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“But, apparently, this is the way it happened in the world: when we really begin to understand something, we
are too old to apply it to life, so it goes – wave after wave, generation after generation, and no one is able to

learn anything from another.”

Erich Maria Remarque. The Black Obelisk
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Abstract

Precipitation forecasting has an important place in everyday life – during the day
we may have tens of small talks discussing the likelihood that it will rain this evening
or weekend. Should you take an umbrella for a walk? Or should you invite your friends
for a barbecue? It will certainly depend on what your weather application shows.

While for years people were guided by the precipitation forecasts issued for a
particular region or city several times a day, the widespread availability of weather
radars allowed us to obtain forecasts at much higher spatiotemporal resolution of
minutes in time and hundreds of meters in space. Hence, radar-based precipitation
nowcasting, that is, very-short-range forecasting (typically up to 1–3h), has become
an essential technique, also in various professional application contexts, e.g., early
warning, sewage control, or agriculture.

There are two major components comprising a system for precipitation nowcast-
ing: radar-based precipitation estimates, and models to extrapolate that precipitation
to the imminent future. While acknowledging the fundamental importance of radar-
based precipitation retrieval for precipitation nowcasts, this thesis focuses only on the
model development: the establishment of open and competitive benchmark models,
the investigation of the potential of deep learning, and the development of proce-
dures for nowcast errors diagnosis and isolation that can guide model development.

The present landscape of computational models for precipitation nowcasting still
struggles with the availability of open software implementations that could serve
as benchmarks for measuring progress. Focusing on this gap, we have developed
and extensively benchmarked a stack of models based on different optical flow al-
gorithms for the tracking step and a set of parsimonious extrapolation procedures
based on image warping and advection. We demonstrate that these models provide
skillful predictions comparable with or even superior to state-of-the-art operational
software. We distribute the corresponding set of models as a software library, rainy-
motion, which is written in the Python programming language and openly available at
GitHub (https://github.com/hydrogo/rainymotion). That way, the library acts as a tool
for providing fast, open, and transparent solutions that could serve as a benchmark
for further model development and hypothesis testing.

One of the promising directions for model development is to challenge the poten-
tial of deep learning – a subfield of machine learning that refers to artificial neural
networks with deep architectures, which may consist of many computational layers.
Deep learning showed promising results in many fields of computer science, such as
image and speech recognition, or natural language processing, where it started to
dramatically outperform reference methods.

The high benefit of using ”big data” for training is among the main reasons for
that. Hence, the emerging interest in deep learning in atmospheric sciences is also
caused and concerted with the increasing availability of data – both observational
and model-based. The large archives of weather radar data provide a solid basis

https://github.com/hydrogo/rainymotion
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for investigation of deep learning potential in precipitation nowcasting: one year of
national 5-min composites for Germany comprises around 85 billion data points.

To this aim, we present RainNet, a deep convolutional neural network for radar-
based precipitation nowcasting. RainNet was trained to predict continuous precip-
itation intensities at a lead time of 5min, using several years of quality-controlled
weather radar composites provided by the German Weather Service (DWD). That data
set covers Germany with a spatial domain of 900 km × 900 km and has a resolution
of 1 km in space and 5min in time. Independent verification experiments were car-
ried out on 11 summer precipitation events from 2016 to 2017. In these experiments,
RainNet was applied recursively in order to achieve lead times of up to 1 h. In the ver-
ification experiments, trivial Eulerian persistence and a conventional model based on
optical flow served as benchmarks. The latter is available in the previously developed
rainymotion library.

RainNet significantly outperformed the benchmark models at all lead times up
to 60min for the routine verification metrics mean absolute error (MAE) and critical
success index (CSI) at intensity thresholds of 0.125, 1, and 5mmh−1. However, rainy-
motion turned out to be superior in predicting the exceedance of higher intensity
thresholds (here 10 and 15mmh−1). The limited ability of RainNet to predict high
rainfall intensities is an undesirable property which we attribute to a high level of
spatial smoothing introduced by the model. At a lead time of 5min, an analysis of
power spectral density confirmed a significant loss of spectral power at length scales
of 16 km and below.

Obviously, RainNet had learned an optimal level of smoothing to produce a now-
cast at 5min lead time. In that sense, the loss of spectral power at small scales is
informative, too, as it reflects the limits of predictability as a function of spatial scale.
Beyond the lead time of 5min, however, the increasing level of smoothing is a mere
artifact – an analogue to numerical diffusion – that is not a property of RainNet itself
but of its recursive application. In the context of early warning, the smoothing is par-
ticularly unfavorable since pronounced features of intense precipitation tend to get
lost over longer lead times. Hence, we propose several options to address this issue
in prospective research on model development for precipitation nowcasting, includ-
ing an adjustment of the loss function for model training, model training for longer
lead times, and the prediction of threshold exceedance.

The model development together with the verification experiments for both con-
ventional and deep learning model predictions also revealed the need to better un-
derstand the source of forecast errors. Understanding the dominant sources of error
in specific situations should help in guiding further model improvement. The total
error of a precipitation nowcast consists of an error in the predicted location of a
precipitation feature and an error in the change of precipitation intensity over lead
time. So far, verification measures did not allow to isolate the location error, making
it difficult to specifically improve nowcast models with regard to location prediction.

To fill this gap, we introduced a framework to directly quantify the location error.
To that end, we detect and track scale-invariant precipitation features (corners) in
radar images. We then consider these observed tracks as the true reference in order
to evaluate the performance (or, inversely, the error) of any model that aims to predict
the future location of a precipitation feature. Hence, the location error of a forecast
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at any lead time ahead of the forecast time corresponds to the Euclidean distance
between the observed and the predicted feature location at the corresponding lead
time.

Based on this framework, we carried out a benchmarking case study using one
year worth of weather radar composites of the DWD. We evaluated the performance
of four extrapolation models, two of which are based on the linear extrapolation of
corner motion; and the remaining two are based on the Dense Inverse Search (DIS)
method: motion vectors obtained from DIS are used to predict feature locations by
linear and Semi-Lagrangian extrapolation.

For all competing models, the mean location error exceeds a distance of 5 km af-
ter 60min, and 10 km after 110min. At least 25 % of all forecasts exceed an error of
5 km after 50min, and of 10 km after 90min. Even for the best models in our experi-
ment, at least 5 percent of the forecasts will have a location error of more than 10 km
after 45min. When we relate such errors to application scenarios that are typically
suggested for precipitation nowcasting, e.g., early warning, it becomes obvious that
location errors matter: the order of magnitude of these errors is about the same as the
typical extent of a convective cell. Hence, the uncertainty of precipitation nowcasts at
such length scales – just as a result of locational errors – can be substantial already
at lead times of less than 1 h. Being able to quantify the location error should hence
guide any model development that is targeted towards its minimization. To that aim,
we also consider the high potential of using deep learning architectures specific to
the assimilation of sequential (track) data.

Last but not least, the thesis demonstrates the benefits of a general movement
towards open science for model development in the field of precipitation nowcasting.
All the presented models and frameworks are distributed as open repositories, thus
enhancing transparency and reproducibility of the methodological approach. Fur-
thermore, they are readily available to be used for further research studies, as well as
for practical applications.
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Zusammenfassung
Niederschlagsvorhersagen haben einen wichtigen Platz in unserem täglichen Leben.

Und die breite Abdeckung mit Niederschlagsradaren ermöglicht es uns, den Niederschlag
mit einer viel höheren räumlich-zeitlichen Auflösung vorherzusagen (Minuten in der Zeit,
Hunderte von Metern im Raum). Solche radargestützten Niederschlagsvorhersagen mit
sehr kurzem Vorhersagehorizont (1–3 Stunden) nennt man auch ”Niederschlagsnowcast-
ing.” Sie sind in verschiedenen Anwendungsbereichen (z.B. in der Frühwarnung, der Stad-
tentwässerung sowie in der Landwirtschaft) zu einer wichtigen Technologie geworden.

Eine erhebliche Schwierigkeit in Modellentwicklung zum Niederschlagsnowcastings
ist jedoch die Verfügbarkeit offener Softwarewerkzeuge und Implementierungen, die als
Benchmark für den Entwicklungsfortschritt auf diesem Gebiet dienen können. Um diese
Lücke zu schließen, habenwir eine Gruppe vonModellen auf der Grundlage verschiedener
Tracking- und Extrapolationsverfahren entwickelt und systematisch verglichen. Es kon-
nte gezeigt werden, dass die Vorhersagen dieser einen Skill haben, der sich mit dem
Skill operationeller Vorhersagesysteme messen kann, teils sogar überlegen sind. Diese
Benchmark-Modelle sind nun in Form der quelloffenen Software-Bibliothek rainymotion
allgemein verfügbar (https://github.com/hydrogo/rainymotion).

Eine der vielversprechenden Perspektiven für die weitere Modellentwicklung besteht
in der Untersuchung des Potenzials von ”Deep Learning” – einem Teilgebiet des maschi-
nellen Lernens, das sich auf künstliche neuronale Netze mit sog. ”tiefen Architekturen”
bezieht, die aus einer Vielzahl von Schichten (computational layers) bestehen können. Im
Rahmen dieser Arbeit wurde daher RainNet entwickelt: ein Tiefes Neuronales Netz für
radargestütztes Niederschlags-Nowcasting. RainNet wurde zunächst zur Vorhersage der
Niederschlagsintensität mit einem Vorhersagehorizont von fünf Minuten trainiert. Als
Datengrundlage dazu dienten mehrere Jahre qualitätskontrollierter Radarkompositpro-
dukte des Deutschen Wetterdienstes (DWD).

RainNet übertraf die verfügbaren Benchmark-Modelle für Vorhersagezeiten bis zu
60min in Bezug auf den Mittleren Absoluten Fehler (MAE) und den Critical Success In-
dex (CSI) für Intensitätsschwellenwerte von 0.125, 1 und 5mmh−1. Allerdings erwies
sich das das Benchmark-Modell aus dem Softwarepaket rainymotion bei der Vorhersage
der Überschreitung höherer Intensitätsschwellen (10 und 15mmh−1) als überlegen. Die
eingeschränkte Fähigkeit von RainNet zur Vorhersage hoher Niederschlagsintensitäten
ist eine unerwünschte Eigenschaft, die wir auf ein hohes Maß an räumlicher Glättung
durch das Modell zurückführen. Im Kontext der Frühwarnung ist die Glättung besonders
ungünstig, da ausgeprägteMerkmale von Starkniederschlägen bei längeren Vorlaufzeiten
tendenziell verloren gehen. In dieser Arbeit werden daher mehrere Optionen vorgeschla-
gen, um dieses Problem in der zukünftigen Forschung zur Modellentwicklung anzugehen.

Ein weiterer Beitrag dieser Arbeit liegt in der Quantifizierung einer spezifischen Feh-
lerquelle von Niederschlagsnowcasts. Der Gesamtfehler eines Nowcasts besteht aus
einem Fehler in der vorhergesagten Lage eines Niederschlagsfeatures (Ortsfehler) sowie
einem Fehler in der Änderung der Intensität eines Features über die Vorhersagezeit (In-
tensitätsfehler). Herkömmliche Verifikationsmaße waren bislang nicht in der Lage, das
Ausmaß des Ortsfehlers zu isolieren. Um diese Lücke zu füllen, haben wir einen Ansatz
zur direkten Quantifizierung des Ortsfehlers entwickelt. Mit Hilfe dieses Ansatzes wurde
wir Benchmarking-Experiment auf Grundlage eines fünfminütigen DWD Radarkomposit-
produkts für das komplette Jahr 2016 umgesetzt. In diesem Experiment wurden vier
Nowcasting-Modelle aus der rainymotion-Softwarebibliothek verwendet im Hinblick auf

https://github.com/hydrogo/rainymotion
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den Ortsfehler der Vorhersage verglichen. Die Ergebnisse zeigen, dass für alle konkurri-
erenden Modelle die Ortsfehler von Bedeutung sind: die Größenordnung dieser Fehler
entspricht etwa der typischen Ausdehnung einer konvektiven Zelle oder einer mittel-
großen Stadt (5–10 km).

Insgesamt zeigt diese Arbeit die Vorteile eines ”Open Science”-Ansatzes für die Mod-
ellentwicklung im Bereich der Niederschlagsnowcastings. Alle vorgestellten Modelle
und Modellsysteme stehen als offene, gut dokumentierte Repositorien zusammen mit
entsprechenden offenen Datensätzen öffentlich zu Verfügung für, was die Transparenz
und Reproduzierbarkeit des methodischen Ansatzes, aber auch die Anwendbarkeit in der
Praxis erhöht.
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Chapter 1

Introduction

How much will it rain within the next hour?
The answer to this question could be given by pre-
cipitation nowcasting – a technique that provides
precipitation forecasts at high spatiotemporal res-
olution and very short lead times. Typically, now-
casting operates at a spatial resolution from 10s to
1000s of meters and a temporal resolution from
one to 15min, while lead times do not exceed a
few hours. This is achieved by utilizing heuristic
models for the extrapolation of rain field motion
and development, as observed by weather radar.

Nowcasts have become essential for a broad
audience for planning various kinds of activities.
Nowcasting applications installed in millions of
smartphones worldwide help people to bring an
umbrella or to organize a barbeque with friends.
Furthermore, nowcasting has a strong profes-
sional relevance in many fields which require op-
erational management, e.g., agriculture, or water
management in urban environments (sewage con-
trol, underground operations). Nowcasts are par-
ticularly relevant in the context of early warning
of heavy convective rainfall events and their cor-
responding impacts such as flash floods or land-
slides.

The state-of-the-art in nowcasting

Nowcasting is not the only option to predict the
amount of precipitation in the next hour. Recent
advances in numerical weather prediction (NWP)
allow us to forecast atmospheric dynamics at a
very high spatiotemporal resolution (Bauer et al.,
2015; Fuhrer et al., 2018). Yet computational
costs are typically prohibitive for the requirements
of operational nowcasting applications with fre-
quent update cycles (5–15min). Furthermore, the
parsimonious models of the heuristic extrapola-
tion of rain field motion and development still ap-
pear to outperform NWP forecasts at very short

lead times (Fig. 1.1; Berenguer et al., 2012; Ger-
mann et al., 2006; Jensen et al., 2015; Lin et al.,
2005; Sun et al., 2014 ).

Figure 1.1: The schematic progression of
the forecast skill in lead time for nowcast-
ing and NWP models.

Today, many precipitation nowcasting systems
are operational at regional or national scales,
utilizing various radar products, algorithms, and
blending techniques to provide forecasts up to
1–3h, for example, ANC (Mueller et al., 2003),
MAPLE (Germann and Zawadzki, 2002b), RADVOR
(Winterrath et al., 2012), STEPS (Bowler et al.,
2006), STEPS-BE (Foresti et al., 2016), and SWIRLS
(Cheung and Yeung, 2012; Woo and Wong, 2017).
Recently, nowcasting systems approached mobile
and web applications making nowcasts available
for billions of people whose devices have an inter-
net connection.

The majority of these systems use models
which are based on the assumption of Lagrangian
persistence (Reyniers, 2008). They consist of two
main computational steps: tracking and forecast-
ing (extrapolation) (Fig. 1.2; Austin and Bellon,
1974). In the tracking step, we compute either
a velocity field or the displacement of distinct
features (e.g., storm cells) from a series of con-
secutive radar images. In the second step, we
use that information to advect the most recent
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rain field, i.e., to displace it to the imminent fu-
ture. For these two computational steps – track-
ing and extrapolation – the utilization of optical
flow-based and semi-Lagrangian advection algo-
rithms, respectively, is of the most common use
(Bowler et al., 2004; Foresti et al., 2016; Germann
and Zawadzki, 2002b; Reyniers, 2008).

Figure 1.2: Conventional workflow for pre-
cipitation nowcasting.

The need for an open benchmark

For around two decades, techniques such as op-
tical flow and semi-Lagrangian advection have
been doing their best for state-of-the-art opera-
tional nowcasting systems worldwide. However,
despite the abundance of applications and publi-
cations about different computational techniques
for nowcasting applications, one may realize that
a readily available benchmark model is still miss-
ing – a benchmark that is not only open-source,
but also well-documented and reproducible with
runtime environments and data.

Based on the (comparatively) long history
of precipitation nowcasting, it is surprising why
there is no available benchmark model except
the most trivial one: Eulerian persistence. That
is even more surprising since open-source im-
plementations of fundamental optical flow algo-
rithms (Brox et al., 2004; Bruhn et al., 2005b)

have been around for up to 20 years – with the
OpenCV library (https://opencv.org) just being the
most widely known. Such libraries provide effi-
cient implementations of various optical flow al-
gorithms for a vast number of research and appli-
cation contexts. To a lesser extent, it is relevant
for open-source implementations of advection
algorithms, which are not that well-developed
in comparison to optical flow techniques due
to the limited interest of the research commu-
nity. OpenFOAM (https://openfoam.org/), pyro
(https://pyro2.readthedocs.io), and fipy (https://
www.ctcms.nist.gov/fipy) libraries are among the
most known with a development history of over a
decade. Yet none of these methods can be applied
in the precipitation nowcasting context out of the
box – without the need to address additional and
specific challenges such as underlying assump-
tions and constraints of velocity fields, pre- and
post-processing steps, or model parameterization.

In addition to benchmark models, we also
need a set of benchmark (verification) metrics
against which the value of the developed models
can be measured. A large variety of verification
metrics have been suggested in the literature (see,
e.g., Baldwin and Kain, 2006; Ebert, 2008; Gille-
land et al., 2010). Most of them, however, strug-
gle with disentangling different sources of error:
when we compare nowcast to observed precipita-
tion fields, how can we know the cause of the dis-
agreement? Was it our prediction of the future lo-
cation of a precipitation feature, or was it how pre-
cipitation intensity changed over time? Some ver-
ification scores, such as the Fractions Skill Score
(Mittermaier and Roberts, 2010), apply a metric
over spatial windows of increasing size to exam-
ine how the forecast performance depends on the
spatial scale. Yet we still cannot isolate and quan-
tify the location error explicitly. This makes it dif-
ficult to benchmark and optimize the correspond-
ing components of nowcasting models.

Thus, there is a need for full-fledged bench-
mark procedures that are open, transparent, re-
producible, and easy-to-use, and that not only can
compete with state-of-the-art but against which
future advances can also be measured.

https://opencv.org
https://openfoam.org/
https://pyro2.readthedocs.io
https://www.ctcms.nist.gov/fipy
https://www.ctcms.nist.gov/fipy
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Going beyond the state-of-the-art

Considering the importance of reliable precipita-
tion nowcasts for many stakeholders, the contin-
uous development of models that may provide
more skillful predictions for longer lead times will
remain a strong focus of the research commu-
nity. There are two main directions for advancing
model development beyond the state-of-the-art:

1. Stay within the fundamental approach to
precipitation nowcasting and try to improve
either tracking or extrapolation techniques.

2. Or take a step towards exploring the poten-
tial of new methods.

Within the first approach, many techniques
have been successfully used for advancing the
skill of precipitation nowcasting during the
last decades: blending with NWP (Sun et al.,
2014), auxiliary data assimilation (Winterrath and
Rosenow, 2007), probabilistic techniques (Pulkki-
nen et al., 2019), to name only a few. However,
since the fundamental approach to nowcasting
has not changed much over recent decades, the
progress made in this area can be described as
gradual. Yet the situation might change with the
increasing popularity of a newmodeling approach
– deep learning.

The rise of deep learning

”Deep learning” refers to machine-learning meth-
ods for artificial neural networks with ”deep” ar-
chitectures, which may consist of tens to hun-
dreds of computational layers. Rather than re-
lying on engineered features, deep learning de-
rives low-level image features on the lowest lay-
ers of a hierarchical network and increasingly ab-
stracts features on the high-level network lay-
ers as part of the solution of an optimization
problem based on training data (LeCun et al.,
2015). Deep learning began its rise from the
field of computer science when it started to dra-
matically outperform reference methods in im-
age classification (Krizhevsky et al., 2012) and ma-
chine translation (Sutskever et al., 2014), which
was followed by speech recognition (LeCun et al.,

2015). Three main reasons caused this substan-
tial breakthrough in predictive efficacy: the avail-
ability of ”big data” for model training, the devel-
opment of activation functions and network ar-
chitectures that result in numerically stable gra-
dients across many network layers (Dahl et al.,
2013), and the ability to scale the learning pro-
cess massively through parallelization on graph-
ics processing units (GPUs). Today, deep learning
is rapidly spreading into many data-rich scientific
disciplines, and it complements researchers’ tool-
boxes with efficient predictive models, including
in the field of geosciences (Reichstein et al., 2019).

The expectations of deep learning are partic-
ularly high in the atmospheric sciences (Dueben
and Bauer, 2018; Gentine et al., 2018). While
two of three components that determine the suc-
cess of deep learning – a (deep) network archi-
tecture and the exploitation of GPUs for parallel
processing – are field-agnostic, the actual proper-
ties of the big data component are certainly spe-
cific to a field. These properties mainly refer to
the structure of the data, and of course the as-
sumptions on its informative value. In particular,
weather radar archives provide massive long-term
and well-structured data, which is consistent in
time, and resolves precipitation events at a de-
tailed level in space and time. Thus, due to the
high capacity of deep learning to discover intricate
structure in large data sets (LeCun et al., 2015), it
is expected to have ample potential in radar-based
precipitation nowcasting.

While expectations are high, the investigation
of deep learning in radar-based precipitation now-
casting is still in its infancy, and universal so-
lutions are not yet available. Shi et al. (2015)
were the first to introduce deep learningmodels in
the field of radar-based precipitation nowcasting:
they presented a convolutional long short-term
memory (ConvLSTM) architecture, which outper-
formed the optical-flow-based ROVER (Real-time
Optical flow by Variational methods for Echoes of
Radar) nowcasting system in the Hong Kong area.
Since then, different research groups in academia
and from private companies (e.g., Google, Yan-
dex) introduced new or modified deep learning ar-
chitectures for quantitative, as well as qualitative
(e.g., prediction of the exceedance of specific rain-
fall intensity thresholds) precipitation nowcasting
(Agrawal et al., 2019; Lebedev et al., 2019; Singh
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et al., 2017; Shi et al., 2017, 2018). Hence, the
exploration of deep learning techniques in radar-
based nowcasting has begun, and the potential
to overcome the limitations of standard tracking
and extrapolation techniques has become appar-
ent. There is a strong need, though, to further
investigate different architectures, to set up new
benchmark experiments, and to understand under
which conditions deep learning models can be a
viable option for operational services.

The weather radar data

The present thesis describes the model devel-
opment in the field of precipitation nowcasting.
Theoretically and technically, all the models pre-
sented here are data-agnostic, i.e., they may make
use of several sources of spatial precipitation
data products based on different remote sensing
technologies, such as weather radar (Ayzel et al.,
2019a, 2020), meteorological satellite (Liu et al.,
2015), and commercial microwave links (Imhoff
et al., 2020a). However, among the competitors,
weather radar data provides higher spatial and
temporal resolution, and also a higher reliabil-
ity of quantitative precipitation retrieval from ob-
served radar moments.

Weather radar does not measure precipita-
tion directly. When the transmitted microwave
pulse encounters a backscattering target (e.g.,
raindrops, hail, snow, but also birds, mountain
tops or high buildings), some of the energy is scat-
tered back to the radar receiver. It is then inter-
preted as the reflectivity factor. In turn, the re-
flectivity factor is a function of the distribution
of the rainfall drop sizes within a unit volume of
air. The rain rate (R) can be derived from the re-
flectivity factor (Z) by using empirically obtained
Z − R relationship. However, there are many po-
tential estimation errors. They can be classified
into two groups: (1) errors that are caused by arte-
facts in the observation of Z (e.g., attenuation,
clutter, beam blockage, as well as miscalibration
of the radar measurement instrument itself), and
(2) errors that arise from the empirical transforma-
tion of Z to R (Crisologo and Heistermann, 2020).
In the presented thesis, however, the issues of
quality-control, error correction, radar calibration,

and quantitative precipitation estimation are de-
liberately excluded. Instead, we use a quality-
controlled product provided by the DWD, the so-
called RY product, which is generated as part of
the RADKLIM radar reanalysis of the DWD (Win-
terrath et al., 2017). The RY product represents a
quality-controlled rainfall-depth composite of 17
operational DWD C-Band Doppler radars (Fig. 1.3).
Quality control of the RY product includes a wide
range of correction methods, e.g., clutter removal
or accounting for a partial beam blockage (Win-
terrath et al., 2017). The RY product has a spatial
extent of 900 km × 900 km, covers the whole area
of Germany, and has been available for calendar
years from 2006 to 2017. The spatial and tempo-
ral resolution of the RY product is 1 km × 1 km and
5min, respectively.

Figure 1.3: Weather radar network
(Radarverbund) of the German weather
service, showing the locations of the 17
C-band radars and the 150 km radii (source:
DWD).

Research questions and structure

The thesis starts out from a meta-question we ask
ourselves in the very beginning:

meta-RQ: How can we advance the model devel-
opment for quantitative precipitation now-
casting?

https://www.dwd.de/DE/derdwd/messnetz/atmosphaerenbeobachtung/_functions/Teasergroup/radarverbund_teaser5.html
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Still, the present landscape of computational
models for precipitation nowcasting struggles
with producing open software implementations.
To provide open and transparent benchmark pro-
cedures for precipitation nowcasting, the first re-
search question asks:

RQ1: What is a suitable open benchmark for
further model development – a benchmark
that can compete with the state-of-the-art
modeling systems?

The question is addressed in the second chap-
ter, where we highlight the development and ver-
ification of rainymotion (Ayzel et al., 2019a) – an
open-source Python library for precipitation now-
casting. The developed rainymotion models were
verified against Eulerian persistence, as a trivial
benchmark, and against the operational nowcast-
ing system of the DWD, RADVOR, as a representa-
tive of state-of-the-art models.

Having a reliable benchmark at hand should
pave the way for further model development, and
the measurement of progress. We continued by
following the most promising direction – chal-
lenging the potential of deep learning. This led
us to the second group of research questions:

RQ2.1: What is a suitable deep learning architec-
ture for radar-based precipitation nowcast-
ing?

RQ2.2: What is the potential of a well-trained
deep learning model in advancing the skill
of nowcasts?

RQ2.3: What are the corresponding challenges
and limitations?

These questions are answered in the third
chapter, where we introduce RainNet. This deep
neural network aims at learning representations
of spatiotemporal precipitation field movement
and evolution from a massive, open radar data
archive. Chapter 3 outlines RainNet’s architecture
and its training and reports on a set of benchmark
experiments where RainNet competes against a
conventional nowcasting model from the rainy-
motion library – the previously introduced bench-
mark solution (Chapter 2). Based on these exper-
iments, we evaluate the potential of RainNet for

nowcasting, but also its limitations in compari-
son to conventional radar-based nowcasting tech-
niques.

Based on the verification experiments for both
rainymotion and RainNet, it turned out to be im-
portant to isolate specific error components in or-
der to better understand the overall forecast un-
certainty. The total error of a precipitation now-
cast consists of an error in the predicted loca-
tion of a precipitation feature and an error in the
change of precipitation intensity over lead time.
The isolation and quantification of a particular
source of error – in this context the location error
– is expected to be helpful in improving specific
model components that affect the prominence of
a specific error. With this, we ask:

RQ3.1: How can we isolate the forecast location
error?

RQ3.2: How do standard benchmark models dif-
fer with regard to the forecast location er-
ror?

Chapter 4 provides a framework for the direct
isolation and quantification of the location error
of precipitation nowcasts. Based on this frame-
work, we carried out a benchmarking case study
using one year worth of weather radar compos-
ites of DWD. We evaluated the performance of
four extrapolation models, two of which are based
on the linear extrapolation of corner motion; an-
other two are based on the Dense Inverse Search
(DIS) method: motion vectors obtained from DIS
are used to predict feature locations by linear and
Semi-Lagrangian extrapolation. All these provide
us with the possibility to better understand the
factors that govern these errors, and hence to use
that knowledge to specifically improve the extrap-
olation of motion patterns in existing nowcasting
models.
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Chapter 2

Optical flow models as an open benchmark for radar-based
precipitation nowcasting (rainymotion v0.1)

This chapter is published as:

Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flowmodels as an open benchmark for radar-based
precipitation nowcasting (rainymotion v0.1), Geosci. Model Dev., 12, 1387–1402,
https://doi.org/10.5194/gmd-12-1387-2019, 2019.

Abstract

Quantitative precipitation nowcasting (QPN) has become an essential technique in various application
contexts, such as early warning or urban sewage control. A common heuristic prediction approach is to
track the motion of precipitation features from a sequence of weather radar images, and then to dis-
place the precipitation field to the imminent future (minutes to hours) based on that motion, assuming
that the intensity of the features remains constant (”Lagrangian persistence”). In that context, ”optical
flow” has become one of the most popular tracking techniques. Yet the present landscape of compu-
tational QPN models still struggles with producing open software implementations. Focusing on this
gap, we have developed and extensively benchmarked a stack of models based on different optical flow
algorithms for the tracking step, and a set of parsimonious extrapolation procedures based on image
warping and advection. We demonstrate that these models provide skillful predictions comparable with
or even superior to state-of-the-art operational software. Our software library (”rainymotion”) for pre-
cipitation nowcasting is written in the Python programming language, and openly available at GitHub
(https://github.com/hydrogo/rainymotion, Ayzel et al., 2019b). That way, the library may serve as a tool
for providing fast, free and transparent solutions that could serve as a benchmark for further model
development and hypothesis testing – a benchmark that is far more advanced than the conventional
benchmark of Eulerian persistence commonly used in QPN verification experiments.

2.1 Introduction

How much will it rain within the next hour?
The term ”quantitative precipitation nowcasting”
refers to forecasts at high spatiotemporal resolu-
tion (60-600 s, 100-1000m) and short lead times
of only a few hours. Nowcasts have become im-
portant for broad levels of the population for plan-
ning various kinds of activities. Yet, they are par-
ticularly relevant in the context of early warning of
heavy convective rainfall events, and their corre-
sponding impacts such as flash floods, landslides,
or sewage overflow in urban areas.

While recent advances in numerical weather

prediction (NWP) allow us to forecast atmospheric
dynamics at very high resolution (Bauer et al.,
2015), computational costs are typically pro-
hibitive for the requirements of operational now-
casting applications with frequent update cycles.
Furthermore, the heuristic extrapolation of rain
field motion and development, as observed by
weather radar, still appears to outperform NWP
forecasts at very short lead times (Berenguer et al.,
2012; Jensen et al., 2015; Lin et al., 2005). Today,
many precipitation nowcasting systems are opera-
tional at regional or national scales, utilizing vari-
ous radar products, algorithms, and blending tech-
niques in order to provide forecasts up to 1–3 h,

https://doi.org/10.5194/gmd-12-1387-2019
https://github.com/hydrogo/rainymotion
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(rainymotion v0.1)

for example: ANC (Mueller et al., 2003), MAPLE
(Germann and Zawadzki, 2002b), RADVOR (Win-
terrath et al., 2012), STEPS (Bowler et al., 2006),
STEPS-BE (Foresti et al., 2016), and SWIRLS (Che-
ung and Yeung, 2012; Woo and Wong, 2017). For
an extensive review of existing operational sys-
tems, please refer to Reyniers (2008).

A variety of radar-based precipitation now-
casting techniques can be classified into threema-
jor groups based on assumptions we make regard-
ing precipitation field characteristics (Germann
and Zawadzki, 2002b). The first group – climato-
logical persistence – provides nowcasts by using
climatological values (mean or median). The sec-
ond group – Eulerian persistence – is based on
using the latest available observation as a predic-
tion, and is thus independent of the forecast lead
time. The third group – Lagrangian persistence –
allows the extrapolation of the most recent ob-
served precipitation field under the assumption
that intensity of precipitation features and themo-
tion field are persistent (Germann and Zawadzki,
2002b; Woo and Wong, 2017). In addition, we
can classify nowcasting methods based on how
predictive uncertainty is accounted for: in con-
trast to deterministic approaches, ensemble now-
casts attempt to account for predictive uncertainty
by including different realizations of the motion
field and the evolution of rainfall intensity itself
(Berenguer et al., 2011). In this study, we focus
our model development around the group of La-
grangian persistence models which provide deter-
ministic precipitation nowcasts.

Lagrangian methods consist of two computa-
tional steps: tracking and forecasting (extrapola-
tion) (Austin and Bellon, 1974). In the tracking
step, we compute a velocity field from a series
of consecutive radar images, either on a per pixel
basis (Germann and Zawadzki, 2002b; Grecu and
Krajewski, 2000; Liu et al., 2015; Zahraei et al.,
2012), or for contiguous objects (Zahraei et al.,
2013). In the second step, we use that veloc-
ity field to advect the most recent rain field, i.e.,
to displace it to the imminent future based on
its observed motion. That step has been imple-
mented based on semi-Lagrangian schemes (Ger-
mann and Zawadzki, 2002b), interpolation proce-
dures (Liu et al., 2015), or mesh-based models
(Bellerby, 2006; Zahraei et al., 2012). Different
algorithms can be used for each step – tracking

and forecasting – in order to compute an ensem-
ble forecast (Berenguer et al., 2011; Foresti et al.,
2016; Grecu and Krajewski, 2000).

One of the most prominent techniques for the
tracking step is referred to as ”optical flow”. The
original term was inspired by the idea of an appar-
ent motion of brightness patterns observed when
a camera or the eyeball is moving relative to the
objects (Horn and Schunck, 1981). Today, opti-
cal flow is often understood as a group of tech-
niques to infer motion patterns or velocity fields
from consecutive image frames, e.g. in the field
of precipitation nowcasting (Bowler et al., 2004;
Liu et al., 2015; Woo and Wong, 2017). For the
velocity field estimation, we need to accept both
the brightness constancy assumption and one of
a set of additional optical flow constraints (OFCs).
The spatial attribution of OFC marks the two main
categories of optical flow models: local (differ-
ential) and global (variational) (Cheung and Ye-
ung, 2012; Liu et al., 2015). Local models try
to set an OFC only in some neighborhood, while
global models apply an OFC for a whole image.
There is also a distinct group of spectral meth-
ods where the Fourier transform is applied to the
inputs, and an OFC is resolved in the spectral
(Fourier) domain (Ruzanski et al., 2011). Bowler
et al. (2004) introduced the first local optical flow
algorithm for precipitation nowcasting, and gave
rise to a new direction of models. Bowler’s al-
gorithm is the basis of the STEPS (Bowler et al.,
2006) and STEPS-BE (Foresti et al., 2016) opera-
tional nowcasting systems. Liu et al. (2015) pro-
posed using a local Lucas–Kanade optical flow
method (Lucas and Kanade, 1981) independently
for each pixel of satellite imagery because they
found it outperformed a global Horn–Schunck
(Horn and Schunck, 1981) optical flow algorithm
in the context of precipitation nowcasting from
infrared satellite images. Yeung et al. (2009),
Cheung and Yeung (2012), and Woo and Wong
(2017) used different global optical flow algo-
rithms (Bruhn et al., 2005a; Wong et al., 2009) for
establishing the SWIRLS product for operational
nowcasting in Hong-Kong.

Hence, for around two decades, optical flow
algorithms have been doing their best for state-
of-the-art operational nowcasting systems around
the globe. Should research still care about them?
It should, and the reason is that – despite the
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abundance of publications about different types
of optical flow techniques for nowcasting applica-
tions – an open and transparent benchmarkmodel
is yet not available, except for the most trivial one:
Eulerian persistence.

That is all the more surprising since open-
source implementations of fundamental optical
flow algorithms (Brox et al., 2004; Bruhn et al.,
2005b) have been around for up to 20 years –
with the OpenCV library (https://opencv.org, last
access: 28 March 2019) just being the most widely
known. Such libraries provide efficient implemen-
tations of various optical flow algorithms for a vast
number of research and application contexts. Yet
none can be applied in the QPN context out of the
box – without the need to address additional and
specific challenges such as underlying assump-
tions and constraints of velocity fields, pre- and
post-processing steps, or model parameterization
and verification.

The aim of this paper is thus to establish a set
of benchmark procedures for quantitative precip-
itation nowcasting as an alternative to the triv-
ial case of Eulerian persistence. This study does
not aim to improve the standard of precipitation
nowcasting beyond the state of the art, but to
provide an open, transparent, reproducible, and
easy-to-use approach that can compete with the
state of the art, and against which future advances
can be measured. To that end, we developed
a group of models that are based on two opti-
cal flow formulations of algorithms for the track-
ing step – Sparse (Lucas and Kanade, 1981) and
Dense (Kroeger et al., 2016) – together with two
parsimonious extrapolation techniques based on
image warping and spatial interpolation. These
models are verified against Eulerian persistence,
as a trivial benchmark, and against the opera-
tional nowcasting system of the Deutscher Wet-
terdienst (the German Weather Service, DWD), as
a representative of state-of-the-art models. The
different optical flow implementations are pub-
lished as an open-source Python library (rainy-
motion, Ayzel et al., 2019b) that entirely relies
on free and open-source dependencies, includ-
ing detailed documentation and example work-
flows (https://rainymotion.readthedocs.io, last ac-
cess: 28 March 2019).

The paper is organized as follows. In Sect. 2.2,
we describe the algorithmic and technical aspects

of the suggested optical flow models. Section 2.3
describes the data we used and provides a short
synopsis of events we used for the benchmark ex-
periment. We report the results in Sect. 2.4 and
discuss them in various contexts in Sect. 2.5. Sec-
tion 2.6 provides a summary and conclusions.

2.2 Description of the models and
the library

The benchmark models developed in this study
consist of different combinations of algorithms
for the two major steps of Lagrangian nowcast-
ing frameworks, namely tracking and extrapola-
tion (Austin and Bellon, 1974). Table 2.1 pro-
vides an overview of the models. The values of
model parameters adopted in the benchmark ex-
periment have been heuristically determined and
not yet been subject to systematic optimization.
However, the rainymotion library provides an op-
portunity to investigate how different optical flow
model parameters can affect nowcasting results or
how they can be tuned to represent, e.g., the typi-
cal range of advection speeds of real precipitation
fields. For a description of parameters, please re-
fer to Sect. S1 in the Supplement or the rainymo-
tion library documentation (https://rainymotion.
readthedocs.io/, last access: 28 March 2019).

2.2.1 The Sparse group

The central idea around this group of methods is
to identify distinct features in a radar image that
are suitable for tracking. In this context, a ”fea-
ture” is defined as a distinct point (”corner”) with
a sharp gradient of rainfall intensity. That ap-
proach is less arbitrary and scale dependent and
thusmore universal than classical approaches that
track storm cells as contiguous objects (e.g., Wil-
son et al., 1998) because it eliminates the need
to specify arbitrary and scale-dependent charac-
teristics of ”precipitation features” while the iden-
tification of corners depends only on the gradi-
ent sharpness in a cell’s neighborhood. Inside this
group, we developed two models that slightly dif-
fer with regard to both tracking and extrapolation.

The first model (SparseSD, for Sparse Single
Delta) uses only the two most recent radar im-
ages for identifying, tracking, and extrapolating

https://opencv.org
https://rainymotion.readthedocs.io
https://rainymotion.readthedocs.io/
https://rainymotion.readthedocs.io/
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Table 2.1: Overview of the developed nowcasting models and their computational performance. Now-
casting experiments were carried out for 1 h lead time in 5min temporal resolution (12 resulting nowcast
frames in total) using the RY radar data (spatial resolution of 1 km, grid size 900×900) and a standard office
PC with an Intel® CoreTM i7-2600 CPU (eight cores, 3.4 GHz).

Model name
Input
radar
images

Default tracking al-
gorithm

Extrapolation
Computational time
(tracking/ extrapola-
tion/ total), s

SparseSD 2
Shi–Tomasi corner
detector, Lucas–
Kanade optical flow

Constant delta-
change, affine
warping

0.2 / 1.1 / 1.3

Sparse 3-24
Shi–Tomasi corner
detector, Lucas–
Kanade optical flow

Linear regression,
affine warping

0.1 / 1.1 / 1.2

Dense 2 DIS optical flow
Backward constant-
vector advection
scheme

0.2 / 5.5 / 5.7

DenseRotation 2 DIS optical flow
Backward semi-
Lagrangian advection
scheme

3.2 / 5.7 / 8.9

features. Assuming that t denotes both the now-
cast issue time and the time of the most recent
radar image, the implementation can be summa-
rized as follows:

1. Identify features in a radar image at time
t − 1 using the Shi–Tomasi corner detec-
tor (Shi and Tomasi, 1994). This detector
determines the most prominent corners in
the image based on the calculation of the
corner quality measure (min(λ1, λ2), where
λ1 and λ2 are corresponding eigenvalues of
the covariance matrix of derivatives over the
neighborhood of 3 × 3 pixels) at each im-
age pixel (see Sect. S1 in the Supplement for
a detailed description of algorithm parame-
ters).

2. Track these features at time t using the local
Lucas–Kanade optical flow algorithm (Lucas
and Kanade, 1981). This algorithm tries to
identify the location of a feature we previ-
ously identified at time t − 1 in the radar im-
age at time t, based on solving a set of opti-
cal flow equations in the local feature neigh-
borhood using the least-squares approach
(see Sect. S1 in the Supplement for a de-
tailed description of algorithm parameters).

3. Linearly extrapolate the features’ motion in
order to predict the features’ locations at
each lead time n.

4. Calculate the affine transformation matrix
for each lead time n based on the locations
of all identified features at time t and t + n
using the least-squares approach (Schnei-
der and Eberly, 2003). This matrix uniquely
identifies the required transformation of the
last observed radar image at time t so that
the nowcast images at times t + 1 . . . t + n
provide the smallest possible difference be-
tween the locations of detected features at
time t and the extrapolated features at times
t + 1 . . . t + n.

5. Extrapolate the radar image at time t by
warping: for each lead time, the warping
procedure uniquely transforms each pixel
location of the radar image at time t to its
future location in the nowcast radar images
at times t + 1 . . . t + n, using the affine
transformation matrix. Remaining disconti-
nuities in the predicted image are linearly
interpolated in order to obtain nowcast in-
tensities on a grid that corresponds to the
radar image at time t (Wolberg, 1990).
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To our knowledge, this study is the first to ap-
ply image warping directly as a simple and fast
algorithm to represent advective motion of a pre-
cipitation field. In Sect. S2 in the Supplement, you
can find a simple synthetic example which shows
the potential of the warping technique to replace
an explicit advection formulation for temporal ex-
trapolation.

For a visual representation of the SparseSD
model, please refer to Fig. 2.1.

The second model (Sparse) uses the 24 most
recent radar images, andwe consider only features
that are persistent over the whole period (of 24
time steps). The implementation can be summa-
rized as follows.

1. Identify features on a radar image at time
t − 23 using the Shi–Tomasi corner detector
(Shi and Tomasi, 1994).

2. Track these features in the radar images
from t − 22 to t using the local Lucas–
Kanade optical flow algorithm (Lucas and
Kanade, 1981).

3. Build linear regression models which inde-
pendently parameterize changes in coordi-
nates through time (from t − 23 to t) for ev-
ery successfully tracked feature;

4. Continue with steps 3–5 of SparseSD.

For a visual representation of the Sparse
model, please refer to Fig. 2.2.

2.2.2 The Dense group

The Dense group of models uses, by default, the
Dense Inverse Search algorithm (DIS) – a global
optical flow algorithm proposed by Kroeger et al.
(2016) – which allows us to explicitly estimate
the velocity of each image pixel based on an
analysis of two consecutive radar images. The
DIS algorithm was selected as the default op-
tical flow method for motion field retrieval be-
cause it showed, in our benchmark experiments, a
higher accuracy and also a higher computational
efficiency in comparison with other global opti-
cal flow algorithms such as DeepFlow (Weinza-
epfel et al., 2013), and PCAFlow (Wulff and Black,
2015). We also tested the local Farnebäck algo-
rithm (Farnebäck, 2003), which we modified by
replacing zero velocities by interpolation, and by

smoothing the obtained velocity field based on
a variational refinement procedure (Brox et al.,
2004) (please refer to Sect. S5 in the Supple-
ment for verification results of the corresponding
benchmark experiment with various dense opti-
cal flow models). However, the rainymotion li-
brary provides the option to choose any of the op-
tical flow methods specified above for precipita-
tion nowcasting.

The two models in this group differ only with
regard to the extrapolation (or advection) step.
The first model (Dense) uses a constant-vector
advection scheme (Bowler et al., 2004), while
the second model (DenseRotation) uses a semi-
Lagrangian advection scheme (Germann and Za-
wadzki, 2002b). The main difference between
both approaches is that a constant-vector scheme
does not allow for the representation of rotational
motion (Bowler et al., 2004); a semi-Lagrangian
scheme allows for the representation of large-
scale rotational movement while assuming the
motion field itself to be persistent (Fig. 2.3).

There are two possible options of how both
advection schemes may be implemented: forward
in time (and downstream in space) or backward in
time (and upstream in space) (Fig. 2.3). It is yet un-
clear which scheme can be considered as the most
appropriate and universal solution for radar-based
precipitation nowcasting, regarding the conserva-
tion of mass on the one hand and the attributed
loss of power at small scales on the other hand
(e.g., see discussion in Bowler et al., 2004; Ger-
mann and Zawadzki, 2002b). Thus, we conducted
a benchmark experiment with any possible com-
bination of forward vs. backward and constant-
vector vs. semi-Lagrangian advection. Based on
the results (see Sect. S6 in the Supplement), we
use the backward scheme as the default option for
both the Dense and DenseRotation models. How-
ever, the rainymotion library still provides the op-
tion to use the forward scheme, too.
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Figure 2.1: Scheme of the SparseSD model.
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Figure 2.3: Displacement vectors of four
proposed advection schemes: forward or
backward constant vector and forward or
backward semi-Lagrangian.

Both the Dense and DenseRotationmodels uti-
lize a linear interpolation procedure in order to in-
terpolate advected rainfall intensities at their pre-
dicted locations to the native radar grid. The inter-
polation procedure ”distributes” the value of a rain
pixel to its neighborhood, as proposed in differ-
ent modifications by Bowler et al. (2004), Liu et al.
(2015), and Zahraei et al. (2012). The Dense group
models’ implementation can be summarized as
follows.

1. Calculate a velocity field using the global
DIS optical flow algorithm (Kroeger et al.,
2016), based on the radar images at time
t − 1 and t.
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2. Use a backward constant-vector (Bowler
et al., 2004) or a backward semi-Lagrangian
scheme (Germann and Zawadzki, 2002b) to
extrapolate (advect) each pixel according to
the displacement (velocity) field, in one sin-
gle step for each lead time t + n. For the
semi-Lagrangian scheme, we update the ve-
locity of the displaced pixels at each predic-
tion time step n by linear interpolation of
the velocity field to a pixel’s location at that
time step.

3. As a result of the advection step, we ba-
sically obtain an irregular point cloud that
consists of the original radar pixels dis-
placed from their original location. We use
the intensity of each displaced pixel at its
predicted location at time t + n in order to
interpolate the intensity at each grid point
of the original (native) radar grid (Liu et al.,
2015; Zahraei et al., 2012), using the in-
verse distance weighting interpolation tech-
nique. It is important to note that we min-
imize numerical diffusion by first advecting
each pixel over the target lead time before
applying the interpolation procedure (as in
the ”interpolate once” approach proposed by
Germann and Zawadzki, 2002b). That way,
we avoid rainfall features being smoothed
in space by the effects of interpolation.

2.2.3 Persistence

The (trivial) benchmark model of Eulerian persis-
tence assumes that for any lead time n, the pre-
cipitation field is the same as for time t. Despite
its simplicity, it is quite a powerful model for very
short lead times, and, at the same time, its verifi-
cation performance is a good measure of temporal
decorrelation for different events.

2.2.4 The rainymotion Python library

Wehave developed the rainymotion Python library
to implement the above models. Since the rainy-
motion uses the standard format of numpy arrays
for data manipulation, there is no restriction in
using different data formats which can be read,
transformed, and converted to numpy arrays us-
ing any tool from the set of available open soft-
ware libraries for radar data manipulation (the list

is available on https://openradarscience.org, last
access: 28 March 2019). The source code is avail-
able in a Github repository (Ayzel et al., 2019b) and
has a documentation page (https://rainymotion.
readthedocs.io, last access: 28 March 2019) which
includes installation instructions, model descrip-
tion, and usage examples. The library code
and accompanying documentation are freely dis-
tributed under the MIT software license which al-
lows unrestricted use. The library is written in the
Python 3 programming language (https://python.
org, last access: 28 March 2019), and its core is
entirely based on open-source software libraries
(Fig. 2.4): ωradlib (Heistermann et al., 2013),
OpenCV (Bradski and Kaehler, 2008), SciPy (Jones
et al., 2018), NumPy (Oliphant, 2006), Scikit-learn
(Pedregosa et al., 2011), and Scikit-image (Van der
Walt et al., 2014). For generating figures we
use the Matplotlib library (Hunter, 2007), and
we use the Jupyter notebook (https://jupyter.org,
last access: 28 March 2019) interactive devel-
opment environment for code and documenta-
tion development and distribution. For manag-
ing the dependencies without any conflicts, we
recommend to use the Anaconda Python distribu-
tion (https://anaconda.com, last access: 28 March
2019) and follow rainymotion installation instruc-
tions (https://rainymotion.readthedocs.io, last ac-
cess: 28 March 2019).

2.2.5 Operational baseline (RADVOR)

The DWD operationally runs a stack of models for
radar-based nowcasting and provides precipita-
tion forecasts for a lead time up to 2 h. The opera-
tional QPN is based on the RADVOR module (Bar-
tels et al., 2005; Rudolf et al., 2012). The tracking
algorithm estimates the motion field from the lat-
est sequential clutter-filtered radar images using
a pattern recognition technique at different spa-
tial resolutions (Winterrath and Rosenow, 2007;
Winterrath et al., 2012). The focus of the tracking
algorithm is on the meso-β scale (spatial extent:
25–250 km) to cover mainly large-scale precipi-
tation patterns, but the meso-γ scale (spatial ex-
tension: 2.5–25 km) is also incorporated to allow
the detection of smaller-scale convective struc-
tures. The resulting displacement field is inter-
polated to a regular grid, and a weighted aver-
aging with previously derived displacement fields

https://openradarscience.org
https://rainymotion.readthedocs.io
https://rainymotion.readthedocs.io
https://python.org
https://python.org
https://jupyter.org
https://anaconda.com
https://rainymotion.readthedocs.io
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Figure 2.4: Key Python libraries for rainymotion library development.

is implemented to guarantee a smooth displace-
ment over time. The extrapolation of the most
recent radar image according to the obtained ve-
locity field is performed using a semi-Lagrangian
approach. The described operational model is
updated every 5min and produces precipitation
nowcasts at a temporal resolution of 5min and a
lead time of 2 h (RV product). In this study we used
the RV product data as an operational baseline and
did not re-implement the underlying algorithm it-
self.

2.3 Verification experiments

2.3.1 Radar data and verification events

We use the so-called RY product of the DWD as
input to our nowcasting models. The RY prod-
uct represents a quality-controlled rainfall depth
product that is a composite of the 17 operational
Doppler radars maintained by the DWD. It has a
spatial extent of 900 km × 900 km and covers the
whole area of Germany. Spatial and temporal res-
olution of the RY product is 1 km× 1 km and 5min,
respectively. This composite product includes var-
ious procedures for correction and quality control
(e.g. clutter removal). We used the ωradlib (Heis-
termann et al., 2013) software library for reading
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the DWD radar data.
For the analysis, we selected 11 events dur-

ing the summer periods of 2016 and 2017. These
events are selected for covering a range of event
characteristics with different rainfall intensity,
spatial coverage, and duration. Table 2.2 shows
the studied events. You can also find links to ani-
mations of event intensity dynamics in Sect. S3 in
the Supplement.

2.3.2 Verification metrics

For the verification we use two general cate-
gories of scores: continuous (based on the differ-
ences between nowcast and observed rainfall in-
tensities) and categorical (based on standard con-
tingency tables for calculating matches between
Boolean values which reflect the exceedance of
specific rainfall intensity thresholds). We use the
mean absolute error (MAE) as a continuous score:

MAE =

∑n
i=1 |nowi − obsi|

n
(2.1)

where nowi and obsi are nowcast and observed
rainfall rate in the i-th pixel of the corresponding
radar image, and n the number of pixels. To com-
pute the MAE, no pixels were excluded based on
thresholds of nowcast or observed rainfall rate.

And we use the critical success index (CSI) as
a categorical score:

CSI =
hits

hits + false alarms + misses
(2.2)

where hits, false alarms, and misses are defined
by the contingency table and the corresponding
threshold value (for details see Sect. S4 in the
Supplement).

Following studies of Bowler et al. (2006) and
Foresti et al. (2016), we have applied threshold
rain rates of 0.125, 0.25, 0.5, 1 and 5mmh−1 for
calculating the CSI.

These two metrics inform us about the mod-
els’ performance from the two perspectives: MAE
captures errors in rainfall rate prediction (the less
the better), and CSI captures model accuracy (the
fraction of the forecast event that was correctly
predicted; it does not distinguish between the
sources of errors; the higher the better). You can

find results represented in terms of additional cat-
egorical scores (false alarm rate, probability of de-
tection, equitable threat score) in Sect. S4 in the
Supplement.

2.4 Results

For each event, all models (Sparse, SparseSD,
Dense, DenseRotation, Persistence) were used to
compute nowcasts with lead times from 5 to
60min (in 5min steps). Operational nowcasts
generated by the RADVOR system were provided
by the DWD with the same temporal settings. An
example of nowcasts for lead times 0, 5, 30, and
60min is shown in Fig. 2.5.

To investigate the effects of numerical diffu-
sion, we calculated, for the same example, the
power spectral density (PSD) of the nowcasts and
the corresponding observations (bottom panels in
Fig. 2.5) using Welch’s method (Welch, 1967). Ger-
mann and Zawadzki (2002b) showed that the most
significant loss of power (lower PSD values) occurs
at scales between 8 and 64 km. They did not ana-
lyze scales below 8 (23) km because their original
grid resolution was 4 km. We extended the spec-
tral analysis to consider scales as small as 21 km.
Other than Germann and Zawadzki (2002b), we
could not observe any substantial loss of power
between 8 and 64 km, yet Fig. 2.5 shows that
both Dense and Sparse models consistently start
to lose power at scales below 4 km. That loss does
not depend much on the nowcast lead time, yet,
the Sparse group of models loses more power at
a lead time of 5min as compared to the Dense
group. Still, these results rather confirm Germann
and Zawadzki (2002b): they show, as would be ex-
pected, that any loss of spectral power is most pro-
nounced at the smallest scales and disappears at
scales about 2–3 orders above the native grid res-
olution. For the investigated combination of data
and models, this implies that our nowcasts will
not be able to adequately represent rainfall fea-
tures smaller than 4 km at lead times of up to 1 h.

Figure 2.6 shows the model performance (in
terms of MAE) as a function of lead time. For each
event, the Dense group of models is superior to
the other ones. The RV product achieves an effi-
ciency that is comparable to the Dense group. The
SparseSDmodel outperforms the Sparsemodel for
short lead times (up to 10–15min), and vice versa
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Table 2.2: Characteristics of the selected events.

Event no. Start End
Duration
(h)

Maximum
extent
(km2)

Extent
>1mmh−1

(%)

Event 1 2016-05-23 2:00 2016-05-23 8:00 6 159318 42
Event 2 2016-05-23 13:00 2016-05-24 2:30 13.5 135272 56
Event 3 2016-05-29 12:05 2016-05-29 23:55 12 160095 72
Event 4 2016-06-12 7:00 2016-06-12 19:00 12 150416 53
Event 5 2016-07-13 17:30 2016-07-14 1:00 7.5 145501 62
Event 6 2016-08-04 18:00 2016-08-05 7:00 13 168407 74
Event 7 2017-06-29 3:00 2017-06-29 5:05 2 140021 70
Event 8 2017-06-29 17:00 2017-06-29 21:00 4 182561 60
Event 9 2017-06-29 22:00 2017-06-30 21:00 23 160822 75
Event 10 2017-07-21 19:00 2017-07-21 23:00 4 63698 77
Event 11 2017-07-24 8:00 2017-07-25 23:55 16 253666 63

for longer lead times. For some events (1–4, 6, 10,
11), the performance of the RV product appears to
be particularly low in the first 10min, compared to
the other models. These events are characterized
by particularly fast rainfall field movement.

Figure 2.7 has the same structure as Fig. 2.6
but shows the CSI with a threshold value of
1mmh−1. For two events (7 and 10) the RV
product achieves a comparable efficiency with the
Dense group for lead times beyond 30min. For
the remaining events, the Dense group tends to
outperform all other methods and the RV product
achieves an average rank between models of the
Sparse and Dense groups. For the Dense group of
models, it appears that accounting for field rota-
tion does not affect the results of the benchmark
experiment much – the Dense and DenseRotation
models perform very similarly, at least for the se-
lected events and the analyzed lead times. The be-
havior of the Sparse group models is mostly con-
sistent with the MAE.

Figure 2.8 shows the model performance us-
ing the CSI with a threshold value of 5mmh−1.
For the majority of events, the resulting ranking of
models is the same as for the CSI with a threshold
of 1mmh−1. For events no. 2 and no. 3, the per-
formance of the RV product relative to the Dense
models is a little bit better, while for other events
(e.g., no. 7), the Dense models outperform the RV
product more clearly than for the CSI of 1mmh−1.

Table 2.3 summarizes the results of the Dense
group models in comparison to the RV product for

different verification metrics averaged over all the
selected events and two lead time periods: 5–
30, and 35–60min. Results show that the Dense
group always slightly outperforms the RVmodel in
terms of CSI metric for both lead time periods and
all analyzed rainfall intensity threshold used for
CSI calculation. In terms of MAE, differences be-
tween model performances are less pronounced.
For the CSI metric, the absolute differences be-
tween all models tend to be consistent with in-
creasing rainfall thresholds.

You can find more figures illustrating the mod-
els’ efficiency for different thresholds and lead
times in Sect. S4 in the Supplement.

2.5 Discussion

2.5.1 Model comparison

All tested models show significant skill over the
trivial Eulerian persistence over a lead time of
at least 1 h. Yet a substantial loss of skill over
lead time is present for all analyzed events, as ex-
pected. We have not disentangled the causes of
that loss, but predictive uncertainty will always re-
sult from errors in both the representation of field
motion and the total lack of representing precip-
itation formation, dynamics, and dissipation in a
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Figure 2.5: Example of the nowcasting models output (SparseSD and Dense models) for the timestep, 29
May 2016, 19:15, and corresponding level of numerical diffusion (the last row).

framework of Lagrangian persistence. Many stud-
ies specify a lead time of 30min as a predictabil-
ity limit for convective structures with fast dynam-
ics of rainfall evolution (Foresti et al., 2016; Grecu
and Krajewski, 2000; Thorndahl et al., 2017; Wil-
son et al., 1998; Zahraei et al., 2012). Our study
confirms these findings.

For the majority of analyzed events, there
is a clear pattern that the Dense group of op-
tical flow models outperforms the operational
RV nowcast product. For the analyzed events
and lead times, the differences between the
Dense and the DenseRotation models (or, in
other words, between constant-vector and semi-
Lagrangian schemes) are negligible. The abso-
lute difference in performance between the Dense
groupmodels and the RV product appears to be in-
dependent of rainfall intensity threshold and lead

time (Table 2.3), which implies that the relative
advance of the Dense group models over the RV
product increases both with lead time and rain-
fall intensity threshold. A gain in performance
for longer lead times by taking into account more
time steps from the past can be observed when
comparing the SparseSD model (looks back 5min
in time) against the Sparse model (looks back 2 h
in time).

Despite their skill over Eulerian persistence,
the Sparse group models are significantly outper-
formed by the Dense group models for all the an-
alyzed events and lead times. The reason for this
behaviour still remains unclear. It could, in gen-
eral, be a combination of errors introduced in cor-
ner tracking and extrapolation as well as image
warping as a surrogate for formal advection. While
the systematic identification of error sources will
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Figure 2.6: Verification of the different optical flow based nowcasts in terms of MAE for 11 precipitation
events over Germany.

be subject to future studies, we suspect that the
the local features (corners) identified by the Shi–
Tomasi corner detector might not be representa-
tive of the overall motion of the precipitation field:
the detection focuses on features with high inten-
sities and gradients, the motion of which might
not represent the dominant meso-γ-scale motion
patterns.

There are a couple of possible directions for
enhancing the performance for longer lead times
using the Dense group of models. A first is to
use a weighted average of velocity fields derived
from radar images three (or more) steps back in
time (as done in RADVOR to compute the RV prod-
uct). A second option is to calculate separate ve-
locity fields for low-and high-intensity subregions
of the rain field and advect these subregions sep-
arately (as proposed in Golding, 1998) or find an

optimal weighting procedure. A third approach
could be to optimize the use of various optical
flow constraints in order to improve the perfor-
mance for longer lead times, as proposed in Ger-
mann and Zawadzki (2002b), Bowler et al. (2004),
or Mecklenburg et al. (2000). The flexibility of the
rainymotion software library allows users to in-
corporate such algorithms for benchmarking any
hypothesis, and, for example, implement differ-
ent models or parameterizations for different lead
times. Bowler et al. (2004) also showed a signif-
icant performance increase for longer lead times
by using NWP model winds for the advection step.
However, Winterrath and Rosenow (2007) did not
obtain any improvement compared to RADVOR for
longer lead times by incorporating NWP model
winds into the nowcasting procedure.
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Figure 2.7: Verification of the different optical flow based nowcasts in terms of CSI for the threshold of
1mmh−1 for 11 precipitation events over Germany.

2.5.2 Advection schemes properties and ef-
fectiveness

Within the Dense group of models, we could
not find any significant difference between the
performance and PSD of the constant-vector
(Dense model) and the semi-Lagrangian scheme
(DenseRotation). That confirms findings presented
by Germann and Zawadzki (2002b) who found
that the constant vector and the modified semi-
Lagrangian schemes have very similar power spec-
tra, presumably since they share the same inter-
polation procedure. The theoretical superiority of
the semi-Lagrangian scheme might, however, ma-
terialize for other events with substantial, though
persistent rotational motion. A more comprehen-
sive analysis should thus be undertaken in future
studies.

Interpolation is included in both the post-
processing of image warping (Sparse models) and
in the computation of gridded nowcasts as part
of the Dense models. In general, such interpo-
lation steps can lead to numerical diffusion and
thus to the degradation or loss of small-scale fea-
tures (Germann and Zawadzki, 2002b). Yet we
were mostly able to contain such adverse effects
for both the Sparse and the Dense group of mod-
els by carrying out only one interpolation step for
any forecast at a specific lead time. We showed
that numerical diffusion was negligible for lead
times of up to 1 h for any model: however, as has
been shown in Germann and Zawadzki (2002b),
for longer lead times these effects can be signif-
icant, depending on the implemented extrapola-
tion technique.
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Figure 2.8: Verification of the different optical flow based nowcasts in terms of CSI for the threshold of
5mmh−1 for 11 precipitation events over Germany.

2.5.3 Computational performance

Computational performance might be an impor-
tant criterion for end users aiming at frequent up-
date cycles. We ran our nowcasting models on a
standard office PC with an Intel® Core™ i7-2600
CPU (eight cores, 3.4 GHz), and on a standard lap-
top with an Intel® Core™ i5-7300HQ CPU (four
cores, 2.5 GHz). The average time for generating
one nowcast for 1 h lead time (at 5min resolution)
is 1.5–3 s for the Sparse group and 6–12 s for the
Dense group. The Dense group is computation-
ally more expensive due to interpolation opera-
tions implemented for large grids (900 × 900 pix-
els). There is also potential for increasing the
computational performance of the interpolation.

2.6 Summary and conclusions

Optical flow is a technique for deriving a velocity
field from consecutive images. It is widely used
in image analysis, and has become increasingly
popular in meteorological applications over the
past 20 years. In our study, we examined the per-
formance of optical-flow-based models for radar-
based precipitation nowcasting, as implemented
in the open-source rainymotion library, for a wide
range of rainfall events using radar data provided
by the DWD.

Our benchmark experiments, including an op-
erational baseline model (the RV product provided
by the DWD), show a firm basis for using opti-
cal flow in radar-based precipitation nowcasting
studies. For the majority of the analyzed events,
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models from the Dense group outperform the op-
erational baseline. The Sparse group of models
showed significant skill, yet they generally per-
formed more poorly than both the Dense group
and the RV product. We should, however, not
prematurely discard the group of Sparse models
before we have not gained a better understand-
ing of error sources with regard to the tracking,
extrapolation and warping steps. Combining the
warping procedure for the extrapolation step with
the Dense optical flow procedure for the tracking
step (i.e., to advect corners based on a ”Dense” ve-
locity field obtained by implementing one of the
dense optical flow techniques) might also be con-
sidered. This opens the way for merging two dif-
ferent model development branches in the future
releases of the rainymotion library.

There is a clear and rapid model performance
loss over lead time for events with high rainfall
intensities. This issue continues to be unresolved
by standard nowcasting approaches, but some im-
provement in this field may be achieved by using
strategies such as merging with NWP results and
stochastic modeling of rainfall field evolution. Ad-
mittedly, deterministic nowcasts in a Lagrangian
framework account neither for precipitation inten-
sity dynamics nor for the uncertainties in repre-
senting precipitation field motion. At least for
the latter, the rainymotion library provides ample
opportunities to experiment with forecast ensem-
bles, based on various tracking and extrapolation
techniques. Furthermore, we suppose that using
new data-driven models based on machine and
deep learning may increase the performance by
utilizing and structuring common patterns in the
massive archives of radar data.

We do not claim that the developed mod-
els will compete with well-established and exces-
sively tuned operational models for radar-based
precipitation nowcasting. Yet, we hope our mod-
els may serve as an essential tool for providing a
fast, free, and open-source solution that can serve
as a benchmark for further model development
and hypothesis testing – a benchmark that is far
more advanced than the conventional benchmark
of Eulerian persistence.

Recent studies show that open-source
community-driven software advances the field
of weather radar science (Heistermann et al.,
2015a,b). Just a few months ago, the pySTEPS

(https://pysteps.github.io, last access: 28 March
2019) initiative was introduced ”to develop and
maintain an easy to use, modular, free and open
source python framework for short-term ensemble
prediction systems.” As another piece of evidence
of the dynamic evolution of QPN research over
the recent years, these developments could pave
the way for future synergies between the pySTEPS
and rainymotion projects – towards the availabil-
ity of open, reproducible, and skillful methods in
quantitative precipitation nowcasting.

Table 2.3: Mean model metrics for different
lead time periods.

Lead time (from–to), min
Model 5–30 35–60

MAE, mmh−1

Dense 0.30 0.45
DenseRotation 0.30 0.45
RV 0.31 0.45

CSI, threshold=0.125mmh−1

Dense 0.78 0.64
DenseRotation 0.78 0.64
RV 0.76 0.61

CSI, threshold=0.25mmh−1

Dense 0.76 0.61
DenseRotation 0.76 0.61
RV 0.74 0.59

CSI, threshold=0.5mmh−1

Dense 0.73 0.57
DenseRotation 0.73 0.57
RV 0.70 0.55

CSI, threshold=1mmh−1

Dense 0.68 0.52
DenseRotation 0.68 0.51
RV 0.65 0.49

CSI, threshold=5mmh−1

Dense 0.42 0.24
DenseRotation 0.42 0.23
RV 0.39 0.22

Code and data availability

The rainymotion library is free and open-source.
It is distributed under the MIT software license,

https://pysteps.github.io
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which allows unrestricted use. The source code
is provided through a GitHub repository (Ayzel
et al., 2019b), the snapshot of the rainymo-
tion v0.1 is also available on Zenodo: https:
//doi.org/10.5281/zenodo.2561583 (Ayzel, 2019),
and the documentation is available on a web-
site (https://rainymotion.readthedocs.io, last ac-
cess: 28March 2019). The DWD provided the sam-
ple data of the RY product, and it is distributed
with the rainymotion repository to provide a real
case and reproducible example of precipitation
nowcasting.

Supplement

The supplement related to this article is
available online at: https://doi.org/10.5194/
gmd-12-1387-2019-supplement.
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Chapter 3

RainNet v1.0: a convolutional neural network for radar-based
precipitation nowcasting

This chapter is published as:

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based
precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644,
https://doi.org/10.5194/gmd-13-2631-2020, 2020.

Abstract

In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation now-
casting. Its design was inspired by the U-Net and SegNet families of deep learning models which were
originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipita-
tion intensities at a lead time of 5min, using several years of quality-controlled weather radar composites
provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of
900 km × 900 km, and has a resolution of 1 km in space and 5min in time. Independent verification
experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve
a lead time of 1 h, a recursive approach was implemented by using RainNet predictions at 5min lead
times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence
and a conventional model based on optical flow served as benchmarks. The latter is available in the
rainymotion library and had previously been shown to outperform DWD’s operational nowcasting model
for the same set of verification events.

RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine
verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds
of 0.125, 1, and 5mmh−1. However, rainymotion turned out to be superior in predicting the exceedance
of higher intensity thresholds (here 10 and 15mmh−1). The limited ability of RainNet to predict heavy
rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing
introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a
significant loss of spectral power at length scales of 16 km and below. Obviously, RainNet had learned
an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral
power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial
scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact – an
analogue to numerical diffusion – that is not a property of RainNet itself, but of its recursive application.
In the context of early warning, the smoothing is particularly unfavorable since pronounced features
of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to
address this issue in prospective research, including an adjustment of the loss function for model training,
model training for longer lead times, and the prediction of threshold exceedance in terms of a binary
segmentation task. Furthermore, we suggest additional input data that could help to better identify
situations with imminent precipitation dynamics. The model code, pretrained weights, and training data
are provided in open repositories as an input for such future studies.

https://doi.org/10.5194/gmd-13-2631-2020
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3.1 Introduction

The term ”nowcasting” refers to forecasts of
precipitation field movement and evolution at
high spatiotemporal resolutions (1–10min, 100–
1000m) and short lead times (minutes to a few
hours). Nowcasts have become popular not only
with a broad civil community for planning ev-
eryday activities; they are particularly relevant
as part of early warning systems for heavy rain-
fall and related impacts such as flash floods or
landslides. While the recent advances in high-
performance computing and data assimilation sig-
nificantly improved numerical weather prediction
(NWP) (Bauer et al., 2015), the computational re-
sources required to forecast precipitation field dy-
namics at very high spatial and temporal resolu-
tions are typically prohibitive for the frequent up-
date cycles (5–10min) that are required for op-
erational nowcasting systems. Furthermore, the
heuristic extrapolation of precipitation dynamics
that are observed by weather radars still outper-
forms NWP forecasts at short lead times (Lin et al.,
2005; Sun et al., 2014). Thus, the development of
new nowcasting systems based on parsimonious
but reliable and fast techniques remains an essen-
tial trait in both atmospheric and natural hazard
research.

There are many nowcasting systems which
work operationally all around the world to pro-
vide precipitation nowcasts (Reyniers, 2008; Wil-
son et al., 1998). These systems, at their core,
utilize a two-step procedure that was originally
suggested by Austin and Bellon (1974), consist-
ing of tracking and extrapolation. In the tracking
step, a velocity is obtained from a series of con-
secutive radar images. In the extrapolation step,
that velocity is used to propagate the most recent
precipitation observation into the future. Vari-
ous flavors and variations of this fundamental idea
have been developed and operationalized over the
past decades, which provide value to users of cor-
responding products. Still, the fundamental ap-
proach to nowcasting has not changed much over
recent years – a situation that might change with
the increasing popularity of deep learning in var-
ious scientific disciplines.

”Deep learning” refers to machine-learning
methods for artificial neural networks with ”deep”
architectures. Rather than relying on engineered
features, deep learning derives low-level image

features on the lowest layers of a hierarchical net-
work, and increasingly abstract features on the
high-level network layers as part of the solution
of an optimization problem based on training data
(LeCun et al., 2015). Deep learning began its rise
from the field of computer science when it started
to dramatically outperform reference methods in
image classification (Krizhevsky et al., 2012) and
machine translation (Sutskever et al., 2014), which
was followed by speech recognition (LeCun et al.,
2015). Three main reasons caused this substan-
tial breakthrough in predictive efficacy: the avail-
ability of ”big data” for model training, the devel-
opment of activation functions and network ar-
chitectures that result in numerically stable gra-
dients across many network layers (Dahl et al.,
2013), and the ability to scale the learning pro-
cess massively through parallelization on graph-
ics processing units (GPUs). Today, deep learn-
ing is rapidly spreading into many data-rich sci-
entific disciplines, and complements researchers’
toolboxes with efficient predictive models, includ-
ing in the field of geosciences (Reichstein et al.,
2019).

While expectations in the atmospheric sci-
ences are high (see e.g., Dueben and Bauer, 2018;
Gentine et al., 2018), the investigation of deep
learning in radar-based precipitation nowcasting
is still in its infancy, and universal solutions are
not yet available. Shi et al. (2015) were the first
to introduce deep learning models in the field of
radar-based precipitation nowcasting: they pre-
sented a convolutional long short-term memory
(ConvLSTM) architecture, which outperformed the
optical-flow-based ROVER (Real-time Optical flow
by Variational methods for Echoes of Radar) now-
casting system in the Hong Kong area. A follow-up
study (Shi et al., 2017) introduced new deep learn-
ing architectures, namely the trajectory gated re-
current unit (TrajGRU) and the convolutional gated
recurrent unit (ConvGRU), and demonstrated that
these models outperform the ROVER nowcasting
system, too. Further studies by Singh et al. (2017)
and Shi et al. (2018) confirmed the potential of
deep-learning models for radar-based precipita-
tion nowcasting for different sites in the US and
China. Most recently, Agrawal et al. (2019) intro-
duced a U-Net-based deep learning model for the
prediction of the exceedance of specific rainfall in-
tensity thresholds compared to optical flow and
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numerical weather prediction models. Hence, the
exploration of deep learning techniques in radar-
based nowcasting has begun, and the potential
to overcome the limitations of standard tracking
and extrapolation techniques has become appar-
ent. There is a strong need, though, to further
investigate different architectures, to set up new
benchmark experiments, and to understand under
which conditions deep learning models can be a
viable option for operational services.

In this paper, we introduce RainNet – a deep
neural network which aims at learning representa-
tions of spatiotemporal precipitation field move-
ment and evolution from a massive, open radar
data archive to provide skillful precipitation now-
casts. The present study outlines RainNet’s archi-
tecture and its training and reports on a set of
benchmark experiments in which RainNet com-
petes against a conventional nowcasting model
based on optical flow. Based on these experi-
ments, we evaluate the potential of RainNet for
nowcasting, but also its limitations in compari-
son to conventional radar-based nowcasting tech-
niques. Based on this evaluation, we attempt to
highlight options for future research towards the
application of deep learning in the field of precip-
itation nowcasting.

3.2 Model description

3.2.1 Network architecture

To investigate the potential of deep neural net-
works for radar-based precipitation nowcasting,
we developed RainNet – a convolutional deep
neural network (Fig. 3.1). Its architecture was in-
spired by the U-Net and SegNet families of deep
learning models for binary segmentation (Badri-
narayanan et al., 2017; Ronneberger et al., 2015;
Iglovikov and Shvets, 2018). These models fol-
low an encoder–decoder architecture in which the
encoder progressively downscales the spatial res-
olution using pooling, followed by convolutional
layers; and the decoder progressively upscales the
learned patterns to a higher spatial resolution us-
ing upsampling, followed by convolutional layers.
There are skip connections (Srivastava et al., 2015)
from the encoder to the decoder in order to ensure
semantic connectivity between features on differ-
ent layers.

As elementary building blocks, RainNet has 20
convolutional, 4 max pooling, 4 upsampling, and
2 dropout layers and 4 skip connections. Convo-
lutional layers aim to generate data-driven spa-
tial features from the corresponding input volume
using several convolutional filters. Each filter is
a three-dimensional tensor of learnable weights
with a small spatial kernel size (e.g., 3×3, and the
third dimension equal to that of the input volume).
A filter convolves through the input volume with
a step-size parameter (or stride; stride= 1 in this
study) and produces a dot product between filter
weights and corresponding input volume values.
A bias parameter is added to this dot product, and
the results are transformed using an adequate ac-
tivation function. The purpose of the activation
function is to add nonlinearities to the convolu-
tional layer output – to enrich it to learn nonlin-
ear features. To increase the efficiency of convolu-
tional layers, it is necessary to optimize their hy-
perparameters (such as number of filters, kernel
size, and type of activation function). This has
been done in a heuristic tuning procedure (not
shown). As a result, we use convolutional layers
with up to 1024 filters, kernel sizes of 1×1 and
3×3, and linear or rectified linear unit (ReLU; Nair
and Hinton, 2010) activation functions.

Using a max pooling layer has two primary
reasons: it achieves an invariance to scale trans-
formations of detected features and increases the
network’s robustness to noise and clutter (Boureau
et al., 2010). The filter of a max pooling layer
slides over the input volume independently for
every feature map with some step parameter (or
stride) and resizes it spatially using the maximum
(max) operator. In our study, each max pooling
layer filter is 2×2 in size, applied with a stride of
2. Thus, we take the maximum of four numbers
in the filter region (2×2) which downsamples our
input volume by a factor of 2. In contrast to a max
pooling layer, an upsampling layer is designed for
the spatial upsampling of the input volume (Long
et al., 2015). An upsampling layer operator slides
over the input volume and fills (copies) each input
value to a region that is defined by the upsampling
kernel size (2×2 in this study).

Skip connections were proposed by Srivastava
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Figure 3.1: Illustration of the RainNet architecture. RainNet is a convolutional deep neural network which
follows a standard encoder–decoder structure with skip connections between its branches. See main text
for further explanation.

et al. (2015) in order to avoid the problem of van-
ishing gradients for the training of very deep neu-
ral networks. Today, skip connections are a stan-
dard group of methods for any form of information
transfer between different layers in a neural net-
work (Gu et al., 2018). They allow for the most
common patterns learned on the bottom layers to
be reused by the top layers in order to maintain
a connection between different data representa-
tions along the whole network. Skip connections
turned out to be crucial for deep neural network
efficiency in recent studies (Iglovikov and Shvets,
2018). For RainNet, we use skip connections for
the transition of learned patterns from the en-
coder to the decoder branch at the different reso-
lution levels.

One of the prerequisites for U-Net-based ar-
chitectures is that the spatial extent of input data
has to be a multiple of 2n+1, where n is the num-
ber of max pooling layers. As a consequence,
the spatial extent on different resolution levels
becomes identical for the decoder and encoder
branches. Correspondingly, the radar composite
grids were transformed from the native spatial ex-
tent of 900 cells × 900 cells to the extent of 928
cells × 928 cells using mirror padding.

RainNet takes four consecutive radar compos-
ite grids as separate input channels (t − 15, t − 10,
t − 5min, and t, where t is the time of the nowcast)
to produce a nowcast at time t + 5min. Each grid
contains 928 cells × 928 cells with an edge length
of 1 km; for each cell, the input value is the log-
arithmic precipitation depth as retrieved from the
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radar-based precipitation product. There are five
almost symmetrical resolution levels for both de-
coder and encoder which utilize precipitation pat-
terns at the full spatial input resolution of (x, y),
at a quarter resolution (x/2, y/2), at (x/4, y/4),
(x/8, y/8), and (x/16, y/16) respectively. To in-
crease the robustness and to prevent overfitting of
pattern representations at coarse resolutions, we
implemented a dropout regularization technique
(Srivastava et al., 2014). Finally, the output layer
of resolution (x, y) with a linear activation func-
tion provides the predicted logarithmic precipita-
tion (in mm) in each grid cell for t + 5min.

RainNet differs fundamentally from ConvLSTM
(Shi et al., 2015), a prior neural-network approach,
which accounts for both spatial and temporal
structures in radar data by using stacked convo-
lutional and long short-term memory (LSTM) lay-
ers that preserve the spatial resolution of the in-
put data alongside all the computational layers.
LSTM networks have been observed to be brit-
tle; in several application domains, convolutional
neural networks have turned out to be numerically
more stable during training and make more accu-
rate predictions than these recurrent neural net-
works (e.g., Bai et al., 2018; Gehring et al., 2017).

Therefore, RainNet uses a fully convolutional
architecture and does not use LSTM layers to prop-
agate information through time. In order to make
predictions with a larger lead time, we apply Rain-
Net recursively. After predicting the estimated
log-precipitation for t + 5min, the measured val-
ues for t − 10, t − 5, and t as well as the esti-
mated value for t + 5 serve as the next input vol-
ume which yields the estimated log-precipitation
for t + 10min. The input window is then moved
on incrementally.

3.2.2 Optimization procedure

In total, RainNet has almost 31.4 million parame-
ters. We optimized these parameters using a pro-
cedure of which we show one iteration in Fig. 3.2:
first, we read a sample of input data that consists
of radar composite grids at time t − 15, t − 10,
t − 5min, and t, and a sample of the observed pre-
cipitation at time t+ 5. For both, input and obser-
vation, we increase the spatial extent to 928×928

using mirror padding and transform precipitation
depth x (mm 5 min−1) as follows (Eq. 3.1):

xtransformed = ln(xraw + 0.01) (3.1)

Second, RainNet carries out a prediction based
on the input data. Third, we calculate a loss func-
tion that represents the deviation between pre-
diction and observation. Previously, Chen et al.
(2018) showed that using the logcosh loss function
is beneficial for the optimization of variational au-
toencoders (VAEs) in comparison to mean squared
error. Accordingly, we employed the logcosh loss
function as follows (Eq. 3.2):

Loss =

∑n
i=1 ln(cosh(nowi − obsi))

n
(3.2)

cosh(x) = 1
2
(ex + e−x) (3.3)

where nowi and obsi are nowcast and obser-
vation at the i-th location, respectively; cosh is the
hyperbolic cosine function (Eq. 3.3), and n is the
number of cells in the radar composite grid.

Fourth, we update RainNet’s model parame-
ters to minimize the loss function using a back-
propagation algorithm where the Adam optimizer
is utilized to compute the gradients (Kingma and
Ba, 2015).

We optimized RainNet’s parameters using 10
epochs (one epoch ends when the neural network
has seen every input data sample once; then the
next epoch begins) with a mini batch of size 2 (one
mini batch holds a few input data samples). The
optimization procedure converged on the eighth
epoch, showing the saturation of RainNet’s perfor-
mance on the validation data. The learning rate of
the Adam optimizer had a value of 1 × 10−1, while
other parameters had default values from the orig-
inal paper of Kingma and Ba (2015).

The entire setup was empirically identified as
the most successful in terms of RainNet’s perfor-
mance on validation data, while other configura-
tions with different loss functions (e.g., mean ab-
solute error, mean squared error) and optimization
algorithms (e.g., stochastic gradient descent) also
converged. The average training time on a single
GPU (NVIDIA GeForce GTX 1080Ti, NVIDIA GTX TI-
TAN X, or NVIDIA Tesla P100) varies from 72 to
76 h.
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Figure 3.2: Illustration of one iteration step of the RainNet parameters optimization procedure.

We support this paper by a correspond-
ing repository on GitHub (https://github.com/
hydrogo/rainnet; last access: 10 June 2020; Ayzel,
2020a), which holds the RainNet model architec-
ture written in the Python 3 programming lan-
guage (https://python.org, last access: 28 January
2020) using the Keras deep learning library (Chol-
let et al., 2015) alongside its parameters (Ayzel,
2020b), which had been optimized on the radar
data set described in the following section.

3.3 Data and experimental setup

3.3.1 Radar data

We use the RY product of the GermanWeather Ser-
vice (DWD) as input data for training and validat-
ing the RainNet model. The RY product represents
a quality-controlled rainfall-depth composite of
17 operational DWD Doppler radars. It has a spa-
tial extent of 900 km × 900 km, covers the whole
area of Germany, and is available since 2006. The
spatial and temporal resolution of the RY product
is 1 km × 1 km and 5min, respectively.

In this study, we use RY data that cover the
period from 2006 to 2017. We split the available
RY data as follows: while we use data from 2006
to 2013 to optimize RainNet’s model parameters

and data from 2014 to 2015 to validate RainNet’s
performance, data from 2016 to 2017 are used
for model verification (Sect. 3.3.3). For both op-
timization and validation periods, we keep only
data fromMay to September and ignore time steps
for which the precipitation field (with rainfall in-
tensity more than 0.125mmh−1) covers less than
10% of the RY domain. For each subset of the data
– for optimization, validation, and verification –,
every time step (or frame) is used once as t0 (fore-
cast time) so that the resulting sequences that are
used as input to a single forecast (t0 - 15min, ...,
t0) overlap in time. The number of resulting se-
quences amounts to 41 988 for the optimization,
5722 for the validation, and 9626 for the verifica-
tion (see also Sect. 3.3.3).

3.3.2 Reference models

We use nowcasting models from the rainymo-
tion Python library (Ayzel et al., 2019a) as bench-
marks with which we evaluate RainNet. As the
first baseline model, we use Eulerian persistence
(hereafter referred to as Persistence), which as-
sumes that for any lead time n (min), precipita-
tion at t + n is the same as at forecast time t. De-
spite its simplicity, it is quite a powerful model
for very short lead times, which also establishes
a solid verification efficiency baseline which can

https://github.com/hydrogo/rainnet
https://github.com/hydrogo/rainnet
https://python.org
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be achieved with a trivial model without any ex-
plicit assumptions. As the second baseline model,
we use the Dense model from the rainymotion li-
brary (hereafter referred to as Rainymotion), which
is based on optical flow techniques for precipi-
tation field tracking and the constant-vector ad-
vection scheme for precipitation field extrapola-
tion. Ayzel et al. (2019a) showed that this model
has an equivalent or even superior performance
in comparison to the operational RADVOR (radar
real-time forecasting) model from DWD for a wide
range of rainfall events.

3.3.3 Verification experiments and perfor-
mance evaluation

For benchmarking RainNet’s predictive skill in
comparison to the baseline models, Rainymotion
and Persistence, we selected 11 events during the
summer months of the verification period (2016–
2017). These events were selected for covering a
range of event characteristics with different rain-
fall intensity, spatial coverage, and duration. A de-
tailed account of the events’ properties is given by
Ayzel et al. (2019a).

We use three metrics for model verification:
mean absolute error (MAE), critical success index
(CSI), and fractions skill score (FSS). Each metric
represents a different category of scores. MAE (Eq.
3.4) corresponds to the continuous category and
maps the differences between nowcast and ob-
served rainfall intensities. CSI (Eq. 3.5) is a cat-
egorical score which is based on a standard con-
tingency table for calculating matches between
Boolean variables which indicate the exceedance
of specific rainfall intensity thresholds. FSS (Eq.
3.6) represents neighborhood verification scores
and is based on comparing nowcast and observed
fractional coverages of rainfall intensities exceed-
ing specific thresholds in spatial neighborhoods
(windows) of certain sizes.

MAE =

∑n
i=1 |nowi − obsi|

n
(3.4)

CSI =
hits

hits + false alarms + misses
(3.5)

FSS = 1 −
∑n

i=1(Pn − Po)2∑n
i=1 P 2

n +
∑n

i=1 P 2
o

(3.6)

where quantities nowi and obsi are nowcast
and observed rainfall rate in the i-th pixel of the
corresponding radar image and n is the number of
pixels. Hits, false alarms, and misses are defined
by the contingency table and the corresponding
threshold value. Quantities Pn and Po represent
the nowcast and observed fractions, respectively,
of rainfall intensities exceeding a specific thresh-
old for a defined neighborhood size. MAE is posi-
tive and unbounded with a perfect score of 0; both
CSI and FSS can vary from 0 to 1 with a perfect
score of 1. We have applied threshold rain rates
of 0.125, 1, 5, 10, and 15mmh−1 for calculating
the CSI and the FSS. For calculating the FSS, we
use neighborhood (window) sizes of 1, 5, 10, and
20 km.

The verification metrics we use in this study
quantify the models’ performance from different
perspectives. The MAE captures errors in rainfall
rate prediction (the fewer the better), and CSI (the
higher the better) captures model accuracy – the
fraction of the forecast event that was correctly
predicted – but does not distinguish between the
sources of errors. The FSS determines how the
nowcast skill depends on both the threshold of
rainfall exceedance and the spatial scale (Mitter-
maier and Roberts, 2010).

In addition to standard verification metrics de-
scribed above, we calculate the power spectral
density (PSD) of nowcasts and corresponding ob-
servations using Welch’s method (Welch, 1967)
to investigate the effects of smoothing demon-
strated by different models.

3.4 Results and discussion

For each event, RainNet was used to compute
nowcasts at lead times from 5 to 60min (in 5min
steps). To predict the precipitation at time t +
5min (t being forecast time), we used the four
latest radar images (at time t − 15, t − 10, t −
5min, and t) as input. And since RainNet was
only trained to predict precipitation at 5min lead
times, predictions beyond t + 5 were made recur-
sively: in order to predict precipitation at t + 10,
we considered the prediction at t + 5 as the lat-
est observation. That recursive procedure was
repeated up to a maximum lead time of 60min.
Rainymotion uses the two latest radar compos-
ite grids (t − 5, t) in order to retrieve a velocity
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field and then to advect the latest radar-based pre-
cipitation observation at forecast time t to t + 5,
t + 10, .. ., and t + 60.

Figure 3.3 shows the routine verification met-
rics MAE and CSI for RainNet, Rainymotion, and
Persistence as a function of lead time. The prelim-
inary analysis had shown the same general pattern
of model efficiency for each of the 11 events (Sect.
S1 in the Supplement), which is why we only show
the average metrics over all events. The results
basically fall into two groups.

The first group includes the MAE and the CSI
metrics up to a threshold of 5mmh−1. For these,
RainNet clearly outperforms the benchmarks at
any lead time (differences between models were
tested to be significant with the two-tailed t test
at a significance level of 5 %; results not shown).
Persistence is the least skillful, as could be ex-
pected for a trivial baseline. The relative differ-
ences between RainNet and Rainymotion aremore
pronounced for the MAE than for the CSI. For the
MAE, the advance of RainNet over Rainymotion in-
creases with lead time. For the CSI, the superiority
of RainNet over Rainymotion appears to be high-
est for intermediate lead times between 20 and
40min. The performance of all models, in terms
of CSI, decreases with increasing intensity thresh-
olds.

That trend – a decreasing CSI with increas-
ing intensity – continues with the second group
of metrics: the CSI for thresholds of 10 and
15mmh−1. For both metrics and any of the com-
peting methods at any lead time, the CSI does not
exceed a value of 0.31 (obtained by RainNet at
5min lead time and a threshold of 10mmh−1).
That is below a value of 1/e ≈ 0.37 which
had been suggested by Germann and Zawadzki
(2002a) as a ”limit of predictability” (under the
assumption that the optimal value of the metric
is 1 and that it follows an exponential-like de-
cay over lead time). Irrespective of such an – ad-
mittedly arbitrary – predictability threshold, the
loss of skill from an intensity threshold of 5 to
10mmh−1 is remarkable for all competing mod-
els. Visually more apparent, however, is another
property of the second group of metrics, which
is that Rainymotion outperforms RainNet (except
for a threshold of 10mmh−1 at a lead times of 5
and 60min). That becomes most pronounced for

the CSI at 15mmh−1, while RainNet has a sim-
ilar CSI value as Rainymotion at a lead time of
5min, it entirely fails at predicting the exceedance
of 15mmh−1) for longer lead times.

In summary, Fig. 3.3 suggests that RainNet
outperforms Rainymotion (as a representative of
standard tracking and extrapolation techniques
based on optical flow) for low and intermediate
rain rates (up to 5mmh−1). Neither RainNet nor
Rainymotion appears to have much skill at pre-
dicting the exceedance of 10mmh−1, but the loss
of skill for high intensities is particularly remark-
able for RainNet which obviously has difficulties in
predicting pronounced precipitation features with
high intensities.

In order to better understand the fundamen-
tal properties of RainNet predictions in contrast to
Rainymotion, we continue by inspecting a nowcast
at three different lead times (5, 30, and 60min),
for a verification event at an arbitrarily selected
forecast time (29 May 2016, 19:15:00 UTC). The
top row of Fig. 3.4 shows the observed precipita-
tion, and the second and third rows show Rainy-
motion and RainNet predictions. Since it is vi-
sually challenging to track the motion pattern at
the scale of 900 km × 900 km by eye, we illus-
trate the velocity field as obtained from optical
flow, which forms the basis for Rainymotion’s pre-
diction. While it is certainly difficult to infer the
predictive performance of the two models from
this figure, another feature becomes immediately
striking: RainNet introduces a spatial smoothing
which appears to substantially increase with lead
time. In order to quantify that visual impression,
we calculated, for the same example, the power
spectral density (PSD) of the nowcasts and the cor-
responding observations (bottom row in Fig. 3.4),
using Welch’s method (Welch, 1967). In simple
terms, the PSD represents the prominence of pre-
cipitation features at different spatial scales, ex-
pressed as the spectral power at different wave-
lengths after a two-dimensional fast Fourier trans-
form. The power spectrum itself is not of spe-
cific interest here; it is the loss of power at differ-
ent length scales, relative to the observation, that
is relevant in this context. The loss of power of
Rainymotion nowcasts appears to be constrained
to spatial scales below 4 km, and does not seem to
depend on lead time (see also Ayzel et al., 2019a).
For RainNet, however, a substantial loss of power
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Figure 3.3: Mean absolute error (MAE) and critical success index (CSI) for five different intensity thresholds
(0.125, 1, 5, 10, and 15mmh−1). The metrics are shown as a function of lead time. All values represent
the average of the corresponding metric over all 11 verification events.

at length scales below 16 km becomes apparent at
a lead time of 5min. For longer lead times of 30
and 60min, that loss of power grows and propa-
gates to scales of up to 32 km. That loss of power
over a range of scales corresponds to our visual
impression of spatial smoothing.

In order to investigate whether that loss of
spectral power at smaller scales is a general prop-
erty of RainNet predictions, we computed the PSD
for each forecast time in each verification event in
order to obtain an average PSD for observations
and nowcasts at lead times of 5, 30, and 60min.
The corresponding results are shown in Fig. 3.5.

They confirm that the behavior observed in the
bottom row of Fig. 3.4 is, in fact, representative
of the entirety of verification events. Precipitation
fields predicted by RainNet are much smoother
than both the observed fields and the Rainymo-
tion nowcasts. At a lead time of 5min, RainNet
starts to lose power at a scale of 16 km. That loss
accumulates over lead time and becomes effective
up to a scale of 32 km at a lead time of 60min.
These results confirm qualitative findings of Shi
et al. (2015, 2018), who described their nowcasts
as ”smooth” or ”fuzzy”.

RainNet obviously learned, as the optimal way
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Figure 3.4: Precipitation observations as well as Rainymotion and RainNet nowcasts at t = 29 May 2016,
19:15 UTC. Top row: observed precipitation intensity at time t, t + 5, t + 30, and t + 60min. Ssecond row:
corresponding Rainymotion predictions, together with the underlying velocity field obtained from optical
flow. Bottom row: power spectral density plots for observations and nowcasts at lead times 5, 30 and
60min.

to minimize the loss function, to introduce a cer-
tain level of smoothing for the prediction at time
t + 5min. It might even have learned to sys-
tematically ”attenuate” high intensity features as
a strategy to minimize the loss function, which
would be consistent with the results of the CSI at
a threshold of 15mmh−1, as shown in Fig. 3.3.
For the sake of simplicity, though, we will refer
to the overall effect as ”smoothing” in the rest
of the paper. According to the loss of spectral
power, the smoothing is still small at a length
scale of 16 km, but becomes increasingly effective
at smaller scales from 2 to 8 km. It is important to
note that the loss of power below length scales of

16 km at a lead time of 5min is an essential prop-
erty of RainNet. It reflects the learning outcome,
and illustrates how RainNet factors in predictive
uncertainty at 5min lead times by smoothing over
small spatial scales. Conversely, the increasing
loss of power and its propagation to larger scales
up to 32 km are not an inherent property of Rain-
Net but a consequence of its recursive application
in our study context: as the predictions at short
lead times serve as model inputs for predictions
at longer lead times, the results become increas-
ingly smooth. So while the smoothing introduced
at 5min lead times can be interpreted as a direct
result of the learning procedure, the cumulative
smoothing at longer lead times has to rather be
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Figure 3.5: PSD averaged over all verification events and nowcasts, for lead times of 5, 30, and 60min.

considered an artifact similar to the effect of ”nu-
merical diffusion” in numerically solving the ad-
vection equation.

Given this understanding of RainNet’s proper-
ties, we used the fractions skill score (FSS) to pro-
vide further insight into the dependency of pre-
dictive skill on the spatial scale. To that end,
the FSS was obtained by comparing the predicted
and observed fractional coverage of pixels (inside
a spatial window / neighborhood) that exceed a
certain intensity threshold (see Eq. 3.6 in Sect.
3.3.3). Figure 3.6 shows the FSS for Rainymotion
and RainNet as an average over all verification
events, for spatial window sizes of 1, 5, 10, and
20 km, and for intensity thresholds of 0.125, 1, 5,
10 and 15mmh−1. In addition to the color code,
the value of the FSS is given for each combination
of window size (scale) and intensity. In the case
that one model is superior to the other, the corre-
spondingly higher FSS value is highlighted in bold
black digits.

Based on the above results and discussion of
RainNet’s versus Rainymotion’s predictive prop-
erties, the FSS figures are plausible and pro-
vide a more formalized approach to express dif-
ferent behaviors of RainNet and Rainymotion in
terms of predictive skill. In general, the skill of
both models decreases with decreasing window
sizes, increasing lead times, and increasing in-
tensity thresholds. RainNet tends to outperform
Rainymotion at lower rainfall intensities (up to
5mmh−1) at the native grid resolution (i.e., a win-
dow size of 1 km). With increasing window sizes
and intensity thresholds, Rainymotion becomes
the superior model. At an intensity threshold of
5mmh−1, Rainymotion outperforms RainNet at
window sizes equal to or greater than 5 km. At

intensity thresholds of 10 and 15mmh−1, Rainy-
motion is superior at any lead time and window
size (except a window size of 1 km for a threshold
of 10mmh−1).

The dependency of the FSS (or, rather, the
difference of FSS values between Rainymotion
and RainNet) on spatial scale, intensity thresh-
old, and lead time is a direct result of inherent
model properties. Rainymotion advects precipita-
tion features but preserves their intensity. When
we increase the size of the spatial neighborhood
around a pixel, this neighborhood could, at some
size, include high-intensity precipitation features
that Rainymotion has preserved but slightly mis-
placed. RainNet’s loss function, however, only ac-
counts for the native grid at 1 km resolution, so it
has no notion of what could be a slight or ”accept-
able” displacement error. Instead, RainNet has
learned spatial smoothing as an efficient way to
factor in spatial uncertainty and minimize the loss
function, resulting in a loss of high-intensity fea-
tures. As discussed above, that effect becomes
increasingly prominent for longer lead times be-
cause the effect of smoothing propagates.

3.5 Summary and conclusions

In this study, we have presented RainNet, a
deep convolutional neural network architecture
for radar-based precipitation nowcasting. Its de-
sign was inspired by the U-Net and SegNet fam-
ilies of deep learning models for binary segmen-
tation, and it follows an encoder–decoder archi-
tecture in which the encoder progressively down-
scales the spatial resolution using pooling, fol-
lowed by convolutional layers, and the decoder
progressively upscales the learned patterns to a
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Figure 3.6: Fractions skill score (FSS) for Rainymotion (top panel) and RainNet (bottom panel), for 5, 30, and
60min lead times, for spatial window sizes of 1, 5, 10 and 20 km, and for intensity thresholds of 0.125, 1, 5,
10 and 15mmh−1. In addition to the color code of the FSS, we added the numerical FSS values. The FSS
values of the models which are significantly superior for a specific combination of window size, intensity
threshold, and lead time are typed in bold black digits, and the inferior models are in regular digits.

higher spatial resolution using upsampling, fol-
lowed by convolutional layers.

RainNet was trained to predict precipitation at
a lead time of 5min, using several years of quality-
controlled weather radar composites based on
the DWD weather radar network. Those data
cover Germany with a spatial domain of 900 km
× 900 km and have a resolution of 1 km in space
and 5min in time. Independent verification ex-
periments were carried out on 11 summer pre-
cipitation events from 2016 to 2017. In order
to achieve a lead time of 60min, a recursive ap-
proach was implemented by using RainNet pre-
dictions at 5min lead times as model inputs for
longer lead times. In the verification experiments,
Eulerian persistence served as a trivial benchmark.
As an additional benchmark, we used a model
from the rainymotion library which had previously
been shown to outperform the operational now-
casting model of the German Weather Service for
the same set of verification events.

RainNet significantly outperformed both
benchmark models at all lead times up to 60min
for the routine verification metrics mean absolute
error (MAE) and the critical success index (CSI)

at intensity thresholds of 0.125, 1, and 5mmh−1.
Depending on the verificationmetric, these results
would correspond to an extension of the effective
lead time in the order of 10–20min by RainNet as
compared to Rainymotion. However, Rainymotion
turned out to be clearly superior in predicting the
exceedance of higher-intensity thresholds (here
10 and 15mmh−1), as shown by the correspond-
ing CSI analysis.

RainNet’s limited ability to predict high rain-
fall intensities could be attributed to a remark-
able level of spatial smoothing in its predictions.
That smoothing becomes increasingly apparent at
longer lead times. Yet, it is already prominent at
a lead time of 5min. That was confirmed by an
analysis of power spectral density which showed,
at time t+ 5min, a loss of spectral power at length
scales of 16 km and below. Obviously, RainNet
has learned an optimal level of smoothing to pro-
duce a nowcast at 5min lead times. In that sense,
the loss of spectral power at small scales is infor-
mative as it reflects the limits of predictability as a
function of spatial scale. Beyond the lead time of
5min, however, the increasing level of smoothing
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is a mere artifact – an analogue to numerical dif-
fusion – that is not a property of RainNet itself but
of its recursive application: as we repeatedly use
smoothed nowcasts as model inputs, we cumu-
late the effect of smoothing over time. That cer-
tainly is an undesirable property, and it becomes
particularly unfavorable for the prediction of high-
intensity precipitation features. As was shown on
the basis of the fractions skill score (FSS), Rainy-
motion outperforms RainNet already at an inten-
sity of 5mmh−1) once we start to evaluate the
performance in a spatial neighborhood around the
native grid pixel of 1 km × 1 km size. This is
because Rainymotion preserves distinct precipita-
tion features but tends to misplace them. RainNet,
however, tends to lose such features over longer
lead times due to cumulative smoothing effects –
more so if it is applied recursively.

From an early warning perspective, that prop-
erty of RainNet clearly limits its usefulness. There
are, however, options to address that issue in fu-
ture research.

• The loss function used in the training could
be adjusted in order to penalize the loss
of power at small spatial scales. The loss
function explicitly represents our require-
ments to the model. Verifying the model
by other performance metrics will typically
reveal whether these metrics are rather in
agreement or in conflict with these require-
ments. In our case, the logcosh loss func-
tion appears to favor a low MAE, but at
the cost of losing distinct precipitation fea-
tures. In general, future users need to
be aware that, apart from the network de-
sign, the optimization itself constitutes the
main difference to ”heuristic” tracking-and-
extrapolation techniques (such as Rainymo-
tion) which do not use any systematic pa-
rameter optimization. The training proce-
dure will stubbornly attempt to minimize
the loss function, irrespective of what re-
searchers consider to be ”physically plausi-
ble”. For many researchers in the field of
nowcasting, that notion might be in stark
contrast to experiences with ”conventional”
nowcasting techniques which tend to effort-
lessly produce at least plausible patterns.

• RainNet should be directly trained to predict
precipitation at lead times beyond 5min.

However, preliminary training experiments
with that learning task had difficulties to
converge. We thus recommend to still use
recursive predictions as model inputs for
longer lead times during training in order to
improve convergence. For example, to pre-
dict precipitation at time t + 10min, Rain-
Net could be trained using precipitation at
time t − 15, t − 10, .. ., tmin as input, but us-
ing the recursive prediction at time t + 5 as
an additional input layer. While the direct
prediction of precipitation at longer lead
times should reduce excessive smoothing as
a result of numerical diffusion, we would
still expect the level of smoothing to in-
crease with lead time as a result of the pre-
dictive uncertainty at small scales.

• As an alternative to predicting continuous
values of precipitation intensity, RainNet
could be trained to predict the exceedance
of specific intensity thresholds instead. That
would correspond to a binary segmentation
task. It is possible that the objective of
learning the segmentation for low intensi-
ties might be in conflict with learning it
for high intensities. That is why the train-
ing could be carried out both separately
and jointly for disparate thresholds in or-
der to investigate whether there are inher-
ent trade-offs. From an early warning per-
spective, it makes sense to train RainNet for
binary segmentation based on user-defined
thresholds that are governed by the context
of risk management. The additional advan-
tage of training RainNet to predict threshold
exceedance is that we could use its output
directly as a measure of uncertainty (of that
exceedance).

We consider any of those options worth pursu-
ing in order to increase the usefulness of RainNet
in an early warning context – i.e., to better rep-
resent precipitation intensities that exceed haz-
ardous thresholds. We would expect the overall
architecture of RainNet to be a helpful starting
point.

Yet the key issue of precipitation prediction
– the anticipation of convective initialization as
well as the growth and dissipation of precipita-
tion in the imminent future – still appears to be
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unresolved. It is an inherent limitation of now-
casting models purely based on optical flow: they
can extrapolate motion fairly well, but they can-
not predict intensity dynamics. Deep learning ar-
chitectures, however, might be able to learn recur-
rent patterns of growth and dissipation, although
it will be challenging to verify if they actually did.
In the context of this study, though, we have to
assume that RainNet has rather learned the rep-
resentation of motion patterns instead of rainfall
intensity dynamics: for a lead time of 5min, the ef-
fects of motion can generally be expected to dom-
inate over the effects of intensity dynamics, which
will propagate to the learning results. The fact
that we actually could recursively use RainNet’s
predictions at 5min lead times in order to predict
precipitation at 1 h lead times also implies that
RainNet, in essence, learned to represent motion
patterns and optimal smoothing. In that case, the
trained model might even be applicable on data
in another region which could be tested in future
verification experiments.

Another limitation in successfully learning
patterns of intensity growth and dissipation might
be the input data itself. While we do not ex-
clude the possibility that such patterns could be
learned from just two-dimensional radar compos-
ites, other input variables might add essential
information on imminent atmospheric dynamics
– the predisposition of the atmosphere to pro-
duce or to dissolve precipitation. Such additional
data might include three-dimensional radar vol-
ume data, dual-polarization radar moments, or
the output fields of numerical weather prediction
(NWP) models. Formally, the inclusion of NWP
fields in a learning framework could be consid-
ered as a different way of assimilation, combining
– in a data-driven way – the information content
of physical models and observations.

Our study provides, after Shi et al. (2015, 2017,
2018), another proof of concept that convolutional
neural networks provide a firm basis to compete
with conventional nowcasting models based on
optical flow (most recently, Google Research has
also reported similar attempts based on a U-Net
architecture; see Agrawal et al. (2019)). Yet this
study should rather be considered as a starting
point to further improve the predictive skill of
convolutional neural networks and to better un-
derstand the properties of their predictions – in

a statistical sense but also in how processes of
motion and intensity dynamics are reflected. To
that end, computational complexity and the cost
of the training process still have to be considered
as inhibitive, despite the tremendous progress
achieved in the past years. RainNet’s training
would require almost a year on a standard desk-
top CPU in contrast to 3 d on a modern desktop
GPU (although the latter is a challenge to imple-
ment for non-experts). Yet it is possible to run
deep learningmodels with already optimized (pre-
trained) weights on a desktop computer. Thus, it
is important to make available not only the code
of the network architecture but also the corre-
sponding weights, applicable using open-source
software tools and libraries. We provide all this –
code, pretrained weights, as well as training and
verification data – as an input for future studies
on open repositories (Ayzel, 2020a,b,c).

Code and data availability

The RainNet model is free and open source. It is
distributed under the MIT software license which
allows unrestricted use. The source code is pro-
vided through a GitHub repository https://github.
com/hydrogo/rainnet (last access: 30 January
2020; Ayzel, 2020d); a snapshot of Rainnet v1.0
is also available at http://doi.org/10.5281/zenodo.
3631038 (Ayzel, 2020a); the pretrained RainNet
model and its weights are available at http://
doi.org/10.5281/zenodo.3630429 (Ayzel, 2020b).
DWD provided the sample data of the RY product;
it is available at http://doi.org/10.5281/zenodo.
3629951 (Ayzel, 2020c).

Supplement

The supplement related to this article is
available online at: https://doi.org/10.5194/
gmd-13-2631-2020-supplement.
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Chapter 4

Quantifying the location error of precipitation nowcasts

This chapter is published as:

de Souza, A. C. T., Ayzel, G., and Heistermann, M.: Quantifying the location error of precipitation nowcasts,
Adv. in Meteorology, 2020. (accepted, in print)

Abstract

In precipitation nowcasting, it is common to track the motion of precipitation in a sequence of weather
radar images, and to extrapolate this motion into the future. The total error of such a prediction consists
of an error in the predicted location of a precipitation feature and an error in the change of precipitation
intensity over lead time. So far, verification measures did not allow to isolate the extent of location errors,
making it difficult to specifically improve nowcast models with regard to location prediction. In this paper,
we introduce a framework to directly quantify the location error. To that end, we detect and track scale-
invariant precipitation features (corners) in radar images. We then consider these observed tracks as the
true reference in order to evaluate the performance (or, inversely, the error) of any model that aims to
predict the future location of a precipitation feature. Hence, the location error of a forecast at any lead
time ∆t ahead of the forecast time t corresponds to the Euclidean distance between the observed and the
predicted feature location at t+ ∆t. Based on this framework, we carried out a benchmarking case study
using one year worth of weather radar composites of the German Weather Service. We evaluated the
performance of four extrapolation models, two of which are based on the linear extrapolation of corner
motion from t − 1 to t (LK-Lin1) and t − 1 to t (LK-Lin4); another two are based on the Dense Inverse
Search (DIS) method: motion vectors obtained from DIS are used to predict feature locations by linear
(DIS-Lin1) and Semi-Lagrangian extrapolation (DIS-Rot1). Of those four models, DIS-Lin1 and LK-Lin4
turned out to be the most skillful with regard to the prediction of feature location while we also found
that the model skill dramatically depends on the sinuosity of the observed tracks. The dataset of 376,125
detected feature tracks in 2016 is openly available to foster the improvement of location prediction in
extrapolation-based nowcasting models.

4.1 Introduction

Forecasting precipitation for the imminent future
(i.e., minutes to hours) is typically referred to as
precipitation nowcasting. A common nowcasting
technique is to track the motion of precipitation
from a sequence of weather radar images and to
extrapolate that motion into the future (Reyniers,
2008). For that purpose, we often assume that the
intensity of precipitation features in the most re-
cent image remains constant over the lead time
period – an assumption commonly referred to as

”Lagrangian persistence” (Ayzel et al., 2019a). In
Lagrangian field tracking, a velocity vector is ob-
tained for each pixel of a precipitation field, and
that vector field is used to extrapolate the mo-
tion of the entire precipitation field – as opposed
to cell tracking in which contiguous high-intensity
objects are tracked (see Pierce et al. 2012 for a
discussion of both methods).

The present study focuses on nowcasts that
are based on field tracking. The performance (or
skill) of field tracking techniques is mostly verified
by comparing the forecast precipitation fieldFt+∆t
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for time t + ∆t against the observed precipitation
field Ot+∆t at time t + ∆t, where t is the forecast
time and ∆t is the lead time. A large variety of
verification measures have been suggested in the
literature (see, e.g., Baldwin and Kain, 2006; Ebert,
2008). Most of them, however, struggle with dis-
entangling different sources of error: when we
compare Ft+∆t to Ot+∆t, how can we know the
cause of the disagreement? Was it our prediction
of the future location of a precipitation feature,
or was it how precipitation intensity changed over
time? Some verification scores, such as the Frac-
tions Skill Score (Ayzel et al., 2020), apply a metric
over spatial windows of increasing size in order to
examine how the forecast performance depends
on the spatial scale. Yet we still lack the ability to
explicitly isolate and quantify the location error.
This makes it difficult to benchmark and optimize
the corresponding components of nowcast mod-
els.

In this study, we introduce an approach to di-
rectly quantify the location error of precipitation
nowcasts that is based on the extrapolation of
field motion. With location error, we refer to the
spatial offset (or Euclidean distance) between the
true and the forecast location of a precipitation
feature (Fig. 4.1). In this context, the term ”fea-
ture” does not refer to a contiguous object, but to
a distinct point in the precipitation field, and we
make use of the ability of the OpenCV library to
detect and track the true motion of such distinct
points. In a verification case study, we will demon-
strate the ability to quantify the location error by
benchmarking a set of routine extrapolation tech-
niques for one year of quality-checked radar data
in Germany.

Figure 4.1: Illustration of the location er-
ror for a prediction at forecast time t that is
based on the linear extrapolation of feature
motion from t − 1 to t.

Section 4.2 highlights the approach to quan-
tify the location error, describes a set of track-
ing and extrapolation techniques based on optical
flow, as well as the radar data for our case study.
Section 4.3 presents the results of our case study,
and Sect. 4.4 concludes.

4.2 Methods and data

4.2.1 Feature detection and tracking

We suggest quantifying the location error of a
forecast by comparing the observed location (or
displacement) of a precipitation feature against
its predicted location. In visual computing, a fea-
ture is defined as a point that stands out in a lo-
cal neighborhood and which is invariant in terms
of scale, rotation, and brightness (Schmid et al.,
2000). For a radar image, a feature (or corner) rep-
resents a point with a sharp gradient of rainfall
intensity (Ayzel et al., 2019a).

In this study, features are detected using the
approach of Shi and Tomasi (1994). If a feature
is detected at one time step, we attempt to track
that feature in any subsequent time step until it is
no longer trackable. The feature tracking follows
the approach of Lucas and Kanade (1981), as im-
plemented by Bouguet (2000). The tracking error
(or, inversely put, the robustness of tracking a fea-
ture from one radar image to the next) is quanti-
fied in terms of the minimum eigenvalue of a 2×2
normal matrix of optical flow equations (this ma-
trix is called a spatial gradient matrix in Bouguet
2000), divided by the number of pixels in a neigh-
borhood window. In the tracking step, that mini-
mum eigenvalue has to exceed a threshold in or-
der for a feature to be considered as successfully
tracked. Table 4.1 provides an overview of param-
eters used for both feature detection and tracking.
These values are based on the ones presented by
Ayzel et al. (2019a). The underlying equations are
well documented in OpenCV library (2020a).

In order to increase the robustness of track
detection, the tracking was also performed back-
wards at each time step (Fig. 4.2): let pt signify a
featurewhichwas identified at frame t and tracked
to the next frame at time t+ 1 at the position pt+1.
The same tracking process was then applied back-
wards from the point pt+1 to time t, yielding the



4.2. Methods and data 41

Table 4.1: OpenCV function parameters used for feature detection and tracking

Parameter name Value Meaning

maxCorners 200 Maximum number of features
qualityLevel 0.2 Minimum accepted quality of features
minDistance 7 Minimal Euclidean distance between features
blockSize 21 Size of pixel neighborhood for covariance calculation
winSize (20,20) Size of the search window
maxLevel 2 Maximal number of pyramid levels

point pback
t . Only the trajectories where the dis-

tance dback between the source point pt and the
backwards tracked point pback

t was less than 1 km
(the grid resolution) were considered in our anal-
ysis.

Figure 4.2: Illustration of the backward
tracking test performed at each time step
for all features.

To collect all feature tracks T in any given time
period with a length of n time steps, we detect
”good-features-to-track” (Shi and Tomasi, 1994) at
each time step k ∈ [1, ..., n] , and track these
features over as many subsequent time steps as
possible. Accordingly, each track Ti,j,k could be
identified by a unique tuple (i, j, k) that carries
its starting point (by the grid’s row and column in-
dices, i and j) and its starting time index k. In
this study, we use an analysis period of one year
(2016, a leap year) and a time step length of 5min,
so that k ∈ [1, ..., 105408] .

In summary, the tracking process consists of
six steps:

• Identify the features pnew
k using goodFea-

turesToTrack (OpenCV library, 2020a) at any
time k;

• If there are already features being tracked,
pold

k , from k − 1 to k, we consider only

those features pnew
k for which the distance

to any feature pold
k is greater than 7 km (with

this threshold, we enforce consistency with
theminDistance parameter of the Shi-Tomasi
corner detection, see Tab. 4.1). The track-
able features pk are hence the union of pold

k

and pnew
k ;

• Track pk from k to k + 1 using calcOpti-
calFlowPyrLK (OpenCV library, 2020a);

• Backwards track (from k + 1 to k) those fea-
tures pk+1 that were obtained in step 3;

• Calculate the distance, dback, from the fea-
tures pk to the backward-tracked locations
resulting from step 4;

• Keep only those features pk+1 where the dis-
tance dback is less than 1 km. These features
are now pold

k+1.

For statistical analysis, each track Ti,j,k is char-
acterized by its duration τ (the number of time
steps over which the track persists), the overall
displacement distance d of the feature along its
track, the average feature velocity v = d/τ , and
the straightness of the feature’s displacement in
terms of the sinuosity index SI (which is calcu-
lated by dividing d by the Euclidean distance be-
tween the feature origin and end locations). The
concept of sinuosity is widely used to characterize
river curvatures as introduced by Mueller (1968)
and was also applied to atmospheric science by
Terry and Feng (2010) to quantify the sinuosity of
typhoon tracks. In our analysis, we will also use
the sinuosity index in order to understand the er-
ror of predicted feature locations.
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4.2.2 The error of predicted locations

Let p be the true and P be the predicted location
of a point feature in a Cartesian coordinate system.
At forecast time t, pt will be equal to Pt. Consider
Pt+∆t = f(pt, ∆t, Ψt) any function or algorithm
that predicts the future location Pt+∆t of point pt

from any set Ψt of predictors that is available at
time t or before. In the context of our study, that
set of predictors could be, for example, the previ-
ous locations pt−1, pt−2, .. . of pt. We then define
the error of our prediction – henceforth referred
to as location error ε – as the Euclidean distance
between Pt+∆t and pt+∆t.

4.2.3 Extrapolation techniques

In a verification experiment, we can use our col-
lection of tracks T in order to retrieve points pt

for which the location Pt+∆t at t + ∆t should be
predicted, points that could be used as predic-
tors (Ψt), as well as the true location pt+∆t of
the point at t + ∆t. Assuming that an extrapola-
tion of motion uses feature locations from m time
steps before t, the minimum feature track length
to produce a forecast would be m + 1. In order
to retrieve the location error of such a prediction
at time t + ∆t, we would need a minimum track
length of m + ∆t + 1.

Based on the above terminology, we present in
the following the extrapolation models analyzed
in the present study. These models are based on
the models that were also evaluated in a recent
benchmarking study on optical-flow-based pre-
cipitation nowcasting (Ayzel et al., 2019a). Table
4.2 gives an overview of model acronyms and their
main properties.

Eulerian persistence

As a trivial benchmark, we use the assumption of
Eulerian persistence, meaning that the precipita-
tion feature will simply remain at its position at
forecast time, i.e., Pt+∆t = pt.

Linear extrapolation

Linear extrapolation of feature motion assumes
that a feature moves, over any lead time, at con-
stant velocity and in the same direction. The dis-
placement vector representing this motion can be

obtained in different ways. These ways constitute
three different models exemplified in the present
study: LK-Lin1, LK-Lin4, and DIS-Lin1. In the case
of LK-Lin1 and LK-Lin4, the displacement vector
is obtained from ”looking back” m time steps from
forecast time t to previous feature locations at t −
m (tracked by using the Lucas–Kanade method,
hence the LK label). For LK-Lin1, m equals 1, so
the vector v(t, pt) to displace feature pt is the con-
nection from pt−1 to pt; for LK-Lin4, m equals 4,
so that the displacement vector results from the
connection between pt−4 to pt, where the length
of the vector is divided by 4 in order to obtain the
displacement velocity. Hence, a forecast at lead
time ∆t extends the vector v(t, pt) correspond-
ingly. Please see Fig. 4.3 for an illustration of both
the LK-Lin1 and the LK-Lin4 method. Of course,
any other look-back time m could be used to ob-
tain a displacement vector. In this study, we ar-
bitrarily used m ∈ {1, 4} in order to examine the
effect of m on the forecast performance.

For the DIS-Lin1 model, a complete field of
motion vectors VDIS is obtained from the Dense
Inverse Search (DIS) method (OpenCV library,
2020b; the underlying concept and equations of
the DIS method have been elaborated by Kroeger
et al. 2016), and then used for the extrapolation.
A point pt is linearly extrapolated from t to t + n
by n times the velocity vector vDIS(t, pt), where
vDIS(t, pt) is the vector closest to pt in theVDIS(t)
field (Fig. 4.4). VDIS(t) is calculated by OpenCV’s
cv2.DISOpticalFlow_create function, which returns
velocity vectors for each grid pixel based on the
radar frames from t − 1 to t. In a recent bench-
marking study about optical-flow-based precipita-
tion nowcasting, Ayzel et al. (2019a) showed that
the DIS-based model (referred to as the ”Dense”
model in that paper) is an effective method for
radar-based precipitation nowcasting.
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Table 4.2: Overview of extrapolation models

Name Main approach
# time steps
looking back

Persist Eulerian persistence 0
LK-Lin1 Linear extrapolation based on Lukas Kanade 1
LK-Lin4 Linear extrapolation based on Lukas Kanade 4
DIS-Lin1 Linear extrapolation from DIS motion field 1

DIS-Rot1
Semi-Lagrangian extrapolation based on motion
field obtained by Dense optical flow

1

Figure 4.3: Illustration of the linear extrapolation schemes for the LK group: on the left LK-Lin1 and on
the right LK-Lin4. The location error is displayed by ε(tn).

Figure 4.4: In the DIS-Lin1 model, the vec-
tor vDIS(t, pt) (light red arrow) obtained
from VDIS(t) is transferred to the pt loca-
tion and linearly extended to t + n.

Semi-Lagrangian approach based on dense optical
flow

In a semi-Lagrangian approach, the motion field
is typically assumed as constant over the fore-
cast period and the feature trajectory is deter-
mined by following the streamlines (Germann and

Zawadzki, 2002b). Following this concept, the
DIS-Rot1 model (corresponding to ”Dense rota-
tion” in Ayzel et al. 2019a) uses the two most re-
cent radar images, t − 1 and t, to estimate VDIS(t)
by cv2.DISOpticalFlow_create function. Similar
to the DIS-Lin1 model, the displacement vector
vDIS(t, pt) that is closest to pt is used to extrapo-
late the motion of pt from its position at t to t+ 1,
providing the location of Pt+1. This process is re-
peated at all lead time steps until the maximum
lead time is achieved. Hence, at each lead time
step n, we retrieve the vector vDIS(t, Pt+n) that is
closest to Pt+n in order to extrapolate the feature
location, Pt+n+1. Accordingly, the velocity vector
is updated at each lead time step from VDIS(t),
allowing for rotational or curved motion patterns
(Fig. 4.5).
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Figure 4.5: Schematic of the DIS-Rot1
model (orange path), where the velocity is
updated every time step by transferring the
velocity vector vDIS(t, p) (light orange ar-
row) closest to pt (black circles, for t = 0) or
Pt+1 (orange circles, for t > 0) in VDIS(t),
to the Pt+∆t location to advect.

4.2.4 Weather radar data and experimental
setup

Our benchmarking case study is based on weather
radar data from the German Weather Service,
namely, the RY product generated as part of the
RADKLIM radar reanalysis of the German Weather
Service, DWD (Winterrath et al., 2017). The RY
product represents a quality-controlled national
precipitation intensity composite from 18 C-Band
radars covering Germany at 5min intervals and a
spatial resolution of 1 km at an extent of 1100 km
× 900 km. The basis of the composite product
is the so-called ”precipitation scans” from each
of the 18 radar locations. The precipitation scan
is designed to follow the horizon as closely as
possible at an azimuth resolution of 1◦ and a ra-
dial resolution of 1 km, adjusting the elevation
angle for each azimuth depending on the pres-
ence of mountains that would interfere with the
beam propagation. Quality control includes a
wide range of correction methods for e.g. clut-
ter or partial beam blockage (see Winterrath et al.
2017 for details).

The year 2016, selected for this experiment,
was characterized by an annual precipitation close
to the climatological mean for most regions in
Germany, as can be seen in the German Climate
Atlas (DWD, 2020). However, the precipitation
mean during autumn was below the normal aver-
age, and during the winter months slightly above
the climatological mean.

As 2016 was a leap year, this experiment was
carried out on 105408 radar composite images.

Since none of the methods under evaluation re-
quires any kind of training, there was no need to
split the data into sets for calibration and valida-
tion. Instead, we used all tracks for verification.
For each track, we always use, as forecast time t,
a time of 20min after the feature was detected for
the first time. That is because our model LK-Lin4
needs to look back four time steps (i.e., 20min)
in order to make a forecast, and we need to make
sure, for a fair comparison, to compare all models
for the same forecast times.

4.2.5 Computational details

The analysis was carried out in a Python 3.6 en-
vironment using the following main open source
libraries: NumPy (https://numpy.org, last access:
17 November 2020), NumExpr (https://github.
com/pydata/numexpr, last access: 17 November
2020), and SciPy (https://www.scipy.org, last ac-
cess: 17 November 2020) for general compu-
tations; OpenCV (https://opencv.org, last access:
17 November 2020) for feature tracking; as well
as Pandas (https://pandas.pydata.org, last access:
17 November 2020), and h5py (https://www.h5py.
org, last access: 17 November 2020).

4.3 Results and discussion

4.3.1 Properties of collected tracks

The identification and tracking process detected
376,125 features above the rainfall rate threshold
of 0.2mmh−1 and lasting over 20min, which re-
sulted in 337,776 eligible tracks after applying the
extrapolation step. A track was considered as ”el-
igible” in case all models had a predicted location
at all lead times, from t to t+n. The loss of 10.2 %
that is implied by the above numbers was caused
by the DIS group of models which did not gener-
ate a valid velocity vector vDIS(t, pt) near every pt

point, in the VDIS(t) field, within a 3.5 km thresh-
old.

Figure 4.6 gives an overview of the proper-
ties of the valid tracks. The figure also shows the
seasonal dependency of these track properties by
summarizing their distribution on a per month ba-
sis. We would like to emphasize that this analysis
must not be interpreted as a ”climatology” of track
properties as it only contains data from a single

https://numpy.org
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
https://www.scipy.org
https://opencv.org
https://pandas.pydata.org
https://www.h5py.org
https://www.h5py.org
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year. Still, we consider it as illustrative to inves-
tigate which properties tend to exhibit a seasonal
pattern, and also to discuss whether the observed
properties can be considered as representative for
the governing rainfall processes in Germany.

In an average month of 2016, we identified
and tracked 28,146 features (Fig. 4.6a). The
largest number of tracks is found in the months
from April to August (all above the average). Yet
there is no continuous seasonal pattern in the
number of detected tracks because e.g., January
and October also show rather large counts.

No pattern at all can be found for the track
length (Fig. 4.6b). With an average track length
of 128 km, monthly maximum mean and median
track lengths occur in January, April and Septem-
ber. A partly similar pattern can be found for the
track duration which amounts to 207min on aver-
age (Fig. 4.6c). This is plausible as we would, in
general, expect the length of a track to increase
with its duration. Yet there are alsomonths –most
notably the summer months fromMay to August –
where this expectation is not met. And, of course,
the length of a track not only depends on its dura-
tion, but also on a feature’s velocity. The average
feature velocity in 2016 amounted to a value of
42 kmh−1; and, in fact, velocity not only shows a
clear seasonal pattern (with minimum velocities
in the summer months, see Fig. 4.6d), but the sea-
sonal pattern also helps us to understand where
the patterns of track length and duration appear
to be ”inconsistent”. For example, the track veloc-
ity is at a minimum in May and June, which de-
creases the length of track despite the rather high
duration values for these two months.

The clearest seasonal pattern can be observed
for rainfall intensity (Fig. 4.6e). That pattern is
very much in line with our expectation as rainfall
in the summer months is governed by convective
events which tend to be more intense than strati-
form event types. However, if we assumed that a
higher rainfall intensity along a track is caused by
the convective nature of the underlying event, the
track duration in the corresponding months (e.g.,
May and June) is at least surprising: we would ex-
pect a convective event not only to be more in-
tense, but also to be rather short (in comparison
to wide-spread stratiform rainfall). The apparent
inconsistency between the patterns of rainfall in-
tensity and track duration points us to one of the

key issues with the presented track inventory: we
must not misinterpret a ”track” as an ”event” in
a hydro-meteorological sense. The corner detec-
tion algorithm (see Sect. 4.2.1) searches for pro-
nounced features in the sense of strong local gra-
dients and tracks a feature for as long as it stands
out. While we define a rainfall event as some co-
herent process in space and time, the tracking al-
gorithm could ”lose” a feature right in the course
of an ongoing event, and maybe, at the same time,
find another feature to track somewhere else in
the field. Obviously, the tracking algorithm was
able to track features over a longer duration in
May, June and also September of 2016. However,
as of now, we do not know which properties of
the corresponding rainfall events caused that ef-
fect. We should just emphasize that the duration
of a track does not necessarily correspond to the
duration of an event. In the same way, we can-
not expect the tracking algorithm to find features
at ”representative” locations of a convective cell.
It will detect such features anywhere in a rainfall
field where local gradients meet the tracking cri-
teria. That could be right in the middle of heavy
rainfall, but also at the edges. Hence, the reported
precipitation intensities along the tracks will not
be representative of the mean precipitation inten-
sities of the corresponding precipitation fields.

Altogether, we have to emphasize at this point,
that the seasonal track statistics are indeed plau-
sible. But it must be clear that track statistics are
not necessarily representative for ”event” statis-
tics. That notion might be irritating for those who
have been defining and tracking features in terms
of coherent rainfall objects over their lifetime from
initiation to dissipation. A new feature track – as
we understand it in our analysis – could be found
right in the middle of an ongoing event, and it can
be lost long before the actual rainfall ”object” dis-
solves. However, that does not at all lessen the
value of these tracks for the purpose of our anal-
ysis, which is to quantify the forecast location er-
ror based on well-defined and scale-invariant fea-
tures.

Having said that, one final track property
shown in Fig. 4.6f has not been discussed yet:
the sinuosity index. As pointed out above (Sect.
4.2.1), the sinuosity index illustrates how much
the shape of a track deviates from a straight line
(which would correspond to a sinuosity index of 1).
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Figure 4.6: Statistical properties of detected tracks, organized by month: a) number of detected tracks, b)
track length, c) track duration (time elapsed from detection and loss of a feature), d) feature velocity, e)
rainfall intensity of a detected feature, f) sinuosity index of a track.

Figure 4.6f shows rather large sinuosity values for the summer months, May to September, but there
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is no obvious seasonal pattern. More strikingly,
the distribution of the sinuosity index is very heav-
ily tailed. The average value amounts to approx.
1.10 in the year 2016, which is, at the same time,
the 90th percentile of the sinuosity values. That
means, in turn, that the vast majority of tracks are
rather straight, while the remaining tracks show
all kinds of curved, meandering, twisted, or just
erratic behavior.

Hence, before we systematically show the re-
sults of our verification experiment with regard to
the location error (see Sect. 4.3.3), we would like
to illustrate, in the following paragraph, the be-
haviour observed tracks in comparison to the fore-
cast tracks under different sinuosity conditions.

4.3.2 Visual examples of observed and pre-
dicted tracks

Before we systematically evaluate the perfor-
mance of different extrapolation techniques, we
would like to provide some illustrative examples
of observed versus predicted tracks. The selec-
tion of tracks for this illustration is arbitrary, and
does not intend to be representative of the per-
formance of any of the extrapolation methods. In-
stead, we aim to exemplify shapes of observed and
predicted tracks under different sinuosity condi-
tions in order to convey a better understanding of
the various constellations that will finally be con-
densed into one single location error value.

Figure 4.7 shows a ”gallery” of 11 observed
tracks in different subplots (a-k). Each subplot
also contains the tracks that were predicted by the
different extrapolation models. Each dot repre-
sents one feature location in a 30min time step,
except the first one that represents the first predic-
tion step at 5min lead time. LK-Lin1 and LK-Lin4
infer the displacement vector directly from the
feature positions at t and t − 1 or t and t − 4, re-
spectively. As a reminder, DIS-Lin1 and DIS-Rot1
obtain the displacement vector of a feature from
the DIS algorithm, a dense optical flow technique
that produces motion fields based on the radar
images at t and t − 1; DIS-Lin1 extrapolates the
closest vector linearly over the entire lead time
while DIS-Rot1 uses a Semi-Lagrangian scheme in
which the displacement vector is updated as the
feature moves through the velocity field obtained
from the DIS technique. Further details have been
provided in Sect. 4.2.3. As in all forecasts of our

verification experiment, the forecast time t corre-
sponds to the 5th feature of the observed track.
That is because the LK-Lin4 method needs to look
four steps back in time (t − 4) in order to produce a
forecast, while the other methods only look back
one step in time (t − 1).

In order to convey a better idea about the rain-
fall patterns in the examples, the observed rainfall
intensity at forecast time t is plotted as a back-
ground in grey scale. Furthermore, the sinuosity
index and the track duration are printed in the cor-
responding subplots.

Please note that the duration of the observed
tracks in Fig. 4.7 can extend over many hours, very
long tracks were capped at a duration of 300min
for the purpose of plotting. Furthermore, the lead
time of the predictions in the examples was set to
the (capped) track duration minus 20min (which
corresponds to the period t − 4 until forest time
t). As a consequence, the lead times illustrated
in Fig. 4.7 are mostly longer than the maximum
lead time of 120min which is used in our verifica-
tion experiment (see next section). Hence, the first
visual impression of Fig. 4.7 is dominated by the
considerable errors that can occur for such long
lead times. But of course, we should rather be
aware of the behavior for shorter lead times up to
120min. For that reason, the 120min lead time is
highlighted by a larger dot.

Not surprisingly, most of the competing meth-
ods appear to remain rather close to the observed
track for short lead times of up to 30min (except
for example in subplot j in which the DIS-based
methods entirely fail to capture the direction of
feature movement). After that, the lead time over
which the extrapolation models adequately pre-
dict the observed feature track varies, depending
on the persistence of the motion behavior and the
validity of the underlying model assumption. E.g.,
all models perform quite well for very long times
in subplot f. In subplot i, the Semi-Lagrangian ap-
proach (DIS-Rot1) shows a clear advantage, while
in subplots c and k, DIS-Rot1 is outperformed by
all other models. Surely, there are several exam-
ples (b, d, e, g) in which all models entirely fail
to anticipate the motion for lead times beyond
120min.

As this compilation of examples is deliber-
ately arbitrary, it does not provide a basis to infer
the general superiority or inferiority of one or the
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Figure 4.7: Compilation of forecast vs. observed tracks under different sinuosity conditions. Due to the
different spatial extents of the windows, the scale of each subplot is different. Hence, a 10 km scale bar is
provided for orientation. For each example, the observed track duration τ (in hours) and its sinuosity index
SI are shown. The lead time of 120min is highlighted by a larger dot. Some very long tracks have been
capped at a maximum of 300min for illustrative purposes.

other method. All models appear to struggle with
predicting very sinuous tracks (subplots b, d, e,
and g) which is what we would expect. But while
the figure makes it difficult to compare the abso-
lute location error between the examples (due to
the different scales), it still appears that the abso-
lute location error does not necessarily depend on
the sinuosity. For example, the location error of
LK-Lin1 after the maximum lead time (280min) is
higher in subplot i (almost straight, SI=1.01) than
it is in subplot d (SI=1.36). In fact, straight tracks
can imply a large error if the initial motion vector
of a forecast method fails to represent the aver-
age long-term direction (see subplot j for a very
impressive example). Then again, large errors can
occur if a strong sinuosity of the track coincides
with a large overestimation of the absolute veloc-
ity (e.g., subplots b and g). In that case, the linear
extrapolation quickly departs from the track ori-
gin while the actual feature track meanders slowly
and remains in the close vicinity of the origin. For
such a scenario, the trivial persistence model (the

feature just remains at the origin) will be superior
even for short lead times.

Altogether, these different examples give us
a better idea of how location errors can develop
from both inadequate model assumptions (e.g.,
linear approximation vs. curved or sinuous con-
ditions) and a failure to approximate the aver-
age motion from the initial feature locations. It
is impossible, though, to diagnose the superior-
ity of one or the other model from these exam-
ples. Hence, we will now systematically examine
the results of our model verification experiment.
We will not only analyze how the location error
depends on lead time, but we will also investi-
gate how the model performance relative to the
persistence model depends on the sinuosity of the
underlying tracks.
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4.3.3 Systematic quantification of the loca-
tion error

After having exemplified different observed and
predicted tracks in the previous section, we now
present the results of our benchmarking experi-
ment. Figure 4.8 shows the distribution of loca-
tions errors for different models and lead times
up to 120min. For each lead time, the box plots
specify mean, median, interquartile range, as well
as the 5th and 95th percentile of the location er-
ror. For all models, the error quantiles increase
slightly exponentially, but almost linearly with
lead time. The rate at which the location error
grows with lead time is, for all models, dramat-
ically lower than for the persistence model; the
mean error of persistence is higher than the mean
error of any model at any lead time, which means
that all models, on average, have positive skill at
all lead times. For all models, the error distribu-
tion is obviously positively skewed, with the mean
error being much higher than the median, and
thus a heavy tail towards high location errors.

For very short lead times of up to 10min, the
mean error is about 1 km for all competing models
except for persistence which is already up at more
than 7 km after 10min. After 60min, the mean lo-
cation error of all models exceeds a distance of
5 km, and 10 km after 110min. For all models,
at least 25 % of all forecasts exceed an error of
5 km after 50min, and of 10 km after 90min. Af-
ter 75min, at least 5 % of all forecasts exceed an
error of 15 km.

Altogether, the location error can be substan-
tial for a significant proportion of forecasts, while
the median location error grows at a more moder-
ate rate.

While this general pattern governs the behav-
ior of all models, there are clear differences be-
tween the performance of the competing models.
These differences, however, are not always coher-
ent across all error quantiles and lead times, ex-
cept for the DIS-Rot1 model which has the weak-
est performance of all models at virtually all lead
times and for all quantiles, and the LK-Lin1 model
which performs better than DIS-Rot1, but ranks
second last. As for the best forecast performance,
the LK-Lin4 and the DIS-Lin1 models take turns
depending on error quantile and lead time: for the
5th and the 25th percentile, the LK-Lin4 model
performs best for lead times up to 100min, for

the median up to 80min, and for the mean up to
55min. The DIS-Lin1 model shows the strongest
changes of relative performance over lead time: as
for the mean error, DIS-Lin1 starts to outperform
LK-Lin4 at a lead time of 60min, and continues
this way until the maximum lead time of 120min.
As for the median error, DIS-Lin1 only catches up
with LK-Lin4 after 90min. For the 75th percentile,
DIS-Lin1 outperforms LK-Lin4 after 50min, for the
95th percentile already after 20min. In summary,
LK-Lin4 tends to outperform DIS-Lin1 in the first
hour while DIS-Lin1 becomes superior in the sec-
ond hour, apparently because it tends to avoid
very high errors more efficiently than LK-Lin4.

In the following, we would like to better un-
derstand how model skill is affected by sinuos-
ity. In Sect. 4.3.2, we have already indicated
that the absolute values of location errors do not
clearly depend on sinuosity. That was confirmed
by the systematic verification experiment (results
not shown). Yet the difference between an extrap-
olation model and the (trivial) persistence model
might very well depend on sinuosity. In order
to formally evaluate that hypothesis, we now ex-
amine the skill of our models more closely. Skill
scores rate the score of a forecast in relation to the
score of a reference forecast, in our case persis-
tence. They are particularly useful in benchmark
studies such as the present one. Eq. 4.1 shows
the general definition of skill as derived from any
forecast score, as well as the specific formula if we
use the location error ε as the ”score” (which be-
comes zero for a perfect forecast) and persistence
as the ”reference”:

Skill =
Scoreforecast − Scorereference

Scoreperfect − Scorereference
=

=
εforecast − εpersistence

−εpersistence
(4.1)

We examine the forecast skill under different
sinuosity conditions. As already pointed out in
Sect. 4.3.1, the distribution of sinuosity is highly
skewed and 90 % of observed tracks would pass
as at least ”rather straight” with a sinuosity in-
dex equal to or lower as 1.1. Hence, we split
the forecasts into three unequal groups, depend-
ing on quantiles of the sinuosity index: The first
group contains the ”straight” 90 % of the forecasts
with a sinuosity index below 1.1. We consider the
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Figure 4.8: The distribution of location errors for different extrapolation models and lead times.

value of 1.1 as an – admittedly – arbitrary thresh-
old between ”rather straight” and ”rather wind-
ing” tracks. The remaining 10% of tracks are split
in two equally sized groups, again based on sin-
uosity: The 5 % with the highest sinuosity, ex-
ceeding an SI value of 1.2, could be labelled as
”twisted”, and the remaining 5 % with interme-
diate SI values between 1.1 and 1.2 could be la-
beled as ”winding”. Figure 4.9 shows the average
model’s skill over every lead time for these three
sinuosity classes. Clearly, the model skill dramati-
cally varies between these three groups: it ranges
between 0.79 and 0.87 for the ”straight” category,
mostly between 0.5 and 0.65 for the ”winding”
category, and between mostly 0 and 0.5 for the
”twisted” category. This decrease of skill with in-
creasing sinuosity is well in line with our expecta-
tion. Furthermore, the ranking of all models based
on skill is quite coherent across all categories, and
also consistent with our previous analysis of loca-
tion errors. DIS-Lin1 becomes superior within the
second forecast hour, while LK-Lin1 performs bet-
ter in the first forecast hour. Only in the ”twisted”
category, LK-Lin1 and, even more, LK-Lin4 outper-
form DIS-Lin1 across all lead times. It should be
noted, though, that the overall skill in the twisted

category is very low for all competing models. In
the ”winding” category, LK-Lin1 slightly outper-
forms LK-Lin4 in the first 20min. Finally, DIS-Rot1
performs worst at all lead times in all categories.

The change of model skill with lead time
should be interpreted with care, as it depends
both on the performance of the extrapolation
model itself and on the location error of the per-
sistence model. For most models and SI cate-
gories, the skill appears to reach an optimum at
some lead time which implies that the superiority
of themodel over persistence reaches amaximum.

4.4 Conclusions

In this paper, we have introduced a framework to
isolate and quantify the location error in precip-
itation nowcasts that are based on field-tracking
techniques. While it is often assumed that errors
in precipitation nowcasts are dominated by the
temporal dynamics of precipitation intensity, the
location error of predicted precipitation features
has so far not been explicitly and formally quanti-
fied.
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Figure 4.9: The mean model skill over each lead time with regard to location prediction for different ex-
trapolation models and sinuosity conditions. Please note that the very low skill values of the DIS-based
models at 5min lead time (in the winding and twisted groups) are hidden by the scaling of the y-axis. At
5min lead time, both models only have a skill of about 0.35 (winding) and -0.55 (twisted).

The main idea of our framework is to de-
tect and track scale-invariant precipitation fea-
tures (corners) in radar images. In our study,
we detected features by using the approach of
Shi and Tomasi (1994), and tracked these fea-
tures following the approach of Lucas and Kanade
(1981), using both algorithms as implemented in
the OpenCV library. We increased the robustness
of extracted feature tracks by making sure that the
features can be successfully tracked forwards and
backwards. That approach, together with a rather
strict definition of parameter values for feature
detection and tracking, increases our confidence
in the reliability of the detected tracks. Still, we
have to assume that the feature locations them-
selves are, as any measurement, uncertain. We
expect the main sources of uncertainty to be the
grid resolution (which does not allow to resolve
errors below 1 km), and complex small scale in-
tensity dynamics that can interfere with motion
patterns. For future studies, we suggest a com-
prehensive sensitivity analysis with regard to the
parameters of the feature detection and tracking
algorithms in order to better understand the ef-
fects on both the number and the robustness of
detected tracks in the context of rainfall motion
analysis. Still, we assume that the error of extrap-
olating feature motion is substantially larger than
the error of feature tracking itself. In summary, we
consider it warranted to use the observed tracks as
a reference in order to evaluate the performance
(or, inversely, the error) of any model that aims to
predict the future locations of such precipitation

features. For that purpose, we defined the loca-
tion error of a forecast at any lead time ∆t ahead
of the forecast time t as the Euclidean distance
between the observed and the predicted feature
location at t + ∆t.

One might want to use this approach to com-
prehensively quantify the location error of any
forecast model for the full spatial domain of a
forecast grid, e.g., a national radar composite. In
such a case, we would need to assume that the
average of forecast errors that we have quantified
from observed feature locations in a forecast do-
main is representative for the average error of all
location predictions in that domain. We have not
yet investigated the validity of that assumption.
One might argue that the behavior of locations
identified as ”corners” or ”good features to track”
might not be representative for the motion behav-
ior of the entire precipitation field; however, it will
be difficult to find evidence to either verify or fal-
sify such a hypothesis, as it would require another
independent way to quantify the location error.
Still, we are convinced that the proposed frame-
work is useful: even without the need of strong as-
sumptions on representativeness, the framework
allows us to compare and benchmark the ability
of different models to forecast future locations of
precipitation features, and thus to specifically fo-
cus on improving that ability by future model de-
velopment.

The hypothesis that such further model de-
velopments are urgently required is supported by
the results of our benchmarking study. It should
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be clarified again that this benchmark study does
not intend to suggest better extrapolation mod-
els, but to demonstrate the ability of our frame-
work to unravel the location errors that are pro-
duced by state-of-the-art extrapolation methods.
For that purpose, we compared four models: two
models use the feature locations before and at
forecast time t in order to derive displacement
vectors which are then used to linearly extrapo-
late feature movement over the lead time. Model
LK-Lin1 uses the feature locations at t and t − 1,
and LK-Lin4 uses the feature locations at t and
t − 4. The other two models are based on the
dense optical flow algorithm DIS that generates a
full motion vector field under various smoothness
constraints. The model DIS-Lin1 obtains the dis-
placement vector for a feature at t from the near-
est motion vector in the field based on the radar
images at times t and t − 1, and uses that vector
over the entire lead time. DIS-Rot1, in contrast,
uses a Semi-Lagrangian scheme in which the dis-
placement vector is updated as the feature moves
through the motion field obtained from the DIS
technique. The motivation behind the DIS-Rot1
model is to better represent rotational or curved
motion patterns. From these four competing mod-
els, LK-Lin4 appears to be the best model in the
first forecast hour, and DIS-Lin1 the best in the
second. DIS-Rot1 performs consistently the worst.
That is not quite in line with our naive expectation
in which we would hope that a Semi-Lagrangian
approach should be able to better capture at least
curved motion patterns. But not even in the wind-
ing category does the complexity of the DIS-Rot1
approach pay off. Whether that is due to the im-
plementation of the Semi-Lagrangian approach or
due to the lack of validity of the approach should
be subject to future research. Comparing LK-Lin1
to LK-Lin4, we see a clear advantage in looking
back in time more than one step. It appears that
this way, we can retrieve more reliable, more rep-
resentative, and less noisy displacement vectors
which shows in the superiority of LK-Lin4 over LK-
Lin1.

For all competing models, the mean location
error exceeds a distance of 5 km after 60min, and
10 km after 110min. At least 25 % of all fore-
casts exceed an error of 5 km after 50min, and of
10 km after 90min. Even for the best models in
our experiment, at least 5 percent of the forecasts

will have a location error of more than 10 km af-
ter 45min. When we relate such errors to appli-
cation scenarios that are typically suggested for
precipitation nowcasting – e.g. in the context of
early warning systems for pluvial floods in urban
environments (see Zanchetta and Coulibaly, 2020)
–, it becomes obvious that location errors matter:
the order of magnitude of these errors is about the
same as the typical extent of a convective cell... or
of a medium-sized city. Hence, the uncertainty of
precipitation nowcasts at such length scales – just
as a result of locational errors – can be substantial
already at lead times of less than 1 h.

While similar conclusions have already been
drawn by using spatially sensitive verification
measures such as the Fractions Skill Score (see,
e.g., Ayzel et al., 2020), our framework allows us
to isolate the location error for specific models
and situations, to better understand the factors
that govern these errors and hence to use that
knowledge in order to specifically improve the ex-
trapolation of motion patterns in existing now-
casting models. As an example, we have demon-
strated how the use of the sinuosity index can
help us to better understand the predictive skill
and hence the uncertainty of our models in spe-
cific situations. We hope that the large number
of extracted tracks will help to foster the devel-
opment of new techniques that use data-driven
machine learning models for the extrapolation of
feature location. For that purpose, we have made
openly available the full set of extracted feature
tracks for the year 2016, https://doi.org/10.5281/
zenodo.4024272 (de Souza, 2020), to serve as in-
put to future studies. However, such future stud-
ies should also use radar data from a longer time
period in order to learn more about the seasonal
effects related to the properties of feature tracks.

Data Availability

The code and the data of this analysis are avail-
able in a repository under https://github.com/
arthurcts/loc_error (last access: 17 November
2020). The original source of the radar data
as provided by DWD is https://opendata.dwd.de/
weather/radar/radolan/ry.

https://doi.org/10.5281/zenodo.4024272
https://doi.org/10.5281/zenodo.4024272
https://github.com/arthurcts/loc_error
https://github.com/arthurcts/loc_error
https://opendata.dwd.de/weather/radar/radolan/ry
https://opendata.dwd.de/weather/radar/radolan/ry
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Chapter 5

Discussion and Сonclusions

Precipitation is an important driver of environ-
mental and hydrological processes, and it has a
direct impact on natural hazards, such as flash
floods or landslides. Hence, timely and reli-
able precipitation nowcasts – forecasts with short
lead times at high temporal and spatial resolu-
tion – are increasingly required for various pur-
poses such as early warning, sewage and reser-
voir control, or agricultural management. Simply
said, nowcasting provides an answer to the ques-
tion ”How much will it rain within the next hour?”,
typically on the basis of weather radar data and
numerical models which extrapolate the observed
precipitation field to the imminent future.

This thesis is about measuring progress and
making progress in the development of models for
precipitation nowcasting. More specifically, it is
about the establishment of open, competitive, and
affordable benchmark models, the introduction of
a new data-driven model based on deep neural
networks, and the quantification of location er-
rors in precipitation nowcasts. In Chapter 2, this
thesis introduced a framework that combines the
various pieces and fragments that are used in con-
ventional field tracking and extrapolation models
in a comprehensive system, the software package
rainymotion, and demonstrated that this open sys-
tem is able to compete with state-of-the-art oper-
ational systems. In Chapter 3, we followed a new
direction in precipitation nowcasting by exploring
the potential of data-driven models. To that end,
we introduced RainNet – a model, which is based
on a deep convolutional neural network architec-
ture. And, finally, we added a new approach to
isolate and quantify the locational error compo-
nent of precipitation forecasts, which, in orches-
tration with the error caused by changes in rain-
fall intensity, contributes to the total error of pre-
cipitation nowcasts (Chapter 4). In the following
subsections we will recap these chapters in order

to summarize and discuss the answers to the re-
search questions outlined in Сhapter 1, underline
corresponding limitations, and provide an outlook
to potential topics for future research.

Benchmarks should (co-)evolve

In the first study (Chapter 2), we developed the
open-source rainymotion library and examined
the performance of its models for radar-based pre-
cipitation nowcasting using a wide range of rain-
fall events. Our benchmark experiments, includ-
ing an operational baseline model (the RV prod-
uct provided by the DWD), showed a firm basis for
using openly available methods for precipitation
field tracking and extrapolation in radar-based
precipitation nowcasting studies. For the majority
of the analyzed events, optical-flow-based mod-
els from the rainymotion library outperformed the
operational baseline.

However, we do not claim that the devel-
oped models will generally outperform well-
established and excessively tuned operational
models for radar-based precipitation nowcasting.
Rather, rainymotion models should serve as an es-
sential tool for providing a reliable, fast, and open
solution that can serve as a benchmark for further
model development and hypothesis testing. Then
again, such benchmark models should not be con-
sidered as static. Instead, they should evolve, and
hence also reflect, in the future, the gradual im-
provements in the state-of-the-art. The modular
structure of rainymotion and its openness explic-
itly allow to incorporate such improvements, e.g.,
in field tracking, in the minimization of numerical
diffusion for the advection/extrapolation step, or
in accounting for the change of precipitation in-
tensity over time.

We are convinced that the open-source com-
munity will play the central role as a driver of
improvement, and as a channel to continuously
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transfer scientific progress to open solutions such
as rainymotion. Recently, pySTEPS (Pulkkinen
et al., 2019) – an open-source and community-
driven Python library for probabilistic precipita-
tion nowcasting – was introduced, and rapidly
became a popular research tool (Imhoff et al.,
2020a,b). Thus, the dynamic evolution and grow-
ing competition in the field of quantitative pre-
cipitation nowcasting is evident. These positive
developments could pave the way for future syn-
ergies between competing open-source projects
– towards the availability of open, reproducible,
and skillful methods in quantitative precipitation
nowcasting (see also Heistermann et al. 2015a for
a broader discussion of how open-source pack-
ages should co-evolve in the weather radar com-
munity). For example, rainymotion could be a low-
level dependency of PySTEPS, providing the spe-
cific methods for optical flow calculation or advec-
tion techniques while benefiting from the massive
high-level features of PySTEPS such as verification
and visualization.

Continue to capitalize on the potential of
deep learning

In the second paper (Chapter 3), we have pre-
sented RainNet, a deep convolutional neural net-
work architecture for radar-based precipitation
nowcasting. Its design was inspired by the U-
Net and SegNet families of deep learning mod-
els for binary segmentation, and it follows an
encoder–decoder architecture in which the en-
coder progressively downscales the spatial reso-
lution using pooling, followed by convolutional
layers, and the decoder progressively upscales the
learned patterns to a higher spatial resolution us-
ing upsampling, followed by convolutional layers.
RainNet was trained to predict precipitation at a
lead time of 5min, using several years of quality-
controlled weather radar composites based on the
DWD weather radar network. In order to achieve a
lead time of 60min, a recursive approach was im-
plemented by using RainNet predictions at 5min
lead time as model inputs for longer lead times. In
the verification experiments, Eulerian persistence,
as well as a model from the rainymotion library,
served as benchmarks.

RainNet significantly outperformed both
benchmark models at all lead times up to 60min
for the routine verification metrics mean absolute

error (MAE) and the critical success index (CSI) at
intensity thresholds of 0.125, 1, and 5mmh−1.
With regard to these verification metrics, the re-
sults correspond to an extension of the effective
lead time in the order of 10–20min by RainNet as
compared to rainymotion. However, rainymotion
turned out to be clearly superior in predicting the
exceedance of higher-intensity thresholds (here
10 and 15mmh−1) as shown by the correspond-
ing CSI analysis.

RainNet’s limited ability to predict high rain-
fall intensities could be attributed to a remark-
able level of spatial smoothing in its predictions.
That smoothing becomes increasingly apparent at
longer lead times. Yet it is already prominent at
a lead time of 5min. That was confirmed by an
analysis of power spectral density which showed,
at time t+ 5min, a loss of spectral power at length
scales of 16 km and below. Obviously, RainNet
has learned an optimal level of smoothing to pro-
duce a nowcast at 5min lead times. In that sense,
the loss of spectral power at small scales is infor-
mative as it reflects the limits of predictability as
a function of spatial scale. Beyond the lead time
of 5min, however, the increasing level of smooth-
ing is a mere artifact – an analogue to numeri-
cal diffusion – that is not a property of RainNet
itself but of its recursive application: as we re-
peatedly use smoothed nowcasts as model inputs,
we cumulate the effect of smoothing over time.
That certainly is an undesirable property, and it
becomes particularly unfavorable for the predic-
tion of high-intensity precipitation features. As
was shown on the basis of the fractions skill score
(FSS), rainymotion outperforms RainNet already at
an intensity of 5mmh−1 once we start to evaluate
the performance in a spatial neighborhood around
the native grid pixel of 1 km × 1 km size. This is
because rainymotion preserves distinct precipita-
tion features but tends to misplace them. RainNet,
however, tends to lose such features over longer
lead times due to cumulative smoothing effects –
more so if it is applied recursively.

From an early warning perspective, that prop-
erty of RainNet clearly limits its usefulness. There
are, however, options to address that issue in fu-
ture research:

• The loss function used in the training could
be adjusted in order to penalize the loss of
power at small spatial scales. Furthermore,
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the training procedure may simultaneously
attempt to minimize the loss function, as
well as preserve ”physical plausibility” – the
set of assumptions that have to be explicitly
specified by researchers.

• RainNet could be directly trained to predict
precipitation at lead times beyond 5min.
While the direct prediction of precipitation
at longer lead times should reduce excessive
smoothing as a result of numerical diffusion,
we would still expect the level of smoothing
to increase with lead time as a result of the
predictive uncertainty at small scales.

• As an alternative to predicting continuous
values of precipitation intensity, RainNet
could be trained to predict the exceedance
of specific intensity thresholds instead. The
additional advantage of training RainNet
to predict threshold exceedance is that we
could use its output directly as a measure of
uncertainty (of that exceedance).

Yet the key issue of precipitation prediction
– the anticipation of convective initialization, as
well as the growth and dissipation of precipita-
tion in the imminent future – still appears to be
unresolved. It is an inherent limitation of now-
casting models purely based on optical flow: they
can extrapolate motion fairly well, but they can-
not predict intensity dynamics. Deep learning ar-
chitectures, however, might be able to learn recur-
rent patterns of growth and dissipation, although
it will be challenging to verify if they actually did.
In the context of this study, though, we have to
assume that RainNet has rather learned the rep-
resentation of motion patterns instead of rainfall
intensity dynamics: for a lead time of 5min, the
effects of motion can generally be expected to
dominate over the effects of intensity dynamics,
which will propagate to the learning results. The
fact that we actually could recursively use Rain-
Net’s predictions at 5min lead time in order to pre-
dict precipitation at 1 h lead time also implies that
RainNet, in essence, learned to represent motion
patterns and optimal smoothing.

Another limitation in successfully learning
patterns of intensity growth and dissipation might
be the input data itself. While we do not ex-
clude the possibility that such patterns could be

learned from just two-dimensional radar compos-
ites, other input variables might add essential
information on imminent atmospheric dynamics
– the predisposition of the atmosphere to pro-
duce or to dissolve precipitation. Such additional
data might include three-dimensional radar vol-
ume data, dual-polarization radar moments, or
the output fields of numerical weather prediction
(NWP) models. Formally, the inclusion of NWP
fields in a learning framework could be consid-
ered as a different way of assimilation, combining
– in a data-driven way – the information content
of physical models and observations. Hence, we
should continue to capitalize on the potential of
deep learning in this field, by consequently un-
locking further input data which we consider as
informative for creatingmore skillful, reliable, and
robust predictive models.

In summary, Chapter 3 provides, after Shi et al.
(2015, 2017, 2018), another proof of concept that
convolutional neural networks deliver a firm basis
to compete with conventional nowcasting models
based on optical flow. Moreover, it also reveals
the role of evaluation metrics in diagnostics of the
properties of model predictions – in a statistical
sense but also in how processes of motion and in-
tensity dynamics are reflected. This way, the im-
portance of disentangling sources of model errors
has become apparent as another basis for future
model development.

Improving models by understanding sources
of error

In the third paper (Chapter 4), we have introduced
a framework to isolate and quantify the location
error in precipitation nowcasts that are based on
field-tracking techniques. While it is often as-
sumed that errors in precipitation nowcasts are
dominated by the temporal dynamics of precipita-
tion intensity, the location error of predicted pre-
cipitation features has so far not been explicitly
and formally quantified.

The main idea of our framework is to detect
and track scale-invariant precipitation features
(corners) in radar images. To this aim, we detected
features by using the approach of Shi and Tomasi
(1994), and tracked these features following the
approach of Lucas and Kanade (1981), using both
algorithms as implemented in the OpenCV library.
Then, we used these observed tracks as a ”true”
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reference in order to evaluate the performance (or,
inversely, the error) of any model that aims to pre-
dict the future locations of such precipitation fea-
tures. For that purpose, we defined the location
error of a forecast at any lead time ∆t ahead of
the forecast time t as the Euclidean distance be-
tween the observed and the predicted feature lo-
cation at t+ ∆t. Hence, the developed framework
allows us to compare and benchmark the ability
of different models to forecast future locations of
precipitation features, and thus to specifically fo-
cus on improving that ability by future model de-
velopment.

The hypothesis that such further model devel-
opments are urgently required is supported by the
results of our benchmarking study. For all com-
peting models, the mean location error exceeds
a distance of 5 km after 60min, and 10 km after
110min. At least 25 % of all forecasts exceed
an error of 5 km after 50min, and of 10 km after
90min. Even for the best models in our experi-
ment, at least 5 percent of the forecasts will have
a location error of more than 10 km after 45min.
When we relate such errors to application scenar-
ios that are typically suggested for precipitation
nowcasting – e.g., in the context of early warning
systems for pluvial floods in urban environments
(see Zanchetta and Coulibaly, 2020) –, it becomes
obvious that location errors matter: the order of
magnitude of these errors is about the same as
the typical extent of a convective cell... or of a
medium-sized city. Hence, the uncertainty of pre-
cipitation nowcasts at such length scales – just as
a result of locational errors – can be substantial
already at lead times of less than 1 h.

Based on this framework, the next natural step
for future research would be to specifically min-
imize the effect of location errors by a targeted
model development beyond conventional linear
or semi-Lagrangian extrapolation. In this context,
data-driven machine learning models appear par-
ticularly promising as they could learn from the
large collection of extracted feature tracks. In
particular, as track data has a sequential order,
modern architectures that benefit from this struc-
ture, such as novel deep neural networks based on
attention mechanisms (Choromanski et al., 2020;
Vaswani et al., 2017), are the most promising.

Towards open science and applications

The idea of open science is at the heart of the
presented thesis. In this context, the term ”open”
does not just imply open code, but also open com-
putational environments, research data sets, and
documentation. Broadly speaking, open science
means available, accessible, and reproducible sci-
ence – an ideal that we, as a community, have to
pursue for good. That way, it provides a basis for
the continuous development and improvement, by
making available (and applicable) the tools that
are required to test, or to falsify theories.

For example, in Chapter 2 we provided a
benchmark for radar-based precipitation now-
casting based on conventional techniques. To
that end, we introduced the open rainymotion
software library (https://github.com/hydrogo/
rainymotion), and provided corresponding doc-
umentation (https://rainymotion.readthedocs.io)
with hands-on examples of its use and the sam-
ple data. This ensures openness in a broad context
and provides a basis for further development and
improvement by the research (and application)
community.

We tried to pursue the same concept with re-
gard to Chapters 3 and 4, too. Our deep learning
model for precipitation nowcasting – RainNet –,
as well as its pre-trained weights and data used
for the extensive training procedure are freely
available in open repositories. Furthermore, we
also provide the ”getting started” example that
shows how RainNet can be run out-of-the-box
in a freely-accessible computational environment
(Google Colab) for operational precipitation now-
casting. That way, we provide a basis for scien-
tific reproducibility and dissolve the boundaries
between research and application: internet access
is all you need to get started in precipitation now-
casting.

To the best of our knowledge, rainymotion
models have already been used as a benchmark for
a research study that investigates the skill of pre-
cipitation nowcasting in the Netherlands (Imhoff
et al., 2020b). Moreover, rainymotion models have
been utilized as a core for establishing web ser-
vices and applications for precipitation nowcast-
ing, such as Yandex.Weather (https://yandex.ru/
pogoda/potsdam/maps/nowcast), Windy (https:
//www.windy.com/), and WillyWeather (https:

https://github.com/hydrogo/rainymotion
https://github.com/hydrogo/rainymotion
https://rainymotion.readthedocs.io
https://yandex.ru/pogoda/potsdam/maps/nowcast
https://yandex.ru/pogoda/potsdam/maps/nowcast
https://www.windy.com/
https://www.windy.com/
https://www.willyweather.com.au/


Chapter 5. Discussion and Сonclusions 59

//www.willyweather.com.au/) – services which
have millions of users worldwide.

Altogether, this demonstrates the potential of
open science as a guiding principle that drives

both in-depth model development and broadens
the landscape of practical application of nowcast-
ing technologies.

https://www.willyweather.com.au/
https://www.willyweather.com.au/




61

Bibliography

Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., and Hickey, J.: Machine Learning for Precip-
itation Nowcasting from Radar Images, URL: https://arxiv.org/abs/1912.12132, last access: 28 January
2020, 2019.

Austin, G. L. and Bellon, A.: The use of digital weather radar records for short-term precipitation
forecasting, Quarterly Journal of the Royal Meteorological Society, 100, 658–664, https://doi.org/
10.1002/qj.49710042612, URL: http://doi.wiley.com/10.1002/qj.49710042612, 1974.

Ayzel, G.: hydrogo/rainymotion: rainymotion v0.1, https://doi.org/10.5281/zenodo.2561583, URL: https:
//doi.org/10.5281/zenodo.2561583, last access: 12 November 2020, 2019.

Ayzel, G.: hydrogo/rainnet: RainNet v1.0-gmdd, https://doi.org/10.5281/zenodo.3631038, URL: https:
//zenodo.org/record/3631038, last access: 17 November 2020, 2020a.

Ayzel, G.: RainNet: pretrained model and weights, https://doi.org/10.5281/zenodo.3630429, URL: https:
//zenodo.org/record/3630429, last access: 17 November 2020, 2020b.

Ayzel, G.: RYDL: the sample data of the RY product for deep learning applications, https://doi.org/10.5281/
zenodo.3629951, URL: https://zenodo.org/record/3629951, last access: 17 November 2020, 2020c.

Ayzel, G.: RainNet: a convolutional neural network for radar-based precipitation nowcasting, https://
github.com/hydrogo/rainnet, last access: 10 June 2020, 2020d.

Ayzel, G., Heistermann, M., and Winterrath, T.: Optical flow models as an open benchmark for
radar-based precipitation nowcasting (rainymotion v0.1), Geoscientific Model Development, 12,
1387–1402, https://doi.org/10.5194/gmd-12-1387-2019, URL: https://www.geosci-model-dev.net/
12/1387/2019/, 2019a.

Ayzel, G., Heistermann, M., and Winterrath, T.: rainymotion:python library for radar-based precipitation
nowcasting based onoptical flow techniques, https://github.com/hydrogo/rainymotion, last access: 11
November 2020, 2019b.

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-
based precipitation nowcasting, Geoscientific Model Development, 13, 2631–2644, https://doi.org/
10.5194/gmd-13-2631-2020, URL: https://gmd.copernicus.org/articles/13/2631/2020/, 2020.

Badrinarayanan, V., Kendall, A., and Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Archi-
tecture for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39,
2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615, 2017.

Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent
Networks for Sequence Modeling, URL: https://arxiv.org/abs/1803.01271, last access: 28 January 2020,
2018.

Baldwin, M. E. and Kain, J. S.: Sensitivity of several performance measures to displacement error, bias,
and event frequency, Weather and forecasting, 21, 636–648, 2006.

Bartels, H., Weigl, E., Klink, S., Kohler, O., Reich, T., Rosenow, W., Lang, P., Podlasly, C., Winter-
rath, T., Adrian, G., Majewski, D., and Lang, J.: Projekt RADVOR-OP Radargestützte, zeitnahe Nieder-
schlagsvorhersage für den operationellen Einsatz (Niederschlag-Nowcasting-System), Teil-I, Final Re-
port 1, Deutscher Wetterdienst (DWD), available at: https://www.dwd.de/DE/leistungen/radvor/radvor_
info/abschlussbericht_radvor_op_2005_pdf.pdf, 2005.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature,
525, 47–55, https://doi.org/10.1038/nature14956, URL: http://www.nature.com/doifinder/10.1038/
nature14956, 2015.

Bellerby, T. J.: High-resolution 2-D cloud-top advection from geostationary satellite imagery, IEEE
Transactions on Geoscience and Remote Sensing, 44, 3639–3648, https://doi.org/10.1109/TGRS.2006.
881117, URL: http://ieeexplore.ieee.org/document/4014303/, 2006.

https://arxiv.org/abs/1912.12132
http://doi.wiley.com/10.1002/qj.49710042612
https://doi.org/10.5281/zenodo.2561583
https://doi.org/10.5281/zenodo.2561583
https://zenodo.org/record/3631038
https://zenodo.org/record/3631038
https://zenodo.org/record/3630429
https://zenodo.org/record/3630429
https://zenodo.org/record/3629951
https://github.com/hydrogo/rainnet
https://github.com/hydrogo/rainnet
https://www.geosci-model-dev.net/12/1387/2019/
https://www.geosci-model-dev.net/12/1387/2019/
https://github.com/hydrogo/rainymotion
https://gmd.copernicus.org/articles/13/2631/2020/
https://arxiv.org/abs/1803.01271
https://www.dwd.de/DE/leistungen/radvor/radvor_info/abschlussbericht_radvor_op_2005_pdf.pdf
https://www.dwd.de/DE/leistungen/radvor/radvor_info/abschlussbericht_radvor_op_2005_pdf.pdf
http://www.nature.com/doifinder/10.1038/nature14956
http://www.nature.com/doifinder/10.1038/nature14956
http://ieeexplore.ieee.org/document/4014303/


62 BIBLIOGRAPHY

Berenguer, M., Sempere-Torres, D., and Pegram, G. G. S.: SBMcast - An ensemble nowcasting tech-
nique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation, Journal of Hydrol-
ogy, 404, 226–240, https://doi.org/10.1016/j.jhydrol.2011.04.033, URL: https://www.sciencedirect.
com/science/article/pii/S0022169411002940, 2011.

Berenguer, M., Surcel, M., Zawadzki, I., Xue, M., Kong, F., Berenguer, M., Surcel, M., Zawadzki, I., Xue,
M., and Kong, F.: The Diurnal Cycle of Precipitation from Continental Radar Mosaics and Numerical
Weather Prediction Models. Part II: Intercomparison among Numerical Models and with Nowcasting,
Monthly Weather Review, 140, 2689–2705, https://doi.org/10.1175/MWR-D-11-00181.1, URL: http:
//journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00181.1, 2012.

Bouguet, J.-Y.: Pyramidal implementation of the affine Lucas Kanade feature tracker. Description of the
algorithm, Tech. rep., Intel corporation, Microprocessor Research Labs, 2000.

Boureau, Y.-L., Ponce, J., and LeCun, Y.: A Theoretical Analysis of Feature Pooling in Visual Recognition, in:
Proceedings of the 27th International Conference on International Conference on Machine Learning,
ICML’10, pp. 111–118, Omnipress, Madison, WI, USA, 2010.

Bowler, N. E., Pierce, C. E., and Seed, A.: Development of a precipitation nowcasting algorithm based upon
optical flow techniques, Journal of Hydrology, 288, 74–91, https://doi.org/10.1016/j.jhydrol.2003.11.
011, URL: https://www.sciencedirect.com/science/article/pii/S0022169403004591, 2004.

Bowler, N. E., Pierce, C. E., and Seed, A. W.: STEPS: A probabilistic precipitation forecasting scheme which
merges an extrapolation nowcast with downscaled NWP, Quarterly Journal of the Royal Meteorological
Society, 132, 2127–2155, https://doi.org/10.1256/qj.04.100, URL: http://dx.doi.org/10.1256/qj.04.100,
2006.

Bradski, G. and Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library, ” O’Reilly Media,
Inc.”, 2008.

Brox, T., Bruhn, A., Papenberg, N., and Weickert, J.: High accuracy optical flow estimation based on a
theory for warping, in: European conference on computer vision, pp. 25–36, Springer, 2004.

Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., and Schnörr, C.: Variational optical flow computa-
tion in real time, IEEE transactions on image processing : a publication of the IEEE Signal Process-
ing Society, 14, 608–15, https://doi.org/10.1109/TIP.2005.846018, URL: https://ieeexplore.ieee.org/
document/1420392/, 2005a.

Bruhn, A., Weickert, J., and Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global
optic flow methods, International journal of computer vision, 61, 211–231, 2005b.

Chen, P., Chen, G., and Zhang, S.: Log Hyperbolic Cosine Loss Improves Variational Auto-Encoder, URL:
https://openreview.net/forum?id=rkglvsC9Ym, last access: 28 January 2020, 2018.

Cheung, P. and Yeung, H. Y.: Application of optical-flow technique to significant convection nowcast for
terminal areas in Hong Kong, in: The 3rd WMO International Symposium on Nowcasting and Very
Short-Range Forecasting (WSN12), pp. 1–10, URL: http://www.hko.gov.hk/publica/reprint/r1025.pdf,
2012.

Chollet, F. et al.: Keras, https://keras.io, last access: 17 November 2020, 2015.
Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mo-
hiuddin, A., Kaiser, L., et al.: Rethinking Attention with Performers, https://arxiv.org/abs/2009.14794,
URL: https://arxiv.org/pdf/2009.14794.pdf, last access: 12 November 2020, 2020.

Crisologo, I. and Heistermann, M.: Using ground radar overlaps to verify the retrieval of cal-
ibration bias estimates from spaceborne platforms, Atmospheric Measurement Techniques, 13,
645–659, https://doi.org/10.5194/amt-13-645-2020, URL: https://amt.copernicus.org/articles/13/
645/2020/, 2020.

Dahl, G. E., Sainath, T. N., and Hinton, G. E.: Improving deep neural networks for LVCSR using rectified
linear units and dropout, in: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 8609–8613, https://doi.org/10.1109/ICASSP.2013.6639346, 2013.

de Souza, A. C. T.: Set of extracted feature tracks for the year 2016., https://doi.org/10.5281/zenodo.
4024272, URL: https://doi.org/10.5281/zenodo.4024272, last access: 11 November 2020, 2020.

https://www.sciencedirect.com/science/article/pii/S0022169411002940
https://www.sciencedirect.com/science/article/pii/S0022169411002940
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00181.1
http://journals.ametsoc.org/doi/abs/10.1175/MWR-D-11-00181.1
https://www.sciencedirect.com/science/article/pii/S0022169403004591
http://dx.doi.org/10.1256/qj.04.100
https://ieeexplore.ieee.org/document/1420392/
https://ieeexplore.ieee.org/document/1420392/
https://openreview.net/forum?id=rkglvsC9Ym
http://www.hko.gov.hk/publica/reprint/r1025.pdf
https://keras.io
https://arxiv.org/abs/2009.14794
https://arxiv.org/pdf/2009.14794.pdf
https://amt.copernicus.org/articles/13/645/2020/
https://amt.copernicus.org/articles/13/645/2020/
https://doi.org/10.5281/zenodo.4024272


BIBLIOGRAPHY 63

Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and climate mod-
els based on machine learning, Geoscientific Model Development, 11, 3999–4009, https://doi.org/
10.5194/gmd-11-3999-2018, URL: https://www.geosci-model-dev.net/11/3999/2018/, 2018.

DWD: German Climate Atlas, https://www.dwd.de/EN/ourservices/germanclimateatlas/
germanclimateatlas.html, last access: 11 November 2020, 2020.

Ebert, E. E.: Fuzzy verification of high-resolution gridded forecasts: a review and proposed framework,
Meteorological Applications: A journal of forecasting, practical applications, training techniques and
modelling, 15, 51–64, 2008.

Farnebäck, G.: Two-frame motion estimation based on polynomial expansion, Image Analysis,
2003, 363–370, https://doi.org/10.1007/3-540-45103-x_50, URL: http://link.springer.com/10.1007/
3-540-45103-X, 2003.

Foresti, L., Reyniers, M., Seed, A., and Delobbe, L.: Development and verification of a real-time stochastic
precipitation nowcasting system for urban hydrology in Belgium, Hydrology and Earth System Sciences,
20, 505–527, https://doi.org/10.5194/hess-20-505-2016, URL: https://www.hydrol-earth-syst-sci.net/
20/505/2016/, 2016.

Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D., Osuna,
C., Schär, C., Schulthess, T. C., and Vogt, H.: Near-global climate simulation at 1 km resolution:
establishing a performance baseline on 4888GPUs with COSMO 5.0, Geoscientific Model Develop-
ment, 11, 1665–1681, https://doi.org/10.5194/gmd-11-1665-2018, URL: https://gmd.copernicus.org/
articles/11/1665/2018/, 2018.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N.: Convolutional Sequence to Sequence
Learning, in: Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 1243–1252, JMLR.org, 2017.

Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., and Yacalis, G.: Could Machine Learning Break the Con-
vection Parameterization Deadlock?, Geophysical Research Letters, 45, 5742–5751, https://doi.org/
10.1029/2018GL078202, URL: http://doi.wiley.com/10.1029/2018GL078202, 2018.

Germann, U. and Zawadzki, I.: Scale-Dependence of the Predictability of Precipitation from Continen-
tal Radar Images. Part I: Description of the Methodology, Monthly Weather Review, 130, 2859–2873,
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2, URL: https://doi.org/10.1175/
1520-0493(2002)130<2859:SDOTPO>2.0.CO;2, 2002a.

Germann, U. and Zawadzki, I.: Scale-Dependence of the Predictability of Precipitation from Continental
Radar Images. Part I: Description of the Methodology, Monthly Weather Review, 130, 2859–2873,
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2, URL: http://journals.ametsoc.
org/doi/abs/10.1175/1520-0493{%}282002{%}29130{%}3C2859{%}3ASDOTPO{%}3E2.0.CO{%}3B2,
2002b.

Germann, U., Zawadzki, I., Turner, B., Germann, U., Zawadzki, I., and Turner, B.: Predictability of Precip-
itation from Continental Radar Images. Part IV: Limits to Prediction, Journal of the Atmospheric Sci-
ences, 63, 2092–2108, https://doi.org/10.1175/JAS3735.1, URL: http://journals.ametsoc.org/doi/abs/
10.1175/JAS3735.1, 2006.

Gilleland, E., Ahijevych, D. A., Brown, B. G., and Ebert, E. E.: Verifying Forecasts Spatially, Bulletin of
the American Meteorological Society, 91, 1365–1376, https://doi.org/10.1175/2010BAMS2819.1, URL:
https://journals.ametsoc.org/doi/10.1175/2010BAMS2819.1, publisher: American Meteorological So-
ciety, 2010.

Golding, B. W.: Nimrod: A system for generating automated very short range forecasts, Meteorolog-
ical Applications, 5, 1–16, https://doi.org/10.1017/S1350482798000577, URL: http://doi.wiley.com/
10.1017/S1350482798000577, 1998.

Grecu, M. and Krajewski, W. F.: A large-sample investigation of statistical procedures for
radar-based short-term quantitative precipitation forecasting, Journal of Hydrology, 239, 69–
84, https://doi.org/10.1016/S0022-1694(00)00360-7, URL: https://www.sciencedirect.com/science/
article/pii/S0022169400003607, 2000.

https://www.geosci-model-dev.net/11/3999/2018/
https://www.dwd.de/EN/ourservices/germanclimateatlas/germanclimateatlas.html
https://www.dwd.de/EN/ourservices/germanclimateatlas/germanclimateatlas.html
http://link.springer.com/10.1007/3-540-45103-X
http://link.springer.com/10.1007/3-540-45103-X
https://www.hydrol-earth-syst-sci.net/20/505/2016/
https://www.hydrol-earth-syst-sci.net/20/505/2016/
https://gmd.copernicus.org/articles/11/1665/2018/
https://gmd.copernicus.org/articles/11/1665/2018/
http://doi.wiley.com/10.1029/2018GL078202
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282002{%}29130{%}3C2859{%}3ASDOTPO{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282002{%}29130{%}3C2859{%}3ASDOTPO{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/JAS3735.1
http://journals.ametsoc.org/doi/abs/10.1175/JAS3735.1
https://journals.ametsoc.org/doi/10.1175/2010BAMS2819.1
http://doi.wiley.com/10.1017/S1350482798000577
http://doi.wiley.com/10.1017/S1350482798000577
https://www.sciencedirect.com/science/article/pii/S0022169400003607
https://www.sciencedirect.com/science/article/pii/S0022169400003607


64 BIBLIOGRAPHY

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., and
Chen, T.: Recent advances in convolutional neural networks, Pattern Recognition, 77, 354–377,
https://doi.org/10.1016/j.patcog.2017.10.013, URL: http://www.sciencedirect.com/science/article/pii/
S0031320317304120, 2018.

Heistermann, M., Jacobi, S., and Pfaff, T.: Technical Note: An open source library for processing
weather radar data (wradlib), Hydrology and Earth System Sciences, 17, 863–871, https://doi.org/
10.5194/hess-17-863-2013, URL: https://www.hydrol-earth-syst-sci.net/17/863/2013/, 2013.

Heistermann, M., Collis, S., Dixon, M. J., Giangrande, S., Helmus, J. J., Kelley, B., Koistinen, J., Michelson,
D. B., Peura, M., Pfaff, T., and Wolff, D. B.: The emergence of open-source software for the weather radar
community, Bulletin of the American Meteorological Society, 96, 117–128, https://doi.org/10.1175/
BAMS-D-13-00240.1, URL: http://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00240.1, 2015a.

Heistermann, M., Collis, S., Dixon, M. J., Helmus, J. J., Henja, A., Michelson, D. B., and Pfaff, T.: An open
virtual machine for cross-platform weather radar science, Bulletin of the American Meteorological
Society, 96, 1641–1645, https://doi.org/10.1175/BAMS-D-14-00220.1, URL: http://journals.ametsoc.
org/doi/10.1175/BAMS-D-14-00220.1, 2015b.

Horn, B. K. and Schunck, B. G.: Determining optical flow, Artificial intelligence, 17, 185–203, 1981.
Hunter, J. D.: Matplotlib: A 2D graphics environment, Computing in science & engineering, 9, 90–95,
2007.

Iglovikov, V. and Shvets, A.: TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image
Segmentation, URL: https://arxiv.org/abs/1801.05746, last access: 28 January 2020, 2018.

Imhoff, R., Overeem, A., Brauer, C., Leijnse, H., Weerts, A., and Uijlenhoet, R.: Rainfall Nowcasting Using
Commercial Microwave Links, Geophysical Research Letters, 47, e2020GL089 365, 2020a.

Imhoff, R. O., Brauer, C. C., Overeem, A., Weerts, A. H., and Uijlenhoet, R.: Spatial and Tempo-
ral Evaluation of Radar Rainfall Nowcasting Techniques on 1,533 Events, Water Resources
Research, 56, e2019WR026 723, https://doi.org/https://doi.org/10.1029/2019WR026723, URL:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026723, e2019WR026723
10.1029/2019WR026723, 2020b.

Jensen, D. G., Petersen, C., and Rasmussen, M. R.: Assimilation of radar-based nowcast into a HIRLAM
NWP model, Meteorological Applications, 22, 485–494, https://doi.org/10.1002/met.1479, URL: http:
//doi.wiley.com/10.1002/met.1479, 2015.

Jones, E., Oliphant, T., and Peterson, P.: SciPy: open source scientific tools for Python, URL: https://scipy.
org/, last access: 29 June 2018, 2018.

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, in: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, edited by Bengio, Y. and LeCun, Y., URL: http://arxiv.org/abs/1412.6980, 2015.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural
Networks, in: Advances in Neural Information Processing Systems 25, edited by Pereira, F., Burges, C.
J. C., Bottou, L., and Weinberger, K. Q., pp. 1097–1105, Curran Associates, Inc., URL: http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf, 2012.

Kroeger, T., Timofte, R., Dai, D., and Van Gool, L.: Fast optical flow using dense inverse search, in: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9908 LNCS, pp. 471–488, https://doi.org/10.1007/978-3-319-46493-0_
29, URL: http://arxiv.org/abs/1603.03590, 2016.

Lebedev, V., Ivashkin, V., Rudenko, I., Ganshin, A., Molchanov, A., Ovcharenko, S., Grokhovetskiy, R., Bush-
marinov, I., and Solomentsev, D.: Precipitation nowcasting with satellite imagery, in: Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2680–
2688, 2019.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/
nature14539, URL: http://www.nature.com/articles/nature14539, 2015.

Lin, C., Vasić, S., Kilambi, A., Turner, B., and Zawadzki, I.: Precipitation forecast skill of numerical weather

http://www.sciencedirect.com/science/article/pii/S0031320317304120
http://www.sciencedirect.com/science/article/pii/S0031320317304120
https://www.hydrol-earth-syst-sci.net/17/863/2013/
http://journals.ametsoc.org/doi/10.1175/BAMS-D-13-00240.1
http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00220.1
http://journals.ametsoc.org/doi/10.1175/BAMS-D-14-00220.1
https://arxiv.org/abs/1801.05746
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019WR026723
http://doi.wiley.com/10.1002/met.1479
http://doi.wiley.com/10.1002/met.1479
https://scipy.org/
https://scipy.org/
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1603.03590
http://www.nature.com/articles/nature14539


BIBLIOGRAPHY 65

prediction models and radar nowcasts, Geophysical Research Letters, 32, https://doi.org/10.1029/
2005GL023451, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023451, 2005.

Liu, Y., Xi, D. G., Li, Z. L., and Hong, Y.: A new methodology for pixel-quantitative precipi-
tation nowcasting using a pyramid Lucas Kanade optical flow approach, Journal of Hydrology,
529, 354–364, https://doi.org/10.1016/j.jhydrol.2015.07.042, URL: https://www.sciencedirect.com/
science/article/pii/S002216941500548X, 2015.

Long, J., Shelhamer, E., and Darrell, T.: Fully Convolutional Networks for Semantic Segmentation, in: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Lucas, B. D. and Kanade, T.: An iterative image Registration Techniquewith an Application to Stereo Vision,
in: Proceedings DARPA Image Understanding Workrhop, pp. 674–679, Morgan Kaufmann Publishers
Inc., https://doi.org/10.1145/358669.358692, URL: https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_
1981_2/lucas_bruce_d_1981_2.pdf, 1981.

Mecklenburg, S., Joss, J., and Schmid, W.: Improving the nowcasting of precipitation in an
Alpine region with an enhanced radar echo tracking algorithm, Journal of Hydrology, 239, 46–
68, https://doi.org/10.1016/S0022-1694(00)00352-8, URL: https://www.sciencedirect.com/science/
article/pii/S0022169400003528, 2000.

Mittermaier, M. and Roberts, N.: Intercomparison of Spatial Forecast Verification Methods: Identi-
fying Skillful Spatial Scales Using the Fractions Skill Score, Weather and Forecasting, 25, 343–
354, https://doi.org/10.1175/2009WAF2222260.1, URL: https://doi.org/10.1175/2009WAF2222260.1,
2010.

Mueller, C. M., Axen, T. S., Oberts, R. R., Ilson, J. W., Etancourt, T. B., Ettling, S. D., and Ien,
N. O.: NCAR Auto-Nowcast System, Weather and Forecasting, 18, 545–561, https://doi.org/10.
1175/1520-0434(2003)018<0545:NAS>2.0.CO;2, URL: http://journals.ametsoc.org/doi/abs/10.1175/
1520-0434{%}282003{%}29018{%}3C0545{%}3ANAS{%}3E2.0.CO{%}3B2, 2003.

Mueller, J. E.: An introduction to the hydraulic and topographic sinuosity indexes, Annals of the associa-
tion of american geographers, 58, 371–385, 1968.

Nair, V. and Hinton, G. E.: Interpersonal Informatics: Making Social Influence Visible, in: Proceedings
of the 27th International Conference on International Conference on Machine Learning, ICML’10, pp.
807–814, Omnipress, Madison, WI, USA, 2010.

Oliphant, T. E.: A guide to NumPy, vol. 1, Trelgol Publishing USA, 2006.
OpenCV library: ”OpenCV: Optical flow tutorial”, https://docs.opencv.org/4.4.0/d4/dee/tutorial_optical_
flow.html, last access: 13 October 2020, 2020a.

OpenCV library: ”OpenCV: DISOpticalFlow Class Reference”, https://docs.opencv.org/4.4.0/de/d4f/
classcv_1_1DISOpticalFlow.html, last access: 13 October 2020, 2020b.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in Python, Journal of machine learning
research, 12, 2825–2830, 2011.

Pierce, C., Seed, A., Ballard, S., Simonin, D., and Li, Z.: Nowcasting, in: Doppler Radar Observations,
edited by Bech, J. and Chau, J. L., chap. 4, IntechOpen, Rijeka, https://doi.org/10.5772/39054, URL:
https://doi.org/10.5772/39054, 2012.

Pulkkinen, S., Nerini, D., Pérez Hortal, A. A., Velasco-Forero, C., Seed, A., Germann, U., and Foresti, L.:
Pysteps: an open-source Python library for probabilistic precipitation nowcasting (v1.0), Geoscientific
Model Development, 12, 4185–4219, https://doi.org/10.5194/gmd-12-4185-2019, URL: https://gmd.
copernicus.org/articles/12/4185/2019/, 2019.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat:
Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–
204, https://doi.org/10.1038/s41586-019-0912-1, URL: https://doi.org/10.1038/s41586-019-0912-1,
2019.

Reyniers, M.: Quantitative precipitation forecasts based on radar observations: Principles, algorithms and
operational systems, Institut Royal Météorologique de Belgique, URL: https://www.meteo.be/meteo/

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023451
https://www.sciencedirect.com/science/article/pii/S002216941500548X
https://www.sciencedirect.com/science/article/pii/S002216941500548X
https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_2/lucas_bruce_d_1981_2.pdf
https://www.sciencedirect.com/science/article/pii/S0022169400003528
https://www.sciencedirect.com/science/article/pii/S0022169400003528
https://doi.org/10.1175/2009WAF2222260.1
http://journals.ametsoc.org/doi/abs/10.1175/1520-0434{%}282003{%}29018{%}3C0545{%}3ANAS{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0434{%}282003{%}29018{%}3C0545{%}3ANAS{%}3E2.0.CO{%}3B2
https://docs.opencv.org/4.4.0/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/4.4.0/d4/dee/tutorial_optical_flow.html
https://docs.opencv.org/4.4.0/de/d4f/classcv_1_1DISOpticalFlow.html
https://docs.opencv.org/4.4.0/de/d4f/classcv_1_1DISOpticalFlow.html
https://doi.org/10.5772/39054
https://gmd.copernicus.org/articles/12/4185/2019/
https://gmd.copernicus.org/articles/12/4185/2019/
https://doi.org/10.1038/s41586-019-0912-1
https://www.meteo.be/meteo/download/fr/3040165/pdf/rmi_scpub-1261.pdf


66 BIBLIOGRAPHY

download/fr/3040165/pdf/rmi_scpub-1261.pdf, 2008.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmen-
tation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, edited by
Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F., pp. 234–241, Springer International Publishing,
Cham, https://doi.org/10.1007/978-3-319-24574-4_28, 2015.

Rudolf, B., Winterrath, T., Weigl, E., Reich, T., Rosenow, W., and Stephan, K.: Projekt RADVOR-
OP Radargestützte, zeitnahe Niederschlagsvorhersage für den operationellen Einsatz (Niederschlag-
Nowcasting-System), Teil-II, Final Report 2, Deutscher Wetterdienst (DWD), available at: https://www.
dwd.de/DE/leistungen/radvor/radvor_info/abschlussbericht_radvor_op_2012_pdf.pdf, 2012.

Ruzanski, E., Chandrasekar, V., and Wang, Y.: The CASA nowcasting system, Journal of Atmospheric and
Oceanic Technology, 28, 640–655, https://doi.org/10.1175/2011JTECHA1496.1, URL: http://journals.
ametsoc.org/doi/abs/10.1175/2011JTECHA1496.1, 2011.

Schmid, C., Mohr, R., and Bauckhage, C.: Evaluation of interest point detectors, International Journal of
computer vision, 37, 151–172, 2000.

Schneider, P. J. and Eberly, D. H.: Geometric tools for computer graphics, Boston, URL: https://www.
sciencedirect.com/science/book/9781558605947, 2003.

Shi, E., Li, Q., Gu, D., and Zhao, Z.: A Method of Weather Radar Echo Extrapolation Based on Con-
volutional Neural Networks, in: MultiMedia Modeling, edited by Schoeffmann, K., Chalidabhongse,
T. H., Ngo, C. W., Aramvith, S., O’Connor, N. E., Ho, Y.-S., Gabbouj, M., and Elgammal, A., pp. 16–28,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-73603-7_2, URL: https:
//link.springer.com/chapter/10.1007%2F978-3-319-73603-7_2, 2018.

Shi, J. and Tomasi, C.: Good features to track, in: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition CVPR-94, pp. 593–600, IEEE Comput. Soc. Press, https://doi.org/10.1109/CVPR.
1994.323794, URL: http://ieeexplore.ieee.org/document/323794/, 1994.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Convolutional LSTM Net-
work: A Machine Learning Approach for Precipitation Nowcasting, in: Advances in Neural In-
formation Processing Systems 28, edited by Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,
M., and Garnett, R., pp. 802–810, Curran Associates, Inc., URL: http://papers.nips.cc/paper/
5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf,
2015.

Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.: Deep Learning for
Precipitation Nowcasting: A Benchmark and A New Model, in: Advances in Neural Information Pro-
cessing Systems 30, edited by Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., pp. 5617–5627, Curran Associates, Inc., URL: http://papers.nips.cc/paper/
7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf, 2017.

Singh, S., Sarkar, S., and Mitra, P.: Leveraging Convolutions in Recurrent Neural Networks for Doppler
Weather Radar Echo Prediction, in: Advances in Neural Networks - ISNN 2017, edited by Cong, F.,
Leung, A., and Wei, Q., pp. 310–317, Springer International Publishing, Cham, https://doi.org/10.1007/
978-3-319-59081-3_37, URL: https://link.springer.com/chapter/10.1007%2F978-3-319-59081-3_37,
2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to
Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014.

Srivastava, R. K., Greff, K., and Schmidhuber, J.: Training Very Deep Networks, in: Advances in
Neural Information Processing Systems 28, edited by Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R., pp. 2377–2385, Curran Associates, Inc., URL: http://papers.nips.cc/
paper/5850-training-very-deep-networks.pdf, 2015.

Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker,
D. M., Li, P.-W., Golding, B., Xu, M., and Pinto, J.: Use of NWP for Nowcasting Convective Precipi-
tation: Recent Progress and Challenges, Bulletin of the American Meteorological Society, 95, 409–
426, https://doi.org/10.1175/BAMS-D-11-00263.1, URL: https://doi.org/10.1175/BAMS-D-11-00263.

https://www.meteo.be/meteo/download/fr/3040165/pdf/rmi_scpub-1261.pdf
https://www.meteo.be/meteo/download/fr/3040165/pdf/rmi_scpub-1261.pdf
https://www.dwd.de/DE/leistungen/radvor/radvor_info/abschlussbericht_radvor_op_2012_pdf.pdf
https://www.dwd.de/DE/leistungen/radvor/radvor_info/abschlussbericht_radvor_op_2012_pdf.pdf
http://journals.ametsoc.org/doi/abs/10.1175/2011JTECHA1496.1
http://journals.ametsoc.org/doi/abs/10.1175/2011JTECHA1496.1
https://www.sciencedirect.com/science/book/9781558605947
https://www.sciencedirect.com/science/book/9781558605947
https://link.springer.com/chapter/10.1007%2F978-3-319-73603-7_2
https://link.springer.com/chapter/10.1007%2F978-3-319-73603-7_2
http://ieeexplore.ieee.org/document/323794/
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf
http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf
http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf
https://link.springer.com/chapter/10.1007%2F978-3-319-59081-3_37
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf
https://doi.org/10.1175/BAMS-D-11-00263.1


BIBLIOGRAPHY 67

1, 2014.
Sutskever, I., Vinyals, O., and Le, Q. V.: Sequence to Sequence Learning with Neural Networks, in: Ad-
vances in Neural Information Processing Systems 27, edited by Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q., pp. 3104–3112, Curran Associates, Inc., URL: http:
//papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf, 2014.

Terry, J. P. and Feng, C.-C.: On quantifying the sinuosity of typhoon tracks in the western North Pacific
basin, Applied Geography, 30, 678–686, 2010.

Thorndahl, S., Einfalt, T., Willems, P., Nielsen, J. E., ten Veldhuis, M.-C., Arnbjerg-Nielsen, K., Ras-
mussen, M. R., and Molnar, P.: Weather radar rainfall data in urban hydrology, Hydrology and
Earth System Sciences, 21, 1359–1380, https://doi.org/10.5194/hess-21-1359-2017, URL: http://
www.hydrol-earth-syst-sci.net/21/1359/2017/, 2017.

Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E.,
and Yu, T.: scikit-image: image processing in Python, PeerJ, 2, e453, https://doi.org/10.7717/peerj.453,
URL: https://peerj.com/articles/453/, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.:
Attention is all you need, in: Advances in neural information processing systems, pp. 5998–6008, 2017.

Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C.: DeepFlow: Large Displacement Optical Flow
with Deep Matching, in: 2013 IEEE International Conference on Computer Vision, pp. 1385–1392, IEEE,
https://doi.org/10.1109/ICCV.2013.175, URL: http://ieeexplore.ieee.org/document/6751282/, 2013.

Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on
time averaging over short, modified periodograms, IEEE Transactions on audio and electroacoustics,
15, 70–73, 1967.

Wilson, J. W., Crook, N. A., Mueller, C. K., Sun, J., and Dixon, M.: Nowcasting Thunderstorms: A
Status Report, Bulletin of the American Meteorological Society, 79, 2079–2099, https://doi.org/
10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2, URL: https://journals.ametsoc.org/doi/abs/10.
1175/1520-0477%281998%29079%3C2079%3ANTASR%3E2.0.CO%3B2, 1998.

Winterrath, T. and Rosenow, W.: A new module for the tracking of radar-derived precipitation with model-
derived winds, Advances in Geosciences, 10, 77–83, https://doi.org/10.5194/adgeo-10-77-2007, URL:
http://www.adv-geosci.net/10/77/2007/, 2007.

Winterrath, T., Rosenow, W., and Weigl, E.: On the DWD quantitative precipitation analysis and now-
casting system for real-time application in German flood risk management, in: Weather Radar and
Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) IAHS Publ., vol. 351, pp.
323–329, URL: https://www.dwd.de/DE/leistungen/radolan/radolan_info/Winterrath_German_flood_
risk_management_pdf.pdf?__blob=publicationFile&v=4, 2012.

Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Walawender, E., Weigl, E., and
Becker, A.: Erstellung einer radargestützten Niederschlagsklimatologie, URL: ftp://ftp.dwd.de/pub/
data/gpcc/radarklimatologie/Dokumente/Endbericht_Radarklimatologie_final.pdf, last access: 29 June
2018, 2017.

Wolberg, G.: Digital Image Warping, IEEE Computer Society Press, 1990.
Wong, W. K., Yeung, L. H. Y., Wang, Y. C., and Chen, M.: Towards the blending of NWP with nowcast
- Operation experience in B08FDP, in: WMO symposium on nowcasting, URL: http://my.hko.gov.hk/
publica/reprint/r844.pdf, 2009.

Woo, W.-C. and Wong, W.-K.: Operational Application of Optical Flow Techniques to Radar-Based Rainfall
Nowcasting, Atmosphere, 8, 48, https://doi.org/10.3390/atmos8030048, URL: http://www.mdpi.com/
2073-4433/8/3/48, 2017.

Wulff, J. and Black, M. J.: Efficient Sparse-to-Dense Optical Flow Estimation Using a Learned Basis and
Layers, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Yeung, L. H. Y., Wong, W. K., Chan, P. K. Y., Lai, E. S. T., Yeung, L. H. Y., Wong, W. K., Chan, P. K. Y., and
Lai, E. S. T.: Applications of the Hong Kong Observatory nowcasting system SWIRLS-2 in support of the
2008 Beijing Olympic Games, in: WMO Symposium on Nowcasting, vol. 30, URL: http://my.hko.gov.hk/

https://doi.org/10.1175/BAMS-D-11-00263.1
https://doi.org/10.1175/BAMS-D-11-00263.1
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://www.hydrol-earth-syst-sci.net/21/1359/2017/
http://www.hydrol-earth-syst-sci.net/21/1359/2017/
https://peerj.com/articles/453/
http://ieeexplore.ieee.org/document/6751282/
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281998%29079%3C2079%3ANTASR%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0477%281998%29079%3C2079%3ANTASR%3E2.0.CO%3B2
http://www.adv-geosci.net/10/77/2007/
https://www.dwd.de/DE/leistungen/radolan/radolan_info/Winterrath_German_flood_risk_management_pdf.pdf?__blob=publicationFile&v=4
https://www.dwd.de/DE/leistungen/radolan/radolan_info/Winterrath_German_flood_risk_management_pdf.pdf?__blob=publicationFile&v=4
ftp://ftp.dwd.de/pub/data/gpcc/radarklimatologie/Dokumente/Endbericht_Radarklimatologie_final.pdf
ftp://ftp.dwd.de/pub/data/gpcc/radarklimatologie/Dokumente/Endbericht_Radarklimatologie_final.pdf
http://my.hko.gov.hk/publica/reprint/r844.pdf
http://my.hko.gov.hk/publica/reprint/r844.pdf
http://www.mdpi.com/2073-4433/8/3/48
http://www.mdpi.com/2073-4433/8/3/48
http://my.hko.gov.hk/publica/reprint/r843.pdf


68 BIBLIOGRAPHY

publica/reprint/r843.pdf, 2009.
Zahraei, A., lin Hsu, K., Sorooshian, S., Gourley, J. J., Lakshmanan, V., Hong, Y., and Bellerby, T.:
Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach, Atmospheric Research,
118, 418–434, https://doi.org/10.1016/j.atmosres.2012.07.001, URL: https://www.sciencedirect.com/
science/article/pii/S0169809512002219, 2012.

Zahraei, A., lin Hsu, K., Sorooshian, S., Gourley, J. J., Hong, Y., and Behrangi, A.: Short-term
quantitative precipitation forecasting using an object-based approach, Journal of Hydrology, 483,
1–15, https://doi.org/10.1016/j.jhydrol.2012.09.052, URL: https://www.sciencedirect.com/science/
article/pii/S0022169412008694, 2013.

Zanchetta, A. D. and Coulibaly, P.: Recent Advances in Real-Time Pluvial Flash Flood Forecasting, Water,
12, 570, 2020.

http://my.hko.gov.hk/publica/reprint/r843.pdf
http://my.hko.gov.hk/publica/reprint/r843.pdf
https://www.sciencedirect.com/science/article/pii/S0169809512002219
https://www.sciencedirect.com/science/article/pii/S0169809512002219
https://www.sciencedirect.com/science/article/pii/S0022169412008694
https://www.sciencedirect.com/science/article/pii/S0022169412008694

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	Introduction
	The state-of-the-art in nowcasting
	Going beyond the state-of-the-art
	The rise of deep learning
	The weather radar data
	Research questions and structure
	Contribution to Publications

	Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1)
	Abstract
	Introduction
	Description of the models and the library
	The Sparse group
	The Dense group
	Persistence
	The rainymotion Python library
	Operational baseline (RADVOR)

	Verification experiments
	Radar data and verification events
	Verification metrics

	Results
	Discussion
	Model comparison
	Advection schemes properties and effectiveness
	Computational performance

	Summary and conclusions

	RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting
	Abstract
	Introduction
	Model description
	Network architecture
	Optimization procedure

	Data and experimental setup
	Radar data
	Reference models
	Verification experiments and performance evaluation

	Results and discussion
	Summary and conclusions

	Quantifying the location error of precipitation nowcasts
	Abstract
	Introduction
	Methods and data
	Feature detection and tracking
	The error of predicted locations
	Extrapolation techniques
	Weather radar data and experimental setup
	Computational details

	Results and discussion
	Properties of collected tracks
	Visual examples of observed and predicted tracks
	Systematic quantification of the location error

	Conclusions

	Discussion and Сonclusions
	Bibliography



