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Abstract. Business process models are abstractions of concrete opera-
tional procedures that occur in the daily business of organizations. To cope
with the complexity of these models, business process model abstraction
has been introduced recently. Its goal is to derive from a detailed process
model several abstract models that provide a high-level understanding
of the process. While techniques for constructing abstract models are
reported in the literature, little is known about the relationships between
process instances and abstract models.
In this paper we show how the state of an abstract activity can be calcu-
lated from the states of related, detailed process activities as they happen.
The approach uses activity state propagation. With state uniqueness and
state transition correctness we introduce formal properties that improve
the understanding of state propagation. Algorithms to check these proper-
ties are devised. Finally, we use behavioral profiles to identify and classify
behavioral inconsistencies in abstract process models that might occur,
once activity state propagation is used.

1 Introduction

Recent years have seen increasing interest in modeling business processes to better
understand and improve working procedures in organizations and to provide
a blue print for process implementation. With increasing complexity of the
processes and their IT implementations, process models tend to become complex
as well. Often, business users can hardly grasp and analyze the process, due to
its complexity. To cope with this problem, business process model abstraction
(BPMA) has been introduced. In particular, techniques have been devised to
generate from a detailed process model an abstract model that disregards aspects
that are considered not important for the abstraction purpose.

While techniques and use cases of process model abstraction are well under-
stood, e.g., [4, 5, 11, 10, 13, 16], little is known about the relationships between
process instances and abstract process models. Only a small share of the named
BPMA approaches discusses the role of process instances [4, 13]. However, even
these research endeavors have gaps and limitations motivating this paper. In this
paper we assume that abstract process models are delivered by the abstraction
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algorithm presented in [16]. The algorithm’s input is a process model along
with information about activity groups in this model. The output is an abstract
model, where each activity corresponds to an activity group in the initial model.
Assuming that each activity of the initial model belongs to some group, [16]
is liberal in terms of activity group definition, since it enables non-hierarchical
activity aggregation. Groups may share activities, while activities of one group
can be arbitrary spread over the model.

This paper clarifies the relations between process instances and abstract
process models. To achieve this we introduce an approach to derive the state of
an activity in the abstract model from the states of concrete process activities,
as they happen. The approach is based on activity instance state propagation
that determines the state of an abstract activity by the states of their detailed
counterparts. We identify two formal properties for state propagation approaches—
state uniqueness and state transition correctness. Further, we develop methods for
validation of these properties. We argue that the properties should be considered
during the design of any state propagation approach and can be validated by
the developed algorithms. Finally, we investigate behavioral inconsistencies that
might result from state propagation.

The paper is structured as follows. Section 2 motivates the work and identifies
the main challenges. Section 3 introduces the auxiliary formal concepts. In
Section 4 we elaborate on the state propagation, its properties and property
validation methods, while in section 5 the observed behavioral inconsistencies are
explained. We position the contribution of this paper against the related work in
Section 6 and conclude with Section 7.

2 Motivating Example and Research Challenges

This section provides further insights into the problem addressed by the current
study. We start with a motivating example. Further, we informally outline our
approach and identify the main research challenges emerging on the path towards
the solution.

Various stakeholders use models with different amount of details about a
given business process. In this setting several models are created for one process.
Consider the example in Fig. 1. Model m describes a business process, where a
forecast request is processed. Once an email with a forecast request is received, a
request to collect the required data is sent. The forecast request is registered and
the collected data is awaited. Then, there are two options: either to perform a full
data analysis, or its quick version. The process concludes with a forecast report
creation. Model m contains semantically related activities that are aggregated
together into more coarse-grained ones. The groups of related activities are
marked by areas with a dashed border, e.g., group g1 includes Receive email
and Record request. Model ma is a more abstract specification of the forecast
business process. Each activity group in m corresponds to a high-level activity in
ma, e.g., g1 corresponds to Receive forecast request. Meanwhile, m′

a is even more
abstract: its activities are refined by the activities of model ma and are further
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Fig. 1. Models capturing business process “Forecast request handling” at different levels
of abstraction

refined by activities of m. While the forecast process can be enacted using model
m, abstract models ma and m′

a are suitable for monitoring the state of process
instances. For example, a process participant might leverage model ma, while
the process owner may monitor states of instances by means of m′

a. Traditionally,
models capturing the same business process at different levels of abstraction
were created independently. However, this method turns out to be pricey and
error-prone: keeping these models in sync is a challenge. Hence, in the context of
this paper we adhere to the idea that an abstract model ma is derived from m
using an abstraction technique, in particular, the one developed in [16].

terminated

skipped

runningreadyinit

skip

enable begin terminate

Fig. 2. Activity instance life cycle

We assume that the state of a pro-
cess instance is defined by the states
of its activity instances. The paper ad-
heres the activity instance life cycle
presented in Fig. 2. When an activity
is created, it is in the init state. We
consider process models to be acyclic.
Hence, once a process is instantiated,

all of its activity instances are created in state init. The enable state transition
brings the activity into state ready. If an instance is not required, skip transition
brings it to state skipped. The skipped state has to be spread among activities
that are not required. This can be realized by a well established approach of dead
path elimination [12]. From the ready state the activity instance may evolve to
running state by means of transition begin. When the instance completes its work,
terminate transition brings it to the terminated state. The use of one activity
instance life cycle implies that all activity instances behave according to this
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life cycle disregard of the abstraction level of the model an activity belongs to.
Throughout this paper we frequently refer to activity instance states. As activities
at the model level do not have states, we interchangeably and unambiguously
use terms activity state and activity instance state.

To monitor process instance state by means of an abstract model, while
a detailed model is executed, one needs a mechanism establishing the relation
between the states of activities in the abstract model and activities of the detailed
model. We reference this mechanism as activity instance state propagation.
Consider a group of activities g in model m and activity x of the abstract
model, such that x is refined by activities of g. State propagation maps the
states of instances of activities in g to the state of x. One can design various
state propagation mechanisms depending on the use case at hand. However, we
identify two formal criteria to be fulfilled by any state propagation. The first
criterion, activity instance state uniqueness, is motivated by the observation that
each activity instance at every point in time is exactly in one state. Hence, this
criterion requires state propagation to be a surjective mapping: each constellation
of instance states in group g must result exactly one state for x. Second criterion,
activity instance state transition correctness requires state propagation to assure
that every activity instance behaves according to the declared life cycle, neither
adding, nor ignoring predefined state transitions. Section 4 not only presents the
state propagation, but shows how its properties can be validated.

We design state propagation approach that considers the activity grouping
information along with information about the states of activity instances in the
groups. This state propagation is simple and can be efficiently implemented.
However, this approach does not consider control flow information. Hence, one
may observe behavioral inconsistencies taking place in the abstract model: while
the model control flow prescribes one order of activity execution, state propaga-
tion results contradicting activity instance states. Section 5 elaborates on this
phenomenon.

3 Preliminaries

This section introduces the basic notions the paper builds on. We start formalizing
the concepts of a process model and process instance and link them together. The
section postulates behavioral profiles concept and concludes providing insights
into the abstraction principles assumed in this paper.

Definition 1 (Process Model). A tuple m = (A,G, F, s, e, t) is a process
model , where:
– A is a finite nonempty set of activities;
– G is a finite set of gateways;
– N = A ∪G is a set of nodes with A ∩G = ∅;
– F ⊆ N ×N is a flow relation, such that (N,F ) is an acyclic connected graph;
– •n = {n′ ∈ N |(n′, n) ∈ F} and n• = {n′ ∈ N |(n, n′) ∈ F} denote, respec-

tively, the direct predecessors and successors of a node n ∈ N ;
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– ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1
– s ∈ A is the only start activity, such that •s = ∅ ∧ ∀a ∈ A\{s} : | • a| > 0;
– e ∈ A is the only end activity, such that e• = ∅ ∧ ∀a ∈ A\{e} : |a • | > 0;
– t : G → {and, xor} is a mapping that associates each gateway with a type.

The execution semantics of a process model is given by a translation to a Petri
net [1, 8]. Since the defined process model has exactly one start activity and end
activity the corresponding Petri net is a WF-net. We consider models that can
be mapped to free-choice WF-nets [1]. Finally, we assume that a process model
is sound [2].

To describe the process instance level, we formalize the activity in-
stance life cycle shown in Fig. 2 as a tuple (S, T , tran, {init},S ′). S =
{init, ready, running, terminated, skipped} is a set of activity instance states,
where init is the initial state and S ′ = {skipped, terminated} is a set of final
states. T = {enable, begin, skip, terminate} is a set of state transition labels.
The state transition mapping tran : S × T → S, is defined as tran(init, enable)
= ready, tran(ready, begin) = running, tran(running, terminate) = terminated,
tran(ready, skip) = skipped. Against this background, a process instance is defined
as follows.

Definition 2 (Process Instance). Let S be the set of activity instance states.
A tuple i = (m, I, inst, stat) is a process instance, where:

– m = (A,G, F, s, e, t) is a process model;
– I is the set of activity instances;
– inst : A → I is a bijective mapping that associates an activity with an

activity instance;
– stat : I → S is a mapping establishing the relation between an activity

instance and its state.

As Definition 1 claims the process model to be acyclic, there is exactly one activity
instance per process model activity, i.e., |I| = |A|. To introduce behavioral
profiles, see [22], we inspect the set of all traces from s to e for a process model
m = (A,G, F, s, e, t). The set of complete process traces Tm for m contains lists
of the form s ·A∗ · e, where a list captures the activity execution order. To denote
that an activity a is a part of a complete process trace we write a ∈ σ with
σ ∈ Tm. Within this set of traces the auxiliary weak order relation for activities
is defined.

Definition 3 (Weak Order Relation). Let m = (A,G, F, s, e, t) be a process
model, and Tm—its set of traces. The weak order relation �m ⊆ (A×A) contains
all pairs (x, y), where there is a trace σ = n1, . . . , nl in Tm with j ∈ {1, . . . , l− 1}
and j < k ≤ l for which holds nj = x and nk = y.

Two activities of a process model are in weak order, if there exists a trace in
which one activity occurs after the other. Depending on how weak order relates
two process model activities, we define three relations forming the behavioral
profile.
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Definition 4 (Behavioral Profile). Let m = (A,G, F, s, e, t) be a process
model. A pair (a, b) ∈ (A×A) is in one of the following relations:
– strict order relation �m, if a �m b and b ��m a;
– exclusiveness relation +m, if a ��m b and b ��m a;
– interleaving order relation ||m, if a �m b and b �m a.

The set of all three relations is the behavioral profile of m.

The relations of the behavioral profile, along with the inverse strict order �−1=
{(x, y) ∈ (A×A) | (y, x) ∈ �}, partition the Cartesian product of activities in
one process model.

The abstraction approach assumed in this paper takes as the input a process
model and activity grouping information. The algorithm’s output is the abstract
process model. We formalize the activity grouping by means of function aggregate.

Definition 5 (Function Aggregate). Let m = (A,G, F, s, e, t) be a process
model and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model derived from m.
Function aggregate : Aa → (P(A)\∅) sets a correspondence between one activity
in ma and the set of activities in m. We postulate function stagg : Aa → (P(S)\∅)
defined as stagg(x) =

⋃
∀a∈aggregate(x){stat(inst(a))}, where x ∈ Aa.

The example model in Fig. 1 illustrates function aggregate as follows aggre-
gate(Receive forecast request) = {Receive email, Record request}. In the sub-
sequent examples we denote the coarse-grained activities as x and y, where
x, y ∈ Aa, while a and b are such activities of the model m, i.e., a, b ∈ A that
a ∈ aggregate(x), b ∈ aggregate(y). The main steps of the employed abstraction
approach are as follows.
I derive the behavioral profile BPm for model m
II construct the behavioral profile BPma

for model ma

III if a model consistent with profile BPma exists
IV then create ma, else report an inconsistency.

Within the scope of this paper we are interested in construction of the
behavioral profile BPma

described by Algorithm 1 in [16]. Behavioral profile
construction discovers the behavioral profile relations between each pair of
activities in ma. To achieve this we analyze the behavioral profile relations among
activities of m and activity groups defined by function aggregate. For each pair
of coarse-grained activities x, y ∈ Aa, we study the behavioral profile relations of
all pairs (a, b), where (a, b) ∈ aggregate(x)× aggregate(y). For each group pair
we count the number of occurrences of a �m b, b �m a, a ��m b, and b ��m a.
According to Definition 4, each of these relations contributes to the behavioral
profile relations. Hence, the evaluation of the weak order relation occurrences
along with the prioritization of behavioral profile relations, enables the choice of
the ordering constraint for x and y.

4 Activity Instance State Propagation

This section formalizes state propagation. We start designing the state propa-
gation method. Further, Section 4.2 proposes the algorithm validating activity
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instance state uniqueness, while Section 4.3 elaborates on the algorithm for ac-
tivity instance state transition correctness validation. The role of the algorithms
is twofold. First, they validate the developed state propagation. Second, the
algorithms can be reused for validation of other state propagation methods.

4.1 State Propagation

State propagation implies that the state of an activity x in the abstract model
ma is defined by the states of activities aggregate(x) in model m. Consider a
process instance example presented in Fig. 3, where aggregate(Receive forecast
request)={Receive email, Record request}. The instances of Receive email and
Record request define the state of Receive forecast request instance. To formalize
state propagation we introduce five auxiliary predicates. Each predicate corre-
sponds to one activity instance state and is “responsible” for propagation of
this state to an abstract activity. An argument of a predicate is a nonempty set
of activity instance states S ⊆ S. Set S is populated by the states of activity
instances observed in the activity group aggregate(x), i.e., S = stagg(x). If a
predicate evaluates to true, it propagates the respective state to the instance of x.
For example, predicate pru corresponds to the state running. Given an instance
of Receive forecast request and instances of Receive email and Record request,
we evaluate predicate pru against set {init, terminated}. If pru evaluates to true,
we claim that the instance of Receive forecast request is in state running. Fig. 3
illustrates exactly this constellation. The predicates are defined as follows.

– pin(S) := ∀s ∈ S : s = init
– pre(S) := (∃s′ ∈ S : s′ = ready ∧ ∀s ∈ S : s ∈ {init, ready, skipped}) ∨
(∃s′, s′′ ∈ S : s′ = init ∧ s′′ = skipped ∧ ∀s ∈ S : s ∈ {init, skipped})

– pru(S) := ∃s ∈ S : s = running ∨ (∃s′, s′′ ∈ S : s′ = terminated ∧ s′′ ∈
{init, ready})

– pte(S) := ∃s ∈ S : s = terminated ∧ ∀s′ ∈ S : s′ ∈ {skipped, terminated}
– psk(S) := ∀s ∈ S : s = skipped

abstract model, ma

initial model, m

Receive 
email

Record 
request

Request data 
gathering

Receive 
forecast request

g1

[terminated] [running] [init]

[running]

Fig. 3. State propagation
example

We reference this set of predicates as ps. The pred-
icate design results in exactly one predicate to eval-
uate to true, i.e., activity instance state uniqueness
holds. While the predicates pin, pte, and psk are
easy to interpret, pre and pru require explanation.
In particular, the second part of the disjunction in
predicate pre propagates state ready, if in S exists a
skipped activity, i.e., this activity was in state ready
and there exists an initialized activity, i.e., that ac-
tivity will be in state ready. Similarly, the second
part of the disjunction in pru propagates state run-
ning, if in S exists a terminated activity, i.e., this
activity was in state running and there exists an

initialized or ready activity, i.e., that activity can be in state running. These
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Algorithm 1 Verification of activity instance state uniqueness

1: checkStateUniqueness(Predicate[] ps, LifeCycle lifeCycle)
2: for all S ⊆ lifeCycle.S do
3: if S �= ∅ then
4: propagated = false;
5: for all p in ps do
6: if !propagated then
7: if p(S) then
8: propagated = true;
9: else
10: if p(S) then
11: return false
12: if !propagated then
13: return false
14: return true

additional conditions assure that a high-level activity behaves according to the
life cycle, i.e., correctness of activity instance state transition holds. The five
predicates construct activity instance state propagation function stp which is
used to define the state of activity x instance.

Definition 6 (Activity Instance State Propagation Function). Activity
instance state propagation function stp : P(S) → S maps a set of activity instance
states to one activity instance state:

stp(S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

init, if pin(S)
ready, if pre(S)
running, if pru(S)
terminated, if pte(S)
skipped, if psk(S).

Let m = (A,G, F, s, e, t) be a process model with its process instance i =
(m, I, inst, stat) and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model with pro-
cess instance ia = (ma, Ia, insta, stata). Then, function stata : Ia → S is defined
as stata(insta(x)) = stp(stagg(x)).

4.2 Activity Instance State Uniqueness

State propagation mechanism maps the states of activity instances of
aggregate(x) to the state of inst(x). Activity instance state uniqueness requires
exactly one predicate of ps to evaluate to true for any combination of states in
activity group aggregate(x). However, an activity group is defined by the user and
is not known in advance. Hence, it is not efficient to reason about state uniqueness
property explicitly enumerating all activity instance states that occur within
activity instance groups. Instead of dealing with concrete activity instance groups,
we introduce activity instance group equivalence classes. For a process instance
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Algorithm 2 Validation of activity instance state transition correctness

1: checkStateTransitionCorrectness(Predicate[] ps, LifeCycle lifeCycle)
2: for all p in ps do
3: for all S ⊆ S : p(S) = true do
4: for all s ∈ (S\lifeCycle.S ′) do
5: for all t ∈ lifeCycle.T , where tran(s, t) is defined do
6: S′ = S ∪ {tran(s, t)}
7: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
8: return false
9: S′ = S′\{s}
10: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
11: return false
12: return true

i = (m, I, inst, st) two activity instance groups I1, I2 ⊆ I belong to one equiva-
lence class, if in both groups the same set of activity instance states is observed,
i.e., ∀i1 ∈ I1∃i2 ∈ I2 : stat(i1) = stat(i2) ∧ ∀i2 ∈ I2∃i1 ∈ I1 : stat(i2) = stat(i1).
For instance, a pair of activity instances with states (init, terminated) and an
activity triple with states (init, init, terminated) belong to one class with observed
states S = {init, terminated}. Notice that this classification covers all possible
state combinations, thereby the algorithm checks all cases. We can consider such
classes of activity instance groups, since the predicates make use of existential
and universal quantifiers. Each equivalence class is represented by the state
set S ⊆ S—the state set observed in the members of this class. If for every
equivalence class representative exactly one predicate evaluates to true, we claim
that activity instance state uniqueness holds for the validated state propagation
mechanism.

Algorithm 1 validates activity instance state uniqueness. The algorithm takes
a set of predicates and an activity instance life cycle as inputs; it returns true,
once the property holds. As the number of equivalence classes is exponential
to the number of states in the activity instance life cycle, the computational
complexity of Algorithm 1 is also exponential. However, in practice the number
of activity instance states is typically low.

4.3 Activity Instance State Transition Correctness

Each activity instance must behave according to the assumed life cycle: only
the state transitions allowed by the life cycle are permitted. To validate activity
instance state transition correctness we propose Algorithm 2. The algorithm takes
a set of predicates and an activity instance life cycle as inputs; it returns true, if
state transitions are correct. The key idea of the algorithm is the observation
that an instance of activity x in the abstract model changes its state, when one
of the activity instances that refines x changes its state. Due to this observation,
the validation considers all possible state transitions. Hence, for each predicate p
specifying a state propagation rule the algorithm constructs state sets S ⊆ S,
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Fig. 4. Behavioral inconsistency in a process instance for the business process in Fig. 1

where the predicate evaluates to true (lines 2–3). For instance, predicate pin
has one such set {init}. In the next step, the validation constructs state set S′

reachable from S by one state transition of the activity instance life cycle (lines
4–6 and line 9). In the example state set S = {init} evolves to sets {ready} and
{init, ready}. For each of those reachable state sets S′ function stp is evaluated.
If for each S′ the state stp(S′) equals stp(S) or can be reached from stp(S) using
the same state transition as required to reach S′ from S, the state propagation
rules are valid. Algorithm 2 realizes the checks in lines 7 and 10 and reports
correctness in line 12.

5 Behavioral Inconsistencies

This section elaborates on the problem of behavioral inconsistencies. We start
with the motivation, then introduce auxiliary formal concepts and define the
notion of behavioral inconsistency. Finally, we present a classification of behavioral
inconsistencies.

5.1 Example

An abstract process model dictates activity execution order. At the same time, the
designed state propagation mechanism disregards the control flow, but influences
the states of activities in ma. In this setting one can observe behavioral inconsis-
tencies. Fig. 4 exemplifies the behavioral inconsistency. Activities Receive forecast
request and Handle data are refined with activity groups g1 and g2, respectively.
According to the state propagation mechanism, once Receive email terminates,
Receive forecast request is in state running until Record request terminates. While
Request data gathering runs, Handle data is in the state running. Hence, according
to state propagation we observe activities Receive forecast request and Handle
data in state running at the same time. However, model ma prescribes sequential
execution of these activities: Handle data can be executed, once Receive forecast
request terminates. Hence, these states are inconsistent with the control flow of
model ma.
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Behavioral inconsistencies have two causes, both stemming from the properties
of the abstraction approach. The first cause is activity grouping. Consider the
example in Fig. 4, where activities in groups g1 and g2 interleave: Receive email
�m Request data gathering and Request data gathering �m Record request. The
second reason is that the assumed abstraction approach preserves neither activity
optionality, nor causality. We say that an activity is optional, if there is such
a process trace, where this activity is not observed. Considering the example
in Fig. 4 Prepare data for full analysis is optional. Activity causality implies
that 1) an order of execution for two activities is given and 2) two activities
appear together in all process executions. One can observe causality relation for
Receive email and Receive data, but not for Receive email and Prepare data for
full analysis. Next section formalizes the notion of behavioral inconsistencies.

5.2 Formalization of Behavioral Inconsistencies

While behavioral profiles enable judgment on activity ordering, they do not
capture causality. Following on [23] we make use of auxiliary co-occurrence
relation and causal behavioral profile.

Definition 7 (Causal Behavioral Profile). Let m = (A,G, F, s, e, t) be a
process model and Tm be its set of traces. A pair (a, b) ∈ (A× A) is in the co-
occurrence relation �m iff for all traces σ = n1, . . . , nl in Tm it holds ni = a, i ∈
{1, . . . , l} implies that ∃j ∈ {1, . . . , l} such that nj = b. Then {�m, ||m,+m,�m}
is the causal behavioral profile of m.

The causality relation holds for a, b ∈ A if a �m b and a �m b.
The example in Fig. 4 witnesses that state propagation allows concurrent

activity execution. However, the behavioral profile relations are defined on the
trace level and do not capture concurrency. To formalize the observed behavior
of activities, we introduce relations defined on the process instance level. These
relations build on top of causal behavioral profile relations. However, they consider
not traces, but process instances.

We say (x, y) ∈�obs if there is a process instance where x is executed before y,
but no instance, where y is executed before x. Similarly, relation x �−1

obs y means
that there is a process instance where y is executed before x, but no instance,
where x is executed before y. Relation x+obs y holds if there is no instance where
x and y both take place. Relation ||obs corresponds to the existence of 1) an
instances where x is executed before y, 2) an instance where y is executed before
x and 3) an instance where x and y are executed concurrently. Finally, x �obs y
holds if for every instance, where x is executed, y is executed as well. Then, the
behavioral inconsistency can be defined as follows.

Definition 8 (Behavioral Inconsistency). Let m = (A,G, F, s, e, t) be a pro-
cess model and i = (m, I, inst, stat)—its instance. ma = (Aa, Ga, Fa, sa, ea, ta)
is the abstract model obtained from m and having the instance ia =
(ma, Ia, insta, stata), where function stata is defined as stata(insta(x)) =
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stp(stagg(x)). We say that there is a behavioral inconsistency, if for activities
(x, y) ∈ (Aa × Aa) the causal behavioral profile relations do not coincide with
the observed behavioral relations:

– (x, y) ∈�ma
and (x, y) /∈�obs;

– (x, y) ∈�−1
ma

and (x, y) /∈�−1
obs;

– (x, y) ∈ +ma
and (x, y) /∈ +obs;

– (x, y) ∈ ||ma
and (x, y) /∈ ||obs;

– (x, y) ∈�ma and (x, y) /∈�obs;

5.3 Classification of Behavioral Inconsistencies

Table 1 classifies behavioral inconsistencies comparing the declared and observed
behavioral constraints for abstract process model activities x and y. A table
row corresponds to behavioral profile relations declared by an abstract model.
Columns capture the observed behavioral relations. A cell of Table 1 describes
an inconsistency between the observed and declared behavioral relations.

The “+” sign witnesses no inconsistency since the declared and observed
constraints coincide. We identify one class of activity groups that cause no
inconsistency. Consider a pair of activities x, y ∈ Aa. If ∀(a, b) ∈ aggregate(x)×
aggregate(y) the same causal behavioral profile relation holds, no behavioral
inconsistency is observed. Indeed, in such a setting the employed abstraction
algorithm results in the same behavioral profile relation for (x, y) as the one
observed for (a, b). Hence, the observed behavioral constraint coincides with the
behavioral constraint imposed by the model. A prominent example of activity
groups that fulfill the defined requirement are groups resulting from the canonical
decomposition of a process model into single entry single exit fragments, see [18,
19].

Cells marked with “–” represent inconsistencies that do not occur, given the
considered abstraction method. We organize these inconsistencies in three clusters.
The first cluster includes cases where x �ma

y and x �−1
obs y. Algorithm 1 in [16],

delivers x �ma
y only if exist a ∈ aggregate(x) and b ∈ aggregate(y) such that

a �m b. Hence, it holds either x �obs y or x||obsy, but not x �−1
obs y. Similar

argumentation enables reasoning about the second cluster: a combination of

x �obs y x �−1
obs y x+obs y x||obsy

x �obs y x ��obs y x �obs y x ��obs y

x �ma y
x �ma y + A – – – B

x ��ma y ± + – – – B

x �−1
ma

y
x �ma y – – + A – B

x ��ma y – – ± + – B

x+ma y C C C C + C

x||may ± ± ± ± – +
Table 1. Classification of behavioral inconsistencies
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abstract model

initial model

g1

a1

b1 c1

g2

y1x1

d1

z1

[running][terminated]

[skipped]

g3

[terminated] [running]

[skipped]

[skipped]

(a) Co-occurrence loss

b2

abstract model

initial model

g4

a2

y2x2

c2

g5
[running][terminated] [init]

[running] [running]

(b) Order loss

abstract model

initial model

g7

a3

b3

d3

c3

e3g6

x3

y3

[terminated]

[running] [init]

[skipped]

[terminated]

[running]

[skipped]

(c) Exclusiveness loss

Fig. 5. Examples of behavioral inconsistencies: one example per class

x �−1
ma

y and x �obs y. Finally, we argue that x +obs y is not possible, once
x �ma

y, x �−1
ma

y, or x||ma
y. The abstraction algorithm results in x �ma

y
only if a �m b, where a ∈ aggregate(x), b ∈ aggregate(y). This contradicts
observation of x+obs y. By analogy one can show the contradiction for x �−1

ma
y

and x+obs y along with x||may and x+obs y.
Six table cells are marked with “±” symbol. Every cell corresponds to an

inconsistency, where no contradiction takes place: an observed relation restricts
a declared behavioral relation. Consider, for instance, the behavioral inconsis-
tency, where x||ma

y, while x �−1
obs y and x �obs y. This inconsistency has no

contradiction, since the observed behavior only restricts the declared one.
We identify three classes of behavioral inconsistencies marked in Table 1 and

illustrate them by the examples in Fig. 5.

A: Co-occurrence loss Behavioral inconsistencies of this type take place when
the model declares co-occurrence for an activity pair, while both activities
are observed only in some process instances. The cause of inconsistency is
the abstraction approach loosing information about the causal coupling of
an activity pair. Notice, that abstraction preserves the behavioral profile
relation, i.e., (inverse) strict order. The example in Fig. 5(a) illustrates this
inconsistency type. Since activities of group g2 are skipped, activity y1 is in
state skipped as well. However, it can not be skipped according to the control
flow of the abstract model.

B: Order loss For a pair of activities in (inverse) strict order, the user observes
interleaving execution. A behavioral inconsistency of this type is exemplified
in Fig. 5(b). Such inconsistencies have the following roots: 1) aggregate(x)∩
aggregate(y) �= ∅ or 2) exist a1, a2 ∈ aggregate(x) and b1, b2 ∈ aggregate(y)
such that it holds a1 �m b1 and b2 �m a2. In Fig. 5(b) activity b2 belongs to
groups g1 and g2. As a consequence, once b2 runs both sequential activities
x2 and y2 are running concurrently.

C: Exclusiveness loss While the model prescribes exclusiveness relation for x
and y, both activities are observed within one instance. These inconsistencies
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take place, once the abstraction algorithm ignores a �m b or b �m a in the
initial model, as relations a ��m b and b ��m a dominate. Fig. 5(c) exemplifies
this inconsistency. Given the constellation of activity groups in the initial
model, activities x3 and y3 are exclusive. However, in the presented process
instance both x3 and y3 are executed.

6 Related Work

We identify two directions of the related work. The first one is the research on
business process model abstraction. The second one is the body of knowledge
discussing similarity of process models.

open

not_running

not_started

suspended

running

closed

completed

terminated

aborted

Fig. 6. Activity instance life cycle as
presented in [13]

The problem of business process model
abstraction has been approached by sev-
eral authors. The majority of the solutions
consider various aspects of model trans-
formation. For instance, [5, 10, 11, 14, 16]
focus on the structural aspects of trans-
formation. Among these papers [16] en-
ables the most flexible activity grouping.
Several papers study how the groups of semantically related activities can
be discovered [6, 15]. A few works elaborate on the relation between process
instances and abstract process models, e.g. [4, 13]. In [4] Bobrik, Reichert,
and Bauer discuss state propagation and associated behavioral inconsistencies,
but do not use the concept of activity instance life cycle. [13] suggests state
propagation approach that builds on the activity instance life cycle shown in
Fig. 6. In [13] Liu and Shen order 3 states according to how “active” they
are: not started < suspended < running. The state propagation rules make
use of this order, e.g., if a coarse-grained activity is refined by activities in
one of the open states, the high-level activity is in the most “active” state.
Against this background, consider an example activity pair evolving as follows:
(not started, not started) to (not started, running) to (not started, completed).
According to the rules defined in [13] the high level activity evolves as not started
to running to not started, which contradicts the predefined activity instance
life cycle. As we mentioned above, the majority of works on business process
model abstraction consider only the model level. Meanwhile, the papers that take
into account process instances have gaps and limitations. For instance, [4, 13]
motivated us not only to introduce the state propagation approach, but also to
identify formal properties for such approaches and develop algorithms for their
validation.

The works on similarity of process models can be refined into two substreams.
A series of papers approaches process model similarity analyzing model structure
and labeling information, see [7, 20]. These works provide methods to discover
matching model elements. Several research endeavors analyze behavioral similar-
ity of process models. In particular, [3] introduces several notions of inheritance
and operations on process models preserving the inheritance property. Recently,



State Propagation in Abstracted Business Processes 15

Weidlich, Dijkman, and Weske investigated behavioral compatibility of models
capturing one business process [21]. [9] elaborates on process model similarity
considering both model element labeling and model behavior. Considering that
processes are inherently concurrent systems, various notions of behavioral equiv-
alence for concurrent systems can be leveraged to compare the behavior of initial
and abstract process models [17]. The enumerated papers help to compare the
behavior of initial and abstract process models. As such, the notions of behavioral
equivalence and behavioral compatibility might give additional insights into the
causes of behavioral inconsistencies, see Section 5, and help to classify them
further.

7 Conclusion and Future Work

Although business process model abstraction has been thoroughly studied earlier,
the relations between process instances and abstract process models have been
barely explored. The current paper bridged this gap. First, we developed activity
instance state propagation mechanism that allows to describe the process instance
state by means of an abstract process model. Second, we have identified two
formal properties for state propagation and proposed methods for their validation.
Finally, we elaborated on behavioral inconsistencies that can be observed, once
the assumed abstraction and state propagation mechanisms are used.

We foresee several directions of the future work. The direct next step is the
extension of the considered model class. As we leverage dead path elimination
to spread activity instance state skipped over not executed activities, the state
propagation approach is limited to acyclic models. Substitution of dead path
elimination with an alternative approach would facilitate handling of cyclic models.
Another direction is the further study of the behavioral inconsistencies and
methods for their resolution. With that respect, it is valuable to integrate control
flow information into state propagation mechanism. Finally, the applications of
the introduced technique call for in deep investigation. One direct application
of our approach is business process monitoring [24], where abstract models help
users to follow the progress of running business processes.
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