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i

“Before moving along, I’d just like to remind us all that ecology is not a luxury science,
and it’s not about pleasant appearances: it’s about survival.
About whether we’re all going to make it.”

Benjamin Horne, Twin Peaks
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Detail from The Garden of Earthly Delights, Hieronymus Bosch
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Abstract
There is a general consensus that diverse ecological communities are better equipped

to adapt to changes in their environment, but our understanding of the mechanisms

by which they do so remains incomplete. Accurately predicting how the global bio-

diversity crisis affects the functioning of ecosystems, and the services they provide,

requires extensive knowledge about these mechanisms.

Mathematical models of food webs have been successful in uncovering many as-

pects of the link between diversity and ecosystem functioning in small food web

modules, containing at most two adaptive trophic levels. Meaningful extrapolation

of this understanding to the functioning of natural food webs remains difficult, due

to the presence of complex interactions that are not always accurately captured by

bitrophic descriptions of food webs. In this dissertation, we expand this approach

to tritrophic food web models by including the third trophic level. Using a func-

tional trait approach, coexistence of all species is ensured using fitness-balancing

trade-offs. For example, the defense-growth trade-off implies that species may be

defended against predation, but this defense comes at the cost of a lower maximal

growth rate. In these food webs, the functional diversity on a given trophic level can

be varied by modifying the trait differences between the species on that level.

In the first project, we find that functional diversity promotes high biomass on

the top level, which, in turn, leads to a reduction in the temporal variability due

to compensatory dynamical patterns governed by the top level. Next, these results

are generalized by investigating the average behavior of tritrophic food webs, for

wide intervals of all parameters describing species interactions in the food web.

We find that the diversity on the top level is most important for determining the

biomass and temporal variability of all other trophic levels, and show how biomass

is only transferred efficiently to the top level when diversity is high everywhere in

the food web. In the third project, we compare the response of a simple food chain

against a nutrient pulse perturbation, to that of a food web with diversity on every

trophic level. By joint consideration of the resistance, resilience, and elasticity, we

uncover that the response is efficiently buffered when biomass on the top level is

high, which is facilitated by functional diversity on every trophic level in the food

web. Finally, in the fourth project, we show that even in a simple consumer-resource

model without any diversity, top-down control on the intermediate level frequently

causes the phase difference between the intermediate and basal level to deviate from

the quarter-cycle lag rule. By adding a top predator, we show that these deviations

become even more likely, and anti-phase cycles are often observed.

The combined results of these projects show how the properties of the top trophic

level, including its functional diversity, have a decisive influence on the functioning

of tritrophic food webs from a mechanistic perspective. Because top species are of-

ten among the most vulnerable to extinction, our results emphasize the importance

of their conservation in ecosystem management and restoration strategies.
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Zusammenfassung
Wissenschaftliche Erkenntnisse über die in natürlichen Ökoystemen beobachte-

te Artenvielfalt hat gezeigt, dass die Artenvielfalt fast überall auf der Erde rapide
abnimmt. Dieser Rückgang ist hauptsächlich auf den zunehmenden menschlichen
Einfluss auf die Umwelt zurückzuführen. Insbesondere die zunehmende Landnut-
zung z. B. für die Landwirtschaft, die Verschmutzung und die Überfischung wirken
sich negativ auf die Biodiversität aus. Den Einfluss von Biodiversität auf die Funkti-
on von natürlichen Ökosystemen ist ein sehr aktives Forschungsgebiet der Ökologie.
Insbesondere hat sich herausgestellt, dass die Biodiversität einen entscheidenden
Einfluss auf wichtige Eigenschaften von Ökosystemen hat, wie z.B. die Menge an
Biomasse, die sich etablieren kann, wie groß die Schwankungen der Biomasse im
Laufe der Zeit sind, wie effizient Energie durch das gesamte Ökosystem übertragen
wird und wie es auf Umweltstörungen reagiert.

In dieser Dissertation wird der Zusammenhang zwischen Biodiversität und Öko-
systemfunktionen mit Hilfe mathematischer Modelle von Nahrungsnetzen unter-
sucht um mit Hilfe dieses Ansatz wichtige Eigenschaften und deren Relevanz zu
ermitteln. Ein Nahrungsnetz beschreibt einen zentralen Teil dessen, wie Arten in
einem Ökosystem miteinander interagieren, nämlich wer wen frisst. Unsere Mo-
delle enthalten drei trophische Ebenen: eine basale Ebene (z.B. Pflanzen), die einer
mittleren Ebene (Pflanzenfresser) als Nahrungsquelle dient, die wiederum von einer
oberen Ebene (Fleischfresser) gefressen werden. Die Koexistenz mehrerer Arten auf
einer trophischen Ebene ist über Trade-offs zwischen wichtigen Merkmalen der Ar-
ten sichergestellt. Ein Trade-off zwischen Fraßschutz und Wachstum bedeutet zum
Beispiel, dass jeder Mechanismus, mit dem sich eine Art vor Fressfeinden schützen
kann (z. B. die Bildung von Stacheln), mit einer geringeren Wachstumsrate erkauft
wird (die Pflanze muss Energie für die Bildung der Stacheln aufgewendet werden).
Auf diese Weise ist die Koexistenz mehrerer Arten möglich: kein Fraßschutz und ei-
ne hohe Wachstumsrate, gegenüber hohem Fraßschutz und einer niedrigen Wachs-
tumsrate.

Wir zeigen, dass die Eigenschaften der obersten trophischen Ebene, wie z. B. ihr
Biomasseanteil und ihre Diversität, einen sehr großen Einfluss auf die Eigenschaf-
ten aller anderen trophischen Ebenen im Nahrungsnetz ausüben. Insbesondere be-
obachten wir, dass eine hohe Biomasse und Diversität auf der obersten trophischen
Ebene zu einem Nahrungsnetz führt, das zeitlich stabiler ist, die verfügbaren an-
organischen Nährstoffe besser ausnutzt und die erhöhte Produktivität der basalen
trophischen Ebene effizienter an die Spitze des Nahrungsnetzes weitergibt. Darüber
hinaus stellen wir fest, dass die oberste trophische Ebene eine Schlüsselrolle bei der
Abschwächung von Auswirkungen auf ein Nahrungsnetz durch externe Störungen
spielt. Zudem verstärkt sich dieser Effekt der obersten trophischen Ebene, wenn die
anderen trophischen Ebenen ebenfalls eine hohe Diversität aufzeigen.

Unsere Ergebnisse unterstreichen somit die Bedeutung von Diversität in allen
Nahrungsnetzen, um einen Fortbestand von Ökosystemdienstleistungen zu gewähr-
leisten, auf die wir angewiesen sind.
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Chapter 1

General introduction

Research on the diversity of species observed in natural systems has shown that

biodiversity is rapidly declining almost everywhere on Earth (Worm et al., 2006;

Pimm et al., 2014; Newbold et al., 2015). This decline is mainly due to increased

anthropogenic influence on the environment: in particular, increased land usage for

e.g. agriculture, pollution, and overfishing crucially affect biodiversity in a negative

way (Brooks et al., 2002; Dudgeon et al., 2006; Butchart et al., 2010; Horváth et

al., 2019). If we want to minimize the extent to which our activities are damaging

to ecosystems and the services they provide, it is essential to understand the ways

in which the drastic decline in biodiversity can affect the structure and behaviour

of these ecosystems. This knowledge is crucial for developing effective ecosystem

management and restoration strategies.

1.1 Biodiversity from a functional perspective

Biodiversity may refer to many different aspects of biological variety. Here, and in

the chapters that follow, we will always approach biodiversity from a functional per-

spective. This means that individuals are grouped together into functional groups,

according to the function they fulfill in the ecosystem. The morphological, physio-

logical, or behavioral feature of an individual that is responsible for fulfilling this

function is called a functional trait (Weithoff, 2003; McGill et al., 2006; Violle et

al., 2007). This categorization of individuals into functional groups may be differ-
ent from the taxonomic grouping into species, due to phenotypic plasticity, or other

sources of natural variation in important traits, such as body size, between individ-

uals of the same species.

In this way, the functional diversity of species in an ecosystem can be seen as an

important aspect of biodiversity. It becomes clear how biodiversity loss, through de-

creasing functional diversity, can severely disturb ecosystem functioning: the loss of

a functional group of individuals from the system necessarily affects the correspond-
ing ecosystem function. For example, it has been shown that removal of certain

functional groups, such as all shrubs, from tiny lake islands severely affected sev-

eral local ecosystem functions (Wardle and Zackrisson, 2005). By investigating these
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interactions on several islands of different size, the authors highlight the context-

dependency of this link: depending on the other species present in the ecosystem,

removal of a functional group may have different effects.
By definition, functional traits affect the fitness of an individual in an ecosys-

tem. Since most ecosystems contain a wide variety of coexisting species, certain

functional traits must necessarily be negatively correlated with each other (Stearns,

1989; Ehrlich, 2019). Such trade-offs between functional traits are an essential part

of a functional description of the mechanisms by which species interact with each-

other. In general, trade-offs are expected to be multidimensional (Edwards, Klaus-

meier, and Litchman, 2011; Amado and Campos, 2019), but for practical reasons,

most theoretical and experimental research into trade-offs has only considered the

interaction of two functional traits. Nevertheless, many of these two-dimensional

trade-offs are considered fundamental for explaining species coexistence (Chesson,

2000), such as a trade-off between the competitive ability for different nutrient types
(Litchman et al., 2007), the defense-growth trade-off (Ehrlich, Kath, and Gaedke,

2020), or the gleaner-opportunist trade-off (Ryabov and Blasius, 2011).

Adopting such a trait-based functional perspective has thus proven highly in-

formative in uncovering the mechanisms by which species interact with each other

(Hillebrand and Matthiessen, 2009; Schmidtke, Gaedke, and Weithoff, 2010). More-

over, such mechanisms can be assumed to hold for many ecosystems in a general

way, precisely because they are based on the interaction of functional groups and

not precisely defined species.

Diversity-stability

The first quantitative mathematical research into the link between diversity and sta-

bility dates back to May (1973), whose approach showed how increasing diversity

has a destabilizing effect on the dynamics of food webs. This result was directly

opposite to the widespread belief at the time, and started the well-known diversity-

stability debate in the following decades (McCann, 2000). Currently, at least some of

the initial confusion around the attempts to reconcile these seemingly contradictory

results has been cleared up by specifying exactly what is meant by the terms diver-

sity and stability (Bodin and Wiman, 2004). In Chapters 2-4, diversity will always

refer to functional diversity, which allows for investigation of changes in diversity

without the confounding effect of changing species richness on food web dynamics

(Duffy et al., 2007).

In an ecological context, stability often used to refer to the amount of variation

experienced in time (McCann, 2000). This definition is, however, completely unre-

lated to how stability is used in a mathematical context, where it is often used to

measure the “attractiveness” of a solution to a differential equation model (Strogatz,

1994). To make matters worse, stability has over time been used to denote a mul-

titude of different vaguely related concepts (Pimm, 1984). For this reason, special

care has been taken in Chapters 2-4 to make sure that terms related to stability are



Chapter 1. General introduction 3

always defined clearly, following the definitions suggested by Grimm and Wissel

(1997).

1.2 Embracing dynamical complexity

There is an ever-growing amount of evidence from both theory and experiments that

complex ecological systems frequently exhibit complex dynamical behavior. Yet, a

large body of ecological theory only examines these systems in regions where lin-

earization approximations hold. While this strategy has several practical advan-

tages, such as the ability to calculate analytical solutions and fast calculation of nu-

merical solutions, it ignores potentially crucial non-linear ecological mechanisms.

This subsection contains an overview of some highly relevant phenomena that can

only be seriously studied when the intrinsic non-linearity of ecological systems is

not ignored. Even though it is generally impossible to calculate analytical solutions,

and our intuitive expectation based on linear systems is often misleading, the ever-

increasing availability of computing power makes going down this path exceedingly

rewarding.

Cycles and chaos

An important debate in ecological theory concerns the authenticity of predator-

prey cycles in real-word communities. Even the Lotka-Volterra predator-prey model

(Lotka, 1925; Volterra, 1926), arguably the simplest one in structure, predicts that

a predator-prey system can exhibit intrinsically driven cyclic behavior. This phe-

nomenon has also routinely been observed in the field (e.g., the well-known Lynx-

Snowshoe Hare cycle Elton andNicholson, 1942) and in controlled lab environments

(e.g., McCauley et al., 1999; Fussmann et al., 2000).

However, evidence that cycles do not result from external influences, such as spa-

tial effects (Stenseth et al., 2004), and are persistent in time, remained inconclusive.

Even though limit cycles can be attractive, in which case they constitute a non-linear

stable dynamical state, they are often viewed as unstable from an ecological point of

view. Naturally, when the amplitude of the limit cycle is such that part of the oscil-

lation reaches unrealistically low biomasses, it cannot represent a physical solution

of the system. However, the relevance of the underlying mechanisms in natural

food webs is sometimes fundamentally contested. A simple heuristic argument is

that, when populations are cycling, they may be particularly vulnerable to an exter-

nal disturbance at the population minima. Thus, in the presence of quasi-constant

stochastic disturbances, cycling populations are presumed not to exist perpetually

in natural food webs (Rosenzweig, 1971; May, 1972). Recently, Blasius et al. (2020)

showed that long-term persistence of predator-prey cycles is possible in a controlled

microcosm environment, providing strong evidence for predator-prey cycles as a

genuine ecological phenomenon and not simply a modeling artifact.
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Extending simple predator-prey models to describe more complex communities

causes the complexity of outcomes predicted by the model to increase correspond-

ingly. In particular, as a result of the Poincaré-Bendixon theorem, the possible out-

comes of a two-dimensional continuous dynamical system (such as a predator-prey

system) are essentially restricted to either a fixed point, or a closed orbit (Strogatz,

1994). Dynamical systems in three or more dimensions can exhibit much more com-

plex behavior, such as chaos. Chaotic behavior is indeed predicted by many simple

ecological models (Hastings and Powell, 1991; Hastings et al., 1993; Rinaldi and De

Feo, 1999; Vandermeer, 2004; Dakos et al., 2009), and has also been demonstrated

in a controlled experimental microcosm (Becks et al., 2005).

In each of the four projects presented in this dissertation, cyclic behavior is

prominently featured and plays a central role in uncovering important mechanisms

regulating food web functioning.

Beyond bitrophic systems

Acquisition of the necessary resources for survival is a defining feature of any living

organism. Predator-prey (or consumer-resource) interactions are therefore viewed

as one of the most fundamental ways in which species interact with each other. This

feeding interaction is so important that it alone lies at the basis of many fundamental

concepts in ecology, such as food chains, food webs, and trophic levels.

Using a reductionist perspective, a vast amount of research has been performed

into the interactions in a consumer-resource system in isolation, in order to describe

the dynamics of complex food webs. Because of its relatively simple structure, de-

tailed knowledge of such a system can accurately be obtained using mathemati-

cal models where analytical calculations are possible, such as the famous Lotka-

Volterra predator-prey model (Lotka, 1925; Volterra, 1926), or the more intricate

Rosenzweig-MacArthur model (Rosenzweig and MacArthur, 1963). Even when go-

ing beyond a simple consumer-resource system by allowing two diverse trophic lev-

els to interact with each other, well-controlled experiments are possible and the

models used to described them are still numerically tractable. This approach has

been particularly successful in trying to understand how rapid evolution can affect
the dynamics of an adaptive predator-prey system: microcosm lab experiments have

been able to identify such eco-evolutionary processes resulting from the presence of

multiple prey genotypes (Yoshida et al., 2003; Becks et al., 2010). In these experi-

ments, it is observed how the more defended prey genotype is promoted when pre-

dation pressure is high, which affects the shape and phase relationships of predator-

prey cycles (Hiltunen et al., 2014).

However, natural systems almost always consist of more than two trophic levels

(Matsuno and Nobuaki, 1996). An accurate description of many important phenom-

ena responsible for governing the dynamics of whole ecosystems, such as trophic
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cascades, requires at least three trophic levels (Abdala-Roberts et al., 2019). More-

over, when studying a bitrophic system, the two trophic levels studied are neces-

sarily the first and the second trophic level. But there is an enormous amount of

evidence from field observations that interactions with higher trophic levels play a

decisive role in determining the structure and functioning of the whole food web

(Bruno and O’Connor, 2005; Pimm et al., 2014; Ehrlich and Gaedke, 2020).

Expanding our knowledge about bitrophic systems, and what happens when

they become adaptive, to tritrophic systems is thus a very natural next step in gain-

ing detailed understanding of the mechanisms that govern the dynamics and func-

tioning of natural food webs. The increase in complexity that results from extending

food web models to incorporate a third (potentially adaptive) trophic level mani-

fests itself in a multitude of ways: not only are there more state variables and model

parameters, but even in simple tritrophic models the dynamical possibilities are

much more varied (Hastings and Powell, 1991; Rinaldi and De Feo, 1999). In the

four chapters that follow, different approaches are taken in how to deal with the

increased complexity of tritrophic models.

Alternative stable states

The presence of more than one stable state on which a system can be found is a

well-known aspect of dynamical systems. Related phenomena, such as regime shifts

and hysteresis are observed and presumed to exist in a wide variety of different
ecosystems (Beisner, Haydon, and Cuddington, 2003; Scheffer and Carpenter, 2003;

Schröder, Persson, and De Roos, 2005). Such transitions can rapidly alter the func-

tioning of whole ecosystems, which may be problematic from an ecosystem services

perspective. It is therefore of crucial importance that we understand the mecha-

nisms which lead to the existence of alternative stable states. Doing so requires

appropriate mathematical models that are sufficiently complex to be able to cap-

ture the relevant properties (Scheffer and Carpenter, 2003). Another large area of

research concerns attempting to predict whether a regime shift is about to happen.

By identifying indications in the system’s dynamics that the tipping point is near,

early warning signals may be applied to real-world data to estimate the likelihood

of a regime shift in the near future (Kéfi et al., 2014; Dakos et al., 2019).

We will explicitly consider the dynamics and global implications of any alterna-

tive stable states present, by taking special care to investigate the complete phase

space of the food webs studied in Chapters 2-4.

1.3 Adaptive food webs

In Chapters 2-4, different aspects of the functioning of tritrophic food webs are stud-

ied, depending on the amount of functional diversity contained within. The funda-

mental idea behind the modeling approach, outlined below, is the same.
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The starting point for ensuring coexistence of multiple types per trophic level

are the trade-offs between their functional traits. In Chapters 2 and 4, based on

Tirok and Gaedke (2010), we assume that each prey type faces a trade-off between

their maximum growth rate, and their defense against predation; and each con-

sumer type faces a trade-off between their prey spectrum and their ability to exploit

low prey densities. In Chapter 3 only the defense-growth trade-off is adopted for

both prey and consumers to create a slightly simplified food web structure. In any

case, out-competition of any one species by another is thus prevented by the exis-

tence of sufficient ecological niches. Inspiration for the structure of these food webs

was drawn from interactions of complex plankton communities. Planktonic micro-

organisms have developed several strategies to prevent consumption, such as shell

or colony formation, or behavioral changes (Litchman and Klausmeier, 2008; Pančić
and Kiørboe, 2018). The specific way in which an individual’s growth rate is af-

fected differs between each strategy, but a general negative relationship is observed

(Litchman et al., 2007).

In Chapters 2 and 4, functional diversity within trophic levels is controlled by

the trait difference parameter ∆ which applies to all trophic levels simultaneously.

In Chapter 3, the functional diversity can be set on each trophic level individually

through the trait difference parameters ∆B, ∆I and ∆T for the basal (B), intermediate

(I ), and top (T ) levels, respectively. A schematic example for how the trait difference
parameter sets the trait values on a trophic level is given for the basal trophic level

in Fig. 1.1 (left panels). When ∆B = 0, both types’ trait values are equal (cross in Fig.

1.1, bottom left). Increasing ∆B moves the two types in opposite directions on the

trade-off curve. The same principle applies for trade-offs between other traits, see

Fig. 2.1, Chapter 2.

While these trait difference parameters can be changed to influence the food

web structure, there are no internal mechanisms which can modify them. They are

a parameter of the differential equations, and not a state variable. This approach

differs from a quantitative trait approach, where the trait values are state variables

themselves and thus directly impact the model dynamics (such as in e.g. Mougi

and Iwasa, 2011; Klauschies, Vasseur, and Gaedke, 2016; Van Velzen and Gaedke,

2017; Raatz, Velzen, and Gaedke, 2019). Importantly, this does not imply that the

models presented here are not adaptive. In our case, the trait response to internal

or environmental changes lies in shifts of the mean trait value from a community

perspective (Fig. 1.1, right side). In this example, the increased predation inten-

sity due to the dominance of the undefended prey type Bu causes the fitness of the

defended prey type to increase, ultimately shifting the mean defense of the basal

level upwards. The range between which the mean trait value can shift is set by the

corresponding trait difference parameter (Fig. 1.1, bottom right).
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Figure 1.1: Schematic overview of the response of an adaptive basal trophic level to in-
creased predation pressure. One way for two types of basal species to coexist is to assume
a trade-off between their defense against predation and their growth rate. The undefended
basal type (Bu) thus has a higher growth rate, but faces higher consumption rates than the
defended basal type (Bd ) (top left). The basal trait difference ∆B controls the position of Bu
and Bd on the defense-growth trade-off curve, such that when ∆B = 0 both types have the
same intermediate trait values, marked by the cross (bottom left). This implies that, when
predation pressure is low, Bu is dominant due to its higher competitiveness for nutrients. In
a complex community, this abundance of easily consumable prey would lead to an increase
in consumer biomass. The gradually increasing predation pressure on the basal level then
increases the relative fitness of Bd , eventually making it the dominant type when predation
pressure is very high (top right). In this way, he basal level can adapt to changing circum-
stances by a shift in its mean defense, which can change between the trait values of Bu (basal
level is completely undefended) and Bd (basal level is completely defended) (bottom right).

1.4 Thesis overview

In the following four chapters of this dissertation, the mechanisms behind the func-

tioning of tritrophic food webs will be investigated from different angles. We will

start with a detailed investigation of the role of functional diversity in a food web

that is adaptive at every trophic level in Chapter 2. In Chapter 3, we generalized

these results to a collection of tritrophic food webs with different structure. In Chap-

ter 4, we return to the model used in Chapter 2, and investigate its response to a

nutrient pulse perturbation, and the role played by diversity, in more detail. Finally,

in Chapter 5, inspired by the phase relationships between predator-prey pairs in

the complex food web described in Chapter 2, we investigate these relationships in

two very simple systems without any diversity. A more detailed overview of each

chapter is found below.
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Chapter 2

In this chapter we investigated how increasing trait variation on all trophic lev-

els in a tritrophic food web influences its dynamics and important functions such

as biomass production, temporal variation and the resilience of alternative stable

states. Notably, it is the first study to provide a mechanistic understanding of how

diversity affects these ecosystem functions in a food web with diversity on 3 trophic

levels (B, I , and T ). This study was published in Scientific Reports (Ceulemans et al.,

2019).

We show that, independent on the amount of diversity in the food web, the

system contains two alternative stable states. In the high-production (HP) state,

the nutrients are efficiently exploited, the biomass on the top trophic level is high,

and the temporal variation of the biomass dynamics is low. In contrast, in the low-

production (LP) state the free nutrient concentration is much higher, the top trophic

level biomass is lower, and the temporal variation is higher. Detailed examination

of the phase relationships between the different populations in the food web reveals

the difference in top-down control and the trait-separated compensatory dynamical

patterns which lead to the differences between the states.

By comparing the sizes of the basin of attraction of the two states, we found

that a highly diverse system is primarily in the HP state, whereas the LP state is

preferred when diversity is low. Importantly, a reduction in diversity may cause an

irreversible transition to occur from the HP to the LP state.

Chapter 3

To achieve results of high generality, the approach taken in Chapter 2 was modi-

fied to compare functioning of tritrophic food webs in which the diversity on each

trophic level can be set independently of the diversity on the other levels. To over-

come the additional dependence of any relationship between diversity and function-

ing on model parameters, and allow for the possibility of alternative stable states,

128,000 randomly selected parameter combinations were investigated, each for 200

randomly selected initial conditions. Analysis of this data was aided by using a

Random Forest machine learning model. This study is currently under review at

Ecology (original decision: major revision), and is available on bioRxiv (Ceulemans,

Guill, and Gaedke, 2020). Our method provides context-free information on the

relationship between the biomasses, temporal variation, and biomass production ef-

ficiency of the different trophic levels, as a function of the diversity on each trophic

level separately.

We find that, only when diversity is high everywhere in the food web, simul-

taneously operating bottom-up and top-down interactions synergize to provide ef-

ficient biomass transfer to the top trophic level. We also observe the generality of

the complex relationship between diversity and temporal variation: initially, varia-

tion decreases with diversity, but as the system becomes more complex the temporal
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variation increases again. The parameter importance estimates provided by the ran-

dom forest also shows that the parameters affecting the top level, including the top

functional diversity, are of the highest importance in determining the biomass and

temporal variation of all trophic levels.

Chapter 4

In this chapter, we examined how eutrophication, in the form of a nutrient pulse

perturbation, affects the resistance, resilience and elasticity of a tritrophic system,

based on the food web model used in Chapter 2. By comparing a food chain to an

adaptive food web, we examine the influence of functional diversity on these effects.
We find that these three quantities provide complementary information on the

changes in dynamics and functioning of both the food chain and the food web, and

show that the system’s response is affected by the type and shape of the dynamical

attractor at which the perturbation is applied. By studying the transient dynam-

ics after the perturbation in detail, we are able to identify important differences
between the response of an adaptive food web and a food chain, which ultimately

affect the resistance, resilience and elasticity. We also show the importance of suf-

ficient top-down control on the intermediate level, which is higher in the adaptive

food web, in dampening the system’s response.

Chapter 5

Using highly suggestive results from Chapter 2, we investigated whether the ob-

served correlation between the interaction strength of a consumer-resource pair in a

complex food web, and their relative phase relationship, holds for simpler and more

tractable communities. It is often claimed that in a “purely ecological system” (i.e.,

no evolution is possible) where resource and consumer exhibit oscillatory behavior,

the consumer always lags behind the resource by a quarter of a cycle. However, our

results show that, even in simple purely ecological systems, deviations from this rule

are common and depend on how strongly the resource and consumer are interacting

with each other. We thus claim that a deviation from the quarter-cycle-lag “rule”

does not necessarily mean that evolution has occurred in the system, and caution

should be taken when carelessly attributing such a deviation to eco-evolutionary

effects rather than purely ecological processes.
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Abstract

Diverse communities can adjust their trait composition to altered environmental

conditions, which may strongly influence their dynamics. Previous studies of trait-

based models mainly considered only one or two trophic levels, whereas most nat-

ural system are at least tritrophic. Therefore, we investigated how the addition of

trait variation to each trophic level influences population and community dynamics

in a tritrophic model. Examining the phase relationships between species of adja-

cent trophic levels informs about the strength of top-down or bottom-up control

in non-steady-state situations. Phase relationships within a trophic level highlight

compensatory dynamical patterns between functionally different species, which are

responsible for dampening the community temporal variability. Furthermore, even

without trait variation, our tritrophic model always exhibits regions with two alter-

native states with either weak or strong nutrient exploitation, and correspondingly

low or high biomass production at the top level. However, adding trait variation

increased the basin of attraction of the high-production state, and decreased the

likelihood of a critical transition from the high- to the low-production state with

no apparent early warning signals. Hence, our study shows that trait variation en-

hances resource use efficiency, production, stability, and resilience of entire food

webs.
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2.1 Introduction

Functional diversity has proven to be important for linking community structure to

ecosystem functions such as biomass production and resource use efficiency (Hooper

et al., 2005; Tilman, Reich, and Knops, 2006; Worm et al., 2006; Schneider et

al., 2016). Our understanding of the multifaceted impact of functional diversity

on ecosystem functioning, and on the dynamics of populations and communities,

has been greatly advanced by adopting a trait-based point of view (Hillebrand and

Matthiessen, 2009; Krause et al., 2014). In particular, functional traits link morpho-

logical, physiological or phenological features of a species to a certain community

or ecosystem function (Violle et al., 2007). A prevalent example is simply body size,

which is related to several functions such as growth (larger organisms tend to grow

slower), prey preference (predators tend to be larger than their prey), or nutrient up-

take (larger cells have higher nutrient demands) (Weithoff, 2003; Brown et al., 2004;

Brose, Williams, and Martinez, 2006; Litchman et al., 2007). Trait-based models

of simple food web modules have facilitated detailed mechanistic understanding of

dynamics observed in the laboratory (Ellner and Becks, 2011) and in the field (Tirok

and Gaedke, 2010). For example, observed anti-phase predator-prey cycles between

zooplankton and algae have been attributed to the co-occurrence of fast-growing

undefended and slow growing, well defended prey phenotypes(Yoshida et al., 2003;

Becks et al., 2010).

However, such trait-based models have mainly been restricted to describing trait

variation on one or two trophic levels (Abrams and Matsuda, 1996; Litchman and

Klausmeier, 2008; Tirok and Gaedke, 2010; Erbach, Lutscher, and Seo, 2013). Like-

wise, only up until recently, empirical studies on functional diversity have been lim-

ited to considering trait variation in only autotrophs (plants or algae) (Duffy, 2002;
Gamfeldt et al., 2015), or both autotrophs and herbivores (Steiner et al., 2005; Filip

et al., 2014), with few exceptions (Rasher, Hoey, and Hay, 2013). This strongly con-

trasts with the fact that natural food webs are in general complex multitrophic net-

works (Digel et al., 2014). Focusing only on direct, bitrophic predator-prey interac-

tions neglects the intricate effects of more complex, partly indirect interactions span-

ning multiple trophic levels, such as trophic cascades (Levine et al., 2017) . These

multi-trophic effects may be very important factors affecting the relevant ecosystem

functions (Peet, Deutsch, and Peacock-López, 2005; Nakazawa, 2011; Golubski et

al., 2016). For instance, the total number of trophic levels may strongly influence

the efficiency of nutrient exploitation (Wang and Brose, 2018). In addition, as preda-

tion is an important factor in many food webs, trait variation on the predator level is

expected to have an important influence on ecosystem functioning (Tilman, Isbell,

and Cowles, 2014; Gamfeldt et al., 2015; Schneider et al., 2016). Hence, includ-

ing additional trophic levels with functional diversity is a very natural step towards

improving the accuracy and descriptive power of trait-based models.

We developed a tritrophic model to study the effects of trait variation at all
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Figure 2.1: (a) A simple linear tritrophic chain, where nutrients N are taken up by a basal
species B, which is grazed by an intermediate species I , which in turn is consumed by a top species
T . (b) Gradually introducing trait variation, where species can be undefended (u) or defended (d)
against predators, and/or selective (s) or non-selective (n) consumers, starting from a linear chain.
(c) Maximally trait-separated food web model. The basal and top species have only one trait, but
the intermediate species have two. The thickness of the arrows indicates the intensity of the trophic
interaction, reflecting that selective consumers can exploit their limited resources spectrum more
efficiently. (d) Schematic shape of the trade-off curves for the top species (top row), intermediate
species (middle row), and basal species (bottom row) . The solid circles indicate that for ∆ = 0, all
species on a given trophic level have the same trait values, whereas the open circles demonstrate
how the trait values between the species differ as ∆ is increased to one.

trophic levels on foodweb dynamics. Particularly, the dynamics of a simple tritrophic

linear food chain will be compared to a tritrophic food web where prey species are

either defended or undefended, and predator species are either selective or non-

selective feeders. Trade-offs between these traits are explicitly built in such that

defended prey have a lower growth rate, and selective feeders have a lower half-

saturation constant to allow for efficient feeding at low prey densities (Tirok and

Gaedke, 2010; Coutinho, Klauschies, and Gaedke, 2016; Van Velzen and Gaedke,

2017). Our model structure allows for a gradual increase of the trait differences
between the species at each trophic level, from a simple linear chain up to a fully

separated food web with maximal trait differences (Fig. 2.1). As the trait differences
increase, the species will fulfill increasingly different functions; in this way, we are

able to link trait differences to functional diversity.

We use the tritrophic model to investigate how an increasing degree of trait vari-

ation affects:

• the production of the system,

• the efficiency of the energy transfer towards the higher trophic levels,

• the temporal biomass variability at the population and community level, and

• the dynamic properties and the resilience of alternative stable system states.

Our results provide theoretical evidence that trait variation has a significant im-

pact on all of these properties. To the best of our knowledge, we present the first
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systematic, multi-trophic study which mechanistically explains such patterns and

explicitly discusses their relevance to ecosystem functions and stability.

2.2 Methods

We developed a tritrophic model where basal species are consumed by intermediate

species, which in turn are consumed by top species. The species biomass densities

are denoted by respectively B, I , and T . In addition, the uptake of a limiting nutrient

with concentration N (in this case nitrogen) by the basal species is modeled explic-

itly. We assume a chemostat environment, which causes all nutrients and biomass

of species to be washed out at an equal rate, δ, the dilution rate. The washed out

volume is replaced by new medium rich in nutrients.

Model equations

As in (Tirok and Gaedke, 2010; Bauer et al., 2014), we include two relevant func-

tional traits. The prey species B and I may be defended against predation: specifi-

cally, there will be defended (d) and undefended (u) species. Investing in a defense

strategy requires sacrificing a certain amount of resources which could have other-

wise been put into growth. Hence, the defended species have a lower growth rate

than the undefended species, but are rewarded by being insusceptible to certain

consumers. The consumer species I and T are able to specialize feeding on a cer-

tain prey species, leading to selective (s) and non-selective (n) species. Here, the

non-selective consumer species consume all species on the trophic level below. In

contrast, the selective species are only able to consume the undefended prey species,

but they are able to exploit low food densities at a higher rate, reflected in a lower

half-saturation constant.

Representing each possible trait combination on all trophic levels by one species

leads to a food web with two basal species, four intermediate species and two top

species (Fig. 2.1c). In order to write down the equations compactly, the following

equivalence is explicitly stated:

Bu ≡ B1, Bd ≡ B2, Ius ≡ I1, Ids ≡ I2 (2.1)

Iun ≡ I3, Idn ≡ I4, Ts ≡ T1, Tn ≡ T2. (2.2)

In their most general form, the equations used have the following shape:
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Ṅ = δ (N0 −N )− cN
cC

∑
i

riBi

Ḃi = riBi −
∑
j

gji Ij − δBi

İj = e
∑
i

gji Ij −
∑
i

γijTi − δIj

Ṫi = ε
∑
j

γijTi − δTi

(2.3)

with i ∈ {1,2}, j ∈ {1,2,3,4}, where N0 denotes the incoming nutrient concentra-

tion. Following typical experimental conditions, we assume nitrogen as the limiting

nutrient (N ). Hence, the nutrients are measured in nitrogen concentration, as com-

pared to carbon for biomass, therefore, the nitrogen-to-carbon weight ratio (cN /cC )

is required to scale the basal (Bi ) growth terms. Moreover, the basal growth rate ri is

described by a Monod function (Monod, 1950; Tilman, S. S. Kilham, and P. Kilham,

1982), with maximum growth rate r ′i and a nutrient-uptake half-saturation constant

hN . The intermediate and top species have a generalized Holling-type-III functional

response, with maximum growth rates g ′j and γ ′i , half-saturation constantsM and µ,

and Hill coefficients h and η, respectively (Williams and Martinez, 2004; Kalinkat

et al., 2013). This means:

ri = r ′i
N

N + hN
(2.4)

gji = g ′j
(pjiBi )h∑

i ′ (pji ′Bi ′ )h +1
(2.5)

γij = γ ′i
(φij Ij )η∑

j ′ (φij ′ Ij ′ )η +1
, (2.6)

and,

p =

Bu Bd


1
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1
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1

Mu,s

1
Md,s

Ids
1

Mu,n

1
Md,n
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1
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1
Md,n

Idn

, φ =

Ius Ids Iun Idn 1
µu,s

1
µd,s

1
µu,s

1
µd,s

Ts
1

µu,n

1
µd,n

1
µu,n

1
µd,n

Tn
(2.7)

such that e.g. Mu,s indicates the half saturation constant of the undefended species

being grazed by the selective species, etc.

Finally, our model includes a parameter, ∆, which explicitly controls the species’

trait values. Abstract traits such as defense and selectivity are linked to concrete and
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measurable parameters describing the species’ interactions. For the basal species,

their maximal growth rate r ′i is linked to their position on the defense axis (Fig.

2.1d). The intermediate species have two trait values: defense is again linked to

their maximal growth rate g ′j /e, and the half saturation constant Mi is determined

by their degree of selectivity; both of these traits affect the overall growth rate of

the intermediate consumers. The top species have only one trait, selectivity, which

is linked to their half saturation constant µi . As will be shown below, the equations

are parametrized in a way such that for ∆ = 0 the linear chain system, where all

species per trophic level are functionally identical, will be described (Fig. 2.1a). As

∆ is increased, the system changes in a continuous way, where some prey species

gradually become more and more defended (Fig. 2.1b), such that they can be preyed

on less and less by the selective species. In addition, the selective species are grad-

ually able to feed more efficiently on the undefended species. Finally, for ∆ = 1 the

trait differences are maximal, as is the case in Fig. 2.1c: the selective species do not

feed on the defended prey anymore.

The parameter values are set to vary logarithmically with ∆. This implies that

parameter changes occur proportional to the starting value in both directions, since

r ′i and g ′i appear as linear factors in the differential equations. For consistency, the
elements of p and φ are also varied logarithmically. Concretely, this means that:

log[θ(∆)] = logθ0 +∆ · (logθ1 − logθ0) (2.8)

where θ is r ′u, r
′
d, g
′
u, g
′
d or any of pij or φji . In this way, ∆ = 0 implies θ = θ0 such that

all the trait values are equal in the following manner:

r ′u(∆ = 0) = r ′0 = r ′d(∆ = 0), (2.9)

g ′u(∆ = 0) = g ′0 = g ′d(∆ = 0), (2.10)
1

Mu,s
(∆ = 0) =

1
M0

=
1

Mu,n
(∆ = 0), (2.11)

and similarly for the other elements of p or φ. We define the parameter values θ0 of

the ∆ = 0 system as arithmetic averages of the extreme values θ1 in the ∆ = 1 system,

on a logarithmic scale, e.g.:

logr ′0 =
log[r ′d(∆ = 1)] + log[r ′u(∆ = 1)]

2
, (2.12)

and similarly for the other parameters. These extreme values are shown in Table 2.1.

As the logarithm of 0 is undefined, this requires the elements of p and φ related

to the defended-selective species’ interactions for ∆ = 1 to be nonzero. In this case

10−4 was taken, which is low enough not to affect our results (see Fig. A.1, Appendix
A). Note also that the set of 9 equations in Equation (2.3), when the species on each

trophic level are exactly equal (∆ = 0), is mathematically equivalent to a linear chain
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Body mass ratio between adjacent trophic levels mI /mB =mT /mI = 103

Allometric scaling exponent λ = −0.15
Inflow nutrient concentration N0 = 1120µgN/l
Dilution rate δ = 0.055
Nutrient half-saturation const. of B hn = 10µgN/l
Nitrogen to carbon ratio of B cN /cC ≈ 0.175
Bu max. growth rate r ′1 = 1/day
Bd max. growth rate r ′2 = 0.66/day
I conversion efficiency e = 0.33
Iu max. grazing rate g ′1,3 ≈ 1.08/day
Id max. grazing rate g ′2,4 ≈ 0.70/day
Is half-saturation const. M1,2 = 300µg C/l
In half-saturation const. M3,4 = 600µg C/l
T conversion efficiency ε = 0.33
T max. grazing rate γ ′1,2 ≈ 0.38/day
Ts half-saturation const. µ1 =M1,2 = 300µg C/l
Tn half-saturation const. µ2 =M3,4 = 600µg C/l

Table 2.1: Standard parameter values used in this study when the trait differences are maximal,
i.e., ∆ = 1.

system with 4 equations, up to a slight parameter transformation. Specifically, the

9-equation food web system corresponds to a 4-equation food chain by settingM→
2(h−1)/hM and µ→ 4(h−1)/hµ. For details of the derivation, see Section A.2, Appendix

A.

Model parametrization and analysis

In order to decrease the number of free parameters, and simultaneously increase the

realism of the model, the species’ growth rates were scaled allometrically to their

body mass (Brose, Williams, and Martinez, 2006; De Castro and Gaedke, 2008):

intermediate growth rate
basal growth rate

=
[
mI

mB

]λ
, (2.13)

with bodymassesm and the exponent λ given typical for planktonic systems (Moloney

and Field, 1989) (Table 2.1). The same relationship holds true for the ratio between

the maximum growth rates of the intermediate and the top species.

This model was developed as a chemostat model, with an eye towards poten-

tial experimental application. Chemostat experiments have been very successful in

identifying and understanding ecological and evolutionary interactions of plank-

tonic (Fussmann et al., 2005), and many other microbiological systems (Elena and

Lenski, 2003). In such experiments, many factors influencing dynamics in question,

such as nutrient supply, light supply, temperature, etc., are kept constant and/or

closely monitored. This procedure greatly facilitates observation of the interactions

of interest between species in the chemostat. For this reason, extra care was taken to

have empirically motivated and realistic values of the remaining model parameter
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values (Table 2.1). Specifically, the parameter values we use are representative for

planktonic chemostats. However, this does not mean that our results apply only to

planktonic systems. In fact, as we show in Section A.1, Appendix A, similar results

are obtained when the model parametrization is more adapted towards terrestrial

food webs, for example.

To get a better understanding of how much certain values of ∆ sets the species

on the three trophic levels apart, we here consider a few exemplary cases. At ∆ =

0, the varied parameters are identical (and so are the species), while at ∆ = 0.2,

maximal growth and grazing rates of the undefended species are 9% higher than

those of defended species, and half saturation constants of non-selective species are

15% higher than selective species. At ∆ = 0.5, the differences are 23% and 42%,

respectively; at ∆ = 1 they are 50% and 100%.

For simplicity and to reduce the dimensionality of the system somewhat, in the

rest of the text it will be assumed that

h = η, and M = µ. (2.14)

Hence, h will denote the Hill exponent, and M the half-saturation constant, of the

functional response between both the first and the second, and between the second

and the third trophic level. Additional narrowing of parameter ranges was achieved

by requiring coexistence of the species in both the chain and the maximally sepa-

rated food web. More information on the size of the range for which all species are

able to coexist, as well as generalizations of our results for different model structures

can be found in Section A.1, Appendix A.

To characterize the differences between the different attractors, the different
phase relationships between predator-prey pairs were investigated. These phase re-

lationships were obtained by calculating the Discrete Fourier Transform (DFT) of the

simulated time series. Due to the non-sinusoid shape of the biomass oscillations, a

signal with only a single frequency will generate an infinite amount of peaks in the

frequency spectrum. These are necessarily multiples of the original frequency f ,

and the height of the peaks will scale as 1/f (Bracewell, 1999). This means they are

easily identified in the frequency spectra when shown on a log-scale, by the linear

decay in peak height.

The solutions of the differential equations presented were obtained numerically

in C using the SUNDIALS CVODE solver (Hindmarsh et al., 2005), with relative

and absolute tolerances of 10−10. Output data were studied using Python and sev-

eral Python packages; in particular NumPy, SciPy and Matplotlib (Van Der Walt,

Colbert, and Varoquaux, 2011; Hunter, 2007).
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2.3 Results

Firstly, we compare the biomass dynamics of the linear chain to the dynamics of

the maximally trait-separated food web, where trait differences within each trophic

level are maximal. Secondly, we study certain properties of the system, such as the

temporal variability of population and community biomasses, and the relative abun-

dances of species, while gradually increasing the amount of standing trait variation

at each trophic level from a linear food chain to the maximally trait-separated food

web.

The amount of trait variation is described by ∆ ranging continuously from 0 to

1. When ∆ = 0 we describe the linear chain without trait variation, and when ∆ = 1

we describe the maximally trait-separated food web. This fully separated food web

consists of defended and undefended prey species, which are being preyed upon by

non-selective and/or selective predator species (Fig. 2.1c). The benefits and costs of

the different offense-defense strategies are linked to each other through predefined

trade-offs (see Methods). The defended species have a lower growth rate than the

undefended species, but in turn, they are not preyed upon by the selective species

of the next trophic level in the fully separated web. Similarly, the selective species,

while unable to prey on the defended species, are able to graze the undefended

species more efficiently at low prey concentrations than their non-selective counter-

parts.

Our results are first summarized schematically in Fig. 2.2, subsequent mecha-

nistic details are presented in the sections and figures below. We observe two alter-

native stable states with low vs. high total production (State 1 and 2 in Fig. 2.2)

in both the linear chain (low trait variation) and the maximally separated food web

(high trait variation). In the low-production state, the high mean concentration of

free nutrients corresponds to a low amount of total biomass and consequently, a low

total production. In the high-production state, in contrast, the low mean nutrient

concentration implies that most of the nutrients are stored in the biomass which

implies a high total production. Note that at equilibrium, the total amount of nutri-

ents in the system is always constant because the chemostat model’s dilution rate δ

is constant for all species.

In the food chain without trait variation (left part of the biomass pyramids in Fig.

2.2), the population-level biomass dynamics for the low-production state (Fig. 2.3a)

exhibit pronounced predator-prey cycles, while the high-production state exhibits

slower cycles with lower amplitudes (Fig. 2.3b) . The respective phase relationships

of these oscillations (right part in Fig. 2.2, Fig. 2.3c-d) may inform about the ecolog-

ical mechanism behind the two different states (for details, see section 2.3.1). In the

low-production state, fast cycles with high amplitudes occur due to the strong cou-

pling between adjacent trophic levels. Such a strong interaction between predators

and their prey is indicated by the quarter-cycle phase lags (henceforth referred to

as 1/4 -lag cycles) (Fig. 2.3c). In the high-production state the top and intermediate
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Figure 2.2: Schematic overview of our results. (a) The model system (with B basal species, I
intermediate consumers and T top predators) always exhibits two alternative stable states,
State 1 (low-production) and 2 (high-production), for both low and high amounts of trait
variation. As trait variation is added, the system tends toward the high-production state
with the top-heavy biomass pyramid (solidly drawn states have a larger basin of attraction
than grayed out states). (b) The phase differences between predators and their prey inform
about the intensity of top-down control in the system as indicated by arrow width in (a), i.e.
1/4 -lag cycles indicate strong coupling between predator and prey. (c) Within trophic level
out-of-phase cycles indicate compensatory dynamical patterns, where the different species
exploit different temporal niches, and hence, reduce the community temporal variability.

level still exhibit 1/4 -lag cycles, but the phase difference between the intermediate

and basal level is significantly larger (Fig. 2.3d). This offset in the phase-relationship

indicates that the top-down control over the intermediate level is so strong in the

high-production state that the intermediate level’s dynamics are less closely cou-

pled to the basal level than in the low-production state. The basal level is then free

to fully exploit the available nutrients.

The decoupling of the intermediate and basal level results in a lower temporal

variability, especially at the basal level, and hence, reduces times of strong basal

suppression during which the nutrients can almost reach their capacity as observed

in the low-production state. In the high-production state, the overall higher primary

production combined with the lower temporal variability between the basal and the

intermediate level enhances the energy transfer through the food chain and results

in a top-heavy biomass pyramid.

When the food chain becomes a food web by adding trait variation (right part

of the biomass pyramids in Fig. 2.2), the biomass dynamics of the low-production

(Fig. 2.4a) and high-production state (Fig. 2.4b) as well as their respective phase-

relationships (Fig. 2.4c-f) become more complex because a slow and a fast timescale

underlie the oscillations (see Section 2.3.1 for details). Information regarding inten-

sity of top-down control is only deduced from the phase-relationships of the oscilla-

tory mode that explains most of the observed variation, i.e. the fast timescale of the
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Figure 2.3: Biomass and nutrient dynamics on the two different states for the tritrophic
chain for h = 1.1(= η), and their corresponding phase relationships. (N = nutrients, B =
basal species, I = intermediate species and T = top species). The relative phases of the low-
production state shown in (a) (mean nutrient level ≈ 250µgN/l) are plotted in panel (c).
The phases of the high-production state shown in (b) (mean nutrient level ≈ 10µgN/l) are
plotted in panel (d). In both cases the phases relative to the top species are shown.

low-production state (Fig. 2.4d) and the slow timescale of the high-production state

(Fig. 2.4e). Similar to the food chain without trait variation, the strong top-down

control by the top level and subsequently, the decoupling of the intermediate and

basal level in the high production state again results in lower temporal variability, a

temporally more balanced nutrient use, and a more efficient energy transfer towards

the top level. Importantly, the high-production state becomes more likely than the

low-production state with increasing trait variation, i.e., its basin of attraction in-

creases, making it more resilient against external disturbances (for details, see Fig.

2.5 and Section 2.3.2).

As trait variation (∆) increases, selective and non-selective consumers at the top

level exploit different temporal niches and force the intermediate level to split up

into two distinct groups comprising the defended and the undefended species, re-

spectively. As both groups include both selective and non-selective consumers, this

further weakens the interaction between the intermediate and basal levels, strength-

ening the aforementioned mechanisms that stabilize the high-production state. No-

tably, the mean population biomasses stay relatively constant as trait variation in-

creases (cf. Fig. 2.6c & 2.6d), while the community temporal variability decreases

(Fig. 2.6e & 2.6f, gray lines). This effect could also be predicted from the phase

relationship diagrams, which show that with increasing trait variation, competing

species within the same trophic level move out-of-phase with each other (Fig. 2.4c-f).

Such out-of-phase cycles indicate compensatory dynamical patterns with potentially

high amplitudes at the population level. However, because the different species are
able to exploit different temporal niches, the community temporal variability is kept

low.

In summary, adding trait variation safeguards the high-production state which
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Figure 2.4: The dynamics of the maximally separated food web (see Fig. 2.1c for structure
and species names), for h = 1.05(= η). Fig. (a) and (b) show the biomass time series on the
low- and high-production state, respectively. The phase relationships (relative to Tn) of the
two main temporal modes on the states are shown in panels (c), (e) (slow) and (d), (f) (fast).
(See Fig. 2.5 and its explanation in the text for why the chosen value of h = 1.05 is different
from the one used to compare the two states on the chain in Fig. 2.3.)

is characterized by a high top-level biomass resulting from an efficient transfer of

energy towards the higher trophic levels, and low temporal variability due to weak

coupling between the intermediate and basal levels and prominent compensatory

dynamics within the lower trophic levels. Contrarily, losing trait variation increases

the risk of an irreversible transition to the low-production state, which is character-

ized by a lower top-level biomass resulting from the less efficient transfer of energy

towards the higher trophic levels, and higher temporal variability. With trait varia-

tion added, primary production increases from the low- to the high production state

by a factor of 1.5 and the efficiency of the energy transfer towards the top level in-

creases by a factor of 2 (See Table A.1, Appendix A). Hence, adding trait variation

results in a more productive and energy-efficient food web.

More details about the above-mentioned results are presented in the respective

sections below.

2.3.1 Phase relationships as a way to identify underlying mechanisms

In order to understand how to use the phase relationships between different popu-
lations of a complex food web, such as the maximally trait-separated web (Fig. 2.1c),

to uncover the mechanisms driving their dynamics, let us first look at the simpler

linear chain containing only three species (Fig. 2.1a). As mentioned above, the state
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Figure 2.5: Relative frequency of reaching the high-production state, as a function of the
trait difference ∆ and the Hill-exponents h = η. Each of the points in the 101×85 grid shows
the relative frequency of reaching the high-production state, sampling 200 random initial
conditions. The black dashed line shows the approximate location of the boundary crisis of
the high-production state. The low-production attractor also undergoes a boundary crisis,
the approximate location of which is indicated by the white dashed line.

shown in Fig. 2.3a with a mean nutrient concentration of about 250µgN/l will be

called the low-production state, relative to the other state (Fig. 2.3b) which has a

much lower mean nutrient concentration of around 10µgN/l and therefore will be

called the high-production state.

Closer inspection of the time series reveals the origin of the difference in mean

free nutrient levels between the two states. In the low-production state (Fig. 2.3a)

the intermediate level is able to grow to sufficiently high densities to graze the bot-

tom level down significantly, despite the predation pressure imposed by the top

species. Hence, the nutrient uptake is strongly reduced for a considerable amount

of time leading to a relatively high mean nutrient level. Conversely, in the high-

production state (Fig. 2.3b), the higher biomass at the top level implies a stronger

grazing pressure on the intermediate level. The intermediate species are thus not

able to grow to the density levels reached on the low-production state, and in turn,

do not graze the basal level down to low densities. Hence, the mean nutrient level

is much lower. Here, we define top-down effects simply as effects arising from the

terms linking a species to the trophic level above it, and vice-versa for bottom-up

effects. In this way, increased grazing pressure constitutes an increase in top-down

control.

Using this definition, we could conclude that the overall control exerted by the

top level is higher in the high-production state than on the low-production state.
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Figure 2.6: Bifurcation diagrams of the defended basal species, Bd ((a), (b)), mean biomasses
((c), (d)), and CV ((e), (f)) of all the species in the system, for the low-production (left) and
the high-production (right) attractors, for h = 1.05. For the bifurcation diagrams of the other
species see Section A.3, Appendix A. The CV of the selective top predator is not plotted for
the region where it goes extinct (0 / ∆ / 0.1 in panel (e)). In panels (e) and (f), the black to
gray lines respectively denote the CV of the first, second, and third trophic level as a whole.
Note the different scales on the x- and y-axes.

Such an observation cannot be made as straightforwardly by inspecting only the

mean biomass levels, as the temporal averages of the intermediate and basal biomasses

are quite similar in both states and thus, they do not inform about potential changes

in the production at each level. Therefore, examining the degree of top-down or

bottom-up control in the case of non-static dynamics requires information about

the oscillations themselves.

Interestingly, the phase differences between the different trophic levels contain

sufficient information to reach the same conclusions regarding the strength of top-

down control in the two states. In the low-production state, the phase differences be-
tween the top and intermediate level, and intermediate and bottom level, are about
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a 1/4-cycle Fig. 2.3c), reflecting the presence of clear predator-prey oscillations, i.e.,

cyclic change between top-down and bottom-up control, between both the top and

intermediate level, and the intermediate and basal level. In contrast, in the high-

production state, the phase lag between the intermediate and basal level is signifi-

cantly more than a 1/4-cycle (Fig. 2.3d), indicating rather weak interactions between

these two different trophic levels.
With this in mind, we now investigate the fully trait-separated food web (∆ = 1,

Fig. 2.1c), whose dynamics are shown in Fig. 2.4a and 2.4b. Just as the linear chain,

the system settles down to a stable limit cycle. While the dynamics are visuallymuch

more complex when compared to the linear chain, the basic properties and differ-
ences between the two states remain the same. However, in contrast to the chain, the

discrete Fourier frequency spectra (cf. Fig. A.11, Appendix A) reveal two distinct

frequencies at substantially different timescales. Despite this increase in complexity,

our results clearly show that the phase relationships between distinct populations

of adjacent trophic levels provide substantial information about the regulations of

trophic interactions and changes therein. The absence of qualitatively different in-
teraction types (e.g., omnivory) allows us to meaningfully compare the phase rela-

tionship between each individual predator-prey pair in our trait-separated food web

to its expected value in isolation(Ellner and Becks, 2011).

The low-production state of the maximally separated food web (Fig. 2.4a) ex-

hibits two important timescales governing the overall dynamics. First, the same

high-frequency oscillations as were observed for the food chain are present, with the
1/4-lag cycles indicative of predator-prey oscillations (Fig. 2.4d). Second, oscillations

on a slower timescale are found. Their phase relationships show that they arise from

the trait differences between species (Fig. 2.4c). Here, the top species are almost

completely out of phase relative to each other. Consider first the selective predator

Ts, which preys only on the undefended intermediate species Ius and Iun . The phase

relationship diagram shows that these species precede Ts by the regular 1/4 -lag. The

same is true for Tn, which is preceded by a quarter-cycle by the defended interme-

diate species Ids and Idn . Quarter-lag cycles are not observed between the basal and

intermediate trophic level, which indicates that the trait differences within the top

trophic level influence the intermediate level more strongly as those on the inter-

mediate level influence the basal level. As the two alternating groups of defended

and undefended intermediate species contain a selective and non-selective grazer on

the basal species, they exert together approximately the same grazing pressure on

both types of basal species. Consequently, no clear phase relationship between the

intermediate and basal level is found. However, visual inspection combined with

analysis of the Discrete Fourier Transform (DFT) spectrum (Fig. A.11, Appendix A)

shows that the high-frequency component is the dominant one, explaining most of

the observed variation in the biomass. Hence, the biomass dynamics reflect an over-

all balance between top-down and bottom-up interactions in the low-production

state, similar to the simple linear chain.
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In the high-production state of the maximally separated food web (Fig. 2.4b), the

difference in dynamics as compared to the linear chain is even more pronounced.

The basal species exhibit a clear compensatory dynamical pattern, with alternating

biomass peaks of defended and undefended species. While the dynamics appear

highly irregular, the frequency spectrum shows that they are also mainly driven

by two frequencies. On the lower of these frequencies, which explains most of the

variation observed in this state, the phase relationships resemble those of the low

frequency in the low-production state (Fig. 2.4e vs. 2.4c), with the exception of the

basal species, which now cycle out of phase. The selective and non-selective top

species also move out of phase, which leads the groups of defended and undefended

intermediate species to behave similarly, as they each precede their respective main

predator. As in the low-production state, no further relationship can be identified

between the intermediate and the basal level.

However, the high frequency roughly corresponding to that of the chain also has

an influential component in the Fourier spectrum. On this frequency, the phase re-

lationships show that the basal species also move out-of-phase. In contrast to the

dominant lower frequency, the intermediate species are now split into two groups

according to their main prey type. The non-selective intermediate species follow

the defended basal species, and the selective intermediate species the undefended

basal species, by a 1/4 -lag. As each of these two groups of intermediate species con-

tains both a defended and undefended type, no further relationship can be drawn

between the phases of the intermediate and the top level.

In summary, the strength of top-down control across trophic levels may be in-

ferred from the phase relationships in both the linear chain and the maximally sep-

arated food web. The phase-relationships further reveal compensatory dynamics

within trophic levels in the fully separated web.

2.3.2 Trait variation increases resilience of the high-production state

Recall that trait differences between the modeled species at each trophic level, deter-

mined by ∆ (Eq. (2.8)), can be varied continuously. Varying ∆ between ∆ = 0 (chain)

and ∆ = 1 (maximally separated web) reveals the intermediate region between the

two extremes considered so far.

In this intermediate region, the food web is not yet completely separated as is

the case for Fig. 2.1c, although there are already trait differences between different
species at each trophic level. That is, the selective predator species are not yet fully

specialized: they are still able to prey on the defended species albeit with a lower ef-

ficiency than the undefended species. Accordingly, the undefended species are not

fully defended against the selective predators. The difference in growth rates be-

tween defended and undefended species is thus gradually increased to its maximum

value, which is obtained when ∆ = 1. In this way the trade-offs between defense and

growth rate, and between selectivity and prey grazing efficiency, are explicitly built

into the model.
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To investigate the effect of trait variation on the likelihood of the system adopt-

ing either of the two alternative stable states, we determined the size of the basin

of attraction of the high-production state. Fig. 2.5 shows the relative frequency of

a random initial value falling in this basin of attraction, as ∆ is varied. The ran-

dom initial values were sampled from the set of all potentially accessible biomass

configurations of the chemostat system, i.e., the total carbon content in the system

does not exceed the maximum possible carbon content attainable by the incoming

nutrient concentration N0.

The region of intermediate frequency values confirms that the bistability is an

important aspect of the system. The typical behavior when varying ∆ from 0 to 1

is an increasing probability of reaching the high-production state. Furthermore, the

graph shows an important dependency on the predator-prey functional responses’

Hill coefficient h: increasing the exponent also increases the probability of reaching

the high-production state. Investigating the effect of other model parameters on

the presence of bistability reveals that it is quite common for this type of model

structure, and that the trends presented here are not limited to this particular part

of the parameter space. For details, see Section A.1, Appendix A.

Over the whole range of ∆, there is a very sharp transition between the region

where only the high-production state exists (dark blue), and the region where both

states exist, indicated by the white dashed line (Fig. 2.5). Notably, the border

decreases steeply as the trait difference ∆ is increased, indicating the much lower

dependence on low-density grazing suppression for higher amounts of standing

trait variation. The sharp border between the two regions is an indication that the

low-production state undergoes a catastrophic bifurcation, where it suddenly dis-

appears. Similar behavior is observed for the high-production state, indicated by

the black dashed line. This transition is of particular ecological interest as it im-

plicates the sudden disappearance of the high-production, low-temporally-variable

state. The region for h < 1.04 was not considered, as the amount of extinctions was

too high. However, the graph indicates that the probability of reaching the high-

production state decreases further.

2.3.3 Dynamical properties of the alternative stable states under gradual
changes in trait variation

Consider now h = 1.05 as a representative value catching the most complex region in

Fig. 2.5, to study the possible effects of varying ∆ on the system’s dynamics. In this

case, the low-production state exists over the whole range of ∆, its the bifurcation

diagram for the defended basal species Bd is shown in Fig. 2.6a. The qualitative fea-

tures of the diagram are representative for the other species in the network, whose

bifurcation diagrams are shown in Fig. A.9 and A.10, Appendix A . For ∆ = 0, the

oscillations are simple, in the sense that they are governed by a single timescale

and have a constant amplitude, as the maxima and respectively minima each fall on

the same position. As ∆ increases, this situation remains unchanged, up until the
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species become different enough for the second timescale to emerge, in which they

exhibit a compensatory dynamical pattern. This explains the variation of the values

of the extrema as the two timescales interact destructively and constructively.

The mean biomasses of the species (Fig. 2.6c) reveal that the selective top preda-

tor goes extinct for low values of ∆. In this case, the species are too similar to sta-

bly coexist due to a lack of niche differences, and the non-selective predator out-

competes the selective species. However, it quickly recovers as ∆ is increased and

the species become more different. While this event causes some disturbances in the

mean biomasses of the other species, outside of this range the values are more or less

constant.

Disregarding the initial region of ∆where the selective top predator goes extinct,

all species’ CV exhibit a gradual decrease as ∆ is increased, up to the point where

the second timescale enters the system (Fig. 2.6e). At this point, a sharp increase

is observed as the complexity is enhanced by the interaction of the two timescales.

The black to gray lines, depicting the CV of the biomasses at each trophic level as a

whole, show that the sharp increase is not present on the trophic-level-scale. Hence,

the increase in CV for each of the species can be solely attributed to the introduction

of the second, slower timescale. As discussed above, species with different traits may

move out of phase on this timescale, and thus the effects of the slower timescale on

the temporal variability for the trophic level as a whole cancel out.

The bifurcation diagram for the high-production attractor (Fig. 2.6b) does not

cover the full range of 0 ≤ ∆ ≤ 1 for h = 105, as it only exists on the right side of

the black dashed line in Fig. 2.5. Furthermore, the attractor exhibits a much richer

structure as ∆ is varied than the low-production attractor. Multiple bifurcations

occur in which the dynamics are altered. In particular, lowering ∆ sufficiently the

system undergoes a series of period-doubling bifurcations which lead to chaotic dy-

namics. Eventually the attractor undergoes a boundary crisis, as indicated by both

the sudden disappearance of the then chaotic attractor and the presence of a chaotic

transient (Fig. A.12, Appendix A).

The species’ mean biomass on the high-production state (Fig. 2.6d) reveal a sim-

ilar monotonicity as those on the low-production state (Fig. 2.6c). A notable obser-

vation is the very low mean nutrient level along the whole range of ∆. The nutrients

show a very high CV (Fig. 2.6f), which can be attributed to their low mean value.

In addition, the CV for each of the species is higher on the right side of the Hopf-

bifurcations (higher ∆), as compared to the left side for lower values of ∆. However,

just as for the low-production state, these increases are buffered when looking at the

temporal variability of the trophic levels as a whole (black to gray lines). This re-

flects the compensatory dynamical pattern of the high-production state, where some

of the species move out of phase, which leads to a reduction in temporal variability

on the entire trophic level.
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2.4 Discussion

We developed a generic tritrophic model to investigate the effect of varying degrees

of trait variation on the dynamics of multitrophic food webs and their associated

ecosystem functions such as the mean resource use efficiency, biomass production,

temporal variability and resilience. By increasing the trait difference parameter ∆

from 0, the system increases in complexity while it changes gradually from a sim-

ple chain without trait variation to a complex web with selective and non-selective

consumers, and correspondingly defended and undefended prey. The relevant pa-

rameters affecting these traits (growth rate, edibility, food preference, and half sat-

uration constant) are closely linked to the functions of the individual species in the

food web. Hence, increasing ∆ also increases the functional differences between the

species, and thus, the functional diversity of the system. For ∆ > 0 but low, the trait

differences are small which means the species are very similar, hence, the functional

diversity at each trophic level is low. Correspondingly, for ∆ close to one, the func-

tional diversity of the system is high, even though the number of species is kept

constant. Therefore, varying ∆ is a means to study the effects of changing functional

diversity on all three trophic levels on the dynamics of the whole system without

potentially confounding effects of changing the number of species. The different as-
pects of how trait variation impacts the food web dynamics are discussed in detail

below.

Phase relationships help unravel complex trophic interactions

Traditionally, effects of multi-trophic interactions such as trophic cascades and the

degree of bottom-up or top-down control were studied using a rigid linear chain

in equilibrium (Carpenter, Kitchell, and Hodgson, 1985; Pace et al., 1999). How-

ever, natural systems are usually not simple chains, but highly complex webs with

functionally diverse species at all trophic levels (Boit et al., 2012; Wollrab, Diehl,

and De Roos, 2012). Moreover, their dynamics may not evolve towards an equi-

librium fixed point, but rather to a limit cycle (May, 1972), or a strange attractor

(Hastings et al., 1993) where they will perpetually exhibit oscillatory behavior. This

phenomenon can be separated from stochastic noise and has been observed in nat-

ural communities (Kendall, 1998). Such oscillatory behavior gives rise to certain

phase relationships between the biomass dynamics of the different species.
Additionally, in the maximally trait-separated food web (Fig. 2.1c), calculation

of the Discrete Fourier Spectrum clearly exposes the two timescales at which major

driving mechanisms take place. The emergence of a second timescale does not rely

on the addition of a third trophic level as this feature has already been found in

bitrophic models that considered multiple species or phenotypes at only one (Ya-

mamichi, Yoshida, and Sasaki, 2011) or both trophic levels (Tirok and Gaedke,

2010). However, our treatment highlights how the phase relationships may shed
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light on the mechanisms driving complex systems by disentangling the different
timescales at which these mechanisms may act.

Strength of trophic interactions

We found that the main dynamical differences between the two alternative stable

states present in our system can be explained by an increased top-down control of

the top level on the intermediate level. When the intermediate level is strongly

controlled, such as is the case on the high-production state, its species are unable to

control the basal level. The basal level is in turn able to fully exploit the available

nutrients, increasing the overall production in the system (see Table A.1, Appendix

A).

This result holds independent of the amount of trait variation present, and is in

line with previous studies showing that reduced top-down control may result in an

increased phase difference between predator and prey (Yoshida et al., 2003; Becks et

al., 2010). Importantly, the larger than 1/4-cycle phase difference between the basal

prey and intermediate predator observed in our system with only one species per

trophic level (Fig. 2.1a) shows that the common conception of anti-phase cycles as

a “smoking gun” for the presence of evolution, or other mechanisms causing trait

changes (Ellner and Becks, 2011; Hiltunen et al., 2014) does not hold any longer

when considering multitrophic systems in which the intermediate predator faces

strong top-down control by the top predator.

Role of compensatory dynamics

When a community consists of functionally diverse populations, a decline in one

functional group can be accompanied by an increase of another (Klug et al., 2000).

In this way, even though the individual populations exhibit high temporal variabil-

ity in their biomasses in our model, the variability of the community biomass per

trophic level remains low (Fig. 2.6f). Such an effect has been observed before in

studies investigating the effect of standing trait variation or phenotypic plasticity on

population dynamics (Kovach-Orr and Fussmann, 2013; Bauer et al., 2014), and it is

often made possible through compensatory dynamics between the species (Micheli

et al., 1999; Vasseur and Gaedke, 2007; Gonzalez and Loreau, 2009). Hence, com-

pensatory dynamics can be understood as a mechanism by which ecosystem func-

tions such as biomass production can stay rather constant while individual popula-

tions may be highly variable (Hooper et al., 2005; Bauer et al., 2014). Compensatory

dynamics are observed in both the high- and low-production state, for sufficiently

high ∆ (Fig. 2.4a & 2.4b). When present, they effectively decrease the biomass CV of

the trophic level as whole, even though the CV s of the species’ individual biomass

may be relatively high (Fig. 2.6e & 2.6f). These compensatory dynamical patterns

naturally keep species within a trophic level moving out-of-phase relative to each

other, and thus, can also be inferred by analyzing phase relationship diagrams.
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Notably, the compensatory dynamics on the low-production state are only present

at the slower timescale related to the trait dynamics (Fig. 2.4c). For example, the

dominant faster timescale does not exhibit compensatory dynamics (Fig. 2.4d),

and thus, given substantial variation in the biomass of the individual populations,

the CV at the community level remains relatively high (Fig. 2.6e). Even so, the

sharp increase in temporal variation on the population level for high trait varia-

tion is buffered on the community scale, through the compensatory dynamics tak-

ing place on a different timescale than the dominant one. Our time-scale depen-

dent phase-relationships between populations are in line with empirical observa-

tions showing that phytoplankton populations may exhibit compensatory dynam-

ics on the sub-annual scale, likely associated with trophic interactions, combined

with synchronous dynamics on the annual, externally driven timescale (Vasseur and

Gaedke, 2007). Similarly, zooplankton dynamics may be governed by two distinct

timescales: seasonal variation and experimentally varied environmental conditions

(Keitt and Fischer, 2006). Hence, unraveling the different timescales governing the

population dynamics may help to understand the major processes driving them.

Trait variation promotes high production at the top-level

In line with our results, bistability has been observed in other food chain models

(Abrams and Roth, 1994; Letellier and Aziz-Alaoui, 2002; Van Voorn, Kooi, and

Boer, 2010; Erbach, Lutscher, and Seo, 2013), ontogenetic growth models (Guill,

2009; Nakazawa, 2011), and in other, broader ecological contexts (Beisner, Haydon,

and Cuddington, 2003). The presence of two alternative states in our system is an

important feature as it may have far-reaching consequences regarding the stabil-

ity and perseverance of food webs when confronted with external perturbations. A

commonly made distinction when studying the effects of perturbations is whether

they consist of a change to the state variables, or to the actual model parameters

(Bender, Case, and Gilpin, 1984; Beisner, Haydon, and Cuddington, 2003). The

first kind, for example a sudden decrease in one of the species’ biomass, is often

called a pulse perturbation because of its short duration. The second kind is called

a press perturbation, because the change to the perturbed parameters is permanent,

such as a decrease in the nutrient inflow concentration. In a multistable system,

pulse perturbations, particularly when they are large, might push the system over

the edge of one basin of attraction into another, where the dynamics are potentially

completely different. Press perturbations may produce a similar outcome by caus-

ing large changes to an attractor’s basin of attraction, or by crossing a bifurcation

point where the dynamics change significantly. Therefore, the size of the basin of

attraction may be used as a measure of resilience (Beisner, Haydon, and Cudding-

ton, 2003). A highly resilient system will nearly always return to its original state,

hence its basin of attraction must be very large. Conversely, a non-resilient or fragile

system is easily pushed out of one basin of attraction into another one.
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Recall that the two states in our system have very different dynamical proper-

ties: the low-production state with low top biomass production and high variability,

compared to the high-production state with high top biomass production and low

variability. From an ecosystem function perspective, low variability or high biomass

in higher trophic levels are beneficial for e.g. fish yield. Therefore, it may be desir-

able to keep the system on the high-production state.

While biomass production of a community is known to be mostly positively

correlated with its functional diversity (Tilman et al., 1997; Naeem, Duffy, and
Zavaleta, 2012), we also found the high-production state in the food chain. This

corresponds to, e.g., modern agricultural systems, which typically consist of mono-

cultures with a low functional diversity, but a high biomass production available

for higher trophic levels. However, even though such monocultures may produce

more biomass than some functionally highly diverse mixtures, they are very fragile

against external disturbances (Yachi and Loreau, 1999; Loreau et al., 2001). In this

way, functional diversity is regarded as an insurance against external perturbations.

We clearly observed such an effect in our system, for both pulse and press perturba-

tions, as illustrated by Fig. 2.5. Since the basin of attraction of the high-production

attractor increases in size with ∆, the system becomes less likely to be pushed out

of the basin of attraction by a pulse perturbation. This trend is persistent when

varying not only the Hill exponents, but also the dilution rate, and the nutrient in-

flow concentration (Fig. A.3, Appendix A), and is thus not limited to a particular

part of the model’s parameter space. In addition, the boundary crisis causing the

sudden disappearance of the high-production attractor (Fig. 2.5, black dashed line)

is only present for low values of ∆. Hence, functional diversity also protects the

high-production state from suddenly disappearing under a press perturbation.

Typical for a boundary crisis, as the high-production state undergoes when de-

creasing∆, are the long transients that are still present near the crisis point (Grebogi,

Ott, and Yorke, 1982) (Fig. A.12, Appendix A). In an ecological context this could be

problematic as such a long transient implies there is no way to know exactly when

the crisis point has been passed and the basin of attraction no longer exists, until the

system eventually accelerates towards the only remaining attractor. Such regime

shifts were empirically observed and predicted by a variety of ecosystem models

in different contexts (Scheffer and Carpenter, 2003), such as woodlands threatened

by fires turning into grasslands (Dublin, Sinclair, and McGlade, 1990), and shallow

lakes threatened by eutrophication turning from a macrophyte to a phytoplankton

dominated state (Scheffer et al., 1993). The key idea is that a small perturbation

near the bifurcation point may move the system to an alternative stable state, but

once this has happened, a much larger perturbation is needed in order to return

back to the original state. It has been argued that, under certain circumstances, one

may be able to observe early-warning signals that a transition is imminent (Scheffer
et al., 2009; Carpenter et al., 2011; Kéfi et al., 2014). For example, near some types

of bifurcations a dampening of the speed-of-return after a pulse perturbations may
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be observed, called critical slowing down (Wissel, 1984; Scheffer et al., 2009). In

the case of a boundary crisis, showing the existence of any early-warning signals has

proven to be difficult (Hastings and Wysham, 2010; Boettiger and Hastings, 2012).

However, even if their existence could be shown mathematically, they will almost

certainly be very difficult or impossible to detect in a real-life setting, where the ex-

act chaotic dynamics may be obscured by measurement noise. Our results reveal

that maintaining sufficient trait variation provides protection from boundary crises,

with their often ecologically and economically undesirable consequences.

These conclusions rely on the presence of alternative stable states in our model.

This is a prominent property in tritrophic systems, present in even a simple tritrophic

chain with Holling-type-II functional responses and logistic growth of the basal

species(Abrams and Roth, 1994). However, there always exist parameter regions

where there is only one non-trivial stable state. We find that also in such cases, pro-

duction at the top level and temporal stability both increase with ∆, as the attrac-

tor changes from resembling the low-production to resembling the high-production

state in a gradual way (Fig. A.6, Appendix A).

Influence of a sigmoidal functional response

The use of sigmoidal functional responses such as the (generalized) Holling type-III

(h = η > 1) has been an active area of discussion for quite some time. Sigmoidal

functional responses are praised for their favorable effects on food web dynamics

such as an increased dynamical stability (Williams and Martinez, 2004; Kalinkat et

al., 2011). Such an increase is justified by the apparent discrepancy between the ob-

served stability of natural ecosystems, and the highly unstable nature of ecosystem

models describing them (McCann, 2000). While experimental evidence has tradi-

tionally mainly supported hyperbolic functional response shapes, such as Holling

type-II (h = η = 1) (DeMott, 1982; A. W. W. Murdoch et al., 1998), sigmoidal func-

tional responses such as Holling-type-III provide models with additional stability

which may overcome this discrepancy. Recent experiments studies have found ev-

idence for sigmoidal functional response shapes (Sarnelle and Wilson, 2008; Mo-

rozov, 2010; Kalinkat et al., 2013), or otherwise have shown the difficulty in dis-

tinguishing Holling type-II from type-III functional response shapes (Seifert et al.,

2014). Furthermore, sigmoidal shapes account for natural processes not captured

by the model such as spatial heterogeneity, refuges, formation of resting shapes, etc.

Hence, Hill exponents close to—but higher than—one are likely to be relevant, and

thus, the requirement of at least some grazing suppression at low densities for all

species to coexist adds to the realism of the model. Even in the highly-controlled

environment of the chemostat, some of the proposed mechanisms giving rise to the

predation dampening at low prey densities, such as prey clumping (Oaten andW.W.

Murdoch, 1975) or other induced defenses (Lurling and Beekman, 2006), may well

be of importance. In addition, while a Hill exponent larger than 1 does facilitate
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coexistence, it is not a guaranteed. For example, Fig. 2.6c shows that one of the top

predators is not able to survive for 0 / ∆ / 0.1.

Nonetheless, Fig. 2.5 also shows a significant, decreasing dependence on low

prey density grazing suppression in order to reach the high-production state. For

most of the range of ∆, the sharp border between the bistable region and the re-

gion where only the high-production state exists occurs at a lower value of the Hill-

exponent as ∆ is increased. Hence, while the grazing suppression at low prey den-

sities is necessary to reach the high-production state, it becomes a less important

factor as ∆ is increased.

Concluding remarks

Despite the higher dynamical complexity of the resulting food web, the introduction

of trait variation at all trophic levels to a linear food chain increased the overall reli-

ability of ecosystem functions, such as resource use efficiency and high biomass pro-

duction. Our results highlight that functional diversity on different trophic levels

can reduce the overall temporal variability at the community level through compen-

satory dynamics among functionally different species within a trophic level. Investi-

gating the phase relationships between the different species of adjacent trophic lev-
els enabled us to identify the regulation of trophic interactions, such as changes in

top-down or bottom-up control, in oscillatory dynamical regimes. Accordingly, we

observed that strong deviations from the expected 1/4 -lag between predator and prey

are possible in a tritrophic system, even without any trait variation. Hence, observa-

tion of such deviations do not necessarily indicate the presence of eco-evolutionary

dynamics as is often assumed. Furthermore, independent of the presence or ab-

sence of trait variation, our tritrophic model shows two alternative states with the

top predator exhibiting either a relatively low or high biomass. However, while the

high-production state is attainable in a tritrophic food chain, its basin of attraction

is very small. It becomes more resilient when trait variation is added, underlining

the role of functional diversity as an insurance against sudden pulse perturbations.

In addition, as trait variation decreases, this state may suddenly disappear through a

boundary crisis. Hence, high functional diversity also protects the high-production

state under press perturbations. We thus highlight the importance of functional di-

versity regarding resilience against external perturbations, low community tempo-

ral variability, resource use efficiency, and maintenance of biomass in higher trophic

levels.
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Abstract

It is well known that functional diversity strongly affects ecosystem functioning.

However, even in rather simple model communities consisting of only two or, at

best, three trophic levels, the relationship between multitrophic functional diver-

sity and ecosystem functioning appears difficult to generalize, due to its high con-

textuality. In this study, we considered several differently structured tritrophic food

webs, in which the amount of functional diversity was varied independently on each

trophic level. To achieve generalizable results, largely independent of parametriza-

tion, we examined the outcomes of 128,000 parameter combinations sampled from

ecologically plausible intervals, with each tested for 200 randomly sampled initial

conditions. Analysis of our data was done by training a Random Forest model.

This method enables the identification of complex patterns in the data through

partial dependence graphs, and the comparison of the relative influence of model

parameters, including the degree of diversity, on food web properties. We found

that bottom-up and top-down effects cascade simultaneously throughout the food

web, intimately linking the effects of functional diversity of any trophic level to the

amount of diversity of other trophic levels, which may explain the difficulty in uni-

fying results from previous studies. Strikingly, only with high diversity throughout

the whole food web, different interactions synergize to ensure efficient exploitation
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of the available nutrients and efficient biomass transfer, ultimately leading to a high

biomass and production on the top level. The temporal variation of biomass showed

a more complex pattern with increasing multitrophic diversity: while the system

initially became less variable, eventually the temporal variation rose again due to

the increasingly complex dynamical patterns. Importantly, top predator diversity

and food web parameters affecting the top trophic level were of highest importance

to determine the biomass and temporal variability of any trophic level. Overall, our

study reveals that the mechanisms by which diversity influences ecosystem func-

tioning are affected by every part of the food web, hampering the extrapolation

of insights from simple monotrophic or bitrophic systems to complex natural food

webs.

3.1 Introduction

In the face of rapid global biodiversity loss (Pimm et al., 2014), investigating the

influence of biodiversity on ecosystem functioning is a highly important area of re-

search. It has become clear that biodiversity is a predominant factor in determining

relevant functions of ecosystems such as biomass production, resource use efficiency,

and stability (Hooper et al., 2005; Tilman, Reich, and Knops, 2006; Worm et al.,

2006). A major factor affecting the link between biodiversity and these ecosystem

functions is functional diversity, i.e., the range of differences between the functions

of species contained within the ecosystem (Petchey and Gaston, 2006).

Mechanisticallymotivated studies into the role of functional diversity havemainly

been performed in the context of simple communities consisting only of one or, at

best, two trophic levels. Many of these studies restricted their focus to primary pro-

ducer diversity, and were able to show its correlation with relevant ecosystem func-

tions (reviewed by Cardinale et al., 2011). However, during the last two decades,

more sophisticated theoretical and experimental studies linking both plant and con-

sumer diversity to these ecosystem functions were conducted (see Thébault and

Loreau, 2003; Tirok and Gaedke, 2010; Borer, Seabloom, and Tilman, 2012; Filip et

al., 2014; Klauschies, Vasseur, and Gaedke, 2016; Schneider et al., 2016; Seabloom

et al., 2017; Flöder, Bromann, and Moorthi, 2018, and reviews by Duffy et al., 2007;

Griffin, Byrnes, and Cardinale, 2013; Barnes et al., 2018). In a recent experimen-

tal study, Wohlgemuth et al., 2017 demonstrated that producer diversity effects on
the biomass distribution and production at higher trophic levels crucially depends

on particular traits of the consumer level, such as specialization and selectivity.

Such studies highlight how the links between multitrophic functional diversity and

ecosystem functioning are difficult to generalize, due to their high contextuality. The

specific food webs that are studied, and the theoretical models used to study them,

are often too different to enable a meaningful attempt at synthesis of their findings

(Thébault and Loreau, 2003; Barnes et al., 2018).
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For this reason there is a clear need to understand the effects of diversity on

ecosystem functions in a setting that is as general and context-free as possible. In

addition, the high degree of interplay already observed between diversity of the pri-

mary producer and herbivore consumer level underlines the importance of includ-

ing diversity of even higher trophic levels. In this study, we want to advance our

understanding of how functional diversity affects ecosystem functioning in model

communities by including a diverse third trophic level. While it has often been

highlighted how important the effects of the third trophic level on ecosystem func-

tions are (Bruno and O’Connor, 2005; Duffy et al., 2007; Daam et al., 2019; Abdala-

Roberts et al., 2019; Ehrlich and Gaedke, 2020), relatively few studies have at-

tempted to explicitly take these effects into account. Ceulemans et al., 2019 showed

that functional diversity increases the biomass production, temporal stability, and

biomass transfer efficiency to higher trophic levels of a tritrophic food web, when

diversity is increased simultaneously at all three trophic levels. This model ana-

lyzed one particular food web structure in detail, which raises the question whether

the observed trends are to be expected in general, or whether they are context-

dependent as well.

Our study tackles this issue by investigating several different tritrophic food web

configurations with respect to the same ecosystem functions. Such a method has

been applied successfully in the past (Gilman et al., 2010; Kovach-Orr and Fuss-

mann, 2013; Poisot, Mouquet, and Gravel, 2013), but this study is the first where

the diversity can be independently controlled on three trophic levels. We investi-

gated eight different food web configurations (Fig. 3.1), which differ in the trophic

location at which functional diversity may be present. We measured functional di-

versity of a trophic level by the difference between the functional traits of the two

species residing there: when the trait difference between the species is large, so is the

functional diversity, and vice-versa. In this way, we were able to change the func-

tional diversity of a trophic level without changing the number of species. Adopting

such a trait-based rather than species-specific approach by analyzing functional di-

versity through trait differences, instead of using non-functional metrics of biodiver-

sity such as species number, allows us to produce results of high generality (McGill

et al., 2006; Hillebrand and Matthiessen, 2009; Krause et al., 2014). Furthermore,

the relatively simple and general structure of our food webs (see Fig. 3.1) makes our

results accessible for verification by experimental studies, as they are often limited

in how much complexity can be included.

Our model rests on few very general assumptions. The first is allometry, which

states that larger organisms tend to grow slower than smaller ones (Kalinkat et

al., 2013). Combined with the assumption that consumers tend to be larger than

their prey we obtain the general property that the mean growth rate should de-

crease as the trophic level increases. This strictly holds for pelagic systems (Gaedke

and Kamjunke, 2006), but also for other ones, except for the plant-herbivore in-

terface (Brose, Williams, and Martinez, 2006). The third basic assumption is the



Chapter 3. Top predators govern multitrophic diversity effects 47

frequently established trade-off between growth rate and defense (Herms and Matt-

son, 1992; Hillebrand, Worm, and Lotze, 2000; Kneitel and Chase, 2004; Ehrlich,

Becks, and Gaedke, 2017; Ehrlich, Kath, and Gaedke, 2020). It implies that slow

growing species are generally less affected by grazing than faster growing species,

which invest less in defense mechanisms due to energetic limitations. In addition,

the non-grazing mortality terms (see Eq. (3.8)) are of general nature and may be due

to several different processes, such as basal respiration, the influence of parasites

and viruses, or outflow in an experimental microcosm.

Importantly, food web dynamics do not only depend on the topology of the food

web, but also on the specific parametrization used, regarding both external envi-

ronmental parameters as well as internal parameters such as growth rates, attacks

rates, and handling times. To sufficiently capture the potentially high variation in

biomass dynamics, we randomly selected a total of 128,000 parameter combina-

tions from ecologically plausible intervals for the eight different food webs, as well

as tested 200 initial conditions per parameter combination. These parameter values

were drawn from intervals geometrically centered around values which are partic-

ularly relevant for planktonic systems (Ceulemans et al., 2019), but are sufficiently

wide to capture the behavior of many different types of food webs (see Table 3.1).

This procedure allows us to obtain results of high generality, as they apply to the

average behavior of tritrophic systems, independent of its parametrization.

3.2 Methods

The numerical data used in our study was obtained by storing the mean biomasses

and coefficients of variation (CV s) of the following ordinary differential equation
model:



Ṅ = δ (N0 −N )− cN
cC

∑
i

riBi

Ḃi = riBi −
∑
j

gji Ij − dBi
Bi

İi = e
∑
j

gij Ii −
∑
i

γjiTj − dIi Ii

Ṫi = e
∑
j

γijTi − dTi Ti ,

(3.1)

where the indices i, j ∈ {1,2}. N describes the free inorganic nutrients in the system,

with the inflow concentrationN0, inflow rate δ, and nutrient-to-carbon ratio cN
cC
. The

loss rates dBi
,dIi , and dTi represent losses proportional to the biomass present, such

as basal respiration, sedimentation, or wash-out. The basal species’ Bi uptake rate

ri is described by their maximal growth rate r ′i and nutrient uptake half-saturation
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constant hN :

ri = r ′i
N

N + hN
. (3.2)

The interaction between the intermediate species Ii and the basal species Bj is

described by a Holling-Type-III functional response which is determined by the at-

tack rate aij , handling time hij and the Hill exponent n:

gij = aij
Bn
j∑

j ′ aij ′hij ′B
n
j ′ +1

. (3.3)

In the same way, the interaction between top species Ti and intermediate species Ij
is given by:

γij = αij

Iνj∑
k αikηikI

ν
k +1

, (3.4)

with attack rate αij , handling time ηij , and Hill exponent ν. Finally, the biomass

conversion efficiency for the intermediate and top species is described by e.

Influence of trait differences on trait parameters

The parameters r ′i ,hij , aij ,ηij ,αij , and all death rates are determined by the trait dif-

ferences ∆B,∆I , and ∆T , which each can vary from 0 (the two species at each trophic

level are equal) to 1 (maximal trait differences). As trait differences increase, the

species B1, I1, and T1 will be metabolically more active, whereas B2, I2, and T2 will

be less active through modifying their maximal feeding rates (which equal the in-

verse of the handling times hij and ηij for the intermediate and top species).

In our model, trait differences affect the relevant species’ parameters symmetri-

cally, such that an increase for species 1 leads to a decrease for species 2 by the same

factor. Explicitly:

r ′1 = r ′0 ·Binc

r ′2 =
r ′0
Binc

h1i ∼
h0
Iinc

h2i ∼ h0 · Iinc

η1i ∼
η0
Tinc

η2i ∼ η0 ·Tinc,
(3.5)

with

Binc = 1+∆B · τinc Iinc = 1+∆I · τinc Tinc = 1+∆T · τinc, (3.6)

so that they are unity for ∆i = 0, leaving the species’ parameters unaffected, and
maximal for ∆i = 1, where τinc determines their maximal increase. Note that the

handling times hij and ηij depend on the trait differences of both the predator and

the prey level, hence the proportional relationship (∼) instead of equality (more

information is provided below, cf. Equations (3.7) & (3.9)).

The universality of trade-offs in natural systems (Kneitel and Chase, 2004; Ehrlich,

Becks, and Gaedke, 2017) implies that for any increase or decrease in growth rates,
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the species’ loss rates must change correspondingly. Time and/or energy that is in-

vested towards a certain defense strategy cannot be used for resource uptake, and

thus, comes at the cost of a lower growth rate (and thus a higher handling time).

Conversely, investing in a higher growth rate (lower handling time) tends to make

a species more vulnerable to predation as it leaves less time and/or energy for em-

ploying defense strategies. For simplicity, the loss rates are affected in the same way

as the growth rates. Thus, Binc affects the handling times hij as well as the death

rates dBi
, Iinc affects ηij and dIi , and Tinc affects dTi , in the following way:

hi1 ∼
h0
Binc

hi2 ∼ h0 ·Binc

ηi1 ∼
η0
Iinc

ηi2 ∼ η0 · Iinc,
(3.7)

and,

dB1
= δ ·Binc

dB2
=

δ
Binc

dI1 = δ · Iinc

dI2 =
δ
Iinc

dT1 = δ ·Tinc

dT2 =
δ

Tinc

(3.8)

The handling times hij and ηij are thus dependent on both Binc& Iinc, or Iinc&Tinc,

respectively. While the linear relationship that describes this dependence is almost

certainly a simplification of biological reality, specifying a more complex relation-

ship might make our model unnecessarily more complicated. As described in the

next section, multiple parameter combinations will be investigated, which means

that our approach is not limited to one single distinct trade-off curve.

Summarizing:

h = h0


1

BincIinc
Binc
Iinc

Iinc
Binc

BincIinc

 , η = η0


1

IincTinc
Iinc
Tinc

Tinc
Iinc

IincTinc

 . (3.9)

The interaction between predator-prey pairs is not only determined by the handling

times hij and ηij , but also by the attack rates aij and αij . In our model, these are

responsible for determining the relative strength of the “cross” links between two

adjacent trophic levels (e.g. B1 → I2, etc.). As the functional diversity on adjacent

trophic levels increases, these “cross” links will decrease in strength relative to the

“parallel” links (e.g. B1→ I1, etc.). The rate at which their strength decreases is de-

termined by the attack rate scaling parameter ascale. For details see Section B.1, Ap-

pendix B. In this way, it is possible to describe a tightly linked food web for ascale ≈ 1,

two largely separated tritrophic chains for ascale� 1, or an intermediate situation.
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Parameter selection

In order to capture a high diversity of dynamical outcomes, within a plausible eco-

logical setting, the parameters of the food web were sampled uniformly from certain

intervals determined by a standard value from which the boundaries are calculated

(Table 3.1). These standard values are based on Ceulemans et al., 2019, and describe

an ecologically realistic planktonic system with three trophic levels. In particular,

the maximal growth rates (r ′0, e/h0,&e/η0) were set to correspond to an allometri-

cally scaled food chain with the body mass ratios between adjacent trophic levels of

103, with an allometric scaling exponent of −0.15. However, due to the spread of the

intervals the actual ratio between body masses (assuming the same scaling exponent

λ) can vary between approximately 1 and 10,000,000 (for details, see Section B.2,

Appendix B). In this way, a good balance is made between capturing a high amount

of dynamical variation, while still being ecologically realistic.

The trait difference parameters can take the following values:

∆B ∈ {0,0.25, 0.5, 0.75, 1},

∆I ∈ {0,0.25, 0.5, 0.75, 1}, (3.10)

∆T ∈ {0,0.25, 0.5, 0.75, 1},

so that there are 125 combinations possible. These determine both the specific food

web topology and the amount of functional diversity present. For example, ∆B =

1,∆I = 0.25, and ∆T = 0 implies that we are investigating the BI food web (Fig. 3.1),

where the basal level is highly diverse, but the species on the intermediate level are

still relatively similar.

In order to sample a large part of all the possible dynamical outcomes that can be

exhibited by our model, we randomly sampled 1024 different parameter combina-

tions, for each selection of ∆B,∆I , and ∆T (Eq. 3.10). Moreover, for every parameter

combination, 200 different initial conditions were tested to capture potential alter-

native stable states. These initial values were randomly sampled such that the total

amount of biomass in the initial state did not exceed 2 ·N0. The system was allowed

to relax to its attractor before the mean biomasses and the CV of each species, and of

each trophic level, were recorded for a sufficiently long time period. More detailed

information on this procedure can be found in Section B.3, Appendix B. Numerical

integration of the ordinary differential equations in Eq. (3.1) was done in C with the

SUNDIALS CVODE solver version 2.7.0 (Hindmarsh et al., 2005). Subsequent anal-

ysis of the food web data was performed in Python 3.6 using NumPy (Van Der Walt,

Colbert, and Varoquaux, 2011), pandas (McKinney, 2010), and Matplotlib (Hunter,

2007). Further details on our computational procedure, as well as the code itself and

the data required to produce Figs. 3.3-3.6 and various Appendix Figs. can be found

as an electronic supplement.
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Random Forest Model

In order to simplify the presentation of our results, and to easily extract additional

relevant information, we trained a Random Forest model on our dataset. A detailed

description of how this works can be found in Section B.3, Appendix B. Essentially,

Random Forests are a class of machine learning models which are popularly used

due to their relatively simple structure and high versatility (Breiman, 2001; Cutler

et al., 2007; Thomas et al., 2018).

For each quantity of interest (see Results), an Extremely Random Forest consist-

ing of 2000 trees was trained using the Scikit-learn (Pedregosa et al., 2011) package

in Python. Using only those parameter combinations that lead to coexistence of all

species in the food web, the training dataset consisted of the 14 different parameters

(see Table 3.1 and Eqs. 3.10) as input values, and the mean biomass and CV s of

each trophic level as output values. During training, the random forest algorithm

performed cross-validation by calculating the Out-Of-Bag (OOB) score, to estimate

its accuracy. After training the random forest model, we used it to investigate how

the basal, intermediate, and top diversity (∆B,∆I , and ∆T ) affect the quantities of in-
terest, independently of all other parameters, by examining the partial dependency

graphs. Finally, the random forest also provided us with a measure of the impor-

tance of each of the input parameters in determining the desired outcome (relative

importance).

3.3 Results

In order to understand in which ways diversity of different trophic levels affects
tritrophic systems, we analyzed the solutions of the ordinary differential equation
model presented in the Methods (Equation (3.1)) for 128,000 different parameter

combinations. For each parameter combination, we saved the mean nutrient con-

centration and biomass density (in short biomass) and coefficient of variation (CV)

of each individual population and trophic level over a long period of time (see also

Section B.3, Appendix B). In the main text, we will focus in particular on diversity

effects on:

• the nutrient concentration N and biomass per trophic level BB,BI ,BT (see Fig.

3.3); and

• the CV of the nutrient concentration and biomass per trophic level CVN ,CVB,

CVI ,CVT (see Fig. 3.4).

Based on the mean biomasses, we also calculated several quantities related to the

flow of energy through the food web. The following ones are shown in the main text

(see Fig. 3.5, and Equation (3.1) and Section B.5, Appendix B for more information):

• the biomass production on the top level PT =
∑

i dTiTi ;

• the amount of basal biomass flowing upward to the intermediate level Bup;
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• the production to biomass ratio of the basal level (P /B)B = (Bup+
∑

i dBi
Bi )/(

∑
i Bi );

and

• the food web efficiency, defined as the ratio between the biomass production

at the top and the basal level: PT /PB.

Figs. 3.3-3.5 are partial dependence graphs revealing how trait differences on the

basal (∆B), intermediate (∆I ), and top (∆T ) level affect the quantity of interest. Such

partial dependence graphs are calculated from the Random Forest model trained on

the food web data, and show the average value of the quantity of interest, indepen-

dent of all other model parameters (see Methods). This presentation allows us to

concisely capture the full behavior of all food webs, as they each occupy a certain

location in the partial dependency graphs (Fig. 3.2). A concise summary of our main

findings is presented in Table 3.2.

In most cases the OOB scores, which measure the accuracy of the Random Forest

models, were above 0.60, with some exceptions (Table 3.3). Such scores indicate a

sufficient model accuracy as we focus on the average trends in the predicted quantity

as a function of the functional diversity of different trophic levels, rather than on

predictions for specific parameter values.

The quantities of interest were only examined for those initial conditions and

parameter combinations that actually led to coexistence of all species originally

present (see Fig. 3.1). Interestingly, there were only very few parameter combina-

tions that led to coexistence for the T (1 combination) and BT (8 combinations) food

webs (see Section B.4, Appendix B). One of the two top species almost always out-

competed the other in these webs. As we cannot reliably investigate the behavior of

these food webs in general, we did not include these parameter combinations in our

dataset. This implies that our dataset contains no data points with ∆T > 0,∆I = 0,

and therefore the region below ∆I = 0.25 for ∆T > 0 in Figs. 3.3-3.5 remains empty.

3.3.1 Nutrient concentration and biomasses

The partial dependency graphs of the free nutrient concentration and the biomasses

on each trophic level on the trait differences ∆B,∆I , and ∆T (Fig. 3.3) reveal strong

differences between the simple chain without any diversity (∆B = ∆I = ∆T = 0), and

the food web with high trait differences at every trophic level (∆B = ∆I = 1, and

∆T = high). Comparing these two points shows that the linear chain has a higher

average free nutrient concentration and a lower intermediate and top biomass than

the diverse food web.

In between these two extremes, the tritrophic structure of our model gives rise to

several interesting patterns. Comparing the chain and the B, I and BI food webs (i.e.

∆T = 0, Fig. 3.3, left panels) shows that when ∆I is 0 or low, increasing ∆B leads to

a decrease in basal biomass, whereas if ∆I is high, this pattern reverses as the basal

biomass increases with ∆B. In other words, if functional diversity is only present on

the basal level, basal biomass tends to decrease with ∆B. However, taking consumer
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diversity into consideration in the BI food web shows that this pattern is not general

and strongly depends on the actual level of consumer diversity (∆I ).

Investigating the effect of ∆I and ∆T on the intermediate and top level biomasses

shows exactly the same pattern. When ∆T is 0, intermediate biomass tends to de-

crease as ∆I increases, whereas when ∆T is high, it increases with ∆I (independently

of ∆B). Additionally, it is clear that top biomass increases with ∆T in a gradual fash-

ion.

The location and strength of trophic cascading in the food web is also affected
by the amount of functional diversity present on the different trophic levels. For

example, when ∆T is zero, an inverse relationship between the biomass on the in-

termediate and basal level can be observed, whereas the top level biomass seems

hardly affected by ∆B and ∆I (Fig. 3.3). When ∆T is low, biomasses at the top and

intermediate level are strongly negatively correlated, indicating that a diverse top

level is able to exert a stronger influence on the whole food web as compared to a

non-diverse top level. This negative relationship does not cascade downwards to

the basal level, potentially due to the buffering properties of a diverse intermediate

level. However, for ∆T = high, the strong inverse relationship between top and in-

termediate biomass is replaced by a rather positive one, due to the sharp increase in

intermediate biomass as ∆I is increased.

3.3.2 Temporal variation

We also examined how the functional diversity at each trophic level (∆B,∆I , and ∆T )

influences the temporal variation of the nutrients and biomasses per trophic level,

by calculating the coefficient of variation (CV ) (Fig. 3.4). One clear overarching

pattern is the covariation of the CV s along the different trophic levels. Temporal

fluctuations at any trophic level propagate through the whole food web, affecting all

other levels.

The left column shows how ∆B and ∆I affect the CV s of the food webs without

top diversity (∆T = 0). In this case, the CV of any trophic level depends almost

solely on ∆I . Only the CV of the nutrient concentration depends strongly on ∆B.

These results are strongly affected by the top diversity. By increasing ∆T from

0 to low, all CV s are considerably dampened. However, this trend reverses as ∆T

is increased further, as all CV s tend to increase again (∆T = high). Hence, while

comparing the simple chain (∆B = ∆I = ∆T = 0) to the food web with high trait

differences (∆B = ∆I = 1, and ∆T = high) does not immediately show any notable

differences, it is clear that temporal variability is strongly affected in an intricate

way by the amount of functional diversity at the different trophic levels.
Additionally, there is a strong correlation between the CV of the basal trophic

level, and the free nutrient concentration (Fig. 3.3, bottom row). A low temporal

variability on the basal level leads to a strong increase in nutrient exploitation effi-

ciency, and therefore low nutrient concentrations.
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Biomass production and food web energetics

We also analyzed metrics related to biomass production and food web energetics:

biomass production on the top level PT , basal biomass flowing to the intermediate

level Bup, basal biomass to production ratio (P /B)B, and the food web efficiency PT/PB
(Fig. 3.5, and Section B.5, Appendix B for more information on these quantities).

Examining these (and related, see Section B.5, Appendix B) quantities helped us to

understand why the biomass at the top level is highest when functional diversity

everywhere is high (top right corner in Fig. 3.3 for ∆T = high). Importantly, we can

infer the quantities PI (total biomass production of the intermediate level) and Iup
(biomass flowing from the intermediate to the top level) from Bup and PT : PI = e ·Bup,

and Iup = PT /e (see also Section B.5, Appendix B).

The biomass production by the basal level PB varies only little, as this quan-

tity is completely determined by the interaction with the free nutrients (see Section

B.6, Appendix B). This property lies at the basis for explaining the increase in top

biomass and food web efficiency as functional diversity increases everywhere.

When ∆T = 0, the absence of a diverse top trophic level creates a slight relative

advantage for the fast growing species I1 (see Fig. B.12, Appendix B). Its effects on
the basal level strongly depend on ∆I . For high ∆I , the fast growing B1 is heavily

suppressed and the basal biomass is concentrated in B2, which is less edible for the

prominent I1. For low ∆I (i.e., I1 and I2 are functionally similar and less special-

ized), the dominant I1 can also graze significantly on the slow growing B2, which

strongly promotes the fast-growing B1. The higher growth rate of B1 causes strong

fluctuations of the basal biomass (Fig.3.4), which, in turn, leads to less efficient nu-

trient exploitation (Fig. 3.3). Thus, for both low and high intermediate diversity, the

basal level is unevenly exploited, which leads to a relatively high proportion of basal

biomass being lost from the system, instead of being transferred up the food web

(see also Section B.5, Appendix B). The rather low basal biomass that is transferred

to the intermediate level supports only a modest amount of intermediate biomass,

and hence, a low biomass and biomass production on the top level, and a low food

web efficiency.

In contrast, when the top level is highly diverse (∆T = high), the intermediate

level is more evenly exploited, leading to a balanced presence of both intermediate

species. In turn, this leads to an efficient exploitation of the basal level, especially

when ∆I is also high, which is reflected by high values of (P /B)B (Fig. 3.5). Even

though PB remains roughly the same (Appendix Section B.8, and Section B.6, Ap-

pendix B), Bup is increased (Fig. 3.5) which leads to a significantly higher intermedi-

ate biomass and biomass production (Fig. 3.3 and B.8, Appendix B), and, ultimately

an increase in biomass on the top level. This increase subsequently explains the

increase in food web efficiency through an increased top biomass production (Fig.

3.5).
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Relative importance of parameters

The Random Forest model provides an estimate for the importance of each of the

food web parameters in predicting the outcome (see Methods). Fig. 3.6 shows them

for the different biomasses and CV s for each of the 14 model parameters (for the

relative importance of the different production metrics, see Fig. B.10, Appendix B).

The parameters in each graph are grouped by their mean importance in descend-

ing order. For example, the Hill-exponent of the functional response describing the

intermediate-top interaction (ν) has the highest mean relative importance for pre-

dicting the biomasses on each trophic level (Fig. 3.6, top). In particular, it is very

important for predicting the biomass on the top and intermediate level. On the other

hand, the nutrient-uptake half saturation constant hN is the least important.

One important observation in all three panels is that while the three possible

trait differences ∆B,∆I , and ∆T have a strong influence on all the different quantities
we have investigated (see Figs. 3.3-3.5), they are never amongst the most important

parameters. However, this is not very surprising given the nature of the other pa-

rameters in our model: for example, it is very natural that increasing the nutrient

inflow concentration N0 has a very strong influence on species’ biomasses.

Our results also show a balance between the relative importance of parameters

affecting the external environment (such as the nutrient inflow concentration N0

and the inflow rate δ), and internal parameters affecting the ecological dynamics

within the food web (such as the handling times h0,η0, and Hill-exponents n,ν).

Remarkably, parameters affecting the intermediate-top interaction (ν, η0, α0) are of

higher importance than their intermediate-basal analogues (n, h0, a0). In particular,

the importance of the different diversity measures ∆T ,∆I , ∆B is ranked by trophic

level. In this way, it is clear that food web parameters affecting the top level of are

of highest importance.

3.4 Discussion

The food web model analyzed in this manuscript was built with the aim of being as

general as possible, while still being ecologically realistic. Given the expansive range

of different environmental and ecological situations that are effectively covered by

the model, we did not intend to answer research questions about specific environ-

mental or ecological conditions. Rather, we focused on how the average behavior

of tritrophic systems depends on the diversity of each trophic level separately. In

particular, we studied how functional diversity in tritrophic food webs affects the

biomass distribution, temporal variability, and production, on average. The par-

tial dependence graphs provided by training a Random Forest model on our data

served as an ideal tool to answer these questions. Given the large amount of param-

eters that were randomly sampled, it is to be expected that the output data contains

a large amount of variation. For example, parameters like the inflow nutrient con-

centration N0, or the inflow rate δ naturally have a very strong influence on the
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trophic level biomasses and temporal variation. Partial dependence graphs revealed

how the predicted outcome changes as a function of one particular parameter, on
average, i.e., independently of all other model parameters.

Absence of coexistence in some webs

In two of the food webs we investigated, T and BT (see Fig. 3.1), coexistence of

all species was extremely rare (see Section B.4, Appendix B). In almost every case,

one of the two top species outcompeted the other one, as expected when applying

the competitive exclusion principle (Hardin, 1960; Armstrong and McGehee, 1980;

Klauschies and Gaedke, 2019). For less than 0.1% of the parameter combinations,

both top species still co-occurred at the end of the simulation time. The structure of

these two food webs entails that the two top species are competing with each other

for only one resource, I , with no other density dependent interaction.

In contrast, coexistence of all species is very likely in the I and IT food webs, even

though the two intermediate species also share a single resource, B. This is due to an

additional density dependent interaction acting on the intermediate species, by the

presence of the top level (which may or may not be diverse). Therefore, more than

one species can exist at the intermediate level without the necessity of fine-tuning

their interaction parameters (Huntly, 1991; Brose, 2008; Velzen, 2020).

Viewed in this way, it is clear that the amount of functional diversity of one

trophic level can drastically influence that of other trophic levels: a loss of func-

tional diversity at the intermediate level in the IT or BIT food webs leads to a loss of

functional diversity at the top level as well. It is therefore crucial to safeguard func-

tional diversity of lower trophic levels to enable a diverse top predator community.

Relative parameter importance

The random forest model trained on the output data of our simulations (see Meth-

ods) provides information on which of the input parameters (see Table 3.1) are most

important for estimating the predicted biomasses, CVs, and production metrics. In

short, a parameter is of high importance when it tends to appear high up in many

different trees in the forest. Conversely, when a parameter only appears near the

end of the trees, it is of low importance in estimating the desired outcome. These

relative importances are ranked from highest to lowest in Fig. 3.6.

Remarkably, parameters directly affecting the top trophic level tend to be of

high importance, whereas parameters influencing the nutrient uptake by the basal

species are all situated near the bottom end. The different diversity indices ∆B,∆I ,

and ∆T are also ranked by trophic level. This hierarchy shows how important the

higher trophic levels are in determining the biomass distributions, temporal varia-

tion of biomass dynamics, and energetics of whole food webs. Our model is thus

able to mechanistically support the general observation that changing the diversity

of the top trophic level often has far-reaching consequences (Ripple et al., 2014).
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In addition to most of the parameters governing the trophic interactions of the

top trophic level, the nutrient inflow rate δ and concentration N0 are also of high

importance. As δ determines the death rates of all the species in the model (see Eq.

3.8), and in particular those of the top level, it has a strong influence on the quan-

tities we have investigated (Kath et al., 2018). The nutrient inflow concentration is

unsurprisingly also of high importance in estimating these quantities. Its level, rep-

resenting the total biomass carrying capacity of our system, affects the basal trophic
level most strongly (Fig. 3.6), which is in line with field observations (Gaedke, 1998).

This analysis shows that the relative importance measures provided by the ran-

dom forest model provide useful information to uncover the underlying mecha-

nisms that govern the dynamics of more complex models. Our results clearly show

how external and internal food web parameters do not overpower each other. In-

formation on both types is required for accurately predicting biomasses, biomass

variability and food web energetics.

The complex relationships between diversity and ecosystem functioning

Our results show that functional diversity robustly increases biomass and produc-

tion efficiency (Fig. 3.5) at high trophic levels (Fig. 3.3), and generally decreases

temporal variation (Fig. 3.4), as summarized by Table 3.2. In addition, we reveal

intricate and complicated interactions between the degree of diversity at different
trophic levels and these ecosystem functions. These interactions complicate com-

parison of the numerous studies on the links between diversity and functioning to

each other (Filip et al., 2014; Wohlgemuth et al., 2017; Flöder, Bromann, and Moor-

thi, 2018; Daam et al., 2019).

For instance, our model shows that the effect of increasing producer diversity

on the biomasses of each trophic level highly depends on the amount of functional

diversity of the other trophic levels (Fig. 3.3). When the top level is not functionally

diverse (∆T = 0), the direction of the effect of ∆B on the basal biomass is determined

by the amount of functional diversity of the intermediate level (∆I ). When ∆I is low

(low functional diversity), basal and intermediate biomass tend to decrease with

increasing ∆B, whereas this trend reverses as ∆I becomes higher. A recent experi-

mental study revealed that the effects of producer diversity on food web functioning

also depend on the trait values on the consumer level in a bitrophic system (Wohlge-

muth et al., 2017). Our results indicate that this interdependency is of a very general

nature, and moreover, is expected to hold for higher trophic levels as well, which are

less manageable in experimental settings. Indeed, ourmodel shows a similar pattern

when investigating the effect of ∆I and ∆T on the intermediate and top biomasses.

Starting from ∆T = 0, increasing ∆I leads to a reduction in intermediate biomass,

compared to an increase in intermediate biomass when ∆T is high. Our tritrophic

food web comparison also shows that, when functional diversity is increased ev-

erywhere, the biomass of the intermediate and top species increases significantly,

whereas the basal biomass stays roughly constant. The same pattern was found in a
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modeling study comparing food webs of up to 100 animal species (Schneider et al.,

2016). This correspondency gives credibility to considering the effects of biodiver-
sity on food web functioning through changing the functional diversity in simpler

food webs, instead of changing the species number which significantly increases

food web complexity.

The effect of functional diversity on the temporal variability (CV ) of the biomasses

at the different trophic levels also exhibited a complex dependency on the functional

diversity of every single trophic level (Fig. 3.4). One particularly robust result, how-

ever, is the non-monotonous relationship between top diversity (∆T ) and the CV of

any trophic level. When ∆T is increased from 0 to low, the CV s tended to strongly

decrease. Such a reduction in the CV of a community as diversity increases has of-

ten been observed (Tilman and Downing, 1996), and can often be attributed to the

presence of compensatory dynamical patterns (Gonzalez and Loreau, 2009; Bauer

et al., 2014). However, as ∆T is increased further from low to high, the CV of each

trophic level increased again. Hence, additional mechanisms governing the dynam-

ics must also have a strong influence of the trophic level CV s. In Ceulemans et

al., 2019, we observed a similar pattern in the trophic level CV s, which could be

explained by the increased relevance of an additional dynamical timescale at high

∆T : the biomasses not only varied rapidly within predator-prey cycles, but also due

to slower trait changes. As this slower timescale became more dominant, the CV

increased again. Due to the similar model structure, this mechanism may be re-

sponsible for the increase in CV here as well. This result suggests that mechanisms

for dampening community temporal variability established for simple but function-

ally diverse systems, such as compensatory dynamics arising from competition for a

joint resource, may be counteracted by destabilizing effects in more complex—and

thus more realistic—systems.

Examining how the functional composition at each trophic level and ecosystem

functions are linked allows us to mechanistically understand why the biomass and

biomass production on higher trophic levels is maximal when every trophic level is

diverse, and why the diversity of the top level plays such a crucial role. This becomes

particularly obvious when comparing the trends of the different metrics related to

biomass production within the food web (see Results, Fig. 3.5, and Fig.B.10, Ap-

pendix B).

A functionally diverse consumer community leads to an efficient exploitation of

the production at the prey level due to their functional complementarity (Gamfeldt,

Hillebrand, and Jonsson, 2005). In our model, this mechanism is present between

both the top and intermediate, as well as between the intermediate and basal level:

a diverse top community efficiently exploits the intermediate production, which in

turn results in the basal production being efficiently exploited. In contrast, when

the top community is not functionally diverse, potentially functionally diverse in-

termediate and basal communities adjust in species composition so that they escape

efficient predation (Filip et al., 2014; Seiler et al., 2017). As a consequence, a higher
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proportion of the production is lost from the system by non-grazing mortality rather

than transferred up to the level above. In this way, the effects of functional diver-
sity of different trophic levels synergize to make the food web with diversity every-

where the most efficient configuration in transferring biomass from the basal to the

top level (Fig. 3.5, PT /PB). Importantly, even though the trade-off structure in our

model is comparatively simple, analysis of the individual populations’ biomasses

(Fig. B.12, Appendix B) confirms that they function as intended and prevent any

one species from dominating others on average, thus providing additional evidence

that the patterns we observe are caused by changes in trait differences between the

species on each trophic level.

The importance of considering multitrophic diversity has been emphasized be-

fore (Gamfeldt, Hillebrand, and Jonsson, 2005; Filip et al., 2014; Soliveres et al.,

2016; Lefcheck et al., 2015; Barnes et al., 2018; Ceulemans et al., 2019). With these

complex interactions between functional diversity of different trophic levels clearly
exhibited by our model, it is not surprising that studies focusing on a single food

web structure or a single parametrization sometimes find incommensurable results.

For example, increased primary producer diversity had often been linked to an in-

creased producer biomass and production (Tilman, Lehman, and Thomson, 1997;

Cardinale et al., 2011). Our results show that this relationship not only depends

on the trait values of the consumer level (Seabloom et al., 2017; Wohlgemuth et al.,

2017), but crucially also on the top level. Hence, we reveal considerable variation

in the behavior of differently structured food webs with respect to the relationship

between diversity and ecosystem functioning. Nevertheless, we are able to identify

clear trends and uncover mechanisms governing the behavior of tritrophic systems,

even when considering a large range of different parameter combinations.

Concluding remarks

Understanding the link between functional diversity and the functioning of com-

plex food webs is crucial to accurately predict how losses in functional diversity will

affect the functions of natural food webs everywhere around us. Considerable de-

tailed knowledge about this link has been gained in communities comprising of one

or two trophic levels. Partly, the knowledge gained from bitrophic systems helps

to understand tritrophic ones, such as the enhanced exploitation of resources by

a more diverse consumer community. However, accounting for the third trophic

level clearly shows that a restriction to two trophic levels may yield misleading re-

sults for complex natural food webs. The present comparison of several different
food webs consisting of three trophic levels (see Fig. 3.1) reveals simultaneously

operating bottom-up and top-down cascading effects over three trophic levels. At

high functional diversity throughout the whole food web, functional shifts within

the individual trophic levels result in a high food web efficiency and biomass on

higher trophic levels, and a high degree of nutrient exploitation. Additionally, we

show that the functional diversity on the top level is a strongly regulating factor for
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the biomass, temporal variability, and biomass production efficiency of any trophic

level. Therefore, to prevent drastic reduction of important functions, as well as po-

tentially irreversible transitions, it is of crucial importance to increase our efforts
in conserving diversity of higher trophic levels, despite the often large operational

problems involved.
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Parameter Meaning Range
N0 nutrient inflow concentration [1/2,2] · 1120µgN/l
hN nutrient uptake half-saturation const. [1/2,2] · 10µgN/l
r ′0 basal growth rate [1/2,2] · 1/day
a0 B-I attack rate [1/2,2] · 1.04 · 10−3/(day ·µg C/l )
h0 B-I handling time [1/2,2] · 1.15 ·day
α0 I-T attack rate [1/2,2] · 4.48 · 10−4/(day ·µg C/l )
η0 I-T handling time [1/2,2] · 2.62 ·day
δ inflow rate [0.03,0.06] · 1/day

ascale cross link scaling factor [1,500]
n B-I Hill exponent [1,2]
ν I-T Hill exponent [1,2]

Parameter Meaning Value
e biomass conversion efficiency 0.33 (not varied)

cN /cC basal nitrogen-to-carbon ratio 0.175 (not varied)
τinc maximal trait increase 1/2 (not varied)

Table 3.1: Name and meaning of the parameters that were used in the study, along with
the range from which they were sampled. For example, the nutrient inflow concentration
N0 was randomly sampled from the interval [1/2,2] ·1120 ≈ [560,2240]µgN/l. In this table,
B-I refers to the functional response between the Basal (B) and the Intermediate (I) trophic
level, and I-T to the Intermediate and Top (T) level. The bottom three parameters were kept
at fixed values.
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Established knowledge In our diverse tritrophic system

Top predators are often
keystone species.

Confirmed, ∆T and trophic
interactions between I&T are
most decisive for the biomasses,
CV s, and energetics at all
trophic levels.

Fig. 3.6

More diverse consumers
exploit resources more
efficiently.

Diversity must be high
throughout the whole food web
for efficient exploitation.

Fig. 3.5

For a single trophic level
in isolation:
∆B ↑ implies: BB ↑,PB ↑

For bitrophic systems:
∆B&∆I ↑:
context-dependent
effects on biomasses &
production

Effects of changing ∆i depend on
each other.

However, when all ∆i ↑:
BB ↓,BI ↑,BT ↑
PB ≈,PI ↗,PT ↑

Fig. 3.3
Fig. 3.5

For a single trophic level
in isolation:
∆ ↑ implies: CV ↓

Effects of changing ∆i depend on
each other, however all CV s first
decrease, and then increase, with
increasing ∆T .

Fig. 3.4

Table 3.2: Comparison of established knowledge of the link between the functional diver-
sity and certain ecosystem functions of communities consisting of one or two trophic levels
(see text for references), to our model where diversity can be changed at three trophic levels
(see Fig. 3.1). ∆i ,Bi , and Pi refer to the diversity, biomass, and biomass production at trophic
level i ∈ {B,I,T }, respectively (see Fig. 3.1 and Results), and the arrows indicate the direction
in which these quantities are changing (↑: increase,↗: moderate increase, ≈: approximately
constant, ↓: decrease). Our model enables us to understand the mechanisms responsible for
these top-down and bottom-up effects, which simultaneously cascade through the food web.
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Outcome variable OOB score
Nutrient density 0.44
Basal biomass 0.65
Intermediate biomass 0.92
Top biomass 0.77
Nutrient CV 0.26
Basal CV 0.73
Intermediate CV 0.68
Top CV 0.70
PT/PB 0.83
Bup 0.86
(P /B)B 0.34
PT 0.78

Table 3.3: OOB scores estimating the accuracy of the random forest model, for all outcome
quantities. An OOB score of 1 represents a perfect model prediction, whereas an OOB score
of 0 means that the model is as accurate as simply predicting the mean outcome value every
time.

N N N N N N N N

chain B I BI T BT IT BIT

ΔB

ΔI

ΔB

T

I

B
ΔB ΔB

ΔI ΔI ΔI

ΔT ΔTΔT ΔT

Figure 3.1: Schematic overview of the 8 different food webs compared in this study, which
differ by the trophic levels (B for basal, I for intermediate, and T for top) on which diversity
is possible (indicated above). In this way, chain refers to the linear chain which contains
no diversity, B to the food web on which only the basal level is diverse, etc., and finally
BIT denotes the food web which contains diversity on all trophic levels. The thickness of
the connections between the nodes illustrates the comparative intensity of the trophic in-
teraction, which is determined by the amount of diversity, or the trait difference, between
the species on each trophic level (∆B, ∆I , and ∆T ). Each of these food webs are analyzed as
general as possible, with independently varying amounts of trait differences and parameters
drawn randomly from biologically plausible intervals.
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Figure 3.2: Pictorial representation of the location of the different food webs (Fig. 3.1) in the
partial dependence graphs in Fig. 3.3-3.5. On the left-side graph (∆T = 0, i.e., no diversity
at the top level), the chain is on the point (0,0) (∆B = ∆I = 0), the B food web is located on
the line ∆I = 0, the I food web is located on the line ∆B = 0, and the BI web is located in the
plane where both ∆B and ∆I are non-zero. Similarly, on the right-side graph where ∆T > 0
(either low or high in Figs. 3.3-3.5), the T web is located on the point (0,0) (∆B = ∆I = 0), the
BT food web is located on the line ∆I = 0, the IT food web is located on the line ∆B = 0, and
finally the BIT web is located in the plane where ∆B, ∆I , and ∆T are non-zero.
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Figure 3.3: Effect of trait differences at the basal (∆B), intermediate (∆I ), and top (∆T )
trophic level on the free nutrient concentration (N , blue), and the biomasses on the basal
(B, green), intermediate (I , orange), and top (T , red) trophic level, displayed as partial de-
pendence graphs. To simplify the presentation, the effects of ∆B and ∆I are shown separately
for three levels of ∆T : ∆T = 0 (left), low ∆T (0.25 and 0.5, middle), and high ∆T (0.75 and 1,
right). Fig. 3.2 shows a detailed explanation on how to read this figure. These graphs show
the expected trends of N,B,I, &T as the amount of diversity on any trophic level is varied
(for more information see Methods and Section B.5, Appendix B). For example, in the chain
(lower left corner of each subplot for ∆T = 0), T is expected to be much lower than in the
highly diverse BIT web (upper right corner for ∆T = high). When ∆T is nonzero, the region
below ∆I = 0.25 (T and BT webs) cannot be shown as no coexisting parameter combination
exists here due to the two distinct top species sharing only one resource.
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Figure 3.4: Effect of trait differences at the basal (∆B), intermediate (∆I ), and top (∆T )
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levels, displayed as partial dependence graphs. Consult Figs. 3.2 and 3.3 for a detailed de-
scription on how to read this Figure. Strikingly, we can see that ∆T has a non-monotonous
effect on the temporal variability of the whole food web: a moderate amount of top predator
diversity tends to decrease the temporal variation, but adding yet more diversity to the food
web causes it to increase again.
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Figure 3.5: Effect of trait differences at the basal (∆B), intermediate (∆I ), and top (∆T )
trophic level on several different metrics related to the flow of biomass and energy through
the food web, displayed as partial dependence graphs. From top to bottom: top biomass
production PT , basal production to biomass ratio ((P /B)B), basal biomass flowing to I (Bup),
and the food web efficiency PT /PB. Consult the Results and Section B.5, Appendix B for more
information on these quantities, and Figs. 3.2 and 3.3 for a detailed description on how to
read this Figure. In the chain (lower left corner for ∆T = 0), we observe for example a much
lower PT /PB than in the highly diverse BIT web (upper right corner for ∆T = high), which
means biomass produced by the basal trophic level is transferred much more efficiently to
the top level.
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Figure 3.6: Relative importance of the different model parameters (see Table 3.1 on de-
termining the biomasses and CVs of the different trophic levels. The relative importance
quantifies how important the value of a certain parameter is to accurately predict the de-
sired quantity, and they sum up to 1. The higher the relative importance of a parameter,
the more relevant it is to make a prediction. In these graphs, the model parameters are or-
dered by their mean importance for each group of quantities (biomasses and CVs); for each
parameter, the individual bars are ordered by trophic level.
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Abstract

The global biodiversity decline threatens ecosystems through a dangerous feed-

back loop. Biodiversity loss causes functional diversity loss, which may hamper

the ecosystem’s ability to buffer against environmental changes, leading to further

reductions of biodiversity. Previous trait-based studies have investigated how func-

tional diversity influences the response of food webs to disturbances caused by ex-

treme events. However, they mainly considered bitrophic systems with at most two

functionally diverse trophic levels. In this study, we investigate the effects of a nutri-
ent pulse on the resistance, resilience and elasticity of a tritrophic—and thus more

realistic—food web, depending on its functional diversity at every trophic level.

We compare a simple linear food chain with low diversity to a highly diverse food

web with three adaptive trophic levels, where prey are either defended or unde-

fended against predation by selective or non-selective predators. The species fit-

ness differences are balanced through trade-offs between defense/growth rate and

selectivity/half-saturation constant. We show that the resistance, resilience and elas-

ticity of tritrophic food webs depend on the perturbation size and on the moment

of perturbation, but crucially also on the shape and type of the dynamical attractors

and top-down processes regulated by the top trophic level. The latter properties

highly depend on the functional diversity of the food web. We show that a more

diverse food web is more resistant, resilient, and elastic to a nutrient pulse pertur-

bation, and find that the influence of functional diversity becomes complex under
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certain conditions. Overall, using a food web model of realistic complexity, this

study confirms the destructive potential of the positive feedback loop between bio-

diversity loss and robustness to disturbances, by uncovering mechanisms leading to

a decrease in resistance, resilience and elasticity as diversity declines.

Introduction

Human activities undeniably disrupt ecosystems structure and functioning (Hooper

et al., 2005; Worm et al., 2006; Cardinale et al., 2012; Hautier et al., 2015). Direct ef-

fects such as habitat loss due to pollution (Dudgeon et al., 2006; Butchart et al., 2010;

Hölker et al., 2010) and increased land requirements for agricultural or industrial

use (Brooks et al., 2002; Ryser et al., 2019; Horváth et al., 2019) are major causes

of the observed losses in biodiversity worldwide. Moreover, climate change effects
have a decisive influence (Bestion et al., 2020): in addition to the global temperature

rise (Hansen et al., 2006), the frequency of disruptive extreme weather events has

increased steadily (Easterling et al., 2000). For instance, recurrent storms or heavy

rainfalls amplify excessive nutrient loading in rivers, lakes, and coastal areas, caus-

ing species losses (Øygarden et al., 2014). The combined effect of these processes

on biodiversity creates a potentially dangerous feedback loop. When biodiversity is

lost, the respective decrease in functional diversity may alter the ecosystem’s ability

to buffer perturbations (Cardinale et al., 2012; García-Palacios et al., 2018; Ceule-

mans et al., 2019). This leads to additional biodiversity losses, and consequently to

more vulnerable ecosystems.

To accurately quantify the effects of biodiversity loss on ecosystem functioning,

it has proven useful to consider biodiversity from a functional perspective (Violle et

al., 2007; Tirok and Gaedke, 2010). This entails sorting out the members a the food

web into groups with similar functional trait values. In this way, e.g. morphological,

physiological or behavioral individual characteristics are linked to a certain func-

tion, such as growth rate or nutrient uptake (Garnier, Navas, and Grigulis, 2016),

and depend on each other by trade-offs to determine the overall fitness (McGill et

al., 2006; Violle et al., 2007). This approach makes explicit how trait changes can

feed back to population and food web dynamics, and partly regulate the response

of food webs to environmental changes (Yamamichi and Miner, 2015; Theodosiou,

Hiltunen, and Becks, 2019; Raatz, Velzen, and Gaedke, 2019).

Most studies investigating the responses of food webs to perturbations are re-

stricted to systems with two adaptive trophic levels (Persson et al., 2001; Křivan and

Diehl, 2005; Visser, Mariani, and Pigolotti, 2012; Kovach-Orr and Fussmann, 2013),

or on bitrophic systems (Jones, 2008; Fussmann and Gonzalez, 2013; Yamamichi,

Yoshida, and Sasaki, 2011; Bell et al., 2019; Govaert et al., 2019; Raatz, Velzen,

and Gaedke, 2019). However, tritrophic systems are more realistic, since strictly

bitrophic interactions are rare in nature (Pimm et al., 2014; Matsuno and Nobuaki,

1996; Abdala-Roberts et al., 2019), and top predators can have a large influence on
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ecosystem functioning and dynamics (Estes et al., 2011; Brose et al., 2019; Ceule-

mans, Guill, and Gaedke, 2020).

To properly understand how tritrophic food webs respond to environmental

changes, insights are needed into the mechanisms driving their response. Exter-

nal disturbances come in a variety of forms, and each can affect the food web and

its functions in different ways. Broadly, external disturbances can be separated

into two types, called press and pulse perturbations (Tilman and Downing, 1996;

Raatz, Velzen, and Gaedke, 2019). Press perturbations are long term or permanent

changes to a system component, such as increased harvesting or warming. In con-

trast, pulse perturbations are short-term and quasi-instantaneous changes to state

variables, such as species biomasses or nutrient concentration, e.g. due to a forest

fire or massive rainfall causing heavy run-off (Bender, Case, and Gilpin, 1984; Harris

et al., 2018).

In this study, we investigate the effects of a nutrient pulse on the dynamics of

tritrophic food webs with different amounts of biodiversity. Nutrient pulses cor-

respond to a temporary increase in the carrying capacity, which can destabilize

the dynamics of food webs and put species at increased risk of extinction (Rosen-

zweig, 1971). In aquatic systems, these events can drastically reduce water quality

by contributing to eutrophication (Kaushal et al., 2014; Couture et al., 2018; Díaz

et al., 2019) and to the apparition of anoxic dead zones (Diaz and Rosenberg, 2008).

Such events are happening with increased frequency and magnitude (Galloway et

al., 2008; Kaushal et al., 2014).

Accurate discussion of how a nutrient pulsemay affect the dynamics of a tritrophic

food web requires clear definitions of the different aspects characterizing its re-

sponse. Analogous to Grimm and Wissel, 1997 and Raatz, Velzen, and Gaedke,

2019, the following terms are used:

• Resilience refers to whether or not the system returns to its original state after

a pulse perturbation.

• Resistance refers to the maximum temporary change in dynamics after a pulse

perturbation.

• Elasticity refers to how quickly the system returns to its original state.

These three quantities are all relevant in the context of pulse perturbations, and are

evaluated by several properties of the food web dynamics. The resilience is sim-

ply determined by examining the dynamics after a long time period following the

perturbation. If the system returns to its original state, it is resilient. Conversely, re-

sistance is evaluated shortly after the perturbation. When the dynamics are strongly

affected before the system returns to its original state, the resistance is nonetheless

low. Finally, the elasticity is estimated through the return time, which is the time it

takes for the system to return to the original state. A lower return time corresponds

to a higher elasticity.
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We investigated the response of tritrophic food webs with low and high func-

tional diversity to nutrient enrichment by comparing a simple tritrophic linear food

chain to a tritrophic food web which is adaptive at each trophic level. In this model,

trophic levels are adaptive in the sense of species sorting, as described in Ceulemans

et al. (2019). Prey species are either defended or undefended, and predator species

are either selective or non-selective feeders (Fig. 4.1), and their relative importance

changes according to ambient conditions, leading to continual trait changes at each

trophic level. Our hypotheses are that the food web response depends on (i) the

perturbation size, (ii) the time at which the perturbation is applied, and (iii) on the

functional diversity present, i.e., an adaptive food web is less affected than a simple

linear food chain. To enlarge generality and accurately capture the complex be-

havior that such system can exhibit, we study this response in different parameter

regions with multiple attractors.

Methods

As a basis for our study, we used the chemostat tritrophic model described in Chap-

ter 2, consisting of free inorganic nutrients (nitrogen, N ) and three trophic levels:

basal (B), intermediate (I ) and top (T ) (see Section 2.2 and Fig. 4.1). In this model,

the amount of diversity in the food web can be varied by changing the trait differ-
ences between the species on all trophic levels (∆). When ∆ = 0, the species’ trait

values within trophic levels are equal and the food web simplifies to a linear chain

(cf. Section A.2, Appendix A). Alternatively, when ∆ = 1 the trait differences are

maximal and a fully trait-separated food web is described (Fig. 4.1). For a detailed

model description, please see section 2.2, Chapter 2.

Importantly, our previous study showed that the Hill exponents of the functional

responses of the B − I and I − T interaction (h,η , cf. Equations (2.5) and (2.6)) play

an important role in determining the nature of the dynamical attractor to which the

system relaxes. In particular, two attractors exist for both the food chain and the

food web. The “low production state” (LP) has a low top biomass production and

high variability, whereas the “high production state” (HP) has a high top biomass

production and low variability. To fully capture these different dynamical outcomes,

including cases where either the chain or the web are bistable (see Table 4.1), we have

selected three values of Hill exponents (h = η = 1.05, h = η = 1.10, and h = η = 1.15)

for which we will investigate the system’s response.

To evaluate the system’s response to a nutrient pulse, we always took care to

ensure that the system is at an attractor (Fig. 4.2), and not still in a transient state.

Importantly, the attractor may have a more complex structure than a simple fixed

point: it can be a limit cycle, or a chaotic attractor. In the latter cases, the individual

populations do not settle down to a fixed value but remain oscillating perpetually.

When the system has relaxed to the attractor, the perturbation is applied at time tP
by setting the free nutrient concentration N , to N +NP . This instantaneous change
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Figure 4.1: Comparison of two food webs with different functional diversity. The lowly
diverse system (left side) is a simple linear food chain, where nutrients (N ) are taken up by
a basal species (B), which is consumed by an intermediate species (I ), which is preyed on by a
top species (T ). In the highly diverse system (right side), prey species are either undefended
(u), or defended (d), and predators are either selective (s) or non-selective (n) feeders. The
basal and the top species each have one trait, whereas the intermediate species, being both
consumers and prey, have two traits, resulting in four functionally unique species. Two
trade-offs are used to balance the fitness of the species: a higher defense comes at the cost of
a lower growth rate (r), and being less selective implies a larger prey spectrum, but also an
increased prey uptake half-saturation constant (M). In this way, a defended species grows
slower than an undefended one and a selective feeder can more efficiently exploit low prey
concentrations. The resulting differences in trophic interaction strengths are shown by the
arrow thickness between the species.

of the state variable N moves the system from its former location on the attractor to

a point farther away from the attractor (Fig. 4.2).

Additionally, when the attractor is more complex than a fixed point (i.e., a limit

cycle or chaotic attractor), we investigated how the effect of the perturbation on the

dynamics depends on where on the attractor it is applied. In particular, to accurately

estimate the return time, it is required to sample the different attractors in a high

spatial resolution. This was achieved in multiple steps. First, starting from an initial

condition known to be in the basin of attraction of the relevant attractor, the system

was allowed to relax for 105 time units using a large timestep ∆t = 10−1 such that

a point sufficiently close to the attractor could be obtained. If the attractor was a

limit cycle, the system was further integrated for approximately one period using a

high temporal resolution (∆t = 10−3). This creates a set of points St on the attractor.

Finally, to sample the attractor in a way such that the distances between the sampled

points on the attractor do not become very large when the dynamics are moving very

fast, the attractor was interpolated and resampled such that the arc length between

consecutive sampled points is equal to 1 (in units of biomass). For this set of spatially

sampled points Sx, the distance between a point on the attractor and the closest

point to it in Sx is guaranteed to be smaller than 1. However, when the attractor

is chaotic, even when performing this procedure over multiple periods, the return

time could not accurately be calculated using this method,
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Hill exponent
Attractor and structure

chain web

1.05 LP : limit cycle
LP : chaotic
HP: limit cycle

1.10
LP : limit cycle

HP: limit cycleHP: limit cycle

1.15 HP: limit cycle HP: fixed point

Table 4.1: Summary of the effect of the three values of Hill exponent on the attractors found
in the food chain and food web. The system either relaxes to the low-production state (LP),
the high production state (HP), or is bistable. A visual representation of the dynamics on
each attractor is given in Fig. C.1, Appendix C. In this text, we distinguish between attractor
type, denoting whether the attractor is a fixed point, limit cycle, or chaotic, and attractor
shape, distinguishing between the HP or LP state.

After the perturbation, we continued with numerical integration of the system

and recorded the minimum biomass reached by each population, as well as by each

trophic level as a whole. Additionally, we estimated the time it takes for the trajec-

tory to return to its original attractor (return time tR). Both of these quantities are

explained schematically in Fig. 4.2.

There are three possible outcomes for the perturbed system to evolve towards.

The first option is that the pulse perturbation temporarily disturbs the system by

altering its dynamics during the transient phase in which the system relaxes back to

the attractor. In this case, the time it took for the system to return to the attractor

(return time tR), as well as the biomass minima and maxima of the populations

and trophic levels during this phase were recorded (see also Fig. 4.2). A second

outcome may occur when the biomass of at least one population reaches such a low

value that it crosses an extinction threshold, which we have set to 10−9 biomass

units. In this case, this population is set to 0 and is said to have gone extinct. Such

a threshold is necessary to prevent numerical problems that can occur when state

variables reach values that are extremely close to 0. When it is crossed, the system

can never return to the initial attractor. Finally, a third outcome is possible when the

system is bistable. In that case, it may happen that the trajectory is pushed inside

the other attractor’s basin of attraction. In this case, the system also never returns to

the initial system, but all populations are still present in the food web.

Results

We investigated the response of a non-diverse and diverse tritrophic food web to a

nutrient pulse, by quantifying its resistance, resilience, and elasticity (see Fig. 4.3

for a schematic overview how these responses differ, and Fig. 4.2 for an explanation

of the properties of the timeseries required to estimate these quantities). Alongside
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Figure 4.2: Schematic graphical examples of the different quantities calculated for our re-
sults. To quantify and compare the response of an ecological system to a perturbation, we
recorded the minimal biomasses reached by the populations after the perturbation, as well
as the time it took for the trajectory to return to the vicinity of the attractor. Panel (a) shows
the timeseries of a simple consumer-resource model. The system is oscillating on its stable
limit cycle until a nutrient pulse perturbation is applied at time tP (red circle), after which
the consumer increases and then declines to very low values. Panel (b) shows the same time-
series data but plotted in phase space. The limit cycle on which the system is oscillating
originally is shown by the black curve. The nutrient pulse perturbation is applied at the red
point Ppert (also shown in panel (a)), after which the system relaxes back to the attractor. The
return time tR is measured by the time it takes for the trajectory to remain inside the close
neighborhood of the attractor (return zone, indicated by the colored region). This happens
at the blue point Pr (also indicated in panel (a)).

this analysis, we investigated the actual timeseries in detail in order to uncover the

mechanisms responsible for the observed responses.

As a general pattern, the biomass minima reached after a perturbation tend

to decrease as the perturbation size increases (Fig. 4.4). This implies that, as the

amount of added nutrients increases, the biomass amplitudes immediately after the

perturbation increase correspondingly, in a highly nonlinear way (see also Appendix

Fig. C.2 showing an increase in the maxima as well). We observe that, in all cases,

the basal level is most strongly affected by the nutrient pulse, whereas the top level

is least affected. The minimum reduction in the timeseries spans a larger range for

the basal level, as compared to higher trophic levels. Following this strong reduc-

tion, in all cases, the basal level crosses the numerical extinction threshold of 10−9

first, leading to additional extinctions on the I and T level.

By trying multiple different time points at which the perturbation is applied per

perturbation size, we capture how the system response to a perturbation depends

on the specific time at which the perturbation is applied. If the equilibrium state of

a system is a fixed point (as is the case for the food web at h = 1.15), the response

does not depend on the time at which the perturbation is applied. All 1000 different
initial conditions lead exactly to the same post-perturbationminimum and therefore

the median, upper, and lower quartiles are all equal. On the other hand, when the

equilibrium state of the system is not a fixed point but a limit cycle (or a chaotic

attractor), the minimum reached by the time series may strongly vary depending on
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Figure 4.3: Sketch of the response of a tritrophic food web to a nutrient pulse. This response
depends on the amount of extra nutrients added (the perturbation size Np), and on the mo-
ment at which the perturbation is applied (i.e., the position on the attractor). Two extreme
areas on the attractor could be distinguished: the most (red) and the least (blue) affected
locations. The three studied characteristics—resistance, resilience and elasticity—show dif-
ferent aspects of how a food web responds to a nutrient pulse perturbation, depending on
the Hill exponent, the nature of the attractor (cf. Table 4.1) and its functional diversity.

where on the limit cycle the perturbation is applied. How much this response varies

is reflected by the difference between the upper and lower quantiles.

When applying only a very small perturbation to the food web, the spread of the

biomass minima is correspondingly small (Fig. 4.4). However, this spread appears

very large for the food web when h = 1.05 (Fig. 4.4, middle panel). This appar-

ent discrepancy can be explained by the presence of the two attractors (cf. Table

4.1), each with a basin of attraction of approximately equal size. Because the actual

timeseries minima differ between the attractors, so do the minima after a small per-

turbation. Thus, what appears as a very large range between which the minima are

distributed, is actually a strongly bimodal distribution centered around the respec-

tive minima of each attractor. While the food chain for h = 1.1 also exhibits bistabil-

ity (with both the high and low production attractor), the basin of attraction of the

high production attractor is so small that this effect does not significantly impact

our results (only one initial condition out of 1000 ended up on the high production

attractor).

Our results also show a clear dependence on the Hill exponent of the functional

responses. In both the chain and the web, the minima of all trophic levels decrease

when reducing the Hill exponent. That is, the closer the Hill exponent comes to

unity, the more the populations are at risk of stochastic extinction. Besides, the

whole range of possible minima tends to increase as the Hill exponent decreases,

making the system response to the pulse perturbation harder to predict. Ultimately,



Chapter 4. Effects of a nutrient pulse on resistance, resilience, and elasticity 81

101 102 103 104

Perturbation size

10 9

10 7

10 5

10 3

10 1

101

103
M

in
im

um
 o

f t
im

es
er

ie
s

chain

B
I
T

101 102 103 104

Perturbation size

web TL

B
I
T

101 102 103 104

Perturbation size

web individual

Bu

Bd

Iu
s
Id
s
Iu
g

Id
g

Ts
Tg

Figure 4.4: Minima reached by the timeseries after the perturbation, for the chain (left), the
total biomass per trophic level in the diverse food web (middle), and the individual popula-
tions in the food web (right), as a function of the perturbation size. Each line corresponds to
the median of 1000 different randomly sampled initial conditions that lead to coexistence
of all species, with the shaded area showing the upper and lower quantiles. These initial
conditions were first allowed to relax to the attractor for 3 ·104 time units before the pertur-
bation was applied. For the chain and trophic level biomass in the food web, the solid lines
show the minima for Hill exponents h = 1.15, dashed for h = 1.10, and dotted for h = 1.05.
The individual populations’ minima for the food web are only shown in the case of h = 1.05.

the dependence on the Hill exponent is less strong for the food web than for the food

chain. That is, the timeseries minima differ less when comparing the different Hill

exponents for the food web than for the food chain, revealing that the moment of

the perturbation becomes less relevant.

In addition, for h = 1.05, the basal trophic level goes extinct for perturbation

sizes of approximately 3 · 103 or higher in the food chain, whereas it takes a per-

turbation size of approximately 7 · 103 to cause the whole basal trophic level to go

extinct in the food web (Fig. 4.4). Importantly, extinctions of individual populations

may happen already for smaller perturbation sizes in the food web, and these lead

to extinctions on higher trophic levels as well. However, the remaining population

on the basal level can still support at least a part of the food web. In contrast, the

extinction of the basal population in the food chain invariably leads to the complete

disappearance of all the upper trophic levels as well. When h = 1.1 or 1.15, a signif-

icant proportion of extinctions only happens for unrealistically large perturbation

sizes outside of the range we considered.

The pronounced differences between the minimal biomass reached by the basal

trophic level Bmin, can be understood by explicitly examining how this quantity

varies depending on where on the attractor the perturbation (Fig. 4.5, for h = 1.10)

is applied, as well as the post-perturbation timeseries (Fig. 4.6), in more detail.

In these figures, we show the location in phase space of 6 selected points, and the

response to a large perturbation of size 104 applied at each of these points. While P1
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Figure 4.5: Minima reached by the basal trophic level after the perturbation, depending on
where on the attractor a nutrient pulse of size 104 is applied, projected on the B − I plane.
The two attractors of the food chain (LP ,HP), and the food web, when h = 1.1, are all shown.
The points P1 to P6 are picked to highlight the large differences in response that are possible
by perturbing the system on points that may be very close together. See Fig. C.3, Appendix
C for all Hill exponents and for different perturbation sizes.

and P2 are very close together on the attractor, the effect of the perturbation on the

resulting dynamics is very different between these two points (Fig. 4.5, 4.6a-c). In

both these cases, the basal species are in decline at the moment of the perturbation.

At P1 (Fig. 4.6b), they are under sufficient top-down control by the intermediate

level, such that the free nutrient concentration remains very high for a long period

of time. In this case, most of the extra nutrients due to the perturbation are simply

washed out of the system. In the case of P2 (Fig. 4.6c), however, the basal species are

able to exploit almost all of the newly available nutrients immediately. This leads

to an extremely high peak biomass on the basal level, which is in turn exploited by

the intermediate level. Because of the delayed reaction time in the top level, the

intermediate species are able to stay at a high biomass for an extended period of

time and thus graze the basal level down to a very low biomass density.

This pattern describes what is observed generally in both the food chain and the

food web after a nutrient pulse perturbation. A portion of the supplementary nu-

trients are quickly taken up by the basal trophic level, which subsequently causes a

biomass peak in the intermediate trophic level. The higher this peak is, the more af-

fected the basal level will be by the surplus grazing of the intermediate level. Points

P3 and P4 (Fig. 4.6d-f) illustrate how, when a perturbation is applied in the HP state,

the system’s dynamics also follow this pattern after the perturbation, and conse-

quently, return to the LP state instead of the HP state.



Chapter 4. Effects of a nutrient pulse on resistance, resilience, and elasticity 83

10 6

10 3

100

103

P1
P2

10 6

10 3

100

103

10 6

10 3

100

103

0 50 100 150
0.0

0.5

1.0

0 50 100 1500 50 100 150

N Bu Bd Ius Ids Iun Idn Ts Tn

Web

(a) (b)

(d) (e)

(g) (h)

(j) (k)

Chain
(c)

(f)

(i)

(l)

P1 P2

P3 P4

P5 P6

P5 P6attr.

attr.

HP attr.

LP attr.

b
io

m
a
ss

tr
a
it

time

b
io

m
a
ss

b
io

m
a
ss

P3
P4

chain
Bdef

Idef

Isel

Tsel

P6P5

Figure 4.6: Timeseries of the dynamics of the chain and food web for h = 1.10, showing
first the dynamics on the attractor, i.e., prior to the perturbation (chain LP: panel (a), HP:
panel (d), web: panel (g)), and in the middle and right columns the system’s behavior after
a perturbation of size 104 on points P1-P6 (cf. Fig. 4.5). The locations of these points in
time on the attractor are indicated by the vertical black lines in the leftmost column. The
bottom row (j-l) shows the temporal development of the trait value for the biomass dynamics
shown in the panel above (basal and intermediate defense Bdef& Idef, and intermediate and
top selectivity Isel&Tsel, cf. Fig. 4.1). Notably, while P3 and P4 are on the HP attractor before
the perturbation, the extremely high inflow of nutrients pushes the system into the LP state,
where it remains. Because the LP state is not attractive when h = 1.1 in the food web, the
trajectories of P5 and P6 must eventually return to the HP state (cf. Fig. C.4, Appendix C).
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Investigating not only the biomass but also the trait dynamics after the perturba-

tion in the food web highlights the way in which a diverse food web may be able to

buffer the nutrient pulse (Fig. 4.6j-l). Here, the temporal evolution of the mean trait

values is shown, where e.g. the basal defense level Bdef is the proportion of the de-

fended basal species Bd (cf. Fig. 4.1) of the total amount of basal biomass. The other

traits are calculated equivalently. Right after the perturbation, the abundance of

available nutrients causes the basal biomass to increase, but the undefended species

will increase faster due to its higher growth rate. If the selective intermediate species

are sufficiently high in biomass, they are able to graze down the undefended basal

species to very low densities, potentially causing the defended basal species to out-

weigh the undefended species by several orders of magnitude. Importantly, the de-

fended species are not grazed down to such low levels, preventing the potentially

very strong reduction in total biomass on the basal level observed in the food chain.

Additionally, a clear hierarchy in when the trophic levels are significantly affected is

observed (Fig. 4.6j-l). In particular, the trait composition of the top trophic level is

only substantially altered a considerably long time after the perturbation.

In the short-term after the perturbation, a general negative correlation emerges

between the minimal basal biomass (Bmin) and the maximal intermediate biomass

(Imax). The higher the intermediate species grow after the pulse, the more severely

they deplete the basal species (Fig. 4.7). Hence, the most (and respectively, least)

affected area on the attractor has the lowest Bmin with the highest Imax (and respec-

tively highest Bmin with the lowest Imax). The negative relationship between Bmin

and Imax is strengthened as the Hill exponent decreases (Fig. 4.7a). Lowering the

Hill exponent increases the oscillation amplitude of the dynamics, such that food

webs with a Hill exponent h = 1.05 at the LP state obtain the lowest Bmin values

(below 10−2). We also observe that the HP state has lower Imax, and higher Bmin val-

ues, as compared to the LP state (Fig. 4.7a). Because the HP state is characterized

by a higher top species biomass and smaller amplitudes (Fig. 4.6a and d), reaching

the extreme values of the LP state is not possible (Fig. 4.6c and f). Moreover, the

top species keep the intermediate species under stronger top-down control, which

limits the effects of nutrient enrichment.

Importantly, our results show that Bmin tends to be higher in the food web than

in the food chain (Fig. 4.7a). A given Imax leads to a higher Bmin in the food web

(insofar as they can be compared). This suggests that a diverse food web is more

resistant to a pulse perturbation than a food chain with little or no diversity.

To untangle the actual effect of diversity on the Bmin− Imax relationship from the

effect of comparing basal and intermediate species with different growth rates and

interaction parameters, we also compare the food web to differently parametrized

food chains (Fig. 4.7b). The basal growth rate in the food chain (rchain ≈ 0.81) lies

in-between the defended basal growth rate (rd = 0.66) and the undefended basal

growth rate (ru = 1) of the diverse food web. Additionally, the basal-intermediate

half-saturation constant in the food chain (Mchain ≈ 424) also lies in-between the
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Figure 4.7: Relationship between the minimal biomass reached by the basal level (Bmin),
and the maximal biomass reached by the intermediate level (Imax), after a nutrient pulse
perturbation Np = 1000, depending on where on the attractor the perturbation is applied.
The collections of points in the graph are grouped per attractor (LP: low-production state,
HP: high-production state, cf. Table 4.1). A general negative correlation between Bmin and
Imax can be observed: the higher the intermediate level is able to grow after the perturbation,
the lower it will graze down the basal level. This relationship becomes more pronounced for
lower Hill exponents, as the amplitude of the dynamics increases (panel a). Importantly,
when comparing the food web to the food chain while keeping the Hill exponent constant,
the same Imax leads to a higher Bmin in the food web. This ratio is influenced by the growth
rate of the basal species and the half-saturation constant of the basal-intermediate inter-
action (panel b) as well as the biomass of the top trophic level on the attractor before the
perturbation (panel c). Here, the growth rate of the basal species only is set to rB (standard
rB ≈ 0.81), and/or the B− I half-saturation constant is set by M (standard M ≈ 424).

values of the basal-selective (Ms = 300) and basal-non-selective (Mn = 600) interac-

tions of the food web. Evidently, changing these parameters in the food chain also

modifies the resulting Bmin − Imax relationship, either through direct (such as graz-

ing suppression at low prey densities when M is high), or indirect effects (such as a

different amount of top biomass when the basal growth rate rB is changed, Fig. 4.7c).

Importantly, in the food web, the growth rates of the undefended and defended

I species differ from the growth rate of the I species in the food chain. However, in

both a chain where all growth rates are scaled to reflect the value of the defended

species, as well as of the undefended species, it not possible for the top trophic level

to survive. We therefore compare the food web to a chain where only the basal

growth rate is affected. We find that for the food chain with rB set to the high value

of the undefended species, Bmin increases to approximately one order of magnitude

below the food web, whereas decreasing rB to the value for the defended species

decreases Bmin (Fig. 4.7b). These changes are due to strong differences in the mean

biomass on the top level in the alternative food chains: when rB is high, the increased

basal productivity translated to an increased biomass in the top level, and vice-

versa (cf. Figs. 4.7c and C.5, Appendix C. When the top biomass is higher, stronger

grazing pressure on the intermediate level prevents excessive grazing of B. On the

other hand, for low top biomass the intermediate level can remain at high biomass
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for an extended period of time, until they find no more food.

Similarly, increasing the B − I half saturation constant to the value of the non-

selective consumers (M = 600) increases Bmin; and decreasing M to the value of

the selective consumers (300) correspondingly decreases Bmin. These changes are

caused by the grazing suppression at low B densities, whenM is increased. However,

the changed mean top biomass caused by the altered basal productivity boosts the

changes in Bmin when varying M (cf. Figs. 4.7c and C.5, Appendix C).

In the food web, Bu is generally grazed to lower densities than Bd (Fig. 4.6h, i).

This means that the Bd − In interaction (low rB, high M), is principally responsible

for the value of Bmin (Fig. 4.1). In a chain parametrized to have this interaction, Bmin

is still approximately one order of magnitude below that of the food web.

Comparing the resilience of the HP and LP state to a perturbation shows that the

HP state is more vulnerable in both the food chain and the food web (Fig. 4.8). In

the chain, with h = 1.1, perturbation sizes of maximally ≈ 1000, but even as small as

≈ 100 on the HP state can move the system outside its basin of attraction, such that

it relaxes to the LP state. In contrast, the LP state is much more resilient: even after

perturbations of size 10,000 anywhere on the attractor, the system still returns to it.
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Figure 4.8: Total basal (B) and intermediate (I ) biomass on the low production (LP) and
high production (HP) attractors, for both the chain (left) and web (right) when they exhibit
bistability. This happens when the Hill exponent h = 1.1 in the chain, and h = 1.05 in the
web. The color indicates the maximum perturbation size for which the system, when per-
turbed at this point in the attractor, still returns to its original state. When the perturbation
is larger than this “safe” perturbation size, the system either relaxes to the other attractor,
or to another non-coexistence attractor. On the chain (left), the LP state is very resilient to
perturbations, because even for perturbations of size 104, the system returns to this state,
independently of where on the attractor it is applied. Conversely, the HP state is very vul-
nerable: a perturbation size of ≈ 200 frequently moves the system outside the HP’s basin
of attraction, and the maximum safe perturbation is ≈ 1000. For the food web, the same
pattern is observed: the HP state is less resilient than the LP state. However, the HP state
for the food web is much more resilient than it is in the food chain, despite its lower Hill
exponent of h = 1.05.

For the food web, with h = 1.05, the situation is qualitatively similar, but there

are some important differences. The LP state still shows resilience to perturbations
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of ≈ 10,000, but not anymore over its full length. Recall that, when h = 1.05, the

likelihood of extinctions becomes non-negligible for perturbation sizes of approxi-

mately 3000 or higher (cf. Fig. 4.4). Furthermore, because there are some regions

where perturbations of ≈ 200 are unsafe, by causing a transition from the LP to the

HP state. The HP attractor is resilient to perturbation sizes of ≈ 5000 for some areas,

in contrast to the chain.

To quantify the elasticity in our system, we estimated the median return time as

a function of the perturbation size (Fig. 4.9). This is defined as the time required

for the system to stay in the attractor’s near vicinity (maximal distance to a point on

the attractor must be < 5 in units of total biomass) after a perturbation (cf. Fig. 4.2).

Because this time may vary depending on where on the attractor the perturbation

is applied, the median return time, as well as the lower and upper quantiles of 100

evenly spaced points on the attractor are displayed. The perturbation size is only

increased up to 102 to prevent the influence of trajectories not returning to their

original attractor when the perturbation size gets very large.
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Figure 4.9: Return time as a function of the perturbation size for the different attractors in
our system, for the three different Hill exponents (h) we investigated. Due to its complex
structure, the return time for the LP state in the food web when h = 1.05 (cf. Table 4.1)
could not be accurately calculated. In all other cases, the median and lower and upper
quantiles of the return times for 100 evenly spaced points on the attractor are shown for each
perturbation size where applicable (when h = 1.15, the food web relaxes to a fixed point, cf.
Table 4.1). The minimum return time (10−2) is determined by the time step at which the
timeseries were sampled. A lower return time means that the system is faster to return to
its original attractor, implying a higher elasticity. While a straightforward comparison of
the elasticity of a food chain versus a food web proves difficult, our results show that the LP
state in the food chain tends to have a higher elasticity to nutrient pulse perturbations than
the HP state. The elasticity of the food web is higher for small perturbations than that of
the equivalent state in the food chain, when both exist.

Due to the significant structural differences between a food chain and a food web

(Fig. 4.1), a straightforward comparison between the elasticity of these two systems

is very difficult. An additional complicating factor is the different number and/or

type of attractors for the food chain and food web for a given Hill exponent. Despite

these complicating factors, our results show that the elasticity of the LP attractor

tends to be higher than that of the HP attractor.
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With this effect of the attractor shape in mind, our results show that the return

time of the food web tends to be lower than that of the food chain, insofar as they

can be fairly compared. For h = 1.05, the chain is on the LP state, while only for the

HP state could the return time be accurately calculated. When h = 1.10, the food

web is on the HP state, and its return time is approximately an order of magnitude

lower than the food chain on the HP state when the perturbation is low. For higher

perturbation sizes, the increased complexity of the food web causes the return time

to increase faster than it does for the chain. Lastly, for h = 1.15, both web and

chain are on the HP state, and there is roughly an order of magnitude difference
between the return time of the two again, in favor of the food web. In line with

expectations, the elasticity increases with h for the food web, whereas this this effect
is less pronounced for the chain.

Discussion

We investigated the consequences of a nutrient pulse on the dynamics of a non-

diverse and a diverse tritrophic food web. The non-diverse food web is a simple

linear food chain, whereas the diverse food web has three adaptive trophic levels.

Prey species can be defended or undefended against predation, and the consumer

species can be selective or non-selective feeders. Their fitness is balanced through

two trade-offs: defended species grow slower, and non-selective feeders exploit low

resource densities less efficiently.

As expected by the paradox of enrichment (Rosenzweig, 1971; Abrams and Roth,

1994), increasing the available nutrients does usually not benefit all species. The

higher the pulse perturbation is—and so the richer the environment becomes—the

stronger the effects of the pulse perturbation on the food web dynamics are (Figs.

4.3, 4.4 and 4.9). Additionally, the food web response varies significantly depending

on the moment of perturbation (i.e., the point on the attractor). In particular, we

can distinguish two neighboring zones on the attractor which are either the most or

the least affected (Figs. 4.3 and 4.6). This difference arises from the intermediate

species’ ability to keep the basal level under sufficient top-down control. Under

weak top-down control, the basal species are immediately able to grow to very high

densities after the nutrient pulse. This basal biomass peak is followed by a peak in

intermediate species biomass, which in turn leads to a depleted basal biomass level.

On the other hand, if the top-down control is strong, the basal species are unable

to efficiently exploit the extra nutrients, such that most of the nutrient pulse simply

washes out of the system. This corresponds to previous findings in a bitrophic food

web (Rall, Guill, and Brose, 2008). Similarly to previous studies, we found that the

effect of the top level may be key to determining the response of the food web as

a whole, because of their decisive influence on the biomasses of the lower trophic

levels (Wollrab, Diehl, and De Roos, 2012; Ceulemans, Guill, and Gaedke, 2020).
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By examining different values of the Hill-exponent in the basal-intermediate and

intermediate-top interactions, for a non-diverse and highly diverse system, we un-

cover how the type and shape of the attractor affects the response of a food web

(Fig. 4.3 and see Table 4.1). Previously, (Rall, Guill, and Brose, 2008) showed that

after nutrient enrichment in a simple consumer-resource system, a higher Hill expo-

nent stabilized the population dynamics. We found that this pattern generally holds

for tritrophic systems as well, but show additional effects of the shape and type of

attractor present in the complete state space (Fig. 4.3).

Nutrient pulse pushes system to low-production state

In our model, both the food chain and the food web exhibit bistability for a large

part of the parameter space (Table 4.1). In these cases, the system can relax to either

the low-production (LP) or high-production (HP) state, depending on the initial

conditions. This implies that a sufficiently large perturbation can result in the sys-

tem relaxing to the other state. Such behavior, commonly called a regime shift, is a

widely observed phenomenon that can occur in many different types of ecosystems

(Scheffer and Carpenter, 2003; Folke et al., 2004). Regime shifts are often the cause

of major concern, because the two states may vary considerably in their ecological

properties. Some examples are changes in vegetation patterns (Dublin, Sinclair, and

McGlade, 1990), in particular under desertification (Bestelmeyer et al., 2015); or

transitions between a clear and a turbid state in lakes (Scheffer et al., 1993; Scheffer
and Jeppesen, 2007).

We previously showed that diversity loss likely causes our system to transition

from the ecologically desirable HP state to the LP state, where top level biomass

is much lower, and the biomass dynamics more variable (Ceulemans et al., 2019).

Here, we showed how that transition probabilities between the LP and the HP state

are unequal when the system is exposed to a sudden nutrient pulse (Fig. 4.8): it

is more likely for the system to transition to the LP than to the HP attractor. This

asymmetry can be explained by a closer analysis of the post-perturbation timeseries

shown in Fig. 4.6. After a nutrient pulse, both basal species increase due to the

high amount of readily available nutrients. As a response all intermediate species

increase, which causes a concurrent decrease of all basal species, and increase of all

top species. In other words, immediately after a perturbation, species on the same

trophic level tend to move synchronously, largely independently of their trait val-

ues. This is exactly the dynamical pattern that governs the behavior of the LP state.

In contrast, on the HP state, the species tend to exhibit compensatory dynamical

patterns (Fig. 4.6g, and (Ceulemans et al., 2019)). Therefore, a nutrient pulse causes

the system to behave like the LP state, and only a relatively small (∼N0, the normal

inflow nutrient concentration, or less) disturbance forces the system to stay perma-

nently in this state. In summary, a nutrient pulse can cause a regime shift between

the HP and LP states, preferably in the HP → LP direction, and this transition is

more likely at low rather than high functional diversity.
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Resistance varies with the functional diversity

The system’s resistance varies with the organization level studied, i.e., the popula-

tion or trophic level (Fig. 4.3). On the trophic level scale, the diverse food web is

generally more resistant since the biomasses do not reach as low values as in the

non-diverse system (Figs. 4.4 and 4.5). However, at the population level, the unde-

fended basal species (Bu) may be more affected in the diverse system than the only

basal species in the non-diverse system for instance (Figs. 4.4 and 4.6f, i). Under the

extremely nutrient-rich conditions immediately following the perturbation, Bu is at

a competitive advantage due to its higher growth rate. At the basal biomass peak fol-

lowing the perturbation, Bu completely dominates the basal trophic level, by having

taken up the majority of the added nutrients. As a consequence the main consumers

of Bu strongly increase, which in turn leads to Bu being grazed down to very low

biomasses. On the other hand, because of the initial dominance of Bu over the basal

defended species (Bd ), Bd only experiences limited additional growth, and thus only

contributes little to the growth of the non-selective intermediate species. In turn,

Bd is grazed down less, despite its lower growth rate and stabilizes the trophic level

biomass (Fig. 4.6i, l). In this way, our model shows the mechanism behind how a

species’ functional trait determines its behavior in a food web, leading to explicit

manifestations of the insurance hypothesis (Naeem and Li, 1997).

The above analysis rests on the general relationship between Bmin and Imax after

a nutrient pulse perturbation (Figs. 4.3 and 4.7). We show that, after a perturbation,

a higher Imax leads to a lower Bmin due to the increased grazing of the basal level. The

food web structure has an important influence on this relationship since a diverse

food web can maintain a considerably higher Bmin at a given Imax, compared to a

food chain (Fig. 4.7a). Naturally, this relationship depends on the parametrization

of the food chain (Fig. 4.7b). A chain with a high B − I half-saturation constant

(M = 600) has a higher resistance due to grazing suppression at low B densities. The

intermediate species thus reaches lower Imax values and the basal species higher

Bmin values.

However, even in a single three-species food chain, additional mechanisms are

at play. When M = 600, the dynamics of the chain are completely different than
with the standard parametrization (M ≈ 424, see Appendix C.5, Appendix C). In

particular, the biomass of the top trophic level has increased substantially (4.7c) .

This high top-down control limits the increase of the intermediate species after a

perturbation, and thus, protects the basal species to be grazed down to very low

densities. This also holds for the food chain with a higher rbasal: the increased basal

productivity is translated into higher biomass on the top trophic level. On the other

hand, for the parameterizations leading to food chains with low top biomasses, the

intermediate level is able to deplete the basal level to very low Bmin values after the

perturbation.

These results show how knowledge about the whole food web is necessary to

predict its response to a disturbance. The effect of a nutrient pulse, which only
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directly affects the basal trophic level, depends on its interaction with the interme-

diate trophic level and ultimately also on the top trophic level. Combined with our

knowledge of the resilience of the different attractors—a regime shift from the HP

to the LP state is less likely in a diverse food web—this result highlights the key

role played by functional diversity in governing the response of the food web. When

functional diversity is high, the persistence of the high-production state on which

the top biomass level is high is safeguarded, such that adequate control on the inter-

mediate level is ensured. A reduction in functional diversity can therefore abruptly

affect food web resistance as the system is then easily kicked to the low-production

attractor where top level biomass is much lower.

Elasticity depends on attractor structure, shape, and diversity

Another way to quantify a system response after a perturbation is by measuring its

elasticity, that is, the time it takes to return to the pre-perturbation state (return

time, cf. Fig. 4.2). In an economical context, elasticity is an important quantity,

because low elasticity means that the desired functioning of an ecosystem may be

interrupted for a substantial period of time before possibly returning back to normal

(Oliver et al., 2015).

Our results show that the return time increases with the size of the nutrient

pulse, and, moreover, this increase can happen in discrete jumps: suddenly, the dy-

namics require almost a whole additional revolution in state space before being close

enough to the attractor (Fig. 4.9). We also observed that the return time depends on

the food web structure and the shape of the attractor to which the perturbed system

is returning. In particular, we find that the return time on the HP state tends to be

higher than on the LP state. This observation can be made plausible by comparing

the shape of the two attractors. On the LP attractor, individual species’ amplitudes

are significantly higher than on the HP attractor, in particular, both the nutrients

and the basal trophic level routinely reach densities that are close to their carrying

capacity. Moreover, our results have shown that perturbing the HP state can lead to

the dynamics temporarily (cf. Figs. 4.6 and C.4, Appendix C) or permanently (cf.

Fig. 4.8) behaving like the LP attractor. Importantly, this behavior is also observed

in cases where the LP state is not a dynamical attractor. The time spent by the tran-

sient on this ghost attractor increases with the distance to the bifurcation (Hastings

et al., 2018; Morozov et al., 2020), ultimately strongly affecting the return time of

the HP state as the Hill exponent decreases.

A meaningful comparison between food webs of low and high diversity, thus

requires precise knowledge about the system. The food web elasticity may strongly

depend on the shape and type of the attractor, and of other nearby attractors in both

the phase and parameter space. Notwithstanding these complexities, our results

suggest that the return time is lower in the food web than in the food chain for low

perturbation sizes (Fig. 4.9).
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Concluding remarks

Our results show that the resistance, resilience and elasticity of a tritrophic food web

to a pulse perturbation depends on its ecological structure in a complex manner

(cf. Fig. 4.3). By showing that the food web response strongly depends on the

state of every population in the food web at the moment of perturbation, as well

as on the shape and type of the attractor. In particular, even though a nutrient

pulse only directly affects the basal trophic level, we show how top-down regulatory

processes driven by the top trophic level play an important role. These processes

depend themselves on the functional diversity of the food web. In this way the

potentially destructive positive feedback loop is mechanistically understood: the

loss in functional diversity resulting from any extinctions caused by a disturbance

affects foodweb functioning in such a way that its resilience, resistance and elasticity

are even lower making it more vulnerable to further perturbations.
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Chapter 5

Phase relationships in
consumer-resource systems

Ruben Ceulemans*, Christian Guill*, Michael Raatz, & Ellen van Velzen
*: Equally contributing authors

To be submitted.

The text for this chapter is written by me, and constitutes my contribution to a yet-
to-be-finalized project in cooperation with Dr. Christian Guill, Dr. Michael Raatz, and
Dr. Ellen van Velzen (cf. Section 1.5, Chapter 1 for a detailed overview of the author con-
tributions). In the final project, the observed phenomena and their intuitive mechanistic
explanations will be combined with additional insights obtained from analyzing the phase
relationships between populations in a food chain relative to an artificial external driver.

Abstract

The quarter-cycle phase difference between a predator-prey pair is considered

a fundamental property of predator-prey cycles (the quarter-cycle lag rule). On

this basis, observed deviations from this behavior, such as anti-phase cycling, are

commonly attributed to the presence of evolutionary mechanisms influencing pro-

cesses on the ecological timescale. However, research into the origin of the quarter-

cycle lag rule shows that it stems from analytical calculations in a system where

the predator-prey oscillations are assumed to be sinusoidal. In this text, we show

that even in the standard Rosenzweig-MacArthur consumer-resource model, cy-

cle deformation leads to phase differences substantially different from a quarter

of a cycle. Moreover, in an extended tritrophic Rosenzweig-MacArthur predator-

consumer-resource model, such deviating phase differences become increasingly

likely, and even anti-phase cycling behavior between the consumer and the resource

are possible. We emphasize that these deviations from the quarter-cycle lag rule

are observed in simple systems with purely ecological dynamics. Caution must

thus be taken when purely relying on phase differences to infer the presence of

eco-evolutionary dynamics in a consumer-resource system, and especially in natural

food webs containing more than two trophic levels.
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5.1 Introduction

The cyclic behavior that can be exhibited by populations in a wide variety of com-

munities is one of the most fundamental concepts in community ecology. Already

in 1555, the archbishop of Uppsala, Olaus Magnus, determined that the observed

fluctuations in lemming populations occurred in a regular pattern (Magnus, 1555;

Lundberg et al., 1994). In more recent history, many of the ecological mechanisms

responsible for creating population cycles and governing their shape have been

studied using mathematical models of varying complexity.

An important feature of an oscillating ecological system is the difference between

the phases of the individual population biomasses. One particularly prominent

example is the general observation that the phase difference between a predator

population and its prey is close to one quarter of a cycle. This property can be

found in a wide array of experimental and field observations, such as the famous

Lynx-Snowshoe Hare cycle, as well as in simple mathematical models such as the

Lotka-Volterra model (Maclulich, 1937; Bulmer, 1976; Nedorezov, 2016). Observing

such a quarter-cycle phase difference between a predator and its prey is so common,

that this property is considered inherent to predator-prey cycles (Cortez and Ell-

ner, 2010; Cortez, 2011; Ellner and Becks, 2011; Koch et al., 2014; Krysiak-Baltyn

et al., 2016; Van Velzen and Gaedke, 2017). In these publications, it is claimed that

any deviation from a quarter-cycle phase-difference indicates the presence of addi-

tional mechanisms, such as evolutionary processes, influencing the dynamics. In

other words, a predator-prey pair in isolation is supposed to behave following the

quarter-cycle lag “rule”, and observation of larger phase differences (in particular

anti-phase cycles where the phase difference is one half of a cycle) is considered to

be a “smoking gun” for eco-evolutionary processes.

Scientific validation of the quarter-cycle lag rule is often given by referring to

Bulmer (1975). This publication shows that the predator-prey phase lag must be

less than a quarter of a cycle, when no additional interactions are present. While

this statement follows from analytical calculations, they are based on a model in

which the predator-prey oscillations are assumed to be sinusoidal, similar to the

Lotka-Volterra model. This is a very strong assumption, that often does not hold for

many simple predator-prey systems, such as the ubiquitous Rosenzweig-MacArthur

predator-prey model (Rosenzweig and MacArthur, 1963).

In this text, wewill show that even for the simple Rosenzweig-MacArthur consumer-

resource model, substantial deviations from the quarter-cycle “rule” are possible.

We specifically show that phase-differences substantially larger than a quarter-cycle

are not uncommon. Moreover, under the influence of a top predator preying on the

consumer, anti-phase cycles between the resource and consumer are possible. These

anti-phase cycles are purely caused by ecological processes, without the need for

additional evolutionary mechanisms.
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5.2 Methods

In this study, we have analyzed the phase relationships within consumer-resource

pairs in several different contexts. Firstly, we have studied an isolated pair, based on

the (non-dimensionalized) Rosenzweig-MacArthurmodel (Rosenzweig andMacArthur,

1963): 
dR
d t

= R (1−R)− aR
1+ ahR

C

dC
d t

=
aR

1+ ahR
C − dC

(5.1)

where the resource R is undergoing logistic growth, and is interacting with the con-

sumer C through a Holling-type-II functional response with attack rate a and han-

dling time h. The consumer loss rate is determined by d (cf. Section D.1, Appendix

D for details on the non-dimensionalization transformations).

Secondly, we have expanded the Rosenzweig-MacArthurmodel by adding a third

trophic level, the predator P on top:



dR
d t

= R (1−R)− aR
1+ ahR

C

dC
d t

=
aR

1+ ahR
C − αC

1+αηC
P − dC

d P
d t

=
αC

1+αηC
P − δP

(5.2)

where, analogously to the C −R interaction, the P −C interaction is described by a

Holling-type-II functional response with attack rate α and handling time η, and the

predator loss rate is determined by δ.

The phase relationships between the pairs of species in the food chains were

calculated by analyzing the Discrete Fourier Transforms (DFT) of the solutions ob-

tained by numerical integration of Eqs. (5.1) and (5.2). The DFT was calculated

using the NumPy package in Python (Van Der Walt, Colbert, and Varoquaux, 2011),

where it is defined as:

Ak =
n−1∑
m=0

am exp
(
−2πimk

n

)
k = 0, · · · ,n− 1. (5.3)

In words, from the discrete sequence a = {a0, · · · , an−1} of length n, the DFT algo-

rithm calculates another sequence A = {A0, · · · ,An−1} (with Ai ∈ C) using Equation

(5.3). The sequence A is thus called the DFT of sequence a. While a describes the

timeseries in the temporal domain, A describes it in the frequency domain.

If the timeseries contains a periodic pattern with frequency f , the magnitude of

the element of A corresponding to f will be a local maximum. Thus, by finding the

elements of A of which the magnitude a local maximum, we can find the frequencies
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of the processes that govern the temporal dynamics of the timeseries. Importantly,

since the Ai are complex numbers, the DFT also calculates the phase corresponding

to this frequency, given by arg(Ai ). By identifying the dominant frequency in the

timeseries of each of the populations, we can thus estimate the phase difference
∆φCR between the consumer and the resource, and ∆φPC between the predator and

the consumer, as follows:

∆φCR = φR −φC

∆φPC = φC −φP

(5.4)

where φR,φC , and φP are the phases of the dominant frequency of the resource,

consumer, and predator, respectively. In our results, these will be expressed as frac-

tions of 2π, such that a phase difference of one quarter of a cycle corresponds to 1
4 .

To extract the dominant frequency of the timeseries from the DFT, we selected the

peak for the lowest frequency in the DFT, with a peak prominence larger than 100

using the find_peaks algorithm in SciPy (Virtanen et al., 2020).

Numerical integration of the ordinary differential equations was done in C with

the SUNDIALS CVODE solver version 2.7.0 (Hindmarsh et al., 2005). Calculation of

the phase relationships using the DFT and further analysis and plotting of the data

was performed using Python and Matplotlib (Hunter, 2007).

5.3 Results

The C − R system defined in Eq. (5.1) contains only three parameters in its non-

dimensionalized form: the R−C attack rate a and handling time h, and the C death

rate d. To get a complete overview of all possible values of the phase relationship

between R and C can have, we varied a and h for several different values of d (Fig.

5.1).

These graphs contain several regions. In the green region, the combination of

attack rate a, handling time h, and death rate d is such that the consumer cannot

subsist on the resource, and thus the resource can grow to its carrying capacity. This

happens when a < d
1−hd (cf. Section D.2, Appendix D). In the dark blue region, both

R and C coexist at a stable equilibrium. The phase difference is therefore defined

as 0. When a > 1+d h
h−d h2 (solid black line, cf. Section D.2, Appendix D) the system

has undergone a Hopf bifurcation and exhibits oscillatory dynamics. In this region,

the phase difference ∆φCR between the resource and the consumer is non-zero, and

deviations from a quarter-cycle phase difference (white) increase with the intensity

of the color. Our results show that the direction of deviation mainly depends on the

value of h, in relation to d. Specifically, when dh < 0.5, ∆φCR tends to be smaller

than 1
4 , and the opposite when dh > 0.5. In the intermediate region, where dh ≈ 0.5,

∆φCR ≈ 1
4 . The size of deviations further depends on d, when d = 0.05, we find that

∆φCR can sometimes be higher than 5/16, whereas when d = 0.20, phase differences
above 3/8 are possible, and also below 3/16.
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Figure 5.1: Phase difference ∆φCR in the C − R system (cf. Eq. (5.1)) as a function of the
handling time h and the attack rate a, for different values of the consumer mortality d,
expressed as a fraction of 2π. Red colors denote phase lags larger than a quarter cycle period,
while blue colors denote phase lags smaller than a quarter cycle period. The solid black line
denotes the Hopf bifurcation below which the system settles at a stable equilibrium. The
solid green line denotes the coexistence boundary, below which only the resource is present
in the system (green area). The grey area indicates the part of the parameter space where
the system exhibits predator-prey cycles that were so extreme that the extinction threshold,
set to 10−9, was crossed and hence no phase difference could be calculated. Deviations
from quarter-cycle period phase difference are highlighted by contour curves at selected
threshold values. When the death rate of the consumer is low (d = 0.05) it exerts a relatively
strong grazing pressure on the resource, and most of the calculated phase differences are
close to a quarter-cycle period. However, when the consumer death rate is high, grazing
pressure is lower and stronger deviations from quarter-cycle period phase differences are
found (d = 0.20). Example timeseries for the points A−F are shown in Fig. 5.2.

Finally, the dashed black line approximately indicates where the biomass min-

ima reach 10−9. If the attack rate a is above this line, the amplitude is such that

biomass minima fall below this threshold. The extreme amplitude of the biomass

oscillations (over ≈ 9 orders of magnitude) causes the algorithm for estimating the

phase differences to occasionally output unreliable results. While pronounced de-

viations of ∆φCR from quarter-cycle phase difference are common in this region,

the amplitude of the biomass dynamics is unrealistically high from an ecological

perspective.

Some selected exemplary timeseries for combinations of the parameters a,h and

d, indicated by points A − F in Fig. 5.1 are shown in Fig. 5.2. These examples also

make the effect of these parameters on the dynamics and the phase relationships of

the C −R system clear. It can be seen that increasing the consumer loss rate d tends

to directly decrease its density, which, in turn, may affect the density of the resource

in a positive way. The effect of changing the handling time h is also clear: because

h ≡ 1/g , where g is the maximum consumer growth rate, increasing h clearly shows

the consumer requires a longer time to respond to changes in resource density (note

the different ranges of the axes in Fig. 5.2), and vice-versa. However, the decay rate

of C is given by d and is thus the same for points A − C and D − F, respectively.
Because of the linear scale on the biomass axes, the effect of the attack rate a is
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Figure 5.2: Example timeseries of the dynamics on the limit cycle for different combina-
tions of attack rate a and handling time h, as indicated in Fig. 5.1, for the C − R system
defined in Eq. (5.1). The resource R is shown in green, and the consumer C in orange.
The exact (h,a) values are A : (5, 0.4), B : (13, 0.45), C : (2, 1.1) with d = 0.05 (top row), and
D : (2, 1.5), E : (4.3, 4.1), F : (0.6, 4.2) with d = 0.20 (bottom row). Note the different ranges
on the axes caused by different values of h (affecting the consumer growth rate) and/or d
(affecting its decay rate). When the consumer-resource phase difference ∆φCR ≈ 1/4 (A,D),
the timeseries appear quasi-sinusoidal. In contrast, when ∆φCR < 1/4 (B,E), or ∆φCR > 1/4
(C,F) the dynamics on the limit cycle appear strongly deformed. In the case of B and E, h is
relatively large, leading to a longer time required for the consumer to reach a high density
again. For C and F, the situation is opposite: h is sufficiently small such that the consumer
can immediately catch up with the resource and graze it down to low densities.

less clear, but it can be observed that in general, increasing a tends to increase the

amplitude of the dynamics. In particular, the biomass minima tend to go much

closer to zero when a is high.

Unlike for the C −R system defined in Eq. (5.1), we must restrict our analysis of

the P −C −R system (Eq. (5.2)) to a subset of the whole available parameter space.

As we are mainly interested in the behavior of the C −R part, we varied h and a for

several values of the predator loss rate δ, while fixing d, η and α (Fig. 5.3, cf. Fig.

D.1, Appendix D for two other combinations these three parameters). This approach

allows for easy observation of how the C −R interaction is affected by the presence

of P, by direct comparison to Fig. 5.1. When the predator’s loss rate is high, it is

only able to survive in a small region of the h−a parameter space (compare Fig. 5.3,

top left, to 5.1, right). In a substantial part of this region, the addition of P causes

anti-phase cycles (∆φCR ≈ 1/2) to appear between C and R. Because ∆φPC ≈ 1/4

(Fig. 5.3, bottom left), the anti-phase cycles may be explained by R simply tracking

the changes in C caused by the P − C predator-prey cycles. As C goes up, R goes

down and vice-versa (Fig. 5.4, point G).

By decreasing the predator’s loss rate, its influence on the dynamics of the C −R
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Figure 5.3: Phase differences ∆φCR and ∆φPC in the P − R − C system (cf. Eq. (5.2)) as a
function of the C −R handling time h and attack rate a, for different values of the predator
mortality δ, with η = 2.5,α = 1 and d = 0.20. Red colors denote phase lags larger than a
quarter cycle period, while blue colors denote phase lags smaller than a quarter cycle period.
The region encompassed by the fat solid black line is the region in which the predator is
present in the system. Outside of this region, ∆φCR is necessarily exactly the same as in
the right panel of Fig. 5.1). In the top two panels, the grey area indicates where the system
exhibits predator-prey cycles that are too extreme, like in Fig. 5.1. Even when the death rate
of the predator is high (δ = 0.25, left panels), ∆φCR ≈ 1/2 (anti-phase cycles) for a substantial
region in h − a parameter space. For a lower predator death rate (δ = 0.10, right panels) the
dynamics of the C − R system are strongly affected: phase differences substantially larger
than a quarter-cycle, and even anti-phase cycles, are common. Example timeseries for the
points G − J are shown in Fig. 5.4.

interaction can be increased (Fig. 5.3, right panels). For point H , the predator top-

down control is now so high that they quickly graze down C causing long periods of

low C and P biomass (Fig. 5.4). Promoting C by decreasing h and increasing a shows

that coupled C −R and P −C predator-prey oscillations are possible (Figs. 5.3 and

5.4, point I ). In-between, there exists a region where complex chaotic oscillatory

patterns are possible (Fig. 5.4, point J , notice the varying height of the predator

peaks in particular).
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Figure 5.4: Example timeseries of the dynamics on the limit cycle for different combinations
of C −R attack rate a and handling time h, as indicated in Fig. 5.3, for the P −C −R system
defined in Eq. (5.2), with the other parameters set to d = 0.20, η = 2.5, α = 1. The resource R
is shown in green, the consumer C in orange, and the predator P in red (dashed). The exact
(h,a) values are G : (2.5, 1.2) with δ = 0.25, andH : (2.5, 1.2), I : (0.45, 3.8), and J : (2.26, 2.21)
with δ = 0.10. Note the different ranges on the axes. For the P −C − R system, ∆φCR may
be substantially different from 1/4, even when the timeseries appear quasi-sinusoidal (G,I ).
The presence of the predator may also lead to more complex dynamical patterns causing a
complex dependency of the phase differences on the model parameters (J , see Fig. 5.3).

5.4 Discussion

Our results show that phase differences between a consumer and its resource (∆φCR)

substantially different from a quarter of a cycle are possible in the simple Rosenzweig-

MacArthur consumer-resource (C −R) system (Eq. (5.1), Fig. 5.1), and increasingly

likely in the modified tritrophic Rosenzweig-MacArthur P −C −R system (Eq. (5.2),

Fig. 5.3). In particular, anti-phase cycles between C and R are a common occurrence

in the P −C −R model.

In the C −R system, the only interaction is the consumption of R by C, modeled

using a Holling-type-II functional response. Ecological intuition would then suggest

that the C − R phase difference ∆φCR should be close to 1
4 . However, we find that

this relation only holds for a limited region of the parameter space (Fig. 5.1, white
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region). If the handling time h is high, the growth rate of C is so low that R is

close to its carrying capacity for a long time before being grazed down by C (Fig.

5.2 B, E). On the other hand, if h is low, the growth rate of C is so high that R is

almost immediately depleted and requires a long time to recover (Fig. 5.2 C, F).

In both cases, the mismatch between h and d creates cycles of asymmetrical shape:

the decay time (set by d) is either too short or too long relative to the ascent time,

which is determined by h. In the intermediate situation where the ascent and decay

times are approximately equal, h and d are well-balanced and the cycles acquire a

sinusoidal shape.

It is in this regime that ∆φRC ≈ 1
4 , as also argued by Bulmer (1975). Nevertheless,

cycle deformation purely caused bymechanisms inherent to the predator-prey inter-

action leads to phase differences substantially different from a quarter-cycle. While

it is impossible for a dynamical system with two state variables to exhibit exact anti-

phase cycling as it requires the trajectory to cross itself in state space (Ellner and

Becks, 2011), the phase difference can, in principle, become arbitrarily close to 1
2 in

extreme cases where top-down control is very weak (Fig. 5.2E). However, the shape

of this cycle differs from what is usually predicted by eco-evolutionary models, such

as in Becks et al. (2010) and Cortez and Ellner (2010). In those cases, the cycle de-

formation is not caused by a mismatch of the consumer maximal growth rate and its

death rate, but rather by the extended period of time in which the consumer is sim-

ply not able to consume its prey due to a genetic shift in the prey population. When

the consumer is eventually able to grow again, it can do so quickly, causing the shape

of the consumer cycles to be more symmetric, rather than appearing left-tailed (such

as in Fig. 5.2E).

In the P−C−R system, the trajectory would no longer need to cross itself for anti-

phase cycling behavior between C and R. Our exploration of the higher dimensional

parameter space of this system shows that such behavior does indeed happen. In the

situation where the C−R system would relax to a fixed point without P, any biomass

changes in C induced by P will simply be tracked by R (Fig. 5.4G and H). In some

cases, such as for pointG, these anti-phase cycles may be almost perfectly sinusoidal.

Our results imply particular care must be taken when attempting to infer the

presence of evolutionary processes from ecological data using only information on

the phase relationships between consumers (Cortez and Ellner, 2010; Ellner and

Becks, 2011; Hiltunen et al., 2014). Both systems we investigated do not contain any

kind of diversity within a trophic level, which means that no evolutionary or any

other not strictly ecological interactions are possible. Recent research into how the

dynamics of predator-prey interactions is affected by eco-evolutionary effects, have
quantitatively shown that anti-phase cycling occurs when the consumer is unable to

control the prey population (Van Velzen and Gaedke, 2017). However, as our results

demonstrate, they are not the only processes that can do so: anti-phase cycles and

in particular deviations from quarter-cycle phase differences can occur just as well

in simple purely ecological systems, by the same mechanism.
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Chapter 6

Discussion

The previous four chapters each presented a research project on examining the

mechanisms behind the functioning of tritrophic food webs from a different angle,
and with the exception of Chapter 5, exposed how these mechanisms are affected by

functional diversity. The projects presented in Chapters 3, 4, and 5 each attempt to

build further from the knowledge obtained in Chapter 2 in a different direction. In
this chapter, their findings will be compared to build a more complete picture of the

link between diversity and functioning in a tritrophic context.

6.1 Overcoming context-dependency in complex models

In Chapter 2, we built a tritrophic food web in which coexistence was ensured by

the introduction of two trade-offs, each governing two functional traits. As outlined

in Section 1.3, the food web contains two species per applicable trade-off on each

trophic level. Prey species can be either defended or undefended against predation,

where defense comes at the cost of a lower maximal growth rate; and consumer

species can be either selective or non-selective, such that selective species have a

narrower prey spectrum, but can exploit low prey densities more efficiently (such

that the food web contains eight species, cf. Fig. 2.1, Chapter 2). The trait difference
∆ between each pair of trait values can be controlled as an input parameter to the

model. Our results show that when ∆ is high, biomass is transferred efficiently

throughout the food web, leading to a high biomass on the top trophic level (Figure

2.2). We also show how theCV decreases, and later increases again with∆, which we

were able to attribute to the increased relevance of additional trait-related dynamics

creating highly complex oscillations (Figs. 2.6e and f, Chapter 2).

An important property of the model used in Chapter 2 is that all trait differences
are controlled simultaneously by ∆: when ∆ = 1, the functional diversity is high on

every trophic level. To further understand the effects of the interplay between di-

versity on different trophic levels, the model was adapted such that the diversity on

each trophic level can be set independently of that in the rest of the food web (cf.

3.1, Chapter 3). Theoretical and experimental work on the combined interaction of

consumer and prey diversity on food web functioning have uncovered the key role
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played by consumer diversity on food web functioning (Filip et al., 2014; Wohlge-

muth et al., 2017). Extending this approach to include a third adaptive trophic level

is a reasonable step towards understanding the functioning of complex natural food

webs. However, each of the aforementioned studies have stressed the complex na-

ture and context-dependency of the combined effects of diversity on two trophic

levels, and the difficulty in meaningful comparison and synthesis of the results of

distinct studies.

We therefore set out to test the model in Chapter 3 as context-free as possible. To

achieve this, we calculated aggregate quantities, such as the population and trophic

level biomasses and CV s, for a large amount of randomly selected parameter com-

binations (cf. 3.1, Chapter 3). This large collection of data was analyzed using a

Random Forest machine learning model. We were able to identify the same overar-

ching patterns that followed from detailed analysis of the dynamics of the model in

Chapter 2. When diversity is high on every trophic level, biomass gets transferred to

the top trophic level most efficiently (cf. Table 3.2 and Figs. 3.3 and 3.5). Likewise,

the temporal variability of the trophic level biomass exhibits a similar dependency

on functional diversity: as the functional diversity increases, the availability of tem-

poral niches for functionally different species causes the CV to decrease through

compensatory dynamical behavior. However, for highly diverse systems, an increase

in CV is observed, which may be attributed to the increased relevance of additional

trait-related dynamics creating highly complex oscillations (compare Figs. 2.6e and

f, Chapter 2, to Fig. 3.4, Chapter 3).

Comparison of the results of Chapters 2 and 3 highlights the complementarity

of the two distinct approaches. On the one hand, conclusions drawn from detailed

inspection of the dynamical possibilities of the food web in Chapter 2 may be anec-

dotal. In order to confidently generalize these conclusions, it has to be shown that

they also hold in food webs with a different parametrization. On the other hand, the

large number of parameters that have to be varied creates practical difficulties in ef-

ficiently visualizing and analyzing the huge amount of data produced in Chapter 3.

Some kind of representative aggregate quantity has to be selected from which con-

clusions can be drawn out of the data set. Such quantities can only be meaningfully

understood using the detailed knowledge gained from the analysis in Chapter 2.

6.2 The different aspects of stability in complex tritrophic

systems

Due to its complex structure, solutions to the model developed in Chapter 2 exhibit

some very interesting properties. Notably, we find the existence of two different
stable states. The easiest way to distinguish them is by comparing biomass of the top

trophic level and the free nutrient concentration (Figs. 2.3 and 2.4, Chapter 2): on

the low-production (HP) state, the nutrients are unexploited for extended periods

of time and the top biomass is low, whereas on the high-production (HP) state, the
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nutrients are efficiently exploited and the top biomass is much higher. These two

states retain these properties over a large range of parameter space, and may coexist

together as alternative stable states (Fig. 2.5, Chapter 2, see also Appendix A.1,

Appendix A).

A key result from Chapter 2 is that the resilience of the HP state increases with

functional diversity. This result was obtained by calculating the relative frequency

of a random initial condition reaching this state (Fig. 2.5, Chapter 2). This measure

was used as an estimate of the basin of attraction of the HP state: if the frequency

was very small, only for a very small region of state space do trajectories end up on

this state, and vice-versa. In Chapter 4, we set out to reveal the mechanism behind

this result by detailed examination of the response of the food web in Chapter 2 to

a nutrient pulse perturbation.

To fully grasp the impact of a perturbation on food web dynamics and func-

tioning, it is essential to look at more than one aspect of food web stability (Kéfi

et al., 2019). Following Raatz, Velzen, and Gaedke (2019), we investigated the food

web’s response by measuring the resistance, resilience and elasticity, as defined by

(Grimm andWissel, 1997). These three quantities provide complementary informa-

tion on the short (resistance, elasticity) and long term (resilience) response, and may

be influenced by both local (e.g. attractor shape) and global (presence of alternative

stable states) properties of the food web. For example, our results show that per-

turbing the food web when it is on theHP likely induces a transition to the LP state,

because of the synchronous dynamics that occur in the post-perturbation transient,

which are characteristic of the LP state (cf. Figs. 4.6h and i, Chapter 4, and C.1 and

C.4, Appendix C). This explains the asymmetry between the maximum perturbation

sizes for which the system returns to the pre-perturbation state for the LP and HP

state (Fig. 4.8).

Remarkably, the post-perturbation transient from a point on the HP state may

behave like the LP state for an extended period of time, even for regions in the

parameter space for which the LP state is not stable. It appears that the transient

relaxes to the “ghost” of the LP attractor, but eventually it must return to the stable

HP state. We observed similar behavior near theHP attractor crisis in Chapter 2 (see

Fig. A.12, Appendix A), however, in this case, the dynamics mimicked the behavior

of the HP attractor for a long time period before relaxing to the LP state. Fully un-

derstanding the ecological meaning and implications of the presence of ghost attrac-

tors is a relatively new but highly fascinating field of research (Hastings et al., 2018;

Morozov et al., 2020; Drake et al., 2020). The increased frequency of observation

of these phenomena is cause for concern, because accurately distinguishing a ghost

transient from actual stable oscillatory behavior may require an observation time

which is significantly longer than ecological or practically feasible timescales. They

thus create an interesting challenge for our current understanding of predicting tip-

ping points and catastrophic regime shifts using early warning signals (Scheffer and
Carpenter, 2003; Scheffer et al., 2009; Dakos et al., 2019). Especially if the dynamics
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are chaotic, it may not only be impossible to predict whether a transition is near, but

the presence of a ghost attractor after the transition may even make detecting that

the transition has happened hopeless.

These results in Chapters 2 and 4 highlight the importance of explicitly con-

sidering the complete phase space of a system to fully understand its dynamics.

In Chapter 3, we also accommodated for the potential impact of alternative sta-

ble states when investigating the parameter-independent behavior of tritrophic food

webs. For each of the 128,000 parameter conditions, we actually calculated the av-

erage biomasses and CV s for 200 randomly sampled parameter conditions, so as to

make our estimation of these quantities for a certain parameter combination also

independent on the initial conditions.

6.3 Anti-phase cycles caused by lack of top-down control

Chapters 2 and 5 show how detailed analysis of the phase relationships of all consumer-

resource pairs in a food web provides a comprehensive picture of its trophic inter-

actions (cf. Fig. 2.2-2.4, Chapter 2 and Fig. 5.1, 5.3, Chapter 5). The starting point

from which this analysis is performed is the property that the phase difference be-

tween the biomass dynamics of a predator and its prey is one quarter of a cycle. As

discussed in detail in Chapter 5, this property has been observed in a wide variety of

predator-prey pairs, and theoretical legitimation is often attributed to Bulmer, who

proves that this property holds when the cycles are sinusoidal in shape (Bulmer,

1975).

In Chapter 2, estimation of the phase relationships between all predator-prey

pairs in a complex functionally diverse tritrophic community suggests that this

“rule” is not as general as is presumed: deviations from quarter-cycle phase dif-

ferences are observed, even in a simple tritrophic food chain. Specifically, our re-

sults uncover how phase differences significantly larger than a quarter of a cycle,

up to half a cycle (anti-phase cycles) can occur in tritrophic systems: when the top-

down control of the top trophic level is sufficiently high, the intermediate trophic

level is unable to exert sufficient grazing pressure on the basal trophic level to cre-

ate predator-prey-like cycles. By systematic exploration of the parameter space of a

simple tritrophic extension of the Rosenzweig-MacArthur consumer-resource model

(Rosenzweig and MacArthur, 1963), this suggested mechanism behind the obser-

vation of anti-phase cycles in Chapter 2 is confirmed. Moreover, even in the stan-

dard bitrophic Rosenzweig-MacArthur consumer-resource system, we show that sig-

nificant deviations from quarter-cycle phase relationships can occur. This hap-

pens when the cycles becomes deformed due to a mismatch between the predator’s

growth and loss rates. In particular, when the loss rate is too high, the prey species

are able to escape control by their predator and the phase difference becomes sub-

stantially larger than a quarter of a cycle. Thus, also in this most simple system, lack

of sufficient top-down control causes anti-phase-like cycling behavior.
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It is important to emphasize that our observation of predator-prey phase cycles

showing clear deviations from a quarter-cycle phase difference in a simple consumer-

resource system is not directly in contradiction with recent literature on the attri-

bution of such deviations to the influence of evolutionary processes on ecological

dynamics. For example, Becks et al. (2010) observe that in the presence of multi-

ple prey genotypes which differ in their defense against predation, predator-prey

dynamics often exhibit anti-phase cycles. When predator density is high, defended

genotypes will be selected for, causing the predator density to remain low for an

extended period of time. Eventually, the undefended genotypes will become domi-

nant again and the predator population can recover. Observation of this type of eco-

evolutionary feedback has become so common that deviations from quarter-cycle

predator-prey phase relationships are considered a strong indicator hereof (Hiltunen

et al., 2014). Clearly, it is again the lack of top-down control on the prey commu-

nity that lies at the basis of the observed anti-phase cycling pattern (Van Velzen and

Gaedke, 2017), which, as demonstrated by the models uses in Chapter 2 and 5, can

also happen in the absence of diversity within trophic levels. It is thus possible that

the presence of evolutionary processes is falsely inferred, when simply relying on the

observation of (quasi-)anti-phase cycling, especially in complex natural food webs

with more than two trophic levels. When it is sure that a community contains only

two trophic levels, such as in controlled microcosm experiments, our results suggest

that the shape of the cycles (in particular, whether they are symmetric or not) may

be conclusive to infer functional diversity in the prey community (cf. Chapter 5,

Discussion).

6.4 Regulating effects of the top trophic level

One common theme that links all four chapters together is the decisive role played

by the top trophic level on the dynamics and functioning of food webs.

In Chapter 2, we show how functional trait differences in the predator com-

munity cascade downwards throughout the functionally diverse food web, creating

trait-separated compensatory dynamical patterns on every trophic level. This causes

a more efficient exploitation of nutrients by the basal community. The same pattern

is shown to hold in general for a broad range of differently parametrized tritrophic

food webs in Chapter 3. Moreover, by independently varying the functional diver-

sity on every trophic level, we show that the functional diversity on the top trophic

level is of high importance for determining the biomass, biomass variability, and

biomass production efficiency of every trophic level. In Chapter 4, we show that

the top trophic level plays an important role in preventing extinctions on the basal

trophic level after a nutrient pulse perturbation: when the top level biomass is high,

high predation pressure on the intermediate level renders the intermediate species

unable to fully exploit the basal growth peak following the nutrient pulse. Finally,

in Chapter 5, the presence of a top predator, even with low biomass, affects the
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consumer-resource phase relationships in a considerable region of the parameter

space.

The central motif behind each of these observations is that the top trophic level is

able to exert considerable influence on the whole food web, through direct and indi-

rect effects. This is in line with a large body of experimental and theoretical evidence

of the key role that top predators often have in ecosystems (Bruno and O’Connor,

2005; Estes et al., 2011; Schneider et al., 2016; Donohue et al., 2017; Brose et al.,

2019; Ehrlich and Gaedke, 2020). Simultaneous consideration of all four chapters

in this dissertation reveals the explicit mechanisms through which changes to the

biomass and functional diversity of the top trophic level affect the food web as a

whole, in a two step process. Firstly, we show the general relevance of the tradi-

tional top-down trophic cascade. Increased top-down control on the intermediate

level, facilitated by a high top level biomass, decreases the intermediate level’s abil-

ity to control the basal level, in turn leading to increased nutrient exploitation effi-

ciency. Secondly, we find that the increased productivity of the basal level may then

feed back to increase the biomass of the top trophic level further. However, this

process only works well if the functional diversity on every trophic level is high.

High basal diversity causes efficient exploitation of the nutrients by compensatory

dynamical patterns; high intermediate diversity ensures the basal level cannot es-

cape efficient consumption by adjusting its trait composition; and similarly, high top

diversity ensures that the intermediate biomass production is transferred upwards

efficiently.

Importantly, when functional diversity is altered, these changes to the biomasses

of each trophic level may not depend on the functional diversity in a continuous,

gradual way. When diversity is high, the high-top-biomass state is dominant. A

reduction in functional diversity can then induce a sudden and irreversible change

to ecosystem functioning when the system transitions to the low-top-biomass state.

6.5 Future perspectives

Experimental demonstration

The food webmodels described in Chapters 2-4 have been created to fit the structure

of planktonic food webs. This means that the mechanisms revealed by the model

may potentially be tested using microcosm experiments. This approach has proven

fruitful to demonstrate the validity of model predictions and discover novel effects
in planktonic systems with one or two adaptive trophic levels (e.g., Boraas, 1983;

Becks et al., 2005; Blasius et al., 2020; Flöder, Bromann, and Moorthi, 2018), thanks

to their many practical advantages such as a short generation time, simple life struc-

ture, and potentially highly complex food web structure. However, the increased

trophic complexity of our tritrophic models may present problems to find suitable

candidates that fit the model structure and can be tested in microcosms. Very re-

cently, Rakowski et al. (2020) have been able to study the effects of top predator
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diversity on a food web with three adaptive trophic levels, by combining microcosm

andmesocosm experiments, and report effects that are in line with the mathematical

predictions presented here.

Multiple perturbation types

In Chapter 4, we present a mechanistic analysis of the response of an adaptive

tritrophic food to a nutrient pulse perturbation. This type of perturbation consti-

tutes an instantaneous change to one of the state variables (such as the free nutrient

concentration N ), after which different aspects of the transient dynamics back to

the original attractor (or to another attractor if there are alternative stable states) are

studied, quantifying the systems resistance, resilience, and elasticity. However, to

get a complete picture of the different mechanisms that may be responsible for gov-

erning the response of complex food webs to perturbations, more than one type of

perturbation should be applied to the same system (Kéfi et al., 2019). For example,

by performing press perturbations on our models, the effect of warming due to cli-

mate change on adaptive tritrophic food webs could be investigated. In contrast to

pulse perturbations, press perturbations permanently affect model parameters (for

example, the Hill exponent of the functional response). The system is then forced

to relax an attractor in a different location, corresponding to the new value of the

perturbed parameters.

Model extensions

Care was taken to make the models used in Chapters 2-4 as realistic as possible.

Compared to bitrophic systems, the incorporation of an adaptive third trophic level

makes the observed phenomena and their underlying mechanisms arguably more

relevant for natural food webs (Matsuno and Nobuaki, 1996; Abdala-Roberts et al.,

2019). Nonetheless, our models still represent a highly simplified picture of the

complexity of nature. Communities with four—sometimes five—trophic levels exist

in nature (Fry, 1988; Williams and Martinez, 2004), and the number of trophic lev-

els, and how they interact with each other, may have a decisive influence on trophic

cascades (Wollrab, Diehl, and De Roos, 2012). Therefore, adding a fourth adaptive

trophic level in our models would be a relevant possible extension, which could lead

to further generalisation of our results, but would make empirical verification even

more difficult.

One common interaction thus far ignored in ourmodels is omnivory or intraguild

predation. Such interactions are also common in natural food webs (Polis, Myers,

and Holt, 1989), and known to alter many important ecological properties, such as

biomass distributions (Wang and Brose, 2018), trophic cascades (Thompson et al.,

2007), and species persistence (Křivan and Diehl, 2005). Investigation of the influ-

ence of these interactions on the phenomena discussed in this text (such as trophic



Chapter 6. Discussion 116

level biomasses and phase relationships between predator-prey pairs) would there-

fore be a highly relevant extension.
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Appendix A

Supplementary information to
Chapter 2

A.1 Exploration of parameter space and food web structure

The model described in the main text contains many parameters of different types.
The effect of parameters which control the environmental conditions, such as the

inflow nutrient concentration N0 and the dilution rate δ will be studied in section

A.1.1.

Other parameters relating to the species properties also influence the structure

of the food web. In particular, the mass ratio mI
mB

= mT
mI

and the allometric scaling

exponent λ influence the species’ maximum growth rate and thus the intensity of

trophic interactions. In the main text, the mass ratio between the species of adjacent

trophic levels was set to 1000, with λ = −0.15 in order to represent aquatic commu-

nities. In this case, going up in trophic level rescales the maximal growth rate by a

factor of 1000−0.15 ≈ 0.35. It should be noted that in terrestrial communities, where

mass ratios of 100 and scaling exponents of λ = −0.25 might be more representative

(Brose et al., 2006), the species’ maximal growth rate is scaled with a factor that is

almost equal to the one for aquatic systems: 100−0.25 ≈ 0.32. However, in order to

verify our results for different food web structures, we have looked at variations of

these mass ratios while keeping the scaling exponent fixed at λ = −0.15, such that

the maximal grazing rates are altered significantly (section A.1.2). In addition, we

have also investigated what happens when we also scale the dilution rate δ allo-

metrically, transforming it to a more traditional death rate, such that higher trophic

levels experience a lower death rate.
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A.1.1 Varying environment parameters
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Figure A.1: Equivalent of Fig. 2.5 (main text), when the interaction strength between the
defended prey species and the selective consumer species is set to 10−6 instead of 10−4.
Comparison between these two figures shows no significant differences, emphasizing that
the value of 10−4 as used in the main text is sufficiently low, and lowering it further does not
alter our results.
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Figure A.2: Relative frequency of initial conditions leading to a state for which all species
coexist for ∆ = 1 (maximal trait variation). For each combination of the inflow concentration
N0 and the dilution rate δ, 200 randomly sampled initial conditions were tested. As long as
the dilution rate is small enough such that the slowest growing top species Tn can remain
in the system, coexistence is very probable in our model, independent of these external
environmental factors.
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Figure A.3: (a) Relative frequencies of reaching the high-production attractor, as a function
of the trait difference ∆ and the dilution rate δ, for h = 1.05. Each of the points in the 101×76
grid shows the relative frequency of reaching the high-production attractor, sampling 200
random initial conditions. The patterns described in the main text are also present as δ
is varied. The basin of attraction generally increases in size as the trait difference increases,
meaning the high-production state is more resilient against pulse perturbations. In addition,
the high-production attractor’s boundary crisis is present over the whole range of δ when
trait differences are low, hence, higher trait differences also protect the high-production state
against press perturbations. However, as δ increases the high-production attractor becomes
less resilient, possibly due to the high sensitivity of the top species to the dilution rate, as
they have the lowest growth rates. (b) Relative frequencies of reaching the high-production
attractor as a function of the trait difference ∆ and the nutrient inflow concentration N0,
for h = 1.05. Each of the points in the 101 × 51 grid shows the relative frequency of reach-
ing the high-production attractor. The basin of attraction generally increases in size as the
trait difference increases, meaning the high-production state is more resilient against pulse
perturbations. However, for increasing nutrient inflow concentration, there is a clear trend
towards the more variable low-production state, and eventually the high-production state
disappears through a boundary crisis as N0 is increased further. This result is in accordance
with the paradox of enrichment, a commonly observed effect where a consumer-resource
system is destabilized when food becomes more available.
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Figure A.4: (a), (b) Relative frequencies of reaching the high-production attractor, as a func-
tion of the trait difference ∆ and the dilution rate δ and the nutrient inflow concentration
N0, respectively, for h = 1.1. Each of the points shows the relative frequency of reaching
the high-production attractor, sampling 200 random initial conditions. The patterns de-
scribed in the main text, as well as in Fig. A.3 are also present. Increasing δ further leads to
extinction of one of the top species.
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A.1.2 Varying the body mass ratio between trophic levels

Using the standard parameter values defined in Table 2.1 (main text), but with a

mass ratio of 500 instead of 1000, also shows a similar trend as found in Fig. 2.5

(main text), underlining the robustness of our results (Fig. A.5).
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Figure A.5: Relative frequencies of reaching the high-production attractor, as a function of
the trait difference ∆ and the Hill exponents h = η, for a body mass ratio of 500 instead of
1000 between all trophic levels. Each of the points shows the relative frequency of reaching
the high-production attractor, sampling 200 random initial conditions. The patterns de-
scribed in the main text (Fig. 2.5) are again present. To compensate for the higher growth
rate of the top species when the body mass ratio is lowered, the dilution rate δ has been
slightly increased to 0.065 instead of 0.055. All other parameters are the standard ones
given in Table 2.1.

However, lowering the body mass ratio between adjacent trophic levels further

down to 100, we find that only one attractor exists over the whole range of ∆ (Figs.

A.6a & A.6b). Interestingly, this single attractor changes continuously from appear-

ing like the low-production attractor when ∆ is low (Fig. A.6a), to resembling the

high-production attractor when ∆ is high (Fig. A.6b). This means that, as trait vari-

ation increases, the mean free nutrient level decreases, the mean biomass at the top

level increases, and the temporal variability decreases. Hence, in the case where

there is only one attractor, the relevant conclusion are still supported.
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Figure A.6: (a), (b): Biomass dynamics for the linear chain (∆ = 0) and fully separated
web (∆ = 1), respectively, when the body mass ratio is set to 100, for h = 1.05. (c), (d)
Bifurcation diagram showing only one single attractor exists over the whole range of ∆, for
N and Tn respectively (Ts shows a similar upward trend). The dashed line in the middle
shows the mean level. As ∆ is increased from 0 to 1 the mean free nutrient level drops from
≈ 220µgN/l to ≈ 70µgN/l, while the mean total biomass at the top level increases from
≈ 140µgC/l to ≈ 270µgC/l.

Lastly, in order to properly compensate for the increased grazing pressure when

the mass ratios are lowered in a chemostat model, we investigated a different model

structure where the death rate of each species is also linked to their body mass. In

this way, an increase in the maximal grazing rate of a species is accompanied by an

increased death rate (Fig. A.7).
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Figure A.7: Relative frequencies of reaching the high-production attractor, as a function
of the trait difference ∆ and the Hill exponents h = η, for a body mass ratio of 200, with
the dilution rate δ scaled allometrically. In this case, the species on each trophic level get
a distinct death rate which depends on their body mass and their growth rate. Specifically,
the death rates d for the different species are defined as follows:

I1 and I3 : d = δr ′1 (200/1000)
−λ

I2 and I4 : d = δr ′2 (200/1000)
−λ

T1 : d = δr ′1 (200/1000)
−2λ

T2 : d = δr ′2 (200/1000)
−2λ,

where 200 is the body mass ratio used for making the figure, and 1000 is the standard body
mass ratio used in the study. In this way species that grow faster get a higher death rate.
Each of the points shows the relative frequency of reaching the high-production attractor,
sampling 200 random initial conditions. The patterns described in the main text (Fig. 2.5)
are again present. All other parameters are the standard ones given in Table 2.1.
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A.2 Food web when ∆ = 0

In this appendix, the details and meaning of the transition from a food chain with 3

elements (Fig. A.8) to a food web with 9 elements, where all the species on a trophic

level are equal, will be presented. It is a priori not clear how these two systems are

related, but it can be shown easily that the ∆ = 0 food web in Fig. A.8b does indeed

describe a food chain, but with a different half-saturation constant in the predator-

prey functional response.

N

B

I

T

(a)

N

B1 B2

I1 I2 I3 I4

T1 T2

(b)

Figure A.8: (a) A simple linear tritrophic chain, described by 4 equations. (b) Food web
where all species on a trophic level are exactly equal (∆ = 0), described by 9 equations.

As the equations are somewhat cumbersome when two species are interacting

with four species and vice-versa, let us calculate what happens for a simpler toy

system of two resources (R) and one consumer C:



Ṙ1 = r R1 −
Rh
1

Rh
1 +Rh

2 +Mh
C

Ṙ2 = r R2 −
Rh
2

Rh
1 +Rh

2 +Mh
C

Ċ = e
Rh
1 +Rh

2

Rh
1 +Rh

2 +Mh
C − dC

(A.1)

where r is the resources’ growth rate, h the Hill-exponent of the predator-prey in-

teraction’s functional response,M its half-saturation constant, and d the consumer’s

death rate. Assume now that the two resources are actually the same species, i.e.,

R1 +R2 = R1, this gives:

1This leads to a somewhat inconsistent description, as the mechanism leading to the grazing sup-
pression at low resource densities requires either the predator to be able to distinguish the different
resource types, or the prey to have a particular means of more efficiently escaping predation at low
resource densities. Both options are not possible when the two resources are the same species, since it
implies they cannot be distinguished in any way, and would e.g. use similar hiding spaces to escape
predation.
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Ṙ = Ṙ1 + Ṙ2 = r R−

Rh
1 +Rh

2

Rh
1 +Rh

2 +Mh
C

Ċ = e
Rh
1 +Rh

2

Rh
1 +Rh

2 +Mh
C − dC.

(A.2)

Assuming in addition that R1 = R2 (which we are free to do so when setting the

initial conditions):



Ṙ = r R−

(
R
2

)h
+
(
R
2

)h(
R
2

)h
+
(
R
2

)h
+Mh

C

Ċ = e

(
R
2

)h
+
(
R
2

)h(
R
2

)h
+
(
R
2

)h
+Mh

C − dC.

(A.3)

Rewriting
(
R
2

)h
+
(
R
2

)h
= 21−hRh gives:


Ṙ = r R− Rh

Rh +
(
2

h−1
h M

)h C
Ċ = e

Rh

Rh +
(
2

h−1
h M

)h C − dC.
(A.4)

This shows that a system with 2 identical resources and one consumer with a

generalized Holling-Type-III predator-prey functional response does in fact describe

a food chain, but with a different half-saturation constant: M→ 2(h−1)/hM .

The above reasoning is easily applied to the more complex case shown in Fig.

A.8. The ‘web’ of nine equations:



Ṅ = δ (N −N0)−
cN
cC

r
∑
i

Bi

Ḃi = r Bi − gi
∑
j

Ij − δBi

İj = e
∑
i

giIj −γj
∑
i

Ti − δ Ij

Ṫi = ε
∑
j

γjTi − δTi

(A.5)

with i ∈ {1,2}, j ∈ {1,2,3,4}, and
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r = r ′
N

N + hN
(A.6)

gi = g ′
Bh
i∑

i ′ B
h
i ′ +Mh

(A.7)

γj = γ ′
I
η
j∑

j ′ I
η
j ′ +µη

(A.8)

can easily be calculated to correspond to a linear chain described by four equa-

tions:



Ṅ = δ (N0 −N )− cN
cC
· r B

Ḃ = rB− g I − δB

İ = e · g I −γ T − δ I

Ṫ = ε ·γ T − δT ,

(A.9)

with

r = r ′
N

N + hN
(A.10)

g = g ′
Bh

Bh +Mh
(A.11)

γ = γ ′
Iη

Iη +µη
, (A.12)

when

B1 = B2, I1 = I2 = I3 = I4, T1 = T2, (A.13)

by setting ∑
i

Bi = B,
∑
j

Ij = I ,
∑
i

Ti = T , (A.14)

and

M→ 2(h−1)/hM, µ→ 4(h−1)/hµ. (A.15)

Values of h used in our study are very close to one, hence, the difference is not very
large. For example, h = 1.1 implies roughly M→ 1.07M and µ→ 1.13µ.



Appendix A. Supplementary information to Chapter 2 129

A.3 Additional information

This appendix contains some extra figures and tables supporting the results dis-

cussed in the main text. The bifurcation diagrams of all other species as well as

the nutrients (Figs. A.9 & A.10) confirm that the information extracted from the one

shown in the main text are universal. The frequency spectra fromwhich the relevant

timescales were identified are shown in Fig. A.11. Fig. A.12 shows the long chaotic

transient which is present right after the boundary crisis of the high-production at-

tractor.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.9: Bifurcation diagrams of the low-production attractor for h = η = 1.05, as the trait
difference parameter ∆ is varied from 0 to 1. For small to intermediate sizes of the maximum
trait difference, the oscillations are simple in the sense that the maxima and minima are
always at the same height. At ∆ ≈ 0.8 a transition occurs to a region where the oscillations
become complex, as indicated by the varying locations of the maxima and minima.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.10: Bifurcation diagrams of the high-production attractor for h = η = 1.05, as the
trait difference parameter ∆ is varied from 0 to 1. The attractor disappears for ∆ / 0.18, and
undergoes several bifurcations in the region 0.18 / ∆ ≤ 1.
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(a) (b)

(c) (d)

Figure A.11: Fourier spectra of the linear chain (∆ = 0), for h = η = 1.1 (top), and for the
separated food web (∆ = 1), for h = η = 1.05 (bottom). The left-most figures show the low-
production attractor, and the rightmost the high-production attractor. These spectra show
that the trait dynamics impose a much longer timescale than the one already present in the
linear chain.
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Figure A.12: (a): Biomass dynamics for h = η = 1.05 and ∆ = 0.177, slightly smaller than
the value where the high-production attractor disappears. A long chaotic transient is ob-
served before the system suddenly accelerates towards the only remaining attractor, the
low-production attractor. Figure (b) shows the dynamics for ∆ = 0.18 where the attractor
still exists, and demonstrates that they are virtually indistinguishable from those on the
transient shown in Figure (c) (close-up of the box in Figure (a)).

∆ = 0 ∆ = 1
HP LP HP LP

(P/B)Top 5.5 5.5 5.6 5.5

(P/B)Basal 21.8 16.8 30.3 20.2
PTop/PBasal 6.0 3.9 6.3 3.1

Table A.1: Production (P) to Biomass (B) ratios of the Top and Basal trophic levels, for
the linear chain (∆ = 0) and the maximally separated food web (∆ = 1), for both the high-
production (HP) and the low-production (LP) states. The bottom row shows that the top-
production per unit of basal production also increases on the high-production state, result-
ing in a more efficient system.
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B.1 Meaning and effect of the cross link scaling parameter

When functional diversity is present on adjacent trophic levels, as is the case for the

BI, IT, and BIT food webs, there exist cross links between the species on the different
sides of the web. In our model, the relative strength of these cross links can be varied

independently of the amount of functional diversity through changing the relevant

attack rates by multiplying them with ascale. For higher ascale, the cross links get

relatively weaker.

The interaction between two species via a Holling-Type-III functional response

is determined by both handling time (h or η) and attack rate (a or α). In our model,

trait differences affect the attack rates such that increasing trait differences on adja-

cent trophic levels may lead to increased specialization of the consumer species on

their prey through reduction of the cross link strengths. Explicitly:

a = a0

 1 ax
ax 1

 , α = α0

 1 αx

αx 1

 , (B.1)

with

ax = ascale
−min(∆B,∆I ), αx = ascale

−min(∆I ,∆T ), (B.2)

such that this reduction depends on the minimal trait difference of the relevant

trophic levels, and the feeding links are unaffected when one of the trait differences
is equal to zero (Fig. B.1).

In a way, the cross link scaling parameter ascale affects the structure of the differ-
ent food webs we have compared (see also Fig. 3.1, main text). As the ratio between

the parallel and the cross links in those food webs where diversity is present on ad-

jacent trophic levels (i.e. BI, IT, and BIT) is varied, the food web structure changes

from either a strongly linked (ascale ≈ 1), to two weakly connected chains (ascale� 1).
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B1 B2

I1 I2

weak cross link 
suppression

B1 B2

I1 I2

strong cross link 
suppression

small ascale large ascale

B1 B2

I1 I2

min(ΔB, ΔI) = 0

B2B1

II I1 I2

BB

no cross links present

min(ΔB, ΔI) > 0

Figure B.1: Pictorial representation of the effect of ascale on the food web structure. Only
effects on the basal and intermediate level are shown for simplicity, but the interactions
between the intermediate and top level is parametrized equivalently. When either ∆B = 0 or
∆I = 0 (top row), there are no cross links present and ascale has no effect. It is only when both
∆B and ∆I are positive that cross links appear between the basal and intermediate level in
the food web. In this case, when ascale is small (close to 1), the cross links B1 − I2 and B2 − I1
are not significantly suppressed. Contrarily, for large ascale the trophic links between B1, I2
and B2, I1 are strongly suppressed, as indicated by the dashed lines.

B.2 Details of the allometric properties

Allometric scaling entails that species’ growth rates are linked to their body mass.

In particular:

maximal growth rate of trophic level k +1
maximal growth rate of trophic level k

=
[
mk+1

mk

]λ
(B.3)

where k ∈ {1,2}, mk is the body mass of the species on level k, and λ the allometric

scaling exponent. As mentioned in the main text, the centers of the intervals for

which the maximal growth and grazing rated are selected corresponds to a food

chain with biomass ratios between adjacent trophic levels on the order of 103, and

λ = −0.15. However, assuming the same scaling exponent λ, the body mass ratio

can vary from approximately 1 to approximately 10,000,000 at the extreme cases

for either maximal prey and minimal predator growth rates, or minimal prey and

maximal predator growth rates, respectively.

B.3 Detailed description of data production and analysis pro-

cedure

The goal of our study is to gain understanding in the general behaviour and eco-

logical patterns that can be expected in tritrophic food webs, as a function of their
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diversity. Any serious attempt at studying these general properties cannot be lim-

ited to a certain small subset of the parameter space. On the other hand, there is a

practical limit in the extent to which the whole ecologically parameter space can be

explored.

In addition, fully capturing the behaviour of complex dynamical systems, such

as ours, requires going beyond linear stability analysis. Due to modeling the in-

teractions between species as non-linear generalized Holling-type-III functional re-

sponses, the resulting population dynamics will often relax to complex limit cycles

or chaotic attractors.

As described in the main text, we balanced these limitations by adopting a two-

step process. First, we numerically integrated the ordinary differential equations
(ODEs) describing our food webs (cf. Eq. (3.1), main text) for 128,000 parameter

combinations, and saved aggregate properties of the resulting dynamics (the popu-

lation and trophic level biomasses and Coefficients of Variation (CV)). This dataset

was subsequently used for training a Random Forest model, in order to be able to

predict these quantities for many more parameter combinations for which the ODEs

were not solved.

In this Appendix, we will describe in detail what kind of data we have used for

our results, and how it was produced. Our whole procedure can be split up into

three main parts: producing the training dataset, training the Random Forest, and

producing the Partial Dependence plots (Figs. 3.3, 3.4 and 3.5 in the main text, and

others in the Supplementary Materials).

B.3.1 Producing the training dataset

As described above, the starting point for obtaining our results is the set of ODEs (cf.

Eq. (3.1), main text). These equations can be used to describe any of the food webs

shown in Fig. 3.1 (main text), through their explicit dependence on the different
trait difference parameters ∆B,∆I &∆T .

The only way to gain some insight in the behaviour of the solutions describing

the population dynamics is to solve these equations. Other techniques such as cal-

culating the fixed points and analyzing their stability through the eigenvalues of the

Jacobian matrix are not suitable, because of the high degree of non-linearity in the

terms that define the interactions between the different populations in the food web

(the generalized Holling Type-III functional responses). Due to these non-linear in-

teraction terms the population dynamics frequently do not relax to a simple stable

point, but rather to more complex attractors, such as limit cycles or chaotic attrac-

tors.

Fig. B.2 provides a schematic overview of the different steps that were taken to

produce the data on which the Random Forest model will later be trained.

1. Select (∆B,∆I ,∆T ): While Fig. 3.1 (main text) shows the different food webs or-

dered by the presence or absence of functional diversity on each trophic level,
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1. Select 
(ΔB, ΔI, ΔT)

Each combination of Δ
is treated separately. 

This means that the 
whole procedure is 
repeated for all 125 
combinations, from 
(0, 0, 0) to (1, 1, 1).

2. Randomly select 
other parameters

All other parameters 
needed to solve the 
equations (attack 
rates, handling 
times, ...) are 
randomly picked.

(cf. Table 1, main text)

3. Generate 
random initial 
conditions

Initial conditions to 
start the numerical 
integration are 
randomly picked. 

4. Solve ODEs 
numerically

Full numerical 
solution is calculated, 
and the mean biomass 
and CV for each 
population and trophic 

level are saved.

do 

200 

times

after 

200 

times

5. Create training 
set data point

The different 
outcomes are grouped 
together per attractor 
and saved as one 
point of the training 
data set.

do 

1024 

times

after 

1024 

times

6. Dataset for 
(ΔB, ΔI, ΔT) 
complete

All datapoints for this 
combination of Δ are 
stored together. 

do for all Δ

combinations

Producing the training data set

Figure B.2: Schematic overview of the steps required to produce the training data set. See
the text for more details on each step.

it can also be helpful to think about a different partitioning of all possibili-

ties. Particularly, one could imagine ordering the food webs simply by their

values of ∆B, ∆I , and ∆T . In that case there are not eight, but 125 different
possibilities, since each ∆i ∈ {0,0.25,0.5,0.75,1}.

It is then for each of these 125 cases that the dynamics of 1024 randomly sam-

pled parameter combinations will be investigated.

2. Randomly select other parameters: The other eleven parameters required to

solve the ODE model are randomly sampled from well defined intervals (see

Table 3.1, main text).

3. Generate random initial conditions: Because of the increased complexity of

the food webs we describe, it is possible that there is a strong dependence of

the outcome of the ODE model on the initial conditions. Several different sce-
narios are possible: any particular initial condition may not lead to coexistence

of all species in the food web, or, there may be multiple attractors for which all

species do coexist. It would thus be highly inaccurate to assume that one single

initial condition is representative for all possible outcomes of this particular

parametrization. Therefore, for each parameter combination, it is additionally

necessary to record the outcomes of several different initial conditions. To ob-

tain the datasets used to train the RF model in the main text, we recorded the

outcomes of 200 randomly sampled initial conditions per parameter combi-

nation. As described in the main text, these initial conditions were sampled

in a way that the total biomass of each trophic level does not exceed twice its
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theoretical maximum, in order to remain ecologically reasonable and prevent

very strong oscillations when the system is relaxing to its attractor.

4. Solve ODEs numerically: Now that all parameters have been assigned a value,

and an initial value has been set, numerical integration of the ODE model is

performed. To prevent any influence from the potential presence of very slow

transient dynamical patterns, the system is allowed to relax to its equilibrium

state for 100,000 time units. After this time, the mean biomass of each pop-

ulation, as well as for each trophic level as a whole, is calculated over 30,000

time units. Similarly, the standard deviation of the dynamics is calculated for

each individual population and each trophic level, from which the coefficient

of variation can be computed (CV = σ/µ, where σ is the standard deviation

and µ the mean). For schematic details of this procedure, see Fig. B.3. A real

example timeseries from our model is shown in Fig. B.4.

5. Create training set data point: After the mean biomasses and CVs of 200

unique randomly sampled initial conditions have been calculated, all the nu-

merical simulations for one parameter combination have been completed. How-

ever, typically, many initial conditions will relax to the same attractor. It is

therefore very useful to group the different outcomes together per attractor:

when all of the different species’ means and CV s are sufficiently close to each

other (absolute tolerance of 5 for the means, 0.01 for the CV s, and relative tol-

erance of 0.1), the initial conditions are assumed to relax to the same attractor.

The structure of a data point belonging to one parameter combination is the

following:

dict; # Python dictionary containing all parameter values

num_attr; # number of different attractors

ext; # whether any species are extinct or not on each attractor

TL_B; # total biomass on each trophic level

odd_B; # biomass of B1, I1, T1

ind_CV; # CV of each population

TL_CV; # CV of each trophic level

attr_prop # proportion of initial conditions relaxing to each attractor

A typical data point:

{’B_diff’: 0.75, ’I_diff’: 0.75, ’T_diff’: 0.25, ’N0’: 666.210112394016,

’h_N’: 18.91630737427768, ’r0’: 1.8743678849645211,

’a0’: 0.0015176450564662867, ’h0’: 0.79237825772891,

’alpha0’: 0.0003298639600209292, ’eta0’: 3.209067776129767,

’delta’: 0.05710530459267592, ’n’: 1.907283906197544,

’nu’: 1.3633537312107176, ’a_scale’: 1.2903979398824104, ’id’: 2824000};

2;
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[0,1];

[[100.677904 ,168.3763992 ,198.2327592 ,233.3333859 ],

[535.659272 , 19.29489409,268.8575037 , 1.64734166]];

[[105.72043 ,170.586387 ,168.072246 ],

[ 14.6636983, 59.3558927, 0. ]];

[[0.61712753,1.32296074,0.47741629,0.04292298],

[0. ,0. ,0. ,0. ]];

[[1.42259412,0.51964668,0.04594913],

[0. ,0. ,0. ]];

[[1.19062106,0.21908273,0.03512972],

[0. ,0. ,0. ]];

[0.83,0.17]

This data point has ∆B = 0.75,∆I = 0.75,∆T = 0.25, and thus belongs to the

BIT food web and there are two different attractors found. 83% of the initial

conditions relaxed to the first one listed, for which all species coexist, whereas

17% relaxed to the second one listed, which has only one species on the top

level (as the biomass of T1 equals zero). Additionally, one can see that the

second attractor listed must be a stable fixed point (due to the CV s being zero),

whereas the first attractor cannot be a stable fixed point and must therefore be

a limit cycle or a more complex type of attractor. Investigation of the actual

timeseries confirms that the attractor is a limit cycle in this case (Fig. B.4).

6. Dataset for (∆B,∆I ,∆T ) complete: After 1024 randomly sampled parameter

combinations have been investigated (each for 200 initial conditions), and thus

1024 data points have been added to the training data set, all the ODE simu-

lations for this combination of ∆B, ∆I , and ∆T have been completed.

This whole process is now repeated for the next combination of trait differences
until there are 1024 data points for each combination. This means that the ODE

model described in Equation (3.1) (main text) will have been solved 125 ·1024 ·200 =

25,600,000 times. If we assume that each individual integration takes just one sec-

ond, this requires just under 300 days of total integration time. Luckily, this whole

process is easily parallelizable, which can substantially reduce the required time,

depending on the amount of available computing cores.

B.3.2 Training the Random Forest

The next step required to produce our results is to train a Random Forest (RF) on the

training dataset, produced by solving the ODE model millions of times and record-

ing the mean biomasses and coefficients of variation (CVs), as described above.

There are two main benefits of using a RF to analyze and present our data. Firstly,

assuming that the RF model predictions are accurate, the ability to predict the out-

put value of parameter combinations that are not in the training dataset increases
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Figure B.3: Schematic example of a trajectory starting from a random initial condition, for a
simple consumer-resource system. To estimate the mean biomasses and biomass CV s on the
attractor, they are calculated over a period of 30,000 time units, after the system has been
allowed to relax to the attractor for 100,000 time units.

the confidence level of any trends that can be identified (see Fig. B.6). Secondly, the

RF model provides us with a measure of the importance of each of the input param-

eters (see Table 3.1, main text) in determining the output value (see Fig. 3.6, main

text).

Short overview of how a Random Forest works

The goal of any model is to estimate each output value yi (i ∈ {1, . . . ,n}, where n is the

number of data points) as well as possible by constructing a function f , for which

ŷi = f (xi ) (B.4)

where xi = (xi,1,xi,2, · · · ,xi,p) are the input variables (or features), with p the amount

of features, such that ŷi is the model estimate of yi .

Random Forest Models are a class of machine learning models, which are popu-

larly used due to their relatively simple structure and high versatility. In a random

forest, each ŷi is calculated by averaging the predictions of many different regres-
sion trees. Each individual regression tree has a certain degree of randomness: only

a random subset of the data (∼ 63%) is used to calculate the tree, and at each node

only a randomly selected subset of the data features is taken into account. By aver-

aging the predictions of a large amount of such quasi-randomly generated regres-

sion trees, a random forest model can make more accurate predictions than a single

optimized regression tree (Breiman, 2001).
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Figure B.4: Example timeseries of the dynamics possible in our model. This timeseries was
created using the parameters given in the example datapoint above. It can clearly be seen
that the attractor is a limit cycle, which means that the dynamics will oscillate in this way
perpetually.

Because each individual tree in the forest has only been trained on a subset of

the data, the remaining data points can be used to estimate the accuracy of that tree.

This process is called Out-Of-Bag (OOB) error estimation, and gives a measure for

the accuracy of the model:

OOBscore = 1− MSEOOB

σ̂2
y

, (B.5)

where σ̂2
y is the variance estimator of the outcome variable y, and

MSEOOB =
1
n

n∑
i=1

(
yi − ȳOOB

i

)2
, (B.6)

with ȳOOB
i being the mean OOB predicted value of yi . In this way, an OOB score of

1 signifies that the model is able to predict the outcome perfectly. Using the OOB

error estimation, it is also possible to evaluate the importance of each of the input

parameters in predicting the output value. This is done by quantifying the change

in the random forest’s accuracy when the input parameter’s values are permuted. A

large change in accuracy indicates a high importance in predicting the correct value,

and vice-versa.

For each quantity of interest (see Results, main text), an Extremely Random For-

est consisting of 2000 trees was trained using the Scikit-learn (Pedregosa et al., 2011)
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package in Python. Importantly, each forest was only trained on the subset of pa-

rameter combinations for which coexistence was found to be possible (see also Ap-

pendix S4). In case multiple attractors were found for which all species were in

coexistence, the weighted average of the different outcomes was used.

How Random Forests were used to analyze our data

For extra clarity, let us apply the general equation (B.4) to a specific example: the

biomass produced by the top trophic level (PT ). The procedure for using the RF

model to predict any of the other quantities presented in the main text and appen-

dices is similar.

As described above, the goal of the RF algorithm is to be able to accurately pre-

dict the output values yi . In this example, let yi = PT i, such that PT i denotes the

biomass production on the top level for the ith data point. This quantity can easily

be calculated using the biomasses on the top trophic level and the relevant input

parameters (see Appendix S5 for a more elaborate explanation). The input infor-

mation that the RF algorithm will use to make these predictions is the collection of

parameters we have varied to produce the data. Explicitly, the RF algorithms will

thus estimate the function F for which:

y = F(x)⇔∀i : yi = F(xi ), (B.7)

with

yi = PT i and xi =
[
∆Bi ,∆Ii ,∆T i ,N0i ,hNi , r

′
0i , a0i ,h0i ,α0i ,η0i ,δi , ascale,i ,ni ,νi

]
(B.8)

describing the predicted value and all the relevant parameters that belong to it.

These two arrays contain all the information the RF algorithm needs to be able to

estimate the function F, and calculate the OOB score and parameter importances.

B.3.3 Application of the Random Forest model to produce partial depen-
dence plots

Now that the Random Forest (RF) has been trained on the training data, it can finally

be used to gain an increased understanding of the system we set out to study. The

parameter importances (see Fig. 3.6, main text) are calculated during the training

phase of the RF model, and thus are readily available for further analysis. In con-

trast, to construct the partial dependence plots (Figs. 3.3, 3.4 and 3.5 in the main

text, and others in the Supplementary Materials), additional calculations using the

RF model are necessary.

As explained above, by training the RF we have constructed a function with

which we can predict the desired outcome quantity, using the input parameters used

to train the model (cf. Eq. B.4). Importantly, we can now use our model to make

predictions for parameter combinations that are not in the training dataset, with
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which we can calculate the partial dependence (PD) of the quantities predicted by

the RF on the different input parameters. In other words, the partial dependence

of the RF prediction f (x) on the input parameter xj (j ∈ {0, ...,p} with p the number

of input parameters) is typically defined as fj (xj ) (Hastie, Tibshirani, and Friedman,

2009):

fj (xj ) =
1
n

n∑
i=1

f (xi,1, ...,xj , ...,xi,p), (B.9)

where xi,k is the value of the kth input parameter in the ith data point.1

A graphical explanation of calculating the partial effects in this way is shown in

Fig. B.5, for f1. For each value of x1, the RF makes n (number of data points) pre-

dictions, of which the median value is taken. These n predictions are the predicted

output values of all data points, where the actual value of x1 in the data point has

been substituted by the currently evaluated one. The procedure is then repeated for

the next value of x1. Using this definition, the degree of extrapolation necessary to

calculate the partial effects is kept minimal.

x1

R
F 

p
re

d
ic

ti
o
n

f(x1, x1,2, x1,3, ...)

f(x1, x2,2, x2,3, ...)

f(x1, x3,2, x3,3, ...)

f(x1, x4,2, x4,3, ...)

f(x1, x5,2, x5,3, ...)

f1(x1)

Figure B.5: Schematic example of the construction of the partial dependence (PD) of the RF
prediction on the input parameter x1: f1. See the text for a detailed explanation.

Increased accuracy of estimate due to the Random Forest

The Partial Dependence Plots (PDPs) additionally allow for a clear visualization of

the benefit of using the RF trained on our data, as compared to simply using the

data itself (Fig. B.6). In this graph, the 99% confidence intervals on the mean are

estimated by 3σ/
√
ns, where σ and ns denote the standard deviation and size of the

sample, respectively.

The most important reason for the difference in size between in the error bars

lies in the potentially huge difference between ns for the data itself as compared

to what is predicted by the PDP. When using the data itself to estimate the mean

top biomass for a given value of ∆T , ns is the number of data points in the training

1Note that, by this definition, fj does not denote the j-th component of f .
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Figure B.6: Partial Dependence Plot (PDP) of the total biomass on the top level on the trait
difference on the top level ∆T (black line), compared to what can be extracted from the data
itself (gray line). The circles indicate the estimated mean biomass for each value of ∆T , and
the error bars an estimate for for the 99% confidence intervals. One can see that the mean
biomass on the top level is more accurately estimated by using the PDP provided by the RF,
rather than simply estimating this quantity from the training itself.

data set that actually have that value of ∆T as an input. In general, this number

will be only a fraction of the total dataset as there will be many other data points

with different values of ∆T . However, for the PDP estimate, ns is always the total

number of data points in the whole training data set. This is because, for a certain

value of ∆T , the PDP predicts the top level biomass by substituting that value of

∆T into every single data point in the training set. The error on the estimate of

the mean top level biomass will therefore generally be much smaller. In Fig. B.6,

the error on the estimate of the data itself is also rather small, because there are

still many data points for each value of ∆T in this one-dimensional division of the

data. However, one can easily imagine partitioning the data into a much higher

number of categories such that the number of data points in each category is much

lower compared to the total number of data points in the training set (such as in the

pseudo-three-dimensional PDPs shown in Figs. 3.3-3.5 (main text) and similar ones

in Appendices S5 and S7).

B.4 Proportion of coexistence of all species

All the results presented only apply to those parameter combinations that actually

lead to coexistence of all species in the food web. In most cases, coexistence of

all species was probable to very probable. However, for the T and IT food webs,
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coexistence of all species was very rare (only in resp. 1 and 8 cases, out of resp. 4096

and 16384). See the corresponding paragraph in the Discussion (main text) for an

explanation of these results.

Web Coexistence proportion
chain 0.945
B 0.931
I 0.936
BI 0.938
T < 0.001
BT < 0.001
IT 0.637
BIT 0.647

B.5 On calculating the average biomass production

We calculated themean biomass production and P /Bratios from themean biomasses

of the the individual species and of the trophic levels per parameter combination

and initial condition (Fig. B.7). See also Section B.3 for a details description of how

these quantities were obtained.

N

B

I

T

Nup

Bup

Iup

Bout

Iout

Tout

Figure B.7: Step by step illustration on how to calculate the biomass flows between trophic
levels in our system. These equations hold for all of the different food webs we compared.
When there are two species on a trophic level, the sums run over i ∈ {1,2}; when there is
only one, no summation is required. Nup denotes the nutrient uptake by the basal species,
and Bup& Iup the total biomass flowing upwards from the basal and intermediate level re-
spectively.

The time-averagedmean biomass production P̄ of each trophic level is then given

by:
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P̄T = T̄out =
∑

dTi T̄i

P̄I = Īup + Īout =

∑
dTi T̄i
e

+
∑

dIi Īi (B.10)

P̄B = B̄up + B̄out =

∑
dTi T̄i
e2

+

∑
dIi Īi
e

+
∑

dBi
B̄i ,

since all the loss rates d are density-independent (cf. Eqs. (3.1) and (3.8), main text).

In these equations, the bar is simply present to emphasize that our data consists

of long-term temporal averages. The quantities B̄i , Īi , and T̄i are exactly the mean

biomasses per population calculated by solving the ODE system (Equation (3.8))

and stored in the dataset (see also Section B.3).

Shown below are the partial dependence graphs for some of these quantities, to

support the mechanisms which yield increased biomass on the top level when diver-

sity on all trophic levels is high. Importantly, these figures also support our claim

that the random forests trained on our data are actually accurate: the equalities

PT = e · Iup and PI = e ·Bup hold throughout the whole range of ∆B, ∆T , and ∆T .

The quantities PT , Bup, (P /B)B, and PT /PB are shown in Fig. 3.5 (main text).
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Figure B.8: Partial dependence graphs of the total biomass production on the basal (PB) and
intermediate (PI ) level, in the same style as the figures in the main text. See the next section
for an explanation for why PB is approximately constant.
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Figure B.9: Partial dependence graphs of the total biomass flowing to the top and interme-
diate level (Iup and Bup, respectively), and as a fraction of the total biomass production of
the intermediate and top level (Iup/PI and Bup/PB).

B.6 Link between mean free nutrient level and biomass pro-

duction on the basal level

Here, we motivate why the biomass production of the basal level (PB) is approxi-

mately constant in our model. Equation (3.1) (main text) reads:
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Figure B.10: Mean relative importance of the different input parameters over all production
metrics shown in the main text and this appendix: PB, PI , PT , Bup, Iup, Bup/PB, Iup/PI , (P /B)B,
(P /B)I , (P /B)T , PT /PB. Like for the biomasses and CVs (Fig. 3.6, main text), parameters
regulating the interaction between the top and intermediate level tend to be of higher im-
portance than those of the intermediate-basal interaction. In particular, the trait difference
between the top species ∆T is of higher importance than that of ∆I and ∆B.

Ṅ = δ(N0 −N )− cN
cC

∑
i

riBi . (B.11)

Since
∑

i riBi = PB we get:

Ṅ = δ(N0 −N )− cN
cC

PB. (B.12)

When averaging over time, ¯̇N = 0 must hold, hence:

P̄B =
cC
cN

δ(N0 − N̄ ). (B.13)

This means that the time-averaged basal production P̄B is fully determined by

δ,N0, and N̄ . This relationship can clearly be observed when comparing the partial

dependence plots of N (Fig. 3.3, main text) and PB (Fig. B.8 ). Moreover, the fact

that PB barely varies is explained by the relatively low average values of N (between

approx. 45 and 190), as compared to the average N0 of approximately 1200 (cf.

Table 3.1, main text).

This property is nicely captured by the random forest trained on the data for PB
(cf. Fig. B.11).
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Figure B.11: Relative importance of the different parameters for predicting the total biomass
production on the basal level, PB. Even though the random forest has no knowledge of the
dynamical equations of our food webs, it accurately predicts that only N0 and δ are of high
importance to determine PB.

B.7 Relative biomasses per trophic level

Information on the contribution of individual species’ biomasses to their respective

trophic level helps with understanding the patterns of the biomass production ef-

ficiencies and food web efficiency (see Fig. 3.5, main text). For example, a higher

proportion of the fast growing species B1 leads to an increased basal biomass pro-

duction of the trophic level as a whole. In Fig. B.12, the proportion of X1 is defined

as X1
X1+X2

, with X ∈ {B,I,T }. To fairly asses the relative biomass of the fast growing

species, two species have to be present on that trophic level. For that reason, all

regions where ∆X < 0.25 have been excluded when calculating the relative biomass

of X1.

While the OOB-scores (measure for the goodness-of-fit of the random forest

model, see Section B.3.2) for I1 and T1 are good, they are negative for B1 (cf. Table

B.1). This means that the random forest’s prediction is worse than a constant pre-

diction of the mean relative biomass B1 every time. However, splitting the dataset

by the amount of top diversity in the same way as for the partial dependence plots

shows that the OOB score in the case of ∆T = 0 is still relatively accurate.
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Outcome variable Overall OOB score ∆T = 0 ∆T = low ∆T = high
rel. T1 0.54 n.a. 0.53 0.46
rel. I1 0.88 0.74 0.84 0.88
rel. B1 −0.05 0.52 −0.39 −0.19

Table B.1: OOB scores estimating the accuracy of the random forest model, for the relative
biomasses of B1, I1, and T1. The second column shows the overall OOB score, i.e., of all the
data, whereas the next three show the OOB scores separated by ∆T , as in Fig. B.12. An OOB
score of 1 represents a perfect model prediction, whereas an OOB score of 0 means that the
model is as accurate as simply predicting the mean outcome value every time. Therefore,
we do not rely on the predictions for B1 when ∆T > 0.

Figure B.12: Partial dependence graphs of the trait differences ∆B and ∆I , for ∆T = 0, low
∆T , and high ∆T = 1 (for more information see Methods), on the relative biomass of the fast
growing B1 (green), I1 (orange), and T1 (red), in the same style as Figs. 3.3-3.5. See text for
details on the additionally excluded areas.
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Figure C.1: Short overview of the dynamics on each of the different attractor (cf. Table
4.1, main text). Note the different biomass scales per row. The top legend only applies to
panels in which the dynamics of the food web are shown. Notice how the high production
(HP) state is characterized by a lowmean free nutrient concentration, high top biomass, and
generally low temporal variability, in contrast to the low-production (LP) state.
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Figure C.2: Biomass maxima reached by the timeseries after the perturbation, for the chain
(left), the total biomass per trophic level in the food web (middle), and the individual popu-
lations in the food web (right), as a function of the perturbation size. Each line corresponds
to the median of 1000 different randomly sampled initial conditions that lead to coexistence
of all species, with the shaded area showing the upper and lower quantiles. These initial
conditions were first allowed to relax to the attractor for 3 ·104 time units before the pertur-
bation was applied. For the chain and trophic level biomass in the food web, the solid lines
show the maxima for Hill exponents h = 1.15, dashed for h = 1.10, and dotted for h = 1.05.
The individual populations’ maxima for the food web are only shown in the case of h = 1.05.
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Figure C.3: Biomass minima reached by the basal species after a perturbation, Bmin depend-
ing on its location on the attractor, for different perturbation sizes. The general pattern that
the web and LP state resistance tend to be higher than the chain and HP state, respectively,
holds for different perturbation sizes and different Hill exponents.
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Figure C.4: The ghost attractor phenomenon in the post-perturbation transient. When h =
1.10, the only stable state in the food web is the HP state (cf. Fig. C.1, and Table 4.1, main
text). However, when perturbed by a nutrient pulse (in this case NP = 104 at t = 500), the
dynamics temporarily behave like the LP state (see also Fig. 4.6, main text). After approx.
250 time units, the dynamics shift again to that of the HP state, but require a long time
to settle down to regular oscillations. The LP state becomes unstable for approximately
h > 1.06 (cf. Fig. 2.5, Chapter 2 for ∆ = 1). Close to this threshold, the dynamics may be on
the ghost state for much longer after the same perturbation (note the different time scales in
the plots).
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Figure C.5: Timeseries of the dynamics on the attractor for the differently parametrized
food chains in Fig. 4.7. Panel a shows the standard parametrization of the chain where rb
and M are logarithmic in-between the defended and undefended growth rate, and selective
and non-selective half-saturation constant, respectively. Panels c and d show how the dy-
namics are affected by setting rB to that of the defended basal species (c), and undefended
basal species (d). The change in basal biomass production directly translates to a change in
biomass on the top level, which in turn changes top-down control on the intermediate level.
Panels e and f show how changes to the basal-intermediate half-saturation constantM has a
similar effect on the top level, and thus, indirectly also on the basal level.
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D.1 Non-dimensionalization

In its dimension-full form, the C − R system given in Eq. (5.1) (main text), would

typically look like:


dR′

d t′
= rR′

(
1− R′

K

)
− a′R′

1+ a′ h′R′
C ′

dC ′

d t′
= e

a′R′

1+ a′ h′R′
C ′ − d ′C ′

(D.1)

where r is the growth rate of the resource R′, K its carrying capacity, a′ and h′ the

attack rate and handling time of the C ′ − R′ interaction, e the biomass conversion

efficiency and d ′ the death rate of the consumer C ′. Using the following transforma-

tions: t = rt′, R = R′
K , C = C ′

eK , a = eKa′
r , h = rh′

e , and d = d ′
r , the non-dimensionalised

form is obtained


Ṙ = R (1−R)− aR

1+ ahR
C

Ċ =
aR

1+ ahR
C − dC

(D.2)

where Ṙ = dR
d t , Ċ = dC

d t .

Similarly, the dimension-full form of the predator equation would be described

by:

d P ′

d t′
= ε

α′C ′

1+α′ η ′C ′
P ′ − δ′ P ′ (D.3)

where α′ ,η ′ are the attack rate and handling time of the P ′ − C ′ interaction, ε the

biomass conversion efficiency and δ′ the death rate of the predator P ′. The additional

transformations P = P ′
εeK , α = εeKα ′

r , η = rη ′

ε , and δ = δ′
r (as well as adding the P ′ −C ′

interaction term, without ε, to the consumer equation as well) would then provide

the non-dimensionalised form of the P −C −R system given in Eq. (5.2) (main text).
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D.2 Analytical calculation of boundaries in Fig. 5.1

The boundaries between the different regions that appear in Fig. 5.1 can be cal-

culated analytically, because they follow from the two-dimensional Rosenzweig-

MacArthur C −R system (cf. Eq. (5.1), main text, or above).

D.2.1 Coexistence boundary

The boundary between the green and blue region describes the minimum attack

rate a required for the resource and consumer to coexist, for a given handling time

h: when a is below this boundary, the resource grows to its carrying capacity as the

consumer goes extinct. This boundary can be found by calculating the fixed points

of the system (D.2).

At a fixed point, Ṙ = Ċ = 0, which gives
R (1−R) = aR

1+ ahR
C

aR
1+ ahR

C = dC.
(D.4)

There are several solutions to this system, but only the non-trivial cases where R , 0

and C , 0 are of interest:
1−R =

a
1+ ahR

C

aR
1+ ahR

= d
⇔


R =

d
a− ahd

C =
R (1−R)

d
.

(D.5)

There is thus a unique non-trivial fixed point in this system. Because R, C, a, h, d

must all be positive, it follows that R < 1, and thus d < a − ahd , which is equivalent

to a > a/(1 − hd). The boundary between the green and blue regions is therefore

described by

a =
d

1− hd
. (D.6)

D.2.2 Hopf bifurcation

The transition between the blue region (where the attractor is a stable fixed point),

and the oscillatory region (where the attractor is a limit cycle) is called a Hopf-

bifurcation. The location of this boundary can be found by evaluating the Jacobian

Jij = ∂ẋi /∂xj of system (D.2), where x1 ≡ R and x2 ≡ C, at the non-trivial fixed point

and calculating where the real parts of its eigenvalues become positive.

The Jacobian, evaluated at the non-trivial fixed point (D.5), is given by:

J
∣∣∣
non-triv.

=

hd −
d (1 + hd)
a (1− hd)

−d

1− hd − d
a 0

 . (D.7)
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J
∣∣∣
non-triv.

is necessarily a real matrix, so its eigenvalues λ1,λ2 must be either real

numbers, or complex conjugates. Because the Hopf-bifurcation occurs when the

real part of both eigenvalues equals zero, it follows that the sum of the eigenvalues

equals exactly zero. The location of the Hopf-bifurcation is thus given by:

λ1 +λ2 = Tr J
∣∣∣
non-triv.

= hd − d (1 + hd)
a (1− hd)

= 0, (D.8)

where Tr denotes the trace of the matrix. The boundary between the blue region of

stable dynamics and the oscillatory region is therefore described by

a =
1+ hd

h(1− hd)
, (D.9)

with hd < 1 since a, h, d must all be positive.
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D.3 More P −C −R phase relationships

Figure D.1: To show that the observed phase differences in Fig. 5.3 (main text) for different
values of the P loss rate δ are not unique to the specific values of the P−C interaction’s attack
rate α and handling time eta. Using δ = 0.10 and d = 0.10 as in the main text, we show the
phase relationships for α = 0.5 (half), with η = 2.5 (left panels), and for η = 5 (double),
with α = 1 (right panels). Anti-phase cycles between C and R are still common for a large
region of h−a space. The lower attack rate in the left panels causes the phase relationships to
behave more smoothly due to the less pronounced oscillations, and the region of coexistence
indicated by the fat black curve has decreased. When the handling time is increased (right
panels), the coexistence region also becomes smaller, and complex oscillations may occur
due to the inability of P to keep up with C.
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