
University of Potsdam
Hasso Plattner Institute

Information Systems Group

Knowledge Base Construction with

Machine Learning Methods

Dissertation
zur Erlangung des akademischen Grades
“Doktor der Ingenieurwissenschaften”

(Dr.-Ing.)
in der Wissenschaftsdisziplin

“Informationssysteme”

eingereicht an der
Digital Engineering Fakultät

der Universität Potsdam

von
Michael Loster

Potsdam, den 20. August 2020

http://www.uni-potsdam.de
http://www.hpi.de/naumann/
mailto:michael.loster@hpi.de

This work is licensed under a Creative Commons License:
Attribution 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/deed.en

Reviewers

Professor Dr. Felix Naumann
Hasso Plattner Institute for Digital Engineering, University of Potsdam

Professor Dr. Myra Spiliopoulou
Faculty of Computer Science, Otto-von-Guericke-University Magdeburg

Professor Dr. Heiko Paulheim
School of Business Informatics and Mathematics, University of Mannheim

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-50145
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-501459

Abstract

Modern knowledge bases contain and organize knowledge from many dif-

ferent topic areas. Apart from specific entity information, they also store

information about their relationships amongst each other. Combining this

information results in a knowledge graph that can be particularly helpful

in cases where relationships are of central importance. Among other ap-

plications, modern risk assessment in the financial sector can benefit from

the inherent network structure of such knowledge graphs by assessing the

consequences and risks of certain events, such as corporate insolvencies or

fraudulent behavior, based on the underlying network structure. As pub-

lic knowledge bases often do not contain the necessary information for the

analysis of such scenarios, the need arises to create and maintain dedicated

domain-specific knowledge bases.

This thesis investigates the process of creating domain-specific knowledge

bases from structured and unstructured data sources. In particular, it ad-

dresses the topics of named entity recognition (NER), duplicate detection, and

knowledge validation, which represent essential steps in the construction of

knowledge bases.

As such, we present a novel method for duplicate detection based on a Siamese

neural network that is able to learn a dataset-specific similarity measure

which is used to identify duplicates. Using the specialized network architec-

ture, we design and implement a knowledge transfer between two dedupli-

cation networks, which leads to significant performance improvements and a

reduction of required training data.

Furthermore, we propose a named entity recognition approach that is able to

identify company names by integrating external knowledge in the form of dic-

tionaries into the training process of a conditional random field classifier. In

this context, we study the effects of different dictionaries on the performance

of the NER classifier. We show that both the inclusion of domain knowl-

edge as well as the generation and use of alias names results in significant

performance improvements.

For the validation of knowledge represented in a knowledge base, we intro-

duce Colt, a framework for knowledge validation based on the interactive

quality assessment of logical rules. In its most expressive implementation,

we combine Gaussian processes with neural networks to create Colt-GP,

an interactive algorithm for learning rule models. Unlike other approaches,

Colt-GP uses knowledge graph embeddings and user feedback to cope with

data quality issues of knowledge bases. The learned rule model can be used

to conditionally apply a rule and assess its quality.

Finally, we present CurEx, a prototypical system for building domain-specific

knowledge bases from structured and unstructured data sources. Its modular

design is based on scalable technologies, which, in addition to processing large

datasets, ensures that the modules can be easily exchanged or extended.

CurEx offers multiple user interfaces, each tailored to the individual needs

of a specific user group and is fully compatible with the Colt framework,

which can be used as part of the system.

We conduct a wide range of experiments with different datasets to deter-

mine the strengths and weaknesses of the proposed methods. To ensure the

validity of our results, we compare the proposed methods with competing

approaches.

Zusammenfassung

Moderne Wissensbasen enthalten und organisieren das Wissen vieler unter-

schiedlicher Themengebiete. So speichern sie neben bestimmten Entitätsinfor-

mationen auch Informationen über deren Beziehungen untereinander. Kom-

biniert man diese Informationen, ergibt sich ein Wissensgraph, der besonders

in Anwendungsfällen hilfreich sein kann, in denen Entitätsbeziehungen von

zentraler Bedeutung sind. Neben anderen Anwendungen, kann die moderne

Risikobewertung im Finanzsektor von der inhärenten Netzwerkstruktur sol-

cher Wissensgraphen profitieren, indem Folgen und Risiken bestimmter Ereig-

nisse, wie z.B. Unternehmensinsolvenzen oder betrügerisches Verhalten, auf

Grundlage des zugrundeliegenden Netzwerks bewertet werden. Da öffentliche

Wissensbasen oft nicht die notwendigen Informationen zur Analyse solcher

Szenarien enthalten, entsteht die Notwendigkeit, spezielle domänenspezifische

Wissensbasen zu erstellen und zu pflegen.

Diese Arbeit untersucht den Erstellungsprozess von domänenspezifischen Wis-

sensdatenbanken aus strukturierten und unstrukturierten Datenquellen. Im

speziellen befasst sie sich mit den Bereichen Named Entity Recognition (NER),

Duplikaterkennung sowie Wissensvalidierung, die wesentliche Prozessschritte

beim Aufbau von Wissensbasen darstellen.

Wir stellen eine neuartige Methode zur Duplikaterkennung vor, die auf Sia-

mesischen Neuronalen Netzwerken basiert und in der Lage ist, ein datensatz-

spezifisches Ähnlichkeitsmaß zu erlernen, welches wir zur Identifikation von

Duplikaten verwenden. Unter Verwendung einer speziellen Netzwerkarchi-

tektur entwerfen und setzen wir einen Wissenstransfer zwischen Deduplizie-

rungsnetzwerken um, der zu erheblichen Leistungsverbesserungen und einer

Reduktion der benötigten Trainingsdaten führt.

Weiterhin schlagen wir einen Ansatz zur Erkennung benannter Entitäten (Na-

med Entity Recognition, NER) vor, der in der Lage ist, Firmennamen zu iden-

tifizieren, indem externes Wissen in Form von Wörterbüchern in den Trai-

ningsprozess eines Conditional Random Field Klassifizierers integriert wird.

In diesem Zusammenhang untersuchen wir die Auswirkungen verschiedener

Wörterbücher auf die Leistungsfähigkeit des NER-Klassifikators und zeigen,

dass sowohl die Einbeziehung von Domänenwissen als auch die Generierung

und Verwendung von Alias-Namen zu einer signifikanten Leistungssteigerung

führt.

Zur Validierung der in einer Wissensbasis enthaltenen Fakten stellen wir mit

Colt ein Framework zur Wissensvalidierung vor, dass auf der interaktiven

Qualitätsbewertung von logischen Regeln basiert. In seiner ausdrucksstärks-

ten Implementierung kombinieren wir Gauß’sche Prozesse mit neuronalen

Netzen, um so Colt-GP, einen interaktiven Algorithmus zum Erlernen von

Regelmodellen, zu erzeugen. Im Gegensatz zu anderen Ansätzen verwendet

Colt-GP Knowledge Graph Embeddings und Nutzer-Feedback, um Daten-

qualitätsprobleme des zugrunde liegenden Wissensgraphen zu behandeln. Das

von Colt-GP erlernte Regelmodell kann sowohl zur bedingten Anwendung

einer Regel als auch zur Bewertung ihrer Qualität verwendet werden.

Schließlich stellen wir mit CurEx, ein prototypisches System zum Aufbau

domänenspezifischer Wissensbasen aus strukturierten und unstrukturierten

Datenquellen, vor. Sein modularer Aufbau basiert auf skalierbaren Techno-

logien, die neben der Verarbeitung großer Datenmengen auch die einfache

Austausch- und Erweiterbarkeit einzelner Module gewährleisten. CurEx bie-

tet mehrere Benutzeroberflächen, die jeweils auf die individuellen Bedürf-

nisse bestimmter Benutzergruppen zugeschnitten sind. Darüber hinaus ist

es vollständig kompatibel zum COLT-Framework, was als Teil des Systems

verwendet werden kann.

Wir führen eine Vielzahl von Experimenten mit unterschiedlichen Datensätzen

durch, um die Stärken und Schwächen der vorgeschlagenen Methoden zu er-

mitteln. Zudem vergleichen wir die vorgeschlagenen Methoden mit konkur-

rierenden Ansätzen, um die Validität unserer Ergebnisse sicherzustellen.

Acknowledgements

First of all, I would like to thank Prof. Dr. Felix Naumann for his supervision,

support and the opportunity to pursue my Ph.D. in his group. His mentorship

and insights had not only a significant impact on this work but also on my

personal development and growth. I would also like to thank Dirk Thomas

and Dr. Oliver Maspfuhl for their ongoing commitment and dedication, with-

out which this work would not have been possible. I am also grateful for the

collaboration with Prof. Dr. Davide Mottin and Prof. Dr. Paolo Papotti,

whose commitment, insights, and support have contributed to the progress

of my research.

I was fortunate enough to meet and work with many extremely talented

researchers throughout my time at the Hasso Plattner Institute, some of

whom I can now, fortunately, call friends. My special thanks go to Hazar,

Ioannis, Toni, Zuo, and Tim, who not only supported me in the final stage

of my studies but also gave me valuable advice and support throughout the

years, it was an honor to graduate at your side.

I would also like to thank my talented students, Benjamin, Jan, Marvin,

Patrick, Danijar, Tanja, and Daniel, for their valuable support and contribu-

tions to my research. Thanks are also extended to all the participants of my

teaching activities, with whom I enjoyed working.

Last but not least, I would like to thank my family and friends for their con-

tinuous support and encouragement in difficult times.

Contents

1 From Raw Data to Knowledge 1

1.1 Use cases for integrated knowledge bases 3

1.2 Creating, maintaining, and exploring domain-specific knowledge bases . . 5

1.3 Structure and contributions . 9

2 Integrating Structured Information 11

2.1 On the detection of duplicates . 14

2.2 Related work . 17

2.3 Proposed approach . 21

2.4 Knowledge transfer . 27

2.5 Data & Gold-standard . 29

2.6 Experiments . 32

2.7 Summary . 40

3 Extracting Knowledge from Unstructured Data 41

3.1 Named entity recognition for company names 43

3.2 Related work . 44

3.3 Conditional random fields as NER baseline 48

3.4 Corpus & Dictionaries . 49

3.5 Company recognition using dictionaries 52

3.6 Experiments . 55

3.7 Named entity linking . 60

3.8 Relationship extraction . 65

3.9 Summary . 71

4 Few-Shot Knowledge Validation using Rules 73

4.1 Data quality and knowledge graphs . 74

4.2 Related work . 76

i

CONTENTS

4.3 Background and problem definition . 78

4.4 The Colt framework . 79

4.5 Computing similarities . 86

4.6 Experiments . 88

4.7 Summary . 93

5 CurEx – Extracting, Curating, and Exploring Knowledge Graphs 97

5.1 System architecture . 98

5.2 Interface & Interactions . 102

5.3 Typical use cases . 106

5.4 Summary . 107

6 Conclusion and Outlook 109

References 115

ii

Chapter 1

From Raw Data to Knowledge

Modern knowledge bases contain and organize factual information on various topics,

making it accessible in machine-readable form. By providing information about real-

world entities, such as people, places, and organizations, they have become a cornerstone

of many advanced information systems. A central aspect that distinguishes knowledge

bases from other forms of knowledge organization is that, in addition to entity infor-

mation, they also contain information about relationships. Together with the entities,

these relationships form a knowledge graph, that can be used to relate the entities to

each other and thus recognize relationship patterns. This property makes the use of

knowledge graphs particularly useful when insights into relationships play a central role

in problem solving.

With DBpedia [Auer et al., 2007], Wikidata [Vrandečić and Krötzsch, 2014], and

YAGO [Suchanek et al., 2007], several publicly available knowledge bases have emerged,

that cover millions of facts from various domains. Apart from knowledge bases that

cover a wide range of different subjects, specialized knowledge bases with a focus on

specific domains also exist. For example, the GeneOntology [Consortium, 2004] knowl-

edge base collects information about gene functions, while WordNet [Fellbaum, 1998]

specializes in covering lexical associations between word groups. Although the existing

knowledge bases consist of millions of different entities, they are by no means complete.

Despite their enormous size, they contain only part of all available real-world informa-

tion. This lack of information becomes particularly relevant if the implementation of

certain use cases hinges on the existence of information usually not available in publicly

accessible knowledge bases. It is therefore not surprising that large companies, such as

Google [Singhal, 2012], LinkedIn [He, 2016], or Walmart [Deshpande et al., 2013] are

making significant efforts to build their own customized knowledge bases that contain

the information needed to support their business-relevant use cases. These include en-

riching search results with additional knowledge, improving ad placements, or enhancing

friendship, job, or shopping recommendations.

Apart from these well-known use cases, others, such as analyzing risk factors within

the financial sector, can also benefit from domain-specific knowledge bases. The assess-

ment of potential risk factors poses an extremely complex challenge that involves the

use of a large number of public as well as proprietary data sources. However, to assess

1

1. FROM RAW DATA TO KNOWLEDGE

such risks with sufficient precision, it is important to consider not only individual mar-

ket participants but also their relationships. Here, knowledge bases with their inherent

network structure can be used to obtain a holistic view of the economic situation or

to identify systemic risk factors at an early stage so that appropriate measures can be

taken. Moreover, exploiting such networks allows for anticipating the effects of corpo-

rate bankruptcies on other market participants based on their relationships. This makes

it possible to estimate which market participants could be affected by ripple effects of

insolvencies and to what extent. Given its challenges and implications, the analysis of

risk factors in the financial sector represents one motivation for this thesis, which is why

a more detailed discussion of this use case is provided in the following section.

Since such use cases are difficult to address without connectivity information of the

involved entities, creating a domain-specific knowledge base and its associated knowledge

graph represents a necessary first step. To this end, either a customized knowledge base

can be created from scratch or a publicly available knowledge base can be extended by

adding additional information. In both cases, however, it should be borne in mind that

the required information may be spread across many different data sources, which, de-

pending on their nature, require special treatment. As such, data sources can be divided

into structured data sources, such as database tables or CSV files, and unstructured

data sources, which, in addition to image, audio, and video files, also include textual

data. While structured data sources can be accessed by using traditional means, such

as relational database systems or software libraries, accessing the information contained

in unstructured data sources requires considerably more effort. With unstructured data

sources, the contained information must first be extracted and converted into a machine-

readable format before it can be processed by downstream applications. Besides separat-

ing data sources into structured and unstructured sources, they can also be divided along

a second axis into publicly accessible and proprietary data sources, whose processing can

present additional challenges.

To obtain a unified view of the information provided by the individual data sources,

it is necessary to integrate them into a common knowledge base. This can be achieved

in two ways, both of which have their advantages and disadvantages. The first approach

consists of manually creating and maintaining a domain-specific knowledge base. Pur-

suing this approach usually leads to knowledge bases of high data quality, but at the

same time limits their scope due to the high manual effort that is required for their con-

struction. This effort is exacerbated by the fact that manually created knowledge bases

tend to be maintained manually, demanding continuous effort to keep the contained

information up to date. Additionally, considering the continually growing amount of

information and the rate at which it changes, we can conclude that manual knowledge

base creation is only feasible for very small amounts of data. Alternatively, knowledge

bases can be created automatically or semi-automatically. In this scenario, a system

usually takes over the creation of the knowledge base by incorporating information from

structured and unstructured data sources. Unfortunately, creating extensive, domain-

specific knowledge bases in a fully automated fashion still poses a major challenge, as

it requires the interaction of many different techniques, such as schema matching, en-

tity linking, or relationship extraction, that are still subject of active research. Thus,

2

1.1 Use cases for integrated knowledge bases

the integration of structured data sources entails the reconciliation of different source

schemata, the discovery and elimination of redundant information, and the consolida-

tion of complementary information into a uniform representation. In addition, a wide

range of text mining methods are needed to detect entities in text documents, match

them with entities already present in the knowledge base, and extract relationships be-

tween them. Since neither approach poses a good solution in and of itself, an optimal

solution should aim to combine the high data quality of manual approaches with the

scalability of automated approaches.

To automate these tasks, machine learning methods are often used, as they are able

to learn and perform tasks that otherwise have to be performed manually. As such,

the use of various machine learning techniques, such as support vector machines or

neural networks, enables the automatic alignment of data schemata, the detection of

duplicate entries, as well as the extraction of named entities and relationships from text

documents. In this way, the manual effort for creating domain-specific knowledge bases

can be significantly reduced, so that processing large amounts of data no longer poses

an obstacle for creating large knowledge bases. Despite their advantages, the application

of machine learning approaches suffers from the disadvantage that they usually produce

knowledge bases of lower data quality. Often this deterioration in data quality can

be traced back to data errors introduced by the employed machine learning methods.

Such data errors propagate and amplify throughout the generation process until they

finally manifest and accumulate as incorrect data entries in the generated knowledge

base. Driven by this fact, there is a need to not only improve the techniques used in

the construction of knowledge bases but also to develop methods capable of identifying

incorrect entries, the elimination of which leads to an improvement in data quality of

the generated knowledge base.

This thesis focuses on constructing domain-specific knowledge bases from structured

and unstructured data sources by using machine learning methods. It contributes to the

state-of-the-art in the areas of named entity recognition, duplicate detection, and knowl-

edge validation, addressing several of the challenges mentioned above. A central point

of this thesis is to point out how machine learning methods can be used to support and

simplify the construction process of domain-specific knowledge bases. It aims to advance

the field towards a fully automated process for building domain-specific knowledge bases.

The next section introduces both the background and use cases that served as one moti-

vation for this work. The challenges involved in constructing domain-specific knowledge

bases are outlined in Section 1.2. Section 1.3 concludes the introduction by giving an

overview of the thesis structure and a summary of its main contributions.

1.1 Use cases for integrated knowledge bases

This thesis represents the result of a long-term research cooperation with one of Ger-

many’s largest financial institutions. The starting point of this cooperation was to inves-

tigate how information systems can be used to address use cases arising from the 2008

financial crisis. Based on the close collaboration with financial experts, a number of

3

1. FROM RAW DATA TO KNOWLEDGE

Figure 1.1: An example of a company graph in which each node represents a
company that is related to other companies via various relations which are
represented as edges.

use cases were identified, which henceforth served as a reference point for the conducted

research activities and are presented below.

Risk management. Among the many possible applications that could benefit from

domain-specific knowledge bases is modern risk analysis as performed by various financial

institutions. In this context, the use of a domain-specific knowledge base that captures

the economic landscape and consists of market participants and their relationships plays

a central role in assessing financial risks [Amini et al., 2016]. Such risks may arise

from contracts between two parties, e.g., when a bank (creditor) grants a loan to a

private company (debtor). When granting loans, the risk is that the debtor cannot meet

its repayment obligations, which is why the assessment of a debtor’s creditworthiness

is of central importance to its creditors. Traditionally, public and proprietary data

sources used to assess credit risk contain only information about individual customers,

but no information about their relationships. With the effects of the financial crisis

of 2008/2009 at the latest, it has become clear that dependencies between individual

market participants are of decisive importance when assessing financial risks. To this end,

specialized knowledge bases, containing not only information about individual market

participants but also information about their relationships, can be used to assess financial

risk factors. Consequently, modern risk assessment should take into account network

structures, such as those shown in Figure 1.1.

Other applications. Beyond the analysis of systemic risks within the financial sys-

tem or the general exploration of network data, other use cases exist for which the use

4

1.2 Creating, maintaining, and exploring domain-specific knowledge bases

of domain-specific knowledge bases is almost indispensable. As such, the “know your

customer” scenario is concerned with developing a better understanding of a customer

before entering into a business relationship with him. The core of this use case is the

prevention of illegal business activities that could be carried out by criminally inclined

customers - without the knowledge of the respective financial institution. Here, the net-

work structure of the knowledge graph emerging from the underlying knowledge base can

be used to examine (i) the identity of customers, (ii) their suitability to conduct business,

and (iii) the risk of potential business transactions. Thus, this use case is closely related

to fraud detection, which seeks to uncover cases of fraudulent behavior, such as money

laundering or bribery. As fraud cases usually involve several parties, it is not sufficient

to investigate the behavior of individual customers, but rather it is necessary to analyze

the interaction patterns of multiple customers to uncover cases of fraud.

Another potential use case is that of supply chain analysis. As the effects of the coro-

navirus pandemic of 2020 have shown, the success of many companies depends directly

on the functioning of their supply chains. If they fail, the consequences can be devastat-

ing and even result in the affected company no longer being able to produce or operate.

Many companies around the world were surprised by the pandemic-related failures in

their supply chains, which confronted them with unprecedented challenges. In light of

this event, it will become increasingly important for every company to analyze and as-

sess existing supply chain structures for potential risk factors to make business-critical

supply chains more resilient to unforeseen events, such as a global pandemic. In this

scenario, domain-specific knowledge bases can be used to identify hidden relationships

and take them into account when estimating risk. Thus, the impact of identified risk

factors on existing supply chains can be reduced or eliminated by shortening, relocating,

or establishing redundancies in the affected supply chains. This practice can help to

ensure a company’s operational capability in the face of unforeseeable events.

1.2 Creating, maintaining, and exploring domain-specific

knowledge bases

Building knowledge bases from structured and unstructured data sources has a long

history [Miller, 2018; Weikum and Theobald, 2010], during which many systems with

different specializations emerged. Some of the more recent systems include Knowledge

Vault [Dong et al., 2014], Deep Dive [Sa et al., 2017], and Elementary [Niu et al., 2012].

Driven by the use cases outlined in the previous section, the prototypical CurEx system

shown in Figure 1.2 emerged as part of this work. Designed in collaboration with financial

experts, it enables the creation, curation, and exploration of domain-specific knowledge

bases from structured and unstructured data sources. By consolidating information

from many different data sources, it eliminates data fragmentation across multiple data

sources, creating a holistic view of the existing data.

As shown in Figure 1.2, the CurEx system consists of components for text mining,

structured data integration, knowledge validation (Colt), and several user interfaces

that allow various user groups to interact with different parts of the system. The com-

5

1. FROM RAW DATA TO KNOWLEDGE

Knowledge
Base

Control
Monitor
Adjust

Curation

Explore
Search
Filter

ELEX

Annotate
Train

Refine

COLT-UI

UI/UX

COLT

Unstructured
data sources

Structured
data sources

…

Named Entity
Linking
(NEL)

Named Entity
Recognition

(NER)

Relationship
Extraction
(RELEX)

Text Mining

Data
Matching

Schema
Alignment

Data
Fusion

Structured Data Integration

EvaluationDuplicate
DetectionIndexing

Data
preproces

sing

Data Matching Process

Data
Engineer

Domain
Expert

End
User

Figure 1.2: Overview of the CurEx system architecture

ponents for text mining and structured data integration form the core of the system and

enable the creation of a knowledge base from structured and unstructured data sources.

They consist of several sub-components, which will be covered in more detail in Chap-

ters 2 and 3. Knowledge validation is realized through the Colt framework presented

in Chapter 4. It enables domain experts to address data quality issues in the generated

knowledge base by validating facts interactively via the Colt-UI, thereby improving the

data quality of the underlying knowledge base. While the Curation Interface enables

data engineers to monitor and control the individual components of the knowledge base

construction process, the Entity Landscape Explorer, also called ELEX, is aimed at the

end-user and simplifies knowledge base exploration. Chapter 5 focuses on the overall

system and examines the interplay of the individual components in more detail.

As each part of the system presents its own challenges, we begin by outlining the

challenges that arise from the integration of structured data sources, continue with the

challenges posed by the integration of unstructured data sources and conclude this section

with an overview of the challenges encountered when improving the data quality of the

generated knowledge base.

1.2.1 Structured data

As introduced by Christen [2012] and Naumann et al. [2006], the integration process of

structured data sources, such as relational database tables, CSV or TSV files typically

consists of the three processing steps; schema alignment, data matching and data fusion

as shown in Figure 1.3. Each processing step addresses a specific challenge that arises

during the integration process. In the following, we discuss both the challenges associated

with the integration of structured data as well as the components intended to meet these

challenges.

(I) – Schema alignment. When integrating structured data sources, each data source

adheres to a specific schema that defines the structure of the stored entities. A schema

consists of several attributes which, in addition to a particular data type (i.e., string, float,

integer), also express a semantic concept, such as a street name or a product description.

6

1.2 Creating, maintaining, and exploring domain-specific knowledge bases

Data MatchingSchema Alignment Data Fusion

Structured Data Integration

Figure 1.3: Overview of the integration process for structured data sources

For example, an attribute prod name can be of data type string and describe a product

name, while the attribute ex rate is of type float and represents an exchange rate. The

main challenge is that the schemata of different data sources are by no means identical,

even if they describe the same entity. This heterogeneity poses a major obstacle to

the integration of different data sources. Thus, attribute names that describe identical

semantic concepts can differ greatly from one data source to another. While in data

source A the exchange rate attribute is named ex rate; data source B refers to the same

concept by the name exchange rate.

The goal of the schema alignment component is to map the individual data source

schemata to a unified global schema, so that attribute names describing the same semantic

concept are assigned to a unique attribute name in the global schema. In this way,

the use of the global schema ensures that the individual data sources can be handled

uniformly, which forms the basis for all subsequent steps. Over the years, many different

schema alignment techniques have been developed; a comprehensive overview is given

by [Bellahsene et al., 2011]. As schema alignment is not in the main focus of this work,

it is assumed that a corresponding schema alignment already exists.

(II) – Data matching. After the previous schema alignment component has created

a global schema, the next step is to cope with the fact that the individual data sources

are likely to contain redundant information in the form of duplicate entries. In this con-

text, the term duplicate refers to data records that describe the same real-world entity.

The intention of the data matching step is to identify these duplicates so that they can

be consolidated and thus eliminated by the subsequent data fusion step. As illustrated

in Figure 1.2, the data matching component consists of the subcomponents data pre-

processing, indexing, duplicate detection, and evaluation, which in turn address different

challenges that arise during the data matching process. Because the data matching com-

ponent is covered in Chapter 2, we only describe its main functionality and postpone a

detailed discussion until later.

In addition to the challenges pointed out by Christen [2012], such as the lack of global

identifiers, demanding runtime complexity, and data privacy issues, a major challenge of

the data matching component is to determine the similarity of two entities. Although a

wide variety of similarity measures have been proposed over the years, many of them have

been designed with specific use cases in mind and are therefore not equally suitable for

all kinds of domains. Overcoming the associated limitations requires either the manual

7

1. FROM RAW DATA TO KNOWLEDGE

design of a customized similarity measure or learning it by means of machine learning

techniques. Deciding on the machine learning option presents additional challenges, one

of them being the need for large amounts of training data.

(III) – Data fusion. The final step in the integration process of structured data

sources is called data fusion. In this step, the duplicates identified by the preceding data

matching step are merged into a single, unified representation. Despite the previously

established global schema, it still occurs that different data sources provide conflicting

values for certain attributes. For example, a person may have a different family name

in data source A than in data source B. The objective of the data fusion component is

to resolve such conflicting values as correctly as possible when consolidating duplicate

entries. As the topic of data fusion is outside the scope of this thesis, we refer to the

work of Bleiholder and Naumann [2008] for a detailed discussion.

1.2.2 Unstructured data

To obtain a holistic picture of specific scenarios, it is not enough to merely consider

the information coming from structured data sources. Much valuable information is

available only in the form of unstructured data sources. Unstructured data sources

are data sources whose information cannot be accessed by conventional means, such as

relational database systems or simple software libraries. In addition to image, video,

and audio files, this also includes, written texts. To access the information expressed in

textual form, a number of techniques are required to extract the information contained in

the texts and provide access to it. This task is performed by the text mining component

shown in Figure 1.2. It is the subject of Section 3 and consists of the sub-components

named entity recognition (NER), named entity linking (NEL), and relation extraction

(RELEX), which will be discussed in more detail later.

In general, the challenges in this area are to cope with the unstructured nature of

the processed documents. As such, the written word is often ambiguous and leaves

room for interpretation of the expressed facts. Real-world entities frequently appear

in texts under different names, where it is often unclear to which real-world entity a

textual mention refers. Furthermore, relationships in texts can be expressed in many

ways, which proves to be particularly challenging in cases where the underlying language

offers much expressive freedom, as is the case, for example, with German texts. The

challenges outlined above represent only a small selection of challenges associated with

the extraction of information from written documents.

1.2.3 Knowledge assessment and curation

To cope with the ever-growing amounts of data and their complexity, machine learning

methods are increasingly being used for the construction of knowledge bases. Since

the applied methods are by no means infallible, errors can propagate and amplify across

many processing steps, ultimately leading to incorrect entries in the generated knowledge

base. Such data errors can be corrected by applying logical rules, which can be generated

8

1.3 Structure and contributions

by rule learning systems, such as AMIE [Galárraga et al., 2015, 2013] or RuDiK [Ortona

et al., 2018]. When applied to the knowledge base, such rules add new facts or remove

incorrect ones. As these rules are derived from the facts contained in a knowledge

base, their generation is negatively impacted by noisy or missing facts. Although the

generating systems provide statistical quality estimates for the generated rules, their

calculation ultimately depends on the data quality of the knowledge base. Thus, low data

quality of the underlying knowledge base inevitably leads to considerable inaccuracies in

the quality estimation of the generated rules. The challenge is to assess the quality of the

generated rules without relying exclusively on the information provided by the knowledge

base. To address this problem, access to external information is needed, which enables

the verification of knowledge base facts. To this end, we consult experts on the topics

covered by the knowledge base and aim to radically reduce the manual effort by efficiently

using existing domain knowledge.

1.3 Structure and contributions

The remainder of this thesis is organized into three main chapters that cover the core

components shown in Figure 1.2 and one chapter that focuses on the overall system

describing the interplay of the individual components. In addition to a short intro-

duction to the most important concepts of the respective topic area, they contain the

contributions of this thesis. This work contributes to the current state-of-the-art in the

fields of duplicate detection, named entity recognition and knowledge validation, aiming

at advancing the field towards a fully automated process for building domain-specific

knowledge bases from structured and unstructured data sources. Complementary to the

core contributions, this work is also intended to provide a holistic picture of the knowl-

edge base construction process, which is why an overview of the current state-of-the-art

of adjacent processing steps is given whenever necessary. As highlighted in Figure 1.2,

the contributions of this work are distributed across different areas of knowledge base

construction, resulting in the following structure of this thesis:

Chapter 2 is devoted to the integration process of structured datasets. It first introduces

the individual process steps, while its main focus lies on a novel deduplication method.

The proposed deduplication method is based on Siamese neural networks, which are used

to learn a dataset-specific similarity measure that is then used for the identification of

duplicate entries. By eliminating the need for manual feature engineering, the effort for

model creation can be significantly reduced. Moreover, the network design is conceived

in a way that enables a knowledge transfer between deduplication networks. Our exper-

iments show that the knowledge accumulated in a trained network can be transferred to

an untrained network by copying the weight matrices of selected attributes, which led to

an overall improvement in F-measure of +4.7 and +4.6 percent. The chapter is based

on a publication by Loster et al. [2020a], which is joint work with Ioannis Koumarelas,

who helped with data preprocessing and the generation of non-duplicate pairs.

Chapter 3 addresses the extraction and integration of information from unstructured

data sources. Concretely, a method for recognizing named entities (here company names)

9

1. FROM RAW DATA TO KNOWLEDGE

is presented, which allows the integration of dictionaries into the training process of a

conditional random field classifier. The objective of this procedure is, on the one hand,

to reduce the manual effort required to generate training data and, on the other hand,

to cover as many name variations as possible, which helps the classifier to generalize

better. By carefully incorporating domain knowledge in the form of dictionaries into

the training process, we were able to increase the recall and F-measure by an average

of 6.57 and 3.85 percentage points compared to our baseline, proving that performance

improvements can be achieved by integrating additional knowledge. This chapter is based

on the publication of Loster et al. [2017], in which Oliver Maspfuhl and Dirk Thomas

provided their professional expertise in advising on the requirements of the financial

sector.

Chapter 4 is dedicated to the assessment of the information quality of generated knowl-

edge bases. It introduces the Colt framework - a rule-based knowledge validation frame-

work that enables the interactive quality assessment of logical rules. Unlike existing

methods such as AMIE or RuDik, Colt is based on active learning principles and uses

both Gaussian processes and neural networks to interactively learn labeling functions on

the basis of rules. The presented approach benefits from knowledge graph embeddings

and takes into account user feedback to address data quality issues of the underlying

knowledge base. With its most expressive implementation Colt-GP, it achieves a 10%

error in the confidence estimate of facts, for which it requires only 20 user-validated facts.

In addition, rules can be validated with a prediction quality of 75%, requiring as little

as 5% of the rule instances to be annotated. The work by Loster et al. [2020b], which

was produced in collaboration with Davide Mottin, Paolo Papotti, Jan Ehmueller, and

Benjamin Feldmann, constitutes the basis of this chapter. Davide Mottin contributed to

the design and formalization of the approach, while Paolo Paotti assisted in creating the

rules and the use of RuDik. Jan Ehmueller and Benjamin Feldmann contributed to the

implementation of the system, in particular to data preprocessing, the design of a user

interface for instance annotation, and the subsequent instance annotation itself.

Chapter 5 introduces the prototypical CurEx system shown in Figure 1.2. It is based

on the publication of Loster et al. [2018b] and enables the construction of domain-specific

knowledge bases from structured and unstructured data sources. In addition to providing

different user interfaces, CurEx enables the selective generation of multiple knowledge

graphs and, thanks to its modular architecture, supports the step-by-step improvement

of individual system components. During the development of the system, the experiences

and insights gained in the previous chapters were taken into account. The system covers

the areas of data integration, -curation, and -exploration. Within the scope of this work,

Jan Ehmueller and Benjamin Feldmann assisted in the implementation of various system

components.

Chapter 6 concludes this thesis by summarizing its contributions. It provides con-

crete suggestions for the extension of the presented approaches as well as an outlook on

promising directions for future research and general issues that need to be addressed.

10

Chapter 2

Integrating Structured

Information

A large number of applications rely on data stored in multiple data sources, making their

integration a topic of central importance. Especially when building knowledge bases, the

integration of different structured data sources can be regarded as a first necessary step.

As discussed in Chapter 1, the associated integration process can be divided into the

steps schema alignment, data matching, and data fusion. While these three components

have already been outlined in the previous chapter, this chapter focuses on the data

matching process and particularly on the duplicate detection step. In general, the term

data matching describes the process of discovering digital objects that refer to the same

real-world entity, also known as duplicates. Research typically distinguishes two types

of duplicate detection: duplicate detection, also called deduplication, which refers to the

task of identifying duplicates within a single data source, and record linkage, which aims

to identify matching records across multiple data sources.

The data matching process introduced by Christen [2012] can further be subdivided

into a series of discrete steps that address specific subproblems arising during the identi-

fication of duplicate entities. While Christen defines a process consisting of five steps, we

simplify that pipeline by combining the record pair comparison and classification steps

of the original pipeline definition into a single duplicate detection step. This reduces

the data matching process to the four steps shown in Figure 2.1. To put this chapter’s

contribution into context, we briefly introduce the individual steps of the data matching

process:

(I) – Data preprocessing. The entities that pass through the data matching process

are composed of attributes and their values that describe certain aspects of the respective

entities. A common problem encountered during the consolidation of entities from differ-

ent data sources is that they can vary considerably in terms of data format and content.

These differences are often caused by different formatting rules of the individual data

sources, e.g., different street name formats, or by data entry and processing errors, such

as spelling mistakes or poor quality of optical character recognition systems. To ensure

11

2. INTEGRATING STRUCTURED INFORMATION

Data MatchingSchema Alignment Data Fusion

Structured Data Integration

EvaluationDuplicate
DetectionIndexingData

Preprocessing

Data Matching

Figure 2.1: Overview of the data matching process

high-quality data matching, it is beneficial to first eliminate these data-related variations.

The data preprocessing step, also known as data preparation, addresses this problem by

first cleansing the entity attributes and then converting them into a common format that

takes into account the characteristics of the involved data sources. These measures en-

sure that data related differences do not have to be considered in later processing steps.

Typically, this phase involves removing characters and words, correcting spelling errors,

replacing abbreviations, regrouping attributes, or validating data against external data

sources. On top of that, it is possible to derive new attributes from existing ones, which

can be considered as a form of feature engineering for downstream operations.

(II) – Indexing. To detect duplicates, it is theoretically necessary to compare each en-

tity with every other entity. As an exhaustive pairwise comparison results in a quadratic

runtime complexity in the number of records, this approach may be acceptable for small

datasets but does not represent a viable solution for large datasets. Based on the ob-

servation that most comparisons are conducted between entities that are unlikely to be

duplicates, the total number of comparisons can be drastically reduced. The core idea

is to perform entity comparisons only if two entities already exhibit a certain degree of

similarity. Implementing this idea is the objective of the indexing component. In the case

of duplicate detection, the indexing component receives as input all records of a single

relation, while in the case of record linkage, the records of all considered data sources are

combined and passed in as one relation, in which a new attribute specifies from which

data source each record originates. While many different indexing techniques have been

developed over time, one of the most widely used is the “blocking” technique [Chris-

ten, 2012], which we also employ in our proposed approach. Based on certain attribute

combinations, this technique divides the entities into individual groups, allowing for an

exhaustive comparison of all entities within each group. Thus, the indexing compo-

nent reduces the number of necessary comparisons to the extent that duplicate detection

becomes feasible for even large datasets.

12

(III) – Duplicate detection. The duplicate detection step represents the central topic

of this chapter. It is responsible for identifying entities that refer to the same unam-

biguous representation of a real-world object within one (duplicate detection) or across

multiple (record linkage) data sources. As duplicate detection represents a fundamen-

tal task in data quality and data cleansing, a variety of deduplication techniques have

been proposed over the years [Elmagarmid et al., 2007]. These techniques range from

the application of traditional similarity measures over simple machine learning methods

to the training of complex neural networks. We contribute to the research on duplicate

detection by proposing a Siamese neural network (SNN), capable of learning a similar-

ity measure tailored to the characteristics of a particular dataset. Using this learned

similarity measure, we are able to classify entities with high accuracy as “duplicates” or

“non-duplicates”.

(IV) – Evaluation. Finally, the evaluation step is responsible for assessing the perfor-

mance of the entire data matching process. This involves checking how many duplicates

are actually duplicates and how many non-duplicates were incorrectly identified as du-

plicates. To this end, we rely on the traditional performance metrics: precision, recall,

and F1-measure.

Traditionally, duplicate detection involves using similarity measures to identify and

merge multiple representations of the same entity – duplicates – into an extensive ho-

mogeneous data collection. Often, traditional similarity measures do not cope well with

the heterogeneity of the underlying datasets. The extent to which similarity measures

differ can be shown by comparing the phrases “loans and accounts” and “accounts and

loans” using different similarity measures. While the Jaro-Winkler measure [Winkler and

Thibaudeau, 1987], which is known to perform well on names, yields a value of 0 (no

similarity), a token-based measure, such as Jaccard [Jaccard, 1901], results in a value of

1 (absolute similarity) for the same example. This illustrates that choosing a similarity

measure for a domain requires a high level of expertise, and depending on the domain,

it may even be necessary to manually design a custom similarity measure, which is both

time consuming and requires extensive domain knowledge.

To mitigate these issues, we contribute to Step (III) of the data matching process,

by introducing a deep Siamese neural network (SNN) capable of learning a similarity

measure tailored to the idiosyncrasies of a particular dataset. Using the properties of

deep learning, we are able to eliminate the manual feature engineering process and thus

considerably reduce the effort required for model construction. In addition, we show that

it is possible to transfer knowledge acquired during the deduplication of one dataset to

another, and thus significantly reduce the amount of data required to train a similarity

measure. We evaluated our method on multiple datasets and compare our approach to

state-of-the-art deduplication methods. Our approach outperforms competitors by up

to +26 percent F-measure, depending on task and dataset. In addition, we show that

knowledge transfer is not only feasible but in our experiments led to an improvement in

F-measure of up to +4.7 percent. For the remaining steps of the data matching pipeline,

we proceed as described in Sections 2.3 and 2.5.

13

2. INTEGRATING STRUCTURED INFORMATION

In particular, we make the following contributions:

• We present an SNN architecture for duplicate detection that facilitates knowledge

transfer. To achieve both competitive deduplication performance and knowledge

transfer, it combines character embeddings as studied by DeepMatcher [Mudgal

et al., 2018] with the architectural design of DeepER [Ebraheem et al., 2018].

• We show how to transfer previously learned knowledge to support the deduplication

of other datasets.

• We analyze the impact of transfer learning strategies on the performance of the

neural network.

• We compare our system with the state-of-the-art of related work.

This chapter is based on the work of Loster et al. [2020a] and is organized as follows:

Section 2.1 gives a brief introduction to duplicate detection and introduces the problem

we are addressing. Section 2.2 discusses related work. Section 2.3 introduces SNNs and

presents the overall structure of our neural network, including its unique characteristics.

We introduce the concept of knowledge transfer and how it relates to our experiments

in Section 2.4. Section 2.5 is dedicated to introducing the datasets and gold standards

for our experiments. In Section 2.6, we present our experimental results, and Section 2.7

concludes this chapter.

2.1 On the detection of duplicates

The need to integrate multiple data sources into a single dataset is present in many

application areas. A major challenge that arises during the integration process emerges

from the fact that records from different data sources often contain duplicate entries,

i.e., several entries that refer to the same real-world entity. These duplicates, implying

poor data quality, can directly affect downstream operations, e.g., causing low customer

satisfaction in customer-relationship-management, incorrect stock-keeping, or overfitting

of machine learning methods.

Resolving this issue requires the detection of such duplicates, which is well studied,

also under the terms entity resolution, record linkage, and several others [Christen, 2012;

Elmagarmid et al., 2007; Naumann and Herschel, 2010]. As duplicate detection and

record linkage are conceptually very similar, we conduct experiments for both tasks.

Unless explicitly stated otherwise, we refer to both tasks, for ease of exposition, under the

term duplicate detection for the remainder of this chapter. As such, duplicate detection

is commonly divided into two subtasks: (i) the identification of duplicate candidates,

and (ii) the classification of these candidates as duplicates and non-duplicates. The

problem of subsequently eliminating these duplicates, known as data fusion [Bleiholder

and Naumann, 2008], is not addressed in this thesis. Since most deduplication approaches

depend heavily on the performance of the similarity measure used to assess the similarity

14

2.1 On the detection of duplicates

between processed entities, its selection or creation plays a crucial role and must be

performed with great care.

So far, a wide variety of similarity measures have been proposed [Christen, 2012], each

with its strengths and weaknesses. As each of these proposed similarity measures has

its own individual approach to quantifying the similarity of two entity representations,

they are often very domain-specific and hence not a good choice for determining similar-

ities in unintended domains. This difficulty becomes evident upon a closer look at the

circumstances in which these measures are used. For example, a similarity measure that

is designed to compare first names is clearly unsuitable for comparing timestamps, but

also other string-types, such as street-addresses, should be compared differently. More-

over, similarity measures are use-case driven. For instance, it strongly depends on the

particular use case, whether it makes more sense to compare two timestamps regarding

their syntactic or chronological similarity. Even within the values of a particular domain,

the chosen similarity measure may not be equally suitable for all encountered values. As

such, an address column might contain both street and postbox addresses for which a

case-based similarity measure might work best. Finally, it is often quite difficult even

for experts to find a good weighting of the various attribute similarities to determine an

overall similarity score of two input-records. It is, for example, not always clear whether

first names are generally more important than city names when comparing customers.

Given these observations, it becomes evident that it is difficult to perform deduplication

by solely relying on a single similarity measure. Thus, several similarity measures, such as

Levenshtein [Levenshtein, 1966] or Jaro-Winkler [Winkler and Thibaudeau, 1987], are of-

ten combined to capture different aspects of the characteristics underlying the processed

entities. While this combination offers more flexibility, it is often difficult to sufficiently

adapt traditional similarity measures to the entity characteristics of the processed data

sources.

To address this issue, there are essentially two possible solutions: either a customized

similarity measure is designed manually, or it can be learned by applying machine learn-

ing techniques. The main disadvantage of manually designing a similarity measure is

that it requires extensive domain expertise, making it difficult and time-consuming. The

alternative approach is to leverage machine learning techniques to learn a new similarity

measure that is tailored specifically to the entities of a specific domain.

As with most traditional machine learning methods for duplicate detection, such as

SVMs [Bilenko and Mooney, 2003; Christen, 2007] or decision trees [Elfeky et al., 2002;

Tejada et al., 2002], their main bottleneck lies in their dependence on manual feature

engineering. Due to the costs associated with extensive manual feature engineering, it is,

in practice, often limited to the creation of feature vectors consisting of various traditional

similarity measures, which are ultimately used to train a selected classifier. Although

good results can be achieved by optimally combining several similarity measures, this

approach is still bound by the limitations of traditional similarity measures developed

for specific domains or data types. Overall, the process of manual feature engineering, as

well as the manual creation of similarity measures, both involve a considerable amount

of time and effort, which makes them undesirable. In addition, it should be noted

that most machine learning techniques require large amounts of training data to train

15

2. INTEGRATING STRUCTURED INFORMATION

a classifier of sufficient quality. It can, therefore, be stated that both approaches have

their disadvantages with regard to manual labor costs. While the bulk of the time for

manually creating custom similarity measures is spent on iterating different design ideas,

the majority of time for learning a custom similarity measure is spent on annotating

training data and designing a set of useful features.

To alleviate both issues, we propose SNNDedupe, a deep neural network that is

based on the architecture of a Siamese neural network (SNN) [Bromley et al., 1993] and

designed to facilitate transfer learning. Using this architecture, we learn a similarity

measure for a given dataset by letting the neural network automatically adapt to the id-

iosyncrasies of the respective dataset and capture its characteristics. Thus, we overcome

the limitations of traditional similarity measures, which often lack sufficient adaptability

when applied to unintended data. At its core, the proposed SNN architecture consists of

two identical subnetworks that are connected via an energy function. We selected this

architecture as the basis for our approach, as it has been successfully applied to learn sim-

ilarity functions in various areas [Koch et al., 2015; Mueller and Thyagarajan, 2016]. By

using deep learning techniques, we are able to automatically discover promising features,

thus eliminating both the costly manual feature engineering and the required domain

knowledge needed for this task. In our experiments, we compare SNNDedupe with the

SVM-based approach of Christen [Christen, 2008] and the DeepMatcher [Mudgal et al.,

2018] system. We show that we are able to learn a competitive similarity measure that

enables a state-of-the-art duplicate classification.

As annotating vast amounts of training data is in practice often infeasible, we evaluate

the behavior of SNNDedupe under different amounts of training data. To reduce the

amount of training data and, thus, the associated effort for its generation, we focus on

the design and implementation of a knowledge transfer [Pan and Yang, 2010] between

deduplication networks. In doing so, we address what is often perceived as the Achilles’

heel of many machine learning approaches, namely, their dependence on large amounts

of training data. This objective is reflected primarily in the design of the network, as it is

tailored to support knowledge transfer at the attribute level. In a nutshell, the core idea

that makes this knowledge transfer possible is to process the entities at their attribute

level. This decision provides the ability to learn and transfer the properties of each

attribute’s semantic domain (e.g., band names, book titles). By combining character

embeddings and BLSTM layers, we create a dedicated embedding for each attribute.

Thus, representation learning occurs at the attribute level, resulting in embeddings for

each attribute domain, which can informally be interpreted as knowledge about the

processed attribute domain. This compressed domain knowledge accumulates in the

weight matrices of the network layers and can then be transferred by initializing the

attribute weights of a deduplication network operating on a different dataset. This

transfer can be carried out whenever the source and target domains of the corresponding

attribute are either the same or sufficiently similar.

Our experiments show not only how a knowledge transfer affects the training of our

network, but in particular, that it is possible to increase classification performance or to

reduce the amount of necessary new training data by transferring parts of the already

acquired knowledge. In addition, we investigate how much improvement can be achieved

16

2.2 Related work

over learning without prior knowledge and to what extent the training data can be

reduced while maintaining a good result.

2.2 Related work

Related work can be classified according to the degree of supervision and whether transfer

learning represents a key element of the respective approach. In the following, we,

therefore, discuss the related work that does not involve transfer learning according to its

supervision approach, which is divided into the categories: supervised, semi-supervised,

and unsupervised approaches. Thereafter, we separately discuss work that supports the

concept of transfer learning.

Supervised approaches. Apart from traditional similarity measures, efforts have been

made to learn similarity measures using a range of supervised machine learning tech-

niques. Systems based on those techniques require tagged training data from which they

learn to perform a specific, well-defined task. For duplicate detection, this task is to

classify a particular entity pair as either duplicate or non-duplicate.

Both Christen [2007] as well as Bilenko and Mooney [2003] address this problem

by using support vector machines (SVM). Bilenko and Mooney propose two similarity

measures that are learned using two different machine learning techniques [Bilenko and

Mooney, 2003]. The first uses the Expectation-Maximization (EM) algorithm to learn

a variant of the edit distance measure with affine gaps; the second is based on the

vector space model and trained using an SVM. They were able to show that the learned

similarity measures can be adapted to the underlying dataset, resulting in better system

performance.

The approach developed by Christen [2008] also uses SVMs to train a classifier for

detecting duplicates. Their feature engineering step consists of choosing and calculating

different traditional similarity measures between the attribute values of each record pair.

The resulting values are then combined into a feature vector, which is used to train the

classifier. In addition to SVM-based systems, other studies have investigated the use of

decision trees [Elfeky et al., 2002; Tejada et al., 2002].

More recently, DeepER [Ebraheem et al., 2018] and DeepMatcher [Mudgal et al.,

2018] have been introduced. Both systems use deep neural networks specifically devel-

oped for the entity matching task. The core idea of DeepER is to generate a vector

representation for each of the compared tuples, projecting them from a symbolic into a

high-dimensional embedding space. To this end, DeepER first uses word embeddings to

translate the individual attribute values of the processed tuple into their corresponding

vector representation. Subsequently, these attribute vectors are concatenated and form

the final vector-based tuple representation. Using this representation, the network is

trained so that similar tuples are drawn to each other, while unequal tuples repel each

other. An interesting architectural characteristic of DeepER’s network is that vector

representations are established for both the entire tuple and each of its attributes. Gen-

erating the tuple representation has the advantage that the generated tuple embeddings

can be used by downstream applications, such as clustering. Unfortunately, a major

17

2. INTEGRATING STRUCTURED INFORMATION

disadvantage of this approach is the use of word embeddings as the smallest unit for con-

structing the attribute and, in turn, tuple embeddings. This design decision makes the

system susceptible to out-of-vocabulary (OOV) words, that is, words that are missing

in the used word embeddings. By operating at the word level, it becomes significantly

more difficult to adequately handle subword structures, such as misspellings or common

substrings.

In addition to conducting a design space exploration, DeepMatcher [Mudgal et al.,

2018] extends the architecture of DeepER and adds various attribute summarization

techniques. In contrast to DeepER, DeepMatcher operates by calculating similarity

measures between the attribute pairs of the compared tuples. The resulting similari-

ties are then aggregated into one similarity vector, which constitutes the basis of their

classification. In their work, Mudgal et al. show that character embeddings can lead to

significant performance improvements, especially when dealing with uncommon words

or dirty data.

Despite its similar architecture, our proposed network differs in some aspects from

the existing work. While our basic idea of calculating an embedded representation for the

processed tuples is similar to that of DeepER, our approach differs in the processing of

the individual attribute values. While DeepER uses word embeddings to compute each

attribute’s vector representation, our architecture operates by splitting each attribute

value into its characters, which are then mapped to a vector representation by using

character embeddings. As discussed by Mudgal et al. [2018], the choice of word versus

character-level embeddings is critical, due to the implications of out-of-vocabulary (OOV)

tokens. The use of word-level embeddings reduces the mapping of a token to its vector

representation to a lookup in an embedding matrix. If this lookup fails because the

processed token is unknown, a predefined “unknown vector” is usually used instead of

a pre-trained token embedding. Because values occurring in tables can often not be

matched to pre-trained word embeddings, such as Word2Vec [Mikolov et al., 2013] or

GloVe [Pennington et al., 2014], the use of word-level embeddings is not optimal for

the deduplication task. To mitigate this issue, retrofitting techniques, such as those

employed by DeepER, can be used to generate approximations of OOV words. This can

be implemented, for example, by calculating an average embedding of co-occurring word

embeddings. However, the calculation of such approximations causes the meaning of

multiple word embeddings to be mixed so that the meaning of the generated interpolation

of an OOV word embedding is, at best, a diffuse representation of the missing word.

By using the suggested character embeddings, the need for retrofitting techniques is

eliminated, as any word can be created as a combination of individually learned character

embeddings.

Another effort to reduce the OOV problem is made by the fastText approach intro-

duced in Bojanowski et al. [2017]. It complements any word embedding by additionally

including all n-gram embeddings that can be generated from the processed word. When

compared to the lookup procedure of word embeddings, this approach drastically reduces

out-of-vocabulary (OOV) words as it is able to represent each OOV word as the com-

bination of its n-gram embeddings. However, as stated by the authors, fastText usually

utilizes a range of 3- to 5-grams to create word vector representations. Depending on

18

2.2 Related work

the granularity of the used n-grams, some of them may not be known during the genera-

tion of the individual word vector representations, so that for each unknown n-gram, an

“unknown vector” is used instead.

With our model, we take an even more generic approach by training an embedding

for each character in the ASCII table, further reducing the granularity from n-grams

to character embeddings. By replacing n-grams with character embeddings, we further

mitigate the OOV problem, as we are able to construct any word embedding from its

character embeddings. In addition to reducing the number of lookup errors, the size of

the embedding matrix is also significantly reduced. Drawing on the findings of Mudgal

et al. [2018], the use of character embeddings allows us to overcome DeepER’s limita-

tions by being able to handle character-level issues, such as misspellings and common

substrings. Looking, for example, at the duplicate pair (“hibrid theory”, “hybrid

theory”), which differs only in a single character, a lookup of the word “hibrid” will

likely return the “unknown vector”, as it has never been encountered before.

We aim to learn an embedding for each attribute by combining the character em-

beddings into a vector representation of the underlying entity (much like the original

DeepER). The compressed entity representation is then altered during the training pro-

cess to the effect that similar entities are located closer together than dissimilar ones.

Unlike the other systems, we are not trying to classify record pairs directly into dupli-

cates and non-duplicates but concentrate on learning an entity representation that allows

us to classify based on simple distance measures, such as the Euclidean distance. As a

consequence, this method could also be used as a distance measure in other applications,

such as clustering.

With Termite, the authors of [Fernandez and Madden, 2019] propose a system that

allows the execution of queries across multiple structured and unstructured data sources.

In a nutshell, the system transforms structured and unstructured data into a common

embedding space where it can be used to retrieve related data points regardless of their

origin and schema. Because the authors are mainly interested in identifying related en-

tities across heterogeneous data sources, they address a problem different from ours.

Although they also use an SNN architecture, they focus on learning a concept of related-

ness between entities, which can be interpreted as a more relaxed case of deduplication,

where it is sufficient for the entities to be similar, but do not necessarily correspond to

the same real-world entities. Another difference to our work is that the authors consider

both structured and unstructured data sources and do not explore the concept of transfer

learning.

Semi-supervised approaches. Algorithms that follow active learning principles form

a subset of semi-supervised learning methods. The core of this principle is to enable the

algorithm to query an external information source to resolve particularly challenging or

hard-to-decide training cases. Sarawagi and Bhamidipaty [2002] designed a duplicate

detection system that follows this principle. The system works by having difficult-to-

classify duplicate pairs evaluated by a user. The information gained is then fed back into

the training process, creating a new and enhanced model. The iteration of this procedure

allows the repeated improvement of the model until it can finally identify all entities as

19

2. INTEGRATING STRUCTURED INFORMATION

either duplicates or non-duplicates. A similar system was created by Tejada et al. [2002],

which relies on decision trees to detect duplicate entity pairs.

Over the years, many crowd-based systems have been proposed, which also fall into

the category of semi-supervised systems [Abboura et al., 2015; Demartini et al., 2012;

Firmani et al., 2016; Verroios and Garcia-Molina, 2015]. One of these systems, Crow-

dER [Wang et al., 2012], pursues a hybrid approach to entity resolution, seeking to

narrow the gap between purely machine-based and purely human approaches. This

is achieved through a two-step heuristic approach using a machine-based approach to

reduce the search space and then present possible matches to a human audience for

evaluation. Another recently introduced system is CloudMatcher [Govind et al., 2018],

which was introduced as a fast, easy-to-use, scalable, and highly available service for

entity matching. These active learning approaches represent a fundamentally differ-

ent approach compared to our proposed method. While our approach assumes that an

annotated dataset already exists, active learning approaches are designed to create an

annotated dataset from scratch, creating annotations by consulting external information

sources, such as domain experts. Although these approaches do not require a fully an-

notated dataset, one drawback is that a sampling bias [Settles, 2012] can occur where

only elements from a specific subset of the dataset are presented for annotation. If not

prevented, this sampling bias leads to biased datasets and, in turn, to biased machine

learning models, which can be harmful when applied in production.

Unsupervised approaches. In contrast to supervised methods, unsupervised tech-

niques simplify duplicate detection by not requiring labeled training data to achieve the

desired classification. In this case, clustering algorithms, such as k-means or farthest-

first clustering, were used to group duplicate and non-duplicate entity pairs into clus-

ters [Elfeky et al., 2002; Goiser and Christen, 2006; Gu and Baxter, 2006]. To this end,

the required parameter k, which determines the number of clusters to be created, is often

set to a value of two or three. A value of two clusters (k=2) corresponds to the categories

“duplicate” and “non-duplicate”, while a value of three (k=3) considers an additional

category with the name “possible duplicates”. Although cluster-based approaches can

often be less accurate than their supervised counterparts [Goiser and Christen, 2006],

they are still useful for real-world applications, as sufficient training data is usually not

available and has to be created with great effort. In a more recent approach, the authors

of [Koumarelas et al., 2020] implement a two-phase process that first uses annotated

datasets to train a machine learning model on matching dependency rules capable of

identifying duplicates. In a second step, the trained model is applied to a new dataset

detecting matching dependencies that, when applied, are able to identify duplicates in

the absence of annotations.

Transfer learning. In addition to the methods discussed so far, there are approaches

in which transfer learning plays an essential role. In their approach, the authors of [Ne-

gahban et al., 2012] focus on reducing labeling costs through adaptive sharing of learned

structures between scoring problems, involving more than two data sources. To this end,

they define the problem of multi-source similarity learning, which explicitly focuses on

entity resolution with more than two data sources. Furthermore, their approach is based

20

2.3 Proposed approach

on similarity vectors composed of traditional similarity metrics that are used to train

an entity resolution that is confined to linear classification models. In contrast, we con-

centrate on one (deduplication) or two (record linkage) data sources, learn a similarity

measure specifically tailored to the underlying dataset, and use a non-linear classification

methodology by means of a neural network.

The deep learning-based approach of Kasai et al. [2019] focuses on low resource con-

sumption and, to this end, combines transfer learning with active learning components.

Like earlier approaches, the authors turned to fastText embeddings, which contain sub-

word information, to translate the processed tuples into a common embedding space,

thus reducing the OOV problem. While this approach produces fewer OOV cases, our

approach employs character embeddings, which are even more fine-grained, and almost

completely avoid the OOV problem. Furthermore, the authors base their classification

on similarity vectors and use a negative log-likelihood loss in conjunction with a softmax

function. In contrast, our architecture is based on SNNs and employs a contrastive loss

function between the vector representations of the processed entities. For knowledge

transfer, they train all network parameters on the source dataset and reuse them to clas-

sify the entities of the target dataset. We follow the same training approach but transfer

only the learned attribute representations. We then fine-tune the upper network layers

on the target dataset to learn the composition of the new entities.

Instead of an SNN architecture, the authors of [Zhao and He, 2019] suggest the use

of a hierarchical neural network that combines character and word-level representations

as well as attention mechanisms. While they use the same intuition, their approach

differs in some aspects from ours. In particular, they extensively use type information

from a knowledge base to pre-train the attribute-level EM and type matching models

in an offline process. Thus, the use of a knowledge base becomes an essential part of

their approach, which is not a prerequisite in ours. For training, they employ a log loss

function that, in contrast to our contrastive loss, does not account for class imbalances

in the training data.

2.3 Proposed approach

This section presents the architecture, loss function, and training details of our approach,

which is based on two key concepts: the application of Siamese neural network (SNN)

to recognize similarities between various entities and the trend of automatic feature

learning, as pioneered by the deep learning community. Due to its design, this type

of network is particularly suitable for learning distance measures between two entities,

which is why we decided to exploit its features for duplicate detection.

We start by giving a short introduction to similarity measures in Section 2.3.1 and

continue by introducing the general intuition and overall architecture of Siamese neu-

ral networks in Section 2.3.2. Section 2.3.3, gives a detailed description of the subnet

architecture and discusses the loss function and its mode of operation in Section 2.3.4.

We conclude this section by presenting the training procedure and its parameters in Sec-

tion 2.3.5.

21

2. INTEGRATING STRUCTURED INFORMATION

2.3.1 Similarity measures

Since similarity measures are an integral part of the deduplication process, we briefly

introduce the most important concepts. Traditionally, similarity measures are chosen

w.r.t. the underlying attribute’s type [Cohen et al., 2003]. For instance, if the field is of

type Date, then the measure should consider similarity in years to be more important than

just in months or days. In our experiments, we treat all attributes as alphanumerics, as

it is the most general type. Thus, we consider only string similarity measures. These can

be subdivided into (a) edit-based, (b) token-based, (c) hybrid, and (d) phonetic measures.

Measures of type (a) are based on edit-operations, such as Levenshtein [Levenshtein,

1966] or Jaro-Winkler [Winkler and Thibaudeau, 1987], whereas measures of type (b)

tokenize the strings and compare the sets of tokens – Dice [1945] and Jaccard [1901]

being two examples. Type (c) measures are typically a combination of (a) and (b),

with MongeElkan [Monge and Elkan, 1996] serving as a good example. Lastly, Type (d)

measures, such as Soundex [Odell and Russell, 1918], are ideal for words that sound

similar as they transform syllables into characters representing that sound.

2.3.2 Siamese neural network

The SNN architecture was first introduced by Bromley et al. [1993] to verify signatures

on credit-cards. Since then, it has been used in many different areas, such as one-shot

learning [Koch et al., 2015] as well as recognizing textual [Neculoiu et al., 2016] and facial

similarities [Chopra et al., 2005]. As Siamese networks have already been shown to work

well in areas where similarities between different entities need to be evaluated [Melekhov

et al., 2016; Neculoiu et al., 2016], we chose this type of network to address the task of

duplicate detection. Due to the twin architecture of these networks, they are particularly

well suited to identify differences and similarities between the considered entities.

We intend to learn a similarity measure directly from the raw data, thus skipping the

traditional feature engineering step required in other machine learning approaches. For

this purpose, the network is trained by exposing it to both positive and negative example

pairs. In our case, a training example consists of two tuples t1 and t2, and a corresponding

binary label Y , which indicates whether the tuples refer to the same (Y = 1) or different

real-world entities (Y = 0). In turn, a tuple consists of several attribute values a1, ..., an,

which are individually preprocessed and passed to the subnets. The architectural details

of the subnets are explained in more detail in Section 2.3.3.

In training the network, we aim to learn a function capable of mapping the input

values into a low-dimensional embedding space, where a simple distance measure, such

as the Euclidean distance, can be used to estimate the semantic similarity between two

tuples. The learned function should be able to position similar tuples close to each

other within the embedding space, while different tuples should be positioned further

apart. During training, we use the positive examples to reduce the distance between

known duplicates as much as possible, while using the negative examples to maximize

the distance between known non-duplicates. According to our label definition Y , the

final function should yield a small distance value if two tuples are duplicates, and a large

distance value otherwise.

22

2.3 Proposed approach

E

Target

Name Street
Johnnie Ruby

… …

Zip
503
…

PreprocessingPreprocessing Preprocessing

FC

BLSTM 1

Concat

Ent 1

Vec 1

Input 1

BLSTM 2
Vec 2

Input 2

BLSTM n
Vec n

Input n

Entity 1 S1

Emb 1 Emb 2 Emb n
…

…

…

…

J o h n n i e R u b y 5 0 3…

Name Street
Johnny Ruby St.

… …

Zip
503
…

PreprocessingPreprocessing Preprocessing

FC

BLSTM 1

Concat

Ent 2

Vec 1

Input 1

BLSTM 2
Vec 2

Input 2

BLSTM n
Vec n

Input n

Entity 2 S2

Emb 1 Emb 2 Emb n
…

…

…

…

J o h n n y 5 0 3…R u b y S t .

Figure 2.2: Overview of the SNN architecture

An SNN consists of two identical subnetworks S1 and S2, interconnected via a com-

mon energy function E. Since both subnets are identical in all aspects, this also means

that they share a common weight or parameter matrix W . By sharing the model pa-

rameters between the subnets, both networks calculate the same function, thus making

the learned similarity measure symmetric.

Figure 2.2 provides a conceptual overview of the network structure and illustrates all

key components. As input, the network expects an entity pair in the form of two tuples

and the corresponding label, which serves as the optimization target. More specifically,

each tuple is provided to the network in an attribute-by-attribute fashion. Each of the

two subnets thus processes one tuple of a given entity pair. Viewed from a conceptual

level (see Figure 2.2), both input tuples pass through three network layers and eventually

end up in the last layer as two reduced vectors of fixed dimensionality (Ent1, Ent2). The

two resulting vectors serve as inputs to the energy function, which calculates a scalar

value that can be interpreted as a similarity estimate. Next, we explain the structure of

the two subnets (S1, S2) in detail.

2.3.3 Neural network model

This section contains a detailed description of the subnet architecture and an explanation

of our design decisions. We experimented with different network architectures during

the development phase, exploring different layer depths, pooling layers, and attention

mechanisms. In the following, we describe the architecture that achieved the best results.

As input, each subnetwork receives one of the tuples t1 or t2. These tuples consist of

attribute values A = (t[a1], . . . , t[an]) that belong to a specific domain D = (d1, . . . , dn).

Since we intend to transfer knowledge between two networks, the tuples are fed to the

network attribute by attribute. The reasons for this approach are explained in Sec-

23

2. INTEGRATING STRUCTURED INFORMATION

tion 2.4. Although a domain can be categorized by its data type, for example, d1 can be

of type integer or string, we are more interested in the semantic content of each domain.

For instance, attributes belonging to a specific domain represent street names, while

attributes from another domain represent movie titles. The core idea is to use neural

networks to learn the characteristic data distribution of each domain, using all domain

attributes as training data. Once the weight matrices of the individual domains have

been formed as a result of the network training, they can be transferred to another net-

work. As such, the weight matrix for a book title attribute of a network N1 can be used

to initialize the weight matrix for a book title attribute of another network N2 operating

on a different dataset, thus implementing a knowledge transfer for book titles. Moreover,

assuming that movies are often based on books, it is plausible to use the weight matrix

of the book title attribute in N1 to initialize the weight matrix of a movie title attribute

in N2, thereby performing a knowledge transfer from book to movie titles.

Examining the attributes of a particular domain, we find that they are often very

different in length. For example, the street name “A Street” is relatively short, while

“Newport Pagnell Motorway Services Areajunction 14 15 M1” is rather long. Since the

network design has to cope with these varying attribute lengths, this affects both the

structure as well as the building blocks used to construct the network.

Although it is possible to use 1D Convolutional Neural Networks (CNNs) [Goodfel-

low et al., 2016] to process sequential data streams of varying lengths (x1, . . . , xt), our

architecture uses Recurrent Neural Networks (RNNs) [Goodfellow et al., 2016] for the

sequential processing of the attribute values. Unfortunately, simple RNNs suffer from

the vanishing [Bengio et al., 1994] or exploding [Pascanu et al., 2012] gradient problem

and are therefore difficult to train. Due to this limitation, we decided to use Long Short-

Term Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997], an extension of

RNNs that mitigate these problems. We arrange two LSTM networks according to the

Bidirectional RNN architecture described by Schuster and Paliwal [1997], forming a bidi-

rectional LSTM network (BLSTM). A BLSTM network consists of two LSTM networks

that process the transferred character embeddings of a given attribute in opposite direc-

tions. The first network processes the input sequence from left to right, while the second

processes the input sequence from right to left. Processing the input sequence from both

sides allows us to consider context information from future and past states. The final

results of both networks are then concatenated and forwarded to the subsequent network

layer.

As shown in Figure 2.2, we use an embedding layer (Emb1...|A|) as the first layer

of each subnet. As discussed in Section 2.2, we feed each attribute value character-

by-character into the network, building a character embedding for each character used

within the attributes. We decided to process the attributes on a character basis, hoping

that this enables the network to learn how to cope with character level issues, such

as transposed numbers, misspellings, or shared character sequences. Such effects are

particularly prevalent in attribute domains with many name variants and ambiguities,

such as last names, company names, product names, and brands. These embeddings

are utilized both by the subsequent BLSTM layer and during our knowledge transfer

experiments, where they are used to transfer the underlying character distribution of

24

2.3 Proposed approach

the attribute domains. We employ the BLSTM architecture described above as the next

network layer. Since we use one BLSTM network per attribute, the network structure

ultimately depends on the number of existing attributes in a tuple. This decomposition

allows us to automatically learn a condensed representation of the underlying attribute

domain for each attribute separately.

As discussed in more detail in Section 2.4, the knowledge accumulated in both the

weight matrices of the attribute embeddings (Emb1...|A|) and BLSTM layers (BLSTM1...|A|)

shall be transferred to another deduplication network, operating on a different dataset.

Each BLSTM network generates a fixed-length vector (Vec1...|A|), representing a com-

pressed version of the currently processed attribute. These vectors are then concatenated

by a Concat layer, forming a compressed representation of the entire tuple.

The resulting tuple representation is then passed through a fully connected layer

(FC), enabling the network to learn relationships between the constructed tuple’s at-

tributes. The noise that occurs in entities of structured data sources is often caused by

typos or spelling variations in their attribute values. By leveraging character embed-

dings as well as end-to-end network training, we are able to learn that even though two

entities differ in some characters, they still represent the same entity. This is achieved by

adjusting the weights of the network during backpropagation so that the FC layer causes

different weights to be assigned to character embeddings of common characters than

to those that differ. In this way, the FC layer generates an entity representation that

reduces or increases the distance of duplicate or non-duplicate entity pairs in the latent

space despite the presence of noise. Finally, the resulting tuple embeddings (Ent1, Ent2)

are compared by an energy function, whose result is then passed to the loss function,

which in turn is used to calculate the gradients for the backpropagation step.

The individual dimensions of our model are as follows: The dimensionality of the

character embeddings is 32. Our LSTM layer has 128 dimensions, and the fully connected

layer (FC) has 64 dimensions. To determine optimal dimension values for the individual

layers, it is possible to either experiment with different dimension values for each layer

or determine more optimal values in a systematic way by leveraging hyperparameter

optimization techniques [Bergstra et al., 2011; Snoek et al., 2012]. The details of our loss

function are discussed in the next section.

2.3.4 Loss function

Our system’s general intuition is to train a neural network NW (X) that is able to project

the given tuples into a low-dimensional embedding space. In this space, duplicate and

non-duplicate tuple pairs can be distinguished by using simple distance measures, such

as the Euclidean distance or other more complex measures [Cha, 2007]. Learning in

this context means adapting the weights of NW so that the calculated loss is minimized.

The goal of this mapping is to place similar tuples close to each other in the embedding

space while dissimilar tuples are placed further apart. To learn a function with these

properties, we use the contrastive, energy-based loss function presented in Hadsell et al.

[2006]. As described in the last section, both tuples are passed through the network

yielding one embedding vector (Ent1,Ent2) for each tuple. For the Euclidean distance

25

2. INTEGRATING STRUCTURED INFORMATION

as energy function EW (Ent1,Ent2) = ‖Ent1 − Ent2‖, the general definition of the loss

function is:

L(EW , Y) = Y LD(EW (Ent1,Ent2)) + (1− Y)LND(EW (Ent1,Ent2)) (2.1)

The dependence of the energy function on the parameter values of the network is ex-

pressed by the W in the definition. At its core, the loss function consists of the terms

LD(EW) and LND(EW), which ensure that similar inputs receive a low energy value,

whereas unequal inputs receive a higher one. In their work, Hadsell et al. motivate the

intuition behind these terms with the behavior of mechanical springs, where LD brings

similar embedding vectors closer together, and LND repels different vectors [Hadsell et al.,

2006]. If we define the two terms as follows:

LD(EW) =
1

2
(EW)2 (2.2)

LND(EW) =

1
2(m− EW)2 if EW < m

0 otherwise
(2.3)

The result is the following loss function:

L(EW , Y) = Y
1

2
(EW)2 + (1− Y)(

1

2
max(0,m− EW))2 (2.4)

The value m in this definition is a margin value, which controls that only tuple pairs

within the specified margin contribute to the loss function. In addition, Hadsell et al.

emphasize the meaning of the LND term, which makes it possible to take dissimilar

tuples as well as similar tuples into account when minimizing EW , thus enabling a more

optimized solution.

Duplicate detection often involves highly skewed datasets containing many more non-

duplicate pairs than duplicate pairs. We introduce the weightsWD andWND, which allow

us to weigh the loss terms LD and LND differently. In this way, we can control how strong

duplicates or non-duplicates contribute to the calculated loss. Extending Equation (2.4)

with the weight parameters WD and WND yields our final loss function:

L(EW ,WD,WND, Y) = WDY
1

2
(EW)2 +WND(1− Y)(

1

2
max(0,m− EW))2 (2.5)

We used the duplicate to non-duplicate ratio of the respective training set to deter-

mine appropriate weights (WD, WND) for the loss function. Because we generated our

datasets with a duplicate, non-duplicate ratio of 1 to 10 (described in Section 2.5.3),

we also adopt these settings for the weight parameters WD and WND. In cases where it

is difficult to estimate the parameter values for WD and WND, they can be determined

using hyperparameter optimization [Bergstra et al., 2011; Snoek et al., 2012].

26

2.4 Knowledge transfer

2.3.5 Training details

We use backpropagation to determine the gradient of the loss function with respect to

the weights W . We update the weights by employing Adaptive Moment Estimation

(Adam) [Kingma and Ba, 2015], which is capable of computing adaptive learning rates

for each parameter. We kept the default settings for the optimizer at α = 0.001, β1 = 0.9,

β2 = 0.999, and ε = 10−8. Due to the weight sharing between S1 and S2, the gradients

of both networks behave additively, so that we use the summed gradient contributions

of both subnets while updating the weights. For training, we use batch sizes of 16 and

32. The margin on the loss function was set to a value of 1. To initialize the weights of

each layer, we use the Xavier initialization scheme as presented in [Glorot and Bengio,

2010]. To counteract overfitting of the network, we employ dropout regularization for

each time step of the LSTM by setting the dropout value to 0.1 [Srivastava et al., 2014].

We trained the network until convergence, which in our case, required between 10-

15 epochs. For the implementation of the model, we used the Keras Framework using

Tensorflow as its backend. All models were trained using an Nvidia Titan X Pascal GPU.

Training a model took between 30 minutes and 24 hours, depending on the dataset size.

For all datasets that were categorized as small in Table 2.1, we performed a 10-fold

cross-validation. We initially divided the entire dataset into a training and a test set at

a ratio of 70 to 30 percent, using the training set to perform a 10-fold cross-validation.

For each fold, we selected the model from the epoch with the best F-measure on the

cross-validation’s test data to make a prediction on the previously separated test set.

We use these predictions to report on the average precision, recall, and F-measure over

all 10 folds.

Since the datasets categorized as large in Table 2.1 were too large for a full cross-

validation, we employed a different evaluation scheme. We divided the corresponding

datasets according to a ratio of 3:1:1 into training, validation, and test sets. We then

trained on the training set and used the validation set to select the model from the epoch

with the best F-measure, which we used to make a prediction on the test set. In this

scenario, we report the best precision, recall, and F-measure on the test set. For the

entire model, we used rectified linear units (RELUs) as our activation function.

2.4 Knowledge transfer

To reduce the amount of data needed to train neural networks, our goal is to transfer

already learned knowledge between networks. As pointed out by Pan and Yang [2010],

transfer learning addresses this by allowing domains, tasks, and distributions used in

training and testing to be different. According to their proposed categorization, we

identify our case of knowledge transfer as “Transductive Transfer Learning”. While for

us, the task of duplicate detection always remains unchanged, we change the underlying

domain by switching from detecting duplicates in one dataset (e.g., Movies) to detecting

duplicates in a different dataset (e.g., CDs). Thus, knowledge transfer makes it possible

to train models for which this would not have been possible due to insufficient training

data.

27

2. INTEGRATING STRUCTURED INFORMATION

As in other areas, the available datasets for duplicate detection differ significantly in

terms of labeled training data. On the one hand, some datasets contain a large number of

already labeled duplicate pairs, while others contain almost no labeled pairs. Our central

idea is to exploit this imbalance by training a neural network on a dataset with a large

number of duplicate pairs and transferring the acquired knowledge to the classification

of duplicates, where the dataset contains significantly fewer training examples.

As described in Section 2.3.3, a crucial step in our deduplication approach is to

learn the characteristic data distribution for each attribute domain individually. This is

achieved by the network design shown in Figure 2.2. Here, the critical part is making use

of individual embedding and BLSTM layers for each attribute. By deliberately separating

the processing of the individual attributes, the domain knowledge gained during training

accumulates in the weight matrices of the dedicated embedding and BLSTM layers. This

effect allows us to transfer the domain knowledge for specific attributes individually. For

example, we can choose to transfer only the knowledge of specifically selected attribute

domains, which can give us an advantage in the target domain. Formally, knowledge

transfer can be defined as follows:

Knowledge transfer: Given two neural networks – a source network N1 and

a destination network N2 – as well as their associated training data T1 and

T2, we define knowledge transfer as the transfer of selected weight matrices

from N1 to N2. To this end, we train N1 using T1 and transfer the gained

knowledge to N2 before training it on T2.

Domain compatibility: We define that two attribute domains – a source

attribute domain DS and a destination attribute domain DT – are domain-

compatible to each other if they are either equal (DS = DT) (e.g., both street

names) or structurally similar (DS ≈ DT) to each other (e.g., book title and

movie title).

Although we assign compatible attribute domains manually in our experiments, sys-

tems, such as Sherlock [Hulsebos et al., 2019], can be used to determine the semantic

type of data columns, according to which an assignment of compatible attribute domains

can be determined. Alternatively, systems like DeepAlignment [Kolyvakis et al., 2018]

can also be used to automatically determine an appropriate domain assignment. This

aspect is outside the scope of this thesis.

In our case, there are essentially three possible configuration options for conducting

a knowledge transfer: (i) transferring only the weight matrices of the embedding layer,

(ii) transferring only the weight matrices of the BLSTM layer, or (iii) transferring both

weight matrices together. As part of our experiments in Section 2.6.2, we investigate

the effects of each of the three configurations on the network’s performance. Technically,

we perform the knowledge transfer by using the weight matrices of the embedding and

BLSTM layers in N1 to initialize the weight matrices of compatible attributes in N2.

As a result, we are able to train N2 even if T2 contains much fewer training examples

than T1 (|T2| � |T1|). This method is often referred to as “fine-tuning” a network.

Note that the knowledge accumulating in the weight matrices of the FC layer during the

28

2.5 Data & Gold-standard

training process is specific to the entities being compared (e.g., books or movies), not

the attributes (e.g., name, zip code). Thus, the weights of the FC layer are not easily

transferable for the deduplication of other entities, such as cars or hotels. While the

learned attribute representations can be reused for the deduplication of other entities,

the knowledge of how to combine the individual attribute representations into a vector-

based representation of the processed entities must be relearned for the deduplicated

entities. Due to this fact, we cannot avoid the retraining of the network on a new

dataset. To adapt the FC layer’s weights to the characteristics of a new dataset, at

least a small amount of training data is needed. To transfer the maximum available

knowledge, this transfer can be performed for multiple attribute domains coming from

different source networks. For instance, assuming two previously trained source networks

N1 and N2, it is possible to transfer a weight matrix for art titles from N1 and a weight

matrix for a location domain from N2 to a target network N3. The elegance of attribute-

based knowledge transfer lies in the fact that a steadily growing repository of weight

matrices for a wide range of attribute-domains accumulates over time. In case only some

attributes are domain-compatible during knowledge transfer, the remaining attribute

values could be initialized with weights from the repository. In addition, one could try

to learn the weight matrices for a particular domain completely unsupervised through

the use of encoder-decoder architectures, which would allow the repository to be easily

extended. By following this protocol, it is possible to combine knowledge from multiple

different source networks to initialize as many attributes of the target network as possible

with pre-trained weights. Finally, it should be noted that the transferred weight matrices

can be used to initialize multiple attribute domains of the target network if a domain

meets the requirements mentioned above.

2.5 Data & Gold-standard

This section provides a brief overview of the used datasets (Section 2.5.1), their prepro-

cessing (Section 2.5.2), and a description of the process used for creating non-duplicate

pairs (Section 2.5.3).

2.5.1 Datasets

The identification and evaluation of real-world solutions for duplicate detection also

requires the use of real-world data sets. Since the proposed method can be used to

find duplicates both within the same dataset (duplicate detection) and between differ-

ent datasets (record linkage), we test it on datasets for both tasks. The main differ-

ence between the two scenarios is that duplicate detection aims to find all duplicates

within a single dataset, whereas record linkage seeks to uncover duplicates across multi-

ple datasets. Given two relations A and B of sizes n and m respectively, the process of

duplicate detection produces candidate pairs in O((n+m)2), whereas, in a record linkage

scenario, the number of pairs that need to be evaluated is in O(n ·m). Therefore, the two

scenarios differ in that deduplication creates more candidate pairs, which can result in

29

2. INTEGRATING STRUCTURED INFORMATION

more duplicates being misclassified, which in turn can negatively impact the classifica-

tion results. Although the record linkage scenario can also be mapped to a deduplication

scenario, we have deliberately refrained from doing so to reflect the evaluation setup of

the competitor approaches.

For comparison on the deduplication task, we use the same datasets as Christen,

which can be found on the project website1. The details of the individual datasets can

be found in Table 2.1 and the brief descriptions below.

Dataset #dpl #ndpl #records class

Deduplication

Restaurants 112 1,120 864 small

Census 376 3,760 841 small

CD 300 3,000 9,763 small

Cora 64,578 179,125 1,879 large

Movies 14,190 141,900 39,180 large

Record linkage

BeerAdvo-RateBeer 68 382 544 small

iTunes-AMA 132 407 933 small

DBLP-Scholar 5,473 54,730 66,879 large

DBLP-ACM 2,224 22,240 4,910 large

WMT-AMA 1,157 11,570 24,628 large

AMA-GOOG 1,300 13,000 4,589 large

Table 2.1: Datasets used for our experiments

• CD: Entries of audio CDs with descriptive attributes, such as artist, title, tracks,

genre, and year.

• Census: Based on real data generated by the U.S. Census Bureau, it contains

a single attribute with a record value, called “text”. This dataset contains two

relations “A” and “B” and could also be used for record linkage, i.e., linking the

two relations. Like Christen, we treat it as a typical single-relation dataset and try

to find duplicates instead of linking matches.

• Cora: Bibliographic records of publications for machine learning. It includes ref-

erence information, such as authors, title, and year.

• Movies: Result of merging two different datasets, such that real-world duplicates

are available. The information provided is limited to actors and movie titles.

• Restaurants: Mixed dataset of two relations, based on the Fodor’s and Zagat’s

restaurant guides. This corresponds to the Fodor-Zagat dataset in [Mudgal et al.,

2018].

1https://hpi.de/naumann/projects/repeatability/duplicate-detection/

knowledge-transfer-for-duplicate-detection.html

30

https://hpi.de/naumann/projects/repeatability/duplicate-detection/knowledge-transfer-for-duplicate-detection.html
https://hpi.de/naumann/projects/repeatability/duplicate-detection/knowledge-transfer-for-duplicate-detection.html

2.5 Data & Gold-standard

For the task of duplicate detection, we compare our approach with that of Christen

[2008], which is based on the classification of feature vectors created from the compared

entities. To this end, they use an SVM classifier with various hyperparameters.

For the record linkage task, we compare our approach with the reported performance

metrics of the DeepMatcher system and use the same datasets as Mudgal et al. [2018] (see

Table 2.1). Though DeepMatcher can be configured with several different architectural

variants, their comparison shows that, apart from the hybrid variant, the RNN variant

is superior to the other architectural variants in terms of performance. When comparing

the RNN with the hybrid variant, it turns out that the former is, on average, only 1.5% F-

measure points worse, which does not constitute a clear superiority of the hybrid variant.

For this reason, and because the RNN architecture of DeepMatcher comes closest to our

approach, we focused on comparing our approach to the RNN variant of DeepMatcher.

We do not compare our approach to their Home, Electronics, and Tools datasets, as they

are not publicly available. All other datasets can be obtained from the Magellan Data

Repository [Das et al., 2018], which contains not only statistics about each dataset but

also a detailed description of how they were created.

It should be noted that the BeerAdvo-RateBeer and iTunes-AMA datasets were the

only datasets that provided both duplicate, as well as non-duplicate pairs, and are thus

considered complete. All other datasets are considered incomplete, as they only provide

duplicate pairs. To overcome this issue, we created non-duplicate pairs for all incomplete

datasets according to the procedure described in Section 2.5.3. Statistics about the

number of duplicate (#dpl) and non-duplicate (#ndpl) pairs, the total number of records

(#records) as well as a categorization into small and large datasets (class) can be found

in Table 2.1. We categorized datasets that contain fewer than 4,500 labeled tuple pairs

(#dpl + #ndpl) as small datasets and those with more than 4,500 labeled tuple pairs

as large datasets.

2.5.2 Data preprocessing

We kept preprocessing to a minimum to not alter the input data too drastically from its

original raw state. As such, we first lower-cased all input characters, which represents a

typical preprocessing step that is not specifically related to the used datasets. This not

only helped the network to generalize better but also reduced the size of the embedding

layers.

We then normalized any Unicode characters so that, e.g., accents and umlauts are

translated into their respective ASCII characters, using the normalize function of the

Python unicodedata package. For example, the German ö was replaced by the combina-

tion oe, whereas other characters, such as é or ç, were simply replaced with the letters e

and c. During this process, we also replaced existing NULL values with an empty string.

This normalization step further reduced the size of the embedding layers.

In a final step, we translated each ASCII character into its corresponding ASCII

numeric representation, which served as input for the network. To speed up network

training, we truncated the values of the description attribute of the AMA-GOOG dataset

after 1,000 characters.

31

2. INTEGRATING STRUCTURED INFORMATION

2.5.3 Selecting duplicate and non-duplicate pairs

The gold standards that are available for most of the datasets in Section 2.5.1 each

contain a list of record pairs that uniquely identify duplicate record pairs. In case this set

is not transitively closed, we additionally create all transitive pairs and call this extended

set DPL.

For most datasets, the number of existing duplicates represents only a small subset

of all possible tuples. To train and test a classifier, we also require a number of negative

examples, i.e., non-duplicate pairs. Unfortunately, a random pairing of tuples most likely

results in non-duplicate tuple pairs that exhibit a very low similarity in their attribute

values, which makes them easily distinguishable from true duplicates. This setup does

not reflect the challenges of a real-world matching process; hence it is necessary to create

non-duplicate pairs of greater similarity, making it harder for the model to classify them.

Since training and testing with hard to distinguish non-duplicates comes much closer to a

realistic matching scenario, we rely on blocking techniques [Christen, 2012; Elmagarmid

et al., 2007] to generate non-duplicate pairs that are harder to distinguish from real

duplicates. In practice, to speed up duplicate detection, blocking methods are typically

used to divide datasets into disjoint subsets, called blocks, according to a predefined

partitioning key. To avoid false negatives, usually, multiple partition keys are defined. It

is important to select the partition key with great care, as it controls not only the size

and number of blocks created but also how similar the individual data records within

each block are.

We perform a simple blocking by using each attribute of the currently processed

dataset as a partitioning key. In case an attribute is multi-valued, we first divide it into

its individual values and use those for blocking. Attributes exhibiting a high level of

uniqueness, which would lead to many single-record blocks, are split into n-grams of 6 to

10 characters, depending on the length of the attribute, and then used as partition keys.

As a result, we obtain numerous blocks, within which we create the cross-product of all

contained data records, and thus form data record pairs that are then combined into a

common dataset. After removing all known duplicate pairs from the resulting dataset,

we refer to it as NDPL.

The NDPL dataset is, therefore, the set of all record pairs that can be formed within

all blocks and does not include duplicate pairs. To achieve a more realistic training set,

we ensured that the ratio of DPL to NDPL is 1:10 by randomly selecting pairs from

the NDPL dataset. An exception to this is the Cora dataset, where we were unable to

maintain the ratio of 1:10 without drastically reducing the number of n-grams used in

the blocking strategy.

2.6 Experiments

This section presents the results of our experiments. In Section 2.6.1, we discuss the

results achieved by training the SNN from scratch, while in Section 2.6.2, we present how

transfer learning helped to further improve the results. For details about the training

process and its parameters, please see Section 2.3.5.

32

2.6 Experiments

2.6.1 Learning from scratch

As a first experiment, we train the network on each of the datasets listed in Table 2.1 and

report the achieved precision, recall, and F-measure values. To see how our approach

performs against deduplication systems that use manual feature engineering, we compare

ourselves to the SVM-based system of Christen [2008]. As pointed out by Ebraheem et

al., DeepMatcher is an extension of DeepER [Ebraheem et al., 2018], hence in the record

linkage case, we compare SNNDedupe with DeepMatcher.

Duplicate detection

As seen in Table 2.2, we surpass the SVM-based approach in all cases, sometimes

even dramatically, as in the case of the Cora dataset, where we reach an F-measure of

99.24 percent. On average, we manage to exceed the SVM approach by +5.9 and +23.7

percentage points in precision and recall, corresponding to an average improvement of

+15.8 percentage points in F-measure. We attribute the increase in performance to the

possibility of training the network in an end-to-end fashion. For example, the character

embeddings are trained together with the deduplication task, and, in contrast to manu-

ally created features, can be adapted according to the propagated error. In this way, the

entire network is tuned to the deduplication task, which is difficult to accomplish with

an SVM approach that works with a number of predefined features.

Dataset SNNDedupe SVM

P R F1 P R F1

Restaurants 96.5 100 98.2 97.3 75.8 84.1

Census 88.7 94.6 91.5 87.5 75.1 80.8

Cora 99.3 99.2 99.2 82.2 71.8 76.4

CD 91.8 84.0 87.4 – – –

Movies 93.1 85.7 89.2 – – –

Table 2.2: Performance comparison for deduplication datasets as reported
in [Christen, 2008]

An interesting observation during the evaluation was the analysis of the causes for

misclassification: We found that when the network generated classification errors, they

were often accompanied by missing data in at least one of the entity’s attributes. This is

a well-known problem in the area of duplicate detection, and we noticed that it negatively

affects the performance of the neural network. In short, if we decide to replace an empty

attribute field with a specific value, we change the entities so that they become either

more similar or dissimilar. In the worst case, this process makes the correct classification

considerably more difficult. To avoid this problem, we decided to exclude attributes with

missing values from the entity representation that is passed to the network. Technically,

we achieve this by replacing both attribute values in their respective entities with a fixed

value, e.g., zero, and use a corresponding masking layer within the network to make

33

2. INTEGRATING STRUCTURED INFORMATION

these specific values (zeros) invisible to the network. Effectively, this causes the replaced

attribute values to be ignored by the network.

Record linkage

In the case of record linkage, Table 2.3 shows that we were able to outperform our

competitor on four out of six datasets. The largest improvement was achieved on the

AMA-GOOG dataset, where we measured an improvement of +26.2 percentage points

in F-measure over DeepMatcher. We suspect this performance increase to be caused by

the truncation of the description attribute during the preprocessing phase, making it

easier to learn a better representation of the description attribute. In most other cases,

the performance increase is not as significant as with the deduplication task, however, we

were also able to measure an improvement of +4.4 percentage points for the iTunes-AMA

dataset.

Dataset SNNDedupe DeepMatcher

P R F1 P R F1

BeerAdvo-RateBeer 74.9 74.3 73.1 59.1 92.9 72.2

iTunes-AMA 93.8 93.0 92.9 92.0 85.2 88.5

DBLP-Scholar 94.8 91.9 93.3 93.2 92.7 93.0

DBLP-ACM 98.4 98.0 98.2 97.1 99.5 98.3

WMT-AMA 61.6 60.8 61.2 70.9 64.6 67.6

AMA-GOOG 90.6 82.1 86.1 69.5 52.6 59.9

Table 2.3: Performance comparison for record linkage datasets as reported
in [Mudgal et al., 2018]

In the case of the WMT-AMA dataset, our approach is 6.4 percentage points worse

than DeepMatcher. As mentioned by Mudgal et al., it can sometimes occur that due to

inaccurate extraction methods, some attribute values are not assigned to the intended

columns, but to columns of other attributes [Mudgal et al., 2018]. Since the WMT-

AMA records contain such impurities, our network architecture struggles to find a good

representation for dirty attribute columns, which is reflected in weaker performance. To

address this issue, we could proceed similarly to Deep Machter’s dirty entity matching

case, in which a representation of the entire entity is first created by concatenating its

attribute values before the deduplication takes place. Using this approach, the network

would be able to determine the similarity of two entities in their entirety, eliminating the

issue of incorrect attribute assignments because entities are no longer deduplicated on

attribute but on entity level. Unfortunately, leaving the attribute level would prohibit

the formation of attribute embeddings during the deduplication process, which would

render the envisioned attribute-level knowledge transfer impossible. We have, therefore,

decided not to proceed accordingly.

34

2.6 Experiments

0 10 20 30 40 50 60 70 80 90 100
Amount of training data (in %)

0

10

20

30

40

50

60

70

80

90

100

F1
-m

ea
su

re
 in

 p
er

ce
nt

census
cd
cora
restaurants
movies
average

Figure 2.3: Performance of SNNDedupe on deduplication datasets for increasing
amount of training data (of a 3:1:1 split).

In summary, our results are on par with those of DeepMatcher, justifying our design

decisions, but in addition, allowing us to perform knowledge transfer. In Section 2.6.2,

we examine the effects of transfer learning on the performance of the network.

Learning with increasing training data

Due to the large number of record pairs that can arise during duplicate detection, a

complete annotation of the entire dataset is usually very cost-intensive. This raises the

question of how SNNDedupe behaves for different amounts of training data. To answer

this question, we train SNNDedupe with an increasing amount of training data, starting

at 5% of the corresponding dataset, and gradually increasing it by 5% increments until we

arrive at utilizing the entire amount of training data. We do this for both the duplicate

detection and the record linkage datasets, with results shown in Figures 2.3 and 2.4.

As both figures show, the performance of SNNDedupe depends on the complexity of

the dataset. While with relatively simple datasets, such as Cora or DBLP-ACM, an F-

measure of 98.6% and 94.89% can be achieved with only 5-10% of the total training data,

it is more difficult to achieve a satisfactory F-measure with more demanding datasets,

such as WMT-AMA, where we obtain an F-measure of 61.2% even after utilizing all

training data.

Looking at the average performance, it can be seen that SNNDedupe is capable

of achieving F-measure values between 77-81% for deduplication and 59-66% in case

of record linkage using just 5-10% of training data. In addition, we observe that for

every additional 5% of training data, the performance increase is significantly stronger

in the beginning than later on. Thus, the average increase in F-Measure for adding 5%

35

2. INTEGRATING STRUCTURED INFORMATION

0 10 20 30 40 50 60 70 80 90 100
Amount of training data (in %)

0

10

20

30

40

50

60

70

80

90

100

F1
-m

ea
su

re
 in

 p
er

ce
nt

wmt-ama
dblp-scholar
ama-goog
dblp-acm
itunes-amazon
beer
average

Figure 2.4: Performance of SNNDedupe on record linkage datasets for increasing
amount of training data (of a 3:1:1 split).

additional training data within the first 25% of the dataset amounts to 3.23% for record

linkage and 2.16% for deduplication. In contrast, for every 5% increase in training data

within the remaining 75% of the dataset, the average increase in F-measure measures

only 0.56% (deduplication) and 0.75% (record linkage). This indicates that SNNDedupe

is able to provide a good classification performance after using up to 25% of all available

training data. In practice, however, this depends on the individual case as well as on

the complexity of the underlying dataset, which can be seen in the case of iTunes-AMA,

where a significant performance increase is also observed later during the transition from

50 to 55% of training data. Another interesting finding is that the amount of training

data used also influences the stability of predictions. As such, the prediction behavior

is relatively stable for datasets with many training examples, whereas in the case of the

Beer dataset, which consists of only 450 training examples, strong fluctuations in the

predictions of SNNDedupe can be observed. In general, SNNDedupe is able to achieve

average F-values of 72.49% (record linkage) and 85.26% (deduplication) by using up to

25% of the respective training data.

It should be noted that for this experiment, the increase in training data is achieved

by adding randomly selected training examples. The selection of informative training

examples is at the core of active learning approaches and outside the scope of this thesis.

2.6.2 Transfer learning

We examine the effects of transferring selected weight matrices, and thus the knowledge

they contain, from one network to another. Our goal is to explore how knowledge transfer

affects the training process and, thus, the performance of the network.

36

2.6 Experiments

Experimental setup

As explained in Section 2.3, the network architecture is structured so that each attribute

is processed by a dedicated subnetwork. This allows us to carry out even partial knowl-

edge transfers by transferring only the weight matrices for specific attributes. The general

experimental setup can be described as a two-step process. First, we take a neural net-

work (N1), which we previously trained on a source dataset and transfer the knowledge

contained in the weight matrices for specific attributes to another untrained network

(N2). After the weight transfer is complete, we train the network N2, which already

contains the knowledge of N1 for the transferred attributes, on a destination dataset.

During our experiments, we transfer knowledge between two network pairs, which each

operate on one dataset pair. The first transfer takes place from a network that has been

trained on the Movies dataset to a network that shall be trained on the CD dataset. In

a second transfer, we transmit knowledge between a network trained on the WMT-AMA

dataset and a network that we then train on the AMA-GOOG dataset.

As discussed in Section 2.4, the general assumption made for these transfers is that

the data distribution of the transferred source attribute resembles the data distribution

of the destination attribute and is therefore well suited for knowledge transfer. With

this in mind, we decided for the first transfer to map the weight matrices of the ac-

tor and title attributes of the Movie dataset to the artist and title attributes of the

CD dataset, respectively. This concrete transfer is reflected in the notation used in Ta-

ble 2.4: datasetsrc.attributesrc −→ datasetdst.attributedst describes from which source

attribute (attributesrc) of the source dataset (datasetsrc) to which destination attribute

(attributedst) of the destination dataset (datasetdst) the knowledge transfer is performed.

Although we manually perform the mapping, schema matching research has produced a

number of techniques to automate this step, both heuristically and using machine learn-

ing approaches [Bellahsene et al., 2011; Kolyvakis et al., 2018]. The exploration of these

techniques lies outside the scope of this thesis.

What to transfer?

The next step is to determine which of the weights are transferred from one network to

the other. As shown in Figure 2.2, each subnetwork consists of two layers, an embedding

layer (Emb1...|A|) and a BLSTM layer (BLSTM1...|A|). For our experiment, this results

in three possible transfer configurations, which are listed in Table 2.4. First, we transfer

only the weight matrices of the embedding layers, in a second step only the matrices

of the BLSTM layers, and finally, both matrices of the embedding, as well as those

of the BLSTM layers, are transferred. Once the weight transfer is complete, we train

the network on the destination dataset, as described in the previous section. Table 2.4

reports on precision, recall, F-measure, and the relative improvements over the baseline,

which was trained from scratch in the previous section. The baseline values can thus be

found in Table 2.2 and Table 2.3. The relative improvements over the baseline are shown

in parentheses below their corresponding precision, recall, and F-measure values.

37

2. INTEGRATING STRUCTURED INFORMATION

Transfer of Embeddings P R F1

Movies.actors −→ CD.artists
Movies.title −→ CD.album

87.1
(-4.7)

94.5
(+10.5)

90.4
(+3.0)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

90.2
(-0.4)

86.1
(+4.0)

88.1
(+2.0)

Transfer of BLSTMs

Movies.actors −→ CD.artists
Movies.title −→ CD.album

88.3
(−3.5)

87.5
(+3.5)

87.6
(+0.2)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

89.8
(-0.8)

84.1
(+2.0)

86.8
(+0.7)

Transfer of Embeddings & BLSTMs

Movies.actors −→ CD.artists
Movies.title −→ CD.album

91.9
(+0.1)

92.5
(+8.5)

92.1
(+4.7)

WMT-AMA.title −→ AMA-GOOG.title
WMT-AMA.techdetails −→ AMA-GOOG.description
WMT-AMA.brand −→ AMA-GOOG.manufacturer

91.7
(+1.1)

89.8
(+7.7)

90.7
(+4.6)

Table 2.4: Results of transferring different weight matrices from one network to
another

Transfer embeddings. Regarding the first experiment, in which only the embeddings

are transferred, it is noticeable that an improvement of +3.0 and +2.0 percent compared

to the respective baseline can be observed for both datasets. Upon closer inspection,

it can be seen that this improvement is mainly driven by an improvement in recall

(+10.5 / +4.0). These results support our initial assumption that the network, due to

its high flexibility, is capable of learning a similarity measure that correctly identifies

more duplicate pairs. It also shows that the knowledge about certain attribute domains

contained within the embeddings can be transferred to other attributes that possess

similar domain properties. Attention should also be paid to the circumstance that, in

both cases, the recall values increase significantly without a severe decrease in precision.

This interaction ultimately leads to the aforementioned improvement in F-measure.

Transfer BLSTM weights. In a second experiment, we transfer only the weight

matrices of the BLSTM layers. Compared to the transfer of the embeddings, there is

only a relatively small improvement of +3.5 and +2.0 percent in the recall values, while

the precision values decrease in both cases. On careful consideration, this was to be

expected, as the BLSTM layers were trained together with the embedding layers and

therefore the values of their weight matrices are conditioned on the specific embeddings

that were jointly trained. If the embeddings are not transferred, but initialized randomly,

the weight matrices of the BLSTM layer also lose a lot of their significance. Ultimately,

this causes the network to perform hardly better than the baseline with +0.2 and +0.7

percent improvement in F-measure.

38

2.6 Experiments

40.0

66.7

74.1

87.7
82.1 82.7

86.3 87.4
83.3 84.4 86.1

56.0

75.0
78.6

88.4
86.2 84.7

89.5 87.9 87.1 85.9
90.7

30

40

50

60

70

80

90

100

715 1430 2860 4290 5720 7150 8580 10010 11440 12870 14300

F-
m

ea
su

re
 in

 p
er

ce
nt

tuple pairs

without transfer

with transfer

Figure 2.5: Development of the F-measure with and without knowledge transfer.

Transfer embeddings & BLSTM weights. In the last transfer experiment, we

measure the network’s performance after transferring both the weight matrices of the

embedding and the BLSTM layers. With an improvement of +8.5 and +7.7 percent,

the recall values show the greatest improvement in this experiment. In contrast to the

experiment in which only the embeddings were transferred, however, an improvement

in the precision values of +0.1 and +1.1 percent can also be observed. Even though

the improvements in the precision values are small, in combination with the recall im-

provements, they ensure that the F-measure values improved by +4.7 and +4.6 percent

compared to the baseline. These results lead us to conclude that the best results can be

achieved when the weight matrices of both the embedding and the BLSTM layers are

transferred jointly.

Overall, the transfer enabled us to improve the total network performance by +4.7

percent from 87.4 to 92.6 percent F-measure for the CD dataset and by +4.6 percent

F-measure from 86.1 to 90.7 percent for the AMA-GOOG dataset.

Data reduction through knowledge transfer

In a final experiment, we investigate the extent to which transfer learning can be used

to reduce training data. To this end, we trained the network on an increasing number of

tuple pairs from the AMA-GOOG dataset and recorded the F-scores achieved with and

without knowledge transfer. The knowledge transfer was carried out in the same way

39

2. INTEGRATING STRUCTURED INFORMATION

as in the previous transfer experiment (WMT-AMA −→ AMA-GOOG). We transferred

both the weights of the embedding layers as well as those of the BLSTM layers. Figure 2.5

shows that knowledge transfer significantly improves performance when training with a

smaller number of tuple pairs. This performance increase can be observed up to a number

of 4,290 tuple pairs and is less prominent afterward. The transfer values always remain

above the values measured without transfer. Considering the graph, it can be observed

that an F-score of 75.0 percent can be achieved when training with 1,430 tuple pairs

if a knowledge transfer has been carried out beforehand. To achieve the same F-score

without knowledge transfer, one would have to use more than twice as many tuple pairs

for training: the required amount of training data can be significantly reduced through

a well-executed knowledge transfer.

2.7 Summary

In this chapter, we introduced a Siamese neural network capable of learning a similarity

measure between tuple pairs of specific datasets, that can then be used to detect dupli-

cates. In doing so, we eliminate the manual feature engineering process and significantly

reduce the effort required for model building. We compare our approach with two com-

petitors, a more traditional, SVM-based duplicate detection approach and DeepMatcher,

a neural network for entity linking. In duplicate detection, we were able to outperform

our competitor in all cases, with performance improvements of up to 22 percent. We

managed to outperform the DeepMatcher system on four out of six entity-linking datasets

and achieved improvements of up to 26 percent F-measure.

We conceived and implemented a knowledge transfer between two deduplication net-

works, which shows that knowledge which accumulates during the training in the weight

matrices of one network can be transferred to another deduplication network. By trans-

ferring the matrices of selected attributes, we succeeded in increasing the overall network

performance by +4.7 and +4.6 percentage points. This marks a significant performance

increase when compared to the respective baselines. In addition, we showed in a subse-

quent experiment that it is possible to reduce the amount of training data by performing

a knowledge transfer.

40

Chapter 3

Extracting Knowledge from

Unstructured Data

As outlined in Section 1, the information contained in unstructured data sources has

tremendous value and can be a business-critical asset for the success of many corpora-

tions. Text documents, such as newspaper articles or financial credit reports, may contain

information about a merger of two companies or a company’s solvency. Such information

is often only available in text form, which is not easily accessible via traditional systems,

such as relational or non-relational database systems. Making this information accessible

in a structured and machine-readable way is at the core of the text mining component.

It extracts the information required for a specific use case from textual documents and

integrates it into a knowledge base that can then be used by other applications.

Named Entity
Linking
(NEL)

Named Entity
Recognition

(NER)

Relationship
Extraction
(RELEX)

Text Mining

Figure 3.1: Overview of the text mining pipeline and its subcomponents

As shown in Figure 3.1, the text mining component itself is divided into the three

subcomponents named entity recognition (NER), named entity linking (NEL), and rela-

tionship extraction (RELEX), which are the subject of the following sections.

In this chapter, we present a conditional random field (CRF) [Lafferty et al., 2001]

based machine learning approach capable of reliably recognizing organizations in Ger-

man texts. In particular, we address the problem of recognizing company names from

textual data by incorporating dictionary matches into the training process of a CRF. The

resulting NER can then be applied as the first subcomponent of the text mining pipeline.

While named entity recognition is a much-addressed research topic, recognizing compa-

nies in texts is of particular difficulty. Company names are extremely heterogeneous in

41

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

structure. In many cases, they are referenced by different names made up of various con-

stituent parts, such as personal names, locations, acronyms, numbers, and other unusual

characters. For example, the company name “da Jobst Getränke und mehr . . . e.K. Inh. K.

Kubitscheck” contains, in addition to the company name itself (da Jobst), it’s business

area (Getränke), punctuation marks (. . .), its legal form (e.K.), the name of a person (K.

Kubitscheck), the role that the person plays within the company (Inh.) and some parts

that cannot be clearly assigned to any specific category (und mehr). Further, instead

of using the official company name, quite different colloquial names are frequently used

by the general public. Thus, the car manufacturer “Daimler AG” is popularly known

under a multitude of other names such as “Mercedes”, “Daimler”, “Mercedes-Benz”, “die

Singelfinger Autobauer”, “Daimler-Benz”, or simply “Benz”.

Besides using features, such as regular expressions and the entity context, our idea

is to capture external knowledge in the form of a feature that indicates whether a token

is part of a known entity, such as a company name. To this end, we transform various

dictionaries into token tries that enable us to efficiently determine whether the analyzed

text contains company mentions that are included in the dictionary. Our evaluation

focuses on analyzing the impact of using a perfect dictionary and different real-world

dictionaries, as well as the effects of different ways to integrate the knowledge contained

in the dictionaries on the performance of the NER system. Using our system, we were

able to extract 263,846 company mentions from a corpus of 141,970 newspaper articles.

In particular, we make the following contributions:

• Creation of an NER system capable of recognizing companies in German texts with

a precision of 91.11% and a recall of 78.82%.

• Analysis of the impact of various dictionary-based feature strategies on the perfor-

mance of the NER.

• A public dataset consisting of 1 000 manually annotated documents containing

2 351 company mentions.

The remainder of this chapter is structured as follows: Section 3.1 introduces the

task of named entity recognition with emphasis on the extraction of company names.

Section 3.2 discusses related work, while Section 3.3 presents the baseline configuration

for the proposed CRF. In Section 3.4, we give an overview of the text corpus and the

dictionaries we used. We describe the key data structures and technical aspects of the

approach in Section 3.5. We then present our experimental results in Section 3.6. Sec-

tions 3.7 and 3.8 provide an overview of the areas named entity linking and relationship

extraction as well as a summarization of the current state-of-the-art in both fields. Both

sections are intended to complete the picture of the text mining component. We conclude

this chapter by giving a summary in Section 3.9. Except for Sections 3.7 and 3.8, the

content of this chapter is based on [Loster et al., 2017].

42

3.1 Named entity recognition for company names

3.1 Named entity recognition for company names

In our context, named entity recognition (NER) defines the task of not only recognizing

named entities in unstructured texts but also classifying them according to a predefined

set of entity types. The NER task was first defined during the MUC-6 conference [Gr-

ishman and Sundheim, 1996], where the objective was to discover general entity types,

such as persons, locations, and organizations as well as time, currency, and percentage

expressions in unstructured texts. Subsequent tasks, such as entity linking, question

answering, or relationship extraction, rely heavily on the performance of NER systems,

which often serve as a foundation for these procedures. Motivated by the use case pre-

sented in Section 1.2, we highlight the particular difficulties of finding business entities

in (German) texts.

Although there is a large body of work on recognizing entities starting from per-

sons and organizations to entities like gene mentions or chemical compounds, research

often neglects the detection of more fine-grained sub-categories, such as person roles

or commercial companies. In many cases, the “standard” entity classes turn out to be

too coarse-grained to be useful in subsequent tasks, such as automatic enterprise valu-

ation, identifying the sentiment towards a particular company, or discovering political

and company networks from textual data.

What makes recognizing company names particularly difficult is that in contrast

to person names, they are more heterogeneous in their structure. As such, they can

be referenced in a multitude of ways and are often composed of many constituent parts,

including person and country names, locations, industry sectors, acronyms, numbers, and

other tokens, making them particularly hard to recognize. This heterogeneity is expected

to be true, particularly for the range of medium-sized to small companies. Regarding

examples like “Simon Kucher & Partner Strategy & Marketing Consultants GmbH”, “Loni

GmbH”, or “Klaus Traeger”, which all are official names of German companies, one can

easily see that they vary not only in length and types of their constituent parts but also in

the position where specific name components appear. In the example “Clean-Star GmbH

& Co Autowaschanlage Leipzig KG”, the legal form “GmbH & Co KG” is interleaved with

information about the type of the company (carwash) and location information (Leipzig,

a city in Germany). What is more, company names are not required to contain specific

constituent parts: the example “Klaus Traeger” from above is simply the name of a

person. It does not provide any additional information apart from the name itself, which

leads to ambiguous names that are difficult to identify in practice.

Additionally, and in contrast to recognizing named entities in English texts, detecting

them in German texts presents itself as an even greater challenge. As pointed out

by Faruqui and Padó [2010], this difficulty is due to the high morphological complexity

of the German language, making tasks such as lemmatization much harder to solve.

Hence, features that are highly effective for English often lose their predictive power for

German. Capitalization is a prime example of such a feature. Compared to English,

where capitalization of common nouns serves as a useful indicator for named entities, in

German all nouns are capitalized, which drastically lowers the predictive power of this

feature.

43

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

98.93%

74.40%

41.27%

32.53%

16.07%
13.87%

10.80%

5.73% 4.40%
1.67% 1.07%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Le
ga

l F
or

m

Se
ct

or
Pu

nc
tu

at
io

n
Pe

rs
on

 La
st

 N
am

e

Lo
ca

tio
n

Pr
op

er
 N

ou
n

Pe
rs

on
 F

irs
t N

am
e

Ab
br

ev
ia

tio
n

Bu
sin

es
s D

et
ai

ls
Pe

rs
on

 R
ol

e
Pe

rs
on

 T
itl

e
Figure 3.2: Proportion of constituent parts in 1500 manually annotated company
names

As part of another research project [Loster et al., 2018a], we investigated the distri-

bution of the constituent parts of company names in more detail. Figure 3.2 represents

the result of this investigation as it shows the distribution of the constituent parts of 1500

manually annotated company names. As can be seen, the annotated company names

contain information about their legal form in almost all cases, while information about

business sectors, punctuation marks, or the last name of persons are rapidly decreasing

and generally occur in significantly fewer cases. Looking at the other end of the spec-

trum, information about a person’s title, role, and first name, as well as information

on business details and abbreviations, was very rarely available, in fact, well below 10%

for almost all the aforementioned parts. In general, the name constituents follow the

characteristics of a power-law distribution, where a few common constituents occur very

often while others occur only a few times.

3.2 Related work

Since its first appearance on the MUC-6 conference [Grishman and Sundheim, 1996], the

problem of named entity recognition (NER) has become a well-established task leading

44

3.2 Related work

to many systems and methods that have been developed over time [Nadeau and Sekine,

2007]. Before discussing the differences of our approach to the most related approaches,

we give an overview of the related work in general.

Most existing NER systems can be classified into rule-based [Chiticariu et al., 2010;

Sekine and Nobata, 2004], machine learning-based [McCallum and Li, 2003; Zhou and

Su, 2002], or hybrid systems [Hermann et al., 2014; Srihari, 2000]. While rule-based sys-

tems make use of carefully hand-crafted rules, machine learning approaches tend to train

statistical models, such as Hidden Markov Models (HMM) [Zhou and Su, 2002] or Con-

ditional Random Fields (CRF) [Lafferty et al., 2001], to identify named entities. Hybrid

systems combine different methods to compensate for their shortcomings. They try to

incorporate the best parts of the applied methods to reach a high system performance.

Many approaches to the NER problem are based on CRFs. [Faruqui and Padó, 2010;

Krishnan and Manning, 2006; McCallum and Li, 2003]. One of the most popular and

freely available NER systems for English texts is the Stanford NER system [Finkel et al.,

2005]. It recognizes named entities by employing a linear-chain CRF to predict the most

likely sequence of named entity labels. While this system shows good performance on

English texts, it’s performance values decrease when applied to German texts. This effect

has also been pointed out by Benikova et al. [2014], who argue that German NER systems

are not on the same level as their English counterparts even though German belongs to

the group of well-studied languages. This difficulty arises from the fact that the German

language has a very rich morphology, making it especially challenging to identify named

entities. Besides the already mentioned problem of capitalization, the German language

is capable of creating complex noun compounds like “Vermögensverwaltungsgesellschaft”

(asset management company) or “Industrieversicherungsmakler” (industry insurance bro-

ker), which make the application of traditional NLP methods even harder.

Nonetheless, German NER systems exist, and some were presented at the CoNLL-

2003 Shared Task [Sang and Meulder, 2003]. With the participating systems achieving

F1-scores between 48% and 73%, the winning system by Florian et al. [2003] obtained an

overall F1-measure of 72.41% on German texts and 64.62% on recognizing organizational

entities. Since the inception of the CoNLL-2003 Shared Task, one of the most successful

NER systems for the German language was introduced by Faruqui and Padó [2010].

It reaches overall F1-scores between 77.2% and 79.8% by using distributional similarity

features and the Stanford NER system. Even more recently, additional German NER

systems were presented at the GermEval-2014 Shared Task [Benikova et al., 2014]. The

GermEval Shared Task specifically focuses on the German language and represents an

extension of the CoNLL-2003 Shared Task. The three best competing systems were

ExB [Hänig et al., 2014], UKP [Reimers et al., 2014], and MoSTNER [Schüller, 2014].

All of them apply machine learning methods, such as CRFs or neural networks, which

leverage dependencies between the utilized features. Additionally, they use semantic

generalization features, such as word embeddings or distributional similarity, to alleviate

the problem of limited lexical coverage, which, according to Watrin et al. [2014], is

triggered by the often insufficient corpus size used in the training phase of statistical

models. To summarize the performance of these systems, they operate in the range of

73% to 79% F1-measure.

45

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

Considering the role of dictionaries in building NER systems, Ratinov and Roth

[2009] argue that they are crucial for achieving high system performance. The process of

automatically or semi-automatically creating such dictionaries from various information

sources has been addressed by Kazama and Torisawa [2007] and Toral and Muñoz [2006].

Both works focus on the creation of large dictionaries, also known as gazetteers, from

open and freely available data sources, such as Wikipedia. The general idea is to establish

and assign category labels for each word sequence representing a viable entity by using

the information contained in corresponding Wikipedia articles. According to Toral and

Muñoz [2006], dictionaries can be separated into two different classes, so-called trigger

dictionaries, which contain keywords that are indicative for a particular type of entity,

and entity dictionaries, which are composed of the entire entities. For example, a trig-

ger dictionary for companies would most likely contain tokens for legal-forms, such as

“GmbH” (LLC) or “OHG” (general partnership), whereas an entity dictionary would con-

tain the entire representation of the entity itself, e.g., “BMW Vertriebs GmbH”. For our

approach, we decided to employ entity dictionaries, since there are many openly available

data sources from which they can be constructed. Similar to semantic generalization fea-

tures, features generated from dictionaries aim to mitigate the out-of-vocabulary (OOV)

problem resulting from the low lexical coverage of statistically learned models.

Besides our proposed system, other systems also make use of dictionaries to increase

their performance. As such, all systems mentioned above use dictionaries at some point

in their process [Hänig et al., 2014; Reimers et al., 2014; Schüller, 2014]. Most of the cur-

rently existing systems integrate the knowledge contained in dictionaries by constructing

features that represent a dictionary lookup. Since each dictionary accounts for a par-

ticular type of entity, the constructed feature encodes to which dictionary the word

currently under classification belongs and, therefore, implicitly provides evidence for its

correct classification. These features are subsequently used in the training process of

statistical models, such as CRFs or HMMs.

Cohen and Sarawagi [2004] describe another way of integrating dictionary knowledge

into the training process of an NER system. They present a semi-Markov extraction

process capable of classifying entire word sequences instead of single words. In doing so,

they effectively bridge the gap between NER methods that sequentially classify words

and record linkage metrics that apply similarity measures to compare entire candidate

names.

While the previously mentioned systems focus on detecting entities belonging to

the entity class “organization”, which, apart from companies, includes sports teams,

universities, political groups, etc., our system, driven by the use cases in Section 1.1,

specifically excludes such entities and solely focuses on detecting commercial companies.

As dictionaries are often incomplete, they are unable to identify unknown companies,

which, under realistic conditions, makes it challenging to recognize company names by

the sole use of dictionaries. However, the inclusion of a dictionary in the training process

of a CRF classifier combines both, the knowledge contained in the dictionary and the

generalization capabilities of the classifier to enable the recognition of unknown company

names. In particular, we use a dictionary to annotate already known companies in a

preprocessing step, which in turn allows us to construct a feature that can be used in

46

3.2 Related work

the training of a CRF classifier. We use dictionaries from different sources and examine

their impact on the overall system performance. Additionally, we report on strategies to

integrate the domain knowledge provided by the dictionaries into the training process.

Since 2016 much has changed in natural language processing (NLP), which is why I

briefly summarize the current state of research. Driven by the success of deep learning

techniques in the NLP field, approaches for named entity recognition have also adapted

to this trend. In contrast to traditional entity recognition, most modern methods lever-

age the properties of deep neural networks while also using some form of distributed word

representation. Distributed word representations aim to capture the semantic meaning

of words based on their surrounding context and have the advantage that they can be

trained without supervision on large text corpora. The most common approaches for cre-

ating such word representations, also known as word embeddings, are Word2Vec [Mikolov

et al., 2013], GloVe [Pennington et al., 2014], and fastText [Bojanowski et al., 2017].

However, a weakness of these models is their inability to correctly capture different word

senses. This limitation results from the fact that these models ignore the position of

the context words during model training. Thus, each word is mapped to exactly one

word vector, which represents a mixture of all word senses for the corresponding word.

For example, it becomes impossible to distinguish between the different senses of the

word bowl as in super bowl or soup bowl. Recently, this circumstance has led to the

replacement of word embeddings created by using one of the above techniques with em-

beddings created by complex neural language models such as BERT [Devlin et al., 2019],

which uses a bidirectional arrangement of the Transformer architecture first introduced

in [Vaswani et al., 2017b]. Unlike the previous approaches, these models are designed

to take into account the full context of each word, including the position of context

words, which enables them to capture the different senses of each word. Although these

models can also be trained in an unsupervised manner, the large number of trainable

parameters makes their training quite expensive. For this reason, pre-trained models

are usually used. Currently, state-of-the-art models for named entity recognition often

consist of a combination of neural language models and task-specific neural networks,

in our case, a network for named entity recognition. While the accumulated knowledge

of the pre-trained neural language models is used to generate more sophisticated word

representations, the purpose of the task-specific network is to focus on solving a specific

task.

A widely used task-specific network architecture for entity recognition is the BiLSTM-

CRF architecture of Huang et al. [2015]. Their architecture combines a bidirectional

LSTM (BiLSTM) network with a network layer implementing a conditional random field

(CRF). Besides recognizing named entities, this architecture can also be used for other

sequence tagging tasks, such as part-of-speech (POS) tagging. The network expects a

vector representation of each word in the processed text segment as its input. To learn

the sequence tagging, the BiLSTM layer processes the input sequence in both directions

from start to end and vice versa. This type of processing allows the network to consider

not only information from past but also from future states. For each time step, both

past and future states of the BiLSTM layer are passed to the CRF layer, where they are

handled together with the tagging information of the processed text segment. Thus, the

47

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

CRF layer is responsible for determining the most likely tag sequence for the given text

segment.

At the time of writing, one of the best performing models is the one developed

by Baevski et al. [2019]. Similar to other neural language models, the training objective

is to first hide each word of a given text in order to then predict it using all its contextual

words. To this end, they use a self-attention mechanism that acts as a language model

and is combined with the previously introduced BiLSTM-CRF architecture, which is

used to predict the final tag sequence. Another NER approach uses the popular BERT

language model by Devlin et al. [2019] and combines it with only a BiLSTM network

omitting the additional CRF layer. Given the enormous progress in NLP, it can be

expected that the previously outlined methods will most likely outperform the presented

approach.

3.3 Conditional random fields as NER baseline

For the construction of our company-focused NER system, we use the CRFSuite Frame-

work1 to implement a conditional random field model (CRF). For the baseline configu-

ration of the system, we used various features, such as n-grams, prefixes, and suffixes,

that are based on those used in the Stanford NER system [Finkel et al., 2005]. Besides

considering different window sizes for each feature, we considered a variety of additional

features, for example, a token-type feature, reducing the type of a token to categories like

InitUpper, AllUpper, etc., a feature that concatenates different prefix and suffix lengths

for each token or features that capture some specific characteristic of German company

names. However, these features did not result in additional improvements of our baseline

configuration. Experimenting with different feature combinations resulted in a baseline

configuration consisting of the following six feature groups for a total of 20 features:

The auto maker VW AG is now. . .

words : w−3, w−2, w−1, w0, w1, w2, w3,

pos-tags : p−2, p−1, p0, p1, p2,

shape : s−1, s0, s1
prefixes : pr−1, pr0,

suffixes : su−1, su0,

n-grams : n0,

Here, the w symbol encodes the word token features of a text with its subscript

marking the position of the token. Thus, w0 refers to the current token, whereas w−1
and w1 refer to the previous and next tokens, respectively. The symbols p and s represent

the part-of-speech and word shape features with analog subscript notation.

For the creation of POS tags, we used the Stanford log-linear part-of-speech tag-

ger [Toutanova et al., 2003]. As the name suggests, the shape feature condenses a given

word to its shape by substituting each capitalized letter with an X and each lowercase

1http://www.chokkan.org/software/crfsuite/

48

http://www.chokkan.org/software/crfsuite/

3.4 Corpus & Dictionaries

letter with an x. Thus, the word “Bosch” would be transformed into “Xxxxx”. We

also added prefix and suffix features (pr, su) for the current and previous word. These

features generate all possible prefixes and suffixes for the specific word. As the last fea-

ture, we include the set n0 of all n-grams of the current token with n between 1 and the

length of the current token. This feature set yielded the best performance metrics for

our baseline configuration without adding any external knowledge besides POS tags.

The baseline system achieves an F1-measure of 80.65%. More detailed performance

metrics of the baseline are presented later in Table 3.4, in the context of our overall

experiments.

3.4 Corpus & Dictionaries

Before describing our approach in Section 3.5, we introduce and examine the text corpus

and different information sources we used for building our dictionaries.

3.4.1 Text corpus

Our evaluation corpus consists of 141,970 documents containing approximately 3.17 mil-

lion sentences and 54 million tokens. The documents were collected from five German

newspaper websites, namely, Handelsblatt, Märkische Allgemeine, Hannoversche Allge-

meine, Express, and Ostsee-Zeitung. We intentionally selected not only large national

newspapers but also smaller regional ones; we observe that larger newspapers tend to re-

port more about larger companies or corporations, while the regional press also mentions

smaller companies due to their locality in the region. By using regional articles in our

training process, we intend to increase our chances of discovering small and mid-sized

companies (SMEs) in the long tail. We extract the main content from the articles by

using jsoup2 with hand-crafted selector patterns, which give us the raw text without

HTML markup. Using our final NER system, we were able to extract a total of 263,846

company mentions from this corpus.

3.4.2 Dictionaries

To build our dictionaries, we used two official information sources: the Bundesanzeiger

(German Federal Gazette)3 and the Global Legal Entity Identifier Foundation (GLEIF),

which hosts a freely available company dataset4. Additionally, we used DBpedia5 to

account for large businesses and the German Yellow Pages6 to cover middle-tier and

local businesses. To simulate the best-case scenario, we also composed a “perfect” dic-

tionary containing all manually annotated companies from our test set. Finally, our last

dictionary consists of the union of all dictionaries except the perfect one. Although the

2https://jsoup.org
3https://www.bundesanzeiger.de
4https://www.gleif.org
5http://wiki.dbpedia.org
6http://www.gelbeseiten.de

49

https://jsoup.org
https://www.bundesanzeiger.de
https://www.gleif.org
http://wiki.dbpedia.org
http://www.gelbeseiten.de

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

information sources discussed below contain many different attributes, we use only the

company name for the creation of each dictionary.

Bundesanzeiger (BZ). The Bundesanzeiger is the official gazette for announcements

made by German federal agencies. Among other things, it contains official announce-

ments from companies of various legal forms, such as corporations, limited liability com-

panies, and others. The role of the Bundesanzeiger and the information it provides are

comparable to the U.S. Federal Register. By crawling the BZ company announcements,

we obtained 793,974 company names, their addresses, and their commercial register ID.

GLEIF (GL). The Global Legal Entity Identifier Foundation (GLEIF) was founded

by the International Financial Stability Board7 in 2014. It is a non-profit organization set

up to aid the implementation of the Legal Entity Identifier (LEI). The LEI is designed

to be a globally unambiguous, unique identifier for entities that partake in financial

transactions. In this context, the dataset of legal entities assigned with a unique LEI is

made available for public use by GLEIF. An entry in the provided dataset is, among

other data, comprised of the LEI number, legal name, legal form, and address of a legal

entity. At the time of writing, the dataset consisted of 413,572 legal entities from all

global countries that have been assigned a LEI. The subset for German legal entities

(GL.DE) consists of 42,861 entries.

DBpedia (DBP). The DBpedia project is an effort to systematically extract infor-

mation from Wikipedia and provide it to the public in a structured form [Lehmann

et al., 2015]. Structuring the data contained in Wikipedia pages enables us to use query

languages, such as SPARQL, to answer complex queries based on data originating from

Wikipedia. We queried for the names of all companies contained in the German DB-

pedia database, yielding a dictionary of 41,724 entries. The resulting dataset contains

all companies that have a German Wikipedia page. Thus it predominantly contains

German companies as well as some international companies that also possess a German

Wikipedia page, such as IBM or Microsoft. We expect that most of the collected com-

pany names in this dataset belong to larger companies, as small companies usually do

not have a Wikipedia page. Since the extracted names originate from Wikipedia pages,

they are very often already in their colloquial form. Also, the dataset contains some

additional aliases, such as “VW” for the “Volkswagen AG”, which are difficult to generate

automatically.

Yellow pages (YP). As a marketing solutions provider, the German Yellow Pages

maintains a large company register, which mainly contains information about small and

middle-tier businesses. Using the web pages provided by the register, we were able to

extract information, such as the company name, address, email address, phone number,

and industrial sector for each company listed in the Yellow Pages. The dataset consists

of 416,375 company entries.

7http://www.fsb.org/

50

http://www.fsb.org/

3.4 Corpus & Dictionaries

BZ DBP YP GL GL.DE PD

BZ 796,389 - - - - -
DBP 333 41,724 - - - -

YP 14,689 757 416,375 - - -
GL 16,420 792 2,166 413,572 - -

GL.DE 16,370 452 2,130 42,861 42,861 -
PD 62 633 105 50 31 2,351

Table 3.1: Dictionary overlaps using exact match. For instance, 796,389 BZ
entries find 333 exact matches in DBP.

BZ DBP YP GL GL.DE PD

BZ 796,389 4,746 114,958 122,308 119,514 4,900
DBP 2,436 41,724 2,049 3,472 1,775 857

YP 38,170 3,141 416,375 7,988 7,741 330
GL 25,419 4,569 6,546 413,572 43,838 504

GL.DE 23,372 1,907 6,128 42,861 42,861 249
PD 232 821 207 248 125 2,351

Table 3.2: Dictionary overlaps using fuzzy match (cosine, θ = 0.8). For instance,
796,389 BZ entries find 2,436 similar entries in DBP.

Perfect dictionary (PD). For evaluation purposes, we manually labeled company

mentions in 1,000 documents (see Sec. 3.6.1 for details). The perfect dictionary contains

exactly the 2,351 manually annotated company names from our training and test set.

Because of their origin, the company names contained in this dictionary are already in

their colloquial form. Using this dictionary, we were indeed able to correctly identify

all companies in our test set. Furthermore, this dictionary enables us to simulate the

best-case scenario in which the dictionary is composed of all companies occurring in our

test set.

All aforementioned dictionaries contain large sets of German company names, so we

expect them to overlap. To gain a better understanding of our dictionary’s coverages,

we computed their mutual containment. We calculated the overlaps using exact match

and a fuzzy match. The latter constitutes a more realistic matching scenario accounting

for typos and other noise. For computing the matches, we applied the method described

by Okazaki and Tsujii [2010]. Summarizing their approach, the authors compute the sim-

ilarity between two strings by splitting them into n-grams and using similarity measures

like Dice, Jaccard, or cosine similarity to determine their similarity using a threshold α.

For our calculations, we chose a trigram tokenization of the strings and cosine similarity

as our metric. We calculated the fuzzy overlaps using different thresholds for θ and found

experimentally that a value of 0.8 performed best on our data.

The pairwise overlaps are shown in Table 3.1 for exact matches and Table 3.2 for

fuzzy matches. Surprisingly, even in the case of fuzzy overlaps, the highest overlap was

only 11.24%, namely, between the BZ and the GL dictionary. All other overlaps were

below this value, except in cases where they were contained in each other (GL.DE⊂GL).

The exact matching overlaps scored even lower, with a maximum overlap of 1.37%.

51

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

We identified three possible reasons for these low overlaps. The first and most obvi-

ous reason is that our quite simplistic fuzzy matching is not sufficient to recognize many

correct matches. Secondly, each of the dictionaries favors a different kind of company and

company size. For example, the DBpedia dictionary contains mostly colloquial names,

whereas the Bundesanzeiger refers to companies using their full legal name. Finally, the

dictionaries were crawled at slightly different points in time; hence some may contain

companies that no longer exist and are thus missing from the other dataset. As a conse-

quence, we created an additional dictionary that combines all the mentioned dictionaries

into one as well as several dictionary versions used to evaluate the impact of different

dictionaries on the training process of the classifier:

All dictionaries (ALL). This dictionary contains the union of all company names from

all dictionaries, except the perfect one. When merging the individual dictionaries, similar

company names were not consolidated (no fuzzy matching), so that all name variations

were preserved. In total, it comprises 1,713,272 company names.

Dictionary versions (VER). To evaluate the impact of different dictionary versions

on the performance of the CRF model, we also generated several dictionary versions

that correspond to the rows in table 3.4. In total, we created three different dictionary

versions for the Bundesanzeiger, GLEIF, GLEIF(DE), Yellow Pages, and DBpedia. The

first dictionary version contains the original company names obtained from the crawled

sources. The second version, marked with “+ Alias”, additionally includes all aliases

generated by the process described in Section 3.5.1. The last version, marked with

“+ Alias + Stem”, also incorporates a stemmed version of each company name and

all its generated aliases. We excluded the perfect dictionary from the alias generation

process since it contains the manually tagged colloquial company names. Hence, the

approximation of colloquial company names through alias generation is not necessary.

3.5 Company recognition using dictionaries

Named entity recognition (NER) is a sequence labeling task that aims to sequentially

classify each word in a given text as belonging to a specific class, e.g., person or company.

As mentioned, we make use of the CRFSuite Framework to construct our NER system.

First, we describe our alias generation process, which extends the given dictionaries, in

Section 3.5.1. Then, Section 3.5.2 describes how we create the dictionaries and how

we efficiently integrate the contained domain knowledge into the training process of the

CRF.

3.5.1 Alias generation

Unfortunately, company names acquired from web sources contain noise, such as country

names, legal forms, and other spurious terms. That is, they often differ significantly from

their colloquial names. Here the “colloquial name” is to be understood as the name by

which a company is commonly referred to in text. For example, while “Dr. Ing. h.c.

F. Porsche AG” represents the official company name of the automobile manufacturer,

52

3.5 Company recognition using dictionaries

we most often refer to the company by its colloquial name, which is simply “Porsche”.

Assuming that articles mention companies more frequently by their colloquial name than

their official name, it becomes necessary to automatically derive such alternative names,

in the following referred to as aliases, from a company’s official name.

Regarding the alias generation, special attention should be paid to the fact that

one company often possesses more than one alias. Considering again the example from

above, the company Porsche has at least four valid and common aliases, namely “Dr.

Ing. h.c. F. Porsche AG”, “Ferdinand Porsche AG”, “Porsche AG”, or just plain “Porsche”.

Furthermore, there are a number of non-trivial aliases that are particularly difficult to

anticipate by using an automated process. For example, the automobile manufacturer

“Volkswagen” is also referred to as “VW” or even “die Wolfsburger”, referring to the city

of Wolfsburg, in which Volkswagen’s headquarters is located.

Our alias generation process consists of the following five steps, using the example of

“TOYOTA MOTOR™USA INC.”, which is depicted in Table 3.3. Each of the Steps 1–4

yields one new alias for the currently processed company name, resulting in four aliases

per name. Note that some of the four aliases are identical and identical copies are

removed. The fifth and final stemming step adds another five aliases by stemming the

company name itself and all previously generated aliases. This means that a maximum of

nine aliases could be generated by applying the five processing steps to a given company

name.

Step Action Example

0 Original name TOYOTA MOTOR™USA INC.
1 Removal of legal form designations TOYOTA MOTOR™USA
2 Removal of special characters TOYOTA MOTOR USA
3 Normalization Toyota Motor USA
4 Country name removal Toyota Motor
5 Stemming of company names no change

Table 3.3: Alias name generation process exemplified by Toyota Motors USA

1 & 2: Legal form & special character cleansing. We start to infer the aliases by

using a rule-based approach that relies on regular expressions to strip away a company’s

legal form. The regular expressions we use are derived from the description of business

entity types found on Wikipedia8. The derivation process consists of looking at the

business entity types for selected countries and manually creating regular expressions that

are able to match the legal forms of the selected countries. We chose the countries based

on the most frequent legal forms occurring in our datasets. For example, the business

entity types we used to derive the regular expressions for Germany include “Gesellschaft

bürgerlichen Rechts (GbR)”, “Kommanditgesellschaft (KG)”, or “Offene Handelsgesellschaft

(OHG)”. Step 2 further cleanses the names by removing various special characters, such

as “®”, “tm”, and parentheses.

8http://en.wikipedia.org/wiki/Types_of_business_entity

53

http://en.wikipedia.org/wiki/Types_of_business_entity

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

3: Normalization of company names. In Step 3, we tokenize the company name

and “normalize” each token that has a length greater than four characters and is written

in all capital letters. This normalization step consists of first lowercasing and then

capitalizing each token that matches the aforementioned criterion. As an example, the

normalization step would transform “VOLKSWAGEN AG” into “Volkswagen AG” and

“BASF INDIA LIMITED” into “BASF India Limited”.

4: Country name removal. During the fourth step, we remove all country names

appearing in a company’s name using a list of country names and their translations

to other languages9. Although, in general, more intricate transformation rules can be

created, we found that the ones presented here are sufficient for our purposes.

5: Stemming. Using an exact matching strategy to match company names that devi-

ate only slightly from the aliases stored in a dictionary can produce suboptimal results.

For example, consider the name “Deutsche Presse Agentur”, which can also occur as

“Deutschen Presse Agentur”, depending on the grammatical context. To mitigate these

matching issues, we generate additional aliases by stemming each token in a company’s

name and all its generated aliases using a German Snowball Stemmer10. Using this

strategy, we generate the alias “Deutsch Press Agentur”, which can, in turn, be used to

match both representations of the aforementioned name. Adding the resulting aliases

to a dictionary increases the chances to match a slightly varying company name to an

entity contained in the dictionary while using an exact match strategy.

3.5.2 Dictionary and feature construction

To create the dictionary, we decided to use entity dictionaries containing whole entity

names and their aliases instead of trigger dictionaries that consist of simple keywords

indicating the presence of an entity. Using this approach simplifies dictionary creation,

as it is reduced to the simple addition of company names and their aliases. In contrast,

the creation of trigger dictionaries first requires the creation of keywords out of company

names, either by manually creating extraction rules or by using algorithms, such as

TF–IDF. [Manning et al., 2008].

To make use of the information contained in a dictionary during the CRF training

process, we create a feature that encodes whether the currently classified token is part

of a company name contained in one of the dictionaries. To efficiently match token

sequences in a text against a specific dictionary, we tokenize a company’s official name

as well as all its aliases and insert the generated tokens according to their sequence into

a trie data structure. During insertion, we mark the last inserted token of each token

sequence with a flag denoting the end of the inserted name. In this manner, we insert

all company names into the token trie. Figure 3.3 shows an excerpt of such a token trie

after inserting several company names. After its creation, the token trie functions as a

9https://en.wikipedia.org/wiki/List_of_country_names_in_various_languages
10http://snowball.tartarus.org/algorithms/german/stemmer.html

54

https://en.wikipedia.org/wiki/List_of_country_names_in_various_languages
http://snowball.tartarus.org/algorithms/german/stemmer.html

3.6 Experiments

. . .

Bosch

Packaging

Systems AG

Technology K.K.

SystemsInterlitRexroth

Solar

Energy

CISTech

Toyota Motor Credit

USA

Corp.

Inc.

Figure 3.3: An example of a token trie. Double circles indicate final states.

finite-state automaton (FSA) for efficiently parsing and annotating token sequences in

texts as companies.

We perform the matches in a greedy fashion by always choosing the longest possible

match. The outlined approach is crucial when using entity dictionaries. In contrast to

trigger dictionaries which contain only single tokens, entity dictionaries mark the entire

token sequence representing an entity (e.g., “Volkswagen Financial Services GmbH”). They,

therefore, need to keep track of their matching state to determine if a match occurred.

3.6 Experiments

In this section, we describe our experiments and present the results generated by our

system. In Section 3.6.1, we present the setup of our experiments by introducing our

test data, annotation policy, and the validation method used. Our goal is to evaluate

the effect of using dictionaries for NER. Section 3.6.2 presents the evaluation results of

our baseline system without the use of dictionaries, as well as a comparative evaluation

against the Stanford NER system. The results of using only the generated dictionaries

to discover companies in our test data are discussed in Section 3.6.3. Section 3.6.4 then

shows and discusses the results of integrating the domain knowledge contained in the

dictionaries into our baseline system. Finally, we discuss the case of using the perfect

dictionary in Section 3.6.5. The performance results in terms of precision, recall, and

F1-measure for all analyzed system configurations can be found in Table 3.4.

3.6.1 Experimental setup

For the evaluation of our system, we randomly selected 1,000 articles across all sources for

which we could confirm that they contain at least one company mention. We manually

55

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

annotated these articles by assigning the company-label to each token representing a

company mention in the text. We used a very strict annotation policy for tagging

the company names in each document; the goal of the policy is to distinguish between

mentions referring to a company and mentions referring to related products, persons,

or brands. To this end, we considered the context of a company mention to identify a

“real” company like BMW, as opposed to a mention appearing as part of another phrase,

such as BMW X6, which we did not annotate. In this case, the token X6 identifies the

token BMW as part of a product mention. During the annotation process, we discovered

and marked 2,351 company mentions in the chosen documents, each consisting of one or

more tokens. Links to the news articles of this corpus, together with titles and labeled

entities, are available at the project’s website11.

To evaluate our system’s performance, we performed a ten-fold cross-validation by

splitting the annotated documents into ten folds, each fold containing 900 articles for

training and 100 articles for testing. For each fold, we measure precision, recall, and

F1-measure. The overall performance of the trained model is calculated by averaging the

performance metrics over all folds.

We conduct a series of experiments to evaluate our system as well as the impact of

different dictionary versions on the system’s performance. The results of all experiments

are given in Table 3.4. First, we compared the performance of our baseline system to the

Stanford NER system, as described in Section 3.6.2. Subsequently, we conducted multiple

experiments to evaluate the impact of different dictionary versions on the performance of

the generated CRF model. To this end, we used the different dictionary versions (VER),

as introduced in Section 3.4.2. We evaluated each of the generated dictionary versions

in two scenarios, illustrated by the two columns “Dict only” and “CRF” in Table 3.4. In

the “Dict only” scenario, described in Section 3.6.3, we use each dictionary on its own

to identify the companies contained in our test set. The “CRF” scenario is discussed in

Section 3.6.4, where we focused on integrating the different dictionary versions into the

training process of the CRF and use the generated model to discover company names.

3.6.2 No dictionaries

We started our experiments by evaluating the baseline configuration introduced in Sec-

tion 3.3. Using the basic features mentioned there, we were able to achieve a performance

of F1=80.65% without adding any additional domain knowledge to the system (see Ta-

ble 3.4 for details).

We additionally compare our base system with the Stanford NER system [Finkel

et al., 2005], which we used to train a new model on the same training and test documents

as our system. To this end, we used the configuration suggested on their website12. Using

the resulting model, the Stanford system achieves a slightly better F1-score of 81.76%.

This result is 1.36 percentage points below the precision and 2.68 percentage points above

the recall metrics of the baseline, which is caused by slight variations in the features used.

11 https://hpi.de/en/naumann/projects/repeatability/datasets/corpus-comp-ner.html
12http://nlp.stanford.edu/software/crf-faq.shtml

56

https://hpi.de/en/naumann/projects/repeatability/datasets/corpus-comp-ner.html
http://nlp.stanford.edu/software/crf-faq.shtml

3.6 Experiments

Dictionary Dict only CRF

P R F1 P R F1

Baseline (BL) – – – 91.38% 72.25% 80.65%
Stanford NER – – – 90.02% 74.93% 81.76%

BZ 74.23% 3.23% 6.15% 90.90% 75.79% 82.63%
BZ + Alias 16.20% 39.27% 22.91% 91.09% 75.74% 82.63%
BZ + Alias + Stem 6.38% 39.77% 10.98% 90.93% 76.03% 82.78%
GL 34.61% 2.92% 5.37% 90.91% 75.76% 82.62%
GL + Alias 41.71% 50.55% 45.67% 90.78% 77.43% 83.55%
GL + Alias + Stem 18.79% 50.77% 27.39% 90.83% 77.07% 83.36%
GL.DE 68.91% 1.17% 2.29% 90.92% 75.82% 82.66%
GL.DE + Alias 55.78% 21.58% 31.02% 90.97% 76.89% 83.30%
GL.DE + Alias + Stem 39.54% 21.58% 27.85% 90.83% 77.07% 83.36%
YP 16.11% 15.01% 15.53% 91.02% 75.88% 82.73%
YP + Alias 18.34% 21.26% 19.68% 90.92% 75.89% 82.67%
YP + Alias + Stem 7.05% 21.34% 10.58% 90.29% 75.92% 82.72%
DBP 63.13% 43.61% 51.51% 91.25% 78.54% 84.40%
DBP + Alias 44.18% 53.38% 48.29% 91.11% 78.82% 84.50%
DBP + Alias + Stem 29.79% 53.47% 38.24% 91.14% 78.76% 84.48%
ALL 20.07% 71.56% 31.33% 90.60% 77.36% 83.43%
ALL + Alias 20.11% 71.80% 31.39% 90.61% 77.33% 83.41%
ALL + Alias + Stem 8.15% 72.16% 14.64% 90.94% 76.93% 83.32%

PD (perfect dict.) 81.67% 100.00% 89.90% 94.68% 96.47% 95.56%
PD (perfect dict.) + Stem 81.67% 100.00% 89.90% 94.68% 96.47% 95.56%

Table 3.4: Results of including different dictionaries into the CRF training process

3.6.3 Dictionaries only

Next, we used the generated dictionaries on their own to discover the company mentions

contained in our test set, as described in Section 3.5.2. The left, “Dict only” part of

Table 3.4, represents the results of these experiments. The highest precision of 74.23%

could be achieved by using the Bundesanzeiger dictionary in its original form. Using

the DBpedia dictionary in its original form resulted in the highest F1-measure value of

51.51%. It is worth noting that using this dictionary in combination with our baseline

system and the generated aliases also yielded the best overall results, as described in the

following section. Not surprisingly, the highest recall of 72.16% was achieved by com-

bining all dictionaries (except PD) that include the generated aliases and the stemmed

name versions.

To understand the impact of alias generation, we compare the average recall of all

basic dictionaries, which is 22.92%, with the average recall of all extended dictionaries,

which is 42.97% (data not shown). The difference of 20,06 percentage points is sufficiently

high to justify the use of aliases in principle. Analogously, we analyzed stemming. The

average improvement caused by using the dictionaries that include aliases as well as the

stemmed names accounted for another increase of 0.21%. However, the improvements

in recall are accompanied by an average decrease in precision of 13.46% from the no-

aliases to the aliases version, and a further decrease by 14.44 percentage points to a total

57

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

decrease of −18.28% when including the stemmed versions. In summary, we suggest the

use of aliases but refrain from including stemmed company names in a dictionary.

In addition, we experimented with a dictionary that contained only the company

names and their stemmed versions, but no aliases, to assess the impact of stemming on

the dictionary-only approach. Here, the precision decreased by 18.94 percentage points,

while the recall increased only by 0.08 percentage points (not shown in Table 3.4). Hence,

we conclude that the stemming of company names has a negative impact on the precision

of the dictionary-only approach and does not significantly improve recall.

When averaging over all the different dictionary versions (without PD), we arrive at

an overall performance of 32.39% precision and 36.36% recall. Considering these metrics,

it becomes clear that a dictionary-only approach is not sufficient for discovering company

names in textual data.

Regarding the perfect dictionary, it is interesting to see that while a recall of 100%

could be achieved, the precision reached only a maximum of 81.67%, which is owed to

false positives. These are mostly of the form mentioned earlier, where a company name

is part of a product name or role description (the VW executive was ...). We expect such

errors to be eliminated by the combination with the CRF approach, which makes use of

a terms’ context.

3.6.4 Combining dictionaries and CRF

We now discuss the results achieved by combining the domain knowledge contained in

the dictionaries and the CRF training process. Overall, we were able to improve the per-

formance over the no-dictionary and the dictionary-only approaches, regardless of which

dictionary we used. Regarding the right column of Table 3.4, we achieved the best results

in recall and F1-measure by using the dictionary generated from DBpedia, including the

generated aliases (DBP + Alias). Using this dictionary, the system was able to reach an

F1-score of 84.50% with precision and recall values of 91.11% and 78.82%, respectively.

By combining the colloquial names already contained in the DBpedia dictionary with

the additionally generated alias names, we are able to match more companies than with

any of the other dictionaries, explaining our high recall. Interestingly, the initial intu-

ition that combining all dictionaries into one would result in the best performance of our

system turned out not to be true. A more concise dictionary, such as DBpedia, yields

slightly better results.

As we have done in the previous section, we calculated the average change in pre-

cision, recall, and F1-measure. Table 3.5 shows the average change in performance for

gradually evolving our baseline system by including the different dictionary versions.

We calculated these values to determine which of the extension steps described in Sec-

tion 3.5.1 had the largest impact on system performance. As can be seen, the average

change in performance increases significantly, moving from the baseline system to a sys-

tem that uses additional domain knowledge by integrating the basic dictionary version

without aliases or stemming. Using additional domain knowledge, the system’s precision

slightly decreased by 0.45 percentage points, whereas recall and F1-measure improved

on average by 4.28 and 2.43 percentage points, respectively.

58

3.6 Experiments

Transition Avg. P Avg. R Avg. F1

BL −→ BL + Dict −0.45% +4.28% +2.43%
BL + Dict −→ BL + Dict + Stem +0.05% −0.06% −0.09%
BL + Dict −→ BL + Dict + Alias −0.02% +0.49% +0.26%
BL + Dict + Alias −→ BL + Dict + Alias + Stem −0.09% −0.05% −0.01%

Table 3.5: Performance change for different dictionary versions, averaged over all
dictionaries except PD

Using the dictionary versions containing the generated aliases for each company name,

the system gained, on average, another 0.26 percentage points in F1-measure. With re-

spect to average precision and recall, the recall increased by 0.49 percentage points,

while precision slightly decreased by 0.02 percentage points. Due to the alias generation

process that condenses a given company name according to the rules described in Sec-

tion 3.5.1, we were able to increase the recall while at the same time sustaining precision:

we achieved a maximum increase of 6.57 percentage points for recall while the precision

decreased only slightly by 0.28% using the DBpedia dictionary including generated alias

names. The largest increase of 3.85 percentage points in F1-measure was also recorded

while using the same dictionary. The results suggest that by further improving the alias

generation process, it should be possible to increase the recall while sustaining high

precision.

Regarding dictionaries containing the stemmed version of the original company names

and their aliases, we conclude that stemming has only a limited impact; the results pro-

duced by including stemmed names are not significantly better. For a dictionary version

that included only the company names and their stemmed version, the improvements

were so low or even negative, that we report only on the average change of using this dic-

tionary in Table 3.5. As it turned out, the reduction of company names to their stemmed

form accounts only for a very limited number of cases. For instance, the airline Lufthansa

can be referred to as “Deutsche Lufthansa” or “Deutschen Lufthansa”, depending on the

grammatical context. By using the common stemmed version (“Deutsch Lufthansa”) of

these two aliases, it is possible to match both company names. For company names,

however, this approach did not translate into performance improvements.

Because the dictionary feature might add a bias towards labeling known tokens as a

company, we also examined how many novel named entities we find, i.e., ones that are not

already included in the dictionary. For this experiment, we used each test set in our 10

folds, each consisting of 100 documents not used during the corresponding model training.

Using the DBpedia, including aliases model trained on the remaining 900 documents of

each fold, we were able to discover, on average, 328 company mentions. On average,

45.85% (≈ 150 companies) of the discovered companies were already included in the

dictionary, whereas the remaining 54.15% (≈173) were newly discovered. This shows

that although the dictionary feature adds a bias towards already known companies, the

model is still able to generalize to entities that are not part of the used dictionary.

59

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

3.6.5 Perfect dictionary

To simulate a scenario in which the dictionary can be used on its own to identify the

company names in a given text, we use the perfect dictionary. As already mentioned in

Section 3.4, the perfect dictionary consists of all manually annotated company mentions

from our test and training sets.

Although using this dictionary yields the highest scores for precision, recall, and F1-

measure, the F1-measure does not reach 100%. The reason for this behavior can be

explained by our strict annotation policy. By using this annotation scheme, it becomes

hard for the algorithm to avoid producing false positives. Consider recognizing the airline

Boeing in the mentions “Boeing” and “Boeing 747”. In both cases, “Boeing” would be

recognized as a company, producing one true positive and one false positive. Hence, a

drawback of our system is that the dictionary feature introduces a bias towards companies

contained within the dictionary, inducing some false positives if the dictionary feature

turns out to be wrong. This problem translates to all other dictionaries that we use.

Therefore, we argue that even under ideal circumstances where the dictionary contains

all entities that we want to discover, it is not possible to sustain a high precision value

by using the dictionary on its own.

Nonetheless, as can be seen by comparing the results in Table 3.4, using dictionaries

to incorporate domain knowledge into the CRF method yields superior results over using

them on their own to recognize company names. Considering the average precision, recall,

and F1-measure, the combination of dictionaries and CRF performs significantly better

than the pure dictionary approach described in Section 3.6.3.

3.7 Named entity linking

To give a complete picture of the text mining component, we have dedicated this sec-

tion to the topic of entity linking. First, we give an overview of entity linking and then

summarize the current state of the art. As discussed in the previous section, the NER

component of the text mining pipeline focuses on the discovery of mentions in textual

documents that have a high likelihood to refer to real-world entities. In this sense, NER

often acts as a precursor for entity linking. Unfortunately, as natural language is inher-

ently ambiguous, it is often unclear which specific entity is referred to in a given text.

For example, the mention “VW” could potentially refer to either the car manufacturer

“Volkswagen” or to the company “Vorwerk”, a manufacturer of household appliances. The

distinct assignment of ambiguous entity names to their corresponding entries in a given

knowledge base is known in the literature as named entity linking (NEL), named en-

tity disambiguation (NED), or in short entity linking (EL), entity disambiguation (ED).

While some research uses the terms entity linking and entity disambiguation synony-

mously, in this thesis, we consider entity disambiguation as a subcomponent of an entity

linking approach. A more detailed description of the building blocks of entity linking

systems is given in Section 3.7.2. Considering the previous example, the mention “VW”

would most likely be mapped to the knowledge base entry of the Volkswagen AG, since

“VW” represents a commonly used acronym for the company Volkswagen and is usually

60

3.7 Named entity linking

not associated with the company Vorwerk. To correctly resolve such ambiguities, entity

linking approaches rely on a wide variety of features that are either derived from the

entity mention itself or its context. A list of the most frequently encountered features

used for entity linking is provided by Shen et al. [2015]. Entity linking plays a crucial

role in many applications:

Information extraction. Information Extraction (IE) focuses on discovering rele-

vant information in large quantities of unstructured and semi-structured data, making

it accessible in a machine-readable format. When applied to the use case outlined in

Section 1.2, a collection of company information is obtained together with information

about their relationships. However, to make use of the discovered information, it is

necessary to establish a connection to an unambiguous representation of a real-world

entity. To establish this assignment, entity linking methods are used. Once an appropri-

ate assignment has been made, additional information from the linked knowledge base

entry can be used to derive a more fine-grained entity classification or build a network

of co-occurring entities. A detailed discussion of information extraction and its relation

to Semantic Web technologies can be found in [Mart́ınez-Rodŕıguez et al., 2020].

Information retrieval. In recent years, there has been an increasing shift in the

focus of Information Retrieval (IR) away from keyword-based document searches towards

entity-aware semantic searches. Search engine users increasingly make queries about

specific entities and expect to receive information about the entity in question, rather

than just documents that mention it. This need has led to the development of entity

retrieval, which focuses on satisfying an entity-centric information need, relying heavily

on entity linking techniques [Balog, 2018; Ensan and Du, 2019; Hasibi et al., 2016]. In

this context, entity linking enables both the resolution of ambiguous search terms and

the identification of entities that are of interest to the user, allowing the generation of

targeted responses. This facilitates not only a direct response with respect to specific

entities or an improved retrieval of documents containing direct matches, but also the

retrieval of documents containing related entities and concepts. Thus, entity linking

represents a key component of semantically aware search engines.

Knowledge base construction. When creating new or extending existing knowledge

bases, entity linking ensures that a mapping between the discovered information and the

corresponding entries in the knowledge base is established. The unambiguous assignment

of an entity mention to a knowledge base entry can then be used to integrate newly

found information, such as an extracted fact or a discovered relationship. Based on

the established assignment, this extension can be made without negatively affecting the

data quality of the underlying knowledge base, enabling its structured growth. There

are several works that discuss the role of entity linking in the process of knowledge base

construction. [Lin et al., 2012, 2020; McNamee et al., 2012]

Question answering. Virtual assistants, such as Apple’s Siri, Amazon’s Alexa, and

Google’s Assistant heavily rely on entity linking techniques as they play a crucial role

61

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

in question answering [Dubey et al., 2018; Echegoyen et al., 2019; Li and Shi, 2016]. To

correctly answer a question, it is necessary to determine the intention of the question,

identify the relevant entities for the question, and establish an assignment of these entities

to the corresponding entries in the used knowledge base. Only by correctly resolving the

core elements of a question is it possible for the underlying question answering system

to derive the correct answer.

3.7.1 Challenges

There are three major challenges that need to be addressed during the development of

entity linking approaches:

Name diversity. Unlike programming languages, natural language is highly ambigu-

ous, which leads to real-world entities being referred to in many ways. Thus, entities

can be referenced by their official full name, abbreviations, colloquial names, and a va-

riety of aliases. These name variations considerably increase the difficulty of finding

the correct assignment to a corresponding knowledge base entry. As such, the names

“Continental Teves AG & Co.oHG”, “Continental Teves AG”, “Continental Teves”, “Conti-

Teves”, “Teves”, or “Conti” all represent common name variations of the German com-

pany Continental.

Entity ambiguity. In addition to name variations, a mention can also refer to multiple

different knowledge base entries. As an example, the mention “Amazon” can refer to the

multinational company “Amazon.com, Inc.” but also to the “Amazon River” or a “tribe

of female warriors”. Finding the right match amongst these potential candidates consti-

tutes another challenge. To address this issue, many linking approaches use contextual

information of the entity mention to identify the most likely mapping. Concretely, they

make use of the words occurring within a specific window around the entity mention

(local context) or leverage word co-occurrences at the document level (global context).

Some approaches also combine local and global context information to improve linking

performance.

Unlinkable entities. For some mentions, it is impossible to find an assignment as

there exists no corresponding entry in the used knowledge base. It is, therefore, im-

possible to link a company mention, such as “MCI Inc.”, to an entry in the knowledge

base if no corresponding entry exists. For example, this can be the case if the processed

documents are newer than the information stored in the knowledge base. In such cases,

it is further important to ensure that an entity linking approach avoids a possible misas-

signment caused by a superficial resemblance to some knowledge base entry. It should,

therefore, be avoided that a reference such as “MCI Inc.” is incorrectly assigned to the

entry “Medical Council of India (MCI)” instead of “Motor Coach Industries International

Inc.” simply because the two entries coincide regarding their acronyms.

62

3.7 Named entity linking

3.7.2 Building blocks of entity linking systems

As outlined by Shen et al. [2015], entity linking approaches can be broken down into two

major components: (i) candidate generation (CD) and (ii) entity disambiguation (ED),

whose functionality is described below.

Candidate generation, also referred to as candidate selection or candidate classifica-

tion, defines the task of selecting a subset of entities from the knowledge base Ec ⊆ K

to which a processed mention m is most likely referring to. Since m can potentially

correspond to any knowledge base entry, the main objective of this step is to reduce the

number of entities that need to be examined in the following disambiguation phase to

those most likely resulting in a correct match. One of the most commonly used candi-

date generation techniques exploits the information contained in Wikipedia and builds

a dictionary that maps a variety of names occurring on Wikipedia pages to a collection

of alternative names. Other approaches generate potential link candidates by extracting

specific elements that are collocated with existing mentions. For example, these meth-

ods create new link candidates by extracting acronyms (Volkswagen (VW) ⇒ VW) or

name expansions (TUM (Technische Universität München) ⇒ Technische Universität

München) that occur in the vicinity of a mention. A more detailed overview of common

approaches for candidate generation can be found in [Shen et al., 2015]. The result of

this phase is a set of link candidate pairs C = {(m, e)}, consisting of the mention m and

an entity e ∈ Ec to which m potentially refers.

Entity disambiguation. The entity disambiguation component is at the core of an

entity linking approach. Its task is to estimate the likelihood that a particular link

candidate pair (m, e) ∈ C generated in the candidate generation step is the correct

disambiguation of the entity mention m to the representation of the real-world entity

e. For example, the pair (VW, Volkswagen AG) should receive a high score, while the

pair (VW, Vorwerk) should receive a low score. The result of this estimation is a set of

scored link candidates Sc = {(m, e, s)}, where s is the score indicating the likelihood of

e being the correct disambiguation of m. By sorting the link candidates in Sc according

to their score, candidates that most likely correspond to a correct assignment of mention

m to knowledge base entry e receive the highest score and can, therefore, be considered

correct. Motivated by this approach, entity disambiguation is also referred to as entity

ranking. As summarized by Shen et al. [2015], this component has been the subject of

intensive research so that many different approaches have accumulated over time.

The most common methods of entity disambiguation can essentially be divided into

supervised and unsupervised approaches. While supervised methods rely on annotated

training data to learn a ranking function, unsupervised methods use techniques mostly

from the field of information retrieval that do not require annotated training data. The

proposed supervised methods range from binary over probabilistic to graph-based and

ensemble approaches. In this context, a large number of different features were exam-

ined that were used to train these methods. Most of these features refer either to the

discovered mention itself or additionally to the textual context in which the mention

occurred. A detailed summary of the most common entity disambiguation techniques

63

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

and the features used in this context can be found in Shen et al. [2015]. As in the case of

named entity recognition, the enormous impact of deep learning techniques on the field

of natural language processing (NLP) has resulted in the latest entity linking approaches

being largely based on neural networks and deep learning techniques. The next section

discusses the current state-of-the-art in entity linking and briefly summarizes the latest

developments.

3.7.3 Current state of the art

The influence of deep learning techniques on natural language processing has also tran-

scended to most current entity linking approaches. Therefore, many of the current

state-of-the-art linking approaches make use of deep learning techniques.

We start with the approach of Yamada et al. [2016], who leverage the representation

learning capabilities of deep neural networks to embed words and entities into one unified

vector space. Their method is based on the skip-gram model of Mikolov et al. [2013],

which learns the semantic representation of a particular word by predicting its surround-

ing context. Yamada et al. extend the skip-gram model by including a knowledge graph

and an anchor model. While the knowledge graph model is essentially used to learn the

relationship degree between two knowledge graph entities, the anchor model’s goal is to

predict the context words of a linked entity mention occurring in an article. The com-

bination of these individual models results in a vector space in which words and entities

that semantically resemble each other are projected in close proximity to each other.

Apart from largely eliminating the need for manual feature engineering, the resulting

embedding vectors can be used to (i) construct context vectors of entity mentions and

(ii) calculate a coherence score of the entities to be linked at the document level. The

idea of the coherence score is based on the assumption that a linking decision concerning

a particular mention should be carried out according to other linking decisions taken in

the same document. All the techniques described below utilize embedding techniques

whose rationale is in many aspects similar to that introduced by Yamada et al. [2016].

The disambiguation strategy proposed by Yamada et al. [2016] uses the previously

learned embeddings to generate a local context vector from the context words surround-

ing an entity mention as well as a globally calculated coherence score for each possible

link candidate. Both the local context vector as well as the global coherence score are

then used as features in training a gradient boosted regression tree (GBRT) that learns

to arrange the candidate pairs consisting of entity mention and knowledge base entry

according to their likelihood of being the correct linking decision. In a subsequent pa-

per, Yamada et al. [2017] create the embeddings based on full texts instead of single

words and replace the GBRT with a multilayer perceptron.

Like Yamada et al. [2016], Ganea and Hofmann [2017] also project words and entities

into a common vector space by training entity embeddings. To this end, they start with

pre-trained Word2vec [Mikolov et al., 2013] embeddings and extend them by adding an

additional vector for each entity mention. Driven by the assumption that only certain

context words play a role in the disambiguation of an entity, they use a neural attention

mechanism to get a neural network to focus on the words most relevant for the disam-

64

3.8 Relationship extraction

biguation. Their proposed linking approach consists of a combination of a local neural

attention model and a conditional random field (CRF) [Lafferty et al., 2001] model op-

erating at the document level. They train both models in an end-to-end fashion using

loopy belief propagation (LBP) as presented in [Domke, 2013].

The work of Le and Titov [2018] revolves around the idea of leveraging relationships

between the entity mentions in a document to improve the linking quality. They point

out that besides coreferences, other relationship types can be exploited during the linking

process. Their approach is based on the work of Ganea and Hofmann [2017] and extends

it by including relationships between the individual entity mentions of a document into

the global CRF-based coherence model. To avoid the manual annotation of relationships

between the entity mentions of a given text, they model them as latent variables that

are learned during model training in an end-to-end fashion.

One of the most recent and most successful entity linking approaches is OpenAI’s

DeepType system by Raiman and Raiman [2018]. The core idea behind DeepType is

to support the linking process by providing type information about the linked entities

to the disambiguation process. To this end, DeepType is able to automatically derive

a type system from a given knowledge base, such as YAGO or Wikidata, which is then

used during the training and inference phase of a neural network. With an F-measure of

up to 94.88%, DeepType is one of the best performing entity linking systems available

to date.

3.8 Relationship extraction

Similar to the previous section, we dedicated this section to relation extraction, which

completes the picture of the text mining component. We proceed analogically to the

previous section by first giving an overview of relation extraction and then summarizing

the current state-of-the-art.

Besides the discovery (NER) and identification (NEL) of entities in text, the con-

struction of a comprehensive knowledge base also requires the discovery of relationships

between them. The discovery of relationships forms the basis for many promising ap-

plications, ranging from the assessment of various corporate risk factors to the analy-

sis of protein-protein interactions in biomedical applications. Even though with Wiki-

data [Vrandečić and Krötzsch, 2014], Freebase [Bollacker et al., 2008], and YAGO [Suchanek

et al., 2007], some publicly accessible knowledge bases already exist that cover a signif-

icant number of relations, they are far from complete. Thus, it is not unusual for new

applications to impose specific requirements on the existence of entities and relation-

ships. Regarding, for example, the use cases outlined in Section 1.2, a comprehen-

sive assessment of a bank’s systemic risk entails the analysis of interactions between a

large number of market participants. To this end, domain-specific relationships, such as

isInLitigationWith, divestsDivisionTo, and isPartnerOf, are needed, which are,

in many cases, either not at all or insufficiently covered by publicly accessible knowledge

bases. As an additional challenge, the real world is constantly changing both in terms of

65

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

relationships and their participants, which requires continuous monitoring and updating

of the facts in the knowledge base.

As a branch of natural language processing, relationship extraction is concerned with

the discovery of relationships that exist between two or more entities in a given text

document. As before, the core of this task is to convert the information contained

in free-form texts into a machine-readable format. Driven by the importance of the

problem, many different approaches have emerged over the years, which can be divided

along different dimensions. At a high abstraction level, relation extraction approaches

can be divided into open and closed extraction approaches. While the goal of closed

relationship extraction approaches is to identify relationships from a predefined set of

relations, open relationship extraction approaches aim to extract all existing relationships

without adding any restrictions.

Along a second dimension, relation extraction approaches can be divided into un-

supervised, supervised, and semi-supervised approaches. Motivated by the goal of dis-

covering previously unknown, new relationships, most approaches that implement the

open relationship extraction paradigm are based on unsupervised learning techniques.

Like any other procedure, the unsupervised approach has its strengths and weaknesses.

While unsupervised approaches are not limited to a predefined number of relationships

nor require manually generated training data, their results are often difficult to interpret

and cannot easily be mapped to the set of relationships defined by a given knowledge

base. Especially the last point leads to a scenario similar to the one in Section 3.7,

where a linking needs to be established between the discovered relationships and the

relationships defined by the knowledge base. Since a relationship can be expressed in

many different ways, it is necessary for integration purposes to either map the extracted

relationship to the set of relationships defined by the used knowledge base or to extend it

by the newly discovered relationship. As explained in the previous section, finding such

an assignment is not trivial.

In contrast to open extraction approaches, most closed extraction approaches are

implemented using either supervised or semi-supervised machine learning methods. Since

the relationship types to be identified in a closed relationship extraction scenario are

defined in advance, many of the supervised extraction techniques formulate the problem

of relationship extraction as a classification problem. To this end, they use a selection of

features to determine whether a text segment contains one of the predefined relationships,

effectively turning the extraction into a multi-class classification problem. Although

supervised extraction approaches usually outperform their unsupervised competitors in

terms of extraction quality, they have the disadvantage of requiring a large amount

of training data. Since adding new relationships to be extracted involves annotating

another large amount of training data, any extension of a supervised approach becomes

labor-intensive.

To mitigate this issue, Mintz et al. [2009] proposed distant supervision, a technique

that leverages the information contained in existing knowledge bases to generate training

data for supervised relationship extraction methods automatically. To this end, they

operate under the assumption that a sentence expresses a relation defined in a knowledge

base once it contains all entities involved in the relation. The identified sentences can then

66

3.8 Relationship extraction

be used to train a supervised relation extraction model. Although this process facilitates

the automatic generation of training data, the underlying assumption often produces

inaccurate annotations and, thus, noisy training data. In addition, distant supervision

can only be performed for relationships already contained in the knowledge base, but

not for discovering new relationships. A comprehensive discussion of distant supervision

techniques for relation extraction is provided by Smirnova and Cudré-Mauroux [2019]

When dealing with relation extraction approaches, it is also important to consider

their ability to extract relationships connecting a certain number of entities. Extraction

approaches that focus on extracting relationships between exactly two occurring enti-

ties are referred to as binary relation extraction approaches, whereas approaches that

consider more than two entities are commonly known as n-nary or multi-way extraction

approaches. To illustrate the difference, consider the following fictitious example:

“HP announced that it has signed an agreement with Lenovo to sell its cy-

bersecurity business unit.”

Where a binary relation extraction approach would yield the relationship [HP, Lenovo,

divestsDivisionTo], a multi-way approach would also take into account the divested

entity, thus extracting the four-tuple [HP, Lenovo, cybersecurity business unit,

divestsDivisionTo]. Especially in the area of event detection, n-ary relation extraction

approaches are often used.

As can be seen in the overview of the text mining component in Figure 3.1, the

relationship extraction module connects directly to the entity linking module, allowing

it to take advantage of already linked entities. In addition, an appropriate solution

to this problem requires considering a variety of aspects, such as the relevance of a

particular entity for the considered relationship, the context of the relevant entities, and

the grammatical structure of a given sentence.

In the following section, we provide an overview of some of the most prominent

use cases for relationship extraction, while Section 3.8.2 highlights some of the most

important challenges. We briefly summarize the current state-of-the-art in Section 3.8.3.

3.8.1 Applications

Relation extraction is an essential component of many applications. In the following, we

provide a brief overview of several selected application areas:

Biomedical applications. In the biomedical domain, relation extraction techniques

are used to extract knowledge from millions of biomedical texts provided by sources,

such as PubMed [Zhou et al., 2014]. A concrete application is the extraction of textual

evidence for molecular interactions between protein molecules, commonly referred to as

protein-protein interactions. The extracted relationships can then be used to create a

network graph of molecular interactions. To this end, Hsieh et al. [2017] make use of

RNNs to recognize long-range relationships between proteins, while Peng and Lu [2017]

integrate syntactic sentence structure into a dependency-based convolutional neural net-

work for extracting protein-protein interactions.

67

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

Question answering. To answer a specific question, question answering systems often

rely on relationships obtained by running a relation extraction system. Based on these

relationships, the system is able to recognize and reason about the connections between

entities that are relevant for answering a question. For example, Xu et al. [2016] use a

combination of entity linking and relationship extraction to find possible answers to a

question. They evaluate which of the answers is most likely correct by using Wikipedia

articles as a source of evidence.

Sentiment analysis. Emotions often occur in product reviews, where they are ex-

pressed as positive and negative comments, for example, on parts of a mobile phone such

as its camera or display quality. Here, relationship extraction can establish a connection

between entities or parts of entities and the expressed emotions mentioned in a given

text. In relation to the example above, a partOf relationship could be used to determine

that an expressed emotion refers to the camera of a mobile phone and not to its display

or the mobile phone itself. Another application of relation extraction techniques in the

context of sentiment analysis can also be seen in the work of Qu et al. [2014]. Here, the

authors employ relation extraction techniques to comprehend comparative statements,

such as the claim that the camera of phone A is better than the camera of phone B.

3.8.2 Challenges

As with the recognition and linking of named entities, the extraction of relationships

from free-form text comes with its own challenges, some of which are presented below:

Hyponymic & homonymic relationships. In addition to the fact that a multitude

of different relationships can exist between the same two entities, the relationships can

also be of homonymic or hyponymic character. In a homonymic relationship, the same

verb can express different meanings depending on its context. For example, the verb

“runs” in the phrase “Tim Cook runs Apple.” expresses the meaning of Tim Cook being

the leader of the company Apple, whereas in the phrase “Tim Cook runs a marathon”,

it expresses participation in a sports event. A hyponymic relationship, on the other

hand, constitutes a general relationship which can be expressed by several other, often

more specific, terms. For example, the buys relationship can also be expressed by using

the verbs acquire, purchase, or get. The challenge with homonymic relations lies in

distinguishing their different semantic meanings, whereas, with hyponymic relations, a

problem similar to entity linking arises, where different expressions of a relationship must

be mapped to a unique relational representation.

Long-range relationships. While many of the current extraction approaches focus on

finding relationships within the bounds of a sentence, relationships can also be expressed

across sentence boundaries. Relations expressed in this way tend to use pronouns to

refer to other entities mentioned in the text. To capture such relations, it is necessary

to resolve all references referring to other entities. Coreference resolution [Sukthanker

et al., 2020], a subtask in the field of natural language processing, addresses exactly

68

3.8 Relationship extraction

this problem. After resolving all references, it is possible to also extract long-distance

relationships that span several sentences.

Asymmetric relationships. As pointed out by Zuo et al. [2017], handling asymmet-

ric relationships poses another challenge. In contrast to symmetric relationships that are

semantically valid in both directions, asymmetric relationships such as the ownershipOf

relationship can only be read in one direction. Identifying the direction of asymmet-

ric relationships is not trivial and directly related to the participating entity types. If

the entities participating in a relation are of different semantic types (e.g., person and

location), the direction of a relationship (e.g., bornIn) can be derived from the type

information. However, if both entities are of the same semantic type, for example, both

companies, it is no longer evident in which direction a supplierOf relationship is meant

to be read.

3.8.3 Current state of the art

At the time of writing, most state-of-the-art relation extraction techniques follow the

supervised learning paradigm. As such, they use machine learning methods to learn

the relation extraction task from a set of training documents and then apply what they

have learned to extract relationships from previously unseen texts. While traditional

extraction systems rely on either manually creating lexical and semantical features or

the design of complex kernels, many of the newer approaches leverage representation

learning, a practice pioneered by the deep learning community. Representation learning

leverages the hierarchical structure of deep neural networks to learn distributed vector

representations that aim to capture the semantic meaning of discrete entities such as

words in a text or nodes in a graph. Apart from this practice, deep learning techniques

have, in general, led to a dramatic change in the way most extraction systems address the

extraction problem. As such, all the relation extraction systems presented below adopt

deep learning concepts and neural networks. In the following, we give a brief overview

of the current state-of-the-art in relation extraction.

The relation extraction approach proposed by Lee et al. [2019] is based on a recur-

rent neural network (RNN) and employs multiple attention layers to identify the most

relevant text elements for relationship classification. They begin by translating the indi-

vidual words of a given text into their respective embedding vectors by using pre-trained

GloVe word embeddings [Pennington et al., 2014]. To determine the semantic meaning

of each word in relation to its context, they use the self-attention mechanism of Vaswani

et al. [2017a]. They feed the word representations generated by the underlying attention

layer into an LSTM network, which aims to recognize more abstract syntactical struc-

tures. A subsequent second attention layer focuses on determining the meaning of the

occurring words with respect to the occurring entity pairs. To this end, they consider

both the relative position of the individual words to the occurring entities and their

type information. Apart from the two-stage attention mechanism, a big advantage of

their approach is that they model the type information of the occurring entities as latent

69

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

variables. This allows them to learn the types of individual entities in a fully automatic

way during model training.

Similar to the previous approach, Wang et al. [2016] use multiple attention layers to

identify the most relevant syntactic patterns for the relation extraction task. However,

in contrast to the RNN-based approach presented by Lee et al. [2019], Wang’s model

is built using convolutional neural networks (CNN). Instead of relying exclusively on

the translation of individual words through the use of pre-trained Word2Vec [Mikolov

et al., 2013] or GloVe [Pennington et al., 2014] embeddings, they expand their word

representations by combining them with position embeddings that encode the relative

position of a word to the entity mentions in the text. These word representations are

then transferred to a first attention layer, which determines the relevance of each word

in relation to the occurring entities. Next, the representation generated by the attention

layer is passed through the convolution layer, which constructs more abstract features

by taking into account the relationships of several adjacent words. The second attention

mechanism is performed during a pooling step that is applied to the feature outputs

of the convolutional layer. By focusing on the relationships between these higher-level

features, the network tries to estimate each feature’s relevance with regard to the correct

classification of a given relation. The result of the second attention layer is then used to

determine the most likely relationship.

In their approach to relationship extraction, Cai et al. [2016] focus on making use of

the information encoded in the shortest dependency path (SDP) between two entities of

a given text block. They propose a recurrent convolutional neural network (RCNN)

that combines the strengths of convolutional and recurrent neural networks as they

represent the two most widely used network architectures for relationship extraction.

After both the words and the dependency relations have been translated into a vector

representation, they are passed through a recurrent LSTM network, which processes them

in two individual channels. As a result, the word embeddings are processed separately

from the dependency embeddings in their own channel. This part of the network is

designed to capture global dependency patterns for a given SDP. The outputs of both

channels are then passed on to a convolutional layer whose task is to identify local

features between the outputs of both LSTM channels. The final BRCNN model arranges

two RCNN networks bidirectionally, enabling the network to process the SDP from both

directions. Apart from predicting the relationship itself, this network arrangement makes

it possible to determine the direction of the relationship. The outputs of both RCNNs

are then combined in a pooling layer, the output of which ultimately forms the basis for

the subsequent relation classification.

The current best-performing approach to relationship extraction was introduced

by [Soares et al., 2019] and is based on the BERT model architecture [Devlin et al.,

2019] a state-of-the-art language model. The proposed model is capable of learning re-

lation embeddings from text segments containing at least two entities that are already

mapped to an unambiguous identity, e.g., by using one of the entity linking methods

outlined in Section 3.7. This procedure is based on the assumption that if two entities

are mentioned in the same text segment, a relationship is expressed between them. To

avoid the replication of the used entity linking system, the linked entities are replaced

70

3.9 Summary

by placeholders before the training. Starting with a pre-trained BERT model, they

optimize a loss function that reduces the distance between text segments that express

similar semantic relationships, otherwise increases the distance between them. As part

of their work, they examine the extent to which architectural model variations are suited

for extracting the learned relationship embeddings from the BERT model. Finally, the

extracted relationship embeddings are used to classify previously unseen text segments

with respect to their expressed relationship. During their experiments, they achieved

F-scores of up to 89.5 %, depending on the dataset.

3.9 Summary

In this chapter, we introduced and discussed the individual subcomponents of the text

mining component, shown in Figure 3.1.

First, we introduced a named entity recognition system that recognizes companies

in textual data with high lexical complexity, achieving a precision of up to 91.11% at a

recall of 78.82%. Besides creating an NER system, we analyze the impact of different

dictionaries containing company names on the performance of the NER system. Our

investigation showed that significant performance improvements can be made by carefully

including domain knowledge in the form of dictionaries into the training process of an

NER system. On average, we were able to increase recall and F1-measure by 6.57 and

3.85 percentage points, respectively, over our baseline that did not use any external

knowledge.

Furthermore, we were able to show that the application of an alias generation process

leads to an increase in recall while sustaining a high precision. Given the positive impact

of the generated aliases on system performance, developing a more sophisticated alias

generation process carries the potential for further performance improvements and the

ability to better address the inherent complexities of company names. To complete the

picture of the text mining component, we presented challenges, applications, and current

state-of-the-art for both entity linking and relationship extraction in Sections 3.7 and

3.8.

71

3. EXTRACTING KNOWLEDGE FROM UNSTRUCTURED DATA

72

Chapter 4

Few-Shot Knowledge Validation

using Rules

Knowledge bases and their resulting knowledge graphs (KGs) form the basis of many

modern information systems – their inherent network structure is used to enable semantic

reasoning and the interpretation of complex tasks. By combining the methods presented

in the previous chapters, it has become possible to automatically create large knowledge

bases and hence large KGs from structured and unstructured data sources. During this

endeavor, two main error sources can be identified. The first error source arises from

the highly dynamic structure of KGs, which are subject to constant change as facts are

updated, added, and removed, allowing incorrect information to find its way into the

KG. The second error source, despite advances in the field of automatic knowledge base

construction, consists in the fact that the methods presented in Chapters 2 and 3 are not

flawless. Thus, it still happens that incorrect facts, caused by deduplication, extraction,

or linking errors, find their way into the generated knowledge base, from where they

manifest as data quality issues in the generated KG.

A typical approach to ensure data quality in the presence of continuous changes lies

in the application of logical rules. Through the application of such rules, it becomes

possible to increase the data quality of a KG by adding missing or removing incorrect

facts. Usually, systems such as AMIE [Galárraga et al., 2015, 2013] or RuDiK [Ortona

et al., 2018] are used to derive such rules by applying frequency-based approaches to

the data of the considered KG. As a result, these approaches also depend on the data

quality of the underlying KG and are therefore susceptible to errors and incompleteness

themselves.

To address these issues, we propose Colt, an interactive, rule-based knowledge val-

idation framework that combines knowledge graph embeddings with a few user inter-

actions, also known as “a few shots”, to create a classifier that is used to assess the

quality and confidence of logical rules. We formalize the problem of rule-driven knowl-

edge validation as learning a validation function over the rule’s outcomes and estab-

lish a connection to the generalized maximum coverage problem and quality-preserving

Gaussian processes. Further, we show that the presented interactive learning approach

can improve classification performance by exploiting knowledge graph embeddings while

73

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

keeping the required user effort at a minimum. To this end, a domain expert is asked

to validate a small percentage of rule-generated facts of a KG. Our model obtains (i) an

accurate estimate of the quality of a rule with fewer than 20 user interactions and (ii)

75% quality (F1-measure) with 5% annotations in the task of validating facts entailed by

any rule. Furthermore, we publish our dataset, which consists of 26 manually annotated

rules and contains more than 23 000 annotated facts. Moreover, we would like to point

out that in addition to determining quality and confidence, the trained classifier can also

be used for the conditional application of logical rules.

The content of this chapter is based on the work of Loster et al. [2020b] and is

organized as follows: In Section 4.1, we give a comprehensive introduction to the topic

of this chapter. We discuss related work in Section 4.2 and formally define the problem

in Section 4.3. Our solution is presented in Section 4.4. In Section 4.5, we discuss the

role of similarity functions in our framework. Section 4.6 reports on our experimental

results, while Section 4.7 concludes this chapter.

4.1 Data quality and knowledge graphs

In recent years, systems, such as DeepDive [Shin et al., 2015], Knowledge Vault [Dong

et al., 2014], and CurEx [Loster et al., 2018b], made it increasingly easy to automatically

construct vast knowledge graphs (KGs). These systems often consist of many different

components designed to extract and integrate facts from numerous different sources.

As shown in the previous chapters, many of these components are based on machine

learning techniques, which are rarely error-free. Thus, despite dramatic improvements

through the use of state-of-the-art deep learning techniques, it is not possible to ensure

the correct extraction [Akbik et al., 2018], linking [Raiman and Raiman, 2018] and dis-

covery of relationships between textual entities [Wang et al., 2016], that form the facts

of a knowledge graph. In addition, KGs suffer not only from incorrect but also from

missing facts, which in their sum negatively affect its data quality and thus all down-

stream applications. Correcting these errors by adding missing or removing incorrect

facts can be approached from two different directions, each with its own advantages and

disadvantages.

The first approach, often used to add missing facts, leverages knowledge graph em-

beddings (KGE) [Wang et al., 2017], such as TransE [Bordes et al., 2013] or HolE [Nickel

et al., 2016]. These models can be used to predict new facts based on existing ones,

reducing the number of missing facts. To this end, they rely on the correctness and com-

pleteness of the underlying KG without taking additional data sources into consideration.

While widely studied, these models have several shortcomings. First, although they cor-

rectly capture large parts of the graph, they fail to model entities and relationships that

contain noisy information or are underrepresented due to missing data [Pujara et al.,

2017]. Second, KGEs are hard to interpret as they cannot provide a clear explanation

as to why a fact should be included in the KG.

The second approach is the application of logical rules. They can be derived au-

tomatically by rule learning systems, such as AMIE [Galárraga et al., 2015, 2013] and

74

4.1 Data quality and knowledge graphs

RuDiK [Ortona et al., 2018]. By executing such rules on a KG, new facts can be added,

and incorrect facts can be removed. For example, the rule

isMarriedTo(a, c) ∧ livesIn(c, b)⇒ livesIn(a, b)

states that if a person a is married to another person c, they most likely live in the

same place b. By applying this rule, i.e., when the body of the rule is satisfied, a new

livesIn fact between a person and a place can be added to the KG. Rules are much

easier to understand and interpret than embeddings, but their discovery also suffers

from noisy and missing data in the KG. As such, data quality issues of the underlying

KG lead to rules being derived from factually incorrect examples, which implies that

the generated rules model an incorrect state. In addition, rules are rarely completely

correct or completely wrong. It is common for a rule to be applicable only to a certain

percentage of KG facts [Galárraga et al., 2015; Ortona et al., 2018], however, the rule

itself does not contain any information about the cases in which it can be safely applied.

Ideally, a rule should be applied only if it contributes to the quality improvement of a

KG. Although rule learning systems provide a statistical measure for the support of a

discovered rule, this computation assumes the correctness of the underlying facts, which

in practice inevitably leads to an unreliable confidence estimate.

A process aimed at addressing such data quality issues must, therefore, have access to

external information in order to make necessary corrections. The natural way to verify

facts is to consult experts on the topics covered by the KG at hand. Unfortunately, KGs

often consist of millions of facts, making a comprehensive manual verification impossible.

Therefore, we aim to radically reduce the manual effort by efficiently utilizing existing

domain knowledge.

Because it is desirable to retain the understandability of rule-based approaches, we

focus on a solution that (i) computes reliable rule confidence measures and (ii) comple-

ments the rules by a probabilistic model that validates their resulting facts. In a nutshell,

our framework learns the characteristics of a particular rule from humans, who annotate

a small number of its generated facts.

To address the data quality issues of KGs, we model the problem as learning a

classifier for each rule that balances the exploration of new facts against the exploitation

of knowledge accumulated in the classifier. This allows us to effectively reduce the

number of required annotations to a few interactions. In contrast to the logical rules,

the classifiers contain additional knowledge in terms of (i) information contained in the

knowledge graph embeddings, and (ii) user feedback, allowing for better predictions than

the original rule. The learned classifiers enable the conditional application of each rule

so that depending on its prediction, it can be decided whether the fact identified by

the associated rule can be trusted. Compared to a data-driven estimation approach,

these predictions enable us to calculate a rule’s confidence with far greater accuracy.

As verifying the correctness of a large number of facts is cost-intensive, we reduce the

amount of work by utilizing a sampling strategy. This strategy limits the effort of manual

fact-checking to an adjustable budget, while simultaneously maximizing the benefit of

the verified facts.

75

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

4.2 Related work

Since the proposed approach involves many different research areas, this section is divided

into the topics rule discovery and its interactive application, knowledge graph embeddings,

hybrid methods using a combination of rules and knowledge graph embeddings, and active

learning approaches. Our proposed approach leverages logical rules, knowledge graph

embeddings, and active learning concepts.

Rule discovery. The derivation of logical rules from KGs has been investigated for

many years [Dehaspe and Toivonen, 1999]. Recent systems, such as AMIE [Galárraga

et al., 2015, 2013] and RuDiK [Ortona et al., 2018], can derive rules from large KGs by us-

ing structural information, such as frequently occurring graph patterns. The mined rules

can be used to derive new facts, find errors, derive conclusions, and better understand

the underlying data. However, the completeness and coverage of KGs can become prob-

lematic for automated rule generation systems, which derive rules from their occurrence

frequencies in the underlying KG. Although both systems report statistical measures,

such as the standard and PCA confidence, for each generated rule, these metrics are

based on pattern frequencies that are affected by data quality issues of the KG. This

circumstance ties the quality of a generated rule directly to the quality of the underly-

ing KG. We improve the confidence assessment of a rule by including user feedback as

an additional source of knowledge. As such, the quality assessment of a rule does not

depend solely on the KG data.

Interactive rule execution. Different approaches have investigated how KG rules for

a specific task can be executed by taking user feedback into account. Arioua and Bonifati

[2018] propose the improvement of KGs through the use of update-based repairs. To this

end, they derive possible KG corrections from a set of rules, which are then proposed

to a user [Arioua and Bonifati, 2018; Fan et al., 2019]. The user validates the suggested

corrections and thus improves the underlying KG until it is transformed into a consistent

state. This line of work assumes that the given rules are correct and reliable, such as

those manually written by experts.

In contrast, our approach handles automatically generated rules, which can be ap-

proximate or incorrect. Consequently, it can be considered as a preliminary step towards

understanding the rules, which can be included in the data repair step. Interactive error

detection was also investigated for relational data [Heidari et al., 2019; Mahdavi et al.,

2019]. However, such methods cannot be directly applied to graph data. While a rule can

be materialized into a relational model by flattening a portion of the KG, the resulting

“view” disregards other graph information.

Knowledge graph embeddings. The creation of knowledge graph embeddings (KGEs)

has attracted widespread attention in recent years and led to improvements in many re-

search areas that make use of these embeddings [Wang et al., 2017]. As such, KGEs

provide a compact representation of a KG by projecting its entities and relations into

76

4.2 Related work

an n-dimensional vector space while retaining its structural information. These embed-

dings are used to improve tasks, such as relation extraction [Xu and Barbosa, 2019],

and link prediction [Liben-Nowell and Kleinberg, 2007]. Since KGEs are capable of cap-

turing structural and semantic information of the underlying knowledge graph, we use

this information to learn a model for the correctness of rule-generated facts presented in

Section 4.4.3.

Besides semantic matching models [Nickel et al., 2011], translational models, such

as TransE [Bordes et al., 2013] and its extensions [Ji et al., 2015; Lin et al., 2015;

Wang et al., 2014b] are amongst the most widely used methods for generating KGEs.

These methods maximize a score associated with each fact. Often informally interpreted

as the plausibility of a fact, the score defines a distance measure between the entities

of the evaluated predicate. As these methods use KG facts to generate a condensed

representation of the graph, data quality issues, such as incorrect facts, directly affect

the quality of the generated embeddings [Pujara et al., 2017]. It follows that poor data

quality of the KG leads to poor results in downstream tasks, such as link prediction.

We approach these quality issues by including human knowledge into classifier train-

ing without relying exclusively on KG data. By incorporating user feedback in the

training process, the classifier learns to counteract poor embeddings and thus mitigate

their negative effects. This limits the impact of noisy and missing KG information.

Hybrid methods. Although all methods use the KG facts for computing KGEs, some

approaches can consume additional information, such as textual descriptions [Wang et al.,

2014a; Xie et al., 2016], literals [Gesese et al., 2019], or logical rules [Guo et al., 2016;

Zhang et al., 2019]. We focus on the approaches that rely on rules during the learning

process as they are closest to our work.

One approach jointly models logical rules and fact triples in a unified framework,

representing triples as atomic and rules as complex formulae [Guo et al., 2016]. The

learning takes place by minimizing a global loss function that spans both formulae.

Another system creates high-quality rules from noisy KGs by using KGEs to control the

rule generation [Ho et al., 2018]. Their system represents a complementary approach as

it can be used to create a better starting point for our framework. A third approach

uses rules to generate new triples for the training of KGEs, which are, in turn, used to

derive new rules [Zhang et al., 2019]. By using rule-induced triples in KGE training, they

improved both the quality of the resulting KGEs and the results of their link prediction.

These works address a problem that is different from ours: we train a classifier on

existing KGEs and rules while counteracting poor embedding quality by incorporating

user feedback into the learning process. Our goal is to interactively learn a model that

can both assess the quality of a given rule and predict when the rule should be applied.

Active learning. Methods that actively sample data points to be labeled belong to the

group of active learning approaches [Settles, 2012]. They take advantage of both model

and data properties and are well suited for human assessors and exploratory tasks [Dim-

itriadou et al., 2014]. Our work builds on the general idea of active learning, but estab-

77

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

lishes important connections to the weighted coverage and GP-UCB algorithm [Srinivas

et al., 2010] in order to obtain quality-preserving solutions.

4.3 Background and problem definition

A knowledge graph (KG) contains entities, such as Max Planck and Germany, connected

via relationships, such as isCitizenOf. We are given a set of entities E and a set of relation-

ships R. A triple (e1, r, e2) with e1, e2 ∈ E, and r ∈ R is called a fact ; as r is a relationship

in the pair (e1, e2), each fact can be equivalently represented as an atom r(e1, e2). A

set of facts constitutes a knowledge graph, also known as knowledge base [Deshpande

et al., 2013], information graph [Lissandrini et al., 2014], or heterogeneous information

network [Shi et al., 2017]. YAGO [Suchanek et al., 2007] and DBpedia [Auer et al., 2007]

are examples of large KGs for which facts are automatically constructed from Wikipedia,

GeoNames [GeoNames, 2018], and WordNet [Fellbaum, 1998].

Definition 4.1. A knowledge graph is a triple G : 〈E,R,F〉, where E is a set of entities,

R a set of relationships, and F ⊆ E× R× E a set of facts.

A knowledge graph might contain errors, such as (Max Planck, isCitizenOf, China).

The set of all true facts (knowledge) is denoted by K ⊆ E× R× E, and we assume that

at least a part of the knowledge graph is correct, i.e., F ∩ K 6= ∅. Partial correctness

constitutes a reasonable assumption regarding the soundness of the KG construction

process.

An atom is the smallest logic statement composed by facts, including variables. For

example, the atom hasChild(x, John) denotes everything (by the variable x) that has a

child named John.

Definition 4.2. A rule A1 ∧ A2 ∧ ... ∧ An ⇒ C is a logical implication consisting of a

head and a body. The head is a single atom C, and the body is a conjunction of atoms

A1 ∧ ... ∧An.

An example of such a rule is:

ρ0 : hasChild(a, c) ∧ isCitizenOf(a, b)⇒ isCitizenOf(c, b)

which conveys that if a person a has a child c and is a citizen of the country b, the

child must also be a citizen of b. This is an example of a positive rule, that asserts

the existence of specific facts in the head, given the body. In addition to positive rules,

we also consider negative rules, which identify sets of facts that lead to contradictions.

For example, the negative rule hasChild(a, b) ⇒ isMarried(a, b) defines that if b is the

child of a, b is also married to a. In this respect, the rule describes a state that should

never occur, whereby all facts that comply with this rule are automatically regarded as

contradictory and thus incorrect. Negative rules can be used to identify inconsistencies

in the data, which are eventually resolved via user intervention [Arioua and Bonifati,

2018]. In our setting, we consider the case in which the KG data can be incomplete and

incorrect.

78

4.4 The Colt framework

The instances IG(ρ) ⊆ E×R× E of a rule ρ in the knowledge graph G are the set of

facts expressed by the right-hand-side of a rule, assuming the left-hand-side is true. For

example, the instances of rule ρ0 are the facts produced by isCitizenOf(c, b), given that

both hasChild(a, c) and isCitizenOf(a, b) are true.

Ideally, if we knew all true facts K, we could validate the confidence of the rule on the

knowledge graph G by computing the instances in K that are correctly captured by the

rule ρ via the ratio |IK(ρ)∩IG(ρ)|
|IK(ρ)| . As K is, in reality, unavailable, we model the validation

as a labeling function f : IG(ρ)→ {0, 1} over the instances x ∈ IG(ρ):

f(x) =

{
1 if (e1, r, e2) ∈ K

0 otherwise

It returns 1 if an instance x ∈ IG(ρ) is correct (i.e., (e1, r, e2) ∈ K) and 0 otherwise.

The access to K can be implemented by an external oracle, such as a domain expert, who

validates whether a fact is true or not. As assessing the validity of facts by consulting an

oracle can be costly, we limit the number of evaluations to a budget B, thus bounding

the evaluation effort.

The rule-driven knowledge validation problem aims at finding a labeling function f

within the budget B:

Problem 1. Given a knowledge graph G : 〈E,R,F〉, a rule ρ with instances IG(ρ) ⊆
E× R× E, and a budget B, find

L∗ = arg max
L⊆IG(ρ)

∑
x∈L

f(x) subject to C(L) ≤ B

where C represents the sum of costs of all the facts in L.

In many practical scenarios, the cost associated with each fact is 1, as the budget

quantifies the number of questions to the oracle. In our setting we make this assumption

but note that even if the function f is known, the problem is NP-hard with non-constant

cost.

4.4 The Colt framework

To learn a model for a rule ρ, we execute ρ, which yields a set of rule-compliant facts

IG(ρ). Each fact x ∈ IG(ρ) corresponds to an edge in the knowledge graph and is

composed of a subject, a predicate, and an object 〈s, p, o〉. As such, a fact implies that an

edge of type predicate (p) exists between entities subject (s) and object (o). For example,

the edge 〈Albert Einstein, bornIn, Ulm〉 encodes the fact “Albert Einstein was born

in Ulm”.

A fact’s validity is ensured by the labeling function f , which is at the core of our

solution and needs to be designed with great care. A negligent design could lead to

either inefficient or impractical solutions. In particular, since the function is unknown,

79

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

the direct optimization of Problem 1 is not possible. To circumvent this impasse, we make

the following assumptions. First, the labeling function can be equivalently represented

by a classifier f̃ on the facts, which is trained on the evaluations seen so far. Second,

since facts are related to one another, we assume the existence of a similarity κ : (E ×
R× E)× (E×R× E) 7→ [0, 1] between pairs of facts. Such similarities have been studied

extensively in the past few years. We provide more information on how to compute

expressive similarities in Section 4.5.

Our framework, Colt, presented in Algorithm 1, proceeds iteratively by using the

information in the classifier and asking the user to evaluate facts until a specified budget

B is depleted. In the beginning, the classifier is initialized (Line 2) using the instances

and the similarity function. At every iteration t, the algorithm selects a new fact xt using

the classifier’s knowledge (Line 5). The user then validates the fact (Line 6), providing

a value yt = 1 if the fact is true and yt = 0 otherwise. Finally, the algorithm updates its

beliefs by incorporating the true value yt for the fact xt. The classifier serves as a proxy

for the unknown function f , which encodes the true facts K for the instances IG(ρ) of

rule ρ. This classifier is then used to (i) estimate a confidence value for the current rule

and (ii) determine for which facts a rule is likely to be correct.

The classifier f̃ is of crucial importance, as it should guarantee a high classification

accuracy within a few evaluated facts. Section 4.4.1 describes an algorithm based on

maximum set coverage that fully relies on the correctness of the similarity measure.

In Section 4.4.2, we propose a model that combines neural networks and probabilistic

Gaussian processes to overcome the rigidity of maximum coverage.

Algorithm 1 The Colt framework

Input: knowledge graph G; rule instances IG(ρ)
Input: similarity κ; budget B
Output: A classifier f̃

1: U ← IG(ρ) . Unlabeled facts
2: f̃ ← Initialize(U, κ) . Initialize the classifier
3: L← ∅ . Initialize set of labeled facts
4: for t = 1 . . . B do
5: xt ← Select(f̃ , U, κ) . Select the next fact
6: yt ← f(xt) . User validates xt
7: L← L ∪ {xt} . Add selected fact to L
8: Update(f̃ , κ, xt, yt) . Update the classifier
9: U ← U \ {xt} . Update U by removing xt

10: return f̃

4.4.1 Colt-MC: A maximum coverage solution

We devise our first algorithm based on a variation of the greedy algorithm for the max-

imum coverage (MaxCover) problem [Nemhauser et al., 1978]. Given some sets over

a universe of elements and a fixed number B, the maximum coverage problem finds B

sets that overall contain the maximum number of elements from the universe. Although

80

4.4 The Colt framework

the problem is NP-hard, the greedy algorithm that selects the set and adds additional

elements achieves an O(1− 1/e) approximation.

Note that Problem 1 shares some traits with MaxCover, as every fact x identifies

a set κ(x, ·) in which each of its elements has a different similarity weight. As such,

Problem 1 translates into finding a set of elements that maximize the weighted coverage

identified by each fact’s similarity set κ(x, ·). The variant of MaxCover in which every

element’s weight depends on the set containing the element is called generalized maximum

coverage (GenMaxCover) [Cohen and Katzir, 2008]. Generalized maximum coverage

admits a greedy
(

1−1
e

)
-approximate solution.

The generalized version takes into account different costs for each element. However,

in our case, this cost is fixed and determined by the number of facts evaluated by a user.

We relax the GenMaxCover assumptions and devise a greedy solution for the problem

with a fixed cost. Such a greedy scheme selects at each iteration the fact that maximizes

the weighted marginal gain,

∆(x|L) =
∑

x′∈IG(ρ)

κ(x, x′)− max
x′′∈L

κ(x′, x′′) (4.1)

which quantifies the increment in similarity if the element x is added to the set L. As

soon as the set L contains B elements, the algorithm stops. We refer to this greedy

algorithm as Colt-MC.

Algorithm 2 Colt-MC

1: function Initialize(U, κ)
2: f̃ ← 0 . Initialize uniform classification

3: function Select(f, U, κ)
4: return arg maxx∈U ∆(x|L) . See Eq. 4.1

5: function Update(f̃ , κ, xt, yt)
6: f̃(xt)← yt

Algorithm 2 shows the Initialize, Select, and Update function for the greedy

algorithm. The classifier f̃ is a one-nearest-neighbor (1-NN) classifier that provides a

binary label for each fact. The evaluation of f̃ on unlabeled facts returns the label of

the most similar fact among those evaluated so far. In the end, the approximation of the

labeling function f provided by the classifier f̃ is

f̃(x) =

{
f(x) if x ∈ L
f(arg maxx′∈L κ(x, x′)) otherwise

One convenient property of Colt-MC is that it ensures maximum quality if all facts

generated by a rule are evaluated. We also observe this property empirically during the

experiments in Section 4.6.3.

81

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

4.4.2 Colt-GP: A learning-based solution

The Colt-MC algorithm, as well as its corresponding analysis, implicitly assumes that

both the similarity function κ on the facts and the user’s validations are correct and

reliable. To overcome this obstacle, we propose a probabilistic method based on deep

kernel learning (DKL), which combines the advantages of neural networks and Gaussian

processes (GPs) (Section 4.4.3).

To estimate the value and uncertainty of f̃ , our proxy of the labeling function, we

assume that the labeling function at step t is a Bernoulli distributed random variable

sampled from a logit-transformed Gaussian distribution. The Gaussian random variable

is represented by a Gaussian process [Bishop, 2007], which models points in space as in-

dividual Gaussians related through a kernel function representing the similarity κ among

facts.

A GP is completely determined by its mean µ and covariance matrix C, in which each

element Cij = κ(xi, xj) represents the similarity between a triple pair xi and xj . GPs

define a distribution over functions where the prior of such distribution is a Gaussian

N(0,C) with mean 0 and covariance C(IG(ρ), IG(ρ)) among all instances in IG(ρ). In

practice, the prior is never computed. Instead, we are interested in the posterior prob-

ability Pr(x ∈ K|L, x) of a fact x of belonging to the true facts K knowing the labeled

facts L. The posterior of a GP is Gaussian; however, in order to classify the facts, the

function sampled from the posterior needs to be transformed to return a value between

0 and 1 with high probability. This transformation is done by a logistic sigmoid function

s(x) = 1
1+e−x . The final posterior is the expectation of the predictions over the sample

of logistic transformed Gaussian functions:

Pr(x ∈ K|L, x) =

∫
s(f∗) Pr(f∗|L, x) df∗ (4.2)

The integral in Eq. 4.2 is analytically intractable but can be approximated with sampling

methods or analytical approximations, such as the stochastic variational inference (SVI)

used in Section 4.4.3.

The choice of GPs for classification has two significant implications. First, a GP is

a Bayesian model that allows sampling using the predictions from the posterior. As the

choice of the sampling strategy is critical for such models, we analyze multiple choices for

different sampling strategies in Section 4.4.4. Second, GPs are non-parametric models;

thus, they can easily update their beliefs by using Bayes’ theorem on the posterior

computation.

We are now ready to describe Colt-GP (Algorithm 3), represented in Figure 4.1.

For the sake of completeness, Algorithm 3 (Line 2) reports on the random variable’s

prior initialization even though it is never explicitly computed. The model parameters

(µ,C) are updated using the posterior inference in Eq. 4.2. Each iteration step samples

an unlabeled fact using the Select function, which retrieves an element according to

one of the strategies in Section 4.4.4. The sampled fact is then presented to a user who

evaluates its correctness. For example, given the fact 〈Donald Trump, bornIn, New

82

4.4 The Colt framework

<Albert Einstein, bornIn, Ulm> <=> 0.5
<Robert Watts, bornIn, Berlin> <=> 0.5

…
<Donald Trump, bornIn, New York> <=> 0.5

Translate triple
using
Knowledge Graph
Embeddings

<Donald Trump, bornIn, New York> => ?

…
<Donald Trump, New York>

<Donald Trump,
bornIn,
New York> => True

Model

add

reevaluate
instances

iterate

User

rule

exec

Training
Set (L)

train
model

…

Do
na

ld

Tr
um

p

Ne
w

Yo
rk …

concatenate

select triple according
to sampling strategie

Figure 4.1: Overview of the interactive model-building process

York〉, a user verifies whether or not Donald Trump was born in New York. The labeled

triple is then added to the training set L.

Algorithm 3 Colt-GP

1: function Initialize(f̃ , U, κ)
2: f̃ ∼ s(N(0,C)) . Gaussian prior, not explicitly computed

3: function Select(f, U, κ)
4: return xt sampled with one strategy in Sec. 4.4.4

5: function Update(f̃ , κ, xt, yt)
6: f̃ ← Update the posterior using SVI [Wilson et al., 2016b] for Eq. 4.2

The posterior calculates the probability of a fact being true, which is estimated by

Eq. 4.2. To convert this probability into a label of 1 or 0 for each fact x, f̃(x) returns

1 if the probability ≥ 0.5, otherwise zero1. Based on the investigations in Section 4.6.1,

this choice of probability threshold led to an overall good performance.

f̃(x) =

{
1 if Pr(x ∈ K|L, x) ≥ 0.5

0 otherwise

1With a little abuse of notation f̃ indicates both the posterior and the classifier.

83

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

x1

Y

OUT [4 dims]

Neural Network

W(1)

W(2)

W(3)

W(4)

GP layer

x2 x3 x4 xn-3 xn-2 xn-1 xn…

FC 3 [50 dims]

FC 2 [50 dims]

FC 1 [200 dims]

IN [400 dims]

Figure 4.2: Overview of the model architecture.

4.4.3 Learning with deep kernels

The inference step in Gaussian processes requires the inversion of the covariance matrix,

which grows with the number of evaluated facts. The numerical instability of this matrix

inversion coupled with modest performance on high dimensional data [Djolonga et al.,

2013] is detrimental to the final classification quality. By their nature, knowledge graphs

have a high number of dimensions as one should consider at least all relationships, entity

attributes, and connections.

To circumvent the GPs deficiencies, we employ deep kernel learning (DKL) [Wilson

et al., 2016a], a combination of neural networks and Gaussian processes. Deep kernel

learning aims at learning a flexible similarity function, while at the same time incorpo-

rating the user’s evaluations on the facts. It scales linearly with the number of evalu-

ated facts and combines the strengths of both neural networks and GPs in one unified

model. To learn the model parameters and perform posterior inference, we use the fast

stochastic variational inference (SVI) procedure [Wilson et al., 2016b], enabling the use

of non-Gaussian likelihoods.

Figure 4.2 shows the general model architecture. It consists of two main components:

a set of neural network layers and a Gaussian process layer (GP layer) applied to the

network’s output vector. The combination results in a deep probabilistic neural network

that meets our requirements.

In our adaptation of the model, the neural network consists of three fully con-

nected layers, each equipped with a ReLU activation function [Hahnloser et al., 2000].

84

4.4 The Colt framework

This model part produces a condensed lower-dimensional representation of the high-

dimensional input data, thus effectively reducing the dimensionality. To this end, the

n-dimensional input vectors X = (x1...xn) are transferred to the input layer (IN), from

where they successively pass through three network layers (FC1-FC3) and finally form

the desired low-dimensional data representation at the output layer (OUT).

The second part of the model consists of a GP layer that is connected to the output

layer of the network and receives the low-dimensional data representation as its input.

The GP layer itself consists of j Gaussian Processes g1 . . . gj , each having their own

corresponding kernel k1 . . . kj that operates on subsets of the vector coming from the

network. When selecting the number of GPs in this layer, we follow Wilson et al. [2016b]

and use one GP for each dimension in the output vector (j = 4). To obtain the final

result, first, the individual GPs are additively combined and then transformed by an

observation model, which in our case is a Bernoulli likelihood, into the final result Y .

Training. The model is trained via stochastic variational inference (SVI) and gradient

descent. We jointly train the weights of the neural network and the parameters of the

Gaussian processes in an end-to-end fashion. We use the marginal log-likelihood as our

loss function. To determine the gradient of the loss function with respect to the weights,

we use the backpropagation algorithm, while performing weight updates by using the

Adaptive Moment Estimation optimizer (ADAM) [Kingma and Ba, 2015].

4.4.4 Sampling strategies

As stated in Section 4.4.2, the sampling strategy is at the heart of our Colt-GP algo-

rithm, as it is responsible for the incremental selection of new facts. A good sampling

strategy aims to select training examples of high information density that are likely to

improve classifier performance when used for training. In the following, we present the

sampling strategies considered in our experiments.

Random. Random sampling is the simplest sampling technique: it randomly selects

training examples from the data and adds them to the training dataset, ignoring any

prior knowledge. Therefore, random sampling constitutes the weakest strategy in terms

of harnessing the model’s beliefs during the sampling process.

Maximum uncertainty. To improve the random sampling strategy, maximum uncer-

tainty sampling (MAXU) uses the model itself to assess how valuable the labeling of each

data point is in terms of confidence gain [Lewis and Gale, 1994]. This sampling is done

by using the model to estimate its uncertainty in assigning each unlabeled data point to

a particular class. The data points for which the classifier is most uncertain are those

closest to its decision boundary. The incremental labeling of the data points with maxi-

mum uncertainty leads to the refinement of the decision boundary, as the most critical

data points are exposed to the classifier. Because we are performing binary classifica-

tion, distinguishing only between correct and incorrect facts, we use the binary entropy

85

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

measure to determine the uncertainty of the classifier with respect to its classification:

H(X) = −p log2(p)− (1− p) log2(1− p)

As mentioned in [Roy and McCallum, 2001; Tang et al., 2002], a disadvantage of this

strategy can be its sensitivity to outliers, which is addressed by GP-UCB.

GP-UCB. The Gaussian process upper confidence bound algorithm (GP-UCB) intro-

duced by Srinivas et al. [2010] defines a sampling criterion that aims at finding a trade-off

between exploring the function space and exploiting maximal function areas. To this end,

they propose the following sampling strategy:

xt = arg max
x∈U

µt−1(x) +
√
βtσt−1(x)

In this formula, U denotes the unlabeled facts as defined in Algorithm 1. The exclu-

sive selection of elements x ∈ U where the model has either a high variance (σt−1) or

a high expected reward (µt−1) cannot be regarded as the optimal strategy, as it leads

on the one hand to the neglect of useful information and on the other hand to poor

generalization capabilities of the model. To overcome this issue, the proposed GP-UCB

sampling strategy strikes a balance between exploration by selecting elements where the

model has a certain degree of uncertainty (large σt−1), and exploitation by choosing el-

ements with high belief (large µt−1). By simultaneously optimizing both criteria, the

strategy seeks to achieve an equilibrium between exploration and exploitation.

The parameter βt trades-off exploration and exploitation. A large βt corresponds to

more exploration, while a small βt leads to more exploitation. The GP-UCB strategy

ensures a logarithmic growth of the regret, the deviation in quality with respect to the

optimal sampling, by setting βt = 2 log(|IG(ρ)|t2π2/6δ) with δ ∈ (0, 1). In other words,

the regret on the evaluations tends to 0 when the number of validated facts tends to

infinity.

According to the above formula, βt starts at a relatively small value, which encourages

it to be more exploitative. Along with the increasing number of sampling steps t, βt also

increases, making it more exploratory. We use this policy to update βt during our

experiments.

4.5 Computing similarities

The choice of an adequate similarity measure κ depends on the specifics of the data

and the application domain. We avoid the need to design an ad-hoc similarity measure

by proposing a flexible one based on knowledge graph embeddings [Wang et al., 2017].

Knowledge graph embeddings refer to a family of methods that learn to represent a graph

in a low-dimensional space. These methods implicitly capture important structural and

semantic information and are agnostic to the application domain. Although errors and

missing data in the knowledge graph affect the quality of the generated embeddings,

86

4.5 Computing similarities

they constitute a solid starting point. The design of such embedding methods is outside

of the scope of this work. We refer to Wang et al. [2017] for a comprehensive survey on

these methods.

For our purposes, we employ HypER [Balazevic et al., 2019], an expressive and fast

embedding method inspired by ConvE [Dettmers et al., 2018]. For each fact 〈s, p, o〉 with

subject s, object o, and predicate p, HypER computes a 200-dimensional vector s, o,

and p. Similar to previous approaches, HypER maximizes the likelihood for the existence

of a fact in the knowledge graph. Additionally, the method aggregates information from

the subject and predicate employing convolution operators. The object o in the vector

space is then computed as a non-linear transformation of the subject and predicate

vector.

These embeddings are calculated for all subjects, predicates, and objects in a knowl-

edge graph before any rule is processed. The final embedding x of a fact x = 〈s, p, o〉
is the 400-dimensional vector concatenation x = s ◦ o of the subject and object vectors.

Note that since we consider one rule at a time, the predicate p in the rule’s body always

remains the same and can thus be omitted.

As HypER achieves state-of-the-art performance in predicting missing facts, it repre-

sents an ideal starting point and a solid baseline for our approach. The Colt framework

builds on top of HypER by integrating user validation.

Colt-MC: The similarity score between fact x = 〈s, p, o〉 and fact x′ = 〈s′, p′, o′〉 is

computed as the standard cosine similarity between the fact vectors:

kcos(x, x
′) =

x·x′

‖x‖‖x′‖
=

(s ◦ o)·(s′ ◦ o′)

‖s ◦ o‖‖s′ ◦ o′‖

As a result, Colt-MC augments embeddings by enabling them to integrate user feed-

back.

Colt-GP: The Gaussian processes included in Colt-GP are kernel methods, which

naturally incorporate similarity scores. The default kernel for Gaussian processes is the

RBF kernel:

kRBF (x,x′) = exp

(
−||x− x′||

2σ2

)
The RBF kernel provides smoothness as the similarity exponentially decreases with

an increase of the Euclidean distance. The parameter σ is learned through maximum

likelihood estimation. GPs with RBF kernels implicitly project the points into an infinite

dimensional space so that the GP layer in Figure 4.2 represents a hidden layer with an

infinite number of neurons, thereby significantly increasing the model’s flexibility. Fi-

nally, the transformation induced by deep kernel learning (DKL) in Section 4.4.3 further

modifies the embedding space through a parametric non-linear function g. The final

kernel learned by the architecture in Figure 4.2 is then

kDKL(x,x′) = exp

(
−||g(x)− g(x′)||

2σ2

)

87

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

4.6 Experiments

This section presents and discusses our experimental results, starting with a descrip-

tion of the dataset, competing algorithms, parameter settings, and running time. In

Section 4.6.1, we show that Colt-GP is capable of learning a rule’s behavior from the

triples it generates. How different sampling strategies affect the training process is ex-

plored in Section 4.6.2. In Section 4.6.3, we investigate how Colt-GP compares to the

Colt-MC algorithm (Section 4.4.1) and two active learning baselines. Section 4.6.4

concludes the experiments by examining the relationship between a given number of

interactions and the estimated confidence value for the rules.

Datasets. We use YAGO [Suchanek et al., 2007], an open-source knowledge base, for

the creation of knowledge graph embeddings and the derivation of logical rules. At the

time of writing, the YAGO dump2 comprised 948 358 triples, 36 relationship types, and

470 485 different entities. To obtain positive and negative rules, we ran RuDiK [Ortona

et al., 2018] and AMIE [Galárraga et al., 2015] with their standard parameters on YAGO.

Out of 1 517 mined rules, 928 produced more than 5 500 triples. The execution of a rule

can be understood as a query, where a check is made for all triples of a KG to see whether

they fulfill the condition specified on the left side of the executed rule. Whenever a

checked triple evaluates to true, this triple belongs to the triple set generated by this

rule.

We manually annotated the instances of 26 rules (22 positive; 4 negative) out of

the 589 rules that produced fewer than 5 500 instances. The decisive criteria for the

selection of these rules included the number of triples that had to be annotated as well

as the variety of predicates involved. Also, we selected a majority of rules with three

atoms in their body to focus on use cases where analyzing and validating is harder for

users. For negative rules, where the execution in most cases yielded a very high number

of triples, we randomly selected 1,000 triples for annotation. To cover a range of different

output sizes, we annotated rules with a small output of just 40 triples, up to rules with

5 269 triples.

Similarly, we annotated rules that are mostly right, rules that are nearly always

wrong, and rules with mixed confidence. Table 4.1 reports the selected rules with their

statistics. For the listed 26 rules, we manually annotated a total of 23 324 triples, of

which 5 524 corrected errors and missing facts in the underlying KG. To our knowledge,

this is the largest available dataset of annotated rules.

Algorithms. In addition to Colt-MC (Section 4.4.1), we evaluate the Colt-GP al-

gorithm (Section 4.4.2) against two active learning baselines, one based on logistic re-

gression (AL-LogReg) and the other on an SVM (AL-SVM) [Schohn and Cohn, 2000].

Following Section 4.6.2, we choose maximum uncertainty as the selection strategy for

2http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.clean.

notypes.tsv.7z

88

http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.clean.notypes.tsv.7z
http://resources.mpi-inf.mpg.de/yago-naga/amie/data/yago2/yago2core_facts.clean.notypes.tsv.7z

4.6 Experiments

both active learning approaches. In our experiments, we use scikit-learn implementa-

tions for the logistic regression and SVM classifiers and keep their default parameter

settings.

Parameter settings. To train the model presented in Section 4.4.3, we used the

ADAM optimizer [Kingma and Ba, 2015] and kept its default parameter settings at

α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. We train the model with a batch size

of 32 until it converges or up to a maximum of 1000 epochs. For the neural network

implementation, we use the PyTorch framework, while using the GPyTorch library to

implement the GP layer. We train the models on a Linux machine with 2×2.20GHz

CPUs, each with 10 cores, 251 GB RAM, and one Nvidia Titan X Pascal GPU.

Runtime. Recall that the main contribution of this chapter is to investigate methods

that enable the quality and confidence assessment of logical rules by using only a few

humanly validated rule instances. While a thorough evaluation of the runtime deviates

from the main focus of this work, we observe that our methods run in less than 10

seconds on 20–100 evaluated instances and thus in real-time. This result, achieved on

a commodity machine, confirms the ability to use the Colt framework and its most

expressive Colt-GP model in production systems.

4.6.1 Learning rule characteristics

The goal of our first experiment is to show that Colt-GP can learn the characteristics

of a rule from the instances it generates. To this end, we divide the previously annotated

instances into training and test sets using a ratio of 70 to 30. We train Colt-GP on

the training set and show that we are able to predict whether the relationship implied

by the processed rule holds for the never seen instances from the test set. This scenario

represents an out-of-sample evaluation, as it is often used in the evaluation of many

machine learning approaches. It primarily aims to test the learned model’s generalization

capabilities and, at the same time, represents the most difficult classification scenario.

Figure 4.3 summarizes the results by showing the ROC curves for the annotated rules

as well as the mean and variance of each of the rule’s ROC curves. The ROC curves of

the individual rules and, hence, also the average ROC curve are all significantly above the

dashed line, which represents the theoretical behavior of a random classifier. Colt-GP

attains 89.78% average AUC, which testifies the correctness of the classifier in predicting

unknown facts. Even the lower end of the variance line attains 79.38% AUC, which is

significantly above the performance of a random classifier. We conclude that Colt-GP

is able to learn a meaningful model by using individual facts.

4.6.2 Selecting the sampling strategy

Different sampling strategies can significantly impact model performance, as they are

responsible for the composition of the training data. In this experiment, we investigate

89

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Mean ROC - AUC: 89.78
Random Classifier
Variance

Figure 4.3: ROC curve for classifying relations

how and to what extent our approach can benefit from the sampling strategies presented

in Section 4.4.4

Experimental setup. With IG(ρ) being the set of all instances created by a rule ρ

and L being the set of all labeled instances used to train a model for rule ρ, we start with

an empty training set (L = ∅) and incrementally extend it with new instances j ∈ IG(ρ).

After adding j to L, we use L to train a new model. To test it, we make a prediction on

the full set of instances IG(ρ), which includes the instances added to the training set L.

In this way, we create a realistic evaluation scenario by imitating the application of our

system to a KG (where the instances used for training remain in the graph). Running

this evaluation scheme results in L eventually containing the same elements as IG(ρ), so

that the last model should reach an F1-score of 100%.

If a model cannot achieve an F1-score of 100% when training and predicting on

identical data, it is likely that its capacity is not enough to capture the information

to perfectly separate the classification space. We examine this scenario in more detail

in Section 4.6.3.

Evaluation. Figure 4.4 shows how the different sampling strategies affect precision,

recall, and F-measure. As expected, the random selection of training instances proves

to be the worst strategy. Although its precision initially increases to 78%, it then de-

creases and remains, on average, 3.93% and 6.22% below the precision value of GP-UCB

and maximum uncertainty (MAXU), respectively. In terms of F-measure, the random

90

4.6 Experiments

sampling strategy lags 4.42 and 6.72 percentage points behind the GP-UCB and MAXU

strategies, regardless of the percentage of training instances.

GP-UCB exceeds MAXU in recall between 5–12% by an average of 2.22 percentage

points. To achieve a competitive precision value of 77.44%, GP-UCB requires up to 6%

of the training instances but remains below MAXU’s precision value. While the average

difference of 2.31% to GP-UCB is rather small, the MAXU strategy provides the best

results in terms of F-measure, outperforming the other two strategies at all times.

0 5 10 15
Percent of Instances

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec

isi
on

0 5 10 15
Percent of Instances

0.4

0.5

0.6

0.7

0.8

0.9
Re

ca
ll

0 5 10 15
Percent of Instances

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

GP-UCB
MAXU
Random

Figure 4.4: Impact of sampling strategies on precision, recall and F1-score

GP-UCB’s inability to achieve a better performance than MAXU can be attributed

to the βt parameter choice discussed in Section 4.4.4. While the formula presented

by Srinivas et al. [2010] for selecting the βt parameter provides a theoretically good

starting point, it appears to be too conservative for our problem. As a result, the trade-

off between exploration and exploitation is not ideal, causing GP-UCB to make overly

conservative decisions, which prevents it from exceeding the MAXU strategy in terms

of F-measure. Since the MAXU strategy achieves an F-measure of 75% with only 5% of

the training instances, we apply this strategy in all subsequent experiments.

4.6.3 Model performance

This experiment first analyzes the behavioral change of Colt-GP w.r.t. the amount

of training data, and, second, compares its performance to the Colt-MC algorithm

presented in Section 4.4.1 as well as two active learning baselines. We aim to answer

whether the validation problem can already be solved by simple active learning methods

or by purely relying on the similarities between knowledge graph embeddings, as done

by Colt-MC.

Figure 4.5 shows precision, recall, and F-measure curves of all algorithms for an

increasing amount of training data. As the plots show, AL-LogReg and AL-SVM quickly

fall behind the Colt algorithms. Although AL-SVM provides better results than AL-

LogReg, which is due to its non-linear RBF kernel, neither approach fully captures the

complexity of the problem. Thus, after reaching 15% (AL-SVM) and 20% (AL-LogReg)

of the training data, improvements start to stagnate, so that the respective F-measures

91

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

0 20 40 60 80 100
Percent of Instances

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0 20 40 60 80 100
Percent of Instances

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll
0 20 40 60 80 100

Percent of Instances
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Colt-GP
Colt-MC
AL-LogReg
AL-SVM
Var(Colt-GP)

Figure 4.5: Performance of Colt-GP, Colt-MC and active learning baselines

fluctuate around 84% and 80%. In contrast, Colt-GP and Colt-MC outperform the

active learning approaches and continue to improve as training data increases.

While Colt-GP exceeds Colt-MC in all plots, it shows, in particular, a faster

increase than Colt-MC. Regarding the F-measure, the performance of Colt-GP grows,

on average, 1.54% faster than Colt-MC in the ranges between 5-8% of used training

instances and slows down to 0.85% in the range 22-25%. In contrast, the F-curve of

Colt-MC increases almost linearly between 12% and 100%.

As expected, we observe that the variance of Colt-GP’s predictions decreases with

the amount of training data, as the model becomes increasingly confident in its predic-

tion. In terms of F-measure, Colt-GP achieves 100% when all training data is used,

proving that the model is expressive enough to capture the full complexity of the prob-

lem. Using only 5% and 10% of the training data, Colt-GP achieves 75% and 80%

F-measure. We measured the most significant improvement over Colt-MC when using

31% of the training data, resulting in an F-measure of 92.8% compared to 80.2% pro-

duced by Colt-MC. This represents an improvement of 12.6% in F-measure. Looking

at the evaluation of all four approaches, we conclude that it is neither sufficient to solely

rely on the similarities between knowledge graph embeddings nor to apply simple active

learning techniques to solve the problem adequately.

4.6.4 Rule confidence estimation

We compare the rule confidence of Colt-GP with the data-driven standard confidence

measure (SCF) [Galárraga et al., 2015], which is defined as #KG
#total in Table 4.1. To this

end, we first determine the correct confidence value of each rule based on its annotated

facts and use it to calculate the average estimation error across all rules.

As shown by the red line in Figure 4.6, the average SCF estimate deviates by 19.6%

from the correct confidence value. To calculate the average estimation error of Colt-GP,

we train it with an increasing number of instances and calculate the average estimation

error for each trained model.

92

4.7 Summary

10 20 30 40 50 60 70 80 90 100
#Instances

0.0

0.1

0.2

0.3

0.4
M

ea
n

Er
ro

r
Colt-GP
SCF
Variance

Figure 4.6: Error reduction in confidence estimation using an increasing number
of training instances

For this calculation, we use only rules with at least 100 instances, which can be

identified in Table 4.1. In addition, we added a light grey line to Figure 4.6, indicating

the model’s prediction error for each of the rules. The average estimation error for

Colt-GP is shown as a blue line in Figure 4.6. The figure shows that, from the very

beginning, Colt-GP estimates the average rule confidence more accurately than the

SCF. As a result, 10 to 20 training instances are sufficient to achieve an average estimated

confidence error of 12.9 to 10.8 percent, which corresponds to an improvement of 6.7 and

8.8 percentage points over the SCF . As the number of training data increases, the

estimation error decreases and reaches its lowest value of 4.5 percent when using 100

training instances. Figure 4.6 also shows that, although the estimated error between

50-100 training instances improves only by 1.3 percentage points, the variance decreases

by 3.5%, indicating that Colt-GP gains more confidence in the predictions.

4.7 Summary

This chapter introduced Colt, a few-shot rule-based knowledge validation framework

that enables the interactive quality assessment of logical rules. We devised Colt-GP,

an algorithm based on Gaussian processes and deep kernel learning, which interactively

learns labeling functions on rules. Colt-GP benefits from knowledge graph embeddings

and integrates user feedback to overcome data quality issues of the underlying KG. We

compare Colt-GP with two active learning approaches and a baseline built on maximum

93

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

coverage and knowledge graph embeddings (Colt-MC). We show that state-of-the-art

methods are not sufficient to adequately address data quality issues of the underlying

KG. The proposed method achieves a 10% error in the confidence estimation of facts,

which requires only 20 user-validated facts. For the task of rule validation, a prediction

quality of 75% can be achieved when using only 5% of the annotated rule instances.

Finally, we release our dataset of 26 manually annotated rules and 23 000 facts. We

note that Colt’s focus on rule-driven validation does not prevent its adoption to triples

returned by other query mechanisms.

94

4.7 Summary

ID
R

u
le

#
K

G
#

c
o
rr

e
c
t

#
to

ta
l

ty
p

e

1
d
e
a
l
s
W
i
t
h
(a
,v

0
)
∧
i
s
L
e
a
d
e
r
O
f
(v

1
,b

)
∧
w
a
s
B
o
r
n
I
n
(v

1
,v

0
)
⇒

d
e
a
l
s
W
i
t
h
(a
,b

)
9

2
4

9
9

p
o
s

2
d
e
a
l
s
W
i
t
h
(v

0
,b

)
∧
i
s
C
i
t
i
z
e
n
O
f
(v

1
,a

)
∧
i
s
L
e
a
d
e
r
O
f
(v

1
,v

0
)
⇒

d
e
a
l
s
W
i
t
h
(a
,b

)
4
2

4
2

4
2

p
o
s

3
d
e
a
l
s
W
i
t
h
(v

0
,b

)
∧
i
s
C
i
t
i
z
e
n
O
f
(v

1
,a

)
∧
i
s
L
o
c
a
t
e
d
I
n
(v

1
,v

0
)
⇒

d
e
a
l
s
W
i
t
h
(a
,b

)
1
0
8

1
3
4

1
3
4

p
o
s

4
i
s
C
i
t
i
z
e
n
O
f
(v

0
,b

)
∧
l
i
v
e
s
I
n
(v

0
,a

)
⇒

d
e
a
l
s
W
i
t
h
(a
,b

)
1
8

6
6
4

7
3
4

p
o
s

5
d
i
e
d
I
n
(a
,v

0
)
∧
i
s
K
n
o
w
n
F
o
r
(v

1
,v

0
)
∧
l
i
v
e
s
I
n
(v

1
,b

)
⇒

d
i
e
d
I
n
(a
,b

)
8
0
8

8
1
5

8
3
8

p
o
s

6
d
i
e
d
I
n
(a
,v

0
)
∧
i
s
L
e
a
d
e
r
O
f
(v

1
,v

0
)
∧
l
i
v
e
s
I
n
(v

1
,b

)
⇒

d
i
e
d
I
n
(a
,b

)
2
,1

4
3

3
,1

3
5

4
,2

9
2

p
o
s

7
a
c
t
e
d
I
n
(a
,b

)
∧
c
r
e
a
t
e
d
(a
,b

)
⇒

d
i
r
e
c
t
e
d
(a
,b

)
3
8
4

3
8
8

1
,0

0
3

p
o
s

8
a
c
t
e
d
I
n
(v

0
,b

)
∧
c
r
e
a
t
e
d
(a
,b

)
∧
d
i
r
e
c
t
e
d
(v

0
,b

)
⇒

d
i
r
e
c
t
e
d
(a
,b

)
4
2
1

4
1
4

8
0
4

p
o
s

9
h
a
s
W
o
n
P
r
i
z
e
(a
,v

0
)
∧
h
a
s
W
o
n
P
r
i
z
e
(b
,v

0
)
∧
h
a
s
A
c
a
d
e
m
i
c
A
d
v
i
s
o
r
(b
,a

)
⇒

h
a
s
A
c
a
d
e
m
i
c
A
d
v
i
s
o
r
(a
,b

)
8
5

8
5

8
5

n
eg

10
i
n
f
l
u
e
n
c
e
s
(a
,b

)
⇒

h
a
s
A
c
a
d
e
m
i
c
A
d
v
i
s
o
r
(a
,b

)
1
,0

0
0

1
,0

0
0

1
,0

0
0

n
eg

11
i
s
C
i
t
i
z
e
n
O
f
(v

0
,a

)
∧
l
i
v
e
s
I
n
(v

0
,b

)
⇒

h
a
s
C
a
p
i
t
a
l
(a
,b

)
4
3

5
0

7
3
4

p
o
s

12
d
e
a
l
s
W
i
t
h
(a
,v

0
)
∧
h
a
s
C
u
r
r
e
n
c
y
(v

0
,b

)
⇒

h
a
s
C
u
r
r
e
n
c
y
(a
,b

)
7

1
0

2
9
3

p
o
s

13
h
a
s
C
a
p
i
t
a
l
(v

0
,v

1
)
∧
h
a
s
C
u
r
r
e
n
c
y
(v

0
,b

)
∧
i
s
L
o
c
a
t
e
d
I
n
(v

1
,a

)
⇒

h
a
s
C
u
r
r
e
n
c
y
(a
,b

)
1
8

4
6

4
9

p
o
s

14
d
e
a
l
s
W
i
t
h
(v

0
,a

)
∧
h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(v

0
,b

)
⇒

h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(a
,b

)
5
2

7
2

6
6
8

p
o
s

15
h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(v

0
,b

)
∧
i
s
L
o
c
a
t
e
d
I
n
(v

0
,a

)
⇒

h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(a
,b

)
1
8

6
2

1
2
6

p
o
s

16
h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(v

0
,b

)
∧
i
s
L
o
c
a
t
e
d
I
n
(v

1
,a

)
∧
l
i
v
e
s
I
n
(v

1
,v

0
)

⇒
h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(a
,b

)
2
0

5
2

6
5

p
o
s

17
h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(v

0
,b

)
∧
i
s
L
o
c
a
t
e
d
I
n
(v

1
,v

0
)
∧
l
i
v
e
s
I
n
(v

1
,a

)
⇒

h
a
s
O
f
f
i
c
i
a
l
L
a
n
g
u
a
g
e
(a
,b

)
2
0

1
6

4
0

p
o
s

18
i
n
f
l
u
e
n
c
e
s
(a
,v

0
)
∧
i
s
C
i
t
i
z
e
n
O
f
(v

0
,b

)
⇒

i
s
C
i
t
i
z
e
n
O
f
(a
,b

)
1
4
6

5
4
7

1
,3

8
2

p
o
s

19
h
a
s
C
h
i
l
d
(a
,b

)
⇒

i
s
M
a
r
r
i
e
d
T
o
(a
,b

)
9
9
1

9
9
0

1
,0

0
0

n
eg

20
i
s
L
o
c
a
t
e
d
I
n
(v

0
,b

)
∧
l
i
v
e
s
I
n
(a
,v

0
)
⇒

i
s
P
o
l
i
t
i
c
i
a
n
O
f
(a
,b

)
1
3
0

2
,2

5
7

5
,2

6
9

p
o
s

21
i
s
C
i
t
i
z
e
n
O
f
(v

0
,b

)
∧
i
s
L
e
a
d
e
r
O
f
(v

0
,v

1
)
∧
l
i
v
e
s
I
n
(a
,v

1
)
⇒

l
i
v
e
s
I
n
(a
,b

)
4
1
6

8
6
3

8
8
2

p
o
s

22
i
s
M
a
r
r
i
e
d
T
o
(a
,v

0
)
∧
l
i
v
e
s
I
n
(v

0
,b

)
⇒

l
i
v
e
s
I
n
(a
,b

)
1
8
1

4
4
2

5
3
7

p
o
s

23
a
c
t
e
d
I
n
(a
,b

)
∧
c
r
e
a
t
e
d
(a
,b

)
⇒

p
r
o
d
u
c
e
d
(a
,b

)
2
0
7

2
6
1

1
,0

0
3

p
o
s

23
a
c
t
e
d
I
n
(v

0
,b

)
∧
d
i
r
e
c
t
e
d
(a
,b

)
∧
p
r
o
d
u
c
e
d
(v

0
,b

)
⇒

p
r
o
d
u
c
e
d
(a
,b

)
2
4
6

2
8
1

7
0
2

p
o
s

25
h
a
s
A
c
a
d
e
m
i
c
A
d
v
i
s
o
r
(v

0
,a

)
∧
w
o
r
k
s
A
t
(v

0
,b

)
⇒

w
o
r
k
s
A
t
(a
,b

)
4
7

1
6
3

5
4
3

p
o
s

26
a
c
t
e
d
I
n
(a
,b

)
⇒

w
r
o
t
e
M
u
s
i
c
F
o
r
(a
,b

)
1
0
0
0

9
9
8

1
,0

0
0

n
eg

T
a
b

le
4
.1

:
G

en
er

at
ed

ru
le

s
an

d
th

ei
r

st
at

is
ti

cs
:

n
u

m
b

er
of

K
G

fa
ct

s
th

at
sa

ti
sf

y
th

e
ru

le
(#

K
G

),
n
u

m
b

er
o
f

co
rr

ec
t

fa
ct

s,
to

ta
l

n
u

m
b

er
of

fa
ct

s,
ty

p
e

of
th

e
ru

le
(c

ol
or

s
ar

e
fo

r
ea

se
of

re
ad

in
g)

.

95

4. FEW-SHOT KNOWLEDGE VALIDATION USING RULES

96

Chapter 5

CurEx – Extracting, Curating,

and Exploring Knowledge Graphs

As stated in the previous chapters, the generation of domain-specific knowledge bases

from structured and unstructured data sources plays an important role in use cases, such

as supply chain analysis or the assessment of financial risk factors. Both the creation

and continuous maintenance of knowledge bases entails many complex tasks and their

challenges.

To meet these challenges, we present CurEx, a prototypical, modular system that

allows structured and unstructured data sources to be integrated into a domain-specific

knowledge base. The system consists of several components that allow, amongst other

things, the extraction of information from newspaper articles and their combination

with information from other data sources, such as Wikidata and DBpedia. In doing

so, CurEx is not only able to integrate structured data sources, but also to recognize

named entities in unstructured sources, link them to entries in the knowledge base, and

extract relationships between the identified entities in the text. Each of the system’s

components addresses a specific subproblem of the knowledge base construction process

and can be easily exchanged due to its modular system architecture. This design de-

cision ensures that future innovations in the respective research areas can be easily be

adopted. The constructed knowledge base can then be used to generate domain-specific

knowledge graphs. Using CurEx,1 we were able to create an integrated knowledge base

that comprises almost 2.1 million entities and roughly 18 million relationships, including

co-occurrences.

In particular, the CurEx system (i) enables the incremental improvement of each

integration component; (ii) enables the selective generation of multiple knowledge graphs

from the information contained in the generated knowledge base; and (iii) provides two

distinct user interfaces tailored to the needs of data engineers and end-users respectively.

The former has curation capabilities and controls the integration process, whereas the

latter focuses on the exploration of the generated knowledge graph.

1https://github.com/bpn1/ingestion

97

https://github.com/bpn1/ingestion

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

The content of this chapter is based on [Loster et al., 2018b] and is structured as

follows: In Section 5.1, we give an overview of the CurEx system architecture and dis-

cuss the concrete implementations of both the structured and unstructured integration

components. We introduce the different user interfaces and how they can be used to

interact with the system in Section 5.2. Section 5.3 outlines typical use cases that are

covered by CurEx, and Section 5.4 concludes this chapter.

5.1 System architecture

Since the goal of CurEx is to integrate information from structured and unstructured

data sources, it is divided into two main components that are specifically tailored to the

integration of the respective data sources. Figure 5.1, which is repeated for convenience,

shows a general overview of the system. CurEx is entirely based on scalable technologies,

such as Apache Spark and Cassandra, and, therefore, able to process large amounts of

data. Another essential aspect of the system is its modular architecture. This modu-

larity is achieved by implementing all components as Spark-jobs, making them easy to

extend and replace. While the component for structured data integration (Chapter 1&2)

focuses on integrating structured data sources, the text mining component (Chapter 3)

handles the information extraction from unstructured data sources and their subsequent

integration into the knowledge base.

Knowledge
Base

Control
Monitor
Adjust

Curation

Explore
Search
Filter

ELEX

Annotate
Train

Refine

COLT-UI

UI/UX

COLT

Unstructured
data sources

Structured
data sources

…

Named Entity
Linking
(NEL)

Named Entity
Recognition

(NER)

Relationship
Extraction
(RELEX)

Text Mining

Data
Matching

Schema
Alignment

Data
Fusion

Structured Data Integration

EvaluationDuplicate
DetectionIndexing

Data
preproces

sing

Data Matching Process

Data
Engineer

Domain
Expert

End
User

Figure 5.1: Overview of the CurEx system architecture

As shown in Figure 5.1, the text mining component consists of the sub-components

named entity recognition (NER), named entity linking (NEL) and relation extraction

(RELEX), while the component for integrating structured data sources includes compo-

nents for schema alignment, data matching and data fusion. Through the coordinated

execution of these subcomponents, CurEx is able to build up large knowledge bases that

can then be used to create a knowledge graph consisting of entities and their relations.

To efficiently access the information in this knowledge graph, it is exported to a graph

database, such as Neo4j. This export allows the selective creation of multiple knowledge

graphs that cover only certain parts of the knowledge base. This requirement may be

necessary due to security clearances or other restrictive criteria.

98

5.1 System architecture

CurEx also introduces two distinct user interfaces customized for the needs of end-

users and data engineers. End-users can use the Entity Landscape Explorer (ELEX) to

explore the resulting knowledge graph and provide valuable feedback to data engineers.

Data engineers can use the Curation Interface to not only control and monitor many steps

of the integration process but also to directly make changes to the generated knowledge

base. In addition, CurEx is fully compatible with the Colt framework introduced in

Chapter 4, which provides its own user interface and integrates seamlessly with CurEx.

5.1.1 Structured data integration

The purpose of integrating structured data is to merge multiple structured data sources

into one while consolidating all entities that refer to the same real-world entity. This

section describes the concrete implementation of the individual components comprising

the structured integration process as it is implemented by CurEx. For the development

of an initial knowledge base, we integrate the following structured data sources: the

German Wikidata, the German DBpedia, Implisense2, and Kompass3. The latter two

data sources are manually curated commercially available company datasets. We choose

the Implisense data source as the starting point for our integration efforts since it is

manually maintained by an industry partner and thus of high data quality. We then

continue to integrate the other data sources by executing the structured data integration

process whose individual steps are described below.

Schema alignment

As the schemata of the individual data sources to be integrated can differ significantly

from each other, it becomes necessary to consolidate them into a common global schema

before the integration can take place. This necessity arises from the fact that the indi-

vidual data sources often use different column names to refer to semantically equivalent

concepts. Thus, some data sources refer to the concept of geo-coordinates as “coordi-

nate location”, others as “geo.coords” or “lat, long”. To address this issue, the schema

alignment step seeks to unify the distinctions between the entity schemata of the different

data sources. For this purpose, columns containing semantically similar information are

not only grouped under a common name but can also be merged into new columns if re-

quired. While the CurEx system expects a manually created schema mapping that both

specifies a global schema and defines how each data source is mapped to this schema,

the modular design of the system allows this component to be replaced by any schema

matching approach [Bellahsene et al., 2011; Euzenat and Shvaiko, 2013].

Data matching

As can be seen in Figure 5.1, CurEx implements the data matching process presented in

Chapter 2. Thus, the pipeline consists of the steps data preprocessing, indexing, duplicate

detection, and evaluation.

2https://implisense.com
3https://de.kompass.com

99

https://implisense.com
https://de.kompass.com

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

Data preprocessing. Entities that pass through the data matching process frequently

differ in various aspects, depending on their origin. The data preprocessing phase takes

care of these variations by eliminating the differences between the values of the integrated

data sources. To give an example: the values of the legal form column vary considerably

across different data sources – some containing full company suffixes such as “Limited

Liability Company”, while others use abbreviations such as “LLC” or “l.l.c.”. Before

inserting these data values into the previously constructed global schema, they are con-

verted into a standardized format. To this end, the CurEx preprocessing step involves

a range of operations, such as the deletion, shortening or expansion of specific phrases,

the resolution of measurement units, the application of regular expressions as well as

more sophisticated methods such as the decomposition of company names into their

constituent parts [Loster et al., 2018a]. A concrete example is provided by Table 5.1,

which shows different data formats for geographic coordinates listed by data source.

During the preprocessing phase, the different coordinate representations get normalized

into the common format [latitude];[longitude]. As can be seen in the example, the

normalization can even cause values from multiple columns to be merged into one new

value (e.g., lat, long ⇒ normalized). Note that many of these preprocessing steps are

created manually so that CurEx should not be considered a tool for data preprocessing.

Data Source Coordinate column values

WikiData 52.3906;13.0645

DBpedia
lat: 52.3906ˆˆxsd:float
long: 13.0645ˆˆxsd:float

Implisense
lat: 52.3906
long: 13.0645

Kompass n.A.

normalized 52.3906;13.0645

Table 5.1: Geographic coordinates values

Indexing. To create a duplicate-free knowledge base, entities that refer to the same

real-world entity must be merged during the deduplication process. As each data source

in our examples contains several hundred thousand entities, a complete pairwise compar-

ison of all entities is not feasible. To minimize comparisons, CurEx utilizes a standard

blocking technique that essentially groups similar objects into smaller blocks according

to a specific blocking criterion (e.g., zip code). In this way, a quadratic comparison can

be carried out within each block. Although the blocking criterion can be customized

to fit specific requirements, by default, CurEx uses a prefix-based blocking criterion.

Specifically, the first three to five characters of the individual values are used to assign

all entities with a common prefix to the same block.

Duplicate detection. With the entities grouped into smaller blocks, CurEx performs

an exhaustive duplicate comparison within each block to find duplicates. To this end,

100

5.1 System architecture

the component for duplicate detection is capable of comparing any attribute subset,

such as names, unique identifiers, or URLs. When determining the similarity of two

entities, we employ different similarity measures, such as Jaro-Winkler [Winkler and

Thibaudeau, 1987], MongeElkan [Monge and Elkan, 1996], or the Euclidean distance

between coordinate vectors. We first determine the similarity of each attribute pair and

then combine the resulting similarity values by means of a simple linear combination.

Finally, we normalize the calculated value to the range [0,1] and use the resulting value

to decide whether two entities are duplicates or not. While the current version of CurEx

implements this simple deduplication approach, its modular design allows us to use more

advanced deduplication strategies such as SNNDedupe (Chapter 2) in future versions.

Evaluation. To evaluate the performance of the data matching pipeline, CurEx uses

the standard performance metrics precision, recall, and F1-measure, which are deter-

mined for each deduplication run and can be accessed via the Curation Interface.

Data fusion

As conflicting values can occur during the consolidation of individual data sources, the

data fusion component decides how these values are to be merged. To this end, CurEx

uses a relatively simple fusion policy that relies on consolidating conflicting values ac-

cording to a manually specified sequence of participating data sources. That is, if there

are conflicting values, they are merged in the following order: Implisense, Kompass,

Wikidata, DBpedia. This sequence can be specified manually and determines which

values from which data source are more trustworthy and thus receive a higher priority

during integration. If there are no conflicts, the values of the different data sources are

simply combined into one entity, which then contains all values. If a field allows multiple

values, as is the case for enumerations, they are simply appended to the corresponding

field. Given the use case presented in Section 1.1, we used this fusion policy to create

a knowledge base of 2.1 million companies, of which about 29,000 companies occur in

exactly two and 3,700 companies in exactly three data sources.

5.1.2 Text mining

After a first version of the knowledge base has been created by integrating the structured

data sources, we systematically extend it by including entities and relations extracted

from unstructured data sources. To this end, we use various text mining techniques to

recognize and link named entities and extract relationships between them. This task is

carried out by the text mining component, as presented in Chapter 3. As the text mining

component is divided into the three sub-modules named entity recognition (NER), named

entity linking (NEL), and relation extraction (RELEX), we briefly describe their concrete

implementation in the following.

Named entity recognition. It is the task of the NER component to discover named

entities in unstructured texts. To do this, we use a technique similar to the one described

101

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

in Section 3.1. We first create large dictionaries of externally available knowledge, which

can then be integrated into the training process of a conditional random field classifier

used to discover the entities of interest.

Named entity linking. As discussed in Section 3.7, the entities extracted by the

NER component can refer to many possible entries in the knowledge base. Therefore, it

requires a linking step to establish a unique assignment to a corresponding knowledge

base entry. The current implementation of this component is based on a fuzzy matching

approach, which uses different string similarities to match identical entities. However,

to discover links between the knowledge base entries and German Wikipedia articles, we

use the more sophisticated CohEEL approach [Grütze et al., 2016]. Since this approach

also considers the context of a company mention, it allows us to find the best of several

possible knowledge base matches. This turns out to be particularly useful for linking

companies operating in different sectors and have very similar names, as their textual

context can often be used as an indicator for a precise match.

Relation extraction. Finally, it is the focus of the relation extraction (RELEX) com-

ponent to detect relationships between the previously discovered entities. The compo-

nent currently in use extracts co-occurrence relationships between entities found within

the same sentence. Due to its modular architecture, future CurEx versions can employ

techniques, such as the one presented by Zuo et al. [2017] or one of the state-of-the-art

approaches outlined in Section 3.8. In particular, the approach proposed by Zuo et al.

is promising, as it is able to extract directional relationships where the arguments are of

the same type, for example, company-to-company relationships. Since the entities were

already linked to the knowledge base in the previous step, the extracted relationships

can easily be integrated into the knowledge base.

5.2 Interface & Interactions

Every real integration system needs to adhere to the requirements of different user groups.

As such, data engineers must be able to control the individual steps of the integration

process and directly adopt the knowledge base, while end-users of the integrated data are

more interested in methods for efficient data exploration. To this end, CurEx provides

two separate user interfaces, specifically tailored to the needs of two user groups: data

engineers and end-users. The Entity Landscape Explorer (ELEX) is designed for the

end-user and allows him/her to efficiently explore and inspect the knowledge base by

browsing through the generated knowledge graph. The Curation Interface, on the other

hand, is aimed at data engineers and enables them to control the integration process and

to curate the knowledge base. Since an essential aspect of generating knowledge bases

is to determine their data quality and to improve it if necessary, the Colt framework

presented in Chapter 4 provides a dedicated user interface (Colt-UI) for domain experts,

which is also covered in this section. This interface allows domain experts to annotate

rule-generated facts required by the Colt framework to improve the data quality of the

underlying knowledge base.

102

5.2 Interface & Interactions

Figure 5.2: The Entity Landscape Explorer (ELEX) enables end-users to
graphically explore the created knowledge base. As such, a user can examine not
only entities and their relationships, but also their attributes.

5.2.1 Entity landscape explorer

The Entity Landscape Explorer (ELEX4) shown in Figure 5.2 is designed to meet the

end-user’s needs. Since a knowledge graph can easily contain thousands of nodes and

edges, a user must be able to examine the graph and its associated knowledge base

efficiently. ELEX provides this functionality by allowing the user to explore the graph

using appropriate filtering, layout, and search methods.

The starting point for such a focused exploration is an initial node that the user

can select through a search interface. To focus the exploration even more, the user can

limit the exploration to nodes of a particular entity type as well as to certain edge types.

When examining a specific subgraph, nodes and edges can be filtered out dynamically,

revealing structures that were difficult to recognize beforehand. For a better overview,

the currently displayed nodes can also be arranged in a tree structure, which is par-

ticularly useful when analyzing customer-supplier relationships. To thin out the graph

even further, it is possible to show or hide nodes and edges of certain types completely.

Another key feature of ELEX is the ability to examine the individual attributes of each

node and edge. These attributes provide access to the information in the knowledge base

and can be used to gain a better understanding of the displayed relationships and guide

the exploration of the knowledge graph. Since the information stored in the knowledge

base is not necessarily error-free, it is an integral part of ELEX to allow the user to

report incorrect entries through a feedback mechanism. The corrections made are then

4https://github.com/HPI-Information-Systems/ELEX

103

https://github.com/HPI-Information-Systems/ELEX

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

Figure 5.3: The Curation Interface is directed to the data engineer and allows to
control the knowledge base creation. It offers functionality for monitoring
individual processing steps, making changes to the knowledge base and displaying
the statistics of certain components.

forwarded to the data engineer as suggested corrections, which can then be incorporated

into the knowledge base via the Curation Interface.

5.2.2 Curation interface

The functionality of the Curation Interface5 shown in Figure 5.3 is tailored to the needs

of data engineers. This user group is interested in controlling the actual integration

process, inspecting the resulting knowledge base, and, if necessary, making changes to

improve information quality. First, it must be possible to minimize the errors caused by

successive data transformation steps, and, second, it is important to enable the correction

of errors that were already present in the original data sources. The Curation Interface

was developed with these two aspects in mind and offers appropriate functionalities to

address them. As shown in Figure 5.3, the interface provides several tabs, which are

divided into different groups. The “Subjects”, “Versions”, and “Graphs” tabs are used

to curate the knowledge base. Among other things, they allow the user to make changes

directly in the knowledge base, roll back the knowledge base to an earlier state, and edit

the entities in a graph view, simplifying the handling of relationships. The “Duplicates”,

“Blocking Statistics”, and “Similarity Measure” tabs, on the other hand, are used to

display and evaluate the results of the deduplication component. These tabs show the

results of a duplication run between the knowledge base and a new data source, provide

5https://github.com/bpn1/curation

104

https://github.com/bpn1/curation

5.2 Interface & Interactions

Figure 5.4: The Colt user interface allows domain experts to verify facts which
are used by the Colt framework to improve the data quality of the knowledge base.

blocking statistics to estimate the cluster utilization, and show precision, recall, and

F-measure of the currently used similarity measure in case a gold standard is available.

Finally, the text mining group consists of the “Entity Linking” and “Classifier Statistics”

tabs, which make it possible to view the results of the entity linking subcomponent and

to evaluate various classification models.

5.2.3 COLT user interface

To address the fact that errors are likely to occur when machine learning models are

used to construct integrated knowledge bases, we introduced the Colt framework in

Chapter 4. This framework can be used to correct some of these errors in order to

improve the overall data quality of the created knowledge base. As the application of this

framework requires the annotation of facts, the Colt-UI shown in Figure 5.4 provides

the necessary annotation interface. According to the process presented in Section 4.4,

the interface first requires the selection of a specific rule for which a model is to be

learned. The user is then presented with facts that are generated by the execution of

the selected rule. Next, the user has to verify the correctness of the individual facts and

record the result by using the UI. To assist the user in his decision-making process, the

Colt-UI displays the participating entities’ linked websites. The intention of providing

this information is to make it easier for the user to verify the correctness of the presented

facts. In cases where the user is unable to verify a fact based on the provided information,

external information sources, such as Google searches, need to be consulted. Driven

105

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

by the constantly increasing number of annotated facts, a continuously improving rule

model emerges, whose application can be used to improve the information quality of

the underlying knowledge base. While developed separately from the CurEx system,

the technology stack used to implement the Colt-UI is fully compatible with the one

used for the Curation Interface allowing a seamless integration of the Colt-UI into the

Curation Interface.

5.3 Typical use cases

This section outlines some of the core use cases that CurEx is designed to cover. Typical

use cases include the maintenance of the knowledge base, monitoring the individual data

processing steps, and the subsequent data exploration using the ELEX graph exploration

tool.

Data inspection. The first use case is to give the user an overview of the entities

contained in the knowledge base. To this end, a user can search for specific entities and

is presented with various views on the available information. As shown in Figure 5.3, the

graph view can be used to explore a subgraph of selected entities, revealing relationships

between and information about different entities.

Data curation. In this use case, the user can use the graph view’s curation capabilities

to change the attribute values of a selected entity. Besides updating existing entities, it

is possible to add new entities or delete existing ones. Using the status view, the user

can inspect the changes made. By accepting the listed operations, the user initiates their

execution, thereby altering the knowledge base. As described in the previous section,

the user may also use the Colt-UI to select a rule and annotate several generated facts.

The resulting rule model can then be used to curate the knowledge base by adding or

removing missing or incorrect facts.

History examination. In case of an error, the user can inspect the history of the

different data processing steps applied to the knowledge base. The user can thus rewind

the state of the knowledge base to a certain point in time, for example, to undo the

effects of erroneous changes. This functionality can be used to ensure the integrity of

the knowledge base.

Process monitoring. In addition to the operations mentioned above, monitoring tools

are provided to assist the user in inspecting the intermediate steps of the deduplication

and text mining components. Thus, he/she can examine duplicates discovered in previ-

ously performed deduplication runs, evaluate the effects of different blocking keys on the

deduplication process, and set different thresholds to be used during duplicate detection.

In addition, the entity linking view can be used to understand the relationship between

text documents and the linked entities from the knowledge base. Using the evaluation

106

5.4 Summary

tool, a user can analyze different classification models as well as the parameter settings

used by the text mining component.

Exploration. After completing the curation process, a common requirement is to ex-

plore the integrated knowledge base. The Entity Landscape Explorer, in short ELEX,

was designed precisely for this purpose. Thus, a user can use ELEX to explore and ac-

cess information about the entities stored in the knowledge base. By using the powerful

display and exploration capabilities of ELEX, a user can inspect single entities, display

the knowledge graph in different layouts, or point out errors in specific nodes and edges.

For example, the user can report an error in a data field or an incorrect relationship.

In contrast to the data inspection use case, the data exploration via ELEX is primar-

ily focused on the end-user and does not support direct modifications of the knowledge

base.

5.4 Summary

In this chapter, we introduced CurEx, a prototypical, modular system to integrate struc-

tured and unstructured data sources into a domain-specific knowledge base that can be

used to create explorable knowledge graphs for specific domains. The system is based on

scalable technologies and can process large amounts of data, making it suitable for real-

world scenarios. It consists of two main components specifically designed for integrating

information from structured and unstructured data sources. Since all subcomponents

are implemented as Spark-jobs, they are easily replaced or extended. It provides two

distinct user interfaces, each addressing the individual needs of a specific user group. As

such, a data engineer can control and manage the integration process using the Curation

Interface, whereas a typical end-user uses ELEX to explore the knowledge graph and

submit feedback. Furthermore, CurEx is fully compatible with the Colt framework,

which can thus be used in conjunction with CurEx to improve the data quality of the

generated knowledge base.

107

5. CUREX – EXTRACTING, CURATING, AND EXPLORING
KNOWLEDGE GRAPHS

108

Chapter 6

Conclusion and Outlook

Modern knowledge bases store and organize knowledge from many different topic ar-

eas. They contain not only information about entities, but also information about their

relationships, allowing the creation of a knowledge graph. This property makes them

particularly valuable in cases where relationships play a central role, such as improving

ad placements or recommendations. In addition to these well-known use cases, modern

risk assessment in financial institutions can also benefit greatly. In this case, the inherent

network structure of knowledge bases can be used to assess both the impact and the risk

potential of various events, such as corporate insolvencies or fraudulent behavior. As

public knowledge bases often lack the information needed to analyze the effects of such

events, it becomes necessary to create and maintain special domain-specific knowledge

bases.

This thesis investigates the process of creating domain-specific knowledge bases from

structured and unstructured data sources. It contributes to the areas of named en-

tity recognition, duplicate detection, and knowledge validation, which represent essential

building blocks for the construction of knowledge bases.

We began this thesis with an introduction to knowledge base construction and pre-

sented the most important use cases that served as motivation for this work. We then

highlighted the challenges associated with creating knowledge bases from structured and

unstructured data sources. We continued by giving an overview of the thesis structure

and its contributions. In detail, the contributions of this work can be summarized as

follows:

Integrating structured data. In Chapter 2, we focused on the integration process of

structured data sources, where a novel method for detecting duplicate entities formed the

core of this chapter. We proposed a Siamese neural network called SNNDedupe, capable

of learning a dataset-specific similarity measure that can be used to identify duplicates.

The properties of the model made it possible to eliminate manual feature engineering and

reduce the manual effort needed for model training. When comparing SNNDedupe with

a traditional SVM approach and an approach based on neural networks, we were able to

show that SNNDedupe significantly outperforms the traditional approach while remain-

ing on par with its neural network competitor. Next, we conceived and implemented

109

6. CONCLUSION AND OUTLOOK

a knowledge transfer between two deduplication networks, which made it possible to

transfer knowledge from one network to another. The specialized network architecture

allowed us to transfer weight matrices of selected attributes, which led to significant per-

formance improvements. In a final experiment, we showed that the amount of required

training data can be reduced by carrying out a knowledge transfer in advance.

Future work. Although we were able to show that weight matrices of attributes can

be transferred from one network to another, attributes for which no pre-trained weight

matrices are available need to be initialized randomly, which is not ideal. This problem

becomes particularly severe if the target dataset possesses a large number of attributes,

of which only a few can be initialized with pre-trained weights. In this regard, it would

be interesting to investigate whether the knowledge for uninitialized attributes can be

acquired in an unsupervised manner, e.g., by applying sequence-to-sequence learning

techniques [Sutskever et al., 2014]. By training an encoder-decoder network on a set of

attribute values, a feature vector forms between encoder and decoder, representing the

condensed knowledge of the attribute values. This vectorized knowledge could then be

used to initialize uninitialized attributes of the target dataset to improve the deduplica-

tion performance even further.

Another interesting aspect that could be investigated is how multi-task learning can

be applied in the context of duplicate detection [Caruana, 1997]. To this end, it would be

conceivable to extend SNNDedupe so that multiple loss functions are taken into account,

thus providing the possibility to learn specialized similarity measures between attribute

pairs.

The adaptation of the mechanisms presented in Chapter 4 should also be considered

to further improve SNNDedupe. In detail, the last layer of the presented deduplication

network could be replaced by a layer consisting of Gaussian processes. This change would

result in a network that provides confidence estimates in addition to its predictions. As

described in Chapter 4, these confidence estimates could then be used by an active learn-

ing framework to ask for the annotation of duplicates that are particularly valuable for

the network’s learning process. Moreover, by combining neural networks with Gaussian

processes, the strengths of both models can be exploited.

Integrating unstructured data. Chapter 3, discussed the integration process of un-

structured data sources and presented a method for named entity recognition, capable

of identifying company names in textual data with high lexical complexity. The distin-

guishing aspect of the designed approach is that it is able to integrate external knowledge

in the form of dictionaries into the training process of a conditional random field (CRF)

classifier. Apart from designing and creating the actual NER system, we also stud-

ied the impact of different dictionaries on the performance of the NER classifier. Our

experiments have shown that significant performance improvements can be achieved by

incorporating additional domain knowledge. Furthermore, we were able to show that the

generation and use of alias names led to an increase in recall while maintaining precision.

Future work. Although enormous progress has been made in natural language process-

ing since 2017, there are still opportunities to further develop the proposed method. As

such, future work on this topic should consider nested named entity recognition (NNER)

110

for dictionary preparation. By adding additional semantic knowledge of the name com-

ponents, the dictionary quality could be improved. To this end, the method presented

by Loster et al. [2018a] could be used to decompose names into their constituent parts.

Furthermore, the token trie could be extended to include different entity types, such

as brands or products. If this trie is used as a blacklist, it becomes much easier to

decide whether a token sequence should be marked as valid entity or not. The fact

that the best results were obtained while using the smallest dictionary suggests that the

dictionaries’ characteristics should match those of the text corpus. Thus, the creation

and use of dictionaries adapted to the characteristics of the corpus under consideration

seems promising, as they have the potential to further improve the results.

Knowledge validation. The subject of knowledge validation was covered in Chapter 4.

Here, we introduced Colt, a rule-based framework for knowledge validation based on

the interactive quality assessment of logical rules. By combining Gaussian processes with

neural networks, we created Colt-GP, an interactive algorithm for learning labeling

functions from rules. To this end, Colt-GP uses knowledge graph embeddings and

user feedback to cope with data quality issues of the underlying knowledge graph. The

rule model learned by Colt-GP can be used for both the conditional application as

well as the quality assessing of the rule. By comparing Colt-GP with a baseline of

maximum coverage (Colt-MC) and two active learning approaches, we were able to

show that the latest approaches are unable to adequately address data quality issues in

the underlying knowledge graph. In our experiments, we demonstrated that Colt-GP

is capable of estimating a rule’s confidence with less than 20 user interactions. For rule

validation, our experiments have shown that Colt-GP makes good predictions despite

the availability of only a small number of annotated rule instances.

Future work. While Colt-GP focuses on learning the properties of each rule individ-

ually, the next logical step should be to extend the framework so that the characteristics

of multiple rules can be learned simultaneously, thereby reducing annotation costs even

further. Thus, a promising extension of the current model would be to equip it with

meta-learning capabilities, such as those provided by neural processes [Kim et al., 2019].

Another way to improve the framework is to extend the feedback loop so that the gen-

erated models are directly used to improve the knowledge base. The improved knowledge

base could then be used to create a new set of improved rules, which, by reapplying the

framework, would allow the creation of even better rule models. This extension would

facilitate an iterative improvement of the knowledge base. Finally, it could be promising

to integrate the presented framework with rule generation approaches, such as AMIE or

RuDiK. This integration would allow the learned models to be used for creating more

precise and reliable rules.

CurEx – A system for building knowledge bases. In Chapter 5, we presented

CurEx, a prototypical system for constructing domain-specific knowledge bases from

structured and unstructured data sources. The experiences gained in the course of this

thesis were taken into account when designing the system. Thus, it has a modular

design and is based on scalable technologies, so that the processing of large datasets, as

111

6. CONCLUSION AND OUTLOOK

they occur in real scenarios, represents no obstacle. It essentially consists of two main

components designed specifically for the integration of information from structured and

unstructured data sources. Since all subcomponents are implemented as Spark-jobs, they

can easily be replaced or extended. CurEx offers multiple user interfaces, each tailored to

the individual needs of a specific user group. Thus, a data engineer can control, monitor,

and manage the integration process using the Curation Interface, while a typical end-

user can use the Entity Landscape Explorer (ELEX) to explore the knowledge graph

and provide feedback regarding its entities and relations. In addition, CurEx is fully

compatible with the Colt framework presented in Chapter 4, so that it can also be used

as part of the system to improve the information quality of the generated knowledge

base.

Future work. In the future, the system could be extended by additional components.

For example, a component for profiling structured datasets or a component for prepro-

cessing data coming from structured and unstructured data sources could be developed.

Each component could define its own user interface, which could then be centrally ac-

cessible via the Curation Interface. Although the system is modular, the current system

design still requires extensions to be written in Python or, better yet, Java or Scala.

This can be a major limitation, as cross-language functionalities are often challenging to

implement. Thus, it would be useful to bring the system to a higher abstraction level by

implementing the individual modules based on container technologies, such as Docker.

This approach would also simplify the deployment of CurEx in corporate environments.

Apart from these concrete contributions and the ensuing further research, there are

more general developments and trends that are likely to impact the area of knowledge

base construction in the future, some of which are presented below:

Human in the loop. The use of machine learning systems requires constant adaptation

either by designing tailor-made models or by retraining or continued training of models

on constantly growing datasets. This also applies to machine learning-based systems

for knowledge base construction. In this scenario, human interactions can be used to

dynamically train and adapt the machine learning models used. As shown in Chapter 4,

active learning or human-in-the-loop approaches can create useful models with only a

small number of interactions. Considering this property, it is expected that the use

of human feedback will become increasingly important for industrial adaptation and,

thus, for the productive operation of machine learning-based systems. As active learning

approaches become more popular, it is getting increasingly easier to collect additional

training data, which will ultimately lead to the continuous adaptation and improvement

of the applied models. Following this trend, the models presented in Chapters 2 and 3

could be extended by an active learning approach.

Joint model training. Looking at current developments in designing machine learning

models (e.g., for information extraction), it becomes increasingly clear that, at least for

network-based models, there is a trend towards joint, end-to-end model training, which

is likely to gain more importance in the future. This approach makes it possible to

counteract the error propagation, as it occurs in traditional model pipelines. For this

112

purpose, each model is first pretrained separately on a specific task, such as NER or NEL,

before they are combined to form a model that addresses the target problem, for instance

RELEX. This composite model is then trained, with errors propagating throughout the

network, so that each of the individual model components adapts to the target task in

dependence of the error. This represents an advantage over conventional model pipelines,

which, unlike the jointly trained models, are difficult to adapt to a specific task. This lack

of adaptability, in which errors on the target task do not effect other model components,

leads to errors that can hardly be eliminated without joint training. Using this approach,

the pipeline presented in Chapter 3 could be merged into one integrated model, which

would most likely lead to additional performance improvements.

Explainability. Another point that should be the subject of intensive future research

efforts is the explainability of complex models. This point is mainly driven by the in-

creasing complexity of machine learning models. Given their ever-increasing number of

parameters, these models often behave like a black box, making predictions incompre-

hensible for humans. Consequently, they are difficult to use in high-risk environments,

such as medical or financial applications, where the explainability of the applied models

is often required by law. Thus, in the context of knowledge base creation, it would be

desirable to understand why certain facts ended up in the knowledge base. Therefore, the

use of complex models requires the development of methods to explain their behavior.

Although with LIME [Ribeiro et al., 2016] or SHAP [Lundberg and Lee, 2017], there are

some promising approaches that explain the complexities of a model, they mostly focus

on explaining specific model aspects, leaving room for future research.

While this work adds to several areas of knowledge base construction, other challenges

remain that require further research. Finally, we hope that this work contributes to

advancing the current state-of-the-art towards the goal of a fully automated process for

the construction of comprehensive knowledge bases.

113

6. CONCLUSION AND OUTLOOK

114

References

Asma Abboura, Soror Sahri, Mourad Ouziri, and Salima Benbernou. Crowdmd:

Crowdsourcing-based approach for deduplication. In IEEE International Conference

on Big Data (BigData), pages 2621–2627, 2015.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for

sequence labeling. In Proceedings of the International Conference on Computational

Linguistics (COLING), pages 1638–1649, 2018.

Hamed Amini, Rama Cont, and Andreea Minca. Resilience to contagion in financial

networks. Mathematical Finance, 26(2):329–365, 2016.

Abdallah Arioua and Angela Bonifati. User-guided repairing of inconsistent knowledge

bases. In Proceedings of the International Conference on Extending Database Technol-

ogy (EDBT), pages 133–144, 2018.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and

Zachary G. Ives. DBpedia: A nucleus for a web of open data. In Proceedings of the

International Semantic Web Conference (ISWC), pages 722–735, 2007.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke Zettlemoyer, and Michael Auli. Cloze-

driven pretraining of self-attention networks. In Proceedings of the Conference on Em-

pirical Methods in Natural Language Processing and the International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP), pages 5359–5368, 2019.

Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. Hypernetwork knowledge

graph embeddings. In Proceedings of the International Conference on Artificial Neural

Networks (ICANN), pages 553–565, 2019.

Krisztian Balog. Entity-Oriented Search, volume 39 of The Information Retrieval Series.

Springer, 2018.

Zohra Bellahsene, Angela Bonifati, and Erhard Rahm, editors. Schema Matching and

Mapping. Data-Centric Systems and Applications. Springer, 2011.

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies

with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166, 1994.

115

REFERENCES

Darina Benikova, Chris Biemann, Max Kisselew, and Sebastian Padó. Germeval 2014

named entity recognition shared task: Companion paper. In Proceedings of the KON-

VENS Workshop GermEval Shared Task on Named Entity Recognition, 2014.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for

hyper-parameter optimization. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 2546–2554, 2011.

Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learn-

able string similarity measures. In Proceedings of the International Conference on

Knowledge Discovery and Data Mining (SIGKDD), pages 39–48, 2003.

Christopher M. Bishop. Pattern recognition and machine learning. Information science

and statistics. Springer, 2007.

Jens Bleiholder and Felix Naumann. Data fusion. ACM Computing Surveys, 41(1):1–41,

2008.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. Transactions of the Association for Computational

Linguistics (TACL), 5:135–146, 2017.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-

base: a collaboratively created graph database for structuring human knowledge.

In Proceedings of the International Conference on Management of Data (SIGMOD),

pages 1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garćıa-Durán, Jason Weston, and Oksana

Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances

in Neural Information Processing Systems (NIPS), pages 2787–2795, 2013.

Jane Bromley, James W. Bentz, Leon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore,

Eduard Säckinger, and Roopak Shah. Signature verification using siamese time delay

neural networks. International Journal of Pattern Recognition and Artificial Intelli-

gence, 7(4):669–688, 1993.

Rui Cai, Xiaodong Zhang, and Houfeng Wang. Bidirectional recurrent convolutional

neural network for relation classification. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL), pages 756–765, 2016.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between prob-

ability density functions. International Journal of Mathematical Models and Methods

in Applied Sciences, 1(4):300–307, 2007.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and Shivaku-

mar Vaithyanathan. Domain adaptation of rule-based annotators for named-entity

recognition tasks. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1002–1012, 2010.

116

REFERENCES

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrim-

inatively, with application to face verification. In Proceedings of the Conference on

Computer Vision and Pattern Recognition (CVPR), pages 539–546, 2005.

Peter Christen. A two-step classification approach to unsupervised record linkage. Pro-

ceedings of the Australasian Conference on Data Mining and Analytics (AusDM), 70:

111–119, 2007.

Peter Christen. Automatic record linkage using seeded nearest neighbour and support

vector machine classification. In Proceedings of the International Conference on Knowl-

edge Discovery and Data Mining (SIGKDD), pages 151–159, 2008.

Peter Christen. Data Matching – Concepts and Techniques for Record Linkage, En-

tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.

Springer, 2012.

Reuven Cohen and Liran Katzir. The generalized maximum coverage problem. Infor-

mation Processing Letters, 108(1):15–22, 2008.

William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named entity extrac-

tion: combining semi-markov extraction processes and data integration methods. In

Proceedings of the International Conference on Knowledge Discovery and Data Mining

(SIGKDD), pages 89–98, 2004.

William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A comparison of

string distance metrics for name-matching tasks. In Proceedings of the International

Workshop on Information Integration on the Web (IIWeb), pages 73–78, 2003.

Gene Ontology Consortium. The gene ontology (go) database and informatics resource.

Nucleic Acids Research, 32(1):258–261, 2004.

Sanjib Das, AnHai Doan, Suganthan G. C. Paul, Chaitanya Gokhale, and Pradap Konda.

The magellan data repository. https://sites.google.com/site/anhaidgroup/

useful-stuff/data, 2018.

Luc Dehaspe and Hannu Toivonen. Discovery of frequent DATALOG patterns. Data

Mining and Knowledge Discovery, 3(1):7–36, 1999.

Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zencrowd:

leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity

linking. In Proceedings of the International World Wide Web Conference (WWW),

pages 469–478, 2012.

Omkar Deshpande, Digvijay S. Lamba, Michel Tourn, Sanjib Das, Sri Subramaniam,

Anand Rajaraman, Venky Harinarayan, and AnHai Doan. Building, maintaining, and

using knowledge bases: A report from the trenches. In Proceedings of the International

Conference on Management of Data (SIGMOD), pages 1209–1220, 2013.

117

https://sites.google.com/site/anhaidgroup/useful-stuff/data
https://sites.google.com/site/anhaidgroup/useful-stuff/data

REFERENCES

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolu-

tional 2d knowledge graph embeddings. In Proceedings of the Conference on Artificial

Intelligence (AAAI), pages 1811–1818, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceedings

of the Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT), pages 4171–4186, 2019.

Lee R. Dice. Measures of the amount of ecologic association between species. Ecology,

26(3):297–302, 1945.

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-example: An

automatic query steering framework for interactive data exploration. In Proceedings

of the International Conference on Management of Data (SIGMOD), pages 517–528,

2014.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian process

bandits. In Advances in Neural Information Processing Systems (NIPS), pages 1025–

1033, 2013.

Justin Domke. Learning graphical model parameters with approximate marginal infer-

ence. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 35

(10):2454–2467, 2013.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,

Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale

approach to probabilistic knowledge fusion. In Proceedings of the International Con-

ference on Knowledge Discovery and Data Mining (SIGKDD), pages 601–610, 2014.

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri, and Jens Lehmann. EARL:

Joint entity and relation linking for question answering over knowledge graphs. In

Proceedings of the International Semantic Web Conference (ISWC), pages 108–126,

2018.

Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad Ouz-

zani, and Nan Tang. Distributed representations of tuples for entity resolution. Pro-

ceedings of the VLDB Endowment, 11(11):1454–1467, 2018.

Guillermo Echegoyen, Álvaro Rodrigo, and Anselmo Peñas. Benchmarking entity linking

for question answering over knowledge graphs. Procesamiento del Lenguaje Natural,

63(0):121–128, 2019.

Mohamed G. Elfeky, Vassilios Verykios, and Ahmed Elmagarmid. TAILOR: A record

linkage tool box. In Proceedings of the IEEE International Conference on Data Engi-

neering (ICDE), pages 17–28, 2002.

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate

record detection: A survey. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 19(1):1–16, 2007.

118

REFERENCES

Faezeh Ensan and Weichang Du. Ad hoc retrieval via entity linking and semantic simi-

larity. Knowledge and Information Systems (KAIS), 58(3):551–583, 2019.

Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2013.

Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. Deducing certain fixes to graphs.

Proceedings of the VLDB Endowment, 12(7):752–765, 2019.

Manaal Faruqui and Sebastian Padó. Training and evaluating a german named entity

recognizer with semantic generalization. In Proceedings of the Conference on Natural

Language Processing (KONVENS), pages 129–133, 2010.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

Raul Castro Fernandez and Samuel Madden. Termite: A system for tunneling through

heterogeneous data. In Proceedings of the International Workshop on Exploiting Ar-

tificial Intelligence Techniques for Data Management (aiDM), pages 1–8, 2019.

Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating non-

local information into information extraction systems by gibbs sampling. In Proceed-

ings of the Annual Meeting of the Association for Computational Linguistics (ACL),

pages 363–370, 2005.

Donatella Firmani, Barna Saha, and Divesh Srivastava. Online entity resolution using

an oracle. Proceedings of the VLDB Endowment, 9(5):384–395, 2016.

Radu Florian, Abraham Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity

recognition through classifier combination. In Proceedings of the Conference on Com-

putational Natural Language Learning (CoNLL), pages 168–171, 2003.

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule

mining in ontological knowledge bases with AMIE+. VLDB Journal, 24(6):707–730,

2015.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.

AMIE: association rule mining under incomplete evidence in ontological knowledge

bases. In Proceedings of the International World Wide Web Conference (WWW),

pages 413–422, 2013.

Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity disambiguation with

local neural attention. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 2619–2629, 2017.

GeoNames, 2018. The GeoNames geographical database. http://www.geonames.org,

2018.

Genet Asefa Gesese, Russa Biswas, and Harald Sack. A comprehensive survey of knowl-

edge graph embeddings with literals: Techniques and applications. In Proceedings of

the Workshop on Deep Learning for Knowledge Graphs (DL4KG), pages 31–40, 2019.

119

http://www.geonames.org

REFERENCES

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the International Conference on Artificial

Intelligence and Statistics (AISTATS), pages 249–256, 2010.

Karl Goiser and Peter Christen. Towards automated record linkage. In Proceedings of

the Australasian Conference on Data Mining and Analytics (AusDM), pages 23–31,

2006.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Yash Govind, Erik Paulson, Palaniappan Nagarajan, Paul Suganthan G. C., AnHai

Doan, Youngchoon Park, Glenn Fung, Devin Conathan, Marshall Carter, and Mingju

Sun. Cloudmatcher: A hands-off cloud/crowd service for entity matching. Proceedings

of the VLDB Endowment, 11(12):2042–2045, 2018.

Ralph Grishman and Beth Sundheim. Message understanding conference – 6: A brief

history. In Proceedings of the International Conference on Computational Linguistics

(COLING), pages 466–471, 1996.

Toni Grütze, Gjergji Kasneci, Zhe Zuo, and Felix Naumann. CohEEL: Coherent and

efficient named entity linking through random walks. Journal of Web Semantics, 37–

38:75–89, 2016.

Lifang Gu and Rohan A. Baxter. Decision models for record linkage. In Data Mining -

Theory, Methodology, Techniques, and Applications, pages 146–160. Springer, 2006.

Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowl-

edge graphs and logical rules. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 192–202, 2016.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an

invariant mapping. In Proceedings of the Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1735–1742, 2006.

Richard H. R. Hahnloser, Rahul Sarpeshkar, Misha A. Mahowald, Rodney J. Douglas,

and H. Sebastian Seung. Digital selection and analogue amplification coexist in a

cortex-inspired silicon circuit. Nature, 405:947–951, 2000.

Christian Hänig, Stefan Bordag, and Stefan Thomas. Modular classifier ensemble archi-

tecture for named entity recognition on low resource systems. In Proceedings of the

KONVENS Workshop GermEval Shared Task on Named Entity Recognition, 2014.

Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Exploiting entity linking

in queries for entity retrieval. In Proceedings of the International Conference on the

Theory of Information Retrieval, (ICTIR), pages 209–218, 2016.

Qi He. Building the linkedin knowledge graph. LinkedIn Engineering

Blog, 2016. URL https://engineering.linkedin.com/blog/2016/10/

building-the-linkedin-knowledge-graph.

120

https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph

REFERENCES

Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. Holodetect:

Few-shot learning for error detection. In Proceedings of the International Conference

on Management of Data (SIGMOD), pages 829–846, 2019.

Martin Hermann, Michael Hochleitner, Sarah Kellner, Simon Preissner, and Desislava

Zhekova. Nessy: A hybrid approach to named entity recognition for german. In

Proceedings of the KONVENS Workshop GermEval Shared Task on Named Entity

Recognition, 2014.

Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov, and

Gerhard Weikum. Rule learning from knowledge graphs guided by embedding models.

In Proceedings of the International Semantic Web Conference (ISWC), pages 72–90,

2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-

tion, 9(8):1735–1780, 1997.

Yu-Lun Hsieh, Yung-Chun Chang, Nai-Wen Chang, and Wen-Lian Hsu. Identifying

protein-protein interactions in biomedical literature using recurrent neural networks

with long short-term memory. In Proceedings of the International Joint Conference

on Natural Language Processing (IJCNLP), pages 240–245, 2017.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence

tagging. CoRR, abs/1508.01991, 2015.

Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo. Sherlock: A deep

learning approach to semantic data type detection. In Proceedings of the International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 1500–1508,

2019.

Paul Jaccard. Distribution de la flore alpine dans le bassin des Dranses et dans quelques

régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:241–272,

1901.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph em-

bedding via dynamic mapping matrix. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL), pages 687–696, 2015.

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. Low-resource

deep entity resolution with transfer and active learning. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics (ACL), pages 5851–5861,

2019.

Jun’ichi Kazama and Kentaro Torisawa. Exploiting wikipedia as external knowledge for

named entity recognition. In Proceedings of the Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL), pages 698–707, 2007.

121

REFERENCES

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan

Rosenbaum, Oriol Vinyals, and Yee Whye Teh. Attentive neural processes. In Inter-

national Conference on Learning Representations (ICLR), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference on Learning Representations (ICLR), 2015.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for

one-shot image recognition. In International Conference on Machine Learning (ICML)

Deep Learning Workshop, 2015.

Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Deepalignment: Un-

supervised ontology matching with refined word vectors. In Proceedings of the Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL-HLT), pages 787–798, 2018.

Ioannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. Mdedup: Duplicate

detection with matching dependencies. Proceedings of the VLDB Endowment, 13(5):

712–725, 2020.

Vijay Krishnan and Christopher D. Manning. An effective two-stage model for exploiting

non-local dependencies in named entity recognition. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics (ACL), pages 1121—-1128,

2006.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the International Conference on Machine Learning (ICML), pages 282–289, 2001.

Phong Le and Ivan Titov. Improving entity linking by modeling latent relations between

mentions. In Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL), pages 1595–1604, 2018.

Joohong Lee, Sangwoo Seo, and Yong Suk Choi. Semantic relation classification via

bidirectional LSTM networks with entity-aware attention using latent entity typing.

Symmetry, 11(6):785–794, 2019.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.

Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and

Christian Bizer. Dbpedia - A large-scale, multilingual knowledge base extracted from

wikipedia. Semantic Web, 6(2):167–195, 2015.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

David D. Lewis and William A. Gale. A sequential algorithm for training text classi-

fiers. In Proceedings of the International Conference on Information Retrieval (SIGIR),

pages 3–12, 1994.

122

REFERENCES

Huiying Li and Jing Shi. Linking named entity in a question with dbpedia knowledge

base. In Joint International Semantic Technology Conference (JIST), pages 263–270,

2016.

David Liben-Nowell and Jon M. Kleinberg. The link-prediction problem for social net-

works. Journal of the American Society for Information Science and Technology (JA-

SIST), 58(7):1019–1031, 2007.

Thomas Lin, Mausam, and Oren Etzioni. Entity linking at web scale. In Proceedings

of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale

Knowledge Extraction (AKBC-WEKEX), pages 84–88, 2012.

Xueling Lin, Haoyang Li, Hao Xin, Zijian Li, and Lei Chen. Kbpearl: A knowledge base

population system supported by joint entity and relation linking. Proceedings of the

VLDB Endowment, 13(7):1035–1049, 2020.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and

relation embeddings for knowledge graph completion. In Proceedings of the Conference

on Artificial Intelligence (AAAI), pages 2181–2187, 2015.

Matteo Lissandrini, Davide Mottin, Themis Palpanas, Dimitra Papadimitriou, and Yan-

nis Velegrakis. Unleashing the power of information graphs. SIGMOD Record, 43(4):

21–26, 2014.

Michael Loster, Zhe Zuo, Felix Naumann, Oliver Maspfuhl, and Dirk Thomas. Improving

company recognition from unstructured text by using dictionaries. In Proceedings of

the International Conference on Extending Database Technology (EDBT), pages 610–

619, 2017.

Michael Loster, Manuel Hegner, Felix Naumann, and Ulf Leser. Dissecting company

names using sequence labeling. In Proceedings of the Conference on “Lernen, Wissen,

Daten, Analysen” (LWDA), pages 227–238, 2018a.

Michael Loster, Felix Naumann, Jan Ehmueller, and Benjamin Feldmann. Curex: A

system for extracting, curating, and exploring domain-specific knowledge graphs from

text. In Proceedings of the International Conference on Information and Knowledge

Management (CIKM), pages 1883–1886, 2018b.

Michael Loster, Ioannis Koumarelas, and Felix Naumann. Knowledge transfer for entity

resolution with siamese neural networks. In Journal of Data and Information Quality,

2020a.

Michael Loster, Davide Mottin, Paolo Papotti, Jan Ehmüller, Benjamin Feldmann, and

Felix Naumann. Few-shot knowledge validation using rules. In under submission,

2020b.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.

In Advances in Neural Information Processing Systems (NIPS), pages 4765–4774, 2017.

123

REFERENCES

Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel Madden,

Mourad Ouzzani, Michael Stonebraker, and Nan Tang. Raha: A configuration-free

error detection system. In Proceedings of the International Conference on Manage-

ment of Data (SIGMOD), pages 865–882, 2019.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

José-Lázaro Mart́ınez-Rodŕıguez, Aidan Hogan, and Ivan López-Arévalo. Information

extraction meets the semantic web: A survey. Semantic Web, 11(2):255–335, 2020.

Andrew McCallum and Wei Li. Early results for named entity recognition with condi-

tional random fields, feature induction and web-enhanced lexicons. In Proceedings of

the Conference on Computational Natural Language Learning (CoNLL), pages 188–

191, 2003.

Paul McNamee, Veselin Stoyanov, James Mayfield, Tim Finin, Tim Oates, Tan Xu,

Douglas W. Oard, and Dawn J. Lawrie. HLTCOE participation at TAC 2012: Entity

linking and cold start knowledge base construction. In Proceedings of the Text Analysis

Conference (TAC), 2012.

Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Siamese network features for image

matching. In International Conference on Pattern Recognition (ICPR), pages 378–383,

2016.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. In International Conference on Learning Representa-

tions (ICLR), 2013.

Renée J. Miller. Open data integration. Proceedings of the VLDB Endowment, 11(12):

2130–2139, 2018.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant supervision for

relation extraction without labeled data. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL), pages 1003–1011, 2009.

Alvaro E. Monge and Charles Elkan. The field matching problem: Algorithms and

applications. In Proceedings of the International Conference on Knowledge Discovery

and Data Mining (SIGKDD), pages 267–270, 1996.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,

Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learn-

ing for entity matching: A design space exploration. In Proceedings of the International

Conference on Management of Data (SIGMOD), pages 19–34, 2018.

Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for learning

sentence similarity. In Proceedings of the Conference on Artificial Intelligence (AAAI),

pages 2786–2792, 2016.

124

REFERENCES

David Nadeau and Satoshi Sekine. A survey of named entity recognition and classifica-

tion. Lingvisticae Investigationes, 30(1):3–26, 2007.

Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2010.

Felix Naumann, Alexander Bilke, Jens Bleiholder, and Melanie Weis. Data fusion in three

steps: Resolving schema, tuple, and value inconsistencies. IEEE Data Engineering

Bulletin, 29(2):21–31, 2006.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text similarity with

siamese recurrent networks. In Proceedings of the Workshop on Representation Learn-

ing for NLP (Rep4NLP), pages 148–157, 2016.

Sahand Negahban, Benjamin I. P. Rubinstein, and Jim Gemmell. Scaling multiple-

source entity resolution using statistically efficient transfer learning. In Proceedings of

the International Conference on Information and Knowledge Management (CIKM),

pages 2224–2228, 2012.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-

proximations for maximizing submodular set functions - I. Mathematical Programming,

14(1):265–294, 1978.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collec-

tive learning on multi-relational data. In Proceedings of the International Conference

on Machine Learning (ICML), pages 809–816, 2011.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holographic embeddings of

knowledge graphs. In Proceedings of the Conference on Artificial Intelligence (AAAI),

pages 1955–1961, 2016.

Feng Niu, Ce Zhang, Christopher Ré, and Jude W. Shavlik. Elementary: Large-scale

knowledge-base construction via machine learning and statistical inference. Interna-

tional Journal on Semantic Web and Information Systems, 8(3):42–73, 2012.

Margaret Odell and Robert Russell. The soundex coding system. US Patents, no.

1261167, 1918.

Naoaki Okazaki and Jun’ichi Tsujii. Simple and efficient algorithm for approximate

dictionary matching. In Proceedings of the International Conference on Computational

Linguistics (COLING), pages 851–859, 2010.

Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Robust discovery of

positive and negative rules in knowledge bases. In Proceedings of the IEEE Interna-

tional Conference on Data Engineering (ICDE), pages 1168–1179, 2018.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 22(10):1345–1359, 2010.

125

REFERENCES

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding

gradient problem. Computing Research Repository (CoRR), abs/1211.5063, 2012.

Yifan Peng and Zhiyong Lu. Deep learning for extracting protein-protein interactions

from biomedical literature. In Workshop on Biomedical Natural Language Processing

(BioNLP), pages 29–38, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors

for word representation. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 1532–1543, 2014.

Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise: Where knowledge

graph embeddings fall short. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 1751–1756, 2017.

Lizhen Qu, Yi Zhang, Rui Wang, Lili Jiang, Rainer Gemulla, and Gerhard Weikum.

Senti-lssvm: Sentiment-oriented multi-relation extraction with latent structural SVM.

Transactions of the Association for Computational Linguistics (TACL), 2:155–168,

2014.

Jonathan Raiman and Olivier Raiman. Deeptype: Multilingual entity linking by neural

type system evolution. In Proceedings of the Conference on Artificial Intelligence

(AAAI), pages 5406–5413, 2018.

Lev-Arie Ratinov and Dan Roth. Design challenges and misconceptions in named entity

recognition. In Proceedings of the Conference on Computational Natural Language

Learning (CoNLL), pages 147–155, 2009.

Nils Reimers, Judith Eckle-Kohler, Carsten Schnober, Jungi Kim, and Iryna Gurevych.

GermEval-2014: Nested named entity recognition with neural networks. Proceedings

of the KONVENS Workshop GermEval Shared Task on Named Entity Recognition,

2014.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?”:

Explaining the predictions of any classifier. In Proceedings of the International Con-

ference on Knowledge Discovery and Data Mining (SIGKDD), pages 1135–1144, 2016.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sam-

pling estimation of error reduction. In Proceedings of the International Conference on

Machine Learning (ICML), pages 441–448, 2001.

Christopher De Sa, Alexander Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen

Wu, and Ce Zhang. Incremental knowledge base construction using deepdive. Proceed-

ings of the International Conference on Very Large Databases (VLDB), 26(1):81–105,

2017.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 Shared

Task: Language-independent named entity recognition. In Proceedings of the Confer-

ence on Computational Natural Language Learning (CoNLL), pages 142–147, 2003.

126

REFERENCES

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active

learning. Proceedings of the International Conference on Knowledge Discovery and

Data Mining (SIGKDD), pages 269–278, 2002.

Greg Schohn and David Cohn. Less is more: Active learning with support vector ma-

chines. In Proceedings of the International Conference on Machine Learning (ICML),

pages 839–846, 2000.

Peter Schüller. MoSTNER: Morphology-aware split-tag german ner with factorie. Pro-

ceedings of the KONVENS Workshop GermEval Shared Task on Named Entity Recog-

nition, 2014.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing (TSP), 45(11):2673–2681, 1997.

Satoshi Sekine and Chikashi Nobata. Definition, dictionaries and tagger for extended

named entity hierarchy. In Proceedings of the International Conference on Language

Resources and Evaluation (LREC), 2004.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning. Morgan & Claypool Publishers, 2012.

Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base: Issues,

techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 27(2):443–460, 2015.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. A survey of het-

erogeneous information network analysis. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 29(1):17–37, 2017.

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré.

Incremental knowledge base construction using DeepDive. Proceedings of the VLDB

Endowment, 8(11):1310–1321, 2015.

Amit Singhal. Introducing the knowledge graph: things, not strings. Of-

ficial Google Blog, 2012. URL https://www.blog.google/products/search/

introducing-knowledge-graph-things-not.

Alisa Smirnova and Philippe Cudré-Mauroux. Relation extraction using distant super-

vision: A survey. ACM Computing Surveys, 51(5):1–35, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of

machine learning algorithms. In Advances in Neural Information Processing Systems

(NIPS), pages 2960–2968, 2012.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching

the blanks: Distributional similarity for relation learning. In Proceedings of the Annual

Meeting of the Association for Computational Linguistics (ACL), pages 2895–2905,

2019.

127

https://www.blog.google/products/search/introducing-knowledge-graph-things-not
https://www.blog.google/products/search/introducing-knowledge-graph-things-not

REFERENCES

Rohini K. Srihari. A hybrid approach for named entity and sub-type tagging. In Proceed-

ings of the Applied Natural Language Processing Conference (ANLP), pages 247–254,

2000.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. Gaus-

sian process optimization in the bandit setting: No regret and experimental design.

In Proceedings of the International Conference on Machine Learning (ICML), pages

1015–1022, 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic

knowledge. In Proceedings of the International World Wide Web Conference (WWW),

pages 697–706, 2007.

Rhea Sukthanker, Soujanya Poria, Erik Cambria, and Ramkumar Thirunavukarasu.

Anaphora and coreference resolution: A review. Information Fusion, 59:139–162,

2020.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems (NIPS), pages 3104–

3112, 2014.

Min Tang, Xiaoqiang Luo, and Salim Roukos. Active learning for statistical natural

language parsing. In Proceedings of the Annual Meeting of the Association for Com-

putational Linguistics (ACL), pages 120–127, 2002.

Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-independent

string transformation weights for high accuracy object identification. Proceedings of

the International Conference on Knowledge Discovery and Data Mining (SIGKDD),

pages 350–359, 2002.

Antonio Toral and Rafael Muñoz. A proposal to automatically build and maintain

gazetteers for named entity recognition by using Wikipedia. Proceedings of the Work-

shop on NEW TEXT Wikis and blogs and other dynamic text sources, 2006.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-

rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the

Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies (NAACL-HLT), page 173–180, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in Neural Information Processing Systems (NIPS), pages 5998–6008, 2017a.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in Neural Information Processing Systems (NIPS), pages 5998–6008, 2017b.

128

REFERENCES

Vasilis Verroios and Hector Garcia-Molina. Entity resolution with crowd errors. In

Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages

219–230, 2015.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.

Communications of the ACM, 57(10):78–85, 2014.

Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. Crowder: Crowd-

sourcing entity resolution. Proceedings of the VLDB Endowment, 5(11):1483–1494,

2012.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan Liu. Relation classification via

multi-level attention cnns. In Proceedings of the Annual Meeting of the Association

for Computational Linguistics (ACL), pages 1298–1307, 2016.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A

survey of approaches and applications. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 29(12):2724–2743, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph and text

jointly embedding. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1591–1601, 2014a.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embed-

ding by translating on hyperplanes. In Proceedings of the Conference on Artificial

Intelligence (AAAI), pages 1112–1119, 2014b.

Patrick Watrin, Louis De Viron, Denis Lebailly, Mathieu Constant, and Stéphanie

Weiser. Named entity recognition for german using conditional random fields and

linguistic resources. Proceedings of the KONVENS Workshop GermEval Shared Task

on Named Entity Recognition, 2014.

Gerhard Weikum and Martin Theobald. From information to knowledge: harvesting

entities and relationships from web sources. In Proceedings of the Symposium on

Principles of Database Systems (PODS), pages 65–76, 2010.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep ker-

nel learning. In Proceedings of the International Conference on Artificial Intelligence

and Statistics (AISTATS), pages 370–378, 2016a.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Stochas-

tic variational deep kernel learning. In Advances in Neural Information Processing

Systems (NIPS), pages 2586–2594, 2016b.

William E. Winkler and Yves Thibaudeau. An application of the Fellegi-Sunter model

of record linkage to the 1990 u.s. decennial census. US Bureau of the Census, pages

1–22, 1987.

129

REFERENCES

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representation

learning of knowledge graphs with entity descriptions. In Proceedings of the Conference

on Artificial Intelligence (AAAI), pages 2659–2665, 2016.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, and Dongyan Zhao. Question

answering on freebase via relation extraction and textual evidence. In Proceedings of

the Annual Meeting of the Association for Computational Linguistics (ACL), pages

2326—-2336, 2016.

Peng Xu and Denilson Barbosa. Connecting language and knowledge with heterogeneous

representations for neural relation extraction. In Proceedings of the Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT), pages 3201–3206, 2019.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Joint learning

of the embedding of words and entities for named entity disambiguation. In Proceedings

of the Conference on Computational Natural Language Learning (CoNLL), pages 250–

259, 2016.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Learning

distributed representations of texts and entities from knowledge base. Transactions of

the Association for Computational Linguistics (TACL), 5:397–411, 2017.

Wen Zhang, Bibek Paudel, Liang Wang, Jiaoyan Chen, Hai Zhu, Wei Zhang, Abraham

Bernstein, and Huajun Chen. Iteratively learning embeddings and rules for knowledge

graph reasoning. In Proceedings of the International World Wide Web Conference

(WWW), pages 2366–2377, 2019.

Chen Zhao and Yeye He. Auto-em: End-to-end fuzzy entity-matching using pre-trained

deep models and transfer learning. In Proceedings of the International World Wide

Web Conference (WWW), pages 2413–2424, 2019.

Deyu Zhou, Dayou Zhong, and Yulan He. Biomedical relation extraction: From binary

to complex. Computational and Mathematical Methods in Medicine, 2014:1–18, 2014.

Guodong Zhou and Jian Su. Named entity recognition using an hmm-based chunk tagger.

In Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), pages 473–480, 2002.

Zhe Zuo, Michael Loster, Ralf Krestel, and Felix Naumann. Uncovering business rela-

tionships: Context-sensitive relationship extraction for difficult relationship types. In

Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen” (LWDA), pages

271–283, 2017.

130

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Doktorarbeit mit dem Thema:

Knowledge Base Construction with Machine Learning Methods

selbstständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

Potsdam, den 20. August 2020

Michael Loster

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 From Raw Data to Knowledge
	1.1 Use cases for integrated knowledge bases
	1.2 Creating, maintaining, and exploring domain-specific knowledge bases
	Structured data
	Unstructured data
	Knowledge assessment and curation

	1.3 Structure and contributions

	2 Integrating Structured Information
	2.1 On the detection of duplicates
	2.2 Related work
	2.3 Proposed approach
	Similarity measures
	Siamese neural network
	Neural network model
	Loss function
	Training details

	2.4 Knowledge transfer
	2.5 Data & Gold-standard
	Datasets
	Data preprocessing
	Selecting duplicate and non-duplicate pairs

	2.6 Experiments
	Learning from scratch
	Transfer learning

	2.7 Summary

	3 Extracting Knowledge from Unstructured Data
	3.1 Named entity recognition for company names
	3.2 Related work
	3.3 Conditional random fields as NER baseline
	3.4 Corpus & Dictionaries
	Text corpus
	Dictionaries

	3.5 Company recognition using dictionaries
	Alias generation
	Dictionary and feature construction

	3.6 Experiments
	Experimental setup
	No dictionaries
	Dictionaries only
	Combining dictionaries and CRF
	Perfect dictionary

	3.7 Named entity linking
	Challenges
	Building blocks of entity linking systems
	Current state of the art

	3.8 Relationship extraction
	Applications
	Challenges
	Current state of the art

	3.9 Summary

	4 Few-Shot Knowledge Validation using Rules
	4.1 Data quality and knowledge graphs
	4.2 Related work
	4.3 Background and problem definition
	4.4 The Colt framework
	Colt-MC: A maximum coverage solution
	Colt-GP: A learning-based solution
	Learning with deep kernels
	Sampling strategies

	4.5 Computing similarities
	4.6 Experiments
	Learning rule characteristics
	Selecting the sampling strategy
	Model performance
	Rule confidence estimation

	4.7 Summary

	5 CurEx – Extracting, Curating, and Exploring Knowledge Graphs
	5.1 System architecture
	Structured data integration
	Text mining

	5.2 Interface & Interactions
	Entity landscape explorer
	Curation interface
	COLT user interface

	5.3 Typical use cases
	5.4 Summary

	6 Conclusion and Outlook
	References

