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ABSTRACT
Model-derived relationships between chlorophyll a (Chl-a) and nutrients and temperature have
fundamental implications for understanding complex interactions among water quality measures
used for lake classification, yet accuracy comparisons of different approaches are scarce. Here,
we (1) compared Chl-a model performances across linear and nonlinear statistical approaches;
(2) evaluated single and combined effects of nutrients, depth, and temperature as lake surface
water temperature (LSWT) or altitude on Chl-a; and (3) investigated the reliability of the best
water quality model across 13 lakes from perialpine and central Balkan mountain regions. Chl-a
was modelled using in situ water quality data from 157 European lakes; elevation data and LSWT
in situ data were complemented by remote sensing measurements. Nonlinear approaches
performed better, implying complex relationships between Chl-a and the explanatory variables.
Boosted regression trees, as the best performing approach, accommodated interactions among
predictor variables. Chl-a–nutrient relationships were characterized by sigmoidal curves, with
total phosphorus having the largest explanatory power for our study region. In comparison with
LSWT, utilization of altitude, the often-used temperature surrogate, led to different influence
directions but similar predictive performances. These results support utilizing altitude in models
for Chl-a predictions. Compared to Chl-a observations, Chl-a predictions of the best performing
approach for mountain lakes (oligotrophic–eutrophic) led to minor differences in trophic state
categorizations. Our findings suggest that both models with LSWT and altitude are appropriate
for water quality predictions of lakes in mountain regions and emphasize the importance of
incorporating interactions among variables when facing lake management challenges.
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Introduction

Despite water quality improvements in many European
lakes, eutrophication is still the most serious threat to
lake water quality (Poikane et al. 2014). Eutrophication
and water quality status are often evaluated by using
phytoplankton biomass as one indicator. Specifically,
chlorophyll a (Chl-a) is used as a proxy of primary pro-
ducer biomass (cf. Kasprzak et al. 2008) and for defining
ecologically relevant lake water quality targets (Poikane
et al. 2014). Understanding Chl-a–total nitrogen (TN)
and Chl-a–total phosphorus (TP) relationships is critical
to understanding lake ecosystem health and manage-
ment (Rapport et al. 1998). Studies on Chl-a–nutrient

relationships have a long history (Sakamoto 1966, Dillon
and Rigler 1974) and emphasize a need for accurate
models. Most empirical studies have shown TP to be a
better predictor of Chl-a than TN, supporting the view
that phosphorus more frequently limits the production
of phytoplankton biomass in lakes (cf. Abell et al.
2012), but TN may colimit phytoplankton biomass
under certain conditions (Elser et al. 2007, Bracken
et al. 2015). Also, McCauley et al. (1989) found a signifi-
cant interaction term between TN and TP when predict-
ing Chl-a, in which TN has a large influence on Chl-a at
high TP. Filstrup and Downing (2017) found a similar
importance of TN on predicting Chl-a depending on
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TP concentration, emphasizing modelling approaches
that can incorporate interactions among predictor
variables.

Most previous studies have documented relationships
between Chl-a and TN or TP (Phillips et al. 2008, Abell
et al. 2012) with different linear approaches on log-trans-
formed axes ranging from ordinary least squares (Bach-
mann et al. 2012) to panel data models (Magumba et al.
2014). Linear methods can be limited in describing com-
plex interactions between exogenous and endogenous
variables because only one influence direction for each
variable is possible. Nonlinear methods, however, can
account for varying responses along environmental gra-
dients. Few studies have considered nonlinear modelling
approaches. For example, McCauley et al. (1989) noted
sigmoidal Chl-a–TP relationships by using nonlinear
regression, a finding subsequently supported by Filstrup
et al. (2014). Furthermore, Hollister et al. (2016) mod-
elled the trophic state with random forest (Breiman
2001), and Lu et al. (2016) developed an artificial neural
network model (e.g., McCulloch and Pitts 1943) to pre-
dict Chl-a for a lake in the United States. Although the
tendency to model these relationships by using nonlinear
approaches is growing, many questions remain regard-
ing model form and the accuracy of predictions, espe-
cially across mountain regions.

Temperature can strongly influence Chl-a concentra-
tions observed at given nutrient concentrations (e.g.,
Kraemer et al. 2017); however, in some cases water qual-
ity–temperature relationships are inferred from lake sur-
face water temperature (LSWT) surrogates. Magumba
et al. (2014), for example, used altitude to control for
the effect of temperature on the Chl-a concentration.
Comparisons between Chl-a–altitude and Chl-a–LSWT
relationships are insufficiently explored. Thus, the Chl-
a–temperature versus Chl-a–altitude relationships need
to be further investigated. The latter is particularly
important for mountain lakes and lakes in the foothills,
which are regarded as highly susceptible to environmen-
tal perturbations such as warming (Huber et al. 2005,
Battarbee et al. 2009, Markovic et al. 2017). Preserving
and improving the ecosystem services provided by
lakes requires information on the level of ongoing
changes as well as scenarios to estimate possible future
developments.

Here, we investigated Chl-a concentrations of Euro-
pean lakes across a broad trophic gradient (from ultra-
oligotrophic to hypertrophic) using linear and nonlinear
statistical modelling approaches: panel data models
(PDMs), generalized additive models (GAMs), and
boosted regression trees (BRTs). Different statistical
approaches ensure the consistency of resulting parame-
terized relationships. In addition to in situ

measurements of the nutrients (TN, TP) and lake mor-
phometric parameters (maximum depth), Chl-a models
included LSWT in situ measurements supplemented by
remote sensing-based LSWT data (MacCallum and
Merchant 2013, Riffler et al. 2015). Our goal was to
identify the statistical approach and variable set yielding
the best model performance. For the best performing
statistical method, water quality drivers were identified
by calculating the variable importance. Comparisons
of predicted and observed Chl-a concentrations were
used to test the prediction ability of the best performing
statistical method for perialpine and central Balkan
mountain lakes. In summary, the objectives of this
study were to (1) model Chl-a concentration in lakes
(with the focus on performance comparisons across
multiple statistical models and on the identification of
water quality drivers), (2) investigate the Chl-a nutrient
relationships and Chl-a temperature relationships
inferred from altitude and LSWT using multivariate
modelling, and (3) test the best performing model for
predicting the trophic state of lakes in European moun-
tain regions.

Methods

Water quality data

In situ observations of physical and chemical water qual-
ity variables were mainly obtained from the Waterbase-
Lakes database provided by the European Environment
Agency (EEA; http://www.eea.europa.eu/data-and-
maps/data/waterbase-lakes-10, accessed 26 April 2017).
Waterbase contains timely, reliable, and policy-relevant
data collected from European Economic Area member
countries through the Water Information System for
Europe (WISE) data collection process managed by the
EEA (see http://dd.eionet.europa.eu/datasets/3163 for
more details). Because the number of observations for
the aggregation period “summer” was low in the Water-
base-Lakes dataset, we focused on the annual mean val-
ues between 1989 and 2012 for Chl-a, TP, TN, Secchi
depth, and LSWT. Annual mean values resulting from
an in situ aggregation length <10 months were excluded
from the analyses because of their high uncertainty. For
lakes with multiple monitoring stations, only stations
with the longest series of observations of the parameters
of interest were included. Lake maximum depth (Max-
Depth) and surface elevation (altitude) were considered
as static parameters. Information on altitude gathered
from Google Earth was added if lake observations were
missing altitude data. For Lake Ohrid, we additionally
used water quality data obtained from the Hydro-
biological Institute in Ohrid.
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Because the LSWTofmany lakeswas notmonitored or
irregularly monitored, remote sensing data were used to
complement and extend traditional lake sampling meth-
ods, facilitating the understanding of recent trends and
the current state of lake ecosystems (Peterson and Parker
1998, Turner et al. 2003, McPhearson andWallace 2008).
Specifically, in situ observations of LSWT were comple-
mented by the satellite-based LSWT data derived from
the Riffler et al. (2015) dataset and from the ARC-Lake
(ATSR Reprocessing for Climate Lake Surface Tempera-
ture) dataset (http://www.laketemp.net/home/, accessed
April 2017). The data are mainly based on Advanced
Along Track Scanning Radiometers (AATSRs) and the
Advanced Very High Resolution Radiometer (AVHRR)
and were most abundant from 1989 to 2013.

The dataset used to calibrate the Chl-a models
included 721 sets of annual mean values of the parame-
ters Chl-a, TP, TN, and LSWT (Table 1). The dataset (n
= 721) covered 157 lakes with various trophic states.
Consequently, lakes with low Chl-a (min = 0.4 µg/L),
TN (min = 50 µg/L), and TP (min = 2 µg/L) concentra-
tions as well as lakes with high Chl-a concentrations
(>500 μg/L) were included. The highest amount of
annual mean data was available inter alia for Lake Ves-
terborg (24 yr). The lakes in the dataset were distributed
across Europe, ranging from southern to northern
(approximately 37°N to 60°N) and western to eastern
(approximately 9°W to 29°E) Europe (Fig. 1a).

Chlorophyll a modelling

Chl-a was modelled using 2 different variable sets, each
including TN, TP, TN:TP (by weight), and MaxDepth,
with all variables except TN:TP log10-transformed
prior to analysis (hereafter log). To identify variations
resulting from the utilization of LSWT and LSWT surro-
gates, we extended the basic variable set with either
LSWT or altitude.

The variable selection for modelling Chl-a was based
on previous studies finding that TP and TN influence

Chl-a concentration, either in isolation or together
(Gunkel and Casallas 2002, Abell et al. 2012). Further-
more, TN:TP was included for the identification of lim-
iting nutrients (Bachmann et al. 2003) and its influence
on Chl-a nutrient relationships (Prairie et al. 1989).
The utilization of MaxDepth accounts for the residence
time of water (Kalff 2002, Londe et al. 2016) and the ver-
tically mixed proportion of the water column, which can
influence Chl-a nutrient relationships (e.g., Weithoff
et al. 2000). Increasing temperature has been demon-
strated to positively affect Chl-a concentration, yet tem-
perature surrogates are generally used (e.g., Carvalho
et al. 2009). Although water transparency influences a
wide range of biogeochemical processes, Secchi depth
was not included as a predictor because of the high influ-
ence of Chl-a concentration on water transparency.

Relationships between Chl-a and the 2 investigated
variable sets were parameterized with 3 different model-
ling approaches: PDMs, GAMs, and BRTs. The statistical
approaches are available in the R packages plm (PDM;
Croissant and Millo 2008), mgcv (GAM; Wood 2011),
and gbm (BRT; Ridgeway 2017). PDMs account for

Figure 1. Locations of (a) the 157 European lakes used for mod-
elling water quality and (b) the 13 perialpine and central Balkan
mountain lakes including trophic states. For the 13 selected lakes
in (b) the trophic state assessment was based on combinations of
annually averaged values of Chl-a, TP, and Secchi depth from
2005 to 2008.

Table 1. Summary statistics of Chl-a, the explanatory variables,
and geographical characteristics of the 157 European lakes in
the modelling dataset.

Variable Unit Minimum Mean Maximum
Standard
deviation

Chl-a µg/L 0.4 26.5 551.7 48.13
TN mg/L 0.05 1.72 8.17 1.37
TP mg/L 0.002 0.08 0.59 0.09
TN:TP (by weight) 0.59 42.11 316.67 43.66
MaxDepth m 1 37.8 410 70.50
LSWT °C 4.4 11.0 22.7 2.59
Altitude m 0 145.5 2432 275.53
Lon °E −8.7 11.6 28.6 4.27
Lat °N 37.7 53.1 59.5 4.43
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possible linear relationships. Three PDM types were
used: (1) fixed individual effects, (2) random individual
effects, and (3) pooled. Therefore, we compared the per-
formance of these PDM types for the 2 variable sets and
used the best performing PDM for the respective variable
set for further analyses. For the final PDMs, the standard
errors of the coefficients were computed with a robust
covariance matrix estimator to address potential hetero-
scedasticity (Long and Ervin 2000, Greene 2012). In con-
trast to PDMs, GAMs can account for nonlinear
relationships between the explanatory and dependent
variables and consequently do not assume a linear influ-
ence of each explanatory variable on Chl-a. The third
approach (BRT) takes into account the possibility of rela-
tionships among the exogenous variables. BRTs are non-
parametric and able to express nonlinear relationships
and interactions between predictors based on the struc-
ture of decision trees (Elith et al. 2008). The single
trees of the BRT model are determined successively by
fitting the residuals at each step. For this procedure, 4
parameters in the BRT model are defined manually:
the learning rate (lr) defines the contribution of each
tree to the whole model, tree complexity (tc) indicates
the final number of nodes, bag fraction (bf) introduces
randomness into the model, and (nt) represents the
number of trees. We determined nt for different combi-
nations of lr, tc, and bf with the R function gbm.step of
the R package dismo (Hijmans et al. 2016). Following
Elith et al. (2008), combinations leading to fewer than
the recommended optimum of at least 1000 trees were
excluded from further examination. Subsequently, the
4 parameters yielding the smallest average testing mean
squared error (MSE), determined by randomly dividing
the dataset 10 times into a calibration (80%) and a testing
dataset (20%), were set as optimal model values. The cal-
ibrated BRT model can be viewed as a sum of nt trees,
each multiplied by lr, and including variable interactions
if tc > 1, whereas bf represents the random fraction of the
data used to propose the next tree.

Determination of the best performing approach was
based on indices that compare predicted and observed
Chl-a values; that is, the fraction of variation explained
(R2) and root mean squared error (RMSE). Standard
model selection criteria, such as the Akaike information
criterion (AIC), are unsuitable for nonparametric mod-
els. Here, the performance evaluation was conducted
via bootstrapping, with random data splitting into cali-
bration (80%) and validation (20%) datasets, repeated
100 times. Based on the bootstrapping data samples,
the mean R2 and RMSE from the calibration and the val-
idation dataset were assessed. The model resulting in the
highest validation mean R2 and lowest mean RMSE is
hereafter referred to as the “best performing approach.”

For all models, we identified the influence direction
(partial dependence curves) of each explanatory variable,
whereas the variable importance and the multidimen-
sional partial dependence plots were computed only for
the best performing approach. The influence direction
(partial dependence) for nonlinear models is depicted
as a function of an individual explanatory variable dis-
playing the response variable while all remaining vari-
ables are either fixed or kept at their mean value. The
variable importance for BRTs is based on the number
of selections for splitting, weighted by the squared
improvement to the model as a result of each split, and
averaged over all trees (Friedman and Meulman 2003).
Uncertainty estimation additionally included testing
the variable importance accuracy by computing the aver-
age variable importance from 100 repetitions with the
calibration dataset for the best performing approach.
The importance of each explanatory variable for the
best performing approach was used to identify Chl-a
concentration drivers. After identifying the variables
with the highest importance, we additionally investigated
multidimensional partial dependence plots by using the
gbm.plot function integrated in the R-package gbm (see
also Friedman and Meulman 2003, Friedman and
Popescu 2008, Lampa et al. 2014).

Predicting chlorophyll a concentration in
perialpine and central Balkan mountain lakes

Our study included major large lakes located in or near
the European Alps (cf. Riffler et al. 2015) and 2 major
freshwater biodiversity hotspots, Balkan lakes Ohrid
and Prespa (Fig. 1b), each with significantly different
morphometric and trophic characteristics. The surface
areas varied from 29.8 km2 (Lake Brienz) to 369.9 km2

(Lake Garda), with maximum depths ranging from
73 m (Lake Chiem) to >400 m (Lake Como;
Supplemental Table S1). The trophic status spanned
from oligotrophic to meso-eutrophic (Table 2). Specifi-
cally, 4 lakes were classified as oligotrophic (Brienz,
Ohrid, Starnberg, Thun), 4 as oligo-mesotrophic (Biel,
Como, Garda, and Maggiore), 3 as mesotrophic
(Ammer, Chiem, and Zurich), and 2 as meso-eutrophic
(Iseo and Prespa). Lake selection was guided by the avail-
ability of in situ water quality observations and satellite-
based lake surface water temperature data.

To evaluate the prediction ability for perialpine and
central Balkan mountain lakes, we predicted Chl-a and
the trophic state lake-by-lake for the 13 lakes in the mod-
elling dataset with the best performing approach. For the
Chl-a prediction, each respective lake was excluded
beforehand in the model calibration. Subsequently, the
Chl-a prediction was assessed by comparing predicted
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and observed trophic states for 2005–2008 and used to
calculate the RMSE.

Results

Chlorophyll a modelling

Log(Chl-a) concentration was positively related to
log(TP) (R2 = 0.64, p < 0.001) and log(TN) (R2 = 0.40,
p < 0.001) concentration (Fig. 2a–b). Values of log(TN)
and log(TP) were positively correlated (R2 = 0.43, p <
0.001; Fig. 2c), but LSWT was not significantly correlated
with log(Chl-a) (Fig. 2d).

Among the studied PDMs (fixed individual effects,
random individual effects, and pooled), adjusted R2

was highest for the pooled modelling data
(Supplemental Table S2). Therefore, we continued our
analysis using the pooled data without including lake
specific individual effects. For both variable sets, the
coefficients, and thus influence directions, of the pooled
data model showed significant positive influences of TN
and TP on Chl-a, whereas MaxDepth had a significant
negative influence (Supplemental Table S3). For individ-
ual variable sets, altitude had a significant negative influ-
ence on Chl-a, whereas LSWT had no significant effect
(Supplemental Table S3).

In general, all models had moderate to good mean R2

validation (Table 3). Compared to the model using
LSWT, the use of altitude as an LSWT surrogate resulted
in marginal improvement of validation mean R2 and
RMSE by 0.02 and 0.01 maximum, respectively. Further-
more, with a mean validation R2 of 0.82–0.84 and a mean
validation RMSE of 0.23–0.24 for the LSWT and altitude
models, BRTs emerged as the best performing approach
(corresponding BRT model parameter specifications in
Supplemental Table S4). The lowest performance was
attributed to PDMs, suggesting that using nonlinear

models and models that allow interactions among exo-
genous variables improve the prediction modelling accu-
racy of Chl-a. The greatest differences between the
summary statistics for the calibration and the validation
samples were found in BRTs.

Overall, the partial dependence curves (i.e., influence
directions) for the 2 best performing approaches, BRTs
(Fig. 3) and GAMs (Supplemental Fig. S1), indicated
similar relationships between Chl-a and the explanatory
variables. However, the uncertainty of the GAM-based
estimates increased near extreme predictor values. The
relationship between TN and Chl-a in BRT models was
nonlinear and showed a slight increase of Chl-a with
increasing TN concentration until a peak was reached
at log(TN) = 0.4 (TN = 2.5 mg/L; Fig. 3). Chl-a and TP
displayed a sigmoidal relationship with an acceleration
of the positive slope at log(TP) = −1.9 (TP = 0.013 mg/L)
and a deceleration at around log(TP) = −1.3 (TP =
0.05 mg/L; Fig. 3). The partial dependence curve describ-
ing the influence direction for TN:TP showed a slight
decrease with increasing TN:TP. For TN:TP ratios
above∼170 (by weight), no particular influence direction
was observed. However, GAMs identified a strictly neg-
ative relationship for TN:TP with increasing uncertainty
for greater TN:TP ratios (Supplemental Fig. S1). For
MaxDepth, both GAM and BRT suggested a positive
influence until log(MaxDepth) = 0.6 (MaxDepth ∼4 m)
and a negative influence afterward (Fig. 3, Supplemental
Fig. S1). Note that lakes with a maximum depth > 100 m
(log(MaxDepth) > 2) were rare in the modelling dataset,
implying influence directions with higher uncertainty
(Supplemental Fig. S1). Similarly, both GAMs and BRTs
identified a nonlinear interaction between LSWT and
Chl-a (Fig. 3, Supplemental Fig. S1). The BRT models
showed an alternating influence direction for LSWT with
a slight negative tendency followed by an increase from
16 °C until 20 °C (Fig. 3). The BRT-based Chl-a altitude

Table 2. Organisation for Economic Co-operation and Development (OECD) lake classification. The classification of the trophic status
was conducted following OECD fixed boundary recommendations (Premazzi and Chiaudani 1992). Chlorophyll a (Chl-a), total
phosphorus (TP), and Secchi depth values represent the minimum and maximum of the annual averages based on observations
collected between 2005 and 2008. Missing required water quality parameters are represented by —.

Lake
Chl-a
(µg/L)

TP
(mg/L)

Secchi
depth (m) Trophic state

Ammer 3.22–4.29 0.008–0.008 4.0–4.0 mesotrophic
Biel 1.00–1.95 0.015–0.017 — oligo-mesotrophic
Brienz 0.55–0.93 0.004–0.009 — oligotrophic
Chiem 4.42–4.60 0.008–0.011 3.7–4.8 mesotrophic
Como 1.60–7.20 0.005–0.026 4.2–12.2 oligo-mesotrophic
Garda 1.69–3.75 0.019–0.030 6.2–12.5 oligo-mesotrophic
Iseo 2.73–6.35 0.051–0.099 4.4–5.4 meso-eutrophic
Maggiore 0.83–4.67 0.003–0.014 4.5–10.6 oligo-mesotrophic
Ohrid 0.53 0.008 — oligotrophic
Prespa 4.87–7.97 0.044–0.060 — meso-eutrophic
Starnberg 1.83–1.91 0.006–0.006 5.9–7.0 oligotrophic
Thun 1.15–1.65 0.003–0.006 — oligotrophic
Zurich 4.68–6.33 0.034–0.035 — mesotrophic
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relationship showed a decrease in Chl-a concentration
with increasing altitude (Fig. 3) while GAM showed
more variation in the Chl-a–altitude relationship,
accompanied by increasing uncertainty for lakes with
an altitude above ∼700 m (Supplemental Fig. S1).

Because validation and calibration of the best per-
forming BRT models confirmed nearly identical results
for variable importance (Table 4, Supplemental Table
S5), we considered the following results from the cali-
bration with the whole dataset (Table 4). TP seemed
to have the strongest influence (>50%) on Chl-a

concentration in European lakes for the BRT LSWT
and altitude models (Table 4). Lake characteristic Max-
Depth (26.8% and 22.3% for the LSWT and altitude
model, respectively) was identified as the second most
important variable, followed by TN (9.2%) for the
LSWT and altitude (15.2%) for the altitude model. TN
(7.8%) had an even lower variable importance in the
altitude model than the LSWT model, but LSWT had
a calculated variable importance of 5.8%. Both BRT
models assigned TN:TP the smallest variable impor-
tance (3–4%).

Figure 2. Bivariate scatterplots of (a) log(Chl-a) and log(TP), (b) log(Chl-a) and log(TN), (c) log(TN) and log(TP), (d) log(Chl-a) and LSWT
(°C) and the corresponding R2 and p-value for significant relationships only.
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Two-dimensional (2-D) partial dependence plots
were considered for combinations of the variable with
the highest variable importance (TP) and the remaining

predictor variables. For the same variable combinations,
the BRT LSWT and altitude model yielded similar 2-D
partial dependence plots (Fig. 4, Supplemental Fig. S2).

Table 3. Summary statistics of the predictive accuracy of predictions of PDMs, GAMs, and BRTs including the mean R2 and mean RMSE
(for log-transformed values) for the calibration (80%) and validation dataset (20%). The validation was conducted by bootstrapping
100 times. Predictive accuracy was determined for the calibration (80%) and validation dataset (20%). Afterward, averages of the R2

and RMSE were calculated.

Method Model

Calibration Validation

Mean R2 Mean RMSE Mean R2 Mean RMSE

PDM LSWT variable set 0.72 0.29 0.72 0.30
Altitude variable set 0.73 0.30 0.72 0.30

GAM LSWT variable set 0.79 0.26 0.76 0.28
Altitude variable set 0.81 0.25 0.77 0.28

BRT LSWT variable set 0.92 0.15 0.82 0.24
Altitude variable set 0.92 0.17 0.84 0.23

Figure 3. Smoothed partial dependence curves of each exogenous variable for the 2 BRT models. Log(Chl-a) is depicted as a function of
(a) log(TN), (b) log(TP), (c) TN:TP, (d) log(MaxDepth), (e) LSWT (°C), and (f) altitude (m) while all remaining variables are kept at their
mean values.
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The combination of the 2 variables with the highest cal-
culated variable importance (TP and MaxDepth) sug-
gested a high Chl-a concentration for lakes with higher
TP concentrations (>0.1 mg/L) and lower maximum
depth (2–4 m; Fig. 4a, Supplemental Fig. S2a). With
increasing maximum depth, the maximum Chl-a con-
centration decreased for a given TP concentration. The
sigmoidal structure of the dependence curve and the
magnitude of change along the nutrient gradient is

Table 4. Relative variable importance (as % of total) resulting
from the calibration of BRT models with the whole dataset.

Model

BRT

LSWT variable set Altitude variable set

Variable log(TN) 9.2% 7.8%
log(TP) 53.9% 51.4%
TN:TP 4.3% 3.3%
log(MaxDepth) 26.8% 22.3%
LSWT 5.8% —
Altitude — 15.2%

Figure 4. Two-dimensional partial dependence plots for combinations of TP and each remaining exogenous variable for the BRT LSWT
model. Depicted is log(Chl-a) as a function of (a) log(TP) and log(MaxDepth), (b) log(TP) and log(TN), (c) log(TP) and LSWT (°C), and
(d) log(TP) and TN:TP, accounting for the averaged effects of the other variables.
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similar regardless of depth; however, the Chl-a concen-
tration shifted to higher values at low lake depths
(Fig. 4a). Furthermore, increases in nutrient loadings
were accompanied by increases in Chl-a (Fig. 4b,
Supplemental Fig. S2b), displaying high Chl-a concen-
tration resulting from the combination of high TN and
TP concentrations, with rising TN having a slightly
stronger effect if TP was already high. However, a high
TN and low TP concentration was connected to a nota-
bly lower Chl-a concentration than vice versa. Variable
combinations with variables characterized by a lower
computed variable importance (i.e., TP and LSWT, TP
and altitude, or TP and TN:TP) seemed to have no
clear, discernible trend (Fig. 4c–d, Supplemental Fig.
S2c–d). For TP and LSWT and TP and TN:TP, the
2-D partial dependence plots were mainly driven by
the sigmoidal structure manifested by TP, with no strong
influence of the second variable on the Chl-a concentra-
tion. For TP and altitude, however, lakes with high TP
concentration at lower elevations seemed to have a pos-
itive effect on Chl-a (Supplemental Fig. S2c).

Three-dimensional partial dependence plots visualizing
3-way variable interactions of TN, TP, and MaxDepth in
the BRT LSWT and altitude model showed high Chl-a
concentrations for lakes with low maximum depths com-
bined with high TN and TP concentrations (Supplemental
Fig. S3, S4). As the maximum depth increased, the maxi-
mum Chl-a concentration decreased. The maximum
Chl-a concentration (∼log(Chl-a) = 1.1, Chl-a ∼ 13 μg/L)
in lakes deeper than log(MaxDepth) = 1.3, MaxDepth
∼ 20 m, was only reached with a combination of high TN
and TP concentrations (i.e., log(TN) > 0.3, TN ∼ 2 mg/L
and log(TP) > −1.0, TP ∼ 0.1 mg/L, respectively). In regard
to the relationships between the temperature variables
and nutrients, the 3-way interactions among TN, TP, and
LSWT as well as TN, TP, and altitude did not vary along
the respective gradients of the temperature variables
(Supplemental Fig. S5, S6).

Predicting chlorophyll a concentration in
perialpine and central Balkan mountain lakes

For lakes in European mountain regions, the best per-
forming approach, BRTs, was used to predict Chl-a con-
centration and classify the resultant predictions into
trophic states. Specifically, the prediction accuracy of
the BRTs was evaluated by calculating the RMSE
(μg/L) and comparing predicted and observed trophic
states for 13 selected lakes. Differences in the average
RMSE between the LSWT and altitude models were mar-
ginal, with values of 1.76 and 1.62 μg/L, respectively
(Supplemental Table S6). Maximum RMSE was observed
for Lake Iseo with the LSWT variable set (2.74 μg/L). In

addition, for Lake Iseo, the RMSE difference between the
2 variable sets was largest (2.74 μg/L − 1.23 μg/L =
1.51 μg/L); however, for the remaining lakes the differ-
ence was <0.38 μg/L. Overall, RMSE for Lakes Starnberg
and Thun was lowest (0.57–0.71 μg/L). Note that RMSE
for Lake Prespa could not be calculated because more
than one observation/prediction for the calculation is
needed.

In comparison with the respective annual mean Chl-a
values, varying overestimations and underestimations of
Chl-a concentrations were present across the lakes
(Table 5) but only led to minor or no variations in the
trophic state assessment for the period 2005–2008,
including TP and Secchi depth for the classification.
For 10 of the 13 lakes, the predicted trophic state agreed
with the observed water quality status. Only for Lake Biel
was the observed trophic state underestimated by the
prediction (oligo-mesotrophic vs. mesotrophic), whereas
it was overestimated for Lakes Ammer and Chiem
(mesotrophic vs. oligo-mesotrophic; Table 5).

Discussion

Chlorophyll a modelling

BRTs resulted in the overall best performance in model-
ling water quality for both datasets. Therefore, further
investigations ofChl-anutrient and temperature relation-
ships and predictions for lakes from mountain regions
were based on the results of the gradient boosted model.
Because the tree complexity was >1 in both the BRT
LSWT and altitude models, variable interactions were
fitted in our water quality models (Elith et al. 2008).
Thus, we were able to examine multidimensional partial
dependence plots, which reflect the different interactions
of 2 or more predictor variables (Friedman andMeulman
2003) and allow study of the detailed nature of interaction
effects (Friedman and Popescu 2008).

In general, the computed variable importance (see
Elith et al. 2008) as an indicator of the explanatory
power can be considered a determinant of the influence
extent displayed by the partial dependence plots (i.e.,
greater changes in Chl-a are expected if changes of
more important variables are present). As such, for the
most important variable, TP (∼53%), we observed a sig-
moidal Chl-a–TP relationship, indicating increasing
Chl-a concentrations for increasing TP until an upper
Chl-a maximum was reached (Filstrup et al. 2014).
Multidimensional partial dependence plots emphasized
the computed variable importance and dominance of
TP in the variable interactions by showing greater
changes in Chl-a concentration for increases in TP com-
pared to the other variables considered. However, all
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interaction analyses showed higher Chl-a concentrations
when TN and TP concentration were high. The influence
of TN (∼8%) could be characterized by smaller expected
changes in Chl-a for varying TN concentrations in the
analyzed lakes, but still having a positive influence on
phytoplankton biomass with a sigmoidal partial depen-
dence curve and a peak of TN≈ 2.5 mg/L. This threshold
is similar to the threshold identified in Filstrup and
Downing (2017), whereas after the threshold (TN >
2.5 mg/L) in our study, the relationship was flat and
not negative. This differing relationship for TN above
the mentioned threshold is likely because the data pre-
sented here do not include high TN values (>10 mg/L)
present in the study of Filstrup and Downing (2017).
The influence of TN, however, can vary with respect to
TP concentrations. The 2-D interaction analysis with
TP showed increases in Chl-a when TN concentration
increased in lakes with already high phosphorus concen-
trations. Accordingly, Filstrup and Downing (2017)
detected a markedly stronger effect of TN in TP-rich
and especially hypereutrophic lakes than in mesotrophic
or eutrophic lakes, implying different Chl-a–TN rela-
tionships in nutrient-rich lakes. In addition, for mesotro-
phic and eutrophic lakes, a similar sigmoidal relationship
was found (Filstrup and Downing 2017). Thus, our
findings support previous studies demonstrating the
nonlinear response of Chl-a to nutrients (McCauley
et al. 1989, Filstrup et al. 2014) and suggest that Chl-a
may display greater responses to phosphorus reductions
in the European lakes considered in this study.

Guildford and Hecky (2000) noted that the TN:TP
ratio constitutes an important indicator of nutrient lim-
itation, with phytoplankton growth becoming increas-
ingly phosphorus limited at higher ratios. Here, the
influence extent and directions of the least important
variable TN:TP (∼4%) implied only marginal negative

effects on Chl-a for increasing TN:TP ratios and thus
increasing phosphorus limitation. TN:TP is known to
have little effect when the system is strongly phosphorus
limited but becomes more important under more
balanced conditions (e.g., Cardinale et al. 2009). Multi-
dimensional interaction analyses also revealed no further
discernible effects on water quality. Our data mainly con-
sisted of phosphorus-limited lakes (high TN:TP). Low
(<10) TN:TP ratios were only present in 62 of 721 obser-
vations. Prairie et al. (1989) found that TP explained
more variance in Chl-a than TN with increasing
TN:TP, a finding that matches the detected influence
direction of TN:TP and high relative importance of TP
in our data. The higher predictive ability of TP, however,
does not imply lower correlation of TN with Chl-a for
high TN:TP compared to TP (Prairie et al. 1989). In
addition, according to the BRT models, MaxDepth up
to ∼4 m had a positive influence on Chl-a. This positive
influence direction was also supported in the 2-D and
3-D interaction analysis but might be biased by the
high number of hypereutrophic lakes (Chl-a > 25 µg/L;
Premazzi and Chiaudani 1992) with low depths in the
dataset (118 of 196 observations with MaxDepth ≤ 4 m
had Chl-a > 25 µg/L). A decreasing trend of the partial
dependence curve for MaxDepth > 4 m indicated a neg-
ative effect on Chl-a for increasing maximum depth,
which can also be explained by lower nutrient loadings
per volume and the well-established positive relationship
between algal biomass and light availability (Sakamoto
1966, Scheffer 1998). The computed relative variable
importance for MaxDepth (∼25%) emphasizes the
strong influence of lake morphometry on Chl-a concen-
tration and indicates interactions among explanatory
variables.

The BRT model with a negative linear partial depen-
dence curve for the temperature surrogate altitude (e.g.,

Table 5. Chl-a observations and predictions (min-max) of the BRT LSWT and altitude models, and the corresponding trophic state
categorisations using the Chl-a observations and predictions for 2005–2008. Note that for lakes with only one prediction value,
only one complete variable set necessary for a model prediction was available. The classification of the trophic status was
conducted following OECD fixed boundary recommendations (Premazzi and Chiaudani 1992).

Lake

Observation Prediction

Chl-a (µg/L) Trophic state BRT LSWT (µg/L) BRT Altitude (µg/L) Trophic state

Ammer 3.22–4.29 mesotrophic 1.39 1.27 oligo-mesotrophic
Biel 1.00–1.95 oligo-mesotrophic 3.38–4.00 3.44–3.91 mesotrophic
Brienz 0.55–0.93 oligotrophic 1.18–1.92 1.37–1.96 oligotrophic
Chiem 4.42–4.60 mesotrophic 1.54 1.90 oligo-mesotrophic
Como 1.60–7.20 oligo-mesotrophic 1.54–3.53 1.45–3.17 oligo-mesotrophic
Garda 1.69–3.75 oligo-mesotrophic 1.8–4.05 2.34–3.37 oligo-mesotrophic
Iseo 2.73–6.35 meso-eutrophic 6.59–8.86 4.92–6.97 meso-eutrophic
Maggiore 0.83–4.67 oligo-mesotrophic 1.14–2.09 1.05–1.70 oligo-mesotrophic
Ohrid 0.53 oligotrophic 2.15 1.27 oligotrophic
Prespa 4.87–7.97 meso-eutrophic 3.34 2.51 meso-eutrophic
Starnberg 1.83–1.91 oligotrophic 1.07 1.01 oligotrophic
Thun 1.15–1.65 oligotrophic 1.09–1.32 1.08–1.35 oligotrophic
Zurich 4.68–6.33 mesotrophic 2.36–3.34 2.70–2.97 mesotrophic
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Carvalho et al. 2009) confirmed a previously found pos-
itive Chl-a–temperature relationship, expressed as the
inverse relationship between Chl-a and altitude. By con-
trast, the Chl-a–temperature relationship found by the
BRT LSWT model in general did not confirm this posi-
tive linear influence of temperature on Chl-a. The Chl-a–
LSWT relationship was characterized by slightly alter-
nating influence directions, with only small impacts on
Chl-a concentration. The nonlinear relationship may
be explained by the reduced effect of water temperature
when nutrient levels are low (Elliott et al. 2006) or differ-
ent responses to warming in phytoplankton-rich lakes,
where warming tends to increase Chl-a, and in phyto-
plankton-poor lakes, where warming leads to decreasing
Chl-a (Kraemer et al. 2017). However, further analyses of
variable interactions with nutrients showed no signifi-
cant increases or decreases along the temperature gradi-
ent. Thus, combinations of LSWT with other predictors,
especially nutrients, and their influence on phytoplank-
ton communities should be further investigated. We
note that the importance of altitude (∼15%) and
LSWT (∼6%) in our study implied relatively small
influences of temperature on Chl-a.

Interaction effects on water quality must be evalu-
ated because previous studies have found different
relationships among predictors for different lake set-
tings (McCauley et al. 1989, Elliott et al. 2006, Filstrup
and Downing 2017, Kraemer et al. 2017). Our results
suggest that nonlinear models incorporating the
underlying relationships among explanatory variables
are more qualified than linear approaches. As such,
the nonlinear gradient BRT method identified interac-
tions among predictor variables (Elith et al. 2008) and
performed better than other regression approaches
such as GAM and PDM. The BRTs accommodated
interactions among predictors in a multidimensional
setting, allowing complex interactions among water
quality variables to be understood. We therefore rec-
ommend using further nonlinear modelling and learn-
ing techniques that can incorporate complex variable
interactions.

Predicting chlorophyll a concentration in
perialpine and central Balkan mountain lakes

Prediction performances of BRTs were evaluated for 13
selected perialpine and central Balkan mountain lakes.
The RMSE differences between using LSWT or altitude
seem minor (Chl-a 1.62–1.76 μg/L), a conclusion that
can also be inferred by comparing the predicted and
observed trophic states. Three of 13 lakes (Ammer,
Biel, and Chiem) had minor differences between the
observed and predicted trophic state, which may be

related to the absence of lakes with similar characteristics
within the calibration dataset. Other reasons for lower
accuracy of predictions can be attributed to the general-
ization abilities of the models (i.e., better data coverage)
than precise predictions for exceptionally low or high
Chl-a concentrations (see also Suleiman et al. 2016).
Similarly, other well-performing water quality modelling
approaches, such as the artificial neural network model
of Lu et al. (2016), led to underestimates of high values
and overestimates of low values. However, for the
unusual lake systems of Lakes Ohrid and Prespa, which
are characterized by a connection through karst channels
(Matzinger et al. 2006), the predicted trophic states
agreed well with the observations. As such, the regression
tree approach yielded accurate predictions for these
unique lake systems, which usually can be seen as limits
to transferability of general water quality models. None-
theless, we emphasize the need for further studies on
applications of general water quality models for unique
lakes from mountain regions and thus for further
improvement of the models. Although the dataset
included some lakes that covered longer time periods
than others, overall Chl-a predictions of BRT models
for perialpine and central Balkan mountain lakes in
general provided satisfactory results. Further improve-
ment potential exists for balancing data availability
across space and time.
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