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Abstract

Complete protection against flood risks by struc-
tural measures is impossible. Therefore flood pre-
diction is important for flood risk management.
Good explanatory power of flood models requires
a meaningful representation of bio-physical pro-
cesses. Therefore great interest exists to improve
the process representation. Progress in hydrolog-
ical process understanding is achieved through a
learning cycle including critical assessment of an
existing model for a given catchment as a first step.
The assessment will highlight deficiencies of the
model, from which useful additional data require-
ments are derived, giving a guideline for new mea-
surements. These new measurements may in turn
lead to improved process concepts. The improved
process concepts are finally summarized in an up-
dated hydrological model.

In this thesis I demonstrate such a learning cy-
cle, focusing on the advancement of model eval-
uation methods and more cost effective measure-
ments. For a successful model evaluation, I pro-
pose that three questions should be answered: 1)
when is a model reproducing observations in a
satisfactory way? 2) If model results deviate, of
what nature is the difference? And 3) what are
most likely the relevant model components affect-
ing these differences? To answer the first two ques-
tions, I developed a new method to assess the tem-
poral dynamics of model performance (or TIGER
- TIme series of Grouped Errors). This method is
powerful in highlighting recurrent patterns of in-
sufficient model behaviour for long simulation pe-
riods. I answered the third question with the anal-
ysis of the temporal dynamics of parameter sensi-
tivity (TEDPAS). For calculating TEDPAS, an ef-
ficient method for sensitivity analysis is necessary.
I used such an efficient method called Fourier Am-
plitude Sensitivity Test, which has a smart sam-
pling scheme. Combining the two methods TIGER
and TEDPAS provided a powerful tool for model
assessment.

With WaSiM-ETH applied to the Weisseritz

catchment as a case study, I found insufficient pro-
cess descriptions for the snow dynamics and for the
recession during dry periods in late summer and
fall. Focusing on snow dynamics, reasons for poor
model performance can either be a poor represen-
tation of snow processes in the model, or poor data
on snow cover, or both.

To obtain an improved data set on snow cover,
time series of snow height and temperatures were
collected with a cost efficient method based on
temperature measurements on multiple levels at
each location. An algorithm was developed to si-
multaneously estimate snow height and cold con-
tent from these measurements. Both, snow height
and cold content are relevant quantities for spring
flood forecasting.

Spatial variability was observed at the local and
the catchment scale with an adjusted sampling de-
sign. At the local scale, samples were collected
on two perpendicular transects of 60 m length and
analysed with geostatistical methods. The range
determined from fitted theoretical variograms was
within the range of the sampling design for 80% of
the plots. No patterns were found, that would ex-
plain the random variability and spatial correlation
at the local scale.

At the watershed scale, locations of the exten-
sive field campaign were selected according to a
stratified sample design to capture the combined
effects of elevation, aspect and land use. The snow
height is mainly affected by the plot elevation. The
expected influence of aspect and land use was not
observed.

To better understand the deficiencies of the snow
module in WaSiM-ETH, the same approach, a sim-
ple degree day model was checked for its capabil-
ity to reproduce the data. The degree day model
was capable to explain the temporal variability for
plots with a continuous snow pack over the en-
tire snow season, if parameters were estimated for
single plots. However, processes described in the
simple model are not sufficient to represent mul-
tiple accumulation-melt-cycles, as observed for
the lower catchment. Thus, the combined spatio-



10

temporal variability at the watershed scale is not
captured by the model. Further tests on improved
concepts for the representation of snow dynamics
at the Weißeritz are required. From the data I sug-
gest to include at least rain on snow and redistribu-
tion by wind as additional processes to better de-
scribe spatio-temporal variability. Alternatively an
energy balance snow model could be tested.

Overall, the proposed learning cycle is a useful
framework for targeted model improvement. The
advanced model diagnostics is valuable to iden-
tify model deficiencies and to guide field measure-
ments. The additional data collected throughout
this work helps to get a deepened understanding of
the processes in the Weisseritz catchment.
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Kurzfassung

Für einen effektiven Hochwasserschutz sind reine
Infrastrukturmaßnahmen häufig ungenügend und
müssen durch komplexe Modelle zur Hochwas-
servorhersage und –warnung, zu einem umfassen-
den Schutzkonzept vervollständigt werden. Derar-
tige Modelle basieren auf einer bio-physikalisch
Repräsentation der relevanten hydrologischen Pro-
zesse, weshalb eine Verbesserungen in der Be-
schreibung dieser Prozesse, zuverlässigere Vorher-
sagen ermöglichen kann. Dabei markiert die zu-
nächst kritische Beurteilung von bereits existieren-
den Modellen den Beginn zu einem erweiterten
Systemverständnis. Weiterhin führen aufgedeckte
Schwachstellen im Model häufig zu einer erneu-
ten Datenerhebung, wobei die bei der Modelbe-
urteilung gewonnenen Erkenntnisse als Orientie-
rungshilfe dienen können. Das daraus resultieren-
de, vertiefte Verständnis kann zu einer verbesser-
ten Beschreibung der hydrologischen Prozesse ge-
nutzt werden, gefolgt von einer Überarbeitung des
Modells, wodurch ein Lernzyklus abgeschlossen
wird.

In dieser Arbeit wird ein solcher Lernzyklus auf-
gegriffen, wobei der Schwerpunkt auf einer ver-
besserten Modellanalyse und kosteneffizienteren
Messungen liegt. Für eine erfolgreiche Modell-
beurteilung sind drei Fragen zu beantworten: 1)
Wann reproduziert ein Modell die beobachteten
Werte in einer zufriedenstellenden Art und Weise
(nicht)? 2) Wenn Unterschiede bestehen, wie las-
sen sich die Abweichungen genau charakterisie-
ren? und 3) welches sind die Modellkomponenten,
die diese Abweichungen bedingen? Um die ersten
beiden Fragen zu beantworten, wird eine neue Me-
thode, genannt TIGER (TIme series of Grouped
Errors), zur Beurteilung des zeitlichen Verlaufs der
Modellgüte vorgestellt. Eine wichtige Stärke die-
ser neuen Methode liegt darin, dass wiederholende
Muster ungenügender Modellgüte auch für lange
Simulationsläufe einfach identifiziert werden kön-
nen. Die dritte Frage wird durch die Analyse des
zeitlichen Verlaufs der Parametersensitivität beant-

wortet, welche eine effiziente Sensitivitätsanalyse-
Methode bedingt. In dieser Arbeit wird eine solche
effiziente Methode namens Fourier-Amplituden-
Sensitivitäts-Test verwendet, die den Parameter-
raum sehr effizient durchsucht. Eine Kombination
der beiden Methoden zur Beantwortung aller drei
Fragen stellt ein umfangreiches Werkzeug für die
Analyse hydrologischer Modelle zur Verfügung.

Als Fallstudie wurde WaSiM-ETH verwendet,
um das Einzugsgebiet der Wilden Weißeritz zu
modellieren. Die Modellanalyse von WaSiM-ETH
hat ergeben, dass die Schneedynamik und die Re-
zession während trockener Perioden im Spätsom-
mer und Herbst, für eine Beschreibung der Prozes-
se an der Weißeritz nicht geeignet sind. Der Unter-
schied zwischen Modell und Simulation kann ent-
weder von einer ungenügenden Beschreibung der
Prozesse oder von Fehlern in den vorhandenen Da-
ten oder aus beiden Quellen stammen. Der nächste
Schritt im Lernzyklus beinhaltet die Erhebung zu-
sätzlicher Daten, was am Beispiel der Schneedy-
namik aufgezeigt wird.

Detaillierte Daten über Schneetemperaturen und
Schneehöhen wurden mit Hilfe eines neuen, preis-
günstigen Verfahrens erhoben. Dazu wurde die
Temperatur an jedem Standort mit unterschiedli-
chen Abständen zum Boden gemessen. Schließ-
lich wurde ein Algorithmus entwickelt, der aus den
Temperaturmessungen sowohl die Schneehöhe, als
auch den Kältegehalt der Schneedecke berechnet.
Die Schneehöhe und Kältegehalt sind wichtige
Größen für die Vorhersage von Frühjahrshochwas-
sern.

Die räumliche Variabilität der Schneedecke
wurde mit einem zweistufigen Beprobungsplan so-
wohl kleinräumig, als auch auf der Einzugsge-
bietsskala erfasst. Auf der kleinräumigen Skala
wurden Schneehöhen und -dichten auf zwei 60 m
langen, rechtwinkligen Transekten gemessen und
die Daten geostatistisch ausgewertet. Theoretische
Variogramme wurden an die Daten angepasst, um
die Korrelationslänge zu berechnen. Es stellte sich
heraus, dass für 80% der beprobten Flächen die
Korrelationslänge innerhalb der 60 m der Transek-
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te lagen. Es konnten keine Faktoren gefunden wer-
den, um Unterschiede in der Korrelationslänge, der
Semivarianz und der Anisotropie zu erklären.

Auf der Einzugsgebietsskala wurden die Flä-
chen entsprechend der Landnutzung, der Höhenzo-
ne und der Ausrichtung stratifiziert ausgewählt, um
den Einfluss dieser drei Faktoren zu untersuchen,
wobei lediglich der Einfluss der Höhe nachge-
wiesen werden konnte, während Ausrichtung und
Landnutzung keinen statistisch signifikanten Ein-
fluss hatten.

Um die Defizite des WaSiM-ETH Schneemo-
dules für die Beschreibung der Prozesse im Wei-
ßeritzeinzugsgebiets besser zu verstehen, wurde
der gleiche konzeptionelle Ansatz als eigenständi-
ges, kleines Modell benutzt, um die Dynamik in
den Schneedaten zu reproduzieren. Während die-
ses Grad-Tag-Modell in der Lage war, den zeitli-
chen Verlauf für Flächen mit einer kontinuierlichen
Schneedecke zu reproduzieren, konnte die Dyna-
mik für Flächen mit mehreren Akkumulations-
und Schmelzzyklen im unteren Einzugsgebiet vom
Modell nicht abgebildet werden. Folglich können
die raum-zeitlichen Schneemuster im Einzugsge-
biet von diesem Modell nicht umfassend beschrei-
ben werden. Eine Erweiterung des Modellkon-
zeptes für die Beschreibung der Schneedynamik
an der Weißeritz ist deshalb erforderlich. Dabei
scheint die Einbeziehung des Windtransportes und
des Regeneinflusses auf die Schneedecke, in das
Modell, notwendig zu sein. Alternativ könnte auch
ein komplettes Energiebilanzmodel getestet wer-
den.

Zusammenfassend hat sich das Lernzyklus-
Konzept als nützlich erwiesen, um gezielt an einer
Modellverbesserung zu arbeiten. Die differenzierte
Modelldiagnose ist wertvoll, um Defizite im Mo-
dellkonzept zu identifizieren und die Planung von
zusätzlichen Messungen zu unterstützen. Die wäh-
rend dieser Studie erhobenen Daten sind geeig-
net, um ein verbessertes Verständnis der Schnee-
Prozesse an der Weißeritz zu erlangen.



Chapter 1

Introduction

1.1 Flood prediction as iterative
learning process

Floods have a great potential for damage, effect-
ing large efforts for flood risk management. Flood
risk mitigation has two main approaches, structural
and non-structural measures (Merz, 2006). Struc-
tural measures attempt to reduce the probability
and impact of floodings by building dams, dikes
and polders. However, even if the impossible was
possible, it would be too cost intensive to provide
complete protection based on structural measures
(Merz, 2006). In addition, under climate and soci-
etal change, magnitudes, frequencies and impacts
of floods are expected to change over time. Non-
structural measures are more flexible and include
flood risk oriented land use planing, establishment
of warning schemas and emergency plans. Effi-
cient planning and warning requires reliable flood
predictions, which are generally based on hydro-
logical models. The simulation of rare events will
most likely require extrapolation from the histori-
cally observed catchment behavior. Also, the qual-
ity of measurements becomes questionable for ex-
treme events. While extrapolation is critical from
a scientific point of view, it is an intrinsic problem
of flood prediction.

Hydrological models can be roughly separated
into parsimonious, data driven models and com-
plex, physically based models. Advantages and
disadvantages of both is an ongoing discussion
(e.g. Todini, 2007; Kirchner, 2006). A fundamen-

tal assumption in this thesis is, that confidence with
respect to extrapolation beyond observed condi-
tions may increase, if bio-physical functioning of
a catchment is well represented in the model. With
this approach, the model is considered to be the
best available conceptualisation of the catchment
functioning. Naturally, every model is necessar-
ily a simplification of reality and cannot reproduce
all the functions. To obtain a satisfying represen-
tation, which includes the relevant processes, a re-
peated adjustment to the model for the catchment
under investigation is necessary. For the adjust-
ment, the catchment dynamics are modelled and
compared to observations.

Learning from the difference between a model
and the observation requires the application of
some diagnostic tools – in the simplest case plot-
ting the two time series together. Ultimately, the
diagnostic tool will help to determine which model
components are insufficient to reproduce the catch-
ment behaviour. However, diagnostics are compli-
cated because differences can be caused by errors
and gaps in the measurements or the model struc-
ture. In this thesis, model structure is defined to
consists of the process conceptualisations (equa-
tions) for a spatial element and some scale reduc-
tion in space and time by describing the exchange
between the spatial elements. In addition, we need
estimates for the required parameter values.

To check for errors in the measurements and
close existing information gaps, the differences be-
tween model and observation can be used to derive

13



14 Chapter 1 Introduction

Figure 1.1: Model based learning cycle

a set of measurements to further improve our un-
derstanding. Since measurements always require
a balance between amount of information gained
and related costs, cost efficient measurements are
preferred. The newly achieved insight from new
data and new process descriptions eventually leads
to improvements to the model.

Finally, this leads to a learning cycle as shown
in Figure 1.1. In the Figure, the process described
above is split into four consecutive steps. From a
scientific point of view, learning is one of the main
purposes of any kind of modelling, including data
driven approaches.

The overall rational behind this thesis is to ex-
emplify such an iterative learning cycle for the case
of flood predictions:

a) use model diagnostics to provide information
about missing understanding, b) obtain better data
with affordable technology, c) find a parsimonious
model to describe the new data, d) improve the

model based on the new process understanding.
I will put the main focus on two steps of the

learning cycle. The first core topic are diagnos-
tic tools. Diagnostic tools are most often applied
to entire simulation periods providing informa-
tion about the average performance, since objec-
tive functions are generally information aggrega-
tion functions. However, depending on the condi-
tions, different processes of the hydrological cycle
are relevant and much information could be gained
when assessing performance seperately for differ-
ent processes. We refer to the conditions as the
hydrological context. For example, the hydrology
of the catchment may be a) dominated by either
mass input or energy input. b) Thresholds may al-
ter the functioning of the catchment; for example
snow influenced periods occur when temperatures
drop below snow melt temperature. The catchment
may spend most of its time c) either close to or
far from equilibria. The processes during various
contexts are generally conceptualised in different
model components. Therefore, examination of av-
erage performance of a model is only a first order
assessment. Improving hydrological models in a
more targeted way requires time dependent perfor-
mance measures as different processes dominate in
different contexts. Based on time dependent per-
formance measures we may assess when model
components fail. Methodologies for such a context
or temporally resolved analysis require further de-
velopment. The topic is further introduced in sec-
tion 1.2 and a method for diagnostics is presented
in chapter 2, chapter 3 and chapter 4.

The second core topic is cost effective snow
measurements. From the model diagnostic, we
learn that the model WaSiM-ETH, which we use
as conceptualisation of the Weisseritz catchment,
consistently produces overestimates during the
snow melt periods. Therefore, we conclude that
the snow module using a temperature index ap-
proach is not sufficient to describe dynamics in the
Weisseritz catchment. In particular a single degree
day factor appears not to be a sufficient descrip-
tion of the processes. Thus we need additional data
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about the snow cover, since the two existing mete-
orological stations are not sufficient to capture the
influence of topography and aspect in the catch-
ment. In order to meet budget constraints of the re-
search project, we focuse on cost efficient observa-
tions. The new methods may also be attractive for
measurement networks in regions with constraint
research budgets∗(van de Giesen et al., 2009a,b).
More details about snow hydrology and our mea-
surement approach are introduced in section 1.3
and are presented in chapter 5 and chapter 6.

In section 1.4 the Weisseritz as the study area
is introduced and some encompassing issues con-
cerning knowledge management in science is dis-
cussed in section 1.5. Throughout the introduc-
tion, a number of guiding questions are formulated,
that are summarized in section 1.6 and answered
throughout this thesis.

1.2 Model diagnostic

Development of temporally dynamic or context de-
pendent model diagnostics is the first focus and
constitutes the first step of the learning cycle. To
start I will give a more precise description of what I
mean with model diagnostic. The development of
a model is alway (explicitly or implicitly) driven
by a purpose, i.e. some characteristics to be re-
produced or a number of questions to be answered
using this model. I define model diagnostic as the
test whether a model is able to reproduce the char-
acteristics as required by the model purpose. For
rainfall-runoff hydrology, the model purpose is to
reproduce amounts and timing of discharge. It also
includes separating different mechanisms of runoff
generation. Thus, a hydrological model is expected
to reproduce different processes in nature: fast for-
mation of runoff due to saturation or infiltration ex-
cess during rainfall events, interactions of the un-
saturated zone with groundwater, formation of dis-
charge from groundwater and interflow during dry

∗Nick van de Giesen: Trans-African Hydro-
Meteorological Observatory; http://www.tahmo.org/

periods, withdrawal of water by evaporation and
transpiration and storage and runoff due to snow
and ice processes.

Model diagnostics should be developed in a way
to also work for complex models because, with in-
creasing process understanding and spatial resolu-
tion, models tend to increase in complexity. On
the one hand, this means that in general we have
more parameters. On the other hand, new measure-
ment techniques make available more observations
against which to test the model. In addition more a
priory knowledge about catchment properties (soil
patterns, layering etc) can be used to reduce the de-
grees of freedom of our parameter estimation pro-
cess.

Independent of model complexity, integrative
objective functions are most commonly used, such
as mean squared error or the Nash Sutcliffe coef-
ficient of efficiency (Nash and Sutcliffe, 1970) be-
tween observed and modelled discharge. The ad-
vantage of such objective functions is, that they
summarize a lot of information and can be per-
ceived much faster than long time series. Also,
they are often used for automatic calibration pro-
cedures, which fostered further development and
understanding of objective functions (Gupta et al.,
1998, 2009, e.g.). But there may be more infor-
mative ways to assess a model. This leads to the
first guiding question: How to assess (poor) model
performance?

As outlined above, depending on the contexts
(rainfall driven, energy driven, snow dominated)
different processes are driving the hydrological re-
sponse. This is the fundamental reason for the
fact that global performance measures are not suf-
ficient. Different model components are developed
to mimic catchment functions in different contexts
and we need to better understand what the errors
are depending on context and sensitive parame-
ters. Temporally resolved model diagnostic, which
is implicitly used during visual inspection, is able
to enhance the understanding about context de-
pendent performance. Temporally resolved model
diagnostics did not undergo the same formaliza-
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tion process as objective functions for calibration
purposes. Enhancing objectivity of temporally re-
solved model diagnostics is the goal of the sec-
ond guiding question: How is it possible to iden-
tify temporal patterns and context dependence in
model performance?

For diagnostics of a hydrological model includ-
ing context dependence, I propose to assess 1)
when a model is performing acceptably/poorly, 2)
of what the deviations are and 3) whether the rel-
evant process conceptualisations are active. This
is visualized in figure 1.2. The hydrological model
depicted in the center consists of three components
that represent different processes. The model out-
put (bottom) is tested for deviations from the ob-
servation with respect to the first two questions. To
answer the third question, the right model compo-
nents (center) need to be active.

Before giving a short overview of the funda-
mental principles of well established approaches,
I would like to highlight that recent work also tar-
gets at more informative diagnostics. With their
diagnostic approach to model evaluation, Gupta
et al. (2008) suggest to use a multi-objective ap-
proach during which it is checked whether relevant
signatures are reproduced by the model. They ar-
gue that with objective functions as currently used
in hydrology we are often aggregating too much,
thereby loosing important pieces of information.
Much in the same direction is the outcome from a
workshop of the PUB initiative titled ‘Uncertainty
Analysis and Model Diagnostics’ (Wagener et al.,
2006). For example, (Liu and Others, 2010) sug-
gest to use temporal variation of optimal parameter
sets (dynamic parameter analysis) for model diag-
nostic. Identification of information rich periods in
a data set based on information theory is presented
by (Jackson et al., 2010).

A glossary related to model diagnostics together
with a list of available software tools is provided
by Matott et al. (2009). Note that their broader
definition of model diagnostics also includes data
analysis, parameter estimation, multi-model anal-
ysis and Bayesian networks. However, these meth-

Model

Component
A Component

B

Component
C

1) When ?
2) Kind of
    deviation?

3) Which
    component/
    process?

Input

Output

Figure 1.2: Sketch of a model showing three ques-
tions to be answered from model diagnostics
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Figure 1.3: Relationship between uncertainty, sensitivity and identifiability analysis. The model in
the center has parameters (and other inputs) about which some uncertainty (density functions) exists.
Depending on the sensitivity of the model (balances) on these parameters, the uncertainty is propagated
through the model and makes the model output uncertain.
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ods are not methods for model diagnostic, as it was
defined above, i.e to test whether a model can ful-
fill its purpose.

Existing approaches for diagnostics are gener-
ally based on one of three related concepts (Fig-
ure 1.3): Uncertainty, sensitivity and identifiabil-
ity. Each one may serve as diagnostics for either
time series of model outputs or for an aggregating
objective function.

The differences between the concepts should be-
come clear from the following, brief introduction
together with figure 1.3. The figure shows three
repetitions of the same sketch from left to right.
In the center of each sketch, a model with different
components is shown. The model has some param-
eters (top) and the resulting model output (bottom)
shows different sensitivities towards these parame-
ters (depicted by the balance). In the example, the
model is relatively insensitive for parameter A, i.e.
large changes of the parameter cause only small
changes in the output. The focus of the various
methods is indicated by the dark shading. Beside a
short description of the method, I will also briefly
highlight how results are generally presented with
respect to temporal resolution.

Uncertainty analysis (Figure 1.3, left) deter-
mines the amount of uncertainty in the output of a
model (often as cumulative density function of the
output variable) that is caused by various sources
of uncertainty (Montanari et al., 2009). Sources of
uncertainty are classically input variables, model
structure, model parameters, and data. Uncertainty
analysis is a very active field of research, thus it
is not surprising that different ways exist to assign
(informal) measures of likelihood for the quantifi-
cation of uncertainty (e.g. Montanari et al., 2009;
Beven and Freer, 2001). Also, no agreement about
the exact meaning of uncertainty analysis exists in
the literature (Montanari, 2007). The example pre-
sented in figure 1.3 shows parameter uncertainty
of the model, other sources of uncertainty can be
included (e.g. Kavetski et al., 2006a; Clark et al.,
2008). Splitting uncertainty according to sources
is an important goal in hydrology and two ap-

proaches are presented by Beven et al. (2010). This
always requires additional information about the
relationship between the model and the modelled
system, e.g. some error model. Despite all the va-
riety in uncertainty analysis, it is very common to
represent uncertainties evolving with time - often
as a confidence-like band around the modelled dis-
charge.

Sensitivity analysis (SA – Figure 1.3, middle)
searches for the parameters affecting the model
output the most. A model output is said to be sen-
sitive for a certain parameter if a small change in
the parameter value causes a large change in the
model output. SA is related to the concept of un-
certainty because sensitive parameters cause large
uncertainty in the model output if the parameter it-
self is uncertain. It is quite common that SA is per-
formed for objective functions, aggregating over
time and I found only two studies that consider
temporal variability of sensitivity (Sieber and Uh-
lenbrook, 2005; Cloke et al., 2008). SA is much re-
lated to the third question as depicted in figure 1.2
and throughout this thesis I would like to further
investigate the topic answering the guiding ques-
tion: Can we identify relevant model components
(for computationally expensive models)?

The goal of identifiability analysis (Figure 1.3,
right) is to determine how far a set of unobservable
parameters may be constrained by minimizing the
difference between a given set of observations and
the corresponding model output. If parameters are
well identifiable, the remaining uncertainty in the
model output from these parameters will naturally
be small. Parameter sensitivity is a necessary but
not sufficient condition for identifiability. Tempo-
ral analysis of model identifiability was established
by Wagener et al. (2003) with the dynamic identi-
fiability analysis. In a similar way, Choi and Beven
(2007) showed with their model conditioning pro-
cedure that performance measures calculated on
a seasonal scale give some additional indication
about parameter identifiability and model structure
deficiencies when compared to global performance
measures. Similarly, Shamir et al. (2005) were
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able to improve identifiability of model parameters
when looking at model performance on different
time scales.

In this thesis, I develop and present a com-
plementary model diagnostic approach targeted at
context dependent model diagnostics of complex
models. As stated before, successful model di-
agnostics should answer the three questions (Fig-
ure 1.2): 1) during which periods the model is or is
not reproducing observed quantities and dynamics;
2) What is the nature of the error in times of poor
model performance, and 3) which components of
the model are causing this error.

An approach called TIGER (Time series of
grouped errors) answering the the first two ques-
tions is presented in chapter 2. Temporal dynam-
ics of parameter sensitivity (TEDPAS) is useful to
answer the third question and is presented in chap-
ter 3, while the combination to a full diagnostic
tool is demonstrated in chapter 4. The procedure
was developed using WaSiM-ETH, Catflow and
LARSIM as possible representations for the Weis-
seritz catchment. Results will be mainly presented
for WaSiM-ETH throughout this thesis. With the
diagnostic tool, I will answer the third guiding
question: What are the limitations of WaSiM-ETH
as representation of the Weißeritz catchment? The
answer to the guiding questions will then lead to
the next step in the learning cycle, which is to
identify additional measurements from the defi-
ciencies.

1.3 Snow hydrology

The deficiencies identified with the model diagnos-
tics guide the collection of additional data. The
model diagnostics revealed discharge to be con-
sistently too high during snow melt events for a
large parameter range (Chapter 4). I used this defi-
ciency as an example for the next step of the learn-
ing process. Additional, distributed observations
on snow state and height are required for four rea-
sons: a) Spatial variability is not sufficiently cap-

tured by existing stations. Variation of land use
and topography causes inhomogeneous snow pro-
cesses throughout the catchment. b) Deficiencies
may also be caused by missing processes such as
interception, evaporation and sublimation. c) Data
is necessary to test effects of a simple model im-
provement, which is based on distributed snow
melt parameters compared to a single catchment
wide parameter. d) A distributed multi-response
test of the model may be performed with the dis-
tributed data. The simplest way for such a test is
to correlate the ranks of the distributed observa-
tions with the ranks of the simulated snow cover at
these locations. A high correlation would indicate
that the major processes causing spatial variability
are represented in the model, while a low correla-
tion would indicate that there are still missing pro-
cesses.

The remaining chapter will 1) give a short in-
troduction of relevant processes for snow hydrol-
ogy 2) look at spatio-temporal variability and how
it can be measured 3) modelling approaches for
spatio-temporal snow processes 4) summarize how
snow campaigns will provide data for the develop-
ment of better process concepts.

1.3.1 Relevant processes for snow pat-
terns

Snow dynamics is complex and includes many in-
fluencing factors. Three major phases can be dis-
tinguished: accumulation, metamorphosis and ab-
lation (Dingman, 2002). Figure 1.4 shows a con-
ceptualisation of the three phases, depicting the
main processes, that are active during each phase.

Accumulation phase includes snow fall and re-
distribution during snow fall events. The amount
of snow is strongly affected by the amount of wa-
ter in the atmosphere available for precipitation.
Compared to rain, measurement of snow (and other
solid precipitation) has larger errors due to wind.
Depending on exposition, the error may be up to
34% (Richter, 1995).
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Snow
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ablat ion

Figure 1.4: Snow processes. Depending on the
phase (accumulation, metamorphosis and abla-
tion), different main factors exist: precipitation,
wind, land use, topography, temperature, radiation
and snow metamorphosis, (copied with permission
from Eckart, 2008)

Snow fall is also strongly affected by the thermal
gradient of temperature, which causes higher snow
covers at higher elevations. The transition between
rain and snow occurs between 4 and -2˚C (Braun,
1985) and is dependent on various factors related
to energy availability in the atmosphere during
the snow fall process (Bourgouin, 2000; Stewart,
1985). Redistribution by wind causes higher accu-
mulation in wind protected (depressions, edge of
the wood), compared to exposed areas (MacDon-
ald et al., 2009).

Forest and aspect are reported to have a similar
influence in magnitude, which is relatively small
compared to the effect of elevation (Jost et al.,
2007, 2009). The effect of forest is complicated
and has many influencing factors, such as for-
est type (Winkler et al., 2005) and canopy den-
sity measured by sky view factor (López-Moreno
and Latron, 2008). Interception, affecting snow
amount and distribution, is highly dependent on
meteorological conditions such as wind speed and
snowfall amount (Hedstrom and Pomeroy, 1998)
and conditions affecting radiation (clear and over-
cast days) (Hardy et al., 2004). A model for accu-
mulation and ablation in forested environments has
recently been presented by Andreadis et al. (2009)
based on extensive snow lysimeter data (Storck
et al., 2002). A factor affecting heat exchange
by wind (snow roughness length) and the maxi-
mum interception capacity are reported as highly
influential parameters (Andreadis et al., 2009). In
general redistribution in the forest are affected by
lower wind speeds and higher spatial variability of
the wind.

The main factors during the accumulation phase
are thus precipitation, temperature and wind and
effects of topography on wind (Figure 1.4).

Metamorphosis phase is also affected by wind
transport (Deems et al., 2006; Winstral et al.,
2002).

Existing gradients from the scale of crystals to
the entire snow cover cause restructuring of the
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snow cover. Very locally, thermodynamic gradi-
ents cause water to be transported as vapor from
convex surfaces with small radii to less convex sur-
faces in the crystal, causing snow flakes to con-
vert to round grains (destructive metamorphism).
With increasing abilities for visualization, under-
standing of these processes gets better (Schneebeli
and Sokratov, 2004). Along with the metamorpho-
sis, physical properties of snow are affected, for
example increasing density and thermal conductiv-
ity (Sturm et al., 1997; Schneebeli and Sokratov,
2004)

Thermal conductivity is of interest because
it strongly affects the thermodynamic gradients
within the snow cover and to the atmosphere and
thus determines to a great extend the speed of
heat exchange processes. Measurements of ther-
mal conductivity are described and discussed in the
literature (Sturm et al., 1997; Brandt and Warren,
1997; Satyawali and Singh, 2008; Singh, 1999;
Aggarwal et al., 2009; Fukusako, 1990)

Constructive metamorphism includes both, sin-
tering and formation of depth hoar. Sintering
describes the formation of connections between
touching snow grains by deposition of water. If
large thermal gradients exist across the snow cover,
water gets transported from warmer to colder re-
gions building grains with facets that can be cup-
shaped and that are up to 10 mm in diameter, called
depth hoar. Depth hoares adhere loosely to each
other, greatly increasing the risk for avalanches.
Thus elaborate models for snow metamorphosis
have been developed (e.g Bartelt and Lehning,
2002; Lehning et al., 2002).

Recurrent melt and freezing cycles (melt meta-
morphism) that often occur towards the end of the
snow season strongly affect the structure of the
snow cover. Pores are filled by melting snow and
subsequent refreezing results in larger aggregates
of ice. A similar effect may occur during rain on
snow events. Repeated melt and freezing cycles
will eventually lead to firn.

Pressure by wind and the mass of the snow pack
itself compact the snow cover, resulting in higher

densities. The main factors during the metamor-
phosis phase are thus energy sources (tempera-
ture, radiation) causing thermal gradients, as well
as wind, which strongly affects heat exchange be-
tween the atmosphere and the snow cover (Fig-
ure 1.4).

Snow ablation consists of removal of water to
the atmosphere by sublimation and evaporation, as
well as snow melt. For both, energy input to the
snow cover is of importance. Important factors are
exposition to direct sun light, snow albedo, tem-
perature and the thermal conductivity of the snow
cover.

Snow age is very important for energy input
since albedo is much lower for aged snow, causing
higher energy input. However, comparison of com-
monly used albedo models with albedo from re-
mote sensing data show that snow age alone is not
sufficient to estimate albedo (Molotch and Bales,
2006). For energy balances, distinction into short
wave (direct sun light) and long wave radiation
(diffuse radiation) is important since the two radia-
tion types behave differently with respect to the at-
mosphere, the snow surface and vegetation. While
short wave radiation is lower in forests, the long
wave radiation may be higher, especially at night
if the snow cover is shielded from the clear sky
(which acts as heat sink) (Stähli et al., 2009). Melt
rates are reported to increase close to vegetation,
because of the increased energy input by radiation
(Pomeroy et al., 2004; Liston, 1999).

While sublimation and evaporation require
higher energy inputs to remove the same amount
of SWE compared to melt, especially sublimation
occurs also at low temperatures. Sublimation in
connection with wind transport is a very important
process and has been reported to be responsible
for removal of up to 60%, depending on the loca-
tion (MacDonald et al., 2009, 2010). Lower snow
cover in forests compared to fields are mainly the
result of sublimation and evaporation from inter-
cepted snow (Pomeroy et al., 1998).
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No snow melt occurs as long as the snow cover
is below freezing temperatures. The term cold con-
tent is used to describe the energy input required
to heat the snow cover to freezing temperature.
Consequently, snow melt starts when the cold con-
tent is zero. For above freezing temperatures, heat
transport is mainly caused by sensible and latent
heat flux. The sensible heat flux is caused by tem-
perature differences between air and the surface.
Due to the low heat capacity of air, large masses
of air are necessary for a considerable energy in-
put. Latent heat flux occurs due to the energy re-
leased by condensing humidity. Because of the
large condensation energy, large energy amounts
are released.

Spatial variability of snow melt can be related
to SWE and depends on the spatial scale (Pomeroy
et al., 2004; Faria et al., 2000). On the small scale,
melt rates are high at locations with little snow as
the probability for exposure of vegetation and thus
additional absorption of radiation is higher (neg-
ative correlation). Similarly, according to DeBeer
and Pomeroy (2010) the cold content of thick snow
packs is larger, thus the onset of the melt is strongly
delayed compared to thin snow covers. At the
catchment scale, high melt rates are reported for
locations with high SWE (Pomeroy et al., 2004).
Jost et al. (2007) report strong influence of eleva-
tion and exposition and lower melt rates in forests
compared to clear cuts early in the melt season.

Melting water gets stored in the snow cover be-
cause of the free pore space. The retention capac-
ity describes the volumetric fraction that the snow
cover can store as melted water. It is generally low
on the order of 3% (Dingman, 2002). Storage and
refreezing of melt water as well as lateral transport
of the melting water cause time delays between en-
ergy input into the snow cover and observation of
melted water in rivers. Especially critical and sud-
den releases of the stored water occurs if rain en-
ters a (nearly) saturated snow cover.

The main factors during the ablation phase can
be summarized to be temperature, radiation, wind
and land use (Figure 1.4).

1.3.2 Measurement of spatio-temporal
variability

In some cases, missing processes may be identified
directly from differences between observations and
model results. However, analysis and understand-
ing of spatial variability may be helpful to find
missing processes, since factors affecting various
processes are heterogeneous in land scape. There-
fore possibilities to measure spatio-temporal vari-
ability are presented. To simultaneously observe
variability of snow with high resolution in space
and time is very challenging. Thus, observations
are generally highly resolved either in time or in
space.

Spatial variability: For snow, the same funda-
mental questions relevant for all spatial data are of
importance. Most important, the relevant scale that
fits the available data and the required model pur-
pose needs to be determined (Clark et al., 2008).
This in turn leads to a distinction between pro-
cesses that have to be represented spatially explicit
and processes that have to be represented spatially
implicitly (Clark et al., 2008). Large biases in vari-
ance and correlation lengths occur if process scale,
measurement scale and model scale do not agree
(Blöschl, 1999). For snow, spatially resolved in-
formation are generally obtained from labor inten-
sive measurement campaigns or from remote sens-
ing techniques.

Several studies report large data sets from
measurement campaigns that relate spatial vari-
ability of SWE with possible explanatory vari-
ables, mainly topographic characteristics (Ander-
ton et al., 2004; Erickson et al., 2005; Elder et al.,
1991). Pomeroy et al. (2004) analyse a multi-
season data set of snow surveys for a 200 km2

catchment. They find a log-normal distribution of
SWE within single landscape classes. They dis-
cuss statistical relation between SWE and snow
melt but do not find a simple dependence struc-
ture. Jost et al. (2007) were also unable to under-
stand the small scale variability (meters), while on
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the catchment scale (20 km2), elevation, exposition
and land use explained 80 to 90% of the variability
after averaging out the small scale variability.

Remote sensing techniques bring the advantage
that higher resolved data sets covering larger ar-
eas can be produced. However, reference mea-
surements for calibration and verification are nec-
essary. Direct measurement of snow height (and
SWE) are recently available with new measure-
ment techniques, not requiring the indirect way
via snow covered area (SCA). Deems et al. (2006,
2008) use air borne lidar measurements of snow
height. The high density spatial data were used to
determine the fractal distributions of snow height.
Remote sensing SWE estimates are available from
radar observations (Schaffhauser et al., 2008),
however the method is still under development.
For example the influence of snow density on such
radar based remote sensing estimates of SWE was
reported (Lundberg et al., 2006).

The classical approach to estimation of SWE
from remote sensing data is to use relations be-
tween SCA and SWE, since SCA can easily be de-
termined from remote sensing data. The required
assumptions and the theoretical derivation of the
relationship between SWE and SCA is presented
by Liston (1999). Farinotti et al. (2010) recently
reported determination of SCA from photography,
which allows a higher temporal resolution com-
pared to satellite based observations. Also, ob-
servations are possible on overcast days. Assim-
ilation of SCA into hydrological model with a
Kalman filter was reported for example by Clark
et al. (2006). Bayesian approaches are used to
update snow depletion curves from SCA (Kolberg
and Gottschalk, 2006; Kolberg et al., 2006) and to
estimate storm-specific snowfall distributions (Du-
rand et al., 2008). Approaches are available to cor-
rect SCA classification to avoid false classification
of shaded and densely forested areas as snow free
(Corbari et al., 2009).

Temporally resolved data with high temporal
resolution is available from automatic measure-
ment stations. Measurement methods for the es-
timation of SWE were compared in the Swiss alps
(Egli et al., 2009) and in Scandinavia (Lundberg
et al., 2010) and conclude, that the optimal tech-
nique depends on the required information. Au-
tomatic measurement stations are cost intensive in
installation and maintenance. Therefore, data from
such stations is generally available with a very low
spatial resolution. Thus, more cost effective mea-
surements are attractive for research and opera-
tional purposes. Lundquist and Lott (2008) pre-
sented a technique using a combination of inexpen-
sive temperature sensors and a snow model to re-
construct spatial distribution of SWE at maximum
accumulation. Also in search of more efficient
measurement methods, Jonas et al. (2009) report
relationships between snow height, time of year,
elevation, region and snow density. This allows
to estimate SWE from simple snow height mea-
surements for the alps. In this thesis I will present
a method also based on inexpensive temperature
sensors to make estimations of snow height and
cold content (Chapter 5). While the approach re-
quires a higher number of sensors compared to the
method by Lundquist and Lott (2008), it works
without a snow melt model and the related mete-
orological data. Overall cost effective alternatives
allow for higher spatial density of data for the same
costs.

1.3.3 Snow modelling

Short overviews about snow modelling are given
in Ferguson (1999); Herpertz (2001). Several ap-
proaches exist that include differing fractions of
the processes described in section 1.3.1. Mod-
els with increasing complexity can be broadly dis-
tinguished into temperature index based models,
models solving the energy balance, and detailed
multi layer snow models for avalanche predictions.
As more processes are included, also data require-
ments become higher.
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For a full characterization of commonly used
snow modelling approaches see (Dingman, 2002;
Ferguson, 1999; Herpertz, 2001). An overview and
recent advances with respect to the temperature in-
dex approach are presented by Hock (2003). The
temperature index approach is still widely used,
for example for the snow map service of Norway,
which was evaluated by Dyrrdal (2009). A step-
wise model refinement of a distributed temperature
index model is described in (Dunn and Colohan,
1999). Also, the case study model of this thesis,
WaSiM-ETH, uses temperature index approach.

If radiation and wind data are included, a com-
plete description of the energy balance is possible
(Dingman, 2002). Jost et al. (2009) use a two-
layer energy- and mass-balance model to model
the snow processes in a forested catchment and fur-
ther refinements to the albedo decay function and
the canopy transmittance.

Essery et al. (2005) suggest that calculating sep-
arate energy balances for snow patches and snow
free parts gives much better results compared to
calculation of a mixed energy balance for the two
sub-grid landscape fractions. Extending this ap-
proach of separating energy balances, for sub-
grid landscape fractions, so called snowmelt runoff
contribution areas are introduced by DeBeer and
Pomeroy (2010). These contributing areas vary
substantially over time because the cold content is
reduced much faster for shallow snow packs com-
pared to deep ones. Also, aspect enhances vari-
ability of melt onset, resulting in complex pat-
terns. A hydrological response unit based model
for blowing snow is presented by MacDonald et al.
(2010). They report sublimation of blowing wind
to be an important factor for reduction of SWE
for their catchment in the Canadian Rocky Moun-
tains. Snow models for avalanche predictions are
too complex and data intensive for hydrological
modelling (e.g. Bartelt and Lehning, 2002; Lehn-
ing et al., 2002). For testing new concepts and
approaches, high quality, longterm data sets for
a snow laboratory in Colorado (Williams et al.,
1999) and from the cold land processes experiment

(Elder et al., 2009) may be useful.

1.3.4 Measurement strategy

After this brief review of snow hydrology related
literature, I will get back to the learning cycle. In
order to assess whether we need to include addi-
tional processes or if variability may be presented
from additional data sources introducing spatial
variability, we need good measurement of the tem-
poral development and the spatial variability. This
poses the following guiding question: What are
temporal and spatial structures of the snow in the
catchment?

Existing methods are good in either providing
spacial information at one time or temporal in-
formation at one location. Thus I will split the
measurement concept accordingly. Spatial vari-
ability of snow cover is efficiently observed us-
ing remote sensing techniques. Determination of
SWE from satellite based radar measurements was
part of a different working package within the
OPAQUE research project, to which my thesis is
associated. Unfortunately, results were not avail-
able at the time of writing of this thesis. As ref-
erence measurements for the remote sensing mea-
surements and to better understand spatial distribu-
tion of snow we measured spatial variability with
a sampling design similar to (Jost et al., 2007).
The design is presented in chapter 6 and allows
to separate spatial variability into small scale and
catchment scale fractions of variability. Measure-
ment campaigns were carried out during two win-
ters from 2008-2010. Measurements were taken at
about 20 locations throughout the catchment in or-
der to determine influence of topographic factors
and land use on spatial variability (Chapter 6).

Repetition of spatial patterns between years is
an ongoing discussion, some authors find repeat-
ing patterns (Erickson et al., 2005; Deems et al.,
2008), while others did only find weak to moderate
similarity between years (Wilks, 2006). Repetition
of spatial snow patterns between years will have to
be tested, for example using remote sensing data.
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However, this is not part of this thesis.
Temporal development of the snow cover re-

quires expensive and labor intensive measurement
stations, as highlighted above. Thus I developed
a more cost efficient, robust methods in order to
meet the budget constraints of the research project.
Temperature measurements in and above the snow
cover with inexpensive temperature sensors was
used to obtain temporally resolved snow height es-
timates (Chapter 5). Evaluation of this dataset
will answer the guiding question: How much in-
formation can be obtain from measurements with
inexpensive temperature sensors? One snow refer-
ence station was installed at the research station of
TU Dresden and TU Freiberg including a snow pil-
low, snow height measurements and a surface tem-
perature sensor (Chapter 5). Combining the two
measurement strategies has the potential to bring
temporal development into space or spacial distri-
bution into time. Understanding and modelling the
patterns in the snow data results in the final guid-
ing question: What processes are required to de-
scribe the new measured data and what are the re-
sulting updates to the model?

1.4 Research area

The Weisseritz is a fast reacting catchment with
high relief energy. Thus, high flow velocities oc-
cur during flood events. A recent extreme event in
2002 caused severe flooding. In the upper catch-
ment, the high flows swept away roads and houses
while close to the confluence, the river left the
channel at a redirection from the historical river
bed and flooded the town of Dresden, including the
railway station.

The Wilde and Rote Weisseritz join in the town
Freiberg. Both catchments are about 150 km2.
Three reservoirs are used for flood protection and
drinking water supply, two in the catchment of
the Wilde Weisseritz (Lehnmühle 22 Mio m3 and
Klingenberg 16 Mio m3) and one as part of the
Rote Weisseritz (Malter 9 Mio m3). An additional

reservoir is planned in the catchment of the Rote
Weisseritz at the Pöbelbach (1 Mio m3). Good un-
derstanding of the relevant processes is important
for reservoir control.

The topography with narrow, elongated catch-
ments provides a special challenge for meteoro-
logical forecasts, because the location of rainfall
events is a very important factor. Heavy rainfalls
occurring only few kilometers from the predicted
location will cause a flooding in a different catch-
ment. Slopes are gentle with an average of 7◦, 99%
of the slopes are < 20◦; calculated from a 90 m
digital elevation model (SRTM, 2002).

Soils are mostly cambisols, discharge is built to
a great extend by interflow. Land use is dominated
by forests (≈30%) and agriculture (≈50%). Some
villages and towns exist (≈15%), including (from
the upper catchment downwards) Altenberg, Dip-
poldiswalde, Freital and Tharandt. The river dis-
charges into the Elbe close to Dresden. In the top
catchment wetlands are apparent, causing some re-
tention of water.

Mean temperatures are 11◦C and 1◦C for the
periods April - September and October - March,
respectively. Precipitation in Zinnwald is on the
order of 1100 mm/year. Some of the precipitation
occurs as snow fall, forming a snow cover of up to
about 1 m for 1 to 4 months. Fog is important dur-
ing winter in the valleys, reducing energy input by
radiation and increasing precipitation.

Besides the measurements presented in this the-
sis, within OPAQUE, additional catchment charac-
teristics were observed. 10 additional rain gauges
were installed to validate research with respect
to radar rainfall measurements. Multi-scale soil
moisture observations from the local to regional
scale were made during late spring in two years
(Bronstert et al., 2010). At the large scale, obser-
vations of soil moisture were made with air and
satellite based radar. At the small scale, the effort
included permanent, temporally and locally highly
resolved soil moisture measurements at two loca-
tions (Zehe et al., 2010)

Three models were parametrized for the Weis-
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seritz. LARSIM (Large Area Runoff Simulation
Model; Ludwig and Bremicker, 2007) is a concep-
tional model that includes modules for operational
application for flood prediction including model
internal regionalisation and correction of meteo-
rological data. Hydrological processes included
in the model are interception, evapotranspiration,
snow accumulation, snow compaction and snow
melt, soil water storage as well as storage and lat-
eral transport in streams and lakes.

WaSiM-ETH is a modular, deterministic and
distributed water balance model based on the Top-
model approach (Schulla and Jasper, 2001). It was
used for the Weisseritz catchment with a regularly
spaced grid of 100 m resolution and an hourly time
step. Interception, evapotranspiration (Penman-
Monteith), and infiltration (Green and Ampt ap-
proach) as well as snow dynamics are also included
as modules. The unsaturated zone is described
based on the Topmodel approach with the topo-
graphic index (Beven and Kirby, 1979), which de-
termines flow based on the saturation deficit and its
spatial distribution, instead of modelling the soil
water movement explicitly.

Catflow (Zehe and Fluhler, 2001; Zehe and
Blöschl, 2004; Zehe et al., 2005) models hydrolog-
ical processes in a quasi-3D representation, using
two dimensional hillslopes, resolving the downs-
lope and the vertical dimension with an average
description across the width of a slope. Processes
are described on a very detailed level. For ex-
ample, soil moisture processes are described with
Richards equation with an additional parametrisa-
tion for macro pores.

1.5 Knowledge management in
science

Full disclosure in science refers to the praxis
of documenting, archiving and sharing “all data
and methodology so they are available for careful
scrutiny by other scientists, thereby allowing other
researchers the opportunity to verify results by at-

tempting to reproduce them.”† Trying to meet this
principle, I took several measures to make infor-
mation from my work more transparent and better
available.

For data management a data-base for hydro-
meteorological data called GOLM-DB was de-
veloped in collaboration with David Kneis, Till
Franke, Theresa Blume and Mareike Eichler (Eich-
ler et al., 2009b,a). The efforts were started dur-
ing field work in Chile in 2003, with no stan-
dards available in science. Meanwhile, Horsburgh
et al. (2008) published a framework very similar to
what we developed. For future work, I suggest to
conform to the published framework when storing
time series data.

Many lines of code were written during the
development of the approaches presented in this
work. In line with our call for more free tools
in hydrology (Buytaert et al., 2008), the most
relevant functions were released under the GNU
public license as packages (Reusser and Buytaert,
2010; Reusser, 2009; Reusser and Francke, 2008;
Reusser, 2008) for the data analysis environment
R (Ihaka and Gentleman, 1996). In order to make
changes in the software better reproducible, soft-
ware engineering has developed so called version
management systems which allow to retrieve every
version from the development process of a soft-
ware. I used cvs and subversion as version man-
agement systems for my packages.

A considerable number of model runs were nec-
essary for the model diagnostics of WaSiM-ETH.
In order to make these model runs better manage-
able and to allow computation on multiple com-
puters, I wrote a small wrapper software in Java
for very simple distributed computing based on a
shared file system. This wrapper software is con-
ceptually similar to the interface between simu-
lation programs and systems analysis software as
suggested by Reichert (2006).

Documentation of working steps is an impor-

†http://en.wikipedia.org/wiki/
Scientific_method, accessed Mai 2010

http://en.wikipedia.org/wiki/Scientific_method
http://en.wikipedia.org/wiki/Scientific_method
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tant aspect of scientific work. All relevant work-
ing steps were documented in little journal files,
making it possible to reproduce all analysis steps.
While all relevant work is documented in this way,
no systematic way was used to record the exact
relationship among various journal files, source
codes and manuscripts. Research is progressing to-
wards improved knowledge management (Davies
et al., 2005; Pepe et al., 2009) and it may be fruit-
ful to incorporate such methods into daily practice,
with the ultimate goal of “finding information in-
stead of searching it”.

Such changes in the working attitude may also
affect the ways, scientific work is published. With
the goal of increased quality of publications in-
stead of increased quantity ‡, publication may go
into the direction of evolving documents and more
collaborative writing. First steps in this direction
are public review processes such as in HESSD. Re-
search projects such as liquidpub address practical
questions of how such collaborative and evolving
documents may be featured.§

1.6 Overview and guiding ques-
tions

The structure of my thesis is depicted in Fig-
ure 1.5. My focus is on two steps of the learning
cycle, model diagnostics and cost effective mea-
surements. The key intention is to include knowl-
edge about context dependent behaviour of catch-
ments into model diagnostics with the effect that
additional measurements and model improvements
can be much more specific to certain model com-
ponents. This is the topic of the first three chap-
ters. The snow module is identified to be insuffi-
cient thus additional snow measurement are taken
to record temporal and spatial variability of snow
with a limited budget. Data and results of these

‡http://www.dfg.de/service/
presse/pressemitteilungen/2010/
pressemitteilung_nr_07/index.html
§http://liquidpub.org/

measurements are topic of the remaining two chap-
ters. Note that chapter 6 presents the condensed
results from a Diploma Thesis. This chapter is an
early draft of a manuscript that will eventually be
submitted. Guiding questions that were formulated
throughout the introduction will help to highlight
the major achievement of this thesis (section 7.1):

• How to assess (poor) model performance?
(Chapter 2)

• How is it possible to identify temporal pat-
terns and context dependence in model per-
formance? (Chapter 2)

• Can we identify relevant model compo-
nents (for computationally expensive mod-
els)? (Chapter 3)

• What are the limitations of WaSiM-ETH as
representation of the Weißeritz catchment?
(Chapter 4)

• How much information can be obtain from
measurements with inexpensive temperature
sensors? (Chapter 5)

• What are temporal and spatial structures of
the snow in the catchment? (Chapter 6)

• What processes are required to describe the
new measured data and what are the resulting
updates to the model? (Chapter 6)

http://www.dfg.de/service/presse/pressemitteilungen/2010/pressemitteilung_nr_07/index.html
http://www.dfg.de/service/presse/pressemitteilungen/2010/pressemitteilung_nr_07/index.html
http://www.dfg.de/service/presse/pressemitteilungen/2010/pressemitteilung_nr_07/index.html
http://liquidpub.org/
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Analysing the temporal dynamics of model
performance for hydrological models

Temporal dynamics of model parameter
sensitivity for computationally 

expensive models

Inferring model structural deficits
by the combined methods

Chapter 2

Chapter 3

Chapter 4

Chapter 1

Introduction

Combination
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Figure 1.5: Structure of the thesis (For readability, chapter titles are short forms of the original titles)



Chapter 2

Analysing the temporal dynamics of model
performance for hydrological models ∗

The temporal dynamics of hydrological model performance gives insights into errors that cannot be ob-
tained from global performance measures assigning a single number to the fit of a simulated time series
to an observed reference series. These errors can include errors in data, model parameters, or model
structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies
analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydro-
logical model performance assessment with a high temporal resolution and illustrates its application for
two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a
headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH.
The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated
with the physics-based model Catflow. The proposed time-resolved performance assessment starts with
the computation of a large set of classically used performance measures for a moving window. The
key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and
cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to
interpret the resulting error classes. The final outcome of the proposed method is a time series of the
occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been
identified. They show clear temporal patterns, which can lead to the identification of model structural
errors.

∗D. E. Reusser, T. Blume, B. Schaefli, E. Zehe (2009), Hydrologcial and Earth System Sciences, 13, 999-1018
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2.1 Introduction

Hydrological modelling essentially includes – im-
plicitly or explicitly – five steps: 1) Deciding on
the dominating processes and on appropriate con-
cepts for their description. This is ideally based on
data and process observations as it requires a thor-
ough understanding of how the catchment func-
tions. 2) Turning these concept into equations. For
the more common concepts in hydrology, equa-
tions are readily available. 3) Coding and numer-
ically solving these equations. Again, we think
that it is of great advantage to use existing work
if code is available (Buytaert et al., 2008). 4) Once
the model structure is defined, usually a number
of model parameters have to be estimated (Gupta
et al., 2005). 5) Finally the model has to be tested
usually based on an independent data set and we
have to decide whether the model is acceptable or
not. In the latter case we have to revise the initially
chosen concepts and repeat steps 2–5 (see Feni-
cia et al., 2008, for an example of how to step-
wise improve a model). However, a revision of
our model concept requires a clear understanding
of the model’s structural deficits: What is going
wrong, when does it go wrong and which part of
the model is the origin?

Model evaluation is usually carried out by deter-
mining certain performance measures, thus quan-
titatively comparing simulation output and mea-
sured data. Various methods of model evaluation
have been developed over time: Starting with vi-
sual inspection (usually used implicitly or explic-
itly during manual calibration) more objectivity
was achieved with the calculation of performance
measures, of which the most widely used in hy-
drology is certainly the Nash-Sutcliffe-Efficiency
(Nash and Sutcliffe, 1970). Automatic calibra-
tion methods were developed based on these per-
formance measures and lead to the realisation that
a single measure is not able to catch all the fea-
tures that should be reproduced by the hydrologi-
cal model (Gupta et al., 1998). As a result, multi-
objective calibration methods based on a range of

performance measures have been and are still be-
ing developed (Gupta et al., 1998; Yapo et al.,
1998; Vrugt et al., 2003).

Probably because of the development of auto-
matic calibration procedures and their focus on the
entire calibration period, the study of the temporal
dynamics of model performance – which is implic-
itly used during visual inspection – did not undergo
the same process of formalization.

However, we suggest that identification of tem-
poral dynamics of performance measures can be
very useful for detecting model structural errors as
a first step of model improvement. This is of par-
ticular importance for operational flood forecast-
ing because detailed knowledge about the dom-
inant processes is necessary for credible predic-
tions. Global performance measures are only of
little use in this context, because lead times for op-
erational forecasts are typically very short i.e. in
the order of 2 to 36 h. To our knowledge, there are
no studies on high resolution temporal dynamics
of model performance for longer simulation peri-
ods. Pebesma et al. (2005) analyzed the temporal
dynamics of the difference between observed and
predicted time series for single events and used lin-
ear models to predict these differences. For longer
simulation periods, it has been shown that it might
be useful to split time series (for example in sea-
sons) to obtain some minimum temporal resolu-
tion of performance measures. Choi and Beven
(2007) showed with their model conditioning pro-
cedure that performance measures calculated on
a seasonal scale give some additional indication
about model structure deficiencies when compared
to global performance measures. Similarly, Shamir
et al. (2005) were able to improve identifiability of
model parameters when looking at model perfor-
mance on different time scales.

The rationale behind this study is that we can
obtain a much clearer picture of structural model
deficiencies if we know

• during which periods the model is or is not re-
producing observed quantities and dynamics;
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• what the nature of the error in times of bad
model performance is;

• which parts / components of the model are
causing this error.

A methodology to answer the first two questions
is suggested here while the third topic will be the
subject of a subsequent publication (see Conclu-
sion section). The main objective of this paper is
thus to present a new method to analyse the tem-
poral dynamics of the performance of hydrological
models and to be more specific about the type of er-
ror. We propose to use a combination of a) vectors
of performance measures to characterize different
error types, b) synthetic peak errors to support er-
ror type characterization and c) the time series of
the obtained error types to analyse their occurrence
with respect to observed and modelled flow dy-
namics.

We use multiple performance measures to cap-
ture different types of model structural deficien-
cies, similar to multi-objective calibration (e.g.
Gupta et al., 1998; Yapo et al., 1998; Boyle et al.,
2000; Vrugt et al., 2003). Dawson et al. (2007)
assembled a list of 20 performance measures com-
monly used in hydrology. In addition, we use sev-
eral performance measures introduced by Jachner
et al. (2007) to test the agreement between time se-
ries in the field of ecology and which, as we will
discuss, are promising for the use in the field of
hydrological model calibration.

Synthetic peak errors with known characteristics
will be used to better understand the model perfor-
mance measures. Interpreting the values of perfor-
mance measures based on modified natural refer-
ence time series has for example been proposed by
Krause et al. (2005); Dawson et al. (2007). In con-
trast to the modified natural time series, we use an
artificially generated peak as it is easier to control
its properties.

As mentioned before, hydrological modelling
studies do generally not analyse the temporal dy-
namics of model performance. However, a similar
approach to the one suggested here but referring

to parameter uncertainties, has been used for the
dynamic identifiability analysis (Wagener et al.,
2003) and the multi-period model conditioning ap-
proach (Choi and Beven, 2007), where the tempo-
ral dynamics of parameter uncertainty is analysed.
The temporal dynamics of model structure uncer-
tainties have been analysed by Clark et al. (2008),
who used 79 models from a model family for their
study.

The large amount of data produced in such an
analysis quickly becomes overwhelming. There-
fore an appropriate data reduction technique is es-
sential to reduce the dimension of the data while at
the same time loosing as little information as pos-
sible. The number of simulated time steps (N ) is
usually large and multiple performance measures
(M ) are used at each time step, therefore a set of
N∗M values has to be interpreted.

We propose self-organizing maps (SOM) (e.g.
Kohonen, 1995; Haykin, 1999), which have al-
ready been used in several hydrological studies
(see Herbst and Casper, 2008, for a short overview)
and also in a comparable meteorological applica-
tion where the bias of model results was deter-
mined conditional to the climatological input data
(Abramowitz et al., 2008). The use of SOMs leads
to a reduction of the dimension of a data set while
preserving the topology of the data in a two di-
mensional space (i.e. similar data sets are close to
each other). During this step some of the variabil-
ity is lost as the number of sets N is drastically re-
duced (to be further explained in Sect. 2.2.3). From
the SOM we will identify typical combinations of
model performance measures, i.e. error types / er-
ror classes. This then leads to the assessment of the
temporal dynamics of these typical combinations.

Classical methods exist to reduceM , e.g. princi-
ple component analysis, use of scatter plots (Cloke
and Pappenberger, 2008), or removal of highly cor-
related measures (e.g. Gupta et al., 1998). In this
study the analysis is performed using the full set
of measures. However, only a subset of the mea-
sures is reported for readability, excluding highly
correlated measures.
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In the present study we propose a novel com-
bination of key aspects of the mentioned studies
as well as the use of high resolution performance
measure time series and provide evidence that this
is a suitable approach for model evaluation for two
very different model structures.

We first present a detailed description of the
methodology (Sect. 2.2) and then show its appli-
cation for two case studies. These two case stud-
ies differ a) in catchment characteristics (topogra-
phy, land use, soils etc.; Sect. 2.3) and b) in the hy-
drological model selected for simulation (process-
oriented vs. physically based; Sect. 2.4). The re-
sults for the case studies are presented in Sect. 2.5
and 2.6 and discussed in Sect. 2.7. Main find-
ings and suggested future tasks are summarized in
Sect. 2.8.

2.2 Methods

The proposed methodology can be summarized as
follows:

1) determination of a large set of different per-
formance measures,

2) evaluation of the set of performance measures
for a moving time window; this yields a vec-
tor of performance measures for each time
step;

3) use of synthetic peak errors to interpret the
values of the performance measures, i.e. to as-
sess their error response;

4) use of SOMs and cluster analysis for data re-
duction and classification of error types;

5) analysis of temporal dynamics of error types
with respect to measured and modelled time
series.

6) removal of performance measures that have
time series showing a high correlation with
other time series for reporting the results;

7) analysis and characterization of error types
using box plots and synthetic peak errors;

The analysis was performed with R (R Develop-
ment Core Team, 2008) and the code is available
as R-package (Reusser, 2009). A detailed descrip-
tion of the steps of the method is given below.

2.2.1 Performance measures

Dawson et al. (2007) assembled 20 performance
measures used in hydrology into a test suite.
This test suite includes the Nash-Sutcliffe coef-
ficient of efficiency CE, several measures based
on the absolute or squared error e.g. the mean
absolute error MAE and the root mean squared
error RMSE. The number of sign changes of the
residuals NSC was introduced by Gupta et al.
(1998). It is low if there is a bias. These and
more measures are listed in Table 2.1. Detailed
descriptions are available from (Dawson et al.,
2007) or https://co-public.lboro.ac.
uk/cocwd/HydroTest/Details.html.
The measures have been implemented in the R
package (Reusser, 2009).

Most of these measures are designed to capture
the degree of exact agreement between modelled
and observed values. However, we are also inter-
ested to measure the degree of qualitative agree-
ment. Jachner et al. (2007) proposed a number of
performance measures determining such a qualita-
tive agreement (van den Boogaart et al., 2007, im-
plemented in R;). Their measures are mainly based
on MAE, MSE and RMSE defined as follows:

MAE =
1

n

∑
|xobs−xsim| (2.1)

MSE =
1

n

∑
(xobs−xsim)2 (2.2)

RMSE =

√
1

n

∑
(xobs−xsim)2 (2.3)

Where xobs is the observed time series and xsim
the corresponding simulated time series. Depend-
ing on the desired qualitative comparison, they
used data transformation to allow for shifts and/or

https://co-public.lboro.ac.uk/cocwd/HydroTest/Details.html
https://co-public.lboro.ac.uk/cocwd/HydroTest/Details.html
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Table 2.1: List of performance measures, their abbreviations, error response group (ERG - see Sect. 2.5.2
for more details), lower (LB) and upper theoretical bound (UB) as well as the value obtained for a perfect
match between model and measurement (no error).

Abr. Full Name ERG LB UB No Error
from Dawson et al. (2007)
MSE mean squared error 1 -Inf Inf 0
RMSE root mean squared error 1 0 Inf 0
IRMSE inertia root mean squared error 1 0 Inf Infa

R4MS4E fourth root mean quadrupled error 1 0 Inf 0
CE Nash-Sutcliffe efficiency 1 -Inf 1 1
PI coefficient of persistence 1 -Inf 1 1
AME absolute maximum error 1 0 Inf 0
PDIFF peak difference 2 -Inf Inf 0
MAE mean absolute error 1 0 Inf 0
ME mean error 3 -Inf Inf 0
NSC number of sign changes 9 0 LOTb 0
RAE relative absolute error 1 0 Inf 0
PEP percent error in peak 2 0 Inf 0
MARE mean absolute relative error 1 0 Inf 0
MdAPE median absolute percentage error 1 0 Inf 0
MRE mean relative error 3 -Inf Inf 0
MSRE mean squared relative error 3 0 Inf 0
RVE relative volume error 3 0 Inf 0
Rsqr the square of the Pearson correlation 5 -1 1 1
IoAd index of agreement 1 0 1 1
MSDE mean squared derivative error 6 0 Inf 0
ttest value of the paired t-test statistics 3 -Inf Inf 0
from Jachner et al. (2007)
CMAE centred mean absolute error 7 0 Inf 0
CMSE centred mean squared error 6 0 Inf 0
RCMSE root centred mean squared error 7 0 Inf 0
RSMSE root scaled mean squared error 5 0 Inf 0
MAPE mean absolute percentage error 1 0 Inf 0
MALE mean absolute log error c 1 0 Inf 0
MSLE mean squared log error 1 0 Inf 0
RMSLE root mean squared log error 1 0 Inf 0
MAGE mean absolute geometric error 1 1 Inf 1
RMSGE root mean squared geometric error 1 1 Inf 1
RMSOE root mean squared ordinal error 5 0 Inf 0
MAOE mean absolute ordinal error 5 0 Inf 0
MSOE mean squared ordinal error 5 0 Inf 0
SMAE scaled mean absolute error 5 0 Inf 0
SMSE scaled mean squared error 4 0 Inf 0
SMALE scaled mean absolute log error 1 0 Inf 0
SMSLE scaled mean squared log error 7 0 Inf 0
SMAGE scaled mean absolute geometric error 1 1 Inf 1
RSMSGE root scaled mean squared geometric error 1 1 Inf 1
RSMSLE root scaled mean squared log error 1 0 Inf 0
LCS longest common sequence 5 0 1 1
additional measures
tL lag time 8 -LOT LOT 0
rk recession error 1 0 Inf 1
rd slope error 7 0 Inf 1
DE direction error 8 0 LOT 0

aIRMSE becomes infinite for perfect match between model and observation. If the match is not perfect, small values are
preferable

bdetermined by the length of the time series
cerror of the log-transformed data
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changes in scaling. To obtain measures which are
insensitive to shifts, data are centred (denoted by a
“C”). In order to ignore scaling, data are standard-
ized with a linear transformation, minimizing the
deviance measure (“S”).

In addition, Jachner et al. (2007) provide per-
formance measures for different scales of interest.
The absolute scale is most often used and applies
to the measures defined above. If the difference
calculated as a ratio is of more interest (e.g. simu-
lating twice the observed discharge, regardless of
the absolute value), a relative scale (“P ” from per-
centage), log transformed data (“L”) or geomet-
ric transformed data (“G”) are more appropriate
(see Jachner et al., 2007, for more details). Fi-
nally they define performance measures using an
ordinal scale (“O” – after transformation of the
data to ranks). They also define the longest com-
mon sequence (LCS) measure: The discharge time
series is reduced to a sequence of letters indicat-
ing increases (“I”), constant values (“C”), or de-
creases (“D”). This sequence for the observed
discharge (e.g. IIIIIICCDDDDDDCCCIII) is then
compared to the sequence of the simulated dis-
charge. LCS then is defined as the longest accu-
mulation of characters with the same order in both
sequences. Thereby the method allows for dele-
tions in one of the two series, i.e. characters can
be ignored or missed (Jachner et al., 2007; van den
Boogaart et al., 2007, for more details).

For this study, we complemented the above list
of performance measures with the following set of
four measures to obtain additional information: 1)
The lag time tL defined as the lag of the max-
imum in cross correlation, 2) the direction error
DE, which is obtained by counting the number of
times the sign of the slope differs for the observed
and the modelled time series, 3) the slope error rd
and 4) the recession error rk based on the recession
constant as derived by Blume et al. (2007). rd and
rk are defined as:

rd=
dxobs
dt

dxsim
dt

(2.4)

rk=
k(xobs)

k(xsim)
with k(x)=− dx

dt

1

x
(2.5)

The two measures were calculated as average over
the time window used to calculate the other mea-
sures (see below). Measures 2–4) work best for
“smoothed” time series where noise from the mea-
surement on short time scales has been removed.

One way to use these measures would be to
translate the modelling goal into some criteria
(e.g. “reproduce timing and amplitude of extreme
events well”) and to select the most suitable per-
formance measures to assess them. However, we
prefer a different approach. All 48 measures are
calculated for a moving time window of a certain
length and the vector of performance measure val-
ues for a window at a given time step t is then used
as a finger print of the model performance during
this time step. The finger print will be similar for
time windows where the difference between model
and observation has similar characteristics. Identi-
fying and characterizing periods with comparable
finger prints gives a tool to:

• objectively separate periods of differing
model performance

• identify characteristics that are not easily
found by visual inspection

• find recurrent patterns of differences between
model and observation in longer time series.

The selection of window size depends on the
process of interest and the data quality (Wagener
et al., 2003). For example slow recession processes
require wider windows. If data quality is subopti-
mal, large windows will help to reduce the influ-
ence of data errors. After some preliminary tests
we selected the window size large enough to cap-
ture large events (Fig. 2.1). The selection is a com-
promise between looking for the local properties in
the time series and having enough data to actually
compute the values.
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Figure 2.1: Size of the selected time window with
respect to two observed events (Case study Weis-
seritz catchment).

The vector ~p(t) of the M performance measures
was used as finger print of the model performance
for a given time step t. Of course the initial se-
lection of the performance measures is likely to in-
fluence the result of the analysis. We regard our
set of 48 measures as sufficiently large to cover the
important aspects of deviations between two time
series. Therefore we do not expect the results to
change substantially if additional measures were
added.

In order to avoid strong influence from extreme
values, we transformed the values for each perfor-
mance measure over all time windows to a uniform
distribution in the range 0 to 1. In this transformed
space, some performance measures are equivalent
(e.g. MSE and RMSE). Because of this and as
some performance measures behave very similarly
and reporting 48 measures would make the study
difficult to follow, we will report results only for
a selection of the performance measures. Only
one measure was used from each set of highly
correlated performance measures (|R>|0.85 – see
Sect. 2.5.1).

2.2.2 Synthetic errors

There is a need to better understand performance
measures and their relationship. Two approaches

exist in the literature to get familiarized with un-
known measures: the first option is to calculate
benchmark values for reference simple models
(Schaefli and Gupta, 2007). The second option is
to create artificial errors (Cloke and Pappenberger,
2008; Krause et al., 2005; Dawson et al., 2007).
We used the second approach by generating syn-
thetic errors for a single peak event as test cases
(Fig. 2.2). The peak was modelled as

Q(t)=


Qb t<t0
Qb ∗ e(t−t0)∗kc t0<=t<tmax

Qb+
+
(
Qb ∗ etmax∗kc−Qb

)
∗

∗e(t−tmax)∗kr
tmax<=t

(2.6)

Where kr is the recession constant (negative), kc is
the constant for the rise phase and Qb is the base
flow. t, t0 and tmax are the time, event starting
time and the peak time, respectively. We varied the
timing, baseflow, the size of the event and the re-
cession constant to obtain the combinations shown
in Fig. 2.2. Each synthetic error was generated in
both possible directions of deviation (e.g. under-
and overestimation) and with three different levels
(small, medium and large deviation).

2.2.3 Data reduction with SOM

The dimensionality of the simulated time steps N
is reduced with self-organizing maps (SOMs). A
SOM (for an example see Fig. 2.3) is a method to
produce a (typically) two dimensional, discretized
representation of a higher-dimensional input space
(Kohonen, 1995). The topological properties of the
input space are preserved in the representation of
the SOM. Here, the SOM helps to generate and vi-
sualize a typology of the model performance finger
prints. The matrix P=(~p(t))t=1,...,N of all perfor-
mance measures is used as an input to the SOM.
The SOM is an artificial neural network with a
number xmax ∗ ymax of cells (or neurons) corre-
sponding to the dimension of the map xmax, ymax.
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Figure 2.2: Examples of synthetic errors for a single peak event: Peak over- or underestimation (1),
baseflow over- or underestimation (2), recession too fast or too slow (3), timing: too late or too early
(4), maximum peak flow over- or underestimation but with correct total volume (5), peak too wide (start
too early, recession too slow) or too narrow (6), erroneously simulated peak (7) or missing peak (8), and
over- or underestimation during a late recession phase (9). The dark grey peaks will be labelled 1 to 3
with decreasing error in the remainder of this paper while light grey peaks will be labelled 4 to 6 with
increasing error.

Figure 2.3: Self organizing map of the perfor-
mance „finger prints” (containing 48 measures) for
all N=14 827 10-day time windows (Weisseritz
case study)

Each cell has a position on the map x, y and a
weight vector ~v=(vj)j=1,..,M with the same di-
mension as the input vector ~p(t). The weight vec-
tors are initialized with random values. Then the
training phase takes place with the following two
steps cycling multiple times through all ~p(t) until
the weight vectors ~v are stable:

1) The cell most similar (best match, short BM)
to the input vector ~p(t) is determined using a
Euclidean distance to the weight vector ~v.

2) The weight for BM and its neighbours on the
map are updated:

~v(i+1)=~vi+σ(x, y,BM, i)∗α(i)∗
(
~p(t)−~vi

)
(2.7)

Where x, y are the cell coordinates, α(i) is the
learning coefficient, which monotonically de-
creases with iteration i and σ(x, y,BM, i) is
the neighbourhood function – often a Gaus-
sian function.
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The resulting map arranges similar vectors of
performance measures ~p(t) close together while
dissimilar are arranged apart. After the training
phase, new input vectors can be placed on the map
by finding the corresponding BM. The synthetic
peak errors are placed on the map in this way in
order to get a better understanding of the map.

We trained a SOM with a hexagonal and Gaus-
sian neighbourhood with 20x20 cells with the ma-
trix P as input data (Yan, 2004; Weihs et al., 2005).
As mentioned before, all measures where trans-
formed to a uniform distribution in the range [0,
1] in order to reduce effects from the differing dis-
tribution shapes and scales.

The representation of the SOM (e.g. Fig. 2.3)
is based on work by Cottrell and de Bodt (1996).
Each cell of the neural network is represented as
a polygon. The intensity of the colouring repre-
sents the number of ~p(t) associated with the cell
(i.e. the cell weight vector ~v was the best match
BM to the input vector ~p(t)). The shape of the poly-
gon represents the distance (Euclidean distance) to
the eight neighbouring cells. Large polygons indi-
cate a small distance to the neighbour while if the
polygon shrinks in one direction, the distance to
the cell in this direction is large. Colouring of the
cells can also be used to show the distribution of a
specific performance measure on the map.

2.2.4 Identification of regions of the SOM

To further summarize the results, characteristic re-
gions of the SOM with similar weight vectors ~v
were determined using fuzzy c-means clustering
(Bezdek, 1981; Dimitriadou et al., 2008). As in all
clustering algorithms, the ~v are divided into clus-
ters, such that they are as similar as possible within
the same cluster and as different as possible be-
tween clusters. In fuzzy clustering, the ~v can be-
long to multiple clusters with all the fuzzy mem-
bership values µi summing up to 1. In c-means
clustering the cluster memberships µki are found

by minimizing the function

J=
n∑
k=1

c∑
i=1

(µki)
m||~vk−~wi||2 (2.8)

where the ~wi are the cluster centres, ~vk are the
weight vectors of the SOM, and m is a parameter
modifying the weight of each fuzzy membership,
and || ||2 is the Euclidean distance.

As suggested by Choi and Beven (2007), the va-
lidity index VXB from Xie and Beni (1991) can be
used to determine the optimal number of clusters:

VXB=

∑n
k=1

∑c
i=1(µki)

m||~vk−~wi||2

c (mini 6=k ||~wi−~wk||2)
(2.9)

The number of clusters is thereby optimized in
correspondence with the goal of the cluster analy-
sis to have the ~v as similar a possible within a clus-
ter (compactness – numerator in Eq. 2.9) and as
dissimilar as possible between classes (separation
– denominator in Eq. 2.9). The optimal number of
clusters is the one that minimizes VXB .

For the interpretation of the SOM, box plots of
the performance measures for each cluster, the oc-
currence of the clusters in the time series and a vi-
sual inspection of the SOM are used.

2.3 Study areas

2.3.1 The Weisseritz catchment

For the first case study, the catchment of the Wilde
Weisseritz, situated in the eastern Ore Mountains at
the Czech-German border was used (Fig. 2.4). The
lowest gauging station used in the study was Am-
melsdorf (49.3 km2). The study area has an eleva-
tion of 530 to about 900 m a.s.l. and slopes are gen-
tle with an average of 7◦, 99% are<20◦; calculated
from a 90 m digital elevation model (SRTM, 2002).
Soils are mostly cambisols. Land use is domi-
nated by forests (≈30%) and agriculture (≈50%).
The climate is moderate with mean temperatures
of 11◦C and 1◦C for the periods April - September
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Figure 2.4: Maps of both research catchments (scales in m).
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and October - March, respectively. Annual pre-
cipitation for this catchment is 1120 mm/year for
the two years of the simulation period from 1 June
2000 until 1 June 2002. During winter, the catch-
ment usually has a snow cover of up to about 1 m
for 1 to 4 months with high flows during the snow
melt period (Fig. 2.5 shows the pronounced peaks
during spring). High flows can also be induced by
convective events during summer. WASY (2006)
conclude from their analysis based on topography,
soil types and land use that subsurface stormflow is
likely to be the dominant process. Meteorological
data for 11 surrounding climate stations was ob-
tained from the German Weather Service (DWD,
2007). Discharge data, as well as data about land
use and soil was obtained from the state office for
environment and geology (LfUG, 2007).

2.3.2 The Malalcahuello catchment

As a second case study the Malalcahuello catch-
ment (Chile) was used. This research area is lo-
cated in the Reserva Forestal Malalcahuello, on the
southern slope of Volcán Lonquimay. The catch-
ment covers an area of 6.26 km2. Elevations range
from 1120 m to 1856 m a.s.l., with average slopes
of 51%. 80% of the catchment is covered with na-
tive forest. There is no anthropogenic intervention.

The soils are young, little developed and
strongly layered volcanic ash soils (Andosols,
in Chile known as Trumaos) (Iroumé, 2003;
Blume et al., 2008b). High permeabilities (sat-
urated and unsaturated), high porosities and low
bulk densities are typical for volcanic ash soils.
Soil hydraulic conductivities for the soils in the
Malalcahuello catchment range from 1.22∗10−5 to
5.53∗10−3 m/s for the top 45 cm. Porosities for
all horizons sampled range from 56.8% to 82.1%.
Layer thickness is also highly heterogeneous, and
can range from 2–4 cm to several meters. For
a more detailed description of the Malalcahuello
catchment see Blume et al. (2008b).

The climate of this area is humid-temperate with
altitudinal effects. There is snow at higher eleva-

tions during winter and little precipitation during
the summer months January and February. An-
nual rainfall amounts range from 2000 to over
3000 mm, depending on elevation. An overview of
catchment topography and basic instrumentation is
given in Fig. 2.4.

2.4 Hydrological models

2.4.1 WaSiM-ETH

As subsurface storm flow is deemed to be a domi-
nant process in the Weisseritz catchment, the Top-
model approach (Beven and Kirby, 1979) appears
suitable to conceptualise runoff generation. We
therefore selected WaSiM-ETH, which is a mod-
ular, deterministic and distributed water balance
model based on the Topmodel approach (Schulla
and Jasper, 2001). It was used for the Weisseritz
catchment with a regularly spaced grid of 100 m
resolution and an hourly time step. Interception,
evapotranspiration (Penman-Monteith), and infil-
tration (Green and Ampt approach) as well as snow
dynamics are also included as modules. The un-
saturated zone is described based on the Topmodel
approach with the topographic index (Beven and
Kirby, 1979), which determines flow based on the
saturation deficit and its spatial distribution, in-
stead of modelling the soil water movement explic-
itly. For the exact formulations of WaSiM-ETH see
Schulla and Jasper (2001). We used an extension
by Niehoff et al. (2002), which includes macropore
flow, siltation and water retention in the landscape.
Direct flow and interflow are calculated as linear
storage per grid cell while baseflow is calculated
as linear storage for the entire subcatchment. The
snow cover dynamics are simulated with a temper-
ature index approach (Rango and Martinec, 1995).
The routing of streamflow is computed with the
kinematic wave approach (Niehoff et al., 2002).
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Figure 2.5: Simulated and observed discharge series. The colour bars indicate the error class during this
time period.
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2.4.2 Catflow

The hillslope module of the physically based
model Catflow (Zehe and Fluhler, 2001; Zehe
and Blöschl, 2004; Zehe et al., 2005) was used
to model runoff generation in the Malalcahuello
catchment. It relies on detailed process rep-
resentation such as soil water dynamics with
the Richards equation, evapotranspiration with
the Penman-Monteith equation and surface runoff
with the convection diffusion approximation to the
1D Saint Venant equation. The processes satura-
tion and infiltration excess runoff, reinfiltration of
surface runoff, lateral subsurface flow and return
flow can be simulated. Macropores were included
with a simplified effective approach (Zehe et al.,
2001). The simulation time step is dynamically
adjusted to achieve a fast convergence of the Pi-
card iteration. The hillslope is discretized as a 2-D
vertical grid along the main slope line. This grid
is defined by curvilinear coordinates (Zehe et al.,
2001). As the hillslope is defined along its main
slope line, each element extends over the whole
width of the hillslope, making the representation
quasi-3-D. Catflow has proved to be successful for
a number of applications (Graeff et al., 2009; Lee
et al., 2007; Lindenmaier et al., 2005; Zehe et al.,
2001, 2005, 2006).

For this investigation the hillslope module was
used to simulate a single hillslope. As the out-
flow at the lower end of the slope is compared with
stream hydrographs measured at the main stream
gauging station, this carries the inherent assump-
tion that the structure and physical characteristics
of this single slope are representative of all slopes
in the catchment. While this is a strong assump-
tion it is not completely unrealistic for the Malalc-
ahuello catchment.

For soil parametrization values of saturated hy-
draulic conductivities, porosities, pF curves and
fitted Van Genuchten parameters were used. De-
tails on set-up and parametrization can be found
in (Blume, 2008). 2004 data from a climate sta-
tion just outside the catchment was used as climatic

input data with a temporal resolution of 30 min.
Rainfall time series stem from a rain gauge close
to the catchment outlet.

2.5 Weisseritz case study – results

2.5.1 Performance measures

The performance measures introduced in
Sect. 2.2.1 were calculated for the entire simula-
tion period with a moving 10 day window (hourly
time steps, 240 data points for each window,
N=14 827). We repeated this case study also
with window sizes of 5 days and 15 days in order
to test the sensitivity of the method with respect
to the selected window length (Sect. 2.5.5). We
will report only 19 performance measures (see
Sect. 2.2.1 and Table 2.2). The summary of the
measures shows that the ranges of the measures
vary considerably (Table 2.3).

2.5.2 Synthetic errors

The synthetic peak errors are used to improve our
understanding of the performance measures. In
Fig. 2.6, nine plots show the response of some
representative measures (y-axis) to the synthetic
peak errors, each of which is shown with a dif-
ferent symbol. On the x-axis, no error would be
in the centre and the severity of the error increases
to each side. Note that synthetic errors are gen-
erated to match the peaks of the case study (size,
width, base flow). Therefore, Fig. 2.6 is valid for
the Weisseritz case study and looks slightly dif-
ferent for the other case study. However, the fol-
lowing summary of the results also applies to the
Malalcahuello case study. Some performance mea-
sures are very specific to a certain type of error. 23
out of 48 measures react to all peak errors, which
is similar to the Nash-Sutcliffe efficiency CE in
Fig. 2.6. We call this error response group (ERG) 1
(Table 2.1). This grouping is obtained by visual in-
spection of Fig. 2.6 and similar plots for all perfor-
mance measures. The ERGs give a qualitative as-
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Table 2.2: Performance measures to remove based on high correlation for the Weisseritz study. The
table does not list all measures.

Measure to keep Correlated measure (|R|>0.85) to be removed
RMSE root mean squared error AME, MAE, CMAE, R4MS4E, MSE
CE Nash-Sutcliffe efficiency RAE
PI coefficient of persistence IRMSE
MARE mean absolute relative error MdAPE, MRE, MSRE, RVE, MSLE, MAGE,

MALE, MAPE, RMSGE RMSLE
MSDE mean squared derivative error CMSE, RCMSE, RSMSE, SMAE, SMSE
MAOE mean absolute ordinal error MSOE, RMSOE
RSMSGE root scaled mean squared geo-

metric error
RSMSLE, SMAGE, SMALE, SMSLE

sessment of the measures used in this study. Mea-
sures from ERG 2 (e.g. PDIFF in Fig. 2.6) are in-
sensitive to the error in recession (error 3), lag (er-
ror 4) and width (error 6). These three error types
do not change the maximum of the peak. Mea-
sures from ERG 3 (e.g. ME in Fig. 2.6) show no or
only little sensitivity to the lag time error (error 4)
and the error in peak size with correct total vol-
ume (error 5). SMSE (the only measure from ERG
4) is insensitive to errors related to shifts, the false
peak, and peak size (errors 1, 2, 7, 9). Measures
from ERG 5 (e.g. Rsqr in Fig. 2.6) are insensitive
to errors related to shifts and peak size (errors 1, 2,
9). Measures from ERG 6 (e.g. MSDE in Fig. 2.6)
are insensitive to errors related to shifts and shifts
during the late recession phase (errors 2, 9). Mea-
sures from ERG 7 (e.g. SMALE in Fig. 2.6) are
not sensitive for the shift only (error 2). Measures
from ERG 8 (e.g. tL in Fig. 2.6) are only sensi-
tive to the lag time and the missing / false peak
(errors 4, 7, 8). NSC (the only measure from ERG
9) has a value of 0 for most synthetic peak errors.
Values above zero occur only if the sign of the er-
ror changes along the time series (errors 4, 5, 7, 8).
The plots for all measures for both case studies are
available from the first authors homepage.

2.5.3 Data reduction with SOM

Based on the transformed ~p(t) of the model per-
formance, a SOM was created. The representation
according to Cottrell and de Bodt (1996) is shown
in Fig. 2.3. Remember that the shape of the poly-
gons indicates the distance between the cells and
that the intensity of the colour is proportional to
the number of ~p(t) represented by a cell. No ~p(t)

are associated with white cells.
The 19 representations of the SOM in Fig. 2.7

help to identify a typology of the model perfor-
mance finger prints. It is noteworthy that not all
performance measures are shown (see Sect. 2.5.1).
The value associated with each cell is colour coded
using white for no error and black for the highest
deviation from the optimal value. For performance
measures with a central optimal value, no error is –
again – shown in white while errors are displayed
in red in one direction and blue in the other direc-
tion. A careful inspection of the SOMs (Fig. 2.7)
allows identification of patterns that are related to
certain errors. For example, positive lag times tL
are found in the top right corner of the SOM. In
the center on the right hand side the model strongly
overestimates observed peaks as indicated by nega-
tive values for ttest and ME, PEP, and PDIFF. How-
ever, a clear interpretation is difficult. Hence, a
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Table 2.3: Summary of performance measures for the Weisseritz simulation.

Measure Min 1st.Q Median Mean 3rd Q. Max
PDIFF -0.355 -0.059 -0.014 -0.015 0.014 0.364
ME -0.1052 -0.0287 -0.0119 -0.0172 -0.0020 0.0614
RMSE 0.000 0.012 0.020 0.032 0.050 0.125
NSC 0.0 0.0 1.0 1.9 4.0 11.0
PEP -343 -86 -27 -37 20 88
MARE 6.1e-02 2.9e-01 5.0e-01 7.4e-01 1.1e+00 2.6e+00
Rsqr 1.9e-08 3.1e-01 6.1e-01 5.5e-01 8.2e-01 9.8e-01
CE -Inf -18.27 -2.53 -Inf -0.29 0.91
IoAd 0.00 0.27 0.48 0.48 0.71 0.98
PI -Inf -1008.8 -269.3 -Inf -83.4 -5.3
MSDE 1.2e-09 8.2e-07 3.1e-06 1.1e-05 9.4e-06 1.6e-04
ttest -3240.8 -44.6 -20.3 -39.7 -5.2 54.2
tL -20.0 0.0 1.0 2.2 5.0 20.0
rd -31.02 0.00 0.00 0.27 0.62 12.41
DE 0 10 24 29 41 134
rk 0.00 0.48 1.36 1.89 2.62 14.16
MAOE 0.000 0.066 0.123 0.150 0.217 0.502
LCS 4.2e-03 5.4e-01 6.8e-01 6.8e-01 8.3e-01 1.0e+00
RSMSGE 1.0 1.2 1.2 1.3 1.4 2.5

further condensation of the SOMs is necessary to
identify how different criteria cluster into different
error classes and how we can interpret these error
classes with respect to model failure.

2.5.4 Identification of regions of the SOM

In order to identify error classes on the SOM, fuzzy
c-means clustering was applied to the weight vec-
tors ~v of the SOM. The validity index VXB for
the identification of the optimal cluster number is
shown in Fig. 2.8. Based on the VXB , we chose the
solution with 6 clusters for further analysis. Note
that the 2 and 5 cluster solutions have similar val-
ues for VXB . The 2 cluster solution combines clus-
ters A-C and D-F from the 6 cluster solution while
the 5 cluster solutions combines clusters B and D
from the 6 cluster solution. Therefore, the 6 clus-
ter solution also represents the 2 and 3 cluster solu-

5 10 15
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0

0.
4

0.
8
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2

Number of clusters

V
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B

Figure 2.8: Validity index for the identification of
the optimal cluster number for c-means clustering
(Weisseritz case study).
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Figure 2.6: Performance measures for synthetic peak errors. Along the x-axes, the degree of error varies,
with index 1 to 3 indicating a peak that is much (some, little) too large (shift to too high discharges, too
slow recession, too late, too wide) and 4 to 6 indicating too small peaks. The black line indicates the
position of “perfect fit”.

tions. We also checked if the clustering algorithm
could be applied to the ~p(t) directly. For the two
case studies presented here, we obtained equiva-
lent results without SOMs. However, several test
cases used during the development of the method-
ology suggested that the raw data is highly likely
to not enable an identification of error clusters. In
addition, the planned combination of the present
method with a parameter sensitivity analysis (see
also Conclusion section) will require an appropri-
ate data reduction technique. We, thus, present
here the full methodology including SOMs for data
reduction.

The 6 clusters are represented with colour cod-
ing in the SOM in Fig. 2.9. Uncoloured cells
do not have any associated ~p(t) vectors As ex-
pected, the clusters form connected regions on the
SOM, since similar performance “finger prints” are
placed close together on the SOM.

The temporal occurrence of the error classes is

A
B

C
D

E
F

Figure 2.9: Self organizing map with color coded
error cluster assignment (see Sect. 2.5.4)
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ME
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RMSE

Dimension 1
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Dimension 1
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Dimension 1
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IoAd
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MSDE
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t_test

Figure 2.7: Self organizing maps. The performance measure value of each cell of the SOM is color
coded. White cells indicate no error, increasing saturation of grey (for single sided performance mea-
sures), and blue and red (for double sided performance measures) indicate increasing deviation from
optimal performance (see Sect. 2.5.3 for more details).
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Figure 2.7: continued
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shown in Fig. 2.5 as colour bars in the discharge
time series. The colour coding is equivalent to
Fig. 2.9. The plot shows clear patterns in the oc-
currence of the error classes, which are identified
by visual inspection and described hereafter. Note
that the cluster descriptions in parentheses will
be further explained in the subsequent paragraphs.
Cluster A (best fit, includes most synthetic peak er-
rors) occurs mainly during late spring / early sum-
mer. Cluster B (underestimation, false peaks, dif-
ferences for smaller values but good agreement for
peaks) and C (dynamics well reproduced but over-
estimation) occur during snow melt events. Clus-
ter D (bad reproduction of dynamics but small
RMSE and maximum error) occurs mainly during
late summer, fall and early winter. Cluster E (very
bad agreement in terms of dynamics and volume,
strong underestimation of peaks due to shift) oc-
curs only a few times, mainly during the initial
simulation period. Finally, cluster F (overestima-
tion due to shift and false peaks, recession periods
do not agree well, relative dynamics represented
well) occurs during times where the model overes-
timates the observed data, mainly during summer
and fall.

In order to associate the synthetic peak errors
(Sect. 2.5.2) with the error clusters, the synthetic
peak errors were placed on the SOM by finding
the best matching cell (BM). Table 2.4 shows, to
which clusters the synthetic peak errors are asso-
ciated. Levels 1 to 3 correspond to overestimated
values by the model compared to the observed data
(the darker grey peaks in Fig. 2.2) while levels 4
to 6 correspond to underestimated values (to the
lighter grey peaks). Cluster A includes most of
the synthetic peak errors and especially the syn-
thetic peak errors with small deviations. Cluster B
includes the strong underestimation with a false
peak. Cluster C includes strong overestimation due
to the peak size error and errors due to undetected
peaks. None of the errors were placed within Clus-
ter D. Cluster E includes the strong underestima-
tion of the peak due to shift. Cluster F corresponds
to peaks with strong overestimation due to a shift

and a shift during the late recession phase and due
to false peaks. Note that cluster F is clearly related
to overestimation, and Clusters B and E are clearly
related to underestimation. Clusters A and C cor-
respond to either over- or underestimation and no
information is available about Cluster D from the
synthetic peak errors.

Looking at the behavior of the performance
measures within each cluster will provide us with
more information. We therefore analyze box plots
of the preformance measure values for each clus-
ter. The box plots (Fig. 2.10) were created from
the normalized weight vectors ~v of the cells in the
SOM. The value for a perfect match between ob-
servation and model is shown as black line in the
box plot. The normalized weight vectors ~v do not
span the entire range from 0 to 1 because each cell
in the SOM only represents the centre of the as-
sociated ~p(t). The box plots are read the follow-
ing way: For example, looking at PDIFF, the black
line indicating a perfect match between observa-
tion and model falls within the interquartile range
for clusters A, B and D. Therefore, peaks are gen-
erally matched well for these clusters. However,
as the interquartile range is large for cluster B, this
cluster also includes cases with strong differences
between peaks. Cluster E is found slightly below
the black line, which indicates that peaks are gen-
erally slightly overestimated in this cluster. Clus-
ters C and F are found far below the black line,
which shows that peaks are strongly overestimated
for these clusters.

The findings from the box plots are summarized
in Table 2.5. If the cluster median value was clos-
est or the most distant from the perfect match value
(no error), this cluster was entered into the table as
“best” or “worst”, respectively. “Worst” was re-
placed by “high” and “low” if the deviation oc-
curred to both sides of the optimal value. If the
median of the second highest / lowest cluster was
within the inner quartiles and on the same side of
the value for no error, it was also highlighted in the
table. For the example from above, PDIFF is rated
best for clusters B, D and E, and low for clusters C
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Figure 2.10: Matrix of box plots comparing the normalized error measure values ~v (see Sect. 2.2.3).
The black line indicates the “perfect fit” for each of the performance measures.
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Table 2.5: Characterization of performance measures clusters derived from visual inspection of the box
plots in Fig. 2.10a and 2.10b.

Cluster Description
Weisseritz Case Study
A best: ME, RMSE, MARE, CE, IoAd, PI, ttest, DE, rk, RSMSGE

worst: tL, rd, LCS
B best: PDIFF, ttest, tL, rk

worst: RMSE, NSC, Rsqr, MSDE, rd, DE, MAOE, LCS, RSMSGE
C best: PEP, Rsqr, IoAd, MAOE, LCS

worst: RMSE, rd
low: PDIFF

D best: PDIFF, RMSE, PEP
worst: Rsqr, tL, rd, MAOE, LCS

E best: PDIFF, RMSE, NSC, MSDE, tL, DE, RSMSGE
worst: MARE, Rsqr, CE, IoAd, PI, ttest, rd, MAOE, LCS
low: PEP

F best: NSC, rd, DE, RSMSGE
worst: ME, RMSE, CE, PI, LCS
low: PDIFF, PEP
high: rk

Malalcahuello Case Study
A best: Rsqr, DE, MAOE, LCS

worst: MARE
low: PDIFF, ME, ttest

B best: ME, ttest
worst: RMSE, MSDE, rd, rk, RSMSGE

C best: RMSE, NSC, Rsqr, MSDE, tL, rd, rk, MAOE, RSMSGE
worst: CE, DE, LCS
high: PDIFF, ME, ttest

D best: ME, MARE, CE
worst: NSC, rd, rk
high: PDIFF, tL

E best: NSC
worst: MARE, Rsqr, DE, MAOE
low: tL
high: PDIFF, ME

F best: PDIFF, ME, RMSE, MARE, Rsqr, MAOE
worst: rd
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Table 2.4: Cluster allocation of synthetic peak
errors. For details on peak characteristics see
Figs. 2.2 and 2.6. Levels 1–3 generally overesti-
mate flow while levels 4–6 underestimate it.

Weisseritz Case Study
Cluster Error Levels
A peak size (1) 2 3 4 5 6

shift (2) 2 3 4 5
recession (3) 2 3 4 5 6
lag (4) 1 2 3 4 5 6
size./integr (5) 2 3 4 5 6
width (6) 1 2 3 4 5 6
undeteced peak (8) 2 3 4 5 6
shift w/o peak (9) 2 3 4 5 6

B false peak (7) 6
C peak size (1) 1

recession (3) 1
size./integr (5) 1
false peak (7) 4 5
undeteced peak (8) 1

E shift (2) 6
F shift (2) 1

false peak (7) 1 2 3
shift w/o peak (9) 1

Malalcahuello Case Study
Cluster Error Level
A peak size (1) 1 2

shift (2) 1 2 3
recession (3) 3
width (6) 1 2
false peak (7) 1 2 3
shift w/o peak (9) 1 2 3

B shift (2) 5 6
recession (3) 1 2 5 6
lag (4) 6
size./integr (5) 1
width (6) 6
false peak (7) 4 5
undeteced peak (8) 1 2 3 4 5 6

C shift w/o peak (9) 5 6
D peak size (1) 5 6

shift (2) 4
recession (3) 4
lag (4) 1 2 3 4 5
size./integr (5) 2 3 5 6
width (6) 3 4 5

E false peak (7) 6
F peak size (1) 3 4

size./integr (5) 4
shift w/o peak (9) 4

and F.
From the box plots (Fig. 2.10) and Table 2.5 we

find that cluster A shows the best fit according to 9
performance measures. In this cluster there is thus
a good agreement in (high flow) dynamics (CE, PI)
and amounts (ME, RMSE, MARE, ttest) of simu-
lated and observed stream flows. Peaks are late
(tL above target values) and the derivative is some-
times overestimated. LCS is the worst for cluster
A. Since LCS is quite far from the optimal value
for all clusters, this fact is negligible.

Cluster B has a good match between the ob-
served and modelled time series in terms of high
flows (PDIFF, CE, PI, ttest). Dynamics are not
represented very well by the model (Rsqr, DE,
MSDE), and data do not agree well after rescal-
ing and ordering (MAOE, RSMSGE). Overall, this
indicates differences for smaller values but good
agreement for large values. For Cluster C, dy-
namics are matched reasonable (best values for
PEP,Rsqr, IoAD, LCS, MAOE) but levels do not
agree well (PDIFF). Also RMSE is high. For Clus-
ter D on the other hand, the agreement is reason-
able in terms of level (PDIFF, PEP, RMSE) but dy-
namics are not reproduced well (Rsqr, tL, MAOE,
LCS). Cluster E shows bad agreement between
model and observation in terms of dynamics (Rsqr,
CE, IoAd, PI, rd, LCS) and level (ttest). The ob-
served best values for PDIFF,RMSE, MSDE, tL,
DE and RSMSGE are initially somewhat surpris-
ing but can be explained by the fact that this clus-
ter is related to low flow periods with little dy-
namics. In Cluster F, the level is not well repre-
sented as indicated by bad values for ME, RMSE,
CE, PI, PDIFF and, PEP. Also, recession periods
do not match well (rk). Good values for rd, DE
and RSMSGE indicate that the relative dynamics
are matched relatively well for cluster F.

2.5.5 Sensitivity for the size of the moving
window and the size of the SOM

The entire case study was repeated two more times
with a moving window of 5 days and 15 days, in
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order to test the sensitivity of the method for this
choice. In short, the alternative window sizes re-
sulted also in 6 clusters. The identified clusters had
very similar error types and the temporal occur-
rence of the clusters was comparable to the 10 days
window, the solution we retained for the present
paper. In general, with smaller window sizes, the
temporal occurrence of the error clusters becomes
more fragmented.

The entire case study was also repeated with
SOM sizes of 10x10, 15x15, 25x25, 30x30, and
10x20. In this case, solutions were found for 5 or
6 clusters. The solutions with 5 clusters (30x30)
combined two of the clusters presented above to
a single cluster. Again, descriptions of the error
types and temporal occurrence of the clusters were
similar. The validity index and the interquartile
ranges on the box plots (comparable to Fig. 2.10)
were generally smaller for SOMs with a smaller
number of cells because more variability was re-
duced during the generation of the SOM.

Detailed results (plots and tables) are avail-
able on the corresponding authors home-
page at http://www.uni-potsdam.
de/u/Geooekologie/institut/
wasserhaushalt/hessd_homep.

2.6 Malalcahuello case study – re-
sults

2.6.1 Performance measures and syn-
thetic errors

For the Malalcahuello case study a time window
of 120 h (5 days; hourly time step, 120 points)
was chosen as streamflow here is faster in re-
sponse and dynamics than in the Weisseritz catch-
ment. After excluding correlated measures, a set
of 16 performance measures (N=3241) remained.
All of these measures were also used in the Weis-
seritz case study. The 9 synthetic errors proposed
in Sect. 2.2.2 were adapted for the time window as
well as the range in flows.

2.6.2 SOM and fuzzy clustering

As in the Weisseritz case study, data reduction
was achieved by producing a self-organizing map.
6 error clusters were identified. Looking at the dis-
tribution of the error clusters over the time series
(Fig. 2.5) we find a distinct pattern of errors, which
mainly occur in larger blocks.

Cluster A (good correlation but overestimation)
was attributed to a longer period in April. Again,
the descriptions in parenthesis will be further ex-
plained below. Cluster B (strong differences in
peak width – including recession errors, false and
undetected peaks – large errors also for rescaled
data, bad performance in terms of derivatives) is
allocated to a series of peaks in June. Times at-
tributed to cluster C (small RMSE but dynamics
not reproduced well, underestimation of recession
phase) are the late recessions in May and Au-
gust. These periods have very little dynamics and
the model does indeed show a general underes-
timation of flow. Cluster D (dynamics well re-
produced, low mean errors, time lags) occurs in
shorter time blocks in May and late June / begin-
ning of July. Cluster E (worst performance, under-
estimation with false peaks) is attributed to the late
recessions in June and August. Some of the dis-
crepancies in dynamics, especially in August, are
the result of snow melt. As Catflow does not con-
tain a snow model, these dynamics cannot be re-
produced in the simulation. The early recession
phases in May and July / August are attributed
to cluster F (good reproduction of long term be-
haviour / balance, bad scores for the ratio of the
recession constant).

Locating the synthetic peak errors (correspond-
ing to Fig. 2.6) on the SOM (see Table 2.4) leads
to the following characterization: Cluster A con-
tains most of the overestimating synthetic errors.
Cluster B includes the slight underestimation due
to a false peak (error 7) and the extreme peaks re-
lated to wrong recessions (error 3). In addition, the
most extreme too early lag time error (error 4) and
the most extreme overestimating errors due to peak

http://www.uni-potsdam.de/u/Geooekologie/institut/wasserhaushalt/hessd_homep
http://www.uni-potsdam.de/u/Geooekologie/institut/wasserhaushalt/hessd_homep
http://www.uni-potsdam.de/u/Geooekologie/institut/wasserhaushalt/hessd_homep
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size with correct integral and undetected peaks are
found in this cluster. Most of these synthetic errors
are related to a strong difference in peak width.
Cluster C contains the most extreme error shift-
ing the modelled below the measured time series
in absence of a peak (error 9). Cluster D includes
a number of intermediate / underestimating errors
and all but one error related to lag times. Clus-
ter E includes the underestimating error due to a
false peak (baseline shifted far below the refer-
ence). Cluster F contains the intermediate errors
related to peak size with and without correct total
volume and shift during the late recession phase.

The box plots for each performance measures
and clusters are shown in Fig. 2.10. A summary of
the specific characteristics of each cluster is given
in Table 2.5. Cluster A shows the best perfor-
mance for those measures looking at the correla-
tion of the time series (Rsqr, DE, LCS, MAOE)
but has the characteristic values for overestimat-
ing the time series in general (ME and ttest be-
low aim). Peaks are also overestimated (PDIFF
below aim). Cluster B strongly overestimates the
peaks (RMSE, PDIFF low) and fits the worst af-
ter rescaling (RSMSGE). Also, derivative based
measures are worst for this cluster (rk, rd MSDE).
Good values for ttest and ME and intermediate val-
ues for CE and Rsqr indicate that the dynamics
are still reproduced quite well. Cluster C shows
good performance for derivative based measures
and a small RMSE but dynamics (CE, LCS) and
peaks (PDIFF, ME and ttest) are badly reproduced.
For Cluster D, dynamics (CE) and overall volume
(ME, ttest) agree well. However, derivative based
measures (rd, rk) show bad values. A high NSC
indicates that the modelled time series changes of-
ten between lying above and below the measured
time series. Cluster D thus describes times where
the model has only slight over and underestima-
tion in peaks, quite good correlation and low mean
errors. Cluster E can easily be identified as hav-
ing the worst performance measures (scores worst
on 7 of the performance measures and best only
for the NSC). Peaks as well as the overall time

series are underestimated (PDIFF and ME above
target value). The correlation between modelled
and measured time series is low as it has the worst
scores on Rsqr, MARE, MAOE, and DE. Finally,
cluster F might be regarded as the best perform-
ing cluster. However, it corresponds to recession
periods with little dynamics, therefore CE values
are only intermediate. Scores are good for mean
and mean relative errors (ME, MARE) and RMSE.
However, the derivatives rd do not match well.

2.7 Discussion

In both case studies we found 6 classes or clusters
of model performance (Fig. 2.10). A temporal pat-
tern of the occurrence could be identified in both
cases, indicating that the model has different devi-
ations during different phases. For the Weisseritz
simulation we found the following weaknesses:

• times of “best” performance (cluster A) still
show a great range of variability (most syn-
thetic peak errors attributed to this period)

• completely missing peaks during snow season
(cluster B). More detailed analysis showed
that these were events occurring at times with
reported temperatures well below freezing -
which must be clearly radiation induced melt
events. This process is missing in the model.

• major snow melt events are generally overes-
timated

• periods during summer / fall, where observed
peaks are completely missing

• strong underestimation of low flow during
late summer, together with

• strong overestimation of recession periods
occurring during autumn, which indicates
that soil and interflow storage is not well
parametrized.
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From this analysis, we suggest to test the follow-
ing model improvements. The snow melt compo-
nent may be better suited for this catchment after
including radiation induced snow melt. We will
check the data again very carefully for the peaks
that are completely missing during summer peri-
ods. If the data is valid, we are likely to miss
an important process in the model. We will also
try to further improve the parametrization of the
soil and interflow storage. However, as model runs
take about 20 minutes, classical calibration meth-
ods with more than 1000 required runs are time
consuming. Strong storage parameter interactions
in WaSiM-ETH with the Topmodel soil storage ad-
ditionally complicate calibration attempts.

For the Malacahuello case study the main find-
ings are:

• During the first month, the model overesti-
mates the observed discharge, indicating too
high initial filling of the soil storage.

• In the recession period in August, the model
completely fails to reproduce stream flow dy-
namics

• The three major events in June form a distinct
group as they are strongly overestimated by
the model. Both the missed dynamics in Au-
gust as well as this strong overestimation are
likely to be the result of the lacking represen-
tation of snow dynamics in the model.

• flow was found to be underestimated during
the longer recession periods.

The first step for model improvement will be to in-
clude a snow module. The long-term storage be-
haviour could probably be improved by coupling
the model with a ground water model. Moreover,
the evaluation exercise shows that the observed
discharge data needs to be preprocessed in order
to remove variability / noise on the very short time
scales.

While some of the identified errors are already
apparent in a first visual inspection of the model

output, others are less obvious and might be over-
looked – especially for longer simulation periods.

2.8 Conclusions

This paper presents a new method to analyse the
temporal dynamics of the performance of hydro-
logical models and to characterize the types of er-
rors. This new method is consistent with the di-
agnostic evaluation approach presented by Gupta
et al. (2008). They suggest to use “signature in-
dices that measure theoretically relevant system
process behaviors” and argue that a single crite-
rion is not sufficient for diagnosis of current en-
vironmental models. Instead, multiple diagnostic
signatures should be derived from theory and used
to compare modelled and observed behavior. This
corresponds to the main idea of the performance
finger prints presented in this paper.

The developed methodology combining time-
resolved performance analysis and data reduction
techniques is applied successfully in two case stud-
ies. These two case studies differ strongly in both,
model type and runoff generation processes and
thus the method seems to be applicable for a wide
range of research areas and modelling approaches.

In the two case studies, a set of uncorrelated
performance measures calculated for a moving 5
or 10 day window is used to characterize the tem-
poral dynamics of the model performance (model
performance finger print). As the results show, the
combination of multiple measures provides a bet-
ter characterization of the performance compared
to any single measure, which agrees with the basic
idea of multi-objective calibration.

Self organizing maps (SOM) are used to reduce
the amount of data and in a subsequent step, differ-
ent clusters of performance finger prints are iden-
tified. These clusters are in fact not readily identi-
fiable in the raw data (before data reduction).

To test the sensitivity of the performance mea-
sures as well as to characterize the error clusters,
the presented model diagnostics methodology in-
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cludes synthetic peak errors. They show that some
performance measures are very specific for a cer-
tain type of errors while others react to all types
of error. Some of these errors are visible in visual
inspection of the simulated and the observed ref-
erence time series. However, as illustrated for the
two case studies, analyzing the temporal patterns
of the identified error types gives valuable addi-
tional insights into model structural deficiencies.

In summary, the proposed methodology has the
following main benefits:

• Identification and separation of time periods
with different model performance character-
istics are achieved in an objective way.

• Long simulation periods, for which analysis
of single events becomes almost impossible
can be processed. Recurrent patterns become
apparent.

• Subtle but important differences between ob-
servation and model can be detected.

Especially the patterns of error repetition are
likely to contain valuable information if they can
be connected to parameter sensitivities. The next
step will thus be to combine the analysis of the
temporal dynamics of model performance with the
analysis of the temporal dynamics of parameter
sensitivity in order to enhance our understanding
of the model. The model performance will tell us,
during which periods the model is failing while the
parameter sensitivity will show, which model com-
ponent is the most important during these periods.
Overall the methodology presented here proves to
be viable and valuable for the analysis of the tem-
poral dynamics of model performance.
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Chapter 3

Temporal dynamics of model parameter
sensitivity for computationally expensive
models with FAST (Fourier Amplitude
Sensitivity Test) ∗

The quest for improved hydrological models is one of the big challenges in hydrology. When discrepan-
cies are observed between simulated and measured discharge, it is essential to identify which algorithms
may be responsible for poor model behaviour. Particularly in complex hydrological models, different
process representations may dominate at different moments and interact with each other, thus highly
complicating this task. This paper investigates the analysis of the temporal dynamics of parameter
sensitivity as a way to disentangle the simulation of a hydrological model and identify dominant pa-
rameterisations. In a first part, three existing methods, (the Fourier amplitude sensitivity test, extended
Fourier amplitude sensitivity test and Sobol’s method) are compared by applying them to a Topmodel
implementation in a small mountainous catchment in the tropics. For the major part of the simulation
period, the three methods give comparable results, while the Fourier amplitude sensitivity test is much
more computationally efficient. In a second part, this method is applied to the complex hydrological
model WaSiM-ETH implemented in the Weisseritz catchment, Germany. A qualitative model valida-
tion was performed based on the identification of relevant model components. The validation revealed
that the saturation deficit parameterisation of WaSiM-ETH is highly susceptible to parameter interac-
tion and lack of identifiability. We conclude that temporal dynamics of model parameter sensitivity can
be a powerful tool for hydrological model analysis, especially to identify parameter interaction as well
as the dominant hydrological response modes. Finally, an open source implementation of the Fourier
amplitude sensitivity test is provided.

∗Dominik Reusser, Wouter Buytaert, Erwin Zehe (in review), WRR
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3.1 Introduction

Rainfall runoff models have become important
tools to represent and test our knowledge about the
processes in a hydrological catchment. One of the
most important aims in model building is to keep
the model structure as parsimonious as possible,
to aid calibration and uncertainty analysis, and to
avoid parameter interaction and lack of identifia-
bility.

For this purpose, it is necessary to identify dom-
inant hydrological processes and to parameterise
them adequately in the model as functional com-
ponents. This is often not straightforward. De-
pending on the hydrological context (e.g., rainfall
driven; energy driven; occurrence of snowmelt)
different processes will be active in the hydrologi-
cal system at different moments in time. Ideally, in
a parsimonious model with low parameter interac-
tion, this should be reflected in the model structure,
with different model components dominating sim-
ulated dynamics over time. Hence, we expect sim-
ulation results to be most sensitive to variations of
exactly those parameters that belong to the corre-
sponding model component. For instance, we ex-
pect a good model to be sensitive to variation of
snow melt parameters during snow melt periods,
but rather insensitive in snow free periods.

This paper explores the application of the
Fourier Amplitude Sensitivity Test (FAST) as a
powerful and computationally efficient method to
analyse and visualise the temporal dynamics of
model parameter sensitivity for computationally
expensive hydrological models.

3.1.1 Sensitivity analysis for temporal dy-
namics

Sensitivity analysis (SA) assesses the impact of
model parameters on the model outcome, and is
therefore a convenient tool to assess model be-
haviour and particularly the importance of certain
parameterisations within the model.

Classically, SA is of most interest in the context

of model calibration. The goal is then to determine
the most important parameters for the calibration
process as well as the unimportant parameters that
may be fixed at a predefined value. Therefore,
in hydrology, sensitivity is most often calculated
for some objective function, for example the root
mean square error RMSE or the Nash-Sutcliffe co-
efficient of efficiency. In contrast, we do not ap-
proach the question of sensitivity from a calibra-
tion point of view. By analysing temporal dynam-
ics of parameter sensitivity (TEDPAS) of model
output variables, such as discharge, groundwater
level or snow water equivalents, we can quantify
which model components dominate the simulation
response. This information can then be used as an
indicator for dominant processes in the catchment,
as well as the functioning of the model. TED-
PAS as an analytic tool for identification of dom-
inant model components has been reported before
by Sieber and Uhlenbrook (2005) and Cloke et al.
(2008). The same SA methods can be applied for
both approaches, with the main difference that for
TEDPAS, SA is performed for each time step indi-
vidually.

Using TEDPAS as an analytic tool is related
to the dynamic identifiability analysis introduced
by Wagener et al. (2003). However, they serve
a different purpose. Identifiability analysis aims
at identifying parameters that can be confined by
given observations. It is a necessary, but not suffi-
cient condition that parameters must be sensitive to
be identifiable. Non-identifiable but sensitive pa-
rameters occur for instance, when parameters are
strongly correlated as for the Nash cascade where
a decrease of one parameter can be compensated
by increasing the other (Bárdossy, 2007).

3.1.2 Sensitivity analysis methods

A wide range of SA methods exist. Many meth-
ods characterise local gradients at a given point
in parameter space by assessing the response of
the model output to a small variation of single
parameters (the so-called one at a time method).
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This is a sensible approach if SA is used in the
context of model calibration. The main disadvan-
tage of this method (and other local SA methods)
is that information is available for this very spe-
cific location in parameter space only, which is
usually not representative for the physically pos-
sible parameter space. To overcome this prob-
lem global SA methods have been proposed, where
multiple locations in the physically possible pa-
rameter space are evaluated. Global methods may
be used without prior calibration of the model,
which may reduce the total computing time re-
quired considerably as calibration often requires a
large number of model runs. Global SA with re-
gression based methods rests on the estimation of
linear models between parameters and model out-
put. The method provides good estimates of pa-
rameter sensitivity for nearly linear models, but
fail if the model output shows non-linear (espe-
cially non-monotonic) dependence on model pa-
rameters, which is very common for hydrologi-
cal models. Regional sensitivity analysis (RSA)
(Hornberger and Spear, 1981) and derived meth-
ods approach the question by comparing an initial
distribution of model parameters to the distribution
after conditioning of the model output to observa-
tions. This approach is more suited to find iden-
tifiable parameters compared to sensitive param-
eters (see above). Finally, a number of methods
are based on ANOVA-like analysis of the depen-
dence of the model output variance to simultane-
ously modified parameters (partial variance based
methods):

V =
∑
i

Vi +
∑
i<j

Vij + · · ·+ V1,2,3,··· ,n (3.1)

V is the total variance, Vi is the variance caused
by parameter θi (first order variance), Vij is the co-
variance caused by θi (second order variance) and
θj and higher order terms show the variance con-
tribution from multiple parameters. Sensitivities in
terms of partial variance are then calculated by di-
viding by the total variance V . Therefore, all such

defined sensitivities add up to 1. Variance based
methods result in reliable estimates of sensitivities
also for strongly non-linear models, as was often
demonstrated using examples where the analyti-
cal solution can be computed (e.g. Saltelli and Bo-
lado, 1998). The main drawback of these meth-
ods is that they are not easy to implement and the
required number of model runs is very high (usu-
ally >1000) for most approaches. The most im-
portant variants of this method are Sobol’s method
2001 and the (extended) Fourier Amplitude Sensi-
tivity Test ((e)FAST – Schaibly and Shuler, 1973;
Cukier et al., 1973, 1975; Fang et al., 2003; Saltelli
and Bolado, 1998).

Some of the recent studies applying SA to rain-
fall runoff, flood inundation, and water quality
models are listed in Table 3.1. 5 out of the 14 stud-
ies use variance based methods. In 5 studies, on the
order of 10’000 model runs were computed to cal-
culate sensitivities, which is impossible for com-
putationally expensive models. To our surprise,
we were unable to find an application of FAST or
eFAST to rainfall-runoff modelling.

The selection of the appropriate method for an-
alyzing parameter sensitivity depends strongly on
the goal of the sensitivity analysis (Saltelli et al.,
2006, and Figure 3.1): 1) If the correct values
of a parameter can be fixed from additional, in-
dependent data before calibration, then which pa-
rameter causes the greatest reduction in variance
(called factor prioritisation setting in Saltelli et al.,
2006)? This use is illustrated in Figure 3.1A). On
the left hand side, the distribution of parameter val-
ues (normalized to the range between 0 and 1) is
shown. The dots illustrate the physically possible
parameter space while the grey box for parameter 2
(P2) indicates the parameter range, to which P2 is
fixed from independent data without calibration. In
reality, there is no true parameter set, because the
parameters are not observable (Beven, 2002; Zehe
et al., 2007) or can not be identified (Klaus and
Zehe, 2010), however we assume perfectly deter-
minable parameters for the illustration of the factor
prioritisation setting.
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Figure 3.1: Illustration of the different purposes of sensitivity analysis (SA) (Saltelli et al., 2006): A)
factor prioritisation investigates the most influential parameter, B) factor fixing investigates the least
influential parameter, and C) factor mapping is related to calibration and GLUE like procedures. Nor-
malized parameter ranges are shown on the left hand side together with possible selections for parameter
ranges. The right hand side shows measured discharge (black), possible simulation runs (light grey), and
remaining variability (red) to visualize SA settings.
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The right hand side shows the distribution of the
model output for the sampled parameter space in
light grey. The red shaded area shows the greatly
reduced variance after fixing P2. The black line
shows the observations. Factor prioritisation is
used to identify the relevant model components for
a certain time step or to identify periods with high
information content for the calibration of these pa-
rameters.

2) A second use of SA is the identification of
parameters that can be fixed at any value in their
possible range without significantly reducing the
output variance. The remaining parameters explain
the variance (factors fixing setting). This is the ap-
propriate question if we want to exclude irrelevant
parameters from the model calibration and set their
values to an arbitrary one. Figure 3.1B) shows that
P3 may be set to any value in the full range, with-
out reducing the variance in the model output sig-
nificantly. The variance in the model output covers
the full range without depending on whether P3 is
selected from one of the ranges around 0.1 or 0.3
or 0.7.

3) A third use of SA concerns the selection of
parameters values to use for accurate prediction
with adequate uncertainty bounds (factors map-
ping setting). This is a typical use for the deter-
mination of parameter identifiability and GLUE-
like procedures, when behavioral parameter sets
are to be identified. Figure 3.1C) illustrates that
confining the model output to the observation will
strongly reduce the range of the sensitive parame-
ter P2, somewhat reduce the range of P1 and hardly
reduce the range of the insensitive P3.

As "best practice" to determine the dominant
model components Saltelli et al. (2006) suggested
to use measures based on first order partial vari-
ance (FOPV). As stated above, partial variance
based methods belong to the global sensitivity
analysis (SA) methods, which determine the pa-
rameter sensitivity for an entire region in param-
eter space with distributed sampling techniques in
parameter space.

3.1.3 Advantages of FAST

There are several methods to compute FOPV sen-
sitivities. FAST was originally developed for the
analysis of chemical reaction systems, providing a
computationally efficient way to compute FOPV
(Schaibly and Shuler, 1973; Cukier et al., 1973,
1975) As for all partial variance based methods,
FAST is able to reliably estimate sensitivities of
parameters also for non-linear models and is there-
fore well suited for hydrological models. Multi-
ple sensitivity measures are reported to give con-
tradicting results for the same application (Tang
et al., 2007b; Cloke et al., 2008). (This is not very
surprising, if for example local and global sensitiv-
ities, regional SA and variance based methods are
compared). In contrast, results for FOPV appear
to show better comparability. For example, Saltelli
and Bolado (1998) demonstrated the equivalence
of sensitivities computed using Sobol’s method
with FAST. Saltelli and Bolado (1998) concluded
that FAST is computationally much more efficient,
requiring for example 150 runs to determine reli-
ably the sensitivity of 6 parameters. This may help
to overcome problems with high computational ex-
penses when calculating TEDPAS such as those of
Sieber and Uhlenbrook (2005). However, FAST
has some limitations which make the method un-
suitable for certain types of problems. Results
from FAST are not accurate for discrete parameter
values (Saltelli et al., 2000; Frey and Patil, 2002).
Also parameter interactions can not be detected by
the FAST method. The focus of this study is on
factor prioritisation and therefore, FOPV may be
appropriate.

As argued, FOPV SA is an appropriate method
to analyse TEDPAS in order to quantify which
model components dominate the simulation as an
indicator for dominant processes in the catchment.
However, for complex hydrological models we
need a highly efficient method to estimate sen-
sitivities. Therefore this paper aims at (1) im-
plementing the computationally efficient original
FAST method; (2) investigating whether FAST is
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applicable to rainfall-runoff models; (3) compar-
ing FAST to existing implementations of (e)FAST
and Sobol’s method using a lumped (computation-
ally inexpensive) hydrological model; (4) applying
FAST to a computationally expensive hydrologi-
cal model (WaSiM-ETH); and (5) showing how
the resulting sensitivities are a useful diagnostic
tool by performing a qualitative model validation
and we will identify interactions among parame-
ters in WaSiM-ETH which result in problems dur-
ing model calibration.

3.2 Methods and Study Area

3.2.1 Fourier Amplitude Sensitivity Test

As with other global SA methods, for FAST, pa-
rameters are varied according to the physically
possible parameter space, which usually is deter-
mined with pretests including expert knowledge,
model documentation or model runs. FAST allows
to perform a global SA with a small number of
runs. All SA methods have in common that the
parameters are modified between the model runs
j = 1, 2, 3, · · · , N (which we denote as the model
run dimension). FAST is based on the fact that
the model output in this model run dimension can
be expanded into a Fourier series. The coefficients
of the Fourier series can then be used to estimate
the mean expected model outcome as well as the
variance. If individual parameters are varied with
specific frequencies, the corresponding Fourier co-
efficients allow estimation of the partial variance
or model parameter sensitivity. In other words,
the underlying idea is to label the parameters by
using different frequencies to modify the parame-
ters between the model runs j = 1, 2, 3, · · · , N .
This constitutes the first step of the method (sub-
section 3.2.1.1): generating the Fourier parame-
ter set for the sensitivity test. This is exemplified
in Figure 3.2 with the labeled arrows indicating
the analysis steps. Parameter a and b in the ex-
ample are “labeled” with frequencies ω = 3 and
7 respectively in the model run dimension (j =

1, 2, 3, · · · , N ) and varied according to a uniform
distribution in the range−0.5 · · · 0.5. Note that the
order of the parameter sets along the model run di-
mension j needs to be maintained for the evalua-
tion method to work.

The model is then evaluated for each of the pa-
rameter sets (the second step). Figure 3.2 shows
the evaluation for the very simple models depend-
ing on a time dependent, weighted average of pa-
rameter a and b. To retrieve the information from
the frequency labels, i.e. to analyse the sensitiv-
ity of the model output for the different parame-
ters, the model output is Fourier transformed in the
model run dimension j = 1, 2, 3, · · · , N (the third
step (subsection 3.2.1.2). Note that in our simple
example, we are repeating the FAST analysis sep-
arately for the model output at a fixed time. The
fraction of the variance in the model run dimen-
sion that can be explained by a certain parameter is
proportional to the power in the Fourier spectrum
for the corresponding frequency and its multiples
(see Cukier et al., 1978, for further details). In
the example (Figure 3.2) we observe Fourier coef-
ficients above 0.02 only for frequencies 3 and 9 for
t = 0, frequencies 3, 7, 9, and 21 for t = 25 and
frequencies 7 and 21 for t = 50. Thus, the vari-
ance at t = 0 can be fully explained by parameter
a (frequency 3 and its multiples). Corresponding
statements are possible for t = 25 and t = 50.

The three steps are described in more details in
the subsequent sections. The method is available
both as part of SimLab and as software package
(Reusser, 2008) for the open source data analysis
language R (R Development Core Team, 2008).

3.2.1.1 Generation of the parameter set and
model evaluation

As stated above, when generating the Fourier pa-
rameter set, we want to modify each parameter
with a different frequency among the model runs in
order to assign a “label”. Generation of the param-
eter set can be subdivided into selection of appro-
priate frequencies ωi, the generation of a value set
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Figure 3.2: Illustration of the Fourier amplitude sensitivity test (FAST) with a simple toy model:
o = n ∗ a + (1 − n) ∗ b with n = 1 − t/50 for t = 0 · · · 50. In the first step (outlined arrow), pa-
rameters are sampled according to a predefined sampling scheme for multiple model runs (model run
domain). The second step includes running the model for each time step. Due to the special sampling
design, parameter sensitivities can be calculated with Fourier transformation in the third step (model
run frequency domain). Applying FAST for each time step allows calculation of TEDPAS. See text for
more details.
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S with uniform distribution between -0.5 and 0.5
and a transformation of S into the actual Fourier
parameters θ.

Cukier et al. (1975) present a table with sug-
gested frequencies ωi that are mutually indepen-
dent (for further details see Cukier et al., 1975;
McRae et al., 1982) and have mutually indepen-
dent multiples up to order four. The higher the or-
der, the smaller the error of the numerical approxi-
mation of the FAST method (for further details see
Cukier et al., 1975). With higher number of pa-
rameters, the number of required model runs (also
presented in Cukier et al., 1975) increases in order
to assure independence of frequencies. Therefore,
the selected frequencies ω(i) and the required sam-
pling size N (j = 1, ..., N ) depend on the num-
ber of parameters n (i = 1, ..., n). The selected
frequencies together with the model run index are
then converted into a supporting variable S(j, i)
(equation 3.2), which varies at the appropriate fre-
quency in the range −0.5 · · · 0.5. Calculation of
S(j, i) was initially proposed as an exponential
function (Cukier et al., 1973), which has the disad-
vantage of resulting in a distribution that over em-
phasizes low and high values (Saltelli et al., 1999).
Saltelli et al. (1999) proposed to use the function
shown in equation 3.2 which results in a uniform
distribution of S(j, i). The final transformation
of S(j, i) to the actual Fourier parameters θ(j, i)
has undergone some development since the publi-
cation of the original method. The transformation
based on the cumulative density function F (θ) of
the parameter as shown in equation 3.3 was pre-
sented by Fang et al. (2003). Compared to the orig-
inal method (Cukier et al., 1978) this method has
an advantage if non-uniformly distributed param-
eters are used. We used uniform distributions for
all parameters with ranges as shown in table 3.3.
Note that in this case, the transformation proce-
dure of (Fang et al., 2003) does not provide an im-
provement of the method compared to the original

method of Cukier et al. (1978).

S(j, i) = arcsin(sin(ωi∗π/N∗(2j−N−1)/2))/π

(3.2)

j = 1....N i = 1..n

θ(j, i) = F−1i (S(j, i) + 0.5) (3.3)

F−1i being the inverse of the cumulative density
function for parameter i

3.2.1.2 Analysis of parameter sensitivity

For each model time step t, a model output series
M = y(j, t) was transformed with fast Fourier
transformation resulting in a power spectrum. The
variance σ2i that could be explained by a cer-
tain parameter i was calculated from the sum of
the power in the spectrum for the frequencies
ω(i), 2ω(i), 3ω(i), 4ω(i) (see Cukier et al., 1975,
for further details on why to use higher order fre-
quencies to the order of 4). Whereas the total vari-
ance σ2 was calculated as the sum of the power
spectrum over all frequencies. The sensitivity of
model output y on parameter i is then calculated as
the partial variance, which is the ratio σ2i / σ2.

3.2.2 eFAST

We used the implementation of eFAST from the
software package SimLab (Saltelli et al., 1999;
Saltelli and Bolado, 1998). In eFAST, total or-
der sensitivity can also be determined. This sac-
rifices the efficiency of FAST to obtain simulta-
neously the FOPV with a limited number of runs.
While the basic idea to “label” parameters with a
certain frequency in the model run dimension re-
mains, some modifications to the algorithm need to
be introduces in order to asses total order sensitiv-
ity. The reader is referred to Saltelli et al. (1999);
Saltelli and Bolado (1998) for further details.



64 Chapter 3 Temporal dynamics of model parameter sensitivity (TEDPAS)

3.2.3 Sobol’s method

For Sobol’s method, a special sampling scheme is
applied as well. For a given sampling size N and
n parameters, a sub sample size Ns is calculated
as Ns = N/2n + 2. Parameters θi are then sam-
pled randomly for two sub sample sets M1 and
M2, each consisting of Ns independent parameter
sets. Variances are then estimated by evaluating
the model for parameter sets, where one parameter
in M1 is replaced by the corresponding parame-
ter of M2, thereby assessing the effect of changing
this single parameter. For further details, see Sobol
(2001); Saltelli (2002)

3.2.4 Study regions

3.2.4.1 Huagrahuma catchment, Ecuador

The Huagrahuma catchment is located in the south
Ecuadorian Andes, as part of the Paute river basin
(Fig. 3.3). The geology consists of Cretaceous and
early Tertiary lavas and andesitic volcanoclastic
deposits, shaped and compacted by glacier activity
during the last ice age (Hungerbühler et al., 2002).
The hydraulic conductivity of the bedrock is low,
particularly compared to the hydraulic conductiv-
ity of the thin layer of volcanic ashes that consti-
tute the soil layer (Buytaert et al., 2005). On aver-
age, the soil layer is about 80 cm thick, with some
bedrock outcroppings at convex locations and hill-
tops (Buytaert et al., 2006b). No deep aquifers are
present, and water flow is restricted to overland
flow and subsurface flow in the soil layer above the
bedrock. The vegetation of the Huagrahuma site
consists of noetropical alpine grasses and shrubs
and some low statured cloud forest. The climate
regime is bimodal, with a average annual precipi-
tation of around 1300 mm y−1 but a very low sea-
sonality. Precipitation is characterised by frequent
low intensity events (drizzle), resulting in around
75% of wet days throughout the year.

3.2.4.2 Weisseritz catchment

The catchment of the Wilde Weisseritz upstream of
the gauging station Ammelsdorf (49.3 km2) served
as a second case study. The catchment is situ-
ated in the eastern Ore Mountains at the Czech-
German border (Fig. 3.3) and has an elevation of
530 m to about 900 m a.s.l. Slopes are gentle with
an average of 7◦, 99% are <20◦; calculated from a
90 m digital elevation model (SRTM, 2002). Soils
are mostly shallow cambisols of 1 to 2 m thick-
ness. Land use is dominated by forests (≈30%)
and agriculture (≈50%). The climate is moderate
with mean temperatures of 11◦C and 1◦C for the
periods April - September and October - March, re-
spectively. Annual precipitation for this catchment
is 1120 mm/year for the two years of the simula-
tion period from 1 June 2000 until 1 June 2002.
During winter, the catchment usually has a snow
cover of up to about 1 m for 1 to 4 months with high
flows during the snow melt period (Fig. 3.6 shows
the pronounced peaks during spring). High flows
can also be induced by convective events during
summer. WASY (2006) conclude from their anal-
ysis based on topography, soil types and land use
that subsurface stormflow is likely to be the dom-
inant process. Meteorological data including pre-
cipitation, temperature, wind speed, humidity, and
global radiation for 11 surrounding climate stations
was obtained from the German Weather Service
(DWD, 2007). Discharge data, as well as data
about land use and soil was obtained from the state
office for environment and geology (LfUG, 2007).

3.2.5 Hydrological models

3.2.5.1 Topmodel

The hydrological model TOPMODEL is used in
this study (Beven and Kirby, 1979). TOPMODEL
is a frequently used model, based on simple phys-
ical approximations, and is well documented in
the literature (for an overview see Beven et al.,
1995; Beven, 1997, 2001). It has been applied
to a wide range of catchments, including region-
alisation studies (e.g., Ibbitt et al., 2000; Bastola
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Figure 3.3: Maps of the Wilde Weisseritz catchment (left, scales in m), and the Huagrahuma catchment
within the Paute basin, Ecuador

et al., 2008). The choice of TOPMODEL as a
good model structure for the hydrology of the
páramo ecosystem is based on extensive field expe-
rience (Buytaert et al., 2006a; Buytaert and Beven,
2009). The steep topography induces large spa-
tial differences in soil moisture and tendency for
the generation of overland flow, which are cap-
tured by the topographic index. Additionally, the
absence of a dry season, and the marked drop of
soil hydraulic conductivity in non-saturated condi-
tions result in continuously wet soils (>60 vol%
Buytaert et al., 2005). Field research has shown
that also in dry periods a saturated soil layer exists
above the bedrock, even on steep slopes (Buytaert
et al., 2005). This suggests that the variation in
the contributing area is minimal, and that the en-
tire catchment contributes to base flow most of the
time.

Finally, the high porosity and low bulk density
(typically below 0.6g/cm3 Buytaert et al., 2006b)
give rise to easily compressible soils. Bulk den-
sity tends to rise and hydraulic conductivity tends

to fall with depth (Buytaert et al., 2006b), giving
support to the use of a nonlinear transmissivity pro-
file. The TOPMODEL assumption of an exponen-
tial function of the storage deficit appears to give
a good representation of the recession curves in
these catchments.

The model has 7 parameters and 2 initialisa-
tion values (table 3.2). qs0 and Sr0 initialise re-
spectively the initial subsurface flow per unit area
and the initial root zone storage deficit. The sur-
face hydraulic conductivity (k0) and the capillary
drive (CD) are only used in the infiltration ex-
cess routine. The maximum root zone storage
deficit (Srmax) is part of the root zone equa-
tions, the unsaturated zone time delay (td) controls
the flow from unsaturated to saturated zone, while
the areal average of the transmissivity (lnTe, log
transformed), and the rate of decline of transmis-
sivity with increasing storage deficit (m) are re-
lated to the saturated subsurface flow. vr is the
river flow velocity.
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name symbol min max FAST frequency
Initial subsurface flow qs0 1e-05 6e-05 19
Soil transmissivity (log transformed) lnTe -7e-01 -4e-01 59
Shape of the transmissivity curve m 1e-02 4e-02 91
Initial root zone storage deficit Sr0 1e-03 4e-02 113
Maximum root zone storage deficit Srmax 1e-01 1e+00 133
Unsaturated zone time delay td -3e+00 1e+00 143
Channel flow velocity vr 8e+02 2e+03 149
Surface hydraulic conductivity k0 1e-03 1e-02 157
Capillary drive CD 1e-01 1e+00 161

Table 3.2: Parameter ranges for Topmodel

3.2.5.2 WaSiM-ETH

WaSiM-ETH is a modular, distributed model
(Schulla and Jasper, 2001) and was used for the
Weisseritz catchment with a regularly spaced grid
of 100 m resolution. The model provides meth-
ods for the interpolation of meteorological input
data. For each cell, a surface runoff storage and
an interflow storage are parametrized with the cor-
responding linear recession constants and a max-
imum storage size for the interflow storage (see
Table 3.3). The precipitation intensity limit de-
fines a threshold, above which macro pore flow
is active and rainfall enters the lower soil stor-
age directly. Interception (leaf area index depen-
dend simple bucket), evapotranspiration (Penman-
Monteith) and snow (temperature-index-approach)
are also included as modules. Four parameters of
the snow module were investigated more closely.
Snow accumulation is determined by the snow/rain
temperature limit. The temperature melt index de-
fines the amount of snow melted for each degree
and hour the temperature is above the snow melt
limiting temperature (third parameter). Finally, the
fraction of snow melt which builds surface runoff
is the fourth parameter. The unsaturated zone is
described for each sub basin based on the Top-
model approach (Beven and Kirby, 1979). The
Topmodel regionalization parameter m determines
how strong the gradient in the saturation deficit is
due to differences in the topographic index. m

also enters the equations for the vertical flow qv
(Eq 3.5) and the baseflow QB (Eq 3.4). Verti-
cal flow and baseflow are both calibrated with the
scaling factors Tkorr and Kkorr. Channel flow is
routed with a simple storage to account for diffu-
sion.

QB = Tkorr ∗ e−γ ∗ e−Sm/m (3.4)

qv = Kkorr ∗ kf ∗ e−Si/m (3.5)

γ is the mean value of the topograpic index, a
constant for a given basin, kf the saturated hy-
daulic conductivity, Sm and Si the mean and local
saturation deficit for a subbasin, model state vari-
ables.

WaSiM-ETH was set up and run 487 times, the
number of required runs (see section 3.2.1.1) for
sensitivity analysis with 11 varying parameters.
The set of resulting discharge time series y(j, t),
one for each of the N parameter sets was then fur-
ther analysed to calculate sensitivities.

3.3 Results

3.3.1 Comparison of Sensitivity analysis
methods with Topmodel

Figure 3.4 shows sensitivities calculated with the
following SA methods: a) Sobol in SimLab 3.2.6
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Parameter name Process Symbol Range FAST frequency
temperature limit for snow melt Tm0 snow melt −2 · · · 2 41
difference between snow/rain tempera-
ture limit and temperature limit for snow
melt (the first is always higher)

snow accumulation TR/S 0 · · · 2 67

temperature melt index snow melt C0 0.7 · · · 2 105
fraction on snow melt which is surface
runoff

snow melt cmelt 0.2 · · · 0.5 145

Topmodel regionalization parameter baseflow m 0.005 · · · 0.04 177
scaling factor for transmissivities baseflow Tkorr 0.005 · · · 0.4 199
scaling factor for vertical flow baseflow Kkorr 800 · · · 8000 219
recession constant for surface runoff sin-
gle linear storage

surface runoff kD 1 · · · 120 229

maximum content of the interflow storage interflow SHmax 1 · · · 150 235
recession constant for interflow runoff
single linear storage

interflow kH 50 · · · 300 243

precipitation intensity limit fast infiltration Plimit 0.2 · · · 20 247
Table 3.3: Parameters of the model WaSiM-ETH used for the SA

(n=5632), b) eFAST in SimLab 2.2 (n=5000) and
c) FAST (SimLab 3.2.6, n=1289) d) FAST (R-
package (Reusser, 2008), n=487). The number of
model runs for eFAST and Sobol was selected as
a balance between the reduction of numerical arte-
facts (e.g. first order sensitivities outside the pos-
sible range from 0 to 1, random fluctuations of
TEDPAS) and computation time, while the mini-
mum requirements as suggested by the implemen-
tation were used for FAST. The 487 runs for the
method in the R-package are reported by Cukier
et al. (1975, 1978) (with the corresponding fre-
quencies listed in table 3.2), while the minimum
requirement of 1289 simulation runs for SimLab
3.2.6 is undocumented.

For each method (a-d) two graphs show the sen-
sitivity of the modelled discharge for different pa-
rameters, grouped according to sensitivity. The
first graph shows parameters qs0, Sr0, m, and
vr. For all 3 methods, the TEDPAS is equiva-
lent for these four variables: initial conditions (qs0
and Sr0) are dominant until mid of the simulation,
thereafter m and vr of highest importance. Look-

ing at the 4 parameters qs0, Sr0, m, and vr, 90%
of the time, the same parameter dominates in all
of the methods (rank 1 in sensitivities). The sec-
ond graph shows the remaining 5 variables. With
Sobol’s method, the modelled discharge depends
on td after the initial period, while with eFAST
lnTe has some influence on modelled discharge
for June and July. With FAST, the output shows
only minor sensitivity for the two parameters.

As explained in the method section, the sensi-
tivity is reported as partial variance that can be ex-
plained by this parameter at this time step. For
example, a value of around 0.7 for parameter m
during June indicates that 70% of the observed
variation between the model runs j = 1, · · · , N
can be explained by this parameter. The sum over
all parameter sensitivities never exceeds 1.0 but
may be lower because of the numeric approxima-
tion (Cukier et al., 1975) or when parameter inter-
actions are of importance (non-additive models –
Saltelli et al., 2006). The fourth graph (e) shows
the 25 best (selected according to RMSE) mod-
elled discharge time series in black and the mea-
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Figure 3.4: Parameter sensitivities of Topmodel, with a) Sobol’s method (SimLab 3.2.6, n=5632), b)
eFAST (SimLab 2.2, n=5000), c) FAST (SimLab 3.2.6, n=1289) and d) FAST (R-package, n=487).
Panel e) shows discharge for the 25 best simulation runs and the observation
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sured time series in gray.

3.3.2 FAST WaSiM-ETH

Sensitivities for the computationally expensive
WaSiM-ETH model were calculated with the
FAST-method only (FAST frequencies are listed in
table 3.3). For TEDPAS at the event time scale
we will present two examples, which are shown
in Fig 3.5. The two examples consist of 4 four
graphs (a-d) each. The three top graphs (a-c) show
the sensitivity of the modelled discharge for differ-
ent parameters, grouped according to the different
model components. The first graph (a) shows the
snow melt related parameters. The three saturation
deficit related parameters m, Tkorr and Kkorr are
shown in the second graph (b). The third graph (c)
shows the remaining parameters kD, kH , SHmax,
and Plimit. The fourth graph (d) shows the 25 best
(selected according to RMSE) modelled discharge
time series in black and the measured time series
in grey.

The first example is in February 2001. Simu-
lated discharge is strongly dependent on the snow
melt temperature limit Tm0 during the entire win-
ter (see also Fig 3.6). At the beginning of the event,
the modelled discharge shows some sensitivity for
the shift of the snow/rain temperature limit TR/S
and the temperature melt index C0. The discharge
also shows some sensitivity towards the direct flow
recession constant kD. When approaching the end
of February, sensitivity of the discharge decreases
for kD and C0 and increases for the interflow re-
cession constant kH .

The second example is in July 2001. At the be-
ginning of the event, the modelled discharge shows
increased sensitivity for the direct flow recession
constant kD and the precipitation intensity limit
Plim. In the following period, the sensitivity of the
discharge mainly depends on the interflow reces-
sion constant kH and shows slight sensitivity to-
wards the interflow reservoir size SHmax. At the
end of the event simulated discharge is sensitive for
the three saturation deficit related parameters.

Figure 3.6 shows TEDPAS of the modelled dis-
charge on the annual time scale. We observe that
snow related parameters are important during win-
ter and spring as expected. Also, saturation deficit
related parameters are unimportant for discharge
during snow melt periods. Note that the plots only
show first order effects. Influence of interacting
parameters are not visible from these plots. There-
fore, in order to exclude the influence of a param-
eter, higher order terms (or total order sensitivity)
need to be calculated. TEDPAS of the three sat-
uration deficit related parameters is highly corre-
lated. This suggests a strong interaction of the
these parameters, as will be further discussed in
section 3.4.

3.4 Discussion

3.4.1 Comparing Sensitivity Methods for
Topmodel

3.4.1.1 Performance

All 3 SA methods result in very similar TEDPAS
for four important variables. Differences exist for
two parameters: the model appears to be more sen-
sitive for lnTE in July with eFAST, sensitivity is
high for td with Sobol’s method and with FAST,
the model shows only minor sensitivity for the two
parameters. The reasons for this difference are un-
clear, but may be related to the different sampling
schemes or the differing methods for calculating
the sensitivities.

3.4.1.2 Computational requirements

The time required for the analyses differ substan-
tially. Using FAST (Reusser, 2008) in R, the
analysis was finished within less than one hour,
while approximately 8 hours were necessary to
produce the results with the eFAST algorithm im-
plemented in SimLab 2.2. Results for Sobol’s
method (SimLab 2.2) also required about 8 hours,
however these results were discarded because of
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Figure 3.5: TEDPAS for periods in 2001. Parts (a-c) show the parameter sensitivity of the modelled
discharge ( a: snow model related parameters; b: saturation deficit related parameters; c: remaining
parameters kD, kH , SHmax, and Plimit). The sensitivity is reported as partial variance that can be
explained by the corresponding parameter. The fourth graph (d) shows the 25 best modelled discharge
time series in black and the measured time series in grey.
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implausibilities: Total order sensitivities were al-
way smaller than FOPV and FOPV and Total order
sensitivities added up to more than one for all vari-
ables. This is by definition impossible for first or-
der sensitivities. However, due to the closed nature
of the SimLab computer application, it is not pos-
sible to investigate this issue in more detail. With
SimLab 3.2.6, the analysis with Sobol’s method
and the original FAST method required about 50
and 12 hours, respectively.

In summary, consistent results for FAST, eFAST
and Sobol’s method were obtained for Topmodel,
which agrees with previous reports about the
equivalence of results for the two methods (Saltelli
and Bolado, 1998). Based on this comparison, we
may expect results with our implementation of the
FAST algorithm (Reusser, 2008) to be similar in
quality to existing implementations, however with
about 1/10th of the model runs required compared
to other FOPV SA methods.

3.4.2 TEDPAS of Topmodel

The results of the temporal sensitivity analysis for
TOPMODEL on the Huagrahuma catchment are
very much as expected. Although the effect of
the initialisation values decreases over time, sev-
eral thousands of time steps are required for the
effect to die out. This highlights the importance
of a warm-up period when using the model in pre-
diction mode. Model parameter m, which defines
the shape of the transmissivity curve, is known to
be a sensitive parameter (e.g., Buytaert and Beven,
2009), with an effect over the entire recession
curve. The channel velocity parameter vr has a
major effect on the time to peak flow, and to a
lesser extent on the shape of the steep part of the
recession curve. The observation that the sensitivy
of vr shows a peaky behaviour, with high sensitivy
related to precipitation events is therefore physi-
cally plausible.

Other parameters, particularly Srmax and td
are known to be relatively insensitive in the ecosys-
tem. Evapotranspiration is nearly independent of

soil moisture in the continuously wet grasslands.
The organic soils also tend to have a very high soil
moisture, accelerating the flow from the unsatu-
rated to the saturated zone (Buytaert et al., 2006a;
Buytaert and Beven, 2009). Therefore, the rela-
tively high sensitivity of td in the Sobol method is
not very clear, but may be related to interaction be-
tween td and m. It is indeed possible that an artifi-
cially high time delay between the unsaturated and
saturated zone compensates for too quick saturated
flow, which is controlled by both lnTe andm. The
peaks in the sensitivity of CD are related to the
very rare occurrence of infiltration excess overland
flow in the study catchment. Hence, this model
routine is nearly always inactive, apart from a few
occurrences of intense precipitation events.

Finally, it is interesting to note that the sensitiv-
ity of the parameters does not change during the
major high-flow event in early June. This sug-
gests that the similar model structures are oper-
ational during this period as during the dry peri-
ods and that the parsimonious model structure per-
forms well for a relatively wide range of hydrolog-
ical conditions.

3.4.3 TEDPAS of WaSiM-ETH

Checking the yearly patterns in TEDPAS is a first
assessment to verify the model structure. A first
pattern on the annual scale is – as expected –
the model showing high sensitivities for snow re-
lated parameters during winter and spring. How-
ever, simulated discharge shows some sensitivity
for snow related parameters approximately until
end of June, although in reality snow cover was
completely depleted by the end of May. We, thus,
suggest to revise the parameter range of C0 used
for sensitivity analysis for this catchment for sub-
sequent analyses.

A second pattern on the annual scale is the
first order insensitivity of discharge for saturation
deficit related parameters during snow melt peri-
ods. This is plausible since discharge is (by defi-
nition) dominated by melt water during these peri-
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ods.
Plausibility checks are also possible on the event

time scale by checking the sequence of param-
eter sensitivity and comparing it to expectations
based on model design as suggested by Sieber and
Uhlenbrook (2005). The two examples presented
in Section 3.3.2 are compliant with our expecta-
tions. The expectations for the snow melt event
are: at the beginning of the event, discharge de-
pends on whether precipitation occurs as snow or
rain (snow/rain temperature limit) and the amount
of snow melting (temperature melt index). Be-
cause a part of the melt water forms overland flow,
we expect the discharge to be sensitive for the di-
rect flow recession constant.

For the summer event we expect the following
chronology of relevant parameters: first direct flow
recession constant kD and the precipitation inten-
sity limit Plim followed by interflow related param-
eters and finally saturation deficit related parame-
ter which determine base flow.

Two additional benefits: First, TEDPAS is also a
valuable tool for calibration of model parameters.
The fraction of melt water contributing to overland
flow cmelt will hardly ever be well identifiable, be-
cause the sensitivity of simulated discharge for this
parameter is always smaller than 2% despite the
large range for cmelt of 20 · · · 50%. Note that this
result needs to be confirmed with calculation of
higher order sensitivities in order to definintely ex-
clude any influcence of cmelt.

As stated before, sensitivity is a necessary but
not sufficient conditon for identifiablity: parame-
ters may show high sensitivity but be poorly iden-
tifiable if compensatory effects between two pa-
rameters make them interdependent. Such com-
pensatory effects of parameters may be detected
(second benefit), indicated by a highly correlated
sensitivity of the model output for multiple param-
eters. Correlated model parameters can be a ma-
jor source for poor identifiability in hydrological
modelling (Bárdossy, 2007). In the case study,
we observe correlated parameters for the satura-
tion deficit related parameters, which will compli-

cate proper identification of these parameters dur-
ing calibration. Brun et al. (2001) demonstrate how
to derive a set of identifiable parameters from such
a set of correlated parameters.

3.5 Conclusions

We demonstrated that SA can provide valuable
information for improved model understanding,
which goes beyond the most often selected ap-
proach to date, where the most influential parame-
ters for calibration are determined.

For our case study we found that TEDPAS is
consistent with expectations on both the annual
and event time scale. In addition, SA may enhance
calibration because time periods of high parame-
ter sensitivity are the relevant periods for calibra-
tion. Based on the understanding of the impor-
tance of parameters, a priori assumptions may be
revised and field experiments may be guided. Fi-
nally, the method allows to detect compensatory
effects of parameters, which we found for the sat-
uration deficit related parameters of WaSiM-ETH.

To make full use of SA-methods, we need highly
efficent methods. We applied such a highly ef-
ficient SA method called FAST to two rainfall-
runoff models. FAST allows to determine global
sensitivity for parameters with only a limited num-
ber of model runs. The current case study required
around 150 and 490 runs for resp. 6 and 11 param-
eters. Our analysis of parameter sensitivities for
WaSiM-ETH would not have been possible with-
out this very efficient sampling scheme. In addi-
tion, based on the efficient calculation of sensitivi-
ties from model output variables, entire time series
of parameter sensitivity can be calculated (e.g. for
discharge).

That extended SA presented here is only a first
step in obtaining better model understanding. The
ultimate goal is to gain insight into model behav-
ior by answering the three research questions: (1)
during which periods is the model reproducing ob-
served quantities and dynamics; (2) what is the na-
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ture of the error in times of poor model perfor-
mance; and (3) which components of the model
are causing this error. The first two research ques-
tions may be answered using the TIGER method
(Chapter 2), while the third question is answered
using SA methods as presented here. This ap-
proach closely relates to the framework for diag-
nostic model evaluation proposed by Gupta et al.
(2008).
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Chapter 4

Inferring model structural deficits by
analyzing temporal dynamics of model
performance and parameter sensitivity ∗

In this paper we investigate the use of hydrological models as learning tools to help improve our under-
standing of the hydrological functioning of a catchment. With the model as a hypothetical conceptual-
isation of how dominant hydrological processes contribute to catchment scale response, we investigate
three questions: 1) during which periods does the model (not) reproduce observed quantities and dy-
namics. 2) what is the nature of the error during times of bad model performance, and 3) which model
components are responsible for this error.

To investigate these questions we combine a method for detecting repeating patterns of typical dif-
ferences between model and observations (TIGER) with a method for identifying the active model
components during each simulation time step based on parameter sensitivity (TEDPAS). The approach
generates a time series of occurrence of dominant error types and time series of parameter sensitivi-
ties. A synoptic discussion of these time series highlights deficiencies in the assumptions about the
functioning of the catchment.

The approach is demonstrated for the Weisseritz headwater catchment in the eastern Ore Mountains.
Our results indicate that the WaSiM-ETH complex grid based model is not a sufficient working hypothe-
sis for the functioning of the Weisseritz catchment, and point towards future steps that can help improve
our understanding of the catchment.

∗Dominik Reusser, Erwin Zehe (in press), WRR
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4.1 Introduction

The major goal of hydrological research is to learn
from the past to understand and predict the future.
In the standard approach to this learning process,
conceptual models are used to predict future be-
haviors of the investigated catchment, for instance
in the long-term context of climate or land use
change impacts (Niehoff et al., 2002; Niehoff and
Bronstert, 2001; Kleinn et al., 2005, 2003).

Models can, however, also help to shed light on
our incomplete understanding of how hydrological
processes translate into catchment response in dif-
ferent landscapes. By assuming that the model is
the best conceptualisation of our understanding of
the relevant processes and their transformation into
catchment response, we may learn from periods in
which the model is found to perform poorly. Such
an approach, that uses models as learning tools,
can help us to improve our models in a much more
targeted way, and to better identify and possibly
reduce predictive uncertainty.

The core idea of our model assessment approach
is to evaluate the interdependence between pat-
terns of poor model performance and patterns of
dominant model components. The model consists
of functional components that represent different
hydrological processes and their interactions, and
the conditions that lead to the different processes
of the hydrological cycle represent the hydrolog-
ical context. For example, the hydrology of the
catchment may be a) dominated by either mass in-
put or energy input. b) thresholds may alter the
functioning of the catchment; for example snow
influenced periods occur when temperatures drop
below snow melt temperature, or hydrophobicity
dominated reactions occur when catchment wet-
ness drops below a certain threshold (Blume et al.,
2009, 2008b,a). The catchment may spend most
of its time c) either close to or far from equilib-
ria. Depending on the relevant hydrological con-
text, different components of the model will domi-
nate the simulation of catchment dynamics. While
some model components may represent the catch-

ment response well, others are likely to be defi-
cient. Thus we can expect to see repeating pat-
terns of poor model performance, these being re-
lated to the relevance/dominance of model compo-
nents during those periods.

Existing approaches to identify errors in the
model structure and the resulting predictive uncer-
tainties are generally based on various methods of
uncertainty analysis. Often used in hydrology are
GLUE based approaches (Beven and Binley, 1992)
and more formal Bayesian approaches to uncer-
tainty estimation (Thiemann et al., 2001; Gupta,
2003). For example, the multi-period model con-
ditioning approach (Choi and Beven, 2007) anal-
yses the temporal dynamics of parameter uncer-
tainty. In dynamic identifiability analysis (Wa-
gener et al., 2003) non-stationarites in the opti-
mal range for a certain parameter are detected.
An alternative approach was recently presented
by Reichert and Mieleitner (2009) where stochas-
tic, time-dependent parameters are used to iden-
tify model components with the potential to re-
duce model uncertainty. The temporal dynamics of
model structure uncertainties have been analysed
by Clark et al. (2008), who used 79 models from
a model family for their study. Bayesian total er-
ror analysis provides the possibility to simultane-
ously assess the uncertainty from various sources
(Kuczera et al., 2006). None of the existing ap-
proaches explicitly evaluates the interdependence
between patterns of poor model performance and
patterns of dominant model components. In ad-
dition these approaches require a large number of
realizations, which may not be feasible for models
with a more complex process representations, as
computing time becomes quickly the bottle neck.
This calls for other methods that require less model
runs, which we will present here.

We are able to reduce the number of model runs
with our approach because: a) it is not necessary to
calibrate the model in advance, b) a highly efficient
method is used to sample the parameter space, and
c) all model runs are evaluated (to determine pa-
rameter sensitivity) while other Monte Carlo based
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methods often discard the 90% worst runs as a first
step.

Our key idea is that the model structural defi-
ciencies can be better identified and understood
when first analysing patterns of poor model per-
formance and patterns of dominant model compo-
nents independently during model assessment and
subsequently combining the information. In doing
so it is important to recognize that poor model per-
formance might be caused either by data errors or
by deficiencies of certain model components. Ac-
cumulated state variable errors caused by data er-
rors and/or past model structural errors are proba-
bly the most challenging cause of poor model per-
formance. Error contaminated input data can force
sensitive parameters towards wrong values to com-
pensate for poor performance during the calibra-
tion phase. Using a Bayesian framework to address
input uncertainty (Kavetski et al., 2006b,a) or sim-
ply excluding poor input data from the calibration
process can help to minimize this problem. In the
case that certain model components are deficient,
one can expect that simulated discharge will ex-
hibit higher sensitivity to parameters belonging to
the model component with inadequate representa-
tion of the system. If so, the process conceptualiza-
tion associated with that model component should
be revised. This approach provides a much more
targeted process for improving the model with re-
spect to dominant processes and for reducing spe-
cific errors.

The main innovations of this work are this strat-
egy for targeted improvement of the model (by dis-
entangling the temporal dynamics of model perfor-
mance and parameter sensitivity), which has the
ability to provide model diagnostic analysis with
a limited number of model runs.

The core idea of our approach can be condensed
into three interlinked research questions:

1) during which periods is or is not the model re-
producing observed quantities and dynamics?

2) what is the nature of the error in times of poor
model performance?

3) which components of the model are causing
this error?

A methodology to address the first two ques-
tions was presented by chapter 2. Their TIGER
(TIme series of Grouped ERrors) method uses a
combination of a) a large selection of performance
measures to characterize different error types, b)
synthetic peak errors to support error type char-
acterization and c) analysis of the time series oc-
currence of error types with respect to observed
and modeled flow dynamics. To investigate the
third research question, we combine TIGER with
a method for analyzing the temporal dynamics of
parameter sensitivities (TEDPAS) introduced in a
closely related study (Chapter 3). We provide an
overview of the two methods (TIGER and TED-
PAS) and a brief description of the model and study
catchment in section 4.2. Results for the case study
are presented (Section 4.3) and discussed (Sec-
tion 4.4). The study closes with conclusions and
suggestions for future work in Section 4.5.

4.2 Methods and Study Area

4.2.1 Weisseritz catchment

The catchment of the Wilde Weisseritz upstream
of gauging station Ammelsdorf (49.3 km2) served
as the study area. The catchment is situated in the
eastern Ore Mountains at the Czech-German bor-
der (Fig. 4.1) and has an elevation range of 530
to about 900 m a.s.l. Slopes are gentle with an
average of 7◦, 99% are <20◦; calculated from a
90 m digital elevation model (SRTM, 2002). Soils
are mostly cambisols. Land use is dominated by
forests (≈30%) and agriculture (≈50%). The cli-
mate is moderate with mean temperatures of 11◦C
and 1◦C for the periods April - September and Oc-
tober - March, respectively. Annual precipitation
for this catchment is 1120 mm/year for the two
years of the simulation period from 1 June 2000
until 1 June 2002. During winter, the catchment
usually has a snow cover of up to about 1 m for
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Figure 4.1: Wilde Weisseritz catchment (scales in
m).

1 to 4 months with high flows during the snow
melt period (Fig. 4.5 (2d) and (4d) shows the pro-
nounced peaks during spring). High flows can also
be induced by convective events during summer.
WASY (2006) conclude from their analysis based
on topography, soil types and land use that sub-
surface stormflow is likely to be the dominant pro-
cess. Meteorological data including precipitation,
temperature, wind speed, humidity, and global ra-
diation for 11 surrounding climate stations was ob-
tained from the German Weather Service (DWD,
2007). Discharge data, as well as data about land
use and soil were obtained from the state office for
environment and geology (LfUG, 2007).

4.2.2 Hydrological model WaSiM-ETH

WaSiM-ETH is a modular, distributed model
(Schulla and Jasper, 2001) and was used for the
Weisseritz catchment with a regularly spaced grid
of 100 m resolution. The model provides meth-
ods for the interpolation of meteorological input
data. For each cell, a surface runoff storage and
an interflow storage are parametrized with the cor-
responding linear recession constants and a max-
imum storage size for the interflow storage (see
Table 4.1). The precipitation intensity limit de-
fines a threshold, above which macro pore flow
is active and rainfall enters the lower soil stor-
age directly. Interception (leaf area index depen-
dent simple bucket), evapotranspiration (Penman-
Monteith) and snow (temperature-index-approach)
are also included as modules. Four parameters of
the snow module were investigated more closely.
Snow accumulation is determined by the snow/rain
temperature limit. The temperature melt index de-
fines the amount of snow melted for each degree
and hour the temperature is above the snow melt
limiting temperature (third parameter). Finally, the
fraction of snow melt which builds surface runoff
is the fourth parameter. The unsaturated zone is
described for each sub basin based on the Top-
model approach Beven and Kirby (1979). The
Topmodel regionalisation parameter m determines
how strong the gradient in the saturation deficit is
due to differences in the topographic index. m
also enters the equations for the vertical flow qv
(Eq 4.2) and the baseflow QB (Eq 4.1). Verti-
cal flow and baseflow are both calibrated with the
scaling factors Tkorr and Kkorr. Channel flow is
routed with a simple storage to account for diffu-
sion.

QB = Tkorr ∗ e−γ ∗ e−Sm/m (4.1)

qv = Kkorr ∗ kf ∗ e−Si/m (4.2)

γ is the mean value of the topographic index, a
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constant for a given basin, kf is the saturated hy-
draulic conductivity, Sm and Si are the mean and
local saturation deficit for a sub basin, two model
state variables.

4.2.3 Parameter sensitivity (TEDPAS)

An analysis of the temporal dynamics of parameter
sensitivity (TEDPAS) of the modelled discharge
provides insight into the relevant model compo-
nents. To calculate the temporal dynamics of pa-
rameter sensitivity, a sensitivity analysis is per-
formed repeatedly for each time step (Chapter 3)
by: 1) Generating the appropriate sets of model
parameters φ. 2) Evaluating the model for each
parameter set. 3) Processing the model output of
interest for the set of all model runs to calculate the
parameter sensitivity. Note that by explicitly split-
ting analysis of parameter sensitivity and model
performance, one avoids a potential source of er-
rors. If parameter sensitivity of some performance
criterion F were considered, then the sensitivity
S = dF/dφ would depend on two components –
the sensitivity dQsim/dφ and the size of the model
error (Qobs − Qsim) represented in F. In this case,
the sensitivity would depend on both the process
sensitivity and the size of the model error. This
problem does not occur with our method as the
sensitivity is calculated as dQsim/dφ.

We used the Fourier amplitude sensitivity test
method (FAST Schaibly and Shuler, 1973; Cukier
et al., 1973, 1975; Fang et al., 2003) because of its
computational efficiency. Sensitivity analysis for
eleven parameters (Table 4.1) required 487 simu-
lation runs. Parameters were sampled in a repre-
sentative way from the parameter space according
to the FAST sampling scheme. The algorithm is
freely available as a software package (Reusser,
2008) coded using the open source data analysis
language R (R Development Core Team, 2008).
In chapter 3, we report that FAST produces the
same results as three other methods but with at
least eight times less computational burden.

4.2.4 Model performance (TIGER)

The TIGER approach investigates time series of
grouped errors to detect repeating patterns of sim-
ilar poor model performance (Chapter 2). To ex-
plain the method we present a simple “toy exam-
ple” using the time series shown in Figure 4.2. No-
tice that the simulations (shown as 2 runs with dif-
ferent parameters - black lines) deviate from the
“observations” (grey line) in such a way that peaks
1 and 3 are overestimated and peaks 2 and 5 appear
too late, while peak 4 is matched exactly.

The essence of the method is to compute a “fin-
gerprint” of error type for a moving time window
of length 250 time steps, based on an analysis of
several performance measures. For this simple
example, the finger print is based on three per-
formance measures – the root mean square error
(RMSE), Nash-Sutcliffe coefficient of efficiency
(NSCE) and lag time (tL) (see Figure 4.2a, lower
panel). Next, a clustering of fingerprints, based on
self-organizing maps (SOM; Reusser et al., 2009;
Kohonen, 1995; Haykin, 1999; Kalteh et al., 2008)
and fuzzy clustering (Reusser et al., 2009; Bezdek,
1981; Dimitriadou et al., 2008) is performed to
identify similar types of model behaviour along the
modelled time period. Figure 4.2 shows the clus-
ter membership beneath the discharge time series
as bars with varying shading; the saturation of the
color bar is proportional to the cluster membership,
with full saturation indicating a membership of 1
and white indicating a membership of 0. As can
be seen, periods of overestimation (peaks 1 and 3)
appear in cluster A, periods of good agreement in
cluster B, and periods with a time lag are assigned
to cluster C.

To get a better understanding of the nature
of each cluster we next examine error types for
synthetic hydrographs representing a single flood
event (see Reusser et al., 2009, for the mathemat-
ical function used to generate synthetic peak er-
rors). By constructing the synthetic hydrographs
to be of the length of the time window we can
compare the data with the magnitude and duration
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Parameter name Process Symbol Range
temperature limit for snow melt Tm0 snow melt −2 · · · 2
difference between snow/rain temperature limit and
temperature limit for snow melt (the first is always
higher)

snow accumulation TR/S 0 · · · 2

temperature melt index snow melt C0 0.7 · · · 2
fraction on snow melt which is surface runoff snow melt cmelt 0.2 · · · 0.5
Topmodel regionalisation parameter baseflow m 0.005 · · · 0.04
scaling factor for transmissivities baseflow Tkorr 0.005 · · · 0.4
scaling factor for vertical flow baseflow Kkorr 800 · · · 8000
recession constant for surface runoff single linear
storage

surface runoff kD 1 · · · 120

maximum content of the interflow storage interflow SHmax 1 · · · 150
recession constant for interflow runoff single linear
storage

interflow kH 50 · · · 300

precipitation intensity limit fast infiltration Plimit 0.2 · · · 20

Table 4.1: Parameters of the model WaSiM-ETH used for the sensitivity analysis

of a “typical” event. Based on this artificial refer-
ence hydrograph we construct the two error types
- including under- and overestimation and positive
and negative lag times with three levels of devia-
tion (Figure 4.2b). Only clusters A and C appear
in this plot, because the presented synthetic peak
errors correspond only to these two performance
measures clusters . This example illustrates how
we interpret clusters A and C as representative of
periods of overestimation and time lags, respec-
tively.

Whereas the toy example presented above uses
only 3 performance measures, the approach used
in our full case study uses 44 additional perfor-
mance measures (in addition to NSCE, RMSE and
tL) to provide a complete fingerprint of model per-
formance (Chapter 2). In addition, we selected the
25 best model runs from the set of 487 model runs
(section 4.2.3) for the analysis (best 5% of model
runs) based on the Nash-Sutcliffe coefficient of ef-
ficiency NSCE (Nash and Sutcliffe, 1970). Fur-
ther, we supplement the synthetic hydrograph er-
ror types and provide a second aid to the under-
standing of the nature of each cluster, based on the

range of the performance measures for each clus-
ter is visualised with box plots. The error types for
synthetic hydrographs are extended to a set of a)
peak errors, b) timing errors, c) volume errors or
d) recession errors in the simulation as shown in
Figure 4.3.

As preparation for understanding the results of
the Wilde Weisseritz case study, we introduce here
the error types generated using the synthetic hy-
drographs (Figure 4.3). Cluster A (red) includes
the synthetic peak errors closest to the reference
peak, and therefore corresponds to periods with
the best accordance between models and obser-
vation. Cluster B (yellow) includes peaks where
the recession period is generally too fast and peaks
in the reference do not occur in the synthetic er-
rors. Cluster C (green) includes peaks with overes-
timated discharge, mainly due to recession periods
that are too slow. Cluster D (blue) includes strong
underestimation where the discharge time series is
shifted below the reference. Cluster E finally in-
cludes false peaks and overestimations due to an
upwards shift. A summary of cluster characteriza-
tion (including observed characteristics from per-
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b) Cluster characterization: Synthetic peak errors
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Figure 4.2: Synthetic discharge time series for demonstration of the TIGER method. Part a) shows time
series data: observed and 2 simulated discharge time series and cluster memberships (A,B,C) in the
first panel. The second panel shows time series for the performance measures root mean square error
(RMSE), Nash-Sutcliffe coefficient of efficiency (NSCE) and lag time (tL). Part b) characterization of
clusters with synthetic peak errors (see also Figure 4.3 – only clusters A and C appear in the plot).
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Figure 4.3: Examples of synthetic errors for a single peak event: Peak over- or underestimation (1),
baseflow over- or underestimation (2), recession too fast or too slow (3), timing: too late or too early
(4), maximum peak flow over- or underestimation but with correct total volume (5), peak too wide (start
too early, recession too slow) or too narrow (6), erroneously simulated peak (7) or missing peak (8), and
over- or underestimation during a late recession phase (9). The colors indicate the cluster with which
the synthetic errors are associated (Cluster A: red, B: yellow, C: green, D: blue, and E:purple - see
section 4.3.2 for a description of the clusters)



4.2 Methods and Study Area 83

Cluster Nr. Year Period Parameters Model component

Cluster A: best fit, includes
synthetic peak errors with
small level, low flow periods
not represented very well

1 2000 Jul.18 - Jul.19
2 2000 Aug.22 - Sep.04 m sat. deficit
3 2001 Jan.23 - Feb.03 Tm0 snow
4 2001 Jul.08 - Jul.18 Tkorr, kH sat. deficit, interflow
5 2001 Aug.05 - Aug.21 Tkorr sat. deficit
6 2001 Oct.28 - Oct.29 kH interflow
7 2002 Mar.23 - Mar.30 kH interflow
8 2002 Apr.28 - May.07 Tm0 snow
9 2002 May.15 - May.31 Tm0 snow

Cluster B: underestimation
(mainly due too fast
recession), missing peaks,
peaks too early, differences for
smaller values but good
agreement for peaks

10 2000 Dec.22 - Dec.31 kH interflow
11 2001 Jan.15 - Jan.23 Tm0 snow
12 2001 Feb.06 - Feb.09 Tm0 snow
13 2001 Feb.26 - Mar.09 kH interflow
14 2001 Jun.07 - Jun.12 kH interflow
15 2001 Jul.20 - Jul.21 Tkorr, kH sat. deficit, interflow
16 2001 Sep.04 - Sep.11 kH interflow
17 2001 Dec.24 - Jan.29 Tm0 snow
18 2002 Apr.18 - Apr.20 Tm0 snow

Cluster C: dynamics well
reproduced but overestimation
(mainly due to too slow
recession), peaks too late

19 2001 Feb.09 - Feb.15 Tm0 snow
20 2001 Mar.11 - Apr.08 Tm0 snow
21 2001 May.05 - May.19 Tm0 snow
22 2001 Dec.06 - Dec.23 Tm0 snow
23 2002 Jan.29 - Mar.19 Tm0 snow
24 2002 Mar.31 - Apr.11 Tm0 snow

Cluster D: bad reproduction of
dynamics, underestimation
mainly due to downwards shift
of time series

25 2000 Jun.11 - Jun.13
26 2000 Jul.06 - Jul.08 m sat. deficit
27 2000 Jul.25 - Aug.21 m sat. deficit
28 2000 Sep.02 - Sep.02 m sat. deficit
29 2000 Nov.02 - Nov.09 kH interflow
30 2000 Nov.21 - Dec.22 Tm0 snow
31 2001 Jan.03 - Jan.08 Tm0 snow
32 2001 Apr.20 - Apr.29 Tm0 snow
33 2001 Jun.15 - Jun.16 kH interflow
34 2001 Nov.01 - Nov.08 kH interflow

Cluster E: overestimation due
to upwards shift and false
peaks, recession periods do
not agree well, good
agreement after rescaling

35 2000 Dec.07 - Dec.10 kH interflow
36 2001 Jan.10 - Jan.14 Tm0 snow
37 2001 Feb.18 - Feb.19 kD direct flow
38 2001 Apr.15 - Apr.16 kH interflow
39 2001 May.01 - May.03 Tm0 snow
40 2001 Jun.24 - Jul.05 Tkorr sat. deficit
41 2001 Jul.22 - Aug.02 Tkorr sat. deficit
42 2001 Sep.14 - Oct.16 kH interflow
43 2001 Nov.09 - Dec.06 Tm0 snow
44 2002 Feb.26 - Feb.26 Tm0 snow

Table 4.2: Time periods with a high cluster membership (>0.7) and the corresponding dominating pa-
rameters (sensitivity > 0.2 for at least 40% of the period).
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formance measures) is provided in Table 4.2.

4.3 Results

4.3.1 Analysis of parameter sensitivity
(TEDPAS)

Two examples of TEDPAS at the event time scale
are shown in Fig 4.4. The two examples (left and
right columns) each consist of four graphs (a-d).
The three top graphs (a-c) show the sensitivity of
the modelled discharge for different parameters,
grouped by different model components. The first
graph (a) shows the snow melt related parameters.
The three saturation deficit related parameters m,
Tkorr and Kkorr are shown in the second graph (b).
The third graph (c) shows the remaining param-
eters kD, kH , SHmax, and Plimit. Sensitivity is
reported in terms of the partial variance explained
by a parameter at this time step. For example a
value of around 0.3 for parameter kH during July
2000 indicates that 30% of the observed variation
between the model runs can be explained by this
parameter. The sum over all parameter sensitivi-
ties never exceeds 1.0 but may be lower because of
the numerical approximation (Cukier et al., 1975)
or if parameter interactions are of importance (non-
additive models – Saltelli et al., 2006). The fourth
graph (d) shows the 25 modelled discharge time se-
ries in black and the measured time series in grey.

The first example (left column) is in February
2001. Simulated discharge depends strongly on the
snow melt temperature limit Tm0 (Fig 4.4-1a) dur-
ing the entire winter (see also Fig 4.5). At the be-
ginning of the event, the modelled discharge shows
some sensitivity to shift of the snow/rain tempera-
ture limit TR/S and the temperature melt index C0

(Fig 4.4-1a). Discharge also shows some sensitiv-
ity towards the direct flow recession constant kD
(Fig 4.4-1c). Towards the end of February, sensi-
tivity of the discharge decreases for kD and C0 and
increases for the interflow recession constant kH .

The second example (right column) is in July
2001. At the beginning of the event, modelled

discharge shows increased sensitivity to the di-
rect flow recession constant kD and the precip-
itation intensity limit Plim (Fig 4.4-2c). Subse-
quently, the sensitivity of discharge mainly de-
pends on the interflow recession constant kH and
shows slight sensitivity towards the interflow reser-
voir size SHmax. At the end of the event simulated
discharge is sensitive to the three saturation deficit
related parameters (Fig 4.4-2b).

4.3.2 Analysis of model performance
(TIGER)

The temporal dynamics of model performance was
calculated for the best 25 runs (section 4.2.4).
The corresponding 25 sets of model parameters
are listed in Table 4.3. Nash-Sutcliffe efficiencies
(NSCE) between 0.47 · · · 0.63, with an average of
0.54 were observed for the 25 model runs. A closer
look reveals that acceptable model performance is
observed mainly during late spring / summer (see
below, Cluster A) and various differences between
models and the observation occur during the re-
maining periods.

The 25 modelled discharge time series and the
measured time series are shown in Figure 4.5 (bot-
tom subplot) in black and grey, respectively. The
top three subplots show parameter sensitivities,
while the cluster membership for each time step is
shown in the fourth subplot using color-coded bars.
Cluster A (best accordance) occurs mainly during
late spring / early summer. Cluster B (recession
too fast) and cluster C (discharge overestimated)
occur during snow melt events. Cluster B is also
present during summer. Cluster D (strong under-
estimation) occurs only a few times, mainly dur-
ing the initial simulation period. Finally, cluster E
(false peaks or upwards shift) occurs during times
where the model overestimates the observed data
throughout the entire period. For more details on
the results of the TIGER analysis see (Chapter 2).
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Figure 4.4: Temporal dynamics of parameter sensitivity for periods in 2001. Panels (a-c) show the
parameter sensitivity of the modelled discharge (a: snow model related parameters; b: saturation deficit
related parameters; c: remaining parameters kD, kH , SHmax, and Plimit). The sensitivity is reported as
partial variance that can be explained by the corresponding parameter. The fourth graph (d) shows the
25 modelled discharge time series in black and the measured time series in grey. The two columns refer
to different periods.
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Figure 4.5: As Figure 4.4 for the entire simulation period. The figure also shows the performance cluster
membership µt as color coded bars (Cluster A: red, B: yellow, C: green, D: blue, and E:purple) where
full color saturation corresponds to a membership of 1 and white to a membership of 0.
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m Tkorr Kkorr kD SHmax kH TR/S Tm0 C0 cmelt Plimit

0.018 0.16 7800 80 55 260 2 -1.5 1.8 0.43 14
0.03 0.072 2000 64 140 170 1.6 -2 1.9 0.43 14
0.015 0.076 3800 13 83 210 0.44 -0.56 1.9 0.43 12
0.01 0.21 4400 49 110 200 0.93 -2 1.6 0.28 1.5
0.022 0.38 3400 94 110 290 0.53 -1.5 1.7 0.28 0.93
0.04 0.33 6800 35 57 220 0.49 -1.9 1.1 0.41 16
0.019 0.0083 5300 93 130 180 1.1 -1.7 1.5 0.39 7.4
0.023 0.092 4900 77 59 240 0.77 -1.3 1.8 0.47 4.8
0.034 0.012 7100 72 87 220 0.84 -0.84 1.5 0.47 7
0.037 0.051 7300 36 32 120 0.053 -1.3 1.9 0.32 17
0.031 0.27 1100 110 110 210 0.35 -1.8 2 0.32 18
0.019 0.31 6700 11 100 300 0.75 -1.8 1.9 0.32 18
0.021 0.046 1900 26 140 270 1.8 -1.7 1.6 0.36 3.3
0.029 0.23 4500 40 89 240 0.41 -1.7 1 0.35 12
0.022 0.064 7400 9.6 130 200 0.21 -1.4 1.1 0.35 12
0.018 0.33 3800 24 120 230 1.6 -1.5 1.6 0.36 3.5
0.03 0.25 6000 74 100 280 2 -2 1.5 0.37 3
0.032 0.2 2600 39 64 250 0.95 -1.5 1.9 0.33 19
0.02 0.027 5200 59 150 260 0.55 -2 2 0.32 18
0.0082 0.24 4600 84 73 160 0.14 -1.5 2 0.32 17
0.028 0.38 7000 29 100 200 0.56 -1.5 1.8 0.47 5
0.02 0.3 1200 45 92 230 0.87 -2 1.4 0.39 7.1
0.031 0.053 5100 31 120 96 0.021 -1.7 1.4 0.26 11
0.017 0.14 2300 46 68 270 0.33 -1.3 1.7 0.28 0.65
0.029 0.09 7500 98 150 240 0.73 -1.7 1.6 0.28 1.2

min 0.0082 0.0083 1100 9.6 32 96 0.021 -2 1 0.26 0.65
max 0.04 0.38 7800 110 150 300 2 -0.56 2 0.47 19
prior min 0.005 0.005 800 1 1 50 0 -2 0.7 0.2 0.2
prior max 0.04 0.4 8000 120 150 300 2 2 2 0.5 20

Table 4.3: Parameter values for the best TEDPAS runs. Min and max define the range covered by the
best TEDPAS runs, while prior min and prior max correspond to the initial range from table 4.1
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4.3.3 Combined analysis of model perfor-
mance and parameter sensitivity

Table 4.2 lists the periods during which cluster
membership > 0.7 occurs along with the relevant
parameters. The latter are defined as those for
which the modelled discharge has a partial sensi-
tivity > 0.2 for at least 40% of the period. In other
words, parameters are considered relevant if they
explain at least 20% of the discharge variance for
at least 40% of the period. While these thresh-
olds (20% and 40%) are subjectively chosen, they
provide an objective basis for analysis and make
it easier to reproduce results than by direct visual
inspection of Figure 4.5.

Cluster A is not further discussed here be-
cause these correspond to periods having reason-
able accordance between simulation and observa-
tion. From Table 4.2 we see that if cluster B (reces-
sion too fast) occurs, the relevant parameter during
summer and fall is normally kH while the relevant
parameter during snow melt periods is Tm0. Er-
ror cluster C (discharge overestimated) always co-
incides with Tm0 as relevant parameter. Periods
that correspond to cluster D (strong underestima-
tion) have m as the relevant parameter during the
initial phase of the simulation, while kH and Tm0

become relevant later. For cluster E (false peaks or
upwards shift) 4 different parameters are important
at different times.

This general pattern can be better understood by
also looking at Figures 4.6-4.8, which show details
from Figure 4.5:

1) Example A (Figure 4.6): during both winter
periods, the simulated discharges do not re-
spond in concert with observed events (clus-
ter B (recession too fast) – period nr. 11, 13,
17). Discharge is seen to be sensitive to the
temperature limit for snow Tm0. However,
the temperature melt index cmelt has no influ-
ence on simulated discharge, indicating that
no snow melt is occurring during these pe-
riods. Interestingly, discharge is sensitive to
the Topmodel parametersm, Tkorr, andKkorr,

which would typically not be the case during
snow melt periods. (a possible explanation
will be presented in the discussion).

2) Example B (Figure 4.7): for cluster C (dis-
charge overestimated) we see that the patterns
of snow melt period dynamics are reproduced
fairly well but there is an upwards shift that
results in overestimation. During all these pe-
riods The most important parameter is Tm0 -
the snow melt temperature, but discharge is
also sensitive to the snow melt index C0 and
the direct flow recession constant kD.

3) Example C (Figure 4.8): For periods in clus-
ter E (false peaks or upwards shift), the re-
cession in the model is too rapid compared
to the observed discharge. In terms of sen-
sitivity, we observe 4 different main patterns
where discharge depends on a) Kh and Tm0

(period nr. 35, 38, 43, 44), b) Tm0 only (pe-
riod nr. 36, 39), c) kD, C0, and Tm0 (Period
37), d) kh, Tkorr, and SHmax (period 40, 41,
42).

4.4 Discussion

4.4.1 Parameter sensitivity (TEDPAS)

The two examples presented in Section 4.3.1 are
compliant with our expectations regarding pa-
rameter sensitivity, that at the beginning of the
snowmelt event, discharge depends on whether
precipitation occurs as snow or rain (snow/rain
temperature limit) and on the amount of snow
melting (temperature melt index). Because a part
of the melt water forms overland flow, we also ex-
pect the discharge to be sensitive to the direct flow
recession constant. Similarly, during the summer
event we expect the following chronology of rel-
evant parameters: first direct flow recession con-
stant kD and the precipitation intensity limit Plim

followed by interflow related parameters and fi-
nally the saturation deficit related parameter which
determine base flow.
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Figure 4.6: Details from Figure 4.5 for January 2001 (left plot) and January 2002 (right plot).
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Figure 4.7: Details from Figure 4.5 for March 2001 (left plot) and February 2002 (right plot).
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Figure 4.8: Details from Figure 4.5 for July (left plot) and September 2001 (right plot).
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In addition to plausibility checks, the analysis of
temporal dynamics of model parameters provides
at least two further benefits. First, an understand-
ing of the temporal dynamics of parameter sensi-
tivity provides a valuable context for the calibra-
tion of model parameters. In general we would
expect that periods of high parameter identifiabil-
ity should coincide with periods of high parame-
ter sensitivity. Our results suggest, therefore, that
the fraction of melt water contributing to overland
flow, cmelt, will hardly ever be well identifiable,
because the sensitivity of simulated discharge for
this parameter is always smaller than 2% despite
the large range for cmelt of 20 · · · 50%.

Second, it is possible to detect compensatory ef-
fects of parameters, indicated by a highly corre-
lated sensitivity of the model output for multiple
parameters. Correlated model parameters can be
a major source for poor identifiability in hydro-
logical modelling (Bárdossy, 2007). While Sieber
and Uhlenbrook (2005); Cloke and Pappenberger
(2009) used TEDPAS for plausibility checking,
our results indicate that the TEDPAS approach can
also be used to identify correlations among model
parameters. In our case study, we observe corre-
lation among the saturation deficit related param-
eters, which may complicate proper identification
of these parameters during calibration.

4.4.2 Model performance (TIGER)

We found 5 clusters of model performance
which we characterized with synthetic peak errors
(Fig. 4.3). The Nash-Sutcliffe coefficients of ef-
ficiencies were greater than 0.47 for the 25 se-
lected, model runs. The temporal pattern of model
performance shows that acceptable agreement be-
tween model and observation (cluster A) occurs
mainly during late spring and summer (Fig. 4.5
and Tab. 4.2). Four types of deviations (clusters B
. . . E) are observed during the other periods:

1) Completely missing peaks during snow sea-
son (cluster B). This will be further discussed
below.

2) Major snow melt events are generally overes-
timated (cluster C).

3) At the start of the simulation we observe
poor reproduction of dynamics and differ-
ences during low flow periods (cluster D).
This indicates that the current model initial-
ization (repeating a complete 2 year simula-
tion with daily time steps until the saturation
deficit storage stops changing and “compen-
sating” for the starting conditions) can be fur-
ther improved.

4) Strong overestimation combined with reces-
sion phases that are too fast in the model com-
pared to the observation is observed thorough
out the entire simulation period (cluster E).

4.4.3 Combination of model performance
and parameter sensitivity

By combining the information regarding model
performance with that about parameter sensitivity,
we expect repeated patterns of similar error finger
prints to point towards model structural deficits.
Here, we discuss alternative possible explanations
for the patterns observed in our study, and discuss
strategies for distinguishing between alternatives.

1) The missing sensitivity of the modeled dis-
charge to the temperature melt index during
the periods with missing peaks (Example A
in section 4.3.3) indicates that no snow melt
is occurring in the model. This is in marked
contrast with the observed increases in dis-
charge. A check of temperatures (in the data
record) shows them to be well below Tm0 dur-
ing these periods. Therefore, the catchment
may be experiencing radiation induced melt
events (process not included in the model) or
the observed rises in discharge may be caused
by backwater effects due to ice jams. To in-
vestigate the hypothesis that these peaks are
due to radiation induced snowmelt events, we
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made a quick “back of the envelope” calcu-
lation, checking if incoming radiation is suf-
ficient to release the required amount of wa-
ter under the assumption of clear sky and ne-
glecting the effect of the forest cover. Only
looking at short wave radiation, the energy is
sufficient to melt the required amount of wa-
ter. However, as soon as longwave radiation
is included, total energy input into the snow
cover is negative. This is supported by simu-
lations of Kneis and Heistermann (2009) who
used a hydrological model with an energy bal-
ance based snow module called Larsim for
the same catchment. They did not find dis-
charge to increase during these periods with
their model. Also, rechecking data sources
revealed that data is potentially influenced by
ice at the gauging station.

2) Cluster B (missing peaks, peaks too early) oc-
curs for some summer events. These are al-
ways short periods (period nr. 14, 15, 16)
that are influenced by interflow and saturation
deficit parameters. These events are always
followed by Cluster E periods with strongly
overestimated discharges that are influenced
by interflow and saturation deficit parameters
(kh, Tkorr, and SHmax – periods 40, 41, 42).
This overestimation of discharge rises sug-
gests that the model system does not retain
enough water during interflow dominated pe-
riods. A check of the water balance revealed
that the cumulative simulated discharge of
1310 - 1335 mm is 25% larger than cumula-
tive observed discharge. This may be related
to underestimation of evapotranspiration, and
further analysis using calibrated model runs
will be necessary to explore this hypothesis.

3) Cluster C periods consist of winter events
with acceptable dynamics, but with an up-
wards shift of discharge leading to overesti-
mation. This could be avoided if more wa-
ter was stored in the system during snowmelt

periods. Different values for the overall
snowmelt indices are unlikely to resolve the
problem, since the 25 selected parameter sets
already provide relatively good values for the
Nash-Sutcliffe efficiency.

Overall, it is likely that the snow model may
be too simple for this catchment. Complex-
ity may be added by (for example) extending
the model with a radiation induced melt com-
ponent. This may lead to a higher estimate
for Tm0, resulting in less water stored in the
snow cover and released during the melt pe-
riod. Alternatively, the model structure could
be extended to use land-use related snowmelt
indices instead of a single parameter, since
melt is reported to generally occur slower in
forested areas (Herbst and Casper, 2008; Win-
kler et al., 2005; Storck et al., 2002).

4) Cluster D is mainly a period of poor perfor-
mance during the beginning of the simulation.
We hypothesize that the current model initial-
ization should be further improved (mainly by
including a longer warm up period). This is
further supported by the fact that discharge is
much more sensitive to parameter m at the
beginning of the simulation than during any
other period. The remaining cluster D periods
occur together with cluster E periods, how-
ever cluster D has lower discharge values. For
cluster E (example C) we observe that the re-
cession is too fast, while the discharge is sen-
sitive to various parameters. Recession analy-
sis (Fenicia et al., 2006; Wittenberg and Siva-
palan, 1999) could be used to better under-
stand the recession process during these pe-
riods. We suspect that a linear reservoir ap-
proach for interflow may be too simple.

4.5 Conclusions

The core idea of this study is to provide a novel
diagnostic approach for a joined analysis of tem-



94 Chapter 4 Inferring model structural deficits

poral patterns of a) poor model performance and
b) of dominant model components. More specifi-
cally, the idea is to work out whether certain types
of model errors occur in coincidence with a) a cer-
tain context (snow melt, recession periods) and b)
a high sensitivity of always the same model pa-
rameters. We suggest that coherence in the tem-
poral patterns of error types and dominance of
model components/parameter sensitivity allows a
targeted identification of data errors and/or struc-
tural deficiencies of model components. This is a
precondition for improving models to reduce oc-
currence of a certain error types in a targeted way.

Reduction of model structural uncertainty can
be achieved in two ways. One approach is to test
the model against several sets of independent tar-
get data. This is often be referred to as multi ob-
jective parameter estimation and means to increase
the "information content" of the target data space.
The other approach is to represents dominant pro-
cesses and their controls such that characteristic
behaviour can be reproduced in a more realistic
manner, for instance resolving lateral flows and
surface and subsurface flow paths, or reproducing
subsurface storage volumes. This is often referred
to as "process complexity" of the model and means
to reduce the manifold of acceptable model struc-
tures. The use of more complex models implies
that computational effort and simulation times in-
crease considerably. The proposed approach is fast
enough to be applied to models with increasing
complexity because: a) it is not necessary to cal-
ibrate the model in advance, b) a highly efficient
method is used to sample the parameter space, and
c) all model runs are evaluated (to determine pa-
rameter sensitivity) while other Monte Carlo based
methods often discard the 90% worst runs as a first
step.

The case study shows that the method is able to
enhance our understanding of the model’s struc-
tural deficits with respect to the catchment. We
expect the same model to show different struc-
tural deficits in different landscapes, and different
model concepts to show different structural deficits

in the same landscape. Consistent application of
the proposed methodology could, in the long term,
enable the development of basis for discriminat-
ing model/process concepts and landscapes into
“compatible and incompatible sets” (in which the
model/process can be expected to work with low
structural/high structural deficits). Ultimately, it
could help to reduce the overwhelming number of
hydrological models to a minimum amount nec-
essary for dealing with the richness of our land-
scapes.

Building upon the expected different structural
deficits to be identified for different models, the ap-
proach presented may change the way model com-
parison is performed. The temporal dynamics of
model performance allow to test if similar patterns
of model performance are observed for a given
hydrological context for different process descrip-
tions. If the patterns of model performance do not
differ, we can conclude that the process descrip-
tions in the models are not distinguishable in terms
of the process dynamics produced. This way, we
might also be able to reduce the number of possi-
ble process representations into a small set of dis-
tinguishable formulations.

With respect to data, the approach is efficient
in highlighting periods of possible data errors, for
which additional checks are necessary. Also, spe-
cific conditions for which an improved understand-
ing is necessary are highlighted by our method,
which makes it possible to collect additional data
in a more targeted way. Thus, the approach can be
used to guide field experiments.

Future research may include application to dif-
ferent landscapes and model concepts, through
testing with virtual landscapes and well-defined
model deficiencies as well as the analysis of ad-
ditional model output variables e.g. ground water
levels or areal patterns of snow heights.
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Chapter 5

Low-cost monitoring of snow height and
thermal properties with inexpensive
temperature sensors. ∗

Small, self-recording temperature sensors were installed at several heights along a metal rod at five loca-
tions in a case study catchment. For each sensor, the presence or absence of snow cover was determined
based on its insulating effect and the resulting reduction of the diurnal temperature oscillations. Sensor
coverage was then converted into a time series of snow height for each location. Additionally, cold
content was calculated. Snow height and cold content provide valuable information for spring flood
prediction.

Good agreement of estimated snow heights with reference measurements was achieved and increased
discharge in the study catchment coincided with low cold content of the snow cover. The results of
the proposed distributed assessement of snow cover and snow state show great potential for a) flood
warning, b) assimilation of snow state data, and c) modelling snowmelt process.

∗Dominik Reusser, Erwin Zehe (2011), Hydrological Processes, in press, doi:10.1002/hyp.7937
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5.1 Introduction

Comprehension of snowmelt induced floods re-
quires a good understanding of the snow cover in
terms of spatial distribution and temporal evolu-
tion. Two of the key parameters of the snow cover
are the amount of water stored (snow water equiv-
alents – SWE) and the cold content defined as the
amount of energy necessary to trigger the melting
process. Therefore, to make progress towards im-
proved real time warning of snowmelt events, we
are interested in the detection of 1) the amount of
snow and 2) the required energy input to reach the
melting point of the snow cover.

The amount of snow on large scales is com-
monly assessed through a combination of field
measurements and remote sensing. The standard
approach is to determine snow-covered area (SCA)
and observe its change over time from remote
sensing data (e.g. Durand et al., 2008; Kolberg
and Gottschalk, 2006) or photography (Farinotti
et al., 2010). Empirical relationships between
SCA and SWE (so called snow depletion curves)
are subsequently used to determine snow amounts
(e.g. Liston, 1999; Durand et al., 2008; Kolberg
and Gottschalk, 2006). Assimilation methods like
Kallman filters may be used to combine model
predictions with SCA information (Andreadis and
Lettenmaier, 2006; Clark et al., 2006) or SWE data
(Slater and Clark, 2006).

Reliable measurements of snow height or SWE
are required since snow depletion curves need to
be validated (Essery and Pomeroy, 2004; Pomeroy
et al., 2004; Liston, 1999). Furthermore, SCA
may be rather uniform at smaller extents (less than
100 km2) and thus deemed as poor predictor for
SWE and snow height. Manual measurements
of snow courses are very labour intensive. Con-
ventional equipment (snow pillows for SWE mea-
surements and ultrasonic sensors for height mea-
surements) is relatively expensive (>2000 Euro for
one location) and thus allows sampling at a rather
coarse spatial resolution.

Instead, inexpensive temperature sensors could

be used at a higher spatial resolution with the same
expenses. The measuring principle is based on the
fact that the snow cover results in a strong reduc-
tion of daily temperature fluctuations. Lundquist
and Lott (2008) demonstrated the characterization
of snow patchiness and snow accumulation pat-
terns with such inexpensive temperature sensors.
For their measurements, single sensors were buried
in the soil and the time of snow cover disappear-
ance was recorded. The date the snow cover dis-
appeared was converted to an estimation of the
amount of snow that accumulated at the start of the
melt season with a snowmelt model. The approach
of Lundquist and Lott (2008) requires climatic data
for the snow model and is based on the assumption
that the snow model is representative. Also, their
analysis can only be performed after the sensors
are uncovered.

The main objective of our study is to obtain dis-
tributed data on snow height and snow temperature
profiles by installing cheap temperature sensors at
multiple locations. Our approach does neither de-
pend on a snow model nor on climatic data for the
determination of the snow height. We achieve this
goal with multiple sensors installed at different el-
evations above ground at the same location.

The data from the simple, robust and cost effec-
tive temperature measurements in and above the
snow cover will be assessed for their value for
simultaneously obtaining information about snow
height and temperatures, and the cold content. Re-
lated methodological issues to be solved are: 1)
Can we find an algorithm to extract snow height
information from temperature data? 2) How well
do the estimated snow heights compare to refer-
ence measurements? 3) How do we calculate cold
content from the temperature profile?

We describe the methods in section 2, results
are presented (section 3) and discussed (section 4).
Conclusions are drawn in section 5.
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5.2 Methods

5.2.1 Measurement locations and experi-
mental design

As a case study, we selected the upper catchments
of the Wilde and Rote Weisseritz, situated in the
eastern Ore Mountains close to the Czech-German
border. Slopes are gentle with an average of 7◦,
99% are <20◦; calculated from a 90 m digital ele-
vation model (SRTM, 2002). The area is 49.3 km2

and 47.8 km2 for the Wilde (gauge Ammelsdorf)
and Rote Weisseritz (gauge Schmiedeberg), re-
spectively (Figure 5.1a). About 50% of the area
is forest and 40% is used for agricultural activi-
ties. There are only a few villages and towns in
the upper catchment. Mean temperatures are 11◦C
and 1◦C for the periods April - September and
October - March, respectively. Annual precipita-
tion is around 1000 mm/year. Discharge data for
two gauging stations (Figure 5.1a) were obtained
from the State Office for Environment and Geol-
ogy (LfUG, 2007).

Sensors were placed at five locations in the up-
per part of the catchment (Figure 5.1 and table 5.1)
where a snow cover of about 1 m is abundant for
one to four months with high discharge during the
snowmelt period. The sensor set placed at the low-
est location was installed at around 500 m above
sea level (table 5.1), the highest at 760 m a.s.l. and
the catchments go up to about 900 m a.s.l. Gentle
slopes on grass land were selected as measuring lo-
cations. All but one location had low exposure to
wind (table 5.1).

To estimate the extent (Blöschl, 1999) of
our measurements, the combined catchment area
for the two rivers is relevant with an area of√
Acatchment ≈

√
100 km2 = 10 km, while the

spacing is
√
Acatchment/n ≈

√
100 km2/5 =

4.5 km The support is calculated from the mea-
suring area of a sensor (r=(10 cm)2 ∗ π), resulting
in a value of

√
Asensor =

√
0.031 m2 = 0.18 m.

Temperatures were measured and recorded
with a Hobo pendant temperature data logger (Fig-
ure 5.1d). The logger has a size of 58 x 33 x 23 mm
(about the size of a matchbox). Temperatures can
be recorded in a range from -20 to +50◦C with an
accuracy of ±0.47◦C at 25◦C and ±0.8◦C in the
full measurement range. The data loggers are wa-
ter tight and have a storage capacity to hold about
one year’s worth of ten minute data. Costs are
around 20 Euro for each logger.

At each location, nine sensors were placed on a
square metal rod with a spacing of 15 cm covering
a range from 0 to 120 cm above ground (Fig 5.1c).
We will refer to such a rod with nine sensors as a
temperature sensor set.

A reference station was set up at an experi-
mental station of Technical University (TU) Dres-
den and TU Freiberg located near Baerenfels
(Fig 5.1a). The main purpose of the station is the
measurement of air pollutants and meteorological
variables. The station is at an elevation of 735 m
above sea level. More details about the station and
additional measurements are available on the sta-
tion web page (Eichelmann, 2009).

Snow water equivalents were measured with a
3x3 m snow pillow made by the company Som-
mer from a stable PVC-sheet (Fig 5.1b). The
snow pillow was installed on a level sand bed and
filled with 600L of a water ethylene-glycol mix-
ture (2:1) (IUPAC name: ethane-1,2-diol, obtained
from Sigma-Aldrich). A pressure sensor DMP 331
(from BD sensors) measured the pressure inside
the pillow in the range from 0-250 mbar relative
to atmospheric pressure, giving a constant current
signal (independent of the voltage) proportional to
the pressure. The accuracy of the sensor is better
than 0.1%.

The collected data were noisy, showing large
short term variations. We were unable to identify
the reason for the noisy measurements. Data qual-
ity was acceptable after applying a filter that ac-
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Figure 5.1: Weisseritz catchment: a) digital elevation model and location of temperature sensors and
gauging stations (elevations and distances in meters) b) snow pillow and ultra-sonic sensor used for
reference measurements c) installation of temperature sensors d) a single Hobo data logger and a 1 Euro
coin as reference for the size.
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Nr. Location Abbreviation Elevation Exposition Description
1 Neuhermsdorf NHD 760 west clearing in a small valley
2 Oberbaerenburg REF 735 leveled ground clearing
3 Rehefeld RFD 700 north east open grassland, windy
4 Baerenfels BFS 630 east open grassland
5 Lehnmuehle LHM 520 west open grassland

Table 5.1: Location of sensors

cepted data within ± 0.2% around the local me-
dian, calculated from 151 10-minutes measure-
ments (≈24h).

A temperature sensor set (REF, see table 5.1)
was installed about five meters from the snow pil-
low.

Snow height was recorded with an ultrasonic
sensor SR50 (Campbell Scientific) with a measure-
ment range of 0.5 to 10 m, a resolution of 0.1 mm
and an accuracy of ± 0.4% of the distance to the
target (at least ± 1 cm). The sensor was mounted
at 1.8 meters directly over the snow pillow and the
beam has a range of 22◦ resulting in an observed
area with a diameter of about 0.7 m. The sen-
sor failed to measure for some periods for reasons
that we have not been able to identify. The sensor
failures were clearly identifiable by a distance to
ground of 0 m and were discarded.

Snow surface temperature was measured with
an IRTS-P infrared temperature sensor (Campbell
Scientific). The sensor has an accuracy of ±0.3◦C
in the range from -10 to 55◦C. It was also installed
at a height of 1.8 m above ground. The 3:1 field
of view results in an observed area with diame-
ter 0.6 m. A correction for sensor temperatures
was applied as advised by the supplier (Campbell,
2006).

A DL2e data logger (Delta-T Devices Ltd) was
used to monitor and record data from all sensors
at the reference station at an hourly interval. In
March 2009 there was a logger failure and no data

were recorded until the next field trip at the end of
April.

Additional data included a snow report on the
web page of the hotel SWF Skibahnhof located in
Neuhermsdorf (Dietrich, 2009, refered to as web
data set). We were in contact with the hotel staff
throughout the research project and agreed, that
snow height readings on the web page would be
stored for this project. The snow height was read
from the measurement pole shown in Figure 5.1c)
and reported on the homepage. The page was
downloaded daily and snow height information
was extracted using standard Linux tools (grep,
awk, vim). As shown in Figure 5.1c) one tempera-
ture sensor set (NHD) was installed within 1 m of
the location of the reported snow height.

Manual snow depth measurements were made
on fields close (within 500 m) to the temperature
sensor sets during 5 campaigns on January the 16th

and 30th, February 13th and 27th and March 26th.
Snow depth was measured 60 times at each loca-
tion using a sampling scheme with 1 m spacing as
described by Jost et al. (2007).

5.2.2 Snow height estimation

The underlying idea is to use the reduction of the
diurnal temperature variation caused by the insu-
lating effect of snow to detect the height of the
snow cover. Figure 5.2 (left) shows temperature
data (using a grey scale) for a two day period
at the end of February 2009 for different heights
above ground. The figure clearly shows a very
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constant temperature for all sensors at and below
75 cm. Above, a clear diurnal signal can be de-
tected with highest temperatures around noon. The
corresponding variance for the two day period for
each sensor is shown in Figure 5.2 (right). A sharp
drop of variance between the sensor at 90 cm and
the sensor at 75 cm is clearly visible. The height of
this maximum drop was determined for each day of
the study period (using daily variances), giving an
estimate of the height of the snow cover hest1 and
the height of the lowest free sensor hfree.

Since hest1 is nearly random for snow free pe-
riods (we do not expect the maximum drop of the
temperature variance to be observed at a certain,
constant height), we included two additional con-
ditions: 1) setting the height of the snow cover
(hest2) to 0 cm if temperatures above 2 ◦C were ob-
served below height hest1 and 2) ignoring changes
in snow height if the mean absolute change in snow
height for five days was larger than 10 cm/day.
This rate was determined empirically from the data
set at the reference station.
hest2 has a vertical resolution corresponding to

the spacing of the temperature sensors. However,
during melting periods, this resolution can be in-
creased the following way: Each time a temper-
ature sensor is released from the snow cover, we
observe a reduction of hest2 as a step function. The
amount of snow melted between two such steps
can be related to temperature with a simple tem-
perature index model (TIM) (e.g. Ferguson, 1999):

δh =

{
ti ∗ (Tair − Tlim) for Tair > Tlim

0 for Tair ≤ Tlim
(5.1)

δh: change in height in cm; ti: temperature
index in cm/◦C/time unit; Tair: air temperature;
Tlim = 0◦C: melting temperature

Equation 5.1 is used to interpolate the snow
height (hest3). Note that usually, TIMs are formu-
lated in terms of changes of snow water equiva-
lents while we use a formulation in terms of snow
height. The density of the snow cover could be
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Figure 5.2: Core idea for the estimation of snow
height from temperature data: the left hand plot
shows the diurnal temperature variation (two days)
as function of sensor height above ground. The
right hand side plot shows the variance of the tem-
perature data. The black dashed line indicates the
estimated height of the snow cover.

used to convert ti from our model to a ti for a stan-
dard TIM if settling of snow were not of impor-
tance.

5.2.3 Cold content of snow cover

The cold content Qcc (Equation 5.2) defines the
amount of energy required to bring the snow cover
to a temperature of 0◦C (Dingman, 2002). The
snow cover starts melting if the cold content is
0 and additional thermal energy enters the snow
cover. Knowledge about the onset of snowmelt is
an important piece of information for the predic-
tion of spring floods.

Qcc = −ci ∗ ρ ∗ h ∗ (Ts − Tm) (5.2)
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ci = 2102 J/kg/K the heat capacity of ice (Ding-
man, 2002), ρ density of the snow, h height of the
snow cover, Ts average temperature of the snow
cover, and Tm = 0◦C melting temperature. Note
that this approach neglects heating of liquid water
in the snow pack.

With the temperature measurements and the
height hest3, data for all variables except for the
density of snow are available. If we can make
a reasonable assumption about snow density, we
are able to determine Qcc. The density of freshly
fallen snow ranges from 4 to 340 kg/m3 but an av-
erage relative density of ρns = 100kg/m3 is often
assumed (Dingman, 2002). Well drained snow at
melting point has a density near 350 kg/m3 (Ding-
man, 2002) and (Anderton et al., 2004; Jonas et al.,
2009; Lundberg et al., 2006) report relationships
between snow depth and density. We used snow
density obtained from the snow pillow and snow
height measurement at the reference station.

The methods and models presented have been
implemented as part of the R-package RHydro
(Reusser and Buytaert, 2010). An example data
set is also available in the package.

5.3 Results

5.3.1 Measurements at the reference sta-
tion

Figure 5.3 shows time series for measured data at
the reference station, using grey scales for tem-
perature values. The top plot shows snow surface
temperatures. In the second plot, observed tem-
peratures in and above the snow cover are shown
(height above ground on the y axis) together with
snow height from the ultrasonic sensor. The third
plot contains snow densities calculated from the
SWE (snow pillow) and the snow height.

Diurnal variation of air temperature is clearly
visible in Figure 5.3, as well as the seasonal pattern
of temperature with lowest temperatures recorded
in January. The surface temperature closely fol-
lows air temperature for the recorded period. As

Figure 5.3: Measured time series for the reference
station: snow surface temperature (infrared sen-
sor) (top); observed temperatures as function of
height above ground and snow surface height (ul-
trasonic sensor) marked by black points (middle);
snow density (bottom)

expected we observe the strong reduction of the di-
urnal temperature variation due to the snow cover.
The snow cover starts in December. Around new
year, the snow height decreases, at the same time
snow density increases from the low densities
recorded for fresh snow to almost 500 kg/m3 due to
compaction during melting periods. From the be-
ginning of January until the beginning of March,
snow is further accumulated and at the beginning
of March, the onset of snowmelt is recorded. As
already reported, data from the reference station
is not available after beginning of March due to a
logger failure. Problems with the ultrasonic sensor
resulted in the data gaps apparent in Figure 5.3.
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Figure 5.4: Snow surface height at the reference
station: ultra-sonic reference, and hfree and hest3
from temperature measurements

5.3.2 Height estimation

Snow height estimation hest3 and hfree based on the
algorithm described in section 5.2.2 are shown in
Figure 5.4 for the reference station. The mean ab-
solute error between interpolated results and ultra-
sonic measurements for the period from December
1st until end of January is 5.3 cm (see discussion
for an expected value for the mean absolute error).

Estimated snow heights for the remaining four
locations are presented in Figure 5.5. Measured
temperatures for different heights are color coded.
Again, the reduction of the diurnal variation due
to the snow cover is visible. Snow height (hest3)
is white, while the web data set is shown as red
dotted line for the Neuhermsdorf location (NHD).
The mean absolute error between the web dataset
and the corresponding hest3 is 6.0 cm.

In general, hest3 is within the measured vari-
ability from the manual snow depth measurements
(shown in black in Figure 5.5). The only excep-
tions are the measurements at the Neuhermsdorf

location (NHD) after the end of March (last two
measurements). However, hest3 agrees well with
the web data set during this period. The difference
can be explained by the fact that the manual mea-
surements were taken about 500 m away from the
temperature sensor set on a field, which was more
exposed to wind compared to the location of the
temperature sensor set.

Temperature indices ti (Equation 5.1; table 5.2)
were estimated for melting periods, during which
two or more sensors were uncovered. Values are
in the range from 0.4 to 5 mm snow height/day/◦C.
From the few data points, no seasonal trend can be
determined.

As mentioned above, if settling of the snow
cover was not an important process, density of the
snow cover could be used to convert from a snow
height TIM to a SWE-based TIM. In order to as-
sess comparability of the ti values based on snow
heights with ti values based on SWE, we fitted
Equation 5.1 to both types of data for the refer-
ence station during the short melting period be-
tween December the 15th and 24th (Figure 5.6).
The figure shows measurements (interrupted lines)
of SWE, snow height (ultrasonic sensor), and hest3.
The TIM from Equation 5.1 was fitted to the melt-
ing periods of the three time series (shown with
solid lines). Precipitation data are shown from the
top of the figure.

Two melting phases can be observed with very
different properties. No precipitation is observed
for the first period and the index was found to
be ti2 =0.67 mm/day/◦C (height based, ultrasonic
sensor), while reduction of SWE (ti4) is somewhat
faster, as expected due to the density-factor.

During the second period, precipitation is ob-
served (almost 20 mm in total). ti3 (height based,
ultrasonic sensor) is 3.4 mm/day/◦C. During this
event, the density of snow cover increases strongly,
since the height is reduced to half of the initial
value while SWE hardly decreases. Accordingly,
the SWE-based index is found to be only ti5=0.37
mm/day/◦C. ti1=3 mm/day/◦C (height based, tem-
perature sensors) is strongly influenced by the
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Figure 5.5: Temperature data (color coded) and estimated snow cover thickness (white) for all locations
in the Weisseritz catchment. Manual reference measurements are shown in black. The red dots in the
upper left panels refer to the web data set that consists of manual measurements of snow heights at the
hotel SWF Skibahnhof located in Neuhermsdorf.
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Period REF NHD RFD BFS LHM
Late December 3.0
Early March 2.2 2.6 1.2
Mid March 3.7 2.3 1.3
Late March 0.52 1.5 4.7
March 0.42

Table 5.2: Temperature indices ti (mm snow height/day/◦C)

height reduction during this second event.

5.3.3 Cold content of the snow cover

Cold content describes how much energy is re-
quired to rise the temperature of the snow cover
to 0◦C and indicates when melting processes will
start. It was determined according to Equation 5.2
and is plotted in Figure 5.7 (middle) along with the
estimated snow height (hest3, top graph). The cold
content varies between 0 and 500 kJ/m2 and as ex-
pected, is low during melting periods (<50 kJ/m2

for periods with decreasing snow height)
Discharge data for the two gauging stations is

also shown in Figure 5.7 (bottom), to allow a first
assessment of the relevance of cold content for the
prediction of flood events. Increases of discharge
occur only during periods with a low cold content
(<50 kJ/m2) and an existing snow cover.

5.4 Discussion

5.4.1 Temperature measurements

The temperature accuracy and resolution of the
Hobo sensors as well as a temporal resolution of
ten minutes was sufficient for this application. The
reduction of the diurnal variation was clearly de-
tectable. Therefore, the data are well suited for
the estimation of snow height and temperature pro-
files.

We observed that the snow cover is influenced
by the sensors and the metal rod during the melting
period, resulting in increased melting just around
the sensor set. Our recordings did not allow us to
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Figure 5.7: Snow height and cold content of the snow cover at Baerenfels-station as well as discharge
observed at the two gauges. Cold content was calculated from observed temperatures and predicted one
and five days ahead with a thermal diffusion model (Appendix).
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fully assess this influence since manual reference
measurements were not sufficiently frequent, the
data logger at the reference station was not in op-
eration, and the web data set ended towards the end
of the snow season.

5.4.2 Snow height estimation

The maximum reduction of diurnal variance along
the profile appears to be a robust indicator to esti-
mate snow height for periods of snow cover. The
resulting time series of snow height is in good
agreement with the reference measurements with
a mean absolute error of about 6 cm. This is the
expected minimum error for a sensor spacing of
15 cm and the method presented.

For the estimation of the expected minimum er-
ror, the vertical resolution of the web data set was
reduced to a 15 cm resolution (reduced web data
set). This corresponds to perfect information about
the snow coverage of each single temperature sen-
sor. The reduced web data set was then used as
hest1-values in the normal snow height estimation
procedure (section 5.2.2). The mean absolute error
between the resulting snow height estimate hest3
and the original web data set was found to be 6 cm.

Small underestimations of snow height are
likely, because the diurnal variation may be ob-
served even though a thin snow cover is present.
The thickness of the snow cover above the sensor
that is required to sufficiently reduce the diurnal
oscillation in order to detect the snow height is not
known.

Location specific properties are apparent from
the measurements: minor snow fall occurred in
March, as shown for the NHD-station and con-
firmed by the web data set. It is very likely that
snow also fell at the close-by RFD-station but
windy conditions redistributed snow immediately
away from the station, so that no increase in snow
height was observed.

For snow free periods the maximum reduction
of diurnal variance along the profile results in near-
random, implausible snow heights. Setting a limit

to the mean absolute change in snow height for
a five day window turned out to be an objective,
satisfying approach to remove impossible snow
height dynamics during such periods.

For the melting periods, the TIM is a use-
ful interpolation method in order to increase
the horizontal resolution of the estimated snow
heights. We observed values between 0.42 and
4.7 mm height/day/◦C. Note that it is not possi-
ble to distinguish the reduction of height due set-
tling of snow cover and due to melting. Therefore,
derived ti values based on height can not be com-
pared to ti values based on SWE since compaction
of the snow cover is an important process.

Even though direct comparison to values re-
ported in literature is not possible, we can still
compare the range observed. Hock (2003)
summarizes ti for snow from more than 10
studies and reports values between 2.5 and
11.6 mm SWE/day/◦C. In comparison, values
around 0.4 appear to be very low, since conversion
from height to SWE would introduce a density fac-
tor, which is < 1. One possible reason for such dif-
ferences are extended periods of thawing and re-
freezing cycles, a process that is not represented in
the simple model.

5.4.3 Cold content of the snow cover

The measured temperature data in combination
with the estimate for the snow height are well
suited to the calculate cold content of the snow
cover. We used densities obtained from the snow
pillow at the reference station for our calculation.
If no snow density measurements are available,
density may be estimated as a function of snow
depth (Anderton et al., 2004; Jonas et al., 2009;
Lundberg et al., 2006). Such an estimate causes
some additional uncertainty. Since cold content is
a linear function of snow density, effects of density
errors can easily be evaluated using error propaga-
tion.

Cold content seems to provide a reliable assess-
ment of the potential for snow melt and may be of
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value for flood predictions. We present and dis-
cuss a very simple model for the prediction of the
cold content in the Appendix. A sensor network
(Hart and Martinez, 2006; Xu, 2002; Barrenetxea
et al., 2008; Lundquist et al., 2003), transmitting
measured temperatures in real time, might be use-
ful for flood prediction as the height derived from
temperatures gives an indication about the amount,
and the cold content gives an indication about the
potential for melt. The real time data may also be
useful to update the temperature state of process
based snow models, and thus to improve their per-
formance.

5.4.4 Improving the approach

Limitations of the proposed approach may be dis-
tinguished into potential error sources and issues
related to the practical application. Possible er-
ror sources include the slight underestimation be-
cause of the undetectable thin snow cover as de-
scribed above, and the influence of the sensors and
the metal rod on the snow cover. We suggest fur-
ther experiments in the lab to better understand
the temperature reading for bearly covered sensors.
Experimenting with different materieals and coat-
ings could reduce the effect of the setup on the sur-
rounding snow cover.

As temperature measurements are an indirect
way of determining snow height, we are depen-
dent on the algoritm presented. This introduces
additional possibilities for improvement. The cri-
terion for snow free periods is currently based on
two empirical factors, the upper limit to acceptable
snow height change rates and the upper limit to
within-snow-cover temperatures. With these two
empirical parameters, it is not guaranteed to reli-
ably identify all snow free periods – depending on
the exact value of the parameters, either snow free
periods are not identified as such or periods with
snow cover may be detected as snow free. In ad-
dition, snow heights can not be estimated correctly
for periods of diurnal temperature variability be-
low a certain limit. We are grateful for suggestions

for an improved algorithm. Such an improvement
may for example include information from recent
days in the estimation of the snow height.

There are practical limits to the horizontal reso-
lution. Estimation of the cold content requires in-
formation on the density as described above, which
is not available from the temperature measure-
ments and for a real time application, data trans-
mission becomes an issue.

5.5 Conclusions

In this study, we presented an inexpensive method
for simultaneous estimation of snow height, the
temperature profile and cold content of snow.
While an ultra sonic sensor with logger is about
1000 Euro and provides information about snow
height only, the method presented in this study is
based on 10 temperature sensors, which are avail-
able for about 200 Euro.

To estimate heights, the method exploits the in-
sulating effect of the snow which reduces temper-
ature fluctuations in the snow cover. The estimated
heights agree well with reference measurements.
Temperature, snow height and cold content are in-
teresting properties for spring flood warning be-
cause snow height is an indicator for the amount
of snow available while cold content tells us the
amount of energy required to start snowmelt.

From the data, we also attempted a prediction of
cold content with a very simple model (Appendix).
While predictions are satisfactory, the model itself
is an oversimplification and identifiability of the
single parameter α is poor. From this study we
suggest that a decision based on current height, es-
timated cold content and weather predictions may
be as beneficial.

Following our study, installation of a sensor net-
work that transmits observations in real time may
be an interesting future step. The benefit for oper-
ational flood warning and updating of snow mod-
els could then be fully explored. Filtering tech-
niques are most often used to assimilate snow cov-
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ered area or snow water equivalents (Andreadis
and Lettenmaier, 2006; Clark et al., 2006; Slater
and Clark, 2006). The assimilation of snow cover
temperature data is innovative and appealing, since
the observed states and model states are directly
commensurable. While our results indicate a great
potential, certainly more data are needed to bet-
ter understand the added value of such data to pre-
dict spring flood events based on estimated snow
heights and cold content. Further experiments
should also investigate the thickness of snow cover
above the sensor required to sufficiently reduce di-
urnal variation of temperature. Further tests should
minimize the influence of the measurement set-up
on the snow cover, as melting occurred somewhat
faster around the sensors.
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Appendix: Simple model for the
prediction of the cold content

We tested a parsimonious 1d thermal diffusion
model for analysing our temperature profile data to
determine how much additional information can be
derived. A full snow process model would at least
include air temperatures, input of energy by radi-
ation, influence of wind and rain, and mass trans-
port of water vapor in the snow cover and possibly
transport of snow by wind and avalanches. We take
the parsimonious approach for the sake of assess-
ing how much information can be derived from the
temperature measurements only. For our simple
model, we need to assume that: a) heat transport
into the snow cover by radiation is proportional to
observed temperatures (similar to the often used
temperature index approach for snowmelt mod-
elling (Ferguson, 1999)) and that b) temperatures
in the snow cover are not influenced by wind, rain
and melting processes. While obviously, these are
strong and erroneous assumptions, they allow us to
formulate the problem of predicting cold content as
a simple diffusion model for heat (e.g. Brandt and
Warren, 1997). Fitting the diffusion model to ob-
served data provides an estimation of the thermal
conductivity of snow (for more details, see below),
which can then be used to predict the cold content.

Thermal conductivity is commonly reported as
effective thermal conductivity (ETC), which sum-
marizes a number of complex transport processes
including conductivity in ice and air spaces, as
well as latent heat flow due to water vapor (Brandt
and Warren, 1997). Literature values for ETC are
for example reported by Fukusako (1990) and are
dependent on density, temperature and snow mi-
crostructure, ranging from about 0.1 to 1.1 W/m/K.
Measurements of ETC are frequently discussed
(Aggarwal et al., 2009; Brandt and Warren, 1997;
Sturm et al., 1997; Satyawali and Singh, 2008;
Schneebeli and Sokratov, 2004) and are based on
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one of three basic methods (e.g. Brandt and War-
ren, 1997): 1) attenuation and time lag of the nat-
ural temperature signal, 2) transient measurement
with a so called transient-probe method, measuring
the temperature response to a short heating pulse of
a needle inserted into the snow cover, and 3) steady
state method with a constant thermal gradient in
the lab. The first method corresponds to solving a
diffusion model of heat and has the problem men-
tioned above that some of the required assumptions
generally do not hold (see discussion for more de-
tails).

Method

For the prediction of the cold content, we estimate
future temperatures in the snow cover with the heat
diffusion model described in Equation 5.3, which
is based on a single model parameter α. Temper-
atures were calculated one to five days ahead with
a time step equal to the measured frequency of the
temperature data. Similar models for heat transfer
in snow have been applied previously (e.g. Brandt
and Warren, 1997).

dT (z)

dt
= α

d2T

dz2
(5.3)

dT (z)
dt : change of temperature with time, and

d2T
dz2

: curvature of the snow temperature profile.
As initial conditions, we used an interpolation of

measured temperatures at the first time step of the
simulation period. We assumed perfect air tem-
perature predictions, thus we used the measured
temperatures of the top temperature sensor as up-
per boundary condition. For the lower boundary
condition, measurements at the snow soil interface
were used.

Solving the heat diffusion model described in
Equation 5.3 requires an estimate of the model pa-
rameter α. We tested two estimation methods: 1)
assuming a fixed value for α and 2) estimating α
for each day by minimizing the difference between
the measured and modelled (Eq 5.3) temperature

of the previous two days (overlapping two day win-
dows with a 1-day spacing).

For the first method we need an estimation of
the upper bound for α. For our simple thermal
diffusion model, α can be expressed as a func-
tion of three characteristics of the snow cover:
α = λ/ρ/ci, where density ρ and heat capacity ci
were defined for Equation 5.2, and λ is the effec-
tive thermal conductivity (ETC). Assuming a mean
density of ρ = 200 kg/m3 and using the constant
heat capacity of ice (the heat capacity of the en-
closed air is negligible), the problem reduces to es-
timating upper bound for λ.

As an upper bound for ETC, the thermal conduc-
tivity for ice may be used λi = 2.2 W/m/K (e.g.
Sturm et al., 1997; Dingman, 2002). While ETC
especially increases with increasing water content,
we did not find studies that present results for ETC
for wet snow. Values for dry (cold) snow are for
example summarized by (Fukusako, 1990) and lie
below this upper bound.

From the estimated bound for ETC, we can es-
timate bounds for α using the density of ice ρi:
αu = λi/ρi/ci = 2.2W/m/K/917kg/m3/2102
J/kg/K = 1.1*10−6m2/s.

For the second method of estimating α, the stan-
dard optimiziation algorithm in R, the statistical
software package (Ihaka and Gentleman, 1996),
for one dimensional problems was used and an up-
per limit of 5e-6 m2/s was set to the optimization.
The upper limit is five times higher than the ther-
mal conductivity of pure ice. We could have used
the thermal conductivity of ice as upper boundary,
but we wanted to check how often values above
this theoretical limit were found by the optimiza-
tion algorithm. We used this information as a test
for the validity of the model assumptions.

Results

We predicted cold content as an indicator for
snowmelt with the thermal diffusion model
(Eq 5.3). One and five day ahead predictions were
calculated and are presented in Figure 5.7. We as-
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sumed perfect prediction of air temperatures to test
the “best-case” performance of the estimate. Pre-
dictions had a root mean square error (RMSE) of
24.4 and 36.1 kJ/m2 for one and five days, respec-
tively, with an intermediate α of 5*10−7 m2/s.

As a simple reference, we used a persisting tem-
perature profile, for which RMSE was 43 kJ/m2 for
the one day prediction.

The choice of α was not critical since results
were not sensitive: RMSE was between 24.37 and
24.39 for six levels of α below the theoretical
bounds (αu = 1 ∗ 10−6 m2/s) for the one day pre-
diction (36.0 to 36.2 m2/s for the five day predic-
tion).

Even though sensitivity for α was low, we also
checked whether improved predictions could be
achieved when the value for α was estimated with
the data observed two days before the prediction
time. However we did not see improved predic-
tions compared to a fixed α (RMSE =24.5 and
36.3 kJ/m2 for the one and five days, respectively).
Compatible with this poor performance is the dis-
tribution of the optimized parameter values: only
29% of the α-values were below the estimated up-
per bound of 1*10−6 m2/s, and 71% were above.

Discussion

Estimates of the current and predictions of future
cold content may be of value for flood forecasting.
With a RMSE of about 24-36 kJ/m2, predictions
seem sufficiently reliable for use in such a setting.
It is surprising that the prediction of cold content
is not very sensitive for α within the theoretical
bounds. A possible explanation is that the sensor
spacing of 15 cm is too large to observe sufficient
variation in temperature since snow is a good ther-
mal insulator. Accordingly, temperatures in the
snow cover are always close to 0◦C (Figures 5.3
and 5.5). Longer periods with very low tempera-
tures would be required for the cold to travel far
into the snow cover.

In our study we assumed perfect knowledge
about future temperatures. We do not expect large

errors because temperature forecasts are very reli-
able †.

The limited temperature changes within the
snow cover make estimations of α difficult. α
is often estimated to be higher than the theoreti-
cal upper bound of pure ice, which indicates that
the model is an oversimplification and processes
other than the thermal diffusion are of importance.
This complies with Brandt and Warren (1997) who
report that estimated ETC from temperature mea-
surements are generally not very reliable since dis-
turbing processes are hard to avoid.

At least three disturbing processes are of impor-
tance: 1) radiation may increase temperature of
sensors within the snow cover; 2) so called wind
pumping, where air is pressed into the snow cover
due to the pressure from the wind, affects temper-
atures; and 3) multiple mechanisms of heat dif-
fusion within the snow cover due to its complex
structure are lumped into a single parameter, which
at the same time represents heat transport due to
conductivity in ice and air spaces, as well as la-
tent heat flow due to water vapor (Brandt and War-
ren, 1997). These modes of transport all depend
on snow density, snow microstructure, tempera-
ture, and water content (Sturm et al., 1997, 2002;
Fukusako, 1990). Increasing weathering generally
leads to increased thermal conductivity, except for
the formation of depth hoar at the base of a snow
cover (Sturm et al., 2002).

Another process that is not included in the sim-
ple model but is certainly of importance (Fig-
ure 5.6) is energy input into the snow cover by
rain. As an example, assuming rain with a tem-
perature of 5◦C, with the heat capacity of wa-
ter cw = 4.19 kJ/L/K (Dingman, 2002) we obtain
21 kJ/L that are available if the rain is cooled to
0◦C. For our snow cover we observed a maxi-
mum cold content of about 300 kJ/m2. To heat
the entire snow cover to melting temperature, we

†Martin Göber, German Weather Service, personal com-
munication, 29. March 2010: 90% of the two day predictions
show an error smaller than ±2◦C for the case study region
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need 300 kJ/m2 / 21 kJ/L = 14.3 L/m2 = 14.3 mm.
Events of this size are quite common in this catch-
ment.

Due to these oversimplifications and the ob-
served insensitivities of the heat diffusion model,
a simpler warning scheme, based on current cold
content and weather predictions is likely to be as
effective for spring flood warning as the heat diffu-
sion model. Nevertheless, we achieve a reduction
of the RMSE of about 30% with the heat diffusion
model, if compared to the persistence assumption.



114 Chapter 5 Snow height from temperatures



Chapter 6

Spatial distribution of snow. ∗

The annual spring freshet of snow-dominated watersheds depends mainly on the snow melt volume,
which is determined by the spatial distribution of both, the water stored in the snow pack (snow water
equivalent; SWE) and melt rates. The aim of this study is to characterize SWE and melt rates with
respect to topographic controls and land use at the watershed scale for the Wilde Weisseritz. In order
to measure both, the variability at the local scale and the variability at the catchment scale an adjusted
sampling designs was used. At the local scale, samples were collected on two perpendicular transects of
60 m length and analysed with geostatistical methods. At the watershed scale, locations of the extensive
field campaign were selected according to a stratified sample design to capture the combined effects of
elevation, aspect and land use.

At the local scale, the results of the snow surveys during the winter 2008/2009 show that the range
of fitted variograms was within the range of sampling design for 80% of the plots. On the catchment
scale, the snow height is mainly affected by the plot altitude. The expected influence of aspect and
land use was not observed. A temperature-degree day model was applied to test whether the spatio-
temporal variability of SWE can be represented by this simple model. The parameters were calibrated
with a Bayesian approach. The degree-day model is capable to explain the temporal variability for plots
with a continuous snow pack over the entire snow season, if parameters are estimated for single plots.
However, processes described in the simple model are not sufficient to represent multiple accumulation-
melt-cycles, as observed for the lower catchment. Thus, the combined spatio-temporal variability at the
watershed scale is not captured by the model.

∗Stefan Lüdtke, Dominik Reusser, Jörn Pagel, Erwin Zehe (short version of a Diplomarbeit, to be elaborated towards a full
manuscript),
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6.1 Introduction

Snow accumulation and melt are important hydro-
logical processes controlling the water availabil-
ity at mountainous watersheds. In winter, precip-
itation falls as snow and is stored until runoff is
triggered during the melting period. Hydrolog-
ical models, representing both, the accumulation
and melt period are widely used for the prediction
of snow melt (Ferguson, 1999). A general chal-
lenge in modelling is to find parsimonious models
with sufficient complexity to represent all impor-
tant aspects (Dunn and Colohan, 1999). Naturally,
this is also an issue for snow models that range in
their process description from completely empiri-
cal to fully physics based and spatial description
from lumped to fully distributed (Ferguson, 1999).
Models that are to complex suffer from missing
parameter identifiability and high computational
costs, while very simple models lack generality
and transferability to other places (Dunn and Colo-
han, 1999).

The degree-day model is a parsimonious, empir-
ical model widely used for snow modelling (Fer-
guson, 1999; Rango and Martinec, 1995). Its ba-
sic assumption is that snow melt increases lin-
early with temperature above the melting tempera-
ture, without additional influences. An underlying
assumption of the approach is, that other energy
sources (e.g. radiation and energy input from rain)
are highly correlated to temperature. The propor-
tionality constant is called degree-day factor and is
often parametrized as changing slowly over time in
order to allow for non-constant melting rates dur-
ing an entire season. Hock (2003) reports that this
model type works well over long time periods but
that the spatial variability can not be captured since
melt rates vitally depend on topographic proper-
ties.

In a previous study, we reported that WaSiM-
ETH, a hydrological model that uses a degree-day
model as a snow module consistently results in
overestimated discharge for snow melt events for
the Weisseritz catchment (Chapter 4). The first

goal is thus to test whether the simple degree-day
approach, besides resulting in overestimated snow
melt discharge values, is also insufficient in the de-
scription of the spatial variance of snow. We would
like to remove the deficiency in the process repre-
sentation for snow melt events and thus need to
better understand what additional factors are re-
quired to obtain an adequate process description.
The second goal is therefore to test a number of
additional factors for their ability to improve the
description of the spatial variance of snow. In the
current version of the manuscript – which is a short
version of a Diplomarbeit – this question is not yet
fully addressed. The ultimate goal would be to
find a parsimonious model for the description of
the spatio-temporal patterns of snow for the Weis-
seritz catchment that is sufficient to make spatial
interpolations from few field observations and that
give adequate discharges for snow melt events.

To assess the spatial variability of snow and to
identify the most important processes, we need
additional observations. The snow water equiv-
alent (SWE) measures the water content of the
snow pack and is the most important factor for the
amount of melting water during the annual spring
freshet. Since the measurement of SWE is time-
consuming, a key challenge is to relate field mea-
surements at the plot scale to the distribution of
the snow pack at the watershed scale (Lundberg
et al., 2010). Measurement of the spatial snow dis-
tribution is subject to ongoing research: Watson
et al. (2006b) illustrated for a 300 km2 study area
in the Yellow Stone park that random effects on
SWE were greatest at small scales and are super-
imposed by effects from radiation and vegetation at
larger scales. Anderton et al. (2004) found redis-
tribution of snow by wind to be the most important
influence on snow distribution in a 0.32 km2 catch-
ment in the Spanish Central Pyrenees. Winkler
et al. (2005) investigated the variability between
different forest stands ranging from clear cuts to
mature forests on an ≈1 km2 study site in British
Columbia and found that snow accumulation and
melt differ significantly between different stand
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types. Also in British Columbia in a 17.4 km2 wa-
tershed, Jost et al. (2007, 2009) used a sampling
design that is capable to quantify the variance at
both, the plot and the catchment scale. The stud-
ies separated the observed spatial variability into
effects by topographic and vegetative controls as
well as local variability. They report that during
a mild and snow rich winter, forests accumulated
39% and 27% less snow than clear-cuts, respec-
tively, because of interception. López-Moreno and
Latron (2008) and Hedstrom and Pomeroy (1998)
observed different interception capacities over the
snow season, depending on the time since the last
snowfall, the initial canopy snow load and the dif-
ferent leaf area indices. Since snow in the canopy
is exposed to solar radiation, wind and temperature
variations, the full interception capacity may be
available again during a subsequent snowfall event
(Hardy et al., 2004). Local variability was also in-
vestigated by Watson et al. (2006a), who illustrated
that random SWE variation is significant for short
distances (< 10 metres), but decreases for longer
distances (10 metres -100 metres) and becomes ef-
fectively zero for distances of between 100 metres-
1000 metres. Therefore, to examine the autocorre-
lation structure of SWE, samples need to be spaced
closer than 10 m and need to cover a range of close
to 100 m. We used a sampling design similar to
Jost et al. (2007) in order to assess both, the influ-
ence of topography (elevation and aspect) and land
use, as well as local random variability on the spa-
tial variability of SWE.

Information from measurements are often in-
cluded into models with the calibration of parame-
ters. Parameters in hydrological models are uncer-
tain and much discussion is going on about the de-
termination and propagation of such uncertainties
(Pappenberger and Beven, 2006; Montanari et al.,
2009). Without going into the detail of this discus-
sion, we selected a Bayesian approach to obtain the
distribution for each parameter conditional to the
data. From these distributions, the uncertainty of
the model output can be determined using a Monte
Carlo simulation approach. The third goal is thus

to make estimates about the level of (un)certainty
that we may achieve from the data collected and
our model structure. We could then use the frame-
work to test how much field data is required to ob-
tain a satisfying level of certainty about the snow
distribution in the catchment.

6.2 Methods

The study consists of four major steps: 1) Field
measurements using two perpendicular transects
of 60 m length are used to capture local variabil-
ity, while stratified sampling with elevation, aspect
and land use as factors was used to select locations
within the catchment. 2) Variability at the local
scale was evaluated with empirical and theoretical
variograms in an attempt to find factors influencing
local random variability. 3) Box plots and linear
regression models of mean SWE for each location
were used to identify main factors affecting vari-
ability at the catchment scale. 4) Parameters for the
simple degree-day model were estimated a) using
data from each single plot only to assess the abil-
ity of the model to represent temporal variability
(subsequently referred to as parameters estimated
for single plots) and b) using data from all plots
simultaneously to test if spatio-temporal variabil-
ity at the catchment scale can be described (subse-
quently referred to as parameters estimated for all
plots).

6.2.1 Study area

The Wilde Weisseritz watershed is located in the
eastern part of the Ore Mountains in Saxony, Ger-
many (Figure 6.1). Elevation ranges from 908 me-
tres to 163 metres a.s.l. However, all plots in-
vestigated in this study are located in the upper
part (above 400 m) of the watershed. Land use
of the Weisseritz watershed consists of fields- and
grasslands (45%), forest (34%), settlement (15%)
and other usage such as infrastructure and bod-
ies of water (6%). Forests (mainly spruce) with
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patches of fields dominate the upper watershed
(Figure 6.1), whereas the occurrence of settlements
and grasslands increase with decreasing elevation
(Pöhler, 2006). Two water reservoirs, Lehnmühle
and Klingenberg, in the catchment of the Wilde
Weisseritz are used for water supply and flood con-
trol. The climate is moderate with mean tem-
peratures of 11◦C and 1◦C for the periods April
- September and October - March, respectively.
Annual precipitation for this catchment is around
1100 mm/year. During winter, the catchment usu-
ally has a snow cover of up to about 1 m for 1 to
4 months with high flows during the snow melt pe-
riod. Data about land use and a digital elevation
model was obtained from the state office for envi-
ronment and geology (LfUG, 2007). Data from a
web cam located in Holzhau† (Figure 6.1) was re-
trieved daily and stored in order to visually assess
development of the snow cover.

6.2.2 Field measurements

Snow depth and weight were measured during five
campaigns between January and March 2009 (15 -
16 January; 29 - 30 January; 12 -13 February; 26 -
27 February and 26 - 27 March). The study by Jost
et al. (2007) guided the design of our measurement
campaign.

At the local scale a sampling design with two
perpendicular transects of 60 m length was used
(Figure 6.2). At each site, snow depth measure-
ments and the more time consuming snow weight
measurements were performed 61 and 13 times
with a spacing of 2 metres and 10 metres, respec-
tively. Heights were measured with a plastic tube
of 50 mm diameter and 1.5 m length. A balance
with maximum weight of 5 kg and a resolution of
5 g (MH5K5 and HDB5K5 by Kern) was used for
weight measurements.

At the catchment scale, a stratified sampling de-
sign was used to assess the influence of topog-
raphy, aspect and land use. Plots were selected

†http://www.holzhau.de/webcam-holzhau.html
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Figure 6.1: Top: location of the Wilde Weißeritz
watershed including main streams, investigated
plots (red circles) and meteorological stations.
Green circles mark fully equipped stations (DWD),
triangles mark stations measuring precipitation
only (DWD and University of Dresden).
Bottom: location of snow survey plots (red cir-
cles) including land use (left hand side) and a DEM
(right hand side). The location of a webcam is
shown with a blue triangle and the border of the
Weißeritz catchment with a black line. River net
data, the DEM and the land use map were obtained
from LfUG (2007).
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Figure 6.2: Sampling design at the plot scale as
suggested by Jost et al. (2007). The black small
squares indicate the points where snow heights
were measured. Snow weight was measured in ad-
dition at location indicated by the bigger hollow
squares.

from three elevation zones (zone 1: 400 m-600 m,
zone 2: 601 m-700 m and zone 3: 701 m-800 m)
and with differing aspect (north, east, south or
west) and land use (forest and field). The aspect
was converted to a northing index (Jost et al., 2007)
with a value of one and zero for plots facing north
and south, respectively. Plots facing either west or
east have both a value of 0.5. A total of 25 sites
were investigated. (Table 6.1 and Figure 6.1).

6.2.3 Post processing of field data

The statistical software R (Ihaka and Gentleman,
1996) was used for most calculations. The zoo
package was used to work with time series (Zeileis
and Grothendieck, 2005).

Mean and standard deviation were computed for
the SWE for each plot and snow campaign. Snow
weight/snow height-pairs of each snow campaign
from all locations were used to calculate the snow

Table 6.1: Overview of the topographic properties
of the snow survey plots. Elevation is reported in m
a.s.l. and the aspect is 1 and 0 for plots facing north
and south, respectively, while plots facing east and
west have a value of 0.5 (section 6.2.2 for more
details).

ID Elev. Land Use Aspect

Elevation Zone 1
1 460 forest 0.82
2 510 field 0.75
4 520 field 0.57
5 520 field 0.97
6 540 forest 0.59
7 550 field 0.54
8 550 forest 0.01
9 570 field 0.01

Elevation Zone 2
10 630 forest 0.29
11 630 field 0.77
12 630 field 0.65
13 630 forest 0.65
14 630 field 0.18
15 650 forest 0.12
16 670 field 0.93
17 670 forest 0.75

Elevation Zone 3
18 710 forest 0.87
19 700 field 0.96
20 760 forest 0.88
21 750 forest 0.01
22 760 field 0.17
23 780 field 0.97
24 750 field 0.75
25 780 forest 0.67
26 800 field 0.25
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density, assuming a constant snow density for the
entire catchment. Snow heights were then trans-
formed to SWE using the mean snow density and
the density of water of 1 kg/m3.

To assess variability at the local scale, experi-
mental variograms (Akin and Siemes, 1988) were
calculated with a variable bin width of 2 m for
short distances and about 5 m for long distances
resulting in >58 data points in each bin. Theoreti-
cal variograms were calculated with the autofitvar-
iogram function (automap package Hiemstra et al.,
2008) in R. A number of variogram models (spher-
ical, Gaussian or an exponential model) is fitted
and the model with the lowest root mean square er-
ror (hereinafter RMSE) between experimental and
theoretical variogram is selected. Nugget, sill and
range were calculated from the theoretical vari-
ogram. The sill is the semivariance at which the
variogram levels off, while the nugget represents
the variability at distances smaller than the sample
spacing. The range is related to the lag distance
at which the variogram reaches the sill value and
depends on variogram model. A nugget effect was
assumed if the difference between nugget and sill
was smaller than 2 kg/m2, corresponding approxi-
mately to the measuring accuracy for SWE (1 cm
resolution in snow height and an approximate den-
sity of 200 kg/m3). A nugget effect was also as-
sumed if the range was smaller than two metres,
which is the sample spacing.

At the catchment scale, box plots and multiple
linear regression models were used to investigate
the influence of time, elevation, northing and land
use on SWE. A two-sided t-test was used to check
for significance of the parameters of the regression
model.

6.2.4 Meteorological data

Meteorological data was obtained from the Ger-
man Weather Service (DWD, 2007) and the Uni-
versity of Dresden (TU-Dresden, 2010). Daily

sums of precipitation was available for stations
maintained by the University of Dresden (trian-
gles in Figure 6.1). Five DWD stations recorded
air temperatures at different temporal resolutions,
daily snow heights, SWE, and precipitation (cir-
cles in Figure 6.1) and six DWD stations (trian-
gles) recorded precipitation only. All stations were
equipped with heated rain gauges providing daily
sums of precipitation over the entire year.

Data from the two DWD stations Zinnwald (877
m a.s.l.) and Dippoldiswalde (365 m a.s.l) is pre-
sented in figure 6.3. The top panel shows SWE and
accumulated precipitation for both stations, Zin-
nwald in black and Dippoldiswalde in red. The
bottom panel shows mean daily temperatures and
rainfall - note that precipitation is not shown for
temperatures below freezing. This representation
was chosen to better illustrate the relation ship be-
tween snow melt and rain-on-snow events.

The figure shows that cumulative precipitation is
only about 70% of the measured SWE at the Zin-
nwald station for the time of the snow maximum.
It is also evident, that snow melt at Dippoldiswalde
was accompanied by increasing air temperatures
and rain-on-snow events. Finally, a significant el-
evation gradient exists for rain as expected (cumu-
lative precipitation is 267.9 mm and 482.7 mm for
the lower and higher station, respectively), while
the temporal dynamics are similar. For temper-
ature, an elevation gradient was also observed,
thus, interpolation for the degree-day model was
performed for both quantities height dependently.
Temperature data from the five DWD stations was
interpolated using a simple linear regression model
for each day with mean daily temperatures depend-
ing on elevation. Similarly, precipitation from all
fifteen stations was interpolated with a linear re-
gression against elevation, if the correlation coef-
ficient of the model was R2 ≥ 0.6. Subsequently,
inverse distance weighted (IDW, with an exponent
of 2) residuals were added to the results of the lin-
ear regression model. If R2 < 0.6, the precipita-
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tion for was interpolated with simple IDW. The al-
gorithm is called “interpol v3” and was described
in detail by Francke (2002) and Kneis and Heister-
mann (2009).

6.2.5 Degree-day model

The degree-day model is based on a linear rela-
tion between snow melt and temperature above
the melting temperature. The proportional-
ity constants the called degree-day factor c0 in
mm/day˚C. For the accumulation period, an addi-
tional, dimensionless parameter a0 is introduced as
a constant, multiplicative factor for precipitation.
An error model for the Bayesian estimation is in-
troduced that draws an error term ε from a normal
distribution with zero mean and standard deviation
σ, an additional parameter of the error model re-
quired for the Bayesian parameter estimation.

Ssimt = Ssimt−1

{
+a0 ∗ Pt if Tt ≤ Tcrit
−c0 ∗ (Tt − Tcrit) if Tt > Tcrit

Ssimt = Sobst + εt

(6.1)

where t denotes the time step, Tt the temperature
, Pt the precipitation and Ssimt the modelled snow
water equivalent at time step t. Tcrit = 0◦C is
the melting temperature, Sobst is the observed SWE
and εt is the model error at time t.

Parameters are estimated twice, first separately
for single plots, to check if the temporal variability
for a single plot is captured by the simple model
and second for all plots at the same time, testing if
spatio-temporal variability of the entire catchment
can be explained.

As initial condition, SWE was set to zero on
November 1st 2008. In addition to the data from
the measurement campaigns, SWE was set to zero
for the last ten days of the simulation period (end-
ing on April 30th), based on webcam pictures from
a station at 600 m.a.s.l showing no snow between
April 10th and 30th. A time step of one day was
used.

6.2.5.1 Bayesian parameter estimation

The objective of Bayesian parameter estimation
is to determine how a probability distribution for
a vector of model parameters ~θ changes given
the data D (Gelman et al., 2003). Prior knowl-
edge about the parameter vector is expressed as
marginal distribution P (~θ). The relationship be-
tween the parameters and the data is given as con-
ditional distribution P (D|~θ), which is called a
likelihood function if it is regarded as function re-
turning the probability of D dependent on the pa-
rameters ~θ. Bayes’ theorem states how the desired
posterior distribution P (~θ|D) is related to the like-
lihood function and the prior (Gelman et al., 2003):

P (~θ|D) =
P (D|~θ) ∗ P (~θ)

P (D)
(6.2)

The prior probability or marginal probability of
the data P (D) acts as normalizing constant and is
generally only determined after the parameter esti-
mation by normalizing P (~θ|D) to one.

In the current application, D includes the ob-
served SWE, while ~θ consists of the two model pa-
rameters a0, c0 and the parameter σ of the error
model.

To define P (~θ), normal distributions with zero
mean and standard deviation of 10 were used as
non-informative prior distributions for a0 and c0
while for σ the prior probability was set to 0 for all
values.

After updating with the observed SWE, the pos-
terior distribution P (~θ|D) has an expectation of
E(~θ|D), reflecting the information gain from the
data. Similarly the variances Var[~θ] and Var[~θ|D]
indicate the uncertainty about the parameter before
and after updating. Change of the variance may be
regarded as a reduction of uncertainty caused by
the data.

The posterior distribution P (~θ|D) is analyti-
cally intractable. Therefore we used Markov Chain
Monte Carlo techniques based on the Metropolis-
Hastings algorithm (Chib and Greenberg, 1995)
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Figure 6.3: Data from the DWD stations in Dippoldiswalde (red lines and points) and Zinnwald (black
lines). The vertical grey lines refer to the dates were the snow surveys took place. The continuous black
line and the red points in the upper panel show the measured SWE. The dashed lines show the cumulative
precipitation, both SWE and precipitation are given in mm. Both continuous lines in the lower panel
show mean daily temperatures. Daily sum of precipitation for days with temperatures > 0◦C are shown
from the top (right hand side y-axis). All data from DWD (2007).
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for the sampling. Chain convergence was tested
with the trace plot for each parameter as well as
the Gelman-Rubin diagnostic (Gelman et al., 2003;
Plummer et al., 2009). This diagnostic defines the
potential scale reduction factor (PSRF) as the ratio
between the between chain variance and the mean
within chain variance W , which is close to 1 for
converging chains:

PSRF =

√
var(m)

W
(6.3)

with var(m) being a weighted mean of the within
chain and the between chain variance. Chains
with a value above 1.1 were considered as non-
converged (Gilks and Richardson, 1995).

6.2.5.2 Model evaluation

As no additional data was available, the model
evaluation was performed with the same data as
used for the calibration from winter 2008/2009,
using two objective functions. First, the RMSE
between the measured and the modelled SWE us-
ing the distribution mean for a0 and c0 was de-
termined. Second, a Monte Carlo simulation with
1000 runs was performed by sampling from the
posterior parameter distributions for a0 and c0.
Subsequently a random error from a normal dis-
tribution with zero mean and standard deviation σ
was added. Confidence bands (CBMC) were cal-
culated from the central 80% of the Monte Carlo
runs.

The mean and standard deviation of the mea-
surements at each plot were used to calculate a
measurement confidence band (CBobs) including
one standard deviation around the mean. An over-
lap of the two confidence bands CBMC and CBobs
was counted as successful prediction. The rate of
successful predictions was determined.

Because parameters estimated for all plots
did not successfully represent spatio-temporal
dynamics (see section 6.3.2) and no further data on
SWE at single plots was available, an additional,

formal model validation was not conducted.

6.3 Results

6.3.1 Snow variability at the plot scale

Exemplary SWE data for plot 24 during 3 cam-
paigns are shown in figure 6.4 (top). The green (x-
axis) and blue (y-axis) line correspond to the hori-
zontal and vertical transect, respectively. The data
shows the short range, random variability as well
as a developing non-random spatial structure over
time. The red circles indicate locations of snow
weight measurements. The same data points are
also highlighted in red in the bottom panel, which
illustrates the relationship between measured snow
height and snow weight for the three campaigns.
Density estimates are summarized in Table 6.2.
Density is increasing until the fourth snow cam-
paign and decreasing slightly to the fifth snow sur-
vey. The correlation coefficients is always ≥ 0.89.

To assess the local variability of SWE, exper-
imental variograms were calculated and used to
match theoretical variograms. We will not show
all variograms, but illustrate important findings us-
ing three exemplary plots (with ID 9, 21 and 26)
for all five campaigns (Figure 6.6).

For all three plots (and in general) we observe
increasing variance over the snow season and the
highest values are observed for the fourth or fifth
snow campaign. A pure nugget effect (difference
between nugget and sill smaller measurement res-
olution of the tube or range smaller than the sam-
pling interval), as present for plots 9 and 21 during
the first campaign, was generally observed more
often at lower elevations and at the beginning of the
snow season. In total, a pure nugget effect was ob-
served for 15 % of the variograms. For plot 8, var-
iograms could not be estimated (not shown) since
logging prohibited use of the local sampling de-
sign and a random sampling pattern was used in-
stead. Figure 6.6 also shows, that the type of the
best matching theoretical variogram, as well as the
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Figure 6.4: Upper panel: SWE data (in kg/m2) at plot 24 for three snow campaigns. Horizontal (x-axis)
and vertical (y-axis) transects are indicated by the green and blue line, respectively. Lower panel: linear
regressions used to estimate snow density including data from all plots. Red circles indicate data from
plot 24 (also shown in the upper panel).
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Figure 6.5: Nugget-to-sill-ratio for spherical vari-
ograms for all plots and all campaigns plotted as a
function of snow height.

estimated range vary considerably and without ap-
parent pattern over time. Ranges calculated from
the theoretical variogram models are smaller than
60 metres (the extent of the sampling design) for
65 % of all plots (or 80% if plots with a pure nugget
effect are included). For about 20 % of the investi-
gated plots, a range > 60 m was found.

A nugget-to-sill-ratio of close to one (pure
nugget) was observed for snow heights < 20 cm
only (Figure 6.5. The Figure shows the nugget-to-
sill-ratio for all plots and all campaigns plotted as a
function of snow height. For this analysis, param-
eters were determined for spherical variograms for
all plots in order to increase comparability.

Excluding cases where the range is >60 m, we
find anisotropy for >60% of the cases if we define
anisotropy as a ratio of the range in x direction and
the range in y direction of >1.2 or <0.83 (data not
shown). The same holds true if the ratio of the
sill is considered, indicating that we are observing
zonal anisotropy. The direction of the anisotropy
appears to vary randomly.

6.3.2 Snow variability at the catchment
scale

Mean SWE are generally increasing with increas-
ing elevation (Table 6.2 – plot IDs are ordered by
altitude). No measurements were taken at plot
13 during the first campaign because of logging.
While plots at lower elevations were snow free
again during the fourth snow campaign, maximum
SWE at higher elevation was not reached until that
time. Similarly, a continuous snow pack existed
over the entire season in Zinnwald, while recurring
short term snow accumulation and melting cycles
can be observed for the lower station Dippoldis-
walde.

Boxplots (Figure 6.7) are used to assess variabil-
ity of snow at the catchment scale. Dependence on
elevation, northing and land use was tested. For-
est and field plots are shown in green and red, re-
spectively. Differences tend to be significant if in-
terquartile ranges (IQR, a measure for variability)
in boxplots do not overlap. For elevation zone 1
(400 to 600 m a.s.l.) non overlapping IQR’s for
forest and field plots occur during the first and third
snow survey. No snow was observed for the fifth
campaign and the SWE for surveys two and four
were slightly lower compared to the previous sur-
veys. For elevation zone 2 (601 to 700 m a.s.l.) we
find higher median SWE compared to zone 1 (note
that the range of the y-axes are different). SWE are
also lower for forest plots compared to fields. The
IQR () is increasing over time for both land uses
until the third and fourth measurement campaign.
For elevation zone 3 (701 to 800 m a.s.l.), SWE
are again higher compared to lower elevations. A
difference in magnitude between field and forest
plots is not apparent for the first three surveys. For
the fourth and fifth campaign, SWE are somewhat
higher for forest plots, which is opposite to the ef-
fect of land use at lower elevations. The IQR is
higher for forest plots. While SWE monotonically
increases for higher elevations until the fifth cam-
paign, it fluctuates over time non-monotonically
for lower elevations. For Zinnwald (Figure 6.3),
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Figure 6.6: Empirical variograms (red points), the fitted variogram models (black line) and the variance
at the plot scale (dashed line). The vertical line refers to the range of the theoretical variogram. The
model type is indicated in the plot: “Gau” = Gaussian, “Sph”= spherical and “Exp”= exponential. Model
names in red indicate plots with a pure nugget effect. The columns refer to the snow survey (with the
dates in parentheses), the rows to the plot ID appended on the right hand side.
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Table 6.2: Mean SWE in kg/m2 for each measurement campaign. Densities in kg/m3 were calculated
from snow height/snow weight pairs from the entire catchment. Plot IDs are ordered by increasing
altitude.

ID Mean1 Mean2 Mean3 Mean4 Mean5

1 11 0 9 0 0
2 21 22 21 0 0
4 18 9 18 0 0
5 25 12 19 21 0
6 18 12 19 26 0
7 22 0 14 0 0
8 12 0 13 0 0
9 23 26 24 21 0
10 26 25 38 42 21
11 29 34 36 71 18
12 23 20 22 25 17
13 NA 11 25 45 9
14 23 21 26 22 14
15 12 7 15 13 8
16 32 35 59 65 25
17 17 16 26 20 19
18 31 51 86 147 154
19 36 44 71 117 121
20 24 34 46 112 80
21 22 28 57 133 105
22 34 45 47 106 84
23 34 47 49 88 81
24 24 31 38 74 53
25 40 45 61 145 144
26 32 45 58 138 148

Density 171.21 199.21 196.17 293.02 265.08
R2 (Density) 0.89 0.91 0.94 0.96 0.91
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the first three snow surveys took place during the
accumulation period, the fourth survey was con-
ducted around peak snow accumulation and the
fifth survey during the melting period. No influ-
ence of northing on SWE could be detected from
box plots (results not shown).

To complement the results from the box plots,
multiple linear regressions between SWE and ele-
vation, northing and land use were calculated. Re-
sults between the two methods are in agreement:
While the influence of elevation was always sig-
nificant (Table 6.3), northing and land use never
had a significant effect. Correlation coefficients
of the multiple linear regression models were be-
tween 0.64 and 0.76.

6.3.3 Degree-day model

6.3.3.1 Convergence of the MCMC parameter
estimation

Convergence of the MCMC parameter estimation
for the degree-day model needs to be checked. The
potential scale reduction factor (PSRF) as conver-
gence criterion is shown in table 6.4. Based on the
PSRF 13 out of 25 parameters estimated for single
plots as well as parameters estimated for all plots
converge. However, trace plots (e.g. Kass et al.,
1998) indicate, that chains did not converge for
plots 6 and 11 despite a low PSRF value. Ten out
of the remaining 11 plots with converging chains
are higher than 670 metres a.s.l. The standard
deviations (SD) of the posterior distributions as a
measure of remaining uncertainty is also presented
in table 6.4. As expected, SD is much smaller
(mean(SD(a0))=0.03, mean(SD(c0))=0.22) for
converging chains compared to non converging
chains (mean(SD(a0))=0.83, mean(SD(c0))=5.6)
A possible reason for the non convergence of the
parameter estimation in the lower catchment is pre-
sented in the discussion and is based on the ob-
servation that all plots with non converging chains
show a high mean value for degree-day factor> 10
mm/d˚C, except for plots 10 and 16. Since pa-
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Figure 6.7: Box plots of SWE for three different
elevation zones (zone 1: 400 m-600 m, zone 2:
601 m-700 m and zone 3: 701 m-800 m; table 6.1)
and the two different land uses (forests green,
fields in dark red). Mean SWE for each group are
indicated by points.
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Table 6.3: Parameters of the multiple linear regressions between SWE and topographic controls
(elevation (a), northing (b) and land use (c)). For each snow campaign (SC) the estimated coeffi-
cient (Est) and its standard error (Error) are listed. Significant factors (two sided t-test; α ≤ 0.01) are
printed in bold. The last row shows the correlation coefficients of the regression model

SC1 SC2 SC3 SC4 SC5

Predictor Est1 Error1 Est2 Error2 Est3 Error3 Est4 Error4 Est5 Error5

Intercept -10 7 -62 12 -75 19 -248 38 -254 45
Elevation (a) 0.05 0.01 0.13 0.02 0.16 0.03 0.45 0.06 0.44 0.07
Northing (b) 5.7 3.0 9.3 5.4 14.0 8.3 21 17 18 20
Landuse (c) -5.1 2.0 -6.7 3.6 0.7 5.4 8.9 11.0 9.1 13.0

R2 0.59 0.70 0.59 0.73 0.63

rameter estimates of non converging chains are not
reliable, we will focus on the plots in the upper
catchment with converging chains for the remain-
ing presentation of the results. Note that non con-
vergence is an indicator that model formulation is
not appropriate – for possible extensions, see dis-
cussion.

6.3.3.2 Parameter dependence

We tested whether estimates for a0 or c0 showed
any dependence on elevation, northing or land use
with visual plots and linear regression models. As
expected no such dependence structure was appar-
ent with respect to elevation, indicating that inter-
polation of meteorological data is sufficient to rep-
resent the observed elevation gradients. For aspect,
no dependence was found as well, which for c0
is against expectation because differences in radia-
tion input should result in different melting factors.
For land use, forest plots show between 13% and
30% higher accumulation parameters a0 compared
to adjacent field plots (table 6.4 – the same sub-
scripts indicate adjacent plots). Similarly, for the
degree-day factor, consistently higher values are
found in forests compared to adjacent field plots,
differences ranging from 3 to 43%. Plots with
small differences between the accumulation fac-
tors do not necessarily show small differences be-

tween the degree-day factors and vice versa.

6.3.3.3 Model evaluation

The model is only evaluated for plots with converg-
ing chains. The RMSE are reported in table 6.4.
RMSE range from 1.2 to 17 for parameters esti-
mated for single plots, while values go up to 91 for
parameters estimated for all plots. As expected, the
model error σ and the RMSE show high correlation
R2=99.9%.

We found an overlap of the confidence bands
(CBMC) and (CBobs) for all five campaigns for 9
out of 11 plots with converging chains (table 6.4).
Confidence bands are also illustrated in figure 6.8
for plots 6 (non-converging), 24 (best case), and
26 (typical). For plot 6, the very wide confi-
dence bands indicate the non-convergence during
the parameter estimation. The upper limit is con-
stantly increasing (not shown) with a melting fac-
tor c0 < 0. For the other two plots, the model
represents temporal dynamics sufficiently as indi-
cated by overlapping confidence bands for all 5
campaigns. The pattern observed for plot 26 was
also apparent for multiple other plots: the SWE is
overestimate for the first three snow survey, while
it was underestimated for the last two snow sur-
veys.

Results are shown also for parameters estimated
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0.69

1.84
8.14

13.72
80

58.23
60

22
c

field
1

0.01
1

0.12
1

0.19
0.59

1.79
1.81

3.04
100

42.03
60

23
b

field
1.01

0.02
1.01

0.18
1

0.19
0.47

1.38
2.43

4.08
100

31.14
100

24
b

field
1.01

0.01
1.01

0.04
1

0.19
0.43

1.27
0.73

1.23
100

23.81
100

25
d

forest
1.01

0.05
1.02

0.45
1

0.19
0.69

1.5
7.14

12.07
100

68.1
40

26
d

field
1

0.04
1

0.43
1

0.18
0.6

1.27
8.41

14.38
100

59.73
60

A
L

L
1.01

0.02
1

0.29
1

0.03
0.31

1.46
19.01

m
ean

8.3
28.3
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for all plots (figure 6.8, right hand side). It is ap-
parent that confidence bands are wider compared
to parameters estimated for single plots, which is
caused by the larger width for the distribution of
the error model (σ). It becomes also clear, that in
the upper catchment, the model is able to repre-
sent the dynamics for one location (24) and at the
same time fails to represent the dynamics for the
other location (26), indicating missing processes
(see discussion). SWE for plots at higher eleva-
tions are often underestimated (not shown).

6.4 Discussion

6.4.1 Snow density

Snow density is expected to increase with time as
a consequence of compression and metamorphic
processes caused by weather and the weight of the
snow cover (e.g. Gabel, 2000). Thawing and re-
freezing cycles further increase the density of snow
over time. In agreement with these expectations,
we observed increased snow density during the ac-
cumulation period.

Jonas et al. (2009) and Anderton et al. (2002)
reported increasing snow density with increasing
snow depth. In contrast, we assumed snow den-
sity to be independent of snow height, since we
were unable to obtain sufficiently accurate weights
in cases of low snow masses (< 100 g). The reason
was the low resolution (5 g) of the balance used in
this study since balances with higher resolution did
not have a sufficiently large maximum measurable
weight. Using a more precise balance would make
it possible to compute snow height dependent den-
sities to compute the SWE.

6.4.2 Snow variability at the plot scale

The sampling design was expected to capture the
variability at the plot scale. Jost et al. (2007) used
the same design and found, that besides a few ex-
ceptions the extend is sufficient to estimate reliable

local means. In our study, for 80% of all inves-
tigated plots the method is covering the autocor-
relation structure, as indicated by a range <60 m
or a pure nugget effect. The increasing variance
over time, that we found for most plots indicates
the ripening of the snow cover, as small scale lo-
cal effects are likely to accumulate over time. We
were able to identify anisotropy in more than half
the plots, which is accordance with expectations as
processes differ depending on the direction (gravi-
tational forces acting in the down slope direction).
We were not able to identify patterns affecting the
anisotropy.

An initial goal of the study was to find fac-
tors influencing properties of the local variability
of snow, such as the range, the anisotropy or the
nugget-to-sill-ratio. However, we were not able to
identify any such factor. Reasons for differences
of snow variability at the plot scale have been re-
ported before, and some might be of importance
in our catchment: For example, Hiemstra et al.
(2006) reported differences in snow heights be-
tween 0.1 and 7 metres over a span of a few me-
tres caused by wind redistribution. We attempted
to record indicators of wind transportation during
the snow surveys, but since no uniform criteria had
been defined before, the data was not consistent
for all plots and snow surveys. The snow distri-
bution in forests is influenced by shading effects
and the interception capacity, which is affected by
canopy density and leaf area index (Hedstrom and
Pomeroy, 1998; López-Moreno and Latron, 2008).
Future investigations should therefore select loca-
tions with homogeneous crown closure and forest
types, which was not alway given for our plots. In
addition, not enough care was taken to find exactly
the same location for each measuring campaign,
often the center of the sample design was shifted
by a few meters. Comparison between campaigns
thus also includes effects from such shifts. Nugget
only effects for plots with little snow is likely to
be a result of surface discontinuities. If the lat-
ter are high compared to the snow height, the vari-
ance of SWE is superimposed by irregularities of
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Figure 6.8: Time series of the simulated SWE [mm] for the plots 6 (non converging chains), 24 (best
fit) and 26 (representative example). The black solid line shows the SWE estimates based on the mean
parameter value, while the grey area represents the confidence band (10- and 90% percentile) of the
modelled SWE, including the term from the error model. The green error bars show the mean SWE
measured at the plot scale and the associated standard deviation. Results for parameters estimated for
single plots are shown in the left column, while results for parameters estimated for all plots are shown
on the right hand side.
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the surface. Three dimensional laser scans at the
plot scale before and during the snow season may
help to quantify the relation between surface dis-
continuities and variability of SWE as reported by
Hood and Hayashi (2010). In addition, estimated
variograms for the assessment of the local variabil-
ity will certainly improve using such high resolu-
tion data.

We did not expected SWE to exceed the cumu-
lative precipitation. In contrast, we found that cu-
mulative precipitation was only 70% of the SWE
in Zinnwald, at the time of maximum SWE. We
found two possible explanations: (a) The mea-
surement error of rain gauges is higher for snow
fall and high wind speeds, resulting in underesti-
mations of the true precipitation amount (Richter,
1995). For future studies, the error of the rain
gauge should be corrected. (b) Strong winds
and patterns from wind ablation and redistribution
were observed during the snow surveys, indicat-
ing that snow was possibly transported to the Zin-
nwald station. Further investigation should there-
fore quantify the magnitude of wind redistribution
and ablation.

6.4.3 Snow variability at the catchment
scale

Jost et al. (2007) reported plot elevation as the most
important factor for SWE at the catchment scale
and we expected similar results. Box plots as well
as the statistical model confirmed elevation to be
the most influential factor. The influence, is in-
creasing until the time of peak snow accumulation.

Because of the snow interception in the canopy,
lower SWE were expected for plots in forests com-
pared to fields for the accumulation period. During
melting periods, we expect lower melting in forest
because of shading and lower wind speeds (Fergu-
son, 1999). Thus the difference from the accumu-
lation period is expected to level out or even turn
around, showing more snow at forested plots. As
expected, less snow was observed in forests com-
pared to fields during the accumulation period for

zone 1 and 2. For the same zones, decreasing
differences during the melting period was also in
agreement with expectations.

The expected differences between forest and
fields was not observed at elevation Zone 3 (Fig-
ure 6.7). This is not only against our expectation,
but also stands in contrast to results from Jost et al.
(2007), who reported forests to have SWE reduced
by 39% compared to nearby field sites. The only
possible explanation we could imagine is redistri-
bution by wind from fields to forests and depres-
sions, reducing SWE on field plots, while the snow
pack on adjacent plots in the forest remains almost
unaffected. Therefore, we suggest to include the
effects of wind redistribution in further investiga-
tions, for example using the approach of Dunn and
Colohan (1999) which combines the degree-day
model with a function accounting for wind redis-
tribution.

Different effects of land use for different eleva-
tion zones are likely to cause the missing effect in
the multiple linear regression model.

We expected some effect of plot aspect on SWE
for melting periods, because of differing radiation
inputs. However, the observed patterns appear to
be random. We found two possible explanations:
(a) The potential solar radiation input depends on
the influence of fog, the plot aspect and slope, but
this study only considered aspect, since measure-
ments of slopes were not performed with suffi-
cient accuracy. Therefore the potential solar ra-
diation input is not quantified adequately. Subse-
quent studies should therefore pay more attention
to obtaining detailed radiation data. (b) Anderton
et al. (2004) report, that the spatial distribution of
SWE at the start of the melting season is the pri-
mary control on patterns of snow disappearance,
and that representation of spatial variability in melt
rates is of minor importance. As a consequence,
effects like wind redistribution during the accumu-
lation period may superimpose effects like the plot
aspect during the melting period.
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6.4.4 Degree-day model

6.4.4.1 Chain convergence

While PSRF was a useful indication of chain con-
vergence, we found two cases where chains ap-
peared to have converged according to the PSRF,
while the evaluation of the trace plots and target
distributions indicated non convergence. The dif-
ferent interpretation between PSRF and visual in-
spection may be caused by the overdispersion of
the prior distribution compared to the posterior dis-
tribution, that is required by the Gelman-Rubin di-
agnostic (Cowles and Carlin, 1996; Gelman et al.,
2003; Plummer et al., 2009). We used random
sampling for the starting values for each chain,
sampling a low number of starting values, which
makes it impossible to assure that the sampled val-
ues span the range of the given initial distribution.
This in turn can cause the Gelman-Rubin diagnos-
tic to be inappropriate, since we can not guarantee
for the required overdispersion. A possible alter-
native would be to start with fixed values for each
chain, covering the entire parameter space. Based
on our experience, it is mandatory to examine the
trace plots and posterior distributions for each pa-
rameter. In addition, future studies should make
use of the possibility to include prior knowledge
about feasible parameter ranges, for example by
making negative and implausibly high values im-
probable.

High values for the degree-day factor for plots
with non-converging chains result in the modelled
SWE to be to zero after short times of melting con-
ditions, (almost) independent of the amount of ac-
cumulated snow. Apparently, the posterior distri-
butions estimated for plots at lower altitudes are
strongly influenced by the snow surveys where no
snow was observed.

6.4.4.2 Parameter dependence

We found strong elevation gradients for tempera-
ture and precipitation, which are the driver for in-
creasing SWE with elevation. While interpolation

included the elevation gradients, we did not explic-
itly evaluate the interpolated meteorological input
data. Thus, statements about the quality of the in-
put data for the snow model would be speculative.

Since the elevation-gradients were included dur-
ing the interpolation and to obtain a closed water
balance, we expected an accumulation factor a0 of
about one for field plots with no dependence on el-
evation. As expected, no dependence of a0 on el-
evation was found. However, we observed values
between 0.19 to 0.97 with the majority around 0.6,
indicating that precipitation had to be reduced in
order to successfully model snow melt dynamics.

We found two possible explanations for the low
a0 values. First, an insufficient representation of
the spatial variability (intensity and distribution) of
precipitation during the interpolation, since rainfall
is temporally and spatially highly heterogeneous.
We suggest to use cross validation or a compari-
son with daily sums of radar rainfall as quality as-
sessment of the interpolation methods. Second, re-
duction of snow height by wind transport from ex-
posed locations to depressions and wind sheltered
locations – which implies that our measurement lo-
cations were generally rather wind exposed. Note
that effect of wind was not considered during the
stratification of the plots. The unexpected effect
of land use on snow height (more snow in forests)
was already discussed above (section 6.4.3) and is
also apparent in the a0 values.

Strong parameter interactions (Chapter 3) be-
tween a0 and the transition temperature between
rain and snow could be an additional reason for
the low a0 values. Thus, a different melting tem-
perature might lead to values for a0 closer to 1.
Martinec and Rango (1986) report threshold tem-
perature between 3˚C and 0.75˚C, depending on
the time of the year. Apparently a threshold tem-
perature of 0˚C is lower. However, using higher
threshold temperatures would increase the fraction
of precipitation falling as snow, which would result
in even lower values for the accumulation factor
a0.

The accumulation factor a0 was not found to
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depend on northing. This was expected because
accumulation does not depend on radiation, for
which northing is a proxy.

Values for degree-day factors c0 were expected
between 2.8 and 5.3 mm/d˚C (Hock, 2003). We
found c0 between 0.24 and 2.23 for plots with con-
verging chains. We are surprised by this result and
do not have an explanation. In contrast to our ini-
tial expectations, no relationship between northing
and the degree-day factor could be identified.

Degree-day factors for open fields are reported
to be twice as high as for forests (Rango and Mar-
tinec, 1995). In contrast, we found higher c0 values
for plots in the forest, compared to nearby fields,
very similar to results for the accumulation factor.
We found two possible causes for this difference
to results from literature: 1) higher accumulation
factors for forested sites may in turn require higher
melt rates to melt the higher amounts of accumu-
lated snow. 2) The shielding function of the forest
canopy (Hardy et al., 2004) may be superimposed
by other effects, such as wind redistribution.

6.4.4.3 Model evaluation

The results of the model evaluation reveal both,
the advantages and the limitation of the degree-day
model. On the one hand, for plots with a con-
tinuous snow pack, it is capable to explain most
of the temporal variability over the snow season.
While confidence bands of measurements and sim-
ulations overlapped, we often found a small over-
estimation of the first three and small underestima-
tion for the last two campaigns, indicating that at
the beginning of the snow season some process re-
duces the snow accumulation (remember also the
surprisingly low accumulation factor a0), while ac-
cumulation suddenly increases before the fourth
campaign. No reasons have been found that could
explain this observation.

On the other hand, we were not able to find pa-
rameter sets that describe the pattern observed for
lower elevations. Plots at low elevations showed
recurrent accumulation and melting cycles with al-

ternating snow free periods and periods with low
SWE. The snow season also finishes earlier at
lower elevations, while peak snow accumulation
was not even reached by this time for plots at
higher altitudes. This was not only observed for
our measurements, but also for the data from the
meteorological station situated in Dipplodiswalde,
where the snow cover melts around the fourth snow
survey. The snow free periods resulted in implausi-
bly high degree-day factors compared to literature
values (Hock, 2003; Martinec and Rango, 1986).
In the results section, we highlighted that rain-on-
snow may be an important process. Hence, we
expect better estimations of snow dynamics in the
lower catchment if the cold content of the snow
pack and the heat input by rain would be quanti-
fied.

Since parameters could not be determined suc-
cessfully for plots in the lower catchment, we did
not expect parameters estimated for all plots to
be meaningful. Accordingly the parameter set is
not capable to explain the spatial variability at the
catchment scale. The low value for the accumula-
tion factor a0 leads to high RMSE values for the
upper catchment as not sufficient precipitation is
accumulated as snow. An extension of the model
appears to be necessary to describe spatio tempo-
ral dynamics at this catchment. From our tests we
we can conclude that the topographic factors eleva-
tion and northing are not a suitable extension of the
model. The two factors are probably superimposed
by other effects, mainly redistribution of snow by
wind during the accumulation period and heat in-
put by rain-on-snow during the melting period at
the lower catchment.

An alternative approach to an extension of the
model would be to estimate parameters for the data
from a single elevation zone. Especially results
for the upper catchment are expected to improve
with this approach. However, results for the lower
catchment are unlikely to improve – model exten-
sion seems more promising.
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6.5 Summary and Conclusions

The variability of SWE was investigated at two
scales in this study, the plot scale and the catch-
ment scale. The local sampling design captured the
variability at the plot scale in most cases. For less
than 20 % of the plots the range estimated from
fitted theoretical variograms extended beyond the
range of the sampling design. At the catchment
scale, a stratified nested sampling was used to cap-
ture SWE patterns with respect to elevation, ex-
position and land use. The results show increas-
ing SWE with increasing elevation, however, the
expected influence of land use and exposition has
not been observed. All together, topographic con-
trols and land use were capable to explain 74% of
the observed variability at the catchment scale with
multiple linear regression models.

A degree-day model was calibrated for each sin-
gle plot. Confidence bands for model and mea-
surements overlapped for plots at altitudes above
670 metres. For plots at lower elevations, the cal-
ibration showed non converging chains with the
MCMC algorithm, which is a strong indicator for
model deficiencies. Recurrent accumulation and
melting periods as well as the heat input of rain are
possible reasons for this result. With the simple
degree-day model a continuous snow pack appears
to be necessary in order to explain the temporal
variability at the plot scale. As expected, results
are not satisfactory for the simple model for pa-
rameters estimated for all plots.

We reported several facts indicating that redis-
tribution of snow by wind could be a very impor-
tant effect. 1) In Zinnwald, accumulated precipi-
tation over the season only accounted for 70% of
the reported SWE, 2) accumulation factors a0 of
the degree-day model were significantly lower than
1, 3) for the upper catchment, we did not observe
lower snow heights in forests compared to fields as
reported in other studies and 4) we hypothesized
that the effect of exposition, which we expected
but did not observe, may be superimposed by wind
transport.

The possibility to find a parsimonious model
that explains the spatio-temporal variability for the
entire catchment is more likely after inclusion of
additional processes such as heat input by rain-on-
snow and redistribution of snow by wind.

Suggestions for further investigations:

• Quantify the impact of wind redistribution
that superimposes effects of land use and ex-
position.

• Apply the model to single elevation zones in
order to account for the different characteris-
tics of the snow season controlled by temper-
ature and precipitation.

• Quantify the heat input of rain-on-snow.
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7.1 Summary of achievements

Using the Weisseritz case study to demonstrate the
different steps of the learning cycle lead to a num-
ber of scientific achievements. The major achieve-
ments are briefly summarized with respect to guid-
ing questions as summarized in section 1.6:

How to assess (poor) model performance?
Defining good and poor model performance in an
objective way is challenging, because every per-
formance measure is only sensitive for a certain
number of differences between model and obser-
vation (Chapter 2). The same problem is also re-
ported in the context of calibration, where multi-
objective approaches have emerged. In order to
find a generic approach, instead of selecting a
small number of performance measures targeted
at a single purpose, a large number (near to com-
prehensive) of performance measures has been as-
sembled and implemented in R (Reusser, 2009). A
complete model diagnostic procedure includes as-
sessment of model performance and evaluation of
the representation of processes by answering the
three questions 1) when a model is performing ac-
ceptably/poor, 2) of what kind deviation are and 3)
whether the relevant process conceptualisations are
active during the right period. Temporally resolved
analysis of model performance was developed in
this thesis to answer the first two questions. This
is the first part of TIGER (Chapter 2) and an in-
novation for hydrology, since temporally resolved
model performance has only been assessed for sin-
gle peaks before.

How is it possible to identify temporal patterns
and context dependence in model performance?
Since catchment behavior is strongly context de-
pendent (rainfall driven, energy driven, snow in-
fluenced) it is informative to relate temporal pat-
terns of model performance to context dependence
of hydrology. Temporal patterns in model perfor-
mance are visually easy to detect for short periods,

including only few events. However, as longer se-
ries are analysed, visual inspection starts to fail be-
cause either details are not visible anymore if look-
ing at an overview or there is a danger of loos-
ing track and being overwhelmed by all the de-
tails if looking at zoomed views. As second part
of TIGER, I developed a possibility to assess long
simulation periods based on a meaningful data re-
duction method. The data reduction allows to clus-
ter periods of similar model performance. Two
cluster interpretation tools were developed and ap-
plied to better understand the significance of the
clusters: cluster-wise boxplots of model perfor-
mance and interpretation with synthetic peak er-
rors.

Can we identify relevant model components (for
computationally expensive models)? Relevant
model components are detectable using temporal
dynamics of parameter sensitivity (TEDPAS). The
procedure allows to make a qualitative model vali-
dation by testing if processes are dominant during
periods as we expect it. While TEDPAS has been
used for shorter periods by Sieber and Uhlenbrook
(2005), they reported computational problems to
prevent analysis of longer time periods (e.g. com-
plete hydrological years). My thesis is the first
report of application of TEDPAS to long time se-
ries. In order to achieve this goal, the Fourier am-
plitude sensitivity test (FAST) is implemented in
R (Reusser, 2008). This new implementation of
FAST is compared to existing implementations of
FAST and Sobol’s method in Simlab, and is found
to be computationally more efficient.

What are the limitations of WaSiM-ETH as rep-
resentation of the Weißeritz catchment? Limi-
tations of WaSiM-ETH are identified using a com-
bination of TIGER and TEDPAS. With this com-
bination, repeatedly occurring patterns of poor
model performance are related to dominant model
parameters, indicating deficiencies in process rep-
resentations. For WaSiM-ETH I found that snow
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melt periods are generally overestimated which
may be caused by missing processes of snow re-
moval or missing representation of spatial variabil-
ity of driving forces. Recession periods during dry
periods are not matched well, indicating that sim-
ple linear reservoir recession or the topmodel ap-
proach may not fit the landscape very well. In ad-
dition, some peaks are missed in winter, which has
been identified to be caused by erroneous winter
data (ice jams). Not including this data is impor-
tant for a correct calibration. Additional measure-
ments have focused on snow processes and we col-
lected information about temporal and spatial vari-
ability.

How much information can be obtain from
measurements with inexpensive temperature
sensors? Temperature was measured in and
above snow cover with inexpensive loggers. As
part of this thesis, a new algorithm was developed
to determine snow height from these measure-
ments. Estimated snow heights agree well with
reference measurements at the same location. The
vertical resolution of the estimated snow height can
be increased during melting periods, since a simple
temperature index model allows to interpolate be-
tween single sensors. The data is also well suited to
estimate cold content. Going from observations to
predictions of cold content, a simple temperature
diffusion model reduces RMSE by ≈30% com-
pared to the persistence assumption, despite strong
oversimplifying assumptions.

What are temporal and spatial structures of the
snow in the catchment? In a Diploma Thesis
(Chapter 6), measurements were used to separate
snow variability at the local scale (few meters) to
variability at the catchment scale (km). At the lo-
cal scale, variograms were estimated and the range
determined from fitted variograms was within the
range of the sampling design for 80% of the plots.
Consistent with Jost et al. (2007) no variables ex-
plaining the structure of the local variability could

be detected. On the catchment scale, the snow
height is mainly affected by the plot altitude. The
expected influence of aspect and land use was not
observed.

Temporal structures are different for the upper
and the lower catchment. For the upper catchment,
we can identify an accumulation and a melt phase
with a persisting snow cover during the entire win-
ter. In the lower catchment, the snow cover was
determined by recurrent snow-fall and melting cy-
cles, resulting in multiple short term snow covers
over time.

What processes are required to describe the
new measured data and what are the resulting
updates to the model? A temperature-degree
day model was applied to test whether the spatio-
temporal variability of SWE can be represented by
this simple model. The degree-day model is ca-
pable to explain the temporal variability for plots
with a continuous snow pack over the entire snow
season, if parameters are estimated separately for
single plots. However, processes described in the
simple model are not sufficient to represent mul-
tiple accumulation-melt-cycles, as observed for
the lower catchment. Thus, the combined spatio-
temporal variability at the watershed scale is not
captured by the model. Since WaSiM-ETH is
based on this approach, the result confirms the
short-comings of this model as a conceptualisation
of snow processes in the Weisseritz catchment.

The analysis indicates, that snow on rain and re-
distribution by wind or a full energy balance model
will have to be tested as a next steps. Time did not
permit to find a conclusive answer.

7.2 Discussion and future research
questions

Discussion and future research questions are orga-
nized by methods.
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7.2.1 Temporal dynamics of model perfor-
mance

TIGER is a step towards the resolution of two is-
sues with model diagnostics. First, a single crite-
rion is not sufficient for diagnosis of current en-
vironmental models, as each objective function is
sensitive for certain aspects of deviation only. Sen-
sitivity of objective functions for certain aspects is
demonstrated with the synthetic peak errors (Chap-
ter 2). To avoid negligence of some aspects of de-
viation, multiple diagnostic signatures should be
derived from theory which check that important
system behaviours are reproduced by the model
(Gupta et al., 2008). Combination of multiple mea-
sures provides a better characterization of the per-
formance compared to any single measure, which
agrees with the basic idea of multi-objective cali-
bration. Second, catchments work very different in
different contexts (rainfall driven, energy driven,
snow dominated, . . . ). Thus, looking at tempo-
ral dynamics of model performance provides ad-
ditional, context dependent information.

TIGER has been used to identify performance
clusters for two different models, Catflow, a physi-
cally based model and WaSiM, a more conceptual
model. From these applications I am confident that
the method is generic and can be applied to a wide
range of rainfall-runoff models.

Some of the performance measures are highly
correlated. After applying the method to several
models, the same set of performance measures ap-
pears to be sufficient to describe the difference
between model and observation. Future research
should investigate this more systematically, possi-
bly providing a minimal list of comprehensive per-
formance measures.

While the results of TIGER are not very sen-
sitive for the selection of the time window size,
an automatic peak detection and identification of
appropriate window size would remove one sub-
jective selection of the method. The rank trans-
formation and use of self-organizing maps make
the method robust for extreme values in perfor-

mance measures (which occur for the short time
windows).

The criterion applied for the selection of clus-
ter size may result in very few clusters (2 or 3),
which will not reveal a great amount of temporal
dynamics. As with every data aggregation method,
some information is lost during the data reduction.
However, selecting a higher number of clusters that
does not strictly minimize the selection criterion
may be a better choice. Subjectivity at the end of
the analysis can not be avoided, since the subse-
quent interpretation of the clusters necessarily re-
mains subjective. For the interpretation of the clus-
ters, the two tools proved to be valuable: cluster
wise box plots and synthetic peak errors.

Future research may include 1) multi model
comparison with TIGER, 2) using virtual exper-
iments to further test how well TIGER can de-
tect deficits in model structure, 3) box plots might
be extended to include state variables such as dis-
charge, antecedent precipitation index and similar.
4) Continue development of synthetic peak errors.
Combined errors could be used as a bench mark
for performance measures, similar to the error re-
sponse groups discussed in chapter 2. 5) more ef-
fort towards feature based objectives, which are
“signature indices that measure theoretically rele-
vant system process behaviors” Gupta et al. (2008).
6) Methods from Brun et al. (2001) or Chu and
Hahn (2009) may be used to find representative
subsets from all performance measures, replac-
ing the current, correlation-based selection. 7) A
smarter assessment of performance clusters should
be able to indicate what the missing processes are.
This problem is in some way similar to problems
encountered during fault detections of large power
grid systems∗.

∗Hoshin Gupta, Mai 2010, personal communication
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7.2.2 Temporal dynamics of parameter
sensitivity

So far, not many applications of TEDPAS have
been reported (Sieber and Uhlenbrook, 2005;
Cloke et al., 2008). TEDPAS can be used as pow-
erful tool for 1) the identification of relevant model
components for each period, 2) for the selection of
the most informative time periods for calibration,
and 3) detection of parameter interactions from
TEDPAS correlations.

Qualitative validity for WaSiM-ETH can be es-
tablished with TEDPAS (e.g. no snow during
summer, right order of different recession com-
ponents). Future research should demonstrate the
benefit of TEDPAS for calibration, by using peri-
ods of high parameter sensitivity only for the cal-
ibration of a given parameter. Also, the detection
of parameter interactions should be further devel-
oped with virtual experiments and by extending the
approach called "practical identifiability analysis“
(Brun et al., 2001) with global instead of local sen-
sitivity analysis.

The underlying sensitivity analysis could be ex-
tended. For FAST, checks against benchmark tests
(Saltelli and Bolado, 1998, e.g.) for SA should be
run. Methods for total order SA could complement
FAST to provide “a fairly complete and parsimo-
nious description of the model in terms of its global
SA properties” Saltelli et al. (2006).

7.2.3 Method combination

The combination of TIGER and TEDPAS was use-
ful for the identification of weaknesses of WaSiM-
ETH for representing the Weisseritz catchment and
highlighted a number of deficiencies (Chapter 4).
The combination of TIGER and TEDPAS is help-
ful for the reduction of model structural uncer-
tainty. It is possible to use an “extended multi ob-
jective” approach by testing the model against mul-
tiple objective functions calculated for several sets
of independent target data. The underlying idea is
to increase the "information content" of the cali-

bration data space (Gupta et al., 2008). A second
approach for the reduction of model structural un-
certainty is to represents dominant processes and
their controls such that characteristic behaviour
can be reproduced in a more realistic manner, for
instance resolving lateral flows and surface and
subsurface flow paths, or reproducing subsurface
storage volumes. This is often referred to as "pro-
cess complexity" of the model and means to reduce
the manifold of acceptable model structures. The
use of more complex models implies that compu-
tational effort and simulation times increase con-
siderably. The combination of TIGER and TED-
PAS is fast enough to be applied to models with
increasing complexity because: a) it is not neces-
sary to calibrate the model in advance, b) a highly
efficient method is used to sample the parameter
space, and c) all model runs are evaluated (to de-
termine parameter sensitivity) while other Monte
Carlo based methods often discard the 90% worst
runs as a first step.

Future development of the method could include
virtual experiments, having one researcher intro-
duce a model deficiency and a second researcher
apply the combination of TIGER and TEDPAS to
identify the deficiencies. The approach could also
be further developed as a means to catchment clas-
sification by searching sets of compatible and in-
compatible catchment - model pairs. We used a
very simple method for matching of error clus-
ters and dominant parameter sensitivities. Putting
some effort into an improved combination might
enhance interpretability. One possibility would be
to include parameter sensitivities while estimating
the self organizing maps. When using model di-
agnostics to guide field experiments it is not pos-
sible to provide a generally applicable recipe, be-
cause the interpretation of the results remains sub-
jective. Work related to finding a minimal set of
measurements for ungauged basins within the PUB
initiative may be relevant for progress on this topic
(Seibert and Beven, 2009; Winsemius et al., 2009;
Blume et al., 2008b,a).
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7.2.4 Snow temperatures

Hobo temperature sensors are sufficiently accurate
and their resolution with respect to temperature
and time is high enough to clearly detect the reduc-
tion of diurnal variation, which is necessary for the
estimation of snow heights. Estimated heights are
in good agreement with reference measurements.
The observed error corresponds to the theoreti-
cal expectation from the sensor spacing. A slight
underestimation is possible, because a thin snow
cover on the sensor may not be detected.

As random height estimates occur during snow
free periods, this can be used as a criterion to iden-
tify snow free periods. Estimates for degree day
factors from the interpolation during melting peri-
ods are not comparable to literature values, since
compaction of snow and melting can not be distin-
guished from the temperature data alone. Further
development is necessary to reduce the influence
of the sensors and the metal rod on the snow cover.

The estimation of the cold content requires an
assumption about the snow density, which intro-
duces additional uncertainty. Jonas et al. (2009)
use height, location and time for a regression based
density estimate for locations in the alps, which
should be tested for its applicability to the Weis-
seritz catchment. Alternatively history of tempera-
ture might be used instead of time of year.

If going from estimation of the cold content
towards prediction, strong simplification assump-
tions are necessary to create a simple diffusion
model for the prediction of the cold content. The
estimated thermal conductivity, which is the only
model parameter, is often outside the theoretical
range. Despite the error reduction of 30% with re-
spect to the persistence assumption (assuming per-
fect temperature predictions), the model is not suf-
ficient to make reliable predictions.

Future research might include the use of sensor
networks to obtain real time information. Also, the
algorithm should be adapted to include informa-
tion from previous time steps about snow height,
e.g. a Kalman filtering approach or similar could

be used.

7.2.5 Spatial variability of the snow cover

The sampling scheme used for the assessment of
local variability is sufficient. Covering 60 m for the
assessment at local scale was found to be sufficient,
which agrees with (Deems et al., 2006, 2008) who
report a break in fractal scale at a length of 15-40 m
for other catchments.

Improvements are certainly possible with new
measurement techniques. Terrestrial laser scan-
ning (TLS) could provide much richer data sets
(Hood and Hayashi, 2010; Schaffhauser et al.,
2008; Prokop, 2008). Possibilities for the evalu-
ation could be strongly increased using TLS as a
non-intrusive method, which would allow to mea-
sure at exactly the same location for each cam-
paign. Also considering irregularities of the soil
surface appears to be very important to understand
variabilities for low snow heights. This could be
assessed with TSL measurements during snow free
conditions.

Overall, the problem with local variability is
similar in structure as issues also encountered in
the OPAQUE project for the measurement of soil
moisture as reported by Zehe et al. (2010). Large
short scale variabilities are present, however, dy-
namics are strongly correlated.

At the catchment scale, the elevation was the
only influencing factor that was able to contribute
to the explanation of variability of SWE. No ef-
fect was visible for land use and exposition. For
future campaigns, more effort is necessary to bet-
ter quantify topographic characteristics (the avail-
able 20 m DEM does not have sufficient resolu-
tion). Estimates of the exposition to wind should
also be included in a future sampling scheme.

A simple degree day model was used to re-
produce the data at the catchment scale. How-
ever, Monte Carlo Markov Chains did not converge
for sites situated in the lower catchment. These
sites are characterized by multiple snow accumu-
lation and melting periods. For plots in the up-
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per catchment, parameter estimation for individual
plots was successful and the model was able to re-
produce the data in a satisfactory way. For conser-
vation of mass, we would expect accumulation fac-
tors of 1, however, much lower factors were gen-
erally observed. One reason may be insufficient
interpolation of meteorological data, that leads to
uncertain input data. Also effects from wind, inter-
ception, sublimation, and other local characteris-
tics may cause accumulation factors below 1. Also
the degree day factors are often below the range
reported by Hock (2003) (2.5-11.6 mm/d/◦C). No
reasons has been found for this difference.

The effect of forest is not consistent for all
places and differs between the lower and the up-
per catchment. In the lower catchment less snow
is observed in forests as reported in other studies
(Jost et al., 2007; Pomeroy et al., 1998). For the
upper catchment, snow accumulation and melt fac-
tors are higher in forests compared to field plots,
which is opposite to results reported for example
by (Jost et al., 2007). I do not have an explanation
for this differences, but factors that make the in-
fluence of forest complex include interception ca-
pacity varying with meteorological conditions and
tree stand density (Winkler et al., 2005; Winkler
and Moore, 2006). Wind transport of snow into
the forest may explain higher accumulation in the
forests. It is uncertain whether such small scale ef-
fects need to be fully resolved for flood prediction
or may be accounted for by some empirical inte-
grative factor. But even if resolving these variabil-
ities is not necessary, identification of representa-
tive sites will remain an important issue (Molotch
and Bales, 2005), making better understanding of
snow processes necessary.

7.3 Conclusion

Models used for flood prediction need to represent
bio-physical processes in a realistic way in order
to reduce mistakes caused by the extrapolation to
unobserved system states. This requires a con-

stant learning about the functioning of the catch-
ment under investigation and its representation in
the model. This is achieved with a learning cycle
which starts with the model as currently best repre-
sentation of the relevant processes in a catchment.
Model diagnostic is then used to identify deficien-
cies in the catchment representation. From the de-
ficiencies, a set of field measurements is derived.
These measurements are the base for a revision of
the process concepts. The overall rational behind
this thesis is to provide new tools to better facili-
tate such an iterative learning cycle for the case of
flood predictions.

A key step in this learning cycle is the model di-
agnostics, for which we identified 3 questions to
be answered: 1) during which periods the model is
or is not reproducing observed quantities and dy-
namics; 2) What is the nature of the error in times
of poor model performance, and 3) which compo-
nents of the model are causing this error. Answer-
ing these three question will highlight the relevant
components of the model to be revisited, enabeling
us to improve the model in a very targeted way.

The first two questions are related to poor model
performance. Since hydrological functioning is
strongly context dependent (rain driven, energy
driven, snow dominated, . . . ), average perfor-
mance of a model is only a first order assessment.
To improve rainfall-runoff models in a much more
targeted way requires time dependent performance
measures. This is achieved with moving time win-
dows in order to resolve the temporal dynamics of
the model performance.

In order to identify and characterize poor model
performance, a large number of objective functions
is used in the newly developed TIGER method
(TIme series of Grouped ERrors). The important
aspects are captured by these measures and a bet-
ter characterization of the performance is possible
compared to any single measure, similar to multi
objective calibration. The approach is consistent
with the diagnostic evaluation approach (Gupta
et al., 2008). Their idea of multiple diagnostic sig-
natures is very similar to using the large number of
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performance measures in TIGER.
However, data reduction techniques are neces-

sary to handle the resulting large amount of data.
From the data reduction, patterns of error repeti-
tion are of special interest, as these highlight recur-
rent differences between model and observation.
The clustering algorithm used in TIGER results in
meaningful clusters. To reveal the meaning of each
cluster, interpretation tools for performance clus-
ters have been developed. The two tools used in
this study are synthetic peak errors and box plots of
performance measures. TIGER has been applied
successfully to multiple models and catchments.
This demonstrates the wide range of research areas
and modelling approaches to which the approach
can be applied.

The third question of the model assessment, is to
identify which components of the model are caus-
ing a difference between observation and model.
This analysis is based on sensitivity analysis (SA).
More precisely, the Fourier amplitude sensitivity
test (FAST) was used as SA method, because the
FAST method is a very efficient method for the cal-
culation of first order partial variance global sensi-
tivities - which is state of the art for the identifi-
cation of dominating model components. A reim-
plementation of FAST has been compared to other
sensitivity methods with a lumped, computation-
ally inexpensive model. Great differences in com-
putational expenses exist. My reimplementation of
FAST results in a improved efficiency of a factor
of about 50 compared to SIMLAB 3.4.6 for 10000
SA evaluations.

So far, temporal dynamics of parameter sensitiv-
ity (TEDPAS) has been applied only in few cases
in hydrology despite its great potential (Cloke
et al., 2008; Sieber and Bremicker, 2006). In
this thesis, relevant processes for the grid-based,
computationally expensive model WaSiM-ETH for
the Weisseritz have been identified with TEDPAS,
demonstrating that such an analysis is possible for
long time series and complex models. This pro-
vides a part of the information required for the
model diagnostics and is a way for qualitative

model evaluation. Combination of TIGER and
TEDPAS allows to answer all three questions rele-
vant for model diagnostic. The combined diagnos-
tics is applied without prior calibration, constitut-
ing a large advantage for computationally expen-
sive models.

As a vision, such a diagnostic could be per-
formed for multiple hydrological models and for
multiple catchments, providing a very powerful
approach for model comparison. We expect the
same model to show different structural deficits
in different landscapes, and different model con-
cepts to show different structural deficits in the
same landscape. Consistent application of the pro-
posed methodology could, in the long term, en-
able the development of a basis for discriminat-
ing model/process concepts and landscapes into
“compatible and incompatible sets” (in which the
model/process can be expected to work with low
structural/high structural deficits). Ultimately, it
could help to reduce the overwhelming number of
hydrological models to a minimum amount nec-
essary for dealing with the richness of our land-
scapes.

From the in depth model analysis, gaps in the
observation data set can be identified. Research
for cost-effective measurements allows us to ob-
tain higher resolved data since more sensors can be
installed for the same cost. We developed and ap-
plied methods resolving temporal and spatial vari-
ability of the snow cover. To observe temporal
variability, inexpensive temperature sensors pro-
vide a cost efficient way for snow height moni-
toring without additional information requirements
(such as meteorological data). A new algorithm
has been presented which allows automatic ex-
traction of snow height estimates from tempera-
ture profile measurements. The determined heights
agree well with reference measurements. Snow
height and cold content are simultaneously calcu-
lated and provide important information for flood
warning, model evaluation and model state updat-
ing.

The spatial variability of snow heights and SWE
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is characterized with a data set collected during the
winters 2008/2009 and 2009/2010 for the Weis-
seritz catchment. This data serve to test and im-
prove the models describing the spatial variabil-
ity as well as for reference for the remote sensing
snow cover characterisation, which is part of a re-
lated project within OPAQUE. As expected, height
a.s.l. is the most influential factor on the catchment
scale. Contrary to the expectations, no significant
effects of exposition and land use could be identi-
fied from the data.

As a case study, WaSiM-ETH was used as a
hypothesis for the functioning of the Weisseritz
catchment. The combined diagnostics revealed im-
portant deficiencies requiring improvements to the
model: 1) overestimation during winter snow melt
periods can possibly be reduced with a land use
dependent snow melt index based on land use de-
pendent measurements of snow cover patterns. 2)
improvement of the model spin-up are necessary.
3) Topmodel may not be the right approach to con-
ceptualize the functioning of the Weisseritz catch-
ment. 4) the validity of the simple linear reservoir
recession should be checked with a recession anal-
ysis. Also, errors in data caused by ice jams were
identified, thus making it possible to reduce the in-
fluence of data errors during model calibration by
excluding this data.

Using the newly collected data, the suitability
of the snow module of WaSiM-ETH and the effect
from the land use dependent snow melt index as
proposed above is tested. To this end, a simple de-
gree day factor model as it is used in WaSiM-ETH
is tested for its capability to describe the spatio
temporal patterns of the snow cover. It is sufficient
to represent the temporal dynamics of the snow
cover for locations where a continuous snow cover
is present. No dependence of the snow melt index
on land use could be detected, indicating that this
is not the relevant model improvement to deal with
the overestimation during winter snow melt peri-
ods. However, snow accumulation has to be cor-
rected with a factor <1, indicating that not all snow
remained at the measurement locations. Both, sub-

limation and relocation by wind to depressions and
more wind protected areas may be important influ-
ences as reported for example by MacDonald et al.
(2009, 2010) and may alter the water balance dur-
ing melt events.

The model does not capture the dynamics at lo-
cations with repeated accumulation and melting
periods, as observed in the lower catchment. Snow
melt factors estimated for these sites are far above
the range reported in literature. Thus, processes
relevant at such sites such as energy input from rain
on snow may need to be included in addition to the
influence by wind.

Before closing the learning cycle with an up-
dated model, more investigations are necessary.
For example, tests are necessary to see if rain on
snow and redistribution by wind will improve the
performance of the degree day factor approach.
Also, spatial patterns of the snow cover should be
further evaluated. A simple way for such an eval-
uation is to correlate the ranks of the distributed
observations with the ranks of the simulated snow
cover at these locations. A high correlation would
indicate that the major processes causing spatial
variability are represented in the model, while a
low correlation would indicate that there are still
missing processes.

My analysis shows how a constant learning
process for flood forecasting helps to achieve
good knowledge about the relationship between
the catchment and its representation in the model.
While in practical applications, constant learning
is occurring in any case, the tools developed in this
thesis may help to perform such a learning in a
more structured and reproducible way.
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