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Abstract

Supernova remnants (SNRs) are discussed as the most promising sources of galactic cos-
mic rays (CR). The diffusive shock acceleration (DSA) theory predicts particle spectra
in a rough agreement with observations. Upon closer inspection, however, the photon
spectra of observed SNRs indicate that the particle spectra produced at SNRs shocks
deviate from the standard expectation. This work suggests a viable explanation for a
softening of the particle spectra in SNRs. The basic idea is the re-acceleration of particles
in the turbulent region immediately downstream of the shock. This thesis shows that
the re-acceleration of particles by the fast-mode waves in the downstream region can be
efficient enough to impact particle spectra over several decades in energy. To demonstrate
this, a generic SNR model is presented, where the evolution of particles is described by
the reduced transport equation for CR. It is shown that the resulting particle and the
corresponding synchrotron spectra are significantly softer compared to the standard case.
Next, this work outlines RATPaC, a code developed to model particle acceleration and
corresponding photon emissions in SNRs. RATPaC solves the particle transport equa-
tion in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The
background magnetic field can be either computed from the induction equation or follows
analytic profiles. This work presents an extended version of RATPaC that accounts for
stochastic re-acceleration by fast-mode waves that provide diffusion of particles in mo-
mentum space. This version is then applied to model the young historical SNR Tycho.
According to radio observations, Tycho’s SNR features the radio spectral index of ap-
proximately −0.65. In previous modeling approaches, this fact has been attributed to
the strongly distinctive Alfvénic drift, which is assumed to operate in the shock vicinity.
In this work, the problems and inconsistencies of this scenario are discussed. Instead,
stochastic re-acceleration of electrons in the immediate downstream region of Tycho’s
SNR is suggested as a cause for the soft radio spectrum. Furthermore, this work inves-
tigates two different scenarios for magnetic-field distributions inside Tycho’s SNR. It is
concluded that magnetic-field damping is needed to account for the observed filaments in
the radio range. Two models are presented for Tycho’s SNR, both of them feature strong
hadronic contribution. Thus, a purely leptonic model is considered as very unlikely. Ad-
ditionally, to the detailed modeling of Tycho’s SNR, this dissertation presents a relatively
simple one-zone model for the young SNR Cassiopeia A and an interpretation for the
recently analyzed VERITAS and Fermi -LAT data. It shows that the γ-ray emission of
Cassiopeia A cannot be explained without a hadronic contribution and that the remnant
accelerates protons up to TeV energies. Thus, Cassiopeia A is found to be unlikely a
PeVatron.
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Nomenclature

CD Contact discontinuity
CMB Cosmic microwave background
CR Cosmic rays
DSA Diffusive shock acceleration
IC Inverse-Compton
IR Infra-red
ISM Interstellar medium
MHD Magnetohydrodynamic
NLDSA Non-linear diffusive shock acceleration
NTB Non-thermal bremsstrahlung
RATPaC Radiation Acceleration Transport Parallel Code
SED Spectral energy distribution
SNR Supernova remnant
TTD Transit-time damping
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Foreword

For this dissertation, I have gathered three articles that I have published together with
my collaborators in the last years. A common thread for all three publications is the
particle acceleration in supernova remnants (SNRs). The order I have chosen to present
these works in my thesis is not chronological, but logical and allows the reader to follow
a natural flow of ideas to better picture the main tasks of this dissertation. Here, in
the foreword, I give concise explanations for the goals and motivation of every individual
article. The papers are then presented in a distributed fashion in the next chapters.

[Article I] presents very detailed modeling of Tycho’s SNR. The project revealed the
difficulties to explain the available data of Tycho’s SNR self-consistently within the
common theory of particle acceleration in SNRs. A particular problem was the
inconsistency between the observed radio spectrum and the synchrotron emission
predicted within the conventional picture of particle acceleration at SNRs shocks.
Therefore, this project gave rise to the idea of stochastic re-acceleration of particles
immediately behind the forward shock of an SNR, which has become the main topic
of this thesis. Based on that idea, I established a comprehensive model for the
observations from Tycho’s SNR and outlined the shortcomings and inconsistencies
of the previous approaches to model this remnant. To this end, I used hydrodynamic
simulations performed by my collaborator Dr. Vikram Dwarkadas and a detailed
code for particle acceleration and transport, called RATPaC, originally designed by
my collaborator and co-supervisor Dr. Igor Telezhinsky. I extended the latter code
and modified it to account for the stochastic re-acceleration process and diffusive
shock acceleration simultaneously.

[Article II] is the natural side project of [Article I], which generally investigates the
impact of stochastic re-acceleration inside SNRs. Having realized by the case of Ty-
cho’s SNRs that the detailed self-consistent modeling of SNR requires an additional
ingredient and that the stochastic re-accelerations immediately behind the SNRs
shocks is a promising concept, I focused on that phenomena. Thus, the goal of this
work was a better understanding of the impact of stochastic re-acceleration on elec-
tron spectra produced in SNRs. In the first part, the article provides a theoretical
basis for the further study of stochastic re-acceleration inside SNRs, developed by
my supervisor and collaborator, Prof. Dr. Martin Pohl. At the beginning, the paper
examines three different types of turbulence and presents analytical calculations for
the corresponding momentum-diffusion coefficient for each type of waves. Having
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established that the fast-mode waves are the only type of turbulence that can sig-
nificantly contribute to the stochastic re-acceleration process, the article continues
with a generic model for SNRs and presents electron spectra modified by stochastic
re-acceleration. The resulting spectra are significantly softer than that predicted by
the convenient picture. To model the electron re-acceleration, I solved the reduced
transport equation numerically and calculated the spectral indices of the correspond-
ing radio emission. The paper demonstrates that the stochastic re-acceleration is a
viable explanation for the observed soft radio spectra from many SNRs. Once this
project was completed, I returned to work presented in [Article I].

[Article III] is a work published within the VERITAS (Very Energetic Radiation Imag-
ing Telescope Array System) collaboration, which presents recent γ-ray data of the
young SNR Cassiopeia A. The data observed with the VERITAS telescope was ana-
lyzed by Dr. Sajan Kumar, another leading author of this paper. As one of the few
theoreticians specialized in SNRs in the VERITAS collaboration, I decided to in-
terpret the data. Thus, I performed the theoretical modeling for the entire spectral
energy distribution of Cassiopeia A. To perform the modeling, again I used parts
of RATPaC. This work establishes characteristic features of Cassiopeia A, such as
particle spectral indices, the corresponding maximum energy, and the maximal mag-
netic field inside the remnant. Like in the case of Tycho’s SNR, the spectra derived
for electrons and protons distributions in Cassiopeia A are significantly softer than
predicted by the standard theory.

Since all of the articles have been published in collaboration, it might be difficult to
understand what my contribution was. To clarify this point, I present here the list of
published papers and a note indicating what my contribution has been. Additionally, at
the beginning of each chapter, I give a reference to the article from which the chapter
has benefited. For the full titles of the papers, acronyms, as well as an explanation of my
contribution and journal references, see the following table of publications.
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Chapter 1

Introduction

Supernova remnants (SNRs) are among the most exciting astrophysical objects because
they may shed light on a major question of physics: the origin of cosmic rays (CR).

Despite misleading denotation, which is historically determined, CR are energetic par-
ticles that permeate the Universe. Discovered for the first time about hundred years ago
by Victor Hess (Hess (1912), Hess (2018)1), the phenomena of CR still provide fascinating
and challenging tasks. The production of CR is still ambiguous, despite the remarkable
progress that has been done in this field. CR reveal the following composition: ∼88%
protons, ∼10% helium nuclei, ∼1% nuclei of heavier particles, and ∼1% electrons and
positrons. Hence the charged nature of CR prevent from retracing their sources, as
the particles get manifoldly deflected in the galactic and intergalactic magnetic fields.
Therefore, the researchers have to rely on indirect observations, such as the detection of
neutral-charged mediators produced in CR interactions. In this regard, an important role
is played by photons, which can be observed across the whole electromagnetic spectrum.

The differential flux of CR obtained by numerous experiments is presented in Fig-
ure 1.1. Remarkably, the CR spectrum expands over 13 decades in energy and outreaches
energies typical for large particle colliders. Above ∼ 100 GeV, the observed flux forms
a power law in energy, E−s, with a spectral index, s, close to 3. The green dashed line
in Figure 1.1 is an analytical power-law function with a spectral index of 3, intended to
visualize the rough behavior of the overall spectrum. On closer look, the region between
∼ 100 GeV and a few PeV features the spectral index of s ≈ 2.7. The distinct kink around
few PeV is called the knee of the CR spectrum. Another prominent kink is the so-called
ankle at a few EeV. The spectrum in the energy range between knee and ankle is slightly
softer with spectral index of s ≈ 3.1. Above the ankle, the CR spectrum hardens again
to s ≈ 2.6. Figure 1.2 presents the differential CR spectrum between 1013 and 1020 eV
that is multiplied by E2.6 in order to make the knee and the ankle more visible.

It is generally assumed that the particles detected with energies below ∼ 10 GeV
are mainly the solar CR. The particles with energies above the ankle are considered to
be from extragalactic origin since their gyroradii exceed the size of the Galaxy. Conse-
quently, CR below the knee, and hence with energies less than a PeV, are believed to
emerge within our Galaxy. At the highest energies of ∼ 1020 eV, the CR flux terminates.

1English translation of the work Hess (1912), which is originally in German.

5



Energy (eV)

910 1010 1110 1210 1310 1410 1510 1610 1710 1810 1910 2010

-1
 s

r 
G

eV
 s

ec
)

2
F

lu
x 

(m

-2810

-2510

-2210

-1910

-1610

-1310

-1010

-710

-410

-110

210

410

-sec)2(1 particle/m

Knee
-year)2(1 particle/m

Ankle
-year)2(1 particle/km

-century)2(1 particle/km

FNAL Tevatron (2 TeV)
CERN LHC (14 TeV)

LEAP - satellite

Proton - satellite

Yakustk - ground array

Haverah Park - ground array

Akeno - ground array

AGASA - ground array

Fly’s Eye - air fluorescence

HiRes1 mono - air fluorescence

HiRes2 mono - air fluorescence

HiRes Stereo - air fluorescence

Auger - hybrid

Cosmic Ray Spectra of Various Experiments

Figure 1.1: Overall CR flux as a function of energy observed by diverse
experiments. Figure is taken from Hanlon (2008).

This fact is usually referred to as the theoretically predicted Greisen-Zatsepin-Kuzmin
cutoff (Greisen, 1966). According to Greisen (1966), the supression of cosmic protons
with energies 1020 eV and higher is interpreted to occur due to their inevitable inelas-
tic scattering on the photons provided the cosmic microwave background (CMB). More
precisely, when propagating through CMB, protons with energies above ∼ 6×1019 eV in-
teract with photons and generate a Delta resonance. This particle is unstable and decays
via two channels: proton plus neutral pion or neutron plus positive pion. Throughout this
process, the parent proton changes its direction and losses about 20 percent of its energy.
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Figure 1.2: Differential CR spectrum multiplied by E2.6. Figure is
adapted from Patrignani et al. (2016).

The proton-photon interactions reoccur as long as the energy of the proton stays above
the threshold ∼ 6× 1019 eV, required to generate the Delta resonance. For extragalactic
sources, the probability that the proton with energy above this limit does not scatter on
CMB photon and thus reaches the Earth is close to zero. Consequentially, no protons
above Greisen-Zatsepin-Kuzmin limit can be detected.

Baade and Zwicky (1934) first proposed that the CR might originate from exploding
stars, i.e., supernovae. As of today, SNRs, which are the relics of the stellar explosions,
remain the most promising sources of galactic CR. First of all, because their energy
is sufficient to maintain the CR energy flux in our Galaxy (Ginzburg and Syrovatskĭı,
1966). Additionally, diffusive shock acceleration (DSA), which is the standard theory for
particle acceleration at astrophysical shocks, predicts a power-law particle spectrum with
the spectral index of 2 for strong shocks and test-particle limit (e.g., Bell, 1978a), which
is in rough agreement with the observed CR flux. Indeed galactic CR observed at the
Earth show a power law with spectral index ≈ 2.7. Corrected for the propagation effects
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in our Galaxy, the spectral index at the source is obtained to be ≈ 2.2− 2.4 (Strong and
Moskalenko, 1998; Strong et al., 2000; Putze et al., 2009). Furthermore, there is extensive
observational evidence in the form of radio emission, X- and γ-ray photons detected
from many SNRs (e.g., Koyama et al., 1995; Bamba et al., 2003; Aharonian et al., 2004,
2006; Green, 2009; Helder et al., 2012; Ackermann et al., 2013), which indicates in situ
production of CR inside SNRs. Theoretical estimations show (e.g., Hillas, 2005) that
SNRs are capable to accelerate particles up to a PeV and thus able to account for the CR
spectrum up to the knee. The present work is solely focused on galactic CR and SNRs
as their production sites. Thus, hereafter we always refer to galactic CR with energies
below PeV.

Despite the wide agreement on SNRs being sources of CR, several discrepancies in this
field remain unsolved, and hence many details are still in discussion. On closer inspection,
the multi-wavelength data from various SNRs suggest that the actual particle spectra in
SNR significantly differ from simple power-laws and are often softer than expected from
DSA (e.g., Green, 2009). Therefore, further investigations and sophisticated models are
needed to understand the numerous details of particle acceleration in SNRs. The goal of
this thesis is to demonstrate the above-mentioned deviations from the standard theory on
particular objects. Furthermore, this work presents a new scenario that involves stochastic
re-acceleration of particles in the immediate downstream region of SNRs. It is shown that
this scenario is able to explain the observed soft radio spectra of SNRs.

This work is organized as follows: In Chapter 2, the theory and basic concepts of par-
ticle acceleration in SNRs are reviewed. We introduce general aspects and a generic model
for stochastic re-acceleration inside SNRs via fast-mode waves in Chapter 3. Chapter 4
is dedicated to the description of RATPaC, a code that is designed for the detailed mod-
eling of SNRs. One of the main tasks of this thesis is to include the process of stochastic
re-acceleration into RATPaC; the corresponding details are also presented in Chapter 4.
We apply RATPaC to model the young SNR Cassiopeia A in Chapter 5. Therein, we
review a model for Cassiopeia A SNR, which explains the recently observed VERITAS
and Fermi -LAT data. Finally, Chapter 6 presents a global model for Tycho’s SNR, where
the extended version of RATPaC, which accounts for stochastic re-acceleration, is used.
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Chapter 2

Basic theory

In this chapter, the current state of the field of particle acceleration in SNRs is pre-
sented. The theoretical study of SNRs as sources of high energy particles is based on
the understanding of two fundamental fields. First of all, it is the knowledge about the
time-evolution of SNR as a macroscopic object, described by the hydrodynamic equations.
Secondly, one needs to understand the microscopic processes responsible for particle ac-
celeration inside an SNR. Hence, firstly a brief overview of the dynamic evolution of SNRs
is given, followed by an introduction to the particle acceleration mechanisms.

2.1 Evolution of SNRs

An SNR is the outcome of a violent explosion of a massive star, i.e., a supernova. In
such events, an enormous amount of energy is quickly released, and the envelope of a star
is ejected at supersonic velocities. This process gives rise to a double-shocked structure
consisting of a forward shock expanding into the stellar environment and a reverse shock
that propagates back into the ejecta.

A simplified structure of a young SNR, which is usually observed and predicted by
hydrodynamic simulations, is depicted in Figure 2.1. The forward shock sweeps up and
compresses the surrounding medium (blue-shaded area), which is consequentially heated
to very high temperatures, of the order of ∼ 109 K. The shocked ambient medium and
the stellar ejecta are separated by the contact discontinuity (CD), marked as the green-
shaded area. As the reverse shock propagates back through ejecta, it consequentially
reheats and decelerates the ejecta. The shocked ejecta is depicted as the orange-shaded
area in Figure 2.1. It is important to stress here that for young SNRs, the reverse shock
is moving backward in a Lagrangian sense: it propagates inward in the rest-frame of the
forward shock but expands outward in the observer rest-frame.

The time-evolution of an SNR can be roughly divided into four phases. After the
explosion, the ejected stellar mass is moving outward into the surrounding medium with
a supersonic speed, ∼ 104 km/s. It pushes the ambient material generating a shock wave
with radial velocity, i.e., the forward shock. In the first phase, this shock wave created by
the explosion expands with no resistance to the interstellar medium (ISM). Therefore, this
development period is called the free expansion phase. The entire energy of the explosion,
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Figure 2.1: Schematic structure of a young SNR.

ESN, is carried by the ejected stellar mass, Me, and the shock speed can be approximated
by the relation

Vsh '
(

2ESN

Me

)1/2

. (2.1)

The shock radius scales then in time, t, with the constant shock speed as

Rsh(t) ' Vsh t . (2.2)

The free expansion terminates when the forward shock accumulates an amount of the
ambient material, which is of the order of the ejecta mass. Hence the swept-up material
starts to affect the dynamics of the remnant and to slow down the shock’s motion. This
condition can be roughly expressed by equating the swept-up mass with the ejecta mass.
The shock radius that marks the end of the free expansion phase is then given by

Rsw =

(
3Me

4πρISM

)1/3

, (2.3)

where ρISM is the ambient density. The corresponding age of an SNR is typically a few
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hundred years. From that moment, the remnant enters the Sedov-Taylor phase (Sedov,
1959; Taylor, 1950), in which the SNR expands adiabatically. The energy losses are
negligible, and the cooling of the hot plasma occurs solely due to its expansion. The
shock dynamic can be described by the adiabatic blast-wave solutions

Rsh(t) = η0

(
ESN

ρISM

)1/5

t2/5 , (2.4)

Vsh(t) = η0
2

5

(
ESN

ρISM

)1/5

t−3/5 , (2.5)

where η0 is the dimensionless constant, which for an ideal gas is ∼1.17.

As the remnant continues to expand and to decelerate, its post-shock temperature
drops to ∼ 106 K. At this point, ionized atoms start to capture free electrons and produce
line emission. The forward shock accumulates a large amount of material, like a snow-
plough amass snow. Hence, the third evolution stage of an SNR is called the snow-plough
or radiation phase.

Finally, at the dissipative stage, the velocity of the forward shock becomes subsonic
spelling the end of the SNR. The remnant falls apart, dissolving in the ISM.

2.2 Classification of SNRs

The historical classification of SNRs is based on their spectroscopical properties. As-
tronomers defined two classes of SNRs: Type I and Type II. The remnants of the first
group do not feature any hydrogen lines in their optical spectrum, while for the second
group the hydrogen lines are observed. Later, SNRs of Type I were split into subtypes,
called Type Ia, Type Ib, and Type Ic, depending on the additional spectral characteris-
tics: absence or presence of silicon and helium lines. Also, SNRs of Type II were divided
into subtypes, labelled Type IIP, Type IIL, Type IIn, and Type IIb, according to the
differences in their light curves.

Alternatively, one can classify SNRs into two basic types, which reflect the explosion
mechanism of their progenitor stars. The first is the afore-mentioned Type Ia, which is
believed to originate from the thermonuclear deflagration of a white dwarf. The explosion
of a white dwarf occurs when its mass is close to the Chandrashekhar-mass limit ∼ 1.4M�,
with M� denoting one solar mass. The white dwarf can accumulate material via accretion
of the mass of a binary companion or via merging another white dwarf. When the critical
mass value is reached, the white dwarf becomes gravitationally unstable because the
degeneracy pressure of its electrons does not suffice to compensate own gravitational
force. The star implodes, which causes a rapid rise in temperature. This process activates
fusion reactions of carbon and oxygen, which result in the thermonuclear explosion.

The type of an SNR reveals its typical characteristics, such as the mass of ejecta and the
structure of the ambient medium. These properties consequently determine the dynamical
evolution of an SNR. Due to Chandrashekhar-mass limit, the ejecta for Type Ia most likely
comprises ∼ 1.4M�. Furthermore, a white dwarf does not undergo any considerable mass
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losses and thus has a negligible effect on the ambient ISM. Therefore, Type Ia SNR is
usually assumed to expand in the ISM of a constant density.

The second group of SNRs, which includes all the historical types of SNR except of
Type Ia, is believed to arise from the so-called core-collapse supernovae. As the name
suggests, the explosion is provoked by the core collapse of a massive star, i.e., a star more
massive than 8M�. Contrary to a white dwarf, a massive star can fabricate elements
heavier than oxygen in its interior, ending up with a dense iron core. Because iron is
a very stable element, the fusion and thus the energy release inside the star terminates.
There is no more sufficient radiation pressure that can balance the gravity, and so the star
starts to contract and its density increases. At some point, the critical nuclear density
inside the core is reached, where the strong nuclear force becomes suddenly important. It
bounces outwards, producing a shock wave, which expels the outer layers of the star.

Throughout its life, a massive star loses a significant amount of its mass in the form of
stellar winds. This mass loss creates a wind-blown bubble bordered by a dense thin shell.
Thus, for a core-collapse SNR, the forward shock expands within a modified medium
instead of ISM. The interaction of the forward shock with this circumstellar medium can
affect the acceleration of particles inside a core-collapse SNRs (Telezhinsky et al., 2013).

2.3 Particle acceleration

Enrico Fermi was the first who suggested that a crucial ingredient for particle acceleration
in astrophysical plasmas is magnetic turbulence (Fermi, 1949). In the original Fermi
approach, charged particles are scattered by randomly moving magnetic perturbations,
referred by Fermi as magnetic mirrors. Both a particle and a magnetic mirror move in the
reference frame of the observer with velocities v and u, respectively. A head-on collision
leads to energy gain, while a head-off collision results in energy loss for a particle. As head-
on collisions are statistically more numerous, interactions between charged particles and
magnetic perturbations result in the energy gain rate of the order (u/v)2. The scenario
proposed by Fermi is nowadays known as the second-order Fermi acceleration mechanism
or stochastic acceleration. Beyond the simple Fermi picture, where the turbulence is
represented by randomly moving magnetic mirrors, one realizes that the exact type of
turbulence is crucial for the acceleration process and hence resulting particle spectrum.
Being a stochastic process, second-order Fermi acceleration can be represented by diffusion
in momentum space.

A more efficient and widely accepted process to produce high-energy CR is the diffusive
shock acceleration (DSA) theory, developed by Krymskii (1977), Axford et al. (1977),
Blandford and Ostriker (1978) and Bell (1978a,b). It involves the presence of a strong
shock wave with a sufficient amount of magnetic irregularities up- and downstream. In this
scenario, particles are confined by small-amplitude plasma waves near the shock receiving
energy by multiple crossing of the shock via back and forth scattering. As a consequence,
these particles experience only head-on collisions when crossing the shock front. The
fact that there are no head-off collisions makes the particle acceleration via DSA very
efficient. It can be shown for DSA that a particle gains momentum δp/p ∼ (Vsh/v)
when crossing the shock front (e.g., Bell, 1978a). Therefore, it is also referred to as first-
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order Fermi acceleration, in analogy to the second-order Fermi process. In contrast to
stochastic acceleration, where the resulting form of the particle spectra depends on the
turbulence type, DSA is almost insensitive to the microscopic conditions. The particle
spectra generated by DSA is shaped as a power-law, where the corresponding spectral
index is determined by the shock compression ratio. This fact, together with the high
efficiency of DSA, makes it to the well-established theory for particle acceleration in
astrophysical environments.

Stochastic acceleration plays a crucial role in the propagation of CR in interstellar
environments (Strong and Moskalenko, 1998). In the presence of a shock, however, the
efficiency of the second-order Fermi acceleration is perceived to be low compared to DSA.
Nevertheless, it was realized that stochastic acceleration of particles can play an addi-
tional role in SNRs (Drury, 1983b). Also, some models involve only second-order Fermi
acceleration to explain the entire emission from SNRs up to the TeV energy range (Liu
et al., 2008). As it will be demonstrated in this thesis, second-order Fermi process can
significantly affect the electron spectrum in SNRs and leave its imprint in the observed
synchrotron flux.

In the following section, the so-called macroscopic approach to the DSA theory and
stochastic acceleration is reviewed. As the name suggests, the macroscopic approach does
not deal with individual particles but involves their phase space density and the related
diffusion-convection equation instead. This approach is extremely useful when it comes to
the description of long-lasting macroscopic objects, such as SNRs. Also, this work deals
with solutions of the convection-diffusion equation, which in plasma and CR astrophysics
is also known as the transport equation for CR.

2.3.1 Transport equation for cosmic rays

In the following theory, the electromagnetic fields are assumed to be given, and the behav-
ior of particles is governed by those predefined electromagnetic fields. The fields that are
potentially produced by the charged particles are neglected. Under these assumptions,
the transport equation for CR originates from the Vlasov equation, which is based on the
conservation of the phase space density, fd(r,p, t). For one sort of particles, the Vlasov
equation reads

∂fd
∂t

+ r
∂fd
∂ṙ

+ p
∂fd
∂ṗ

= S(r,p, t) , (2.6)

where S(r,p, t) denotes a source term. The corresponding equations of motions are given
by the Lorentz force. In a uniform magnetic field, B0, the charged particles simply gyrate
along the magnetic field lines. The corresponding gyroradius, which is also known as
Larmor radius, in cgs-units1 is given by

rg =
pc

ZeB0

' (3 · 104 cm)
1

Z

(
E

TeV

)(
B0

10µG

)−1

, (2.7)

1Larmor radius in SI units is rg = p
ZeB0

. In this work, however, cgs-units are used by default unless
otherwise stated.
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where Z is the total charge in units of the elementary charge constant, e, and E is the
energy of the particle. The angle between the uniform magnetic field and the particles
momentum, θ, which is known as pitch angle, remains constant. As the particles are tied
to the uniform magnetic field lines, it is more convenient to refer to the guiding center
than to their precise position when describing their dynamics.

Turbulence in the plasma reflected by the field distortion, δB, changes the velocity
direction of the particle when interacting with it. Thus, the particles motion diverts from
the large-scale magnetic field lines, which consequentially modifies the pitch angle. If
sufficient field disturbances are present, this process recurs, resulting in diffusive behavior
in space, i.e., pitch-angle scattering.

It is common to divide the total electromagnetic fields into uniform and turbulent
components

B(r, t) = B0ez + δB(r, t) , E(r, t) = δE(r, t) . (2.8)

The uniform magnetic field in this example is aligned with the z-axis and assumed to
be significantly larger than the turbulent component, B0 � δB. The large-scale electric
field can be neglected due to the high conductivity of cosmic plasma. Furthermore, it is
assumed that the ensemble-averaged fields are equal to the background fields, 〈B(r, t)〉 =
B0, 〈E(r, t)〉 = 0. It is important to stress that pure magnetic disturbances can only
change the direction of the particles and hence induce spatial diffusion. For an energy
transfer between waves and particles and hence diffusion in momentum space, a distinct
electric component is needed.

Combining Equations 2.6 and 2.8 and assuming that the changes in the particle dis-
tribution induced by the field distortions are sufficiently small, the diffusion-convection
equation, also known as the transport equation for CR, can be derived (e.g., Kirk et al.
(1988), Dung and Petrosian (1994), Schlickeiser (2002); pp 293-312):

∂f

∂t
=

∂

∂z
Ds

∂f

∂z
− ∂ (uf)

∂z
+
p

3

du

dz

∂f

∂p
+

1

p2

∂

∂p

(
p4Dp

∂f

∂p

)
+Q . (2.9)

Here f(z, p, t) is the pitch-angle averaged distribution function of particles, p is the scalar
momentum magnitude, and Q is the pitch-angle averaged source term. They can be
introduced if the scattering time is shorter than the time scale of all other processes,
and hence the distribution of particles is roughly isotropic in pitch angle. The first term
on the right-hand side of Equation 2.9 determines the spatial diffusion of particles via
spatial diffusion coefficient, Ds. The second and the third terms account for the spatial
convection and spatial changes in the velocity of the plasma flow, u. A gradient of the
local plasma velocity in Equation 2.9 leads to DSA. Equation 2.9 accounts for the second-
order Fermi acceleration via the fourth term on the right-hand side. The momentum
diffusion coefficient, Dp, contains the properties of the turbulence that is responsible
for the stochastic acceleration. The spatial and the momentum diffusion coefficients are
defined through the Fokker-Planck coefficients, Dµµ, Dµp, and Dpp, as
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Ds =
v

3
λmfp = (v2/8)

∫ 1

−1

dµ
(1− µ2)2

Dµµ(µ)
, (2.10)

Dp = 1/(2p2)

∫ 1

−1

dµ

(
Dpp(µ)−

D2
µp(µ)

Dµµ(µ)

)
, (2.11)

where µ is the cosine of the pitch angle. The mean free path of a particle, λmfp, is
the typical length that particles propagate between interactions. In general, the Fokker-
Planck coefficients are determined by the electromagnetic fluctuations. Once derived, the
coefficients describe the behavior of stochastic interactions between waves and particles.
It is worth to note that the calculation of the Fokker-Planck coefficients for particular
astrophysical environments is highly extensive (Yan and Lazarian, 2004, 2008; Shalchi,
2009).

Equation 2.9 cannot be solved analytically in its general form. Thus throughout this
work, numerical solutions of Equation 2.9 are applied to model particular SNRs and their
emissions.

2.3.2 Magnetohydrodynamic turbulence

The different modes of the magnetohydrodynamic (MHD) turbulence are obtained from
the general MHD equations (presented in Appendix A). A class of waves, in which the
restoring force is provided by the magnetic-field tension and no pressure or density fluc-
tuations are carried, are called Alfvén waves. They propagate along the mean magnetic
field lines with speed

vA =
B0√
4πρ0

, (2.12)

where ρ0 is the density of the medium. The Alfvén waves have a prominent magnetic
component, which is much larger than their electric field, as reflected by relation |δB| =
c/vA|δE|. Therefore, the Alfvén waves can efficiently change the moving direction of
a particle and are widely considered as the major agents for particle scattering around
a shock wave and in astrophysical plasma in general. In the absence of a shock wave,
particle acceleration by Alfvén waves is basically a classical second-order Fermi process.

Besides Alfvén waves, two other modes exist, called slow and fast-mode waves. The
corresponding phase velocities resulting from the MHD equations in ideal plasma are
given by

vfm,sm =

[
1

2

{
c2
s + v2

A ±
√

(c2
s + v2

A)2 − 4c2
sv

2
A cos2 ψ

}]1/2

. (2.13)

Here cs is the speed of sound, and ψ is the angle between the wave-vector and the mean
magnetic field orientation. Fast-mode waves are of particular relevance for this work, as
will be discussed in the following sections. Unlike the Alfvén waves, the fast-mode waves
feature a compressible magnetic-field component and their energy is partially carried by
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kinetic fluctuations. The velocity of the fast-mode waves varies depending on the physical
environment, as summarized in Figure 2.2. For highly magnetized plasmas and therefore
vA > cs, the speed of the fast-mode waves is close to the Alfvén velocity. In environments
with high thermal pressure and low magnetic fields (cs > vA), the speed is roughly equal
to that of the sound wave.

Figure 2.2: Dependence of phase velocity, ω/k, on propagation angle ψ
for vA > cs (left) and cs > vA (right) enviroments.

In order for particles to interact with the MHD turbulence, their gyroradius has to
be of the order of the wavelength. If the particle’s gyroradius is significantly larger
than the scale of the field irregularities, the particles do not feel the fine field structure
and their trajectories follow the averaged field lines instead. In the opposite case, when
the gyroradius is much smaller than the size of the magnetic fluctuations, the particles
experience the turbulence just as a large-scale magnetic field. A resonant interaction is
given by the gyroresonance condition

ω − k||v|| − nΩ = 0 with n = ±1, 2, 3... , (2.14)

where ω is the wave frequency, k|| is the wavevector component parallel to the magnetic
field, while v|| is the component of a particle’s velocity parallel to the magnetic field.
Intuitively, Equation 2.14 means that in the rest frame of the particles guiding center,
the Doppler-shifted wave frequency, ω − k||v||, has to be the multiple of the particles
gyrofrequency, Ω = eZB0/mc. In that case, the particle can resonantly interact with the
wave and hence be scattered.

The peculiar case for n = 0, which does not depend on particles gyrofrequency, is
called the transit-time damping (TTD). This interaction type is possible for the fast-
mode waves due to their compressive magnetic field component. The name TTD comes
from the fact that the resonance condition 2.14 for n = 0 can be expressed as λ||/v|| ≈ T ,
where λ|| = 2π/k|| is the parallel wavelength component and T = 2π/ω is the wave
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period. Therefore, for the TTD interaction the transit time of a particle across the wave
compression has to match the wave period.

2.3.3 Diffusive shock acceleration

In the following section, a simplified approach to derive the particle distribution produced
by DSA is presented. The transport equation for CR in steady state can be solved
analytically for a plane-parallel shock. As depicted in Figure 2.3, in this configuration the
plasma flow and magnetic flux are parallel, and both perpendicular to the shock normal.

Figure 2.3: Schematic representation of a plane-parallel shock wave in
its rest-frame. The plasma flow velocities are u1 in upstream and u2 in
downstream regions, respectively.

In the shock-rest frame, Equation 2.9 that does not contain the second-order Fermi
acceleration term simplifies to

∂

∂x

(
Ds(x, p)

∂

∂x
f(x, p)

)
− ∂

∂x
(u(x)f(x, p)) +

p

3

du(x)

dx

∂

∂p
f(x, p) +

q0

p2
inj

δ(p− pinj)δ(x) = 0 .

(2.15)
The last term represents the injection of particles at the shock (x = 0) at the injection mo-
mentum pinj. Here and in the following, we use the thermal leakage injection model (Blasi
et al., 2005), which we shall discuss in more detail in Section 4.4. In general, the thick-
ness of the collisionless shock is roughly given by u1/Ωci, where u1 is the upstream plasma
velocity in the shock-rest frame and Ωci is the ion cyclotron frequency in the upstream
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magnetic field (e.g., Leroy et al., 1982). In the scenario described by the thermal leak-
age injection model, a particle is injected when it perceives the shock wave as a sharp
discontinuity. Thus, its Larmor radius must be larger than u1/Ωci. The corresponding
normalization factor q0 of the source term scales in that scenario linearly with the plasma
velocity, u1, and density of the upstream region.

For simplicity, the spatial diffusion coefficient and the plasma flow velocities are as-
sumed to be constant in the upstream and downstream regions but with a drastic jump
at the shock position

Ds(x, p) =

D1(p) for x < 0

D2(p) for x > 0
u(x) =

u1 for x < 0

u2 for x > 0.
(2.16)

Obviously, under those assumptions the third and the fourth terms of Equation 2.15
disappear outside the shock. The general solution valid for x 6= 0 is therefore (e.g.,
Vladimirov (2009))

f(x, p) =


A(p) exp

(
u1x
D1(p)

)
+B(p) for x < 0 (upstream region)

C(p) exp
(

u2x
D2(p)

)
+ E(p) for x > 0 (downstream region).

(2.17)

Additionally, the following trivial boundary and continuity conditions have to be fulfilled:

lim
x→∞

f(x, p) <∞ , (2.18)

lim
x→−∞

f(x, p) = 0 , (2.19)

lim
x→0−

f(x, p) = lim
x→0+

f(x, p) . (2.20)

Using the above conditions, one can find the three unknown functions in Equation 2.17.
Equation 2.18 gives C(p) = 0 and Equation 2.19, which basically means that there are no
external CR source, provides B(p) = 0. The third condition ensures that the upstream
and downstream solutions match each other at x = 0, giving f0(p) ≡ A(p) = E(p).
Summarizing, Equation 2.17 can be rewritten as

f(x, p) =

f0(p) exp
(

u1x
D1(p)

)
for x ≤ 0 (upstream region)

f0(p) for x ≥ 0 (downstream region).

(2.21)

Finally, in order to find the particle distribution function at the shock, f0(p), one can
integrate Equation 2.15 around the shock position, x = 0, from x = 0− to x = 0+, while
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taking all terms into account. Hence Equation 2.15 gives

Dd(p)
∂f(x, p)

∂x

∣∣∣∣
x=0+
−Du(p)

∂f(x, p)

∂x

∣∣∣∣
x=0−

+
p

3

df0(p)

dp
(u2−u1)+

q0

p2
inj

δ(p−pinj) = 0 . (2.22)

Note that the second term in Equation 2.15 cancels out when integrating due to conser-
vation of mass. Inserting Equation 2.21 into 2.22 results into

p

3

∂f0(p)

∂p
(u2 − u1)− u1f0(p) +

q0

p2
inj

δ(p− pinj) = 0 . (2.23)

The well-known solution of Equation 2.23 is found to be (e.g., Blasi et al. (2005))

f0(p) =

∫ p

p0

dp̄

p̄

3q0

p2
inj

δ(p̄− pinj)

(u1 − u2)
exp

(
−
∫ p

p̄

dp′

p′
3u1

(u1 − u2)

)

=
3q0

p3
inj(u1 − u2)

exp

(
− 3u1

(u1 − u2)

∫ p

pinj

dp′
1

p′

)

=
3q0

p3
inj(u1 − u2)

(
p

pinj

)− 3u1
(u1−u2)

. (2.24)

In summary, the final solution of the transport equation 2.15 is given by the expres-
sion 2.21, where the particle distribution function at shock is given by Equation 2.24.

To describe the collective particle behavior, the differential particle number density
N(r, p) is commonly used. It is defined and related to the distribution function as follows:
the number of particles in an infinitesimal phase-space volume element dV d3p at r, p is
dN = f(r,p)dV d3p. The particle number density at a fixed momentum presented in the
spherical coordinates is therefore

dN
dV

= f(r,p)p2dp dΩ . (2.25)

Assuming isotropy in momenta, which is required for the transport equation for CR, the
differential particle number density can be defined as

N(r, p) ≡ dN
dV dp

= 4πp2f(r, p). (2.26)

With the above definition, the solution for the particle number density at the plane shock
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reads as

N(x, p) =


12πq0

pinj(u1−u2)

(
p
pinj

)−s
exp

(
u1x
D1(p)

)
for x ≤ 0 (upstream region)

12πq0
pinj(u1−u2)

(
p
pinj

)−s
for x ≥ 0 (downstream region),

(2.27)

where the power-law index is defined as s ≡ (u1+2u2)/(u1−u2). This result demonstrates
that the particle number density at the shock and the immediate downstream region is
simply a power law in momentum. In the upstream region, the particle density decays
exponentially with the distance. Applying this solution on SNR, it is useful to introduce
the volume-integrated particle number densities for downstream and upstream regions of
the remnant

Nd(p) ≡
∫
Vd

N(r, p)dV =
12πq0VSNR

pinj(u1 − u2)

(
p

pinj

)−s
, (2.28)

Nu(p) ≡
∫
Vu

N(r, p)dV =
12πq0ASNR

pinj(u1 − u2)

(
p

pinj

)−s ∫ 0

−∞
exp

(
u1x

D1(p)

)
dx (2.29)

=
12πq0ASNR

pinj(u1 − u2)u1

D1(p)

(
p

pinj

)−s
.

Here Vd and Vu are the volumes of the downstream and upstream regions, respectively,
VSNR is the total volume and ASNR the surface of the SNR. Introducing shock compression
ratio

rsh ≡
u1

u2

, (2.30)

one can rewrite the spectral particle index as

s =
(rsh + 2)

(rsh − 1)
. (2.31)

Summarizing, DSA yields a simple power-law spectrum, where the spectral index is solely
determined by the shock compression ratio. The compression ratio for the strong shocks,
r = 4, provides the well-known DSA solution Nd(p) ∝ p−2.

2.3.4 Bohm diffusion

The particle distribution in the upstream region depends on the spatial diffusion coef-
ficient, D1(p). A common choice for the DSA in astrophysical plasma is the Bohm-like
diffusion. In this scenario, the magnetic turbulence scatters particles with gyroradii of
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the same size as its wavelength, λ ≈ rg. As a particle interacts with a field irregularity,
δB, its pitch angle changes by approximately δθ ≈ δB/B0 per one wavelength. While a
random scattering δθ−2 interactions are needed to modify the pitch angle by one radian.
The mean free path of a particle that is randomly scattered can be then expressed as

λmfp ≈ rg

(
B0

δB

)2

. (2.32)

With the above assumption, the general form for the spatial diffusion coefficient, in gen-
eral, defined as Ds ≡ (v/3)λmfp, can be rewritten for relativistic particles as

Ds(p) '
c

3
λmfp = ξ

pc2

3ZeB0

, with ξ =

(
B0

δB

)2

. (2.33)

The case with ξ = 1, which is known as the Bohm-limit, provides the most effective spatial
diffusion. It is important to stress that the diffusion coefficient 2.33 can be formally derived
for the Alfvén waves from Fokker-Planck coefficients via Equation 2.10 (e.g., Schlickeiser,
2002).

For the Bohm-like diffusion, the volume-integrated particle number density in the
upstream region of the strong shock is

Nu(p) =
16

3

πξc2q0Asnr

V 2
shZeB0

(
p

pinj

)−1

, (2.34)

as can be seen from Equation 2.29. Thus, the total particle spectrum in the upstream
region is harder than that of the downstream region.

2.4 Radiative processes

As it was pointed out in the introduction, interstellar magnetic fields induce multiple de-
flections of charged particles that propagate in our Galaxy. Thus it is not possible to track
charged CR to the origin and to determine their factories directly. Instead, the researchers
rely on the observations of photons that are produced in the CR interactions. The ele-
mentary processes that are relevant for SNRs are synchrotron radiation, bremsstrahlung,
and inverse Compton (IC) scattering from electrons, as well as neutral-pion decay pro-
duced by high-energy protons. The four radiation processes are outlined in the following
sections.
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2.4.1 Synchrotron emission

In the presence of magnetic field, B, the electrons are forced to follow circular movement
around a field line and to radiate their energy in the form of synchrotron emission, as
shown in Figure 2.4.

Figure 2.4: Synchrotron radiation of an electron.

An electron with Lorentz factor γ in a homogeneous magnetic field B produces a
continuous spectral power (e.g., Crusius and Schlickeiser, 1986)

Pν = 1.8

√
3e3B

4πmec2

(
ν

ν0

)1/3

exp

(
− ν
ν0

)
, (2.35)

which peaks at characteristic photon frequency

ν0 =
3e

4πmec
Bγ2 . (2.36)

The spectral power per electron is presented as dashed line in Figure 2.5. It rises with
spectral index 1/3 and falls exponentially toward higher frequencies.

Integrating over an electron population, it can be shown that the electron number
density Ne(E) = N0E

−s generates a synchrotron spectrum shaped as a power law (e.g.,
Pacholczyk (1970))

dnγ
dEγdtdV

≈ 10−23

(
4π

h

)
(8.31× 10−8)(s−1)/2N0B

(s+1)/2E−(1+s)/2
γ

photons

erg s cm3
. (2.37)

It is important to note here that this calculation assumes by default a homogeneous
magnetic field and hence a delta function for the probability distribution of local magnetic-
field amplitudes. In radio astronomy, it is more convenient to use the emissivity function
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in units erg cm−3s−1Hz−1 sr−1, defined as

jsy ≡
(

4π

hEγ

)(
dnγ

dEγdtdV

)
∝ N0B

(s+1)/2E−(s−1)/2
γ . (2.38)

Throughout discussions in this work, the latter notation is used, and the spectral index
of a synchrotron flux, Sν , is defined as

α =
1− s

2
where Sν ∝ να ∝ Eα

γ . (2.39)

In the case of a turbulent magnetic field, care must be exercised to properly account
for magnetic field fluctuations in calculating the synchrotron emissivity function. The
magnetic-field amplitudes distribution is dispersed compared to the standard case, and
its exact form is unknown. In the literature, one finds modified emissivities for exponential
(Zirakashvili and Aharonian, 2010) and power-law (Kelner et al., 2013) distributions. Pohl
et al. (2015) derived the synchrotron emissivity function for the Gaussian distribution of
magnetic-field amplitudes, which is given by

Peff ' 1.8

√
3e3Brms

4πmec2

√
2

π

(
ν

νc

)1/3

exp

(
−3

2

(
ν

νc

)2/3
)(

1 + 1.65

(
ν

νc

)0.42
)0.53

. (2.40)

Here νc ≡ ν0(Brms) denotes the characteristic frequency for a root mean square of the
distribution Brms. A comparison of the standard emissivity function with that derived
in Pohl et al. (2015) is presented in Figure 2.5. The modified function (solid line) is
smeared compared to the standard one (dashed line). Featuring the same slope below
νc, the modified emissivity shows a harder cutoff at higher frequencies than the standard
expression. Throughout this work, the modified function from Pohl et al. (2015) is used
for modeling of SNRs.

Synchrotron emission in SNRs is firmly confirmed by observations in the radio range
(Green, 2009; Urošević, 2014). Furthermore, measurements of nonthermal X-rays from
the limbs of young SNRs (Koyama et al., 1995; Hughes et al., 2000; Gotthelf et al., 2001;
Hwang et al., 2002) are conventionally interpreted as synchrotron emission from electrons
in TeV-ranges. The observed radio spectra from individual SNRs reflect the spectral
index of the nonthermal electron distributions below the cutoff, which can be deduced
via Equation 2.39. Measurements in the X-ray range typically indicate the presence of a
cutoff in the synchrotron flux, which may be attributed to a cutoff in the parent electron
spectra.

The synchrotron emission is a significant loss mechanism for electrons in the TeV-
energy range. The corresponding loss-time scale that reflects the time in which a particle
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Figure 2.5: Standard expression for the spectral synchrotron power
(dashed line) versus the synchrotron emissivity for turbulent magnetic
field with Gaussian distribution (solid line). Figure is taken from Pohl
et al. (2015).

release half of its energy, is given by

τloss ≡ E/Ė ' 130 yr

(
B

100µG

)−2(
E

10 TeV

)−1

. (2.41)

Hence, it is important to include the synchrotron losses when modeling the electron ac-
celeration at shocks of SNRs.

2.4.2 Thermal and nonthermal bremsstrahlung

Besides the synchrotron emission, electrons can produce X-ray and γ-ray photons via
bremsstrahlung mechanism. In general, bremsstrahlung occurs due to the deceleration
of electrons in the electric Coulomb fields of a nuclei, as schematically depicted in Fig-
ure 2.6. A distinction is made between ”thermal” and ”nonthermal bremsstrahlung”,
which are, however, basically the same process. The terms ”thermal” and ”nonthermal”
refer to the electron population involved in radiation. Hence, the nonrelativistic electrons
in thermal equilibrium with temperature Te emit X-ray continuum, where the energy
emissivity per unit energy interval can be approximated for the photon energy above
0.1 keV with (Hnatyk and Petruk, 1999)

Pc(Te, ε) = 1.652 · 10−23n2
eGcT

− 1
2

6 exp

(
−11.59ε

T6

)
erg

keV s cm3
. (2.42)
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Figure 2.6: Bremsstrahlung process.

Here T6 is the temperature in 106 K, ne is the electron number density, and ε is the photon
energy in keV. The corresponding factor Gc is estimated to be

Gc(Te, ε) = 27.83(T6 + 0.65)−1.33 + 0.35ε−0.34T 0.422
6 . (2.43)

Nonthermal electrons produce γ-ray flux, which is referred to as nonthermal
bremsstrahlung (NTB). This emission has the same spectral index Γ ≈ s as the cor-
responding electron spectrum, Ne ∝ E−s. Roughly, the photon flux from the electron
number density Ne can be approximated with (Gaisser et al., 1998)

dnγ
dEγdtdV

' 7 · 10−16nHNe
photons

erg s cm3
, (2.44)

where nH is the hydrogen number density.

2.4.3 Inverse-Compton Scattering

Another mechanism to produce γ-ray photons is the IC scattering. In this process, the
ultra-relativistic electrons transfer their energy to low-energy photons, as schematically
depicted in Figure 2.7. If the initial energy of the photon, Eγi, is far less than the
electrons rest energy in the particles rest-frame, mec

2, the interaction occurs with the
Thomson cross section

σT ≡
8πr2

e

3
≈ 6.65× 10−25 cm2 . (2.45)

Here re = 2.82 × 10−13 cm is the classical electron radius. The corresponding condition
allowing for this case, which is called Thomson regime, can be expressed via parameter

Γkn ≡ 4γEγi/mec
2 � 1 , (2.46)
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Figure 2.7: Schematic representation of IC scattering.

where γ is the Lorentz factor of the electron, defined as γ ≡ (1 − v2/c2)−
1
2 . Beyond

condition 2.46, the IC scattering takes place with Klein-Nishina cross section (Klein and
Nishina, 1929), which decreases with higher photon energies.

A useful approximation for the energy of a scattered photon in laboratory frame for
the so-called Thomson and Klein-Nishina regimes is

E ′γ '

{
γ2E ′i for E ′i � mec

2/γ (Thomson regime)
1
2
γmec

2 for E ′i � mec
2/γ (Klein-Nishina regime) ,

(2.47)

where E ′i is initial photon energy in laboratory frame.
The general result for an upscattered uniform photon distribution per electron with

energy γmec
2 is (Jones, 1968; Blumenthal and Gould, 1970)

dnγ
dEγdt

=
3

4

σT c

γ2

mec
2

Eγi

dnγ(Eγi)

dV
dEγi

[
2q ln q + (1 + 2q)(1− q) +

Γ2
knq

2(1− q)
2(1 + Γknq)

]
. (2.48)

Here Eγ is the energy of the outgoing photon, dnγ(Eγi)/dV is the distribution of the seed
photon field and

q ≡ Eγ
Γkn(γmec2 − Eγ)

. (2.49)

The seed photon field for the IC scattering in SNRs can be naturally provided by the
CMB or by the infra-red (IR) emission. IC emission from CMB can be well estimated
within Thomson regime. In contrast, the more energetic IR photon requires Klein-Nishina
regime for the calculation of IC emission.

The photon distribution of CMB is described via black-body radiation

dnγ(Eγi)

dV
=

1

π2(~c)3

E2
γi

exp(Eγi/kBT )− 1
, (2.50)

where kB is the Boltzmann constant, ~ is the reduced Planck’s constant, and T is the
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temperature measured for CMB to be approximately 2.73 K. Thermal emission of the form
of Equation 2.50 but deviant normalization is usually referred to as gray-body radiation.

The total emission from an electron population is obtained by integration of expres-
sion 2.48 over the entire particle distribution. For an energy distribution shaped as a
power law, N(E) ∝ E−s, and the photon seed provided by CMB, the resulting photon
spectrum below the cutoff scales as

dnγ
dEγdtdV

∝ E−(1+s)/2
γ . (2.51)

Thus, an electron population produces the same slopes for the synchrotron emission and
γ-ray spectra via IC scattering on CMB photons (cf. Equation 2.37).

2.4.4 Pion decay

High-energy protons can produce γ-ray emission when colliding with a nucleus at rest
from the ambient medium or dense gas clouds. The inelastic hadron-hadron interaction
creates a π-mesons, where the one-third consist of the neutral pion, π0. The neutral pion
with the rest mass mπ ≈ 136 MeV is unstable and decays into two γ-ray photons

π0 → γ + γ . (2.52)

The resulting photon spectrum is symmetric around mπ/2 ≈ 68 MeV. The total photon
flux is a superposition of these individual pion-produced γ-ray spectra. It can be roughly
estimated from the proton spectra Np as (Gaisser et al., 1998)

dnγ
dEγdtdV

' 10−16nHNp
photons

erg s cm3
. (2.53)

The threshold energy for this process is roughly ∼ 0.28 GeV. A proton in the TeV-energy
range transfers approximately 10% of its energy to a produced γ-particle. A pion bump
cuts off below 70 MeV and features the same spectral index as the primary proton number
density.

In general, it is challenging to distinguish between leptonic and hadronic γ-ray emis-
sions in SNRs, since the corresponding fluxes are observed in the same energy range
from 70 MeV to TeV. Mostly, particular modeling of SNRs allows for both leptonic and
hadronic scenarios. Nevertheless, certain constraints can be achieved by means of global
modeling that includes the entire available multi-wavelength spectrum of the SNR. Fur-
thermore, the shapes of hadronic and leptonic flux contributions are essentially different.
Provided a comprehensive data set with a sufficiently small error bars, the slope and the
curvature of the spectrum can indicate its production mechanism. Therefore, extended
γ-ray observations that can exhibit a particular shape of the spectra are needed. Acker-
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mann et al. (2013) detected for the first time characteristic hadronic spectra and hence
confirmed proton acceleration in two SNRs, IC443 and W441.

2.4.5 Filaments

High-resolution X-ray observations reveal that the nonthermal emission of shell-type SNRs
posses a filament structure (e.g., Koyama et al., 1995; Hughes et al., 2000; Gotthelf et al.,
2001; Hwang et al., 2002; Bamba et al., 2005; Parizot et al., 2006). The bright emission
in the X-ray energy range peaks in the immediate vicinity of the forward shock of an
SNR and falls toward its interior. A common explanation for the drastic decrease of
the photon flux inside the remnant are the significant energy losses for the high-energy
electrons. The electrons inevitably experience synchrotron losses due to high magnetic
fields while propagating in the downstream region. The observed thin structures reflect
then the corresponding electron energy distributions.

To describe the above situation again, the transport equation for CR (Equation 2.9)
can be used. The synchrotron losses can be included via catastrophic loss term, f(x, p)/τloss,
where τloss is the synchrotron loss time scale. Transport equation for the downstream re-
gion (x > 0) that includes spatial diffusion and advection reads then

D2
∂2f(x, p)

∂x2
− u2

∂f(x, p)

∂x
− f(x, p)

τloss

= 0 . (2.54)

The general solution of Equation 2.54 is

f(x, p) ∝ exp

(
−x
lloss

)
. (2.55)

It demonstrates that the particle distribution drops exponentially with a typical length
scale given by

lloss =
2D2/u2√

1 + 4D2/(u2
2τloss)− 1

. (2.56)

It is important to distinguish two limits: the advection-dominated and the diffusion-
dominated propagation. The advection-dominated case is valid for the relatively low-
energy particles, which transport is governed by advection. In this case, the corresponding
propagation length simplifies to

ladv ≈ u2τloss . (2.57)

For the diffusion-dominated propagation, which applies to the higher energy electrons,
the length scale is approximately given by

ldiff ≈
√
D2τloss . (2.58)

An alternative explanation for the bright synchrotron rims observed at SNRs is the
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magnetic-field damping (Pohl et al., 2005). The basic idea is that the thin structures
reflect the magnetic-field profile. The magnetic-field strength, which co-determines the
synchrotron production falls toward the interior of the remnant, giving rise to the expo-
nentially decreasing luminosity distribution. The advantage of the magnetic-field damping
scenario is that in contrast to the previous interpretation, it is additionally able to explain
the filaments in the radio range. In Chapter 6, we focus on both potential scenarios when
modeling a particular remnant, the Tycho’s SNR.

2.5 Beyond the standard model

2.5.1 Alvénic drift

Despite the huge success of the DSA theory, many SNRs show radio spectral indices, α,
that vary between -0.2 and -0.8 Green (2009). This clearly deviates from the canonical
solution -0.5 provided for the strong shocks by the standard DSA and indicates that the
electron spectrum produced in SNRs can be softer or harder than p−2. An example,
which will be discussed in detail in Chapter 6, is the young historical SNR Tycho with
α ≈ −0.65 (Kothes et al., 2006).

A popular explanation for the observed soft spectra (|α| > 0.5) is a phenomenon called
Alfvénic drift (Bell, 1978b). In this picture, scattering centers moving with Alfvénic
velocity relative to the background plasma are assumed. The relative direction of the
propagation of the Alfvén waves is reflected by the cross helicity, Hc = ±1. Thus the
effective compression ratio seen by particles is

reff =
u1 +Hc1vA1

u2 +Hc2vA2

, (2.59)

where u1, Hc1, vA1 are the plasma velocity, the helicity, and the Alfvén velocity in the
upstream and u2, Hc2, vA2 in the downstream regions, respectively.

Several global models for SNRs involve this concept (Morlino and Caprioli, 2012; Jiang
et al., 2013; Slane et al., 2014). Usually, the helicities Hc1 = −1 and Hc2 = 0 are assumed,
which corresponds to the situation shown in Figure 2.8. In the downstream region, the
velocity of the scattering centers equals the plasma velocity, u2 = u1/rsh = Vsh/rsh.
In the upstream region, where the Alvénic drift is present, the Alfvén waves propagate
predominantly opposite to the plasma flow, and the effective velocity of the scattering
centers is u′1 = u1 − vA. As a result, the corresponding effective compression ratio is
reduced compared with the classical case:

reff =
u1 − vA1

u2

= rsh
Vsh − vA1

Vsh

. (2.60)

Consequentially, the particle spectrum with power-law index s = (reff + 2)/(reff − 1)
becomes softer. This effect is more pronounced with higher magnetic field since the
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Figure 2.8: Velocities of the scattering centers in the shocks restframe
without (upper drawing) and with (bottom drawing) Alvénic drift.

Alfvén velocity scales with the overall magnetic-field strength.
Despite its convenience and simplicity, the Alvénic drift concept has certain discrep-

ancies. We demonstrate them in Chapter 6, where we focus on global modeling of Tycho’s
SNR.

2.5.2 Nonlinear DSA

The previously described DSA approach is valid for the test-particle approximation, which
requires that the dynamical CR feedback on the shock structure is negligible. This as-
sumption is justified as long as the CR pressure stays below 10% of the shock ram pres-
sure (Kang and Ryu, 2010). Nevertheless, the ion to electron ratio, ∼70, measured around
10 GeV, implies that numerous SNRs convert about 10% of their energy into particle ac-
celeration (Gaisser, 1990). In that case, when the dynamic effect from the high-energy
particles becomes important, it modifies the shock structure and, consequently, the par-
ticle spectrum (Drury and Völk, 1981; Malkov and Drury, 2001).
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To simply estimate the total change of the plasma velocity, δu, induced by the CR
pressure, Pcr, one can use the general equation of motion in fluids. The force, F , in a
certain volume of a fluid, V , is given by the pressure gradient:

F

V
= −∇P . (2.61)

For the one-dimensional case of the planar shock in its rest-frame with the pressure
provided by CR, Equation 2.61 reduces to

ρ
du

dt
= −∂Pcr

∂x
, (2.62)

where ρ is the background plasma density. Transforming the variable dt = dx/u, one
obtains for the relative velocity change in a region [x2 : x1]

δu

u
=− 1

u2ρ

∫ x2

x1

dx
∂Pcr(r)

∂x
=
Pcr(x1)− Pcr(x2)

u2ρ
≡ δPcr

u2ρ
. (2.63)

This expression demonstrates that the relative-velocity change, δu/u, is equal to the ratio
of the CR to the flow pressures. Thus, following Kang and Ryu (2010), in the case of a
test-particle limit, the relative plasma velocity change should not exceed the value 0.1. If
this condition is violated, the back-reaction of the accelerated CR on the shock dynamics
cannot be neglected, and hence the standard DSA approach is no longer valid. Instead, an
extended theory, called the nonlinear DSA (NLDSA) (e.g., Drury, 1983a; Berezhko and
Ellison, 1999; Blasi, 2002b,a), is required. In the following, a rough idea behind NLDSA
is presented.

Figure 2.9(a) illustrates the differences between the modified and unmodified shocks.
The blue dashed line represents the plasma velocity of a shock for the classical DSA, and
the red solid line displays a shock significantly affected by the CR pressure. In simple
terms, in the classical case, the shock wave features a drastic velocity jump, which is
sufficiently characterized by the shock compression ratio rsh = u1/u2. However, if enough
CR are present, the velocity profile shows a slightly complicated structure. The CR
streaming forms a density and velocity gradient ahead of the shock front, called a dynamic
precursor. The velocity in the immediate upstream region, u1, is decreased compared to
that of the classical case. Conversely, the plasma velocity in the far upstream, u0, is larger
than the upstream velocity for unmodified shock. Thus, the modified shock profile can
be described in terms of two quantities: the subshock compression ratio, Rsub ≡ u1/u2,
and the total compression ratio, Rtot ≡ u0/u2, where the following condition is fullfilled:
Rsub < rsh < Rtot.

As the high-energy particles have larger gyroradii (cf. Equation 2.32), they rather see
the larger compression ratio, Rtot. On the opposite, the low-energy particles reside in
the vicinity of the shock front, experience the thermal subshock and hence the smaller
compression ratio, Rsub. As a result, the particle spectra produced at the modified shock
yield a concave shape: they are softer at lower and harder at higher energies, as can
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Figure 2.9: (a) Comparison between CR-modified (red solid line) and
unmodified (blue dashed line) shock velocity profiles. (b) The corre-
sponding particle spectra, produced at CR-modified (red solid line) and
unmodified (blue dashed line) shocks. Figure adapted from Reynolds
(2008).

be seen from Equation 2.31. The schematic comparison between particle spectra for the
standard and nonlinear DSA is shown in Figure 2.9(b). While the particle spectrum from
the unmodified shock (blue dashed line) is shaped as a simple power-law, the spectrum
produced at the modified shock (red solid line) features a distinct curvature. The stronger
the dynamical CR feedback on the shock, the more pronounced is the concave curvature
in the particle spectrum.
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Chapter 3

Stochastic re-acceleration in SNRs

The content of this chapter has been published in Pohl et al. (2015). The paper
presents analytic calculations performed by my supervisor Prof. Dr. Martin Pohl. Addi-
tionally, Pohl et al. (2015) presents a simple generic model for stochastic re-acceleration
of electrons in SNRs. The corresponding particle spectra and synchrotron emissions are
computed by the author of this thesis and hence described in the following sections.

3.1 Introduction

As mentioned before, radio spectral indices of SNRs are expected to reflect the elec-
tron spectra in the GeV-energy range. The standard DSA for the strong shocks predicts
N(p) ∝ p−2 and, therefore, a synchrotron flux, S ∝ να, with α = −0.5. However, the
radio observations of ∼270 SNRs reveal a dispersion around α = −0.5. The correspond-
ing measurements show flatter and steeper slopes with indices varying between -0.2 and
-0.8 (Green, 2009). The synchrotron losses for electrons become significant at TeV-scale
and thus are not able to explain the observed discrepancies.

As described in Section 2.5.2, a slight softening can occur due to feedback of CR
on the shock structure of the remnant (e.g., Blandford and Eichler (1987)). Another
common explanation involves the Alfvénic drift, which can modify the effective shock
compression ratio seen by particles (see Section 2.5.1). However, Vainio and Schlickeiser
(1999) explicitly calculated the transmission coefficients for Alfvén waves and showed
that their presence can harden the particle and, consequentially, the synchrotron spectra.
Thus, the results of Vainio and Schlickeiser (1999) imply that the presence of Alfvénic drift
fails to account for the observed softening in the radio range1. An alternative scenario for
the soft radio spectra is therefore of great interest.

Drury (1983b) suggested that second-order Fermi acceleration can impact the particle
spectra in SNRs besides the DSA. In fact, there are several mechanisms that can generate
various types of turbulence in SNRs. For example, instabilities are expected to evolve
in the downstream region due to shock rippling (Giacalone and Jokipii, 2007; Fraschetti,
2013). Obviously, the type of turbulence plays an essential role in the acceleration process.

1Findings of Vainio and Schlickeiser (1999) are at odds with the claims of Morlino and Caprioli (2012)
and Slane et al. (2014), which we shall discuss in Chapter 6.
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The nonresonant streaming instability, for example, posses a negligible phase velocity
in the shock’s rest-frame (Bell, 2004). Thus it can account for the spatial diffusion of
particles, but not for the diffusion in momentum space or Alfvénic drift. In contrast, the
turbulence generated by nonresonant small-scale instabilities operating in the upstream
in the nonlinear phase can promote stochastic acceleration (Stroman et al., 2009). The
Alfvén waves are able to transfer energy to particles, as they possess an electric component.
The Alfvén speed depends on magnetic-field strength though, which is typically small
inside SNRs. Since the corresponding momentum-diffusion coefficient is likewise small,
stochastic acceleration by Alfvén waves is rather insignificant. An eligible turbulence
mode for stochastic acceleration of electrons inside SNRs are the fast-mode waves. As
discussed in Section 2.3.2, in weakly amplified magnetic media, the phase velocity of the
fast-mode waves is approximately given by the speed of sound. In the downstream region
of SNRs, the sound speed typically yields a significant value of the order of ∼ 1000 km/s.

Pohl et al. (2015) examined three different types of turbulence that can be expected in
the immediate downstream region of an SNR: fast-mode waves, small-scale nonresonant
modes, and large-scale MHD turbulence. The corresponding momentum diffusion coeffi-
cients typical for the post-shock environment of SNRs are explicitly derived in this work.
Pohl et al. (2015) concludes that fast-mode waves are the only type of waves among these
that can be significant in SNRs as their acceleration time, τacc, is of the order of few years.

In the following sections, a generic model that is based on the idea of efficient stochastic
re-acceleration of electrons by the fast-mode waves in the immediate downstream region
of SNRs is presented.

3.2 Model assumptions

To investigate the impact of stochastic re-acceleration in SNRs, a generic 1D model is
used. Its schematic structure is depicted in Figure 3.1. We assume that in a thin region
behind the forward shock, a turbulent region (marked as yellow area) is built. Stochastic
acceleration is an important damping process of fast-mode waves (cf. Thornbury and
Drury, 2014), and so it is efficient only in a thin region behind the forward shock with the
thickness, Lfm, which is assumed to be fixed for now. We consider electrons that escape
from the shock to the downstream region. Their radial propagation path toward the SNR
center, as shown in Figure 3.1, is denoted as y.

As we are primarily interested in electrons that are responsible for the radio emission
observed from SNRs, we can neglect the very-high energy particles. Characteristic photon
energy emitted by an electron gyrating in magnetic field, B, is given by

Esy ' 1.8 eV

(
B

100µG

)(
E

TeV

)2

. (3.1)

Usually, the typical magnetic fields in SNRs are of the order of ∼ 100µG. As can be
seen from Equation 3.1, for magnetic field this strong the radio flux, emitted at roughly
∼ 10−6 eV, is generated by the electrons in the GeV-energy range. Thus, in our case
we may primarily focus on electrons around the GeV-energy range. As mentioned in
Section 2.4.5, the particles in cosmic plasma are transported via advection and diffusion
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Figure 3.1: Schematic structure of the generic model for stochastic re-
acceleration in the immediate post-shock region of an SNRs. The fast-
mode waves efficiently operate in the area of the thickness Lfm, which
is marked yellow. In contrast, the far-downstream region of an SNR is
shaded blue.

processes. The advective length of a particle is energy-independent and scales with the
time period ∆t as

ladv ' vadv∆t ' 3× 1015 cm

(
vadv

1000 km/s

)(
∆t

yr

)
. (3.2)

Here vadv is the advective velocity, which typical value in the post-shock region of an SNR
is of the order of ∼ 1000 km/s. The diffusion length is determined by the spatial diffusion
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coefficient, Ds, which we assume to be Bohm-like. According to Equation 2.33, the
diffusion length for an electron of the energy E in magnetic field B is (cf. Equation 2.58)

ldiff '
√
Ds(E)∆t

' (1014 cm) ξ1/2

(
E

GeV

)1/2(
B

100µG

)−1/2(
∆t

yr

)1/2

. (3.3)

Comparing Equations 3.2 and 3.3, one immediately realizes that advection dominates for
the times

∆t� (3× 107 s) ξ

(
vadv

1000 km/s

)−2(
E

GeV

)(
B

100µG

)−1

, (3.4)

and distances

∆y � (3× 1012 cm) ξ

(
vadv

1000 km/s

)−1(
E

GeV

)(
B

100µG

)−1

. (3.5)

Thus, for the GeV-electrons in the downstream region with the typical magnetic-field
strengths of ∼ 100µG, the diffusive transport dominates only on the very short time
scales in the immediate vicinity to the shock front. Outside of the layer of the thickness
∼ Ds/vadv ' 3×1012 cm ' 10−6 pc, the transport of the electrons is governed by advection.
Obviously, the width of the diffusion-dominated region is extremely small compared to the
size of a remnant, usually of the order of a few parsec. Once escaped from the shock, the
GeV-electrons cannot return, and their propagation is determined by the advective length,
ladv. Provided that the turbulent re-acceleration region is large enough, Lfm ' ∆y, we can
neglect the diffusive transport for the bulk of electrons that account for the synchrotron
emission in the radio range. Further, since the spatial transport is mostly radial, the
system can be reduced to a 1D problem with spherical symmetry. Thus, our findings
allow us to define the position of an electron in the shock-rest frame as

y = Rsh − r = ladv ' vadvt . (3.6)

Here r is the usual radial coordinate, Rsh is the shock radius, and t is the time that particles
spend leaving the shock front. Thus the initial time t0 = 0 is the time when an electron
leaves the shock, and the origin of the coordinate axis y is tied to the shock position,
as marked in Figure 3.1. In the vicinity of the shock, the advective velocity is nearly
constant, and hence the spatial coordinate y is linear in time. Using the fact that in our
model particles move radially with the velocity vadv, we can simplify the relation between
the volume-integrated, N(p, t), and differential, N(r, p, t), particle number densities:
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4πr2N(r, p, t) = N(p, t)δ(y − vadvt) = N(p, t)δ(r − (Rsh − vadvt)) . (3.7)

The time-evolution of the electron density follows then the transport equation for CR
that contains diffusion in momentum space

∂N(p, t)

∂t
=

∂

∂p

(
Dp(p) p

2 ∂

∂p

(
N(p, t)

p2

))
, (3.8)

where Dp(p) is the corresponding momentum-diffusion coefficient. Time t and spatial
coordinate y are equivalent in our model since they are related trough expression 3.6.
Thus, the particle spectrum at the shock can be included as the initial condition at time
t0 in the form of a power-law

N(p, t0) = N0 p
−s . (3.9)

The power-law index s = 2.0 corresponds then to the well-known DSA solution for the
strong shock.

In summary, an electron spectrum of the form given by Equation 3.9 is produced via
DSA at the shock. As the electrons escape the shock with the velocity vadv, their spectrum
undergoes changes determined by Equation 3.8. The particle-turbulence interactions re-
sponsible for the energy gain of electrons are described by momentum-diffusion coefficient
Dp(p). It is important to note that assuming the turbulent region to be small compared
to the size of the remnant, the electrons that propagate away from the shock undergo
acceleration only for a short time period. Therefore all the energy losses resulting from
the expansion of the remnant can be neglected.

The key ingredient of our scenario is the momentum-diffusion coefficient, which con-
tains the properties of the turbulence. Pohl et al. (2015) found that for an isotropic
distribution function of particles the acceleration time does not depend on momentum.
Based on this, we can set for the momentum-diffusion coefficient

Dp(p) =
p2

τacc

f(p) , (3.10)

where f(p) is a dimensionless function, which we introduce to correct the acceleration of
particles at higher energies. As mentioned in Pohl et al. (2015), at higher particle energies
the isotropization of the corresponding distribution function becomes slower, and thus the
stochastic acceleration less efficient. Therefore, it is useful to define the correction function
as:

f(p) =

{
1 for p ≤ p0(
p
p0

)−m
for p ≥ p0.

(3.11)
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Above the critical momentum, p0, the diffusion coefficient deviates from the form derived
for the low-energy particles. The power-law index m determines how fast the acceleration
time scale increases with the growing energy of electrons. In this work, the power-law
index is a free parameter and is chosen to be m ∈ [0, 1] to reflect a moderate modification
from the momentum-independent diffusion coefficient. For the sake of convenience, we
rewrite Equations 3.10 and 3.11 in normalized coordinates, which we define as

x =
t

τacc

p̃ =
p

p0

. (3.12)

In the new dimensionless coordinates, the transport equation 3.8 becomes

∂N

∂x
=

∂

∂p̃

(
f(p̃)p̃4 ∂

∂p̃

N

p̃2

)
, (3.13)

where the correction function reads

f(p̃) =

{
1 for p̃ ≤ 1

p̃−m for p̃ ≥ 1.
(3.14)

As seen from Equations 3.13 and 3.14, there are two relevant parameters for the system.
The first is the time in units of acceleration time scale, x. The second is the power-law
index of the momentum-diffusion coefficient, m, which reflects the acceleration efficiency
of the turbulence.

As the re-acceleration region is assumed to be small, the electrons reside there only for
short time periods, and thus a steady-state solution of the reduced transport equation,
N ∝ pm−1, is not applicable for our scenario. Approximate analytic solutions for equations
of the form as Equation 3.13 are presented in the literature (e.g., Gallegos-Cruz and Perez-
Peraza (1995); Becker et al. (2006)). For our needs, however, it is more convenient to solve
Equation 3.13 numerically. The corresponding code is written in Python and employs the
FiPy package2 (Guyer et al., 2009), an object-oriented partial differential equation solver.

We solve Equation 3.13 in the range 0 ≤ x ≤ T , where T = Lfm/vadv/τacc is the
total time that a particle spends in the turbulent region in units of the acceleration time
scale. The thin re-acceleration region (yellow area in Figure 3.1) would be hardly possible
to resolve by radio measurements, and the observed synchrotron flux will be rather an
averaged emission over the entire turbulent area. Thus, it is sufficient to calculate the
averaged electron number density. Since time and spatial coordinates are equivalent in

2https://www.ctcms.nist.gov/fipy/
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our model, we define the averaged electron number density as

Nave(p̃, T ) =
1

T

∫ T

0

N(p̃, x) dx . (3.15)

The electrons far downstream maintain the momentum distribution previously gained in
the re-acceleration region. Once escaped from the turbulent layer, they no longer undergo
any re-acceleration process, and hence their number density is Nave(p̃, x = T ).

In the following section, the solution for Nave for different parameters and the corre-
sponding radio spectral indices are presented. The synchrotron flux is calculated using
the emissivity function for a strongly turbulent magnetic field, presented in Section 2.4.1.

3.3 Results

First of all, we check if our code reproduces the steady-state solution of Equation 3.13
if running for significantly long times. Having established the correct test results for
various values of parameter m in the steady-state regime, we can focus on the outcome
that is relevant for our model. First, we choose for the initial condition the canonical DSA
solution for test-particles, N(p, t0 = 0) = N0p

−2, where we set N0 = 1.0 for simplicity.
We compute the integrated electron number density, Nave, as defined by Equation 3.15,
for fixed m = 0.6 but varying times, T . The results are shown in Figure 3.2, where the
particle number density Nave is plotted as a function of normalized momentum (p/p0) and
multiplied by (p/p0)2 in order to emphasize the main scaling. The different lines represent
results for varying time normalized by the acceleration time scale.

To be noted from the figure is a distinct bump with a peak slightly above p/p0 = 1.0.
As expected, the modification from the stochastic re-acceleration is more pronounced for
the longer times available for the re-acceleration process. The peak of the bump shifts
to higher momenta with larger T , illustrating that electrons gain higher energies when
crossing wider turbulent regions. Nevertheless, it is remarkable that the flux enhancement
in Figure 3.2 is pronounced even for one or less acceleration time scales. This indicates
that the stochastic re-acceleration by the fast-mode waves in SNRs can be significant even
for relatively long acceleration times or narrow turbulent regions.

In the next step, we investigate the dependency of the spectra on the momentum-
diffusion coefficient parameter m. Therefore we run our code for the fixed T = 0.5 and
vary the values of m; the corresponding results can be seen in Figure 3.3. The shape of
the spectra does not really change for different m at momenta below p/p0 = 1.0. But the
high-energy tail above the critical momentum is basically determined by the momentum-
diffusion parameter. As shown in Figure 3.3, the particle spectra attain higher momenta
with smaller values of m.

Moreover, to be noted from the figure is that the tail can extend about two decades in
momentum. As we shall see in the following plots, this effect causes a synchrotron spectra
softer at lower momenta as the canonical -0.5.

Another interesting question is, how far the initial spectra at the shock affect the final
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Figure 3.2: Averaged electron number density, Nave, at different times
T for fixed index, m = 0.6.

particle distribution produced by the stochastic re-acceleration. Therefore we perform
calculations for three different values of the power-law index in the initial condition:
s = 1.7, s = 2.0 and s = 2.3, where parameters m = 0.6 and T = 0.5 are fixed.
Figure 3.4 presents results where the averaged electron number density is normalized by
the associated initial condition N(t0). It is noteworthy that depending on the initial
condition, the re-acceleration bump is unequally pronounced. Nevertheless, we observe
degeneracy for certain parameters. As can be seen from Figure 3.4, the set of parameters
T = 0.7 and s = 2.0 produce very similar spectral peak as for T = 0.5 combined with
s = 2.3. Thus we conclude that the exact form of the initial condition plays a minor role
in the spectral shape of the bump produced by stochastic re-acceleration.

Having obtained the electron spectra for various parameters, we can compute the
synchrotron emission and the corresponding spectral index in the radio range. As men-
tioned before, therefor the emissivity function for turbulent magnetic field, given by Equa-
tion 2.40, is used. The radio spectral index is then presented as a function of normalized
frequency (ν/νx), where (cf. Equation 2.36)

νx ≡ ν0(Brms, p0) =
3e

4πm3
ec

3
Brms p

2
0 . (3.16)

To simplify matters, we choose two values for the momentum-diffusion coefficient,
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Figure 3.3: Averaged electron number density, Nave, plotted for various
power indices of the momentum diffusion coefficient m and T = 0.5.

m = 0.2 and m = 0.6, and set at the shock the canonical DSA-solution N0p
−2. The radio

flux directly from the turbulent shell (yellow-shaded area in Figure 3.1 ) originates from
the averaged electron number density, given by Equation 3.15. Figure 3.5 shows the radio
spectral index calculated for varying normalized times T in the immediate post-shock
layer. Thus, the different lines represent how the spectral index changes with a wider
re-acceleration region.

When electrons leave the turbulent layer, they keep the energy distribution N(p̃, x =
T ) gained through passage of the turbulent region of the width zd = τaccTvadv. The
corresponding radial spectra for the far downstream (violet-shaded area in Figure 3.1)
are presented in Figure 3.6. To be noted from Figures 3.5 and 3.6 is that below ∼ 10νx
the spectra are harder than the canonical -0.5, and above this frequency the synchrotron
spectra become significantly softer. This effect is more pronounced in the far downstream
because the particles experienced the full re-acceleration region. It is important to stress
that the total radio spectrum observed from an SNR would be an averaged emission
of the two regions. The spectral softening is more pronounced for smaller parameters
m, in the frequency range (100 − 1000)νx. One can easily translate these values into
typical quantities of an SNR. Thus, for νx = 10 MHz the softening would be observed
at ∼ (1− 10)GHz with corresponding magnetic-field strength Brms ≈ 100µG and critical
momentum p0 ≈ 300 MeV/c. For small m (e.g., m = 0.2 in upper plots of Figures 3.5
and 3.6), the soft synchrotron spectrum extends over three decades in frequency, and
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its curvature is rather marginal. With increasing parameter m, the curvature becomes
stronger, especially in the far downstream region (bottom plot in Figure 3.6). The spectral
hardening below ∼ 10νx is strongly frequency-dependent. For the above example with
νx = 10 MHz, the harder spectrum below 100 MHz and its curvature should be observable.
Radio telescopes such as LOFAR (van Haarlem et al., 2013), which covers the frequency
range from 10-240 MHz, should be able to detect hardening at low frequencies in SNRs.

To conclude from the results presented in this chapter is that the electron re-acceleration
by fast-mode waves can soften the synchrotron spectrum in the radio range, with a cor-
responding spectral index between -0.6 and -0.7. In contrast, at very low frequencies a
spectral hardening with significant curvature is visible. Summarizing, the stochastic re-
acceleration in the immediate post-shock region provides a viable explanation for the soft
radio spectra of many galactic SNRs. In the next chapter, we describe how the concept
of stochastic re-acceleration is included in a comprehensive code designed for the global
modeling of SNRs.
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Chapter 4

RATPaC: Program for extensive
SNRs modeling

4.1 Overview

Figure 4.1: Radiation Acceleration Transport Parallel Code (RAT-
PaC) Logo, created by my husband, Igor Isaev, for which I am very
grateful.

Throughout the rest of this work, the Radiation Acceleration Transport Parallel
Code (RATPaC) is used. RATPaC is a fully time-dependent Python-based code that is
designed to model particle acceleration and corresponding photon emission in SNRs. Its
simplified structure is depicted in Figure 4.2. The blue rectangles represent the individual
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program units and the yellow ellipses the program output, respectively. The main block
of RATPaC, referred to as ”Cosmic-ray transport”, solves the transport equation for CR,
similar to those presented in Section 2.3.3, and thus is responsible for particle acceleration.
The hydrodynamic properties that go into the transport equation for CR can be either
provided by comprehensive hydrodynamic simulations or by analytic profiles (Truelove
and McKee, 1999; Cox, 1972). Similarly, the magnetic-field profiles can be set analyt-
ically or calculated from the plasma flow with the induction equation for ideal MHD.
RATPaC is used in the test-particle regime, which enables to treat the transport of CR
and the hydrodynamic equations of SNR evolution independently. Both hydrodynamics
and particle acceleration are fully time dependent. The transport equation is individually
solved for electrons and protons, as well as for forward and reverse shocks. From parti-
cle number densities, RATPaC computes the corresponding photon spectra: synchrotron
flux, NTB, and γ-ray emission via IC scattering from electrons, and via neutral-pion de-
cay from protons. All together the different emissions give the entire time-dependent and
spatially resolved spectral energy distribution (SED) of an SNR, which can be compared
to the observational data. More details on RATPaC can be found in Telezhinsky et al.
(2012a), Telezhinsky et al. (2012b), and Telezhinsky et al. (2013).

The novel aspect in this work is the inclusion of the second-order Fermi acceleration
into RATPaC, which is described in more detail in the following sections. It is important
to stress here that RATPaC offers a wide variety of possibilities, e.g., self-consistent
calculation of the Alfvénic turbulence generated by the accelerated particles (Brose et al.,
2016). Further, the recent version of RATPaC is able to solve hydrodynamical equations
on-the-fly (Sushch et al., 2018; Brose et al., 2019, 2020) as well as to calculate hadronic
γ-ray emission from havier nuclei (Bhatt et al., 2020). However, only RATPaC features
that are used throughout this work are described here in detail.

4.2 Magnetic field

RATPaC offers a large variety of magnetic field profiles available for calculations. For
example, the magnetic-field strength can be set as a constant value for the entire remnant
or scale linearly with the plasma density. This thesis is confined to two concrete options
since they are used in the following chapter to model Tycho’s SNR.

For both scenarios, the canonical value for the magnetic-field strength of the ISM in
the far upstream is used: BISM = 5µG. In the vicinity of the shock, the magnetic field
is amplified, e.g., due to streaming instabilities (Bell, 2004; Bell and Lucek, 2001). The
exact treatment of the magnetic-field amplification is beyond the scope of this work. We
adopt instead for the magnitude of the magnetic-field strength in the immediate upstream
region B1 = σBISM, where σ, a generic amplification factor, is a free parameter in our
model. Following the ansatz used by Zirakashvili and Ptuskin (2008) and Brose et al.
(2016), the magnetic-field profile in the precursor is assumed to drop exponentially to the
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interstellar field, BISM, at a distance of 5% of the shock:

B(r) =

{
σBISM · exp

(
−(r/Rsh−1)

0.05
· ln (σ)

)
for Rsh ≤ r ≤ 1.05 ·Rsh

BISM for r ≥ 1.05 ·Rsh .
(4.1)

It is important to stress that the magnetic-precursor length scale is not related to a spatial
”free-escape” boundary, which is usually introduced in the global modeling of SNRs (Völk
et al., 2008; Morlino and Caprioli, 2012; Slane et al., 2014). The precursor merely reflects
typical characteristics of the spatial profile of the amplified magnetic field in the upstream
region.

The pre-shock magnetic field is assumed to be isotropic, i.e., its individual components
are equal in their magnitudes. Shock compression for the strong unmodified shock yields
an immediate downstream value of

B2 =

√
1 + 2 r2

sh

3
B1 =

√
11B1 . (4.2)

As mentioned above, two scenarios for the magnetic-field distribution inside an SNR
are considered in this work. In the first case, the immediate downstream value of the
magnetic field is transported inside the SNR with the plasma flow and evolves according
to the induction equation for ideal MHD (Telezhinsky et al., 2013):

∂B

∂t
= ∇× (u×B) . (4.3)

Here B is the magnetic-field vector, and u the plasma velocity obtained from hydrody-
namic simulations. Equation 4.3 accounts for advection, stretching and compression of
the field, implying that magnetic flux is conserved during the entire evolution of the SNR.
The separate treatment of hydrodynamics and calculation of magnetic field with Equa-
tion 4.3 is justified as long as the dynamic back-reaction from magnetic field is negligible.
We shall discuss it in more detail on a concrete example in Section 6.3.

For the second case, we assume that after being amplified in the upstream region
and compressed at the shock, the magnetic field decays due to the damping of magnetic
turbulence in the downstream region. Magnetic-field damping is one of the key processes in
astrophysical plasmas (Kulsrud and Cesarsky, 1971; Threlfall et al., 2011), and is expected
to operate in SNRs, where it dissipates turbulently amplified magnetic field (Pohl et al.,
2005; Sushch et al., 2018). We do not know the turbulence mode that is most relevant
for magnetic-field amplification in SNRs. Instead, we adopt a simple parametrization for
the magnetic profile in the downstream region:

B(r) = B0 + (B2 −B0) · exp

(
−(Rsh − r)

ld

)
, (4.4)
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where ld is the characteristic damping length of magnetic turbulence. The residual field
level, B0, is the limit value to which the magnetic-field tends in the far downstream,
behind the CD, and the reverse shock of the SNR. In contrast to the previous case, the
magnetic flux is not conserved in the scenario described by Equation 4.4. Far inside the
remnant, the advection of magnetic field has to become important as the magnetic field
approaches the constant value B0. This inner field is, however, physically nonrelevant.
The bulk of the accelerated particles resides in the vicinity of the shock and therefore
do not experience the constant magnetic field, B0. Most of the particles accelerated at
the forward shock cannot cross the CD, which separates the swept-up material from the
ejecta, because their dynamics are governed by advection. Only a marginal fraction of
the very-high energetic particles overcome the CD via diffusive transport. Their radiative
contribution to the synchrotron spectrum does not exceed 1% of the overall emission,
and is thus negligible for the global SED modeling. Therefore, in the case of particle
acceleration at the forward shock, we can omit the advection of magnetic field for the
second scenario that includes magnetic-field damping.

The spatial and time-dependent magnetic-field profile goes into calculation of the
gyroradius of particles, rg. Thus, the spatial-diffusion in the block ”CR transport” is dy-
namically co-determined by magnetic-field profile. Furthermore, magnetic-field strength
is used to calculate the synchrotron losses of electrons and the corresponding emission
flux.

4.3 Transport equation for cosmic rays

To determine the evolution of the differential particle number density, N(r, p, t), RATPaC
solves the time-dependent transport equation for CR in space, r, and momentum, p,
coordinates:

∂N

∂t
= ∇(Ds∇N − uN)− ∂

∂p

(
(Nṗ)− ∇u

3
Np

)
+

∂

∂p

(
p2Dp

∂

∂p

N

p2

)
+Q . (4.5)

Here, the spatial diffusion coefficient, with the speed of light c and the Larmor radius rg

is defined in the downstream region as

Ds(r) = ξ
c rg(r)

3
. (4.6)

The parameter ξ is the ratio between the spatial diffusion coefficient and that for Bohm
diffusion, sometimes referred to as the gyrofactor. The Larmor radius and hence the
spatial diffusion coefficient are calculated using the local magnetic-field strength. Because
in our approach the magnetic field is spatially variable (see Section. 4.2), the spatial
diffusion coefficient also varies with position. In the upstream region beyond 2Rsh, a
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Galactic diffusion coefficient is set (Berezinskii et al., 1990; Trotta et al., 2011)

DG = 1029

(
E

10 GeV

)1/3(
B

3µG

)−1/3

cm2/s . (4.7)

Here, E is the CR energy, and B is the local magnetic-field strength. The transition
between Bohm and Galactic diffusion coefficients occurs in RATPaC exponentially with
distance.

The synchrotron losses for electrons are included in Equation 4.5 via

ṗ =
4e4B2

9c6m4
e

p2 ≡ bp2 , (4.8)

with the elementary charge e and the electron rest mass me. The synchrotron losses are
nonrelevant for protons due to large particle mass and thus are omitted in RATPaC. The
plasma velocity, u, is obtained from hydrodynamic simulations or from an analytic pro-
file. Stochastic re-acceleration is represented in Equation 4.5 by the momentum diffusion
coefficient, Dp, and the injection of particles into the shock is described by the source
term, Q. It is important to note here that the original version of RATPaC ignored the
diffusion in momentum space and thus neglected the fifth term on the right-hand side. In
contrast, the major focus of this work is stochastic acceleration and hence the diffusion
in momentum space.

There are several coordinate transformations that we perform to optimize the numer-
ical calculations. The energies of charged particles participating in our simulations range
from supra-thermal to ultra-high energies. Hence, the momentum coordinate p has to
span ∼25 orders of magnitude to account for all CR in the system. Thus, it is useful to
transform Equation 4.5 into the log-scale in momentum space. Defining a normalized par-
ticle momentum p′ ≡ p/mic, where mi is the mass of the corresponding particle species,
we can set

y ≡ ln p′ , (4.9)

Following the above notation, we reassign the differential number density, momentum-
diffusion coefficient and the source term related to the original quantities by the multipli-
cation of factor ey:

Ny ≡ eyN = p′N =
dN
dV dy

, (4.10)

Dy ≡ eyDp = p′Dp , (4.11)

Qy ≡ eyQ = p′Q . (4.12)

With transformations 4.9 to 4.12 Equation 4.5 becomes
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∂Ny

∂t
= ∇(Ds∇Ny−uNy) +

∇u
3

∂Ny

∂y
− ∂

∂y
(beyNy) +

∂

∂y

(
Dy

∂

∂y
(e−3yNy)

)
+Qy . (4.13)

Since a remnant expands rapidly with time, it is convenient to introduce a co-moving
frame tied to the shock radius. The new spatial coordinate, normalized by the shock
radius, is then defined as

r′ =
r

Rsh(t)
. (4.14)

The benefit of the above transformation is that the shock position is at a fixed known cell
during the entire calculation. Another advantage of the co-moving coordinate is that our
approach does not need a spatial escape boundary. Conventionally, the escape of high-
energy particles is implemented by setting the condition N(xb, p) = 0, which emulates
the presence of a free-escape boundary at xb. In contrast, in our treatment the system is
large enough (ca. 65 shock radii) to retain all injected particles in the simulation.

Since the spatial diffusion coefficient scales linearly in momentum, the diffusion length
of the lowest-energy particles is extremely small. Thus, to resolve newly injected particles
at the shock, a very fine grid at r′ = 1.0 is required. To avoid computationally expen-
sive treatment but to increase the spatial resolution at the shock we, perform another
coordinate transformation

(r′ − 1) = (r∗ − 1)3 , (4.15)

with corresponding Jacobian

J(r∗) ≡
∂r′

∂r∗
= 3(r∗ − 1)2 . (4.16)

Substituting the coordinate r′ with a new coordinate r∗, for which a uniform grid is
set, allows us to achieve a very fine grid in the shock vicinity. At the same time, the
numerical costs stay relatively low. As a natural consequence, our mesh becomes more
coarse with the shock distance. But the modest resolution far from the shock is justified
due to the large mean free path of the particles far upstream. A large Galactic diffusion
coefficient particularly ensures that a fine spatial grid becomes unimportant. In contrast,
the enhanced spatial resolution close to the shock is of advantage for second-order Fermi
acceleration, which we implement in the immediate downstream region.

With the above transformations Equation 4.13 can be rewritten for a spherically sym-
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metric shock wave as

∂Ny

∂t
=

1

J(r∗)

Ṙsh

Rsh

R(r∗)
∂

∂r∗
Ny +

1

J(r∗)

1

R(r∗)2

1

R2
sh

∂

∂r∗

R2(r∗)Ds

J(r∗)

∂

∂r∗
Ny

− 1

J(r∗)

1

R2(r∗)

1

Rsh

∂

∂r∗
(R2(r∗)urNy) +

1

J(r∗)

1

R2(r∗)

1

3Rsh

∂(R2(r∗)ur)

∂r∗

∂Ny

∂y

− ∂

∂y
(beyNy) +

∂

∂y

(
Dy

∂

∂y
(e−3yNy)

)
+

Qy

RshJ(r∗)
, (4.17)

where ur is the radial component of the plasma velocity and R(r∗) ≡ (r∗ − 1)3 + 1. To
solve Equation 4.17 numerically, the FiPy library (Guyer et al., 2009), which contains
implicit finite-difference methods, is used.

Equation 4.17 is applied for spherically symmetric shocks. The program unit ”CR
transport” is individually run for forward and reverse shocks since the corresponding
particle number densities are independent. The total number density is obtained as a
sum of the forward and reverse-shocks contributions. Also, for electrons and protons
separate runs are made. The ”CR transport” produces particle spectra for the desired
time, which are used to obtain the emission fluxes. More details on the method to solve
the transport equation can be found in Telezhinsky et al. (2012a).

4.4 Injection

The injection of particles is a complex issue that is not yet fully understood. For simplicity,
in RATPaC the thermal leakage injection model, as presented in Blasi et al. (2005), is
applied. The source term for electrons and protons is given by

Qi = ηin1,iVshδ(r −Rsh)δ(p− pinj,i) , (4.18)

where index i denotes the particle species (electrons and protons), ηi the corresponding
injection efficiency, and n1,i the particle number density in the upstream region. The
particles in this approach are mono-energetically injected. The associated injection mo-
mentum is multiple of the mean thermal momentum:

pinj,i = 4.45pth,i ≡ 4.45
√

2mikBTd , (4.19)

where kB is the Boltzmann constant and Td is the temperature of the plasma in the
immediate downstream region. In RATPaC the temperature, Td, is dynamically read out
from the hydrodynamic profile.

Electrons and ions are not in equilibrium at collisionless shocks. In fact, the Rankine-
Hugoniot ion temperature is about 100 keV, whereas the observed electron temperature in
the post-shock medium is of the order of 1 keV after years of residence in the downstream
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region. The ratio of the temperatures of the two particle species scales as Te/Tp ∝ V −2
sh ,

and hence for typical shock velocities, ∼ 4000 km/s, one obtains Te/Tp ≈ 0.01 (Ghavamian
et al., 2007; van Adelsberg et al., 2008).

The thermal leakage model is based on the requirement that particles see the shock as
a sharp discontinuity and hence are injected only if their Larmor radius exceeds the width
of the shock wave. This condition requires that electrons need to be pre-accelerated to
around 100 MeV to participate in DSA. Particle-in-cell simulations provide evidence that
thermal electrons can indeed be pre-accelerated by shock-surface and shock-drift accelera-
tion (Matsumoto et al., 2017; Bohdan et al., 2017). Tests demonstrate (Katou and Amano,
2019) that this process yields electron spectra shaped as a power law with a spectral index
in the range ∼ (1.5− 5.5). The exact value of the spectral index depends on the internal
structure of the shock transition region. We approximate the two-step energization of
electrons by DSA at all momenta and electron injection at very low momentum, which
intends to replace an advanced, computationally far more expensive treatment of the
pre-acceleration. Thus, the same particle temperature set for Equation 4.19 is supposed
to mimic the pre-acceleration process of electrons. Although, we do not know the exact
value of the spectral index provided by the shock-drift acceleration, it only marginally
affects our final spectra, as shown in Chapter 3 (Figure 3.4).

The injection efficiencies of protons, ηp, and electrons, ηe, are free parameters in RAT-
PaC. Since the proton injection efficiency controls the CR pressure, one needs to check
a posteriori that the ratio of CR-to-ram pressures stays within the framework of the
test-particle approximation.

4.5 Stochastic re-acceleration in RATPaC

As mentioned before, the novel aspect in this work is the stochastic re-acceleration of
particles presented in Equation 4.5 by the momentum-diffusion coefficient Dp. Similarly to
the approach presented in Chapter 3, the stochastic re-acceleration in RATPaC operates
in a thin region behind the forward shock wave. First of all, it is important to stress
that the streaming instabilities that amplify the magnetic field do not contribute to the
diffusion in momentum space. We recall that the nonresonant instability produces almost
standing waves, which cannot be responsible for second-order acceleration. The resonant
streaming instability generates Alfvén waves that feature the same helicity and hence
tend to move in the same direction. Since for an effective second-order Fermi acceleration
a presence of forward and backward moving waves is required (Dung and Schlickeiser,
1990), also the resonant streaming instability fails to accelerate particles.

Pohl et al. (2015) explicitly derived the momentum-diffusion coefficient for the fast-
mode waves and demonstrated that for low-energy particles with isotropic distribution
function, the acceleration time is independent of momentum and can be of the order of
a few years. At higher energy, where the isotropy assumption breaks down, the process
is expected to become less efficient. A useful parametrization of the momentum diffusion
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coefficient, Dp, is then (Pohl et al., 2015)

Dp(r, p) =


0 for r < (Rsh − Lfm)
p2

τacc
f(p) for (Rsh − Lfm) ≤ r ≤ Rsh

0 for r > Rsh .

(4.20)

Exactly as in Chapter 3, Lfm denotes the width of the turbulent zone, τacc is the acceler-
ation time at small momenta, and f(p) approximates the loss in acceleration efficiency at
higher energies as a power law,

f(p) =

1 for p ≤ p0(
p
p0

)−m
for p ≥ p0 .

(4.21)

The critical momentum p0 and the power-law index m are free parameters of our model.
It is important to note here that the energy in fast-mode waves has mostly a kinetic
character. As the magnetic component of the fast-mode turbulence in the typical post-
shock plasma is weak, it cannot amplify the magnetic field sufficiently. Therefore, in our
approach another type of waves, such as nonresonant streaming instability (Bell, 2004) or
turbulent dynamos (Giacalone and Jokipii, 2007), are required to provide the magnetic-
field amplification at the shock, which is an important scale factor for scattering (see
Section. 4.2). There is not necessarily a simple scaling between momentum and spatial
diffusion (e.g., Yan and Lazarian, 2004, Equation 14). In addition, different types of
turbulence may be responsible for the diffusive transport and stochastic re-acceleration
(e.g., Shalchi, 2009, page 23). Therefore, the spatial and momentum diffusion coefficients
are independent in our model.

The energy in the fast-mode turbulence that occurs in the post-shock region can be
primarily provided by the background plasma. In RATPaC the energy density in the
fast-mode waves scales with the thermal energy density of the post-shock background
plasma

Ufm = εUth . (4.22)

Here, ε is the energy-conversion factor, which is a free parameter in the code and assumed
to be of the order of a few percent. The minor value of ε provides that the energy
transfer from the main plasma flow can be neglected for hydrodynamic simulations. For
a strong shock expanding in a cold plasma, the Rankine-Hugoniot conditions provide for
the downstream thermal energy

Uth ≈
9

8
ρISMV

2
sh , (4.23)

where ρISM denotes the ambient gas density.
The acceleration time for the fast-mode waves, derived in Pohl et al. (2015), is given
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by

τacc ≈ (0.63 yr)

(
Uth

10Ufm

)
. (4.24)

If the energy density of the fast-mode waves scales with the thermal post-shock energy
density of the plasma, as reflected by Equation 4.22, Equation 4.24 simplifies to

τacc ≈ (6.3 yr)
( ε

0.01

)−1

, (4.25)

providing that the acceleration time scale depends only on the energy fraction that is
transferred to the fast-mode waves.

The re-acceleration of CR will inevitably damp the fast-mode waves and affect the
width of the turbulent region, Lfm. The latter quantity can be estimated by equating the
energy density of the fast-mode waves, Ufm, and the total energy per volume that went
into CR. Its value can be obtained from the energy transfer rate from waves to particles,
Ėtr, and the time period that particles spend in the turbulent region interacting with
fast-mode waves, ∆t, providing

Ufm = Ėtr ·∆t =
Ucr

τacc

· Lfm

u2

. (4.26)

Here, Ucr is the CR energy density in the immediate post-shock region induced by the
stochastic re-acceleration. Combining Equations 4.24 and 4.26, we finally obtain

Lfm ≈ (5× 1013 cm)

(
Vsh

1000 km/s

)(
Uth

Ucr

)
. (4.27)

Equation 4.27 is implemented in RATPaC as a time-dependent function, where Vsh and
Uth are read out from hydrodynamic files. Thus, in contrast to the model presented
in Chapter 3, the width of the re-acceleration region is self-consistently calculated and
time dependent. Summarizing, the thickness of the re-acceleration region is limited by
damping of the turbulence caused by the re-acceleration of particles. Therefore, in our
method, Ucr from Equation 4.27 is coupled to the intermediate results from Equation 4.5
for the immediate post-shock area. Calculating the energy density of CR, Ucr, we do not
take the contribution from electrons into account because, in our model, their energy is
negligible compared to that of protons. Thus, the first step is to run the program unit
”CR-Transport” for protons to determine the width of the re-acceleration layer, which is
used for electrons in the next step.

Finally, it is important to note that the physically essential quantity for stochastic re-
acceleration is the amount of energy available for it, here in the form of fast-mode waves
and described by the parameter ε. The size of the turbulence region, Lfm, follows from
the acceleration time scale, τacc, and only their ratio is relevant for the resulting particle
spectra. The reason for this is that re-acceleration, once efficient, becomes the main
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damping mechanism for the waves and hence ceases when the energy supply is exhausted.

4.6 Radiative processes

To account for the entire SED from an SNR, we calculate synchrotron radiation of elec-
trons and γ-ray radiation resulting from leptonic and hadronic interactions. The syn-
chrotron emission is calculated following Blumenthal and Gould (1970). The original
version of RATPaC applied the standard emissivity function to calculate the synchrotron
flux (cf. Section 2.4.1). For this work, the modified emissivity function for a turbulent
magnetic field (Pohl et al., 2015) was additionally implemented. In the following, we shall
use the modified emissivity function from Pohl et al. (2015) when modeling particular
SNRs. NBT and IC radiation, which can significantly contribute to the γ-ray spectrum
of SNR, are also obtained from the nonthermal electron distribution. The NTB contribu-
tion from relativistic electrons follows the calculations of Blumenthal and Gould (1970).
For the IC interactions (Blumenthal and Gould, 1970), CMB and IR background can be
taken into account. Hadronic γ-rays are the result of decays of neutral pions and other
secondaries produced in interactions of CR with nuclei of the ISM. To calculate its spec-
trum, we follow the method from Huang et al. (2007), who provided matrices for cross
section and secondary production obtained from Monte-Carlo simulations. Additionally,
the latest version of RATPaC provides thermal bremsstrahlung for a fixed temperature
of the thermal electrons in local thermodynamic equilibrium, as estimated in Hnatyk and
Petruk (1999).

4.7 Tests for RATPaC

In this section, tests for the RATPaC version that includes stochastic re-acceleration are
presented. For the following results, analytic profiles of Cox (1972) for Type Ia SNR
in Sedov stage are used, where the explosion energy of supernova is set to 1051 erg and
the ambient density is nH = 0.4 cm−3. It is important to note that only acceleration at
the forward shock is taken here into account. The magnetic-field inside the remnant is
calculated via Equation 4.3, its value at the shock is set B = 100µG. To model the spatial
diffusion, the Bohm-diffusion coefficient (i.e., ξ = 1.0 ) is chosen. Having established in
Chapter 3 that m = 0.3 typically provides soft electron spectra, we fix the momentum
diffusion parameter m to 0.3 for all following test results.

First, we consider a time-evolution of the proton spectrum that is simultaneously pro-
duced by DSA and stochastic re-acceleration by the fast-mode waves. Critical momentum
for momentum-diffusion coefficient is set to p0 = 1 MeV/c, and the energy fraction is cho-
sen to be ε = 0.01. The latter setting means that 1% of the thermal energy of the
downstream plasma is transferred to fast-mode waves and thus is available for stochastic
re-acceleration. Figure 4.3 illustrates comparisons between electron and proton number
densities with and without stochastic re-acceleration, respectively. The particle number
densities are obtained by solving Equation 4.5 and are averaged over the SNRs volume.
In this section, all spectra are referred to the downstream region of a remnant.
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(a) Protons without stochastic
re-acceleration.
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(b) Protons with stochastic
re-acceleration.
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(c) Electrons without stochastic
re-acceleration.
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re-acceleration.

Figure 4.3: Time-evolution of electron and proton spectra for scenarios
with and without stochastic re-acceleration, respectively.
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Time-evolution of proton spectrum generated without stochastic re-acceleration is pre-
sented in Figure 4.3(a). To note from the plot is that the normalization of the particle
spectra slightly decreases with time. The reason is the time-dependent injection of par-
ticles implemented in RATPaC. In fact, the particle number density with spectral index
s = 2 scales linearly with injection momentum, pinj, as can be seen from Equation 2.29.
Since the downstream temperature drops with time, so does the injection momentum (cf.
Equation 4.19). Another feature of our approach is that the maximum energy of parti-
cles, Emax, decreases with time. This is attributed to the time-dependent hydrodynamics.
Indeed, the maximum CR energy in the age-limited case scales linearly with time, and as
the square of the shock velocity (e.g., Reynolds):

Emax ∝ V 2
sh t . (4.28)

In Sedov-Taylor phase, the shock velocity scales with time as t−3/5, as seen by Equa-
tion 2.5. Thus, Equation 4.28 gives the relation between the maximum CR energy and
time in Sedov-Taylor phase

Emax ∝ t−1/5 , (4.29)

which demonstrates that the maximum energy falls with time. Figure 4.3(b) shows proton
spectra generated with switched-on stochastic re-acceleration. To be noted from the figure
are that the spectra exhibit distinct bumps around (1 − 100)mpc. Obviously, even with
a moderate energy fraction converted to turbulence, modification of the proton spectra
is substantial. The spectral bump shrinks with time since the thermal energy in the
downstream region decreases due to decelerating shock velocity, and thus less energy
becomes available for the re-acceleration. Furthermore, it can be seen from Figure 4.3(b)
that the spectral peak slightly broadens with time. The reason is that the bump at later
times represents an effectively integrated spectra over the earlier distributions.

Figure 4.3(c) shows the electron spectrum produced by DSA evolving over time. Just
like for the proton spectrum, the normalization and the maximum energy of the elec-
tron distribution decreases with time. However, in contrast to the protons the electron
spectra have steeper cutoffs due to effective synchrotron losses. Like in the case of pro-
tons, when stochastic re-acceleration is switched on, electrons form a peak at lower mo-
menta, as shown in Figure 4.3(d). However, the spectral bump produced by stochastic
re-acceleration is more pronounced in the case of electrons than that of protons. The rea-
son is the different injection criteria for the two particle species. Since we use the thermal
leakage model, electrons and protons feature injection momenta differing by a factor of
∼ 40 due to pinj,i ∝

√
mi, as seen from Equation 4.19. In other words, we do not explic-

itly treat electron acceleration by, e.g., stochastic shock drift acceleration below 100 MeV
(Katou and Amano, 2019), and subsume the entire acceleration from suprathermal to
very high energies under DSA, as mentioned before. Electrons and protons at energies
between the thermal peak and the injection threshold, which are a factor 4.45 higher
in momentum, are considered part of the thermal bulk and are ignored. The electrons
between their injection threshold and the proton injection momentum are very numerous,
and with stochastic re-acceleration, they can form a larger bump in the particle spectrum
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Figure 4.4: Proton spectra for different energy values transferred to
fast-mode waves.

than would be observed for protons.
Next, we test how the particle spectrum is varying with energy, ε, transferred to the

fast-mode waves. Figure 4.4 shows the resulting proton spectra for different values of ε.
As expected, the contribution from stochastic re-acceleration is more visible with larger
energy available for this process. The more energy is converted to the turbulence, the
larger peak in the particle spectrum can be formed because the particles undergo the
re-acceleration process for longer time periods before the energy is exhausted.

Having established in Chapter 3 that stochastic re-acceleration of electrons is able to
soften the radio spectrum of an SNR, we additionally investigate here if the impact of
stochastic acceleration can be visible in hadronic emission. Figure 4.5 shows γ-ray flux
from the proton spectra for different values of parameter ε. The pion bump for value
ε = 0 means basically that the stochastic re-acceleration is switched off and the emission
is produced purely by the standard DSA. Figure 4.5 demonstrates that for the scenario
that involves stochastic re-acceleration of protons γ-ray flux around 1 GeV is clearly
enhanced compared to the standard case. Depending on the energy fraction transferred
to the turbulence, the impact from stochastic re-acceleration is differently pronounced.
As a result, for a sufficient energy transfer γ-ray spectrum between 1 GeV and 100 GeV is
significantly softer than the standard DSA prediction. Thus, we conclude that besides the
radio spectra of SNRs, stochastic re-acceleration can also be visible in the γ-ray energy
range.
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Figure 4.5: Hadronic emission for different energy values transferred to
fast-mode waves.
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Chapter 5

Cassiopeia A SNR

The work presented in this chapter was performed within the VERITAS collabora-
tion, where I undertook the theoretical modeling of the Cassiopeia A SNR (hereafter
Cas A). Analysis for the observed γ-ray data was provided by my collaborator Dr. Sajan
Kumar (Abeysekara et al., 2020).

5.1 Overview

Cas A is a well-known SNR in the constellation Cassiopeia and one of the most powerful
observed radio sources. It is one of the youngest SNRs, as its age is estimated to be
∼350 years (Fesen et al., 2006). The remnant is located in our Galaxy, at the distance
∼ 3.4+0.3

−0.1 kpc (Reed et al., 1995), featuring an angular diameter of ∼ 5′. Most likely
Cas A arose from a red supergiant star (Chevalier and Oishi, 2003; Lee et al., 2014; Weil
et al., 2020) via a core-collapse Type IIb explosion (Krause et al., 2008a).

Photon emission from Cas A has been observed by numerous instruments and covers
the range from low energy to γ-rays, including radio (Medd and Ramana, 1965; Allen
and Barrett, 1967; Parker, 1968; Bell et al., 1975; Baars et al., 1977; Braun et al., 1987;
Anderson et al., 1991; Kassim et al., 1995; Helmboldt and Kassim, 2009; DeLaney et al.,
2014), optical (Reed et al., 1995), IR (Smith et al., 2009; DeLaney et al., 2010) and X-rays
(Gotthelf et al., 2001; Uchiyama and Aharonian, 2008; Helder and Vink, 2008; Lee et al.,
2014; Maeda et al., 2009; Grefenstette et al., 2015; Wang and Li, 2016; Arias et al., 2018).
Cas A has been identified as a point-like source in γ-rays: by Fermi -LAT (Abdo et al.,
2010; Yuan et al., 2013) at GeV and by HEGRA (Aharonian et al., 2001), MAGIC (Albert
et al., 2007; Ahnen et al., 2017) and VERITAS (Acciari et al., 2010) at TeV energies. Due
to the capacious amount of data, Cas A represents an ideal astrophysical test-bed for the
study of CR acceleration and related phenomena.

The X-ray and radio detections, interpreted as synchrotron emission, attest production
of high-energy electrons in Cas A. In contrast, the evidence for the proton acceleration is
more delicate because the γ-ray photons can be alternatively provided by the energetic
electrons via IC and NTB processes. Thus, the differentiation between the so-called
”leptonic” and ”hadronic” models is ambiguous. Nevertheless, as already mentioned in
Section 2.4.4, hadronic and leptonic emission spectra reveal different shapes, which can
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be used to distinguish between the two scenarios.
The latest models (Araya and Cui, 2010; Yuan et al., 2013; Zirakashvili et al., 2014;

Saha et al., 2014; Ahnen et al., 2017) prefer a hadronic contribution for Cas A and tend to
exclude a purely leptonic origin for the observed γ-ray emission. The corresponding proton
spectrum does not show acceleration above TeV energies and hence suggest that Cas A
could not be a PeVatron at its present age (Ahnen et al., 2017). An alternative scenario
is, however, provided by Zhang and Liu (2019), who shows that specific assumptions for
a two-zone model may allow for Cas A a proton cutoff around 3 PeV. The basic idea of
Zhang and Liu (2019) is that the bulk of protons is accelerated by the fast-moving inward
shocks detected by Sato et al. (2018), while the leptonic contribution is primarily provided
by the forward shock. Thus, in this model, the forward shock is irrelevant for hadronic
emission, while the small short-living inward shocks have to yield the main hadronic
component by providing to protons the energy of the order 1050 erg. However, in models
with realistic hydrodynamics the crucial role of reflected shocks for proton acceleration is
not investigated yet.

In this chapter, the most recent broadband emission from Cas A is interpreted in the
context of global hadronic and lepto-hadronic models. For this the recently analyzed γ-
ray data from VERITAS and Fermi -LAT experiments (Abeysekara et al., 2020) are used.
The VERITAS data were taken between 2007 and 2013 within 60 hours and cover the
energy range between 200 GeV and 10 TeV. The 10.8 years of Fermi -LAT observations,
performed from 4th August 2008 to 31st May 2019, provide the photon flux between 0.1
and 500 GeV. Additionally to the γ-ray, the radio and the X-ray data are taken into
account.

The following modeling is performed using RATPaC, which was introduced in Chap-
ter 4. However, it is important to stress that not all capabilities of RATPaC are exploited
here. In fact, a time-independent one-zone model is applied for Cas A, where time-
dependent DSA and stochastic re-acceleration of particles are not yet taken into account.
Thus, we neither specify the exact acceleration mechanism nor the region where the CR
are produced. Instead, a volume-averaged power-law proton and electron spectra with an
exponential cutoffs are assumed. The reason for a rather simple model is the fact that it
should primarily provide a quick interpretation for the recently analyzed VERITAS and
Fermi -LAT data. Besides, in this thesis, the relatively simple model for Cas A serves
additionally as a test for the complex program RATPaC.

5.2 Model assumptions

We build a global model to investigate the multi-wavelength spectrum from radio up to the
TeV energy range. For simplicity, we assume a one-zone model fixed by two parameters:
the ambient hydrogen number density, nH, and the post-shock magnetic-field strength,
B. Both quantities are assumed constant, i.e., independent of time and location. The
differential electron (proton) number densities, Ne(p), are assumed to follow power law
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with an exponential profile

Ni(p) = N0,i p
−si exp

(
− p

pcut,i

)
, (5.1)

with i denoting the particle species. Here p, pcut, and s denote the electron (proton) mo-
mentum, the cutoff momentum, and the power-law index of the spectrum, respectively,
all of which are free parameters of our model. The normalization, N0, in principle reflects
the injection efficiency of each particle species. As mentioned above, the SED is calcu-
lated with RATPaC. For the synchrotron emission from the nonthermal electron spectrum
(Blumenthal and Gould, 1970), the modifications caused by the turbulent component of
the magnetic field are taken into account (Pohl et al., 2015). For the IC interactions
(Blumenthal and Gould, 1970), we consider two target photon fields: the CMB and the
IR emission from the shock-heated ejecta with temperature ∼ 100 K and energy density
2 eV cm−3 (Mezger et al., 1986). Additionally, thermal bremsstrahlung from plasma elec-
trons is included assuming local thermodynamic equilibrium (Hnatyk and Petruk, 1999).
The γ-ray yield from protons via neutral-pion decay is computed using the procedure
of Huang et al. (2007). Including the hydrogen number density and the magnetic field
strength, we have in total nine independent parameters in our global model. The pa-
rameters are shown in Table 5.1. The hydrogen number density, nH, corresponds to the
upstream value and magnetic-field strength, B, to the downstream region. In the fol-
lowing, we consider two scenarios: a hadron-dominated model and a lepto-hadronic case,
which we refer to as Model I and II, respectively.

Table 5.1: Model parameters for Cas A.

Varying parameters Same for both models
Model B N0,e N0,p pcut,e pcut,p se sp Te nH

(µG) ((mec)se−1) ((mpc)sp−1) (mec) (mpc) (107K) (cm−3)
I 450 4.2× 1013 3.2× 1023 9.0× 106 2.1× 104 2.5 2.17 1.8 1.0
II 150 2.9× 1014 3.8× 1023 1.6× 107 6.0× 103 2.5 2.17 1.8 1.0

5.3 Hadronic model

We start with a purely hadronic model of the γ-ray emission from Cas A. Assuming that
γ-ray flux originates solely from proton-proton interactions, we can drastically reduce
the number of free parameters in our model. Indeed, since the proton spectrum is inde-
pendent of the magnetic field as well as thermal and nonthermal electron distributions,
only four parameters affect the hadronic emission. The spectral index, sp, and the cut-
off momentum, pcut,p, specify the spectral shape of the pion bump, while the ambient
number density, nH, and normalization factor N0,p determine the normalization of the
flux. Furthermore, the ambient number density and normalization of the proton spec-
trum compensate each other, as can be seen from Equation 2.53. Therefore, the relevant
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free parameters that we vary are sp and pcut,p, while normalization of the pion bump is
fixed. Using Equation 5.1, we find the best fit for the joint Fermi -LAT and VERITAS
data points (Abeysekara et al., 2020), shown in Figure 5.1. The corresponding best-fit

parameters, with χ2

d.o.f.
= 1.38, are sp = 2.17 and pcut,p = 2.1 × 104 mpc (equivalent to

Ecut,p ≈ 21 TeV). More instructive than the best-fit model are the confidence regions of
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Figure 5.1: Purely hadronic best-fit with χ2 = 36.01 and d.o.f. = 26
(χ2/d.o.f. = 1.38). The corresponding best-fit parameters following Equa-
tion 5.1 are sp = 2.17 and pcut,p = 2.1× 104 mpc.

the parameters, revealed by ∆χ2 = χ2 − χ2
min. Therefore, we scan the sp − pcut,p parame-

ter space and calculate ∆χ2 while optimizing the normalization of the flux. The correct
confidence regions with associated significance depend on the number of free model pa-
rameters, k (Lampton et al., 1976). The corresponding values are listed in Table 5.2. In
our modeling k = 2 since the free parameters are sp and pcut,p, for which we estimate the
1σ, 2σ and 3σ confidence levels. The results are shown in Figure 5.2. Here the dark-blue
area represents ∆χ2 < 2.30, medium-blue ∆χ2 < 6.18 and the light-blue ∆χ2 < 11.83,
which corresponds to 1σ, 2σ, and 3σ, respectively. As seen from Figure 5.2, the canonical
solution from DSA theory (s = 2.0) is excluded with > 99.7% confidence. Thus, in the
case of a hadronic origin, the γ-ray data mandate a proton spectral index (sp ≈ 2.1− 2.2)
softer than predicted by the standard DSA theory (s = 2.0) or nonlinear DSA (s < 2.0 at
p � mc) (Malkov and Drury, 2001). Figure 5.2 indicates a cutoff with pcut,p ∼ 104 mpc,
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Table 5.2: Values of ∆χ2 depending on numbers of fitting parameters k.

Significance Confidence level
∆χ2

k = 1 k = 2 k = 3
0.317 68.3% ”1σ” 1.0 2.3 3.53
0.0455 95.45% ”2σ” 4.0 6.18 8.02
0.0027 99.73% ”3σ” 9.0 11.83 14.16
0.00006 99.99% ”4σ” 16.0 19.33 22.06

in full agreement with Ahnen et al. (2017), who concluded that Cas A is not a PeVatron.
It is important to recall here, though, that these conclusions are made within a one-zone
model with an exponentially cutoff power-law spectra. Relaxing these assumptions can
slightly change the confidence regions.
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Figure 5.2: Purely hadronic model: The confidence regions for the spectral
index, s, and cutoff momentum, pcut. The dark-blue area corresponds to
68.3% probability, or 1σ, medium-blue to 95.5%, or 2σ, and the light-blue
field to 99.7%, or 3σ, respectively.
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In the next step, we determine the electron spectrum for the global model of broad-
band emission. The electron power-law index, se ≈ 2.5, is entirely fixed by the radio
data (Vinyaikin, 2014), and the X-ray flux (Maeda et al., 2009) is well explained by the
synchrotron cutoff. A minor discrepancy occurs above 100 keV where the INTEGRAL
spectral data (Wang and Li, 2016) suggest a spectral hardening, which might reflect an
asymmetric explosion (Wang and Li, 2016) and thus cannot be included in our model-
ing. An alternative explanation involves weakly relativistic electrons emitting NTB, as
we discuss in Section 5.4.

Lee et al. (2014) found that the upstream gas density for Cas A lies in the range 0.6 to
1.2 cm−3. In this work, we follow Lee et al. (2014) and use nH = 1.0 cm−3 for simplicity.
In order for the IC component not to dominate the γ-ray production from hadrons, the
magnetic field in the downstream region needs to be at least ∼450 µG, and we use this
minimum value in the model. This magnetic-field strength is compatible with the results
of Berezhko et al. (2003), Zirakashvili et al. (2014), and Sato et al. (2018), who argued
that for Cas A, B ∼ 0.5−1 mG. For a magnetic field this strong (∼450 µG) the thickness
of the X-ray rims must reflect synchrotron energy losses of the radiating electrons (Parizot
et al., 2006).

The entire SED is presented in Figure 5.3, and the corresponding model parameters
are summarized in Table 5.1 (Model I). The hadronic component (green dashed line) is
the best-fit spectrum presented in Figure 5.1. Besides the marginal IC contribution, we
obtain a negligible NTB component, which we calculate starting from 10 MeV. While the
spectral shape of the electrons for energies above ∼100 MeV can be constrained by the
radio data, there are no data to test the spectral shape for electrons with energies below
∼100 MeV. Consequently, accurate modeling of the NTB radiation below∼10 MeV, which
corresponds to ∼100 MeV electron energy, is not possible. Therefore, in our modeling
the total photon spectrum disconnects between 100 keV and 10 MeV. The electron tem-
perature, Te, is chosen according to Maeda et al. (2009), and the thermal-bremsstrahlung
emission provides a moderate contribution to the X-ray flux. The main reason for the
rather insignificant thermal and NTB contributions is a relatively low plasma density in
the downstream region given for a strong shock by nH,d = 4nH.

Finally, we test if the increasing γ-ray flux at ∼100 MeV can be explained by NTB.
Indeed, at first glance the two lowest-energy Fermi data points suggest the presence of
an additional emission besides the pion bump, such as NTB. Performing the χ2-test after
taking into account both NTB and neutral-pion decay, we find, however, that a negligible
NTB contribution is preferred. The corresponding best-fit with χ2

d.o.f.
= 1.42 is presented in

Figure 5.4. Nevertheless, Cas A has been considered for a long time as the best candidate
for detecting NTB (Cowsik and Sarkar, 1980; Allen et al., 2008). Therefore, we investigate
the possibility of a lepto-hadronic model for the observed γ-ray spectrum of Cas A in the
following section.

5.4 Lepto-hadronic model

In this section, we determine the observable limits on the presence of NTB and establish a
model with a maximum possible NTB contribution. In contrast to the hadron-dominated
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Figure 5.3: Model I: Hadronic model with downstream magnetic field B ≈
450µG and upstream gas density nH = 1 cm−3. The radio data are taken
from Vinyaikin (2014); X-ray data from Maeda et al. (2009) and Wang and
Li (2016).

model, where a χ2-fit was applied to the γ-ray data, a fit by eye is used for the lepto-
hadronic model. For a consistent lepto-hadronic scenario, IC and NTB components need
to be additionally included and hence the entire SED has to be considered. However, a
formal χ2-fit and the corresponding interpretation for multiple instruments with different
statistical and systematic errors is far more challenging. Furthermore, we are rather
interested in a case with the minimum possible magnetic field inside Cas A, which provides
the maximal (not best-fit) leptonic contributions.

In the framework of our one-zone model, NTB at a few hundred MeV is emitted
by the same electrons that produce radio synchrotron emission at a few hundred MHz,
and so a flux comparison between the radio data and the Fermi points at ∼100 MeV,
S1 GHz/S100 MeV, determines the relation between the average gas density and the minimum
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Figure 5.4: Best-fit for the hadronic component (green dashed line) plus
NTB (blue dotted line); the total spectrum (pink solid line) with χ2 = 35.50
and d.o.f. = 25 (χ2/d.o.f. = 1.42).

magnetic-field strength. Choosing the pre-shock gas density according to Lee et al. (2014),
nH = 1.0 cm−3, we obtain for the minimum downstream magnetic-field strength: Bmin ≈
150µG. Any weaker magnetic field would lead to NTB overshooting of the data points
at ∼100 MeV.

In general, the emission coefficients for synchrotron and NTB scale with magnetic-field
strength and gas number density, respectively, as (cf. Section 2.4, see Equations 2.38 and
2.44 in particular)

jsy ∝ B
1+se

2 and jntb ∝ nH . (5.2)

Therefore, to sustain constant synchrotron and NTB-flux ratio, the following condition
for downstream magnetic field and ambient hydrogen number density has to be fulfilled:

(
B

150µG

) 1+se
2

=
( nH

1 cm−3

)
. (5.3)

Aside from this case, the NTB component becomes suppressed with increasing magnetic
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field but constant gas density. Starting from some critical magnetic-field value the overall
γ-ray emission becomes hadron-dominated, as discussed in Section 5.3. The minimum
post-shock magnetic field for Cas A is therefore given by

B & 150 µG
( nH

cm−3

) 2
1+se

, (5.4)

as can be recognized from Equation 5.3. The minimum magnetic field deduced from
potential NTB contribution depends on the ambient density of the remnant. Thus the
density uncertainties provided by Lee et al. (2014) suggest that the minimum magnetic-
field value may vary from 110µG to 170µG.

Having established the strength of the magnetic field inside Cas A, we immediately
find several consequences. First, given the age of the remnant, ∼ 1010 s, only electrons
with Lorentz factors γ � 106 can be affected by energy losses. The resulting IC peak,
which is calculated from a combination of CMB and far-IR target-photon fields, would lie
near 100 GeV in the spectrum, and its spectral shape would be incompatible with that
measured in the GeV band. The second consequence is that the peak energy flux of the
IC component must be about a factor Umag/(Ucmb + Ufir) ' 250 lower than that of the
near-UV synchrotron emission radiated by the same electrons (Pohl, 1996). Consequently,
the IC peak at 100 GeV is roughly a factor of 3 below the observed γ-ray flux and thus,
IC emission alone can hardly provide the bulk of the γ-ray emission at 100 GeV. It does
contribute to a significant part of it though, and the highest-energy TeV emission is
fully accounted for by the highest-energy IC contribution. Both points indicate that an
additional radiation component, such as from neutral-pion decay, is required. Therefore,
we conclude that a purely leptonic model is very unlikely.

The lepto-hadronic case (Model II) with a maximum possible NTB component that
is consistent with the Fermi data points is shown in Figure 5.5. The IC peak (purple
dash-dot-dotted line) located at ∼100 GeV sets an additional constraint on the magnetic
field inside Cas A. Decreasing the magnetic field would require higher electron injection
to explain radio emission. In turn, it would enhance the IC contribution, which would
exceed the TeV-flux measured with VERITAS (blue diamond-shaped points in Figure 5.5).
Thus, both IC and NTB provide the same lower limit for the post-shock magnetic field,
∼ 150µG. In contrast to NTB, IC does not scale with the gas density. Therefore, it
provides an independent constraint on the magnetic-field value and implies that B <
150µG is highly unlikely for Cas A.

Despite a significant NTB contribution, γ-ray data in the GeV and higher MeV band
are adequately explained by the pion bump and the discrimination between lepto-hadronic
and purely hadronic models remains vague. Table 5.1 presents the parameters for the
global lepto-hadronic model (Model II). The normalization factor, N0,e, and the cutoff
momentum of the electron spectrum, pcut,e, are readjusted to fit the radio data for the
weaker magnetic field. Since the cutoff at TeV energies is largely reproduced by the
IC, the proton spectrum cuts off already at roughly 6 TeV. Alternatively, the hadronic
contribution at TeV energies can be reduced by assuming the proton spectral index softer
than 2.17.
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Figure 5.5: Model II: Lepto-hadronic model with a minimum post-shock
magnetic field B ≈ 150µG and ambient gas density nH = 1 cm−3. The radio
data are taken from Vinyaikin (2014), X-ray data from Maeda et al. (2009),
and Wang and Li (2016).
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An advantage of the lepto-hadronic model is a possible explanation for the hardening
of the X-ray spectrum above 100 keV observed with INTEGRAL (Wang and Li, 2016)
by emission from non-relativistic electrons radiating NTB. This idea is supported by the
findings of Allen et al. (2008), who analyzed the X-ray data of Cas A and concluded that
in the energy range 10-32 keV, NTB exceeds the synchrotron radiation by a factor 2 to
3. A logical extrapolation is that the non-relativistic electrons that are not in thermal
equilibrium can provide a significant NTB contribution in the range of 100 keV - 1 MeV
and thus explain the hard X-ray spectrum. As mentioned above, we do not model this
explicitly because we lack the exact form of the electron spectrum at lower energies.

5.5 Discussion

The observed radio spectrum of Cas A constrains the spectral index of the electrons to be
se ≈ 2.5, and the γ-ray data favor a proton spectrum of sp ≈ 2.17. These values are obvi-
ously softer than predicted by DSA. One possible explanation involves effects arising from
turbulence growth and damping (Malkov et al., 2011; Brose et al., 2016). Alternatively,
quasi-perpendicular shocks in young SNRs can steepen the spectral index (Bell et al.,
2011). In the case of a young core-collapse SNR like Cas A, the hydrodynamical structure
of the progenitor wind zone and acceleration at the reverse shock can significantly mod-
ify the particle spectra (Atoyan et al., 2000; Telezhinsky et al., 2013; Zirakashvili et al.,
2014). The detection of X-ray synchrotron radiation in the interior of Cas A suggests par-
ticle acceleration at the reverse shock (Gotthelf et al., 2001; Uchiyama and Aharonian,
2008; Helder and Vink, 2008). However, newer data indicate that essentially all of the
> 15 keV synchrotron flux is produced in small knots located in the 3D interior of the
remnant, rather than a surface like the reverse shock (Grefenstette et al., 2015). Finally,
stochastic re-acceleration of electrons behind the forward shock may be able to soften
the spectrum over three decades in synchrotron frequency (Pohl et al., 2015), discussed
in detail in Chapter 3. In the present work, we follow a simple procedure to address
the most important conclusions: determination of the minimum magnetic field strength,
confirmation of the pion bump, and the corresponding proton cutoff energy. More so-
phisticated models (including, e.g., asymmetric explosion, time-dependent hydrodynamic
simulations, acceleration at the reverse shock, magnetic turbulence, and stochastic re-
acceleration of particles) are needed to further differentiate between competing scenarios
concerning particle acceleration in SNRs.

The total CR energy for the hadron-dominated (Model I) and lepto-hadronic (Model II)
models considered here is found to be ECR ≈ 1.7× 1050 erg and ECR ≈ 1.2× 1050 erg, re-
spectively. These numbers roughly represent the total energy that went into the particles
as they accumulated over the entire evolution time of the remnant. Unfortunately, there is
no easy way to ascertain the original explosion energy of Cas A, ESN: the estimations vary
between 2×1051 erg and 5×1051 erg (Laming and Hwang, 2003; Chevalier and Oishi, 2003;
Schure et al., 2008; Lee et al., 2014; Orlando et al., 2016). This suggests that the fraction
of the explosion energy expended in accelerating particles is between 2% and 9%. Being a
very young SNR, Cas A is very likely in the ejecta-dominated phase (Morse et al., 2004),
implying that only a fraction of its explosion energy can be currently extracted from the
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shock. The full energy becomes available after the SNR enters the Sedov-Taylor stage. In
that case, the above numbers may not accurately indicate the acceleration efficiency of
the remnant. Truelove and McKee (1999) suggested that Cas A is in the transition from
the ejecta-dominated to the Sedov-Taylor stage. To verify this, we follow calculations
in Dwarkadas (2013), who assumed that Cas A is still in the free-expansion phase and
expands into a wind with density profile ρ ∝ r−2. According to Dwarkadas (2013) the
maximum shock energy that is available for particle acceleration is found to be:

Eacc =
2πm3

(3m− 2)

ρuR
5
sh

t2age

with m =
(n− 3)

(n− 2)
. (5.5)

Here ρu is pre-shock gas density, Rsh is shock radius, and tage is age of the remnant.
The expansion parameter, defined as m = d lnRsh/d ln t, is fixed by the ejecta-density
profile, ρej ∝ r−n, with n > 5 (e.g., Chevalier (1982)). A reasonable value for n is given
by Matzner and McKee (1999), who find that a red supergiant star with a radiative
envelope has n ≈ 10. Assuming this ejecta profile and taking typical values for Cas A:
Rsh = 2.5 pc, ρu = 2.34×10−24 g cm−3 and tage = 350 years, we obtain the maximum shock
energy available at Eacc ≈ 3.5 × 1051 erg. This result shows that the maximum energy
available for particle acceleration in the ejecta-dominated phase is of the same order as
the total explosion energy of Cas A, ESN ≈ 2 × 1051 − 5 × 1051 erg, that is presented in
literature (Laming and Hwang, 2003; Chevalier and Oishi, 2003; Schure et al., 2008; Lee
et al., 2014; Orlando et al., 2016). This indicates that a large fraction of the explosion
energy is available at the shock front. Therefore, Cas A is not far from the Sedov-Taylor
stage. Our estimation of 2% − 9% of explosion energy is thus appropriate. Further,
Eacc ≈ 3.5× 1051 erg implies that the acceleration efficiency (defined as ηacc = ECR/Eacc)
is ηacc ≈ 0.05 and ηacc ≈ 0.03 for hadronic and lepto-hadronic scenarios, respectively.
However, one should treat these conclusions with caution since the values we used for the
parameters in Equation 5.5 are not precisely known. Our result is consistent with the
total CR energy ∼ 9.9 × 1049 erg presented by the MAGIC collaboration (Ahnen et al.,
2017) and exceeds the value ∼ 4× 1049 erg found using Fermi -LAT (Yuan et al., 2013).

We find that IC and NTB obviously cannot account for the emission around 10 GeV,
and thus a hadronic component is clearly needed. The maximum energies obtained for
protons are 21 TeV and 6 TeV for the purely hadronic and lepto-hadronic models, respec-
tively. These values are similar to the previous results of Yuan et al. (2013) (10 TeV) and
Ahnen et al. (2017)(12 TeV).

5.6 Summary for modeling of Cas A

Considering the entire multi-wavelength spectrum of Cas A, we used a global one-zone
model assuming power-law particle spectra with an exponential cutoff. Two different
scenarios, a hadron-dominated case (Model I) and a lepto-hadronic model (Model II)
are presented. Furthermore, in agreement with previous studies on the SED of Cas A
(Araya and Cui, 2010; Saha et al., 2014); a purely leptonic model is excluded under the
assumption of a one-zone scenario, leading to the conclusion that proton acceleration up
to TeV energies is clearly evident. Nevertheless, our modeling indicates that Cas A is
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highly unlikely a PeVatron. This result is in full agreement with Ahnen et al. (2017).
The resulting pion bump reflects a slightly softer spectral index for the proton spectrum,
sp ≈ 2.17, than the canonical DSA predictions (both linear and nonlinear versions (Malkov
and Drury, 2001)). We exclude the canonical DSA solution of s = 2.0 with 3σ confidence.
The total energy converted into CR is at least 1050 erg, giving an acceleration efficiency
ηacc ≈ 0.03− 0.05.

Although Cas A is the best SNR candidate for NTB emission (Cowsik and Sarkar,
1980; Allen et al., 2008), we cannot indicate any evidence for an NTB flux above 100 MeV.
A clear determination may be achieved with the photon measurements extended down to
the MeV energy range. Future experiments, such as AMEGO1, may shed light on that
issue. Nevertheless, assuming a potential NTB presence in Cas A, we deduce a minimum
value for the magnetic-field strength inside the remnant Bmin ≈ 150µG. This value is
independently confirmed by the IC peak. Therefore, it is clear that the magnetic field
inside the Cas A SNR is efficiently amplified, when compared to the ISM field.

1All-Sky Medium Energy Gamma-ray Observatory: https://asd.gsfc.nasa.gov/amego/
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Chapter 6

Tycho’s SNR

6.1 Motivation

Tycho’s SNR is associated with the historical supernova event SN 1572 of Type Ia, first
described by Tycho Brahe. Thanks to his visual observation, the age of Tycho’s SNR
(SNR G120.1+1.4, hereafter Tycho) is accurately determined to be ∼ 448 years. Along
with Cas A, Tycho is one of the best studied young SNRs. Tycho originated from a Type
Ia supernova (Krause et al., 2008b) and is assumed to have canonical explosion energy of
∼ 1051 erg. These details, together with the available broadband spectrum, make Tycho
one of the best astrophysical laboratories to study particle acceleration. Nevertheless,
several questions still remain unanswered.

As already discussed before, despite the success of DSA theory, it fails to explain the
observed radio spectrum Sν for all SNRs. Also Tycho is no exception, its measured radio
spectral index α ≈ −0.65, with Sν ∝ να (Kothes et al., 2006), deviates from the standard
DSA prediction α ≈ −0.5. This discrepancy is generally accounted for using the concept
of Alfvénic drift (Bell, 1978a). Hence, various authors postulate Alfvénic drift only in the
upstream region (Völk et al., 2008; Morlino and Caprioli, 2012) or in the upstream and
downstream (Slane et al., 2014) regions of Tycho’s forward shock. The proper motion
of CR scattering centers that proceed with Alfvén speed is assumed to decrease the
compression ratio felt by the particles, thereby causing a softening of their spectra. To
be more precise, the effective compression ratio seen by particles is (cf. Section 2.5.1)

reff =
u1 +Hc1vA1

u2 +Hc2vA2

, (6.1)

where u1, vA1 are the plasma velocity and the Alfvén velocity in the upstream and u2, vA2

in the downstream regions, respectively. The relative direction of the propagation of the
Alfvén waves in the upstream (downstream) is reflected by the cross helicity, Hc1(2). In
the above global models, its value is chosen rather freely, in order to reduce the effective
compression ratio and thereby to account for the soft particle spectrum. For example
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Völk et al. (2008) and Morlino and Caprioli (2012) take Hc1 = −1 and Hc2 = 0, while
Slane et al. (2014) use Hc1 = −1 and Hc2 = 1. However, on closer inspection the concept
of Alfvénic drift as an explanation for the spectral softening appears misleading.

First of all, Vainio and Schlickeiser (1999) performed a detailed calculation on self-
consistent transmission of the Alfvén waves through the shock and found that the presence
of waves results in harder particle spectra than predicted by the standard theory (meaning
that Alfvén waves infer exactly the opposite effect to that claimed by Völk et al. (2008),
Morlino and Caprioli (2012) and Slane et al. (2014)). The reason is that Alfvén waves
that move in the upstream region in the opposite direction to the background plasma
(Hc1 = −1) propagate also predominately in the opposite direction in the downstream
(Hc2 ≈ −1)(Vainio and Schlickeiser, 1999). Therefore, even despite the modifications
induced by the strong magnetic-field pressure, the effective compression ratio seen by
particles (Equation 6.1) exceeds the standard strong-shock value (reff > 4). Investigating
the impact of the Alfvénic drift within the framework of Vainio and Schlickeiser (1999), we
find that for the Alfvénic Mach numbers, MA,1 ≡ u1/v1,A, in the range 10-13 (as presented
in Völk et al. (2008) and Morlino and Caprioli (2012)) the particle spectral index for a
strong shock results in s ≈ 1.9 instead of the s ≈ 2.3 required by radio observations of
Tycho. Furthermore, the negative downstream helicity, Hc2 ≈ −1, predicted by Vainio
and Schlickeiser (1999) is exactly the opposite of what was assumed by Slane et al. (2014),
who used Hc2 = 1.

Secondly, according to Morlino and Caprioli (2012) the Alfvénic-drift phenomenon in
the global models of Tycho is referred as resulting from the nonresonant streaming insta-
bility of CR (Bell, 2004). According to Bell (2004), the phase speed of the nonresonant
modes is negligible compared to the shock velocity. But in the case of Alfvénic drift, the
Alfvén velocity required to account for Tycho’s radio spectra has to be enormous.

The following estimation should demonstrate the corresponding discrepancy. Let us
assume that Alfvénic drift occurs only in the upstream region (Hc2 = 0 and Hc1 = −1),
as in Völk et al. (2008) and Morlino and Caprioli (2012), even though it contradicts the
findings of Vainio and Schlickeiser (1999). In this case, we can rearrange Equation 6.1 to

MA,1 = (1− reff/rsh)−1 , (6.2)

where rsh ≡ u1/u2 is the gas compression ratio of the shock. The sub-shock compression
ratio (defined in Section 2.5.2) in Völk et al. (2008) and Morlino and Caprioli (2012)
is in the range Rsub = 3.7 − 3.9, even if the nonlinear effects of the DSA are included.
The effective compression ratio seen by particles, required by the radio observations is
reff ≈ 3.3. Inserting these values into Equation 6.2 provides a relatively low Alfvénic Mach
number, MA = 6− 9, making it clear that the Alfvén speed exhibits a significant fraction
of the shock velocity. Therefore, to explain Tycho’s radio data with Alfvénic drift, the
Alfvén phase speed has to attain 11%− 16% of the shock velocity. Obviously, this value
is in conflict with the phase speed of the nonresonant mode, vφ ≈ 0, as described by Bell
(2004). Therefore, Alfvénic drift in the models for Tycho cannot be associated with the
nonresonant streaming instability.
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It is important to note here that Völk et al. (2008) and Morlino and Caprioli (2012)
applied in their modeling somewhat smaller magnetic-field values than required to best
match the radio data with Alfvénic drift. The post-shock magnetic fields of ∼ 300µG
(Morlino and Caprioli, 2012) and ∼ 400µG (Völk et al., 2008) provide sufficient flux in
the radio range but fit the spectral shape of the observed data only moderately well. The
Alfvén velocity in these models (with corresponding Alfvénic Mach numbers of MA ≈ 13
and MA ≈ 10) is still ∼ 10% of the shock velocity. The phase speed of the nonresonant
mode is much less than that and cannot support Alfvénic drift.

A post-shock magnetic field above ∼ 300µG, when combined with the relatively low
ambient density of 0.3−0.4 cm−3 (Völk et al., 2008; Morlino and Caprioli, 2012), becomes
dynamically important1. The corresponding magnetic-field pressure will affect the shock
compression ratio, which results in rsh < 3.9. Aside from the work of Morlino and Caprioli
(2012), this effect has been neglected in global models for Tycho.

The above arguments illustrate that the Alfvénic-drift concept is unable to explain Ty-
cho’s soft radio spectrum consistently. An alternative way to explain the softening of the
particle spectra in collisionless shocks to account for neutral hydrogen in the surrounding
medium, first proposed by Blasi et al. (2012). Analytic calculations from Ohira (2012)
plus later simulations (Ohira, 2016) show that neutrals can leak from the downstream
into the upstream region and modify the shock structure. This results in a softer particle
spectrum as produced by standard DSA. Morlino and Blasi (2016) build on that idea to
model the rather soft γ-ray spectrum of Tycho. However, the leakage of neutral particles
is significant for shock velocities Vsh < 3000 km s−1 (Ohira, 2012), which is considerably
below the value ascertained for Tycho. Morlino and Blasi (2016) argued that certain
regions of Tycho can feature slower shocks that propagate into dense, partially neutral
material. Obviously, in this scenario, regions with slower shock velocities would have to
provide nearly all of the observed overall emission, while contributions from the regions
with the fast shock velocities would have to be weak, otherwise the integrated emission
would reflect the hard spectra expected for fast shocks in an ionized medium.

In this work, we suggest a new approach: besides standard DSA, we consider an
additional acceleration process, namely the stochastic re-acceleration of particles in the
immediate post-shock region of the SNR, as presented in Chapter 3. It has been shown
that fast-mode waves that survive the TTD by the background plasma are efficient modes
to accelerate charged particles via cyclotron resonance (Yan and Lazarian, 2002; Liu et al.,
2008). In previous chapters of this thesis, it was demonstrated that particles may be
stochastically re-accelerated by fast-mode turbulence, which occurs in the downstream
region, after escaping from the forward shock. Here, we further build on that idea and
incorporate it into detailed modeling of Tycho.

Fast-mode turbulence may arise behind the shock from velocity fluctuations of the
plasma flow, via, e.g., shock rippling (Giacalone and Jokipii, 2007), and build a thin
turbulent region behind the blast wave. The width of this zone is regulated by the energy
transfer from the background plasma into turbulence as well as damping induced by the
re-acceleration of CR. We show that fast-mode turbulence that carries a few percent of the
energy density of the background plasma in the downstream region is strong enough to

1In Section 6.3 we shall discuss it in more detail.
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modify the spectrum of particles that have already been accelerated by the shock. Thus,
in our treatment, stochastic acceleration and DSA operate together and produce a particle
spectrum consistent with the observed radio spectral index. An additional advantage of
our approach is that it is fully time dependent2. We solve the time-dependent transport
equation for CR that contains a DSA term and diffusion in momentum space and is
coupled to hydrodynamic simulations.

Another interesting question regarding Tycho pertains to the extent to which the
magnetic field is amplified inside the remnant. A relatively high post-shock magnetic
field, 300− 400µG, is postulated by several global models (Völk et al., 2008; Morlino and
Caprioli, 2012). One of the reasons is the aforementioned Alfvénic drift, which demands
relatively large magnetic-field values to account for the radio spectrum. Since we do not
postulate any Alfvénic drift in our model, our approach of inferring the magnetic-field
strength is an alternative to that of previous works on Tycho.

A major argument for a high magnetic field downstream of Tycho are the observed
narrow nonthermal X-ray filaments (Hwang et al., 2002; Parizot et al., 2006; Helder et al.,
2012). Since electrons can only propagate for a finite distance before they lose their energy
due to synchrotron radiation, the rim widths may reflect the magnetic-field strength in
the immediate downstream of the SNR. An alternative scenario is provided by damping of
the turbulent magnetic field in the interior of the remnant (Pohl et al., 2005; Ressler et al.,
2014; Tran et al., 2015), in which the narrowness of the nonthermal rims can be explained
by the damping of the turbulently amplified magnetic field. Like for other SNRs, also
for Tycho a distinction between these two scenarios by means of the energy dependence
of X-ray filaments is difficult (Rettig and Pohl, 2012; Tran et al., 2015; Sushch et al.,
2018). Magnetic-field damping is widely considered as the scenario that allows for a weak
magnetic-field strength inside SNRs. Nevertheless, Tran et al. (2015) find that in either
case the minimum downstream magnetic-field value inferred from Tycho’s nonthermal
filaments is at least ∼ 20µG. Assuming that the electron acceleration is limited by the
age of the remnant, the work from NuStar collaboration (Lopez et al., 2015) estimates
∼ 30µG for the downstream magnetic field. However, the majority of studies cited above
favor the loss-limited interpretation for particle acceleration in Tycho. Furthermore, the
most realistic limit is obtained from an analysis of the entire SED, which provides the
minimal downstream magnetic field value of ∼ 80µG (Acciari et al., 2011). Attempts
to simultaneously fit the radio and the γ-ray data infer that any weaker magnetic field
would cause an overproduction of γ-ray photons generated via IC scattering. Therefore,
the question about the magnetic field value is automatically tied to the question of whether
Tycho’s γ-ray emission has a predominately leptonic or hadronic origin. The hadronic
scenario has been strongly favored in the literature (Morlino and Caprioli, 2012; Zhang
et al., 2013; Berezhko et al., 2013; Caragiulo and Di Venere, 2014; Slane et al., 2014), as
opposed to a leptonic model (Atoyan and Dermer, 2012).

For our modeling, we start from the minimal magnetic field compatible with the entire
SED. The evolution of the SNR, which is computed using hydrodynamic simulations,

2Time-dependent hydrodynamics for Tycho was already used by Slane et al. (2014). In their approach,
however, a steady-state solution for DSA was used to numerically inject a specific CR spectrum at the
location of the forward shock.

78



occurs in a medium with a constant density. We explicitly model the acceleration of each
particle species in the test-particle limit, taking shock acceleration as well as stochastic
acceleration in the downstream region into account, with both acceleration processes being
time dependent. We explicitly model advection and diffusion of CR and take synchrotron
losses for electrons into account. Furthermore, we consider the nonthermal radio and
X-ray filaments and investigate whether they arise from extensive synchrotron losses or
magnetic-field damping. For the study of the X-ray filaments, it is especially important
to include diffusion of the particles, otherwise the distance that they propagate and thus
the rim width would be underestimated. Since I started to work on Tycho in 2012 and
used the observational data from roughly that time, the age of Tycho in our simulations
is set to be 440 years. As a matter of course, the age difference of 8 years is insignificant
for an SNR. Therefore, in the following to the age of Tycho is referred as 440 years.

This chapter is organized as follows: Section 6.2 describes the hydrodynamic picture
for Tycho. In Section 6.4.1, we examine the model with the minimal amplified magnetic
field compatible with the γ-ray observations. We justify the necessity for magnetic field
damping that we introduce in Section 6.4.2. Therein we discuss our preferred model for
Tycho and deduce a new theoretical minimum for the magnetic-field strength based on
investigation of the multifrequency spectrum along with nonthermal filaments. The γ-
ray spectrum of the resulting model comprises both hadronic and leptonic components.
In Section 6.4.4, we discuss a potential possibility for a purely hadronic scenario with a
strongly amplified magnetic field.

6.2 Hydrodynamics

To model Tycho, the hydrodynamic simulations performed by my collaborator Dr. Vikram
Dwarkadas (private communication), are used. His evolutionary model of the remnant
is generated by means of the VH-1 code (Blondin and Lundqvist, 1993), a 1-, 2-, and
3-dimensional finite-difference code that solves the hydrodynamic equations using the
Piecewise Parabolic Method of Colella and Woodward (1984). An exponential density
profile is chosen for the ejecta of Tycho since Dwarkadas and Chevalier (1998) demon-
strated that it optimally approximates the density profile for a Type Ia supernova models
compared to other distributions. Further, necessary parameters that determine the evo-
lution of a Type Ia SNR are the ejected mass, the explosion energy, and the density of the
ambient medium. For the ejecta mass we set the value typical for a Chandrashekhar mass,
1.4M�, because Type Ia SNR is believed to originate due to thermonuclear deflagration
and detonation of a white dwarf. For the energy of explosion we choose the canonical
value of 1051 ergs.

Although the density around Tycho varies (Williams et al., 2013), as expected for
such an extended structure, the remnant appears to expand in a relatively clean envi-
ronment without any large inhomogeneities, such as molecular clouds (Tian and Leahy,
2011). Therefore, an explosion in a medium with a constant density provides a reason-
able description for the dynamics of the remnant. The average ambient density varies
in the literature, according to the method with which it was measured. X-ray measure-
ments of the expansion rate suggest an ambient density of 0.2 - 0.6 cm−3 (Hughes, 2000).
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Later X-ray observations based on proper-motion measurements of the forward shock and
reverse-shocked ejecta in Tycho infer an upper limit of 0.2 cm−3 (Katsuda et al., 2010).
X-ray observations of Cassam-Chenäı et al. (2007) reveal a lack of thermal emission in
the post-shock region of Tycho, inferring an ambient density below 0.6 cm−3. A low
density of 0.2 cm−3 around Tycho is obtained by Williams et al. (2013), who determined
the post-shock temperature from mid-IR emission of the remnant. On the other hand,
efficient particle acceleration in SNRs can reduce the downstream temperature of the
plasma (O’C. Drury et al., 2009), leading to a suppression of thermal emission and hence
an underestimation of the ambient density. Higher values for the ambient density are
additionally supported by the model of Dwarkadas and Chevalier (1998), who found that
densities in the range of 0.6 - 1.1 cm−3 better match the X-ray observations of Tycho.
Furthermore, Kozlova and Blinnikov (2018) and Badenes et al. (2006) favor a delayed
detonation model with ∼ 1.0 cm−3 for the X-ray morphology of Tycho. The density un-
certainty of Tycho (0.2-1.0 cm−3) is likewise reflected in the uncertainty in the distance
to the remnant (see Hayato et al. (2010) for a review and Tian and Leahy (2011)), since
both quantities are interdependent. For our modeling, we choose a value for the hydrogen
number density of nH =0.6 cm−3, which gives a good fit to the observed shock radii and
velocities.

Explosion energy, ejecta mass, and ambient density, together with the exponential
density profile, form the suite of parameters necessary to model the complete hydrody-
namical evolution of Tycho. Our simulations are spherically symmetric and are similar to
those described in Dwarkadas and Chevalier (1998) and Telezhinsky et al. (2012a). The
time-evolution of speed, radius, and temperature of the forward shock from our simula-
tions is depicted in Figure 6.1. To note from the figure is that the plasma temperature falls
from ∼600 keV at the very early stages to ∼30 keV at the current epoch. At 440 years,
our simulations provide a forward shock radius Rsh ≈ 3.5 pc, which implies a distance to
the remnant, d ≈ 2.9 kpc. The velocity of the forward shock yields Vsh ≈ 4100 km s−1.
The position of the reverse shock, ∼ 0.69Rsh, is in good agreement with the X-ray mea-
surements of Warren et al. (2005). By contrast, the position of the CD, RCD ≈ 0.78Rsh,
falls below the value identified by Warren et al. (2005), who interpreted the closeness
of the CD to the blast wave as evidence for the efficient back-reaction of CR. However,
global models that incorporate NLDSA effects (Morlino and Caprioli, 2012; Slane et al.,
2014) fail to reproduce the CD position for Tycho. The discrepancy for the CD position
can be attributed to the decelerating CD being unstable to the Rayleigh-Taylor instabil-
ity. Two-dimensional hydrodynamical simulations with the exponential profile show that
Rayleigh-Taylor structures can extend almost halfway from the CD to the outer shock
(Dwarkadas, 2000; Wang and Chevalier, 2001). Furthermore, Orlando et al. (2012) showed
that Rayleigh-Taylor instabilities and ejecta fingers that extend far beyond the CD can
misleadingly suggest that the CD is further out than its actual location. Therefore, we
conclude that the position of the CD obtained in our model is quite reasonable.
According to our simulations, at the age of 440 years the remnant accumulated ∼ 3.8M�
of ambient gas, indicating that in our modeling Tycho is in the transition between ejecta-
dominated and Sedov-Taylor stages. The total thermal energy in the remnant at 440
years is Eth ≈ 5.6× 1050 erg.
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Figure 6.1: Shock speed (blue solid line), radius (green dashed line),
and immediate post-shock temperature (red dotted line) as functions of
time.

The shock profiles and velocity distribution from the simulation are used in the cal-
culation for the particle acceleration described in Chapter 4.

6.3 Magnetic-field limit within RATPaC

Besides the CR feedback, the shock compression ratio can be affected by the magnetic
pressure if a sufficient magnetic-field strength is present. However, dynamic feedback
from magnetic-field pressure is not included in RATPaC yet. Therefore, we investigate
the range where the impact of magnetic field on the shock structure remains negligible. We
analytically solve the classical MHD equations for a plane-perpendicular shock in steady
state, assume frozen-in plasma, and derive the dependency of the shock compression ratio
on the magnetic-field strength.

For simplicity, we consider the plane-perpendicular shock in its rest-frame, as shown
in Figure 6.2. In this scenario plasma-velocity component that is parallel to the shock
front vanishes (u|| = 0 and u⊥ = u), while the magnetic-field orientation is parallel to
the shock front normal (B|| = B and B⊥ = 0). Unlike for a plane-parallel shock wave,
presented in Section 2.3.3, for a perpendicular shock magnetic field may be dynamically
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Figure 6.2: Schematic representation of a plane-perpendicular shock
with a parallel magnetic component.

important since B|| is compressed at the shock. General MHD equations (Appendix A)
simplify in that case to the following relations

ρ1u1 = ρ2u2 , (6.3)

ρ1u
2
1 + P1 +

B2
1

8π
= ρ2u

2
2 + P2 +

B2
2

8π
, (6.4)

γa
γa − 1
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+
1

2
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1 +
B2

1

4πρ1
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γa

γa − 1

P2

ρ2

+
1

2
u2

2 +
B2

2

4πρ2

. (6.5)

B1u1 = B2u2 . (6.6)

Here γa is the adiabatic index, u1, ρ1, P1, B1 are the plasma velocity, density, thermal
pressure, and magnetic field in the upstream and u2, ρ2, P2, B2 in the downstream regions,
respectively. Note that Equations 6.3 to 6.6 differ from the Rankine-Hugoniot conditions
for purely hydrodynamic and plane-parallel shocks by the additional magnetic-pressure
terms, B2/(8π), in Equation 6.4, as well as the heating terms, B2/(4πρ), in the energy
conservation Equation 6.5.
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Defining the upstream plasma beta and the upstream Mach number, respectively

β1 ≡
8πP1

B2
1

, M1 ≡ u1

√
ρ1

γaP1

, (6.7)

one can obtain a parametrized cubic equation for the gas compression ratio rsh ≡ ρ2/ρ1:

(
2(2− γa)

β1

r2
sh + γa

(
(γa − 1)M2

1 + 2(1 + β−1
1 )
)
rsh − γa(γa + 1)M2

1

)
(rsh − 1) = 0 . (6.8)

The first trivial solution of Equation 6.8 is rsh = 1, which basically means that there is
no shock. A physically relevant solution for us is provided by the remaining quadratic
equation in the first brackets of Equation 6.8. Hence, the shock compression ratio can
be simply expressed as a function of plasma beta, Mach number, and adiabatic index.
Alternatively, we may introduce the Alfvénic Mach number, MA,1 ≡ u1/vA,1, and use the
relation

M2
1 =

2

γaβ1

M2
A,1 . (6.9)

The expression in the first brackets of Equation 6.8 becomes then

r2
sh + [2M2

A,1 + 5(1 + β1)]rsh − 8M2
A,1 = 0 . (6.10)

For the squared Alfvén Mach number, it follows immediately from Equation 6.10

M2
A,1 =

r2
sh + 5rsh + 5β1rsh

2(4− rsh)

β1→0
=

r2
sh + 5rsh

2(4− rsh)
. (6.11)

Here we used the fact that the typical environment of an SNR is a cold plasma, which
provides a negligible upstream plasma beta. Figure 6.3 shows the shock compression ratio
as a function of the upstream Alfvén Mach number, as given by Equation 6.11. To be
noted from the figure is that the compression ratio of a shock strongly decreases with
low Alfvén Mach numbers. For a fixed Mach number, Figure 6.3 illustrates the impact
that magnetic field exercises on the shock. Furthermore, Figure 6.3 demonstrates that
the dynamic feedback from magnetic field cannot be ignored for Alfvén Mach number
roughly below ∼20, as the corresponding shock compression ratio is significantly below 4.

Next, we apply this calculation to Tycho and investigate the magnetic-field range
valid for our modeling. We recall that the magnetic field in RATPaC is assumed to be
isotropic in the upstream region, i.e., the individual components (one radial, B⊥, and
two tangential, B||1, B||1) are equal in their magnitudes (B⊥ = B||1 = B||2). Thus, the
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Upstream Alvénic Mach number, MA,1

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
a
s

co
m

p
re

ss
io

n
ra

ti
o,
r s

h

Figure 6.3: Shock compression ratio as a function of upstream Alfvén
Mach number.

upstream and downstream magnetic-field strengths are given by relations

B1 =

√
3

2
B|| , B2 =

√(
1

2
+ r2

sh

)
B|| , (6.12)

where we introduced the total parallel component in the upstream region B||, which is
responsible for the magnetic pressure.

Apart from the magnetic field, the resulting gas compression ratio depends mainly on
shock speed and upstream density, which in our model are Vsh ≈ 4100 km s−1 (at 440
years) and nH = 0.6 cm−1 (see Section 6.2). Figure 6.4 presents shock compression ratio as
a function of downstream magnetic field, where the hydrodynamic parameters for Tycho
were taken. As the extensive magnetic-field pressure reduces the compression ratio of the
shock, it consequentially softens the particle spectra. Hence, the corresponding particle
spectral index deviates from the canonical DSA solution (s = 2.0) by ∆s, resulting in
s = 2 + ∆s. The resulting radio spectral index, α = −0.5 + ∆α, is accordingly modi-
fied by the value ∆α = −∆s/2. We choose ∆α = −0.01 (and thus ∆s = 0.02) as the
limit within which the magnetic-field pressure can be neglected because the corresponding
changes are hardly visible in the radio spectrum when compared to the observed data.
We find for the sonic upstream Mach number of M1 ≈ 3500, which corresponds to the
hydrodynamic quantities we use in this work for Tycho that the magnetic field is dynami-
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Figure 6.4: Shock compression ratio for Tycho as a function of the
downstream magnetic-field strength.

cally unimportant for Alfvénic Mach numbers above MA,1c ≈ 17. For lower Alfvénic Mach
numbers, the deviation from the classical DSA solution exceeds the values of s = 2.02 and
α = −0.51 and hence cannot be neglected. Taking into account that the magnetic-field
pressure is exerted only by the tangential components, we find the magnetic-field limits
B1,max ≈ 120µG for the upstream and B2,max ≈ 400µG for the downstream regions, re-
spectively. Any higher magnetic field would efficiently lower the shock compression ratio
and produce particle spectra with s > 2.02 and radio spectra with |α| > 0.51, and thus
demand an MHD treatment. The particle spectrum deviation versus post-shock magnetic
field for Tycho is shown in Figure 6.5.

6.4 Results

In contrast to previous attempts to model Tycho, we follow the full temporal evolution
of the remnant starting at the age of 25 years. For conciseness, however, we show and
discuss results for only the current age of Tycho, which for simplicity is taken to be 440
years. We find that the reverse-shock contribution to the particle spectrum in Tycho is
negligible in the framework of our modeling at the age of 440 years (Telezhinsky et al.,
2012a), in full agreement with Warren et al. (2005). Therefore it is not discussed further.

Given the low gas density, NTB (Blumenthal and Gould, 1970) yields too low a flux
for it to be relevant, and so leptonic γ-ray emission is solely provided by IC scattering,
for which we consider the CMB as the target photon field (Blumenthal and Gould, 1970;
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Figure 6.5: Deviation of the particle spectral index for Tycho as a func-
tion of the downstream magnetic-field strength.

Sturner et al., 1997). Tycho shows evidence for IR emission (Douvion et al., 2001).
However, its contribution to the overall IC spectrum was found by Acciari et al. (2011)
to be negligible.

We present two models for the multiwavelength emission of Tycho, which both ad-
equately fit the SED. Model I allows for the weakest magnetic field in the immediate
downstream region of the shock, B2 = 150µG, which is compatible with the entire γ-ray
flux observed with Fermi -LAT in GeV-range and VERITAS in TeV-band (Archambault
et al., 2017). In Model I, the resulting γ-ray flux consists of both leptonic and hadronic
components. The magnetic profile deeper inside the remnant is determined by advection
of frozen-in magnetic field and corresponds to the MHD solution for negligible magnetic
pressure and energy density (Equation 4.3). As we shall demonstrate, this model fails to
explain radio and X-ray intensity profiles.

Therefore we present a second model, Model II, involving magnetic field damping and
derive constraints on the magnetic field in Tycho. Generic technical details can be found
in Section 6.4.1, where we introduce Model I: these also apply to the following sections
listing the results for Model II.

6.4.1 Model I: Moderate advected magnetic field

The efficacy of stochastic acceleration is fully determined by three parameters: m, p0, and
the energy fraction of the plasma transferred to the turbulence, ε, which were introduced
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Figure 6.6: Energy density in fast-mode waves (red solid line) and width
of the turbulent re-acceleration region (blue dashed line) as functions of
time for Model I.

in Section 4.5. The acceleration time scale, τacc, and the width of the turbulent region,
Lfm, are then self-consistently calculated according to Equations 4.25 and 4.27. The
parameter p0 provides the critical limit up to which the momentum diffusion coefficient
Dp is energy-independent (cf. Equation 4.21). We tested several values of p0 and found
that for p0 & 10−3mpc the resulting curvature of the radio synchrotron spectrum becomes
too strong to remain in agreement with radio data. Therefore, in this work we adopt
p0 = 9.3×10−4mpc, which corresponds to electron energy of 500 keV. The power-law index,
m, may vary up to 25% (to stay in agreement with observations) and can be compensated
by a suitable choice of the energy-conversion factor, ε, implying that these quantities
exhibit degeneracy to a certain degree. In the following calculations, we fix m = 0.25
and ε = 0.027 (corresponding to 2.7% of the thermal energy density), which adequately
reproduce the observed radio spectrum. The acceleration time scale is determined by the
energy-conversion factor, which for ε = 0.027 provides τacc ≈ 2.3 yr.

The thickness of the region in which stochastic re-acceleration is operating is fairly
small. For 2.7% of the thermal energy density of the post-shock plasma transferred to
the turbulence, it results in Lfm ∼ 1015 − 1016 cm, as illustrated in Figure 6.6. The width
of the re-acceleration region decays with time as the SNR shock slows down, and thus
the energy density in the turbulence decreases. At the age of 440 years, the width of
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Figure 6.7: Number density of protons (red solid line) and electrons
(green dashed line) for Model I involving weakest advected magnetic
field with B2 = 150µG. The proton number density is multiplied with
the factor Ke/p = 1/85.

the turbulent region comprises only ∼ 3× 10−4Rsh. Still, the contribution to the particle
spectra is substantial.

Figure 6.7 shows the differential number density for electrons and protons as obtained
from solving Equation 4.5. For ease of exposition, the proton spectrum is rescaled by the
electron-to-proton flux ratio, defined asKe/p ≡ Ne/Np ≈ 1/85. As a result of stochastic re-
acceleration, the spectra strongly deviate from the canonical solution, N ∝ p−2, expected
for DSA in the test-particle limit. For comparison, a standard case with stochastic re-
acceleration turned off but the same remaining parameters is depicted in Figure 6.8. To
be noted from Figure 6.7 are distinct bumps for both particle species at low energies
with concave tails that extend up to the maximum momenta of the spectra, ∼ 103mpc.
Deviations between electron and proton spectra at lower momenta result from the different
injection criteria for the particles. The total energy that went into electrons, Etot,e ≈
6.8×1047 erg, is marginal compared to that of protons, Etot,p ≈ 2.7×1049 erg. Reasons for
this are the small rest mass of electrons and different injection efficiencies ηe = 9.4× 10−6

and ηp = 2.4×10−5, which are chosen to fit the entire SED. The electron injection efficiency
simultaneously accounts for the maximum IC peak consistent with the γ-ray data and
sufficient radio emission for Bd = 150µG (amplification factor α ≈ 9), while injection
of protons provides an adequate hadronic contribution in the GeV range. The injection
efficiencies determine the electron-to-proton flux ratio, Ke/p, in the range (10− 103)mp c.

The proton spectrum cuts off at the maximum momentum, pmax ≈ 104mp c ' 10 TeV/c,
which is limited by the age of the remnant and particle diffusion in the upstream region.
The latter process is determined by two factors: the magnetic precursor, which flat-
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A comparison with Figure 6.7 illustrates the quantitative effect of the
second-order acceleration in CR spectra.
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tens the CR precursor, discussed in Section 4.2, and the gyrofactor, ξ, which besides
the magnetic-field strength co-determines the diffusive transport of particles. Since the
electrons additionally experience effective synchrotron losses, their maximum momentum,
∼ 3 TeV/c, is lower than the limit (10 TeV/c) imposed by the spatial diffusion and the
age of the remnant. The exact shape of electron and proton cutoffs is shown in Fig-
ure 6.9, which allows a direct comparison of the cutoff forms. As one can see, the electron
cutoff is steeper than that of protons due to effective synchrotron losses. We recall here
that the spectral cutoff in our approach deviates from the simple exponential and super-
exponential forms (e.g., Blasi (2010)) due to the full-time dependency of our method.
In contrast to the previous works on Tycho, our approach includes the time-dependent
transport equation and hydrodynamics. As mentioned in Chapter 4, the maximum CR
energy in the age-limited case scales linearly with time and as the square of the shock
velocity (e.g., Reynolds):

Emax ∝ V 2
sh t . (6.13)

Relation 6.13 indicates that in our approach the maximum energy of CR decreases
with time. In fact, the shock of the remnant slows down in our simulations, as can be
seen in Figure 6.1. The shock velocity drops faster than the linear time-growth, and thus
the decrease of V 2

sh in relation 6.13 cannot be compensated by the time t. As a result,
the final particle spectrum in our work, which is qualitatively an average of instantaneous
spectra, gives a sharper cutoff than predicted within approach with a constant shock
velocity.

Instead of showing the entire SED at one single plot, we present figures for particular
energy bands (radio, X-ray, and γ-ray) to provide a detailed comparison of data and
models. The synchrotron emission from electrons in the radio and microwave bands for
Model I is presented as a red solid line in Figure 6.10, where the data are taken from
Reynolds and Ellison (1992) and Arnaud et al. (2016). The radio spectrum for Tycho is
frequently considered to be distorted in response to shock modification by CR (Reynolds
and Ellison, 1992; Völk et al., 2008). Figure 6.10 clearly demonstrates that this is not
the only viable interpretation: stochastic re-acceleration in the downstream region of a
test-particle shock can reproduce the observed radio spectrum without invoking nonlinear
effects. It was noted earlier (Arnaud et al., 2016) that the radiation from Tycho in the
microwave band consists of at least two components: synchrotron emission from the
nonthermal electrons and thermal dust emission. The latter process is responsible for the
sharp rise in flux above ∼30 GHz. We account for the thermal dust emission by calculating
the gray-body radiation with a temperature of 25 K and a normalization chosen to fit the
flux density measured with Herschel (Gomez et al., 2012). Thus, the red line in Figure 6.10
represents the sum of the synchrotron and thermal spectra. While the slightly concave
part of the radio spectrum below ∼30 GHz is dominated by the synchrotron emission
from electron population shaped by the stochastic re-acceleration, the steep flux increase
above ∼30 GHz results from the thermal dust emission.

The X-ray emission is generated by electrons beyond the cutoff energy, Emax,e ≈ 3 TeV,
via synchrotron radiation; it is presented for Model I as red solid line in Figure 6.11,
where the Suzaku data at 90% confidence level are taken from Tamagawa et al. (2009).
To achieve a good fit for the fixed magnetic field (B2 = 150µG) and electron injection
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efficiency (ηe = 9.4×10−6), we adapt the spatial Bohm-diffusion coefficient parameter and
set ξ = 10. As already mentioned in Section 4.6, for our calculation of the synchrotron
emission we use a Gaussian distribution function for the amplitudes of the turbulent
magnetic field. The differences to the standard formula are mostly seen at the cutoff of
the synchrotron emission. First of all, since we use a Gaussian distribution function to
calculate synchrotron emission, its cutoff deviates from the usually assumed exponential
profile. The standard emissivity function produces the steepest slope in the spectral
tail, while any extended distribution of the emissivity function smears the spectral cutoff
and causes spectral hardening in the X-ray band. Nevertheless, the predicted X-ray
spectrum above 10 keV, shown in Figure 6.11, is still softer than that observed. A possible
explanation can be attributed to the spherical symmetry of our model geometry. Indeed,
Lopez et al. (2015) analyzed 66 different regions across Tycho. Assuming an exponential
cutoff in the synchrotron spectra, Lopez et al. (2015) find that the X-ray emission from
individual regions of Tycho exhibits varying roll-off energy, which is defined as

Erolloff ' 7 eV

(
B2

100µG

) (
Emax,e

TeV

)2

. (6.14)

As the magnetic field and the maximum energy of electrons may vary across Tycho’s
perimeter, so do the corresponding synchrotron spectra. Integration over the individual
regions, as in Lopez et al. (2015), results in a total spectrum harder than for a synchrotron
spectrum for an individual region because the variations in the roll-off energy invariably
smear out the cutoff. This hardening cannot be accounted for in our model due to the
1D geometry, and hence our X-ray spectrum is softer than that observed by Suzaku.

The minimum downstream magnetic field that provides the maximum IC contribu-
tion compatible with the γ-ray data and sufficient flux contribution in the radio range on
account of stochastic re-acceleration is ∼ 150µG. A magnetic field any weaker than this
would imply an overshooting of γ-ray emission at ∼ 100 GeV induced by the IC process.
Nevertheless, it is not able to account for the GeV-scale emission, and hence the hadronic
channel is required. The resulting γ-ray spectra of Tycho and the corresponding γ-ray
data are given in the top panel of Figure 6.12. The pion bump is represented by the blue
dotted, and the IC peak by the green dashed lines, respectively. The total γ-ray spectral
distribution (red solid line) is rather flat with spectral index Γ ≈ 2. The impact from
the stochastic re-acceleration of protons is hardly visible in the pion bump. The reason
is a relatively small energy fraction in the fast-mode waves. In our model for Tycho,
parameters relevant for the stochastic re-acceleration are dictated by the radio data. For
other SNRs, their value can differ, potentially resulting in more efficient re-acceleration of
protons and consequentially a softer hadronic spectrum. Thus, stochastic acceleration of
protons may provide an alternative explanation for the softening of hadronic emission, as
opposed to high-density structures in the ambient medium (Berezhko et al., 2013; Mor-
lino and Blasi, 2016), if enough energy is available for re-acceleration. Nevertheless, the
impact of stochastic re-acceleration is more prominent for electron than proton spectra.
The cutoff in the leptonic and hadronic γ-ray contributions is linked to that in the syn-
chrotron spectrum via the gyrofactor, ξ, and hence constrained by X-ray data. Thus,
in our approach, we do not specifically adjust the model parameters to fit the hadronic
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Figure 6.12: Calculated γ-ray emission from Tycho in comparison with
measurements of Fermi -LAT (black solid) and VERITAS (black circles)
from Archambault et al. (2017). The top panel is for Model I involving
a moderate transported magnetic field, and the bottom panel presents
results for Model II, which includes damping of magnetic field.

cutoff. Nevertheless, it shows a remarkable match with the observed VERITAS data. The
corresponding parameters for Model I are summarized in the first row of Table 6.1. The
amplification efficiency (i.e., the ratio between CR pressure and the amplified magnetic-
field pressure in the immediate upstream region) is roughly ∼ 74 for 440 years.
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As already mentioned, the contribution from NTB is negligible for the density of gas
at Tycho. Therefore, it is not shown in Figure 6.12 and we do not discuss it further.

To further test Model I, we consider the spatial profiles of radio and X-ray synchrotron
radiation at 1.4 GHz and 1 keV, respectively. The results are depicted in the top panel
of Figure 6.13. The radio (Slane et al., 2014) and X-ray (Cassam-Chenäı et al., 2007)
brightness profiles are extracted from the western rim of the remnant and normalized to
their peak values. The measured X-ray brightness is strongly peaked at the shock and
rapidly decreases towards the CD. The radio profiles are slightly wider but still exhibit a
narrow structure close to the shock. The enhancement of the emission towards the interior
that is evident in the radio profiles might be attributed to the afore-mentioned Rayleigh-
Taylor distortions operating in the vicinity of CD. As seen in the figure, the predictions of
Model I involving the smallest possible advected magnetic field are in disagreement with
the data. The model can explain neither the narrow X-ray rims nor the structure of the
radio emission.

There are at least two potential solutions to this problem that we shall explore in
the following section. Turbulent magnetic-field damping would affect the synchrotron
emissivity and thus create narrow structures close to the shock. Alternatively, a very
strong magnetic field at the shock would impose strong synchrotron losses and thus limit
the width of the rims.

6.4.2 Model II: High damped magnetic field

As Model I involving a weak advected magnetic field fails to reproduce the observed in-
tensity profiles of the synchrotron emission in both the radio and the X-ray bands, we now
introduce damping of the turbulent magnetic field. Therefore we set the magnetic-field
profile described by Equation 4.4. Obviously, in this scenario the magnetic field strength
in the immediate downstream of the forward shock must be larger than for Model I be-
cause damping suppresses synchrotron emission from the far-downstream region. As IC
radiation is produced wherever high-energy electrons reside, an overproduction of pho-
tons in the γ-ray band would arise unless the magnetic field is scaled up. Especially
when combined with stochastic re-acceleration as an explanation for the radio data, the
magnetic-field damping requires an extensive increase of the overall magnetic field. As

Table 6.1: Summary of the model parameters.

Varying parameters Fixed for both models
Model B2 B0 ld ξ ηe ηp nH p0 m ε

(µG) (µG) (Rsh) (cm−3) (10−4mpc)
I 150 - - 10 9.4× 10−6 2.4× 10−5 0.6 9.3 0.25 0.027
II 330 70 0.01 16 10.2× 10−6 2.4× 10−5 0.6 9.3 0.25 0.027

B2 magnetic field in the immediate post-shock region ηp injection efficiency of protons
B0 residual level of the magnetic field nH ambient hydrogen number density
ld damping scale of the downstream magnetic field p0 critical momentum of the momentum-diffusion coefficient
ξ spatial diffusion coefficient parameter (gyrofactor) m power-law index of the momentum-diffusion coefficient
ηe injection efficiency of electrons ε energy-conversion factor for turbulence
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Figure 6.13: Radial intensity profiles for Model I (top panel) and
Model II (bottom panel). X-ray emission at 1 keV (blue dashed line)
was observed with Chandra (Cassam-Chenäı et al., 2007), and radio
data at 1.4 GHz (red solid line) were taken from Slane et al. (2014).
Following Slane et al. (2014), the radio data were slightly shifted to
account for the expansion of the remnant. The gray dotted line in the
bottom panel represents a radio profile produced without magnetic-field
damping.
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reflected by the decreasing width of the turbulent region, the stochastic re-acceleration
of particles is more efficient at the early stages of SNR. As the re-accelerated electrons
are advected away from the shock, they mostly experience the damped magnetic field.
While the total synchrotron emission depends on the absolute values of the immediate
post-shock field strength, B2, and the residual level B0, the shape of the radio filaments is
determined (apart from the damping scale ld) by the ratio of B2 and B0. We find that the
immediate post-shock field strength and the residual level must be at least B2 = 330µG
(amplification factor α = 20) and, B0 = 70µG, respectively, in order to maximize the
filling factor, and thus to produce sufficient overall synchrotron emission, and to fit the
radio filaments simultaneously. Model II is based on these minimum values, and results
are displayed as green dashed lines in Figures 6.10 and 6.11, as well as in the bottom
panels of Figures 6.12 and 6.13.

Particle acceleration and propagation are modeled following the same procedure as in
Model I, but some of the parameters are slightly adjusted. The second row of Table 6.1
lists the relevant model parameters, which now include the damping length, ld, and the
residual field level, B0. Note that the damping length, ld, provides spatial characteristics
for the turbulence responsible for the magnetic-field amplification. Likewise, the width of
the re-acceleration region, Lfm, represents the damping scale for the fast-mode waves. As
both quantities are associated with different types of turbulence, they are independent of
each other. At 440 years, the amplification efficiency for the second model is ∼ 14.

Along the shock surface certain variations in the parameter values are to be expected,
as not all filaments are the same (cf. Ressler et al., 2014). Also, Tycho is not a perfectly
spherically symmetric SNR, and the projection effects may impose a bias. Therefore, our
choice for the residual field level and the damping scale rather provide a reasonable order
of their magnitudes as in this work we consider only one particular rim of Tycho. Fitting
the Suzaku data with an enhanced post-shock magnetic-field B2 = 330µG requires a
moderate increase of the gyrofactor compared to Model I (ξ = 16).

Damping quenches the synchrotron emissivity in the deep downstream region. While
the suppression is achromatic for power-law electron spectra, i.e., at frequencies below the
cutoff in the synchrotron spectrum, it becomes progressively stronger beyond the roll-off
energy. A competing process for quenching the emissivity at the roll-off frequency is energy
losses preventing the propagation of electrons from the shock to the deep downstream
region. The synchrotron loss time can be expressed in terms of the magnetic-field strength
and the energy of photons, Esy, that the electrons would typically emit

τloss ' 50 yr

(
B2

100µG

)−3/2 (
Esy

keV

)−1/2

. (6.15)

The distance electrons travel during the loss time is roughly equal to the thickness of the
filaments. Particle transport is governed by diffusion and advection. The latter process
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dominates at lower energies, and its length scale is given by

ladv = u2τloss =
Vsh

rsh

τloss

' 2× 1017 cm

(
Vsh

5000 km/s

)(
B2

100µG

)−3/2(
Esy

keV

)−1/2

. (6.16)

At high energies, diffusion with Bohmian energy scaling becomes the dominant propaga-
tion process. The corresponding distance is energy-independent and is given by

ldiff =
√
Dsτloss ' 1017 cm

√
ξ

(
B2

100µG

)−3/2

. (6.17)

Equating relations 6.16 and 6.17, one can find the critical photon energy, where the
transition from advection-dominated transport to diffusion-dominated transport occurs:

Esy,c '
4 keV

ξ

(
Vsh

5000 km/s

)2

. (6.18)

With ξ = 16 and Vsh = 4100 km/s, we obtain Esy,c ≈ 0.2 keV for Model II, implying
that both advection and diffusion impact the distance covered by electrons that account
for the 1 keV rims. Estimating the propagation length for the electrons that radiate
1 keV photons, we find ladv ' 3× 1016 cm and ldiff ' 7× 1016 cm, and therefore diffusive
transport is more important, but advective transport is not negligible. Accounting for
both advective and diffusive terms, the total transport length that the electrons travel
before expending their energy is then given by (Parizot et al., 2006)

lloss =

(√
u2

2

4D2
r

+
1

Drτloss

− u2

2Dr

)−1

. (6.19)

Applying expression 6.19 to electron emitting 1-keV photons in magnetic field of the
strength 330µG, one obtains lloss ' 1017 cm. The underlying assumption of a constant
magnetic-field strength used in Equation 6.19 is violated for Model II though, as the
synchrotron energy losses decrease over a length scale of ld = 0.01Rsh ' 5 × 1016 cm
due to magnetic-field damping. Therefore, we conclude that the effective loss length of
electrons is much larger than 1017 cm, and the synchrotron filaments are largely shaped
by magnetic-field damping.

To account for the radio profiles, magnetic-field damping is clearly needed. Radio-
emitting electrons have energy-loss times far in excess of the age of SNRs, and the ra-
dio rims cannot arise from synchrotron losses. The model with magnetic-field damping
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(Model II) fits the spectral data reasonably well. To be noted from Figure 6.13 is that
an effective damping length of ld = 0.01Rsh ' 1017 cm can indeed reproduce the sharply
peaked radio profiles in the shock vicinity, but somewhat underpredicts the radio intensity
in the deep downstream region where Rayleigh-Taylors fingers from the CD may provide
magnetic field amplification (Jun and Norman, 1995; Björnsson and Keshavarzi, 2017)
that is not included in our model. In contrast, a radio emission profile calculated for non-
damped magnetic field (gray dotted line in the bottom panel of Figure 6.13) obviously
contradicts the observed data. As a relatively high magnetic-field value is required to
maintain the total radio and γ-ray data, the width of the X-ray rims is inevitably affected
by synchrotron losses. Still, magnetic-field damping is more important for the formation
of the X-ray filaments since lloss > ld. Without magnetic-field damping, the synchrotron
losses for the post-shock magnetic field B2 = 330µG are able to produce the thin X-ray
rims, but fail to form the radio profiles. When introduced as a natural explanation for
the radio profiles, magnetic-field damping moreover becomes the dominant process for the
production of the X-ray filaments.

We conclude that magnetic-field damping is essential for the radio filaments. Fur-
thermore, for the minimum downstream magnetic field that can explain the complete
observed data, B2 = 330µG, magnetic-field damping is more important for the X-ray
profiles than radiative losses. Nevertheless, for 1-keV emission synchrotron losses provide
a subordinate additional process for X-ray filaments formation. Simultaneously the width
of the radio rim is solely determined by the magnetic-field damping. In agreement with
our results, the joint X-ray and radio analysis of Tran et al. (2015) reveals magnetic-field
damping to be the preferable scenario. Both studies find similar damping lengths: 1-2%
of the SNR radius.

6.4.3 Cosmic-ray pressure

Next, we verify that the test-particle approximation is valid for Model II. To this aim, we
calculate the CR pressure, given by

Pcr(r, t) =
c

3

∫
N(r, p, t)

p2dp√
p2 + (mpc)2

, (6.20)

where mp is the rest mass of proton and N(r, p, t) the differential proton number density.
As mentioned before, the pressure exerted by the nonthermal electrons is negligible in our
model. The relative-velocity change of the plasma in the shock rest-frame in a particular
region between r1 and r2 caused by the particle pressure is (cf. Section 2.5.2)

δu

u
= − 1

u2ρ

∫ r2

r1

dx
∂Pcr(x)

∂x
=
Pcr(r2)− Pcr(r1)

Pflow

≡ δPcr

Pflow

. (6.21)

Here ρ denotes the density, u the velocity, and Pflow = ρu2 the dynamical pressure of the
plasma. Equation 6.21 is universally valid and holds in any region of the plasma flow.
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Figure 6.14: CR pressure, Pcr, normalized by the shock ram pressure,
Psh, for Model II (damped magnetic field with B2 = 330µG) for different
times.

According to Kang and Ryu (2010), the test-particle approximation is justified as
long as the CR pressure in the precursor does not exceed 10% of the shock ram pres-
sure. Consequently, according to Equation 6.21 the test-particle regime requires δu/u =
δPcr/Pflow ≤ 0.1 in the upstream region. Figure 6.14 shows the CR pressure normalized
by the shock ram pressure, Psh = ρ1u

2
1, as a function of the position, r/Rsh, for different

times. To be noted from the figure is that the relative velocity change in the upstream
region at 440 years is δu/u = δPcr/Psh ≈ 0.021, and hence clearly below the test-particle
threshold. Similarly, at the earlier stages, the CR pressure at the shock does not exceed
δu/u < 0.1, verifying that the dynamic CR feedback is indeed negligible in our approach.

Behind the shock wave, the pressure of particles is significantly enhanced due to
stochastic re-acceleration. In contrast to standard DSA, where the maximal CR pressure
occurs at the shock, in our model it reaches its maximum in the immediate downstream
region. The corresponding position is determined by the current width of the turbulent
zone where the fast-mode waves operate. Taking into account that the dynamic pressure
in the post-shock region is a factor 4 lower than the shock ram pressure in the shock rest-
frame, we estimate for the total velocity change at 440 years: δu/u ≈ 0.01. It is worth
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recalling here that the test-particle threshold determined by Kang and Ryu (2010) con-
cerns the upstream region of SNRs and is in general not applicable in the post-shock area.
In this work, we neglect the dynamical feedback from the re-accelerated particles in the
downstream region. Nevertheless, this effect may be of interest for future investigations.
Indeed, when strong enough, the stochastic acceleration can have a significant effect on
the post-shock structure. The CR pressure in the immediate downstream region enhanced
by the stochastic acceleration has to press the plasma away from the re-acceleration region
and force it to accumulate directly behind the shock. This process increases the plasma
density and the associated magnetic-field strength at the shock of the SNR. It is clear that
this phenomenon fundamentally differs from the standard dynamical reaction of particles
described in the NLDSA theory.

Summarizing, we conclude that we find a viable self-consistent scenario for Tycho,
represented by Model II.

6.4.4 Hadronic model

In the previous section, we present a lepto-hadronic scenario that requires the lowest
possible magnetic field in the remnant compatible with radio filaments and the SED.
More efficient magnetic-field amplification suppresses the IC component until the γ-ray
spectrum becomes purely hadronic. In our approach, where we use magnetic-field damping
to fit the radio filaments, we find the magnetic-field values have to be at least B0 ≈ 120µG
and B2 ≈ 600µG for a purely hadronic model. The total magnetic energy in the remnant
in that case is still moderate, ∼ 1.1× 1049 erg, on account of the magnetic-field damping.

As discussed in Section 6.3, the separate treatment of magnetic field and hydrody-
namics for the ambient density of nH = 0.6 cm−3 is justified for post-shock magnetic field
below 400 µG. Thus, for the hadron-dominated case, the dynamical feedback from the
magnetic field becomes significant. The corresponding pressure, with the Alfvénic Mach
number MA,1 ≈ 9.6, would lower the shock compression ratio to rsh ≈ 3.87, as one can
see from Figure 6.4. Thus the particle and radio spectra indices are softened to s ≈ 2.05
and α ≈ −0.52, respectively. As the electron spectrum becomes slightly softer on account
of the impact of the magnetic field, the contribution from the stochastic re-acceleration
becomes less necessary. Hence, in general, as competing explanation for the softening of
the spectra, very high magnetic field inevitably decreases the energy fraction converted
to turbulence, ε.

Due to the very high magnetic field, X-ray filaments at 1 keV would be primarily
governed by the radiative losses, with a corresponding propagation scale lloss ' 4×1016 cm.
Thus, the brightness profile would lack the X-ray flux due to extreme synchrotron losses.
Nevertheless, as pointed out above, the radio as well as the X-ray rims can strongly vary
with position along the perimeter due to the natural asymmetry of the remnant. As
the electrons emitting the synchrotron radiation in the radio range do not experience
significant losses, the radio profiles do require magnetic-field damping.

In summary, we conclude that a purely hadronic model is possible for Tycho, but
requires an elaborate and cautious treatment, which among other effects, includes the
dynamical feedback from magnetic-field pressure. Nevertheless, the lepto-hadronic sce-
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nario, referred to as Model II, is able to explain the broadband observations of Tycho in
a satisfactory manner.

6.5 Summary for modeling of Tycho

In this chapter, we conducted extensive multiwavelength modeling of Tycho. For the
very first time we accounted for stochastic re-acceleration in the downstream region of
the forward shock, which provides a consistent explanation for the soft particle spectra
without resorting to Alfvénic drift (Völk et al., 2008; Morlino and Caprioli, 2012; Slane
et al., 2014) and its inherent problems, or deducing the particle spectral index from
the radio observations (Atoyan and Dermer, 2012; Zhang et al., 2013; Caragiulo and Di
Venere, 2014). As discussed in the introduction, although it has been widely used in
the global models for various SNRs, we find the concept of Alfvénic drift contradictory.
We presented instead a new approach that adds diffusion in momentum space to the
standard DSA approach. Furthermore, in our method both hydrodynamics and particle
acceleration are fully time dependent.

The stochastic acceleration of particles in the immediate downstream region is assumed
to arise from the fast-mode turbulence, which is supplied by the energy of the background
plasma. We found that 2.7% of the thermal energy density of the downstream background
plasma is sufficient to explain Tycho’s soft radio spectra. Simultaneously, the magnetic
field is assumed to be amplified by streaming instabilities (Bell, 2004; Bell and Lucek,
2001) or turbulent dynamos (Giacalone and Jokipii, 2007). Based on this, we have pre-
sented a self-consistent global model (Model II) that is able to accurately reproduce the
observed radio, X-ray, and γ-ray emission, and simultaneously account for the nonther-
mal filaments in the radio and X-ray ranges. The radio filaments are generated due to
magnetic-field damping, which is widely considered to allow a relatively low magnetic-field
value inside a remnant. Combining this scenario with stochastic re-acceleration, we found
that the minimum magnetic-field required to explain the entire observed data set of Tycho
is B2 ≈ 330µG. This value is similar to the results of Morlino and Caprioli (2012), Völk
et al. (2008), and Zhang et al. (2013), although the underlying physical assumptions are
quite different. We find that for this minimum magnetic-field strength of B2 ≈ 330µG,
the X-ray filaments at 1 keV are primarily produced by magnetic-field damping, while
the synchrotron losses play a secondary role. This finding is inconsistent with the work of
Morlino and Caprioli (2012), who concluded that X-ray filaments shaped by magnetic-field
damping are not possible for Tycho. An important criterion here is that the propagation
length and hence synchrotron loss scale for electrons radiating at 1 keV, is dominated by
diffusion. For this reason, the diffusive transport of particles, which has been previously
neglected in all global models of Tycho, must be taken into account to adequately model
the X-ray filaments. We stress that an accurate modeling of the filaments is seamlessly
tied to the determination of the post-shock magnetic field. Magnetic-field damping is
additionally needed for its unique capability to explain the radio rims. In our model for
Tycho, the magnetic-decay length is of the order of ld ∼ 0.01Rsh, which is consistent with
the estimate of Tran et al. (2015). The total magnetic energy in the remnant for Model II
is 3.4 × 1048 erg. This value is moderate on account of magnetic-field damping, in spite
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of the efficient magnetic-field amplification at the shock.
In the framework of our model, we predict relatively inefficient Bohm diffusion, re-

flected in the value of the gyrofactor ξ ≈ 16. This value is required to consistently fit
the synchrotron cutoff observed in the X-ray range. In line with most previous works on
Tycho, we also conclude that the acceleration of protons is required to explain the γ-ray
flux observed by VERITAS and Fermi -LAT. Our research cannot account for a purely
leptonic origin for the γ-ray emission, as in Atoyan and Dermer (2012). We instead favor
a mixed model with a composite flat spectrum (Γ ≈ 2). The electron-to-proton ratio
for Model II is Ke/p ≈ 1/80, and the maximum energy for protons is Emax,p ≈ 10 TeV
since it is linked to the roll-off energy of the synchrotron emission via gyrofactor, ξ. This
result falls below the previously presented ∼500 TeV (Morlino and Caprioli, 2012) and
∼50 TeV (Slane et al., 2014). The maximum energy of electrons is ∼3 TeV, which is sim-
ilar to the value 5 - 6 TeV suggested by Zhang et al. (2013) and Caragiulo and Di Venere
(2014). The total energy in protons in our model is Etot,p ≈ 2.7× 1049 erg, implying that
a few percent of the explosion energy went into CR. This value is significantly below the
16% claimed by Slane et al. (2014). We can use the test-particle approximation, as a
relatively marginal energy fraction is transferred to particles and the CR pressure at the
shock does not exceed 2.1% of the shock ram pressure during the entire evolution of the
remnant.

Furthermore, we explicitly show that NLDSA effects are not required, either to explain
the hydrodynamic structure of Tycho or to produce its slightly concave radio spectrum.
First, the hydrodynamic simulations with an ambient gas density of nH = 0.6 cm−3 and
canonical explosion energy of 1051 erg provide a decent fit to the observed radii and
a reasonable remnant distance of ∼ 2.9 kpc. Second, the radio spectrum is produced
by synchrotron emission generated by electrons that are re-accelerated in the immedi-
ate downstream region. In general, the imprint left by stochastic re-acceleration is more
prominent in electrons than in protons. Thus, future γ-ray observations that can success-
fully discriminate between leptonic and hadronic models for various SNRs may also be
able to distinguish between NLDSA and stochastic re-acceleration scenarios.

We find that a purely hadronic model may also be possible for Tycho for the immediate
post-shock magnetic-field B2 ≈ 600µG and far-downstream field B0 ≈ 120µG. However,
we do not explicitly model the hadronic scenario in this work because the dynamical
reaction of the magnetic field has to be taken into account, an effect that is not yet
included in our method. Nevertheless, we favor a lepto-hadronic scenario (Model II) as it
might better produce the X-ray filaments. Additionally, extremely efficient magnetic-field
amplification is not required, as in the case of a purely hadronic model.

In our model for Tycho, the contribution of the stochastic re-acceleration in the pro-
ton spectrum is marginal due to the small energy fraction converted into downstream
turbulence. For a larger amount of energy in fast-mode waves, the corresponding γ-ray
spectrum has to be naturally softer than predicted by the standard DSA, which could
provide a viable explanation for the observed soft γ-ray spectra of some SNRs. This
subject is beyond the scope of this work but could be of interest for future investigations.

Finally, we emphasize that the dynamical feedback on the background plasma from
the CR re-accelerated in the immediate downstream region of the SNR is of great interest
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for future studies, because it clearly differs from the classical nonlinear effects discussed
in the literature.

In summary, we find that stochastic re-acceleration is indeed a promising and natural
alternative to explain the soft spectra of Tycho and potentially other SNRs.
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Chapter 7

Summary and conclusions

SNRs are widely accepted as the most promising CR accelerators, mainly due to the
success of the DSA theory and its nonlinear modifications. At the first glance, DSA in
its linear and nonlinear versions seem to suffice as the only mechanism that explains the
observed spectra of SNRs. Nevertheless, as often the case, the devil is in the detail.
A closer look reveals that the standard theory fits the observed emission spectra only
in a very rough agreement. Especially the detailed global modeling of particular SNRs
demonstrates inconsistencies in spectral slopes, as repeatedly discussed throughout this
work.

This thesis addresses the question, why the observed radio spectra of many SNRs
are often not in accord with the conventional theory. The main focus of this work lies
solely on the softening of the particle and photon spectra. In the majority of the global
SNRs models, it is popular to ascribe the soft radio spectra to the Alfvénic drift with a
large Alfvén velocity of a few 100 km/s. However, according to the work of Vainio and
Schlickeiser (1999), where a self-consistent Alfvén waves transmission through the shock
was considered, the presence of Alfvén waves causes exactly the opposite effect, namely
the hardening of particle spectra. Therefore, we consider the scenario described in Vainio
and Schlickeiser (1999) as a possible explanation for the observed hard spectra. For the
opposite case of soft radio spectra, we investigate a viable explanation, which involves a
stochastic re-acceleration of electrons inside SNRs.

To this end, we present in Chapter 3 a generic model, where electrons are stochastically
re-accelerated by fast-mode waves after escaping from the shock into the downstream
region. It was found that stochastic re-acceleration can indeed produce softer electron
spectra, with corresponding radio spectral index α between -0.6 and -0.7. Therefore we
conclude that re-acceleration of electrons in the post-shock area can explain the observed
radio flux from many SNRs.

Next, the concept of stochastic re-acceleration is included in the program RATPaC,
originally developed by Telezhinsky et al. (2012a). Chapter 4 reviews the comprehen-
sive code and presents the details of the stochastic re-acceleration in RATPaC. Here,
the stochastic re-acceleration works as a secondary process simultaneously with the stan-
dard DSA. While Bohm diffusion coefficient and spatial convection terms account for the
first-order Fermi acceleration, fast-mode waves provide diffusion in momentum space. In
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contrast to the previous approach, the width of the turbulent region is self-consistently
calculated from the thermal energy of an SNR.

In the following chapters, RATPaC is applied to two young SNRs, which are both
promising objects to study CR acceleration: Cas A and Tycho. In Chapter 5, as a test
for RATPaC, a time-independent one-zone model for the young SNR Cas A is presented.
Nevertheless, even from a relatively simple approach important conclusions for the pro-
cesses in Cas A SNR were made. The lower magnetic-field limit inside Cas A is found to
be ∼ 150µG.

Further, in Chapter 6, RATPaC is applied to model the young Type Ia remnant Tycho,
where a detailed, fully time-dependent test-particle approach coupled to hydrodynami-
cal simulations is used. A number of studies (Völk et al., 2008; Morlino and Caprioli,
2012; Slane et al., 2014) suggest that shock acceleration with particle feedback and very
efficient magnetic-field amplification combined with Alfvénic drift are needed to explain
Tycho’s soft radio spectrum and the narrow rims observed in X-rays. In contrast to
the previous works, this thesis demonstrates that the broadband spectrum of Tycho can
be alternatively well explained if stochastic re-acceleration of particles in the immediate
post-shock region is taken into account. Although not as efficient as DSA, stochastic
acceleration leaves its imprint on the particle spectra, which is especially notable in the
emission at the radio wavelengths. Thus, Alfvénic drift and efficient particle feedback
are not required in our scenario. Besides the second-order Fermi process, magnetic field
in Tycho comes under scrutiny. It is common to posit magnetic-field strength of a few
hundred microGauss when modeling the broadband emission of SNRs. One of the rea-
sons is the afore-mentioned Alfvénic drift, which requires for Tycho magnetic field of
the order ∼ 300µG to adequately fit the observations. Furthermore, strongly amplified
magnetic fields are deduced from the thin X-ray rims observed from SNRs. These are
usually interpreted as typical paths of electrons that they travel before exhausting their
energy via synchrotron emission (Parizot et al., 2006). Nevertheless, caution should be
exercised when estimating magnetic fields from the nonthermal filaments. In addition to
the common scenario, where the X-ray emission decreases toward the SNRs center due to
effective synchrotron losses, an alternative explanation involves magnetic-field damping.
In this case, the observed nonthermal filaments reflect the distribution of the amplified
magnetic field, which decays in the interior of an SNR. We studied the nonthermal rims
of Tycho and investigated whether synchrotron losses or magnetic-field damping play a
more profound role in the formation of the nonthermal filaments. Our results demonstrate
that magnetic-field damping is necessary due to its unique capability to explain Tycho’s
filaments in the radio range. In general, magnetic-field damping allows for a moderately
amplified magnetic field inside SNRs compared to the case with loss-limited X-ray fila-
ments. However, we find a lower limit for the post-shock magnetic field in Tycho to be
∼ 330µG, implying efficient amplification even for the magnetic-field damping scenario.
The reason is a simultaneous fit of the magnetic-field limited radio rims and the entire
SED, which requires sufficient radio flux from the re-accelerated electrons as well as rela-
tively low IC peak. For magnetic field this strong the X-ray filaments of Tycho are shaped
by both the synchrotron losses and magnetic-field damping.

Despite the slightly different model approaches, the analysis presented in this thesis
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demonstrates certain similarities for Type Ia Tycho and core-collapse SNR Cas A. Ac-
cording to our analysis, both Tycho and Cas A accelerate protons, while a purely leptonic
model is found to be highly unlikely for both SNRs. In line with previous studies, both
remnants are not PeVatrons, and the maximum CR energy is around a few TeV instead.
According to our modeling, the corresponding acceleration efficiency in Tycho and Cas A
is roughly about a few percent. Both remnants indicate electron spectra softer as pre-
dicted by the standard DSA, with se = 2.5 for Cas A and se = 2.3 for Tycho, respectively.
Furthermore, for Cas A the canonical DSA solution for the hadronic spectra was excluded
by more than 3σ, with corresponding best-fit value sp = 2.17. Similarities between the
two SNRs can be attributed to their alike young age.

In summary, this work shows the importance of putting the small details of a grand
theory under the microscope. After all, more sophisticated models coupled to advanced
observations may bring together the fine pieces of the cosmic puzzle.
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Appendix A

General MHD equations

The general MHD equations, where any external force, viscosity, heat conduction, and
radiative effects are omitted, read as (e.g., Kirk et al. (1994), Ryden (2011))

Dρ

Dt
= −ρ∇ · u (Conservation of mass) (A.1)

ρ
Du

Dt
= −∇P +

1

4π
(∇×B)×B (Conservation of momentum) (A.2)

ρ
Dεp
Dt

= −P∇ · u +
ηD
4π
|∇×B|2 (Conservation of energy) (A.3)

∂B

∂t
+ ∇× (B × u) = −∇× (ηD∇×B) (Induction equation) (A.4)

∇ ·B = 0 (Gauss’s law for magnetism) (A.5)

εp =
1

γa − 1

P

ρ
(A.6)

Here u is the velocity, and B the magnetic field of the plasma, which are primary variables
in the MHD1. The plasma density is denoted by ρ and the thermal pressure by P . The
internal energy per unit mass, εp, is given by the standard Equation A.6 for an ideal gas
where γa is the adiabatic index.

The magnetic diffusivity is defined as ηD = c2/(4πσe) where σe denotes the electric
conductivity. This quantity represents the diffusion of the magnetic field and approaches
zero in the limit of infinite conductivity. In that case, one speaks of so-called magnetic flux
freezing because the magnetic flux is tied to the plasma. The approach is also referred to
as the ideal MHD and is justified for the large variety of astrophysical plasmas. Therefore,

1In contrast to electromagnetism where the basic quantities are the electric fields and currents.
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in this thesis it is in general set ηD = 0. The operator

D

Dt
=

∂

∂t
+ u ·∇

is the material derivative, which represents changes in the point that convects with the
plasma flow. In contrast, the partial time-derivative, ∂/∂t, describes the changes in a
fixed point of space.
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