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Dedicated to My Grandmother

Aufersteh’n, ja aufersteh’n wirst du,
mein Staub, nach kurzer Ruh!
Unsterblich Leben! Unsterblich Leben
wird, der dich rief, dir geben!

Wieder aufzublüh’n, wirst du gesäht!
Der Herr der Ernte geht
und sammelt Garben
uns ein, die starben!

O glaube, mein Herz! O glaube:
Es geht dir nichts verlohren!
Dein, ist, ja Dein, was du gesehnt!
Dein, was du geliebt, was du gestritten!

O glaube: Du wardst nicht
umsonst gebohren!
Hast nicht umsonst gelebt, gelitten!

Was entstanden ist, das muss vergehen!
Was vergangen, auferstehen!

Hör’ auf zu beben!
Bereite dich zu leben!

O Schmerz! Du Alldurchdringer!
Dir bin ich entrungen!
O Tod! Du Allbezwinger!
Nun bist du bezwungen!

Mit Flügeln, die ich mir errungen,
in heißem Liebesstreben
werd’ ich entschweben zum Licht, zu dem
kein Aug’ gedrungen!

Mit Flügeln, die ich mir errungen,
werde ich entschweben!
Sterben werd’ ich um zu leben!
Sterben werd’ ich um zu leben!

Aufersteh’n, ja aufersteh’n wirst du,
mein Herz in einem Nu!
Was du geschlagen, Was du geschlagen -
Zu Gott- zu Gott- zu Gott wird es dich
tragen!

Last and final conclusion of the symphony no.

2 in C minor Resurection composed by:

Gustav Mahler

Text:

Friedrich Gottlieb Klopstock and

Gustav Mahler
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Preface

Philosophy of Science

Bitte beobachten Sie! [...] Ja, aber was?1

Regarding this conversation, two aspects are of striking importance.

• Two persons communicate with each other. Each of them assumes that the other under-
stands the meaning of their conversation.

• The two persons communicate about the empiric and objective truth; how to describe it
and how to perceive – how to observe it.

While the second aspect of the conversation accompanies most of the presented work in the
following text, it is a worthy prerequisite to reflect on implications of the upper conversation as
both aspects of it together constitute the double-cycle of research2.

The first, embedded cycle of scientific progress has been described by Popper3 as a cyclic and
repetitive three stage process:

• Formulation of theories to describe a phenomenon

• Development of hypotheses

• Experimental test of hypotheses

This means, a theory manifests the paradigm of interpretation for experimental results while
an experiment tests hypotheses developed from a theory. Eventually evidence shows that a
hypotheses is wrong. Based on the new evidence, the theory is corrected or abandoned in favour
of a new one. Three aspects of this philosophic framing are noteworthy:

• Theories are formulated in a language for which the human mind is indispensable.

• Meaning of the first cycle is induced only through communicating individuals.

• It is assumed that written and spoken words have a meaning to the others.

Regarding these dialectic observations, it has been argued by Hösle4, that the fundamental
assumption/agreement of (scientific) communication is understanding and that this assumption
constitutes a principle who’s denial would lead to self contradiction. Finally, Hösle reaches the
conclusion that from the usage of language, in itself, an ultimate grounding follows (see [3] p.
152-169). Accordingly, the act of (scientific) communication among subjects is oriented towards
a highest point and thus constitutes a second cycle. Namely, the upper communication among

1p. 19 in [1]: Please observe! [..] Yes, but what?
2For an introduction see [1, 2, 3].
3Karl R. Popper (1902-1994) [4]
4He refers to the works of K. O. Apel in [3].

III



subjects – as well as this text – assumes a priori the existence of an undeniable truth. On
the one hand this makes scientific research independent of its outcome. On the other hand
it implicitly induces objective truth. Not through the absolute but through the sphere of the
human mind.

The human mind in turn, is bound to its existing and finite physical body. At the same
time it can explore the infinite, a state of nothingness and develops ideas that are intended to
counteract the nature out of which it evolved. Thus, the mind is both, part of a physical world
through its brain and at the same time, stands outside and sometimes even in opposition to
nature. Classical science implements this two-sided nature of the mind in every experiment:
System and observer are mostly assumed to be isolated entities and if they can not be isolated
severe problems arise5.

A theoretical resolution of this tension between subject and experiment will necessarily
involve the development of a unified framework for natural phenomena in the universe and
ethics6. On this endeavour, it is science which guides us, which seeks to gather understanding
of the omnipresent mysteries and beauties of the universe, with the only and most fascinating
tool to use: the human mind.

Main findings

The following text focusses on specific aspects of oscillatory data analysis relevant for biological
and medical research and other disciplines. The Introduction is grouped into three comple-
menting parts. The first part presents major examples for non-linear oscillations. These text
passages are intended to give a systematic overview of different topics in biomedical research
and applications of data analysis for which the findings in this text can be relevant. The os-
cillatory systems presented in these sections are used to illustrate more advanced problems of
analysis in the end of the text. The second part provides an introduction to theoretic concepts
for non-linear oscillators, synchronisation and networks with a focus on low-dimensional system
reconstructions. In a third part, the relation of observation-based system analysis and theory is
discussed with a focus on the transition between them, using the abundant strategy of heuristic
modelling.

Chapter two discusses aspects of direct network inference for oscillators. It presents a high-
order perturbation theory for the description of irreducible multi-body interactions in networks
of oscillators. Such interactions receive more and more attention in recent experimental and
theoretic studies as they contribute significantly to the dynamics of networks. In particular,
such multi-body interactions are thought to be one major component of neuronal and physiologic
functioning in the human body. This chapter also presents numerical methods for the direct
inference of such interactions and tests the methods on two paradigmatic oscillatory models.

The remaining Chapters are concerned with topics of inverse oscillatory data analysis with a
focus on low-dimensional phase-based methods. Chapter three gives a reviews of methods for
phase demodulation and related time-frequency analysis with a focus on the Hilbert transform

5For a sound collection of ontological problems and questions in physics see [5].
6See [2] for implications of objective idealism for science and society. See [1] Ch. 2 for a discussion of limitations

of reductionism.
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and the analytic signal. On the one hand, such approaches are of decisive importance in first-
stage heuristic models of oscillatory phenomena. On the other hand, neither of the methods
is fully applicable to the problem of phase-dynamics reconstruction. Particularly the Hilbert
transform – albeit in widespread use – require special precaution to be reliable. This aspect is
introduced in more detail.

Chapter four presents a novel approach for phase demodulation of phase-modulated wide-
band signals by means of iterative Hilbert transform embeddings (IHTEs). A spectral theory for
the method is presented and numerical tests are provided that indicate the efficiency of IHTEs.
The contributions of this chapter can be regarded as a partial solution to the long-standing
problem of wideband demodulation in communication science.

Chapter five addresses the more challenging problem of phase reconstruction for non-linear
oscillatory systems by means of a paradigmatic non-linear oscillator and generic observables of
its dynamics. In particular, a data-driven reconstruction of the first-order phase dynamics is
performed based on IHTE. Moreover, the ability of IHTE to obtain precise phase descriptions of
stochastic oscillations is explored with several examples. The remote sensing of such stochastic
systems is relevant especially for biological oscillators which operate in noisy environments and
often feature essential noisy system components.

Chapter six discusses benefits and limitations of IHTE for phase reconstruction. Generally,
the successful reconstruction of a phase dynamics can be hampered if the actual phase dynamics
is to complicated and/or if the observed signal is not suitable for phase reconstruction. These two
aspects are exemplified by means of several examples. For experimental research this chapter is
particularly interesting as it shades light on the actual reliability and validity of the commonly
employed Hilbert phase-analysis.

Chapter seven gives an overview of advanced topics regarding potential applications and
improvements of the proposed IHTE method, but it also considers the problem of phase-
amplitude coupling. A reconstruction of this coupling is already challenging for direct and
full observations of a non-linear oscillator. But based on experimental data, it is significantly
more complicated. Moreover, due to method-dependent spurious effects, it might not be pos-
sible at all to retrieve such valuable information. In the end, further research topics and open
questions are formulated in correspondence to the achieved insights and open problems of this
work.
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Chapter 1

Introduction

The idea of periodicity and resonance dates back to the very beginning of philosophy in
Greece. Namely, the Pythagorean school opted for a harmony of the celestial spheres
that would have supported the movement of planets. Accordingly, the mechanic rotation
of the spheres against each other would result in vibrations depending on the geometric
proportions and would give rise to an omnipresent sound of the cosmos. It was no other
than Johannes Kepler1 more than one and a half millennias later, who still was influenced
by this metaphysical idea and who translated the implications of this harmonia into a
hypothesis for the interpretation of the observational data of early modern astronomy
[6].

A century later, one of the first reports on a self-organised non-linear system dates
back to Christian Huygens2. He observed in 1673 that pendulum clocks on a common
wooden beam adjust their rhythms and that the adjustment restores itself after an
interruption. Already Huygens concluded that the cause of this synchronization was the
interaction of the clocks through the tiny movement of the beam [7, 8].

Since then, the understanding of emergent oscillatory phenomena and the experi-
mental and theoretic exploration of the worlds deepest mathematical structures have
reached to unseen frontiers. In particular with the dawn of the twentieth century the
exploration of non-linear processes has lead to fruitful interrelations among scientific
disciplines. For example, in his famous work On relaxation oscillations, Balthasar van
der Pol3 hypothesised already in 1926 that the oscillations of the heart and his reported
electric-circuit oscillations share a common mechanism of generation [10].

Today, the physics and mathematics of periodic phenomena – in particular synchro-
nization; the simulation and the measurement of oscillating systems has become a central
field in research including physics and engineering [11, 12, 13, 14], chemistry [15, 16],
biology [17, 18], space science [19], earth system analysis [20, 21, 22, 23], social sciences
[24] and physiology (see the forthcoming Sec. 1.1).

In many of these fields, the still existing discrepancy between theory and experimental
reality demands for further efforts in the transitional area of signal analysis. A role model
in this regard is physiological research where on the bedrock of anatomy and physiology
largely new non-linear phenomena are spotted in data and can be related to the theory
of non-linear oscillations.

1.1 Biomedical research - a conundrum of complexity

Biomedical research embraces the idea that physiological phenomena are the result of
interacting non-linear dynamical systems. The field resides on extensive experimental
analysis of physiological data by means of methods ranging from pure statistics to full re-
constructions of dynamic models. The obtained insights constitute a modern foundation

1Johannes Kepler (1571-1630) [4]
2Christian Huygens (1629-1695) [4]
3Balthasar van der Pol (1889-1959) [9]
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Chapter 1 Section 1.1

for treatment of acute and chronic diseases such as for example ventricular fibrillation
[25], spinal cord injury [26], Parkinson’s disease4 [27] or epilepsy [28]. Moreover, research
has proven to be able to provide early warning indicators regarding hypertension [29],
diabetes [30] and Alzheimer’s disease5 [31]. A central aspect in many of these studies
is that the inherent information about the state and functioning of the whole system is
provided by the network interactions among subunits [32, 33, 34]. Throughout the in-
troduction, the interplay of dynamical processes, physiology and anatomy for the brain,
the kidney and the cardio-respiratory system is presented in more detail with a focus on
practical limitations, modelling and analysis.

1.1.1 The human brain

Besides all higher cognitive processes, the brain controls the autonomous nervous system
functions of the body and perception. The functional structure of the brain is holistic
with only partial separation of single unit dynamics and their network as a whole. An
excellent introduction to neurobiology and higher functionality of the brain is provided
in [35] and will be presented in brief here.

The basic functional unit in the brain is the neuron. It connects to other cells
through vast and complex extrusions of its cell membrane, called axons and synapses6

(see Fig. 1.1). The emerging network is vast in structural characteristics and function-
ality: The white matter of a human brain in a 20 year old adult contains synaptic
connections with an average length of 150000 - 180000 km and already the neocortext
contains up to 2 × 1010 neurons with each having on average 7000 synaptic links [36]!
Moreover, the structure of the brain network evolves dynamically in time. This phe-
nomenon, called neuro plasticity, allows the brain to learn and adapt to environmental
inputs [37, 38, 39]. Brain diseases that counteract a healthy mode of operation affect the
whole brain as well as the entire body and are subject of widespread research interests
based on non-linear data analysis [40].

Electric properties of neurons

The cell membrane of living cells is perforated by trans-membrane molecules which act as
pores for nutrients, messenger molecules and ions. In the nervous system, this functional
ability is of vital importance as it enables neurons to efficiently communicate in a highly
noisy environment: The neuronal cell membrane incorporates ion channels for Na+, K+,
Cl−, Ca2+ and other ions (A−). Due to the inherent molecular fluctuation, some of these
channels open and close statistically and result in a passive leakage flux of extracellular
and intracellular ions with ionic conductivity gL. Neurons over-compensate this flux by
an active ion pumping which leads to a simultaneous trans-membrane gradient of ionic
concentration and electric charge. The resultant flow equilibrium of leakage and active
pumping results in a net-negative membrane potential7 V (t) which fluctuates around an
equilibrium potential. This potential is generally a result of the joint flux equilibria of all

4James Parkinson (1755-1824) [4]
5Alois Alzheimer (1864-1915) [4]
6Axons provide signals to other neurons while synapses receive inputs from other neurons. Thus, as

the functional mechanisms are of similar type, in the following, both are referred to as synapses.
7Most notable is the Na+-K+ ion pump based on Na+-K+-ATPase. It reduces the intracellular

concentration of Na+ while the cell body is enriched with K+. In each pumping event, three Na+ ions
are transported outward, while only two K+ ions are pumped inward.

2



Chapter 1 Section 1.1

Figure 1.1: Shown on the left is a schematic representation of a pyramidal neuron (green)

embedded in a network of neurons (background). The cell’s membrane potential V (t) is in-

fluenced by synaptic inputs that arrise from signal transduction processes (white star) at the

synaptic endings. Signals travel accross the synaptic tree in a saltatory manner due to myelina-

tion of synapses (orange). Shown on the right are typical components of a membrane dynamics.

Trans-membrane fluxes of ions take place through membrane pores. An active ion pump (orange)

maintains gradients of concentration (brown gradient) and electric charge (blue gradient) against

passive ionic leakage (grey). The stimuli-dependent ion gate (green) reacts to arriving stimuli

(white star). The electric activity of the membrane dynamics can be mapped to an equivalent

electric circuit (right). The figure is addapted from [41].

ion species and follows from a non-linear equation. However, the single ionic equilibrium
potentials ENa,K,Ca and others follow in good approximation from the Nernst equation8

which assumes that ionic gating obeys a Boltzmann statistics9.
Changes of the membrane potential are mainly induced through concerted opening

and closing of electro-chemically sensitive ion channels. On a molecular level, this pro-
cess is realised by conformation changes of the channel molecules. The final state of
conformation is approached through non-optimal intermediate stages and occurs more
likely if a certain electric or chemical threshold is reached. Additionally, some ion chan-
nels can transfer from an opened state into an intermittent inactive state through a
second conformation change if the stimulus persists long enough. The average dynamics
of many of these channels is modelled by gating variables w(t) and conductivities gx.

The average dynamics of V (t) and w(t) can be described by electric circuit models
of varying complexity levels [42, 43, 44]. The essence of these models is that neurons are
able to perform limit cycle oscillations and operate in critical states where already small
perturbations and parameter shifts can lead to fundamental changes in their dynamics10.

One such paradigmatic biological model is the Morris-Lecar11 (ML) oscillator [46].
It describes the dynamics of the membrane potential V (t) generated by non-inactivating
slow K+, fast Ca2+ and leakage currents:

CV̇ = I0 + εp(V, t) − gL(V − EL) − gKw(V − EK) − gCaM∞(V )(V − ECa)

ẇ = λw(V )(W∞(V ) − w) + ζ(t)
(1.1)

8Walter Nernst (1864-1941) [4]
9Ludwig Boltzmann (1844-1906) [4]

10This property is reminiscent in biological systems and is referred to as criticality [45].
11Harold Lecar (1935-2014) [University of California – memoriam]
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Figure 1.2: Depicted are time series of V (t) (black) and w(t) (green) of the ML neuron model

Eq. (1.1). (a): Unperturbed (ε = 0, ζ(t) = 0) system dynamics for I0 = 50 mA. The fast out-

bursts of action potentials are followed by epochs of recovery where a slow buildup of membrane

potential takes place. (b): Same system dynamics as in (a) but subject to Gaussian white noise

in the gatting with standart deviation σ = 0.02 and zero mean.

Here gCaM∞(V ) is the voltage dependent conductivity of Ca2+ ions and gKw is the
conductivity of K+ ions. The steady-state activation of the K+ ion gate is denoted
as W∞(V ). The strength of the ionic flows is approximated by gradients with respect
to the equilibrium potentials EL,K,Ca. I0 is the synaptic baseline current and εp(V, t)
is a time varying external stimulus with magnitude ε. For example, p(V, t) models an
external current supplied to the neuron in clamp experiments [47] or a synaptic input
(see Sec. 7.1). In contrast, ζ(t) accounts for random fluctuations of the K+ gating. De-
tails on the model are provided in App. A.1. It can be seen that the dynamics Eq.(1.1)
is subject to various sources of noise: External (synaptic) inputs affect the dynamics
through εp(V, t), the equilibrium potentials EL,K,Ca are subject to local changes in the
trans-membrane gradients of ionic concentration and temperature. Moreover, the gat-
ing dynamics depends heavily on temperature through the time constant of activation,
λw(V ). As an example, Fig. 1.2 depicts the autonomous and a noise-perturbed dynam-
ics of Eq. (1.1). It can be seen that the oscillation is most sensitive to the random
fluctuations in the recovery epoch where already small noise causes a delay of the next
spike.

Of decisive importance to achieve the communication among neurons, is the ability
of their cell membrane to produce rapid and strong depolarisation events which are
called action potential (see Fig. 1.2). These events are stereotypical, i. e. their shape
and amplitude is largely independent of the initiating stimulus amplitude. Due to its
amplitude, the action potentials can excite other gating channels along a synapse. By
this, the action potential travels across the membrane until it reaches a dendrite where
it initiates neuro-chemical cascades responsible for the transfer of information to the
post-synaptic neuron (white stars in Fig. 1.1). In fact, the membrane dynamics allows
neurons to perform elementary logical operations12, such as integration (summation) or
frequency dependent passing of inputs (filtering) [49, 50].

Neurons are specialised and organise in multilayer networks of various complexity. A
striking example is provided by glial cells which couple locally to the primary synaptic
network [51, 52]. The membranes of glial cells wrap around synapses and constitute
a highly impermeable lipid layer called myelin sheet. The isolating sheet allows for an
essentially lossless signal transport along a synapse and a saltatory conduction of action

12Theoretical findings suggests that simultaneous oscillatory states in spatially separated synaptic
endings of one and the same neuron contribute significantly to the computational abilities in the brain
[48](p. 53-70)
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potentials what increases the signal speed to up to 100 m/s13.

As a consequence of this immense structural complexity and simultaneous miniaturi-
sation of single functional units, a mechanistic description of the brain and measurement
of brain functions lie at the outermost reaches of scientific capabilities. Therefore, brain
models mostly cover the processes of functional brain regions and are in close congruency
to recordings of brain activity.

Measurement of brain activity

Measures of brain activity are based on electroencephalography (EEG) [55], mag-
netoencephalography (MEG) [56] and structural imaging procedures such as func-
tional magnetic resonance imaging (fMRI) [57]. EEG/MEG recordings monitor
the electric activity of the neuronal network while fMRI provides a picture of the
metabolic activity of certain brain regions.

The recording of brain activity involves many practical issues:

• Non-invasive EEG recordings deal with attenuated signals since the neuronal
dynamics is covered by several layers of tissue and the scull. As a conse-
quence, additional spurious statistical effects are present which have to be
filtered.

• Highly sensitive electrodes have to be placed in close proximity to each
other what can lead to spurious interrelations among signals and thus, to
potentially erroneous conclusions about the underlying network state.

• The electrode material can introduce measurement bias.

Unwanted noise might be reduced in extra-cranial MEG recordings or in EEGs
measured by implanted electrodes [58, 59, 60]. The remaining random component
in itself allows to draw conclusions about the brain network and the deterministic
component of neuronal interaction [61].

Epilepsy and Parkinson’s disease - functional brain diseases

At the intersection of mechanistic and bio-genetic research epilepsy and Parkinson’s
disease constitute two main motivations for the development of novel data-analysis tools
and computational analysis.

Epilepsy affects nearly 1% of the worlds population. The epileptic brain shows pe-
riods of extreme intermittent neuronal activity which are called seizures and which can
lead to severe convulsion and life-threatening conditions [62]. Two thirds of epileptic
patients benefit from an anti-epileptic drug therapy. In an other 8-10% a dissection of
the epileptic focus is considered14 [63]. Statistics of clinical praxis for the latter approach
shows that seizures are terminated in 50-80% of patients while for others they reoccur
after some time [64].

13Strong emphasis is put in the understanding and therapy of multiple sclerosis where the myelination
is damaged. The improper isolation results in erroneous jumping of action potentials, inflammations and
frequently in chronic and successive decline of mental abilities [53, 54].

14The onset of a seizure is commonly situated in the temporal lobe.
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This suggests that the occurrence of seizures is closely related to structural and
functional states of the brain15. However, the mechanisms which underlie epilepsy and
seizures are still not well understood. In particular, since mutual termination of seizures
still constitutes a challenge, a highly active field of research is concerned with the de-
velopment of seizure predictors to increase the quality of living for medication-resistant
epileptic patients [66, 67, 68]. Such predictors necessarily reside on statistical and non-
linear methods.

For 25% of patients where neither medication nor dissection is successful, implan-
tation of a pacemaker for deep brain stimulation (DBS) is considered. This approach
resides on the idea that the seizure is the result of explosive synchronization which, to
be avoided, requires periodic but minimally invasive perturbation of the network state
[69].

The current understanding of seizures is based on well established methods of statis-
tics, non-linear dynamics and signal analysis [40]. For example, many studies extract
frequency information and signal features by means of the wavelet transform [70, 71] (see
Sec. 3.1) or adopt synchronization analysis (see Sec. 1.3.4) which is based on methods
for construction of phase variables from signals.

Parkinson’s disease is accompanied by a slow and frequently silent decline of the
motor control and other nervous system functions. Symptoms affect patients mostly in
later stages of life as the brain network is able to compensate disabilities [72, 73]. While in
the early stages of the disease a therapy with dopaminergic drugs is possible, in evolved
Parkinson’s disease this strategy is mostly ineffective [74]. In this stage, significant
reduction of life quality arises through the characteristic tremor in the extremities16 or
muscle rigidity. From the perspective of non-linear dynamics however, the involuntary
movement is thought to arises from pathological synchronization of motor neurones.
This suggests to apply an external driving in the ensemble of neurons to suppresses
synchronization.

Indeed, in clinical praxis the tremor and other impairments are significantly reduced
by DBS at frequencies around 100Hz. However, there exists consensus that positioning
of electrodes as well as parameters of stimulation have to be chosen with caution. It
is here, where joint approaches of modelling and oscillatory data analysis can shade
light on principal questions: Is a high-frequency forcing responsible for cauterisation of
pathological synapses? How should the stimulation be designed to act in a minimally
invasive way in the brain [27, 76, 77, 78]? Notably, besides its clinical success, DBS has
severe side effects such as depression what has to be treated with secondary therapies
[79].

1.1.2 The kidney

The kidney is the main filtration unit for the human blood. It keeps a healthy concen-
tration of ions, removes metabolic waste from the blood, regulates the blood pressure
and takes part in the hormone secretion process. Its pathology is influenced by cardio-
vascular health [80, 81].

The major physiological feature of the kidney is a renal network of finer and finer
blood vessels that wire the blood to the basic functional units of filtration which are called

15For example, a comparative network analysis in [65] indicates differences between the healthy and
the epileptic brain

16The tremor has a frequency of 3-10Hz [75].
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nephrons (see Fig 1.3). In nephrons, the filtration of the blood takes place by osmotic
processes in a region of highly convoluted blood capillaries which is called glomerulus.

The filtration activity on the level of nephrones involves numerous parameters (see
Tab. A.2) but crucially depends on the tubular pressure Pt(t) of the urine and the protein
concentration of the filtered efferent blood Ce. Since Ce is not known before the unfiltered
blood enters the glomerulus, the nephron tries to adapt its filtration activity in such a
way that the difference of glomerular hydrostatic pressure Pg and Pt(t) equilibrates with
the osmotic pressure of the filtration. This means, the relation of Ce and Pg is implicit.

The produced urine contains a certain concentration of NaCl and flows to the main
duct through highly folded tubules. On its way it is partly reabsorbed with a certain
rate Freab and flows through the loop of Henle17 with a rate Fh(Pt) determined by the
gradient of tubular pressure with respect to the main duct. Prior to the main duct, the
tubules approach a proximity of the glomerulus and it is in this region, that the NaCl
concentration of the liquid is sensed by maculla densa cells (cyan region in Fig. 1.3)
which respond to changes in the NaCl concentration by secretion of messenger molecules.
These messengers in turn induce a muscular response of the afferent arteriola walls. The
dynamics of the walls affects the resistivity Ra(t) of the capillary. Its dynamics can be
modelled by forced damped non-linear oscillations.

The emanating auto-regulative process for the filtration activity Fg(Pg, Pt, Ra) of the
glomerulus takes place with a certain characteristic time delay Tt and is called tubulo-
glomerular feedback (TGF). The resulting dynamics can have a stable fixed point or
harmonic and chaotic oscillatory states with individual average frequency (see Fig. 1.4).
There exists substantial effort to describe the nephronic oscillatory dynamics [83, 84].
A model, that captures the described effects is given by the following set of differential
equations:

17Friedrich G. J. Henle (1809-1885) [MPIWG]

Figure 1.3: Shown is an illustration of a

nephron. The maculla densa fills out the space

between the arteriolas and the distal tubule.

The autoregulative tubologlomerular feedback

(TGF) (magenta arrows) arrises due to a mul-

tistage cascade process and with a certain time

delay due to internal processes of the maculla

densa itself and due to the loop of Henle. Cou-

pling between neighbouring nephrons is induced

by TGF that travels accross the arteriolas (red-

cyan arrows) and hemodynamic coupling (black

arrow). The figure is addapted from [82]. Dy-

namic variables of Eq. (1.2) are encircled.
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Figure 1.4: Shown are projections of the state space trajectory for the free running nephron

model Eq. (1.2) with damping d = 0.11. Parameters Tt and c are the main parameters of the

autoregulative TGF response which affects the blood inflow to the glomerulus (see Eq.(A.2) in

App. A.2). In a pathological state, a nephron loses the ability to respond properly to fluctuations

in the blood inflow. In such case, the periodic oscillation (a) is lost and can show period doublings

(b,c) ultimately leading to a chaotic oscillation (d). Here, Tt = 4.5s is fixed and c is varied to

illustrate this behaviour. (a): c = 2.5, (b): c = 7.0, (c): c = 8.6, (d): c = 12.5.

Ṗt =[Fg(Pg, Pt, Ra) − Freab − Fh(Pt)]/Ctub, Fh(Pt) = (Pt − Pd)/Rh

R̈a = − 2ωad
√

K(Ra)Ṙa − ω2
aK(Ra)(Ra − TGFc(χ3)Ra,0)

χ̇1 = − χ1/Tt + Fh(Pt), χ̇2 = (χ1 − χ2)/Tt, χ̇3 = (χ3 − χ2)/Tt .

(1.2)

In this model, the heterogeneous response of the maculla densa is represented by the
third-order delay variables χ1,2,3(t) and the exerted TGF-activation of the afferent arte-
riolar resistivity is modelled by a sigmoid transfer function TGFc(χ3). Further details
about the model are given in App. A.2 and originally in [85].

In a healthy operational state, the main response parameters, Tt and c result in a
mainly periodic oscillation of nephrons with a distinct frequency. However, there exist
other modes of operations – particularly in pathological kidneys – in which nephrons
show chaotic oscillations. As an example Fig. 1.4 depicts four such different operational
states of nephrons.

1.1.3 The cardio-respiratory system

The overall cardio-vascular-respiratory system is designed to efficiently supply nutrients
and oxygenated blood to the cells and to transport metabolic waste in mammals. This
is achieved by the self-sustained contraction of the heart muscle which drives the hearts
pumping cycle18.

In terms of dynamical-systems science, heart and lung can be understood as two
interacting non-linear oscillators. The interaction between the two oscillators is mediated
by the cardio-respiratory centers of the autonomous nervous system and their interaction.
Moreover, the cardio-respiratory system receives an independent rhythmic input from
the vascular network [87, 88].

The heart’s pumping process is based on precise electrical pulses delivered to all
compartments of the cardiac muscle by an efficient conduction system that enervates
the tissue (green compartments in Fig. 1.5). This tissue consists of specific excitable

18A broader introduction to the interplay of anatomy and physiology is given in [86] and references
therein. In the following, focus is put on the human physiology only.
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Figure 1.5: Shown is an illustration

of a human heart. During a car-

diac cycle, blood flows from the right

atrium (1) into the right ventricle (2).

Due to contraction of the heart mus-

cle, the blood flows to the lungs where

it is reoxygenated and enters the left

atrium (3). From there it flows to the

left ventricle (4) and is pumped with

the next contraction into the aorta.

The figure is addapted from [93].

cells, the cardiomyocytes, which are able to contract due to electric excitation and which
have a specific discharge characteristics different from the one observed in neurons. The
cells are connected by small protein molecules which act essentially as gap junctions
such that action potentials can jump to neighbouring cardiomyocytes. The resultant
electro-physiological patterns in the muscle can be modelled as travelling waves in an
excitable medium [89, 90, 91, 92].

In a healthy heart, these waves travel in a mostly planar fashion through the muscle,
ensuring an optimal cardiac output. The medium however, is highly inhomogeneous as
the heart muscle is interspersed by the coronary vasculature, enervating tissue and other
supportive structure. Moreover, there can exist scars and other impurities in the muscle
at which new excitation waves can be erroneously generated. These patterns correspond
to a higher disorder and lower or even terminate the cardiac output in chronic and
lethal states of the heart. Their fast and reliable diagnosis, suppression, therapy and
understanding is one of the main subjects of cardio-respiratory research19.

The most widely used signal to monitor the electric activity of the cardiac muscle is
the electrocardiogram (ECG, see info box)20. In clinical praxis, it is interpreted based on
long lasting experience [95]. In contrast, there exist comparably fast statistical analysis
and theory-based methods which provide reliable data-driven tools for the characterisa-
tion of dynamic states of the heart [96, 97]. Moreover, the cardio-respiratory dynamics
is reasonably well approximated by a deterministic non-linear model. Its extraction is
particularly appealing as it simultaneously provides a paradigm of interpretation, a cer-
tain amount of noise reduction and a simplified picture of the numerous physiological
effects that influence the hearts beating dynamics [98, 99].

For example, the most widely studied effect of cardiological health is respiratory
sinus arrhythmia (RSA). It denotes the slowing of the heart beat during expiration and
acceleration during inspiration [100]. RSA is caused by electrochemical interactions of
the cardio-repiratory centers in the brain [87] and a subsequent interplay of the fast
vagal tone and the slow sympathetic tone (see the bold nerve fibres in Fig. 1.5) [101].

19Medical treatment of cardiac impairment focusses on manipulation of the wave generation in the
cardiac muscle. This includes a drug therapy, pace makers or ablation [86](p. 12,13).

20The non-invasive ECG is accompanied by ex vivo studies [94]. One goal in these studies is the remote
sensing of the three dimensional structure of the excitations from limited data of the cardiac muscle.
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ECG signals
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Depicted in red is a period
of an ECG measurement taken
from lead I (VLA − VRA) [102].
A schematic representation of
standard lead positions V1 to
V6 as well as RL and LL illus-
trates the variety of ECG sig-
nals to monitor the electric ac-
tivity of the heart [103, 104].
Time stamps 1 to 4 correspond
to the stages of pumping indi-
cated in Fig. 1.5.

The stereotypical excitation cycle of the heart muscle generates a specific shape
of the ECG (bold blue line) which is rather prominent even in noisy observations.
(P): Polarisation of the right and left atrium. (Q-R-S): Onset and full contraction
of the ventricular muscle sheets. (T): Refraction of the muscle and refilling of the
atria with blood.

Besides the standard ECG signals, recent developments make extensive use of
remote sensing and seek to provide minimally invasive measurement techniques to
monitor the cardio-respiratory activity [105, 106].

This interplay is considerably altered in hypertensive or diabetic patients, as a result
of stroke [107] or Alzheimer’s disease and due to ageing. Thus the analysis of RSA
allows to estimate potential silent health risks. The analysis of RSA is based on spectral
and statistical methods [108, 109] or model-based data analysis [98, 110, 88]. For all of
these methods one has to keep in mind that the variety of different ECG measurements
certainly provides different aspects of one and the same dynamical system.

1.2 Nonlinear oscillators

Oscillating behaviour can arise in time-continuous dynamical systems and discrete maps
and can be regular and irregular. For example, the voltage oscillation of the ML neuron
in Fig. 1.2 arises from a stochastic dynamics while the irregular pressure variations of
the nephron model Fig. 1.4 arise from deterministic chaos.

The further text considers only time-continuous dynamical systems. In mathematical
terms, such systems are represented by a state y(t) in an N -dimensional state space
which evolves according to the autonomous differential equation

ẏ = F(y) . (1.3)

This equation induces a specific state-space geometry which can comprise attractors.
The stability of these attractors depends upon the parameters of the model, can change
through bifurcations (e. g. see Fig. 1.6) and is characterised by the spectrum of Lyapunov
exponents21 of the system.

21Aleksandr Lyapunov (1857-1918) [111]
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Figure 1.6: Shown is the course of period doubling for the nephron model Eq. (1.2) for Tt = 4.5s

and d = 0.11. Each point in the diagram corresponds to a local maximum of Pt(t) (black).

Coloured vertical lines correspond to the snapshots of the projected attractors in Fig. 1.4. The

control parameter c determines the response of the TGF (see Eq. (A.2) in App. A.2). Shown as

a magenta line is λmax.

1.2.1 Types of oscillatory dynamics

According to their dynamical behaviour, oscillators can be grouped into three major
classes [112]:

Self-sustained oscillators maintain their periodic motion without external stimuli.
Their dynamics is driven by an internal energy source and regulated by feedbacks and
dissipation. Non-chaotic self-sustained oscillators possess a stable T -periodic limit cycle
solution y(0)(t) = y(0)(t + T ) to which all initial conditions in its basin of attraction
converge (see Sec. 1.2.2 for a discussion of stability). Chaotic self-sustained oscillations
in turn are characterised by an exponential divergence of nearby trajectories y(t) and
y(t) + δy(t) according to the largest Lyapunov exponent λmax:

|δy|(t) ≃ |δy|(0) exp(λmaxt) .

In chaotic systems, this exponent is positive. The resultant divergence is bound to
the attractor of the system and results in a finite time-horizon for prediction given by
the Lyapunov time 1/λmax. As an example, the period doubling of the nephron model
Eq. (1.2) is presented in Fig. 1.6. It shows how the system for parameter c ≈ 1.7
develops limit cycle oscillations and undergoes several bifurcations before it reaches a
chaotic state. This route to chaos is certainly more complicated than for simple dynamic
maps or simple chaotic systems due to multi-parameter dependences [84].

Excitable oscillations possess an attractive resting state and an excited state. In
absence of external stimuli, they remain quiescent in their resting state. If they receive
a sufficient external stimulation, they transfer to the excited state from where they
relax back to the resting state. This process usually takes place as a stereotypical event
and can be well distinguished from the quiescent state. A simplified example of this
behaviour is provided by

φ̇ = ω − ε sin(φ) .

This dynamics on a ring possesses a pair of fixed points φ⋆± ≈ π/2 ±
√

1 − ω/ε
√

2 with
eigenvalues λ± = ±

√
2ε

√
ε− ω if ε & ω. In fact, the unstable fixed point separates

the resting state from the nearby excited state such that already small perturbations
across the unstable fixed point cause a full rotation of the system. This mechanism of
excitability is reminiscent in biological oscillators as well. There however, with more
complex geometries of excitability (e. g. see Fig. 1.7).

Stochastic oscillators combine deterministic dynamics and noise usually by ad-
ditional random forces in the otherwise deterministic equations of motion. Such forces
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describe internal statistical fluctuations of the oscillator or external random inputs. In
either case such inputs render the dynamics to be essentially non-autonomous and make
a prediction of future states difficult or impossible. As an example Fig. 1.2 (b) depicts
the ML neuron subject to random fluctuations in the K+ gating variable w(t).

1.2.2 Stability of limit cycles

The stability properties of limit cycles deserve further discussion: Their asymptotic
behaviour follows from the linearised time evolution

δ̇y = F′
(

y(0)(t)
)

δy, δy(t) = D(t)δy(0), D(t) = exp

(
∫ t

0
F′(y(0)(τ))dτ

)

of a perturbation
δy(t) = y(t) − y(0)(t) (1.4)

for states close to the periodic orbit. Since the cycle is T -periodic, such evolution can
be quantified by a stroboscopic observation of the perturbed state trajectory:

δy(mT ) = D(mT )δy(0) = Dm(T )δy(0) .

Indeed, this equation has a fixed point at y(0)(T ) if the N − 1 second-largest eigenvalues
Λk = exp(λkT ) of D(T ) have amplitudes smaller than unity22. These eigenvalues are
called Floquet multipliers23 and the λk are the complex Floquet exponents. The ordered
set {ℜ[λ1] > ℜ[λ2] > . . . > ℜ[λN ]} resembles the respective Lyapunov spectrum and
ℜ[λ1] is the largest Lyapunov exponent λmax (see [113] p. 211-217).

Most notably, for stable limit cycles, the largest Lyapunov exponent is zero while all
other exponents are negative. This means that eventual perturbations in the direction
of the cycle accumulate. Thus, the dynamics in direction of the cycle carries most
information while in other degrees of freedom this information degrades according to
the negative Lyapunov exponents.

1.2.3 Phase of an oscillator

The stability theory of limit cycles gives at hand a generic phase-amplitude reduction of
coordinates y(t) 7→ {ϕ(t), r(t)} in which the asymptotic phase ϕ(t) corresponds to the
dominating, neutrally stable dynamics along the limit cycle and all components of r(t)
represent the dynamics of deviations δy(t) from the limit cycle in the dissipative degrees
of freedom24.

The outstanding importance of the phase dynamics is evident: An unperturbed os-
cillator finally relaxes to the limit cycle. There, the state is solely determined by ϕ(t)
no matter how complicated and high-dimensional the dynamics Eq. (1.3) is. Moreover,
in the basin of attraction a value of ϕ(t) can be assigned to each state y(t) that propa-
gates under the unperturbed dynamics towards a state y(0)(ϕ) on the limit cycle. The
corresponding surfaces Φ[y] = ϕ of states that all have the same point of convergence
on the cycle and thus, the same value of ϕ are called isochrones25 .

22D(mT ) = Dm(T ) since y(0)(t) and F′(y(0)(t)) are T -periodic. Accordingly, the eigenvalues obey
Λk(mT ) = Λm

k (T ).
23Achille M. G. Floquet (1847 - 1920) [UStAndrews]
24A proof can be found in [114].
25In more general terms they are the dominant eigen-solutions of the state-space flow Eq. (1.3) [115,

116, 114].
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Isochrones provide the most natural generalisation of the phase to states in the basin
of attraction. They link the dynamics of ϕ(t) to the dynamics in state space according
to

ϕ̇ = Φ′[y](t)ẏ = ω =
2π

T
. (1.5)

Thus, if the full state-space dynamics is available, the dynamics of ϕ(t) can be recon-
structed (see Sec. 2.4.1). The opposite, however, is not true: To reconstruct y(t), also
amplitude degrees of freedom are needed in addition to ϕ(t). Construction of the latter
however, has lead to a variety of approaches in which the most natural choice is to define
amplitude degrees of freedom by surfaces of constant relaxation rate to the cycle. In that
case the dynamics of amplitudes is linear. An introduction to the problem is provided
in [114, 117] and makes extensive use of the standardised Koopman-operator theory26.

Noteworthy, Eq. (1.5) describes the dynamics of the asymptotic phase in the whole
basin of attraction. However, the inference of it based on data has only recently been
studied in detail [119]. If the free running system relaxes in the basin of attraction
to the limit cycle, the phase dynamics is nevertheless given by Eq. (1.5) what defines
the isochrones implicitly for nearly all non-linear oscillators (see Sec. 2.4.1 for further
details). It is this deeply rooted fact, which poses significant demands for a mathematical
description of the phase dynamics in oscillators and further demands for an experimental
inference of the isochronic structure.

1.2.4 Weakly perturbed phase dynamics and isochrones

The density and form of isochrones characterises the response of an oscillator to per-
turbation and its internal perception of time. Namely, if isochrones are spars, the
phase changes slowly on a trajectory y(t). In contrast, if their density is larger, the
phase changes more rapidly. As an example, Fig. 1.7 depicts the highly inhomogeneous
isochronic structure of the ML neuron: In the lower left part of the cycle, already small
perturbations δy(t) will cross over many isochrones. Thus, the response of the phase
will be large. In contrast, in most other regions of the state space, the response will be
significantly smaller.

The relation of phase dynamics and isochrones can be further examplified: If an
oscillator is continuously perturbed from its limit cycle by an additive, weak and non-
parametric perturbation εp(t), the phase dynamics is

ϕ̇ = ω + εZ(ϕ) · p(t), Z(ϕ) = Φ′[y(0)(ϕ)], (1.6)

where the isochrone gradient Z(ϕ) is called phase sensitivity function or infinitesimal
phase response curve (iPRC). It must be noted that this equation is a first-order ap-
proximation in ε since the perturbed state trajectory is approximated by the limit cycle
solution. Such an assumption is indeed justified if an introduced perturbation degrades
essentially in one period of oscillation. Instead, if the system has not relaxed sufficiently,
a new phase response depends on the shape of isochrones at a generic state y(t) 6= y(0)(t)
and on the recent input. Such phase dynamics however, is not completely described by
Eq. (1.6).

Nevertheless, if Z(ϕ) is strictly positive ϕ̇ increases throughout a period. Thus,
the perturbed oscillator27 completes one revelation close to the limit cycle always in a

26Bernard O. Koopman (1900-1981) [118]
27Here and in the following, Z(ϕ) is a scalar function, corresponding to perturbations in one direction

of the state space.
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Figure 1.7: Shown in (a) is the function V (ϕ)

for the unperturbed (blue) and for the noisy

(grey background) ML neuron Eq. (1.1) (see

Fig. 1.2) and the phase sensitivity function

Z(ϕ) (orange). The state trajectory of the noisy

system undergoes massive fluctuations in the

regions of high phase sensitivity. Moreover, it is

indicated that these fluctuations cause an essen-

tially non-monotonous phase dynamics. Shown

in (b) is the state space plot of the same unper-

tubed ML neuron. The bold colured line is the

limit cycle solution and the line colour indicates

the amplitude of Z(ϕ) in (a). Black curves show

exemplary isochrones Φ[y] = πk/10, k ∈ [1, 20].

Further details of iPRC construction are pro-

vided in App. A.3. The Isochrones are ob-

tained using the relaxation method discussed

in Sec. 2.4.1.

shorter amount of time. In contrast, if Z(ϕ) changes sign in a period, proper timing of
a perturbation results in phase delay (Z(ϕ) < 0) or advance (Z(ϕ) > 0). Thus, it can
be readily seen that the phase sensitivity is of great importance, for example, in DBS
where the goal is to perturb whole populations of neuronal oscillators by an optimal and
non-destructive input.

The experimental inference of the iPRC thus, is a major topic in neurological data
analysis. An overview of the field is provided in [48] and an example for a neuronal iPRC
is given in Fig. 1.7. Indeed, it can be seen that the region of highest isochronic density
coincides with the region of highest phase sensitivity.

1.2.5 Synchronization

Synchronization is the process of rhythmic adjustment due to small interaction among
oscillating units. The phenomenon is reminiscent in non-linear systems and underlies
emergent patterns, reaching all the way up to the integrated dynamics present in bio-
logical oscillators.

The process of synchronization can be described in statistical or topological terms.
This is to say that the adjustment of rhythmic behaviour causes a (partial) collapse of
the state distribution in an ensemble of interacting units or that single units tend to
converge to a common attractor in the joint state space [8]. In either case, the state of
synchrony is characterised by generic collective variables of the ensemble of oscillators.
In the following, emphasis is put only on the notion of phase synchronization, i. e. the
adjustment of phases and frequencies in an ensemble of oscillators.

The idea of collective variables can be best understood in the Kuramoto-Daido
model28. It is based on two major assumptions:

28A societal application of modified Kuramoto-Daido models is found in power-grid analysis [14].

14



Chapter 1 Section 1.2

• Perturbations to the oscillators are small such that each unit is well described by
a scalar phases dynamics on the limit cycle.

• The oscillators are coupled to each other and this coupling can be pairwise or
non-pairwise; it can be local or all-to-all with a coupling strength ε.

In its basic formulation of pairwise all-to-all coupling in an ensemble of M oscillators,
it is further assumed that the coupling functions are well presented by slow (resonant)
phase interactions

ϕ̇k = ωk +
ε

M

M
∑

j=1

h(ϕj − ϕk) . (1.7)

Here, ωk reflects the individual autonomous dynamics of each oscillator [120, 121].

Neural synchronization and communication

Synchronization generally plays a key role in neuronal communication since it
allows groups of neurons to act in unison and against the omnipresent statistical
fluctuations [61, 122]. Its data-based detection among sensors thus, constitutes a
way to measure interactions among brain regions.

From the viewpoint of signal analysis, generic synchronization effects corre-
spond to characteristic frequency bands in the spectra of signals [58]. This view is
complemented by mathematical modelling where it is hypothesised that the emer-
gent oscillatory dynamics arises due to a generalised synchronization of the noisy
neuronal oscillators. Neural synchronization is highly intertwined with the state of
the evolving brain network and characterises different modes of its operation such
as neuronal avalanches, brainwaves and chimera-like states [123, 124, 125, 126].

The coupling function h(ϕj −ϕk) can generally be represented by a Fourier-series29.
For example, if the term ∼ exp(i(ϕj − ϕk)) dominates, the coupling function might be
well approximated by the first harmonics. Then, the dynamics effectively decouples in
the mean-field representation

R exp(iΨ) =
1

M

M
∑

j=1

exp(iϕj)

to obtain
ϕ̇k = ωk + R sin(Ψ − ϕk) .

Here, Ψ is the phase of the mean field.
The order parameter R approaches unity if all phase differences ϕj − ϕk = 0. In

this case one speaks of full phase synchrony. If R fluctuates close to zero, the oscillators
are essentially asynchronous30 what means that the phases are not locked. In states of
partial phase synchrony, the value of R varies between zero and unity. A generalised
measure to quantify this locking is for two oscillators given by

Rn,m = 〈exp(i(nϕj −mϕk))〉t . (1.8)

29Joseph Fourier (1768-1830)[4]
30These fluctuations are a result of finite size effects while in the limit M 7→ ∞ they eventually vanish

[127].
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It is called phase-locking value31 and finds application, for example, in the analysis of
neurological data.

Renal synchronization and filtration

A healthy human kidney contains 106 nephrons while its average total kidney
volume is 1.34 × 10−4m3 what results in roughly 7.5 × 109 functional units per m3

and stresses the tremendous complexity of the system [82, 128].
A healthy operational state of kidneys is characterised by a certain amount

of partial synchrony induced by a heterogeneous coupling with two major mech-
anisms: First, hemodynamic coupling due to pressure changes that travel back-
wards in the vascular tree and second, an electrochemical response of the TGF
that travels the muscle walls of the arteriolas. While the first leads to out-of-phase
synchrony, the latter can lead to partial phase synchrony and states of higher syn-
chrony [83, 129, 130].

The balance of both effects depends on a plethora of factors which are yet not
fully explored. Noteworthy, the whole renal network, maintains a throughput of
0.2 − 0.3l per minute in humans while the average blood flow in a single nephron
is not higher than 200 − 300nl per minute. Such an orchestrated performance is
enabled by the self-organised synchronization in the heterogeneous renal network.

The combinations of integers n and m correspond to higher modes of coupling in
which also phase differences nϕj −mϕk can be resonant. An even further expansion of
the notion of synchrony arises if not only two but a generic combination of oscillator
phases enters in Eq. (1.8). Such locking corresponds to generic phase-dynamics effects
beyond the weak-coupling limit and can be described by generalised phase-dynamics
equations. It is a hallmark of high-order oscillatory phenomena [131]. In Ch. 2 such a
high-order phase reduction theory is presented and exemplified.

1.3 Heuristic analysis of non-linear oscillations

In contrast to settings in which a description of phenomena based on first principles is
possible – in which the governing equations of motion are known a priori – oscillation
phenomena in non-linear systems commonly arise from heterogeneous sources. Most
prominently in biological systems, interactions among functional subunits become more
and more divers while at the same time, single compartments shrink to a microscopic
size.

As a consequence:

• Disintegration of the system into its single compartments to isolate single processes
omits the holistic nature of the dynamics present in the systems.

• The amount of information needed to characterise the systems full state exceeds
available computational means.

• The necessity for ethical treatment of individuals demands a non-invasive measure-
ment or therapy. At the same time, available sensors mostly do not fit the degree
of miniaturisation and complexity present in the system.

31〈.〉t denotes an averaging over time.
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Figure 1.8: Schematic overview

of heuristic analysis and mod-

elling. The actual system Y(t)

evolves in time (gray scale)

according to the operator E[Y].

Non-invasive observations M̂

(red) and/or embeddings Ê

transfer the information to the

analysis level (green).

Consequently, a heuristic analysis is needed. This is to say, the actual dynamics
exits but instead of reconstructing it in full detail, one pursues the strategy to employ a
generic mathematical frameworks (see Fig. 1.8) with two main goals:

• Inference of system properties such as for example, network structure, response
properties and geometric features of the state-space dynamics.

• Prediction of the future of the observed systems based on the available data32.

Available analysis makes use of statistical methods, state-space methods and model recon-
struction techniques which each focuses on specific aspects of system theory and data
analysis.

1.3.1 Model-based analysis

The goal of model-based data analysis is the reconstruction of the original dynamics as
close as possible. This means an equation of motion Eq. (1.3) is assumed to underlie
the deterministic component of the actual time evolution E(Y). This dynamics can be
inherently noisy such that the reconstruction of a model represents a specific form of
noise filtering.

In accordance to infer the original dynamics, the existence of a smooth generic co-
ordinate transformation is assumed. This transformation, which is called measurement,
projects the original M -dimensional state-space trajectory Y(t) to a signal

M̂ : RM → R
m

Y(t) 7→ M̂ [Y](t) =: X(t) .
(1.9)

Here, X(t) is the observed multivariate signal.

The data-based reconstruction of the dynamics is achieved in two steps:

(I) Construction of the heuristic state y(t) from X(t)

(II) Extraction of its dynamics F(y).

This approach is particularly appealing as it allows to draw conclusions about the ge-
ometric and dynamic properties of the underlying system dynamics E(Y) from the re-
constructed dynamics F(y) which would otherwise be hard to achieve.

32An introduction to this topic of forecasting can be found in [132].
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Step (I) in this procedure, definition of a mapping

Ê : Rm → R
N

X(t) 7→ Ê[X](t) = y(t) ,
(1.10)

relates the heuristic state y(t) to the experimental data. The mapping Ê[X](t) is called
embedding [133] (see Sec. 4.1.1 and in particular Fig. 1.9).

Step (II), reconstruction of the dynamics, is achieved by a numerical fitting proce-
dure, if the form of the dynamics is known [134, 135]. In other cases, a generic model
dynamics F(y) is needed. The drawback of such an approach is that the reconstructed
model receives legitimacy only through its predictive power while single terms in a dy-
namics not necessarily have a physical meaning33.

The transition

Y(t)
M̂→ X(t)

Ê→ y(t)

faces two main problems:

• Determination of Ê[X](t) constitutes a mathematically under-determined problem.
If the number of available measurements is smaller than the dimension of the actual
system, degrees of freedom have to be reconstructed according to some generic
rule. For example, an univariate time series X(t) which shows oscillations needs
to be embedded at least into a two-dimensional space to ensure uniqueness of the
solution. What is the most natural way to construct additional degrees of freedom
from X(t)?

• The information content of X(t) can be to low. First, some features of the orig-
inal state trajectory can be underrepresented in the data [137]. Second, a finite
observation keeps track of only a specific portion of the state space. Thus, specific
features of the dynamics are potentially not even measured.

Regarding step (II), meaning of the model reconstruction can be ensured by inference
of the phase dynamics equation: On the one hand, the phase-reduction theory induces
a clear meaning of the reconstructed phase. On the other hand, the phase of a signal
can be readily obtained using phase reconstruction techniques. These techniques are
generally more stable than standard embedding methods [138, 133] (see Ch. 4).

What remains to be clarified is the transition (red-blue gradient in Fig. 1.8) from
phases of signals to the asymptotic phase of an underlying system. This transition
in itself is based on assumptions and gives rise to other methodological problems as
discussed in Ch. 3. Quite generally, it is not possible to reconstruct the asymptotic
phase from incomplete observations (m < M). The reason for this is the definition of
ϕ(t) according to isochrones. However, there can exist specific circumstances in which
a reconstruction yields reasonably good agreement [139].

1.3.2 State-space methods

A more generic approach to oscillatory data is provided by general state-space methods
based on the delay embedding

Êτe,N : Rm → R
N

X(t) 7→ Êτe,N [X](t) = [x1(t), . . . , x1(t− n1τe), . . . , xm(t), . . . , xm(t− nmτe)] .

33This is one of the aspects of machine learning techniques and there, attracts specific attention [136].
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Figure 1.9: Shown are exemplary embeddings of the lead 1 ECG data of Fig. 3.1(b). (a):

Delay embeddings of the detrended ECG data. For a delay time of τe = 12.5 ms ( ) the

attractor unfolds whereas for delays of τe = 40 ms ( ) and τe = 20 ms ( ) the attractor

geometry complicates. (b): Derivative embeddings of the same data. The derivative is obtained

with a high-order polynomial filter (see Sec. 5.2.3). The embedding unfolds the attractor for a

calculation window of 28 ms ( ) whereas larger windows of 80 ms ( ) and 60 ms ( ) cause the

embedding to gradually collapse. The derivative was normalised to the amplitude of the signal.

(c): Instead, the Hilbert transform (see Ch. 3) unfolds the large and smaller main loops mutually

without parameter adjustments needed.

Its construction depends on the embedding dimension N and the delay time τe. This
embedding method faces two major problems:

• No unique way of estimation for the embedding dimension and the delay time is
known. However, since the embedding should preserve deterministic features of the
dynamics, one strategy is to chose N in such a way that the embedding dynamics
remains continuous and smooth34. The delay time τe in turn has to be selected
such that the redundant correlations in the embedding are reduced35

• For unperturbed systems, Taken’s embedding36 theorem ensures the existence of
mappings Y(t) 7→ y(t) [142]. However, no such mapping is guaranteed to exist for
perturbed systems.

A special type of delay embedding is the derivative embedding.

ÊN : Rm → R
N

X(t) 7→ ÊN [X](t) = y(t) = [x1(t), . . . , x
(n1)
1 (t), . . . , xm(t), . . . , x(nm)

m (t)] .

Here x
(n)
j (t) is the nth-order derivative of the jth component of data. Its estimation

from noisy data demands for additional smoothing procedures or a high-order estimation
scheme for the derivative (see Sec. 5.2.3).

Despite these obstacles, the delay embedding is the foundation of numerous analysis
procedures. It allows to study generic invariants of the original dynamical system such as
the geometry and dimension of the attractor and its stability properties, it is employed

34This approach is called false nearest neighbour statistics [140].
35A similar situation occurs for multi-channel EEG measurements where the distance of electrodes

plays the role of τe.
36Floris Takens (1940-2010) [141]
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in forecasting and in statistical analysis to identify deterministic dynamical components
[132].

1.3.3 Statistical analysis

The most generic approach to interprete data is provided by statistical methods which
can be deployed as part of the former deterministic analysis or in a stand-alone mode.
In either case, the analysis assumes some stationarity of the data what in turn allows
to test for non-stationarity. For example, a binned analysis of mean, variance and
autocorrelation can be performed. More sophisticated tests involve surrogates which
eventually rule out specific statistical properties of data [143, 59].

To some extend, statistical analysis can also lead to prediction if the true state
dynamics of a system is observed. Then, the estimation of the evolving systems statistics
can be achieved from data by fitting of the Fokker-Planck equation. However, generally
it is not possible to embed a stochastic process.

1.3.4 Network inference

The preliminarily discussed biological oscillation phenomena of the brain, the kidney
and the heart (see Sec. 1.1) all arise from heterogeneous network interactions. Thus, a
heuristic model for these systems needs to infer not only the dynamics of single units
but also their connectivity.

First, this task deals with the same problems as heuristic modelling in general. Sec-
ond, the conclusion that two nodes are connected derives from different data-based
criteria. Generally, oscillators in a network are connected by some physical links. These
links can be realised for example by synapses in the brain (see Fig. 1.1) or the arteriola-
tublar connections in the kidney (see Fig. 1.3). The abstracted mathematical network
of such connections thus, defines the structural coupling.

Strutural coupling in the kidney and inference

The interactions of nephrones have been inferred using in-vivo oscillatory data
analysis [144]. Direct measurement of surface-nephron activity is based on laser-
speckle flowmetry [145] which allows to determine the velocity of red blood cells
and thus the arteriolas resistivity in surface nephrons. However, reconstruction of
the deep renal network relies on invasive experimental techniques and evidence-
based mathematical modelling [146]. The evident problem here is that inference of
the connectivity in the free running system is not possible. Either one disintegrates
the whole organ to characterise the structural connectivity but terminates the
dynamics or one observes the undisturbed oscillations without perception of the
deep network structure. In the latter case however, crucial features of the network
state are neglected.

In particular, this means that an interaction of two units exists structurally only if a
link is physically present. As an illustration, Fig. 1.10 depicts a triplet of oscillators. In
this triplet, oscillator 1 and 2 are structurally connected to each other with coupling
strength c1,2 and c2,1. In contrast, oscillator 3 is connected unidirectionally to oscillator
2 with strength c2,3.
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Figure 1.10: Schematic representation of a

triplet of oscillators. Oscillator 1 and 2 are

structurally connected (red arrows). In con-

trast, oscillator 3 is forced by oscillator 2 only.

The undirected functional connection (black

links) indicate potential structural connections

between all oscillators although oscillator 1 re-

ceives no information from 3. A causality mea-

sure or a model based analysis allow for infer-

ence of the directionality of coupling and all

effective coupling links (blue arrows).

Due to the structural links oscillator 1 receives information from 2 and vice versa.
Moreover, oscillator 3 receives information about the state of oscillator 2 . The latter
inherits some information about the state of oscillator 1 as well. As a consequence,
there arises an effective functional coupling link from oscillator 1 to 3 . This coupling
link is by no means present in the structural network and is a genuine result of the
non-linearity of single oscillators.

The inference of the connectivity can be based on model-free statistical analysis using
the cross-correlation between signals. Correlations are a measure for the similarity of
signals. Thus, such analysis provides no conclusions about causation. For example, the
cross-correlation detects coupling for all pairs of oscillators (black lines in Fig. 1.10)
with no discrimination of structural (bold) and effective links (dashed). Moreover, it
is possible to think of a situation in which the coupling constant c1,2 vanishes. Then,
oscillator 2 forces oscillators 1 and 3 . The resulting correlation among these units
thus, will be very strong although they do not interact at all.

A stricter analysis can be carried out by means of causality measures. In contrast to
correlation, these methods involve some asymmetry in the calculation and thus are able
to monitor causal relations among units [97, 40]. An illustration is given in Fig. 1.10:
Again, the effective coupling link is identified but this time with information on causation
(blue arrows).

Correlation and causality can be parameter free methods of estimation what makes
them a good tool for the study of generic signals. However, both methods do not allow
to distinguish the qualitative difference of structural and effective coupling. To achieve
this goal one is forced to reconstruct a heuristic model of the network dynamics. The
advantage of such an approach is its descriptive and predictive power. Its drawback is
that results are meaningful only for a certain range of model parameters and that the
model reconstruction itself involves several sophisticated steps related to the projections
Eqs. (1.9) and (1.10). The method of Ch. 2 implements a heuristic model reconstruction.
It is based on the notion of asymptotic phase.

The statistical and model-based inference of network links is complemented by esti-
mation of the phase synchronization among network units using the phase locking value.
The reason for this is that synchrony most likely implies interaction37. Again, this anal-
ysis is heavily based on an accurate determination of the respective true phases ϕ(t) for
each unit.

37A novel field of research examines effects of quantum synchronization which is in close correspondence
to the well studied phenomenon of entanglement [147].
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Finally, an important aspect in networks is the directionality of coupling as it mea-
sures the relative strength of coupling links which is often readily computable based on
signal analysis techniques alone or based on a reduced phase model [148, 149]. Similarly
statistical and mixed techniques can be employed as well [150, 151].
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High-order phase reduction for cou-
pled oscillators
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Main findings:

• Presentation of an analytic high-order phase reduction method

• Development of a numerical method for phase and frequency estimation in oscil-
latory models

• Development and application of a numerical method for multivariate network re-
construction based on the asymptotic phases and comparison to mathematical
results

2.1 High-order phase coupling

In the introduction the phase dynamics Eq. (1.6) is derived for the limit of small pertur-
bations what leads to a clear separation of system response and external stimulus. In
the more general circumstance where the perturbation δy(t) integrates up, a high-order
phase reduction becomes necessary. This aspect of phase-reduction theory is analysed
here in detail for a network of three coupled Stuart-Landau1 (SL) oscillators and a
network of van-der-Pol (VdP) oscillators. The essence of this analysis shows that the
phase-dynamics network possesses irreducible hyper-network structures in which oscilla-
tors act as a group and which gain importance in networks of strongly coupled non-linear
oscillators [153, 154, 155].

2.1.1 Phase reduction hierarchy

The starting point for a mechanistic description of hyper-network structures is the state
dynamics of many oscillators:

ẏk = Fk(yk) + εGk(y1,y2, ...) . (2.1)

1Lew D. Landau (1908-1968) [152]
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Here, the units are coupled by functions Gk(y1,y2, ...) which are scaled by a small
common coupling strength ε. Then, according to Eq. (1.5), each phase dynamics is
given by

ϕ̇k = ωk + εΦ′
k[yk] · Gk(y1,y2, ...) . (2.2)

It can be seen that each phase relies on information about the generally unknown func-
tions Φk[yk] and all state space trajectories yj(t) through the coupling function G(.).

Indeed, in the linear approximation it thus follows:

ϕ̇k = ωk + εΦ′
k[y

(0)
k (ϕk)] · Gk(y

(0)
1 (ϕ1),y

(0)
2 (ϕ2), ...) = ωk + εQ

(1)
k (ϕ) . (2.3)

Here, ϕ = [ϕ1, ϕ2, ..., ϕM ] and Q
(1)
k (ϕ) is the first-order phase coupling function. It

is equivalent to Eq. (1.6) and illustrates the tremendous reduction of the N × M -
dimensional dynamics of the network units to a set of only M scalar equations for
the phases ϕk(t)!

Additional features of the dynamics arise due to perturbations δyj(t) (see Eq. (1.4)):
Since the perturbation depends on states of all oscillators, the phase of each oscillator
couples – through the isochronic dependence on amplitudes – to all other oscillators in
higher orders of ε. Ultimately, this leads to a hierarchy of high-order phase coupling
functions:

ϕ̇k = ωk + εQ
(1)
k (ϕ) + ε2Q

(2)
k (ϕ) + ε3Q

(3)
k (ϕ) + ... = ωk +Q(ϕ) . (2.4)

Such an expansion, assumes that the relation of amplitude and phases ϕ is algebraic,
i. e. the amplitudes are enslaved to the phases. In geometrical terms this means that
the torus, spanned by ϕ, stays intact under perturbation. Beyond this limit, a gener-
alised phase-amplitude reduction becomes necessary and results in at least M differential
equations for phase and M differential equations for the amplitudes [117, 115].

2.1.2 Consequences of high-order phase coupling

The theoretic consequences of the phase-reduction hierarchy are significant for network
reconstruction: While measures of statistics, keep track of mere appearances of inter-
action instead of true mechanisms, the phase dynamics Eq. (2.4) mutually incorporates
the structural as well as the functional coupling links! Most importantly, it allows to
distinguish the latter from the first by their scaling behaviour in ε. For example, if a
coupling link is structurally present it scales ∼ ε. In contrast, if the link is functional,
the largest non-vanishing interaction term scales ∼ ε2.

First, this means that the high-order phase model Eq. (2.4) can be utilised to identify
complete chains of interaction among oscillators that arise due to effective coupling. (For
example, in Fig. 1.10 such a chain is directed from oscillator 1 to oscillator 3 .) In
turn, in a data-based application of a first-order phase-model Eq. (2.3) the functional
link would be erroneously identified as a weak structural link.

Second, a viable benefit of high-order phase coupling reconstruction is the ability
to analyse high-order states of synchronization in computationally less costly models
based on phase. For example, in quadruple synchronous states, the phase differences
m1ϕ1 +m2ϕ2 +m3ϕ3 +m4ϕ4 =const. (Here all mj ∈ Z whereas in Eq. (1.8) n,m ∈ N.)
While in experiments these states are detectable using the generalised version of the
phase locking value Eq. (1.8), an offline analytic examination of such effects would be
beneficial once a phase model is reconstructed from data [156].
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This conquest however, relies on a determination of the phase dynamics. Moreover,
while the interaction chains in a model can be infinitely long, experimental shortcomings
prevent a complete reconstruction. Effectively this means that a finite horizon of inter-
action is present behind which influences are not detectable. For example, in a triplet
phase model 1 ↔ A ↔ 2 the interaction between oscillators 1 and 2 arises either

directly or through all possible two-link combinations over an intermediate oscillator A .

Instead, in a quadruplet analysis, chains 1 ↔ A ↔ B ↔ 2 with an additional oscilla-

tor B are considered. It can be readily seen that such analysis soon faces combinatorial
divergences such that lowest high-order chains are practically considered [157, 158, 159].

2.2 A network of Stuart-Landau oscillators

A standard model for non-linear oscillations close to a Hopf2 bifurcation is the SL system.
In dimensional form it is given by

ã′
k = (µk + iνk)ãk − (β̃k + iγk)|ãk|2ãk + ǫGk(ãk, ã1, . . .) , (2.5)

where Gk(ãk, ã1, . . .) is the coupling function of each individual unit depending on the
states of other elements in the network. A dimensionless form of Eq. (2.5) derives from

local parameters: First, all amplitudes ak =
√

β̃k/µkãk are normalised such that on the
limit cycle their modulus is |ak| = 1 (see Eq. (2.14)). Second, for the scaling of time it
appears convenient to assume that the growth rate of linear oscillations, µ, is the same
for all oscillators as this scaling acts on all units: t = µτ . The resulting equation is

ȧk = (1 + iωk)ak − |ak|2ak − iαkak(|ak|2 − 1) + εGk(ak, a1, . . .) . (2.6)

Here ωk = νk/µ−γk/β̃k is the dimensionless frequency of the oscillation. The parameter
αk = γk/β̃k determines the inclination of isochrones at the limit cycle and is a measure
of non-isochronicity. The dimensionless coupling parameter ε depends on the scaling
of the functions Gk(ãk, ã1, . . .): If only first powers of the amplitudes ãj(t) enter the
coupling functions, then ε = ǫ/µ.

In polar notation, ak(t) = rk(t) exp(iθk(t)), the dynamics is given by

ṙk = rk − r3
k + εℜ[exp(−iθk)Gk(rk, θk, r1, θ1, . . .)] , (2.7)

θ̇k = ωk − αk(r
2
k − 1) + εr−1

k ℑ[exp(−iθk)Gk(rk, θk, r1, θ1, . . .)] . (2.8)

From this representation, it can be seen that, θk(t) in the unperturbed system grows not
uniformly. However, a phase

ϕk(t) = θk(t) − αk ln[rk(t)] (2.9)

can be derived that takes explicitly into account the form of isochrones, given by loga-
rithmic curves. Using this relation, the dynamic Eq. (2.7) and (2.8) in terms of r(t), ϕ(t)
is:

ṙk = rk − r3
k + εℜ[exp(−i(ϕk + αk ln[rk]))Gk(rk, ϕk, r1, ϕ1, . . .)] , (2.10)

ϕ̇k = ωk +
ε

rk

[

ℑ[exp(−i(ϕk + α ln[rk]))Gk(rk, ϕk, r1, ϕ1, . . .)]

−αℜ[exp(−i(ϕk + α ln[rk]))G(rk, ϕk, r1, ϕ1, . . .)]
]

. (2.11)

Here and in the following, it is αk = α the same for all units.

2Eberhard F. F. Hopf (1902-1983) [160]
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2.3 High-order reduction and perturbation method - an
example

In the following, the perturbation procedure for determination of a phase-only represen-
tation Eq. (2.4) of a network of SL oscillators is discussed. The coupling structure of
the network is 1 ↔ 2 ↔ 3 what leads to dynamical equations in the form (2.6):

ȧ1 = (1 + iω1)a1 − |a1|2a1 − iαa1(|a1|2 − 1) + εc2,1 exp(iβ2,1)a2 ,

ȧ2 = (1 + iω2)a2 − |a2|2a2 − iαa2(|a2|2 − 1) + ε
[

c1,2 exp(iβ1,2)a1 + c3,2 exp(iβ3,2)a3

]

,

ȧ3 = (1 + iω3)a3 − |a3|2a3 − iαa3(|a3|2 − 1) + εc2,3 exp(iβ2,3)a2 .
(2.12)

Here, additive coupling is considered with phase lag parameters βj,k. Using polar coor-
dinates and the phase definition Eq. (2.9), it follows

ṙ1 = r1 − r3
1 + εc2,1r2 cos(θ2 − θ1 + β2,1) ,

ṙ2 = r2 − r3
2 + εc1,2r1 cos(θ1 − θ2 + β1,2) + εc3,2r3 cos(θ3 − θ2 + β3,2) ,

ṙ3 = r3 − r3
3 + εc2,3r2 cos(θ2 − θ3 + β2,3) ,

ϕ̇1 = ω1 + εc2,1
r2

r1
[sin(θ2 − θ1 + β2,1) − α cos(θ2 − θ1 + β2,1)] ,

ϕ̇2 = ω2 + εc1,2
r1

r2
[sin(θ1 − θ2 + β1,2) − α cos(θ1 − θ2 + β1,2)]

+ εc3,2
r3

r2
[sin(θ3 − θ2 + β3,2) − α cos(θ3 − θ2 + β3,2)] ,

ϕ̇3 = ω3 + εc2,3
r2

r3
[sin(θ2 − θ3 + β2,3) − α cos(θ2 − θ3 + β2,3)] .

(2.13)

It can be seen that this dynamics is invariant under phase shifts as there appear only
phase differences in the interaction terms. It represents a natural generalisation of the
Kuramoto-Daido-type model Eq. (1.7) for dynamics off the limit cycle. Similarly, the
additive coupling might be replaced by diffusive coupling. In this case however, the
resultant phase dynamics overcomplicates significantly and will contain terms of self-
coupling.

2.3.1 General perturbation approach

The algebraic approximation of the high-order phase coupling hierarchy Eq. (2.4) is
complemented by a perturbative series

r(ϕ) = 1 + εr(1)(ϕ) + ε2r(2)(ϕ) + . . . (2.14)

for the amplitude. Herein r(1,2,...)(ϕ) are the high-order corrections of the amplitude.
The approach exploits the idea that the perturbation δy(t) should remain enslaved to
the phase dynamics in a certain range of coupling strength.

Inserting both, Eq. (2.4) and Eq. (2.14) into Eqs. (2.10) and (2.11) allows to deter-
mine the full dependence of the phase dynamics on system parameters for each power
of ε and the functional dependence of the coupling function on phases. For illustration,
the first two steps of the perturbation method are shown here in full detail for the SL
system while third and fourth order couplings are discussed only partly due to the rapid
increase of computational complexity.
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In Eq. (2.11), the first-order approximation Q
(1)
k (ϕ), follows from leading order terms

in Eq. (2.14):

Q
(1)
k (ϕ) = ℑ[exp(−iϕk)Gk(ϕk, 1, ϕ1, 1, . . .)] − αℜ[exp(−iϕk)Gk(ϕk, 1, ϕ1, 1, . . .)] .

This result is equivalent to the phase model Eq. (1.6) (see also Sec. 5.1 where it is
reconstructed from data).

Next, the first-order correction of the amplitude is obtained by substitution of Eq. (2.14)
into Eq. (2.10):

ṙ
(1)
k = −2r

(1)
k + ℜ[exp(−iϕk)Q

(1)
k (ϕ)] ,

where the time derivative of r
(1)
k (ϕ) follows from

ṙ
(1)
k =

∂r
(1)
k

∂ϕk
ϕ̇k +

∂r
(1)
k

∂ϕ1
ϕ̇1 + . . . ≈ ∂r

(1)
k

∂ϕk
ωk +

∂r
(1)
k

∂ϕ1
ω1 + . . . . (2.15)

Thus, the problem of determining first-order corrections to the amplitude reduces to the
partial differential equation

2r
(1)
k +

∂r
(1)
k

∂ϕk
ωk +

∂r
(1)
k

∂ϕ1
ω1 + . . . = ℜ[exp(−iϕk)Q(1)

k (ϕ)]

=
∑

mk ,m1,...

gk;mkm1... exp(i(mkϕk +m1ϕ1 + . . .)) .
(2.16)

The second equality exploits the fact that all coupling functions are periodic on the

ϕ-torus. The same holds for r
(1)
k (ϕ):

r
(1)
k (ϕ) =

∑

mk ,m1,...

ρk;mkm1... exp(i(mkϕk +m1ϕ1 + . . .)) .

Both series expansions yield an expression for the Fourier coefficients of r
(1)
k (ϕ)

ρk;mkm1... =
gk;mkm1...

2 + i(mkωk +m1ω1 + . . .)
. (2.17)

In the next step, Q(2)(ϕ) emanates from substitution of the expressions for r
(1)
k (ϕ), r

(1)
1 (ϕ),

. . . into Eq. (2.11) and in even further stages of expansion, the equations for r
(2)
k (ϕ) are

partial differential equations of type (2.16) and contain also first order corrections of
amplitudes and phases.

2.3.2 Small parameter expansion.

To suppress the explicit dependence of the coupling function on radii in Eq. (2.13),
angles θk(t) and the ratios rj(t)/rk(t) have to be expressed in terms of ϕk(t) and the
amplitude corrections to radii rk,j(t) using Eqs. (2.9) and (2.14) [161]. The resulting
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phase-dynamics equations up to third order ε3 are

ϕ̇1 = ω1 + εc2,1[sin(ϕ2 − ϕ1 + β2,1) − α cos(ϕ2 − ϕ1 + β2,1)]

+ ε2c2,1(1 + α2) sin(ϕ2 − ϕ1 + β2,1)(r
(1)
2 − r

(1)
1 )

+ ε3c2,1(1 + α2)
[ (

r
(2)
2 − r

(2)
1 − r

(1)
2 r

(1)
1 + (r

(1)
1 )2

)

sin(ϕ2 − ϕ1 + β2,1)

+ α
(

(r
(1)
1 )2/2 + (r

(1)
2 )2/2 − r

(1)
2 r

(1)
1

)

cos(ϕ2 − ϕ1 + β2,1)
]

+ . . . ,

ϕ̇2 = ω2 + εc1,2[sin(ϕ1 − ϕ2 + β1,2) − α cos(ϕ1 − ϕ2 + β1,2)]

+ εc3,2[sin(ϕ3 − ϕ2 + β3,2) − α cos(ϕ3 − ϕ2 + β3,2)]

+ ε2c1,2(1 + α2) sin(ϕ1 − ϕ2 + β1,2)(r
(1)
1 − r

(1)
2 )

+ ε2c3,2(1 + α2) sin(ϕ3 − ϕ2 + β3,2)(r
(1)
3 − r

(1)
2 )

+ ε3c1,2(1 + α2)
[ (

r
(2)
1 − r

(2)
2 − r

(1)
1 r

(1)
2 + (r

(1)
2 )2

)

sin(ϕ1 − ϕ2 + β1,2)

+ α
(

(r
(1)
2 )2/2 + (r

(1)
1 )2/2 − r

(1)
1 r

(1)
2

)

cos(ϕ1 − ϕ2 + β1,2)
]

+ ε3c3,2(1 + α2)
[ (

r
(2)
3 − r

(2)
2 − r

(1)
3 r

(1)
2 + (r

(1)
2 )2

)

sin(ϕ3 − ϕ2 + β3,2)

+ α
(

(r
(1)
2 )2/2 + (r

(1)
3 )2/2 − r

(1)
3 r

(1)
2

)

cos(ϕ3 − ϕ2 + β3,2)
]

+ . . . ,

ϕ̇3 = ω3 + εc2,3[sin(ϕ2 − ϕ3 + β2,3) − α cos(ϕ2 − ϕ3 + β2,3)]

+ ε2c2,3(1 + α2) sin(ϕ2 − ϕ3 + β2,3)(r
(1)
2 − r

(1)
3 )

+ ε3c2,3(1 + α2)
[ (

r
(2)
2 − r

(2)
3 − r

(1)
2 r

(1)
3 + (r

(1)
3 )2

)

sin(ϕ2 − ϕ3 + β2,3)

+ α
(

(r
(1)
3 )2/2 + (r

(1)
2 )2/2 − r

(1)
2 r

(1)
3

)

cos(ϕ2 − ϕ3 + β2,3)
]

+ . . . .

(2.18)

These equations already correspond to the representation given in Eq. (2.4) but they

still depend on radial corrections r
(1,2)
k,j (ϕ) which have to be obtained from the perturbed

radius equations. As an example, for r
(1,2)
1 (ϕ):

ṙ
(1)
1 = ω1

∂r
(1)
1

∂ϕ1
+ ω2

∂r
(1)
1

∂ϕ2
+ ω3

∂r
(1)
1

∂ϕ3
+ 2r

(1)
1 = c2,1 cos(ϕ2 − ϕ1 + β2,1) ,

ṙ
(2)
1 = ω1

∂r
(2)
1

∂ϕ1
+ ω2

∂r
(2)
1

∂ϕ2
+ ω3

∂r
(2)
1

∂ϕ3
+ 2r

(2)
1 = −3(r

(1)
1 )2

− αc2,1(r
(1)
2 − r

(1)
1 ) sin(ϕ2 − ϕ1 + β2,1) + c2,1r

(1)
2 cos(ϕ2 − ϕ1 + β2,1)

+ c2,1[sin(ϕ2 − ϕ1 + β2,1) − α cos(ϕ2 − ϕ1 + β2,1)]
∂r

(1)
1

∂ϕ1

+
[

c1,2[sin(ϕ1 − ϕ2 + β1,2) − α cos(ϕ1 − ϕ2 + β1,2)]

+ c3,2[sin(ϕ3 − ϕ2 + β3,2) − α cos(ϕ3 − ϕ2 + β3,2)]
]∂r

(1)
1

∂ϕ2

+ c2,3[sin(ϕ2 − ϕ3 + β2,3) − α cos(ϕ2 − ϕ3 + β2,3)]
∂r

(1)
1

∂ϕ3
.

(2.19)

Qualitatively similar results are obtained for the other two oscillators.
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A solution to the radial equations for r
(1,2)
k,j (ϕ) exploits the 2π-periodicity of radii and

Q
(1,2,...)
k,j (ϕ). Thus, application of Eq. (2.17) results in the first-order radial corrections:

r
(1)
1 =

2c2,1

4 + (ω2 − ω1)2
cos(ϕ2 − ϕ1 + β2,1) +

(ω2 − ω1)c2,1

4 + (ω2 − ω1)2
sin(ϕ2 − ϕ1 + β2,1) ,

r
(1)
2 =

2c1,2

4 + (ω1 − ω2)2
cos(ϕ1 − ϕ2 + β1,2) +

(ω1 − ω2)c1,2

4 + (ω1 − ω2)2
sin(ϕ1 − ϕ2 + β1,2)

+
2c3,2

4 + (ω3 − ω2)2
cos(ϕ3 − ϕ2 + β3,2) +

(ω3 − ω2)c3,2

4 + (ω3 − ω2)2
sin(ϕ3 − ϕ2 + β3,2) ,

r
(1)
3 =

2c2,3

4 + (ω2 − ω3)2
cos(ϕ2 − ϕ3 + β2,3) +

(ω2 − ω3)c2,3

4 + (ω2 − ω3)2
sin(ϕ2 − ϕ3 + β2,3) .

(2.20)
Finally, substitution into Eq. (2.18) defines the second-order phase reduction and yields
a phase-only representation of the coupling:

ϕ̇1 = ω1 + εc2,1[sin(ϕ2 − ϕ1 + β2,1) − α cos(ϕ2 − ϕ1 + β2,1)]

+ ε2
[

a
(2)
1;0,0,0 + a

(2)
1;−2,2,0 cos(2ϕ2 − 2ϕ1) + b

(2)
1;−2,2,0 sin(2ϕ2 − 2ϕ1)

+ a
(2)
1;−1,2,−1 cos(2ϕ2 − ϕ1 − ϕ3) + b

(2)
1;−1,2,−1 sin(2ϕ2 − ϕ1 − ϕ3)

+ a
(2)
1;−1,0,1 cos(ϕ3 − ϕ1) + b

(2)
1;−1,0,1 sin(ϕ3 − ϕ1)

]

,

(2.21)

ϕ̇2 = ω2 + εc1,2[sin(ϕ1 − ϕ2 + β1,2) − α cos(ϕ1 − ϕ2 + β1,2)]

+ εc3,2[sin(ϕ3 − ϕ2 + β3,2) − α cos(ϕ3 − ϕ2 + β3,2)]

+ ε2
[

a
(2)
2;0,0,0 + a

(2)
2;2,−2,0 cos(2ϕ1 − 2ϕ2) + b

(2)
2;2,−2,0 sin(2ϕ1 − 2ϕ2)

+ a
(2)
2;0,−2,2 cos(2ϕ3 − 2ϕ2) + b

(2)
2;0,−2,2 sin(2ϕ3 − 2ϕ2)

+ a
(2)
2;−1,2,−1 cos(2ϕ2 − ϕ1 − ϕ3) + b

(2)
2;−1,2,−1 sin(2ϕ2 − ϕ1 − ϕ3)

+ a
(2)
2;1,0,−1 cos(ϕ1 − ϕ3) + b

(2)
2;1,0,−1 sin(ϕ1 − ϕ3)

]

,

(2.22)

ϕ̇3 = ω3 + εc2,3[sin(ϕ2 − ϕ3 + β2,3) − α cos(ϕ2 − ϕ3 + β2,3)]

+ ε2
[

a
(2)
3;0,0,0 + a

(2)
3;0,2,−2 cos(2ϕ2 − 2ϕ3) + b

(2)
3;0,2,−2 sin(2ϕ2 − 2ϕ3)

+ a
(2)
3;−1,2,−1 cos(2ϕ2 − ϕ3 − ϕ1) + b

(2)
3;−1,2,−1 sin(2ϕ2 − ϕ3 − ϕ1)

+ a
(2)
3;1,0,−1 cos(ϕ1 − ϕ3) + b

(2)
3;1,0,−1 sin(ϕ1 − ϕ3)

]

.

(2.23)

These equations are the main result of the perturbative phase-reduction. The coef-

ficients of the second-order coupling terms, denoted in Eqs. (2.21-2.23) by a
(2)
k;l , b

(2)
k;l , are

listed in Tab. A.3, A.4 and A.5. Here, l = (l1, l2, l3) denotes terms with the combination
of the phases l1ϕ1 + l2ϕ2 + l3ϕ3. Phase dependence of order ε3 and ε4 of the coupling
are listed in in Tab. A.6 (without coupling coefficients)3.

It can be readily seen that indeed, the phase coupled networks has specific properties
that reach beyond the first-order phase dynamics and beyond the structural coupling
formulation Eq. (2.12). The physical meaning of the obtained terms is as follows:

3For estimation of these modes it suffices to consider the perturbative orders in a generic form. Then,
using a generic trigonometric function g(ϕj −ϕk) of the phase differences gives the result. For example:
g(ϕ2 − ϕ3)r(1)(ϕ1, ϕ2) 7→ (−1, 2,−1) ∪ (1, 0,−1).

29



Chapter 2 Section 2.4

• Corrections to the first-order coupling modes appears in order ε3. Similarly, the
second order contributes to a correction of the natural frequency. The performed
coupling estimation up to ε4 suggests that generally odd coupling orders contribute
to correction of first-order modes and that even coupling orders contribute to the
correction of the base frequency.

• There appear pairwise terms similar to the well known Kuramoto-Daido coupling,
having frequency differences as a multiple of the coupling order. For ϕ1: ε →
ϕ2 − ϕ1, ε2 → 2ϕ2 − 2ϕ1, ε3 → 3ϕ2 − 3ϕ1, etc. . These high-order resonant terms
appear also in a pair of coupled oscillators and the first harmonics resembles the
basic Kuramoto-coupling term.

• Terms containing combinations of all three phases, e.g., ∼ sin(2ϕ2 −ϕ1 −ϕ3), mean
that an effective hyper-network with non-pairwise coupling appears already in the
second-order reduction. These terms become more complicated in higher order of
the coupling.

• Terms containing phase differences for not directly coupled oscillators (e.g., the
term ∼ sin(ϕ3 −ϕ1) on the r.h.s. of the equation for ϕ̇1) indicate that connections
in the network of phases do not coincide with the structural connections in the
state-space formulation Eq. (2.12).

• While the first-order coupling terms are frequency-independent, the second-order
terms (and presumably all higher order terms) depend explicitly on frequency
differences. In a more general setting the coupling depends on the frequencies
themselves (see results for the VdP system in Sec. 2.4.3).

2.4 Numerical high-order phase reduction for a network

The SL oscillator represents an exceptional case, where the isochrones are known and
thus, a full phase reduction is formally possible. However, the upper analysis for the
relatively simple SL dynamics underlines that such an analysis might become very com-
plicated. Furthermore, for most of the other oscillators, phase equations in a tractable
closed form do not exist and have to be obtained numerically based on accurate estimates
of phases ϕ(t) and frequencies ϕ̇(t).

In such generic situations, by exploiting the 2π-periodicity of the phase coupling
functions and the phase derivative ϕ̇k(ϕ), it is possible to implement a powerful network-
inference tool based on a M -dimensional Fourier series representation:

ϕ̇k(ϕ) = ϕ̇
(f)
k (ϕ) := Ak;0 +

∞
∑

|l|=1

[

Ak;l cos(ϕ · l) +Bk;l sin(ϕ · l)
]

. (2.24)

Here l = (l1, l2, . . . , lN ) is the M -dimensional vector of modes present in the phase

derivative, ϕ̇
(f)
k (ϕ). The latter is obtained from optimal fit of Eq. (2.24) through a

minimization
〈(

ϕ̇k(ϕ) − ϕ̇
(f)
k (ϕ)

)2〉

→ min . (2.25)

The given theoretic analysis illustrates that one and the same mode contains correc-
tions from many perturbation orders. Generally this means that the optimal coefficients
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of the series Eq. (2.24) are related to the true, theoretic model coefficients through

Ak;l(ε) = a
(0)
k;l + εa

(1)
k;l + ε2a

(2)
k;l . . . , Bk;l(ε) = εb

(1)
k;l + ε2b

(2)
k;l . . . . (2.26)

This allows to reconstruct the different coupling orders from polynomial fitting over a
range of values ε.

Thus, direct numerical reconstruction of the phase-network interactions is achieved
in three steps here:

(I) Calculation of the true phases ϕ(t) and the frequencies ϕ̇(t) from the full model

(II) Reconstruction of the coupling coefficients Ak;l andBk;l based on optimal numerical
fitting

(III) Polynomial fit of Ak;l(ε) and Bk;l(ε) or Hk;l(ε) =
√

A2
k;l(ε) +B2

k;l(ε) for many

values of ε to obtain the model coefficients a
(1,2,...)
k;l and b

(1,2,...)
k;l

Notably, the three upper steps can be performed for data driven estimates of the
phases as well. Thus, a question of great practical relevance is, whether the procedure is
actually able to reconstruct high-order terms at all, i. e. in the optimal situation, where
true phase and frequency are known (see for an example Sec. 7.1).

2.4.1 Direct numerical phase estimation

In the following, the procedure for phase and frequency estimation based on full knowl-
edge of a state space trajectory yk(t) and its time evolution Eq. (2.1) is presented.

The approach makes use of the autonomous period T of the unperturbed system
(ε = 0). For estimation of T , the (unperturbed) system is started from an arbitrary
point Y on the limit cycle to which a phase of ϕ = 0 is assigned; the return time to this
point is T . Thus, for any other point on the cycle the time τl(Y(t)) required to reach
ϕ(T ) = 2π defines the true phase as on the cycle, ϕ(t) = ϕ(Y(t)) = 2π(T − τl(Y(t)))/T .

To find the phase and its derivative also for an arbitrary point u = y(t) and deriva-
tives v = u̇ in the basin of attraction, an unperturbed auxiliary system

ẇ = F(w) , (2.27)

is started from the initial conditions w(0) = u and evolved for nT time units such that
the state w(nT ) = w̄ is very close to the limit cycle of the system. As a consequence of
the stroboscopic observation only at full periods, all the points, including w̄ will have
the same value of phase. This means ϕ(u) can be easily computed as described before
and is given by ϕ(u) = ϕ(w(0)) = ϕ(w̄) = 2π(T − τl(w̄))/T .

Similarly, the phase derivative is computed from autonomous evolution of the initial
condition u+vdt: Since the time step, dt, is (infinitely) small, this can be done by tracing
the linearised dynamics of vdt to v̄dt within time interval nT . This linear dynamics
derives from the Jacobian of the original equations (2.27). Thus, after relaxation, the
systems states are given by w̄ and w̄ + v̄dt on the cycle of the autonomous dynamics
Eq. (2.27) with phases ϕ and ϕ+ dϕ respectively.

In contrast, starting the autonomous system at a state w̄ on the cycle and evolving
it to w̄ + v̄dt = w̄ + F(w̄)d̄t, it takes a time d̄t 6= dt to reach the new state. This yields
a relation between both time steps: d̄t = dt (v̄ · F(w̄)) /‖F(w̄)‖2. Finally, since on the
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cycle, phase growth is given by the natural frequency ω = 2π/T , dϕ = ωd̄t and the true
phase derivative follows:

dϕ

dt
= ω

v̄ · F(w̄)

‖F(w̄)‖2
. (2.28)

2.4.2 Comparison of numerics and analytic results

Here, an exemplary numerical analysis for an asynchronous SL dynamics Eq. (2.12)
is presented and results are compared to the phase reduction theory of Sec. 2.3. The
parameter values in the following example are: α = 0.1, ω1 = −

√
5/2, ω2 = (

√
2 − 1)/10

and ω3 = 0.8. The coupling is specified by coupling constants cj,k = 1 for (j, k) ∈
{(1, 2), (2, 1), (2, 3), (3, 2)} and phase lags β1,2 = 0.32, β2,1 = 0.44, β2,3 = 0.43 and
β3,2 = 0.18. These parameter ensure that the three oscillators remain asynchronous. An
analysis for synchronous oscillators with a long transient is performed in [161].

The phase-frequency data is generated from Eq. (2.9). For this, 106 initial conditions
with amplitude r(ϕ(0)) = 1 (on the limit cycle) and uniformly distributed angles θ are
generated. To ensure that the systems have settled to the invariant torus, an initial
transient of 20 time units is chosen. This relaxation procedure is repeated for several
coupling amplitudes ε.

Estimation of the mode coefficients in the Fourier representation of the coupling
function is realised by least square fitting based on the singular-value decomposition
routine of the C++ library EIGEN. Modes with |lj | ≤ m = 4 are determined here what
accounts for an overall number of 729 fit parameters for each oscillators or 364 coupling
constants Hk;l(ε) and Ak;0. Similarly, since the considered SL system is invariant under
phase shifts ϕk → ϕk + δϕ, only resonant modes with l1 + l2 + . . .+ lM = 0 can exist. An
analysis that takes just these modes into account is discussed in detail in [161] as well.
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Figure 2.1: Shown are differences between numerical coupling coefficients and their theoretic

predictions as a function of the coupling strength. Panel (a) depicts the residue for terms

appearing in the first order of ε; the black dashed line here corresponds to ∼ ε3. Panel (b)

presents the terms of second order in ε. Here the dashed line corresponds to ∼ ε4. Additional

black markers indicate the difference of zero-order terms Ak;0, k = 1, 2, 3 and their second-order

correction.

In Fig. 2.1, differences of the second and first order coefficients in Eqs. (2.21-2.23)
are shown (see Tabs. A.3 to A.5). It appears that for weak coupling the difference settles
to the level of numerical precision while it rises to O(1) only for such strong coupling
as ε = 0.4. Moreover, the difference for the first-order terms grows proportional to ε3,
in correspondence with the theoretical conclusion that no second-order correction to the
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Figure 2.2: Shown are amplitudes for all coupling coefficients of orders larger than two for all

three SL oscillators (Eq. (2.13)) in the asynchronous configuration. The dashed lines, from top

to bottom, have slopes 3, 4, 5, and 6 in log-log coordinates. All coupling coefficients which scale

at least as ∼ ε7 or higher are indicated with gray diamonds.

first-order terms exist. In summary, the numerical fitting indeed is able to regain the
actual second-order phase dynamics model from phase-frequency data.

In Fig. 2.2 all other reconstructed Fourier coefficients are shown (see also Tab. A.6).
For these modes no theoretic expression exists yet, but can be derived from perturbation
theory in Sec. 2.3. In fact, it can be readily seen that many of these modes scale as ε3,
ε4, ε5 and ε6 respectively and that their scaling laws are well separated. Only in sixths
and higher orders, separation of different scalings is marginal.

2.4.3 Coupling reconstruction for a network of van-der-Pol oscillators

In this section a network of three non-identical VdP oscillators

ÿ1 − µ(1 − y2
1)ẏ1 + ω2

1y1 = εy2

ÿ2 − µ(1 − y2
2)ẏ2 + ω2

2y2 = ε(y1 + y3)

ÿ3 − µ(1 − y2
3)ẏ3 + ω2

3y3 = εy2

(2.29)

illustrates the network reconstruction in a model where isochrones are defined implicitly.
In such situation it still might be possible to find an explicit analytic approximation of
the isochrones. However, such conquest is significantly more challenging such that at
this point only a numerical analysis is performed.

Throughout this section, model parameters are fixed to µ = 1 and ω1 = 1, ω2 =
1.324715957, ω3 = ω2

2. The time series of ϕ1,2,3(t) and ϕ̇1,2,3(t) is obtained from a single
trajectory of the network by means of the numerical procedure outlined in Sec. 2.4.1. The
numerical integration of the system is performed for coupling strength up to ε = 0.3. For
this coupling strength the network units are asynchronous. For each coupling parameter,
106 data points are collected. The Fourier series Eq. (2.24) is truncated at |l| ≤ 4.
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Figure 2.3: Coupling coefficients Hk,l for all three oscillators are shown by red circles, green

crosses, and blue pluses, respectively, versus coupling strength ε. (a): Terms ∼ ε0, ∼ ε1; (b):

Terms ∼ ε2. Dashed black lines correspond to the scaling ∼ ε and ∼ ε2 respectively.

According to the presented analysis above, coupling terms possess a leading depen-
dence ∼ εq, with q = 0, 1, 2, . . .. Thus, in a preliminary step toward, visual analysis, a
power law ∼ εq is fitted to the coefficients Hk,l(ε) to determine the order of coupling.
If the fitted value q is close to an integer and the coefficient of determination is high
the corresponding power is attributed to the coupling term. Moreover, for ε0, ε1, ε2, the
analysis is based on the five small values of ε ∈ [0.001, 0.002, 0.005, 0.01, 0.02], while for
powers ε3 and ε4 coupling constants at ε ∈ [0.04, 0.06, 0.08, 0.1, 0.15] are considered.

Figure 2.3 illustrates the validity of the high-order phase reduction for the VdP
oscillatory network. Coupling modes that appear in power of ε and ε2 are listed in order
of their amplitudes in Tab. A.9. Here, central observations about the related coupling
are presented:

• It appears that in the first order, terms with phase differences and the terms with
phase sums have effectively similar amplitudes and are thus indistinguishable in
Fig. 2.3. This means that the coupling terms ∼ ε have nearly the Winfree-form4

(Eqs. (2.3) and (1.6)). They are in full agreement with first-order theory.

• Because the variable y1,2,3(t) of the VdP network possess odd powers, terms with
the third harmonics appear already in the first order coupling term.

• The number of terms listed in Tab. A.9 varies depending on the natural frequency
of the oscillator. This is in clear contrast to the SL phase dynamics where only
the differences of frequencies enter the coupling constants and the number of terms
remains symmetric. This underlines that the coupling in the VdP system depends
explicitly on frequency as it is also reported in [163].

• The higher orders of coupling depicted in Fig. 2.4 include many more modes.
Within the explored size of the time series scaling behaviour up to ε4 can be
observed. Beyond this limit a separation of terms is hampered due to numerical
inaccuracies.

Finally, some emphasis has to be put on a discussion of the reproducibility of the
analysis results: Despite the fact that the theoretically expected scaling behaviour is
found in coupling orders up to ε6 (SL, see Fig. 2.2) and ε4 (VdP, see Fig. 2.4(a,b))
respectively, the results in higher orders of coupling depend weakly on the numerical

4Arthur T. Winfree (1942-2002) [162]
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Figure 2.4: Coupling coefficients for powers 3 (a) and 4 (b). Panel (c) presents all other

coefficients. Dashed black lines show powers 3, 4, and 5, respectively.

implementation of fitting. For example, in [161] the existence of spurious terms is re-
ported while essentially no such terms are found in the analysis presented here. The
only essential difference between the study and this text is the implementation of the
minimisation Eq. (2.25). Moreover, a close inspection of Figs. 2.2 and 2.4 reveals some
minor differences in the reconstructed coupling constants. All of these differences appear
in already small terms and are most presumably unavoidable results of finite-size effects
and numerical inaccuracies. Nevertheless, coupling reconstruction up to ε2 shows good
agreement in both models.
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Chapter 3

Dynamic phase reconstruction

Heuristic modelling and mixed data-analysis methods based on a phase are in numerous
studies realised by generic demodulation techniques for signals [164, 165, 138, 23]. These
techniques are closely related to a spectral time-frequency analysis and are applicable to
a wide range of oscillatory signals. In particular, for non-linear systems such methods
deliver valuable insights as they are able to capture the time-varying complexity of
observations.

In contrast, the specific task of dynamic phase reconstruction, i. e. reconstructing
the asymptotic phase ϕ(t) from an oscillatory signal demands for dynamic assumptions
which take the theory outlined in Sec. 1.2 and Ch. 2 into account [166, 161]. However,
while on the one hand, signals of limit cycle oscillations can still be non-stationary, on
the other hand, generic data analysis methods, suitable for non-stationary signals, lead
to erroneous results in terms of the theory of dynamical systems. Mainly, this is due to
the fact that dynamic assumptions are not incorporated or due to generic shortcomings
of a method.

3.1 Generic signal analysis

The oscillatory behaviour of a stationary signal1 can be characterised in a meaningful
way by its Fourier transform FX(ω) and its spectrum |FX(ω)|2. Thus, any 2π-periodic
signal can be represented in the time domain by a linear combination of model functions
that lead to the Fourier series. Frequency in terms of the Fourier transform thus, is
defined as a functional argument related to the power of a given frequency, constant
over time.

For non-stationary signals, a more general time-frequency analysis by means of the
windowed Fourier transform (WFT)

FX(ω, t) =
1√
2π

∫ ∞

−∞
X(τ)Wδt(τ − t) exp[−iωτ ]dτ . (3.1)

or the wavelet transform (WT)

WX(ω, t) =

∫ ∞

−∞
X(τ)W(τ − t, ω)dτ . (3.2)

might be necessary. In both of these transformations, frequency becomes local in time
through the introduction of a window function Wδt(τ − t) which selects only a portion of
the whole time series. In both transformations, δt determines the width of the window
and thus, how localised the spectral content is in time and frequency. Notably, for the
WFT, δt is independent of the frequency what leads to a non-optimal resolution of the
spectral content. In contrast, in the WT, δt is a function of frequency. It is chosen
such that a WT has a convenient resolution in different frequency bands. The related

1The following work focusses on univariate data if not stated otherwise.
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Figure 3.1: Depicted are two comparative examples for WT analysis based on the Gabor wavelet

Eq. (3.3) with fc = 8 and the Hilbert transform Eq. (3.8). Shown in (a) is the monocomponent

signal Xmono(t) = cos(φ(t)) where φ(t) = [0.03t+ 2 + 3(1 + tanh(2(t− 20))) + 3(1 + tanh(2(t−
40))) + 5(1 + tanh(2(t− 60)))]t/2 + 30 sin(0.02

√
2t). The corresponding frequency specrum in (c)

shows a clear single-band double-spike structure with a roughly constant amplitude. The black

line following the main ridge of the spectrum is the instantaneous frequency of θ(a) Eq. (3.6)

obtianed by the Hilbert transform of Xmono(t). The magnitude of θ̇(a)(t) is indicated by the

colour code in (a) and is in clear correspondence to the periodicity of the signal. Shown in (b,d)

are similar results for the ECG signal discussed in Sec. 1.1.3. The WT of the ECG shows a rich

structure with three characteristic low-frequency bands between 1Hz and 3Hz corresponding to

the cardiac beating cycle. In clear contrast, to (a,c), the Hilbert phase-analysis is unable to cover

the spectral complexity of the full ECG. This is also indicated by the colour code in (b). This

signal correspond to the embedding in Fig. 1.9 (c).

convolution kernel W(τ − t, ω) is termed wavelet. As an example, Fig. 3.1 shows the
WT using the complex Gabor wavelet

W(τ − t, ω) = Wδt(τ − t) exp(−iωτ), Wδt(ω)(τ − t) =
√
π exp

[

(τ − t)2/δt2(ω)
]

. (3.3)

For this type of wavelet, scale and frequencies are related through2 ω = 2πfc/δt, where
fc determines the number of full oscillation periods under the window function [164].

For the spectral representation of XECG(t) in Fig. 3.1 (d) it is actually possible
to represent the rather complicated ECG signal by several linearly independent model
functions sk(t). In general terms:

X(t) =
∞
∑

k=0

sk(t) . (3.4)

Then, each model function sk(t) should relate to one of the well defined spectral ridges

2This scaling ensures high time resolution for fast oscillations and high frequency resolution for slow
oscillations.
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in the signals wavelet spectrum and thus, to a dominant and time dependent frequency
content.

Hilbert-Huang transformation

A particular filtering method which yields a decomposition of the form Eq. (3.4) is
the Hilbert-Huang transformation. The method pursues a procedure called sifting
to reconstruct each single sk(t). In the process, the signal is iteratively demod-
ulated using envelopes and thus, amplitude information. The resultant model
functions have zero mean and can be further analysed using the Hilbert transform
Eq. (3.8). Although this method is applicable to a wide range of experimental
signals, several drawbacks exist:

• If spectral ridges come close to each other, cross or merge, the decomposition
becomes ambiguous

• The construction/definition of model functions sk(t) is based on a highly
method-dependent and thus, problematic separation of amplitude and phase
modulation.

• While mathematically, a representation by several sk(t) is valid, such a de-
composition has no obvious connection to the asymptotic phase ϕ(t) of non-
linear oscillators.

Despite these well known fact, the approach finds successful application in a wide
range of research areas [165, 167, 168].

3.2 Hilbert transforms and quadratures

The time-varying frequency content of a signal might be captured by means of the true
phase φ(t) of a signal. Then, a straight forward approach to define an instantaneous
frequency is:

Ω(t) = φ̇(t) → φ(t) = φ0 +

∫ t

0
Ω(τ)dτ . (3.5)

Eventually, the true phase of the signal φ(t) is in close connection to the asymptotic
phase ϕ(t) but not necessarily under all circumstances.

A particular example where a phase φ(t) is meaningful, is the monocomponent signal
Xmono(t) = s1(t) = A(t) cos(φ(t)). It is defined by a single model function s1(t) of
amplitude A(t) and who’s frequency is Ω(t). However, generally such a definition leads
to erroneous results:

• An instantaneous frequency defined through Eq. (3.5) has no obvious meaning if
a signal X(t) is composed of several base functions (see Eq. (3.4)). In this case,
one speaks of a multicomponent signal. For example, if s1(t) = cos(φ1(t)) and
s2(t) = cos(φ2(t)), Ω1,2(t) represent the rhythm of s1,2(t). However, no simple
frequency law exists for X(t) (for an illustration see Fig. 3.1).

• For dynamical systems, the asymptotic phase ϕ(t) and amplitude-like deviation
δy(t) are not independent due to isochronic coupling in the underlying dynami-
cal system. A decomposition of (observed) amplitude and phase dynamics thus,
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requires additional information which usually is not accessible. This aspect of
oscillatory data analysis is touched in Ch. 5 and 6

A mathematical definition of amplitude, phase and instantaneous frequency for
generic signals was put forward by Denis Gabor3: Given X(t), a decomposition into a
pair of amplitude and phase is provided by the analytic signal, z(t) = Az(t) exp(iθ(a)(t))
where amplitude A2

z(t) = ℜ[z]2(t) + ℑ[z]2(t) and the analytic phase is

θ(a) = arg[z](t) . (3.6)

The analytic signal is defined through the spectral relation

z(t) = F−1[Fz(ω)], Fz(ω) =

{

2FX(ω) , if ω ≥ 0

0 , if ω < 0
. (3.7)

Thus, effectively the suppression of FX(ω) at negative frequencies and backward trans-
formation suffices to construct an amplitude-phase representation of X(t). This con-
struction allows a determination of all moments4 of the frequency 〈ωn〉.

Further examination of the analytic signal shows that Fz(ω) = (1 + sgn(ω))FX (ω).
Thus, ℜ[z](t) = X(t) while ℑ[z](t) = −F−1[isgn(ω)FX(ω)]. The latter construction
results in a time-domain convolution of the form

ℑ[z](t) =
1

πt
∗X(t) =

p.v.

π

∫ ∞

−∞

X(τ)

t− τ
dτ =: Ĥ[X](t) (3.8)

which is known as the Hilbert transform5. In spectral notation:

F
Ĥ[X](ω) = −isgn(ω)FX(ω) . (3.9)

From this, it can be seen how well behaved the Hilbert transform embedding actually is:
Since 〈X, Ĥ [X]〉 = 0 for all smooth X(t), loops are always unfold and the existence of a
pair of phase θ(a)(t) and amplitude Az(t) is guaranteed6 (compare Fig. 1.9 (a,b) where
the delay embedding unfolds for specific parameters only).

However, a phase reconstruction by means of the Hilbert transform and the analytic
signal faces several problems:

• If more than one maximum is present in a signal period (e.g. see Figs. 4.3 and
5.1), the Hilbert transform embedding possesses several loops. Thus, the frequency
θ̇(a)(t) can be negative, in clear contrast to the phase reduction theory Sec. 1.2 and
Ch. 2.

• In situations where a signal phase φ(t) is meaningful, a reconstruction of it by
means of the analytic signal does not yield a proper reconstruction of φ(t) if phase
modulations are faster than the average frequency of oscillation. This problem is
particularly discussed in Ch. 4.

3Denis Gabor, (1900-1979) [4]
4Moments of frequency are defined by 〈ωn〉 =

∫

∞

−∞
ωn|Fz|2(ω)dω/

∫

∞

−∞
|Fz|2(ω)dω. In contrast, for

the spectrum of a real signal all odd moments vanish since |FX |2(ω) is an even function.
5David Hilbert (1862-1943) [4]
6Using the equivalence of scalar products in time and frequency domain, it is

∫

∞

−∞
FX(ω)F∗

Ĥ[X]
(ω)dω = i

∫

∞

−∞
sgn(ω)|FX |2(ω)dω = 0.
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While the first point can be readily solved using an other parametrisation of the em-
bedding curve (see Sec. 4.1.2), the second problem constitutes a main obstacle for a
reconstruction of the true signal phases φ(t) from the analytic signal.

Generally, a function ℑ[z](t) = X(q)(t), which leads to an immediate/mutual con-
struction of φ(t) and A(t) is called quadrature. The Hilbert transform for generic signals
is actually an approximation for such a function (see App. A.4 for an example by means
of Xmono(t)). However, generally a construction of the quadrature for generic signals
is not known or not meaningful at all while an asymptotic phase ϕ(t) might still be
existent.

The discrepancy of quadrature and Hilbert transform is reflected in

• Bedrosian’s theorem: The Hilbert transform of two function ql(t) and qh(t)
with non-overlapping spectra Fql

(ω) 6= 0 for |ω| < C and Fqh
(ω) 6= 0 for |ω| > C,

C > 0 is

Ĥ[qlqh](t) = ql(t)Ĥ [qh](t) . (3.10)

For example, given a modulated amplitude7 A(t) = A0 + εÃ(t) and phase φ(t) = t +
εq(t), a mono-component signal signal Xmono(t) = A(t) cos(φ(t)) is a narrowband signal
if FA(ω) and Fφ(ω) are zero for |ω| > 〈ϕ̇〉t - and thus obey the Bedrosian theorem.
Otherwise a signal Xmono(t) is a wideband signal [169, 170].

For narrowband signals, the Hilbert transform can be a rather good approximation
of the quadrature such that φ(t) can be retrieved from data. In contrast, for wideband
signals, the assertion8 Ĥ[X](t) = X(q)(t) is not true (see Ch. 4).

In conclusion, neither the mainly spectral methods in Sec. 3.1 nor the purely signal
based Hilbert transform analysis in this chapter are fully suitable for a reconstruction
of the asymptotic phase ϕ(t).

3.3 Asymptotic phase and signal

In a data driven phase reconstruction for dynamical systems, the asymptotic phase ϕ(t)
needs to be reconstructed from measurements of the actual state dynamics Y(t).

Generally, such a measurement X(t) = M̂ [Y](t) is a function of all degrees of freedom
present in the system (see Eqs. (1.9) and (1.4)). While such dynamics can be practi-
cally infinite-dimensional, a description by means of dominant degrees of freedom y(t)
might be possible. In particular, for a weakly perturbed self-sustained oscillator, the
asymptotic phase contains most dynamic information (see Eq. 2.2). In such situations,
a representation

X(t) = M̂ [y(0)(ϕ(t)) + δy(t)] ≈ M̂ [y(0)](ϕ(t)) + M̂ ′[y(0)](ϕ(t))δy(t) (3.11)

of the generic signal in terms of a purely phase modulated component and a (small)
perturbation is justified. It can be seen that the purely phase modulated component
corresponds to the dynamics on the limit cycle, while the perturbation depends on the
deviation of the underlying system from the cycle.

7For simplicity of the following argumentation, it is assumed that amplitude and phase modulation
share the same strength ε.

8This property is also called harmonic correspondence [171].
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Accordingly, the task of phase estimation for non-linear oscillators reduces in leading
order to the problem of finding a decomposition for

X(t) = M̂ [y(0)](ϕ(t)) =: S(ϕ(t)), S(ϕ) = M̂ [y(0)](ϕ), S(ϕ+2π) = S(ϕ) (3.12)

in terms of a waveform S(ϕ) and ϕ(t). (Similarly, if a purely phase-modulated signal is
observed, S(φ) and φ(t) have to be reconstructed.) In either case, this is accomplished
by phase demodulation for which the novel approach of iterative Hilbert transform em-
beddings (IHTE) will be introduced in Ch. 4.

The applicability of demodulation in case of generic signals, waveforms and phase-
amplitude modulation is discussed in more detail in Ch. 6. Generally, signal variations
due to the amplitude dynamics in the original state space can not be neglected. But their
influence on the reconstruction is potentially small if the limit cycle is sufficiently stable
(see Ch. 5 for an application). In all such cases, a generalised waveform is provided by

X(ϕ) = X(t(ϕ)) ≈ M̂ [y(0)](ϕ) + M̂ ′[y(0)](ϕ)δy(t(ϕ)) . (3.13)

It can be seen that this quantity is similar to S(ϕ) for vanishing amplitude perturbations
while for weak amplitude perturbation it contains a weak non-2π-periodic component.
In either case, X(t) might be well approximated as a purely phase-modulated signal such
that the true phase φ(t) Eq.(3.5) provides a data-based approximation of the asymptotic
phase ϕ(t).

3.4 Phase and protophase for phase modulated signals

Decompositions of a phase modulated signal X(t) into a waveform and a phase are not
unique. Indeed, it is possible to define a phase-to-protophase transformation

θ = Θ(φ), Θ(φ+ 2π) = Θ(φ) + 2π (3.14)

such that X(t) remains the same under change of variables:

X(t) = S(φ(t)) = S(Θ−1(θ(t))) = S̃(θ(t)), S̃(θ) = S(Θ−1(θ)) . (3.15)

Here, S̃(θ) is a proto-waveform and its argument, θ(t), is called protophase (e. g. θ(a)(t)
Eq. (3.6)). Exploiting this definition, the frequency of the protophase is given by

θ̇ = Θ′(Θ−1(θ))ω =: f(θ) . (3.16)

Thus, f(θ) depends on θ such that θ(t) contains 2π-periodic modulations and is not a
proper phase. This analysis is valid, as long as Θ(φ) is monotonous.

Generally, demodulation provides a decomposition into S̃(θ) and θ(t) rather than
S(φ) and φ(t). All the possible decompositions differ in 2π-periodic modulations of the
waveform and the argument. Since such modulations change the shape of S̃(θ) and
θ(t) simultaneously, it is impossible to decide which representation of the signal X(t) is
preferable. Thus, it is generally not possible to find S(φ) and φ(t) from demodulation
alone.

To select from all possible results a preferable waveform S(φ) and phase φ(t), addi-
tional criteria can be utilised. Notably, these criteria are based on the assumption that
a mapping exists while determination of the mapping might not be possible under all
circumstances.
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If the actual phase dynamics of φ(t) is known, an ideal phase-to-protophase mapping
Θ(φ) can be found by a direct numerical fitting procedure (see Sec. 6.3). In situations
where the mapping has to be estimated solely from data of non-linear oscillators, a
criterion follows from the dynamic assumption that the phase-probability-distribution
density ρ(φ) should be flat. In other words, φ̇ should be independent of φ(t) what
means that all 2π-periodic modulations are shifted to the waveform only. A phase
approximation fulfilling this criterion is denoted by ψ(t) and ψ̇(t) ≈ φ̇(t). In particular,
if a phase obeys a model similar to Eq. (2.4), it is given by

ψ(t) = ωt+ εq̃(t) . (3.17)

Practically, a data driven protophase-to-phase transformation is accomplished by inver-
sion of Eq. (3.14) in all situations where Θ−1(θ) exists.

Summarising the upper discussion, the task of phase reconstruction for phase mod-
ulated signals is accomplished in two steps:

(i) Phase demodulation

(ii) Protophase-to-phase transformation

0
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Figure 3.2: Depicted are the phase-to-protophase maps Eq. (3.23) for reconstruction of the

SL phase dynamics. The system is observed by multicomponent signals X5,6(t) Eq. (5.2) (see

Sec. 5.2.1). Both observables contain amplitude modulations which are small and result from

perturbations of the dynamics from the limit cycle. Demodulation was accomplished by means

of IHTE (see Sec. 4.1.3) making use of a spline based protophase θ(c)(t) (see Sec. 4.1.2). Panel

(a) shows results for the cosine-like signal X5(t) with only weakly 2π-periodic modulations of

the protophase. Similarly, panel (b) depicts results for the signal X6(t) having an additional

maximum in each period. For this signal, 2π-periodic modulations are much more pronounced.

The transformations correspond to waveforms depicted in Fig. 5.1 and results shown in Figs. 5.2

and 5.3. Colours correspond to Θ
(c)
1 (ϕ) (blue; this data forms a rather wide band what indicates

that commonly obtained protophases are not precise), Θ
(c)
10 (ϕ) (black; this data is the result of

IHTE and forms a narrow line what indicates for a good protophase reconstruction), ψ
(c)
10 (ϕ)

(red; this narrow line is straight thus, a good approximation of the original phase is achieved).

The orange line is the diagonal. For better visibility the curves are shifted vertically.
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Phase demodulation is achieved, if

(I): S̃(θ + 2π) = S̃(θ), (II): ∀t : θ̇(t) > 0 , (3.18)

and a protophase-to-phase transformation is considered to be a success, if

(III): ρ(ψ) = const. . (3.19)

Chapter 4 focusses on steps (i) for purely phase modulated signals and discusses
optimal demodulation with examples. Step (ii) is discussed in more detail in Ch. 5
and 6. In these chapters, the generally more challenging task of reconstructing ϕ(t) for
dynamical system from observation is discussed. In particular, for dynamical systems,
the mapping Θ−1(θ) gives rise to a generalised proto-waveform X(θ) = X(t(θ)) similar
to Eq. (3.13).

3.5 Data-driven protophase-to-phase transformation

For a non-modulated phase φ(t) = ωt, an inversion of the protophase-to-phase mapping
Eq. (3.14)

dφ

dθ
=

ω

f(θ)
, φ(t) = ω

∫ θ(t)

0

dθ̃

f(θ̃)
. (3.20)

mutually yields ψ(t) = φ(t) and is always possible if the protophase increases monotonously
(f(θ) > 0).
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) )
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(ψ
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Figure 3.3: Depicted are two examples of phase-densitiy estimation corresponding to Fig. 5.8

of Sec. 5.2.3, where the phase moduation emanates from a telegraph process. The empirical

phase densities ρ(θ(c)) (black) are approximated by a Fourier series Eq. (3.22) (orange). While

the protophase densities are inhomogeneous, after protophase-to-phase transformation Eq. (3.23)

the phase density for ψ(c)(t) (green) is essentially flat. Depicted in (a) are results for the phase

modulated signal X3(t) here 300 Fourier modes are calculated. In (b) results for the observalbe

X6(t) and 50 Fourier modes are shown. The overall shape of ρ(θ(c)) in (b) corresponds to

phase-to-protophase mappings in Fig. 3.2(b).

A more challenging situation occurs, if a phase is modulated as is usually the case
for perturbed oscillator. Then, θ̇(t) contains information about the signal waveform and
the system dynamics. Therefore, one is interested in removal of 2π-periodic modulations
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while one wants to keep the actual modulation q(t) hidden in the protophase. To achieve
this, the phase probability distribution ρ(θ) of the respective protophase has to be es-
timated from 〈ω/f(θ)〉θ in Eq. (3.20). This density is inhomogeneous for protophases
while in an optimal result it is flat and thus independent of its argument. It follows

dψ

dθ
= ρ(θ), ψ(t) =

∫ θ(t)

0
ρ(θ̃)dθ̃ . (3.21)

By assumption (see condition (3.18), (I)), ρ(θ) is 2π-periodic. Thus it is reasonable to
use a Fourier representation9

ρ(θ) =
∞
∑

k=−∞

Fk exp(ikθ), Fk =
1

2π

∫ 2π

0
ρ(θ̃) exp(−ikθ̃)dθ̃ . (3.22)

Then, integration in Eq. (3.21) yields the protophase-to-phase transformation for mod-
ulated phases10:

ψ(t) = θ(t) +
∞
∑

k=−∞
k 6=0

Fk
ik

[exp(ikθ(t)) − 1] . (3.23)

To determine the coefficients Fk in Eq. (3.22), an elegant approach follows from the
definition of the density function as a representation of infinitely small histograms:

ρ(θ̃) = 2π〈δ(θ(t) − θ̃)〉t . (3.24)

Inserting this representation into Eq. (3.22) yields

Fk =
1

tm − t0

∫ tm

t0

exp(−ikθ(t))dt . (3.25)

In the following this procedure is called density-based protophase-to-phase transform
(DPT) [166]. Although the DPT is not a filter, there exists almost certainly a discrepancy
between ψ(t) and the asymptotic phase ϕ(t) of a dynamical system:

• The estimation of Fk involves the reconstructed protophase what stresses the need
for a protophase in agreement with the criteria Eqs. (3.18) and (3.19).

• The DPT by construction yields an optimally uniform density of ψ(t) as it assumes
a uniform target density corresponding to a non-modulated phase ϕ(t). Although
this assumption removes almost all inhomogeneity in ρ(ψ) there can exist small
distortions in the actual phase density ρ(ϕ) which are not taken into account.

• The statistical estimation of Fk has a rather slow convergence ∼ 1/
√
tm − t0 since

it is estimated from 〈(ψ(t) − ϕ(t))2〉t 7→ min.

As an example for possible problems, Fig. 3.3 presents the empirical phase densities
for θ(c)(t) and for ψ(c)(t) obtained from phase demodulation of two multi-component
signals (X3,6(t) in Chs. 4, 5). In both cases, the transform yields an essentially flat
phase distribution for the phase estimate ψ(t). However, local distortions in case of the
generic observable X6(t) are significant and indicate that the microscopic phase dynamics
of the system is recovered only in parts. This problem is further discussed in Ch. 6.

9In principle, other function basins are equally valid. For example, one can perform an optimal
kernel-density fit on [0, 2π].

10Due to normalization 1 = (2π)−1
∫ 2π

0
ρ(θ̃)dθ̃ it follows F0 = 1

44



Chapter 4

Phase demodulation with iterative
Hilbert transform embeddings
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Main findings:

• Definition of iterated Hilbert transform embeddings for phase modulated signals

• Theoretical analysis of spectral convergence for the proposed method

• Proof of concept by means of several examples

4.1 Phase demodulation

4.1.1 Embeddings revisited

The construction of analytic signal and delay embedding are similar geometric techniques
for phase demodulation (see Secs. 3.3 and 3.4). The main idea in both cases is the
following: Given the specific case of two signals1 X(t) and Y (t), one constructs the
complex-valued function z(t) = X(t) + iY (t). A monotonous parametrisation

θ(t) = P̂ [X,Y ](t) (4.1)

of its trajectory in R
2 defines a protophase θ(t). In this relation, the non-linear operator

P̂ [X,Y ] is defined through the way of protophase calculation (see Sec. 4.1.2).

If the two signals X(t) and Y (t) are simultaneously measured in an experiment,
the calculation of a protophase is straight forward as the trajectory of z(t) resembles
an embedding. The intrinsically challenging problem occurs if only one signal X(t)
is observed. In this case, the operator P̂ [X] = P̂ [X,Y [X]] depends on X(t) and the
assumptions which are used to construct the function Y (t) from X(t). The construction
of Y (t) is achieved by a time delay (Y (t) = X(t − τe)), differentiation (Y (t) = Ẋ(t)) or
the Hilbert transform (Y (t) = Ĥ[X](t)).

Similar to the Hilbert transform, the delay and derivative embeddings are linear
operators in the spectral domain. However, their transfer functions exp(−iτeω) and −iω

1X(t) and Y (t) should be at least partially linearly independent.
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Figure 4.1: (Iterated) Hilbert transform embeddings for the phase-modulated signals X1(t) =

S1(φ(t)) = cos(φ(t)) and X2(t) = S2(φ(t)) = cos(φ(t)) − 0.7 sin(2φ(t)) + cos(3φ(t)) with phase

φ(t) = t+ 1.2(sin(0.25
√

2t) + cos(0.25
√

3t)). Panels (a-d) show the simple embedding for X1(t),

here the analytic protophase approximation was adopted. Panels (e-h) show the complex em-

bedding X2(t), here the length-based protophase approximation θ(d)(t) is used. Iteration steps:

(a, e): n = 0; (b, f): n = 1; (c, g): n = 2, and (d, h): n = 10. Here n = 0 corresponds to

the common Hilbert embedding over time. It can be seen that this embedding resembles a band

what indicates that the demodulation result does not obey constraints Eq. (3.18).

result in different stability properties and extraction success (compare as an example
results in Fig. 1.9 and see the info box in Sec. 4.2.2). Delay and derivative embedding
are relatively close to the physical intuition: Low-dimensional non-linear oscillations
are described by coordinates y(t) and ẏ(t) which find an analogue in X(t) and Ẋ(t).
Complementing is the idea that in a periodic system, the history of an observation
X(t) repeats itself after a specific delay. Moreover, numerical implementation of both
methods is rather simple. In more general terms, the usage of delay and derivative
embedding follows from generic mathematical analysis of measurement process and state
space dynamics [133].

In contrast, the Hilbert transform is mutually defined as a global transformation2

what opposes the physical intuition that the asymptotic phase ϕ(t) – first of all – depends
on the state of a system at time t only. However, the Hilbert transform results in a
parameter-free demodulation and its mathematical definition guarantees the existence
of a well behaved embedding and a protophase.

The great disadvantage of the Hilbert transform embedding, is that its results are
meaningful for narrowband signals while for signal with wideband components, an even-
tually possible separation into waveform S(φ) and phases φ(t) is inaccurate (see Sec. 3.1
and Fig. 4.1). As a consequence, also the Hilbert transform embedding of a limit cycle
generally does not preserve the dynamics of ϕ(t).

A common cure for this problem involves additional filtering prior to signal demodu-
lation. By this, the spectrum of X(t) is truncated such that the Hilbert transform yields

2For data, the integration is confined to the finite time interval [t0, tm] rather than [−∞,∞].
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reliable results. The corresponding phase reconstruction however, omits viable informa-
tion about the phase dynamics on fast time scales. In contrast, smoothing is not needed
at all if an oscillator is influenced by a slow input. For example, in the resting state
an average human heart beats four times in one breathing cycle [172]. The respiratory
forcing is thus slow.

4.1.2 The art of phase reconstruction

In experimental and theoretic literature different phase calculation approaches exists.
Many of them are based on the analytic phase θ(a)(t) Eq. (3.6). However, this pro-
tophase definition is limited to circular embeddings, while for embeddings that contain
additional loops, θ(a)(t) evidently leads to a negative phase derivative, in conflict with
Eq. (3.18,(II)).

Less common in application – though more convenient – are methods based on
marker-events and the arc length of the embedding

L(t) =

∫ t

t0

√

dX2 + dY 2 . (4.2)

These procedures have been developed as ad-hoc approaches in the analysis of phys-
iological data such as the ECG, where embeddings contain many smaller loops due to
the different characteristic wave complexes3. The methods of calculation usually involve
two steps:

(I) Determination of marker events tj and

(II) Projection of L(t) to multiples of 2π.

To accomplish step (I), one chooses a Poincaré section4 in the {X,Y } plane that cor-
responds to a major feature of X(t) such as a main maximum. The marker tj then
is defined as the time of crossing. The periods of the signal then, are estimated5 as
Tj = tj+1 − tj. Step (II) is achieved by projection of L(t) in each period Tj to the
interval [2πj, 2π(j + 1)].

An example for this is the linear interpolation6

θ(b)(t) = 2πj +
L(t) − L(tj)

L(tj+1) − L(tj)
. (4.3)

Calculated in this way, the protophase is a continuous but non-differentiable function
of time having jumps in the phase derivative at times tj (see Fig. 4.2) [166, 98]. For a
smoother protophase definition, two novel approaches are discussed next. In Tab. 4.1
main aspects of the different approaches are compared.

3The procedures are robust in the sense that a protophase always grows monotonous since L̇(t) > 0.
4Henri Poincaré (1854-1912) [4]
5In practice, accurate determination of Tj is achieved by polynomial interpolation on a symmetric

set of points around tj .
6Actually, the simplest calculation method uses Tj instead of L(t): θ(t) = 2π(t − tj)/Tj . However,

this protophase omits any additional information about the signal in between markers and thus is only
a zero-order approximation of the dynamics.
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Protophase Complexity Smoothness Loops Theory Stability Periodic

θ(a)(t) simple ∈ C∞(R,R) X X X, (X) X

θ(b)(t) medium ∈ C1(R,R) X X X X

θ(c)(t) advanced ∈ C2(R,R) X X X X

θ(d)(t) advanced ∈ C∞(R,R) X X X X

Table 4.1: Listing of major characteristics of the discussed phase calculation methods.
Columns refer to complexity of the numerical implementation, smoothness of the phase
derivative, Loop-demodulation for multi-component signals, theory development in this
work and in general context, stability of the approach according to practical hind side
with regard to changes in the waveform and robustness of iteration, and whether the
protophase is 2π-periodic.

Spline interpolation and protophase

The first improvement of protophase calculation is based on cubic-spline interpolation.
In this approach, the linear interpolation Eq. (4.3) is replaced by a cubic spline what
leads to a well defined first derivative of θ(t) at markers tj:

θ(c)(t) = SPL(L(t)) . (4.4)

The only additional effort here, is the determination of second-order derivatives
d2SPL/dL2 at points L(tj). These coefficients are a priori unknown but can be ob-
tained from continuity assumption on the first derivatives dSPL/dL between intervals
[L(tj−1), L(tj)] and [L(tj), L(tj+1)] (see Fig. 4.2)

dSPL

dL
(L(tj))

∣

∣

∣

[L(tj−1),L(tj )]

!
=
dSPL

dL
(L(tj))

∣

∣

∣

[L(tj),L(tj+1)]
.

The resulting matrix equation for all j can be solved by imposing proper boundary
conditions7.

Phase calculation based on splines represents in several ways an intermediate and
convenient approach to phase extraction for experimental signals: It is – in contradis-
tinction to θ(a)(t) – a non-local and thus, more robust method while it still is 2π-periodic
by construction. Moreover, it provides a continuous instantaneous frequency.

Noteworthy, the use of splines to maintain smoothness of the protophase results in a
small additional distortion of θ(c)(t). Potentially, these distortions cause the protophase
to violate Eq. (3.18,(II)). However, in most of the practical applications the amplitude
of additional distortions changes slowly enough to ensure monotonicity.

Optimal length protophase

Finally, an elegant approach arises from the idea that L(t) can be normalized by a
common factor. Namely, if the length growth with a common frequency ωL = L⋆/T ,
the original base frequency of the phase is ω = 2πωL/L

⋆. A slightly different situation
occurs if the signal is modulated. Then, each period Tj results in periodicity lengths

7In this work, the natural boundary condition is applied, where d2SPL/dL2 = 0 at t0 and tm. The
method can be found in Sec. 3.3 in [173].
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Figure 4.2: Depicted are the phases θ(b)(L)

(blue straight lines) and θ(c)(L) (black curves)

up to inbetween marker events t4 (red-yellow

dots). Due to changes of the periodicity, (while

phases increase by 2π) the derivative of θ(b)(L)

is not defined at tj . In contrast, θ(c)(L) is dif-

ferentiabe at the cost of additional distortions.

The actual magnitude of the distortions is ex-

agerated here due to large variations in the pe-

riodicity.

L⋆j = L(tj+1) − L(tj) from which an optimal periodicity length L⋆ has to be calculated.
In either case, a protophase is defined by

θ(d)(t) =
2π

L⋆
L(t) . (4.5)

A reliable method to estimate L⋆ is based on minimisation of the periodicity error

Err2
q(ℓ) =

1

N̂

∫ q(tm)

q(t0)
[X(q + ℓ) −X(q)]2dq, N̂ =

∫ q(tm)

q(t0)
X2(q)dq . (4.6)

Quite generally, q(t) can be any monotonous function of time. Here, q(t) = L(t) and
minimization8 is carried out for the free parameter ℓ. The optimal periodicity is then
given by

L⋆ = argmin ErrL(ℓ) , Err⋆L = min
ℓ

ErrL(ℓ) . (4.7)

Err⋆q converges to zero only if X(q) is perfectly L⋆-periodic and purely phase modulated.

In case of 2π-periodic protophases q(t) = θ(a,b,c)(t), the minimization with respect to ℓ
is not needed.

Noteworthy, for the calculation of θ(d)(t) no active determination of markers tj is
needed what provides a perfectly smooth protophase. However, θ(d)(t) is not 2π-periodic
what violates the assumptions of protophase-to-phase transformation.

4.1.3 Iterated Hilbert transform embeddings

In the common procedure making use of the Hilbert transform Eq. (3.8), a protophase
is calculated from the embedding of z(t) using Eqs. (3.6), (4.3), (4.4) or (4.5). Then,
the obtained proto-waveform resembles in many cases a band9 due to the inconvenience
of the Hilbert transform to yield the mutual quadrature of a signal (see Sec. 3.1 and
Fig. 4.3).

8In this work , bisection is used for minimisation as the considered signals result in a single minimum
of Err2

L(ℓ) in [L⋆/2, 3L⋆/2].
9Such an outcome is clear for signals with large amplitude variation but it is reminiscent also for

purely phase modulated wideband signals.
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Figure 4.3: Depicted are the reconstructed waveforms (black dots: S2(ψ
(d)
n )) and the actual

wave form S2(φ) from Sec. 4.2 (red lines). Shown are iterations: (a): n = 1, (b): n = 2,

(c): n = 3, (d): n = 100. The depicted protowaveforms correspond to embeddings in Fig. 4.1

cases (e-h). Note that a protophase-to-phase transformation Eq. (3.23) is applied here to shift

2π-periodic modulations from the protophases to the proto-waveforms.

An optimal Hilbert-transform embedding follows from iteration, motivated by the
following observation: While the signal X(t) definitely is not periodic, the waveform
X(θ) shows already less modulation and is closer to 2π-periodicity. A natural extension
is to proceed with integration of X(θ) in the variable θ! Introducing an index that
labels the step of iteration and letting t = θ0 and θ(t) = θ1(θ0), the next approximation
of protophase is given by θ2(θ1). As an example, Fig. 4.3 depicts the multicomponent
waveform X2(ψ(d)). Continuation of the procedure to θn(t) is straight forward and leads
to the definition of the iterated Hilbert transform:

Ĥ[X](θn) :=
p.v.

π

∫ θn(tm)

θn(t0)

X(θ̃n)

θn − θ̃n
dθ̃n . (4.8)

Defined in this way, each iterative step is given by

θn+1(θn) = P̂ [X](θn) . (4.9)

Here the operator P̂ [X](θn) is defined for all four protophases through the algorithmic
scheme Fig. 4.4 and the described numerical procedures in Sec. 4.1.2. Moreover, since the
phase-to-protophase mapping θn = Θn(φ) is invertible, an iterated (generalised) proto-
waveform is always given by X(θn) = X(Θ−1

n (θn)). Noteworthy, due to the differences
of phase-to-protophase maps in each iterative step, the functions X(θn) are all different.
This difference is indicated by the index of protophases. As an example, Fig. 4.4 presents
the iterative procedure for θ(c,d)(t).

The numerical calculation of the integral Eq. (4.8) comprises two major challenges:

• Due to the reuse of the protophase proxis θn in the iterative procedure, integration
has to be performed on non-uniform grids

• The singularity of integration at θ̃n = θn has to be treated with special caution.

Further details are provided in [161].

4.2 Theory of convergence

While IHTE permits quite general waveforms and phase models (see Sec. 4.4), in the
following the analytically tractable example with

X1(t) = S1(φ(t)), S1(φ) = cos(φ), φ(t) = t+ εq(t) (4.10)
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Figure 4.4: Depicted is the iterative procedure based on length and protophases θ(c,d). As a

preliminary step, the raw data X̃(t) is smoothed if needed by means of a Savitzky-Golay filter

(blue-yellow box). Usually, only one iteration (with θ0) is performed calculating θ(a,b)(t).

is considered to elaborate on the impact of iterations. Here, q(t) is the modulation of
the phase and since X1(t) is a monocomponent signal, it suffices to consider ψ(t) = θ(t).

For phase-modulated signals, iterative application of the extraction operator Eq. (4.9)
provides protophase proxis θn(t) which are generally not perfectly demodulated in the
first iterative steps. Namely, the modulation q̃n(t) Eq. (3.17) differs from the true mod-
ulation of φ(t). Then, it is possible to determine the success of convergence10 of IHTE
directly based on the residue ∆n(t) = φ(t) − ψn(t).

Starting at θ0(t) = t, subsequent residues are given by θ1(θ0) = φ(θ0) − ∆1(θ0),
θ2(θ1) = φ(θ1) − ∆2(θ1), . . .. To demonstrate the generality of findings, the analytically
tractable cases of θ(a,d)(t) are analysed further.

4.2.1 Perturbed signal and protophases

Before discussing the convergence mechanism, perturbed equations for the protophases
are derived here. First note that

X1(t) = S1(φ(t)) ≈ S1(t) + εṠ1q(t), Y1(t) ≈ Ĥ[S1](t) + εĤ[Ṡ1q](t) . (4.11)

For the protophases in the first step, this means

θ(a)(t) = arg[z](t) = arctan

[

Y1(t)

X1(t)

]

≈ arg[S1(t) + iĤ[S1](t)] + ε
Ĥ [Ṡ1q](t)S1(t) − Ṡ1q(t)Ĥ [S1](t)

S2
1(t) + (Ĥ[S1])2(t)

(4.12)

and

θ(d)(t) = L(t) =

∫ t

0

√

X ′2
1 + Y ′2

1 dτ

≈
∫ t

0

√

S′2
1 + (Ĥ [S′

1])2dτ + ε

∫ t

0

(S′′
1 q + S′

1q
′)S′

1 + Ĥ[S′′
1 q + S′

1q
′]Ĥ [S′

1]
√

S′2
1 + (Ĥ [S′

1])2
dτ .

(4.13)

10Complementary is the optimal periodicity error ERR⋆
θ which also converges for arbitrary protophases

θ(t). If amplitude variations are present, convergence of both measures is not strictly related.
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These results show, that Ĥ[X1](t) applied on a signal without phase modulation (q(t) =
0) achieves demodulation already in the first step while in case of modulations, a residue
∆(t) = φ(t) − θ(t) exists which is a consequence of the afore discussed discrepancy
between Hilbert transform and quadrature for wideband signals (see Sec. 3.2).

4.2.2 The effect of iterated Hilbert transforms

In principle the perturbed phase equations Eqs. (4.12) and (4.13) are valid also for other
embedding types. However, the application of the iterated Hilbert transform Eq. (4.8)
provides a mutual demodulation while other methods - although equally eligible for the
construction of embeddings - would result in unstable iterations (see the info box).

Iterated derivative embeddings and analytic protophase

Similar to IHTE, iterations of the derivative embedding can be analysed. As an
example here θ(a)(t) is considered and the simple waveform S1(φ) = cos(φ). For
the analysis, one replaces the operator Ĥ[X1](t) by Ẋ1(t) in Eq. (4.12) and obtains
the residue of phases

∆(a)(t) = φ(t) − θ(a)(t) = εq(t) − ε
(S̈1S1 − Ṡ2

1)q + Ṡ1S1q̇

S2
1 + Ṡ2

1

= 2εq(t) +
ε sin(2t)

2
q̇ .

Application of the Fourier transformation to this equation results in its spectral
representation

F∆(a)(ω) = 2Fq(ω) +
ω − 2

4
Fq(ω − 2) − ω + 2

4
Fq(ω + 2) .

Importantly, it can be seen that components at frequency ω are amplified and that
components which are shifted from frequencies ω ± 2 are additionally amplified if
|ω| > 2. Thus, iterations based on derivative embeddings necessarily fail and are
particularly unstable for wideband signals.

Before discussing the spectral properties of IHTE, further preparation is needed.
First, the results for the simple waveform cos(φ) are

∆(a)(t) = ε
(

q(t) + cos(t)Ĥ[q sin](t) − q(t) sin2(t)
)

, (4.14)

∆̇(d)(t) =
ε

2

(

q̇(t) + cos(2t)q̇(t) − sin(2t)q(t) + 2 cos(t)
(

Ĥ[q̇ sin](t) + Ĥ[q cos](t)
))

.(4.15)

Here, to get rid of the integration, ∆(d)(t) is differentiated.
Second, there appear product terms Ĥ[q sin](t), Ĥ[q̇ sin](t) andH[q cos](t) in Eqs. (4.14),

(4.15) which deserve further treatment by means of the Bedrosian identity Eq. (3.10):
Without loss of generality, the modulation q(t) can be represented by a sum

q(t) = qh(t) + ql(t) (4.16)

where ql(t) corresponds to the slow modulation spectrum Fql
(ω) in domain |ω| ≤ 1

(narrowband modulation) and qh(t) corresponds to the fast modulation spectrum Fqh
(ω)

in domain |ω| > 1 (wideband modulation)11.

11Slow modulations and fast modulations are separated here by 〈φ̇〉t = 1.
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Inserting the separation Eq. (4.16) and applying the Bedrosian theorem12, it follows

∆(a)(t) =
ǫ

2
qh(t) +

ǫ

2

(

qh(t) cos(2t) + sin(2t)Ĥ [qh](t)
)

,

∆̇(d)(t) =
ǫ

2

(

q̇h(t) + Ĥ[qh](t) + cos(2t)
(

q̇h(t) + Ĥ[qh](t)
)

+ sin(2t)
(

Ĥ[q̇h](t) − qh(t)
) )

In Fourier space, these equations are given by

F∆(a)(ω) =
1

2

[

Fqh
(ω) +

1

2
(1 − sgn(ω − 2))Fqh

(ω − 2) +
1

2
(1 + sgn(ω + 2))Fqh

(ω + 2)

]

,

F∆(d)(ω) =
1

2

[

ω − sgn(ω)

ω
Fqh

(ω) +

(

ω − 1

2ω
(1 − sgn(ω − 2))Fqh

(ω − 2) +

ω + 1

2ω
(1 + sgn(ω + 2))Fqh

(ω + 2)

)]

.

(4.17)
A major simplification of the spectral representation can be found from the fact that
the spectrum Fqh

(ω) vanishes in the domain |ω| < 1. The resulting spectral transfer
equations are given then by

F∆(ω) =















A(ω)Fqh
(ω) +B(ω)Fqh

(ω + 2) if ω > 1 ,

B(ω)Fqh
(ω + 2) +A(ω)Fqh

(ω − 2) if − 1 < ω < 1 ,

B(ω)Fqh
(ω) +A(ω)Fqh

(ω − 2) if ω < −1 ,

(4.18)

where

A(ω) = B(ω) = 1/2 for the analytic phase and ∆(a),

A(ω) =
ω − 1

2ω
, B(ω) =

ω + 1

2ω
for the length-based phase and ∆(d).

(4.19)

Relation (4.18) can be considered as a transformation of the residual phase modulation
at a step of the iteration procedure. Denoting the spectrum of the high-frequency mod-
ulation εqh(t) at the n-th step of IHTE as Fn(ω), a general recursion formula for the
evolution of the spectrum under iterations is:

Fn+1(ω) =















A(ω)Fn(ω) +B(ω)Fn(ω + 2) if ω > 1,

B(ω)Fn(ω + 2) +A(ω)Fn(ω − 2) if − 1 < ω < 1,

B(ω)Fn(ω) +A(ω)Fn(ω − 2) if ω < −1.

(4.20)

This relation is the main result of the upper analysis. Next, a discussion of its mean-
ing is presented (where focus is put on positive frequencies due to evident symmetry).

• In both cases of protophase approximation, slow modulations are resolved exactly
already in the first iteration: If the spectrum F0 lies in the interval |ω| ≤ 1, then
F1 = 0. This is a well-known empirical fact and corresponds to the demodula-
tion of narrow band signals while for wideband signals demodulation is not exact
(see App. A.4 for a comparison of Hilbert transform and quadrature). This effi-
ciency of the Hilbert embedding is valid, according the presented linear theory, for
θ(a,d)(t). Noteworthy, this result is derived for very weak modulation only, while
the IHTE-algorithm is applicable also to stronger low-frequency modulation, where
one indeed needs several iterations to achieve a good demodulation (see Fig. 4.7).

12For example, Ĥ [(qh + ql) cos](t) = Ĥ[qh](t) cos(t) + ql(t) sin(t).
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3
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Figure 4.5: Depicted is the damping of Fourier

modes in the range 2K < ω < 2K + 2 for

the simple waveform S1(ϕ). In each iteration

step, the method damps Fn(ω) (dashed verti-

cal arrows) and additionally generates a new

Fourier mode at a smaller frequency (dashed

diagonal arrows). At step K, a Fourier mode

with frequency less than 1 is generated in the

low-frequency region (bold green-white arrow),

where it disappears at the next iteration. The

damping factors are given by Eq. (4.19).

• Contrary to low-frequency components, the high-frequency components do not
disappear immediately: if F0(ω) 6= 0 for |ω| > 1, then F1 6= 0. According to
Eq. (4.20), at each iteration step, there are two processes: (i) the harmonics
at frequency ω is multiplied by factor A(ω) and (ii) there is a spectral transfer
toward lower frequencies ω → ω − 2, with the corresponding factor B(ω). Im-
portant is that both of these factors are less than one. Schematically, this is
illustrated in Fig. 4.5. This scheme shows that for all spectra decaying at infinity,
i. e. with limω→∞ |F0(ω)| = 0, the erroneous modulation eventually disappears,
i. e. limn→∞ |Fn(ω)| = 0. For some important classes of spectra, one can show
that the eigenvalues of the transformation operator (4.20) are smaller than one
so that the iteration procedure converges exponentially. In particular, for spec-
tra Fqh

(ω) which decay exponentially Fqh
(ω) ∼ exp(−ιω) (what corresponds to a

smooth modulation qh(t)), it follows |Fn| ∼
(

1+exp(−2ι)
2

)n
→

n→∞
0.

• In the upper analysis components of modulation with frequencies 1, 3, 5, ..., i. e. har-
monics of the basic oscillation frequency are not considered. Such components can
not be demodulated, because one can not distinguish them from the original phase
– in fact, a modulation with these frequencies is equivalent to changes of the wave-
form S(φ) to a proto-waveform S̃(θ).

4.3 Testing theoretical relations

The upper analysis provides iteration maps Eq. (4.20) for the spectra of ∆(a,d)(t). These
spectral components are calculated and presented in Fig. 4.6 for four numerical setups.
In case (a) the phase modulation is weak. Thus, the non-linear effects are indeed small
and observed spectral amplitudes can be compared with theoretical predictions. In all
other cases (b-d) relatively strong modulations are present, such that the non-linear
effects become dominant.

As an example, a modulated phase

φ(t) = t+ a sin(ft) + b cos(gt) (4.21)
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Figure 4.6: Depicted are most essential spectral components of the phase demodulation error

∆
(a)
n (t) for the first four iterations (squares, circles, up and bottom triangles, respectively). The

observed spectral components are marked with arrows on top of the figures. The vertical scale

is logarithmic, with the ticks marking factor 2. This allows a visual comparison of results as the

theoretic damping factors are 1/2.

with two stationary modulation frequencies f and g is considered. IHTE are performed
as exemplified in Fig. 4.4 – here for the analytic protophase proxi θ(a)(t) Eq. (3.6).

• Panel (a) of Fig. 4.6 shows the case a = 0, b = 0.2, g = 3.73 of a single-harmonic
modulation with high frequency components F0(±g). Here the modulation is rela-
tively weak such that the theoretical relations Eq. (4.20) hold. Indeed, at the first
iteration two equal components F1(±g) = 1

2F0(±g) and F1(±g ∓ 2) = 1
2F0(±g)

appear (red squares in Fig. 4.6). In the second iteration: F2(±g) = 1
4F0(±g);

F2(±g ∓ 2) = 1
2F0(±g), and F2(±g ∓ 4) = 1

4F0(±g) (green filled circles). In the
third iteration: F3(±g) = 1

8F0(±g); F3(±g ∓ 2) = 3
8F0(±g), and F3(±g ∓ 4) =

1
4F0(±g) (blue triangles). And in the fourth iteration: F4(±g) = 1

16F0(±g);
F4(±g ∓ 2) = 1

4F0(±g), and F4(±g ∓ 4) = 3
16F0(±g) (magenta downside tri-

angles). In addition, weak non-linear components at frequency 2g− 4 arise. These
are the result of frequencies 2g and 2g − 2 outside the shown frequency range.

• Panel (b) illustrates non-linear effects at a strong low-frequency single-harmonic
modulation. Here a = 1, f = 0.41, and b = 0. Although the frequency of modu-
lation is smaller than the base frequency ω = 1, a rather small component F1(f)
remains, contrary to the prediction of linear theory. In the first iteration, higher
harmonics nf and the combinational frequencies nf−2 appear which are relatively
large. During next iterations the amplitudes of these components decrease with
a factor ≈ 1/2. One can see that the first iterations are dominated by non-linear
effects, and at this stage the spectrum broadens. Only subsequent iterations lead
to decrease of the Fourier components.
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• Panel (c) shows the spectra of a relatively strong two-frequency modulation, where
both frequencies are low: a = b = 0.3, f = 0.41, g = 0.73. Due to non-linearity,
many combinational frequencies kf + lg, kl + fg − 2 with integers k and l are
exited. It appears that all the new frequencies, like in case (b), are created in the
first iteration while further iterations roughly follow Eq. (4.20).

• Panel (d) shows, like case (c), a strong two-frequency modulation, but with high
basic frequencies a = b = 0.1, f = 2.41, g = 3.73. One can see that at some
combinational frequencies, the level even initially increases due to the cascade
process of amplitude shifting (see, e.g. components with f + g − 4). For these
components, more iterations are needed to reduce error.

In conclusion, the presented numerical tests show that the theory based on the linear
approximation works well for weak modulation. In contrast, for strong modulation,
essential non-linear effects are present at the first few iterations. Consequently, because
the effective modulations become weaker over the course of iterations, higher iterative
steps are better described by the theoretic relations.

4.4 Reconstruction of strong wideband modulations - a nu-
merical study

In this section, the convergence of IHTE for strong wideband modulations is explored
in more detail. For this, parameters in Eq. (4.21) with a = b = 0.3/s, f =

√
2s and

g =
√

3s are considered. The parameter s allows to vary the modulation frequencies
while the range of the phase modulation remains constant. The latter is quite large
(min(dφ/dt) = 1 − a(f + g) ≈ 0.056) such that first-order theoretical analysis of Sec. 4.2
is not applicable.

Additionally, a signal

X2(t) = S2(φ(t)), S2(φ) = cos(φ) − 0.7 sin(2φ) + cos(3φ) (4.22)

is defined as an illustrative example for demodulation of multicomponent signals (see
Fig. 4.3). The resulting embeddings Fig. 4.1 (e-h) shows an additional loop such that
also a protophase-to-phase transformation is needed. (For a more complicated waveform
see Sec. 4.5).

The following analysis13 characterises the performance of IHTE for different levels of
modulation time scale s in dependence of signals X1,2(t) and protophase proxis θ(a,d)(t).
The convergence of the optimal periodicity errors Err⋆

θ(a,d);n are depicted in Fig. 4.7.
It can be readily seen that both protophases result in demodulation with very small
residual errors and that even for slow frequency modulations (s < 1), the procedure is
needed and performs best. Moreover, IHTE based on θ(d)(t) is superior to the method
based on θ(a)(t).

While for S1(φ) analytic protophase proxis can be calculated, for S2(φ), only the
length-based protophase proxis can be used. In Fig. 4.7 all the final errors are very
small. It appears however, that for values of s ≥ 2, the only applicable phases are
θ(b,c,d)(t) as they ensure monotonicity while iterations based on θ(a)(t) fail at one of

13The signals are observed for 95 periods with a time step of dt = 0.002. The periodicity error
Err⋆

θ(a,d);n
is evaluated on the inner 80% of the transformed signal to discard boundary effects.
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Figure 4.7: Depicted are errors of demodulation for several values of s during iteration. (a):

Results for the simple waveform S1(φ) and θ
(a,d)
n (t). Note that s = [0.25; 0.5; 1] are depicted

for both protophase proxis in the same color, but with open and filled markers respectively.

For s > 1 the analytic protophase approximation is not suitable for reconstruction, as at high

iterations it becomes non-monotonous. One can also see that the performance of the iterations is

the best for the lowest considered frequency of modulation (case s = 0.25). (b): Results for the

complex waveform S2(ϕ). Here only θ(d)(t) can be used due to loops in the embedding Fig. 4.1.

the first iterations due to an approached non-monotonicity in time. Interestingly, the
periodicity error decreases not monotonously with n. (For example, for s = 8, it increases
at n & 10.) This, is a direct result of the spectral shifting process described in Sec. 4.2.
Nevertheless, even in these cases the error eventually becomes rather small.

The presented results confirm that the described method provides an effective demod-
ulation of the signals. Remaining errors emanate from the numerical implementation of
the Hilbert-integral Eq. (4.8), the calculation of length in the embedding plane Eq. (4.2)
and from the evaluation of the periodicity error Eq. (4.6) itself. In particular, IHTE

restore the L⋆-periodicity of θ
(d)
n (t) such that a projection to periods of length 2π is

possible after iterations.

4.5 Generic smooth phase modulation

In the previous discussion, the average instantaneous frequency was a constant given by
ω and the multicomponent signal was relatively simple. However, the IHTE can also
be used to demodulate signals with quite wild instantaneous frequencies (see Eq. (3.5))
and it allows to demodulate even non-smooth waveforms formally defined through an
infinite Fourier series expansion14. As an example, here the signal

X3(t) = S3(φ(t)), S3(φ) =
1

6



cos(2φ) +
4
∑

j=1

cos(jφ) + sin(jφ)



 (4.23)

14For further examples see [161].
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with an instantaneous frequency

Ω(t) = ω − 1 + 0.15
[√

5 cos(
√

5t) +
√

3 sin(
√

3t)
]

+ 3 exp
[

− (t − 250)2/104
]

− tanh
[

(t− 450)/10
]

(4.24)

is discussed.
The signal contains 4 peaks per period which account for a relatively complex embed-

ding with 4 loops in Fig. 4.8. The frequency Ω(t) is depicted in Fig. 4.8 (a) and resembles
a band due to the first two terms which contain fast isolated and stationary harmonics.
In contrast, the last two terms in Eq. (4.24) result in a relatively slow variation of the
effective bandwidth: While at the boundaries, a signal period contains several periods
of the fast stationary modes, in the central part of the time series, the local value of
〈φ̇〉t rises such that more of the quadrature conditions (see App. A.4) are satisfied by
the modulation spectrum. Thus, in the central part of the time series, the first Hilbert
transform Ĥ[X1,3](t) is a reasonable approximation of the quadrature. Indeed, this can

be observed for ∆
(b)
1 (t) = φ(t) − θ

(b)
1 (t) (blue band in (a)) which shows a significant drop

of complexity in the central region.
Iterations are performed using θ(b,c,d)(t). The corresponding demodulation errors in-

dicate that all of the three methods provide a good demodulation for X1,3(t). Notewor-
thy, although the initial modulation level is relatively small (0.1), the iterative procedure
is needed as the first embedding resembles a wide band.
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Figure 4.8: (a): Depicted is the instantaneous frequency Eq. (4.24) (orange) and frequency

residues ∆̇
(b)
1,20(t) in the first step (blue) and in step 20 (black) for the simple signal X1(t). (b):

Shown are the demodulation errors Err⋆
θ(b,c,d);n

for θ(b,c,d) in red, blue and green respectively.

Filled markers indicate results for X3(t) while empty markers correspond to X1(t). (c): Pre-

sented is the embedding after one iteration (grey) and after 20 iterations (black) for X3(t). The

corresponding true waveform (orange) is depicted in (d). Also shown are the waveform in the

first iteration (band of black points) and the final result after 20 iterations (red). Results in (c,

d) are based on θ(b)(t).
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Phase reconstruction with iterated
Hilbert transform embeddings
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Main findings:

• Phase reconstruction based on iterative Hilbert transform embeddings of generic
observables for the SL oscillator

• Reconstruction of the infinitesimal phase response curve for the SL oscillator

• Exploration of phase reconstruction performance for noise driven phase dynamics

5.1 Forced Stuart-Landau oscillator and observables

In this chapter, the performance of IHTE is explored for generic observables of a forced
oscillator. The goal is, to present the benefits of IHTE analysis for subsequent phase-
model reconstruction and to show limitations of the approach with regard to the true
modulations of the system.

Here, the phase dynamics of the SL oscillator is reconstructed. Based on the obtained
phases, the first-order phase model Eq. (1.6) is inferred. The considered oscillator equa-
tions is

ȧ = (µ+ iν)a− (1 + iα)a|a|2 + iεp(t) + iζ(t), p(t) = cos(η(t)) η(t) = sωt . (5.1)

It is in full correspondence to the model of high-order phase-reduction theory of Ch. 2.3
where here a scaling is chosen such that the amplitude of the stable limit cycle

√
µ and

the natural frequency ω = ν − αµ depend on parameters of the system1.

The external stimulus comprises a harmonic forcing term p(t) of amplitude ε depend-
ing on a phase η(t) with tunable frequency according to the parameter s and a stochastic
term, ζ(t) which is used to emulate randomness in an observed system.

1The amplitude dynamics is given by ṙ = r(µ− r2) + εp(t) sin(θ)
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The system dynamics is observed through the generic observables

X4(t) = M̂4[u, v](t) = u(t)

X5(t) = M̂5[u, v](t) = 0.1v2(t) + 0.2u2(t) + 0.3v(t) + 0.4u(t)

X6(t) = M̂6[u, v](t) = X5(t) + 0.3u(t)v(t) .

(5.2)

Here, u(t) = ℜ[a](t) and v(t) = ℑ[a](t). The observable X4(t) resembles cosine oscil-
lations. The observable X5(t) depends in a more complex way on a(t) but it also has
just one maximum and one minimum in a period. In contrast, the observable X6(t)
is a multi-component signal with two maxima in a period. Thus, generalised proto
waveforms X5,6(θ) possess additional 2π-periodic modulations.

The signals contain additional amplitude modulations whose strength depends on
the parameter µ. For small µ these modulations are significant and an accurate demod-
ulation based on IHTE is not possible. In contrast, Fig. 5.1 depicts snapshots of the
signals X5,6(t) and the resulting generalised waveforms X5,6(ϕ) for large µ. Indeed, since
amplitude modulations are present, these functions mutually resemble bands which are
sufficiently narrow. For these generalised waveforms, a demodulation can be success-
ful. (For a comparison see Fig. 4.3 where S2(ϕ) is a perfect line and can generally be
recovered from data).
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Figure 5.1: Panel (a): Generalised waveforms for X5(ϕ) (blue) and X6(ϕ) (green). The fact

that these sets of points are indistinguishable from a line demonstrates validity of the phase

description for the SL oscillator (i. e. the amplitude modulation is indeed small). The waveforms

of the first protophase θ
(c)
1 (t) are not lines but broad sets (orange for X5(θ

(c)
1 ) and grey for

X6(θ
(c)
1 )). The same waveforms become nearly 2π-periodic functions of the protophase θ

(c)
10 (t)

after ten iterations of IHTE (red and black points, correspondingly). Panel (b): Time series for

observables X5,6(t) (red, black). Simulation parameters are µ = 8, α = 0.1, ν = 1, ε = 0.1 and

s = 1.8 (for X5(t)) and s = 5.6 (for X6(t)). A harmonic forcing εp(t) = ε cos(η(t)) is used here.

In this scale, small amplitude and phase modulations are hardly seen.

5.2 Numerical results

5.2.1 Reconstruction of deterministic phase dynamics

In the following, the dynamics Eq. (5.1), receives an external harmonic perturbation
with εp(t) = ε cos(η(t)). The frequency of the driving, sω, is tuned to cover a wide
range of slow and fast external frequencies. It is chosen such that the system2 stays
asynchronous with the forcing during observation.

For the reconstruction of the phase dynamics Eq. (1.6), the spline-based protophase
proxi θ(c)(t) is obtained from signals X4,5,6(t) using IHTE (see Fig. 4.4). Then, in each

2The system parameters are µ = 8, α = 0.1, ν = 1, ε = 0.1.
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ε = 0.1 and r = 5.6. For calculation of the phase derivatives a SG12,25,4 filter is employed.

step3 DPT is employed to construct ψ(c)(t). Figure 5.2 shows a successful recovery of
the actual phase dynamics for a quite large forcing frequency with s = 5.6. These results
indicate that the phase reconstruction for non-linear oscillators is indeed inaccurate in
the first Hilbert transform based on time while iterations restore the phase dynamics for
the two observational signals X4,6(t).

The instantaneous frequency in Fig. 5.2 is estimated from the reconstructed phases
by means of a Savitzky-Golay filter. The filter is defined by its order w1 of the fitting
polynomial on a window of w2 > w1 + 1 raw data points, symmetric around t [174]. To
achieve a good reduction of any present noise, the signal is passed w3 times through the
filtering process. The parameter setting4 is denoted by SGw1,w2,w3.

The similarity of reconstructed and actual phase is quantified by the integrated
residues of phases ∆n(t) = ϕ(t) − ψn(t) and instantaneous frequencies ∆̇n(t) = ϕ̇(t) −
ψ̇n(t). The resulting similarity errors

STDψ
n =

√

1

N̂1

∫ tm

t0

[ϕ(τ) − ψn(τ)]2dτ STDψ̇
n =

√

1

N̂2

∫ tm

t0

[ϕ̇(τ) − ψ̇n(τ)]2dτ

N̂1 =

∫ tm

t0

(ϕ(τ) − ω̃τ)2dτ N̂2 =

∫ tm

t0

[ϕ̇(τ) − ω̃]2dτ

(5.3)

are a measure for the spectral power of the residual modulation in the approximated
phases5.

Figure 5.3 depicts the course of the similarity errors under iteration for several slow
and fast modulation frequencies: While for slow modulations (s < 1), the reconstruction
is already accurate in the first step, for fast forcing frequencies (s > 1) indeed, several

3Here, 20 iterations suffice. For the reconstruction, 100 periods of oscillation with a time step of
dt = 0.01 are observed. The summation in the DPT Eq. (3.23) is truncated at 1000 modes.

4Instead of fixed standard parameters, a generic least-square polynomial fit is used. This is necessary
since interpolation of marker events, tj , introduces variations in the time stepping.

5The normalisation constant N̂1,2 assumes average linear growth of ϕ(t) according to the frequency
ω̃. The latter is estimated from protophase by a linear least square fit. Boundary effects in the first and
last 10% are discarded.
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Figure 5.3: Phase and frequency errors for observables X4 (a, c) and X5 (b, d) for different

forcing frequencies sω. Also shown in (b, d black doted line) is the reconstruction error for

X6(t), where the use of length, L(t), for phase calculation is crucial. Slow modulations are

essentially reconstructed in the first step while fast modulations need at least several iterations.

With increased forcing frequency, θ
(c)
n (t) differs significantly from ϕ(t) and the number of needed

iterative steps grows.

iterations are needed for precise reconstruction. However, essentially in all the considered
cases, iterations decrease errors of the first commonly used phase approximations by a
factor of ten or even more!

5.2.2 Reconstruction of the phase response curve

As an example, for potential benefits of IHTE in subsequent phase-based data analysis,
the coupling function is recovered from observations of the SL system through X4(t).
System parameters are similar to Sec. 5.2.1. In particular, here fast modulations (s ∈
[4.5, 5.6]) are considered in addition to slow modulations (s = 0.06, Fig. 5.5).

Since the system Eq. (5.1) is perturbed by a periodic force εp(t) = ε cos(η(t)), the
actual coupling function, q(t) = Q(ϕ(t), η(t)), is a 2π-periodic function of its arguments.
Thus, given a phase approximation ψn(t) and the external force phase η(t), an approxi-
mate coupling function

Q̃n(ϕ̃, η̃) =

∑K
k=0

[

ψ̇n(ψn;k, ηk) − ω̃
]

Kκ(ϕ̃− ψn;k, η̃ − ηk)
∑K
k=0 Kκ(ϕ̃− ψn;k, η̃ − ηk)

Kκ(x, y) = exp[κ(cos(x) + cos(y) − 2)]

is estimated by a Kernel-density fit6 of ψ̇n(ψn, η) onto a 2π × 2π-periodic lattice of ϕ̃, η̃
[163]. Figure 5.4 presents the results of this fit.

The true iPRC Z(ϕ), follows directly from differentiation of Eq. (2.9) with respect
to the coordinate in the direction of forcing (v = ℑ[a]):

Z(ϕ) =
∂Φ[y]

∂v
=
∂θ

∂v
− α

∂ ln[r]

∂v
=

u

u2 + v2
− α

v

u2 + v2
=

cos(θ) − α sin(θ)√
µ

. (5.4)

6Parameter κ determines the fitting radius. Here, κ = 200.
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and θ
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panel (c), and for the 10th iteration

Q̃10(ϕ̃, η̃)−Q(ϕ̃, η̃) in panel (d). Note-
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is more than ten times smaller than

in panel (c)!
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line) based on θ
(c)
10 (t) for s ∈ [0.06, 4.5, 5.6] (top

to bottom). Red lines refer to the coupling

functions in Fig. 5.4.

For a data-driven decomposition, an iterative factorisation procedure7 is applied making
use of the phase model Eq. (1.6) [98]. The obtained external force p̃30(η) and iPRC
Z̃30(ϕ) are depicted in Fig. 5.5.

From visual inspection of both figures, it can be seen that the phase-model recon-

struction based on a phase approximation ψ
(c)
10 (t) of IHTE is superior to the commonly

used first phase approximation ψ
(c)
1 (t). In fact, for ψ

(c)
1 (t), deviations of the coupling

function are of the same order as the original model while for ψ
(c)
10 (t), the error is reduced

by a factor of more then ten (compare Fig. 5.4 (c,d)).

In regard of these encouraging results, it must be stressed that the presented perfor-
mance is possible for quite large µ and smooth modulations. Moreover, the considered
phase model comprises only the first harmonics of the phase. While the methods ro-
bustness with regard to different model complexity levels is discussed in Ch. 6, in the
following the SL model is considered further to illustrate the IHTE performance for noisy
signals.

5.2.3 Phase reconstruction of noise modulated phase dynamics

The embedding and reconstruction of stochastic components of a system dynamics ren-
ders an important aspect of oscillatory data analysis. On the one hand, no stochastic

7External force and iPRC are determined up to a factor since iPRC and external force appear as a
product in Eq. (1.6). It is chosen such that the amplitude of the forcing is ε. The scheme is iterated for
30 steps.
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embedding theorem exists. On the other hand, dynamic noise can activate oscillations or
causes structurally uncoupled systems to synchronise [175, 176]. However, according to
the convergence theory Sec. 4.2, IHTE demodulations are meaningful if the modulation
spectra are bounded or decay exponentially fast at infinity what is usually not the case
for stochastic oscillators. Thus, the goal of this section is to examine the noise sensitivity
of IHTE.

White Gaussian noise

White Gaussian noise possesses an unbounded spectrum such that the spectral transfer
operation Eq. (4.20) is not convergent. Moreover, unbounded noise results in infinitely
many small loops in an embedding. Thus, the length definition Eq. (4.2) is not applicable
as the embedding resembles a fractal curve.

As an example, the SL system Eq.(5.1) is driven by a harmonic force and Gaussian
white noise with amplitude σ and zero mean8:

p(t) = cos(5.6ωt), 〈ζ〉t = 0, 〈ζ(t), ζ(t̃)〉t = σ2δ(t − t̃) . (5.5)

To overcome the problem of the unbounded noise, the initial raw data of the system,

8The system parameters are µ = 8, α = 0.1, ν = 1, ε = 0.2, σ ∈ [0.06, 0.08, 0.1].
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for σ as in (a). Note that ϕ̇(t) can be negative as an effect of noise, while all reconstructions

obey the condition set by Eq. (3.18),(I).
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X̃4(t), is smoothed by a SG12,25,4 filter to obtain X4(t) (see Fig. 4.4)9. This essentially
introduces a spectral cut-off and results in a well defined embedding curve (see Fig. 5.6
(b) where still many smaller loops are present). Similarly, the asymptotic phase ϕ(t) of
the system is smoothed using the same filtering parameters. Its instantaneous frequencies
ϕ̇(t) can be negative in Fig. 5.6 (c, d, e). Therefore, a high polynomial order of smoothing
is indeed needed. As a consequence, the following results have to be interpreted relatively
to the smoothing parameters which are here chosen in such a way that they preserve
essential local features of the dynamics.

Since all of the conditions Eqs. (3.18) and (3.19) are not fulfilled in this example, the
actual phase dynamics is only partly reconstructed, as can be seen also from Fig. 5.6
(a) where the decay of reconstruction error is much less pronounced than in Fig. 5.3.
Roughly, the method improves the estimation of the phase, by a factor up to 2.

Coloured Gaussian noise - sensitivity and sampling

While the SG filter is able to adapt to fluctuations on a small scale, it is not clear
how sensitive IHTE in a practical setting is. Namely, Sec. 4.2 suggests that the spectral
width of the IHTE is not limited as long as the modulation spectrum of the phase decays
exponentially fast at a certain frequency. However, in practical circumstances, a signal
is sampled in finite time and with a finite rate of ∼ 1/dt what introduces a maximal
frequency resolution for any small-scale fluctuations.

To examine this resolution, an Ornstein-Uhlenbeck process10 with zero mean, ampli-
tude σ and correlation time τc is considered:

ζ̇ =
−ζ
τc

+

√

2

τc
σξ(t), 〈ζ(t)ζ(t̃)〉t = σ2 exp(−|t− t̃|τ−1

c ) . (5.6)

The correlation time τc allows to tune the roughness of noise: While for small τc, ζ(t)
contains microscopic fluctuations at high frequencies, larger τc results in only slow ran-
dom changes of the modulation [179]. The system dynamics11 is observed by X4(t)
Eq. (5.2) with a time step of dt = 0.01.

A phase of the system is then reconstructed based on the raw data and based on
smoothed data obtained by SG6,25,4 and SG12,25,4 filters. ϕ(t) and ϕ̇(t) are smoothed
accordingly. The iteration procedure is carried out for 20 steps. Then, in each step, phase

approximations ψ
(c)
n (t) are calculated and derivatives ψ̇

(c)
n (t) using a SG12,25,4 filter.

The frequency resolution of the SG filter depends on parameters w1 and w2. By fixing
w2 = 25 the response however, changes linearly [180]. The polynomial order of the filter
determines how many moments of the local statistics are preserved by the filtering. Thus,
in the raw data, all moments of the frequency ϕ̇(t) are present while in the filtered data,
the first 12 and 6 moments are preserved respectively. By this procedure for each noise
level, three accuracy levels are provided which allow to estimate the sensitivity level of
IHTE. The results of the analysis are depicted in Fig. 5.7.

In (a) the phase modulation for the slowest noise τc = 5 indicates that IHTE is able
to recover long range and short range random fluctuations (inlet) of the phase dynamics.

9The simulations are carried out with a time step of dt = 0.01. Thus, the filtering window is 0.25
time units long.

10Leonard S. Ornstein (1880-1941) [177], George E. Uhlenbeck (1900-1988) [178]
11The system parameters are µ = 6, α = 0.1, ν = 1, ε = 0.1, s = 5.6. The rescaled forcing amplitude

is (ε+ σ)/µ ≈ 0.033. Noise parameters are τc ∈ [0.01, 0.05, 0.1, 0.5, 1, 2, 5] with σ = 0.1.
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In Fig. 5.7 (b), all frequency errors are shwon for all smoothness levels of the original
noise and the three accuracy levels of filtering. Since frequency reconstruction is sensitive
to deviations ∼ O(dt), small-scale discrepancies in the reconstruction can be detected.
Indeed, for the case τc = 5 (black curves) the initially smoothed frequency and the
reconstructed frequencies essentially coincide. This indicates that the IHTE approach
is able to recover all features of the phase at this noise level and most of the frequency
information.

The increase of fluctuation frequency of the noise is reflected by a successive increase
in the spread of reconstruction errors for the three smoothing levels. This indicates

that the smoothed version of ϕ̇(t) and the reconstructed versions of frequency ψ̇
(c)
n (t)

are different. The reason for this becomes clear by inspection of Fig. 5.7 (c) where
the true and reconstructed frequencies are shown for the highest fluctuation rate of
τc = 0.01 based on the raw data (orange, blue, black) and based on SG12,25,4 filter
(brown, red): IHTE is able to reconstruct the harmonic component of forcing but only
minor components of the frequency noise.

This allows to estimate the sensitivity of IHTE for microscopic oscillations in the
phase by comparison of convergence for different filtering levels. If convergences are
similar, IHTE has reconstructed all fluctuations and thus can be regarded as sensitive to
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Figure 5.7: Depicted are phase reconstruction results for the SL system perturbed by a harmonic

input and a coloured Gaussian noise. Model parameters are µ = 6, α = 0.1, ν = 1, ε = 0.1,

σ = 0.1, s = 5.6. Results are based on X4(t) obtained from two levels of smoothing: SG12,25,4

(large markers in (b)) and SG6,25,4 (medium markers in (b)). Also shown are results based

on raw data X̃4(t) (solid markers in (b)). Panel (a) presents the full time series of the true

modulation q(t) (orange) and recovered modulations q̃1,20(t) (blue, black) for rather smooth

noise with τc = 5. The inlet shows a zoom of modulations around t = 1100. Panel (b) depicts

similarity errors for all considered τc and all three smoothing levels. As an example for fast non-

smoothed fluctuating noise, panel (c) depicts the frequencies ϕ̇(t) (orange) and θ̇
(c)
1,20(t) (blue,

black) for τc = 0.01. Additionally, results for the SG12,25,4 filter are presented in brown (ϕ̇(t))

and red (θ̇
(c)
20 (t)). These curve are shifted for better visibility.
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the fastest scale of these fluctuations. A visual inspection of Fig. 5.7 (b) indicates that
frequencies obtained from IHTE and SG filtering roughly coincide above τc = 1. Thus,
IHTE is able to demodulate characteristic frequency components of roughly 2π/τc ≈
15.7ω at a sampling rate of τc/dt = 100.

Telegraph noise

This section considers a proof of concept for applications in which oscillatory signals
convey information about a telegraph-process. Telegraph noise occurs for example in
electronic systems due to impurities [181]. It is also utilised in modelling of financial
markets and biological systems [182]. Here, a telegraph process

ζ(t) = ±σ, 〈ζ(tJ)ζ(tJ−1)〉 = −1 (5.7)

is considered. Then, ζ(t) mimics the jump dynamics in the stochastic SL oscillator.
Additionally, ζ(t) gives at hand an illustrative example for a non-smooth phase mod-
ulation through definition of the instantaneous frequency φ̇(t) = 1 + ζ(t) in the signal
X3(t) = S3(φ(t)).

The jump amplitude of the noise is 2σ. The jumps between the two states σ and −σ
are anti-correlated and occur at jumping times tJ . As an example, the jumping-interval
length ∆J = tJ+1 − tJ is Poissonian distributed12 [183] according to

ρτJ
(∆J) =

∆2
J

2τ3
J

exp (−∆J/τr) . (5.8)

The parameter τJ determines how frequent jumps occur. The average jumping interval
length is 3τJ .

The results in Fig. 5.8 (a, c) indicate that a reconstruction of the phase information
is indeed possible, given a purely phase modulated signal13. This is indicated by the

residua ∆
(c)
1,20(t) which have been chosen to visualise the relative success of demodulation.

In (a), the noise with jumping rate 〈∆J〉 = 3/16 oscillates fast compared to the carrier

frequency. The resulting deviations of ψ
(c)
1 (t) from the actual phase are thus relatively

large. On the contrary in (c), 〈∆J〉 = 9 what accounts for an average slow modulation
and proper demodulation already in the first step. These results are accompanied by
the periodicity error in Fig. 5.8 (e) for other rate parameters which indicates mutual
demodulation of the signal in accordance with the results presented in Ch. 4.

In contrast, Fig. 5.8 (b, d) depicts the results for the phase reconstruction in the
forced SL system. It can be seen that – although the most critic deviations are damped
– a significant bottom level of fluctuations remains. This observation is underlined by
Fig. 5.8 (f) where for all considered rates τJ , the convergence of the periodicity error is
much less pronounced. The main reason for this is the presence of amplitude modulations
in X6(t). The generalised proto waveform X6(θ) thus, can not obey the constraints that
underlie IHTE (see Eqs. (3.13) and (3.18)). Accordingly, the amplitude modulation level
(AML) constitutes a hard boundary for the convergence of IHTE (see Ch. 6 for further
discussion).

An other major aspect in this analysis is the DPT (see Fig. 3.3). While the procedure
removes most of the 2π-periodic modulations, some distortions remain in the phase

12Siméon D. Poisson (1781-1840) [4]
13System Parameters of the SL oscillator Eq. (5.1) are µ = 6, α = 0.1, ν = 1. Noise parameters are

σ = 0.1 and τJ ∈ [1/16, 1/8, 1/4, 1/2, 1, 2, 3].
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approximation for the SL system. In contrast, 2π-periodic modulations are much more
reduced for the purely phase-modulated signal X3(t). This underlines the significance of
the demodulation conditions Eq. (3.18) for a successful reconstruction of the microscopic
phase dynamics. If IHTE is unable to guarantee them, also the DPT necessarily fails.
In particular, the missing 2π-periodicity of θ(d)(t) turns out to be deprecated if the
sampling interval dt is to large. In contrast, due to interpolation, the spline-based
protophase θ(c)(t) avoids such problems to a large extent.

Up to this point, measurement noise has been excluded from a discussion as this work
seeks to examine the genuine properties of IHTE which would otherwise be masked by
the problem of noise filtering. In fact, an additive random term introduces completely
unrelated modulations to the underlying dynamics of the system. Thus, the basic as-
sumptions of the phase modulation procedure are no longer fulfilled. Unfortunately,
the Hilbert transform is highly sensitive to these small random fluctuations such that
a reconstruction of the true phase is significantly corrupted. This problem is further
examined in the forthcoming chapters.
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Limitations of phase reconstructions
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Data driven phase reconstruction with iterated Hilbert transform embeddings
- benefits and limitations

Main findings:

• Parameter study of IHTE for generic phase-amplitude modulations

• Examination of limiting factors in phase reconstruction

6.1 The influence of amplitude modulations

For generic phase-amplitude modulated signals of non-linear oscillators, the amplitude
modulation is usually significant. Then, strict 2π-periodicity of the generalised waveform
X(ϕ) (see Eq. (3.13)) is lost and IHTE are unable to provide a reliable demodulation.
Indeed, in the presence of (weak) amplitude perturbations, a phase extraction according
to the demodulation operator P̂ [X] Eq. (4.9) mixes spectral content of the true phase
modulation in ϕ(t) and the genuine spectral content of amplitude variations. For the
first protophase approximation it follows

θ1(t) = P̂ [X](θ0) ≈ P̂
[

M̂ [y(0)]
]

(θ0) + ∆
P̂ ,1(X, δy)(θ0) . (6.1)

But, in subsequent iterative steps, additional distortions might remain small. How-
ever, since neither the plane IHTE demodulation nor the transformation of protophases
θ(t) to phase approximations ψ(t) is able to separate true amplitude modulations from
artificial amplitude modulations, a combination of IHTE and DPT (see Sec. 3.5) can
provide largely erroneous results. When occurs the transition from reliable estimation
to erroneous results?

The deviation of a signal from pure phase modulation can be estimated by integration
of the function

X(ϕ+ 2π) −X(ϕ) ≈ X ′(y(0)(ϕ))[δy(t(ϕ + 2π)) − δy(t(ϕ))] .

The resulting measure

(AMLX)2 =

∫ ϕ(tm)
ϕ(t0) [X(ϕ + 2π) −X(ϕ)]2dϕ
∫ ϕ(tm)
ϕ(t0) (X(ϕ) − 〈X〉t)2dϕ

(6.2)
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is denoted as amplitude modulation level (AML). If X(ϕ) resembles a wide band such
that a decomposition into S(ϕ) and ϕ(t) is not meaningful, AMLX is large. On the
contrary, if a signal is purely phase modulated, AMLX vanishes.

Accordingly, a corrected periodicity error

Err∗
q;n = Err⋆q;n

∫ q(tm)
q(t0) X2(q)dq

∫ q(tm)
q(t0) (X(q) − 〈X〉t)2

(6.3)

for a protophase q(t) is employed in the following discussion. In fact, AML can be
interpreted as the minimal periodicity error, i. e. it quantifies the periodicity in the
situation that phase reconstruction yields ϕ(t). The slight modification of normalisation
from second moment to variance reduces the dependence on the mean value of a signal
and thus allows to compare the absolute value of the difference Eq. (6.1) for signals with
different averages.

6.1.1 Setting the scene - oscillators, forcing and observation

For the following discussion of problems, the SL dynamics and the VdP dynamics are
considered.

Oscillator models

The considered SL dynamics

ȧ = µ(1 − |a|2)a+ ia(µ − |a|2 − 1) + iεp(t) (6.4)

is a mixture of versions Eqs. (2.6) and (5.1) with constant limit-cycle amplitude of unity
and a constant average frequency ω. Most importantly, in this scaling, the unperturbed
phase dynamics depends only weakly on parameter µ through the explicit isochronic
coupling ϕ(t) = θ(t) − αµ−1 ln[r(t)] what allows the clearest separation of amplitude
variations and phase modulations in the following analysis.

In the unperturbed VdP systems Eq. (2.29), µ determines the stability of the cycle
and the type of oscillations. While for small µ ≪ 1 the system performs quasi-harmonic
oscillations – similar to the SL system but with a weakly stable limit cycle, for µ ≫ 1
relaxation oscillations with two distinct time scales are present. To make the demodula-
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(µ

)
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SL

VdP

Figure 6.1: Shown are frequencies ω(µ). For

the SL system Eq. (2.12) the frequency is a con-

stant (green). In contrast, for the first VdP os-

cillator Eq. (2.29) (ω1 = 1) ω(µ) shows a strong

non-linear dependence (red). In the scaled VdP

dynamics Eq. (6.5), the variations of the fre-

quency is much smaller (black).

tion procedures for SL and VdP oscillator more comparable, the state variables u(t) and
v(t) of the VdP system are rescaled so that their amplitude on the limit cycle varies only
slowly according to µ. Moreover, the scaling ensures a relatively constant frequency of
the system (see Fig. 6.1):

u̇ = −
(

1 +
µ

4

)2
v v̇ = u+ µ

(

1 +
µ

4

)(

1 − 4u2
)

+ εp(t) . (6.5)
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Forcing

The forcing in both system is given by

p(t) =
[

cos(ωst) + cos
(
√

3/5ωst+ π/4
)

+ cos
(
√

2/5ωst+ π/2
)]

/3 . (6.6)

In contrast to Sec. 5.1 where a purely harmonic force is in use, here three incommensu-
rate frequencies are considered. Again, the parameter s allows to tune the frequencies
with respect to the systems frequency ω(µ). The main purpose of this choice is that
forcing and system dynamics stay asynchronous. A practical motivation follows from
neuroprosthetic research areas [184] where the complex shape of external (theta-burst)
stimuli is adapted to intervene in a pathological state of the brain or even correct the
network pathology with external devices.

Observable

As a final example, in this chapter the generic observable

X7(t) = u3(t) + v(t) + 2u(t)v(t) (6.7)

is considered where u(t), v(t) are the state-space variables of the SL or VdP oscillator in
Eqs. (2.12) and (6.5). This observable is a smooth and moderately complex function of
the state space variables. For quasi-harmonic oscillations it has two maxima and minima
on the basic period of oscillations while it is quite wild for relaxation oscillations (see
Fig. 6.2 (c)). In fact X7(t) combines several unfortunate properties for inference: On
the one hand it contains epoch of large spikes which demand for a high rate of sampling.
On the other hand, in between spikes the signal changes monotonously or is comparably
flat and thus relatively insensitive to changes in the underlying state-space dynamics.
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ttt
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Figure 6.2: (a): Observables of the SL oscillator with α = 0.1 for µ = 0.5 and ωs = 0.5. (b, c):

Observables of the VdP oscillator for ωs = 0.5 and µ ∈ [0.5, 5] respectively. The bold black dots

indicate marker events that correspond to a Poincaré crossing in the embedding space.

Amplitude modulation levels

Figure 6.3 presents the AML for the SL and VdP system1.
It can be seen that for the SL oscillator curves of AML normalised for different

ε nearly perfectly overlap in Fig. 6.3 (a). This indicates that AMLX7 decreases ∼ ε.

1System parameters are α = 0.1, ω = 1.0 for the SL oscillator. Forcing parameters are ωs ∈ [0.5, 1, 5]
and ε ∈ [0.01, 0.02, 0.05, 0.1].
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Figure 6.3: Shown are levels of amplitude modulation in (a) for the driven SL oscillator Eqs. (2.6)

and (6.6) observed by X7(t) Eq. (6.7). Curves show AMLX7 Eq. (6.1) normalized by the ampli-

tude of the forcing ε ∈ [0.01, 0.02, 0.05, 0.1] and values of forcing frequency as in the panel. (b):

Depicted is AMLu,v,X7 for the VdP equation (6.5) for frequencies like in panel (a) and similar

forcing amplitudes (dashed lines).

Moreover, the level of AML decreases with parameter µ as ∼ µ−1. Thus, in the limit
µ → ∞, the observable X7(t) is purely phase modulated.

In contrast, for the VdP dynamics there is no any significant decrease of the level of
the amplitude modulation visible in Fig. 6.2 (b). Additionally, the amplitude modulation
level slightly spreads out for different ε indicating a complex dependence on Ω, µ and ε.
Thus, it is rather problematic if here any technique based on the phase demodulation
works.

6.2 Phase demodulation for oscillators – method depen-
dent effects

6.2.1 Periodicity error

To remove as much amplitude effect as possible, a direct amplitude demodulation of
X7(t) can be achieved by normalisation with r(t) =

√

u2(t) + v2(t). The corresponding
signal is denoted by X̄7(t). In particular, for the SL oscillator this procedure yields
ū(t) = cos(φ(ϕ, r)) and v̄(t) = sin(φ(ϕ, r)) which still weakly depend on r(t) through the
model-dependent isochronic coupling. Thus, any distortions in the phase approximation
will be of second order in ε (see Sec. 7.2.2 for a further discussion).

Figure 6.4 indicates that direct amplitude modulations present in X7(t) account for
at least one order of magnitude in the periodicity errors. In contrast, direct normalisation
to obtain X̄7(t) indeed allows for a successful phase reconstruction by means of IHTE,
essentially independent of the stability level.

This observation is supported by a comparison of different phase modulations in
Fig. 6.5: For X̄7(t), phase estimates indicate significant – although not perfect – im-
provements due to the usage of IHTE in combination with DPT. In contrast for the
original data X7(t), iterations provide only minor improvements. In fact, results in
Figs. 6.4 and 6.5 are an indication that (I)HTE are already vulnerable to small ampli-
tude variation in the raw data.
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with empty markers and results for X̄7(t) are shown with full markers. While demodulation of

X̄(t) is successful, the results based on X(t) indicate that no improvement of phase reconstruction

was achieved.

Interestingly, while for the SL oscillator, the normalisation yields similar conver-
gences for all stability levels, a spread of curves is observed for the VdP system. This
spread is caused by two main effects. First, the waveform changes according to µ. As
a consequence, small numerical errors in Err∗

θ(c);n
/ε become visible for the challenging

waveform at µ = 10. Second, it can be expected, that the spread is also a product of the
still present isochronic coupling in ϕ(t): While for the SL system, isochronic coupling of
phases and amplitudes is functionally similar for all stability level ∼ µ−1, the isochronic
coupling in case of the VdP equation depends non-linearly on µ. Accordingly, the small-
est residual errors occur for small µ where the VdP dynamics is quasi-harmonic with a
comparably weak isochronic coupling. Then, for increasing µ, the isochonic density be-
comes more non-uniform on the limit cycle what causes the periodicity error to saturate
at higher values.
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Figure 6.5: Shown are snapshots of phase modulations for the SL (a, b) and VdP system (c, d). A

comparison of true modulation q(t) = ϕ(t)−ωt (orange) and reconstructions q̃(c)(t) = ψ(c)(t)−ω̃t
in the first step (blue) and after iteration (black) indicates the success of Hilbert iterations for

X̄7(t) (b, d). In contrast no essential improvement is visible for the phase-amplitude modulated

signal X7(t) in (a, c). System parameters are µ = 0.5, ωs = 5, ε = 0.1, α = 0.1.
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6.2.2 Phase similarity error

The periodicity error Eq. (6.3) delivers a measure of demodulation accuracy, if the actual
phase ϕ(t) is unknown and is thus applicable in experiments. Complementary is the
phase similarity error STDψ

n Eq. (5.3) which monitors the actual discrepancy between
ϕ(t) and the phase approximation ψn(t). In presence of amplitude modulations both
measures are not strictly related to each other. Is it anyhow sufficient to estimate the
periodicity error Err∗

q;n to find the optimal phase approximation?

As an example, here demodulation of the state space coordinate u(t) is considered
for the SL and VdP system in dependence of stability µ and frequency ratio s. After
finding a decomposition u(t) = S̃(θ(t)), the DPT is applied to the VdP signal. Shown

in Fig. 6.6 is the minimal value of STDψ(c);⋆, not to be mistaken with the reconstruction
error at the optimal value of periodicity Err∗

θ(c).

Clearly, demodulation can be achieved for the SL oscillator with rather high precision
and for most of the considered parameters. Noteworthy, in some cases the difference
ψ(t)−ϕ(t) is of the same order as the amplitude of the true modulation. This underlines
that commonly used phase approximations ψ1(t) based on the first Hilbert transform
are not suitable for further analysis. Then, performing iterations, even in the worst case
of small µ, some improvements are achieved. Contrasting are the demodulation results
for the VdP oscillator where iterations provide only smaller improvements.

At which step the optimal demodulation is achieved might not be detectable based
on Err∗

q;n. Instead, the minimal value Err∗
q arises at a step n∗ and corresponds to STDψ,∗

while the true minimum of the phase error, STDψ,⋆ occurs at a step n⋆. Indeed, Fig. 6.7
indicates that the relative difference of both errors is small compared to the strength
of forcing – particularly for the SL system, where an iterative demodulation achieves
most of its accuracy in the first steps followed by a saturation in accuracy. Thus the
discrepancy between theoretic-optimal step n⋆ and detectable optimum step n∗ is rather
large while the relative difference of accuracies is small. This statement holds for most
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Figure 6.6: Shown are optimal phase similarity errors STDψ;⋆ obtained from demodulation of

u(t). The bold horizontal line indicates s = 1. White diamonds indicate for 0.5 >STDψ;⋆ > 0.1

yellow diamonds indicate for 1 >STDψ;⋆ > 0.2 and black diamonds indicate for STDψ;⋆ > 1.

Shown in (a,b) are results for the SL system. Shown in (c,d) are results for the VdP oscillator.

Generally, it can be seen that IHTE allows for major improvements of wideband demodulation

(s > 1). Also minor improvements are visible in the slow frequency band (s < 1). In accordance

with Fig.6.3, the reconstruction of the SL phase is achieved for a wide range of stability and

frequency pairs. In contrast, for the VdP system the improvements are relatively small and

occur mostly for high stability and high frequencies.
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of the parameters shown. Slightly different are observations for the VdP system which
indicate that a stronger correlation of optimal steps is present while at the same time
discrepancies n⋆ − n∗ account also for larger error differences, two orders of magnitude
larger than for the SL system! This discrepancy however, might be considered as a minor
problem since the phase reconstruction suffers from a to large AML.

6.3 The problem of protophase-to-phase tranformation

Information about the actual phase dynamics is usually found in the tiny remaining
variations after performing the DPT Eq. (3.23). Thus, a protophase-to-phase transfor-
mation demands for accurate estimates of the Fourier modes Eq. (3.25) and for this a
protophase needs to be 2π-periodic and the time series has to be sufficiently long. Then,
the mapping Θ(ϕ) is estimated based on data.

Complementary to the DPT a protophase-to-phase mapping can be constructed by
a direct Fourier fit on the data ϕ(θ) − θ = ∆(θ):

〈

(∆(θ) − (ψFPT(θ) − θ))2
〉

θ
→ min .

The obtained mapping ψFPT(θ) is termed fit-based protophase-to-phase transformation
(FPT) and the resulting phase approximation is ψFPT(t). Such an approach avoids the
uniform-density assumption needed for DPT and thus is able to capture variations in a
(non-uniform) phase density ρ(ϕ).

Indeed, while the protophase-to-phase mappings based on DPT and FPT indicate for
an essential reconstruction, erroneous modulations remain in the phase approximations

ψ
(c)
DPT;1,20(t). This can be observed in the scatter plots ∆̇

(c)
DPT(ϕ̇) in columns 2 and 3 of

Fig. 6.8. In fact, for none of the considered cases a significant improvement of the phase
approximation is achieved by IHTE although the AMLX7 in Fig. 6.3 indicates that X7(t)
is approximately phase modulated. In contrast, the FPT results in column 4 of Fig. 6.8
show a smaller deviation for a small AML (large µ).

Complementary are the fitting results shown in Fig. 6.9 for the VdP system. As
X7(t) is quite spiky, ∆(c)(θ(c)) in columns 2 and 3 shows large jumps in its derivative.
Thus a quite large number of fitting modes Fk and long observations are needed to obtain
accurate estimations. Here a zoom to one of the local minima of ∆(c)(θ(c)) = ϕ(θ(c))−θ(c)

shows that, DPT and FPT are able to recover the shape of the band with only very
small variations left. Moreover, it can be seen by comparison of columns 2 and 3 that
the gradients in ∆(c)(θ(c)) increase due to iteration. Thus, IHTE – in this example –
results in even more demanding data.
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Figure 6.8: Shown are results for the SL oscillator. Column 1: Mappings θ(c)(ϕ) (blue), ψ
(c)
DPT(ϕ)

(black) and ψ
(c)
FPT(ϕ) (red). Other panels show scatter plots of derivative deviation ∆̇

(c)
1,20(t)

against the true derivative of ϕ(t). Columns 2,3: Results based on θ1,20(t) for the DPT. Column

4: Results for θ
(c)
20 (t) and FPT. Parameters are (a): µ = 0.5, sω = 0.5, (b): µ = 5, sω = 0.5,

(c): µ = 10, sω = 0.5, (d): µ = 0.5, sω = 5, (e): µ = 5, sω = 5, (f): µ = 10, sω = 5. Fixed

parameters are ε = 0.1,, ω = 1, α = 0.1. The FPT and DPT are performed with 40 and 20

Fourier modes repectively.

In conclusion, for dynamical systems, imprecise protophases and the uniform-density
assumption Eq. (3.19) result in unavoidable errors in the phase reconstruction. While
these errors are not present if a purely phase modulated signal is analysed by means of
IHTE, they seem to be amplified if periodicity is blurred. Partly, the demands for an
accurate estimation of the protophase-to-phase mapping might be met by an increase of
the observation time2. However this results in long computation times needed for IHTE.

2The fitting results in Fig. 6.9 are obtained on data sets containing 3 · 105 point. In total
700, 600, 500, 400, 375, 350, 325, 275, 250, 225, 200, 175, 150, 100, 50 and 25 modes are used to perform a
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Figure 6.9: Results for the VdP oscillator. Column 1: Mappings θ(c)(ϕ) (blue), ψ
(c)
DPT(ϕ) (black)

and ψ
(c)
FPT(ϕ) (red). Other panels show ∆

(c)
1,15(θ(c)) and fit from DPT (black) and FPT (red).

Columns 2,3: Results based on θ1,15(t). Column 4: Results for θ
(c)
15 (t). Shown here is a zoom

into one of the two local minima. Parameters are (a): µ = 0.5, sω = 0.5, (b): µ = 5, sω = 0.5,

(c): µ = 10, sω = 0.5, (d): µ = 0.5, sω = 5, (e): µ = 5, sω = 5, (f): µ = 10, sω = 5. The forcing

amplitude is ε = 0.1. Noteworthy, for these highly challenging fits, the DPT and FPT transform

are realised with different modes. Or the fitting is not succesfull at all.

Currently, it is an open problem how to incorporate non-uniformity into the DPT.
As is indicated by FPT, doing so would potentially allow to further decrease the phase
reconstruction error. On the other hand, the DPT reliably estimates the uniform density
even for highly challenging phase data presented in Fig. 6.9. Thus, it still constitutes
the best – and only – choice to retrieve a phase approximation.

DPT and FPT. The optimal result of this scan is depicted in the panels
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Future topics

7.1 Phase dynamics reconstruction for biological oscillator
networks

Typically, signals of biological oscillators contain significant amplitude modulations (e. g.
see Fig. 3.1). However, it might be possible to observe biological oscillations with quite
stable amplitudes. In experiments this could be achieved in controlled settings and if
probands are at rest. Here, a system of three non-identical ML oscillators Eq. (1.1)
serves as an example:

CV̇1 = I0 − gL(V1 − EL) − gKw(V1 − EK) − gCaM∞(V1)(V1 − ECa) + Isyn(V1, V2)

ẇ1 = λw,1(V1)(W∞(V1) − w1)

CV̇2 = I0 − gL(V2 − EL) − gKw(V2 − EK) − gCaM∞(V2)(V1 − ECa)

+ Isyn(V2, V1) + Isyn(V2, V3)

ẇ2 = λw,2(V2)(W∞(V2) − w2)

CV̇3 = I0 − gL(V3 − EL) − gKw(V3 − EK) − gCaM∞(V3)(V3 − ECa) + Isyn(V3, V2)

ẇ3 = λw,3(V3)(W∞(V3) − w3) .
(7.1)

The single units are coupled by synaptic currents

Isyn(Vk, Vj) =
ε(Vrev − Vk)

1 + exp(−(Vj − Vth)/σs)
. (7.2)

The parameters1 of the model can be found in Tab. A.1. The neurons differ in
their time constant 1/τg;1,2,3 ∈ [1/τg , 0.4/τg , 0.8/τg] of gating which is incorporated in
λw,k(Vk). The system parameters are chosen in accordance to maintain an asynchronous
network state. The coupling topology is similar to the oscillator triplet analysed in
Ch. 2. The original state-space dynamics is depicted in Fig. 7.2. Indeed, each oscillator
possesses a quite stable spike amplitude but significant perturbations are present in the
lower left part of the limit cycles.

The phase dynamics of the units is reconstructed by means of the previously employed
IHTE-DPT procedure2. Observed is the membrane potential Vk(t). Figure 7.1 shows
snapshots of the frequency reconstructions together with the true frequencies ϕ̇1,2,3(t),
obtained directly from the state space dynamics.

Interestingly, iterations restore the timing of the main frequency pulses to a high
precision. This indicates that IHTE indeed, restore phase modulations which occur
horizontally in the signal. The remaining deviation can be attributed to the still present
vertical amplitude variation in the signal and to the isochronic coupling which is not
considered in the present procedure.

1Additional parameter of coupling are ε = 0.2 mA/mV, Vrev = 20 mV, Vth = 25 mV and σs = 1 mV.
2The reconstruction is based on 20 steps of the IHTE. The DPT is performed based on 150 Fourier

modes. 1000 periods of the slowest oscillator are observed with dt = 0.2. Frequencies are reconstructed
by means of a SG12,25,4 filter
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Figure 7.1: Shown in panels (a-c) are the frequency recontructions ψ̇
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1,2,3(t) for the true frequency

ϕ̇1,2,3(t) (orange). Frequencies of the first iterate are shown in red. Frequencies of step 20 are

shown in grey, black and blue respectively. The true frequency is obtained directly from the

state space dynamics (see Sec. 2.4.1).

Data-driven network inference based on IHTE?
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Coupling modes for all oscillators are listed in Tab. A.8. Due to its pulsatile nature,
many of the modes account for pairwise coupling. Below, general observations are
listed:

• Most of the actual coupling modes are detected also in the IHTE-based
reconstruction.

• The strength of the coupling modes is poorly recovered. However, a closer

inspection shows that result based on ψ
(c)
20 (t) indeed show some improvement

compared to the commonly used Hilbert phase ψ
(c)
1 (t).

• Some modes have not been resolved at all in the data driven reconstruction
while other modes are erroneously detected.

79



Chapter 7 Section 7.2

7.2 What does it mean to include amplitudes?

More precise phase reconstruction techniques have to include some coupling of phases
and amplitudes. While in theoretic descriptions such a task yields long and involved
equations (see Ch. 2), a data driven reconstruction of phase-amplitude coupling is even
more challenging. The main reason for this is that phase-reconstruction methods usually
have only limited control over the incorporation of amplitude modulations into the phase
modulation. On the one hand this is due to the still existent discrepancy in purpose and
mathematical definition of the methods and on the other hand, due to inherent method
dependent shortcomings in general.

7.2.1 The separation problem

Given a signal X(t) = M̂ [y(t)] it is argued in Sec. 3.3 that for weakly perturbed
limit cycles a waveform S(ϕ) = M̂ [y(0)(ϕ)] and a (small) perturbation δS(ϕ, δy) =
M̂ ′[y(0)](ϕ)δy can be defined. On the one hand this separation is motivated by theoretic
conceptions that result in a mutual phase demodulation by means of IHTE. On the other
hand, this separation leads to highly erroneous reconstructions of ϕ(t):

If just X(t) = S(ϕ(t)) is considered, where ϕ(t) is modulated, it means that ϕ̇(t)
Eq. (2.2) necessarily incorporates information about the amplitude perturbation δy(t)
of the system through the isochronic coupling. Thus, ϕ(t) = ϕ(t, δy). However, at
the same time, the true amplitude perturbation is observed explicitly in the embedding
through δS(ϕ, δy). But this means that S(ϕ) and δS(ϕ, δy) are (partly) redundant. The
consequence is that a constructive definition of the waveform S(ϕ) – and thus amplitude,
measured relative to an imaginary unperturbed embedding, is problematic.
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Figure 7.2: Depicted in (a) are the perturbed state trajectories of the ML network Eq. (7.1). The
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S(ϕ) seems to arise in the limit of weak perturbations such that the waveform is
defined by a measurement M̂ [y(0)(ϕ)] of the limit cycle solution and, implicitly, by the
isochronic coupling Φ′[y(0)] (e. g. see Eq. (1.6)). But the assumption that the functional
dependence of S(ϕ) on ϕ is time invariant collides with existence of amplitude variation
in X(t) as there exists X(ϕ) but not S(ϕ). Thus, if one would try to retrieve S(ϕ)
– for example – from local time averaging of the generalised waveform X(ϕ) at phase
ϕ, it is usually not guaranteed that 〈δS(ϕ, δy(t))〉t vanishes for all ϕ (see Fig. 7.2).
Consequently, S(ϕ) and thus, the reference embedding, would incorporate amplitude
information although it is assumed that any state in an unperturbed system should
depend solely on ϕ(t).

Practically, since the modulations of ϕ(t) and δS(ϕ, δy) occur simultaneously, it is
impossible to decide to which extent the band-like structure of a generalised waveform
X(ϕ) is caused by a phase modulation or by an amplitude deviation. In performing a
phase demodulation, one simply assumes validity of the approximation X(t) = S(ϕ(t))
even though the validity of this approximation is limited. Indeed, this approximation
might be possible if δS(ϕ, δy) is small. However, it depends crucially on the method
of phase demodulation and its robustness against variations of amplitude, what small
really means!

7.2.2 The problem of essential mixing

The separation problem might be (partly) tackled through the introduction of an isochronic
mapping in the embedding space but for this, a phase and an amplitude need to be re-
liably defined. Namely, there must not exist any spurious modulations in a protophase
θ(t) and a proto-waveform X(θ). Indeed, for any complex number X(t) + iY (t), its
modulus might serve as an amplitude. As is illustrated in Fig. 1.9, the Hilbert trans-
form provides the most stable geometric definition of amplitude through the modulus
Az(t) = |z|(t) of the analytic signal.

But there is no guarantee that this amplitude is connected in an obvious way to the
observed true perturbation M̂ ′[y(0)(t)]δy(t) or directly to δy(t). This simply is a matter
of fact. First, the observation can project the true state dynamics in such a way that the
embedding comprises loops. While this might not be a problem for the determination of
a protophase (see Sec. 4.1.2), Az(t) has limited meaning. Second there exists no general
rule to construct the quadrature of a signal X(q)(t)! Indeed, the Hilbert transform might
be the most generic approximation of such a quadrature but it is still not exact in all
cases. This is illustrated in Fig. 7.3 which shows demodulation results for the seemingly
simple signal Xmono(t) = A(t) cos(φ(t)).

• Panel (a) illustrates the method-related error of the reconstructed phase ψ(a)(t)
based on IHTE and if Xmono(t) is purely amplitude modulated with A(t) =
(1 + 0.1 cos(

√
5t)) (this modulation is fast and thus can not be demodulated from

the slow carrier cos(t)). The actual phase in this example is φ(t) = t while the re-

constructed phase is ψ
(d)
n (t) = t+∆

(a)
n (t). Thus, the actual amplitude modulations

results in an artificial phase modulation. Notably, these artificial modulations in-
crease in the course of iteration, what indicates that the IHTE are not suitable to
demodulate this kind of signals properly.

• Panel (b) shows the opposite case of pure phase modulation where the phase is
φ(t) = t+ 1.2(sin(0.25

√
2t) + cos(0.25

√
3t) and A(t) = 1. It can be seen that here,
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the first Hilbert transform is not a good approximation of the quadrature as the
reconstructed amplitude Az;1(t) deviates from the true amplitude A(t). However,
the iterative procedure proposed in Ch. 4 delivers a quadrature (notably, also for
much more complicated mutli-component signals) as finally, Az,n(t) = A(t) = 1.

For signals in which amplitude modulation and phase modulation occur simulta-
neously, a meaningful demodulation is possible if the spectra of amplitude FA(ω) and
phase Fφ(ω) are well separated. In that case an amplitude demodulation prior to (I)HTE
prevents the excitation of spurious oscillatory modes in the Hilbert transform:

Az(t) = |z|(t) =
√

A2(t) cos(φ(t)) +A2(t)(Ĥ [cos(φ)])2(t) = A(t) .

In this equation the separation of the product under the Hilbert transform is possi-
ble due to the Bedrosian identity Eq. (3.10) (see also App. A.4). Then, the identity
Ĥ[cos(φ)](t) = sin(φ(t)) for generic phases can be ensured by means of IHTE (see
Sec. 4.2). Thus, an amplitude Az(t) might be used to extract3 a distorted and approxi-
mate isochronic coupling between ψ(t) and Az(t).

The ultimate frontier for phase demodulation is constituted by all signals in which
an amplitude modulation of A(t) is fast compared to the phase modulation. In all these
cases, mixing of phase and amplitude modulations is also observed. However, this mixing
is essential in the sense that it arises due to true modulations of the amplitude.

For example, given the analytic protophase phase θ(a)(t), the corrected form of the
protophase approximation Eq. (6.1) for a signal X(t) = S(ϕ) + δS(ϕ, δy) Eq. (3.11) is

θ(a)(t) = arg[z](t) = arctan

[

Y (t)

X(t)

]

≈ arg[S(t) + iĤ [S](t)]

+ ε
Ĥ[Ṡq](t)S(t) − Ṡq(t)Ĥ[S](t)

S2(t) + (Ĥ[S])2(t)
+ ε

Ĥ[δS](t)S(t) − Ĥ[S](t)δS(t)

S2(t) + Ĥ[S]2(t)
.

(7.3)

This result shows that perturbations of the signal amplitude and the phase modulation
both contribute in O(ε) to the protophase approximation if the Hilbert transform is

3The construction of an isochronic coupling for generic embeddings constitutes a heavily numerical
task in itself. Further discussion can be found in [112, 185].
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used. Moreover, since the amplitude of the measurement – and thus, the deviation
δS – relate to the phase dynamics by an unknown isochronic coupling, the amplitude
contribution to the phase error STDψ

n Eq. (5.3) can be much larger than the first two
perturbative terms. These terms resemble the protophase operator, convergent under
Hilbert iterations while the last term prevents full convergence and is related to the
AML. Additionally, if instead of amplitude variations, measurement noise is present, it
appears that the reconstruction error of phases is at least of the same order as the noise.
In both situations, this implies that a theoretic separation of the observed non-stationary
signal behaviour is significantly corrupted by a large sensitivity of the Hilbert transform
to already small amplitude variations.

One possible strategy to reduce essential demodulation errors indeed, could be an
initial amplitude demodulation. Unfortunately, for dynamical systems the spectra of
ϕ(t) and δS(ϕ, δy) to a large extent can reside on the same support (depending on
the complexity of isochronic coupling and observation operator) such that an explicit
amplitude demodulation prior to phase demodulation yields no significant improvement.
In Ch. 6 such a demodulation was performed but with the true amplitude r(t) based on
the state space variables. In a data-driven setting, this amplitude is not known either
such that normalisation with the possibly erroneous embedding amplitude Az(t) results
in further errors in the phase-reconstruction process.

7.2.3 Extending the Hilbert transform and the phase definition

The essence of the afore discussion is that a signal quadrature X(q)(t) does not suffice to

reconstruct the asymptotic phase ϕ(t) from data. Instead, a dynamic quadrature X
(q)
d (t)

is needed. This quadrature would be defined in such a way that the dynamic analytic
signal is

zd(t) = Ad(r(t), ϕ(t)) exp(ϕ(t)) = X(t) + iX
(q)
d (t) ,

where r(t) is the true amplitude and ϕ(t) is the true asymptotic phase of the dynamical
system. The construction of such a function from geometric techniques is an open
problem. Presumably, it is one of the most challenging problems of data analysis. First,
due to the theoretic demands and second, due to the still existent shortcomings of IHTE.

Where should the information of an amplitude dependence enter the IHTE-DPT pro-
cedure? For example, an amplitude dependence could be incorporated in a generalised
protophase-to-phase transformation: Instead of using ϕ̇(t) = ω in a derivation, it might
be possible to achieve an improvement based on a first-order model ϕ̇ = ω+εq(ϕ,Az(t)).
It is currently unclear if such pursuit could be successful.

Alternatively, the embedding amplitude Az;n(t) could enter in each iterative step.
This strategy is presumably more natural. For example, it could be beneficial to in-
troduce a correction function ξn(t) that changes the Hilbert convolution slightly. Then,
instead of Ĥ[X](θn), the transformation Ĥ[ξX](θn) is performed. Where, to achieve
a simultaneous demodulation of amplitude and phase, proper constraints are needed.
For example, for Xmono(t) = A(t) cos(φ(t)), the (final) correction function is ξ(t) =
1/A(t). Parallel to the amplitude separation, a correction to the protophase is needed:
θn(t, Az) = θn(t)+Ψθ(Az). How to construct such corrections – and in particular, how to
balance their different influences on demodulation –for the (iterated) Hilbert transform
is not known.

Moreover, one could use the IHTE-DPT procedure to find optimal phase and am-
plitude Az,n⋆(t) and ψn⋆(t) in accordance with the condition Eqs. (3.18), (3.19). Then,
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the obtained functions could be subsequently used in a method for numerical construc-
tion of isochrones. Presumably, all of these approaches will have to incorporate further
information such as the phase of an external input η(t) (e. g. Sec. 5.2.2), the external
input εp(t) (if it is known at all) or/and further assumptions about the phase-amplitude
dynamics.

Global phase description in chaotic systems by means of IHTE phases?
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For chaotic systems, a weak phase de-
scription is possible by means of isophases.
Isophases are defined as stroboscopic sets
of states yT (t) with return time T =
2π/(θ(tm) − θ(t0)). Since all yT (t) are sit-
uated on the attractor an inherent phase-
amplitude description is needed here. More-
over, due to phase diffusion, the set of points
{yT ((t̃/(2π) + k)T ), k ∈ N}t̃∈R will grad-
ually scatter with each new return. Thus,
optimal isophases are constructed by fitting
of a global parametrisation to the strobo-
scopic sets [186, 185]. Alternatively, aug-
mented IHTE could be flexible enough to
define {yT (t(ψ) + kT ), k ∈ N}ψ∈R based on
Hilbert phases ψ. As an example, shown in
(a) is the IHTE in step ten for Ṙa(t) of the
kidney oscillator Eq. (1.2). Main parame-
ters are c = 4.2, Tt = 4.5s and d = 0.11.
Panel (b) depicts the state space projection
to the plane (Ṙa, Ra). Data points of similar

Hilbert phases ψ
(c)
1 (t) (black-coloured trian-

gles) and ψ
(c)
10 (t) (white-coloured circles) in-

dicate that IHTE indeed cause minor change
in the stroboscopic sets.

7.3 Hilbert transforms in practice

There exist various ways to transfer information over vast distances. Most importantly,
radio communication and optical signals [19, 187]. In either situation one is confronted
with the fact that signals have to be band-limited as otherwise, a receiver is unable
to reconstruct the signal content. Here, the IHTE-DPT transformation might be used
in a computer-assisted setting to increase the information content in communication
signals. However, the numerical evaluation of the integral Eq. (4.8) might be to slow4,
if a real-time demodulation is needed.

An alternative way to construct the IHTE employs the spectral definition Eq. (3.9)
for the time-Hilbert transform:

4The computation time of the integral scales ∼ ((tm − t0)/dt)2
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• Given a (phase-modulated) signal X(t), the Hilbert transform Ĥ[X](t) is found
from the inverse Fourier transform using a standardised fast Fourier-transform
implementation (FFT).

• Then, a protophase approximation θ
(a,b,c,d)
1 (t) is calculated from the analytic signal

z(t) by means of a method exemplified in Sec. 4.1.2.

• The obtained protowaveform X(θ1) is sampled unevenly. To apply again the FFT-
based Hilbert transform on X(θ1), the data has to be re-sampled to a uniform grid.
(This step implements the main idea of IHTE, which is rescaling of time.)

• In the next step, θ2(θ1) is calculated from the embedding of X(θ1). Subsequent
steps will lead to mutual demodulation.

The advantage of this implementation is the usage of an optimised and readily available
fast Fourier tranform.

In present devices, an all-optic (or all-electronic) construction of the analytic signal
is achieved by filtering and splitting of a received signal into two components which are
phase-shifted relative to each other by −π/2. Such a device explores the definition of a
band-limited quadrature such that an interesting future topic for experimental research
would be the realisation of a physical IHTE transformer [171, 188, 187]. Needed for
such a realisation is an optical or electric device with response 1/(πt). Unfortunately, a
device with such a characteristics can be realised only approximately due to limitation
in the size of a device and precision errors. Moreover, its realisation would still rely
on a digital phase calculation and re-sampling of the original data. Will it anyhow be
possible to pave the way towards a new demodulation device?

7.4 Further questions

The idea of iterations that leads to the IHTE constitutes a solution for a decade-long
standing problem in phase demodulation and the advanced approaches of length-based
protophase estimation – presented here in a condensed form – provides additional oppor-
tunities for researchers with high interest in accurate and meaningful phase estimation.

However, phase-reduction theory and phase-demodulation fit together only under
rather specific assumptions. Certainly, it depends on the purpose how accurate a phase
and an amplitude should be estimated from a signal. Moreover, it depends on the type
of problem, how to estimate amplitude(s) and phase(s) from a signal at all.

Nevertheless, several questions arise from the presented work to which further efforts
could be dedicated:

• How to disentangle phase modulations q(t) and amplitude modulations Ã(t) if
the amplitude spectrum and the phase-modulation spectrum overlap, i.e. if the
Bedrosian identity is not satisfied? This question involves an extended spectral
convergence analysis of the IHTE transformation. (physics, mathematics)

• An answer to the first question leads to a general construction rule for mutual

signal quadratures X(q)(t). How to construct the dynamic quadrature X
(q)
d (t) to

retrieve ϕ(t) from embeddings of observations? (physics, mathematics)

• How accurate is an IHTE-based network reconstruction compared to direct recon-
struction? (phyics, mathematics)
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• An evaluation of IHTE in widespread research application and in combination
with other methods is needed as there exists no absolute criterion for its success.
(physics, engineering, chemistry, biology, biomedical research)

• An optimisation of the numerical IHTE integration could potentially be achieved
by high-performance programming. (computer science)

• The Hilbert transform arises in the theory of analytic functions. Can one rigor-
ously proof the mechanism introduced here for IHTE? What is the most generic
functional space on which convergence of IHTE is guaranteed? (mathematics)

The high-order phase reduction provided in this text motivates further exploration
of high-order coupling effects:

• Based on the phase model Egs. (2.21) - (2.23) or the derived coupling modes
App. A.5 – What are the synchronisation properties of an auxiliary network given
by the derived coupling modes? (physics/mathematics)

• What is the exact parameter dependence of coupling constants in the VdP (or even
ML) triplet? (physics/mathematics)

• Is it possible to realise further experiments in which the predicted triplet couplings
can be observed (e. g. using lasers, mechanical oscillators or in vitro neurons)?
(physics, engineering, chemistry, biology, biomedical research)
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[98] B. Kralemann, M. Frühwirth, A. Pikovsky, M. Rosenblum, T. Kenner, J. Schaefer, and M. Moser, “In vivo cardiac phase
response curve elucidates human respiratory heart rate variability,” Nature communications, vol. 4, no. 1, pp. 1–9, 2013.

[99] T. Stankovski, S. Petkoski, J. Raeder, A. F. Smith, P. V. McClintock, and A. Stefanovska, “Alterations in the coupling
functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2067, p. 20150186, 2016.

[100] G. G. Berntson, J. T. Cacioppo, and K. S. Quigley, “Respiratory sinus arrhythmia: autonomic origins, physiological mech-
anisms, and psychophysiological implications,” Psychophysiology, vol. 30, no. 2, pp. 183–196, 1993.

[101] G. E. Billman, “Heart rate variability–a historical perspective,” Frontiers in physiology, vol. 2, p. 86, 2011.

[102] T. S. Lugovaya, “Biometric human identification based on ECG,” PhysioNet, 2005.

[103] T. B. Garcia, 12-lead ECG: The art of interpretation. Jones & Bartlett Publishers, 2013.

[104] P. Gregory, S. Lodge, T. Kilner, and S. Paget, “Accuracy of ECG chest electrode placements by paramedics; an observational
study,” medRxiv, p. 19001321, 2019.

[105] S. Zaunseder, A. Trumpp, D. Wedekind, and H. Malberg, “Cardiovascular assessment by imaging photoplethysmography–a
review,” Biomedical Engineering/Biomedizinische Technik, vol. 63, no. 5, pp. 617–634, 2018.

[106] M. Li, W. Xiong, and Y. Li, “Wearable measurement of ECG signals based on smart clothing,” International Journal of
Telemedicine and Applications, vol. 2020, 2020.

[107] Z. Chen, P. Venkat, D. Seyfried, M. Chopp, T. Yan, and J. Chen, “Brain–heart interaction: cardiac complications after
stroke,” Circulation research, vol. 121, no. 4, pp. 451–468, 2017.

[108] S. Sahoo, P. Biswal, T. Das, and S. Sabut, “De-noising of ECG signal and QRS detection using Hilbert transform and
adaptive thresholding,” Procedia Technology, vol. 25, pp. 68–75, 2016.
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[150] M. Paluš and A. Stefanovska, “Direction of coupling from phases of interacting oscillators: an information-theoretic ap-
proach,” Physical Review E, vol. 67, no. 5, p. 055201, 2003.

[151] D. Chicharro and R. G. Andrzejak, “Reliable detection of directional couplings using rank statistics,” Physical Review E,
vol. 80, no. 2, p. 026217, 2009.

[152] J. M. L. Lew D. Landau, Mechanik. No. 1, Verlag Harri Deutch, 1997.
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Appendix A

Technical details

A.1 Morris-Lecar neuron

The different membrane compartments considered in Eq. (1.1) approach certain steady-
state values depending on the ambient potential V (t). For the ML dynamics, it is
assumed that the Ca2+ gating approaches its equilibrium activation M∞(V ) instan-
taneously. In contrast the slower K+ gating relaxes towards W∞(V ). Moreover, the
relaxation constant λw(V ) for the slow gating shows a global minimum at a certain
voltage. All three gating functions possess a stereotypical shape modelled by

X∞(V ) =
1

2

(

1 + tanh

(

V − V1,3

V2,4

))

λw(V ) =
1

τg
cosh

(

V − V3

V4

)

. (A.1)

Here X∞ = [M,W ]∞(V ). The actual shape of these characteristic functions represents
the molecular dynamics of gating which is immersed in the ever fluctuating neuronal
environment. Thus, the involved parameters actually depend on temperature ϑ. This
is the reason why in Sec. 7.1 τg is varied. The parameters used in the simulations are
listed in table A.1. The models are stimulated with a baseline current of I0 = 50 mA.

C = 20 µ F/cm2 gL = 2 mS/cm2 gK = 8 mS/cm2 gCa = 4 mS/cm2

V1 = −1.2 mV V2 = 18 mV V3 = 12 (2) mV V4 = 17.4 mV
EL = −60 mV EK = −80 mV ECa = 120 mV τg = 15 s

Table A.1: List of modelling parameters for the ML neuron Eq. (1.1). C is the membrane
capacity, gL,K;Ca are the conductivities of leakage, K+ and Ca2+ ion channels, V1,2,3,4

are empiric parameters for the channel activation, EL,K,Ca are the respective equilibrium
potentials of leakage, K+ and Ca2+ channels and τg is the relaxation time of gating.
Parameters are adapted from [189]. Values for V3 result in type I (type II) oscillations.

A.2 Nephron oscillator

The nephron dynamics introduced in Sec. 1.1.2 involves 16 empirical parameters listed
in table A.2. The dynamics of the nephron depends on the glomerular pressure Pg which
follows from solution of the implicit equation

0 = Ce(Pg, Pt)(Pv − Pg) +
Re
Ra

(Pa − Pg)[Ce(Pg, Pt) + (1 −Ha)(Ce(Pg, Pt) − Ca))] .

This equation depends on the protein concentration in the efferent blood:

Ce(Pg, Pt) =
(
√

a2 + 4b(Pg − Pt) − a
)

/(2b) .
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For a solution, Pg is found by bisection. The Filtration activity of a nephron is deter-
mined by

Fg(Pg, Pt, Ra) =
Pa − Pg
Ra

(1 −Ha)

(

1 − Ca
Ce(Pg, Pt)

)

.

The stiffness of the arteriola walls is modelled by a potential

K(Ra) = [7(Ra/Ra,0 − 1.25)/5]8 + 1 .

The TGF response that is exerted on the arteriola muscle cells is modelled by

TGF(χ3) =TGFmax − TGFmax − TGFmin

1 + exp[c((χ3 − Pd)/(Rh,0Fh,0) − S)]

S =1 − log[(1 − TGFmin)/(TGFmax − 1)]/c

(A.2)

Pa = 13.33 kPa Ca = 54 g/l Ha = 0.5 a = 21, 73 Pa·l/g
Pv = 1.33 kPa Ctub = 0.4 Fh,0 = 0.2 b = 0.38 Pa· l2/g2

Pd = 6 kPa TGFmax = 1.5 TGFmin = 0.75 Rh = 5.33 kPa· s/nl
Ra,0 = 24.39 kPa· s/nl ωa = 0.22 s−1 Freab = 0.3 nl/s Re = 0.25 kPa ·s/nl

Table A.2: List of modelling parameters for the nephron model in Sec. 1.1.2. Pa,v are
the blood pressures in the afferent and efferent arteriole. Pd is the urine pressure in the
distal tubule. Ra,0 and Re are the normal resistivity of the afferent and resistivity of
the efferent arteriole. Rh is the resistivity of the loop of Henle. Ca and Ctub are the
compliances of the afferent arteriole and of the tubule. ωa is the frequency for resistivity
oscillations. Ha is the afferent hematocrit ratio of the blood. Freab is the reabsorption
rate of urine in the tubule and Fh,0 is a normalisation value for the flow in the loop of
Henle. TGFmax,min determine the range of the TGF response in the afferent arteriole.

Additionally, a relaxation time of Tt = 4.5 s is used in this monograph. Similarly
to the control parameter c, it influences the complexity of the attractor. The relaxation
constant d = 0.11 is chosen such that a chaotic dynamics is possible.

A.3 Determination of the phase response curve

For an unperturbed system, the phase after m periods is 2πm while for perturbed sys-
tems, the relaxation to the cycle causes a phase response potentially integrating up over
several periods. Thus, the cumulative phase response after perturbation is 2πm−ϕ(T̃ ),
where T̃ is the time needed to complete m periods. Namely, after a first perturbed
period, T1, the next periods are of length T2, ...Tm, where Tm is nearly the same as T .
Thus to determine the cumulative iPRC, in accordance with Eq. (1.6) one calculates

Z(ϕ) :=
2πm − ϕ(T̃ )

ε
=

2π

ε

(

m− 1

T

m
∑

k=1

Tk

)

=

∫ t+T̃

t
Φ′[y(τ)] · p(τ)dτ . (A.3)

For a numerical determination, periods T and Tk have to be calculated for which standard
methods exist [190].
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A.4 Bedrosians identity and demodulation

The quadrature of Xmono(t) = A(t) cos(φ(t)) is given by X
(q)
mono(t) = A(t) sin(φ(t)) =

A(t) cos(φ(t) − π/2) since this allows to construct the mutual continuation of Xmono(t)
into the complex plane. If however, neither A(t) nor φ(t) are known1 it is necessary

to construct an approximation of X
(q)
mono(t) from the Hilbert transform Ĥ[Xmono](t).

The discrepancy between quadrature and Hilbert transform can be understood by an
expansion in the small parameter ε:

X(q)
mono(t) =A0 sin(t) + ε

[

Ã(t) sin(t) +A0q(t) cos(t)
]

+
ε2

2

[

2Ã(t)q(t) cos(t) −A0q
2(t) sin(t)

]

−ε3

6

[

A0q
3(t) cos(t) + 3Ã(t)q2(t) sin(t)

]

+ O(ε4)

(A.4)
On the contrary application of the Hilbert transformation and expansion in terms of ε
yields

Ĥ[A cos(φ)](t) =A0Ĥ[cos](t) + εĤ [Ã cos −A0q sin](t)

−ε
2

2
Ĥ[A0q

2 cos +2Ãq sin](t)

+
ε3

6
Ĥ[A0q

3 sin −3Ãq2 cos](t) + O(ε4) .

(A.5)

From comparison of Eq. (A.4) and (A.5) it follows that in leading order, the Hilbert
transform is equivalent to the quadrature even if Xmono(t) is non-stationary. However,
for higher order corrections – i.e. for congruence of both functions in all details – certain
conditions

ε1: FÃ(ω) + Fq(ω) = 0 if |ω| > C

ε2:
[

Fq ∗ Fq

]

(ω) +
[

FÃ ∗ Fq

]

(ω) = 0 if |ω| > C

ε3:
[

Fq ∗ Fq ∗ Fq

]

(ω) +
[

FÃ ∗ Fq ∗ Fq

]

(ω) = 0 if |ω| > C

ε4: . . .

must be satisfied: If q(t) and Ã(t) obey a simple narrowband condition, the Hilbert trans-
form approximates the quadrature with accuracy ∼ ε. Second order and presumably all
higher orders of reconstruction demand for even stricter conditions on the original mod-
ulation spectra as further convolutions broaden the resultant spectrum in each derived
condition. Ultimately, this leads to the conclusion that the assertion2 Ĥ[X](t) = X(q)(t)
is only valid if the phase modulation vanishes and if narrowband amplitude modulations
are present. In the upper quadrature conditions, C is a function of the true instantaneous
frequency φ̇(t).

1It is A(t) = A0 + εÃ(t), φ(t) = t+ εq(t).
2This property is also called harmonic correspondence [171].
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A.5 Coupling modes and coupling constants

Here, the resulting coefficients for ϕ̇, Eqs. (2.21-2.23) are listed. In tables A.3, A.4 and
A.5 the following notation is used:

Cm,k =
1 + α2

2

2cm,k
4 + (ωm − ωk)2

, Dm,k =
1 + α2

2

(ωm − ωk)cm,k
4 + (ωm − ωk)2

.

a
(2)
1;0,0,0 c2,1

(

C1,2 sin(β1,2 + β2,1) −D1,2 cos(β1,2 + β2,1) −D2,1

)

a
(2)
1;−2,2,0 c2,1

(

C1,2 sin(β2,1 − β1,2) + D1,2 cos(β2,1 − β1,2)

−C2,1 sin(2β2,1) +D2,1 cos(2β2,1)
)

b
(2)
1;−2,2,0 c2,1

(

C1,2 cos(β2,1 − β1,2) −D1,2 sin(β2,1 − β1,2)

−C2,1 cos(2β2,1) −D2,1 sin(2β2,1)
)

a
(2)
1;−1,2,−1 c2,1

(

C3,2 sin(β2,1 − β3,2) +D3,2 cos(β2,1 − β3,2)
)

b
(2)
1;−1,2,−1 c2,1

(

C3,2 cos(β2,1 − β3,2) − D3,2 sin(β2,1 − β3,2)
)

a
(2)
1;−1,0,1 c2,1

(

−D3,2 cos(β2,1 + β3,2) + C3,2 sin(β2,1 + β3,2)
)

b
(2)
1;−1,0,1 c2,1

(

D3,2 sin(β2,1 + β3,2) + C3,2 cos(β2,1 + β3,2)
)

Table A.3: Coupling coefficients of the first SL oscillator.

a
(2)
3;0,0,0 c2,3

(

C3,2 sin(β3,2 + β2,3) −D3,2 cos(β3,2 + β2,3) −D2,3

)

a
(2)
3;0,2,−2 c2,3

(

C3,2 sin(β2,3 − β3,2) +D3,2 cos(β2,3 − β3,2)

−C2,3 sin(2β2,3) +D2,3 cos(2β2,3)
)

b
(2)
3;0,2,−2 c2,3

(

C3,2 cos(β2,3 − β3,2) −D3,2 sin(β2,3 − β3,2)

−C2,3 cos(2β2,3) −D2,3 sin(2β2,3)
)

a
(2)
3;−1,2,−1 c2,3

(

C1,2 sin(β2,3 − β1,2) +D1,2 cos(β2,3 − β1,2)
)

b
(2)
3;−1,2,−1 c2,3

(

C1,2 cos(β2,3 − β1,2) −D1,2 sin(β2,3 − β1,2)
)

a
(2)
3;1,0,−1 c2,3

(

−D1,2 cos(β2,3 + β1,2) + C1,2 sin(β2,3 + β1,2)
)

b
(2)
3;1,0,−1 c2,3

(

D1,2 sin(β2,3 + β1,2) + C1,2 cos(β2,3 + β1,2)
)

Table A.4: Coupling coefficients of the third SL oscillator.
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a
(2)
2;0,0,0

(

C2,1c1,2 sin(β2,1 + β1,2) −D2,1c1,2 cos(β2,1 + β1,2) − D1,2c1,2

+C2,3c3,2 sin(β3,2 + β2,3) −D3,2c3,2 −D2,3c3,2 cos(β3,2 + β2,3)
)

a
(2)
2;2,−2,0

(

C2,1c1,2 sin(β1,2 − β2,1) +D2,1c1,2 cos(β1,2 − β2,1)

−C1,2c1,2 sin(2β1,2) +D1,2c1,2 cos(2β1,2)
)

b
(2)
2;2,−2,0

(

C2,1c1,2 cos(β1,2 − β2,1) −D2,1c1,2 sin(β1,2 − β2,1)

−C1,2c1,2 cos(2β1,2) −D1,2c1,2 sin(2β1,2)
)

a
(2)
2;0,−2,2

(

C2,3c3,2 sin(β3,2 − β2,3) +D2,3c3,2 cos(β3,2 − β2,3)

−C3,2c3,2 sin(2β3,2) +D3,2c3,2 cos(2β3,2)
)

b
(2)
2;0,−2,2

(

C2,3c3,2 cos(β3,2 − β2,3) −D2,3c3,2 sin(β3,2 − β2,3)

−C3,2c3,2 cos(2β3,2) −D3,2c3,2 sin(2β3,2)
)

a
(2)
2;−1,2,−1

(

D3,2c1,2 cos(β1,2 + β3,2) − C3,2c1,2 sin(β1,2 + β3,2)

−C1,2c3,2 sin(β3,2 + β1,2) +D1,2c3,2 cos(β3,2 + β1,2)
)

b
(2)
2;−1,2,−1

(

D3,2c1,2 sin(β1,2 + β3,2) + C3,2c1,2 cos(β1,2 + β3,2)

+C1,2c3,2 cos(β3,2 + β1,2) +D1,2c3,2 sin(β3,2 + β1,2)
)

a
(2)
2;1,0,−1

(

−D3,2c1,2 cos(β1,2 − β3,2) − C3,2c1,2 sin(β1,2 − β3,2)

−C1,2c3,2 sin(β3,2 − β1,2) −D1,2c3,2 cos(β3,2 − β1,2)
)

b
(2)
2;1,0,−1

(

D3,2c1,2 sin(β1,2 − β3,2) − C3,2c1,2 cos(β1,2 − β3,2)

+C1,2c3,2 cos(β3,2 − β1,2) −D1,2c3,2 sin(β3,2 − β1,2)
)

Table A.5: Coupling coefficients of the second SL oscillator.

Table A.6 presents the correction hierarchy of coupling modes up to ε4 for the SL
oscillator.

1 and 3 2 and 4 3 4 5

1 (-1,1,0) (0,0,0) (-3,3,0), (0,-1,1) (-4,4,0), (0,-2,2) (0,3,-3), (5,-5,0), (4,-3,-1)

(-2,2,0) (-1,3,-2), (-2,3,-1) (-2,0,2), (2,-4,2) (2,-5,3), (3,-5,2), (1,3,-4)

(-1,0,1) (-1,-1,2), (-2,1,1) (-1,-2,3), (3,-2,-1) (3,-1,-2), (2,1,-3)

(1,-2,1) (-1,4,-3),(-3,4,-1) (1,-5,4), (4,-5,1)

2 (1,-1,0) (0,0,0) (-3,3,0), (0,3,-3) (-4,4,0), (0,4,-4) (5,-5,0), (0,5,-5), (2,-5,3)

(0,-1,1) (2,-2,0) (-1,3,-2), (-2,3,-1) (-2,0,2), (2,-4,2) (3,-1,-2), (1,2,-3), (3,-5,2)

(0,-2,2) (-1,-1,2), (-2,1,1) (-1,-2,3), (3,-2,-1) (1,3,-4), (4,-3,-1)

(-1,0,1) (-1,4,-3), (-3,4,-1) (4,-5,1), (1,-5,4)

(1,-2,1) (2,-5,3), (3,-5,2)

3 (0,1,-1) (0,0,0) (0,3,-3), (1,-1,0) (0,4,-4), (2,-2,0) (3,-3,0), (0,5,-5), (4,-3,-1)

(0,2,-2) (-1,3,-2), (-2,3,-1) (2,0,-2), (2,-4,2) (3,-5,2), (2,-5,3), (1,3,-4)

(1,0,-1) (-1,-1,2), (-2,1,1) (-1,-2,3), (3,-2,-1) (3,-1,-2), (2,1,-3)

(1,-2,1) (-1,4,-3), (-3,4,-1) (1,-5,4), (4,-5,1)

Table A.6: Tabulated are coupling terms that appear in different orders (columns) and for all

three oscillators (rows). Terms present up to ε2 are also found in orders ε3,4 but are not listed.
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Osc ε ε2

1 8 modes: (1,-1,0),

(1,1,0), (3,-1,0), (3,1,0),

(1,3,0), (1,-3,0), (3,-

3,0), (3,3,0)

47 modes: (2,-2,0), (2,0,0), (0,2,0), (1,-2,1), (1,2,-1),

(1,0,-1), (1,0,1), (2,2,0), (1,-2,-1), (1,2,1), (2,-4,0), (1,-4,1),

(1,4,-1), (0,4,0), (4,-2,0), (2,4,0), (3,-2,1), (3,2,-1), (3,-2,-

1), (3,0,1), (1,4,1), (3,-4,1), (4,2,0), (4,-4,0), (3,0,-1), (1,-

4,-1), (3,-4,-1), (4,0,0), (3,2,1), (3,4,-1), (4,4,0), (1,2,-3),

(1,0,-3), (1,-2,3), (3,4,1), (1,0,3), (1,2,3), (1,-2,-3), (3,-2,-

3), (3,-4,-3), (3,-2,3), (1,1,-4), (3,0,-3), (1,4,3), (3,2,-3), (1,-

4,-3), (3,2,3)

2 15 modes: (0,1,-1),

(1,1,0), (0,1,1), (1,-1,0),

(3,1,0), (3,-1,0), (0,3,1),

(0,1,-3), (0,1,3), (1,3,0),

(1,-3,0), (3,-3,0), (0,3,-

3), (3,3,0), (0,3,3)

56 modes: (0,2,0), (2,-2,0), (1,-2,1), (0,2,-2), (2,0,0),

(1,0,1), (1,0,-1), (1,-2,-1), (0,0,2), (1,2,-1), (1,2,1), (2,2,0),

(4,-2,0), (0,2,2), (4,0,0), (4,2,0), (0,2,-4), (3,0,1), (3,0,-1),

(0,0,4), (1,-4,1), (1,-2,3), (3,2,-1), (1,2,-3), (1,4,-1), (1,-

2,-3), (1,0,-3), (0,4,-2), (0,2,4), (1,-4,-1), (3,-2,1), (2,4,0),

(3,-2,-1), (1,-4,3), (0,4,0), (1,4,1), (1,2,3), (1,0,3), (2,-4,0),

(3,4,-1), (4,-4,0), (0,4,2), (3,2,1), (3,-4,1), (3,0,-3), (3,-

2,-3), (0,4,-4), (4,4,0), (1,4,-3), (3,-2,3), (3,0,3), (1,-4,-3),

(0,4,4), (1,4,3), (3,-4,-3), (3,2,3)

3 8 modes: (0,1,1),

(0,1,-1), (0,3,1), (0,3,-

1), (0,1,3), (0,1,-3),

(0,3,-3), (0,3,3)

50 modes: (0,2,-2), (0,0,2), (1,0,-1), (1,0,1), (1,-2,-1),

(1,-2,1), (0,2,0), (1,2,1), (1,2,-1), (0,2,2), (0,4,-2), (1,-4,-1)

, (1,-4,1), (0,4,0), (1,4,1), (1,4,-1), (0,4,2), (3,-2,-1), (3,-

4,-1), (1,0,3), (3,-2,1), (3,-4,1), (1,0,-3), (1,-2,-3), (1,-2,3),

(0,2,-4), (1,2,3), (1,-4,3), (1,2,-3), (0,2,4) , (3,2,1), (3,2,-

1), (3,0,-1), (0,0,4), (3,0,1), (1,4,-3), (1,-4,-3), (1,4,3), (3,-

2,-3), (0,4,-4), (3,4,1), (3,-2,3), (0,4,4), (3,4,-1), (3,-4,3),

(3,0,3), (3,2,3), (3,2,-3), (3,0,-3), (3,4,3)

Table A.7: All modes revealed in orders ε and ε2 for a network of VdP oscillators.

Osc modes

1 Modes: (0,0,0), (0,j,0), (1,−j,0), (1,j,0), (2,-3,0), (2,-2,0), (2,-1,0) (1,0,0), (2,-

4,0), (2,0,0), (2,k,0), (3,2,0), (3,-3,0), (3,-2,0), (3,-1,0), (4,-4,0), (3,1,0), (3,-4,0),

(4,-3,0), (4,1,0), (0,2,2), (0,3,1), (1,-2,-2)

2 (0,0,0), (0,0,j), (0,1,−j), (0,1,j), (0,2,j), (j,-1,0), (j,0,0), (j,1,0), (j,2,0), (0,1,0),

(0,2,0), (0,3,0), (0,2,-1), (1,-2,0), (0,2,-4), (0,2,-3), (0,2,-2), (2,-2,0), (3,-2,0), (4,-

2,0), (0,4,0), (0,3,-4), (0,3,-3), (0,3,1), (0,3,2), (1,3,0), (2,3,0), (3,-3,0), (3,4,0),

(4,-3,0)

3 (0,0,0), (0,1,-2), (0,j,-1), (0,j,0), (0,j,1), (0,1,2), (0,2,-2), (0,2,2), (2,2,-1), (2,2,0),

(0,3,-2), (0,3,2), (0,0,2), (0,4,-2), (0,4,2), (3,2,-1), (2,2,1), (0,1,-3), (0,2,-3), (0,4,-4),

(0,0,1), (0,1,4), (0,3,-4), (0,3,-3), (1,3,-1), (1,3,0), (3,1,-1), (2,3,0), (2,3,-1)

Table A.8: All modes recovered from the data driven reconstruction for the ML network.

j ∈ [1, 2, 3, 4]. Highlighting indicates false-negative occurrence of a mode in step 1, 1+20, 20

and false positive occurrence in step 1, 1+20, 20 of the IHTE phase, compared to the direct

reconstruction.
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Appendix A.6

A.6 Source code

iterative Hilbert transform em-
bedding (IHTE)

A C-code implementation featuring calculations
of phases ψ(a,b,c,d)(t), phase modulations and
frequencies from IHTE-DPT transformations as
well as estimates for the error measures Err⋆,∗n ,
STDψ

n

data-based iPRC estimation A C-code implementation of a kernel-density fit
for the pairwise phase-coupling function and an
implementation of the iterative scheme for recon-
struction of the iPRC.

direct construction of iPRC
and isochrones

C-code implementations of an iPRC construction
based on the state-space dynamics and a recon-
struction scheme for the isochronic structure. In
this method randomly placed initial condition
are evolved in the unperturbed system.

effective network reconstruc-
tion

A C-code implementation of phase-network re-
construction based on Fourier fitting

data generation A C-code implementation of several useful
tools for data simulation including Runge-Kutta
methods of order 1 to 4 (classical RK4 method)
as well as a stochastic Runge-Kutta scheme of
order 2 and a direct estimation method for ϕ(t)
and ϕ̇(t)

Table A.9: Listing of source code related to this text, available at https://gitlab.

com/IUFRGMP/.
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Appendix B

Miscellaneous

The cover picture of the book is an artist representation of several key issue of non-linear
dynamics but it also symbolises the power of the human mind to overcome obstacles.

First, the figure shows a projection of the sphere to the plane. This symbolises
periodicity and phenomena in phase-based analysis. Second, lines of evolving colour –
presumably – never end but continue on and on across the edge of the picture which
is one pole of the sphere. In a two-dimensional world however, a trajectory finally
has to intersect with itself. In the picture this never happens as there seem to evolve
different layers on top of each other such that uniqueness of the flow is guaranteed. This
symbolises that the mind finds solutions where no solutions are assumed to exist. Third,
the flow develops turbulent vortices that whir into and out of the deep and who carry
blue particles with them. Where are they going? This aspect of the figure symbolises
deterministic chaos and its sensitivity to small changes in initial conditions. The human
mind is attracted to the idea that visual lines ascend from left to right. Thus, the
unconscious probably tells that the blue band flows from bottom left to the upper right.
However, in this case the two turbulent vortices seem to evolve into the wrong direction.
Finally, every reader is invited to interprete separately: What is the meaning of our
perception?
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Appendix C

Correction remarks

This monograph contains minor changes of the text compared to the initially submit-
ted version. Changes are mainly added for clarity. Below these changes are listed for
transparency reasons.

p.3 In Eq. (1.1) the capacity is added while in the initial version normalised
quantities are used. This does not touch simulation results for which the
listed parameter values are employed correctly.

p.12 The Floquet multiplier Λk = exp(λkT ) is an eigenvalue of D(T ). In the
first version it is mentioned that it is an eigenvalue of D(mT ). In fact, this
operator has eigenvalue exp(mλkT ).

p.24 The largest non-vanishing functional interaction scales as ε2. In the first
version it is written smallest.

p.39 In footnote no. 4, using the spectrum of real signals FX(ω), in fact leads
to vanishing odd moments. This was not clearly written in the initial text.

p.51 In the iterative scheme the step Phase estimate mentions the mapping
ψn+1 = Θ−1(θn+1). In the previous version, the inversion was not men-
tioned, indicating a slightly different definition of the protophase-to-phase
mapping.

p.77 Columns two (n = 1), three (n = 15) and four (n = 15) in figure 6.9
show results for DPT (black) and FPT (red). In the initial version it is
mentioned that column two shows results only for DPT and results for FPT
are shown in column three. Moreover, in the original versions, the residue
of instantaneous frequencies is shown while in fact the difference of phases
is depicted.

p.79 In Eq. (7.1) The capacity is added similar to p.3

p.81 The observed true perturbation according to the expansion mentioned in
the text is M̂ ′[y(0)]δy(t). In the initial version it is denoted by M̂ ′[δy(t)]
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