will discuss some of the latest findings on
how different levels of chromatin regulation, ranging from his-
tone post-translational modifications to structure, impact plant
responses to abiotic stress. The role of chromatin in priming
and abiotic stress memory will be highlighted by presenting
recent work in plants or by drawing comparisons with other
organisms. Finally, we will discuss some open questions that
we believe are likely to shape the near future of research in

the field.

The role of H3K4me3 in dehydration and
heat stress memory

One of the best studied histone post-translational modifications is
the trimethylation of lysine 4 of histone H3 (H3K4me3), which
is widely accepted to be associated with active chromatin states
(Zhang et al., 2009). Recently, this modification was also linked
to transcriptional memory at several abiotic stress-responsive
genes. Ding et al. (2012a) identified a subset of type II dehy-
dration memory genes at which H3K4me3 accumulates upon
a first priming stimulus and is maintained during the memory
phase, when the genes are expressed at basal levels. A similar ac-
cumulation of H3K4me2/3 after a first triggering stress was
observed in A. thaliana plants primed with the biotic stress hor-
mone jasmonic acid (JA; Liu and Avramova, 2016) or primed
by heat stress (HS; Limke et al., 2016; Liu et al., 2018). Together,
these observations suggest that enhanced H3K4 methylation
may be a general mechanism to mark recently active genes for
stronger reactivation upon a recurrent stress/signal (Fig. 2A, B).
The exact mechanism is still not fully understood, but it seems
to be related to a faster and, in some cases, more pronounced in-
duction of memory genes upon a second stress.

In plants subjected to repeated dehydration, the enrichment
of stalled RNA polymerase II (Ser5P Pol II) was detected at
memory genes during the entire memory phase (Ding et al.,
2012a). Nuclear run-on assays confirmed that the transcription
of these genes occurred at a three times higher rate during a
recurrent stress, when compared with a first stress. Additionally,
Liu and Avramova (2016) reported an increased occupancy of
the TATA-binding protein (TBP), a key step in the forma-
tion of the pre-initiation complex (PIC), at the promoters of
memory genes during the recovery phase (Fig. 2B). This sug-
gests that the transcriptional machinery is maintained at these
promoters, probably facilitating their faster or higher expres-
sion upon recurrent stress. It is therefore tempting to speculate

1202 Joquiajdag g0 UO Jasn WEPS]od ¥BUl0lAIqSISeNSIOAN AQ 2601.S/6925/21/L L/8IoIe/qxXI/woo dno-olwepeoe)/:sdyiy woly papeojumoq



Chromatin regulation of abiotic stress responses | 5271

\

A ;" H3K4me3
NN {HSF 0
\ HSF \ \ \ \
«=HSE
FGT1
@ BRM
CHR11/17
\
B )~ H3K4me3
M ~ Ser5P
MED Pol 1l ! \ X \ \
TBP
G-Box TATA
H3K27me3
PRC2

Fig. 2. Transcriptional memory of abiotic stress is regulated at the chromatin level. (A) In response to HS, HSFA2, probably in a complex with other
HSFs, binds heat shock elements (HSEs) at the promotors of HS memory genes and triggers the deposition of H3K4me3, which is sustained throughout
the memory phase. Additionally, FGT1, in a complex with the chromatin remodellers BRM and CHR11/17, is required to maintain low nucleosome
occupancy around the +1 nucleosome, keeping chromatin in an active state, thus probably facilitating the recruitment or activity of RNA Pol Il. (B) Similar
mechanisms, such as the accumulation of H3K4me3 and reduction of nucleosome occupancy (through the activity of an as yet unidentified chromatin-
remodelling complex, CRC), regulate dehydration memory genes. The binding of MYC2 to the promotors of dehydration memory genes is also required
for transcriptional memory. MYC2 interacts with the Mediator complex through the MED25 subunit, which in turn recruits the pre-initiation complex (here
represented by TBP and SerbP RNA Pol ll), allowing a faster re-activation upon a recurrent stress cue. (C) The chromatin remodeller and transcriptional
repressor PKL, which is known to be involved in the deposition and maintenance of the repressive histone mark H3K27me3, is required for cold stress
priming. H3K27me3 plays a key role in long-term cold memory (vernalization) and was recently suggested to be involved in short-term memory as well.
Dashed circles represent regulators whose direct involvement in abiotic stress memory remains to be validated.

that the deposition of H3K4me3 may create the necessary
chromatin environment for the accessibility of the transcrip-
tional machinery. Accordingly, in yeast mutants where Lys4 of
histone H3 was replaced by either alanine or arginine, RNA

Pol II was not recruited to target genes during the memory
phase (D’Urso et al., 2016). However, in A. thaliana, the ac-
cumulation of this mark at the transcriptional start site (TSS)
of a subset of genes occurs downstream of the recruitment of
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PIC and is required for transcription elongation (Ding et al.,
2012b), suggesting a somewhat different mechanism.

The majority of H3K4me is deposited by the COMPASS-
like complex, which is known to regulate different aspects of
plant development (Jiang et al., 2011). Upon induction of the
unfolded protein response (UPR), the COMPASS-like com-
plex was recruited by the bZIP28/60 transcription factors
(TFs), which are required for the deposition of H3K4me3 at a
subset of genes (Song et al.,2015). The UPR is a common re-
sponse to abiotic stresses (Liu and Howell, 2010); therefore, it is
conceivable that the same mechanism might trigger the depos-
ition of this mark at some HS and dehydration memory genes.
Alternatively, the COMPASS-like complex might be recruited
to these genes by alternative stress-specific TFs (see below). In
yeast, both COMPASS and Mediator complexes are required
for the transcriptional memory of the inositol-1-phosphate
synthase-encoding gene INO1, which also exhibits increased
levels of H3K4me upon activation (Light ef al., 2013; D’Urso
et al., 2016). Interestingly, the protein composition of these
complexes is altered under memory and non-memory con-
ditions, allowing them to perform different functions during
poised and active transcription (D’Urso et al., 2016).

However, the question remains of whether any specific en-
zymes are responsible for the deposition of H3K4me at memory
genes. Plants defective in the H3K4me3 methyltransterase
ARABIDOPSIS TRITHORAX1 (ATX1) are more sensitive
to dehydration than the wild type, due to impaired abscisic
acid (ABA) production and consequently increased stomatal
opening under stress (Ding et al., 2011). On the other hand,
atx5 and atx4 mutants showed an increased tolerance to de-
hydration and hypersensitivity to ABA treatment, thus acting
as negative regulators in these processes (Y. Liu et al., 2018).
However, these proteins do not target exclusively memory
genes, suggesting that other factors may provide memory
specificity.

Some stress-induced TFs have been identified as key compo-
nents of transcriptional memory and are likely to account for
this specificity and recruit specific chromatin-regulatory pro-
teins to target loci. For instance, the HS-dependent deposition
of H3K4me was dependent on HEAT SHOCK FACTOR
A2 (HSFA2; Fig. 2A; Limke et al.,2016).The A. thaliana HSF
gene family consists of 21 members and, so far, only HSFA2 is
known to have a controlling function in somatic HS memory
(Charng et al., 2007; Limke et al., 2016). Genetic evidence,
however, suggests that additional factors dependent on the
HSFA1 master regulators are also involved in this process (Liu
et al., 2018). Interestingly, the promoter of the type II memory
gene ASCORBATE PEROXIDASE 2 (APX2) is sufficient for
transcriptional memory (Liu et al., 2018), indicating that TF
binding and cis-regulatory motifs are key elements in this pro-
cess. As heat shock factors (HSFs) act in trimeric complexes
together with other HSFs (reviewed in Scharf et al., 2012), one
exciting possibility is that HS memory specificity is a property
of certain complexes and not of individual TFs.

ABA-dependent dehydration memory genes show a similar
requirement for TFs. Priming plants by dehydration induces
transient binding of MYC2, which is required for the tran-
scriptional memory of a subset of genes (Liu and Avramova,

2016). Interestingly, this binding correlates with the accumu-
lation of Ser5P RINA Pol II and involves the recruitment of
the Mediator complex by direct interaction of MYC2 with
the subunit MED25 (Fig. 2B; Liu and Avramova, 2016). The
Mediator complex is a key integrator between TF binding to
target genes and RINA Pol II transcriptional activity, and it has
been shown to affect different aspects of plant development
and responses to biotic and abiotic stress (reviewed in Samanta
and Thakur, 2015). Whether the binding of MY C2-MED?2S5 is
also required for H3K4me3 deposition at dehydration memory
genes remains to be elucidated.

Memory of short and prolonged exposure
to low temperature

Stress priming of plants by low temperature has been reported
in several plant species (Byun et al., 2014; Li et al., 2014; Zuther
et al.,2019). However, knowledge of the role of chromatin regu-
lation in this process is still scarce. Exposure to cold leads to an
open chromatin environment at several loci in potato, charac-
terized by reduced nucleosome occupancy and the presence of
bivalent H3K4me3 (active) and H3K27me3 (repressive) chro-
matin marks (Zeng et al., 2019). In metazoans, bivalent marks
are frequently found in undifferentiated cells and are correlated
with poised genes that can be quickly switched on/off upon
specific triggering stimuli (Voigt et al., 2013). However, the
dynamics of these marks upon exposure to low temperatures
remain to be elucidated. Co-existence of both marks at stress-
responsive loci has been previously reported upon dehydration,
where genes were activated by stress-induced deposition of
H3K4me3, despite exhibiting high levels of H3K27me3 (Liu
et al.,2014). Additionally, in A. thaliana, the cold-induced activa-
tion of COLD RESPONSIVE (COR) genes was shown to in-
volve the accumulation of histone acetylation as well as reduced
nucleosome occupancy at these loci (Pavangadkar et al., 2010;
Park et al.,2018). In maize, cold also induced activation of repeti-
tive elements by increasing their histone acetylation, which was
also accompanied by changes in nucleosome occupancy (Hu
et al., 2012). However, both histone acetylation and nucleosome
occupancy return to pre-stress levels during the recovery period,
when gene expression is back to baseline levels, suggesting that
these changes may be a consequence of active transcription.
Therefore, the question remains of how cold stress memory is
regulated at the chromatin level.

The most detailed knowledge of cold-induced epigenetic
regulation comes from vernalization in A. thaliana, the mech-
anism by which plants can remember a previous prolonged
exposure to low temperatures and flower only when the con-
ditions are favourable. At the molecular level, vernalization
consists of the chromatin-mediated silencing of the flower re-
pressor FLOWERING LOCUS C (FLC) by the Polycomb
Repressive Complex 2 (PRC2; Michaels and Amasino, 1999;
Bastow et al., 2004), which deposits H3K27me3 at target loci
(Schubert et al., 2006). FLC silencing occurs in two different
phases (Yang et al., 2017): nucleation of H3K27me3 during
the exposure to cold; and spreading of the mark to the gene
body upon return to warmer temperatures. H3K27me3
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nucleation takes place in a specific region downstream of the
TSS (Finnegan et al., 2007; Angel et al., 2011) and it occurs
digitally, meaning that an individual FLC allele is either ON
(enriched in H3K36me3) or OFF (enriched in H3K27me3),
with the intensity of silencing being achieved by a cell popu-
lation average (Angel et al., 2011, 2015;Yang et al.,2014). The
coordinated switch between the active and repressive states
depends on the expression from the 3' end of a set of anti-
sense transcripts collectively named COOLAIR (Swiezewski
et al., 2009; Csorba et al., 2014; Rosa et al., 2016). Two PHD
proteins, VERNALIZATION INSENSITIVE 3 (VIN3; Sung
and Amasino, 2004) and VERNALIZATION 5 (VRN5; Greb
et al.,2007), and a sense non-coding RNA named COLDAIR
(Heo and Sung, 2011) also play a key role in cold-induced
silencing of FLC by recruiting PRC2 to the locus through
interaction with its core components VRN2 and CURLY
LEAF (CLF;Wood et al., 2006; de Lucia et al., 2008; Heo and
Sung, 2011). Consistently, vin3, vrn5, and vrn2 mutants are all
unable to completely silence FLC during exposure to cold,
and all show reactivation upon return to warmer temperatures
(Yang et al., 2017).In A. thaliana, VIN3 expression is activated
only after a long period of cold in the absence of warmer
temperatures, which is the first trigger for the epigenetically
stable repression of FLC (Hepworth ef al., 2018). Additionally,
VINS3 is itself required for the recruitment of VRN5 (de Lucia
et al., 2008). Upon return to warmer temperatures, VIN3
binding is quickly reduced, while VRIN5 acquires a broader
distribution throughout the FLC gene body, accompanying
the spreading of H3K27me3 (Yang et al., 2017). Interestingly,
different PRC2 components seem to be required for each
of the FLC silencing phases (Yang et al., 2017). For instance,
while the methyltransferase SWINGER (SWN) was shown
to be predominantly required for the nucleation, CLF and
the Polycomb-associated LIKE HETEROCHROMATIN
PROTEIN 1 (LHP1) seem to be more important for the
spreading of the mark (Yang et al., 2017). This change in func-
tion by altering the composition of regulatory complexes re-
sembles in part the regulation of transcriptional memory by
the yeast COMPASS described in the previous section.

Vernalization responses in temperate cereals, such as wheat
and barley, involve distinct molecular mechanisms (Dennis and
Peacock 2009), indicating that vernalization evolved separately
in different plant groups. Prolonged exposure to cold in cereals
leads to the stable induction of VRIN1 (Trevaskis ef al., 2003 Yan
et al., 2003), a TF related to the A. thaliana APETALA1. This
process is accompanied by a decrease in H3K27me3 and accu-
mulation of H3K4me at the VRN locus (Oliver et al., 2009;
Huan et al., 2018), indicating a possible similar requirement for
chromatin regulation in long-term memory of cold in cereals.
However, further studies are required to confirm this hypoth-
esis, and to identify the participating chromatin regulators.

Impact of nucleosome composition and
density

Changes at the nucleosome level, through the incorpor-
ation of specific histone variants or alterations in nucleosome
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occupancy, may impact DNA accessibility and therefore tran-
scription. Some of these mechanisms have been shown to be
triggered under specific environmental conditions and could
play a role in abiotic stress memory.

Besides the canonical H2A histone, three other variants have
been identified in A. thaliana: H2A.Z which is mostly asso-
ciated with euchromatin; H2A.W linked to constitutive het-
erochromatin; and H2A.X which has a broad localization in
the genome (Yelagandula et al., 2014). Notably, phosphorylated
H2A.X,but not the widely distributed unphosphorylated form,
marks sites of DNA damage (Lang et al., 2012; Waterworth
et al., 2019). H2A.Z has been implicated in responses to en-
vironmental stimuli, particularly in the perception of tem-
perature. Binding of H2A.Z at several loci is disrupted by a
temperature increase within the ambient temperature range
(Kumar and Wigge, 2010). At these loci, H2A.Z-associated
chromatin is generally less open and accessible to digestion
with micrococcal nuclease compared with regions occupied
by the canonical H2A (Kumar and Wigge, 2010). Interestingly,
in A. thaliana, this histone variant has been associated with
both active and repressive chromatin states, depending on the
genic region it occupies (Coleman-Derr and Zilberman, 2012;
Sura et al., 2017). However, the repressive role of H2A.Z de-
pends at least in part on its monoubiquitination (H2A.Zub)
by AtBMI1, a core component of PRC1 (Gémez-Zambrano
et al.,2019).The temperature-induced eviction of H2A.Z was
additionally shown to be dependent on the activity of HSFA1
(Cortijo et al., 2017). However, the dynamics of this process
remain unknown. H2A.Z is deposited at target loci mainly
through the activity of the SWR1 chromatin-remodelling
complex (Mizuguchi et al., 2004), but there is still poor know-
ledge on how it is evicted. H2Bub1 may stabilize the H2A.Z—
chromatin association at inducible enhancers by preventing the
binding of INOS8O (Segala ef al., 2016), suggesting a possible
role for histone post-translational modifications in this process.
In yeast, H2A.Z eviction seems, at least in part, to rely on the
chromatin remodeller INO80, which counteracts the action
of SWR1 (Papamichos-Chronakis et al., 2011). No equiva-
lent mechanism has yet been reported in plants, but it will
be interesting to see whether HSFA1 TFs could be involved
in the recruitment of identical complexes. In A. thaliana, the
MYB-like TF SWR COMPLEX 4 (SWC4) interacts with and
is required for SWR1 recruitment and H2A.Z deposition at
developmental genes (Gémez-Zambrano et al., 2018). In swc4
mutants, several HS-responsive genes, including HSFA6A, are
up-regulated (Gémez-Zambrano et al., 2018), suggesting that
they are repressed by the SWC4-SWR1 complex under non-
stress conditions. Nevertheless, a possible role for this complex
under stress conditions requires further validation.

Arabidopsis thaliana also has three variants of the linker his-
tone H1. Besides a role in heterochromatin formation, H1
influences nucleosome mobility at euchromatic sites and
the maintenance of histone post-translational modifica-
tions (Rutowicz et al., 2019). One of these variants (H1.3 in
A. thaliana and H1-S in tomato) is induced by dehydration
(Ascenzi and Gantt, 1999; Scippa et al., 2000). In A. thaliana,
two pools of H1.3 were identified: a constitutive one that lo-
calizes to stomata under non-stress conditions; and a broader
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stress-inducible pool (Rutowicz ef al.,2015). Although tomato
plants depleted of this variant performed less well than the wild
type under progressive water deprivation (Scippa et al., 2004),
no differences were observed in the responses of A. thaliana
h1.3 mutants subjected to a similar treatment (Ascenzi and
Gantt, 1999). However, upon exposure to combined dehy-
dration/low light conditions, the /h1.3 mutant displayed al-
tered patterns of stress-induced DNA methylation, suggesting
that this variant might be important for the accessibility of
DNA methyltransferases under more complex stress regimes
(Rutowicz et al., 2015).

Nucleosome assembly and disassembly are achieved through
the activity of highly conserved histone chaperones (reviewed
in Hammond ef al., 2017), which can also regulate plant re-
sponses to abiotic stress. Mutants in the NUCLEOSOME
ASSEMBLY PROTEIN 1 (NAP1), an H2A-H2B chaperone,
exhibit altered responses to the drought stress hormone ABA
and to salt stress (Liu ef al., 2009). Plants with lower levels of
SSRP1 and SPT16, both subunits of the FACT (facilitates ac-
tivation of transcription) complex, show reduced induction of
anthocyanin biosynthesis genes upon exposure to high light
(Pfab et al., 2018). The H2A-H2B chaperone complex FACT
has also been related to responses to abiotic stress in other or-
ganisms. Yeast mutants depleted in SPT16 showed increased
thermotolerance, which correlated with an impaired recovery
of nucleosome occupancy and increased binding of RNA Pol
IT at HS-responsive genes (Erkina and Erkine, 2015). The op-
posite effect was observed for the H3—H4 chaperone ANTI-
SILENCING FUNCTION 1 (ASF1) in A. thaliana (Weng
et al., 2014); asf1 mutants showed increased sensitivity to high
temperatures and lower expression of HS-inducible genes,
which was accompanied by reduced removal of H3 and re-
duced accumulation of RINA Pol II (Weng et al., 2014).

Orthologues of additional histone H3 chaperones such as the
histone regulator A (HIRA) and the chromatin assembly factor
1 (CAF1) have also been identified in A. thaliana (Duc et al.,
2015; Muifioz-Viana et al., 2017). In contrast to other chaper-
ones, HIRA and CAF1 act preferentially on specific histone
variants; while the former is responsible for the deposition of
the replication-independent histone H3.3, the latter acts mostly
on the replication-specific H3.1 variant (Tagami et al., 2004).
Arabidopsis thaliana mutants depleted in FASCIATA 2 (FAS2),
a core subunit of CAF1, show a reduction in nucleosome oc-
cupancy at a subset of defence response genes (Mozgova ef al.,
2015; Munoz-Viana et al., 2017), mimicking primed plants.
A similar phenomenon was observed for HS-activated DNA
repeats in fas1 mutants, where restoration of nucleosome oc-
cupancy during the recovery phase was impaired, indicating a
role for CAF1 in re-silencing of repeats (Pecinka ef al., 2010).
Fission yeast HIRA is involved in priming (cross-tolerance)
by promoting nucleosome eviction and enhancing RNA Pol
IT occupancy at a subset of stress response genes (Chujo ef al.,
2012). As similar chromatin features have been reported in
plants primed for different abiotic stresses, it will be interesting
to see whether HIRA is also required for these processes in
plants. In Caenorhabditis elegans, the knockout of all five H3.3-
encoding genes led to increased mortality upon HS (Delaney
et al., 2018). However, these differences were abolished when

the worms were subjected to a prior priming treatment with
a milder HS, suggesting that H3.3 in this organism is mostly
required for the immediate responses to high temperature
(Delaney et al., 2018). The high degree of conservation of his-
tones in different organisms allows us to speculate that some of
the mechanisms uncovered in other species may be conserved.
To what extent histone variants and chaperones are involved in
abiotic stress memory in plants remains unresolved.

Transcriptional changes in response to stress are often ac-
companied by changes in nucleosome occupancy. Accordingly,
several ATP-dependent chromatin-remodelling complexes
of the subfamilies ISWI, Switch/Sucrose Non-Fermentable
(SWI/SNF), and CHD (reviewed in Han et al., 2015) are re-
quired for priming in different organisms. In a forward genetic
screen for regulators of HS memory, Brzezinka et al. (2016) iso-
lated FORGETTER1 (FGT1) as a key element of type I HS
transcriptional memory in A. thaliana. FGT1 interacts with the
chromatin remodellers BRAHMA (BRM) and CHR11/17,
forming a complex required to maintain low nucleosome oc-
cupancy during the memory phase (Brzezinka er al., 2016).
In agreement, the expression of HS memory genes in fgt1,
brm, and chr11 chr17 decreased more quickly and the mu-
tants displayed lower survival upon recurrent HS (Brzezinka
et al., 2016). Both FGT1 and BRM are also functional under
non-stress conditions; therefore, the question remains of how
the FGT1-BRM complex is recruited to HS memory genes.
In humans, the SWI/SNF remodeller BRG1 is recruited to
HS-responsive genes by HSF1 (Sullivan et al., 2001). Hence, a
similar mechanism may be active in plants.

Lower nucleosome occupancy may be a widespread feature
of memory genes after stress is perceived (Brzezinka et al.,2016;
Park et al., 2018; Zeng et al., 2019). For instance, A. thaliana
plants defective in the chromatin remodeller PICKLE (PKL)
are less ‘primable’ by cold than the wild type (Yang et al.,2019).
Although no differences between pkl-1 and the wild type were
observed in plants subjected to a single freezing stress, mu-
tants that had been previously primed by exposure to mild
cold stress exhibited lower survival (Yang et al., 2019). This
observation suggests that PKL acts in cold stress memory re-
sponses, although the molecular mechanisms are still not fully
understood (Fig. 2C). PKL belongs to the subfamily CHD3
and it is required for the deposition and maintenance of the
repressive chromatin mark H3K27me3 (Zhang ef al.,2008; Ho
et al.,2013; Carter ef al., 2018). As discussed above, this histone
modification is known to play a key role in prolonged cold
stress memory during vernalization (Finnegan et al.,2007) and
it was recently suggested to be involved in short-term cold
stress memory as well (Vyse ef al.,2020). Whether PKL also acts
in cold stress priming through the regulation of H3K27me3
remains to be elucidated.

Effect of chromatin spatial organization

Chromatin inside the nucleus often occupies defined regions
that are associated with pools of regulatory proteins and exhibit
specific transcriptional profiles. At a finer scale, several local
and long-distance chromatin loops that bring together genes
and cis-regulatory elements have been identified in different
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organisms, forming another layer of transcription regulation
(reviewed in Gibcus and Dekker, 2013).

Current knowledge on how plant chromatin 3D organiza-
tion impacts abiotic stress responses is still scarce, with only a
few studies reporting changes upon exposure to adverse condi-
tions. Using fluorescence in situ hybridization (FISH), Pecinka
et al. (2010) found that upon prolonged HS nucleosome oc-
cupancy was reduced and heterochromatic chromocentres
were strongly dispersed. While the former recovered quickly
after return to ambient temperatures, overall heterochromatin
de-condensation prevailed for up to 1 week, suggesting a pos-
sible role in stress memory (Pecinka et al., 2010). Similarly,
rice chromosomes de-condensed after exposure to cold, al-
though this was not accompanied by global changes in chro-
matin structural organization (Liu et al., 2017). Moreover,
cold-induced repression of FLC involves loci clustering in the
nucleus, which is positively correlated with the duration of ex-
posure to cold (Rosa et al., 2013), suggesting that vernalization
requires chromatin spatial re-organization.

Local chromatin interaction domains (gene loops) have also
been correlated with transcriptional changes and memory, as
they allow the faster recycling of RINA Pol II at specific loci
(Tan-Wong et al., 2009). For instance, in yeast, gene loops in-
duced by changes in the supplied carbon source were shown
to be positively correlated with a stronger reinduction upon a
recurrent stress (Laine et al., 2009; Tan-Wong et al., 2009). This
process probably involves the recruitment of specific chromatin
regulators, as reinduction of the GAL10 gene was reduced in a
mutant for the chromatin remodeller Snf2 (Laine et al., 2009).
Interestingly, transcriptional memory was also dependent on
the association of these loops with nuclear pore proteins, re-
inforcing the idea that subnuclear localization is important for
regulation of gene expression (Tan-Wong et al., 2009). On the
other hand, in Drosophila, HS led to dramatic changes in the
3D organization of the nucleus due to the increased number
of interactions between different topologically associated do-
mains (TADs), which correlated with a weakening of the do-
main borders (Li ef al., 2015). TADs are secondary interaction
domains within higher order chromatin domains that are well
conserved between cell types and different species (Dixon
et al., 2012).

Plant chromatin 3D structure seems to differ from that of
other organisms (Fig. 3). For instance, in contrast to metazoans,
no canonical TADs were identified in A. thaliana, which may be
linked to the absence of orthologues of metazoan CTCF insu-
lator proteins (Feng ef al.,2014;Wang et al., 2015). Alternatively,
it could be a consequence of the compact genome, as TAD-
like domains have been observed in plants with larger gen-
omes (Dong et al., 2017; Liu et al., 2017), probably reflecting
a lower gene density (Dogan and Liu, 2018). However, local
chromatin loops formed by the interaction of 5' and 3' ends of
highly expressed genes have been observed in A. thaliana (Liu
et al., 2016). For FLC, silencing by vernalization correlated
with the disruption of a gene loop that encompasses the whole
locus (Crevillén et al.,2013). Disruption of the FLC loop add-
itionally required the activity of CHC1 (Fig. 3B), a subunit
of SWI/SNF chromatin-remodelling complexes (Jégu et al.,
2014), suggesting a role for these proteins in the regulation
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of chromatin 3D structure. Recently, BORDER (BRD) pro-
teins were found to be associated with gene loop formation
at several A. thaliana loci by regulating RINA Pol II pausing/
recycling and thus preventing transcriptional read-through
to neighbouring genes (Yu et al., 2019). BRD proteins were
shown to contribute to the rapid induction of several light-
responsive genes (Yu et al., 2019), showing that local chromatin
interaction domains act in the regulation of plant responses to
the environment.

Additional studies indirectly suggest a role for chro-
matin 3D organization in responses to abiotic stress. PW WP
INTERACTOR OF POLYCOMBS!1 (PWO1), which re-
cruits PRC2 to specific nuclear foci (Hohenstatt et al., 2018),
interacts physically and genetically with CROWDED NUCLEI
(CRWN) family proteins (Mikulski ef al., 2019), which may be
functional orthologues of nuclear lamina proteins (Wang ef al.,
2013). In A. thaliana, chromatin interactions with the nuclear
periphery have been linked to an accumulation of repressive
chromatin features, including H3K27me3, at protein-coding
genes and transposable elements (Bi ef al., 2017), which is in
agreement with a possible recruitment of PRC2 to these lo-
cations. Gene Ontology analysis revealed an enrichment for
stress-induced genes amongst those up-regulated in both pwo1
and ¢wn1/2 mutants (Mikulski et al., 2019), suggesting that
localization at the nuclear periphery might be involved in re-
pressing stress-inducible genes under non-stress conditions
(Fig. 3C). In yeast, the recruitment of genes to the nuclear
periphery was associated with transcriptional memory and a
faster re-induction following repression (reviewed in Brickner,
2009). Additionally, tethering at the subnuclear location and
faster re-induction depended on the incorporation of the
histone variant H2A.Z during previous active transcription
(Brickner et al., 2007). In A. thaliana, H2A.Z 1s known to be
involved in plant responses to environmental cues (see above);
however, evidence for its involvement in abiotic stress memory
in plants is still lacking.

Conclusions and perspectives

It is becoming increasingly clear that chromatin regulation
plays an important part in modulating plant responses to en-
vironmental stresses. Changes in chromatin structure and com-
position have been associated with storage of information of
a previous condition. Such marking may allow plants to save
energy not only by responding faster and/or more strongly to
recurrent stresses, but also allowing temporary shut-down of
defence mechanisms without compromising survival (Hilker
et al., 2016). From the available data, some transcriptional
memory features emerge that are common to more than one
stress type. These include the accumulation of H3K4me and
possibly RNNA Pol IT at memory loci, as well as reduced nucleo-
some occupancy (Fig. 2A, B). However, each stress memory
type also has specific elements (Fig. 2).

Our review has focused on abiotic stress memory at the
somatic level, which is usually limited to a few days or weeks.
An important unresolved question is how the duration of the
memory phase is regulated. Despite the fitness advantages
of priming, one study suggests it can be detrimental under
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Fig. 3. Chromatin 3D organization can have an impact on abiotic stress responses. (A) Chromosomes are packed inside the nucleus in a non-random
way, and in metazoans have been shown to interact with different nuclear domains, such as the lamina in the periphery and the nucleolus. In plants, no
such large-scale domains have been identified, but local chromatin interactions seem to be important for regulation of gene expression. (B) A gene loop
at the FLC locus is associated with active transcription, possibly by facilitating the recycling of RNA Pol Il. Upon prolonged exposure to cold, this loop

is disrupted in a CHC1-dependent manner, allowing for the transcription of the INcRNA COOLAIR, thus triggering the cold-induced silencing of FLC.

(C) The PRC2 interactor PWO1 also interacts with CRWN proteins, which may be functional orthologues of nuclear lamina proteins. Both PWO1 and
CRWN were shown to target an overlapping subset of stress-related genes. Tethering to the nuclear periphery has been associated with gene repression
and faster reactivation, suggesting that PWO and CRWN could have a role in abiotic stress responses and perhaps transcriptional memory. This probably
involves the recruitment of PRC2 to the nuclear periphery. However, the role of these proteins in transcriptional memory remains to be elucidated. Dashed
circles represent regulators whose direct involvement in abiotic stress responses remains to be validated.

non-stress conditions (van Hulten ef al., 2006), indicating that,
in the absence of a recurrent stress, it might be advantageous
to limit the duration of the memory phase. Two scenarios
are therefore conceivable: either this duration is limited by
the biochemical stability of the induced changes, and thus
memory would be ended in a passive way; or, alternatively, it
may be actively terminated through the activity of chromatin

regulators with opposing functions. A few works favour the
latter, although a simultaneous occurrence of both scenarios
cannot be discarded. Recently, Huang et al. (2019) reported
the identification of the H3K4 demethylase JUMON]JI 17
(JMJ17) as a negative regulator of dehydration stress responses
in A. thaliana. Additionally, the H3K27 histone demethylase
EARLY FOWERING (ELF6) is known to be required for
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the reactivation of FLC in reproductive tissues at the onset
of a new generation (Crevillén ef al., 2014). Whether these or
similar mechanisms also take place at memory genes during
the memory phase requires further investigation.

Additional questions have been raised concerning the effect
of plant age in priming responses and whether tissues respond
differently to environmental conditions. HS transcriptional
memory in different parts of A. thaliana seedlings was similar
across tissues (Liu ef al., 2018). In contrast, HS-triggered het-
erochromatin de-condensation occurred only in differentiated
cells (Pecinka et al., 2010). Moreover, these results raise the
question of if/how priming responses are mitotically trans-
mitted from stress-exposed tissues to the newly formed ones,
as well as general mitotic heritability.

Stress priming and memory have a great potential when it
comes to crop improvement towards increased tolerance to en-
vironmental conditions. Therefore, understanding how these
phenomena are regulated at the molecular level and what is
the outcome of the interplay between the different regulatory
mechanisms is of utmost importance and urgency. We believe
recent advances in microscopy techniques, single cell and single
molecule analysis, and genome editing strategies will strongly
contribute to finding answers to the above-mentioned questions.
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