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ABSTRACT ARTICLE HISTORY
In this article, we propose an all-in-one statement which includes exist- Received 5 February 2019
ence, uniqueness, regularity, and numerical approximations of mild sol- Accepted 21 December 2019

utions for a class of stochastic partial differential equations (SPDEs) with
non-globally monotone nonlinearities. The proof of this result exploits
the .properties of an e>§isting fully explici'F spa'ce—time.discrete e.wpprox!— equations; SPDEs; mild
mation scheme, in particular the fact that it satisfies suitable a priori esti- solution; existence;
mates. We also obtain almost sure and strong convergence of the numerical approximation
approximation scheme to the mild solutions of the considered SPDEs.

We conclude by applying the main result of the article to the stochastic

Burgers equations with additive space-time white noise.

KEYWORDS
Stochastic Burgers

1. Introduction

In this work, we exploit the properties of the approximation method introduced in [1] for a
class of stochastic partial differential equations (SPDEs) with non-globally monotone non-
linearities driven by additive space-time white noise and obtain existence, uniqueness, and
(spatial) regularity of the solution processes for such SPDEs. At the same time, we achieve
almost sure convergence of the approximation scheme (see Theorem 3.2). The proof of the
main result of the article (see Theorem 3.2) employs a priori estimates obtained in [2,
Corollary 2.6] as well as an existence and uniqueness result for solutions of a class of
Banach space valued evolution equations in [3, Corollary 8.4]. In addition, under the
abstract setting of the main result, we apply a strong convergence result in [2, Theorem
3.5], and thereby provide an all-in-one statement for existence, uniqueness, and (spatial)
regularity of the solution processes and strong convergence of the approximation scheme
in case of the considered SPDEs (see Corollary 3.3).

The approximation method we consider is the space-time full-discrete nonlinearity-
truncated accelerated exponential Euler-type scheme that converges strongly to the solu-
tions of certain infinite-dimensional stochastic evolution equations with superlinearly
growing non-linearities and driven by additive noise such as stochastic
Kuramoto-Sivashinsky equations with space-time white noise (see [1, Corollary 5.2]),
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stochastic Burgers equations and Allen-Cahn equations both driven by space-time white
noise (see [2, Corollaries 5.6 and 5.11]), and two-dimensional stochastic Navier-Stokes
equations driven by a certain trace class noise (see [4, Theorem 5.1]). Moreover, [5,
Theorem 1.1] establishes spatial and temporal rates of strong convergence for this
scheme in the case of stochastic Allen-Cahn equations. We would also like to mention
that explicit approximation methods similar to the one in [1] have been introduced and
proven to converge strongly for some stochastic evolution equations with superlinearly
growing nonlinearities in, e.g., [6-14].

To explain our result better let us consider H to be the real Hilbert space given by
H=1°((0,1);R), A: D(A) C H — H to be the Laplace operator with Dirichlet bound-
ary conditions on H, and (H,, (~-)y,|| ||z ), r € R, to be a family of interpolation
spaces associated to —A. The main result of this article, Theorem 3.2, is applicable to a
subclass of stochastic evolution equations considered in Theorem 3.5 in [2]. This sub-
class has to satisfy an additional regularity condition on the nonlinearity (see Setting
3.1, in particular, inequality (3.1)), which is crucial in the proof of pathwise a priori
estimates for the approximation process (see Lemma 2.2). These a priori bounds guar-
antee that the solution process takes values in an appropriate proper subspace of H,
that is, H, for some ¢ € (0,00), which determines the spatial regularity. We note that
Theorem 3.5 in [2] requires that there exists a solution X : Q x [0, T] — H, for some
appropriate ¢ € [0,00). Our main result establishes existence and uniqueness of the
mild solution with a compatible spatial regularity. Techniques similar to the ones
appearing in our proof can, e.g., be found in [15, Theorem 3.1 and Section 4.3] which,
in particular, provides existence and uniqueness of the mild solution for stochastic
Burgers equations with additive space-time white noise with values in the Banach space
C((0,1),R) exploiting spectral Galerkin approximations.

As an example, we choose to apply the main result of this article to the stochastic
Burgers equations driven by space-time white noise. In this way for every ¢ € (1/8,1/4)
we obtain the existence and uniqueness of the mild solution taking values in the space
H,. In particular, Corollary 4.3 establishes the existence and uniqueness of the mild
solution of the stochastic Burgers equation

0 0* 0 0

—X(x) = th(x) — Xi(x) -aX,(x) + 5 Wi (x) (1.1)

with Xy(x) = &(x), & € Hypy, and X;(0) = X,(1) =0 for t € [0, T], x € (0,1). We would
like to note that there are several existence and uniqueness results in the literature for
mild solutions of stochastic Burgers equations driven by colored noise (see, e.g., [16])
and by space-time white noise (see, e.g., [17] in the case of cylindrical Wiener process
and [18] in the case of Brownian sheet). Other relevant references can, e.g., be found in
[19, Section 13.9] and [20, Chapter 14] and the references mentioned therein. Our
results extend the strong convergence result for stochastic Burgers equations in [2,
Corollary 5.6] because they yield existence, uniqueness, and spatial regularity of the
mild solution and at the same time not only strong but also almost sure convergence
for the numerical scheme.

To conclude, let us mention the fact that our main all-in-one results (in particular,
Corollary 3.3) can also be applied to the Kuramoto-Sivashinsky equations considered in
[1], recovering the strong convergence result for the numerical scheme obtained there
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and also recovering the existence and uniqueness of the mild solution obtained in,
e.g., [21].

1.1. Outline of the article

First, in Section 2, we analyze pathwise regularity properties of the considered approxi-
mation scheme for a certain family of evolution equations. In particular, we obtain in
Section 2 pathwise a priori estimates and convergence to a local mild solution (see
Lemmas 2.2 and 2.3, respectively). The non-explosion of the approximation scheme
then leads to non-explosion of the unique maximal solution and therefore to pathwise
existence and uniqueness of the global solution (see Proposition 2.4). The main result
of the article is given in Section 3 in Theorem 3.2. It allows us to obtain an all-in-one
statement for existence, uniqueness, and (spatial) regularity of the solution processes
and strong convergence of the approximation scheme in Corollary 3.3. Finally, in
Section 4, we apply the latter to the stochastic Burgers equations with space-time white
noise (see Corollary 4.3).

1.2. Notation

Throughout this article the following notation is used. Let N = {1,2,3,...} be the set of
all natural numbers. We denote by |-], : R — R, h € (0,00), the functions which satisfy
for all t € R,k € (0,00) that

[t], = max((—o0, ] N {0, h, — h,2h, —2h,...}). (1.2)

For a set A we denote by 4, € NU{0} U{oo} the number of elements of A and we
denote by Id, : A — A the function which satisfies for all a € A that Id4(a) = a (iden-
tity function on A). For a topological space (X, 7) we denote by B(X) the Borel sigma-
algebra of (X, 7).

2, Pathwise global solutions

This section is devoted to prove a pathwise existence of a unique global solution and
convergence of the approximation scheme. We establish this result in Proposition 2.4.
The main ingredients of the proof of Proposition 2.4 are Lemmas 2.2 and 2.3. The latter
establishes convergence and non-explosion of a (local) solution in a certain general set-
ting and the former shows suitable a priori bounds for the (deterministic) approxima-
tion scheme.

Setting 2.1. Let (H, (-.-);;, || - ||) be a separable R-Hilbert space, let H C H be a nonempty
orthonormal basis of H, let n,x € [0,00), let A:H — R satisfy that infyegd, >
—min{n,k}, let A: D(A) C H— H be the linear operator which satisfies D(A) = {v €
H: Y pem | u(b vyl < oo} and ¥V v e D(A) : Av =3 —(b.v)yb, let (Hy, (")p,
[l ), r€R, be a family of interpolation spaces associated to x — A (see, e.g., [22,
Section 3.7]), and let T,v,c € (0,00), 0,e€[0,00), o, €[0,1), y€(0,1), p€
[—o, 1 — max{o,7}), ¢ € (p;1=7), 2 € (0,min{(¢—p)/(1+9/2),(1 —a—p)/(1+I)}].
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2.1. A priori bounds

Lemma 2.2. (A priori bounds). Assume Setting 2.1, assume in addition that
supycp|ds| < 0o, let f € (0,00), he (0,min{l,T}], and let Y,0,0:[0,T] — H,F €
C(H,H), ¢,®: H — [0, 00) satisfy for all v,w € H, t € [0, T| that nO € C([0, T],H), O; =
Or — [y et =94 nOy ds, [[FW)l|yy, < c2e+|IvIlz), IFWII, < Omax{1,||v|[5 "},

(0 (0 < 3 S + lln = )31+ D), @)

N =

1t = A)2(EW) — B < Omax{L, Iv][3 v = wily, +0 llv—wlB?, @22)

and

t
n:LgHmqummﬁm+W%mewm)$+Q. (2.3)

Then it holds that nO € C([0, T), H) and for all t € [0, T] that

2¢ ¢ fl1-0=) (
Yi— Ol < (e+ sup 10,11 ds
W= Ol === =) o
+1+W@WMM%W+WWWMW7)HL+f+ﬂ“ﬂ
(1— @)1 —a—p)**

104113

®(0,),)+2n(1+p)du
L o ' {(D(@“Jh) 28

+ max(11TH*max 1 [ ivaoui® a o}| ).
(2.4)

Proof of Lemma 2.2. First, observe that for all s € (0, T) it holds that
(6 — A = s @l (s(c — )N < i e (25)

(cf., e.g., Lemma 11.36 in [23]). This, (2.3), the triangle inequality, and the assumption
that V v € H : ||[F(v)||y < c(2€ + ||v||};) imply that for all t € [0, T] it holds that

t
Hn—on%sﬁﬁm—AW“Mf“mwmmnmmHy%

¢
< CJ e(t—s)x(t _ S)—(@H)(ze + ||YLSJh||?J)dS (2.6)
0

t
§4%+w&mM%M@L4”WFﬂV“”%

This together with the fact that ¥ a,b € R : |a+ b]* < 2|a|* +2|b|* and the fact that
0 + 7 < 1 shows that for all ¢ € [0, T] it holds that
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1Y = Otl[,

t
SC[ZEJFZ sup [Y(y), — Oy, [l +2 sup ||©[th||H:| L(l‘S)(“’) ds

s€[0, T) se[0, T

(2.7)

5 5 etK t( 7)
=2c|le+ sup ||Y|.5Jh_@\_sjh||H+ sup H(O)\_SJ;,HH 1_—_
s€[0, 7] s€[0, T ( 2—7)

Next note that the assumption that sup,.y|4y| < co assures that A € L(H). Corollary
2.6 in [2] therefore ensures that nO € C([0, T|, H) and that

(0] {7 n
sup [[Y[y, — Oy, Il < J ol 40w 0 {q’(@thﬁH@sHi
te0, T]

0L+ (e i+ e = e[ = A"l + VO + )T max{L, 11Ol s}
(1= )1 —a—p)*

.max{h%efpfx))hl(lfw (1+9/2)1) J [|\/7Ou ||H }

max{ [ VOully, du} ﬁ} ds

( fer>+?) [1+<r<+f+f|r<nem(xA)M|L(H>+¢é+\/m<“”>>
<|l1+
(1= @)1 —a—p)**"

J o 60, 420014 [‘D(@whﬂz%ﬂ@sﬂﬁ
0

+max{h29 p—x)—x9 h21 o—p—(1+0)y hl /1)J H\/;’Ou”?—{” du}

(2+9)
Jmas{ 1 [ vy, an}

9
} ds.

T
s L | O, ]

(2.8)

Combining this with the fact that h<1, 1 — 1 >0, U&i;f ) > o (f = /)2 >y demon-
strates that for all ¢ € [0, T] it holds that

sup ||Yy,), — Oy, Il
te0, T)

B (HH B+ (4 A+ ATl — eI~ >‘9||L<H)+¢a+\/m<2+w>

(1—@)(1—a—p)>*

n
J f B(Oyu),)+2n(1+B)du {(D(@LSM)_F_H@S”?{

(2+29)
} ds.

+max{ [ i, dufmax{ 1. [ vio, i
(2.9)
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Moreover, note that Holder’s inequality implies that

T T
max{l,J H\/ﬁOuH?{o du}‘max{l, J |[v/nOullg, du}
0 ‘ 0

T T
< max{ 10 [ Nufy, aufmax{ 10 T | 0, o
0 B 0 B

3420 T 249
‘max{l,n,T} max{l,J ||Ou||§{0 du}
o 0
4439 T
< ‘max{l,n,T} max{l,J ||ou||§{(”2+19) du}.
o !

This together with (2.9) yields that

2429

1+

(2.10)

IA

sup |||y, — @th?{

t€(0, T)
0 N1+ (i + /i1 + /il — nle?)[|(c = A ||y + VO + /i
<|1+ 249
- )1 —a—p)

! jT¢(® )+2n(1+p)d n 2
R L PR RS

+ |max{1,7, T}|4+319max{1, fOT ||Ou||§§02+79) du}] ds.

(2.11)
Combining this and (2.7) completes the proof of Lemma 2.2. O
Lemma 2.3 (Pathwise convergence and non-explosion). Let (V,||-||,,) be a separable

R-Banach space, let (W, || -||,,) be an R-Banach space, let T,y € (0,00), let ] C [0, T] be
a convex set satisfying 0 € J, let F € C(V,W) and ¥ : [0, 00] — [0, 00| satisfy for all r €
[0, 00] that ([0, 00)) C [0,00) and

W(r) = sup({ HEW) = EOllw ., e vy ol + [l < r} u{o}),

v =wlly

(2.12)

let S:(0,T) — L(W,V) be a B((0,T))/B(L(W,V))-measurable function, let o € [0,1)

and (Py),cn C L(V) satisfy that supy o 1)s*|[Ss|[(w,v) < 00, limsup,, o [|Pml[1 () < 00,

and

T
I

lim supJ (Idv = Pu)Ss||pw, vy ds =0, (2.13)

m—o0 0

let O € C([0,T),V) and O" : [0, T] — V,n € N, satisfy that
limsup sup ||O; — O[], =0, (2.14)

m—00  se(0, T]

let (hy),eny € (0,00) satisfy that limsup,, . h, =0, and let X e C(J,V) and
X" [0, T| — V,n €N, satisfy for all t € J,n € N that X, = jot Si—s F(X;) ds+ Oy,
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t
20 = [ 2o S U g I, I + 100, ) FXL,) ds O @19
and liminf,, _csup,;||X7'||y, < oo. Then it holds

(i) forall t €] that limsup, sup.p o[|Xs — X7|[, = 0 and
(i)  that sup,; [|X[|y < oo.

Proof of Lemma 2.3 . First, observe that Item (i) in Proposition 3.1 in [1] shows that for
all t € J it holds that

limsup sup [|X; — X7||, =0. (2.16)

n—0o00  s€(0, 1]
This establishes Item (i). Next note that for all n € N, ¢ € J it holds that
Xl < (17 (ly + 11X = Xy
< supey || XS]y + (X = Ay (2.17)
< supe || Xy + supgepo, g1Xs = ALy
This together with Item (i) implies that for all ¢ € J it holds that
Xl < hmmf(sup XNy + sup [[Xs = A7ly)

s€(0, 1]
< 11m1nfsup||X ||y + limsup sup ||X; — XF|[ (2.18)
n—0o0  se(0,t]
= hmlnfsup||X |y < oo.
Therefore, we obtain that
sup, ;| [Xi||y, < liminf, sup,||X7]]}, < oo. (2.19)
This establishes Item (ii). The proof of Lemma 2.3 is thus completed. O

2.2. Pathwise existence, uniqueness, regularity, and approximation

Proposition 2.4 (Global solutions). Assume Setting 2.1, let F & C(HQ,H_OC),
(Pu)yen € L(H), let Hy, C H,n € N, be finite subsets of H satisfying for all n € N,u € H
that P,(u) = ey (bu)yb, let ¢, @ : Hy — [0,00) be functions such that for all n €
N,v,w € P,(H) it holds that F(v) € H, ||F(v)|| . < c(2e +|[v[[7)),

(v PE(v +w)) < $w)[|YI[5; + oll(n — 4)' V[, + D(w), (2.20)

and
IF() = F)ll, <0 (L4l + 1wl ) v = wlly,» (2.21)

let (hy),eny C (0, T] satisfy that limsup,, . h, = 0, assume in addition that o € [0,1/2],
0 € (p,1 —max{a,7}), z € (0,min{(¢ — p)/(1 +9),(1 — o= p)/(1 +20)}], and
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T
limsupJ 1(1ds, = Poalyg, e o, 1,y d5 =0, (2.22)
0

m—0o0

let O € C([0,T],H,) and O",0" : [O T) — Hy,n € N, be functions which satisfy for all
neN,t€[0,T] that O"([0,T]) C P,(H), nO" € C([0, T}, P,(H)),

limsup sup [|O; — Of[|, =0, (2.23)

m—o0  s€(0, T]

O = O] — [{ =40 4O ds, limsup,, ., sup,c, 1 107, |4 < o0, and

T (Map@r, Y
limian el 2000, “max{cb(@@h ),||@TIIE,1,J [t du} dr < oo, (2.24)
0 m

m—00

and let X" : [0, T] — H,,n € N, be functions satisfying for all n € N, t € [0, T] that
X JOP e ﬂ{“xn ‘|H9+|‘OrsjhnHHQS‘thrZ} F<X’[5Jhn) ds+ O? (225)
Then

(i) it holds that lim inf, .ocsupcpo || A7 |, < o0,
(i)  there exists a unique continuous function X : [0, T] — H, which satisfies for all
t € [0, T that J"Ot ||elt=94 F(X)||y, ds < oo and

t
X, —J =94 F(X,) ds+ O, (2.26)
0

and
(iii) it holds that limsup,,_,  sup,c 11||Xe — X[, = 0.

Proof of Proposition 2.4. Observe that (2.22) allows us to assume w.l.o.g. that for all n €
N it holds that P,(H) # {0}. Throughout this proof we assume that for all n € N it
holds that P,(H) # {0}, let £ € (0,1 — a — @) be a real number, let 0 € [0,00) be the
real number given by

0 = max{L,||(n — A) " (x — Ay}

2429

) 2 [lulli,
- max (80 +2 ||F(O)|\Hﬂ)max 1, sup
uetiy\(0} [[ulli, (2.27)
[l I ull3
302 sup 172(-1/2 1+ sup || ||£—1§ (1+2max{2’t7—1,0}) ,
ueh_\oy | |4k, uer,\{o} | [ul [,
let ¥ :[0,00] — [0,00] be the function which satisfies for all r € [0,00] that W¥(r) =

sup({[|F(v) = FW)llg,/Ilv = wll, = v, w € Ho,v 7 w, ||Vllyy, + [Iwlly, <} U{0}), and
let y: (0, T) — (0, ) be the function which satlsﬁes for all t € (0, T) that

Y(t) = e — 1+ ¢, (2.28)

Note that (2.21) ensures that for all r € [0,00),v,w € H, satisfying v # w and ||v|[; +
||w||, < r it holds that
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1E) = Flln, _ [ = wlly,

) v
0 (1 +[Ivllg, +[1wlla,)

lv=wlly,  ~ llv—wllg,
) H H (2.29)
H :
< lsupueHo\{O}W 0 (1+2r") < oo.
Therefore, we obtain that for all r € [0, 00) it holds that
p [l [,
W(r) <0 (1+42r") sup,cpy, \{O}W < 00. (2.30)
HQ
This establishes that
Y([0,00)) C [0,00). (2.31)
Next observe that for all n € N, ¢ € [0, T] it holds that
XY s, < Oy, + 1O} = Odlly, + [|1XF — Ofly,- (2.32)
This and (2.23) yield that
liminf sup  [[X7]|y, < sup [[Oly, —|—hm1nf sup [|X} — Oflly,- (2.33)

"m0 tefo, T) telo, TJ t€[0, T

Furthermore, note that (2.21) and, e.g., Lemma 2 4 in [1] (with V =H,, V=H, W=
H.,, W=H_y, ¢=10, 0 =max{L||(n —A)" ( A)||L }7 0, e=9, 9=2¢ in
the notation of Lemma 2.4 in [1]) ensures for all v,w € H, that

1 = 4)72(F(v) = Fw))ll;
<1 —A) " (o = Al [IF) = )l (234)
< O(max{L,[[vI[i }Iv — il + Ilv = wllz™)
and
IEW)I[F, < Omax{1, |||l *"}. (2.35)

In addition, observe that the assumption that ¥ n € N: 0"([0, T]) C P,(H) implies for
all ne N that O"([0,T]) U X"*([0,T]) C P,(H). Combining this, (2.34), (2.35), and
Lemma 2.2 (with H = P,(H), f=1, 0 =10, 9 =20, A= (P,(H)Dv— Av € P,(H)) €
L(P,(H)), h="h, Y=([0,T]Dt— X} €P,(H)), O=([0,T]Dt— O} (w) € P,(H)),
O=(0,T]2t— O}(w) € P,(H)), F=(P,(H)Sv—P,F(v)€P,(H)NH_,) € C(P,(H),
P,(H)), ¢=2¢|p, )P =2y ) for n€{meN:h, <1} in the notation of Lemma
2.2) yields that for all n € {m eN:h,, <1} it holds that
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2C eTK T(l_Q_V)
su Xn — On <
Pte[O,T]H t t||Hg— (I*Q*V)
~ — 2429
02420 [1 4 (14 -+ /Al — nle?) | (= )7~y )+ VO + ]
(1—@)(1—a—p)*?

T
+4 du 7’] n
[ e Lo, )+ 20,

0
L gy H ds).

GHmQHW|m

+ |1+

T max{Ly.T}|**'m @Lnf@

(2.36)
Hence, we obtain that
2 Tk T(l—g—y)
iminf sup, 147 Oflly, < 25— 1 (e tmsupsupcg 07, I
~ 24219
+1+MWWHW+ﬁ+ﬁwwwW=M“ i+ V04 ]
(1= @)1 —o—p)*™?
. 2¢(0 )+4ndu n n
i [ o2 ooy )+
+ |max{Ln, T}*™*'m { Iy Ivaoull duH ds).
(2.37)

Combining this, the assumption that limsup,, ., supcp, T]H@LSJh [} < 0o, and (2.24)
assures that

liminf sup [|X} — OFf|y < oo. (2.38)

=00 telo, T)
The assumption that O € C([0, T], H,) and (2.33) therefore prove that

liminf sup [[AX7][y, < oo. (2.39)

n=00 velo, T
This establishes Item (i). In the next step we observe that (2.28) yields that

lim sup y/(t) = 0. (2.40)
0

Moreover, note that the fact that ¥V r € [0,1],£ € (0, T) : [|(t(x — A))" e[| < €™ and
[|(t(c — A)) " (A0 —Idp)|[ ) <1 (cf, e.g., Lemma 11.36 in [23]) implies that for
all s € [0, T),t € (s, T] it holds that
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o4-0+¢)

lef

S( A esA||L

H_,,H,)

= 5'[|(s(1c — A)) Ve (A — 1dpy) [

< 5| (s — A)) e (A — el
+ 5|5 — A)) Ve (e — 1dpy) [

(2.41)
<ot K||(S( A)) A1 = A) 7 TIAT — Tdg) |y
+ 5" (el = 1)][(s(c — 4))“ e
< e (t—s)" 4 s (el — 1)
< max{1, T?} e™ (=% —1 4 (t —s)).
and
S e g,y = Sl (s( = A))(“+Q>eSA||L(H) < s'e™ < TheT. (2.42)

This together with (2.28) yields that

sup Srrote HesAH + sup ||€ _eSA”L(H—a»Hg)
5€(0,T) L He) te(s, T) [ (t—s)| (2.43)

< 2e™max{1, T°} < cc.

Combining this, (2.30), (2.40), and Item (i) in Corollary 8.4 in [3] (with (V,||-||,) =
(Ho |- r,)s - (Wl - llw) = (Ho [ - [,)s $=((0,T) St~ (H,Dvi—ev € H,) €
L(H-4 H,)), S=([0,T]3¢t— (H, Svisely e H,) € L(H,)), 0=0, ¢ =1y in the
notation of Corollary 8.4 in [3]) demonstrates that there exists a convex set J C [0, T]
with {0} & J such that there exists a unique continuous function X : ] — H, which sat-
isfies for all ¢t € J that

t

t
[ 1 Ol ds < o0 Xo= [ % ) a4, Gan
0 0

and
. 1
lm sup, -7 {(T—s) + ||Xs||HQ:| = 00. (2.45)

Next observe that Item (i) ensures that lim inf,.ccsup,;||X7||;;, < co. Lemma 2.3 (with
Vol -1lv) = (Hoo I - i, )> W llw) = (Heoo [ [[5r, ) =0+ §=

((0,T]2t—(H_,Dv—etveH,) EL(H_,,H,)), (Py),en=(H,2v—P,(v)E€H,), in
the notation of Lemma 2.3) hence shows that for all t €] it holds that
limsup sup || X —X?||Hg =0. (2.46)

n—00 50,1

This, in particular, implies that sup;||X[|; < co. Item (iii) in Corollary 8.4 in [3]
therefore assures that J = [0, T]. This together with (2.44) establishes Item (ii). Next
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observe that the fact that T € J and (2.46) prove Item (iii). The proof of Proposition 2.4
is thus completed. O

3. The main result: existence, uniqueness, and strong convergence

In this section, we accomplish in Theorem 3.2 global existence and uniqueness of the
solutions for certain class of SPDEs. Moreover, Theorem 3.2 shows an almost sure con-
vergence of the approximation scheme (3.4). The other result of this section is
Corollary 3.3, which establishes a strong convergence of the approximation scheme and
follows from Theorem 3.2 and [2, Theorem 3.5].

Setting 3.1. Let (H,(-.-);;, || - ||y) be a separable R-Hilbert space, let H C H be a non-
empty orthonormal basis of H, let 1,k € [0,00), let 4:H — R satisfy that infpepdy >
—min{#n,k}, let A:D(A) C H — H be the linear operator which satisfies D(A) = {v €
H: Y pew [ A(bv)yl* < 0o} and YV veEDA):Av =3, —(bv)yb, let
(Hp, () | |gr)» ¥ € R, be a family of interpolation spaces associated to x — A (see,
e.g., [22, Section 3.7]), let T,9,c € (0,00), 0,e €[0,00), 2 €0,1/2], ¢ €[0,1), y €
0,1), pel-ol-max{ny}), o€ (p1-max{o,y})N[0,1], x€ (0,min{(0—
p)/(1+0), (1= o= )/(1+20)}], let FeC(HuH )y (Pu)yy € L(H), let H, C
H,n € N, be finite subsets of H satisfying for all ne€ N,u€ H that P,(u) =
> vem, (bu)yb and liminf,, . inf({4, : b € H\H,} U {oo}) =00, let ¢, ®:H —
[0, 00) be functions such that for all n € N,v,w € P,(H) it holds that F(v) € H,

IFW) ||, < ce+IV[7), (3.1)
(v PoF(v+ )y < SOV + lllr — 4) V][ + D), (32)

and
1) = Fwlly, <0 (14|l + [l ) v = wllp,» (3.3)

let (hy),en € (0, T] satisfy that limsup,,_,  h, =0, let (Q,F,P) be a probability space,
let X":[0,T] x Q— Hyn €N, be stochastic processes, let O" : [0,T] x Q — H,,n €
N, and O:[0,T] x Q — H, be stochastic processes with continuous sample paths, let
X", 0" : [0, T] x Q — H,,n € N, be functions, and assume for all n € N, t € [0, T] that

t
n —s)A n n
Xt = JO Pn e(t ) H{H‘erj;,n”Hg+HO” HHgglhn‘iz} F(X\_SJh,,) dS + Ot’ (34)

Islpy
0"([0, T] x Q) C P,(H),0F = OF — [ =941 yOr ds, and P(X! = A") = 1.

Remark 3.2. The above setting can be interpreted in the following way. The operator A
is diagonal linear with respect to the orthonormal basis H and with the point spectrum
—A. The parameter T is the end time of the SDE we consider, the parameters ¢, 0, a,
and p represent a semi-global Lipschitz continuity of the nonlinearity F (see (3.3)), the
parameters ¢, €, and y are involved in the condition ensuring at most quadratic growth
of F (see (3.1)), the parameters ¢, # and the functions ¢, @ describe the coercivity-type
condition of F in (3.2), and the parameter ¢ determines the domain of F (F takes values
from H,). Moreover, we think of the stochastic process O as the noise part of the SDE
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we consider and we think of (0"), as certain approximations of this noise. Given all
these, the approximating scheme is constructed as follows. We take the projection map-
pings (P,),cy» the time discretizations (h,),.y, and the truncation parameter y to con-
struct the approximating processes (X"),  (and (X"),.y) as in (3.4). Additionally, we
consider the noise processes (0"),.y which satisfy below certain regularity conditions
(see (3.5)) and which we think of as spectral Galerkin approximations of the noise pro-
cess of a shifted version of the SDE we consider (with the shift parameter 7, the same
as in coercivity-type condition of F (3.2)).

Theorem 3.2 (Existence, uniqueness, and almost sure convergence). Assume Setting 3.1,
let Qg € {B € F : P(B) = 1}, and assume that for » € Qy it holds that

T
li;giorclfj o 1 ooy, @)+ 0zt d

(3.5)
; ||@:"<w>||z] dr < oo

and
limsup sup [|O/(w) — O} (w)|[y, = 0. (3.6)

m—0o0  te0, T]
Then
(i)  there exists an up-to-indistinguishability unique stochastic process X : [0, T] x

Q — H, with continuous sample paths which satisfies that for all t € [0, T] it
holds P-a.s. that

t
X, _J e =4 F(X,) ds+ O, (3.7)
0
and
(i)  there exists an event Q, € {B € F : P(B) = 1} such that for all » € €, it holds that
limsup sup ||Xi(w) — X}(w)]|y, = 0. (3.8)

n—oo  tel0, T]

Proof of Theorem 3.2 . Throughout this proof let Q; C Q be the set given by
Q=%N{weQ: (VmeN,se[0,T]: M () = ’[:Jhm(a)))} (3.9

and let X":[0,T] x Q@ — H,n € N, be the functions which satisfy for all n € N,t €
[0, T] that
t
X; —J Py e Ly <l0n,, <l FXly, ) ds+ O (3.10)

Observe that the assumption that V n € N,t € [0, T] : P(X} = A7) = 1 yields that

{oeq:(vmenseT: Xy (@) =47, (@)}eFr @)

hm

and
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P(V m e N,s € [0, T] X[y, = A )= 1. (3.12)

L
Combining this and (3.9) demonstrates that
Q, € {Be F:P(B)=1}. (3.13)

Next note that the fact that for all € [0, 1], # € [0, T] it holds that ||(¢(x — A))" || ) < €™
(cf, e.g., Lemma 11.36 in [23]) implies forall ¢ € [0,1 — o — o] that

SUPse(o, 7] (5(%8%) | |e$A | |L(H,1,HM))

( ) (3.14)
+ée+ S. K
= sup(, 1yl (s(k — A)) 7 eAHL(H) < e < oo,

Therefore, we obtain for all n € N,t € [0, T],e € [0,1 — ¢ — ) that

t
J (g, — P,
0

A
HQ) e HL(H,J(,HQ) ds

t
< L |1dm,,, — Pn|Hg+g||L(HQ+8,HQ) ||eSA||L(H,Z,H@+S) ds
t (3.15)

< ||(K — A)*S(IdH — P”)HL(H) JO o1 S_(Q+S+°‘) ds

e™ ||(x — A) ' (1dy — Pn)IIZ(H) A
B (1—9g—¢—a)

This together with the assumption that liminf, . inf({4, : b € H\H,} U {o0}) = 00
proves that

T
lim sup (J |[(1dp, — Pn|Hg)esA||L(Hing> ds) =0. (3.16)

n—00 0

Moreover, observe that the assumption that VneN,te€0,T],w € Q:0f(w) =
O w) — [y =)A= nO" () ds and the fact that V ¢ € [0, T] : ey < € (cf, egs
Lemma 11.36 in [23]) imply that for all n € N, ¢ € [0, T], ® € Q it holds that

|0} (@) = Of (o)]

H,
t

t
SJ 1Ay (IO ()], ds SJ eI [0 (o), ds
0 ¢ 0 ¢

(3.17)
T
<7 JO eI O1 ()|, ds < 0 T e sup,po 19/|OF ()],
Therefore, we obtain for all w € Q that
limsup sup [|O;(w)|ly,
n—oo  tef0, T]
<timsup ( sup [10}(0) ~O(@)lly, + swp [O{@)l) )

n—00 te[0, T] te[0, T)

< (n T ™+ 1)limsup sup |07 ()],

n—oo  te(0, T|
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Furthermore, note that the assumption that O : [0, T] x Q — H, has continuous sample
paths and (3.6) ensure that for all ® € Q, it holds that

limsup sup [|Of()][y,

n—oo  tel0, T]

<limsup sup ||Of(w) = Oi(@)][y, + sup [[O(e)

n—oo  tel0, 7] t€[0, T (3.19)
= sup [[O(@)][4, < oo
t€[0, T)
Combining this with (3.18) we obtain for all v € Q, that
limsup sup [|Of, 1)), ()]|]g, < oo. (3.20)
n—oo  tel0, T| ¢
The fact that H, C H continuously hence shows that for all w € Q; it holds that
limsup sup [|Of; ( )|y < oc. (3.21)
n—oo  te0, T
This, (3.16), and Proposition 2.4 (with O = ([0,T]Dt— Oi(w) € Hy), (O"),cn =
(0713 t— 0f(0) € Ho)yerr (07),en = ([0.T] 21— 0(0) € Ho)yer - (X") ey =

([0.T] 2t—X}(®) € Hy),eny
for all w € Q, it holds that

for w € Q in the notation of Proposition 2.4) assure that

liminf sup |[X7(w)|ly, < oo (3.22)

=00 telo, T)

and that there exists a unique function Y(w) € C([0, T], H,) which satisfies for all t €
[0,T] that [;|le"94F(Yy( @))|ly, ds < oo and Yy (o) = I e(t 4 F(Yy(w)) ds+ O(w).
Let X : [0, T] x Q — H, be the function which satisfies for all t € [0, T],» € Q that

Xy(w) = { i) oy (3.23)
O/(w) o gy
Observe that for all @ € Q it holds that
X(w) € c([0, T), H,). (3.24)
Moreover, note that for all t € [0, T], w € €, it holds that

t

xt<w>=j0 o9 F(X,()) ds + Oy(0). (3.25)

Furthermore, observe that (3.3) proves that for all r € [0,00),v,w € H, satisfying v # w
and |[v| + [|wl|, < it holds that

1E) = Flln, _ [ = wll,

HV_WHHg _||V_W||Hg

9 9
0 (1-+ W, + 1wll},)
(3.26)
0 (1+2r") < oco.

[lullg,
< lsupueHo\{O} W

Combining this, the fact that limsup, . [|Puly, [|p@,) =1 < 0o, (3.16), the assumption
that limsup,  h, =0, (3.25), (3.10), and (3.22) allows us to apply Lemma 2.3 (with
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Vol llv)=Hos| [l 5, (Wll lw)=H-wll[lg ), T=T, x=y J=I[0,T], F=F, S=
((0,T]2t— (H_y Sy et Ave€H,)€L(H_y,Hy)), a=0+0 (Py),cy =(Hy2v—P,(v) €
Hy)yens O=([0,T]3t—0i(w) € Hy), (O"),cy=([0.T]3t— O (0) €Hy) ey (Bn) pey =
(hn) pers X=([0,T]Dt—= X, () €H,), (Xpn),en=([0.T]Dt—X] (0) €H,),cy for @ €Qy
in the notation of Lemma 2.3) to obtain for all w € Q,; that

limsup sup ||X}(w)—Xi(w)|| =0. (3.27)

n—oo  tel0,T]

neN

This, in particular, implies that for all ¢t € [0, T|,w € Q; it holds that
lim sup |[X{(w) — Xi()]|y, = 0. (3.28)

n—oo

Moreover, note that Lemma 2.3 in [1] and the assumption that O":[0,T] x Q —
H,,n €N, are stochastic processes with continuous sample paths ensure that X”:
[0,T] x Q@ — Hy,,n €N, are stochastic processes with right-continuous sample paths.
This, (3.28), the fact that V ¢ € [0, T] :Xt|Q\Ql = Of|Q\Ql’ and the fact that Q, ¢ F
prove that X : [0,T] x Q — H, is a stochastic process. Combining this, the fact that
P(Q;) =1, (3.24), and (3.25) ensures X : [0, T| x Q — H, is a stochastic process with
continuous sample paths which satisfies that for all t € [0, T] it holds P-a.s. that

t
X, _J =4 F(X,) ds + Oy. (3.29)
0
In the next step let Z: [0, T] x Q — H, be another stochastic process with continuous
sample paths which satisfies that for all #€[0,7] it holds P-as. that Z, =
Jy =94 F(Z,) ds+ O,. This ensures that there exists an event Q, € {B € F : P(B) = 1}
such that for all t € [0, T], w € Q, it holds that

Z) = [ 4 Rz (o) dst 0 o). (.30
0
Combining this, (3.26), (3.25), (3.14), and, e.g., Corollary 6.1 in [3] (with (V,||-||,) =
(Ho [ ll,)> (Wl llw) = ool -l ), T=T, ~x=T, F=F xl =
(0,T]2t— X, (w) € Hy), x*=([0,T]Dt—Z(w) €H,), o0=([0,T]|Dt— Oiw) €
H,), S=((0,T) s+ e € L(H_,, H,)) for € Q; N, in the notation of Corollary
6.1 in [3]) demonstrates that for all ¢t € [0, T],w € Q; N, it holds that X;(w) = Z;(w).
This and the fact that Q; NQ, € {B € F : P(B) = 1} show that the stochastic processes
X and Z are indistinguishable. This and (3.29) establish Item (i). In the next step we
combine (3.10), (3.27), and the fact that V. n € N,t € [0, T], 0 € @, : X}(w) = X}(w) to
obtain that for all w € Q; it holds that

limsup sup [|X;(w) — X} (w)|[y, = 0. (3.31)

n—oo  tel0, T|

This and (3.13) establish Item (ii). The proof of Theorem 3.2 is thus completed. O

Corollary 3.3 (Strong convergence). Assume Setting 3.1, let p € [2,00), and assume that
lim sup,, _sup;cpo, nE[07[[};] < oo,

lim sup E[min{1, sup,o, 7/||0r — Ofl[y,}] = 0, (3.32)

n—o0
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and

T 1 \
lim pE“ b 1 oop,, )+ (00
n—oo 0

(3.33)
+ \|(9”||2P“P” du) dr| < oo.

Then

(i) there exists an up to indistinguishability unique stochastic process X : [0, T| x
Q — H, with continuous sample paths which satisfies that for all t € [0,T] it
holds P-a.s. that

t
X, —J =94 F(X,) ds+ O, (3.34)
0

(ii) it holds that X" :[0,T] x Q — H,y,n € N, are stochastic processes with right-
continuous sample paths and

lim sup E[min{1, sup, o 1y||X: — X{|[y, }] = 0, (3.35)

n—o0o

(iii) it holds that limsup,_ ., sup,c, 1 E[||X: |15 + [|X75] < oo, and
(iv) it holds for all q € (0,p) that limsup,_, . sup,, 1 E[[|X: — X4 =o.

Proof of Corollary 3.3. First, note that (3.32) implies there exists a strictly increasing
function k : N — N such that

ZE[min{l,supte[O’ /|0 — (9];<">||HQ}] < 0. (3.36)
n=1

Lemma 3.1 in [2] (with (Q,F,P)=(Q,F, IP’) E = C([0,T],H,),d = (C([0, T],H,) x
C([0, T}, Hy) 2 (x,) = supyepo, 77 [1x(8) = y(0)ll, € [0,00)), (Xn) e = (O), . Xo =
O in the notation of Lemma 3.1 in [2]) hence proves that

]P’(lim SUP,,_ o SUPyefo, 7| |Or — (’)t ") ||HQ = 0) =1. (3.37)

Next observe that (3.33) implies that

T Tp kin) )du
limsupE[J eL o (1+|2(O [(Jn) )|§+||©lr€(")||§1

o (3.38)
+IOT || Ok ||ii+2pﬂ du) dr} < o0.

This, in particular, yields that

2¢ @"“’) Ydu
P(liminfn_,ooj o, i+ o) 1+ 1ok
0 (3.39)

+ [y O[5 du} dr < oo) =1
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Combining this with (3.37) and Item (i) in Theorem 3.2 (with P, = Py, H, =
Hi(n) hn = By, X = X0, 0" = 0K, 0=0, X" = X", and 0" = O for n € N
in the notation of Theorem 3.2) assures that there exists an up-to-indistinguishability
unique stochastic process X : [0, T] x Q — H, with continuous sample paths which sat-
isfies that for all ¢ € [0, T] it holds P-a.s. that

t
X, :J =94 F(X,) ds + Oy. (3.40)
0
This establishes Item (i). Next note that the assumption that X", 0" : [0, T] x Q@ — H,,n €
N, are stochastic processes and (3.4) prove that for all n € N it holds that X" : [0, T| x Q —
H, is also a stochastic process. The assumption that O" : [0, T| x Q — H,,n € N, are continu-
ous, and, e.g., Lemma 2.2 in [1] therefore ensure that X" : [0, T] x Q — Hy,n € N, are sto-
chastic processes with right-continuous sample paths. Next observe that the fact that
HCH , =H"" and the fact that for all n € N it holds that P, € L(H) imply that there exist
P, € L(H_,H),n €N, such that for all v € H,n € N it holds that P,(v) = P,(v). Items
(i),(ii) and (iii) in Theorem 3.5 in [2] (with P, = P,,, n € N, in the notation of Theorem 3.5 in
[2]) therefore establish Items (ii), (iii), and (iv). The proof of Corollary 3.3 is thus completed.

4. Example: stochastic Burgers equations

In this section, we apply Corollary 3.3 to the stochastic Burgers equations with space-time white
noise. Throughout this section we use the following notation. For a set A € B(R) we denote by
24 : B(A) — [0, 00] the Lebesgue-Borel measure on A. For a measure space (Q, F, ), a meas-
urable space (S, S), aset R,and a functionf : & — Rwe denote by [f] 5 the set given by

[ﬂﬂ,s ={¢g:Q— S:gis F/S — measurable and

FJAcF:uA)=0 and {weQ:f(w)#g(w)} Al (4.1

We denote by (-): {Mz(o ) BR) € L°(Z0,1;R) : v € C((0,1),R)} — C((0,1),R) the
function which satisfies for all v € C((0,1),R) that [v] hoan BER) = V-

The following setting is a special case of Setting 3.1. In particular, we set the underlying
space H to be the space of all square-integrable functions over (0, 1) and the linear operator A
to be the Laplacian with Dirichlet boundary conditions multiplied by some positive constant.
Setting 4.1. Let ¢; € R, T,¢ € (0,00), kK € [0,00), a=1/2, p=1/8, y€ (3/4,7/8),
e€(1/81=7), =1, x€(0,(e=p)/(1+ )], let

(Ho b |- ) = (G 3R Y - i) (42)

let (e4),eny € H and (4y),,cn € (0,00) satisfy for all n € N that
e, = |(V2sin (nmx N } and A, = comn?, (4.3)
(V2sin ()], g
let A:D(A)CH—H be the linear operator which satisfies D(A)={ve€ H:
> ken 1Ak (e V)yl? < oo} and VveDA):Av="> 1oy — (e V)y ek let
(Hp, () || |gr,)s7 € R, be a family of interpolation spaces associated to k — A (see,

e.g., [22, Section 3.7]), let F : H,/s — H_,, satisfy for all v € H, /g that
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F(v) = a(v), (4.4)
let (Py),en € L(H) satisfy for all u € H,n € N that
Py(u) = (ecu)y e (4.5)
k=1

let (h,),en € (0, T] satisfy that limsup,, , h, =0, let &€ Hyp, let (QF,P) be a
probability space with a normal filtration (F¢),c(, 1, let (W), 1 be an Idy-cylindrical
(Q, ., P, (F1),epo, 1)-Wiener process, let X, 0", " : [0, T] x Q — P,(H),n €N, be sto-
chastic processes which satisfy for all n € N, t € [0, T] that ¥} = P, et &+ oy,

t
(O lp, 3y = J P, ™94 dw,, (4.6)
0
and

t
n __ n t—s)A . n _
Py =) + L P e Ly e, <) FX,) ds) =1 (47)

4.1. Properties of the nonlinearity

The following lemma shows that the function F in Setting 4.1 satisfies the elementary
property (3.1).

Lemma 4.2. Assume Setting 4.1 and let r € (3/4,00). Then it holds for all v € H,, that
F(v) € H and that

oN12
HEW e, < lal (3220 (400 7 ) ™) Iy < oo (48)

neN

Proof of Lemma 4.2. Throughout the proof let v € H;/,. Observe that, e.g., Lemma 4.5
in [24] ensures that F(v) € H. Hence, we obtain that

[(F(v). (< = A)™" u)y|

IFW)|l5r, = SuPuem (o}

[l 9)
[(02) (k= A) " u)y '
= |ci lsupueH\{O} T H
ul|y
Next note that for all u € H it holds that (xk — A)™" u € H, and
(k—A)" u= Z (K4 4n)" (wen)y en. (4.10)

neN

This ensures that for all 4 € H it holds that

(= A7 @) =3+ 2) 7wy <

neN

= Z(’H—Co  n) 7 (e, {(\/irm cos(n’nx))

neN x€(0, 1):| /1(0,1)’3(]R)

(4.11)
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The Cauchy-Schwarz inequality hence imply that for all u € H it holds that

H (=) u)'

< Z\/Enn (k+co 7 1) [{uen)yl

L>=(A0,1);R) neN

1/2 1/2
< (Zannz (k + ¢y nz)_zr) ! (Z(en,uﬁ{) /
neN neN
12
= (D2 (et @ ) ) jully
neN
(4.12)

Combining this with (4.9) yields that

(2, (< = 4) "))yl
[l

IEMl, < lal lsupueH\{O}

||| o\ M2
< et lsupueH\{o}m (2;}271'2”2 (k+c 7 n’) r) ||V2||L1(A(0,1);R)
ne

oN\1/2
=l (D 2w (ke 7 n2) ) I

neN

(4.13)

Moreover, observe that the fact that r>3/4 assures that
S en 2mn? (k4 ¢p m? n2) " < co. The proof of Lemma 4.2 is thus completed. O

4.2. Existence and uniqueness of the solution and strong convergence of the
approximation scheme

Corollary 4.3. Assume Setting 4.1 and let p € (0,00). Then there exists a unique stochas-
tic process X : [0, T| x Q — H, with continuous sample paths which satisfies for all t €
[0, T] that

t
IP’(J €094 F(X,)|ly, ds < oo) =1, (4.14)
0
that
t t
(Xile, 5y = [e“‘é +J e F(X,) ds} +J e aw,, (4.15)
’ 0 B,B(H) Jo
and that
limsup sup E[||X; — X7|[f] = 0. (4.16)

n—oo  tel0, T]

Proof of Corollary 4.3. Throughout this proof let g € [max{2,p},c0) be a real number,
let 0,c € (0,00) be the real numbers given by
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el
—-1/2 (Z0,1)5R)
0 = |cileo| SUP,eH, 4\ {0} i e

—A) Pl @17

and ¢ =|ci| (3,en 271 (K4 ¢ 7 n?) )2 and let ¢, ®: H; — [0,00) be the
functions which satisty for all v € H; that

2la)?
P(v) = max{ |C;| ,4}[1 + Sque(o,1)|‘_’(x)|2] (4.18)
and
O(v) = 2fer|? 4 max{2|c,[2/co, 4} 4
V) = max 0 1+ sup,c o, 1|v(x)] . (4.19)

Then note that Lemma 5.3 in [2] shows that for all v, w € H , it holds that F(v + w) € H
and that

(WE(v+w))y

2‘C1|2 2 2 3 2112
SmaX{ R V172 [5UP e o, 1) W) [F] + = 1 (—4) 2],

4

2 (4.20)

2‘C1|

+ max{ ,4} [1 + Supxe(o)1>|&(x)|max{2|61\ /C0,4}]

Co
< GO +3 1(=4) VI, + ()

Moreover, observe that Lemma 5.4 in [2] demonstrates that for all v,w € H, s it holds
that

el
-1/2 (Z0,1);R)
IE(w) = F(w)lly_,, < leillcol / SupueHl/g\{O}m

(LA + 11=4) Wil ) 11(=4) 0 = W)l
< O+ Wil + 19l DIV = Wl
(4.21)

Furthermore, note that Lemma 4.2 assures that for all v € H,, it holds that F(v) € H
and

IEW)ly, < eIVl (4.22)

In addition, observe that Proposition 4.6 in [2] (with p=g in the notation of
Proposition 4.6 in [2]) proves that there exist a real number 5 € [0,00) and stochastic
processes O:[0,T] x Q — H,, Q", Q" : [0, T| x Q — P,(H),n € N, with continuous
sample paths which satisfy for all n €N, € [0,T] that [Oip gy = fot =94 dw,,
[Qﬂ]P’,B(H) — f()t P, p(t=9)A dw., Q:’ _ Q? + PnetAi _ f()t e(t=5)(A=1) W(Q’: + PneSAf)dS,

IP’(lim sup sup [|(Os + &) — (QF + Pue )|y, = o) —1, (4.23)

m—o0 50, T)
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that

T T
imsap (= [ exp ([ 0 020, ) max{ ot o271,

m—0o0 r

T (4.24)

[, er s puenclt™ auf |+ swp BlIR7IL]) <o
0 ) s€[0, T

and that
b (-9a
n __ t—s n
]P><Xt — JO Pn e I{H'X&h ||HQ+HQTSM +Pne{thnACvHHQ§‘hnlfz} F( I_thn) dS
" " (4.25)

+ P+ Q7> =1

Combining this with (4.20)-(4.22), as well as Item (i) and Item (iv) in Corollary 3.3
(with HH={e, € H: ke N}, H,={escH: ke {l,...n—1n}}, =1, e=0, ¢ =
3/4, a=1/2, p=1/8,0=9, O"=([0,T] x Q3 (t,w)— (9} (w) + P,e"*&) € H,),
0= ([0,T] x Q3 (t,w) — (Oy(w) + €4¢) € Hy), 0"=([0,T] x Q3 (t,w)— Q' (w) €H,),
neN, p=gq in the notation of Corollary 3.3) we obtain that for all t€[0,T] Equations
(4.14) and (4.15) hold and that for all u€(0,q) it holds that

limsup sup E[||X;—X7||;;] =0. (4.26)

n—0o0 tel0,T]

This, in particular, establishes (4.16). The proof of Corollary 4.3 is thus completed. O
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