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Abstract

Midbrain dopamine neurons invigorate responses by signaling opportunity costs (tonic

dopamine) and promote associative learning by encoding a reward prediction error

signal (phasic dopamine). Recent studies on Bayesian sensorimotor control have

implicated midbrain dopamine concentration in the integration of prior knowledge and

current sensory information. The present behavioral study addressed the contributions

of tonic and phasic dopamine in a Bayesian decision-making task by alternating reward

magnitude and inferring reward prediction errors. Twenty-four participants were asked

to indicate the position of a hidden target stimulus under varying prior and likelihood

uncertainty. Trial-by-trial rewards were allocated based on performance and two

different reward maxima. Overall, participants’ behavior agreed with Bayesian decision

theory, but indicated excessive reliance on likelihood information. These results thus

oppose accounts of statistically optimal integration in sensorimotor control, and suggest

that the sensorimotor system is subject to additional decision heuristics. Moreover,

higher reward magnitude was not observed to induce enhanced response vigor, and was

associated with less Bayes-like integration. In addition, the weighting of prior knowledge

and current sensory information proceeded independently of reward prediction errors.

Taken together, these findings suggest that the process of combining prior and

likelihood uncertainties in sensorimotor control is largely robust to variations in reward.

Keywords: Bayesian decision theory, reward prediction error, sensorimotor

control, prior-likelihood integration, dopamine
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Zusammenfassung

Inwieweit prägen Belohnungen die Integration von vorherigem Wissen und sensorischen

Informationen im Kontext der Bayesianischen Entscheidungstheorie? Untersuchungen

mit Parkinson-Patienten haben gezeigt, dass die Dopamin-Verfügbarkeit in den

Basalganglien Integrationsprozesse in der Sensomotorik beeinflussen. Dopaminerge

Neuronen schütten Dopamin tonisch und phasisch aus, wobei diese Modi verschiedenen

Funktionen unterliegen, wie dem Signalisieren von Opportunitätskosten oder der

Unterstützung assoziativen Lernens. Die Konzentration tonisch freigesetzten Dopamins

richtet sich nach Belohnungsgrößen, wogegen phasische Dopamin-Komponenten durch

Fehler in der Belohnungserwartung hervorgerufen werden. Die Bedeutung dieser

Variablen in sensomotorischem Lernen ist jedoch größtenteils unerforscht. In der

vorliegenden Verhaltensstudie wurden vierundzwanzig gesunde Teilnehmer gebeten, eine

sensomotorische Schätzaufgabe durchzuführen, in der Belohnungsgrößen manipuliert

und Belohnungserwartungsfehler abgeleitet wurden. Es wurde vermutet, dass positive

Abweichungen in der Belohnungsvorhersage zu erhöhter Gewichtung von sensorischen

Informationen durch den Influx phasischen Dopamins führen. Höhere Belohnungsgrößen

sollten dagegen aufgrund vermehrter Opportunitätskosten mit beschleunigten

Reaktionen verbunden sein. Das Verhalten der Teilnehmer hat gezeigt, dass aktuelle

und a priori Informationen größtenteils unabhängig von Belohnungsgrößen und

Belohungserwartungsfehlern integriert werden. Dieses Ergebnis deutet darauf hin, dass

“Prior” und “Likelihood” unabhängig von belohnungsrelevanten Prozessen repräsentiert

werden, welche in Zusammenhang mit der Dopamin-Konzentration in den Basalganglien

stehen. Darüber hinaus entsprachen die Resultate lediglich qualitativ der

Bayesianischen Entscheidungstheorie und widersprechen somit früheren Berichten von

statistisch-optimaler Integration. Da sensorische Informationen über alle Bedingungen

hinweg übermäßig hoch gewichtet wurden, legt diese Studie nahe, dass das

sensomotorische System zusätzlichen systematischen Urteilsverzerrungen unterliegt.

Schlüsselwörter: Belohnungserwartungsfehler, Belohnungsgrößen, Bayesianische

Entscheidungstheorie, sensomotorische Integration, Dopamin
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Reward and Prediction Errors in Bayesian Sensorimotor Control

To reach metamorphosis, the Japanese oakblue butterfly employs a curious

strategy involving sophisticated manipulation of neurochemistry and ants (Hojo, Pierce,

& Tsuji, 2015). While in its larvae stage, the oakblue secretes a fluid which, once

ingested, causes ants to abandon their colonies and direct their efforts into protecting

the caterpillar from nearby predators (Heil, 2015; Hojo et al., 2015). Hojo et al. (2015)

found that ants which consumed the caterpillar’s secretions tend to neglect alternative

food sources, and display altered levels of the neurotransmitter dopamine. In humans,

dopamine is implicated in a wide range of areas, including sleep (Monti & Monti, 2007),

personality (Depue & Collins, 1999), addiction (Wise, 1996), reward processing (Olds &

Milner, 1954), and motor control (Carlsson, Lindqvist, Magnusson, & Waldeck, 1958).

Notably, midbrain dopamine neurons are involved in motivation by signaling

opportunity costs for action, and in associative learning by encoding an error between a

prediction and a reward (Niv, Daw, Joel, & Dayan, 2007; Schultz, Dayan, & Montague,

1997). Within the framework of Bayesian decision theory, midbrain dopamine

concentration has recently been linked to alterations in sensorimotor learning (Vilares &

Kording, 2017). The present study investigates the impact of reward on sensorimotor

integration within the framework of Bayesian statistics. Specifically, it is examined

whether reward magnitude affects response vigor, and whether reward prediction errors

lead to a differential weighting of prior knowledge and current sensory information.

The Neurobiology of Action and Reward

Located within the basal ganglia, the putamen and caudate form the dorsal

striatum, a midbrain structure implicated in motor control, as well as movement

planning and learning (Alexander & Crutcher, 1990; Alexander, DeLong, & Strick,

1986; Graybiel, 1990). The dorsal striatum receives dopaminergic input via the

nigrostriatal pathway from the A9 dopamine cell cluster of the substantia nigra pars

compacta (SNc) (Dahlstroem & Fuxe, 1964; Glimcher, 2011). Atrophy to dopaminergic

neurons of the SNc leads to a reduction of dopamine within the striatum, a core feature
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of the neurodegenerative disorder Parkinson’s Disease (PD), which is marked by motor

symptoms, such as tremors and bradykinesia (Damier, Hirsch, Agid, & Graybiel, 1999;

Lotharius & Brundin, 2002). Other dopamine emitting neurons in humans are

contained in the A8 and A10 groups of the ventral tegmental area (VTA), from which

the mesolimbic pathway connects to the ventral striatum, including the nucleus

accumbens (Swanson, 1982). Other efferent pathways project to widespread regions of

the frontal cortex and the amygdala by virtue of the neurons’ extensive axonal branches

(Daw & Tobler, 2014; Glimcher, 2011; Matsuda et al., 2009). Crucially, dopamine

neurons are simultaneously implicated in reward processing, and interact with motor

control and action selection by affecting neural plasticity and neurotransmitter release

in the basal ganglia (Daw & Tobler, 2014; Reynolds & Wickens, 2002).

The mechanics of dopamine release for action in the striatum are split into two

distinct neural firing modes: tonic and phasic neural activity (Grace, 1991; Maia &

Frank, 2011). Tonic dopamine discharge is characterized by a relatively slow and erratic

firing rhythm (Dreyer, Herrik, Berg, & Hounsgaard, 2010; Grace & Bunney, 1984b). By

releasing dopamine into the extracellular space, tonic dopamine responses determine the

baseline reactivity of the midbrain dopamine system (Goto, Otani, & Grace, 2007;

Grace, 1991). In contrast, phasic neural firing is marked by a brief but vigorous burst

spike firing pattern, elevating intrasynaptic dopamine concentration within the striatum

(Grace & Bunney, 1984a). Phasic dopamine neuron activity is triggered by salient

stimuli, but its overall amplitude is dependent on the tonic dopamine level (Grace,

1991). Both neural firing modes underlie distinct yet occasionally overlapping purposes;

tonic dopamine has been largely associated with motivation, whereas phasic activity is

linked to learning stimulus-reward associations, and has become a crucial component in

classical conditioning and reinforcement learning models (Cagniard, Balsam, Brunner,

& Zhuang, 2006; Hamid et al., 2016; Salamone & Correa, 2012; Schultz et al., 1997;

Sutton & Barto, 1998).

Behavioral Dopamine Signatures. Reward-driven behavior offers a window

on the motivational effects of tonic dopamine. For example, Guitart-Masip, Beierholm,
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Dolan, Duzel, and Dayan (2011) assessed reaction times in an oddball discrimination

task, incentivizing detection of deviant stimuli on a trial-by-trial basis with varying

reward magnitudes. Immediate rewards were not linked to response vigor, but reaction

times were correlated negatively with an average reward rate signal (Guitart-Masip

et al., 2011). Tonically active dopamine neurons are hypothesized to carry these average

reward rate signals to the nucleus accumbens within the ventral striatum, where

dopamine signals opportunity costs for action (Niv et al., 2007). Since subjective

reward value is degraded by temporal discounting, higher average reward evokes greater

potential costs, thereby galvanizing an organism into responding more vigorously (Niv

et al., 2007; Shadmehr, de Xivry, Xu-Wilson, & Shih, 2010). Beierholm et al. (2013)

corroborated the involvement of tonic dopamine in response speed by combining the

oddball paradigm with a pharmacological intervention. Healthy participants either

received citalopram, which blocks the reuptake of serotonin, L-Dopa , which elevates

dopamine levels, or a placebo (Beierholm et al., 2013; Schultz, 1998). The researchers

found that response speed was predicted by average reward rate, and that this link was

more pronounced under L-Dopa (Beierholm et al., 2013).

Classical conditioning illuminates the functions of phasic dopamine activity. Using

optogenetic tools in mice, Tsai et al. (2009) compared the reinforcing properties of tonic

and phasic neural firing in the conditioned place paradigm. Light pulses were delivered

to VTA dopamine neurons at 1 Hz or 50 Hz to induce tonic or phasic firing,

respectively, pairing each mode of delivery with a certain chamber. After conditioning,

mice were observed to spend more time in the chamber that was associated with 50 Hz

stimulation, demonstrating that phasic dopamine activity provides a potent reinforcing

signal for associative learning (Tsai et al., 2009). Moreover, a crucial observation is that

associative learning depends on the uncertainty of the predictors, a notion signified by

the ’blocking’ effect (Daw & Tobler, 2014; Kamin, 1969). If a stimulus has come to

entirely predict the delivery of a reward, learning will be impaired for any additional

stimuli paired with the reward-predictive stimulus (Schultz et al., 1997; Tobler,

O’Doherty, Dolan, & Schultz, 2006). These findings suggest that reward-driven learning
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is dependent on errors (Daw & Tobler, 2014; Tobler et al., 2006).

The Reward Prediction Error Signal. Electrophysiological recordings

indicate that errors are carried by phasic dopamine activity (Schultz et al., 1997). For

instance, Hollerman and Schultz (1998) used microelectrodes to record dopamine

neurons in monkey SNc and VTA during a picture discrimination task. During the

initial stages of learning, administration of a juice reward triggered an excitatory phasic

dopamine signal, which progressively waned as the monkeys learned to associate the

picture to the reward. In addition, omission of an expected reward drove dopamine

activity below baseline, suggesting that midbrain dopamine neurons code for the

temporal and absolute divergence between expectation and reward (Hollerman &

Schultz, 1998; Schultz et al., 1997). Moreover, in a study by Pessiglione, Seymour,

Flandin, Dolan, and Frith (2006), midbrain dopamine neurons were recorded via fMRI

during an instrumental learning task under haloperidol or L-Dopa treatment.

Prediction errors were associated with increased activation in the ventral striatum and

posterior putamen, modulated by overall dopamine availability, and predicted the rate

of learning in a computational model (Pessiglione et al., 2006). Thus, the reward

prediction error (RPE) has become established as a behavioral ’teaching’ signal

(Pessiglione et al., 2006; Schultz et al., 1997).

These discoveries about the midbrain dopamine system coincided with previous

advances in classical conditioning and reinforcement learning, a computer science

discipline concerned with error-dependent learning (Daw & Tobler, 2014; Montague,

Dayan, & Sejnowski, 1996; Sutton & Barto, 1998). Specifically, the magnitude of the

RPE signal at a given trial (δk) was observed to correspond closely to the predictions of

the Rescorla – Wagner (1972) learning rule (Daw & Tobler, 2014; Schultz et al., 1997):

δk = Rk − Vk(sk) (1)

Here, Rk represents a received reward, and Vk(sk) expresses a reward prediction

associated with a predictive stimulus (Daw & Tobler, 2014; Schultz, 2007a). Moreover,

predictions about reward value on upcoming trials (Vk+1) are updated by multiplying

the RPE with the learning rate (α), and adding the product to the current reward value



REWARD IN BAYESIAN SENSORIMOTOR CONTROL 9

estimate (Daw & Tobler, 2014):

Vk+1(sk) = Vk(sk) + α · δk (2)

In this iterative equation, the free parameter α determines the manner in which current

value estimates are swayed by the reward history. If α approaches one, only the most

recent rewards take substantial effect, whereas α values close to zero consider a more

extended range of previous rewards (Bayer & Glimcher, 2005). Thus, this algorithm

computes a weighted average comprised of all previous rewards received, whereby

reward weights follow a pattern of exponential decay (Bayer & Glimcher, 2005; Daw &

Tobler, 2014). Advances in reinforcement learning have further shown that midbrain

dopamine neuron activity can be captured by considering equations 1 and 2 at specific

points in time instead of trials using temporal difference learning algorithms, which

helped to account for phenomena such as blocking or secondary conditioning (Schultz

et al., 1997; Sutton & Barto, 1998).

Reward Uncertainty Coding. In addition, midbrain dopamine neurons are

implicated in propagating reward probability (Schultz, 2007b). In a study by Fiorillo,

Tobler, and Schultz (2003), monkeys were trained to associate visual stimuli with

varying probabilities of future reward while midbrain dopamine neuron activity was

recorded via microelectrodes. A large phasic RPE response followed the delivery of

reward when the visual stimulus indicated a reward probability of zero. In line with

previous experimental findings, the RPE at the point of reward administration

gradually decreased as the reward probability of the cue approached one (Hollerman &

Schultz, 1998). Moreover, the researchers observed a novel sustained dopamine response

that was maximal for the highest amount of reward uncertainty (P = .5), and increased

from the point of cue onset to the moment of reward delivery. The amplitude of this

uncertainty signal was similar for intermediate reward probabilities (P = .25 versus

P = .75). The authors reasoned that this dopaminergic uncertainty signal is involved in

learning and risk-taking behavior, though its behavioral functions are still subject to

debate (Fiorillo et al., 2003; Schultz, 2007b). The uncertainty signal also shares

commonalities with phasic dopamine responses, and recent theories on dopamine in
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decision-making have implicated RPEs in transmitting uncertainty as well (Fiorillo

et al., 2003; Friston et al., 2012).

The Computational Basis of Sensorimotor Learning

Uncertainty is a critical component in sensing, perceiving, and acting on the world

(Berniker & Kording, 2010; Vilares, Howard, Fernandes, Gottfried, & Kording, 2012).

Visual input, for example, is constrained by the environment (e.g., the number of

available photons to be absorbed by the eyes), the anatomical layout of the nervous

system (e.g., the distribution of photoreceptors across the retina), and neural noise at

every stage of the sensory machinery (e.g., random fluctuations in firing rates of neurons

in visual cortex) (Faisal, Selen, & Wolpert, 2008; Knill & Pouget, 2004; Tolhurst,

Movshon, & Dean, 1983). The motor system similarly faces noise, for example, in motor

commands and muscle cells, contributing to the inherent variability of movements

(Trommershäuser, Maloney, & Landy, 2003; Wolpert & Ghahramani, 2009). How does

the nervous system compute a reliable model of the external world in the presence of

uncertainty? Recent studies on sensorimotor control have considered perception and

motor behavior as probabilistic processes, and have applied Bayes’ theorem to the study

of the nervous system (Knill & Pouget, 2004; Kording & Wolpert, 2004).

Consider the basic problem of inferring the properties of a stimulus given some

noisy information; this could refer to estimating the velocity of an approaching car, or

the position of a light switch at night (Seriès & Seitz, 2013; Wolpert & Ghahramani,

2009). In Bayesian decision theory, these scenarios are expressed as hypotheses about a

state of the world A given an observation B. The final estimate P (A |B) is referred to

as the posterior distribution, and is computed by combining current sensory

information P (B | A) with prior knowledge P (A), and dividing by the normalizing

constant P (B) (Bays & Wolpert, 2007; Tenenbaum, Kemp, Griffiths, & Goodman,

2011; Vilares & Kording, 2011):

P (A |B) = P (B | A) · P (A)
P (B) ∝ P (B | A) · P (A) (3)

Bayes’ rule is interpreted as providing the degree to which the prior P (A) should be
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updated by the likelihood P (B | A) (Vilares & Kording, 2011). This process depends on

the uncertainty associated with each predictor; locating a light switch under low

illumination might prompt more reliance on prior knowledge. Crucially, a set of recent

studies have indicated significant overlap between behavioral observations and

statistically optimal predictions derived from Bayesian decision theory (Knill & Pouget,

2004; Kording & Wolpert, 2004; Vilares et al., 2012).

Behavioral Correlates of Bayesian Inference. Visuomotor integration

exemplifies Bayesian inference in the nervous system. For example, Kording and

Wolpert (2004) asked their participants to execute a reaching movement toward a visual

target while their hands were blocked from view. At the midway point, participants

were given feedback about the finger position with a lateral shift that was drawn from a

Gaussian distribution (likelihood). After repeated trials, participants learned the

average lateral displacement of the finger position (prior). On subsequent trials, end

positions of the reaching movements indicated that participants integrated their prior

knowledge with the visual feedback (Kording & Wolpert, 2004). Moreover, in a rapid

pointing task, Tassinari, Hudson, and Landy (2006) observed that motor behavior

echoes the integration of prior and likelihood information as well. In addition, when the

researchers increased the uncertainty of sensory information, participants’ aim points

more closely matched the learned prior distribution. Studies on time and motion

perception further substantiate the notion that the nervous system generates

predictions about the world that are in agreement with Bayesian statistics (Berniker,

Voss, & Kording, 2010; Miyazaki, Nozaki, & Nakajima, 2005; Weiss, Simoncelli, &

Adelson, 2002).

Multimodal cue integration provides an additional area of application for Bayes’

theorem (Vilares & Kording, 2011). In the McGurk effect, for instance, hearing ’ba’

while simultaneously viewing a silent lip recording of ’ga’ leads people to perceiving the

syllable ’da’ (McGurk & MacDonald, 1976). Rather than fully relying on a single

modality, the sensory system combines input from both modalities to provide a unified

percept (Vilares & Kording, 2011). This pattern has also been observed in the
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ventriloquist effect that is argued to originate from close-to-optimal integration of visual

and auditory information (Alais & Burr, 2004). Moreover, in a study by Ernst and

Banks (2002), participants were provided with visual and proprioceptive feedback about

the position of a bar, and had to estimate its height. Contrary to the phenomenon of

visual dominance, the authors observed that participants relied more on haptic

information as the visual feedback of the bar was rendered increasingly uncertain. This

suggests that the nervous system combines cues from multiple modalities by taking into

account their uncertainties in a way that is close to the statistical optimum (Alais &

Burr, 2004; Ernst & Banks, 2002; Kersten, Mamassian, & Yuille, 2004).

Bayesian Uncertainty Coding. How does the brain represent uncertainty in

Bayesian integration? Beierholm, Quartz, and Shams (2009) employed a multisensory

spatial localization task to demonstrate that prior uncertainty is encoded independently

from current sensory information. Between two experimental sessions, the researchers

altered the contrast of visual cues (informative versus uninformative likelihood), and

observed that participants’ prior representations remained unchanged (Beierholm et al.,

2009). Furthermore, Vilares et al. (2012) employed fMRI during a Bayesian

decision-making task in which prior and likelihood uncertainty were systematically

modified; in different experimental blocks, participants learned the distribution of a

target stimulus that was sampled from a wide or narrow Gaussian distribution, while

receiving a trial-by-trial likelihood cue that was either high or low in uncertainty.

Increased likelihood uncertainty was associated with activation in the visual cortex,

whereas prior uncertainty encompassed distributed activation within the limbic system

and the basal ganglia, including the amygdala and putamen. Significantly, the authors

hypothesized that enhanced activity in the putamen may signal prior uncertainty,

thereby initiating an orienting response toward current sensory information (Vilares

et al., 2012).

Finally, Vilares and Kording (2017) recently implicated the midbrain dopamine

system in Bayesian integration. The authors conducted a similar Bayesian

decision-making task as Vilares et al. (2012) with PD patients on and off dopaminergic
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medication. Patients on L-Dopa medication were observed to place more weight on

current sensory input than prior knowledge. This difference in sensory weights was

more pronounced for patients that had recently been diagnosed with PD, which is

hypothesized to be related to the capacity of medication to restore dopamine

functioning. PD patients were not impaired at learning prior distributions, but rathered

differed in the extent to which they sought out sensory information under dopaminergic

medication (Vilares & Kording, 2017). Furthermore, Ting, Yu, Maloney, and Wu (2015)

assessed participants’ integration of prior knowledge and current sensory information in

the context of reward probabilities. The researchers found that the integration of prior

and likelihood was partly associated with activity in the ventral striatum (Ting et al.,

2015). Taken together, this suggests that the midbrain dopamine system might be

directly involved in sensorimotor control (Ting et al., 2015; Vilares & Kording, 2017).

The purpose of the present study was to investigate the implications of reward in

Bayesian decision theory. Participants completed a Bayesian decision-making task that

was adopted from previous studies by Vilares et al. (2012) and Vilares and Kording

(2017), and received rewards depending on performance. Reward magnitude was

manipulated, and RPEs were computed by taking into account the history of received

rewards. First, participants were anticipated to integrate prior and likelihood

information in agreement with Bayesian decision theory. In addition, reward magnitude

was expected to be related to response speed; higher rewards on average should lead to

enhanced response vigor but not accuracy or differences in sensorimotor integration

(Niv et al., 2007). Moreover, given the role of prediction errors in learning, it was

expected that RPEs mediate the balancing of prior and likelihood integration on a

trial-by-trial basis; if the integration of prior and likelihood is affected by dopamine,

positive RPEs should lead to higher reliance on the likelihood by virtue of phasic

dopamine release. This effect was expected to be stronger when average reward was

high since tonic dopamine has been observed to enable phasic firing (Grace, 1991;

Pessiglione et al., 2006).
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Methods

Participants

Twenty-one female and three male students from the University of Potsdam gave

informed consent, and performed the experiment in exchange for monetary

compensation or a combination of course credits and a small bonus payment. Based on

the effect size for medication type (η2
p = .04) reported by Vilares and Kording (2017),

an a priori power analysis via G*Power yielded a minimum sample size of eighteen to

detect a similar effect with ninety-five percent power (Faul, Erdfelder, Lang, & Buchner,

2007; Lakens, 2013). The participants’ ages ranged from eighteen to forty-one

(M = 26.96, SD = 6.33), and none indicated impairments to their physical or

psychological well-being. All participants had normal or corrected-to-normal vision,

except for one participant with an unilateral open-angle glaucoma. After completing

several practice trials, this participant did not report any perceptual difficulties related

to the task, and was therefore cleared to complete the experiment. Twenty-two

participants were right-handed and none indicated having consumed alcohol during the

preceding twelve hours. Students that had previously participated in a sensorimotor

learning seminar were excluded, so that all participants were naïve to the purpose of the

experiment.

Materials

Participants were informed about the course of the experiment via an informed

consent sheet that was adapted from the World Health Organization (2011). An

additional demographic questionnaire asked the participants about their biological sex,

handedness, state of mind, current substance use and vision. After the experiment, the

participants were debriefed about the purpose of the experiment and given a form that

listed the experimental hypotheses, as well as contact details and further readings.

Participants also provided their bank details for payment, and were able to indicate an

email address in case they wished to be informed about the results of the study.
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Apparatus

The experiment was run on a Dell Precision Tower 3620, and implemented in

GNU Octave using the Psychophysics Toolbox Version 3 (Brainard, 1997; Kleiner,

Brainard, & Pelli, 2007; Pelli, 1997). Participants were seated 70 cm in front of a EIZO

FORIS FS2735 computer screen (68.5 cm, 2560 x 1440 Pixels, 144 Hz). Responses were

recorded via a Dell Optical Mouse MS116.

Task

The main task consisted of moving a vertical bar to the suspected position of a

concealed target stimulus (see figure A1). During the experiment, the task was

illustrated via a ball game scenario. Participants were asked to guess the landing

position of an approaching yellow ball (target), thrown by a fictive player standing at a

fixed location behind the computer screen. Five gray balls (cue cloud) preceded the

target, and gave the participants an indication about the upcoming position of the

yellow ball. After making a guess, the target was shortly displayed so that participants

could learn about the player’s throwing behavior. The link between the cue cloud and

the target was intentionally kept uncertain in order to prevent participants from

developing systematic decision-making biases. Between blocks, the participants were

informed that the fictive player might be replaced by another player. Optimally

estimating the position of the target required integrating information about the fictive

players’ throwing behavior and the dispersion of the cue cloud. Additionally, the

accuracy of participants’ estimates determined the amount of the trial-by-trial bonus

payments.

Stimuli

On every trial, the horizontal target coordinate was drawn from a Gaussian

distribution centered on the screen, varying in standard deviation depending on prior

condition and experimental block (µP = .5, σP = .085 ∩ σP = .025). Vertical target

locations were chosen from a uniform distribution covering the central twenty percent of
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the screen (U (.4, .6)). The cue coordinates were drawn from Gaussian distributions

centered on the target’s horizontal and vertical locations. The horizontal dispersion of

the cue cloud was varied within blocks according to one of two likelihood conditions

(σL = .15 ∩ σL = .06), whereas the vertical expanse was set to a fixed value (σV = .05).

The parameter values of the Gaussian distributions were adapted from previous studies

by Vilares et al. (2012), as well as Vilares and Kording (2017). During the training

session, target and cue coordinates were sampled from uniform distributions to forestall

potential carry-over effects (UX (.05, .95) , UY (.4, .6)). The target appeared in yellow,

and the cues in dark gray, both covering one percent of the screen width in diameter.

The vertical bar was set to dark gray and one pixel in width.

In addition, trial-by-trial bonus payments were determined via an interval that

was centered on the horizontal target coordinate, covering eight percent of the screen

width. Reward amount decreased bilaterally from the midpoint in a linear fashion.

Depending on the experimental block, participants could earn a maximum of 2 or .5

cents per trial. A similar previous study that was conducted at the faculty gave an

indication about participants’ accuracy in such tasks (M = .044, SD = 0.037), and

informed the definition of the linear equation.

Procedure

After completing the informed consent and demographic questionnaire forms,

participants were seated individually in a dimly lit cabin and instructed to visualize the

ball game scenario. After completing ten practice trials, the experimenter consulted

with the participants to clarify any remaining questions. Participants were able to

trigger each trial by moving the mouse cursor over a central fixation cross. After 250

ms, the fixation cross vanished and the cue cloud was continuously displayed on the

screen. There was no time constraint on participants’ responses, and the vertical bar

always appeared at the middle of the screen at the start of each trial. Once participants

confirmed their placement of the vertical bar, the target was shown for 250 ms.

Subsequently, the amount of the bonus payment was presented for 1000 ms.
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Bonus payments were cumulative and added to a fixed amount of seven euros or

course credit. The total bonus payment earned was displayed on the screen after

completion of the fourth block (M = 4.225, SD = .326). It took participants

approximately sixty minutes to complete the experiment, while each response lasted

1.65 seconds on average (SD = 1.31). At the end of the experiment, all participants

were debriefed.

Data Analysis

The purpose of the experiment was to analyze participants’ responses in a

sensorimotor learning task under reward within the framework of Bayesian inference.

For each trial, optimal estimates for the integration of prior knowledge and sensory

information were given by Bayes’ rule (Kording & Wolpert, 2004; Vilares et al., 2012):

Xopt = σ2
L

σ2
L + σ2

P

µP + σ2
P

σ2
L + σ2

P

µL (4)

Since both fictive players aimed at the center of the screen, the mean of the prior

distribution (µP ) was a constant at .5. Variation in the players’ throwing behavior was

linked to the standard deviation of the prior (σP ), which was set to .085 or .025. The

dispersion of the cue cloud referred to the variance of the likelihood (σL), which assumed

one of two factor levels (.15 or .06). Finally, the average horizontal position of the cue

cloud determined the mean of the likelihood distribution (µL) (Vilares et al., 2012).

Moreover, this study was concerned with analyzing participants’ reliance on

sensory information between reward conditions. Equation 4 was restated to indicate the

optimal dependence on likelihood information (sensory weight) on each trial (Vilares &

Kording, 2017):

sw = Xopt − µP

µL − µP

(5)

Optimal sensory weights were compared to participants’ behavior by substituting Xopt

in equation 5 with participants’ target estimates. A logistic transformation was applied

to the obtained sensory weights (1/(1 + e−SWk)) to limit their range to zero to one

(Vilares & Kording, 2017). Sensory weights equal to one indicated exclusive reliance on
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likelihood information while sensory weights of zero indicated complete reliance on prior

knowledge (Vilares & Kording, 2017).

Furthermore, participants’ prior means were inferred to augment the sensory

weight analysis. To this end, target estimates were analyzed as a function of the

centroid of the cue cloud (equation 4), and the associated intercept was computed by

rearranging the formula to give β0 = σ2
L/(σ2

L + σ2
P )µP (Vilares & Kording, 2017). Prior

means were then inferred for each combination of prior and likelihood, assuming that

participants behaved in accord with Bayesian decision theory (Vilares & Kording, 2017):

µ̂P = β0

1− sw (6)

Finally, trial-by-trial variations in sensory weight (equation 5) were investigated as

a function of RPEs. On every trial, RPEs were calculated by subtracting the expected

reward value from the actual reward received (see equation 1). Expected values were

updated according to equation 2. For subsequent analyses, the reward prediction error

at k − 1 was used to predict sensory weights in trial k. The reinforcement model was

initiated separately with varying learning rate parameters (.2 versus .5 versus .8). At

the start of each block, expected values were reset to zero.

Statistical Analysis and Design

The experiment comprised a 2 x 2 x 2 balanced repeated measures design with one

time-varying covariate (N = 600). The independent variables were prior (narrow versus

wide), likelihood (narrow versus wide), reward (high versus low), and RPE ([−1, 1]).

Participants’ horizontal estimate coordinates were transformed according to equation 5,

and served as dependent variable. Reaction times and absolute target deviations were

recorded for additional analyses. The experiment was divided into four blocks of 150

trials each, and included 10 practice trials. Within blocks, prior and reward were held

constant so that participants were exposed to each level twice, yielding a total of

twenty-four possible permutations. Levels of the likelihood factor were randomly

interspersed and evenly distributed within each block. RPEs were inferred in retrospect
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via equations 1 and 2. Moreover, responses faster than 100 ms or slower than 10

seconds were excluded from the analysis (Baayen & Milin, 2010; Whelan, 2008).

Statistical analyses were carried out in R using the packages tidyverse, lme4,

lmerTest, psycho, car, and optimx (Bates, Mächler, Bolker, & Walker, 2015; Fox &

Weisberg, 2011; Kuznetsova, Brockhoff, & Christensen, 2017; Makowski, 2018; Nash,

2014; Nash & Varadhan, 2011; R Core Team, 2017; Wickham, 2017). Linear

mixed-effects models fitted by maximum likelihood were specified to analyze

participants’ reaction times, target deviations, and sensory weights. While these models

comprised different main effects and interactions dependent on the experimental

hypotheses, they shared a similar effects structure. Each independent variable was

treated as a fixed effect, allowed to have a random slope, and a corresponding random

intercept was assumed for each participant. Interactions were entered as fixed effects

only. In addition, hypothesis tests were carried out with t-tests using Satterthwaite’s

method (Kuznetsova et al., 2017). Moreover, a cube root transformation was applied to

the target deviations, and reaction times were adjusted via a logarithmic

transformation. Subsequent plots of all dependent variables’ distributions were visually

inspected to confirm normality. An optimizer was employed if a model failed to

converge initially.

Reaction times were analyzed with a single mixed-model, whereas target

deviations and sensory weights were analyzed with separate mixed-models for RPEs

that were computed with different learning rates (.2 versus .5 versus .8). In the

exploratory analysis, target deviations and sensory weights were also tested with models

that included the most extreme RPE values (RPE > .5 ∩ RPE < −.5) and RPE as a

two-level factor (positive versus negative), and an additional trial-based analysis

inspected sensory weights during different intervals of the experiment. Additional one-

or two-sample t-tests were employed to test participants’ sensory weights against a

Bayes-optimal and a senses-only model, and to examine differences between

participants’ inferred prior means and the imposed prior mean. For all graphical

representations, confidence intervals were computed using the Cousineau-Morey method
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for within-subject designs (Morey, 2008; Pohlitzer-Ahles, 2018). Finally, application of a

family-wise error rate correction was rejected since hypotheses during the main analysis

and post-hoc testing were clearly defined (Armstrong, 2014; Streiner & Norman, 2011).

Results

This study was designed to test the integration of prior knowledge and current

information under reward in a sensorimotor estimation task. Two different prior and

likelihood distributions were presented during four experimental blocks, and a monetary

reward was administered on each trial based on participants’ performance and two

varying reward maxima. RPEs were computed in retrospect based on each participant’s

reward history. This experimental design allowed to investigate the effects of reward

magnitude and prediction errors on the integration of prior and likelihood.

Main Analysis

Mean estimates for reaction times, target deviations, and sensory weights per

experimental condition are displayed in table B1. Participants exhibited speeded

responses when prior and likelihood distributions were both narrow instead of wide.

When only one of the distributions was narrow, participants reacted quicker to

likelihood information. Higher rewards elicited faster responses when the prior

distribution was wide, but this trend reversed when the prior distribution was narrow.

Furthermore, participants’ accuracy increased from wide to narrow prior and likelihood

distributions. Narrow likelihood distributions paired with a wide prior outperformed

wide likelihood distributions together with a narrow prior. Finally, sensory weights were

higher for narrow than for wide likelihoods conditional on prior distributions. Reward

only had a marginal effect on target deviations and sensory weights.

Table C1 depicts the results of the linear mixed-model analysis for reaction time.

There was a significant main effect of likelihood (t (24.02) = 6.196, p < .001), suggesting

that participants reacted faster when presented with narrow likelihoods. The main

effects of prior (t (24) = 1.579, p = .128) and reward (t (24) = .545, p = .591) were not

significant, but a significant interaction between prior and reward (t (14150) = −4.851,
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p < .001) was found. This implies that the effect of reward was different for the two

prior conditions depending on reward; Participants reacted quicker to high rewards

when prior uncertainty was high, but slower when prior uncertainty was low. In

addition, there was an interaction between prior and likelihood reward

(t (14150) = 2.105, p = .035), suggesting that the effect of narrow likelihoods was

stronger under low prior uncertainty (see figure D1). These findings are in contrast to

the hypothesis that reward enhances response vigor.

Next, participants’ task accuracy was assessed with a linear mixed-model (see

table C1). Results are reported for a learning rate of .5 since RPE effects were

qualitatively similar for varying learning rates. The main effects of prior

(t (23.98) = −7.476, p < .001) and likelihood (t (24.03) = −19.108, p < .001) were

statistically significant. This finding indicates that participants were more accurate

when prior and likelihood uncertainty decreased. There was also a significant interaction

between prior and likelihood (t (14160) = 4.838, p < .001), and visual inspection

suggested that there was less divergence in accuracy between prior conditions for narrow

compared to wide likelihoods. The main effects of reward (t (26.03) = 1.275, p = .214)

and RPE (t (27.52) = .54, p = .593) were not significant. Figure E1(A) depicts mean

target deviations for each combination of prior and likelihood averaged over reward.

Furthermore, results for participants’ sensory weights are shown in table C1.

Results are reported for a learning rate of .5. There were significant main effects of

prior (t (24.14) = −7.873, p < .001) and likelihood (t (41.27) = 6.33, p < .001);

participants increased or decreased their sensory weights when presented with a narrow

likelihood or prior distribution, respectively. The main effects of reward

(t (47.94) = −.889, p = .378) and RPE (t (40.94) = .211, p = .834), and the interaction

between reward and RPE (t (14150) = −.795, p = .427) did not reach statistical

significance, indicating that sensory weights were not sensitive to changes in reward.

These findings are not in line with the expectation that prediction errors modulate

reliance on likelihood information, and that the effects of RPE are stronger under high

reward. However, there was a significant interaction between prior and reward
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(t (14170) = 2.451, p = .014). Compared to low reward, sensory weights were elevated

for narrow priors under high reward, and decreased for wide priors. Figure F1 depicts

how participants adjusted their sensory weights when presented with varying degrees of

uncertainty and different reward magnitudes.

Several one-sample t-tests were conducted to test whether participants’ sensory

weights were in agreement with Bayesian statistics. These tests were statistically

significant for each combination of prior and likelihood (pl: t (23) = 16.52, p < .001, pL:

t (23) = 47.237, p < .001, Pl: t (23) = −38.574, p < .001, PL: t (23) = 3.934, p = .001),

indicating that participants’ sensory weights were not Bayes-optimal. Moreover, when

comparing sensory weights to a senses-only model, t-tests for each experimental

condition were significant (pl: t (23) = −38.385, p < .001, pL: t (23) = −38.866, p < .001,

Pl: t (23) = −53.542, p < .001, PL: t (23) = −44.261, p < .001). This finding suggests

that participants’ sensory weights were different from a hypothetical observer not taking

into account prior knowledge. Differences in sensory weights between participants, the

Bayesian optimum, and the senses-only model are captured in figure G1A.

In addition, inferred prior means are depicted in figure H1. The differences

between participants’ prior estimates and the actual prior mean were statistically

significant for each combination of prior and likelihood (pl: t (23) = −2.1, p = .047; pL:

t (23) = 7.139, p < .001; Pl: t (23) = −205.22, p < .001; PL: t (23) = −13.523, p < .001).

These tests show a discrepancy between participants’ prior estimates and the imposed

mean across conditions. This pattern held true when the first twenty trials of each

block were excluded to account for learning effects (Vilares & Kording, 2017).

Exploratory Analysis

To contrast positive and negative RPEs, additional linear mixed-models for target

deviation and sensory weight were analyzed with RPE as a two-level factor. There was

no main effect of RPE (t (23.82) = .276, p = .785) on target deviation. Plus, RPE

(t (65.84) = .07, p = .945) failed to reach significance in the sensory weight model. No

interactions involving RPE were statistically significant. This suggests that there were
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no performance differences between positive and negative RPEs (see figures E1B and

G1B). In addition, when only taking into account the most extreme RPE values to

predict sensory weights, the main effect of RPE (t (34.03) = −.04, p = .968) as well as

relevant interactions were not statistically significant. Furthermore, excluding trials on

which reaction times were two standard deviations from the mean did not change the

effects structure reported in the main analysis. There was, however, an additional

interaction between likelihood and RPE (t (13570) = −2.416, p = .016) for target

deviation, which indicated that positive RPEs boosted performance for narrow

likelihoods, but were associated with decreasing accuracy for wide likelihoods.

Additional linear mixed-models were analyzed to investigate sensory weights every

fifty trials (see figure I1). While the main effects of prior and likelihood were significant

across intervals, the beta coefficients for prior gradually increased with an increasing

number of trials (−4.26 versus −5.225 versus −8.338), and likelihood had its smallest

effect in the last fifty trials (3.813 versus 4.484 versus 3.336). This signifies that the

discrepancy between narrow and wide priors was most accentuated toward the end of

the experiment. Moreover, the interaction between prior and reward became significant

only toward the end of the experiment (t (4723) = 3.46, p < .001). The interaction

indicates that the effect of reward was different for the levels of prior; sensory weights

were lower for low rewards when the prior was narrow, but higher for low rewards when

the prior was uncertain. Note that the sensory weights did not match the statistically

optimal Bayesian model across intervals.

Discussion

The objective of this study was to determine how reward affects sensorimotor

control within the framework of Bayesian decision theory. Participants were expected to

integrate prior and likelihood distributions according to Bayes’ rule. Indeed, both

sources of uncertainty were reflected in participants’ estimates; when the likelihood

distribution was informative, participants placed less weight on prior knowledge and

vice versa. This trade-off was suboptimal but in qualitative agreement with Bayesian



REWARD IN BAYESIAN SENSORIMOTOR CONTROL 24

predictions. Moreover, reward magnitude was hypothesized to influence response speed.

The present results did not indicate that response vigor is enhanced by higher average

reward, nor did reward magnitude consistently affect the weighting of prior and

likelihood information. Furthermore, it was anticipated that positive RPEs increase

reliance on current sensory information. However, participants’ sensory weights varied

independently from RPE fluctuations. An exploratory analysis indicated that this

finding held true throughout the experiment, and that participants’ reliance on sensory

information remained unchanged when considered as a function of RPE sign and the

most extreme RPE values.

Sensorimotor Control Reflected Suboptimal Bayesian Inference

The finding that prior and likelihood information were integrated in qualitative

but not quantitative agreement with Bayesian statistics corresponds to previous results

by Vilares and Kording (2017). Specifically, the present study equally observed that

participants overemphasized current sensory information across conditions (Vilares &

Kording, 2017). The tendency to neglect prior knowledge in favor of case-relevant

information has previously been demonstrated in high-level cognitive tasks, and has

spurred debate on the conditions under which humans are rational Bayesian

decision-makers (Bar-Hillel, 1980; Gigerenzer & Hoffrage, 1995; Ting et al., 2015;

Tversky & Kahneman, 1974). The results of the present study thus suggest that

sensorimotor control follows Bayesian inference, but might be subject to additional

heuristics such as the base-rate fallacy (Tversky & Kahneman, 1974). This conclusion

stands in contrast to another study by Vilares et al. (2012), in which near-optimal

integration of prior and likelihood was reported for a similar sensorimotor learning task;

participants’ sensory weights in the Vilares et al. (2012) study were indistinguishable

from Bayesian predictions when overall uncertainty was either high or low. In addition,

the present findings oppose a cluster of research indicating statistically optimal

integration in diverse areas such as motor control (Kording & Wolpert, 2004), reward

processing (Ting et al., 2015), and multimodal cue integration (Alais & Burr, 2004;
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Ernst & Banks, 2002).

This mismatch in prior and likelihood integration might be explained by

differences in the task design. In contrast to Vilares et al. (2012) and Vilares and

Kording (2017), participants in the present study received no information about the

prior mean and no semantic link between likelihood and target. Accordingly, inferred

prior means exhibited deviations from the imposed mean across conditions (see figure

H1). This is an unexpected finding since the mean of the prior was demonstrated to be

readily inferred within the first ten trials (Berniker et al., 2010). Notably, participants

in the Vilares and Kording (2017) study displayed a larger range of sensory weights

between conditions, indicating that prior and likelihood uncertainty were assessed more

effectively. In addition, participants in the present study weighted prior knowledge more

strongly over time, but this effect was restricted to minimal changes in sensory weight

compared to Vilares and Kording (2017) (see figure I1). Together, these findings suggest

that participants’ suboptimality in sensorimotor integration was related to an

impairment in inferring the relative prior and likelihood uncertainties.

Difficulties in sensorimotor learning might be attributable to the administration of

reward. In economic decision-making, aversion to ambiguity has been found to

represent a deviation from rational choice (Camerer & Weber, 1992; Inukai &

Takahashi, 2009; Osmont, Cassotti, Agogué, Houdé, & Moutier, 2015). For instance,

the Ellsberg paradox indicates that people tend to prefer choices with certain

probabilities of gaining reward over choices with uncertain outcomes (Ellsberg, 1961;

Glimcher & Rustichini, 2004). Hsu, Bhatt, Adolphs, Tranel, and Camerer (2005)

investigated this tendency using fMRI and found that choice uncertainty paralleled

activation in the limbic system and prefrontal cortex while expected value correlated

positively with striatal activity. The researchers observed a lagged decline in striatum

activity following increased amygdala activation under high uncertainty, suggesting that

uncertainty modulates choice selection by signalling lower associated reward (Hsu et al.,

2005). In the present study, likelihood uncertainty was readily available while prior

uncertainty was maximal at beginning. In this context, choosing to rely on likelihood
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information might have entailed less ambiguity about expected reward.

Bayesian Integration Proved Robust to Changes in Reward

High reward did not enhance response vigor, contradicting observations that

reward is subject to temporal discounting (Shadmehr et al., 2010), and that the average

reward rate signals opportunity costs for action (Beierholm et al., 2013; Guitart-Masip

et al., 2011; Niv et al., 2007). Instead, response speed was driven by likelihood and

prior uncertainty. This finding corresponds to a study by Hansen, Hillenbrand, and

Ungerleider (2012), who observed speeded reaction times with informative priors, and

argued that prior knowledge boosts sensory processing in visual cortex under perceptual

uncertainty (Hansen et al., 2012). In addition, the present results are also consistent

with the notion that decreased uncertainty in sensory information accelerates action

preparation (Hyman, 1953). In this respect, Bestmann et al. (2008) showed that

corticospinal excitability was maximal when the uncertainty of a movement instructive

stimulus was low. Moreover, in the present study, reward was implicated in maladaptive

sensorimotor learning since high reward slowed responses under decreasing uncertainty,

which was accompanied by less Bayes-optimal integration. Previous research on reward

processing has gathered support for the opposite pattern; Manohar et al. (2015), for

example, demonstrated that saccades are executed more swiftly and accurately under

high reward by suppressing neural noise. In addition, Chong et al. (2015) observed that

PD patients on medication showed more inclination to exert effort in a grip force task

than patients off medication.

The difference between reward levels might not have been large enough to elicit

motivational effects. In the studies by Beierholm et al. (2013) and Guitart-Masip et al.

(2011), participants were able to win up to a hundred pence per trial. Likewise,

Manohar et al. (2015) rewarded participants for accurate performance with either ten or

fifty pence. Therefore, it is possible that motivation and learning in the current study

have deteriorated due to low reward (Hamid et al., 2016). Previous research has, for

example, observed that low reward leads participants to exert less effort than when
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receiving no reward (Gneezy & Rustichini, 2000; Heyman & Ariely, 2004). Notably,

experimental sessions in the Beierholm et al. (2013), Guitart-Masip et al. (2011), and

Chong et al. (2015) studies were also shorter in duration compared to the present study.

This suggests that participants’ task performance might have been additionally

impacted by fatigue (Beierholm et al., 2013).

Furthermore, the observation that neither positive RPEs nor high reward

enhanced reliance on current sensory information disagrees with the results by Vilares

and Kording (2017) and Vilares et al. (2012). Specifically, these findings suggest that

Bayesian sensorimotor control is mostly insensitive to reward alterations, and might

therefore be largely independent of midbrain dopamine concentration. In this respect,

Ting et al. (2015) also found that the degree to which decisions are based on likelihood

information is partly regulated by brain areas outside the basal ganglia. The researchers

proposed that the medial prefrontal cortex might be a candidate region for the

representation and integration of prior knowledge and sensory information. In another

study by d’Acremont, Schultz, and Bossaerts (2013), likelihood information correlated

with activity in the medial prefrontal cortex as well, while prior representation and

integration of both sources of information were ascribed to the inferior frontal gyrus.

Moreover, the observation that positive RPEs enhance task performance solely under

low sensory uncertainty opposes a large body of work that demonstrated the

involvement of RPEs in associative learning by providing a behavioral teaching signal

(Hollerman & Schultz, 1998; Lak, Nomoto, Keramati, Sakagami, & Kepecs, 2017;

Pessiglione et al., 2006; Schultz et al., 1997).

These discrepancies might be due to the temporal characteristics of the RPE

signal. Specifically, RPE responses initially ensue at reward delivery, but are transferred

to the reward-predictive stimulus after repeated pairing and decreased uncertainty

(Glimcher, 2011; Schultz, 2002). For instance, after monkeys have learned which lever

triggers a juice reward, the RPE signal is observed at the time of the lever press and

not at reward delivery (Schultz et al., 1997). Therefore, the RPE signal might have

shifted to the presentation of sensory information in the current study, especially when
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likelihood uncertainty was minimal. A recent study by Lak et al. (2017) examined the

RPE response in perceptual decision-making under uncertainty, and found that

prediction errors at cue presentation predicted choice accuracy in a computational

model. The authors also accounted for cue uncertainty, suggesting that RPEs may

carry a weight of sensory uncertainty that is related to the expected value, similar to

the mechanism outlined by Hsu et al. (2005).

Methodological Limitations

The Rescorla – Wagner (1972) learning rule and the update algorithm that was

employed in the present study do not account for these temporal changes (Daw &

Tobler, 2014; Sutton & Barto, 1998). Plus, the potential implications of the blocking

phenomenon remain uncertain by analyzing RPEs at the trial level (Sutton & Barto,

1998). For instance, Tobler et al. (2006) presented their participants with varying

stimulus pairs of which one stimulus fully predicted the occurrence of reward. When

reward outcome matched the cue’s prediction, there was no RPE and no further

learning about the second stimulus (Tobler et al., 2006). In the present study, there was

an accuracy advantage for likelihood information, which implies that prediction errors

were lowest under decreasing likelihood uncertainty (Daw & Tobler, 2014). In this

context, RPEs might have blocked learning about the prior distribution. To counteract

these limitations, future studies could employ temporal difference learning algorithms

(Schultz et al., 1997).

In addition, the majority of RPEs exhibited minimal deviations from the

predicted values under the current model (see figure I1). This aspect might have

impacted sensorimotor integration since dopamine levels vacillate strongest under large

prediction errors (Schultz et al., 1997). Even though this limitation was accounted for

in the exploratory analysis, future studies might include conditions in which expected

reward is suddenly omitted or multiplied to induce more extreme RPEs (Hollerman &

Schultz, 1998). Moreover, the methodological design cannot exclude the possibility that

participants failed to generate expected values and corresponding prediction errors.
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Follow-up studies should aim to extract reliable RPE estimates by incorporating

electrophysiological evidence, such as fMRI recordings (Fiorillo et al., 2003; Schultz

et al., 1997).

Furthermore, the trial-by-trial rewards might have been too small to observe

motivational effects of reward magnitude on task performance. This limitation could be

resolved by adopting a lottery-based payout system; Beierholm et al. (2013) and

Guitart-Masip et al. (2011), for example, paid participants the earnings of a randomly

selected ten percent of all experimental trials. In addition, in the study by Chong et al.

(2015), a point-based system was employed instead of administering reward directly.

Moreover, this study compared discrete reward levels whereas previous studies modeled

the average reward rate signal directly (Beierholm et al., 2013; Guitart-Masip et al.,

2011). Although participants performed equally well between reward conditions, and

therefore earned more reward in the high reward condition on average, this discrepancy

might have compromised the scope of the present findings. A possibility for future

research is to further isolate the contribution of reward magnitude, and vary potential

trial-based rewards within blocks to compare fluctuating reward rates (Beierholm et al.,

2013; Manohar et al., 2015).

Conclusion

Midbrain dopamine neurons assume key roles in reward processing and motor

control (Daw & Tobler, 2014; Glimcher, 2011; Schultz et al., 1997). Within the

framework of Bayesian sensorimotor learning, dopamine has recently been linked to

alterations in the integration of prior knowledge and current sensory information

(Vilares & Kording, 2017). The present study investigated changes in sensorimotor

control by varying reward magnitude and inferring RPEs, thereby assessing the

potential contributions of tonic and phasic dopamine, respectively (Niv et al., 2007;

Schultz et al., 1997). Participants’ behavior was in qualitative agreement with Bayesian

statistics, but deficits in learning prior distributions and in combining prior and

likelihood information were present across conditions and irrespective of reward. This
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result suggests that the sensorimotor system exhibits systematic biases in estimating

prior and likelihood uncertainties, and may not be considered statistically optimal at

the behavioral level (Griffiths, Chater, Norris, & Pouget, 2012; Rahnev & Denison,

2018). Moreover, response vigor was not modulated by reward magnitude, and changes

in RPEs did not correlate with fluctuations in sensory weight. These findings indicate

that Bayesian integration might be largely independent of reward variables that have

previously been related to changes in midbrain dopamine concentration (Beierholm

et al., 2013; Pessiglione et al., 2006). Additional electrophysiological evidence is needed

to investigate whether the process of integrating prior and likelihood information is

represented in brain areas outside the reward-related pathways of the basal ganglia.
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Appendix A

Figure A1 . Illustration of the experimental task. A) A central fixation cross is

displayed and disappears 250 ms after the mouse cursor is moved to the center of the

screen B) The likelihood is displayed as a random cloud on a trial-by-trial basis,

sampled from a Gaussian distribution centered at the horizontal target position.

Participants move the horizontal bar to the estimated target position. C) The actual

target location (here a dot in black) is displayed for 250 ms after participants confirm

their estimates via a mouse button press. D) The trial reward is shown for 1000 ms.
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Appendix B

Table B1

Mean target deviation, reaction time, and sensory weight with corresponding standard

deviations for each experimental condition.

Predictor Reaction time Target deviation Sensory weight

Prior Likelihood Reward M(SD) M(SD) M(SD)

Wide Wide High 1.715(1.364) .06(.047) .641(.206)

Wide Wide Low 1.832(1.379) .06(.048) .654(.208)

Wide Narrow High 1.603(1.183) .029(.024) .671(.159)

Wide Narrow Low 1.715(1.265) .029(.023) .681(.16)

Narrow Wide High 1.634(1.211) .046(.042) .607(.23)

Narrow Wide Low 1.59(1.06) .045(.042) .6(.221)

Narrow Narrow High 1.492(1.076) .023(.018) .627(.217)

Narrow Narrow Low 1.47(.996) .021(.017) .625(.209)



REWARD IN BAYESIAN SENSORIMOTOR CONTROL 46

Appendix C

Table C1

Main analysis for reaction time, target deviation, and sensory weight.

Response Predictor β SE df t p

Reaction (Intercept) -.289 .086 24 -3.363 .003*

time Prior .093 .059 24 1.579 .128

Likelihood .063 .01 24.02 6.196 < .001*

Reward .032 .059 24 .545 .591

Prior x Likelihood .029 .014 14150 2.105 .035*

Prior x Reward -.066 .014 14150 -4.851 < .001*

Likelihood x Reward -.001 .014 14150 -.073 .942

Prior x Likelihood .018 .027 14150 .65 .516

x Reward

Target (Intercept) .305 .003 24.01 109.307 < .001*

deviation Prior -.03 .004 23.98 -7.476 < .001*

Likelihood -.072 .004 24.03 -19.108 < .001*

Reward .002 .002 26.03 1.275 .214

RPE .001 .003 27.52 .54 .593

Prior x Likelihood .016 .003 14160 4.838 < .001*

Prior x Reward .005 .003 14150 1.591 .112

Prior x RPE .005 .005 13610 1.072 .284

Likelihood x Reward .001 .003 14160 .213 .832

Likelihood x RPE -.009 .005 14180 -1.878 .06

Reward x RPE .003 .005 14110 .74 .459

Prior x Likelihood .006 .006 14160 .924 .356

x Reward

Prior x Likelihood -.006 .009 14190 -.626 .531

Table continued on next page
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Response Predictor β SE df t p

Target x RPE

deviation Prior x Reward -.003 .009 14150 -.307 .759

x RPE

Likelihood x Reward -.011 .009 14190 -1.229 .219

x RPE

Sensory (Intercept) .064 .008 23.98 83.907 < .001*

weight Prior -.047 .006 24.14 -7.873 < .001*

Likelihood .025 .004 41.27 6.33 < .001*

Reward -.003 .004 47.94 -.889 .378

RPE .001 .005 40.94 .211 .834

Prior x Likelihood -.006 .007 14180 -.924 .355

Prior x Reward .016 .007 14170 2.451 .014*

Prior x RPE .011 .009 13810 1.124 .261

Likelihood x Reward < .001 .007 14180 .044 .965

Likelihood x RPE < .001 .009 14210 .011 .992

Reward x RPE -.007 .009 14150 -.795 .427

Prior x Likelihood -.007 .013 14180 -.523 .601

x Reward

Prior x Likelihood -.004 .019 14210 -.237 .812

x RPE

Prior x Reward .001 .019 14170 .047 .963

x RPE

Likelihood x Reward -.002 .019 14210 -.087 .931

x RPE

Note. *Statistically significant at alpha = .05.
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Appendix D

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure D1 . Reaction times for each experimental condition. The main effect of

likelihood (t (24.02) = 6.196, p < .001) was significant. An additional interaction

between prior and likelihood (t (14150) = 2.105, p = .035) indicated that the effect of

narrow likelihoods was enhanced under low prior uncertainty. Additionally, there was a

significant interaction between prior and reward (t (14150) = −4.851, p < .001); high

reward was associated with a speed advantage when the prior was wide, but low reward

elicited faster responses when the prior was narrow. The error bars depict the 95

percent confidence interval for each condition.
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Appendix E

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure E1 . (A) Target deviation for each combination of prior and likelihood averaged

over reward. The main effects of prior (t (23.98) = −7.476, p < .001) and likelihood

(t (24.03) = −19.108, p < .001), and the interaction between prior and likelihood

((t (14160) = 4.838, p < .001)) were significant. (B) Target deviations as a function of

RPE sign for each combination of prior and likelihood. The main effect of RPE

(t (23.82) = .276, p = .785) was not statistically significant. Error bars denote 95

percent confidence intervals of the mean in (A) and (B).
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Appendix F

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure F1 . Estimated target position as a function of the centroid of the cue cloud.

The diagonal dashed line illustrates complete reliance on the likelihood (sw = 1),

whereas a flat slope would be expected if participants exclusively employed prior

knowledge (sw = 0). The main effects of prior (t (24.14) = −7.873, p < .001) and

likelihood (t (41.27) = 6.33, p < .001) were significant, whereas the main effect of reward

(t (47.94) = −.889, p = .378) was not significant. There was a crossed interaction

between prior and reward (t (14170) = 2.451, p = .014), which signified that sensory

weights were higher under high reward when prior uncertainty was low and vice versa.
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Appendix G

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure G1 . (A) Sensory weights for each combination of prior and likelihood averaged

over reward. Participants’ sensory weights displayed deviations from the Bayes-optimal

weights (e.g., pL: t (23) = 47.237, p < .001) and the senses-only model (e.g., pL:

t (23) = −38.866, p < .001) across conditions. (B) Sensory weights as a function of RPE

for each experimental condition. The main effect of RPE (t (65.84) = .07, p = .945) was

not significant. Error bars depict 95 percent confidence intervals of the mean in (A) and

(B).
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Appendix H

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure H1 . Inferred prior means for each combination of prior and likelihood averaged

over reward. The dashed line indicates the true mean of the prior. Error bars illustrate

95 percent confidence intervals of the mean. Participants’ average prior estimates were

dissimilar to the actual prior mean across conditions (e.g., pl: t (23) = −2.1, p = .047).
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Appendix I

Note. Factor level abbreviations: prior (p = narrow; P = wide) and likelihood (l = narrow; L = wide).

Figure I1 . Trial-based analysis for sensory weights. The main effects of prior and

likelihood were present throughout the experiment. During the last fifty trials, the

interaction between prior and reward reached statistical significance (t (4723) = 3.46,

p < .001). Note that during the last interval the main effect of prior was strongest while

the likelihood had its weakest effect. Participants’ sensory weights failed to converge

onto the Bayes-optimal weights across conditions.
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