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Abstract 
The accelerated lifetime model is considered. To test the influence 

of the covariate we transform the model in a regression model. Since 
censoring is allowed this approach leads to a goodness-of-fit problem 
for regression functions under censoring. So nonparametric estimation 
of regression functions under censoring is investigated, a limit theorem 
for a Z/2-distance is stated and a test procedure is formulated. Finally 
a Monte Carlo procedure is proposed. 

Key words: Accelerated life time model; censoring; goodness-of-fit testing; 
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1 I n t r o d u c t i o n 

We consider a life time model which describes the following situation: By 
some covariate X the time to failure may be accelerated or retarded relative 
to some baseline. The speeding up or slowing down is accomplished by some 
positive function ip, and we may write 

T = T ° 

where To is the so-called baseline life time and T is the observable life time. 
We will assume that T is an absolute continuous random variable (r.v.) 
and that the covariate X does not depend on the time. For simplicity of 
presentation let X be one-dimensional. 
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For statistical application a suitable choice of the function tp is important 
and the problem of testing tp arises. A survey of test procedures for testing ip 
under different model assumptions is given in Liero H. and Liero M. (2008). 
The aim of the present paper is to propose a test procedures for testing 
whether the function rfi belongs to a pre-specified parametric class of 
functions 

T = ty^(-) = / ? e R d } . (l) 

For data without censoring this problem was already considered in Liero 
(2008). In this paper we assume that the independent and identically 
distributed life times Tj are subject to random right censoring, i.e. the 
observations are 

Vi = min(Tj, d), Ai = l(Tj <Ct) and I j , i = 1 , . . . , n 

where the C,'s are independent and identically distributed censoring times 
with distribution function G. Furthermore we assume that the T,'s and the 
Cj's are conditionally independent given the X,'s. 

The inference is based on the log transformation of the lifetime model to 
a regression model: The conditional expectation of Y = logT given the 
covariate X has the form 

E(Y\X = x) = fj. - logi(j(x) with ^ = - J logzdS0{z) = E(logT0), 

where So is the survival function of the baseline life time To, and we can 
translate the considered problem into a problem of testing the regression 
function in a nonparametric regression model 

Y = logT = m{X) + e, 

where m(x) = /j, — log^(a;), and with e — log(To) — E(log(Tb)) 

£{e\X = x) = 0, and E(s2\X = x) = a2 

for some a2 > 0. For identifiability we assume ^(0) = 1. 
Test problem (1) is translated into the following problem 

H : m £ M. versus K : m$. M. 

where 

M = {m\m(-,(3,(j,) = -logV(s/3) + A», /? G Md,M e M}, 
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that is we have to check whether the regression function has a parametric 
form or alternatively that this regression is nonparametric. 
As test statistic a weighted L2-distance between a parametric and the non-
parametric regression estimator is proposed. To formulate the corresponding 
test procedure one has to investigate the properties of nonparametric esti­
mators for regression functions under censoring. Therefore in Section 2 
the nonparametric estimation of the regression function under censoring is 
considered. In Section 3 asymptotic properties of the nonparametric regres­
sion estimator are presented; the main result is the asymptotic normality 
of the weighted ^-distance of the estimator. This limit theorem is based 
on a so-called asymptotic (conditional) i.i.d. representation of the difference 
between the estimator and the regression function. The test procedure is 
given in Section 4. 

2 Nonparametric estimation of the regression 
function under censoring 

We start with the a nonparametric estimator for the conditional distribution 
function of the transformed r.v. Y = log T. Such an estimator was intro­
duced by Beran (1981). On one hand the Beran estimator can be regarded as 
an extension of the well-known Kaplan-Meier estimator proposed for models 
with censored data without covariates, on the other hand it is an extension 
of nonparametric estimators for conditional distributions functions studied 
for data sets without censoring. To define the Beran estimator it is useful 
to introduce the following functions and their estimators: The conditional 
distribution function of the r.v. Z = log V with V = min(T, C) is given by 
H(z\x) = P(Z < z\X = x) and estimated by the kernel estimator 

Here K : K —> R is a kernel function, and bn is a sequence of bandwidths 
tending to zero as n —>• oo. The symbol " 1 " denotes the indicator function. 

(2) 

where Wbni are the kernel weights denned by 
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The estimator of the conditional subdistribution function Hu(z\x) — P(Z < 
z, A = 1\X = x) is given by 

H%{z\x) = J2Wbni(^X1,...,Xn)l(Zi<z,Ai^l). (3) 

For the conditional cumulative hazard function A we have for y < r 

dF(s\x) fv dHu(s\x) . . . . p> dF{s\x) n> dl 

H(s-\x) 

where F denotes the conditional cdf of the transformed Y = l o g T and 
H(s^\x) = l im t | s H(t\x) , t x — iai{y\H{y\x) = 1} is the upper bound of 
the support of H(-\x). Replacing Hu and H by their estimators (2) and 
(3) leads to the weighted Nelson-Aalen type estimator for the conditional 
cumulative hazard function: 

J-oo 1 - j H n ( s _ | a ; ) 
(4) 

Now from the well-known relation between the cumulative hazard function 
and the survival function we obtain as estimator for Sy{y\x) = 1 — F(y\x) = 
P{Y > y\X = x) 

SYn(y\x) = Yl(l- AAn(t|x)) (5) 
t<y 

where AAn(t\x) — An(t\x) — An(t — \x) is the j u m p of A„(-|a;) at t. A n 
equivalent form of (5) is 

Fn(y\x) = 1 - J] { 
Zi<V 
A,-=l 

1 -
Wbni(x,X) 

ZHZj > Zi)wbnj(x,: 
3 

(6) 

Note that for weights Wbni — ^ the estimator Fyn is the classical K a p l a n -
Meier estimator; for Aj = 1 for all i the estimator Fn is the estimator of the 
conditional distribution function, and for Wĵ j = ^ and Aj = 1 for all i the 
estimator Fn is simply the empirical distribution function. 
Several authors considered the asymptotic behavior of Fn. Consistency of 
Fn(y\x) is proven for y < t x . 

For simplicity we write X = (Xi,..,, X„). 
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The regression function m(x) = E(Y\X = x) is defined by JydF(y\x). 
However, for the estimation of m and the investigation of the properties of 
the resulting estimator the following identities are useful: 

m(x) = E{Y\X = x) 

ydF{y\x) (7) 

and 

= I F~l(u\x) 
Jo 

m{x) = / F^iu^du (9) 

where i 7 ' _ 1 (u|a;) — ini{y\F(y\x) > u}. 
To estimate m we replace F(y\x) in (7) by the Beran estimator and obtain 
as nonparametric estimator for m 

= J ydFn(y\x). (10) 

One can show that for this estimator the empirical versions of (8) and (9) 
hold, i.e.: 

rhn{x) = W M ( x , X ) 1 ~ ZAi (11) 
rr{ 1 - Hn(Zi-\x) 

and 

mn(x) = f F^iu^du (12) 
Jo 

where F~ x(tt|a;) = ini{y\Fn(y\x) > u}. W e see that as in the case without 
censoring the regression estimator is a weighted average; now, in the case 
with censoring an average of the uncensored observations. The weights 
depend on the kernel and on the ratio of the Kaplan- Meier estimator and 
the empirical df of the observations. 
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3 Properties of the nonparametric regression esti­
mator 

Gyorfi et al (2002) showed that an estimator of this type 2 is i n c o n s i s t e n t 
if the right endpoint of the support of F is smaller than that o f G. W e 
follow another approach than those authors. W e will use a conditional i.i.d. 
presentation of the difference between estimator and regression function; 
such a presentation is based on the corresponding result for the estimator 
Fn which is derived by Akritas and D u (2002). Since this presentation holds 
only for y < y*, where y* < svcpx TX we will truncate the estimator (due to 
the right censoring): 
Instead of m{x) = y dF(y\x) we estimate the function 

m*(x ) = f ydF(y\x). (13) 
J—oo 

The function m* is estimated by 

(*) = 
rv* 

J — CO 
ydFn(y\x) (14) 

Before we state the results let us formulate the assumptions 

A l The marginal density g of X is bounded on M. and twice continuously 
differentiable in a neighborhood of a set J and g{x) > c > 0 for some 
c and all i € l 

A 2 The kernel i f is a symmetric density with compact support; further­
more, it is twice continuously differentiable. 

A 3 W e will need typical smoothness conditions on the functions H(-\-) and 
Hu (•{•). W e formulate here for a general (sub)distribution function L: 

The derivatives 

exist and are continuous for all y, and all x in a neighborhood of M.. 

Instead of kernel weights considered here they used nearest neighbor weights. 
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Lemma 3.1 Suppose that Al and A2 hold and that A3 is satisfied by H 
and Hu. then 

n 

m*n(x) - m*(x) = Yl Wbni(x,X) n^A^x) + Rn{x) (15) 
i=l 

with 

V(Zi, Ai\x) =y*(l - F(y*\x))Z(Zi, Auy*\x) 

- fV {l-F(a\x))t{Zi,Ai,s\x)ds 
J—oo 

where 

l(Zi<s,Ai = l) _ fs l(Zj>w)dHu(w\x) 

s v u ^ a w - { 1 _ H { Z i ] x ) ) y_oo ( 1 _ H H x ) ) 2 > 

and where 

supRn(x) = Op ((nbn)~% (log ) as n —» oo. 
x€l ^ ' 

Based on the presentation given in Lemma 3.1 we will prove the asymptotic 
normality of rhn(x) at an arbitrary fixed point x and a limit theorem for 
a weighted integrated squared error. Let us consider the conditional i.i.d. 
presentation as process and set 

n 

Mx) = ^Wb^XjviZuAilx). (16) 
i = l 

In a first step we will split An in a stochastic and in a systematic part: 

n 

An{x) = ^TWbnifaX) M Z i . A i l x J - E M Z i . A i l a O l X i ] ) 
i = l 
n 

+ ^2wbni(x,X)E[V(Zi,Ai\x)\Xi}. (17) 
*=i 

Note that 

Wbni(x,X) = 
9n(x) 
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where 

9n{x) = -Y^Kbn(X~Xj) 
3=1 

is the estimator for the marginal density g of the covariate X. 
The first part, the stochastic one, is approximated by 

Am(x) = — L - i ^ K ^ i x - X i ) ( ^ ( Z i . A i l x J - E ^ Z i . A i l x J I X i ] ) . (18) 

Using the well-known asymptotic properties of a nonparametric density 
estimator it is shown that the stochastic part of An and the statistic Ani 
have the same asymptotic behavior. The stochastic behavior of An\ is 
characterized by the covariance function 

Since this function plays a key role in proving limit theorems and deriving 
the corresponding standardizing terms an asymptotic expression for Cn(x, y) 
is presented in the following lemma: 

L e m m a 3.2 Suppose that Al and AS hold, and H and Hu are Lipschitz 
continuous with respect to x. Set 

Cn(x,y) = Co\z(Ani(x),Ani{y)). (19) 

and 
oo 

—oo 

s 

—oo —oo 

+ 
—oo 

Then 
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y*2(l - F(y*\x))(l - F(y*\y))lxy{y\y*) 

- y*(l-F(y*\x)) f (l-F(t\y))lxy(y*,t)dt 

- y*(l-F(y*\y)) [ V (1-F(s\x))lxy(s,y*)ds (20) 
J—oo 

+ F F (1-F(s\x))(l-F(t\y))lxy(s,t)dsdt) + o(n-1) 
J—ooJ —oo ' 

where K * K denotes the convolution. 

The approximating statistic An\{x) is a sum of i.i.d. r.v. 's. Applying the 
central limit theorem we obtain immediately the asymptotic normality at a 
fixed point x: 

^ W ^ N ( 0 , 1 ) . 
L,n(x, x) 

After some transformations we obtain from Lemma 3.2 for x = y 

Cn(x,x) =-b{g{x))-l(K *K)(0) 

x £ y ( 1 _ W ) ) _ ^ ) . _ ^ + 

=—K2p\x) + o{n-1). (21) 
no 

with Ax(s; 1,*) = j f ( l - F(t\x)) dt and K2 = (K * K)(0). 
Hence 

VnbAni(x) N(0,P
2(X)K2). (22) 

Since gn(x) is consistent, 

Anl(x) = 0P{{nb)-1'2) 

and 

gn(x) - Egn(x) = 0P{{nb)-ll2) 
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we obtain 
n 

(An(x) - ^ [ V w f o X j E ^ Z i , AOIJCi)) - Ani(x) 
i=l 

= Aii(i) - i \ = Op{(nb) l). 

Hence 

/ n \ 

^& \ An(x) - ^W 6 i (a ; ,X ) E ( 7 7 x (Z i ,A i )|X i ) J N ( 0 , p 2 ( x ) « 2 ) . (23) 

Now, to characterize the systematic part of the deviation define 

B f , > fs dHu(t\x) fs H(t\x)dHu(t\x) 
/ _ « , 1 - ff^x) . / _ « , ( l - # ( i | o : ) ) 2 

and 

dHu(t\x) , / * g ( t | g ) d g y ( t | g ) 
( 1 - t f ( i | c c ) ) 2 ' 

„ , , fs dHu(t\x) fs 

Using standard techniques for the investigation o f a bias we obtain the fol­
lowing asymptotic expansion for the term YH=i Wbi{x,X)E(r]x(Zi, A , )|X j ) : 

n 

J^WwfoXJEMZi.AOIXi) = b2
nB(x)Li2(K) + oP(b2

n), (24) 

where 

B(x) = ^ ^ ( l - F i y ^ B . i y ^ x ) - J " (l-F(s))B1(s,x)ds^ + 

\ ^ ( 1 - F(y*))B2(y*, x) - j f J l - F ( s ) ) B 2 ( S , x ) d s j 

and H2{K) = J u2K(u)du. 
If -> 0 

n 

V ^ ^ W ^ ^ ^ E ^ , ^ ) ^ ) = oP({nbl)ll2) = o P ( l ) , 
i=l 

in other words, the systematic part is asymptotically negligible. 
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If nb^, —> c > 0 we have 

and 

nbAn(x) -^N(^B(X)(I2(K),P
2{X)K2 (25) 

B y Lemma 3.1 we conclude from the asymptotic behavior of An(x) to that 
of — m*(x) and formulate the following theorem: 

Theorem 1 (Asymptotic normality at a fixed point) Under the as­
sumptions given above and bn —> 0 and nbn —> o o 

(i) Ifnbn -> 0 then 

/nbn (K(x) ~ m*(x)) N ( 0 , K2 p\x)) 
with 

p\x) = (g(x))-1 £jy*(l-F(y*\x))-Ax(S;y*))2^ 

(26) 

dHu{s\x) 
-H(s\x))2' 

(ii) / / nb^ —> c > 0 then 

nbn « ( z ) - m*(x ) ) N ( v
/ 5 J B ( x ) / x 2 ( i ; ! : ) , / 5 2 ( a ; ) K 2 ) . (27) 

Remark: Consider the case without censoring. Using integration by parts 
we obtain for y* = o o , H = Hu = F 

Thus, in this case Theorem 1 coincides with the well-known limit theorem 
stating asymptotic normality of nonparametric kernel regression estimators. 

The asymptotic normality at a fixed point characterizes the local behavior. 
For testing the formulated hypothesis it seems to b e better to use a global 
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deviation measure. So, let us consider the integrated squared difference, 
weighted by a known function a with a(x) = 0 for x I: 

Qn = J(K(x) ~ m*(x))2a(x)dx. 

Heuristically speaking this is an infinite sum of squares of asymptotically 
normally distributed r.v. 's. which are asymptotically independent as bn 

tends to zero. Thus Q n , properly standardized, converges in distribution to 
the standard normal distribution. 
Using the method proposed by Hall (1981) for proving the asymptotic 
normality of the integrated squared error of kernel density estimators one 
can show the following limit theorem 

Theorem 2 (Asymptotic normality of the ISE) Under the assump-

Hons formulated above and nbn —> oo and n$bn —> 0 

Qn = JK(^) - m*(x))2a(x)dx 

n&y2(Q„ - e n ) ^ N ( 0 , ^ 2 ) 

= en{g,H,Hu;K,a,bn) = ( n 6 „ ) _ 1 K 2 Jp2(x)a(x)dx 

with 

v2 

v2(g,H,Hu-K,a) = 2 k x Jp4(x) a2(x) àx 

with KI = J(K * K)2(x) Ax. 

4 Formulation of the test procedure 

Let us apply the limit theorem for the I /2 -type distance of the truncated es­
timator from the truncated regression function to formulate a test procedure 
for testing the hypothesis m £ A4. 
The alternative is characterized by the nonparametric estimator m*. Sup­
pose the null hypothesis is true. The hypothetical function m*(-;,î9) is 
unknown. Firstly, one has to estimate the unknown parameter There 
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are several proposals in the literature to do this; we refer to Tsiatis (1990), 
Ritov (1990) or Bagdonavicius/Nikulin (2001). T h e basic idea is to replace 
the unknown cumulative hazard function by an efficient estimator depend­
ing on $ and to estimate this unknown parameter then by the maximum 
likelihood method. The authors show that under suitable assumptions the 
resulting estimator is i /n-consistent, i.e. 

y/n (FN ~ -&) = Op(1) as n ^ oo. (28) 

The next step is to determine m* (•;$)• Wi th the estimator B the Breslow 
estimator for the cumulative hazard function of the unobservable r.v. To is 
constructed as follows: 

ANO(T-J) = f -
JO 1 

dff&( 8 ; /3 ) 

-H„o(8-J) 
where 

1 n 

HN0(T-J) = - J2l(V0I<T) 
I=L 

is the empirical distribution function of the estimated hypothetical baseline 
observations Vqj = VIIP(XI, 0), and 

n 
¿=1 

is the corresponding estimator of the subdistribution of the uncensored 
observations. Then the baseline survival function is estimated by 

Sofop) = - A A 0 ( s ; / 3 ) ) 

s<t 
and the hypothetical truncated regression function by 

m * M ) = - fV ydSo(4>il>(x-J)) 
J—oo 

•I o ip(x;3) 
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W e see, for y* —» oo the function m*(x;i9) converges to 
oo 

logzd§o{z) — log ip(x; ¡3) = ¡1 — log tp (x; ¡3) = m{x\'d). 

The test procedure has the following form: The hypothesis m £ M, that is 
I/J & T is rejected if the estimated Z/2-distance 

Qn = Ji-K{x) - m*{x;$))2a(x)dx 
satisfies the inequality 

where is the (1 — a)-quantile of the limiting distribution and en = 
en{9n,Hn,Hu,K,a,bn) and v2 = v2(gn,Hn,Hu ,K,a) are the estimated 
standardizing terms. 

4.1 A proposal for a Monte Carlo procedure 

Finally a Monte Carlo method for determining empirical p-values of the test 
procedure is proposed. The aim of this method is to generate data 

(V*,X*r,A*ir), r = l,...,R, i = l,...,n 

according to the hypothetical model . Based on these data the test statistics 
Q n i i • • • > Q n r > • • • i QnR 8 X 6 computed and from their empirical distribution 
the p-value is determined. 
The data can be constructed as follows: 

1. Let (5 the estimator for (3 based on the original data. Construct the 
Breslow estimator Ao(-; ¡3) for the cumulative baseline hazard function. 
Then 

S0(T-J) = - AA0(S-J)). 

8<t 
2. Generate data T$IR from the estimated survival function SO(T;/3) and 

set 

rp* _ Oir 
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3. Estimate the distribution function of the Cj by the weighted Kaplan-
Meier estimator Gn and generate censoring variables C*r from the 
estimated survival function Gn. 

4. Finally set 

V*r = min(T i *, C*r), A*r = l(T*r < C*r), X*r = Xi. 

As of yet this M C procedure is only a proposal and further investigations 
should be pursued. 

References 

[1] M. G. Akritas and Y . Du. IID representation of the conditional Kaplan-
Meier process for arbitrary distributions. Mathematical Methods in 
Statistics, 11:152-182, 2002. 

[2] V . Bagdonavicius and M. Nikulin. Accelerated Life Models. Springer 
Series in Statistics. Chapman and Hall, 2001. 

[3] R. Beran. Nonparametric regression with randomly censored survival 
data. Technical report, Univ. California, Berkeley, 1981. 

[4] L. Gyorfi, M . Kohler, A. Krzyzak, and H. Walk. A Distribution-
Free Theory of Nonparametric Regression. Springer Series in Statistics. 
Springer, 2002. 

[5] P. Hall. Central limit theorem for integrated square error of multivariate 
nonparametric density estimators. J. Multivariate Analysis, 14:1-16, 
1984. 

[6] H. Liero. Testing in nonparametric accelerated life time models. Austrian 
Journal of Statistics, 37(1), 2008. 

[7] H. Liero and M . Liero. Testing the influence function in accelerated life 
time models. In F. Vonta, M. Nikulin, N. Limnios, and C. Huber, editors, 
Statistical models and methods for biomedical and technical systems. 
Birkhauser, 2008. 

15 



[8] Y . Ritov. Estimation in a linear regression model with censored data. 
Ann. Statist, 18:303-328, 1990. 

[9] A . A . Tsiatis. Estimating regression parameters using linear rank tests 
for censored data. Ann. Statist, 18:354-372, 1990. 

16 


	Title
	Impressum

	Abstract
	1 Introduction
	2 Nonparametric estimation of the regression function under censoring
	3 Properties of the nonparametric regression estimator
	4 Formulation of the test procedure
	References



