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Abstract. Groundwater levels are monitored by environmen-
tal agencies to support the sustainable use of groundwater
resources. For this purpose continuous and spatially com-
prehensive monitoring in high spatial and temporal resolu-
tion is desired. This leads to large datasets that have to be
checked for quality and analysed to distinguish local anthro-
pogenic influences from natural variability of the groundwa-
ter level dynamics at each well. Both technical problems with
the measurements as well as local anthropogenic influences
can lead to local anomalies in the hydrographs. We suggest
a fast and efficient screening method for the identification
of well-specific peculiarities in hydrographs of groundwater
head monitoring networks. The only information required is
a set of time series of groundwater heads all measured at
the same instants of time. For each well of the monitoring
network a reference hydrograph is calculated, describing ex-
pected “normal” behaviour at the respective well as is typical
for the monitored region. The reference hydrograph is cal-
culated by multiple linear regression of the observed hydro-
graph with the “stable” principal components (PCs) of a prin-
cipal component analysis of all groundwater head series of
the network as predictor variables. The stable PCs are those
PCs which were found in a random subsampling procedure to
be rather insensitive to the specific selection of the analysed
observation wells, i.e. complete series, and to the specific se-
lection of measurement dates. Hence they can be considered
to be representative for the monitored region in the respective
period. The residuals of the reference hydrograph describe
local deviations from the normal behaviour. Peculiarities in
the residuals allow the data to be checked for measurement
errors and the wells with a possible anthropogenic influence
to be identified. The approach was tested with 141 ground-

water head time series from the state authority groundwater
monitoring network in northeastern Germany covering the
period from 1993 to 2013 at an approximately weekly fre-
quency of measurement.

1 Introduction

Sustainable management of groundwater resources aims to
ensure that the abstraction of groundwater does not exceed
groundwater recharge over the long term (e.g. Gleeson et
al., 2012). This resonates in the Water Framework Directive
of the European Union which aims to achieve and maintain
a good status of groundwater quantity; it includes the obli-
gation to monitor the temporal development of groundwa-
ter storage with sufficient spatial and temporal resolution to
be able to distinguish between anthropogenic influences and
natural variability (EU, 2000).

In practice declining trends in observed groundwater head
time series often serve as a first indication for anthropogenic
effects. However, declining trends in hydrological systems
do not necessarily imply anthropogenic influence, but they
might rather be indications of naturally occurring long-term
persistence (Hurst, 1951; Mandelbrot and Van Ness, 1968;
Mandelbrot and Wallis, 1969) induced for example by the
natural fluctuation of climatic drivers (e.g. Koutsoyiannis,
2006). Thus continuity of hydrologic records for more than
“just” a few decades is mandatory to incorporate this issue
in water management (Hirsch, 2011). This holds in particu-
lar for groundwater monitoring due to the much more pro-
nounced filtering of short-term fluctuations in the subsur-
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face compared to precipitation, soil moisture, or streamflow
(Skøien et al., 2003).

Thus, the sustainable management of groundwater re-
sources requires a spatially differentiated and comprehensive
monitoring of the groundwater level covering its temporal
development continuously over decades which leads to large
datasets. Checking the data quality at the wells of a spatially
comprehensive network can be very time consuming. Mea-
surement errors as well as local anthropogenic influences
lead to anomalies at individual sites. Thus, local anomalies in
the hydrographs can serve as an indication for both aspects.
That requires a reference either in the form of observed hy-
drographs measured at specific observation wells which are
considered representative for undisturbed behaviour typical
for the region (e.g. Winter et al., 2000; Gangopadhyay et al.,
2001) or in the form of some kind of modelled regional ref-
erence hydrograph. Here, we focus on the second case.

One option is to apply a physically based model for that
purpose. Depending on the characteristics of the region and
the level of model complexity, the amount of data required
can be large (cf. discussion in Coppola et al., 2003). A non-
exhaustive list of typical basic requirements includes cli-
matological data to drive the model, data on the hydraulic
properties of the subsurface which could comprise various
aquifers, data on land use or time series of water abstraction,
etc. That information is required in a spatially distributed
manner. In many cases, the monitoring effort, the effort to set
up the model, the complexity of the model, and the demand
on data are substantial obstacles for environmental authori-
ties or consultants at larger spatial scales.

Consequently, in practice some model parameters will
serve during calibration as a surrogate for missing data. For
example, Wriedt (2017) calculated a “theoretical climatic hy-
drograph” for each observation well in a monitoring net-
work by fitting the monthly climatic water balance to the ob-
served groundwater hydrograph using a damping and a trans-
lation factor. Here, the fitting of the damping and the transla-
tion factor compensated for missing information on different
properties of the analysed groundwater system like different
substrates, flow paths, etc.

Another option is to fit empirical models based on the
relationships between easy-to-obtain independent variables
and the observed water level. This has been performed for
example by means of multiple linear regression (Hodgson,
1978), artificial neural networks (Coulibaly et al., 2001; Cop-
pola et al., 2003), the combination of an artificial neural net-
work and a linear autoregressive model with exogenous in-
put (Wunsch et al., 2018), or different other approaches from
the field of artificial intelligence employing methods like
adaptive neuro-fuzzy inference systems, genetic program-
ming, support vector machines, or hybrid models such as
wavelet–artificial intelligence models (Rajaee et al., 2019).
Others applied time series models like the predefined im-
pulse response function in continuous time models (Von As-
muth et al., 2008), mixed models which combine determinis-

tic fixed effects models with statistical random effects mod-
els (Marchant et al., 2016), or the combination of different
methods from the fields of exploratory data analysis, infor-
mation theory, and machine learning (Sahoo et al., 2017).
Those data-driven approaches make efficient use of the avail-
able data and are therefore recommended as a relatively cost-
and time-efficient way to model groundwater level in areas
with limited data (Hodgson, 1978; Coulibaly et al., 2001;
Coppola et al., 2003). Another benefit is that the respective
models can easily be updated once new measurements or ad-
ditional variables become available (Coppola et al., 2003).

Here, we suggest to derive local reference time series
based on a principal component analysis (PCA) of a set of
monitored time series. This approach does not require any
other data than the time series of water level all measured
at same instants of time. PCA is one of the most established,
fastest and computationally cheapest statistical approaches to
summarize the spatiotemporal variability of a set of spatially
distributed time series. Based on the linear correlation struc-
ture of the dataset linearly independent principal components
(PCs) are derived. Each PC is associated with one character-
istic spatiotemporal pattern. Except for being fast and com-
putationally very cheap, PCA is readily implemented in most
of the common statistical software packages.

In analogy to climatology (e.g. Richman, 1986), the spa-
tiotemporal patterns of the PCs have been used for a long
time in hydrology as a compact description of the domi-
nant modes of hydrological variability in a region. Pioneer-
ing studies used it to describe dominant modes of streamflow
variability in the European USSR (Smirnov, 1972, 1973),
the USA and southern Canada (Bartlein, 1982), the USA
alone (Lins, 1985a, b, 1997), and different regions of Sweden
(Gottschalk, 1985). The leading PCs were used in combina-
tion with cluster analysis for the classification of streamflow
(Hannah et al., 2000) and groundwater (Triki et al., 2014)
hydrographs into groups with similar dynamics, which al-
lowed for example for reducing the effort of modelling of
all the time series in a groundwater monitoring network to a
few representative hydrographs (Upton and Jackson, 2011).
These approaches have to be distinguished from using PCs
for the identification of prevailing processes or functional
relationships (e.g. Longuevergne et al., 2007; Lewandowski
et al., 2009; Hohenbrink et al., 2016), which is beyond the
scope of this paper.

To our knowledge, the application of PCA-based ap-
proaches in the context of compact description of hydrolog-
ical variability focussed so far mainly on the leading PCs,
that is, the main modes of hydrological variability on the
scale of the analysed dataset, like the main regional spa-
tiotemporal patterns in a monitoring network. For example,
Smirnov (1973) used the leading PCs for filtering small-scale
disturbances from the large-scale patterns of long-period
streamflow fluctuations in the European USSR. In ground-
water monitoring, the leading PCs were used for example in
the evaluation of groundwater monitoring networks to iden-
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tify the observation wells which were most representative for
the analysed region (Winter et al., 2000; Gangopadhyay et
al., 2001).

In this study, we used the leading principal components of
a set of groundwater head time series of a large-scale moni-
toring network to decompose the observed hydrographs into
a reference part and a residual part for each site separately.
The reference hydrograph of an observation well describes
the expected “normal” behaviour at that well, i.e. the part of
the observed hydrograph which is considered typical for the
monitored region. It is determined by multiple linear regres-
sion of the observed hydrograph with the “stable” PCs as pre-
dictor variables. The stable PCs are determined by comparing
the results of a series of PCAs which were performed with
different randomly selected subsets of the complete dataset.
The subdatasets were derived in the spatial domain as ran-
dom selections of the observation wells, i.e. complete series,
and in the temporal domain as random selections of the mea-
surement dates. Those PCs that turned out to be rather insen-
sitive to the specific selection of analysed wells and measure-
ment dates were defined as sufficiently stable and considered
to be representative for the monitored region in the analysed
period. The residual part of the hydrograph depicts the local
deviations from the normal behaviour at the respective obser-
vation well, which is then analysed for peculiarities pointing
to technical problems or anthropogenic effects. Other appli-
cations of the reference hydrograph, like gap filling in series
which were not included in the PCA, are shortly discussed. In
contrast to other PCA applications this approach does neither
require any interpretation of the leading PCs nor any explicit
spatial analysis. The approach was tested with 141 ground-
water head time series of the authority’s groundwater moni-
toring network of the German federal state of Mecklenburg-
Vorpommern covering the period from 1993 to 2013 in an
approximately weekly resolution.

2 Data

2.1 Study region

The federal state of Mecklenburg-Vorpommern is located
in the northeast of Germany (Fig. 1), covering an area
of 23 214 km2 (Statistikportal, 2018). The hydrogeological
structure in the area consists of several “regional aquifer sys-
tems” of Pleistocene origin that are considered to be gen-
erally hydraulically separated (Manhenke et al., 2001). The
term regional aquifer system describes a system of aquifers
of different stratigraphy which are hydraulically connected
(Manhenke et al., 2001). Those were formed during different
periods of glaciation. Thus, the stratigraphy, or the sequence
of stratigraphies, within one aquifer system is not the same
everywhere (Manhenke et al., 2001). The water management
in the region is based on the aquifer systems and not on single
aquifers.

Single aquifers can be horizontally as well as vertically
separated. The aquifers consist mainly of sandy and gravelly
sediments; the intermediate aquitards consist mainly of till.
The Pleistocene sediments usually overlie Tertiary sediments
and can comprise more than 100 m. Within the Tertiary sedi-
ments the Rupelian clay layer hydraulically separates the un-
derlying saline Tertiary groundwater from the fresh ground-
water (Manhenke et al., 2001). However, at some locations
upwelling salty groundwater reaches the surface (compare
LUNG, 1984, and Fig. 2.11-6 in Martens and Wichmann,
2007), indicating that the hydraulic separation of the regional
aquifer systems is not complete everywhere.

Groundwater in Mecklenburg-Vorpommern is monitored
by the federal State Agency for Environment, Nature Con-
servation and Geology (LUNG). Monitoring comprised the
uppermost three regional aquifer systems, but not all of them
are contiguous (Hennig et al., 2002). In addition to the re-
gional aquifer systems, in some areas shallow local aquifers
with an extent of usually a few square kilometres, occa-
sionally more than 100 km2, have been identified and are
monitored as well (Hilgert and Hennig, 2017). These lo-
cal aquifers are not strictly hydraulically decoupled from
the regional aquifer systems, but their hydraulic connec-
tion is inhibited (Hilgert and Hennig, 2017). A mean an-
nual groundwater recharge of +122.3 mm for the whole of
Mecklenburg-Vorpommern was estimated for the years 1971
to 2000 by Hilgert (2009) based on the work of Hennig
and Hilgert (2007). A map of the spatial distribution of the
mean annual groundwater recharge is provided by the LUNG
(LUNG, 2009).

2.2 Groundwater head data and preprocessing

Groundwater level data were available for 583 observation
wells in the monitoring network of the LUNG. In general,
the dataset covered a range of different monitoring periods.
The mean length of measurement record was approximately
19.9 years. At some wells monitoring started as early as
1953.

For this study, we selected those 141 wells which were
continuously monitored during the 20-year period from
1 November 1993 to 22 October 2013 (Fig. 1). All 141
groundwater head series were checked for quality before by
the LUNG. The analysed dataset comprised only those time
series which were considered to be without any direct an-
thropogenic effects or measurement errors. During the mon-
itoring period the state agency aimed to take measurements
consistently on the 1st, 8th, 15th and 22nd day of the month.
Exceptions from this rule appeared for eight series (Fig. S1 in
the Supplement). Bi-weekly readings were conducted from
the beginning of the monitoring period at two wells un-
til November 2005 and at one well until December 2006.
Monthly readings were conducted from the beginning of the
monitoring period at two wells until November 2007, at one
well until September 2001, and at another well until Decem-
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Figure 1. Map of the study area and the selection of groundwater observation wells (N = 141) in the federal state of Mecklenburg-
Vorpommern (highlighted by grey shading in the inset map). The administrative borders of Germany and of the federal state of Mecklenburg-
Vorpommern were obtained from GADM (2017).

ber 2003. At one well the reading interval was changed to
monthly readings in May 2002 and continued so until the
end of the monitoring period. The variety of days between
subsequent readings is shown for each series in Fig. S2. The
mean, minimum, and maximum of all 141 series’ mean mea-
surement intervals were 5.3, 1.5, and 13.6 d. The mean, min-
imum, and maximum of all 141 series’ maximum time gaps
between subsequent measurement dates were 24.3, 10, and
88 d. All data gaps were linearly interpolated. Subsequently,
regular quasi-weekly time series were generated by select-
ing readings of the 1st, 8th, 15th, and 22nd of each month of
the 20-year period. This resulted in a set of 141 groundwater
head time series each with readings at the same 960 quasi
weekly measurement dates. Thus, the last “quasi-week” ex-
hibited different lengths for the different months.

The observation wells were irregularly distributed (Fig. 1).
This is a consequence of the mission of the state agency to
monitor possible anthropogenic influences on groundwater
level, thus focusing on more densely populated areas. At 35
sites wells were screened at different depths. Distances be-
tween the closest observation wells ranged from 0 km, at the
sites with several wells, to 20.2 km, with a mean distance
between closest wells of 3.4 km. At each site, the screens
were numbered from the surface downwards (Fig. 1). Differ-
ent numbers of the screens do not necessarily imply different
aquifers. Comparing two observation wells of different sites,
a higher screen number does not imply that the distance of
the screen or of the water level to the surface is larger as well
(Fig. 2). The mean depth to groundwater, measured as dis-
tance of the groundwater head to the cap of the well head
during the observation period, ranged from 0.65 to 30.96 m,
with a mean of 6.30 m and a standard deviation of 5.36 m.

Figure 2. Mean depths to groundwater at the observation wells in
metres of the complete set of series and separately for each screen
number.

The distribution of monitored mean depths to groundwater
was heavily skewed towards smaller depths (Fig. 2). Due to
the complex hydrogeological setting, the capture zones of the
wells usually are not known with sufficient detail.

As a rough approximation of the autocorrelation of the
time series in spite of the weekly sampling intervals not be-
ing completely regular, the correlation of the series with itself
shifted by one time step were assessed, yielding a correlation
coefficient of r = 0.97 with a standard deviation of 0.04. The
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correlation in the spatial domain between the series of the
closest adjacent observation wells was substantially weaker
with a mean correlation of r = 0.76 and exhibited substan-
tially larger variability with a standard deviation of 0.24.

3 Methods

3.1 Principal component analysis

The spatiotemporal variability in the groundwater head mon-
itoring network was summarized with linearly independent
principal components determined by principal component
analysis. The PCs are derived by an eigenvalue decomposi-
tion of the covariance matrix of the analysed set of variables,
that is, the observed groundwater head series. To achieve
equal weighting of all series, we applied PCA to the z-scaled
groundwater head series, thus each series was scaled to a
mean of zero and a standard deviation of one. This corre-
sponds to performing PCA with the correlation matrix of the
groundwater head series.

Each PC consists of an eigenvalue, eigenvector (loadings),
and scores. The size of the eigenvalue of a PC in relation
to the sum of all eigenvalues of all PCs corresponds to the
share of variance in the dataset that is assigned to that PC.
The loadings are the weights in the linear combination of
the analysed variables, here the z-scaled groundwater head
series, to calculate the scores of the PCs.

In this study, the analysed dataset consisted of a set of time
series all covering the same period and exhibiting the same
dates. Thus, the scores of the PCs are times series with the
same dates as the analysed time series. Please note that this
condition is a requirement for the suggested application of
the reference hydrograph in this study. The Pearson corre-
lation coefficient was used to describe the relationships be-
tween the observed groundwater head time series and that of
a selected PC. This yielded a characteristic spatial pattern of
“occurrence” of the respective PC time series at the obser-
vation wells for each PC. The Pearson correlation values of
this relationship correspond to the spatial pattern of the load-
ings of a PC multiplied by the square root of the eigenvalue
of the respective PC. For better readability of the results we
used here the Pearson correlation values for the maps of the
loadings. Thus, each PC is associated with a characteristic
temporal pattern (time series of the scores) and spatial pat-
tern (loadings).

We performed PCA with the function “prcomp” from the
default package “stats” in R version 3.4.1 (R Core Team,
2017). For more details on PCA, please see Jolliffe (2002).

3.2 Stability of PCs

Being a data-driven approach, the PCA results depend on the
selection of data. Thus, for the assessment of the typical re-
gional behaviour it is crucial to use only those PCs which are
rather insensitive to the specific selection of analysed obser-

vation wells, i.e. complete series, and to the specific selection
of measurement dates. Those PCs were considered to be rep-
resentative for the monitored region in the studied period.

To assess the stability of spatial patterns of the PC load-
ings on the scale of the network, we performed 10 000 PCAs
based on random subsamples of the 960 quasi-weekly mea-
surement dates and compared the PC loadings of the differ-
ent runs. We calculated the squared Pearson correlation co-
efficient (R2) of all combinations of loadings of PC 1 of the
different PCA runs, all combinations of loadings of PC 2 of
the different PCA runs, etc. for all PCs with an eigenvalue
larger than one. This common threshold is known as the
Kaiser criterion. It is used in the PCA of z-scaled variables
to select only those PCs which summarize more variance of
the dataset than single analysed z-scaled variables (Jolliffe,
2002). The whole stability analysis was performed with sub-
samples of 70 % of all measurement dates. Analogously, we
performed the stability analysis of temporal patterns of the
PC scores with 10 000 PCAs each based on random selec-
tions of 70 % of the 141 complete groundwater head series.
We considered only those PCs as stable of which the corre-
lations of both the spatial as well as the temporal patterns
exhibited a median R2 > 0.9.

3.3 Well-specific reference hydrograph and residuals

The focus of this study was to present an approach to quickly
screen all groundwater head series in a comprehensive mon-
itoring network for problems with data quality and anthro-
pogenic effects. For this purpose each observed hydrograph
was decomposed into a normal part describing the typical be-
haviour for the monitored region and the well-specific devia-
tions from it. The normal behaviour at each observation well
was estimated by a well-specific reference hydrograph. The
well-specific reference hydrograph was calculated by mul-
tiple linear regression of the observed series with the time
series of the scores of the stable PCs. The residuals from the
regression (residuals), which is the part of the series that has
not been assigned to the reference hydrograph, describe the
local deviations from the normal behaviour at each obser-
vation well. In contrast to many other approaches, it is not
required that the residuals are white noise or alike. System-
atic structures in the residuals like drifts, trends, cyclic pat-
terns, sudden shifts, or distinct periods of deviations indicate
that the respective pattern is not representative for the whole
dataset, but it is a local peculiarity instead. This serves as an
indication for technical problems or anthropogenic influence.

The squared linear correlation coefficient R2 of the ob-
served versus the respective reference hydrographs was used
for a first assessment which observation wells exhibit rather
normal behaviour and which do not. This enabled to rank all
wells in the network quickly according to their “normality”.
Those wells at which the observed series were not well rep-
resented by the respective reference hydrograph, i.e. those
which exhibited low R2 with the reference hydrograph and
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high R2 with the residuals, were considered the most promis-
ing candidates to exhibit anthropogenic effects or measure-
ment errors. The residuals were visually examined for pecu-
liarities. Those were then discussed with the experts from the
LUNG in the context of knowledge on the local conditions
and other information available for the respective observa-
tion wells to derive hypotheses on the causing factors.

4 Results

4.1 Stability of PCs

The first 10 PCs of the PCA of the complete dataset exhib-
ited eigenvalues larger than one. Thus in the following we
present the results of the first 10 PCs only. The comparison
of the spatial patterns of the PCAs which were performed
with the subdatasets based on the random subsampling of
the measurement dates is summarized in Fig. 3a. In general,
the median correlation between the loadings of the PCs of the
different PCAs was decreasing, and the variability of correla-
tion between the loadings was increasing with an increasing
rank of the PCs (Fig. 3b). All PCs except the 8th and the
10th exhibited notably stable spatial patterns with a median
correlation of R2 > 0.9.

The comparison of the temporal patterns of the PCAs
which were performed with the subdatasets based on the ran-
dom selections of observation wells, i.e. complete series, is
summarized in Fig. 3b. Generally, with an increasing rank of
the PCs the median correlation between the scores of the PCs
of the different PCAs was decreasing, and the variability of
correlation between the scores was increasing (Fig. 3b). Only
the first four PCs exhibited notably stable temporal patterns
with a median correlation of R2 > 0.9.

Accordingly, the first four PCs were considered stable on
the scale of the network, accounting for 80.8 % of the ob-
served variance in the groundwater head series. The variance
was assigned as follows: 48.3 % for PC 1, 17.2 % for PC 2,
9.5 % for PC 3, and 5.8 % for PC 4. The assigned temporal
and spatial patterns of the complete dataset with all 141 se-
ries are shown in Figs. 4 and 5. In the following the analysis
is restricted to these four stable PCs.

4.2 Well-specific reference hydrograph and residuals

At each well, the residuals of the reference hydrograph were
checked for peculiarities. We present here two examples. At
well Deven (Fig. 6) the observed hydrograph was in gen-
eral very well represented by the well-specific reference hy-
drograph (R2

= 0.84). The mean depth to groundwater was
9.52 m. A single period stuck out in the plot of the residuals.
At the end of October 1998 the residuals showed a sudden
shift of approximately 17 cm towards a higher water level,
followed by a similar sudden shift “back to the old level”
in December 1999. Those shifts were not clearly identifiable

in the observed time series itself nor in the reference hydro-
graph.

Observation well Neubrandenburg UP exhibited in general
a relatively good fit of observed series and the reference hy-
drograph (R2

= 0.77) with the exception of two anomalous
periods in 1997–1998 and 2007–2008, a series of minor de-
viations before 1997, and another relatively strong deviation
in 2011 (Fig. 7a and c). The mean depth to groundwater was
4.61 m. For comparison we considered the nearby observa-
tion well NB-Hotel Vier Tore approximately 600 m further
south which was formerly excluded from the PCA due to
known anthropogenic influence (Sect. 2.2). The mean dis-
tance of the well head to the groundwater level was 3.74 m.
Here we calculated the reference hydrograph in the same
manner as multiple linear regression of the observed hy-
drograph with PCs 1–4. Again the observed series exhib-
ited in general a relatively good fit with the reference hy-
drograph (Fig. 7b and c). However, compared to observation
well Neubrandenburg UP the two periods of strong devia-
tion in 1997–1998 and 2007–2008 were more pronounced in
the residuals and, in contrast to observation well Neubran-
denburg UP, clearly visible in the observed series as well.
This was reflected in a substantially weaker correlation be-
tween the observed series and the reference hydrograph
(R2
= 0.46).

5 Discussion

5.1 Stability of PCs

To select only those PCs which are representative for the
monitored region in the analysed period, a series of PCAs
were performed based on randomly selected subsets of the
complete dataset to identify the stable PCs. The stable PCs
are those of which the assigned spatial patterns (loadings)
and temporal patterns (scores) were rather insensitive to the
selection of analysed observation wells and measurement
dates. Only the stable PCs were considered for the further
analysis.

Earlier studies which used PCA to summarize hydrolog-
ical variability in a region analysed the stability of their re-
sults in a similar way (Smirnov, 1973; Lins, 1985a). Those
attempts were limited to the comparison of the PCAs of a few
different configurations of the dataset. The correlation anal-
ysis in this study extended the assessment of stability of the
PCs towards random selections of the analysed data in both
the spatial and the temporal domain and a substantially larger
number of different configurations of the analysed dataset.

The comparison of the results of the 10 000 PCA variants
revealed that the stability of individual PCs decreased in gen-
eral with a decreasing rank of the PCs (Fig. 3). Clear differ-
ences between the stability of temporal and spatial patterns of
the PCs were observed. PCA results were more sensitive to
changes in the selection of the observation wells considered
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Figure 3. Comparison of the PCA results of the stability analysis. (a) Correlation of loadings based on the random subsampling of the
measurement dates to assess the stability of spatial patterns. (b) Correlation of scores based on the random selection of observation wells, i.e.
complete series, to assess the stability of temporal patterns. The boxes indicate the quartiles; the whiskers all dates indicate which are within
the range of the first quartile of −1.5 times the interquartile range or the third quartile of +1.5 times the interquartile range, respectively.
Percentage of values outside the whiskers of a boxplot is given in the labelling of the x axis for each PC.

Figure 4. Time series of scores of the stable PCs 1 to 4.

(Fig. 3b) than to changes in the selection of measurement
dates (Fig. 3a). This likely reflects the stronger mean corre-
lation between subsequent observations at the sites (tempo-
ral autocorrelation) compared to the mean correlation of the
series of the closest adjacent sites (correlation in the spatial
domain) (Sect. 2.2). The first four PCs were found to be sta-

ble (Fig. 3). This gave some confidence that their spatial and
temporal patterns were indeed characteristic for the moni-
tored region in the analysed period and not restricted to the
specific selection of observation wells or measurement dates.
Compared to the established Kaiser criterion (Sect. 3.2), the
number of PCs considered was reduced from 10 to 4.
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Figure 5. Spatial patterns of loadings of the stable PCs 1 to 4.

Figure 6. (a) Time series of the hydraulic head and the reference hydrograph of well Deven. (b) Time series of residuals. Location of the
well is marked as a black dot in the inset map. Height of the well head at well Deven is 61.48 m a.s.l. Correlation of the observed series with
the reference hydrograph and with the residuals is given as R2.

5.2 Well-specific reference hydrographs and residuals

The well-specific peculiarities in the time series of the resid-
uals of the reference hydrographs might be of different ori-
gins. First of all they might be caused merely by technical
problems. For example we interpreted the single period in

1999 which sticks out in the plot of the residuals of obser-
vation well Deven as a stepwise shift of the logger (Fig. 6b).
This shift was in phase with the seasonal pattern of the ob-
served series and was therefore not obvious from the visual
inspection of the observed series alone, while it was clearly
visible in the residuals.
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Figure 7. Time series of hydraulic head and the reference hydrograph of (a) well Neubrandenburg UP and (b) well NB-Hotel Vier Tore.
(c) Time series of residuals. Location of the wells is marked as a black dot in the inset map. Height of the well head at well Neubrandenburg
UP is 18.3 m a.s.l.; at well NB-Hotel Vier Tore it is 17.86 m a.s.l. Correlation of the observed series with the reference hydrograph and with
the residuals is given as R2.

An example of well-specific peculiarities in the residuals
due to local anthropogenic influence is given in Fig. 7. Obser-
vation well NB-Hotel Vier Tore was excluded from the PCA
because its hydrograph was known to be influenced by the
lowering of the groundwater level during the construction of
an underground car park approximately 100 m away in 1997–
1998 and the construction of another underground car park
approximately 200 m away in 2007–2008. While this influ-
ence was clearly visible in the observed series at that observa-
tion well (Fig. 7b), it was not obvious in the observed series
at observation well Neubrandenburg UP, especially not the
second deviation in 2007–2008 (Fig. 7a). This is most proba-
bly because Neubrandenburg UP was further away from both
construction sites, namely approximately 400 m from each.
However, in the residuals both periods became clearly visi-
ble for both observation wells although to different degrees
at the two wells (Fig. 7c).

Such clear assignment of anthropogenic influence to a lo-
cal deviation from the regional behaviour is only possible if
the scale of the respective effect is rather local in comparison

to the scale of the monitoring network as a whole and the
scale of the spatiotemporal resolution of the network in par-
ticular. The latter enables a distinct localization of the influ-
ence. An anthropogenic effect which induces similar ground-
water head dynamics at a substantial amount of the series
of the dataset would be incorporated into the leadings PCs
(Wriedt, 2017) and thus would affect the reference hydro-
graphs. However, such an effect is hardly likely. Moreover,
the approach presented does not differentiate anthropogenic
from “natural” effects per se. Rather, it decomposes the time
series into regional patterns which can be assigned to many
or all time series of the dataset and local patterns which are
restricted to a few or single sites. Another restriction is that
PCA based on z-scaled series considers only temporal pat-
terns of the groundwater head, but it ignores the absolute
values. Thus, it does not allow any inferences as to whether
the observed groundwater head on average is higher or lower
than it would be under natural conditions. Then again, the z

scaling of the series makes the analysis robust against sys-
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tematic differences or discontinuities in the spatial distribu-
tion of mean groundwater recharge.

The spatial clustering of observation wells indicated a spa-
tial bias of the monitoring (Fig. 1). It reflected the focus
of the monitoring on anthropogenic water use, for example
close to settlements, towns, etc., which is a prerequisite for
sustainable water management. Because all the series were
equally weighted by z scaling (Sect. 3.1), the derived PCs,
and consequently the determined normal behaviour, was dis-
torted towards areas with a higher density of observation
wells (Karl et al., 1982) as well as towards smaller mean
depths to groundwater (Fig. 2). This should be considered for
any interpretation of the reference hydrographs as well as of
their local deviations. However, in this study, the stable PCs
used for the calculation of the reference hydrographs turned
out to be rather robust with respect to the selection of obser-
vation wells (Sect. 4.1), suggesting that the results were not
primarily determined by the local clustering of the observa-
tion wells.

In general, the reference hydrograph is a relatively good-
natured and robust PCA application for mainly two reasons.
First, the selection of the PCs considered is transparent and
reproducible. The approach prevents the consideration of
PCs which exhibit pronounced instability of the associated
spatial and temporal patterns, for example PCs with “de-
generate eigenvalues”, that is eigenvalues which are indis-
tinguishable within their range of uncertainties (Hannachi et
al., 2007). Second, the single PCs are not used, but the com-
bination of the stable PCs are. Thus, it is not necessary to in-
terpret single PCs as drivers of groundwater head variability
or distinct processes. Consequently, describing the regional
behaviour with the reference hydrograph is also applicable
in cases in which the interpretation of single PCs is severely
hampered, for example if the associated spatial patterns of
the PCs mainly reflect the shape of the analysed domain (do-
main shape dependence) (Buell, 1975, 1979; Richman, 1986,
1993).

Some PCA applications involve rotation of the consid-
ered PCs to achieve more simple structures, i.e. more local-
ized spatial patterns, which might support the interpretation
of single PCs (Lins, 1985b; Richman, 1986; Jolliffe, 1987,
2002; Hannachi et al., 2007). It is possible to combine such
applications with the reference hydrograph application. For
the suggested screening application, rotating the PCs does
not change the results as long as the rotation is performed
with all stable PCs or only with a subset of the stable PCs. In
this case the reference hydrographs and their residuals are the
same whether they are calculated from the rotated or the un-
rotated PCs. Concerning the reference hydrographs, the de-
cisive question is which PCs are included in the calculation.

The approach presented uses the spatiotemporal variabil-
ity in a large set of groundwater head series to determine
individual reference hydrographs for each observation well.
Thus, it requires neither the identification of clusters of sim-
ilar wells or single reference wells nor assumptions about

the catchments of the wells, hydraulic connection between
the wells, etc. This is in contrast to approaches which select
some of the monitored wells as reference observation wells
being representative for the whole monitoring network or for
subgroups or subregions only. For example other PCA appli-
cations used the clustering of observation wells in the scatter-
plot of loadings of PC 1 versus PC 2 to identify “index” wells
for each cluster (Winter al., 2000) or applied PCA directly to
subgroups of a monitoring network, which were determined
based on an estimation of the physical relatedness of the ob-
servation wells earlier, to firstly identify the “principal wells”
of the subgroups and subsequently identify the most repre-
sentative wells for the whole network by ranking all wells
according to their number of occurrences as a principal well
(Gangopadhyay et al., 2001).

However, despite the different approaches of how to de-
termine the most representative observation wells, it has to
be considered that observation wells which are of little rep-
resentative value for the whole monitoring network might be
of high informative value, for example with respect to anthro-
pogenic influence that is specific to single observation wells.
In contrast to the selection of single wells which are consid-
ered especially representative or atypical for the network, the
suggested approach in this study enables a quick ordering of
all wells in a network according to their representativeness
and yields an estimation of the local well-specific behaviour
for each well.

5.3 Other applications

In addition to the presented applications in this study, other
applications of the reference hydrographs and residuals are
possible. One option is to use the series of the stable PCs
(scores) as predictor variables in a linear regression to fill
gaps in hydraulic-head series which were not analysed with
the PCA but which exhibit some overlap with the monitoring
period covered by the PCA. For example the reference hydro-
graph at observation well NB-Hotel Vier Tore (Fig. 7b) was
calculated although the groundwater head series was not part
of the PCA. In this study it was merely used for the identifi-
cation of the influence of the construction works, but it could
be used to replace the periods which were influenced by the
construction works with an estimation of unaffected ground-
water head dynamics as well (Fig. 7b). In the spatial domain,
calculating the Pearson correlation of excluded series with
the stable PCs for limited overlapping time periods can be
used to extend the spatial coverage of the maps of the load-
ings. For both applications, the random subsampling analy-
sis can be used to estimate how many missing values in the
series might be tolerable. For this dataset we would be confi-
dent to consider series with up to 30 % of missing values dur-
ing the 20-year period. The maximum time gap in this study
was 88 d (Sect. 2.2), and most of the time gaps were substan-
tially smaller (Fig. S2). Thus, the results are most likely less
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stable for a few long gaps compared to numerous but short
gaps.

Another application is to identify distinct reference obser-
vation wells by selecting those observation wells at which
the correlation between the reference hydrograph and the
observed series is above a certain threshold, for example
R2 > 0.9. Those would be considered the most representa-
tive observation wells for the whole monitoring network. In
case the period covered by the series of the reference obser-
vation wells exceeds the period covered by the PCA, they
can be used as predictor variables in a linear regression to
extrapolate the series of the stable PC scores.

The methods to extend the spatial and temporal coverage
of the PCs should be handled with care. However, because
only the stable PCs were used, there should be no major bias,
as long as the extension is performed only for some years or
a small number of additional series. If new data are available
that cover a larger area or a longer period, it is in general
preferable to perform a new PCA with all available data to
account for systematic changes in the temporal dynamics of
the analysed groundwater system and systematic changes in
the monitoring network geometry and spatial distribution of
the observation wells.

The detection of changes in characteristic temporal pat-
terns (scores) and their occurrence in the monitoring network
(maps of the loadings) between different observation peri-
ods is another application of the reference hydrographs and
their residuals. It has to be noted that a direct comparison of
the temporal patterns of two periods can only be performed
for temporally overlapping periods. For non-overlapping pe-
riods, a comparison is restricted to general time series char-
acteristics, for example the timing or amplitude of a seasonal
pattern.

6 Conclusions

The application of the reference hydrographs and their resid-
uals proved to be a straightforward way to check the data for
measurement errors and to identify candidates for local an-
thropogenic influence. Both applications are actually an in-
terpretation of the temporal dynamics of local anomalies in
the observed groundwater head series. In contrast to other ap-
proaches the identification of those local anomalies is based
on the correlation among the observed groundwater head se-
ries only and not based on physical models or empirical rela-
tionships with any predictor of groundwater head dynamics.
The assignment of local anomalies to the residuals is not re-
stricted to specific types of temporal patterns. The residuals
merely comprise what cannot be ascribed to the reference hy-
drographs by means of the stable PCs. This can be short-term
structures like sudden shifts or distinct periods of deviation as
well as long-term structures like drifts, trends, or cyclic pat-
terns. The presented approach also does not require an inter-
pretation of single PCs as distinct physical processes or func-

tional relationships. This limitation with respect to the direct
physical interpretation of the results brings with it the benefit
that the only information required is series of (groundwater)
hydraulic-head readings all measured at the same instants of
time. Other suggested applications for the stable PCs are for
example data-driven gap filling in the observed series, spa-
tial and temporal extrapolation of the reference hydrographs,
or the identification of distinct reference observation wells.
The approach to determine the stable PCs is transparent and
reproducible.

The computational demand is very low. Time series of
the well-specific deviations from normal behaviour (resid-
uals) are easily derived and enable a fast screening for
well-specific peculiarities. In monitoring practice, ranking all
wells in the network according to their normality can be used
to distribute resources, in particular to support the decision
which observation wells, i.e. which series, should be investi-
gated in more detail. Especially for larger datasets it can be
helpful to apply time series tools like filters to identify for
example step changes or trends in the analysis of the residu-
als. Those tools can be easily incorporated into the workflow
once the residuals are derived. However, based on our expe-
rience, we advocate that visual inspection should be included
in the quality check workflow as well. Furthermore the resid-
uals can be used to categorize the deviations from the nor-
mal behaviour. Thus, we recommend the approach presented
as a fast screening tool for the assessment of comprehensive
groundwater monitoring networks.
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