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Abstract
During sentence reading the eyes quickly jump from word to word to sample visual in-
formation with the high acuity of the fovea. Lexical properties of the currently fixated
word are known to affect the duration of the fixation, reflecting an interaction of word
processing with oculomotor planning. While low level properties of words in the parafovea
can likewise affect the current fixation duration, results concerning the influence of lexical
properties have been ambiguous (Drieghe, Rayner, & Pollatsek, 2008; Kliegl, Nuthmann,
& Engbert, 2006). Experimental investigations of such lexical parafoveal-on-foveal effects
using the boundary paradigm have instead shown, that lexical properties of parafoveal
previews affect fixation durations on the upcoming target words (Risse & Kliegl, 2014).
However, the results were potentially confounded with effects of preview validity.

The notion of parafoveal processing of lexical information challenges extant models
of eye movements during reading. Models containing serial word processing assumptions
have trouble explaining such effects, as they usually couple successful word processing to
saccade planning, resulting in skipping of the parafoveal word. Although models with
parallel word processing are less restricted, in the SWIFT model (Engbert, Longtin, &
Kliegl, 2002) only processing of the foveal word can directly influence the saccade latency.

Here we combine the results of a boundary experiment (Chapter 2) with a predictive
modeling approach using the SWIFT model, where we explore mechanisms of parafoveal
inhibition in a simulation study (Chapter 4). We construct a likelihood function for the
SWIFT model (Chapter 3) and utilize the experimental data in a Bayesian approach to
parameter estimation (Chapter 3 & 4).

The experimental results show a substantial effect of parafoveal preview frequency on
fixation durations on the target word, which can be clearly distinguished from the effect
of preview validity. Using the eye movement data from the participants, we demonstrate
the feasibility of the Bayesian approach even for a small set of estimated parameters, by
comparing summary statistics of experimental and simulated data. Finally, we can show
that the SWIFT model can account for the lexical preview effects, when a mechanism
for parafoveal inhibition is added. The effects of preview validity were modeled best,
when processing dependent saccade cancellation was added for invalid trials. In the
simulation study only the control condition of the experiment was used for parameter
estimation, allowing for cross validation. Simultaneously the number of free parameters
was increased. High correlations of summary statistics demonstrate the capabilities of
the parameter estimation approach. Taken together, the results advocate for a better
integration of experimental data into computational modeling via parameter estimation.
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Zusammenfassung
Während des Lesens springt der Blick von Wort zu Wort, um visuelle Informationen
mithilfe der hohen Auflösung der Fovea aufzunehmen. Lexikalische Eigenschaften eines
zurzeit fixierten Wortes wirken sich dabei auf die Fixationsdauer aus, was eine Interak-
tion von Wortverarbeitung mit okulomotorischer Bewegungsplanung impliziert. Während
Low-Level-Eigenschaften eines parafovealen Wortes ebenfalls die Fixationsdauer beein-
flussen können, sind Ergebnisse zu Einflüssen lexikalischer Eigenschaften parafoveler Worte
uneindeutig (Drieghe et al., 2008; Kliegl et al., 2006). Experimentelle Untersuchungen
solcher parafoveal-on-foveal-Effekte mittels des Boundary-Paradigmas zeigten stattdessen,
dass sich lexikalische Eigenschaften parafovealer Worte auf Fixationsdauern auf den Target-
Wörtern auswirken (Risse & Kliegl, 2014). Diese Ergebnisse waren jedoch möglicherweise
mit den Effekten der Preview-Validität konfundiert.

Die Möglichkeit parafovealer Verarbeitung lexikalischer Informationen stellt beste-
hende Modelle für Blickbewegungen beim Lesen vor Probleme. Modelle, die auf seriellen
Wortverarbeitungsannahmen fußen, können derlei Effekte nicht schlüssig erklären, da in
ihnen erfolgreiche Wortverarbeitung oft starr an Bewegungsplanung gekoppelt ist, was ein
Überspringen des parafovealen Wortes zur Folge hätte. Obwohl Modelle mit paralleler
Wortverarbeitung weniger eingeschränkt sind, kann im SWIFT-Modell (Engbert et al.,
2002) nur die Verarbeitung fovealer Worte die Sakkadenplanung direkt hemmen.

Wir verbinden in dieser Arbeit die Ergebnisse eines Boundary-Experiments (Kapi-
tel 2) mit einem prädiktiven Modellierungsansatz mit dem SWIFT-Modell, in dem wir
Mechanismen parafovealer Hemmung in einer Simulationsstudie erkunden (Kapitel 4).
Wir konstruieren eine Likelihood-Funktion für das SWIFT-Modell und nutzen die Ex-
perimentaldaten in einem Bayesianischen Ansatz zur Parameterschätzung (Kapitel 3 &
4).

In den Ergebnissen des Experiments zeigt sich ein substanzieller Frequenzeffekt des
Previews auf die Fixationsdauer auf dem Target-Wort, der klar vom Effekt der Preview-
Validität unterschieden werden kann. Mittels der Blickbewegungsdaten der Probanden
demonstrieren wir die Praktikabilität des gewählten Ansatzes selbst mit nur wenigen
freien Parametern, indem wir Statistiken der Probanden mit jenen aus Simulationen
auf der Basis geschätzter Parameter vergleichen. Schließlich können wir zeigen, dass
SWIFT die lexikalischen Preview-Effekte erzeugen kann, wenn das Modell zusätzlich mit
einem Mechanismus parafovealer Inhibition ausgestattet wird. Die Effekte der Preview-
Validität wurden hingegen am besten modelliert, wenn eine Möglichkeit zum Abbruch der
Sakkadenplanung in Abhängigkeit von der Wortverarbeitung hinzugefügt wurde. In dieser
Simulationsstudie wurden lediglich Daten der Kontrollbedingung des Experiments zur Pa-
rameterschätzung genutzt, wodurch eine Kreuzvalidierung der Güte der Simulationsdaten
ermöglicht wurde. Gleichzeitig wurde die Zahl der freien Parameter erhöht. Hohe Kor-
relationen der Statistiken verdeutlichen das Potential des Parameterschätzungsansatzes.



iv

Zusammengenommen sprechen die Ergebnisse dafür, dass Experimentaldaten mehr zur
computationalen Modellierung herangezogen werden sollten, indem Möglichkeiten der Pa-
rameterschätzung ausgenutzt werden.
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Chapter 1

General introduction

Reading is a critical skill that permeates every aspect of modern life. It depends on the
seamless interplay of visual and linguistic processing with oculomotor coordination, and
has therefore sparked the interest of cognitive scientists and pioneers of eye movement
research alike. According to Rayner (2009b), four eras of research on eye movements
during reading can be distinguished.

The first era begins with Javal’s observations (by 1879, Wade & Tatler, 2008) of
the well-known motion patterns during reading, and was concerned with outlining the
research area by establishing basic facts and vocabulary. During the second era, interest
in eye movements during reading declined due to technical limitations, as well as the
behaviorist reservations towards inferring mental processes. Improved theories of lan-
guage, accompanied by technological advances, marked the third era. They provided
more accurate measurements and gave rise to new experimental paradigms, specifically
gaze contingent techniques, which allowed for experimental configurations to react to eye
movements almost instantly.

Finally, the fourth era coincides with the present day. It is characterized by the
development of sophisticated computational models, whose predictions and constraints
motivate a considerable amount of research. While sophisticated models are not uncom-
mon in the general field of cognitive psychology, extant models of eye movements during
reading stand out because of their complexity and realism. They are capable of generat-
ing a wide spectrum of behavior in the same format as experimental data, affording easy
comparisons of model predictions and laboratory measurements. Among those models,
two main contenders implement opposing hypotheses on the order of word processing,
and the connection between word processing and oculomotor control. In the E-Z Reader
model (Reichle, Pollatsek, Fisher, & Rayner, 1998) words in a sentence are processed in a
rigid, serial order. Eye movements are generated as a result of successful word processing.
Conversely, in the SWIFT model (Engbert et al., 2002), several words can be processed
in parallel, and eye movements are generated by an independent timing process. Rayner
(2009b) further points to three controversial problems in empirical research, that exhibit
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discrepancies in the comparison between experimental and correlative studies: Word skip-
ping, regressions and parafoveal-on-foveal effects.

In this thesis I present empirical evidence for parafoveal processing of lexical informa-
tion, strongly related to lexical parafoveal-on-foveal effects, in an experimental study, and
explore mechanisms in the framework of the SWIFT model via numerical simulations,
that can account for these effects. In this context, I describe and apply a method of pa-
rameter estimation for complex models, that allows to incorporate individual differences
into the model, based solely on recorded eye movement data.

1.1 Eye movements during reading

Reading is not an evolved skill, but a cultural accomplishment that builds on the in-
terplay of brain functions like learning, abstraction, pattern recognition and oculomotor
coordination. To understand a sentence, all words must be processed and represented on
different levels of analysis: First, letter identities and word length form a word’s ortho-
graphical representation, after which its acoustical and basic grammatical properties can
be decoded, resulting in phonological and morphological representations. The “abstract
representation of the word form” (i.e., how a word is written; Schotter, Angele, & Rayner,
2012) constitutes a word’s lexical quality. Finally, word meaning and grammatical role are
decoded, forming semantic and syntactic representations. How is it possible for our brain
to accomplish such intricate decoding during what we perceive as merely brief glances?
To gain a better understanding of processes involved in reading, it is useful to begin with
a reflection on the role of the biology of vision.

1.1.1 Vision

The visual system is the single most important perceptual modality in humans. Processing
visual information takes up more than a quarter of the human cortex (Van Essen, 2003).
Vision plays an important role in the regulation of circadian rhythms, and constitutes our
main route of assessing our environment.

The eyes are the sensory organ of this system. When light enters our eyes, it is
projected through the lens onto the retina, where it is translated into neuronal code by
two types of photoreceptors: Cone cells, responsible for photopic vision (i.e., vision under
daylight conditions), and rod cells, responsible for scotopic vision (i.e., vision under low
light conditions). The receptor types exhibit differences in their excitability by different
wavelengths, degrees of connectedness to ganglion cells, as well as distribution patterns
on the retina. Rod cells react to lower light intensities as cone cells and while many rod
cells can converge on a single ganglion cell which adds up all contributions to calculate
a response, this number is much lower for cone cells. Additionally, where all rod cells
generally react to the same wavelengths, three different types of cone cells are selective to
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different, specific wavelengths and thus enable color vision. This allows for a more detailed
perception during photopic vision, which is further helped by a massive aggregation of
cone cells in the center of the retina—the fovea.

The fovea is an indented, circular area in the center of the retina of about 0.33cm, or 2◦

visual angle, in diameter, where visual resolution is highest, and rod cells are completely
absent. Outside of the fovea the number of cone cells drops rapidly, while the density of
rod cells sharply rises (Remington, 2012). The annulus between the fovea and a concentric
circle with a radius of 5◦ visual angle is called parafovea1 (Rayner, 1998).

1.1.2 Eye movements

Due to the centralised organisation of the retina, only a small part of the visual field can
be processed with high acuity at a time. During visual exploration, as well as reading, the
gaze is therefore frequently relocated to new areas in the visual field with fast, ballistic
movements called saccades about three to four times per second on average. Visual pro-
cessing occurs only during the periods of stationarity between saccades, termed fixations,
whereas during saccades the intake of visual information is actively suppressed (Matin,
1974). Average saccade lengths and fixation durations show considerable task dependent
variation (Table 1, Rayner, 1998).

Saccadic movement is preceded by a phase of motor planning, which usually takes
about 150-175ms (Rayner, 1998). Experiments have shown, that during this latency
the saccade target can be updated until about 70ms before the onset of the saccadic
motion (Becker & Jürgens, 1979), indicating that saccade preparation consists of at least
two stages. In line with the account of separate, hierarchical stages is the finding, that
fixation durations can be much shorter than 150ms, suggesting partial overlap, or parallel
programming, of saccades (Morrison, 1984).

Other important types of eye movements are smooth pursuit when the eyes are en-
trained on the motion of a moving object, and vergence movements, when the point of
fixation changes in distance towards or away from the observer, resulting in opposing
movement directions of the eyes. The vestibulo-ocular reflex compensates for head move-
ments and the optokinetic reflex returns the eyes to their original position, if the target
of a smooth pursuit movement leaves the visual field.

During fixations—other than the name suggests—the eyes are not motionless, but
slightly meander in small drift movements, overlaid by an oscillatory tremor. When the
eyes drift too far from the original point of fixation, microsaccades, which share many char-
acteristics with regular saccades but are involuntary and of small amplitudes (Martinez-
Conde, Macknik, & Hubel, 2004), relocate the eyes to their initial fixation position. These

1In older publications, the parafovea is sometimes described as extending up to a radius of 10◦ (e.g.,
Ditchburn, 1971, according to Rayner, 1978). While anatomically the distinction is based on histological
data (Remington, 2012), definitions vary in psychological literature.



4 Chapter 1

fixational eye movements are seen to serve counteracting sensory adaptation, which, when
enforced, results in perceptual fading (Ditchburn & Ginsborg, 1952).

1.1.3 Reading

During normal reading, saccades move the eyes through a sentence in the direction of the
natural word order, with most words receiving at least one fixation. However, only about
50% of saccades are forward saccades, moving the gaze from a given word n the upcoming
word n+ 1. During skipping saccades the eyes directly jump to the word n+ 2 or further
in reading direction, whereas by refixation saccades the fixation position is slightly moved
within the same word n. Both types each make up about 20% of saccades during reading.
Regressive saccades move the eyes to a preceding word n− 1 or further back, sometimes
the beginning of the sentence, and account for the remaining 10%. Although the length
of saccades is usually measured in degrees, letter spaces are the prevailing metric used
in reading instead. Here, saccade sizes are mostly invariant when the same text is read
at different distances, with 7 to 9 letter spaces being the typical saccade length (Rayner,
1998) in alphabetical scripts.

While it is generally assumed, that saccades aim roughly at word centers (Rayner,
1979), landing sites within words vary broadly. The landing site distributions can be
explained as a linear combination of a preferred saccade length, the distance between
launch site and the center of the target word, and the contribution of a random error
(McConkie, Kerr, Reddix, and Zola, 1988; see also Krügel and Engbert, 2014). The
stochastic components in the computation of landing sites can cause mislocated fixations,
which can amount up to 30% of fixations (Engbert & Nuthmann, 2008). Mislocated fix-
ations are often quickly followed by corrective saccades (Nuthmann, Engbert, & Kliegl,
2005), therefore reducing fixation durations for fixations close to word borders. This in-
verted optimal viewing position (IOVP) effect (Vitu, McConkie, Kerr, & O’Regan, 2001)
stands in contrast to findings from single word presentation experiments, where the laten-
cies in word naming tasks are lowest (i.e., fastest), when the word is fixated at the center
(O’Regan & Jacobs, 1992), termed the optimal viewing position (OVP). The opposing
observations prevalent in OVP and IOVP effects emphasize the importance of natural
reading paradigms (i.e., sentence reading).

Foveal analysis plays a major role in successful reading. In word identification studies,
parafoveally presented words are identified with less accuracy (Bouma, 1973), proportional
to their eccentricity to the point of fixation. According to Just and Carpenter’s 1980 eye-
mind assumption, words are fixated as long as their processing continues, hence different
measures of fixation durations can provide insight into the time course of word processing.
Fixation durations are distinguished based on the number of consecutive fixations on a
specific word and whether the word has been reached or passed in a previous sequence of
progressive (i.e., forward or skipping) saccades. The first pass measures of single fixation
durations (SFD) and first fixation durations (FFD) reflect processing during the first
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encounter with a word, whereas gaze durations (GD) are calculated as the sum of all first
pass fixations, and therefore also reflects more complete word processing.

Fixation durations show considerable variation between, but also within individual
readers, ranging from fixations shorter than 100ms to fixations outlasting 500ms (Rayner,
1998). In addition to contributions from motor uncertainties, this variance also reflects
on-line word processing of word frequency, word length, and context based predictability of
the fixated word. Further, previously previously fixated words, and adjacent, parafoveal
words have also been shown to influence fixation durations (Kliegl et al., 2006).

The influence of word frequency on the duration of word processing can be most easily
shown in lexical decision tasks, where subjects must quickly decide whether a presented
string of letters is a word or a non-word. Reaction times correlate with word frequency,
that is, the word’s rate of occurrence in a representative language corpus. High frequency
words elicit faster responses than words of low frequency (Gardner, Rothkopf, Lapan,
& Lafferty, 1987). The rationale behind this effect is, that the participants’ experience
with the respective words influences the speed of their lexical decision. Similarly, word
frequency is correlated with fixation durations during reading (Henderson & Ferreira,
1990).

1.1.4 Parafoveal processing

The observation that letters and words can be processed from parafoveal presentation
(Bouma, 1973) lead to the development of gaze contingent experimental paradigms, which
allow the systematic manipulation of parafoveal content during reading. They rely on
technological advances that made it possible to record and process eye movements fast
enough that the calculated positions can be directly used in experimental control archi-
tecture.

In the gaze contingent moving window paradigm (McConkie & Rayner, 1975), charac-
ters outside of a fixed range around the fixation location are replaced with xes, creating
a tight window around the fixation position, outside of which no information can be ex-
tracted. This makes it possible to analyse the amount of visible text necessary for normal
reading. A central finding using this paradigm, is that the perceptual span (i.e., the area
around the fixation in which words can be processed) is asymmetric during reading. It
extends about four letters back, and 14-15 letters in reading direction (e.g., to the right
in english, but to the left in hebrew Pollatsek, Bolozky, Well, & Rayner, 1981). Inverting
the window to mask foveal words while leaving parafoveal information intact drastically
slows down reading, but does not eliminate successful reading comprehension (Rayner,
Inhoff, Morrison, Slowiaczek, & Bertera, 1981). Together with the notion, that during
reading some words are skipped and are never fixated, these findings suggest that word
processing during reading significantly extends to parafoveal words.

The gaze contingent boundary paradigm (Rayner, 1975b) was developed to address
specifically parafoveal processing of upcoming words. When subjects begin to read a
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sentence, it initially contains an altered version, the preview, of a specific target word.
Type and extent of the alteration depend on the research question and can range from
visual degradation, scrambled letters, or changes in capitalization, up to switching out
the whole word. As the gaze progresses through the sentence, eventually it crosses an
invisible boundary and thereby triggers a display change, during which the altered word
is switched back to its unaltered form. The boundary is placed after the last letter of
the word preceding the target word, so that the preview can not be fixated if the display
change happens fast enough. This setup precludes any foveal analysis of the preview, but
allows the reader to process it parafoveally. Unless it is set off unexpectedly due to drift
movements during a fixation, the display change itself is not noticeable due to saccadic
suppression (Matin, 1974).

Contrasting trials that contain alterations of the preview—so called invalid previews—
to those that contain no manipulation—or valid previews—permits insights into early word
processing before foveal analysis, as well as possible interactions with ongoing foveal pro-
cessing of the previous word. Trials with invalid previews consistently yield longer fixation
durations on the target word (i.e., after crossing the boundary), as compared to trials with
valid previews, which is seen to indicate that the availability of a parafoveal preview facil-
itates the subsequent foveal processing of the target word. This preview benefit is found
to encompass several, distinct levels of processing. For example, orthographic similarity
affects the size of the preview benefit effect, when invalid previews with different letter
overlap to the target word are compared (Balota, Pollatsek, & Rayner, 1985; Snell, Vitu,
& Grainger, 2017). This implies, that the preview benefit effect generally reflects the
amount of information shared between preview and target word (Rayner, Well, Pollatsek,
& Bertera, 1982). Additionally, phonological (Pollatsek, Lesch, Morris, & Rayner, 1992),
morphological (Deutsch, Frost, Pelleg, Pollatsek, & Rayner, 2003), and semantic simi-
larities (Hohenstein & Kliegl, 2014; Hohenstein, Laubrock, & Kliegl, 2010; Yan, Richter,
Shu, & Kliegl, 2009) were found to facilitate target word processing, demonstrating that
parafoveal processing can extend to high levels of word representation.

Contrary to predictions of prevailing assumptions on word processing, corpus studies
showed influences of lexical properties (i.e., as reflected in word frequency) of an upcom-
ing word n + 1 on fixation durations on the preceding word n (Kliegl et al., 2006). The
boundary paradigm was used to investigate such parafoveal-on-foveal (PoF) effects, be-
lieved to be the result of cross-talk—a phenomenon where properties of parafoveal words
modulate fixation times on foveal words in experiments involving word pairs and word
lists (Kennedy, 1998; Kennedy, Pynte, & Ducrot, 2002). However, during sentence reading
only orthographical PoF effects were found consistently (Angele, Slattery, Yang, Kliegl, &
Rayner, 2008; Inhoff, Starr, & Shindler, 2000), whereas lexical PoF effects remained spu-
rious at best (see Brothers, Hoversten, & Traxler, 2017). However, an experiment using a
preview manipulation two words after the boundary, on word n + 2, found, both, lexical
PoF effects, as well as preview effects in fixation durations on word n + 1. Observing
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effects of lexical parafoveal processing in an upcoming fixation was assumed to be caused
by a delay (Risse & Kliegl, 2012), which could also explain why PoF effects were found
so inconsistently. Later investigations confirmed the existence of lexical preview effects in
upcoming fixations (Risse & Kliegl, 2014). Their existence constitutes a major challenge
for contemporary models of eye movements during reading.

1.2 Computational models

Computational modeling has become a central paradigm in cognitive psychology. The
practice of implementing cognitive models as computer programs naturally leads to highly
detailed, and highly specific formulations. Process oriented computational models aim to
reproduce a phenomenon by simulating—to some degree of abstraction—the processes
that are assumed to lie between stimulus and observation. Being an instantiation of
an underlying theory, they increase the clarity of theoretical statements by forcing the
modeler to make their hidden assumptions explicit (Fum, Del Missier, & Stocco, 2007).
They often include complex forms of dynamic interactions with random or stochastic
components that can otherwise be difficult to characterize as explicitly (Fum et al., 2007).

Computer code’s amenability to in depth analysis makes exploring theories through
computational models a valuable tool. Additionally when a cognitive model does not lend
itself to closed form analysis, the computational approach offers a unique and convenient
opportunity to simulate the outcome of experiments that permit evaluation congruent
to experimental data. Where theory is vague or uncertain, competing ideas can be im-
plemented and their effects evaluated and compared against the backdrop of the model,
which in turn can give rise to testable predictions and inform future experiments.

A number of cognitive computational models of eye movements during reading have
been proposed to examine various aspects in our understanding of the underlying relation-
ships2 (see Reichle & Schotter, 2020, for an exhaustive list). As an example, Legge, Klitz,
and Tjan’s (1997) ideal observer model Mr. Chips is aimed at simulating the constraints
of clinically low vision. Among conceptualizations of the visual span, word processing
and visuo-motor planning, it features a locally adjustable retinal resolution, endowing it
with the ability to simulate scotomas and similar clinical impairments in order to study
their effect on strategies of eye guidance. Given its limited scope, however, Mr. Chips
lacks a temporal dimension and therefore makes no predictions regarding fixation dura-
tions. To provide a unifying account of experimental findings, comprehensive models of
eye movements during normal sentence reading should explain the complex patterns of
fixation durations and fixation positions in sequences of fixations.

2Although approaches to model eye movements during reading based on deep learning neural networks
exist (Wang, Wang, & Wu, 2020), they are less motivated by theories of cognition and primarily aim at
reproducing reading behavior, regardless of the transferability of their mechanisms.
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Models of reading and eye movements can be compared along many dimensions. His-
torically, one dominant distinction refers to the amount of influence via cognitive pro-
cessing on saccade generation. While cognitive control models assume strong connections
between word processing and saccade generation, oculomotor control models postulate
lower-level properties of visual circuitry as the primary underlying source of eye move-
ments. A different distinction hinges on assumptions on attention and the order of word
processing. Serial attention shift (SAS) models propose that words are processed in a
strictly serial order and that only one word can be processed at a time. In opposition,
guidance by attentional gradient (GAG), or processing gradient (PG) models assume that
words within a graded area around fixation are processed in parallel center of fixation.

Historically, SAS models have turned out to be a stimulating approach for practical and
theoretical research on reading. However, their inability to provide a simple framework
that can elegantly explain the complete variety of eye movement behavior during reading
has prompted a search for alternatives. PG models offer a novel approach to tackle similar
problems. After 20 years of debate, two models largely dominate the debate between serial
and parallel processing: The E-Z Reader model (Reichle et al., 1998), driven by sequential
attention shifts, and the SWIFT model, using a dynamical and gradient based approach.

1.2.1 E-Z Reader

As model of the cognitive control class, Reichle et al.’s (1998) state-based automaton E-Z
Reader emphasizes the role of cognitive processing as basis for the control of eye move-
ments. All processes entertained by the model are represented as states, which, upon
initiation, are assigned a fixed or stochastic duration specific to the state and other cir-
cumstances. Stochastic durations are sampled from gamma distributions. In its first form,
the model contains three stages for oculomotor control, namely the labile and non-labile
stages of saccade preparation and a concluding stage of saccade execution. Word process-
ing is also comprised of three stages, the first of which being the obligatory deployment
of attention, followed by the familiarity check (L1) and lexical completion (L2) stages
of lexical processing. An interpretation of the two processing stages is borrowed from
the dual-process theory of recognition (Reichle, 2011). E-Z Readers conceptualizations of
word processing and oculomotor control are rather simplistic. Although oculomotor and
cognitive aspects of E-Z Reader have received several updates (Reichle, 2011), adding
some complexity, the parsimony is intentional. The model aims to elegantly produce
hallmark effects of reading with a minimal set of assumptions.

Sequential attention shifts (SAS) constitute a central design principle of the E-Z Reader
model while also serving to classify it together with a number of similar models. SAS
models assume a rigorous coupling of attention and word processing, which is largely
restricted to a single word at a time. Another implication of SAS models is their re-
quirement, that the words are processed in a serial order. Only when processing of a
word has concluded, attention is shifted to the next word in reading direction, after which
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processing begins. Morrisons (1984) assumption that eye movements are indicative of
attention shifts after word processing was successfully completed, served as inspiration
for E-Z Reader. Different from Morrison’s ideas, however, E-Z Reader posits two stages
of lexical word processing, instead of one. Additionally, eye movement preparation is not
triggered by attention shifts, but instead by the completion of the first stage of lexical
processing. Thus eye movement preparation starts, before attention can be reallocated.
Once stage L1 on a word n is completed, an eye movement to the upcoming word n+1

starts undergoing preparation, although attention is and will remain focused on word n,
until also the second lexical processing stage L2 on word n is finished. In E-Z Reader
any lexical processing of a word requires that attention is affixed to the word as well. In
compliance with findings on saccadic dead time by Dutton and Starbuck (1971), saccade
programming also consists of two distinct, hierarchical stages: A labile motor program
(M1) that can be aborted in light of a newer targeting signal, and a non-labile motor pro-
gram (M2), that cannot be stopped. The possibility of aborting a labile stage of saccade
preparation enables word skipping: After completion of L1 on word n an eye movement
is prepared towards word n+1. If the L2 stage on word n is complete, attention shifts
to word n+1, initiating an L1 processing stage. If the L1 stage of lexical processing is
completed earlier than the labile motor program M1, M1 is aborted and directed to word
n+2. Consequently, word n+1 will be skipped.

The cognitive and oculomotor subsystems of E-Z Reader can operate in parallel on
their respective tasks without mutual interference. However, the oculomotor system crit-
ically depends on input from lexical processing, where completion of the L1 stage consti-
tutes the only route to movement initiation via the oculomotor system, pertaining to the
models cognitive focus.

After the M2 stage a saccade is performed to the center of the previously chosen word.
Following the ideas of McConkie et al. (1988), later versions of the model also contain
systematic and random saccade errors which perturb the landing site as a stochastic
function of the the intended saccade length. Saccadic errors introduce more realistic
landing site distributions, introduce a mechanism for refixations that the model previously
lacked, and provide the basis for a saccadic correction mechanism as an additional source
to regulate oculomotor control (Reichle, Rayner, & Pollatsek, 1999).

The early model was well received for providing a parsimonious, unifying mecha-
nism that could account for effects of word frequency, word predictability, word lengths,
parafoveal preview, interactions between parafoveal preview and foveal load, spillover ef-
fects and skipping costs. Over the years the model has stimulated plenty of research and
received various updates to accommodate a wider array of observations. The addition
of a third stage, postlexical integration (I), of word processing (Reichle, Warren, & Mc-
Connell, 2009) enables the model to perform regressive saccades. Although coupled to
word processing—the third stage is started after completion of the regular L2 stage—it
does not block attention from moving to the next word and can operate in parallel to
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regular lexical processing stages L1 and L2. Either if stage L2 on word n+1 finishes while
there is an unfinished stage I on word n, or at random, with low probability, upon comple-
tion of stage I, a saccade program is triggered targeting word n where integration failed.
This enables the model to perform regressive saccades to the preceding word.

1.2.2 SWIFT

The processing gradient model SWIFT of Engbert et al. (2002) was developed in response
to perceived shortcomings of the SAS modeling approach. Despite several similarities—
both models similarly respect the implications of research on temporal aspects of saccade
preparation (Dutton & Starbuck, 1971), as well as results on errors in saccade targeting
by McConkie et al. (1988) —fundamental differences arise as SWIFT replaces the SAS
principle with one that strongly favors parallel, simultaneous word processing. Instead
of both being triggered by word processing, saccade programming and target selection
occur at different times, overall governed by a random timing process. In SWIFT, the
parallel evolution of dynamically linked discrete random walks is the predominant design
principle.

Words are processed based on their location within a processing gradient, which is
centered and maximal at the fixation location, and decreases with eccentricity. A words
processing speed is a reflection of the area of under the curve of the processing gradient
that it occupies. At any time, each word is assigned an activation value pertaining to the
progress of it’s processing. In the beginning of the first stage of word processing, as well
as the end of the second stage, a words activation values are lowest, whereas they are
highest during the moment of transition between the two processing stages. The maximal
height of a words activation is determined from its length and frequency, thus giving the
model a route to incorporate

Because the height of the processing gradient is maximal at the center of fixation, words
close to the fovea are processed faster than words in the periphery, i.e., their activations
change more rapidly. Since the selection process for saccade targets favours words with
high activations, quick processing of foveal words will reduce their activations, whereas
slow processing of peripheral words increases their selection probability, as they approach
the point of transition between the two processing stages. While the mechanism expressed
in this relationship theoretically can be sufficient to elicit a selection bias in reading
direction, the processing gradient also is asymmetric, resemblant of the perceptual span.

In a later addition, the spatial extent and curvature of the processing gradient were
given dynamical properties as well. Akin to the attentional zoom lens model (Eriksen &
James, 1986), it was coupled to the foveal word activation, extending when activation is
low and contracting when activation is high.

The onset of saccade preparation is determined by an independent random timer. The
timer receives inhibitory input that is dynamically calculated from the activation of the
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currently foveated word. High activation values delay the onset of saccade preparation.
If the timer reaches completion it immediately restarts itself.

Saccade preparation is a hierarchical process that involves two consecutive random
timers, representing the labile and non-labile stages of saccade preparation (Dutton &
Starbuck, 1971), respectively. During the transition from the labile to the non-labile stage,
a definitive saccade target is selected on the basis of the momentary word activation field.
As in E-Z Reader, the labile stage can be aborted as a result of a new saccade program,
whereas the non-labile stage cannot.

The Dynamical field theory of movement preparation (Erlhagen & Schöner, 2002) pro-
vides the framework of a dynamically evolving choice array, whose values serve as weights
in a selection process. To select a saccade target, an activation field is formed from the
activation values of all words. The selection probability of a word is proportional to its
activation value in relation to the sum of all activations.

The executiion of a saccade briefly disrupts word processing and also is governed by
a random timer in duration. Saccade landing sites are determined in agreement with the
model of McConkie et al. (1988), with a systematic range error and oculomotor noise,
both depending on the length of the intended saccade.

The SWIFT model is incredibly versatile and can account for many kinds of gaze
behavior during reading. Most notably, the targeting mechanism based on the activation
field can explain simple forward saccades, refixations, skipping, as well as small and large
regressive saccades, without additional cognitive assumptions. Since foveal activation
inhibits the independent random timer, foveal difficulty can inherently affect the current,
as well as the upcoming fixation duration.

In summary, a variety of computational models of eye movements during reading
exists. The models can generate complex fixation sequences on sentences, where fixation
durations and fixation probabilities depend on properties of the given text. There are
major divides concerning the order of word processing as well as the relationship between
word processing and oculomotor control.

1.3 Parameter estimation

Properties of data generated by computational models greatly depend on the choice of
parameter values. Yet, parameters are often arbitrarily chosen by hand according to theo-
retical constraints or rules of thumb3, although—especially in complex models—small pa-
rameter variations bear the potential to yield substantial and unexpected effects (Engbert,
Nuthmann, Richter, & Kliegl, 2005). Often few parameter configurations are explored in
simulation studies, although reading data contains considerable interindividual variabil-

3As evident in formulations like “[..]we had assumed unrealistically long motor programming times in
earlier versions of the model [..] However, we realized we had overdone it [..]” in a simulation study on
preview benefits with the E-Z Reader model (Pollatsek, Reichle, & Rayner, 2006).
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ity (Rayner, 1998). Individual scores in external tests of reading ability can explain more
variation in fixation durations, especially in SFD and FFD, than general, established pre-
dictors like word length and word frequency (Everatt & Underwood, 1994; Kuperman &
Van Dyke, 2011). However, when computational models are used to simulate experimental
findings, interindividual variability is usually not considered.

To obtain parameter values that produce simulation results in agreement with ex-
perimental data, in the simplest cases researchers initially often turn to a grid based
approach (e.g., Reichle, Rayner, & Pollatsek, 2003). Here a measure of the goodness of
fit is calculated for set of equidistant points placed in the parameter space, allowing for
easy comparison, visualization and interpolation. However, the approach quickly becomes
infeasible with increasing dimensionality (i.e., number of free parameters), as the number
of necessary evaluations grows exponentially. In consequence, parameters must be esti-
mated algorithmically. Before discussing different methods, it is useful to specify what is
meant by goodness of fit.

1.3.1 Goodness of Fit

Data coming from generative computational models often lends itself to the same means of
analysis used with experimental data. One strategy is therefore to maximize the similarity
of selected statistics between simulated and experimentally collected data (e.g., as in
Engbert et al., 2002; Reichle et al., 1998), for example by least-squares estimation (Myung,
2003; Palestro, Sederberg, Osth, Van Zandt, & Turner, 2018). However, this often requires
the simulation of large data sets which is costly in terms of computational power, and
therefore computation time. Furthermore, different statistics likely evaluate different
aspects of the model (Schütt et al., 2017), and combining several statistics usually involves
the use of an arbitrary weighting function (but see Wood, 2010).

The alternative is to use a likelihood-based approach, which evades the pitfalls imma-
nent in the usage of summary statistics by circumventing the step of data simulation. In
turn it requires that the likelihood-function LM(θ|y) of the generative model M is known
or can be constructed.

Simply put, the likelihood quantifies the plausibility of observations for different pa-
rameter values as a function of the probability of making an observation under specific
parameters:

LM(θ|y) = PM(y|θ). (1.1)

While PM(y|θ) describes the distribution of data y, given specific parameters θ for the
model M , conversely, the likelihood LM(θ|y) describes the distribution of parameters,
given specific data. Using the likelihood in order to quantify the goodness of fit eliminates
biases introduced by focusing on arbitrary statistics. This implies, that whenever a model
can generate the observed data with nonzero probability, it is also possible to calculate a
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likelihood, making the likelihood approach viable for a broad class of models (Schütt et
al., 2017).

1.3.2 Likelihood maximization

In maximum likelihood estimation (MLE) the aim is to find a set of parameters that
maximizes the likelihood L(θ|y) for a data set y (Myung, 2003). When the likelihood
function can be differentiated, this can be achieved analytically by setting the derivative to
zero. However, this approach often is not possible, if the model involves many parameters
or the likelihood function is highly non-linear. In such cases, many different optimization
algorithms exist, which systematically search the parameter space for an optimal position.
Typically they apply small changes to an arbitrary starting position repeatedly, and close
in on a maximum over iterations, sometimes involving trial and error. This approach
allows the exploration of large parameter spaces, which would be impossible to exhaust
using, grid searches or pure Monte Carlo sampling.

A common problem in parameter estimation is posed by local maxima, which are
spatially separated areas of higher likelihood within the parameter space, with areas of
lower likelihood in between. Iterative optimization algorithms can become trapped in
such areas. Although many algorithms can employ different ways in order to circumvent
getting stuck in local maxima, the means of handling this problem remain heuristic and
there is no perfect solution.

1.3.3 Bayesian inference

Instead of finding a single value or position in the parameter space, in the Bayesian
approach a posterior distribution P (θ|y) over the parameters θ after the observation of the
data y is calculated. The likelihood L(θ|y) represents constraints from the experimental
data and the model, whereas a prior probability Q(θ) must also be specified, reflecting
a-priori knowledge or beliefs on the model parameters. The choice of a prior distribution
offers a possibility to incorporate auxiliary assumptions into the calculation, e.g., posterior
distributions gained in a previous experiment or through a meta-analysis. However, when
no prior information is available, broad and uninformative distributions should be used,
to avoid biasing the results (Schütt et al., 2017). The posterior distribution is then given
by

P (θ|y) = Q(θ)L(θ|y)
P (y) . (1.2)

To avoid having to calculate the denominator P (y) one can use Markov Chain Monte
Carlo (MCMC) methods (Gilks, Richardson, & Spiegelhalter, 1995), in turn yielding

P (θ|y) ∝ Q(θ)L(θ|y) . (1.3)

MCMC methods use samples from the posterior based on local evaluations of likelihood
and prior (Schütt et al., 2017). One such method is the random walk Metropolis-Hastings
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MCMC algorithm (Hastings, 1970). Starting at an arbitrary position X0 in the parameter
space, a proposal Y1 is calculated by updating the position with a random value drawn
from some (e.g., Gaussian) distribution with µ = 0 and some σ:

Y1 = X0 +N (0, σ) . (1.4)

In a second step, the posterior probability is calculated for the position and the proposal
according to eq.1.3 to determine an acceptance probability:

α1 := α(X0, Y1) := min{1, Q(Y1)L(Y1|y)
Q(X0)L(X0|y)} . (1.5)

When the posterior probability of the proposal is greater the the posterior probability
of the previous position, the proposal is accepted into the chain: X1 = Y1. If it is not
greater, the proposal can still be accepted with the probability given by α. Otherwise the
previous position is re-sampled, so that it is now contained twice in the chain: X1 = X0.
After the decision on what value will be added to the chain, the process of generating
a proposal based on the last chain value is simply repeated over and over. This simple
random walk algorithm has interesting properties, namely that, given enough iterations,
the distribution of collected samples will eventually converge to the posterior distribution.
While it is not very efficient, many variations exist that improve performance (e.g., Laloy
& Vrugt, 2012; Vihola, 2012).

1.4 The present studies

In the present studies the fields of experimental research, computational modeling and
parameter estimation are combined. We first investigate parafoveal processing of lexical
properties in an experiment with a modified n+1 boundary paradigm. Then, in an inter-
mediate step, we develop the likelihood function of the SWIFT model and demonstrate
the feasibility of parameter estimation based on simulated and experimentally recorded
data in a Bayesian framework. Finally, we explore whether different mechanisms in the
SWIFT model explain the effects found in the experiment, using simulations, based on
parameter estimations on the participant level.

Although previous studies could show effects of parafoveal word processing on fixation
durations (Risse, Hohenstein, Kliegl, & Engbert, 2014; Risse & Kliegl, 2014; Schotter &
Leinenger, 2016), their experimental designs did not allow for a clear statistical distinction
with respect to the nature of these effects. Therefore the aim of the first article was to
clarify the relationship between the effects by improving on the experimental paradigm,
which allowed for an unambiguous distinction between the effect of preview difficulty and
preview validity.

The second article has a more general aim and is a necessary precursor to further
work. We demonstrate the feasibility of data assimilation in the context of the SWIFT
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model of eye movements during reading. Beginning with a detailed description of the
generative model, we develop a likelihood function using a computational approach. We
then demonstrate the process of parameter estimation for a small, but demonstrative set
of parameters for simulated data, successfully recovering known parameters from the esti-
mation, using a Metropolis type MCMC algorithm. In a final step we estimate parameters
for data from the previous experiment and compare statistics for simulations based on
the obtained parameters with the empirical data.

Having established a workflow for incorporating experimental data into the parametric
outfit of the SWIFT model, we revisit the preview effects in the third article. We combine
the approach of parameter estimation with the exploration of different model variants and
compare how well they can capture the effect patterns in the experiment. We employ an
improved algorithm for parameter estimation and reduce the amount of data in a proper
cross validation approach.

1.4.1 Stable preview difficulty effects in reading with an im-
proved variant of the boundary paradigm.

The notion that word processing influences fixation durations during sentence reading
is generally accepted (Henderson & Ferreira, 1990; Salthouse & Ellis, 1980). As during
sentence reading not all words receive a fixation, processing can not be constrained to
fixated words, and must be extended to adjacent, parafoveal words as well (McConkie
& Rayner, 1975). The boundary paradigm (Rayner, 1975a, ; see see Section 1.1.4) has
been extensively used to study the influence of various properties of parafoveal words on
fixation durations after the boundary, where the finding of reduced fixation durations for
valid previews, as compared to invalid previews, is usually explained as “preview benefit”
due to successful trans-saccadic integration.

A number of findings (i.e., PoF effects) challenge this interpretation which extends to
lower level word properties but typically excludes lexical processing of previews. Specif-
ically, previous studies on frequency effects for invalid previews (Risse & Kliegl, 2012,
2014) make a case for parafoveal processing up to a lexical level. This exceeds the notion
of mere integration as the sole source for the observed differences in fixation durations.

In Chapter 2 we aim to reproduce these findings with an alternative experimental
design within the framework of the boundary paradigm, which allows for a statistically
thorough discrimination between effects of preview validity and preview difficulty. Par-
ticipants were presented with previews of three different difficulties (i.e., high, medium
and low frequency classes), whereas all targets had the same difficulty (medium frequency
class). This design eliminates the problems present in earlier experiments, where the ob-
served effect sizes could have been confounded with asymmetric preview validity effects.

The results confirm the existence of independent effects of preview validity and pre-
view difficulty for fixation durations on the target word after the boundary. We discuss
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the results in the context of SAS and GD modeling paradigms, and address alterna-
tive explanations, previously posed by Schotter and Leinenger (2016), with an additional
time-course analysis based on the distributions of fixation durations.

1.4.2 Bayesian parameter estimation for the SWIFT model of
eye-movement control during reading

In Chapter 3 we focus on data assimilation for a dynamical cognitive model of oculomo-
tor control during reading. The SWIFT model (Engbert et al., 2002) of eye movements
during reading accomplishes word processing by using an asymmetric processing gradient,
centered on the fixation position. Every word that falls within this gradient is processed
simultaneously, albeit with a speed depending on its eccentricity with respect to the po-
sition of the fovea, as well as the reading direction (hence the asymmetry). Individual
words serve as targets for saccadic eye movements and are selected based on the progress
of their processing. The temporal aspects of eye movements are governed by a set of hier-
archical, stochastic timers which implement two distinct stages of saccade programming.
The timers are initiated by a rhythmic generator process that is dynamically inhibited by
the processing of the currently foveated word.

To achieve an optimal fit between model and empirical data, we seek a framework
that circumvents the use of arbitrary statistics based on the model output and instead
directly evaluates the likelihood of data, given the model. In the construction of the
likelihood function we combine probability density approximation and pseudo-marginal
likelihood estimation. In order to demonstrate the applicability of the likelihood function,
we show changes of the likelihood for single parameter variations for a small subset of four
parameters in simulated data, as well as the ability to recover a set of several parameters
using an adaptive Metropolis Hastings MCMC algorithm (Vihola, 2012, ;see 1.3.3).

Finally, we apply the technique to empirical data collected in the experiment from
Chapter 2, to estimate parameters on a participant level. In a critical check of the goodness
of fit we compare typical summary statistics between the empirical source data and data
simulated by using point estimates of the posterior parameter distributions. Although
the estimation involved only four parameters, the means of simulated first pass fixation
durations and probabilities are in good agreement with their empirical counterparts on
the participant level.

1.4.3 Predictive modeling of the influence of parafoveal infor-
mation processing on eye guidance in reading

In Chapter 4 we explore whether different mechanisms of inhibition by parafoveal words
and oculomotor constraints triggered by display changes can account for the effects of
preview difficulty and preview validity from Chapter 2 in the framework of the SWIFT
model. In the model, saccade timing is only indirectly connected to word processing
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via inhibition of an otherwise autonomous saccade timer. Originally, only foveal words
can exert inhibition, proportional to the fixated words processing progress. We extend
the model to also include inhibition by parafoveal words as proposed by Henderson and
Ferreira (1990) and explore a further variant, where parafoveal inhibition is delayed.
Additionally, the model is provided a mechanism of saccade cancellation after a display
change. In a further variation the saccade cancellation is coupled to preview processing,
allowing for cancellation only while the preview is still in the first stage of processing at
the time of the display change.

Using the empirical data gathered in Chapter 2, and the parameter estimation tech-
niques developed in Chapter 3, we now estimate a large number of free parameters for
the original model and the two model variants with parafoveal inhibition. Parameters
are estimated on the participant level, now only using data from the control condition
of the experiment in Chapter 2 (i.e., valid, medium frequency previews). In the next
step, the resulting posterior distributions are used as a sampling reservoir in simulations
of data for the three preview conditions in all model variants. We combine the variants
of parafoveal inhibition with the variants of saccade cancellation, resulting in 9 different
model configurations. For every combination the preview effects on the target word are
calculated and compared to the experimental results.

Effects of preview difficulty emerged from the implementation of parafoveal inhibition
and slightly improved, when inhibition was additionally delayed by 100ms. While preview
validity effects were slightly present as a result of how the display change was implemented,
they drastically increased in size, when saccade cancellation was added. Tying saccade
cancellation to the first stage of preview processing reduced the effect size to a reasonable
level. Taken together, the models with processing dependent saccade cancellation and
parafoveal inhibition (delayed or immediate) showed the best agreement to the empirical
data.

In conclusion we show that the SWIFT model of parallel, gradient based word pro-
cessing can account for effects of lexical difficulty on the target word in a gaze contingent
boundary paradigm, when the inhibitory influence of word processing is extended to in-
clude the upcoming parafoveal word. Simultaneously we demonstrate the capabilities of
the Bayesian approach to likelihood based parameter estimation for small data sets and
many parameters.
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Abstract

Using gaze-contingent display changes in the boundary paradigm during sentence read-
ing, it has recently been shown that parafoveal word-processing difficulties affect fixations
on words to the right of the boundary. Current interpretations of this post-boundary
preview difficulty effect range from delayed parafoveal-on-foveal effects in parallel word-
processing models to forced fixations in serial word-processing models. However, these
findings are based on an experimental design that, while allowing to isolate preview dif-
ficulty effects, might have established a bias with respect to asymmetries in parafoveal
preview benefit for high-frequent and low-frequent target words. Here, we present a revi-
sion of this paradigm varying the preview’s lexical frequency and keeping the target word
constant. We found substantial effects of the preview difficulty in fixation durations af-
ter the boundary confirming that preview processing affects the oculomotor decisions not
only via trans-saccadic integration of preview and target word information. An additional
time-course analysis showed that the preview difficulty effect was significant across the
full fixation duration distribution on the target word without any evidence on the pre-
target word before the boundary. We discuss implications of the accumulating evidence
of post-boundary preview difficulty effects for models of eye movement control during
reading.
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2.1 Introduction

What influences the decision of when and where to move the eyes during reading has long
been of interest to psychologists and spawned a diverse field of research. In an influential
study, McConkie and Rayner (1975) devised an experimental paradigm where, using an
eyetracker, they manipulated the amount of visible text around the centre of fixation while
the participants were reading normal sentences. By systematically varying the size of this
moving window and by comparing measures like fixation durations and saccade distances
to unhindered reading, it was found that the area of visible text necessary for normal
reading, called the perceptual span, extends about four letters to the left and as much
as 14 to 15 letters to the right of fixation (McConkie & Rayner, 1975; Rayner, Well, &
Pollatsek, 1980) indicating the use of both foveal and parafoveal word information during
reading.

Psychological models trying to explain the control of our eye movements in a task
such as reading differ in their assumption about how word processing in the percep-
tual span is scheduled and whether attention is gradually distributed across the entire
span or sequentially shifted from one word to the next during a fixation. While graded
distributed attention (GDA) models predict parallel (lexical) processing of foveal and
parafoveal words, sequential attention shift (SAS) models assume covert attention shifts
to the parafoveal word only after lexical processing of the foveal word has finished. As
a consequence, the models differ in their dynamics of processing foveal and parafoveal
words inside the perceptual span and should, in principle, show at least subtle differences
in how parafoveal processing affects the reader’s eye movements.

A lot of research has focused on the type of information that can be extracted from
parafoveal vision (see Hyönä, 2011; Schotter et al., 2012, for comprehensive reviews).
However, little is known about the time course of information integration in the perceptual
span, which would be most informative with respect to modelling eye movement control.
The present study tests parafoveal processing effects across a target region spanning more
than one word, and we discuss the compatibility of the results with current mathematical
implementations of reading models based on SAS and GDA assumptions.

2.1.1 Parafoveal processing in the perceptual span

Using the gaze-contingent boundary technique (Rayner, 1975b), much has been learned
about the impact of parafoveal word previews on reading. In such experiments, partici-
pants typically read sentences in which a predefined target word is initially masked with
a different word or nonword. As soon as the eyes cross an invisible boundary, usually
placed after the last letter of the word before the target (i.e., after the pretarget word n

directly to the left of the target word n + 1), a display change occurs during which the
target word is restored. This condition with invalid preview is then compared with the
condition with valid preview in which the preview and target words are the same. As the
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Figure 2.1: Illustration of parafoveal preview effects in the boundary paradigm manip-
ulating preview of word n+ 1. The blue boxes contain the feature of the preview that has
been manipulated. The red arrows reflect the spatio-temporal route via which the pre-
view feature is assumed to affect fixation durations. Blue dotted lines indicate on which
words the respective preview effects are measured. Varying the preview validity (valid
vs. invalid) typically leads to preview frequency (high vs. low frequency) may result in
parafoveal-on-foveal effects on word n and/or preview difficulty effects on word n+1. The
dashed line between word n and word n+ 1 shows the location of the invisible boundary.

boundary is mostly crossed during a saccade, the display change should go unnoticed due
to saccadic suppression (Matin, 1974; see also Slattery, Angele, and Rayner, 2011) and
the previews are never subject to foveal inspection.

With this experimental technique, parafoveal preview of the target word has been
shown to have a substantial effect on eye movements during reading (e.g., shorter fixations
after valid as compared with invalid preview; see below for more details). Yet, preview
effects are reported mainly for fixations after the boundary on the target word that was
subject to the preview manipulation. Only under certain circumstances, they seem to
also occur nonlocally on words before and after the target word. The precise time course
of parafoveal information uptake and its integration with ongoing foveal processing is still
unclear, and the mechanisms causing the observed local and nonlocal preview effects are
disputed. In the following, we will briefly describe the empirical evidence for the different
preview effects that have been obtained within boundary experiments (see 2.1 for an
illustration), and then turn to their theoretical implications with respect to the debate
about attention and the time course of foveal and parafoveal lexical word processing during
reading.

Parafoveeal preview benefit. The best-established preview effect in the boundary
paradigm is the parafoveal preview benefit that is observed in fixations on the target
word after the eyes have crossed the boundary (see 2.1). Preview benefit is typically ob-
tained when manipulating the validity of the preview that is the preview-to-target overlap
of information. Readers spend significantly less time fixating the target word when the
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parafoveal preview shared information (e.g., the initial three letters) with the target word
as compared with when it did not (Rayner et al., 1982). Preview benefit amounts to 30 to
50ms (Hyönä, 2011; Schotter et al., 2012; Vasilev & Angele, 2017) and belongs to the most
reliable effects in eyetracking research on reading. It has been demonstrated for ortho-
graphic (Balota et al., 1985; Snell et al., 2017), phonological (Pollatsek et al., 1992), and
even semantic (Hohenstein & Kliegl, 2014; Schotter, 2013) preview-to-target information
overlap. Preview benefit indicates parafoveal word processing during reading and sug-
gests that parafoveal information is integrated across saccades (Inhoff & Tousman, 1990).
This trans-saccadic integration speeds up the processing of the foveated word, resulting in
shorter fixation durations on the target word in case of valid preview (more information
that can be integrated) as compared with invalid preview (less information that can be
integrated). However, as integration can start only after the preview has been replaced
with the target word, the preview benefit constitutes a rather late effect of parafoveal
processing. More importantly, from the perspective of trans-saccadic integration, preview
processing affects oculomotor control only indirectly. The temporal oculomotor decisions
are solely based on the processing demand of the currently fixated foveal target word.
However, the target word’s processing demand is reduced by the amount of preview in-
formation that could be successfully integrated. Preview benefit can thus be viewed as a
preview-reduced effect of the foveal word difficulty.

Parafoveal-on-foveal effects. In addition, preview processing may also have an effect on
oculomotor control on its own. In boundary experiments, while fixating on the pretarget
word n before the boundary, the parafoveal word n+ 1 to the right differs as a function of
the preview condition. In the valid preview condition, the preview is the target word. But
in the invalid preview condition, the target word is masked, often using a random-letter
nonword, which should deviate substantially in processing difficulty from the valid preview
condition. If the parafoveal preview is processed during pretarget fixations, difficult invalid
previews may draw on more attentional resources than easier valid previews of the target
word and postpone the decision of when to move the eyes away from the pretarget word.

Effects of the preview difficulty in pretarget fixations (i.e., on word n) are called
parafoveal-on-foveal effects (see 2.1). They have been consistently reported for ortho-
graphic familiarity, and even for lexical frequency, in statistical analyses of eye move-
ments while reading large text corpora (Kennedy & Pynte, 2005; Kliegl et al., 2006).
In experimental designs, however, the results have been less consistent. Orthographic
parafoveal-on-foveal effects have been shown for orthographic irregularities in parafoveal
vision (e.g., words vs. nonwords; Inhoff et al., 2000) and higher-frequency orthographic
neighbours (e.g., blue vs. blur; Snell et al., 2017). Lexical parafoveal-on-foveal effects,
if at all significant, were very small and even inconsistent regarding their directions,
sometimes showing increased and sometimes decreased pretarget fixations with difficult
low-frequency (LF) previews (Hyönä and Bertram, 2004; but see Kennedy et al., 2002).
A recent meta-analysis of 28 preview experiments reported strong evidence for the ab-
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sence of lexical parafoveal-on-foveal effects of word n + 1 (Brothers et al., 2017). Thus,
whether the lexical processing difficulty of the preview modulates preboundary fixations
is generally questioned.

Post-boundary preview difficulty effects. It has been shown that, under certain condi-
tions, processing effects may lag behind and manifest during later fixations. For example,
the lexical frequency of a currently fixated word n can affect the duration of subsequent
fixations on the upcoming word n+ 1 (i.e., spillover effects, Rayner and Duffy, 1986; lag
effects, Kliegl et al., 2006; foveal-on-parafoveal effects, Schroyens, Vitu, Brysbaert, and
d’Ydewalle, 1999). Similarly, processing difficulties of the parafoveal preview that are ex-
pected to modulate fixations on the pretarget word n (i.e., showing parafoveal-on-foveal
effects) may lag behind and affect the next fixation when the eyes have already crossed the
boundary. As a consequence, parafoveal-on-foveal effects may be small and comparably
weak on word n, as they only affect a small portion of the preboundary fixations. How-
ever, there might be stronger and more reliable preview difficulty effects in post-boundary
fixations on word n+ 1 (see 2.1).

Risse and Kliegl (2012; see also Kliegl, Risse, and Laubrock, 2007) have first reported
such effects investigating preview of word n + 2, the word two words to the right of the
boundary. Effects of the preview difficulty of word n+ 2 were found in fixation durations
after the boundary on word n + 1. Following up on this, they have demonstrated post-
boundary preview difficulty effects also for parafoveal preview of word n + 1 (Risse &
Kliegl, 2014). In their boundary experiments, they combined high-frequency (HF; easy)
previews with LF (difficult) targets and vice versa to test invalid preview conditions. In
valid preview conditions, preview and target words remained the same (i.e., either the
same HF or LF word). While they did not find any significant parafoveal-on-foveal effect
of the preview difficulty in fixation durations on word n prior to the boundary, they found,
in all experiments, a significant effect of the preview difficulty in fixation durations on
word n + 1 after the boundary. Difficult (LF) previews yielded an increase in fixation
durations on the post-boundary word n + 1, as compared with easy (HF) previews. As
preview difficulty typically measures parafoveal-on-foveal effects on word n, finding the
effect on word n+ 1 instead was interpreted as a delayed parafoveal-on-foveal effect.

2.1.2 Theoretical relevance of parafoveal-on-foveal effects

One reason for the ongoing interest in the controversy about parafoveal-on-foveal effects
is that they are commonly taken as evidence for cross-talk in that “properties of a word
present in the parafovea (i.e., not directly inspected), may influence the way a currently
fixated word is processed” (Kennedy, 2008, p. 1). Given this definition, their existence
would support parallel word processing, which is associated with models assuming that
attention is gradually distributed across all words inside the perceptual span (i.e., GDA
models). The statistical absence of parafoveal-on-foveal effects, to the contrary, is taken
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as support for models that postulate serial word-by-word processing in the perceptual
span (i.e., SAS models; see Drieghe, 2011, for a detailed summary of this discussion).

At the same time, all contemporary models assume—at least to some degree—parallel
processing of multiple words (e.g., by subdividing word processing into several hierarchi-
cal/serial stages, where early, low-level stages can already be concerned with the next
word) and are, in principle, compatible with orthographic parafoveal-on-foveal effects.
The theoretically interesting effects are thus lexical parafoveal-on-foveal effects that are
typically investigated varying the frequency of the n + 1 preview. The above reported
findings of preview difficulty effects confirm that parafoveal previews can be processed up
to their lexical level during pretarget fixations. Moreover, this affects oculomotor control
not only at the level of target selection (i.e., HF previews are skipped more often than
LF previews; see Brysbaert, Drieghe, and Vitu, 2005) but also at the level of timing the
next saccade (i.e., fixation durations are longer with LF previews than with HF previews).
Yet, the effect on fixation durations seems to appear not on word n but is, relative to
preview uptake (i.e., before the eyes crossed the boundary), delayed into later fixations
(i.e., after the eyes crossed the boundary). To the extent that this finding results from
cross-talk between processing the preboundary word n and the n + 1 preview in paral-
lel, the absence of lexical parafoveal-on-foveal effects on word n as reported in Brothers
et al. (2017) would not necessarily conflict with GDA model assumptions. In fact, the
parafoveal-on-foveal effect on word n would just be shifted to word n + 1 (i.e., resulting
in a delayed parafoveal-on-foveal effect). One plausible reason for such a position shift
in observing the effect could be that the decreasing visual acuity in parafoveal compared
with foveal vision delays lexical access of the preview such that its processing difficulty af-
fects the oculomotor system later relative to foveal processing (see Lee, Legge, and Ortiz,
2003; Schiepers, 1980).

At the same time, the post-boundary preview difficulty effect can also be accounted
for by SAS models. As Risse and Kliegl (2012, 2014) discussed, the neuronal delays of
transmitting retinal information to higher cortical brain areas for lexical processing may
lead to situations in which, during fixations on word n+ 1, a saccade is programmed and
executed still based on the old and meanwhile outdated information about the preview
(see also Morrison, 1984). Thus, until the preview is updated with the target word, there
is a small time window that allows preview frequency effects to occur on word n+1. This
interpretation is fully compatible with the assumption of serial word processing during
reading because lexical processing of word n+1 would have started during fixations on the
pretarget word n, but only after lexical processing of word n would have been terminated,
thereby avoiding any cross-talk between foveal and parafoveal processing.

2.1.3 An alternative interpretation in terms of forced fixations

Recently, Schotter and Leinenger (2016) proposed an alternative explanation in SAS
models based on forced fixations. Basically, this extends the eye-brain-lag explanation



26 Chapter 2

described above to saccade programmes that were already started during fixating word n.
Upon termination of processing word n, attention is shifted to word n+ 1 and processing
of the preview can start while a saccade towards word n + 1 is programmed. Given an
easy word n+ 1 preview, the authors assume that parafoveal processing can occasionally
proceed up to a level at which a second saccade programme to the next word n + 2 is
initiated. In most of these cases, this leads to the cancellation of the ongoing saccade
programme and word n + 1 will be skipped with the next eye movement. However, in
some cases, the ongoing saccade programme to word n + 1 will be in a stage at which it
cannot be cancelled anymore and a fixation on word n+ 1 is forced. As a second parallel
saccade programme to word n + 2 is already in progress, such forced fixations on word
n+ 1 will be short, and because they are more likely in case of easy HF previews and less
likely in the presence of difficult LF previews, they have the potential to account for the
observed preview difficulty effects on word n+ 1.

The latter interpretation in terms of forced fixations is compelling and points towards
an interesting complexity within SAS models. Nevertheless, the current empirical evidence
is likewise accounted for by GDA models. However, and more important for the present
study, the critical evidence has been obtained in a paradigm that, to isolate effects of
preview difficulty, introduced a potential bias as a consequence of asymmetries in preview
benefit associated with different target word frequencies. As mentioned above, Risse and
Kliegl (2012, 2014; see also Niefind and Dimigen, 2016; Schotter and Leinenger, 2016,
Experiment 1) combined LF previews with HF target words and vice versa (see 2.2a).
The orthogonal preview difficulty-by-validity manipulation allowed a valid assessment of
both main effects and their interaction as long as the variables are independent of each
other. However, as Inhoff and Rayner (1986) first showed, more preview is gained from
an HF, than from an LF target word. As the preview difficulty main effect in the critical
experiments was estimated by averaging the data from the two validity conditions, such
asymmetric preview benefit could have resulted in a preview difficulty main effect mainly
upon the selective preview benefit for HF target words (see 2.2c). In other words, the
main effect of preview difficulty may have in fact resulted from statistical averaging across
asymmetric validity levels.

Schotter and Leinenger (2016) tried to circumvent this issue reporting statistical tests
for a nested design instead of the crossed 2 × 2 design. The resulting comparison was
between HF and LF previews keeping the target word frequency constant. While keeping
the target word frequency constant is the right way to go to achieve an independent test
of the preview frequency, their experiments (except Experiment 2) still confounded the
preview benefit: One level of the nested factor (e.g., LF preview/LF target) was always
with valid preview whereas the other one was with invalid preview (i.e., HF preview/LF
target). Moreover, while nesting is undoubtedly the better test of data with dependen-
cies, simulations have shown that optimising designs in terms of collecting independent
observations are always superior to nested designs with respect to type I error rate and
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Figure 2.2: (a) Preview-to-target mapping in the experiments reported by Risse and
Kliegl (2012, 2014), (b) preview-to-target mapping in the present study, and (c) illustra-
tion of the preview difficulty effect (right panel) as a by-product of target word difficulty
(left panel) and potential preview benefit asymmetries (middle panel).

statistical power (Aarts, Verhage, Veenvliet, Dolan, & Van Der Sluis, 2014). Therefore,
we revised the paradigm and proposed a design that tests the effect of preview frequency
keeping the target word frequency constant 1.

2.1.4 The present experiment

In the present study, we used a modified experimental design that allowed a clear, non-
confounded test of preview difficulty effects in fixation durations on the target word n+ 1
(see 2.2b). In a gaze-contingent display-change experiment, participants read single sen-
tences while their eye movements were recorded. The sentences contained an invisible
boundary before a target word, which was presented as one of three previews during fixa-
tions to the left of the boundary. Instead of combining easy (HF) previews with difficult
(LF) target words and vice versa (plus the two valid preview conditions), we combined
three levels of preview difficulty with only one level of target difficulty. Therefore, we sys-
tematically manipulated the frequency of the parafoveal preview (i.e., HF or LF), while

1The idea is similar to Experiment 2 in Schotter and Leinenger (2016) with the difference that they
used nonword targets that were fixated after the boundary. This might have led participants to use
strategies in their experiment that differed from normal reading.
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keeping the frequency of the target word constant (i.e., a medium-frequency [MF] word).
In addition to the two invalid preview conditions, the control condition tested the MF
word as a valid preview for the MF target.

Given that the target word after the boundary was the same in all conditions, preview
difficulty effects could not stem from interactions with differences in target word process-
ing (e.g., asymmetric preview benefit). As a consequence, preview difficulty effects, if
obtained in the present experiment, must be attributed to oculomotor decisions based
on the processing difficulty in parafoveal vision before the eyes crossed the boundary.
In line with previous research, we expected to find reliable parafoveal preview benefit in
fixations on the target word. Target word fixations should be shorter in case of valid
preview (i.e., MF preview with MF target) as compared with sentences with invalid pre-
view (i.e., HF or LF preview with MF target). More importantly, we expected to find
additional preview difficulty effects in the experiment with shorter fixations in case of HF
as compared with LF previews. Finding such effects in fixations on the pretarget word
n would make a strong case for lexical parafoveal-on-foveal cross-talk. However, with
respect to previous research, we expected preview difficulty effects mainly on the target
word n + 1 after crossing the boundary. To decide whether such effects reflect delayed
effects of parallel processing (e.g., delayed parafoveal-on-foveal effects) or forced fixations
during serial processing is beyond the scope of the present study. Here, the goal is to
provide a conservative test of the critical effect with an optimised methodology on which
future research can build upon.

2.2 Method

2.2.1 Subjects

Thirty-four young adults (gender: nfemale = 20, nmale = 14; age: M = 21years, SD = 4)
were tested in a 45-min session. Participants were university or high school students
from the Potsdam community and were compensated with course credit or 7 € for their
attendance. All participants had normal or corrected-to-normal vision, which was assessed
with the Freiburg Visual Acuity Test (Bach, 2007), and signed informed consent before
beginning the experiment.

2.2.2 Sentence Material

The experiment consisted of 114 simple structured sentences with six to 12 words and
an average length of nine words (SD = 1). A two-word target region was embedded in
each sentence. The preboundary word n was an adjective, which ranged from four to 11
letters (M = 6, SD = 2), and occurred at positions two to eight in the sentence (M = 4,
SD = 2). Word n was followed by the target word n+ 1, a noun that ranged from five to
seven letters. Forty sentences contained a five-letter noun, 38 sentences a six-letter noun,
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Table 2.1: Summary statistics for preview/target word n+1 and pretarget word n. Fre-
quency is defined as the occurrence of a word per million. Predictability is the probability
of correctly guessing a word in a cloze task.

Frequency word n + 1 N letters Predictability word n + 1 Letter overlap (%)
HF MF LF n n +

1
HF MF LF HF-MF LF-MF

M 107.7 29.1 2.4 6 6 .01 .04 0 30.0 29.2
SD 55.0 4.3 1.4 2 1 .04 .08 0 19.0 18.6
Minimum 50.2 20.6 .02 4 5 0 0 0 0 0
Maximum 362.1 40.0 5.0 11 7 .25 .5 0 85.7 83.3

HF: high frequency; MF: medium frequency; LF: low frequency; M : mean; SD: standard deviation.

and 36 sentences a seven-letter noun. Word n + 1 was never the last word in a sentence
and occurred at positions three to nine (M = 5, SD = 2). The critical manipulation
concerned the frequency of the word n + 1 preview. Each sentence frame enabled an
HF (easy), LF (difficult), and an MF (medium) word at position n + 1. Word lengths
of the target and its previews were matched for each sentence and none of the previews
resulted in a semantic violation. HF words had an average frequency of 108 per million
(SD = 55), LF words averaged 2.4 per million (SD = 1.4), and MF words averaged to
29 per million (SD = 4.3). All word norms were retrieved from the dlexDB database
based on the Digitales Wörterbuch der Deutschen Sprache des 20. Jahrhunderts corpus
(Geyken, 2007; Heister et al., 2011). For a summary of characteristics of words in the
target region, see Table 1.

In addition, cloze task predictability norms for each possible word n+ 1 (HF, LF, and
MF words) were collected online. Fourteen participants, who did not take part in the
reading study, read the 114 experimental sentences in randomised order up to word n and
guessed the upcoming word n + 1. As summarised in Table 1, MF words were correctly
guessed in 4% of the sentences (averaged across sentences and subjects) and HF words in
1%. LF words were not correctly guessed once. The critical previews were thus extremely
low predictable and the sentences can be considered neutral (cf. Schotter & Leinenger,
2016).

2.2.3 Apparatus and procedure

The sentences were presented horizontally on a 22-inch Iiyama Vision-Master Pro 514
monitor with a resolution of 1024 × 768 pixels and a monitor refresh rate of 150Hz.
Using a chin-rest, the distance to the monitor was kept constant at 60 cm. Monocular
right eye gaze position was recorded using the Eye-Link 1000 Tower-Mount-System (SR
Research, Ontario, Canada) with a sampling rate of 1000Hz. Sentences were presented
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in black monospace font (Courier) with fontsize 14 (letter x-height: 9 pixels) on a white
background with each letter spanning 0.34°of visual angle.

Participants were instructed to read for comprehension, which was assessed randomly
after one third of the trials with a three-alternative multiple-choice question. Comprehen-
sion accuracy was high (M = 98%, SD = 3). Each experiment started with the collection
of the participant’s informed consent. The participants then had to perform the Freiburg
Visual Acuity Test (Bach, 2007) and determine their dominant eye. They were thereafter
familiarised with the apparatus and procedure and provided with a written instruction.
Calibration used a standard nine-point grid, and recalibrations were done every 15 trials
and whenever necessary. Sentences were presented horizontally at the vertical midline
of the monitor. The starting position of each sentence was fixed at 40pixels offset from
the left monitor border. Each trial started with a fixation point on the left side of the
horizontal midline that indicated the optimal viewing position (i.e., word centre) of the
first word of each sentence. Drift correction was applied in the centre of the screen in
case that gaze detection failed for 100ms. Recalibration followed after three successive
failures. After a successful initial fixation, the sentence was displayed on the monitor.
The presentation of the sentence was completed with the fixation of a dot in the lower
right corner of the screen.

The experiment started with six practice sentences to familiarise the participants with
the procedure, followed by 114 experimental sentences. To manipulate parafoveal preview,
the boundary paradigm was implemented, inserting an invisible boundary at the end of
the last letter of word n. The next word n + 1 changed contingent on the reader’s eye
position. Prior to the boundary, word n + 1 was either an HF, LF, or MF word. As the
eye crossed the boundary, it was replaced with the MF word. Hence, each sentence was
presented in one of three conditions: (1) HF–MF, (2) LF–MF, (3) MF–MF. In condition
(3), preview and target words were identical, thus word n + 1 was replaced by itself
and participants obtained valid preview. In conditions (1) and (2), preview and target
words differed from each other. Thus, participants received invalid preview of the target
word. Experimental conditions were counterbalanced across participants, and sentence
presentation was randomised. Participants were asked to fill out a short questionnaire
after the experiment, in which they had to state if they had noticed any display changes
during the experiment. On average, self-reports of display changes amounted to 13% of
sentences. The critical preview effects did not covary with the self-reported display-change
awareness of the individual participants. Therefore, analyses were conducted based on
data of all participants.

2.2.4 Data analysis

Saccades were detected offline in the eye movement records using the algorithm by Engbert
and Mergenthaler (2006). Fixation durations (i.e., the inter-saccadic intervals) were then
divided into first-pass single fixation durations (SFD; cases in which a word was only
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fixated once), first fixation durations (FFD; fixations associated with the first encounter
of the word) and gaze durations (GZD: sum of all fixations on a word until first departure).
If words were (re-)fixated after the gaze had already been to the right of the word, this
was considered the second pass of reading. Second-pass fixation durations were added to
the GZD constituting the total viewing time (TVT) on the word.

In all, 9% of the sentence data were discarded due to tracker loss and an additional
17% due to invalid display changes (i.e., target word replacement finished after fixation
onset on the target). Individual fixation durations were considered outliers if they were
shorter than 10ms or longer than 800 ms2. 2 Fixation duration measures that contained
at least one outlier fixation were removed from the dataset (0.33% of word-based duration
measures in the target region). This left 2.772 valid trials (including first- and second-pass
reading) for analyses on word n and 2.783 trials for analyses on word n+ 1.

Statistical analyses were performed with linear mixed models (LMMS; Baayen, David-
son, & Bates, 2008) using the lmer programme (lme4 package; Bates, Mächler, Bolker,
& Walker, 2015) in the R environment (R Foundation of Statistical Computing R Core
Team, 2013). Separate LMMs were estimated for each dependent variable (DV) control-
ling for random variances by submitting subjects and items as crossed random factors. In
addition, and theoretically more important, the three preview conditions were compared
using a priori Helmert contrasts. The preview difficulty contrast (c1) tested the HF pre-
view condition (HF: –1) against the LF preview condition (LF: + 1). For the preview
benefit effect, the preview validity contrast (c2) tested the average of the HF and LF
preview conditions (HF: –1; LF: –1) against the MF preview condition (MF: +2). With
these two fixed effects centred around zero, the intercept of the models reflected the grand
mean of the DV across subjects, items, and conditions.

Fixation durations were log-transformed to increase accordance with the normality
assumption. Note that the results did not differ when the models were estimated on
the untransformed variables suggesting that the statistical results were stable and not
dependent on parametric assumptions. For each fixed effect, t values were computed as
the ratio of estimate (b) and standard error (SE) and are typically considered significant at
p < .05, if |t| > 1.96. However, to be conservative (e.g., because we ran multiple analyses
on several different fixation duration measures, see Von der Malsburg and Angele, 2017),
t values should be substantially larger.

We were mainly interested in the theoretically motivated model described above. How-
ever, we ran additional models to check the reliability of the results in our main model.
Mainly, we fitted the maximum models estimating random contrast slopes for both sub-
jects and items (see Barr, Levy, Scheepers, & Tily, 2013, for more details). All models
converged and showed very similar fixed effect parameters with no changes in significance

2We used a cutoff for short fixation outliers of 10ms instead of the typical 80ms to increase the chance
of keeping brief fixations in the fixation distribution that might be the result of eye-brain lag (Morrison,
1984) or forced fixations (Schotter & Leinenger, 2016)
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Table 2.2: Target word n + 1. Condition means(M) and standard deviations (SD) of
various fixation measures (upper panel) and fixed effects (estimated slopes and t values)
from linear mixed-effects models (lower panel). See text for more details.

Preview FFD SFD GZD TVT SKP
M SD M SD M SD M SD M SD

HF 251 89 254 88 272 107 338 153 .095 .29
LF 274 98 282 98 296 104 350 149 .052 .22
MF 233 74 236 73 246 85 287 137 .097 .30

b t b t b t b t b z

c1[pvD] .04 5.25 .05 7.14 .05 6.52 .02 3.02 -.36 -3.92

c2[pvD] -.04 -7.62 -.04 -9.34 -.04 -10.4 -.06 -12.9 .13 2.61

FFD: first fixation durations; SFD: single fixation durations; GZD: gaze duration; TVT: total
viewing time; pvD: preview difficulty; pvV: preview validity; SKP: skipping probability.
The bold values indicate that t- (and z-)values are significant (with p < .05).

pattern. As we are not interested in individual differences in the present study, we report
the results from the theoretical model only, log(DV ) ∼ c1 + c2 + (1|subject) + (1|item).

2.3 Results and discussion

2.3.1 Main analysis: fixation durations on target word n+1

The results from the target word main analysis were unambiguous and clear-cut. Table
2.2 shows the LMM results for both first- and second-pass fixation duration measures and
the associated condition means. Word n + 1 was fixated once during firstpass reading
(i.e., in a single fixation) in 2,419 cases (87%) and was refixated in first-pass only in
255 cases (9%).3 The remaining 4% were trials in which word n + 1 was skipped during
first-pass reading but then revisited later during second-pass reading. In the following,
we will mainly refer to the results from the analysis of FFD (which were mainly single
fixations), as the first fixation after the boundary should be most critical with respect to
delayed effects from the pretarget word. Note, however, that the effects replicated across
the other fixation measures.

As Figure 3 (left panel) illustrates, the preview difficulty contrast was significant.
Specifically, fixation durations were longer, if the parafoveal preview had been an LF as
compared with an HF noun. Note that this preview difficulty effect was measured on

3The number of first-pass refixations on word n + 1 were very low in this experiment so that measures
such as the first fixation of multiple fixation cases or the refixation probability were not investigated with
respect to effects of preview condition.
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Figure 2.3: Left panel: Average first fixation duration on the target word n + 1 as
a function of the preview difficulty. Error bars represent the 95% confidence intervals.
Right panel: Estimated regression slopes and their standard errors for preview difficulty
(pvD) and preview validity (pvV) effects of linear mixed-effects models with and without
predictability as covariate and with a subset of data only including sentences in which
all previews had a predictability of zero. Estimates are depicted for different fixation
durations on word n+ 1 (see text for more information).

the target word after the preview had been replaced and the preview was not visible
in parafoveal, let alone foveal, vision. More importantly, as the preview was in both
conditions changed into the same MF target word, this difference must reflect a pure
effect of the processing difficulty of the preview before the boundary.

In addition, the preview validity contrast was significant as well. Both HF and LF
preview conditions implied a display change and thus provided invalid preview for the
target word, and their average fixation durations were longer than in the MF preview
condition without display change (i.e., valid preview). Thus, the present experiment
showed clear evidence for the existence of both preview benefit and preview difficulty
effects in the same fixation duration measure on the same word after the boundary.

2.3.2 Control analyses: predictability and orthographic similar-
ity covariates

Next to a word’s lexical frequency, other linguistic variables such as the word’s length
or its predictability influence word recognition and many of them are correlated. While
word length for previews and targets was matched and thus controlled in the present
experiment, the predictability between HF, LF, and MF words might have differed. As
predictability is the probability of guessing a word from the sentence context, differences
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Figure 2.4: Quantile plots for last fixation on word n (left panel) and first fixation
on word n + 1 (right panel) as a function of high frequency (HF) and low frequency
(LF) previews. Quantile means are plotted with a little offset in quantiles making the
comparison between preview conditions easier for similar mean values. Fixation durations
were binned for each preview condition pooled across participants. Error bars are very
small and represent the 95% confidence intervals.

between previews may be accounted for solely by knowledge-based predictions without
needing to assume any parafoveal processing of the preview (i.e., HF previews may be
better predictable than LF previews resulting in shorter fixation durations).

Although the cloze predictabilities in the present study were very low, the 1% differ-
ence between HF and LF previews was significant, paired, one-sided t test: t(113) = 3.29,
p < .001. We therefore ran additional LMMs including the cloze predictability of the
n + 1 previews as a covariate (logit-transformed and centred on zero). Estimating the
effect of predictability alone (as main effect) and in combination with both preview con-
trasts (as interaction effects) left the model rank deficient because there was no variability
in predictabilities for LF previews (all cloze predictabilities equal zero). Dropping the
redundant interaction between predictability and the preview validity contrast, the pre-
dictability main effect reached significance in the TVT analysis (b = −.02, t = −2.10) and
its interaction with the preview difficulty contrast was marginally significant in the anal-
ysis of SFD (b = .03, t = 1.95). In all other fixation analyses, the predictability had no
reliable effect (all |t| < 1.46). The critical test, however, was to see whether the cloze pre-
dictability would explain the preview difficulty effects observed in the present study. Yet,
submitting cloze predictability to the LMMs did not change either the preview difficulty
contrast (c1) or the preview validity contrast (c2). Figure 2.3 (right panel) summarises
the estimates and their standard errors for each contrast of the control analysis (white
symbols) in comparison with the main analysis (black symbols). We also ran the main
model on a subset of data excluding all sentences in which the predictability of one of the
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previews was larger than zero. The effect sizes of the preview difficulty and the preview
validity contrast remained almost unaffected (see Figure 2.3, right panel, grey symbols).

Another variable that could possibly explain the effects of preview difficulty may be
the orthographic similarity between preview and target word. It could have been the
case that, by chance, HF previews shared more letters with the MF target words than
LF previews. To test this, we computed the letter overlap between HF previews and
MF targets as well as LF previews and MF targets. There was letter overlap of about
29% between previews and target words, but this did not differ between HF (M = 30%,
SD = 19) and LF previews (M = 29%, SD = 19). More importantly, estimating
an LMM on only the display-change conditions and with letter overlap as covariate did
not explain significantly more variance than the baseline model without letter overlap
and did not affect the estimates of the preview difficulty effect (see Table S1 in the
online Supplemental Material). Thus, we consider the preview difficulty effect on word
n + 1 a genuine effect that is not easily explained by the predictability of the preview
or its orthographic similarity with the target word, but rather originates from processing
difficulties associated with its lexical frequency.

2.3.3 Supplementary post hoc analyses on parafoveal-on-foveal
effects

To test whether the significant preview difficulty effect on the target word n+ 1 could be
interpreted as a delayed parafoveal-on-foveal effect spilling over from the pretarget word n
as predicted from a strict parallel processing perspective, we conducted a supplementary
analysis on the time course of this effect. Therefore, we selected a subset of fixation
durations containing the last fixation on the pretarget word n and the first fixation on
the target word n + 1 of each sentence, in which word n and word n + 1 were read in
sequence. In case the preview difficulty effect on word n + 1 was a delayed effect from
word n, longer pretarget fixations should increase the chance to find those effects already
immediately on word n and not only delayed on word n + 1. Similarly, a delayed effect
from the pretarget word should manifest already in short fixations on the target word.

We assessed the distribution of fixation durations before and after the boundary with
quantile regressions using the quantreg-function (Koenker, 2015) in R (R Foundation of
Statistical Computing, 2016). Figure 4 shows the fixation duration averages for each
quantile (i.e., containing the first 10%, the second 10%, the third 10%, etc. of speed-
ranked fixations), split by conditions of HF and LF previews, respectively. Quantile
regressions showed nonsignificant preview difficulty effects on word n for all quantiles (all
absolute t values < 1.42). However, they confirmed a significant preview difficulty effect
on word n + 1 from the second until the last quantile (all ts > 2, all ps < .04). The
preview validity effect on word n+ 1 was significant from the third until the last quantile
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(all absolute ts > 4, all ps < .001). See Tables S2 and S3 in the online Supplemental
Material for more details on the quantile regressions.

In summary, contrary to predictions from a strict cross-talk assumption, fixation du-
rations on the pretarget word seemed to not differ at all with respect to the frequency
of the parafoveal preview (left panel), neither for short nor for long pretarget fixations.
However, in fixation durations on the target word (right panel), the effect of the preview
difficulty was evident already in the shortest fixations and was increasing across the en-
tire fixation duration distribution. We will discuss potential implications in the “General
discussion.”

2.4 General discussion

The present study tested whether preview difficulty effects on word n+1 in gaze-contingent
display-change experiments are genuine. Alternatively, they could have been artefacts
from asymmetries in preview-to-target mappings that bias preview benefit and imitate a
preview difficulty effect. Keeping the target word frequency constant instead of crossing
its frequency with the frequency of the preview, as has been done in previous research, we
replicated longer target word fixations after difficult LF previews as compared with easy
HF previews. In line with that previous research, the preview difficulty affected fixation
durations only on word n+ 1 after the boundary and not on word n before the boundary.
In the following, we will discuss how the results relate to current reading models, and
what their temporal pattern suggests about the oculomotor control processes involved in
reading.

2.4.1 Strong evidence for preview difficulty effects on word n+1

Reading sentences in which easy (HF) previews of word n+ 1 were changed into difficult
(LF) target words (or vice versa) when moving the eyes from word n to word n+1, several
studies have now reported evidence for effects of the preview difficulty on oculomotor
control (Niefind & Dimigen, 2016; Risse & Kliegl, 2012, 2014; Schotter & Leinenger,
2016). In those studies, fixation durations on word n + 1 were longer if its previous
parafoveal preview had been a difficult (LF) word compared with an easy (HF) word,
and this was independent of the present processing difficulty of the currently fixated word
in foveal vision. Surprisingly, such preview difficulty effects were observed only on the
target word n+1 after the boundary and not immediately on the pretarget word n before
the boundary. Due to the theoretical relevance of preview difficulty effects that we will
discuss in more detail below, it is important to make sure that such effects genuinely exist
and are not an artefact of the method used to investigate them.

In fact, the change into a target word of opposite processing difficulty has at least two
disadvantages. First, the later foveal processing difficulty may counteract the parafoveal
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processing difficulty and thus obscure preview difficulty effects even though they may
exist. A difficult LF target word might place such a high demand on the processing
system that any signal from the previously processed easy HF preview would basically
be ignored. Second, averaging the preview difficulty across conditions in which preview
and target word were also sometimes identical (i.e., pooling valid and invalid preview
conditions of the same preview difficulty) could mimic preview difficulty effects although
not existent. As Inhoff and Rayner (1986) showed, the benefit in fixation durations is
larger for valid preview of HF compared with LF target words, and this asymmetry could
have disproportionately reduced the fixation durations on word n+ 1 in case of valid HF
preview. Therefore, the main goal of the present study was to replicate preview difficulty
effects in the boundary paradigm using an optimised method in which the target word
frequency was kept constant.

The results were straightforward: We found reliable preview benefit on word n + 1
with shorter fixation durations after valid compared with invalid preview, confirming the
most important benchmark result in boundary experiments. Parafoveal preview benefit
amounted to 29ms in FFD, 32ms in SFD, 38ms in GZD, and 57ms in TVT. Although
its size was in the lower range of what is typically reported (e.g., 30-50 ms; see Vasilev
& Angele, 2016), we consider it reasonable as we dissociated a second reliable source of
preview effects on word n+ 1 that is in most classical boundary experiments confounded
with the preview benefit: Fixation durations on word n + 1 were up to 29ms longer in
SFD (23ms in FFD, 24ms in GZD, 11 ms in TVT) if the preview of the currently fixated
word n + 1 was an LF word rather than an HF word. Thus, we replicated an effect of
the preview difficulty on word n+ 1 in an experiment in which it can be unambiguously
attributed to a direct influence of the preview processing on oculomotor control. It is
noteworthy that there was no such effect of the preview difficulty in fixating the pretarget
word n. We will now turn to what this means with respect to the debate on attention,
word recognition, and eye movement control during reading.

2.4.2 Serial versus parallel computational reading models

The two major theoretical accounts to explain eye movements during reading differ in
that they either assume SAS accompanied by serial word processing or GDA allowing
parallel word processing in the perceptual span. To test these very general theoretical
assumptions against each other, one needs explicit models that implement these ideas
and combine them with mechanisms that guide the oculomotor decisions of when and
where to move the eyes. In case of the SAS approach, this has been successfully done
in the E-Z Reader model (Reichle et al., 1998); computational models based on GDA
are SWIFT (Engbert, Nuthmann, Richter, & Kliegl, 2005) and GLENMORE (Reilly &
Radach, 2006).

All these models can account for preview benefit in fixations on the target word and
do this in basically the same manner. They all allow for a certain amount of parafoveal
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preprocessing of the target word by either shifting or distributing attention to the word
in the parafovea before the eyes will fixate it. A valid preview in parafoveal vision thus
enables a head-start of processing the target word compared with any invalid preview
and reduces the amount of target word processing that has to be accomplished on fixa-
tion. However, the models’ mechanisms differ substantially when it comes to explaining
parafoveal-on-foveal effects on word n or preview difficulty effects on word n + 1. More-
over, one needs to distinguish model mechanisms that are intended to account for certain
effects from those that happen to do so because of interactions with other mechanisms
in the model architecture. The latter are not less intriguing or of minor importance;
however, they may not directly report on the plausibility of serial or parallel processing
during reading.

Mechanisms to account for parafoveal-on-foveal effects on word n. Still today, the
controversy about parafoveal-on-foveal effects is often summarised as follows: Parallel
word-processing models assume cross-talk between foveal and parafoveal lexical processes
and thus predict (lexical) parafoveal-on-foveal effects on the preboundary word n, whereas
serial word-processing models do not (see Brothers et al., 2017; Drieghe, 2011). The
increasing amount of null-findings with respect to such effects (see the Bayes Factor meta-
analysis results by Brothers et al., 2017, but also the present results) is interpreted as
evidence for SAS serial processing models and against GDA parallel processing models.
However, this view widely ignores the complexity of the interactions between attention
allocation and oculomotor control mechanisms in the models. For example, while serial
one-word attention shifts in E-Z Reader prevent parafoveal processing to interfere with
foveal word processing, imprecisions in the saccade system (cf. McConkie et al., 1988) can
result in situations in which the parafoveal word is processed while the word to its left
is erroneously fixated. Given certain word lengths, mislocated fixations can amount up
to 30% in fixations measured on a word (Engbert & Nuthmann, 2008). Such mislocated
fixations have been proposed to explain parafoveal-on-foveal effects in the E-Z Reader
model (e.g., Drieghe et al., 2008; Rayner, Warren, Juhasz, & Liversedge, 2004). In fact,
Reich and Cotter (2015) have shown that simulating systematic and random errors in
fixation locations in the E-Z Reader model can lead to parafoveal-on-foveal effects. Thus,
the interaction between SAS and oculomotor error calls into question the common claim
that the strictly serial attention shifts in E-Z Reader predict absence of parafoveal-on-
foveal effects.

At the same time, current versions of the SWIFT model, although employing parallel
word processing across the perceptual span, do not result in cross-talk between foveal
and parafoveal word processing. This is due to the fact that only the foveal processing
difficulty affects the timing of the next saccade programme (i.e., via foveal inhibition).
While parafoveal words are processed in parallel with the word in foveal vision, their
difficulty affects the oculomotor system only via saccade-goal selection (for more details,
see Risse & Kliegl, 2012, 2014). However, simulations with the SWIFT model of reading
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in the n + 2 boundary paradigm have shown that the effects on saccadic selection were
not strong enough to produce significant parafoveal-on-foveal effects (Risse, Hohenstein,
Kliegl, & Engbert, 2014). Thus, the current SWIFT implementation (or the particular
set of best-fitting parameters) calls into question the common notion that GDA models
always predict substantial parafoveal-on-foveal effects.4

Mechanisms to account for post-boundary preview difficulty effects. Risse and Kliegl
(2012) have shown that preview difficulty effects on word n + 1 are unlikely a result of
mislocated fixations. In experiments in which the frequency of the preview and the later
target word of a word two words to the right of an invisible boundary (i.e., word n + 2)
was crossed, they investigated fixation durations on the three-letter word n+ 1 after the
boundary and before the target word n+ 2. As word n+ 1 was short and easy to process,
it was often skipped during reading the sentences (up to 50%), and fixations landing on
it were likely mislocated and intended to land on word n + 2 instead. In SAS models,
such mislocated fixations should go along with processing the intended fixation target,
which would be word n + 2 in the present scenario. However, the results showed no
influence of target word n + 2 processing in fixation durations on word n + 1 (i.e., no
target frequency effects, no preview benefit) but only effects of the word n + 2 preview
(i.e., preview difficulty effects). These results suggested that the duration of fixations on
word n + 1 was not determined by processing word n + 2 while unintendedly fixating
word n+ 1 but was driven directly by the processing difficulty of the earlier preview. As
preview difficulty effects before the boundary would have indicated parafoveal-on-foveal
effects, finding them after the boundary led to calling them delayed parafoveal-on-foveal
effects. However, if mislocated fixations do not account for this effect, how can a strictly
serial model like E-Z Reader explain such a nonlocality?

Schotter and Leinenger (2016) proposed an explanation based on forced fixations in
the E-Z Reader model: The interaction between covert serial attention shifts and a two-
stage process of saccade programming to the next word in sequence may lead to situations
in which a word that would in principle be skipped (i.e., not selected for being the next
fixation target) is yet fixated. A forced fixation immediately triggers the start of a new
progressive saccade programme away from the involuntarily visited word, already before
the word is fixated. Thus, the duration of forced fixations are expected to be rather short
and independent of any ongoing lexical word recognition processes. As on average, forced
fixations should happen more frequently while processing HF previews than LF previews,
they could explain the preview difficulty effect on word n + 1. From the durations of
E-Z Reader’s word processing and saccade programming stages, Schotter and Leinenger
predicted that forced fixations should primarily be observed among the short fixations
on the target word below 200ms. In contrast to that, the present results showed preview

4Note that other graded distributed attention models such as Glenmore make different predictions
with respect to parafoveal-on-foveal effects as they realise different word processing (Reilly & Radach,
2006).



40 Chapter 2

difficulty effects significant across the full fixation distribution (except the first quantile
containing the shortest fixations). Whether this is solid evidence against the forced fixa-
tions account, however, can only be answered with model simulations showing that forced
fixations in E-Z Reader fail to generate preview difficulty effects in the tail of the fixation
duration distribution.

In a similar vein, simulations of preview difficulty effects in the SWIFT model would
be required to make reliable assertions about the behaviour of this particular implemen-
tation of a parallel GDA model. The present absence of a link between parafoveal word
processing and the timing of the next saccade programme (i.e., only foveal inhibition)
renders such effects rather unlikely. In fact, SWIFT simulations of parafoveal processing
in the n+2 boundary paradigm have shown that the preview difficulty effect on word n+1
was evident only when it was additionally assumed that a certain percentage of saccade
programmes were cancelled when previews were replaced by the target word (Risse et
al., 2014).5 One reasonable way how to account for preview difficulty effects in fixations
after the boundary could be the implementation of processing cross-talk into the SWIFT
model by modelling foveal together with parafoveal inhibition. Besides the strongly di-
verging theoretical assumptions behind the two implementations, preview difficulty effects
in SWIFT would differ from preview difficulty effects in E-Z Reader in that parafoveal
inhibition would affect each fixation on word n + 1 to a certain degree whereas forced
fixations refer to only a subpopulation of fixations on word n + 1. How this difference
could be tested empirically remains an intriguing question for future research.

2.5 Conclusion

The present study confirmed the existence of preview difficulty effects in the boundary
paradigm, excluding alternative explanations based on asymmetric preview benefit. In-
terestingly, the preview difficulty effect was obtained only on the target word n+1 with no
evidence on the pretarget word n. In addition, the preview difficulty effect on word n+ 1
was significant across the entire fixation duration distribution, being reliable for short as
well as for long fixations on the target word. While the spatial pattern of preview diffi-
culty effects (i.e., not on word n but on word n+ 1) seems to agree with the idea of forced
fixations in the E-Z Reader model and thus may be in line with serial word processing
during reading, their temporal pattern (i.e., across all fixation durations on the target
word) might be less intuitively explained by forced fixations. However, only simulations
can show how the E-Z Reader model effectively behaves with respect to preview difficulty

5As SWIFT contains a very similar two-stage saccadic programming apparatus as compared with
E-Z Reader, oculomotor explanations based on failed cancellation of saccade programmes during their
non-labile stage, similar to the forced fixation account, could potentially also account for the relative
difference between high- and low-frequency previews in the SWIFT model.
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manipulations and how flexible the model becomes with respect to parafoveal processing
effects because of its interaction of attention shifts and saccade programming.

At the same time, preview difficulty effects are just as well in line with parallel word-
processing accounts during reading. Although current implementations of the SWIFT
model (e.g., Schad & Engbert, 2012) do not adhere to such an interaction, the main idea
of GDA models is that parafoveal and foveal processing somehow interacts with respect
to the timing of the next eye movement. Future simulations with an accordingly modified
SWIFT model would need to show whether parafoveal inhibition alone suffices to account
for the spatio-temporal characteristics of the empirical preview difficulty effect. In contrast
to the forced fixation account in E-Z Reader, which can be considered a by-product of
the oculomotor system mainly independent of assumptions on how words are lexically
processed, the implementation of parafoveal inhibition into SWIFT would test one of the
core issues in the debate on serial versus parallel processing, which is the interaction (or
cross-talk) between foveal and parafoveal (lexical) word processing during reading. s
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Abstract

Process-oriented theories of cognition must be evaluated against time-ordered observa-
tions. Here we present a representative example for data assimilation of the SWIFT
model, a dynamical model of the control of fixation positions and fixation durations during
natural reading of single sentences. First, we develop and test an approximate likelihood
function of the model, which is a combination of a spatial, pseudo-marginal likelihood
and a temporal likelihood obtained by probability density approximation. Second, we
implement a Bayesian approach to parameter inference using an adaptive Markov chain
Monte Carlo procedure. Our results indicate that model parameters can be estimated
reliably for individual subjects. We conclude that approximative Bayesian inference rep-
resents a considerable step forward for computational models of eye-movement control,
where modeling of individual data on the basis of process-based dynamic models has not
been possible so far.
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3.1 Introduction

Dynamical models represent an important theoretical approach to cognitive systems, in
particular, if we seek to explain time-ordered behavioral data such as sequences of move-
ments. In dynamical models, sequential dependencies between observations are naturally
explained by underlying dynamical principles that unfold over time when the model is
simulated numerically (Beer, 2000; Van Gelder, 1998). Examples for the dynamical ap-
proach can be found in many fields of cognitive research, triggered by early examples from
motor control (Erlhagen & Schöner, 2002; Haken, Kelso, & Bunz, 1985) or decision field
theory (Busemeyer & Townsend, 1993).

Dynamical models generate highly specific predictions on sequential data that include
statistical correlations between the subsequent observations over time. As a consequence,
parameter inference for dynamical models must be carried out with the fully dynamical
framework of data assimilation (Law, Stuart, & Zygalakis, 2015; Reich & Cotter, 2015).
Here we investigate parameter inference in the SWIFT model of saccade generation during
reading (Engbert et al., 2005), where the numerical computation of the model’s likelihood
function will be the fundamental concept and main contribution of this work.

In the research area of eye-movements during reading, a number of competitor models
has been proposed. These models implement alternative assumptions on the interaction of
word recognition and saccade generation (see Rayner & Reichle, 2010; Reichle et al., 2003,
for overviews). However, there is currently a lack of quantitative model evaluations using
objective concepts. First, due to the number of different effects in experimental data,
models were often compared qualitatively: Does the model reproduce an experimentally-
observed effect or not? Second, in complex cognitive models, parameters were mostly
hand-selected or fitted based on minimization of an arbitrary loss-function that quantifies
the difference between experimental and simulated data. Third, typical models could
not be fitted to data from individual subjects so far. However, explaining interindividual
differences is an important aspect of model evaluation, which is precluded when fitting pro-
cedures are data hungry and require pooling of data over a large number of participants.
Since model identification and model comparison are general problems in psychological
and cognitive sciences, Schütt et al. (2017) recently proposed a likelihood-based, statis-
tically well-founded Bayesian framework for parameter estimation in cognitive models.
We will demonstrate the feasability of this approach in the case of the SWIFT model for
eye-movement control during reading.

In the following, the data assimilation framework will be applied to the SWIFT model
of eye guidance in reading. The remaining part of this section consists of a short introduc-
tion to eye movement data and the specifics of likelihood functions for models of fixation
sequences. In Section 2, we describe the details of the SWIFT model. A numerical ap-
proximation of the likelihood function is proposed and tested in Section 3. In Section
4, we use data from a set of readers to estimate SWIFT parameters and to model their
interindividual differences. We close with a discussion of our results in Section 5.
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Der gierige Beamte war bei den Einwohnern sehr unbeliebt.
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Figure 3.1: Sequence of fixations during reading. The scanpath indicates a series of
fixations and saccades. Fixations are labeled by numbered dotted lines which indicate
the horizontal positions. Numbers below the vertical lines are the corresponding fixation
durations.

3.1.1 Eye-movement control during reading

Reading is based on successful word recognition, however, processing of words requires
high-acuity vision that is confined to the center of the visual field (the fovea). Therefore,
gaze shifts via fast eye movements (saccades) need to be generated to move words into the
fovea for word identification. From this general behavioral pattern, reading may be looked
upon as an important example of active vision (Findlay & Gilchrist, 2003), which is the
notion that eye movements form an essential component for almost all visual perception.

When we read texts, we perform 3 to 4 saccades per second, resulting in fixations
on different words with durations between 150 and 300 ms, on average. An example is
presented in Figure 3.1, where 11 fixations are placed on the words of a given sentence.
Fixation durations range from 110 ms to 325 ms. In this example, some words are
fixated more than once. In the case of an immediate second saccade to the same word
as the currently fixated word, the event is called a refixation (e.g., fixations 3, a forward
refixation, and 5, a backward refixation). Some words are not fixated during first-pass
reading, corresponding saccades are termed skippings (e.g., word 6, the article “den”,
was skipped in first-pass reading). Furthermore, it happens in roughly 5 to 10% of the
fixations that a corresponding saccade returns to a previously passed region of text, which
are called regressions (e.g., when word 6, the previously skipped article, receives fixation
9). Taken together, only about 50% of the saccades are moving the gaze forward from
word n to the next word n + 1, which generates complicated scanpaths that are difficult
to reproduce and predict by theoretical models of eye guidance during reading.

Eye movement research in reading has evolved into one of the fields of cognitive psy-
chology that is strongly driven by computational models. Most of these models are based
on simplified assumptions for several cognitive subsystems (e.g., oculomotor circuitry,
attention and word recognition), while the core of the models is the orchestration of
the subsystems to produce purposeful saccades for reading in a psychologically plausible
framework. The way to this success has been paved by the E-Z Reader model (Reichle et
al., 1998), a rule-based stochastic automaton model that is based on specific assumptions
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for the coupling of eye movements and visual attention. This model has been advanced
over the years to include more and more specific assumptions (e.g., Reichle et al., 2009).

One of the major differences between existing models lies in the generation of different
types of saccades (forward saccades, skippings, refixations and regressions). While some
models make explicit assumptions on saccade types or are built to have internal states
representing saccade types, an alternative model considered here is motivated by the
dynamical field theory of movement preparation (S.-i. Amari, 1977; Erlhagen & Schöner,
2002), which communicates the aspiration to form a general framework for human motor
control. The SWIFT1 model (Engbert et al., 2002, 2005; Schad & Engbert, 2012) provides
a coherent theoretical framework for reproducing all types of saccades that are observed
during reading. Word processing maps to a distributed activation field that serves as a
temporally evolving saccade targeting map. This model will be studied in detail with
respect to parameter inference.

Given alternative theoretical models, model fitting and model comparisons will be-
come an increasingly important topic in eye-movement research, as in cognitive science
in general. So far, the minimization of ad-hoc statistical loss-functions has been used to
obtain estimates for model parameters (e.g., Engbert et al., 2005; Reichle et al., 1998).
For example, differences in word-frequency dependent distributions of fixation durations
or skipping probabilities have been implemented as a measure of goodness-of-fit. We will
replace these procedures by a Bayesian framework that exploits the likelihood function of
the model.

Quantitative measures for eye movements during reading are characterized by strong
interindividual differences (e.g., Risse, 2014). However, current computational models of
eye-movement control could not reproduce and explain these obvious differences in hu-
man performance. It is a key message of the current work that the problem of modeling
interindividual differences in reading using complex simulation models can be overcome
when a likelihood-based framework of model identification, model parameter estimation,
and model comparison is applied. We start with a discussion of the general concept of
the likelihood function for dynamical cognitive models in the next section. The approxi-
mative computation of the likelihood function for the SWIFT model, which is the central
contribution of the current work, is discussed in Section 3.

3.1.2 The likelihood function for dynamical cognitive models

The key theoretical concept for the current study is the likelihood function (see Myung,
2003, for a tutorial), which is a quantitative measure of the plausibility of an observation
under the assumption of a specific model M . We assume that the model depends on a

1Saccade Generation With Inhibition by Foveal Targets
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set of parameters θ from parameter space Θ. In parameter inference, we are interested in
the likelihood of the model parameter values θ for model M given the experimental data,

LM(θ|data) = PM(data|θ) , (3.1)

where PM(data|θ) is the probability of the data given model M with parameters θ.
The maximum likelihood estimator θ̂ML is obtained by maximization of the likelihood

function, i.e.,
θ̂ML = arg max

θ∈Θ
LM(θ|data) . (3.2)

In mathematical models of eye-movement control, a model must be evaluated against
a sequence of fixations. Thus, the data is a time-ordered sequence of fixations F = {fi},
where each fixation fi is characterized by a position xi on the line of text, a fixation
duration Ti, and, depending on the model, also a saccade duration si between fixation
i− 1 and fixation i.

In a dynamical model, fixation fi = (xi, Ti, si) is generated from the sequence of
previous fixations f1 . . . fi−1 under the control of the set of parameters θ and, possibly,
influenced by internal degrees of freedom ξ, which will be discussed in Section 3.2.7. Since
fixations are time-ordered, we can factorize the likelihood into a product of all fixations
i = 1, 2, ..., n, which are found in the experimental fixation sequence F = {fi}ni=1, i.e.,

LM(θ|F ) = LM(θ|f1, f2, . . . , fn) (3.3)

= LM(f1|θ)
n∏
i=2

PM(fi|f1, . . . , fi−1,θ) ,

where LM(f1|θ) is the probability of the initial fixation starting at time t = 0. In typical
experimental paradigms, however, this probability is one, since the experimental proce-
dure determines the initial fixation position.

For complex cognitive models, the likelihood function can often be computed numeri-
cally. If numerical computation of the likelihood function is possible, we must be able to
evaluate the likelihood for a large number of combinations of model parameter values θ

to find the maximum likelihood estimator, Eq. (3.2), based on a given fixation sequence
F .

For the implementation of numerical computations, it is advantageous to compute the
log-likelihood, given as

lM(θ|F ) = log(LM(θ|F )) (3.4)

=
n∑
i=1

log(LM(fi|f1, . . . , fi−1,θ)) ,

which prevents the addition of very small numerical values that typically occur for some
of the additive terms LM(fi|f1, . . . , fi−1,θ) for the fixations fi.

If we can compute the log-likelihood lM(θ|F ) for model M efficiently using numerical
simulation, then it will be possible to apply Bayesian parameter inference (Gelman et al.,
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2013; Marin & Robert, 2007, for overviews). In Bayesian inference, we seek to compute
the posterior distribution P (θ|F ) over the parameter vector θ after the observation of
the fixation sequence F . In addition to the likelihood that represents constraints from
the experimental data, we specify a prior probability Q(θ) that indicates our a-priori
knowledge on the model parameters. The posterior distribution is given by

P (θ|F ) ∝ Q(θ)LM(θ|F ) , (3.5)

where the constant of proportionality, which is the normalization constant of the posterior,
can be omitted, if Markov Chain Monte Carlo (MCMC) methods are used (Gilks et al.,
1995; Robert & Casella, 2013).

So far, we discussed the structure of the likelihood function for a single experimentally
observed fixation sequence F . In a typical experiment, however, we obtain a set of fixa-
tion sequences Fs from a participant who read a corpus of S sentences (s = 1, 2, 3, ..., S),
i.e., the data set {Fs} is composed of S fixation sequences. Since fixation sequences are
statistically independent observations of the reading process, the numerical computation
of the likelihood can be carried out independently for each fixation sequence Fs. This sta-
tistical independence can be exploited to accelerate computations via parallel evaluations
of a large number of fixation sequences, which we will discuss in Section 3.3.

In summary, the likelihood function for dynamical models of sequential data factorizes
as explained in Eq. (3.3), which turns out to be basis for incremental numerical compu-
tation. If we implement the computation in an efficient way numerically, then Bayesian
parameter inference is available using MCMC methods. Before we discuss and apply the
MCMC framework, we introduce the SWIFT model in the next section. In Section 3.2.7,
we present the numerical computation of the likelihood function. The MCMC simulation
for Bayesian inference will be discussed in Section 3.3.

3.2 The SWIFT model of saccade generation during
reading

Since word recognition is the key process driving eye movements during reading, a natural
assumption is that the time-course of ongoing word processing is closely linked to target
selection for saccades. In the SWIFT model, each word is represented by a separate
activation variable (lexical activation) that is tracking the word’s current progress in word
recognition. The resulting set of lexical activations determines the probability for saccade
target selection (so-called spatial or where pathway). Whenever a saccade is prepared,
the set of lexical activations provides a flexible mechanism for target selection. As time
evolves, the relative activations change, so that a continuous-time representation of the
next saccade target exists.

Fixation times are adjusted to the fixated (foveal) word by an inhibitory mechanism
(the temporal or when pathway). According to an influential proposal (Findlay & Walker,
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1999) the spatial and temporal pathways of saccade generation are partially independent.
The SWIFT model is compatible with this view, in the sense that control of fixation
duration and saccade target selection are basically independent, however, interactions
exist due to the coupling of both pathways via the set of lexical activations.

3.2.1 Saccade target selection and temporal evolution of activa-
tions

Each word m in a sentence of Nw words is represented by a time-dependent activa-
tion am(t). The activation is initially increasing during lexical access (word recogni-
tion), and later decreasing during post-lexical processing. The set of activations {aj(t)},
(j = 1, 2, 3, ..., Nw) must be built up by parallel processing of words, which is the key
assumption that distinguishes SWIFT from other models (e.g., Engbert & Kliegl, 2011;
Reichle et al., 2003). If a saccade target has to be selected at time t, then the probability
πm(t) for target selection of word m is given by the relative activation, i.e.,

π(m, t) = (am(t))γ
Nw∑
j=1

(aj(t))γ
, (3.6)

which is normalized as ∑Nw
m=1 πm(t) = 1 for all t > 0. The parameter γ introduces a

weighting of the set of lexical activations, so that switching between different selection
schemes is controlled by a variation of γ:

πm(t)→


winner-takes-all : γ →∞
Luce’s choice rule : γ = 1 .

random selection : γ → 0
(3.7)

An example for a simulated scanpath and the full time-series of lexical activation is
illustrated in Figure 3.2. As one can see from figure, all internal sub-processes of the
model are implemented by discrete random walks. In the leftmost column, the saccade
timer increases as a one-step process from n1 = 0 up to a maximum number Nt with
transition rate w1. The stepping rate was chosen as Nt/tsac, so that the mean time to
reach state Nt is the mean time inter-saccadic time tsac of the model.

When the saccade timer terminates at state Nt, a new saccade timer run is initiated
at n1 = 0 and, at the same time, a labile saccade program start with n2 = 0 until its
threshold Nl is reached. If this labile program terminates, a saccade target is chosen (see
asterisks in Fig. 3.2). After the non-labile stage, which is described by state variable n3,
the corresponding saccade (state variable n4) is executed.

In addition to the saccadic processes, lexical activations are also described by discrete
random walks (note, however, the increasing and decreasing parts in the case of lexical
activations). Thus, all sub-processes saccade timing, labile and non-labile saccade pro-
gramming, saccade execution, and change of lexical activations are represented as one-step
stochastic processes between discrete states.



Bayesian parameter estimation 51

Amy told the teacher that her dog ate her homework assignment.
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Figure 3.2: Simulation example for the SWIFT model. The activation field (colored
lines) determines the target selection probability πm(t) that evolves dynamically over time
(running downwards). The resulting scanpath (fixation sequence) is indicated by the black
line. Several random walks (grey, left) generate saccade timer intervals and labile and non-
labile saccade latencies. The transition between labile and non-labile stage is the point
in time for saccade target selection (asterisk). The saccade timer sends commands to
the saccade programming cascade, but also receives inhibition during foveal load (visible
shortly after 1000 ms in the example) and is reset for refixations (e.g., second fixation).

The state of the model at time t is given by the vector n = (n1, n2, ..., n4+Nw), where
the components nj represent the states of the subprocesses with transition rates wj.
Components 1 to 4 are saccade-related processes and additional stochastic variables n5 to
n4+Nw are keeping track of the (post-)lexical processing of words. We assume a discrete-
state, continuous-time stochastic process with Markov property, so that a one-step tran-
sition table describes all possible transitions between internal states (Tab. 3.1). In each
of the possible transitions from state n = (n1, n2, ...) to n′ = (n′1, n′2, ...) only one of the
components ni is changes by one unit, e.g., if the saccade timer generates a transition,
then the model’s internal change steps from n = (n1, n2, n3, ...) to n′ = (n1 + 1, n2, n3, ...).
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Table 3.1: Stochastic transitions between adjoined states from n = (n1, n2, ...) 7→ n′ =
(n′1, n′2, ...)

Process Transition to ... Transition rate Wn′n

Saccade timer n′1 = n1 + 1 w1 = Nt/tsac · (1 + h ak(t)/α)−1

Labile program n′2 = n2 + 1 w2 = Nl/τl

Non-labile program n′3 = n3 + 1 w3 = Nn/τn

Saccade execution n′4 = n4 + 1 w4 = Nx/τx

Word processing n′4+j = n4+j ± 1 w4+j = Na/α · Λj(t) (for word j)

A numerical algorithm for the simulation of a trajectory of the SWIFT model can be
derived easily from our assumptions. The temporal evolution of the probability over the
model’s internal states is given by the master equation2,

∂

∂t
p(n, t|n′′) =

∑
n′

[Wnn′p(n′, t|n′′)−Wn′np(n, t|n′′)] , (3.8)

which is specified by the transition probabilities Wn′n for transitions between state vectors
n 7→ n′ shown in Table 3.1 with initial condition p(n′′, 0), the probability of state n′′ at
time t = 0. When simulating a single trajectory, the system is in a specific state n with
certainty and the transition probabilities determine both the waiting time distribution for
the next transition and the relative stepping probability to the adjoined states given in
(Tab. 3.1), which will be explained below.

3.2.2 Temporal control of saccades and foveal inhibition

Gaze duration, defined as the sum of the durations of all immediately consecutive fixa-
tions on a word, is probably the best measure of required processing time for this word
during natural reading (Rayner, 1998). Gaze durations and word recognition times de-
pend linearly on the logarithm of the word’s frequency (printed word frequency can be
estimated from the word’s occurrences in large text corpora). Since word recognition is
the basis for text comprehension, an adaptive mechanism for the modulation of fixation
duration by word frequency is essential for all models of eye-movement control.

In general, the required fixation duration for successful word recognition can be at-
tained by two opposing mechanisms: The current fixation can be prolonged by inhibiting
the next saccade or, alternatively, the word can be refixated to increase gaze duration.
Experimentally, there is only a weak influence of word frequency on the mean first-fixation
duration (Kliegl, Grabner, Rolfs, & Engbert, 2004). In contrast, we find a strong effect of

2The master equation can be interpreted as a conservation equation for probability (Gardiner, 1985;
Van Kampen, 1992), where the temporal change of probability in state n on the left side of the equation
equals the gain in probability for state n that is generated by transitions from neighboring states n′ 7→ n

and the loss in probability generated by transitions from n to neighboring states n 7→ n′.
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word frequency on the probability for refixation. Therefore, there is a preferred strategy
for extending the processing time (gaze duration) via generation of a refixation. However,
saccade-inhibiting processes can be assumed to contribute a weaker effect (compared to
refixation) to the increase in gaze duration by prolonging the ongoing fixation (Engbert
et al., 2002, 2005).

Motivated by these observations, the second central assumption in the SWIFT model
is random timing of fixation duration with additional foveal inhibition (Engbert et al.,
2002) that delays the start of the next saccade program to extend the current fixation.
We assume that foveal inhibition modulates the transition rate w1 for transitions between
elementary steps of a random-walk that implements the saccade timer (leftmost column
in Fig. 3.2), i.e.,

w1 = Nt

tsac
·
(

1 + h

α
ak(t)

)−1

, (3.9)

where Nt is the number of states of the timer’s random walk and tsac is the mean value of
the timer; the activation ak(t) of the fixated word k (i.e., the word in the fovea) at time
t is the key variable that modulates the transition rate of the timer. Using numerical
simulations of the model, it can be shown that for h > 0, foveal inhibition can produce
a modulation of the fixation duration that is in good agreement with experimental data
(Engbert et al., 2002, 2005).

3.2.3 Character-based visual processing

Word recognition starts with visual processing of letters, which is done in parallel for all
the letters of a given word. We define the spatial region where word activations can be
influenced in the model as the processing span. Within this region, parallel processing
is limited by the fact that processing rate depends on the letter’s eccentricity (i.e., the
distance of the letter position from the position of the current fixation). Mathematically,
we define an inverted parabolic processing span from the fovea to position −δL on the left
and to position +δR on the right of fixation, i.e.,

λ(ε) = λ0 ·


0 , for ε < −δL

1− ε2/δ2
L , for −δL ≤ ε < 0

1− ε2/δ2
R , for 0 ≤ ε ≤ δR

0 , for δR < ε

, (3.10)

where λ0 is a constant given as

λ0 = 3
2 ·

1
δL + δR

, (3.11)

which is necessary to normalize the total processing rate, i.e.,
∫+∞
−∞ λ(ε)dε = 1.

Experimentally, a strong asymmetry of the perceptual span with an extension of 4 to
5 letters to the left of the fixation position and up to 15 letters to the right was found
(Rayner et al., 1980). Therefore, parameters δL and δR should be estimated separately
from experimental data. In the following, we estimate δ0 ≡ δL = δR for simplicity.



54 Chapter 3

3.2.4 Word-based processing rate

Because of the assumption of a processing span, Eq. (3.10), processing rates for letters
depend on spatial eccentricities. Letter j of word i is processed with rate λ(εij), if it is
located at a spatial position with eccentricity εij(t) relative to gaze position at time t.
This letter-based processing rate must be related to the effective word-based processing
rate Λi(t) of word i at time t.

Because of parallel processing of the letters of a given word, each letter contributes to
word recognition. In the case of long words, some letters will have large eccentricities, so
that their processing rate will be small (or zero) according to Eq. (3.10). To capture these
opposing effects in a parametric model, we make the assumption that the word-based
processing rate has the form

Λi(t) = M−η
i

Li∑
j=1

λ(εij(t)) , (3.12)

where Mi is the word length (i.e., number of letters) of word i and η is the word length
exponent, with 0 < η < 1. For η = 0, long words will have a processing advantage. For
η = 1, word processing rate is the arithmetic mean of the letter-based processing rates
(mean over all letters of a given word); therefore, we will observe a disadvantage for long
words in the case η = 1. We expect a numerical value for η about 0.5.

With the assumptions on spatial aspects of letter- and word-based processing rates, the
temporal aspects of word processing need to be specified. As discussed for the motivation
of the SWIFT model, a time-dependent activation field will provide probabilistic control of
saccadic eye movements. Word-based activations ai(t) for the words of a given sentence are
increasing during the initial stage of processing called lexical processing. After reaching
the maximum of activation Di for word i, the activation starts to decrease (post-lexical
processing). The maximum of activation is interpreted as processing difficulty, which is a
logarithmic function of word frequency Ωi, i.e.,

Di = α

(
1− β log Ωi

log Ωmax

)
, (3.13)

where Ωmax is the highest word frequency in a given language and parameter β determines
the strength of the word frequency effect.

For word processing, we assume that current activation for each word i = 1, 2, 3, ..., Nw

is related to the discrete state n4+i of word processing (Tab. 3.1), given by

ai(t) = Di
n4+i

Na

, (3.14)

where Diis the word’s processing difficulty, Eq. (3.13).
Global decay of activation. Maintaining words in working memory during reading can-

not be done without loss. Since word activations {an(t)} represent the state-of-processing,
we introduce a global decay of activation. If the processing rate of a word is smaller than
the constant ω, then we assume a decay of activation with rate ω.
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Processing during saccades. During saccadic eye movements, lexical processing is
paused because of saccadic suppression (Matin, 1974). In the SWIFT model, lexical
processing is paused during saccades in the lexical processing stage (increasing activation),
while post-lexical processing (decreasing activation) continues during saccades.

3.2.5 Oculomotor assumptions

Our assumption of two-stage saccade programming are motivated by the experimental
findings of the double-step paradigm (Becker & Jürgens, 1979). A saccade program starts
with a labile stage; during this stage, the saccadic gaze center is forced to prepare the
next saccade (Findlay & Walker, 1999), however, a new decision to start a labile saccade
program during an ongoing labile stage leads to cancelation and replacement of the earlier
saccade program. After the transition to the non-labile stage, the saccade can no longer
be canceled or modified.

Oculomotor errors make an important contribution to eye-movement control during
reading. In 1988, based on the analysis of initial fixation positions within words, McConkie
and coworkers suggested that a considerable fraction of saccades landed on different words
than the intended target words (McConkie et al., 1988). Using an iterative oculomotor
modeling approach, Engbert and Nuthmann (2008) showed that about 10% to 20% of the
saccades during natural text reading are mislocated on an unintended word.

McConkie et al. (1988) showed that saccadic errors can be decomposed into a random
(approximately Gaussian) error component and a systematic shift (called saccadic range
error). The critical variable that determines the size of both random and systematic error
components turned out to be the intended saccade length (distance d from the launch
site of the saccade to the center of the target word). Therefore, saccades targeting a word
center at x = 0 will be normally distributed with

x ∼ N (εsre, σ2
sre) , (3.15)

where both parameters depend linearly on the intended saccade length d, i.e.,

εsre = r1 − r2 d (3.16)
σsre = s1 + s2 d , (3.17)

where d is the physical distance between the launch site of the saccade and the word center
of the target word, measured in units of character spaces. The oculomotor parameters
r1, r2, s1, and s2 will vary depending on the type of saccade (e.g., refixation or skipping),
which is discussed in earlier papers (Engbert et al., 2005; Krügel & Engbert, 2010). We
would like to remark that McConkie et al.’s descriptive model of saccadic errors could
be replaced by a process-oriented Bayesian model (Engbert & Krügel, 2010; Krügel &
Engbert, 2014) in perspective.

Modulation of the duration of the labile stage. An important problem is the obser-
vation of a reduced average fixation duration for refixations. As a solution, we assume
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Launch site         wordi-1 wordi wordi+1

0 1 2 3 0 1 2 … (letters)... 3 4 5Saccades

intended length d

Figure 3.3: Saccades start at a launch site and aim at the word center of the selected
target word i. Oculomotor errors are normally distributed, which can lead to misplaced
fixations on word i − 1 (undershoot error) or word i + 1 (overshoot error). Both the
standard deviation σsre and the mean shift εsre from the intended word’s center depend
on the intended saccade length d.

that the duration of the labile stage of saccade programming is reduced by factor R
(0 < R ≤ 1), if the fixation is a refixation.

Closely related is the phenomenon of mislocated fixations (Engbert & Nuthmann,
2008). If the realized fixation position (the saccadic landing position) strongly deviates
from the word center, so that the landing position will fall onto the neighboring word,
then a mislocated fixation will occur. In this case, the duration of the next saccade
program will be reduced by factor M (0 < M ≤ 1). Such a mechanism is a possible
explanation of the inverted optimal viewing-position effect (Nuthmann et al., 2005; Vitu
et al., 2001) of fixation durations that indicates reduced average fixation duration at word
edges compared to the word center. In the SWIFT version used here, the probability of
misplaced fixation is given as pmis = 0.9 · (2δ/M)4, where δ is the fixation error (distance
from word center) and M is the length of the fixated word.

3.2.6 Numerical simulation and model parameters

For numerical simulations of single trajectories of the SWIFT model, the minimal process
method by Gillespie (1976), an exact and efficient numerical algorithm, can be derived
from the master equation, Eq. (3.8). If the model is in state n at time t0 = 0 with
certainty, all other states will have zero probability, i.e., p(n′, t|n) for n′ 6= n. Therefore,
the master equation, Eq. (3.8), reduces to

∂

∂t
p(n, t|n) = −

∑
n′
Wn′n p(n, t|n) = −Wn p(n, t|n) , (3.18)

where Wn = ∑
n′ Wn′n is the total transition probability from state n. From Equation

(3.18), we obtain an exponentially distributed waiting time for the next transition from
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Table 3.2: Model parameters of the SWIFT model. Numerical values are chosen in
agreement with earlier publications (see text).

Parameter Symbol Typical Value Reference
Lexical difficulty: Intercept α 50 Eq. (3.13)
Lexical difficulty: Slope β 0.75 Eq. (3.13)
Processing span δ0 = δL,R 8 Eq. (3.10)
Word-length exponent η 0.5 Eq. (3.12)
Saccade timer tsac 250 ms Tab. (3.1)
Foveal inhibition h 0.6 Eq. (3.9)
Labile saccade program τl 120 ms Tab. (3.1)
Non-labile program τn 80 ms Tab. (3.1)
Saccade execuation τx 20 ms Tab. (3.1)
Refixation factor R 0.9 Sec. 3.2.5
Mislocated fixation M 1.5 Sec. 3.2.5

state n to an adjoined state n′ 6= n. Following Gillespie (1976), a two-step algorithm can
be derived: In step 1, an exponentially-distributed random number is generated; in step
2, a transition (Tab. 3.1) is chosen according to relative transition probabilities, Wn′n/Wn

with n′ 6= n. This algorithm is numerically efficient, since it restricts computations to the
transitions when simulating the system’s trajectory.

For the simulations in this paper we used a restricted version of the SWIFT model to
reduce the number of free parameters to 11 (Tab. 3.2; see Engbert et al., 2005). Moreover,
we fixed seven of these parameters to estimate four free parameters in the simulation
examples. Future simulation studies will be carried out with more free parameters (see
Sec. 3.4). The number of possible random-walk states varies between subprocesses; based
on earlier simulations (Schad & Engbert, 2012), we used the following numbers: Nt = 15
(saccade timer), Nl = 12 (labile saccade stage), Nn = 10 (non-labile saccade stage),
Nx = 20 (saccade execution), and Na = 30 (word activations).

3.2.7 Likelihood function for the SWIFT model

For the parameter estimation procedure discussed in the introduction, we aim at a frame-
work that computes the likelihood of a series of experimentally observed fixations in-
crementally, Eq. (3.3). For fixation fi, we need to compute the likelihood function
LM(fi|f1, . . . , fi−1,θ, ξ) given the previous fixations f1, f2, ..., fi−1, the model parame-
ters θ, and the internal states ξ of model M , which were not addressed in Eq. (3.3). In
SWIFT each fixation event fi = (xi, Ti, si) is defined by a fixation position xi given by the
fixated word vi and the fixated letter li within the word, the fixation duration Ti, and the
saccade duration si. The likelihood for fixation fi is composed of a spatial contribution
and a temporal contribution. At time t, fixation i starts on letter li of word vi, which is
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predicted by the SWIFT model with a probability determined by word activations and
oculomotor assumptions. After fixation i started, the model can make another predic-
tion for the fixation duration Ti of fixation i. Next, the likelihood for fixation i can be
decomposed into the spatial and temporal contributions, i.e.,

LM(vi, li, Ti|Fi−1,θ, ξ) = Ltemp(Ti|vi, li, Fi−1,θ, ξ) · Lspat(vi, li|Fi−1,θ, ξ) , (3.19)

where we introduced Fi−1 ≡ {f1, f2, . . . , fi−1} to simplify the notation.
For the spatial likelihood Lspat, the dynamically evolving word activations in SWIFT

determine the time-dependent probability for selecting a particular word as the next
target word. Additionally, the target-selection probability is modified by oculomotor
noise. Due to dynamical dependencies, we compute the likelihood of an experimentally
realized fixation position based on the previous fixations. However, the internal states
ξ are given by the stochastic dynamics and are, therefore, unknown. In principle, we
could integrate over many possible realizations of the internal states ξ, which is, however,
time-consuming for the numerical computations. Therefore, we compute Lspat for one
realization of the internal states ξ, which results in fluctuating numerical values for Lspat.
Thus, instead of integrating out the internal degrees of freedom ξ, we used a pseudo-
marginal likelihood (Andrieu & Roberts, 2009) and eliminated the dependence on ξ for
the spatial likelihood in Eq. (3.19).

For the temporal likelihood Ltemp, SWIFT computations start with a realized fixation
position on letter li of word vi, however, with internal states ξ. Given this fixation position,
the distribution of fixation durations can be predicted by the model. The generated
estimate of the likelihood of the experimentally realized fixation duration is approximated
by averaging over many realizations of the internal states ξ (e.g., the internal states of
the various saccade programming stages). As a result, both Ltemp and Lspat are random
variables, which will be discussed in detail in the next two sections.

3.2.8 Spatial likelihood

In SWIFT, saccadic gaze shifts are generated in two steps: First, a target word is de-
termined in a probabilistic selection process based on relative word activations. Second,
after a short delay generated by saccade programming, the saccade is executed with ocu-
lomotor errors influenced by the saccadic landing position distribution. These oculomotor
errors induce stochastic variability in the within-word fixation position and can also in-
duce mislocated fixations (Engbert & Nuthmann, 2008; Nuthmann et al., 2005), where
the realized fixation position is placed on a different word than the selected target.

The combination of activation-based saccadic selection and oculomotor errors gen-
erates a non-zero probability for all fixation positions (Fig. 3.3). The target selection
probability π(m, t − τn − τx) (see. Eq. 3.6) is the probability of selecting word m as a
saccade target for a fixation starting at time t. It is important to note that target selec-
tion occurs at the time of transition from the labile to the non-labile saccade program,
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so that the probability π(.) for selecting the next target word has to be evaluated with
an average time delay τn + τx. According to our oculomotor assumptions, the saccadic
error generates a probability q(v, l|m,xgaze) of fixating word v at letter l given that word
m is the selected target word and xgaze is the previous gaze position (or saccade launch
site). Thus, the spatial likelihood of an observed saccade starting at time ti towards letter
position l of word v is therefore given by

Lspat(v, l|Fi−1,θ) =
Nw∑
m=1

π(m, ti − τn − τx) q(v, l|m,xgaze) , (3.20)

where we dropped the conditional arguments to simplify the notation. Moreover, the
time-dependency is now written explicitly, since ti for the computation of the spatial
likelihood of fixation i is given by the sum of fixation durations and saccade durations of
the previous fixations in the sequence, ti = ∑i−1

l=1 Tl + sl.
The oculomotor system generates systematic and random errors that introduce devi-

ations between the target word’s center and the realized fixation position. In SWIFT,
we adopt McConkie et al.’s (1988) range-error framework by assuming a Gaussian distri-
bution that is shifted with respect to the target word’s center. Thus, the probability of
landing at letter l of word v, given a target word m, is given by

q(v, l|m,xgaze) = 1√
2πσsre

exp
(
−((vm + εsre)− xn,l)2

2σ2
sre

)
·∆x , (3.21)

where vm is the spatial position of the target word’s center, xv,l is the spatial position of
the fixated letter l of word v, and ∆x = 1 is the unit width of a letter. The oculomotor
parameters εsre(d) and σsre(d) of the range-error model specify systematic shift (saccadic
range error) and standard deviation of the random error (oculomotor noise), respectively,
Eqs. (3.16, 3.17); the intended saccade length d = ‖vm − xgaze‖ is given as the distance
between the target word’s center vm and the fixation position before the saccade xgaze.

3.2.9 Temporal likelihood

Because of two-stage saccade programming and due to the fact that fixations are bounded
by two saccades in time, SWIFT’s fixation durations are given as linear combinations
of realizations of random variables. For the saccade timer and saccade programming
stages, resulting durations are gamma-distributed random variables, which are gener-
ated by continuous-time discrete-state random walks according to the master equation,
Eq. (3.8).

The saccade timer controls the initiation of the saccade programming cascade with
consecutive labile and nonlabile stages and a saccade execution stage. The time interval
between the end point of the previous and the beginning of the next saccade execution
is defined as the experimentally observed fixation duration. However, the saccade timer
is continuously inhibited by word activations. As a consequence, the mean waiting times
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(the inverse of the transition probabilities) of the elementary steps of the saccade timer’s
random walk will be time-dependent. Additionally, the mean durations of the labile stages
of saccade programming depend on the type of fixation (i.e., whether it is a refixation,
a mislocated fixation, or neither of these). Finally, if the saccade timer produces a short
interval, then saccade cancelation will be likely, which results in a higher mean value of
the predicted fixation duration.

Since each fixation duration is bounded by two saccades (i.e., the ith fixation duration
lies between (i−1)th saccade offset and ith saccade onset), each observed fixation duration
Ti is compared to the simulated realization T̃i that is given as the sum of the following
terms (see Fig. 3.4a),

T̃i = c̃i + τ̃ li + τ̃ni − τ̃ li−1 − τ̃ni−1 − τ̃xi−1 , (3.22)

where c̃i is the realized saccade timer duration, τ̃ li and τ̃ni are realized durations of the labile
and non-labile saccade programming stages respectively, and τ̃xi is the realized saccade
duration.

Our strategy for the computation of the temporal likelihood of the ith fixation duration
Ti is to simulate many realizations of T̃i from Eq. (3.22) to numerically approximate
the theoretical distribution of fixation durations with kernel density estimation3. In the
context of Bayesian analysis, this approach is termed probability density approximation
(PDA) method (Holmes, 2015; Palestro et al., 2018; Turner & Sederberg, 2014), which falls
into the broad class of likelihood-free procedures in approximate Bayesian computation
(ABC; see Sisson & Fan, 2011, for a review).

Since all of the terms in Eq. (3.22) are random realizations of stochastic variables, the
order of terminations of the subprocesses shown in Fig. 3.4(a) can be violated. In the
following, we discuss all possible cases:

1. Labile pausing happens if the labile saccade program terminates during an ongoing
non-labile saccade program. Since we assume that there cannot be more than one
non-labile saccade program active at a time, the current labile program is paused
immediately before termination, thus its duration is extended until the current non-
labile program and saccade execution finish (Fig. 3.4b). Formally, this situation is
encountered if c̃i+ τ̃ li < τ̃ li−1 + τ̃ni−1 + τ̃xi−1. In this case, the interval τ̃ li is increased and
the calculation of T̃i is simplified to the duration of the non-labile saccade program,
i.e.,

T̃i = τ̃ni . (3.23)

Since the duration of the labile program is extended, however, there will be increased
probability for the saccade timer to terminate during the ongoing labile program,
while will cause saccade cancelation.

3While it is possible to derive an iterative algorithm for the distribution of linear combinations of
gamma-distributed random numbers (S. V. Amari & Misra, 1997; Coelho, 1998), it turned out that these
solutions are numerically unstable.
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Figure 3.4: Schematic illustrations of the generation of fixation durations for different
types of fixations in SWIFT. (a) Standard case: The fixation duration is calculated from
the difference of the sum of the saccade timer ci, the labile and nonlabile saccade latencies
τ̃ li and τ̃ni , respectively, and the sum of saccade latencies τ̃ li−1, τ̃ni−1 and τ̃ li−1. (b) Labile
pausing: If a saccade program reached the non-labile stage it cannot be aborted anymore.
A newly started labile programming stage will transition to its non-labile stage only after
the current saccade program is terminated at saccade offset. (c) Saccade cancelation: If
the saccade timer finishes earlier than the concurrent labile saccade program, the ongoing
labile saccade program is canceled—consequently, both the labile program and the saccade
timer are restarted. The realized duration of the premature saccade timer c̃∗i is added to
the new realization c̃i. (d) Refixation and Mislocated Fixation: If the current fixation is
either a refixation or considered to be a mislocated fixation, the saccade timer realization
c̃i is reset immediately at fixation onset and a new labile saccade program is initiated. The
fixation duration is then given as the sum of the current labile and non-labile durations
τ̃ li and τ̃ni respectively.

2. Saccade cancelation occurs if the main saccade timer realization c̃i+1 terminates
during an ongoing labile saccade programming stage τ̃ li , i.e., c̃?i < τ̃ l?i , which is
illustrated in Figure 3.4c. In this case the labile saccade program is canceled and
replaced with the new labile saccade program initiated by restarting of the saccade
timer. As a result, the duration of the timer c̃i in Eq. (3.22) is replaced by the sum
c̃i + c̃?i . Therefore, the corresponding distribution Ti for saccade cancelation is given
by

T̃i = c̃i + c̃?i + τ̃ li + τ̃ni − τ̃ li−1 − τ̃ni−1 − τ̃xi−1 , if c?i < τ̃ l?i . (3.24)

In principle, saccade cancelation can happen repeatedly within the same fixation,
depending on the choice of parameters.

3. Refixations and mislocated fixations represent another special case, where a new
saccade program is triggered immediately after the fixation onset (Fig. 3.4d). In
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both cases the saccade timer realization c̃i is reset and a new labile saccade program
is initiated. The mean duration of the new labile stage is modified by coefficients
f r = 1/R and fm = 1/M for refixations and mislocated fixation, resp. (see 3.2.5).
As a result, the observed fixation duration is given as

T̃i = f r,mτ̃ li + τ̃ni . (3.25)

The SWIFT model includes inhibition of fixation durations by word activation; in its
simplest form, the activation of the fixated (foveal) word inhibits the fixation duration by
decreasing the transition rates of the saccade timer (Eq. 3.9). Because of the complicated
time-course of the activation field (i.e., sudden changes of activation evolution due to
saccades), stochastic simulations are necessary to estimate the distribution of T̃i.

To compute the likelihood Ltemp(Ti) of an observed fixation duration Ti we first sim-
ulate the activation evolution for words in the perceptual span from time t = 0 until the
point in time that corresponds to the end of fixation i. We start simulating the stochastic
contributions by initially going backwards from the time of fixation onset by sampling
the saccade latencies τ̃xi−1, τ̃ni−1, and τ̃ li−1 to determine the onset of the saccade timer ci.
The previously sampled activations provide information for the simulation of the saccade
timer with inhibition by foveal word activations, similar to the generative process. If
c̃i < τ̃ li−1, both realizations are discarded and sampled again with the same procedure (we
are not interested in saccade cancelation events which do not affect the fixation duration
under consideration). The offset of c̃i demarks the onset of c̃i+1 and, following the rules of
the previously discussed order violations, we can easily simulate the timer cascade until
fixation offset and hence obtain a sample from the distribution of fixation durations as
provided by the SWIFT framework with respect to the history of the fixation sequence.

Once N = 300 fixation durations are sampled, the distribution of T exp
i is approxi-

mated via KDE. Increasing the number of samples increases the accuracy of the approx-
imation but is costly in terms of computation time. For the density estimation we use
the Epanechnikov kernel (Epanechnikov, 1969) with a bandwidth setting according to
Scott’s rule (Scott, 2015). The Epanechnikov kernel is computationally efficient as it only
integrates samples within its limited interval given by the bandwidth. However this can
result in situations where no data point is covered by the kernel. To prevent estimates
with zero probability, the bandwidth of the kernel was adjusted to the 1.1-fold of the
distance between T exp

i and the nearest sample of T̃i, so that at least one sample will lie
within the kernel.

3.2.10 Evaluation of the log-likelihood using single-parameter
variations

A simple test of the likelihood function and its inherent stochastic contributions can be
done by repeatedly evaluating the likelihood of a simulated dataset for which the pa-
rameters are known and keeping all parameters but one at their respective true values
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Table 3.3: Parameters of the SWIFT model considered in Bayesian estimation; true
values apply to the synthetic data generated for verification of the likelihood function.

Parameter Symbol Range True value
Saccadic timer tsac 150 ... 350 ms 260 ms
Refixation factor R 0.2 ... 1.8 0.9
Processing span δ0 4 ... 15 8.5
Word length exponent η 0 ... 1 0.4

(i.e., the values used in generating the data). Systematically varying the parameter un-
der consideration reveals its impact on the likelihood. Since the likelihood function is
composed of two terms from spatial and temporal contributions (Eq. 3.19), separating
both components can also prove insightful with regard to the strength and direction of
the parameter’s influence.

To investigate the properties of the likelihood function for a relevant subset of param-
eters, we simulated 1624 fixations on 114 sentences (Fig. 3.5) from the sentence corpus
of Risse and Seelig (2019). The examined parameters are given in Table 3.3, with the
remaining parameters set according to Table 3.2. The likelihood was then evaluated for
1000 different, evenly spaced values within the given interval (Table 3.3) separately for
each parameter. Since all other parameters were fixed at their true values, any system-
atic change in the resulting log-likelihood can only be attributed to the parameter under
consideration.

Figure 3.5a indicates that the saccade timer tsac influences the temporal likelihood,
while there is no influence on the spatial likelihood. A similar behavior is observed for the
refixation factor R (Fig. 3.5b). In both cases, there is a clear maximum in the likelihood
profile at the true parameter values, tsac = 260 ms and R = 0.9, resp. A different
dependence can be seen for the processing span δ0, which clearly influences the spatial
likelihood (maximum at the true value δ0 = 8.5), but exerts only a minimal influence on
the temporal likelihood (Fig. 3.5c). For the word-length exponent η, there is an influence
on both spatial and temporal likelihoods (Fig. 3.5d), with a maximum for both likelihood
profiles at the true parameter value η = 0.4.

Thus, our numerical implementation of the likelihood function indicates clear maxima
at the true parameter values for simulated data, while stochastic fluctuations due to the
approximative account for internal degrees of freedom ξ are small. In the next section,
we will apply an adaptive MCMC framework for Bayesian parameter estimation using
simulated and real (experimental) data.
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Figure 3.5: Temporal (red) and spatial (blue) contributions to the total (black) log-
likelihoods of a simulated dataset (1624 fixations on 114 sentences from the corpus of Risse
and Seelig (2019)). Single parameters were varied within an interval around the respective
true parameter value used in creating the data. The log-likelihoods were centered around
their respective mean value.

3.3 Likelihood-based parameter inference using MCMC

With the implementation of the numerical computation of the likelihood function for the
SWIFT model from the previous section, we developed the critical step for adopting the
Bayesian framework for parameter inference. We will discuss the Markov Chain Monte
Carlo approach used for inference, discuss the efficient implementation on a digital com-
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puter, present results for parameter recovery from simulated data with known parameters,
and, finally, estimate parameters for experimental data.

3.3.1 Markov Chain Monte Carlo simulation for the SWIFT
model

As described in Section 3.1.2, the computability of the likelihood LM(θ|F ), Eq. (3.3),
for a given set of parameters θ and a given fixation sequence F is critical for maximum-
likelihood and Bayesian inference. For the numerical procedures of Markov Chain Monte
Carlo type, we use a variant of the Metropolis Hastings (MH) algorithm (Hastings, 1970).
In the random-walk MH algorithm, a random walk in the parameter space is generated,
where the probability of the random-walk steps depends on the ratio of the likelihoods
associated with the random walk’s current and proposed new positions.

Starting from an arbitrary initial point X0 in parameter space, every move is deter-
mined by two steps:

1. A proposal Yn is generated by a random-walk step from position Xn−1,

Yn = Xn−1 + SUn, (3.26)

where Un ∼ N (0, σ). Both the shape matrix S and the width σ of the proposal
distribution must be chosen beforehand and kept constant during a run of the algo-
rithm.

2. The proposal is then accepted with the probability

αn := α(Xn−1, Yn) := min{1, π(Yn)/π(Xn−1)}, (3.27)

in which case Xn = Yn, i.e. the walker moves to the proposed position. If the
proposal is rejected, then the random walk remains at the current position Xn =
Xn−1.

By recursively following these rules the chain of accepted samples of the algorithm
asymptotically converges to the true distribution of π. However, the speed of convergence
greatly depends on an optimal choice of both the shape matrix S and the width parameter
σ of the proposal distribution. Poor choices lead to abundant rejections (i.e. the chain is
stationary most of the time if S is chosen badly or σ is too large) or strong autocorrelations
of the samples (i.e., movements are very small if σ is chosen too small, even if S is
optimal). Both parameters are however not known in advance and cannot be obtained
due to analytical intractability of SWIFT model’s likelihood function.

Therefore, we used the Robust Adaptive Metropolis (RAM) algorithm by Vihola
(2012) which progressively captures the parameters’ covariance structure shape and at
the same time attains a predefined acceptance rate (see Roberts, Gelman, & Gilks, 1997).
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The speed of the adaptation can also be specified parametrically. Although the RAM
algorithm is a good strategy for parameter estimation, it is still computationally expen-
sive, as exploration is naturally slow, if subsequent samples are dependent. Furthermore,
it is necessary to use several independent chains with randomly dispersed initial values,
each requiring a burn-in phase necessary for the sampler to progress to the vicinity of the
stationary distribution.

An additional modification of the MCMC algorithm is necessary because of the stochas-
tic pseudo-likelihood function of the SWIFT model. If, by chance, an exceptionally high
log-likelihood value is obtained for a proposal, the acceptance rate for the subsequent
proposal will be very low, which might stall the chain (Holmes, 2015). Therefore we
re-evaluate π(Xn−1) for every iteration of the algorithm, which, however, doubles the
computation time of the sampling.

To increase computational efficiency, we introduced parallel computation at two levels.
First, while the likelihood of a fixation is dependent on all preceding fixations in the
respective fixation sequence, likelihoods of whole fixation sequences can be computed
independently from each other and added up later. This procedure enables computing
the log-likelihood for independent fixation sequences in F in parallel using a multi-core
compute cluster. Second, different chains are independent of each other and can therefore
be calculated in parallel as well.

3.3.2 Parameter recovery using simulated data

Before we demonstrate the application of the MCMC framework for the SWIFT model to
experimental data, we investigate its performance for simulated data with known param-
eters. While we tested the likelihood function using single-parameter variation around
the true value in Section 3.2.10, we now estimate all four selected parameters (Tab. 3.3)
simultaneously using the MCMC procedure for the same dataset. We specified truncated
normal distributions centered at parameter ranges (see Tab. 3.3). The standard deviation
was set to one half of the estimation range in order to obtain an uninformative prior.
We ran 5 independent chains with N = 4, 000 iterations each and the default adaptation
parameter value of γ = 2/3. The resulting marginal posterior distributions are given in
Figure 3.6, where all true parameter values lie within the 40% highest posterior density
interval (HPDI). The results suggest that the likelihood-based MCMC framework is very
promising for parameter estimation based on data from single participants.

3.3.3 Estimation of parameters based on experimental data

In the next step, we estimated the same parameters for data from an eye tracking ex-
periment. We used the control condition from a larger experimental study on parafoveal
processing using the boundary paradigm (see Risse & Seelig, 2019, for a detailed de-
scription of the boundary paradigm). We ran 10 chains per participant, each with 4,000
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Figure 3.6: Exemplary Posterior distributions of five individual chains (different colors)
for four parameters based on simulated data. The black vertical lines indicate the true
parameter values. Grey areas indicate the 40% HPDI of all chains. The scale of the
parameter range reflects the width of the prior (black, dotted).

iterations. We used the last 2,000 samples (50%) after the burn-in to estimate the poste-
rior density. The resulting marginal posterior densities for a single participant are plotted
in Figure 3.8. While there is an increased variance in the posterior densities for the es-
timation using experimental data compared to the simulated data (Fig. 3.6), we observe
clear convergence of the independent chains to a common posterior estimate. Since there
is qualitative agreement for the results on simulated and experimental data, the method
seems promising to investigate interindividual differences via parameter estimation, which
is discussed in the next section.
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Figure 3.7: Posterior densities for 10 independent chains (coloured) for experimental
data from a single participant. The MAP estimator for the pooled chains (black) of each
respective parameter is in indicated by the black vertical line. The prior is indicated by
the black dotted line.

3.3.4 Interindividual differences and model parameters

In this section we study interindividual differences in model parameters across 34 subjects
that served as participants in the experiment by Risse and Seelig (2019). Figure 3.8
shows the posterior densities for all subjects, demonstrating considerable interindividual
differences over the model parameters tsac, R, and δ0, whereas estimates of η fall close to
zero.
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Figure 3.8: Posterior distributions (grey) of 34 participants. Each density is calculated
from the pooled data of 10 chains after the burn-in interval. Black ticks at the bottom
indicate the MAP estimators for the individual chains. The prior distributions are indi-
cated by the dotted, black line. Curves with the same color correspond to 4 highlighted
participants.

A critical question is how much of the differences in reading behavior could be ex-
plained by the estimated differences in model parameters. Therefore, we used the maxi-
mum a posteriori (MAP) estimator (i.e. the mode) of the pooled chains for each subject
as input parameters for the generative model and created a simulated data set that cor-
responds to the experimental data.

Fixation durations. For both the experimental and the artificial data, we calcu-
lated participant-wise averages in different measures of fixation durations. Specifically
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Figure 3.9: Relationship between true parameters (horizontal axis) and estimated pa-
rameter values of generated data (vertical axis). Parameters used are the MAP estimators
for the experimental data. The coloured points correspond to the same participants as in
Fig.3.8.

we compared durations of single fixations (SFD; when the word was fixated only once in
first-pass), first fixations (FFD; when the word was fixated once or more in first-pass),
refixations (RFD; the second fixation on words, which were fixated more than once con-
secutively in first-pass), gaze durations (GD; the total time spent on a word in first-pass)
and total viewing time (TVT ; the total time spent on a word regardless of first, second or
more passes). The results (Fig. 3.10a) indicate a remarkably good fit between the exper-
imental data and model predictions for individual participants for RFD and GD. Mean
FFD and SFD generated by the model tend to be slightly underestimated for participants
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Figure 3.10: (a) Means of different measures of fixation duration for experimental
and corresponding simulated data. Each point represents one participant. Simulated
data were created using the mean estimated parameters for each respective participant.
The coloured ellipses represent the 95% confidence boundaries. (b) Means of word based
fixation probabilities. Again each point represents one participant.

with longer initial fixations. Mean TVT, however, is higher in the model predictions than
in the experiment. It is important to note that the TVT measure captures more complex
gaze behavior, since it also incorporates additional fixation time due to regressions.

Fixation probabilities. Similar to the analysis of fixation durations, we calculated
word-based probabilities for single fixations (SF), refixations (RF), regressions (RG), and
word skipping (SK) (Fig. 3.10b). While in the experiment words are more likely to
receive single fixations as compared to the simulated data, they consequently have a
lower probability of receiving refixations. Additionally, the model predicts higher skipping
probabilities and also higher probabilities of serving as regression target. It should be
noted that the mismatch between experimental and simulated regression probabilities
and experimental and simulated TVT (discussed above) is closely related. In general,
part of the regressions might be looked upon as a more complicated psycholinguistic
measure related to various aspects of post-lexical processing (Rayner, 1998) that cannot
be captured in the SWIFT model, while another portion of the regressions might be of
oculomotor origin and can be found even in scanning tasks (Nuthmann & Engbert, 2009).

In summary, our results indicate that estimated parameters can explain some of the
interindividual differences in fixation durations and fixation probabilities. Thus, the
likelihood-based MCMC approach to parameter inference could be applied successfully to
estimate model parameters from individual behavioral data.
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3.4 Discussion

Current approaches to parameter inference and model comparison (e.g., Reichle et al.,
2003) for dynamical cognitive models are insufficient in at least three ways: First, dynami-
cal models need to be tested against time-ordered observations. Second, a likelihood-based
procedure is necessary for statistical inference. Third, parameter estimates are needed
for individual subjects to explain interindividual differences based on specific model as-
sumptions or components. We set out to solve these three issues in current modeling in
computational cognitive science using the SWIFT model of eye-movement control during
reading (Engbert et al., 2005) as a case study.

The approach discussed here is fundamentally based on the likelihood function of the
model. Therefore, we proposed and investigated the numerical likelihood computation of
the SWIFT model. This approach is based on the observation that incremental prediction
of fixation positions and fixation durations by the generative model can be exploited to
determine the likelihood of the next fixation.

Since the likelihood can be decomposed into a spatial (i.e., fixation position) and a
temporal part (i.e., fixation duration), we tried to find separate solutions to both prob-
lems. In the spatial part of the likelihood function, internal degrees of freedom (stochastic
internal states) could not be integrated out due to numerical efficiency considerations;
therefore, we computed a (stochastic) pseudo-likelihood (see Andrieu & Roberts, 2009).
In the temporal part, the theoretical likelihood function was unavailable. Therefore, we
constructed an approximate likelihood function using a sufficient number of predicted
fixation durations from the SWIFT model and KDE for the approximation of the likeli-
hood. In sum, we combined a pseudo-marginal spatial likelihood and an approximated
pseudo-likelihood (see Holmes, 2015, for nomenclature) function to obtain the likelihood
function of the model (Sisson & Fan, 2011).

Before we applied our framework to real data, we demonstrated that, in a simplified
model version with 4 free parameters, we could reconstruct the true parameter values from
simulated data. We used a Bayesian approach using MCMC sampling from the posterior
distribution based on an adaptive sampling algorithm (Vihola, 2012). The size of the
simulated data-set was comparable to a typical experimental data set that is recorded
from an individual participant during a one-hour session of eye-tracking experimentation.
Next, the same procedure was applied to experimental data. Motivated by the results
from simulated data, we estimated model parameters independently for 34 subjects.

Finally, our results indicate that it is possible to relate interindividual differences in
reading behavior (characterized by 5 different measures of fixation durations and 4 differ-
ent measures of fixation probabilities) to differences in the estimated model parameters.
Given the typical state-of-the-art models of eye-movement control in reading, this is a
major step for generating hypotheses on the observed interindividual differences in a task
as complex as reading.
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Throughout the current work, we focused on the numerical implementation of the like-
lihood function for the SWIFT model. Since likelihood-based Bayesian inference turned
out to be a viable and sound alternative to ad-hoc parameter estimation procedures, we
expect that our approach can be further advanced for both theory building and modeling
of interindividual differences. For example, for higher dimensional parameter spaces Dif-
ferential Evolution MCMC algorithms (see, e.g., Laloy & Vrugt, 2012; ter Braak, 2006;
ter Braak & Vrugt, 2008) might be more adequate. Additionally, we expect that a hier-
archical Bayesian design will help to increase the stability of the posterior estimates for
individual subjects—even if we apply our methods to data sets smaller than used in the
current work.
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3.6 Appendix A. Experimental data and sentence ma-
terial

All eye-tracking data used in our simulation studies originate from (Risse & Seelig, 2019),
who collected data for an experiment that was a version of the n+ 1 boundary paradigm
(Rayner, 1975a) to investigate effects of parafoveal word difficulty on fixation durations
and distinguish them from preview benefit effects (see Vasilev and Angele, 2017, for a
comprehensive review). Their data is available online at 10.17605/OSF.IO/KZ483.

In the experiment, 34 participants, mostly students of psychology at the University
of Potsdam, read 114 single sentences presented on a computer screen while their eyes
were being tracked. The simple structured German sentences consisted of six to 12 words
with an average length of 9 words. Every sentence contained a gaze contingent invisible
boundary before a specific target word. Before the eyes crossed the boundary, the preview
of the target word could either be of low, high or medium frequency (i.e. high, low or
medium difficulty respectively). During the saccade in which the boundary was crossed,
the target word was always exchanged with the medium frequency word. Word frequencies
were taken from the dlexDB database (Heister et al., 2011) based on The DWDS corpus:
A reference corpus for the German language of the 20th century (Geyken, 2007).

Data treatment and preprocessing. The data were collected using an Eyelink II Sys-
tem (SR Research, Osgoode/Ontario, Canada) with a temporal resolution of 1000 Hz.
Since spatial resolution was preprocessed to letter accuracy. Within-letter position was
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randomized by added small random numbers to avoid artifacts from discretization. Ba-
sically, the data used here were treated by the same preprocessing as reported in the
statistical analysis of the experiment. Additionally, fixation durations smaller than 25 ms
were discarded (550 fixations in 338 trials). Trials that included fixation durations larger
than 1000 ms were discarded (45). Trials consisting of less than three fixations were also
removed from the data-set. Additionally, re-readings signaled by regressions starting from
the second last or last word of the sentence and all subsequent fixations were discarded
(5773 fixations). After preprocessing, 30,639 fixations from 3422 trials were included in
the data-set for estimation. The implementations of the model, the estimation algorithm,
and scripts for analyses and plots, along with the corpus data and fixation sequences are
available at 10.17605/OSF.IO/XDKWQ.

3.7 Appendix B. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.jmp.2019.102313.
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Abstract
Skilled reading requires information processing of the fixated and the not-yet-fixated words
to generate precise control of gaze. Over the last 30 years, experimental research provided
evidence that word processing is distributed across the perceptual span, which permits
recognition of the fixated (foveal) word as well as preview of parafoveal words to the
right of fixation. However, theoretical models have been unable to differentiate the spe-
cific influences of foveal and parafoveal information on saccade control. Here we show
how parafoveal word difficulty modulates spatial and temporal control of gaze in a com-
putational model to reproduce experimental results. In a fully Bayesian framework, we
estimated model parameters for different models of parafoveal processing and carried
out large-scale predictive simulations and model comparisons for a gaze-contingent read-
ing experiment. We conclude that mathematical modeling of data from gaze-contingent
experiments permits the precise identification of pathways from parafoveal information
processing to gaze control, uncovering potential mechanisms underlying the parafoveal
contribution to eye-movement control.
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4.1 Introduction

High-acuity visual processing is limited to the center of the visual field (the fovea) with an
extension of about 2◦, which fits a short word at typical font size and stimulus distance.
Consequently, humans need to generate fast eye movements (saccades) to move words
into the fovea for word recognition during natural reading (Findlay & Gilchrist, 2003).
However, the visual field is much larger than that and words are processed, although
with lower visual acuity, beyond the fovea (in the parafovea). Here, we report results on
the use of word information from the parafovea for eye-movement control during reading.
We present an explicit computational model of parafoveal processing in an experimental
paradigm. Our approach is fully predictive, i.e., the model is trained under natural
reading conditions and makes predictions for the effects of experimental manipulations of
the reading process.

A critical concept for information processing during reading is denoted as the per-
ceptual span (McConkie & Rayner, 1975), which is the area of the visual field in which
text must be visible for the reader to proceed reading at a normal speed. Experimentally,
the perceptual span has been measured by systematically increasing the size of a window
of visible text that moves with the readers’ gaze across the sentence until readers cease
to show significant disruption in their reading behavior (Jordan, McGowan, Kurtev, &
Paterson, 2016; McConkie & Rayner, 1975; Rayner et al., 1980). The average size of the
perceptual span extends roughly from 3 to 4 letters to the left of fixation to about 14 to
15 letters to the right of fixation and is therefore asymmetric around the fixation location
(Rayner, 2009a). Although low-level pre-attentive processes may also contribute to the
observed size (i.e., the letter identification span is considerably smaller ranging only up
to 7 to 9 letters to the right of fixation) (Underwood & McConkie, 1985), the perceptual
span is strongly associated with word recognition processes and thus with the allocation
of attention during reading.

4.1.1 Experimental findings on parafoveal processing

The boundary paradigm (McConkie & Rayner, 1975) is among the most frequently used
experimental methods to study the effects of parafoveal processing on the timing of the
reader’s eye movements during reading. Contingent on the reader’s gaze position, the
parafoveal preview of a target word (word n + 1) is manipulated in an invalid preview
condition (e.g., a random letter string or a different word is presented), while the reader’s
eyes fixate to the left of it (e.g., before or on the pretarget word n). When a saccade is
launched past the location of an invisible boundary placed after the last letter of word n,
the preview of word n+ 1 is changed and replaced by the target word (Fig. 4.1). Readers
typically lack awareness of such display changes (Angele & Rayner, 2011; Angele, Slattery,
& Rayner, 2016; Matin, 1974; Risse & Kliegl, 2014; White, Rayner, & Liversedge, 2005).
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1. Nur ein schlauer König konnte das Rätsel lösen.
*

2. Nur ein schlauer Trick konnte das Rätsel lösen.
*

3. Nur ein schlauer Leser konnte das Rätsel lösen.
*

Invisible boundary* Gaze position (fixation)

Figure 4.1: The boundary technique as a variant of gaze-contingent displays. The
critical word position is to the right of an invisible boundary. If gaze position is to the
left of the boundary (first line), the preview word is diplayed. The preview is either a
high-frequency word (König) or a low-frequency word (Trick). A saccade crossing the
boundary triggers an immediate display change that replaces the preview by a medium-
frequency word (Leser).

Conversely, in the valid preview condition the preview is identical to the target word, thus
representing normal reading.

In experiments using the boundary paradigm, readers show differences in fixation
durations as a function of the preview condition in which the sentence was presented.
The first finding in the boundary paradigm is an effect of the preview validity in fixation
durations on the target word n + 1 to the right of the boundary. Fixation durations on
word n+ 1 are longer when an invalid preview was presented and shorter when the valid
(identical) word was displayed before its fixation (Starr & Rayner, 2001). This difference in
fixation durations is typically interpreted as a preview benefit resulting from a headstart of
processing the identical preview in parafoveal vision (Schotter et al., 2012). As parafoveal
preprocessing reduces the word’s remaining processing demand, word recognition times
are shorter when the word is finally fixated.

The second finding is an effect of the preview difficulty. Fixation durations are longer
when the parafoveal preview was a difficult word (high processing load) and shorter when
it was an easy word (low processing load). Manipulating the parafoveal processing load by
the preview’s lexical frequency (i.e., the frequency of occurrence of a word in a represen-
tative text database), preview difficulty effects have not been observed on the pretarget
word n before the boundary (Brothers et al., 2017; Risse & Seelig, 2019) but on the target
word n+1 after the boundary. (Risse & Kliegl, 2012, 2014; Risse & Seelig, 2019; Schotter
& Leinenger, 2016) While it seems clear that the preview must have been preprocessed up
to its lexical level in parafoveal vision, the precise mechanisms that prolong the critical
fixation after the boundary can best be investigated using explicit computational models.
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4.1.2 Computational predictions for eye-movement control

Several computational models (Rayner & Reichle, 2010) of eye-movement control have
been developed over the last 20 years. Interestingly, model comparisons are limited to
qualitative analyses so far (Reichle et al., 2003), mainly due to the lack of adequate sta-
tistical methods for model inference of complex process-oriented cognitive models (Schütt
et al., 2017). The SWIFT model (Engbert et al., 2005) provides a conceptually favorable
architecture in the context of implementing mechanisms for the contributions of foveal
and parafoveal processing on eye-movement control; the model provides a platform for
studying interactions between foveal and parafoveal processing without major changes of
the model principles.

Another prerequisite for the investigation of quantitative predictions is a reliable frame-
work for statistical inference. Recently, we implemented a fully Bayesian framework for
parameter inference for the SWIFT model (Rabe et al., 2020; Seelig et al., 2020), which
permits parameter identification based on experimental data from single readers in a sta-
tistically rigorous way. Therefore, we implement our assumptions on the interaction of
fixation duration with foveal and parafoveal processing in the SWIFT model to investigate
the potential of various mechanisms in explaining the integration of foveal and parafoveal
information during reading.

In the SWIFT model (Engbert et al., 2005) fixation durations are controlled by a ran-
dom saccade timer that initiates new saccade programs, which accounts for the stochas-
ticity in fixation durations (see Supplementary Note 1). Influences from cognitive word
processing are introduced into the model by inhibitory processes. Each word n is rep-
resented in SWIFT by an activation an(t) at time t under the assumption of parallel
processing (Snell & Grainger, 2019). Processing difficulties for low-frequency words pro-
duce higher lexical activations on average which delay the start of the upcoming saccade
program. Consequently, fixations on difficult words show increased fixation durations
(Fig. 4.2). In the latest version of SWIFT (Rabe et al., 2020; Seelig et al., 2020), only the
processing of the currently fixated word in the fovea affects the random timer through
foveal inhibition. In this study, we investigate additional parafoveal inhibition from ac-
tivation an+1(t) to the right of the fixated word n. In two different variants, parafoveal
inhibition can act on the timer either immediately (τ = 0) or with temporal delay (τ > 0).
The display change was implemented as a reset of the target word’s activation values to
zero, and restart of processing with the first fixation after the boundary during invalid
preview conditions.

For our simulation studies, we adopted a fully predictive framework, where the model
was fitted to data of the control condition only (i.e., with valid preview), while data
of two invalid preview conditions, (i) invalid high-frequency (HF) preview or (ii) invalid
low-frequency (LF) preview, were simulated as quantitative predictions. The difference
between the mean fixation durations of the invalid HF and LF preview conditions es-
timated the preview difficulty effect, whereas the difference between valid and invalid
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... ein schlauer König konnte ... Words
* *

Leser             Display change

Saccade
timer

an−1(t)      an(t)          an+1(t)     an+2(t)              Activations

Saccade
programs

S

Inhibitionfoveal
para-
foveal

Saccade

!

Model

Experiment

Figure 4.2: Modeling eye-movement control in the boundary paradigm. Experiment:
the saccade S triggers the display change from the preview König to the fixated word
Leser. Model: Word-based activations indicate states of lexical processing for each word.
The saccade timer that initiates a cascade of processes that produce the saccade. Inhi-
bition of the saccade timer can delay the saccade, which is observed as increased fixa-
tion duration. Based on model simulations, we investigated whether inhibition by foveal
(word n) and/or parafoveal words (word n+1) is more consistent with experimental data.
Parafoveal inhibition can be immediate (τ = 0) or delayed (τ > 0).

preview conditions (the latter computed as the average of mean fixation durations in HF
and LF conditions, respectively) tested the preview validity effect. The model simulations
of the boundary experiment provide a strong test of possible pathways from foveal and
parafoveal information to gaze control within a well-defined mathematical model under
statistically reliable procedures (Rabe et al., 2020; Schütt et al., 2017; Seelig et al., 2020).

In a first step, we explored to what extent cognitive control mechanisms could suffice
to account for the spatio-temporal pattern of preview effects in the boundary paradigm
(i.e., no preview difficulty and validity effects on word n but on word n+1). Therefore, we
extended the model’s cognitive control from only foveal (P0) to also parafoveal inhibition.
Parafoveal inhibition was either acting immediately (P1) or with a delay of 100 ms (P2)
accounting for the slower processing efficiency in parafoveal vision. After estimating model
parameters, we determined the mean prediction errors of these three model variants.

In a second step, we further analyzed possible interactions between properties of the
experimental method and the oculomotor control system. Therefore, we simulated two
different types of saccade cancelation scenarios as response to the display change in the
invalid preview conditions, similar to saccadic inhibition (Reingold & Stampe, 2004). The
first scenario assumed that a substantial proportion of saccade programs with a probability
of p = 0.5 is canceled based on the visual disruption when replacing the invalid preview
with the target word. The second scenario assumed that the successful cancelation further
depends on the stage of preview processing and is more likely when the preview is still in
the phase of increasing lexical activations.
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4.2 Results

For the boundary experiment (see Methods: Experimental data), we carried out numeri-
cal simulations to generate predictions of the SWIFT model with foveal (P0), parafoveal
(P1), and time-delayed parafoveal (P2) inhibition. We also investigated three assump-
tions on possible saccade cancelations due to display changes, i.e., without cancelation
(baseline), with saccade cancelation (SC), and with cancelation limited to saccade during
the increasing stage of lexical activation (SC-L1). In sum, we investigated nine different
models. Since we focus on lexical parafoveal processing in an n + 1 boundary paradigm,
we restricted our analyses of fixation durations to fixation sequences where a single fixa-
tion on word n was followed with a first fixation on word n+ 1. Sequences with multiple
fixations on word n were excluded from analysis in simulated as well as experimental data.

Model parameters were estimated for each participant and model based on the exper-
imental control condition data (see Methods: Bayesian parameter inference). Posterior
predictive checks were carried out to ensure successful parameter estimations (see Meth-
ods: Evaluation of parameter estimations). Since our approach was to predict the outcome
of the experimental boundary manipulations, parameter estimates from the control con-
dition were used for the experimental conditions (see Methods: Implementation of the
experimental design).

4.2.1 Fixation durations on the post-boundary word

Simulations of nine model variants generated predictions of the reading behavior in two
preview conditions based on parameters fitted to the control condition with valid preview.
We evaluated the first fixation duration on the post-boundary word (Fig. 4.3, Table 4.1)
after single fixations on word n. Models only incorporating inhibition by foveal processing
(P0) predict, on average, the same fixation durations after the boundary when changing
from an easy (HF) preview to the target word as compared to when changing from a
difficult (LF) preview to the target word. When parafoveal processing difficulties within
the processing span were inhibiting the autonomous saccade timer (P1), a difference be-
tween HF and LF invalid preview condition emerged and the mean values of the simulated
fixation durations became larger when a difficult LF preview was processed in parafoveal
vision. The effect of a delay of 100 ms of the inhibiting effect of the parafoveal information
(P2) is less obvious and our simulations indicate that the effects of the delay unfold in
interaction with saccade cancelations.

The three baseline model variants failed to show a substantial benefit of processing
a valid (identical) preview in parafoveal vision as compared to an invalid preview. Only
after implementing saccade cancelations (SC) based on the display change in the two
invalid preview conditions, the condition means differed and a preview validity effect was
observed (see also Figure 4.4b). Saccade cancelation further seemed to interact with the
parafoveal inhibition mechanisms. In the saccade cancelation models (SC), the mean
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Figure 4.3: Model comparison of n+ 1 fixation durations as a function of three preview
conditions. Horizontal lines reflect the empirical condition means using the same color
legend. P0: Foveal inhibition only. P1: Foveal and parafoveal inhibition. P2: Foveal
and delayed parafoveal inhibition. Baseline: Simple processing reset after display change.
SC: Additional saccade cancelation. SC-L1: Saccade cancelation during lexical processing
(L1) only.

difference between HF and LF invalid fixation durations in the presence of immediate
parafoveal inhibition (P0) was smaller than if parafoveal inhibtion was delayed (P1). In
the baseline models (without saccade cancelation) and the processing-dependent saccade-
cancelation models (SC-L1), however, this difference was almost of the same size and did
not differ much between the two parafoveal inhibition variants.

4.2.2 Predicted preview effects

Figure 4.4 and table 4.1 summarize the results of the nine model variants with respect
to the spatio-temporal pattern of parafoveal preview effects in the boundary paradigm.
We can conclude that parafoveal inhibition is crucial for the model to account for the
novel preview difficulty effect in n + 1 fixations after the boundary (P1 and P2 models).
However, to also account for the classical preview validity effect, the model needs addi-
tional mechanisms. Implementing this as a cognitive effect via inhibition on the labile
saccade program succeeds in showing a reliable preview validity effect but on the cost of
the preview difficulty effect. Thus, the preview validity effect is best explained by saccade
cancelations after a display change with only a small portion of cognitive preprocessing
benefits (i.e., 4 to 6 ms reflected in the preview validity effect of the baseline models,
Figure 4.4b). Moreover, the cognitive preview benefit portion is already fully developed
in the P0 baseline model (i.e., no further increase in the P1 and P2 baseline models).
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(a) (b) (c)

Figure 4.4: Predicted parafoveal preview effects for the first fixation after the boundary.
(a) Preview difficulty effect. Smallest difference to experimental effects is observed for
baseline models P1/P2 and SC-L1 model P1/P2. (b) Preview validity effect. Smallest
difference from experimental effects obtained for SC-L1 models. (c) Overall model scor-
ing. The mean sums of squared deviations from experimental effect sizes indicate best
performances for models that combine parafoveal inhibition with processing dependent
saccade cancelation.

Thus, in contrast to the preview difficulty effect, the preview validity effect is fully ac-
counted for by foveal inhibition and does not require further parafoveal inhibition. At the
qualitative level, the models P1 and P2 with processing-dependent saccade cancelations
(SC-L1) show both the best account of preview difficulty and preview validity effects in
fixation n+ 1 after the boundary (Fig. 4.4c).
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4.3 Discussion

In the current study we investigated mechanisms for a dynamical model of eye-movement
control during reading that can account for preview effects which appear in two flavors,
the preview validity and preview difficulty effect. We used data from an experiment (Risse
& Seelig, 2019) with an n+ 1 boundary paradigm and three different preview difficulties
to estimate posterior distributions of parameters in the SWIFT model of eye movements
during reading (Engbert et al., 2005). Parameters were estimated independently for three
different implementations of cognitive influences on fixation durations: Inhibition of sac-
cade programming by foveal processing only (P0), additional inhibition by parafoveal
processing (P1), and delayed parafoveal inhibition (P2). Estimations were restricted to
data from the valid preview condition. Based on the obtained posterior distributions over
the model parameters, we predicted fixation sequences for all experimental conditions in
the estimated model variants. Each model variant was further crossed with three imple-
mentations of the effects of the display change occurring in boundary paradigms. In the
baseline models, word processing was simply restarted after the display change, whereas
in the two saccade cancelation models the display change could also impede saccade pro-
gramming either generally, or coupled to the lexical stage of word processing. From the
simulated data we calculated the effect sizes for the preview validity effect and the preview
difficulty effect for the first fixation after the boundary.

The baseline model P0 with only foveal inhibition did not yield preview difficulty
effects, but it was sufficient to elicit a small effect of preview validity. The effect is
brought about by the reset of activation of the target word at the onset of its first fixation
during invalid preview conditions. While during valid conditions processing of the target
word is already in an advanced stage and completed soon after the fixation onset, during
invalid conditions processing must start over, resulting in a longer period during which
foveal inhibition can influence the random saccade timer. The reason why this influence
is small, however, lies in the delay between the onset of saccade programming and the
onset of the saccadic movement. Once the random saccade timer has initiated a saccade
program that later elicits a gaze shift, foveal inhibition can no longer affect the current
fixation duration, even if the fixation still lasts for considerable time.

The introduction of parafoveal inhibition in model P1 did bring about a preview diffi-
culty effect through the mechanism described above. When the model fixates word n and
has initiated a saccade program to word n + 1, inhibition resulting from the parafoveal
preview affects the duration of the upcoming fixation, therefore increasing durations of
the upcoming fixation on the target word n + 1 in case of LF previews, as compared to
HF previews. The impact of parafoveal difficulty was strong enough for MF previews to
produce longer subsequent fixation durations than HF previews in the baseline model,
despite the difference in the validity condition. Delaying the influence of parafoveal infor-
mation by 100 ms in the P2 models shifts the evolution of activation more consistently
into the time window where the saccade timer’s activity is related to the fixation duration
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on the target word. This affects fixation durations in LF conditions more than in HF
conditions, which likely is the result from a dynamical interaction of word frequency with
the increase in fixation duration itself.

Display change induced saccade cancelation was introduced as a mechanism to reflect
the disruption of visual stimulus continuity that occurs in the case of a display change.
Here, if a labile saccade stage is active during the display change, it is aborted with a
fixed probability of 50%. A new labile stage can then be initiated in the regular way
by the main saccade timer. Unlike with regular saccade cancelation, where an ongoing
labile stage is canceled and immediately replaced by a new one (initiated by the main
timer), in display change induced saccade cancelation the labile stage is aborted without
an immediate replacement. This substantially increases some fixation durations after the
display change (i.e., 50% of them) and induces a strong validity effect (see Fig. 4.4).

The third model type was used to investigate processing-dependent saccade cancela-
tion. Psycholinguistic theory suggests that word processing can often be approximated
by a two stage process and consists of lexical and post-lexical stages. Research indicates
that the visually presented word stimulus is more important during lexical processing
(Schotter & Leinenger, 2016) (whereas post-lexical integration can proceed even when
the visual representation is absent), which should be reflected in the model. Hence, the
display change sensitive saccade cancelation was coupled to the word processing stages
within SWIFT, where the epoch of rising activation represents the lexical processing (L1),
and the epoch of falling activation represents post-lexical processing (Engbert et al., 2005)
(L2). In these model variants (going by SC-L1) labile stages can only be canceled if word
processing was still in the earlier L1 stage (although activation reset was done for every
invalid preview on crossing the boundary, irrespective of the stage of word processing).
This reduced the size of the effect of saccade cancelation on the mean fixation duration
in invalid preview conditions, resulting in a pattern more aligned with the data observed
in the experiment.

In our simulation study, we used the SWIFT model as a platform for the different
variants of parafoveal processing. The parallel processing framework is an open architec-
ture for testing effects of distributed processing (Snell & Grainger, 2019). The recently
published OB1-Reader model (Snell, van Leipsig, Grainger, & Meeter, 2018) proposed
how letter-level visual and lexical processing could be successfully integrated into a model
of eye-movement control. Based on such extensions, we would expect even more specific
predictions on the boundary paradigm and its variants.

Finally, it is important to stress that the results presented in this work heavily rely
on the success and quality of the parameter estimation. Parameter inference based on
individual readers’ experimental data might be a breakthrough for process-oriented mod-
eling (Rabe et al., 2020; Schütt et al., 2017; Seelig et al., 2020), since interindividual
differences are often comparable in size to the observed effects. Here we exploited the
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full potential of interindividual differences by running predictive simulations separately
for each participants.

4.4 Methods

4.4.1 Experimental data

Experimental data were collected in an experiment of single sentence reading with 34
participants (Risse & Seelig, 2019). Each participant read 114 sentences on a computer
monitor in a single session, while their eyes were being tracked. The experiment used the
gaze contingent boundary paradigm, where an invisible boundary is placed between two
adjacent words. In the beginning of a trial the word displayed to the right of the boundary
corresponded to one of three different preview conditions. Those preview words had
similar grammatical function and word lengths but could either be of high frequency (HF),
medium frequency (MF) or low frequency (LF). Then, as soon as the eyes first crossed
the boundary towards the preview, the preview was replaced by a target word of medium
frequency. In the MF condition the preview and the target word were identical. The
process of replacing the word on the monitor was implemented to be quick enough, that the
saccadic movement which had triggered the boundary would envelope the display change
event. Of the 3,521 fixation sequences in the collected data, only fixation sequences in
the MF condition were selected for parameter estimation. Sequences containing less than
three fixations or fixations longer than one second were not considered in the estimation.
Additionally, all fixations after regressions from the last or second to last word were
removed. This left 1,139 fixation sequences with a total number of 10,172 fixations from
34 participants.

4.4.2 Bayesian parameter inference

The parameter estimations were conducted using a Python implementation (Shockley,
Vrugt, & Lopez, 2017) of the DREAMZS algorithm (Laloy & Vrugt, 2012) from the class
of Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC) algorithms (Hastings,
1970). In a Bayesian framework MH-MCMC algorithms use a random walk strategy to
iteratively build up a sampling distribution which eventually converges to the posterior
distribution P (θ|y) of parameters θ given the data y. Starting with the chains randomly
dispersed in parameter space Θ, the sampler generates new proposals from perturbations
of the latest positions of the chains at each iteration. The proposals are integrated into
the chain depending on their acceptance probability.

For each of the three models, parameter estimations were conducted using three chains
per participant, with 20, 000 iterations per chain. As priors for the parameters, we used
Gaussian distributions truncated at one standard deviation, with ranges according to
Table 4.2. Since calculating the likelihood in SWIFT uses simulations and approxima-
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tions, whereby the likelihood is inflated with a stochastic error (Seelig et al., 2020), the
DREAMZS algorithm had to be slightly modified. A stochastic likelihood can have ad-
verse effects on the algorithm’s rate of convergence. Originally, at any given position of
a chain the likelihood is evaluated only once (Laloy & Vrugt, 2012). However, stochastic
fluctuations of likelihood values can impede the calculation of the acceptance ratio and
introduce long periods of stagnation in the evolution of chains where no proposals are
accepted. To circumvent this, the modified algorithm newly evaluates the likelihood for
the latest chain position at every iteration. While this doubles the computational costs,
it also prevents the algorithm from becoming stuck. One ramification of this approach is
the notion, that the sampling distribution is no longer converging to the posterior distri-
bution, but rather some form of convolution with the error distribution imposed by the
likelihood approximation (Seelig et al., 2020).

Numerical calculations were carried out on the high-performance computing cluster
of the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN). Parallel
computation was used at the level of the estimation algorithm, as well as the level of trials
within each participant-wise model evaluation, respectively.

4.4.3 Implementation of the experimental paradigm

The experimental manipulation involved a display change event where, during invalid
conditions, an invalid word preview is replaced with a target word. In simulations of the
valid MF condition, no changes in model architecture had to be made, since this condition
represented normal reading. In the HF and LF conditions the word frequency of the word
n+1 corresponded to the respective invalid previews by the beginning of a trial. Once the
model had finished the execution of a saccade past the last letter of word n, the frequency
of word n+ 1 was changed to represent the MF word. Additionally, the activation values
of the target word were reset to zero and the processing stage was reset to the first stage.

Parafoveal inhibition (P1) was implemented in a similar fashion as the existing mech-
anism for foveal inhibition (Seelig et al., 2020). The numerical values of the word ac-
tivations were multiplied with their respective inhibition factors (see Table 4.3), before
modulating the transition rate of the saccade timer. The delay was implemented using
a memory array, where activations of parafoveal words were retained together with their
time signature, so they could be recalled after the delay of 100 ms.

Two variants of the model implement saccade cancelation in the invalid preview con-
ditions as a result of the display change. In SWIFT, the two-stage process of saccade
programming can only be aborted during the first, labile stage, but not during the non-
labile, second stage. In the event of a successful cancelation, a new saccade program is
immediately initiated, starting with a labile stage, thereby increasing the duration of the
current fixation. The causes of cancelations are now extended to include display change
events. When a labile stage is active during the time of the display change in the SC
model, it is canceled with a probability of p = 0.5. In the SC-L1 model it is also required
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that the second processing stage of the preview word n+ 1 has not yet been reached (this
is checked before any variables are reset as a result of the display change).

Artificial fixation sequences were simulated for all subjects with parameter combi-
nations specific to the subjects’ estimation results. For each sentence a different set of
parameters was randomly sampled from the posterior distribution of the respective partic-
ipant (Rabe et al., 2020), and per sentence 10 sequences were generated. For the analysis
of preview effects, the simulated sentences were processed in the same way, as the exper-
imental data. To keep results comparable, parameters were sampled from the posterior
distributions once per participant and sentence. This set of parameters was then used in
all simulations for the respective participant in the Baseline, SC, and SC-L1 models and
all conditions for the same sentences. Simulations of three participants were excluded
from all further analyses due to computer error.

4.4.4 Evaluation of parameter estimations

For a first analysis of the effects of the specific model implementation on the parameter
estimation, based on the posterior distributions we calculated the estimation mean of the
subjects median parameter values, to compare them with the lower and higher margins of
30% highest posterior density intervals (HPDIs) of the posteriors pooled over participants
(Table 4.2). We observe that variability between estimations is lowest for parameters
related to spatial aspects of oculomotor control, and higher for parameters concerned
with temporal control of saccade timing and word processing.

Posterior predictive checks (Schad, Betancourt, & Vasishth, 2020) were done for the
three sets of simulations P0, P1 and P2. Each set consists of 31 distinct simulations
based on the posterior distributions of individual participants. The posterior distributions
correspond to the experimental control condition (MF). We calculated a set of common
summary statistics (Table 4.4, Figure 4.6) from the data of all experimental conditions
and the simulated data, in order to cross validate the model fit. Significant Pearson
correlations coefficients indicate good agreement of experimental and simulated data in
the HF and LF conditions, which were not used in the parameter estimations.

4.5 Data Availability

The experimental data used in this study were published before (Risse & Seelig, 2019) and
were made publicly available via the Open Science Framework (DOI 10.17605/OSF.IO/KZ483).
Simulated data are accessible with the source code of the model (see below).

https://osf.io/kz483
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4.6 Code Availability

Source code used for numerical simulations, analyses, and plotting as well as other project-
related files are made available via the Open Science Framework (DOI 10.17605/OSF.IO/gdsn7/).
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4.10.1 Supplementary Note 1 (Mathematical details of the SWIFT
model)

In the SWIFT model (Engbert et al., 2005) we proposed two independent mechanisms
for target selection and saccade timing, coupling via word-based activations. Word ac-
tivations represent the current state of word processing over time. At the same time,

https://osf.io/gdsn7/
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word activations control target selection for an upcoming saccade and modulate fixation
durations via delay of upcoming saccades. The internal state of the model (Seelig et
al., 2020) at time t can be written as n = (n1, n2, ..., n4+NW

) with n1, ..., n4 representing
saccade timers and n5, ...n4+NW

word activations, where the total number of words in a
given sentence is denoted by NW . Word activations increase during lexical processing and
decrease during postlexical processing. All random variables ni are discrete, so SWIFT is
a continuous-time, discrete state random walk model (which can be simulated efficiently
via its master equation (Seelig et al., 2020)).

Within a processing span centered at the current gaze location, words are processed
in parallel (Snell & Grainger, 2019). The eccentricity of letter j in word i is given by
εij(t), which is time-dependent due to changes of gaze position via saccades. The spatial
extension of the processing span with δ letter spaces to the left and to the right of fixation
is a very important parameter. We assume an inverse parabolic processing function, which
is the dependence of the processing rate λ(ε) from eccentricity ε, i.e.,

λ(ε) = λ0 ·

 1− ε2/δ2 , for |δ| ≤ ε

0 , otherwise
, (4.1)

where λ0 = 3/4δ is a normalization constant. The processing rate Λi(t) for word i at time
t is given as

Λi(t) = L−ηi

Li∑
j=1

λ(εij(t)) , (4.2)

with word length Li and parameter η as an exponent determining the influence of word-
length.

A word’s activation increases with rate Λi(t) during lexical processing. When the word-
frequency dependent maximum is reached, post-lexical processing starts with a decrease
in activation determined by the same processing rate. Additionally, there is a decay rate
ω accounting for memory leakage effect (Rabe et al., 2020). Saccade target selection is a
stochastic process with targeting probability π(m, t) for word m at time t controlled by
relative activation, i.e.,

π(m, t) = am(t)∑NW
j=1 aj(t)

. (4.3)

Finally, saccades are generated with random inter-saccade intervals (Seelig et al.,
2020). To account for word difficulty effects, random timing is inhibited by foveal ac-
tivation. Thus, the rise-rate of the saccade timer is modulated by a factor (1 +h ak(t))−1,
where ak(t) is the foveal (fixated) word k, so that high activation delays an upcoming
saccade and, therefore, prolongs ongoing fixation duration. In Figure 4.2, we illustrate
how the concept of foveal inhibition is generalized to investigate influences of parafoveal
processing; in this case inhibition acts by slowing factor (1+h ak+1(t))−1 from word k+1.
Correspondingly, delayed parafoveal inhibition is given by a factor (1 + h ak+1(t− τ))−1.
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Figure 5: Posterior densities for all estimated parameters pooled over participants.

19

Figure 4.5: Posterior densities for all estimated parameters averaged over participants.
Priors (truncated Gaussians) are given by dashed lines. The posteriors for the different
model variants are indicated by different colors.
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Table 4.3: Model variants. Fixed parameter values were used for the three different
implementations of foveal and parafoveal inhibition.

Inhibition parameter
Model variant foveal parafoveal
No parafoveal inhibition (P0) 2.0 0.0
Parafoveal inhibition (P1) 2.0 3.0
Delayed parafoveal inhibition (P2) 2.0 3.0

Table 4.4: Pearson correlation coefficients for correlations between experimental and
simulated mean fixation durations and fixation probabilities across participants for all
estimations and conditions.

Summary statistics P0 P1 P2
HF MF LF HF MF LF HF MF LF

Fixation durations
Single Fixation Duration .67 .71 .72 .78 .84 .77 .74 .80 .76
First Fixation Duration .81 .81 .76 .70 .74 .67 .69 .72 .66
Re-Fixation Duration .49* .74 .49* .50* .74 .56 .52 .71 .55
Gaze Duration .68 .72 .73 .77 .81 .76 .74 .78 .77
Total Viewing Time .78 .81 .76 .72 .75 .73 .68 .73 .70
Fixation probabilities
Single Fixation .73 .76 .74 .73 .76 .75 .74 .78 .74
Refixation .71 .74 .68 .69 .68 .68 .67 .68 .66
Regression .79 .74 .76 .81 .80 .80 .76 .71 .75
Skipping .71 .74 .68 .69 .68 .68 .67 .68 .66
* p < .01; all other values p < .001
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Chapter 5

General discussion

The question of the extent to which words are processed before they are fixated during
natural sentence reading is part of a larger complex of controversies on the relationship of
cognition and eye movements. The debate plays a role in motivating the conception of sev-
eral generative computational models which implement different aspects of the conflicting
positions, with two specific models dominating the debate. While all models are capable
of reproducing certain key features of reading behavior, it is generally difficult to compare
their performance. This is in part due to the arbitrariness of their parameterization.

In the present work we confirm that parafoveal processing extends to the lexical level,
which has previously been rejected. As the mechanism behind the finding remains un-
clear, we compare different implementations in the framework of the SWIFT model. One
requirement for such quantitative comparisons is the identification of model parameters,
to counteract the effects of altering the model structure. This is achieved in a Bayesian
framework using Markov Chain Monte Carlo techniques with an approximative Likeli-
hood function for the model. In the coming sections I summarize the results of the three
studies and discuss the importance of lexical processing in the context of the debate on
parallel vs. serial word processing, and, finally, the role of model comparisons for further
research.

5.1 The present studies

In Chapter 2 we investigated the effects of preview difficulty in an n + 1 boundary
paradigm. Words of low, medium, and high word frequency served as previews, whereas
the target word was always the medium frequency word. This allowed for a clear dis-
tinction between effects of preview validity and preview difficulty. Comparisons between
valid and invalid preview conditions showed shorter fixation durations on word n+ 1 for
valid previews, which is a common finding. Further, in comparisons between the invalid
preview conditions we found an effect of word frequency on fixation durations for fixations
on the target word n+ 1. Specifically, we found longer fixation durations when previews
were low frequency words, compared to high frequency words. While the finding is not
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completely new (see Risse & Kliegl, 2014; Schotter et al., 2012; Schotter, von der Mals-
burg, & Leinenger, 2019), in previous studies the effects of preview validity and preview
difficulty were confounded due to the experimental design. The design of the present
experiment allowed for a clear distinction.

Surprisingly, we observed no effect of preview difficulty in fixations on word n—before
the boundary. Previous studies (Risse & Kliegl, 2012) had indicated, that lexical prop-
erties of parafoveal previews would influence fixation durations already during parafoveal
processing, before fixating the target word n+ 1. Such results could indicate interference
caused by parallel processing of word n and the preview of word n + 1. We therefore
decided to explore, whether the observed deviant effect pattern could still be explained
by frameworks of parallel processing, specifically the SWIFT model, through a simulation
study.

As an intermediate step, in Chapter 3, we first implemented a novel technique of pa-
rameter estimation for the SWIFT model. For previous simulation studies (e.g., Risse
et al., 2014) model parameters were estimated with minimization algorithms, typically
based on comparisons of summary statistics of simulated and empirical data. A better
approach is to directly calculate the likelihood of individual fixation sequences. Since
finding a closed-form solution for the SWIFT model was not feasible, we combined tech-
niques of simulation and approximations to arrive at a stochastic likelihood function. We
tested the likelihood function by calculating the likelihood of data simulated by the model,
while systematically varying single parameters. In the next step, we estimated the like-
lihood distribution of four parameters for simulated data within a Bayesian framework,
using an adaptive Metropolis-Hastings MCMC algorithm (Vihola, 2012), and successfully
recovered the parameters that were used during the simulations. Finally, we estimated
four parameters for empirical data from the experiment in Chapter 2 on the participant
level. Using the resulting parameter values for simulations produced good agreements be-
tween fixation durations and fixation probabilities of experimental data and simulations,
respectively.

In Chapter 4 we combined the aspirations of model exploration arising from Chapter 2
with the parameter estimation technique established in Chapter 3. For the new parameter
estimations we used only data from the control condition of the experiment in Chapter
2, again on the participant level. Switching to a different algorithm from the same class
(previously used in Rabe et al., 2020) allowed us to include more parameters with less
data, as well as conducting the estimations in a parallel computing environment, which
greatly improved computing time. The resulting posterior parameter distributions were
used as sampling pool for data generation.

To explore the possible mechanisms behind the preview difficulty effect, two vari-
ants of parafoveal inhibition were implemented into the SWIFT model. In the first
variant, processing of the upcoming word in the parafovea immediately influenced the
autonomous saccade timer, similar to foveal inhibition. In the second variant, the influ-
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ence of parafoveal word processing on the saccade timer was delayed by 100ms. Since
introducing such modifications affects the reading process globally, parameters had to be
estimated separately for each model variant. We further implemented two variants of
saccade cancellation, but as they were strictly coupled to the display change—which was
not present in the control condition—they solicited no further estimations. In the first
variant, an ongoing saccade program that was still in its labile stage could be cancelled
with a probability of 50% at the moment of the display change, during the onset of the
first fixation after the boundary. In the second variant, the probability of cancellation
was further tied to the first stage of preview processing.

Data were simulated for all three experimental conditions and model variants. We
calculated the effect sizes of the preview validity and preview difficulty effects, respectively,
and compared them to the experiment results. Models without parafoveal inhibition did
not produce an effect of preview difficulty during the first fixation on the target word n+1,
but yielded small effects of preview validity. When inhibition by parafoveal processing was
introduced, difficulty effects increased, but validity effects were not affected. Difficulty
effects again slightly increased, when the inhibition by parafoveal words was delayed by
100ms. The possibility of aborting an ongoing saccade program during its labile stage
after display changes was then introduced to imitate a reaction of the oculomotor system
to the disturbance of visual continuity by the switch from preview to target word. While
this only slightly increased the size of the preview difficulty effect, estimates of the validity
effect dramatically increased. When saccade cancellation was restricted to cases, where
processing of the preview had not yet advanced to the post-lexical stage, the effects
of preview validity were markedly reduced. From these simulations we concluded that
the effect pattern observed in Chapter 2 can be explained by the SWIFT model, when
parafoveal processing is given a pathway of influencing the autonomous saccade timer,
similar to foveal inhibition. While this refinement is sufficient in principle, preview validity
effects become most visible when processing dependent saccade canceling is added.

5.2 The order of word processing

The interest in lexical processing of words in the parafovea is strongly related to the
debate on the order of word processing, and the connection between cognition and the
control of eye movements during reading. Observations of PoF effects in corpus studies
(Kennedy & Pynte, 2005; Kliegl et al., 2006) were seen as possible indicators of cross-talk
and, hence, parallelism in word processing (Drieghe et al., 2008).

This effect pattern posed a serious problem to SAS models like E-Z Reader, where
word processing follows a rigid order and is strictly coupled to saccade programming.
In E-Z Reader, finishing the first stage of word processing inevitably triggers a saccade
program towards the upcoming word. This architecture provides a mechanism, through
which the first processing stage affects fixation durations on the word being currently
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fixated (i.e., by influencing the onset of saccade programming to the upcoming word),
and the second processing stage affects fixation durations on the upcoming word (i.e., by
influencing the time of the attention shift to the next word). However, unless saccade
cancellation from a competing saccade program is taken into account1, no mechanism
exists that could facilitate an influence of parafoveal processing on the duration of the
current fixation.

Experimental investigations using the boundary paradigm eventually lead to the dis-
covery of consistent preview difficulty effects on the word after the boundary (Schotter &
Leinenger, 2016; Schotter et al., 2019), or in the upcoming fixation (Risse & Kliegl, 2012),
respectively, whereas effects on the word before the boundary were spurious (Hyönä &
Bertram, 2004), and the notion of lexical PoF was largely dismissed in a meta-analysis
(Brothers et al., 2017).

However, preview difficulty effects on the post-boundary word remained challenging to
SAS models. While they allow complete processing of words in the parafovea, the strict
coupling of word processing to oculomotor planning would dictate the preparation of a
skipping saccade. A solution was found in the forced fixation account. Forced fixations
occur, when—during its parafoveal presentation—an upcoming word is processed at least
up the point where a new saccade program is triggered, while an ongoing saccade program
targeting that word has already transitioned to the non-labile stage of saccade preparation.
The ongoing saccade program can, thus, not be canceled in favor of a skipping saccade,
resulting in a fixation on the upcoming word. After the onset of the forced fixation
the postponed saccade program would go into preparation immediately, or even earlier
(Morrison, 1984; Schotter & Leinenger, 2016), resulting in a particularly short fixation. A
population of forced fixations in the distribution of fixation durations on the target word
effectively decreases aggregate measures like mean fixation durations, if their incidence is
high. Thus, forced fixations can account for patterns of reduced fixation durations on the
word after the boundary, and predict, that during a trial either the preview, or the target
word is processed, but not both.

In contrast, PG models like Glenmore and SWIFT are less restricted by their basic
principles, instead it was argued that “parafoveal-on-foveal effects naturally arise as a
direct prediction” (Drieghe et al., 2008) from the perspective of parallel processing. The
recent rejection of PoF effects (Brothers et al., 2017) raises the question, whether PG
models can entertain mechanisms that reproduce the experimentally observed effects of
parafoveal preview difficulty on fixation durations after the boundary, while simultane-
ously precluding influences of parafoveal previews on the current fixation duration. For
example, in the Glenmore (Reilly & Radach, 2002, 2006) model all words within the pro-

1If processing of the parafoveal word is quick enough to trigger a new saccade program targeting word
n+2, while the previous saccade program to word n+1 has not yet advanced to the non-labile stage, the
fixation on word n is prolonged, additionally resulting in skipping of word n + 1. However, this course of
events would be more likely for high frequency previews, and very unlikely for low frequency previews,
resulting in a negative effect of preview difficulty.
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cessing span simultaneously compete for processing resources, while saccade programming
is triggered by thresholds in word processing. This complex pattern elicits PoF effects
(Brothers et al., 2017), rendering the combination of mechanisms in the model unfeasible.

Conversely, the decoupling of saccade preparation and word processing in the SWIFT
model, together with the constraint of allowing only inhibition by foveated words, prevents
parafoveal words from directly affecting fixation durations. Introducing a mechanism that
inhibits the autonomous saccade timer by activation of the upcoming, parafoveal word
enabled the model to produce parafoveal difficulty effects in a boundary paradigm context.
While this also provides a route for evoking PoF effects, adding a delay to parafoveal
inhibition shifted the contribution from parafoveal word activation into the upcoming
fixation, visible as an increase in the size of the difficulty effect.

Preview validity effects emerged naturally from the implementation of the display
change into the model, but they were small compared to the difficulty effects. In order
to improve the numerical results of the simulations, an additional mechanism of saccade
cancellation was introduced as a reaction of the oculomotor system to the display change.
Motivated by saccadic inhibition (Reingold & Stampe, 2004), this resulted in a sizeable
increase in fixation durations on the target word during invalid preview conditions. When
this saccade cancellation was further coupled to the first word processing stage (i.e., the
probability for saccade cancellation was > 0 only when the preview was still in the first
processing stage immediately before the display change), the effect patterns resembled
the experimental data most closely.

With the addition of both mechanisms, the model was able to reproduce the two
distinct main effects of preview validity and preview difficulty on fixation durations on
the target word reasonably well, demonstrating that parallel PG models can in principle
account for such effect patterns. It should also be noted, that extending model mechanisms
to accommodate specific results is a common occurrence in the scope of SAS models as
well (e.g., compare the family of E-Z Reader models in Reichle, 2011).

In contrast to our approach, models using serial attention shifts, specifically E-Z
Reader, can naturally reproduce the effect patterns via forced fixations, without the ne-
cessity of auxiliary modifications, although so far neither qualitative, nor quantitative
simulations have been carried out to confirm these predictions. However, in a recent
study, Schotter et al. (2019) scrutinized the forced fixations account in an experiment,
where they investigated which word was likely read by subjects at the location of the
target word. In an n+1 boundary paradigm they manipulated plausibility and frequency
of previews and target words. They constructed the sentences, such that the plausibility
evaluation would be elicited only towards the end of the sentence. For invalid implausible
previews of high frequency, they predicted that the subjects would make more regressions,
as high frequency previews would elicit more forced fixations. SAS models predict that a
word which receives a forced fixation is not processed during that fixation, as the attention
already shifted onto upcoming word. Conversely, subjects would make less regressions if
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they had seen an invalid, but plausible high frequency preview. Indeed, their results sup-
port the forced fixation account (see also Schotter, Leinenger, & von der Malsburg, 2018).
However, the results do not speak against parallel processing models like SWIFT. In fact,
forced fixations happen in SWIFT as well, when a parafoveal word is chosen as a saccade
target in light of being currently processed, and processing finishes before the saccadic
movement is finalized. Since saccade targets are chosen during the transition from the
labile to the non-labile stage of saccade programming, there is considerable time left for
parafoveal processing to conclude, especially, when the word is of high frequency. To in-
clude forced fixations into simulations in a boundary paradigm, the display change would
have to be implemented differently than in the study in Chapter 4. There we actively
changed the word frequency to match the target word and reset internal variables for word
activation, processing stage and processing completion after the display change to their
initial values and, hence, forced the model to process the target word. Conditioning the
reset on preview processing would likely elicit forced fixations similar to those proposed
for SAS models.

5.3 Bayesian parameter estimation

Measures of reading vary strongly within, and also between subjects. Bayesian parameter
estimation presents a viable tool to capture this behavior for process oriented models,
enabling model evaluation under realistic conditions.

In the present work the technique of likelihood based Bayesian parameter estimation
was applied to a sophisticated model of eye movements during reading, capable of gener-
ating complex scanpaths, where fixation durations and fixation locations depend on the
previous trajectory. Parameters were estimated using only a subset of data collected in
an experiment to estimate a substantial number of parameters on the participant level.
Results from cross validation, where the remainder of the participants data was correlated
with simulation results based on the parameter estimation, look very promising.

The results can be further improved from using hierarchical Bayesian estimation, or
otherwise obtaining more informative priors based on external measures, such as esti-
mates of the processing span or word naming latency (see Kuperman & Van Dyke, 2011),
previous estimations or meta-analyses.

While in the current work we utilized the likelihood function, albeit with approxi-
mations, this approach is not feasible for some models, specifically when they cannot
technically account for all data (i.e., long regression saccades to words < n− 1 have zero
probability in E-Z Reader, see Reichle et al., 2009). In this case, alternatives based on
simulation statistics, like synthetic likelihoods (Wood, 2010) might be a solution.
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, Articles, 67 (1), 1–48.



104 Chapter 5

Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double
step stimuli. Vision Research, 19 (9), 967–983.

Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive
Sciences, 4 (3), 91–99.

Bouma, H. (1973). Visual interference in the parafoveal recognition of initial and final
letters of words. Vision Research, 13 (4), 767–782.

Brothers, T., Hoversten, L. J., & Traxler, M. J. (2017). Looking back on reading ahead: No
evidence for lexical parafoveal-on-foveal effects. Journal of Memory and Language,
96 , 9–22.

Brysbaert, M., Drieghe, D., & Vitu, F. (1998). Word skipping: Implications for theories
of eye movement control in reading. In Eye guidance in reading and scene perception
(pp. 125–147). Elsevier.

Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: a dynamic-cognitive
approach to decision making in an uncertain environment. Psychological Review,
100 (3), 432-459.

Coelho, C. A. (1998). The generalized integer gamma distribution—a basis for distribu-
tions in multivariate statistics. Journal of Multivariate Analysis, 64 (1), 86–102.

Deutsch, A., Frost, R., Pelleg, S., Pollatsek, A., & Rayner, K. (2003). Early morphological
effects in reading: Evidence from parafoveal preview benefit in hebrew. Psychonomic
Bulletin & Review, 10 (2), 415–422.

Ditchburn, R., & Ginsborg, B. (1952). Vision with a stabilized retinal image. Nature,
170 (4314), 36–37.

Drieghe, D. (2011). Parafoveal-on-foveal effects on eye movements during reading. In
S. E. S. P. Liversedge I. D. Gilchrist (Ed.), Eye movements handbook (pp. 839–855).
Oxford University Press.

Drieghe, D., Rayner, K., & Pollatsek, A. (2008). Mislocated fixations can account for
parafoveal-on-foveal effects in eye movements during reading. Quarterly Journal of
Experimental Psychology, 61 (8), 1239–1249.

Dutton, J. M., & Starbuck, W. H. (1971). Computer simulation models of human behav-
ior: A history of an intellectual technology. IEEE Transactions on Systems, Man,
and Cybernetics(2), 128–171.

Engbert, R., & Kliegl, R. (2011). Parallel graded attention models of reading. In S. P. Li-
versedge, I. Gilchrist, & S. Everling (Eds.), The oxford handbook of eye movements
(pp. 787–800). Oxford University Press.
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