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Abstract

Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems
such as oscillatory systems, which exist in such various fields as physics, biology and
complex networks. The correlation and synchronization of two or many oscillators are
widely studied topics in recent years.

In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phe-
nomenon in noisy excitable systems and synchronization in a three-dimensional Ku-
ramoto model with noise. Stochastic bursting here refers to a sequence of coherent
spike train, where each spike has random number of followers due to the combined
effects of both time delay and noise. Synchronization, as a universal phenomenon in
nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent
model in the description of collective motion.

In the first part of this thesis, an idealized point process, valid if the characteristic
timescales in the problem are well separated, is used to describe statistical properties
such as the power spectral density and the interspike interval distribution. We show
how the main parameters of the point process, the spontaneous excitation rate, and
the probability to induce a spike during the delay action can be calculated from the
solutions of a stationary and a forced Fokker-Planck equation. We extend it to the
delay-coupled case and derive analytically the statistics of the spikes in each neuron,
the pairwise correlations between any two neurons, and the spectrum of the total
output from the network.

In the second part, we investigate the three-dimensional noisy Kuramoto model, which
can be used to describe the synchronization in a swarming model with helical trajec-
tory. In the case without natural frequency, the Kuramoto model can be connected
with the Vicsek model, which is widely studied in collective motion and swarming of
active matter. We analyze the linear stability of the incoherent state and derive the
critical coupling strength above which the incoherent state loses stability. In the limit
of no natural frequency, an exact self-consistent equation of the mean field is derived
and extended straightforward to any high-dimensional case.
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Zusammenfassung

Rauschen ist in der Natur allgegenwärtig und führt zu einer reichen Dynamik in
stochastischen Systemen von gekoppelten Oszillatoren, die in so unterschiedlichen
Bereichen wie Physik, Biologie und in komplexen Netzwerken existieren. Korrelation
und Synchronisation von zwei oder vielen Oszillatoren ist in den letzten Jahren ein
aktives Forschungsfeld.

In dieser Arbeit untersuchen wir hauptsächlich zwei Probleme, d.h. das stochastis-
che Burst-Phänomen in verrauschten anregbaren Systemen und die Synchronisation
in einem dreidimensionalen Kuramoto-Modell mit Rauschen. Stochastisches Bursting
bezieht sich hier auf eine Folge von kohärenten Spike-Zügen, bei denen jeder Spike
aufgrund der kombinierten Effekte von Zeitverzögerung und Rauschen eine zufällige
Anzahl von Folge Spikes aufweist. Die Synchronisation als universelles Phänomen
in nichtlinearen dynamischen Systemen kann anhand des Kuramoto-Modells, einem
grundlegenden Modell bei der gekoppelter Oszillatoren und kollektiver Bewegung, gut
demonstriert und analysiert werden.

Im ersten Teil dieser Arbeit wird ein idealisierter Punktprozess betrachtet, der gültig
ist, wenn die charakteristischen Zeitskalen im Problem gut voneinander getrennt sind,
um statistische Eigenschaften wie die spektrale Leistungsdichte und die Interval-
lverteilung zwischen Neuronen Impulsen zu beschreiben. Wir zeigen, wie die Hauptpa-
rameter des Punktprozesses, die spontane Anregungsrate und die Wahrscheinlichkeit,
während der Verzögerungsaktion einen Impuls zu induzieren, aus den Lösungen einer
stationären und einer getriebenen Fokker-Planck-Gleichung berechnet werden können.
Wir erweitern dieses Ergebnis auf den verzögerungsgekoppelten Fall und leiten ana-
lytisch die Statistiken der Impulse in jedem Neuron, die paarweisen Korrelationen
zwischen zwei beliebigen Neuronen und das Spektrum der Zeitreihe alle Impulse aus
dem Netzwerk ab.

Im zweiten Teil untersuchen wir das dreidimensionale verrauschte Kuramoto-Modell,
mit dem die Synchronisation eines Schwarmmodells mit schraubenförmigen Flugbah-
nen beschrieben werden kann. Im Fall ohne Eigenfrequenz jedes Teilchensist das
System äquivalent zum Vicsek Modell, welches in der Beschreibung der kollektiven
Bewegung von Schwärmen und aktiver Materie eine breite Anwendung findet. Wir
analysieren die lineare Stabilität des inkohärenten Zustands und leiten die kritische
Kopplungsstärke ab, oberhalb derer der inkohärente Zustand an Stabilität verliert. Im
Fall ohne Eigenfrequenz wird eine exakte selbstkonsistente Gleichung für das mittlere
Feld abgeleitet und direkt für höherdimensionale Bewegungen verallgemeinert.



iii

Contents

1 Introduction 1
1.1 Noisy excitable system . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Type I excitable system: Theta neuron . . . . . . . . . . . . . . 2
1.1.2 Point process description . . . . . . . . . . . . . . . . . . . . . . 3

Interspike interval distribution . . . . . . . . . . . . . . . . . . 4
Survival function . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Autocorrelation and power spectrum . . . . . . . . . . . . . . . 5

1.2 Classical (2D) Kuramoto model . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Stationary solution by self-consistent method . . . . . . . . . . 8
1.2.2 Linear stability of the incoherent state . . . . . . . . . . . . . . 9
1.2.3 Recent development and state of the art . . . . . . . . . . . . . 10

2 Delay-induced stochastic bursting in a single noisy excitable system 12
2.1 Deterministic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Noisy case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Point process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Statistics of spike train . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Interspike interval distribution . . . . . . . . . . . . . . . . . . 17
2.4.2 Power spectral density . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Probability to induce a spike . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Induced probability by the Fokker-Planck equation . . . . . . . 20
2.5.2 Analytic approaches to calculate induced probability . . . . . . 21

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Stochastic bursting in unidirectionally delay-coupled systems 25
3.1 Network dynamics and point process . . . . . . . . . . . . . . . . . . . 26
3.2 Two coupled units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Statistics of interspike intervals . . . . . . . . . . . . . . . . . . 27
3.2.2 Correlations and spectra . . . . . . . . . . . . . . . . . . . . . . 28

Correlations and spectra within one unit . . . . . . . . . . . . . 29
Cross-correlations and cross-spectra for two units . . . . . . . . 30
Correlation and spectra of the total output from the network . 32

3.3 General network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Stochastic bursting in a chain of excitable units with delayed cou-
pling 37
4.1 One excitable unit with multiple delayed feedbacks . . . . . . . . . . . 38
4.2 Delay-coupling in a chain of three units . . . . . . . . . . . . . . . . . 43
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



iv

5 Three-dimensional Kuramoto Model 49
5.1 Self-consistent solution in the deterministic case . . . . . . . . . . . . . 50
5.2 Three-dimensional Kuramoto model with noise . . . . . . . . . . . . . 52

5.2.1 Noisy Kuramoto Model without Natural Frequency . . . . . . . 53
Generalization to q-dimensional case . . . . . . . . . . . . . . . 54

5.2.2 Linear Stability of the Incoherent State . . . . . . . . . . . . . 56
Symmetry-breaking induced Hopf bifurcation . . . . . . . . . . 64

5.3 Three-dimensional swarming described by the noisy Kuramoto model . 65
5.3.1 Connection to a mean-field version of the Vicsek model . . . . 66
5.3.2 Swarming with helical trajectories . . . . . . . . . . . . . . . . 68

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusions and Outlook 71

A Derivation of the fixed points in the three-dimensional Kuramoto
model 75

B Derivation of the self-consistent equation (5.29) of the mean field ρ
in general q dimensions 77

C Derivation of the Fokker-Planck equation (5.34) 78

D Integrals of the Lorentzian function in the complex plane 79

Bibliography 80



1

Chapter 1

Introduction

In nature, basically all processes are noisy, by which we mean stochastic fluctuations
are ubiquitous and inevitable in various systems, e.g., cells, neurons, organs etc in
biology [Lin+04; Tsi14; Bre14]. While noise is a factor that is supposed to be reduced
in processes like signal processing, it can play a constructing role in providing energy
in non-equilibrium systems, in neuronal communication and synchronization of oscil-
lators. Three prominent examples are: (a), stochastic resonance [BSV81; Gam+98],
which refers to the frequency in the noise resonating with that of the signal to amplify
the original signal; (b), coherence resonance [Gan+93; PK97], which represents max-
imization of coherence of the noise-induced oscillations in various excitable systems
[Lin+04]; (c), the individual noise in an ensemble of coupled oscillators prevents the
system from synchronization [Pik+03; Ace+05], in other words, the oscillators need
larger coupling strength to synchronize than that in the deterministic case.

Noisy systems can be described by stochastic ordinary differential equations (SODE)
since their dynamics generally belongs to the class of Brownian motion, although the
size of them doesn’t have to be the same as the pollen of the plant Clarkia pulchella
first studied by the botanist Robert Brown.

In this thesis, two main topics are concerned, i.e., the stochastic bursting phe-
nomenon both in a single excitable, noisy system (Chap. 2) in networks (Chap. 3,4),
and the synchronization in a three-dimensional noisy Kuramoto model (Chap. 5). The
organization of this thesis is as follows:

Chap. 1 serves as an introduction of the basic two noisy models of oscillating
dynamics, i.e., noisy excitable model and noisy 2D Kuramoto model. As the minimal
model of an excitable system, the noisy version of the active rotator or the so-called
theta neuron is introduced in terms of the Langevin equation and the Fokker-Planck
equation. Since our main interest lies in the statistics of the spike trains induced by the
noisy excitable unit, we adopt the point process to depict the spikes and introduce the
basic measure of them, i.e., interspike interval distribution (ISI) and power spectrum.
Moreover, since our second main part in this thesis is about 3D Kuramoto model,
thus a basic description of the 2D version is given, in terms of the stationary solution
by the self-consistent method and linear stability analysis of the incoherent state.

In Chap. 2, we investigate the combined effect of time delay and noise in a single
excitable unit, where a novel coherent spiking pattern which we call Stochastic bursting
is observed. We use a point process of leader-follower relationship to represent the
spike train and derive the ISI distribution and power spectral density analytically.
Moreover, a numerical method by the Fokker-Planck equation is used to confirm the
probability we obtain by simulating the corresponding Langevin equation. The results
in this chapter are based on the publication in [ZP18].

Chap. 3 and Chap. 4 are extensions to the delay-coupled case, i.e., the unidirec-
tional delay-coupled case and a chain of three units.
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In Chap. 3 we derive a general result for N unidirectionally delay-coupled units
in terms of ISI distribution and power spectral density, for each unit in the networks.
The correlations and thus cross-spectrum between any two units in the networks are
also derived, by the point process with a lead-follower relationship. The results in this
chapter are reported in [ZP19].

In Chap. 4, we use a tree lattice to investigate the statistics of the spike train in a
chain of three units and obtain a good approximation of the correlation between any
two units in the chain. Based on the results in the above chapters, we can conclude that
the stochastic bursting is a phenomenon that occurs commonly in excitable systems
with both time-delay feedback and noise. The results in this chapter are reported in
[ZPnu].

In Chap. 5, we propose a noisy version of a three-dimensional Kuramoto model,
which can be used to describe the dynamics of a multi-agent system in a noisy 3D
environment. Each agent is rotating and diffusing on a unit sphere and subject to a
common mean field. In the case without natural frequency, the model is connected
to another famous model in collective motion, i.e., the Vicsek model. For general
frequency distribution both in direction and amplitude, the linear stability of the
incoherent state is analyzed and the critical coupling strength for the incoherent state
to lose stability is obtained. Due to the influence of noise, the phase transition of
the order parameter is continuous instead of discontinuous in the deterministic case.
Moreover, the 3D noisy Kuramoto model is used to describe the synchronization of
the swarming motion with helical trajectory. The results in this chapter are based on
the publication in [ZTP20].

A collaboration work on the Kuramoto model subject to common noise [Gon+19]
is not presented in this thesis.

1.1 Noisy excitable system

1.1.1 Type I excitable system: Theta neuron

The excitable system refers to a unit, e.g., a neuron or oscillator, which is in the resting
state, being a fixed point in equilibrium or small-amplitude oscillations, but has the
potential to be excited to generate a large amplitude excursion, i.e., firing for neurons.
The excitation sources can be a constant force, periodic stimulation or random noise,
which is the factor we consider throughout the thesis. According to the bifurcation
from the resting state to the firing state, the excitability is usually classified into 2
categories: type I and type II excitability [Hod48; Izh00]. Type I neurons, e.g., theta
neuron, Morris–Lecar model etc undergo a saddle-node bifurcation and form a limit
cycle to fire, while type II neurons, e.g., FitzHugh–Nagumo model, undergo a Hopf
bifurcation to induce oscillations of large amplitude. In this thesis, we mainly focus
on a theta-neuron like model, which is also called active rotor model with noise as
described by

θ̇ = a+ cos θ + ξ(t), (1.1)

where θ is the phase of the oscillator with period 2π, a is a bias and ξ(t) is Gaussian
white noise with < ξ(t) >= 0, and < ξ(t)ξ(t − t′) >= 2Dδ(t − t′). D is the noise
intensity, which is zero in the deterministic case. when a is smaller than 1, the phase
has two fixed points , one stable and the other unstable, as shown in Fig. (1.1). The
stable fixed point is θs = arccos(−a) and the unstable fixed point is θu = 2π −
arccos(−a). On the other hand, when a is larger than 1, the system is oscillating
periodically.



Chapter 1. Introduction 3

Figure 1.1: Schematic illustration of the oscillator described by Eq. (1.1) in the
deterministic case, where θs is the stable fixed point and θu is the unstable fixed point.

In the noisy environment, the oscillator will be randomly kicked, leading to the
transition from resting state to firing state and back and forth. The Fokker-Planck
equation [Ris96] is to describe the probability density of the phase, i.e.,

∂P (θ, t)

∂t
= − ∂

∂θ
J

= − ∂

∂θ
(a+ cos θ)P (θ, t) +D

∂2

∂θ2
P (θ, t),

(1.2)

where J is the probability current (or flux) and it is a constant in the stationary
state. The stationary solution of Eq. (1.2) with periodic boundary condition P (θ) =
P (θ + 2π) is

Pst(θ) = C

∫ θ+2π

θ

dψ

D
e−

∫ ψ
θ

a+cosϕ
D

dϕ, (1.3)

where C is the normalization constant to ensure
∫ 2π

0 Pst(θ)dθ = 1 [SP10]. When
the noise intensity is small, the phase will mostly be in the vicinity of θs as shown in
Fig. 1.1 and occasionally go across θu and perform one excursion back to θs. The phase
increasing a 2π period is called a spike, the rate of which is equal to the probability
current of Eq. (1.2) [Ris96], i.e.,

λ = J = C
(

1− e−
∫ 2π
0

a+cos θ
D

dθ
)
. (1.4)

1.1.2 Point process description

A spike train is a temporal sequence of action potential, which plays an important role
in the communication between cells and neurons. In mathematics, spike trains are
encoded point processes, which are widely used to model physical processes that can
be represented as a stochastic set of events in time or space. The events are ideally
represented by series of δ functions

ς(t) =
∑
j

δ(t− tj), (1.5)
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𝑡1 𝑡2 𝑡3 𝑡4 𝑡𝑁−1 𝑡𝑁 

𝜏1 𝜏2 𝜏3 𝜏𝑁−1 

Figure 1.2: Schematic representation of a spike train, where ti is the time at which the ith
spike occurs and τi is the i-th interspike interval.

where tj is the recorded time at which the event occurs. The average firing rate (or
spiking rate) depicts the average frequency action potentials fired during a time period
T , i.e.,

< r(t) >= lim
T→∞

N

T
= lim

T→∞

∫ T
0 ς(t)dt

T
, (1.6)

where N is the number of spikes generated within the duration T .

Interspike interval distribution

The interspike interval (ISI) is the time between two subsequent spikes. Measurement
of ISI distribution ρ(τ) is a usual way to study the neuronal activity in a stationary
sense, and thus the mean interval is straightforward, i.e.,

< τ >=

∫ ∞
0

ρ(τ)τdτ, (1.7)

which gives an alternative description of the mean firing rate, i.e.,

< r(t) >=
1

< τ >
=

1∫∞
0 ρ(τ)τdτ

. (1.8)

The ISI distribution can also be interpreted as the conditional probability density

ρ(τ) = P (t+ τ |t), (1.9)

where the probability density P (t′|t) multiplied by a small interval ∆t gives the prob-
ability to observe a spike in the interval [t′, t′ + ∆t], given a spike at time t. The
cumulative version of the ISI distribution is

Q(τ) =

∫ τ

0
P (t+ s|t)ds, (1.10)

which describes the probability that there is at least one spiking event within the
duration [t, t+ τ ]. Since P (t+ s|t) = P (s) in the stationary state, Eq. (1.10) can be
simplified to

Q(τ) =

∫ τ

0
P (s)ds. (1.11)

Survival function

Given the probability density P (t + τ |t) as above, the probability of the neuron not
to fire within the duration [t, t+ τ ] is

S(τ) = 1−
∫ τ

0
P (s)ds. (1.12)
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Let us consider a simple and commonly used model, i.e., the homogeneous Poisson
process, in which the spiking rate is constant, and hence the probability to have n
spikes during the interval [0, τ ] is

P (n spikes in τ) =
e−rτ (rτ)n

n!
. (1.13)

Thus the survival function in this case is exponential, i.e.,

S(τ) = e−rτ , (1.14)

and the ISI distribution is
P (τ) = re−rτ . (1.15)

Autocorrelation and power spectrum

The autocorrelation function reveals how every two spikes correlate with each other,
as defined by

C(s) = 〈(X(t)− 〈X(t)〉)(X(t+ s)− 〈X(t)〉)〉, (1.16)

where 〈·〉 denotes the average over all spikes in multiple realizations of the experimental
condition. which is a function only with respect to the interval s in the stationary
state. The autocorrelation function C(s) is intemately related to the ISI distribution
P (s). For s > 0, the autocorrelation function C+(s) for s > 0 can be interpreted in
terms of ISI distribution P (τ) as follows:

C+(s) = P (s) +

∫ ∞
0

P (s1)P (s− s1)ds1

+

∫ ∞
0

∫ ∞
0

P (s1)P (s2)P (s− s1 − s2)ds1ds2 + · · ·

= P (s) +

∫ ∞
0

P (s1)C+(s− s1)ds1.

(1.17)

For s < 0, due to the symmetry, we have C−(s) = C+(−s). Together with the delta
peak of the autocorrelation at s = 0, we finally obtain

C(s) = r[C+(s) + C−(s) + δ(s)]

= r[C+(s) + C+(−s) + δ(s)]
(1.18)

Applying the Fourier transform to Eq. (1.18), we obtain

Ĉ(ω) = rRe

[
1 + P̂ (ω)

1− P̂ (ω)

]
, (1.19)

where Ĉ(ω) and P̂ (ω) are the Fourier transform of the functions C(s) and P (s)
respectively. Noteworthy, here ω 6= 0 ensures the extraction of the mean value of
X(t), as defined in Eq. 1.16. Eq. (1.19) is a standard solution of the stationary
renewal process.

An alternative interpretation of correlation function is to consider it as a first
order statistics instead of second order. The conditional probability density P (t, t +
∆t; t+ s, t+ s+ ∆t) denotes the probablity that there is a spike in the small interval
[t+ s, t+ s+ ∆t], given that there is a spike in the former or later (depending on sign
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of s) small interval [t, t+ ∆t]. Thus the correlation function can be represented as

C(s) =
1

T

∫ T

0
dt lim

∆t→0

P (t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2
, (1.20)

where T is the time window in which the spike trains occur.
According to the Wiener-Khinchin theorem, the power spectral density is the

Fourier transform of the autocorrelation function, as demonstrated by the following
equalities:

S(ω) =

∫ ∞
−∞

C(s)e−iωsds

= lim
T→∞

1

T

∫ T/2

−T/2
X(t)

∫ ∞
−∞

X(t+ s)e−iωsdsdt

= lim
T→∞

1

T

∫ T/2

−T/2
X(t)eiωtdt

∫ ∞
−∞

X(s′)e−iωs
′
ds′

= lim
T→∞

1

T

∣∣∣∣∣
∫ T/2

−T/2
X(t)e−iωtdt

∣∣∣∣∣
2

.

(1.21)

The autocorrelation function quantifys the temporal structure within the spike
train in a single neuron. Here, the interpretation of a second-order statistics, i.e.,
the correlation function, via a first-order statistics, i.e., the mean value of the joint
events, shows advantage also in cross-correlation function, which quantifys the tem-
poral coordination of spikes across the two spike trains between two different neurons.
In Chap. 3 and Chap. 4, we will see that it is informative and convenient to derive
both the auto and cross- correlations between any pair of neurons in a uniderectional
network [ZP19] and in a chain of three couled neurons [ZPnu].

1.2 Classical (2D) Kuramoto model

The synchronization phenonenon [Pik+03] of coupled oscillators is of great impor-
tance in understanding systems such as populations of fireflies [BB68], circadian
rhythms of animals [Yam+03], pulse-coupled neurons [Win67], Josephson junction
circuits [SSW92], etc. In 1975, Kuramoto proposed a mathematically tractable model
to describe the synchronization phenomenon of all-to-all pairwise coupled phase oscil-
lators [Kur75], based on Winfree’s analysis on synchronized community that can be
considered as a threshold process [Win67]. The Kuramoto model is described by the
following equation:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi)

= ωi +Kρ sin(Ψ− θi),
(1.22)

where θi is the phase of the i-th unit out of an ensemble with N coupled oscillators,
ωi is the corresponding natural frequency with distribution g(ω). By choosing a co-
rotating reference frame, i.e., setting θi = θi − Ωt, the distribution g(ω) with mean
Ω can be investigated by g(ω) with zero mean. K is the coupling strength, which
will facilitate synchronization of the oscillators when it’s positive. ρ and Ψ are the



Chapter 1. Introduction 7

amplitude and phase of the order parameter, which is defined by

ρeiΨ =
1

N

N∑
j=1

eiθj . (1.23)

In the thermodynamic limit N →∞, the continuity equation describing the evolution
of the probability density f(θ, ω, t) of the oscillators is straightforward. In this case,
the discrete version of the definition of order parameter described by Eq. (1.23), is
now replaced by a continuous one, i.e.,

ρeiΨ =

∫ ∞
−∞

∫ 2π

0
f(θ, ω, t)g(ω)eiθdθdω. (1.24)

Using a self-consistent method [Kur84], Kuramoto obtained a closed integral form,
from which, it suggested that there exist a critical coupling strength above which
the synchronization was observed. The reason can be understood as the competition
between the frequency of the oscillators, which desynchronize the population and the
positive coupling strength, which facilitates the synchronization. Kuramoto model
can also be used to describe the alignment of coupled agents [CGO19b], subject to a
common field or force. In this sense, Eq. (1.22) can be reformulated as

dσ̂i
dt

= K(ρ− (ρ · σ̂i)σ̂i) + ωiσ̂i, (1.25)

where each unit vector σ̂i = (cos θi, sin θi) is subject to the mean field vector ρ, i.e.,

ρ =
1

N

N∑
i=1

σi, (1.26)

ωi is an anti-symmetric matrix to describe the natural frequency of each unit. It is of
the following form:

ω =

(
0 ωi
−ωi 0

)
, (1.27)

where the element ωi is selected from a distribution g(ω).
After the Kuramoto model was proposed, many extensions have been done to

investigate more complex phenomena. The noisy version of Kuramoto model was
firstly investigated by Sakaguchi [Sak88]. The phase of each oscillator θi subject to
random noise obeys the following Langevin equation:

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) + ξi(t)

= ωi +Kρ sin(Ψ− θi) + ξi(t),

(1.28)

Here ξ(t) is the Guassian white noise with < ξi(t) >= 0 and < ξi(t)ξj(t
′) = 2Dδijδ(t−

t′). The other parameters are defined the same way as in Eq. (1.22). Compared to
the deterministic case (D = 0), the individual noise here prevents the oscillators from
synchronization. Therefore, in terms of phase transition of the order parameter, the
critical coupling Kc is expected to be larger than that in the deterministic case.
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Figure 1.3: Schematic illustration of vector representation of two dimensional Kuramoto
model.

1.2.1 Stationary solution by self-consistent method

In the case of thermodynamic limit, i.e., N → ∞, the evolution of the probability
density of the phase oscillators is described by the Fokker-Planck equation

∂f(θ, ω, t)

∂t
= − ∂

∂θ
(ω −Kρ sin(Ψ− θ))f(θ, ω, t) +D

∂2

∂θ2
f(θ, ω, t). (1.29)

The stationary solution of Eq. (1.29) is subject to periodic boundary condition,
i.e.,

f(θ, ω) = f(θ + 2π, ω). (1.30)

It is first derived in Ref. [Sak88], and later in Ref. [BNS92] by an alternative form,
which is

f(θ, ω) =
1

C(ω)
e
Kρ
D

cos(Ψ−θ)
2π∫
0

dθ1e
− 1
D

[ωθ1+Kρ cos(Ψ−θ−θ1)]. (1.31)

Here C(ω) is the normalization constant with

C(ω) =

2π∫
0

dθe
Kρ
D

cos(Ψ−θ)
2π∫
0

dθ1e
− 1
D

[ωθ1+Kρ cos(Ψ−θ−θ1)]. (1.32)

Substituting Eq. (1.31) into Eq. (1.24), to the third order of ρ, we obtain

ρ =
Kρ

2

(∫ ∞
−∞

g(Dω + ω0)

ω2 + 1
g(Dω + ω0)− K2ρ2

2D2

∫ ∞
−∞

g(Dω + ω0)[
1

ω2 + 4
− ω

(ω2 + 1)2
]

)
,

(1.33)
which was first derived by Sakachuchi in Ref. Eq. (1.33) indicates the square root
relationship in the vicinity of the critical point of the coupling strength Kc, which is
given by

Kc =
2D∫∞

−∞ g(ω)/(1 + ω2/D2)dω
. (1.34)

Noteworthy, the above critical coupling is limited for the distribution of the frequency
g(ω), which has to be an even function. Moreover, the result is obtained via the
stationary solution of the corresponding Fokker-Planck equation (1.29) and hence
the stability of the incoherent state is not yet revealed. It was firstly reported by
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Strogatz and Mirollo in Ref. [SM91], where discrete and continuous spectrum are
both considered, while the former one determines the instability of the incoherent
state. The authors also proved that, for an even function g(ω) which is non-increasing
on [0,∞), there is at most one solution for the eigenvalue λ, (we denote s in the
following), which is necessarily real if the solution exists [MS90].

1.2.2 Linear stability of the incoherent state

The probability density of the incoherent state is

f0(θ, ω, t) =
1

2π
, (1.35)

which indicates that for any given ω, all the oscillators are uniformly distributed
around the circle, i.e., there is no mean field to influence the oscillators. Assuming a
small perturbation to the incoherent state, i.e.,

f(θ, ω, t) = f0 + f1(θ, ω)est, (1.36)

substituting Eq. (1.36) into Eq. (1.29) and keeping only the linear part with respect
to f(θ, ω)1, we obtain the following equation:

sf(θ, ω) + ω
∂f

∂θ
−D∂

2f

∂θ2
= Kf0ρ · σ, (1.37)

where ρ·σ in the r.h.s of the equation has the geometric meaning such that it represents
the product of the first-order mean field and the unit vector, i.e.,

ρ · σ =

(
ρx
ρy

)
·
(

cos θ
sin θ

)
=

1

2
(ρx + iρy)e

−iθ +
1

2
(ρx − iρy)eiθ. (1.38)

By substituting the Fourier-series solution

f1(θ, ω) = Aeiθ +A∗e−iθ (1.39)

into Eq. (1.37), we obtain

f1(θ, ω, t) =
K(ρx + iρy)

s+D − iω e−iθ +
K(ρx − iρy)
s+D + iω

eiθ. (1.40)

Since the mean field vector ρ is defined as

ρ =

∫ ∫
σf(σ, ω, t)g(ω)dσdω

=

∫ ∞
−∞

∫ 2π

0

(
eiθ+e−iθ

2
eiθ−e−iθ

2i

)
f1(θ, ω, t)g(ω)dθdω

(1.41)

substituting Eq. (1.40) into Eq. (1.41), we obtain a self-consistent equation about the
order parameter:

ρ =
K

2

∫ ∞
−∞

(
ρx(s+D)

(s+D)2+ω2 − ρyω
(s+D)2+ω2

ρy(s+D)
(s+D)2+ω2 + ρxω

(s+D)2+ω2

)
g(ω)dω. (1.42)

Since in 2D Kuramoto model a corotating frame can be found, the frequency dis-
tribution is usually chosen as an even function, leading to the vanishment of term
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proportional to
∫

ω
(s+D)2+ω2 g(ω)dω, i.e.,∫ ∞

−∞

ω

(s+D)2 + ω2
g(ω)dω = 0. (1.43)

Therefore, Eq. (1.42) can be further simplified as

1 =
K

2

∫ ∞
−∞

(s+D)

(s+D)2 + ω2
g(ω)dω. (1.44)

For an even and unimodal function g(ω), there is always a real eigenvalue s to de-
termine the stability of the incoherent state [MS90; SM91]. Therefore, to obtain the
critical coupling strength, it’s straightforward to set s = 0. It’s easy to check that Kc

coincides with the result described by Eq. (1.34). For g(ω) = δ(ω), the eigenvalue in
Eq. (1.44) is given by

s =
K

2
−D, (1.45)

therefore the critical coupling strength is

Kc = 2D. (1.46)

For a Cauchy distribution with zero mean, i.e., g(ω) = γ
π(ω2+γ2)

, it’s also straightfor-
ward to obtain

s =
K

2
−D − γ, (1.47)

so the critical coupling strength in this case is

Kc = 2(D + γ). (1.48)

In conclusion, the individual noise always stabilizes the incoherent state and prevents
the coupled oscillators from synchronization.

1.2.3 Recent development and state of the art

Kuramoto model has been a hot topic since its birth in 1975, with more and more phe-
nomena observed in it and generalization beyond it. These developments include but
are not limited to the low dimensional behavior of coupled oscillators [OA08; OA09]
and macroscopic description of coupled neurons [MPR15], the chimera state [AS04;
KB02; Ome18] and the application on complex networks [DB14; Rod+16] including
adaptive networks [BSS20]. Moreover, the generalization of Kuramoto model on high
dimensional space [OS06; Tan14; Loh09; CGO19b], where synchronization is more
about the trajectory or velocity rather than phase locking in the classical case, has
attracted a lot of attention. Interestingly, the even and odd dimensional cases are
demonstrated to be different in terms of the transition from incoherent state to syn-
chronization [CGO19b], but are subject to the same general low dimensional behavior
macroscopically [CGO19a].

The dynamics concerning stability and bifurcation in Kuramoto model has been
of great interest to physicists and mathematicians, with many related questions still
open. In the book [Kur84], Kuramoto originally conjectured that as the coupling
strength increases above the criticality, the incoherent state bifurcates supercritical
to the partial synchronization state. The incoherent state should be stable below the
criticality and unstable above it. These statements sounded reasonable physically but
turned to be a difficult problem to prove mathematically. After the conjecture by
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Kuramoto, the stability of the incoherent state was first investigated by Strogatz and
Mirollo in [SM91; MS90], who later analyzed the stability for the partially locked state
in [MS07].

Noteworthy, in [SM91] the incoherent state was claimed to be neutrally stable in
the deterministic case while stable in the noisy case, due to the stabilizing effect of the
noise on the incoherent state. It seems that the result is not quite in agreement with
what Kuramoto conjectured originally. However, a recent paper by Chiba [CN11],
where a center manifold reduction is used, demonstrated that Kuramoto’s conjecture
is actually right.

After the proposal of Ott-Antonsen (OA) ansatz [OA08], similar questions con-
cerning the stability arise that, whether the OA manifold is attractive or not. The
authors proved that the OA manifold is time-asymptotically attractive [OA09] when
the frequency distribution has a nonzero width. It coincides with the intuition since
that the relaxation to the OA manifold results from mixing phases of the oscillators
with heterogeneous frequencies. However, in the case where the frequencies of all the
oscillators are the same, i.e., the width of the frequency distribution is zero, the OA
manifold is not attracting, in agreement with the results in [WS94; PR08; MMS09].
Additionally, the OA manifold is recently demonstrated to be not attracting in the
finite N continuum case [EM20]. For the noisy version of Kuramoto model, the low
dimensional behavior is different depending on whether the noise is common noise or
individual noise. The common noise is a random force to which all the oscillators
are subject and therefore it’s within the framework of Watanabe-Strogatz theory and
the Ott-Antonsen ansatz (to see [NK10; Pim+16; Gon+19]), while for the individual
noise case, a circular cumulant expansion is believed to capture the low dimensional
dynamics [Tyu+18].
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Chapter 2

Delay-induced stochastic bursting
in a single noisy excitable system

Time-delayed feedback and noise are factors that substantially contribute to the com-
plexity of the dynamical behaviors. While noise generally destroys the coherence of
oscillations, there are situations (e.g., stochastic and coherence resonances) where it
plays a constructive role leading to a quite regular behavior [Abb+08; Nei07]. Also,
delayed feedback can either increase or suppress coherence of oscillators [GRP03b;
GRP03a; JBS04; BJS04]. The interplay of delay and noise is important for neural
systems, where it has been studied both on the level of individual neurons [Pra+07;
Sch+09; Li+10], of networks of coupled neurons [KMSG10; Hau+06], and of rate
equations [GG15].

A significant progress in understanding the interplay of noise and delayed feed-
back has been achieved for bistable systems [TP01; Mas03]. Furthermore, variants
of the bistable dynamics with highly asymmetric properties of the two states have
been adopted to describe excitable systems under delay and noise [Pra+07; PJ08;
KMSG10].

In this chapter, we develop another approach to the dynamics of excitable noisy
systems with delayed feedback. We investigate a theta-neuron-like model [EK86],
which is a paradigmatic example of an excitable system in mathematical and com-
putational neuroscience. Under the action of small noise, this system demonstrates
a random, Poisson sequence of spikes, as described in Sec. 1.1.1. We will show, that
a small additional delayed feedback (large feedback can significantly modify the dy-
namics, see, e.g., [Kro+14]) leads to an interesting partially coherent spike pattern
which we call stochastic bursting. Contrary to the bistable models, in our description
we consider only the excitable state as a stochastic one, while the excitation itself is
deterministic. The model is described by a scalar variable θ defined on a circle:

θ̇ = a+ cos θ + ε(a+ cos θ(t− τ)) +
√
Dξ(t). (2.1)

Here parameter a defines the excitability properties, parameter D describes the level
of external noise (which we assume to be Gaussian white one, 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 =
2δ(t − t′)), and ε is the amplitude of a delayed feedback. The feedback is chosen to
vanish in the steady state of the system. Model (2.1), without delayed feedback, is
very close to the theta-neuron model [EK86], extensively explored in different contexts
in neuroscience (where inclusion of noise is very natural, while a delayed feedback is
often attributed to the autapse effect, cf. [VDLG72; Li+10]), and to the active rotator
model [PK96; Tes+07; Zak+03; Son+13]. In (2.1) we assume a simple additive ac-
tion of the delayed feedback and of noise. For theta-neurons, one quite often explores
multiplicative forcing, where the force terms are multiplied with factor (1 − cos θ)
(cf. [BK05], notice that our variable is shift by π to the variable used in [BK05]).
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However, as will be clear from the analysis below, this brings only small quantitative
corrections to the results, while the main qualitative conclusions remain valid – be-
cause the most sensitive to forcing region in the phase space is around θ ≈ −π, and
in this domain the factor (1− cos θ) is nearly a constant.

For |a| < 1 the autonomous theta-neuron (without noise and feedback) is in an
excitable regime: there are two nearby stationary states, one stable and one unstable.
Both noise and the feedback can kick the system from the stable equilibrium so that
it produces a ”spike”. Our goal in this paper is to describe the statistical properties of
the appearing spike train. Before the full analysis, we briefly outline relatively simple
cases of the purely deterministic dynamics (no noise) and the purely noisy dynamics
(no delayed feedback).

2.1 Deterministic case

For an autonomous theta-neuron (ε = 0, D = 0), one can represent the dynamics as
an overdamped motion in an inclined periodic potential

θ̇ = −dU
dθ
, U(θ) = −aθ − sin θ , (2.2)

for which θs is a local minimum and θu is a local maximum, see Fig. 2.1 (a) and (b).
As parameter a is close to the value of a SNIC bifurcation a = 1, the distance θu− θs
is small (correspondingly, the barier of the potential is small as well) and already a
small external perturbation can produce a nearly 2π-rotation of θ. However, for large
enough ε it can possess stable periodic oscillations. The form of the spike can be
represented as a trajectory that starts at θu and ends at θs (marked red in Fig. 2.1
(a)):

Θsp(t) = 2 arctan

(√
1 + a

1− a tanh

(√
1− a2

2
(t− t0)

))
. (2.3)

Indeed, a perturbation of the equilibrium can result in a spike described by Eq. (2.3).
After the delay time τ , a force

εH(t) = ε(a+ cos Θsp(t)) (2.4)

will act on the theta-neuron. For a sufficiently large value of ε it will produce a
new spike, which will also generate a new spike after time delay τ . The process will
repeat until the peturbation is not large enough to induce a spike. In Fig. 2.2 we show
critical values of ε in dependence on the delay time τ and on the excitability parameter
a. Clearly, εc → 0 if the excitability parameter a approaches the bifurcation value
aSNIC = 1. Dependence on the delay time is also rather obvious: for large delays
the critical value εc is delay-independent, while for delays comparable to the pulse
duration (which is, according to (2.3), ∼ (1−a2)−1/2) there is a blocking effect which
mimics a refractory period for a neuron after a spike.

2.2 Noisy case

For the purely noisy case without delay, we have described it in Sec. 1.1.1. Our main
interest here is in the combined effects of time delay and noise with D 6= 0, ε 6= 0.
We simulate the Langevin dynamics described by Eq. (2.1) by the Euler-Maruyama
method with discrete time interval dt = 0.01. Accordingly, we obtain the spike train in



Chapter 2. Delay-induced stochastic bursting in a single noisy excitable system 14

Figure 2.1: A sketch of the theta-neuron model Eq. (2.1). In (a), the red trajectory from
θu to θs represents a spike, while the black curve shows relaxation without a spike. Panel
(b) depicts how the ’phase particle’ evolves in the effective potential U(θ), either overcoming
the barrier (with probability p), or returning back to the equilibrium θs (with probability
1− p). Figure reprinted with permission from Ref. [ZP18].
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Figure 2.2: Critical value of ε in dependence on the delay time τ in the deterministic case
with a = 0.95. The inset is the asymptotic value εc at large delay time for in dependence on
excitability parameter a. Figure reprinted with permission from Ref. [ZP18].
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Figure 2.3: Panel (a) is the periodic solution in the deterministic case when ε > εc. Panel
(b) shows the noisy case without delayed feedback, i.e ε = 0, with the spike train obeying
the Poisson statistics. Panel (c) is the case with both noise (D = 0.005) and delayed
feedback (ε = 0.14) , showing the stochastic bursting phenomenon. Many spikes with the
interval close to τ are induced, depending on the delay force amplitude. The parameters are
a = 0.95, τ = 500. Figure reprinted with permission from Ref. [ZP18].

the case with both delay and noise (D 6= 0, ε 6= 0) as shown in Fig. 2.3(c). Comparing
with the purely periodic dynamics in the deterministic case (panel (a)) and with the
Poisson sequence of spikes for delay-free case (panel (b)), in panel (c) we can see
randomly appearing spikes, like in case (b), and “bursts” of several spikes separated
by the delay time τ (like in case (a)). Qualitatively, this picture illustrates the two
sources of spike formation: (i) due to a fluctuation of the noise driving, this source
is delay-independent, and (ii) delay-induced spikes which appear due to a combined
effect of delay forcing and noise. We call the former spikes spontaneous ones, or
’leaders’, and the latter spikes as induced ones, or ’followers’.

An exact analytic approach to the noisy dynamics is hardly possible, because in
presence of delay feedback and noise, the system is non-Markovian. Therefore we will
next formulate an idealized point process model, which generalizes the Poisson point
process in absence of the delayed feedback.

2.3 Point process model

Point processes are widely used to mathematically model physical processes that can
be represented as a stochastic set of events in time or space, including spike trains.
The spike train can be viewed as a sequence of pulses, fully determined via the spike
appearance times tj . In this case each spike is considered as a δ-pulse, we have

∑
j δ(t−

tj); more generally we can write
∑

j H(t− tj), where H is the waveform (2.4). In our
model, we adopt the leader-follower relationship to describe the spiking pattern of type
shown in Fig.2.3 (c). The spikes which appear when the delay feedback is weak, i.e.
solely due to a large fluctuation of noise, we call “spontaneous” ones. As delay plays no
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Figure 2.4: Schematic description of the point process. The black high pulses represent
the spontaneous spikes (leaders) while the red low ones represent the delay-induced spikes
(followers) (the difference in the height of spikes is just a schematic way to classify the
events into leaders and followers, while they are of the same height in reality). A leader with
a random number of its followers form a burst. The whole process can be viewed as a
superposition of sub-processes with a fixed number of followers. Figure reprinted with
permission from Ref. [ZP18].

role for these spikes, they form a Poisson process with a rate λ. Each spontaneous spike
produces, after delay time τ , forcing (2.4). During this pulse forcing, the potential
barrier decreases and there is an additional enlarged probability to overcome the
barrier and to produce a “follower” spike. We denote the total probability to induce
the follower spike as p (correspondingly, the probability to have no follower is 1− p).
Of course, each induced spike can also produce a follower, with the same probability
p. Thus, a leader spike induces a sequence of exactly L followers with probability
%(L) = pL(1 − p). The two parameters, λ and p, fully describe the point process,
consisting of “bursts” as shown in Fig. 2.4. Each burst starts with a leader, which
appears with a constant rate λ, these leaders form a Poisson process. The followers
are separated by the time interval τ , their number in the burst is random according
to the distribution %(L). Noteworthy, the bursts can overlap. Below we discuss the
statistical properties of the point process following from the described model. It is
rather simple to obtain the overall density of spikes. Indeed, the average number of

followers of a leader is
∞∑
L=0

L%(L) = p
1−p , and hence the overall spike rate is

µ = λ(1 +
p

1− p) =
λ

1− p . (2.5)

Because the process is stationary, the probability to have a spike in a small time
interval (t, t + ∆) does not depend on t and is equal to µ∆. Correspondingly, the
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probability that in a finite time interval T there is no one spike is exp[−µT ].

2.4 Statistics of spike train

2.4.1 Interspike interval distribution

Now we derive the interspike interval (ISI) distribution, employing the renewal theory
[Cox67; Ger+14]. Given a spike at time t and the next spike at time t′, the probability
to have no spike in the interval [t, t′] is called survivor or survival function. Let us
separate the ISI, i.e T = t′ − t, into three different cases, namely, T > τ, T = τ
and T < τ . If T < τ , the spikes at t and t′ can be either spontaneous (leader) or
delay-induced ones (followers of spikes preceding that at t), so the survival function
is determined by the full rate µ: S(T ) = exp(−µT ). In contradistinction, for the case
T > τ , the next spike can be only a spontaneous one. The probability that there is
no spike in [t, t′] is the product of three terms: the probability to have no spikes in
the interval [t, t+ τ) with survivor function

Sτb = exp(−µτ), (2.6)

the probability (1 − p) not to have a follower for the spike at t, and the probability
to have no spike in the interval [t + τ, t′], where only the spontaneous rate λ applies
with the survivor function

Sτa = exp(−λ(T − τ)). (2.7)

Thus, the survivor function for the case T > τ is

S(T ) = Sτb(1− p)Sτa
= (1− p)e−µτ−λ(T−τ).

(2.8)

Based on the above description and the relationship between the cumulative ISI dis-
tribution Q(T ) and the survivor function Q(T ) = 1−S(T ), the cumulative ISI distri-
bution can be obtained as follows:

Q(T ) =

{
1− e−µT , T < τ,

1− (1− p)e−µτ−λ(T−τ), T ≥ τ.
(2.9)

According to the relationship between the cumulative ISI distribution and the ISI
distribution density P (T ) = Q′(T ), we can also obtain the ISI distribution density:

P (T ) =


µe−µT , T < τ,
pe−µτδ(T − τ), T = τ,

λ(1− p)e−µτ−λ(T−τ), T > τ.

(2.10)

We compare the obtained ISI distribution with the numerical result in Fig. 2.5.

2.4.2 Power spectral density

Next, we discuss the correlation properties of the point process. The spike train in
our model can be represented as a superposition of sub-trains having a fixed number
L of followers, see Fig. 2.4 for an illustration of this superposition. Let us denote H(t)
the shape of a spike (it is a delta-function for the point process model, but for a real
process it is given by (2.3)). Then the time series can be written as sum of sub-series
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Figure 2.5: Cumulative ISI distribution Q(T ) vs T (ISI). The blue curve corresponds to
the simulation result, the dashed red curve corresponds to the point process with Eq. (2.9),
where λ = 6.64× 10−4 is calculated from Eq. (1.4) and p = 0.53 is calculated from
Eq. (2.20). The upper two curves with a jump at T = τ correspond to the delay case with
ε = 0.14, while the lower two ones correspond to the case without delay, i.e ε = 0. The inset
in a logarithmic scale is to show the coincidence of the slopes, which validates the point
process representation of the original model. Parameters are a = 0.95, D = 0.005 and
τ = 500. Figure reprinted with permission from Ref. [ZP18].

of bursts of size L+ 1:

x(t) =
∞∑
L=0

GL(t)⊗ YL(t)⊗H(t) (2.11)

where terms GL and YL describe the leaders and the followers for the bursts of size
L+ 1:

GL(t) =
∑
i

δ(t− tiL); YL(t) =
L∑
l=0

δ(t− lτ) . (2.12)

The leaders of a sub-series of bursts of size L+ 1 form a Poisson process with the rate
λ%(L), and the followers form a periodic set of spikes with separation τ . Here symbol
⊗ denotes a convolution.

According to the property of convolution and the independence of the sub-series
for different L, the power spectral density is the sum of spectral densities of the series;
inside each sub-series we have a product of spectral functions:

Sx(ω) =

∞∑
L=0

SGL(ω)SYL(ω)SH(ω) . (2.13)

Here SGL(ω) is the power spectral density of the spontaneous spikes, which have
the Poisson statistics. The power spectral density of the Poisson process is a con-
stant [Str67]:

SGL(ω) = λ%(L) = λ(1− p)pL . (2.14)
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Figure 2.6: The power spectral density from the simulations (blue curve) and from the
point process (red curve) described by Eq.(2.16), in which λ = 6.64× 10−4, p = 0.53 are
calculated from Eq.(1.4) and Eq.(2.20) respectively. The shape function is as Eq. (2.4)
describes. Values of a,D and τ are the same as in Fig. (2.5), i.e a = 0.95, D = 0.005 and
τ = 500. Figure reprinted with permission from Ref. [ZP18].

The term SYL(ω) is the power spectral density of the set of L points separated by
time interval τ , i.e

SYL(ω) =

∣∣∣∣∫ ∞
0

YL(t)e−iωtdt

∣∣∣∣2
=

1− cos(L+ 1)ωτ

1− cosωτ
.

(2.15)

Finally, SH(ω) is the power spectral density of the shape function

SH(ω) =

∣∣∣∣∫ ∞
−∞

H(t)e−iωtdt

∣∣∣∣2 .

Summarizing, we obtain the following expression for the power spectral density of the
spike train

Sx(ω) =
∞∑
L=0

1− cos(L+ 1)ωτ

1− cosωτ
λ(1− p)pLSH(ω)

=
λ(1 + p)

1 + p2 − 2p cosωτ
SH(ω).

(2.16)

The most important part of the spectrum is the first factor, thus we discuss the
spectrum for the case of δ-pulses SH = 1. For the limiting delay-free case, when
p = 0, we have Sx(ω) = λSH(ω), which corresponds to a purely Poisson process
of spontaneous spikes. In another limiting case of extensive bursting p → 1, the
power spectral density becomes a periodic sequence of narrow Lorentzian-like peaks
at frequencies ω = 0, 2π

τ ,
4π
τ , . . .. The width of a peak is ∼ (1−p), while the amplitude

scales ∼ (1−p)−2 (the total power of a peak diverges in this limit because the density
of spike diverges). In Fig. 2.6 we compare the obtained expression for the spectral
density with direct numerical modeling of Eq. (2.1).



Chapter 2. Delay-induced stochastic bursting in a single noisy excitable system 20

2.5 Probability to induce a spike

As have been shown in the section 2.3 above, in our model, from the viewpoint of a
point process, there are only two parameters: the spontaneous spiking rate λ (or J)
and p, the probability to induce a spike by a delay force and noise. The expression
for λ is given by formula (1.4). The main challenge that is discussed in this Section,
is an analytical calculation of p.

From the simulations of Eq. (2.1), where the delay force can be switched off and
on (corresponding to ε = 0 and ε 6= 0 respectively), the probability to induce a spike
follows from the relation (2.5):

p =
〈n〉 − 〈n0〉
〈n〉 . (2.17)

Here 〈n0〉 is the average number of spikes within a large time interval without the time-
delayed force, while 〈n〉 is the average number of spikes in presence of the delayed force
within the same time interval.

2.5.1 Induced probability by the Fokker-Planck equation

Due to the nonlinear force and non-Markovian property of Eq. (2.1), it’s hard to
obtain the exact solution analytically, e.g., formulating it in terms of delay Fokker
Planck equation [OY00; Fra05]. However, since a is close to 1 and the noise intensity
is small, we can approximate the delay force with a deterministic time-dependent force
based on the spike solution (2.3),(2.4). Thus, the problem reduces to consideration of
a deterministically driven stochastic model

θ̇ = a+ cos θ + εH(t) +
√
Dξ(t). (2.18)

where the force term is given by expression (2.4). The corresponding Fokker-Planck
equation reads

∂P (θ, t)

∂t
= − ∂

∂θ
[(a+ cos θ + εH(t))P (θ, t)] +D

∂2P (θ, t)

∂θ2
. (2.19)

In order to properly formulate the setup for this equation, we need to describe
its dynamics qualitatively. As a starting state prior to incoming pulse H(t), we can
take a stationary distribution of the equation with ε = 0, i.e. the stationary solution
(1.3): P (θ,−T ) = Pst(θ), for 0 ≤ θ < 2π. Here −T is a starting point of pulse action.
Under the action of the pulse, this state evolves, and P (θ, t) shifts in the positive
direction of θ, and the flux of probability through the point θ = 0 increases – this
exactly describes increased local rates of a spike excitation during the action of the
pulse. In order to control “multiple” pulse excitation (generation of two or more spikes
during one acting pulse) it is convenient to choose the period of domain as 8π instead
of 2π. Then, after the action of the pulse H(t), a state P (θ, T ) is reached. The net
probability within the domain [2π, 4π] can be interpreted as the probability to induce
just one spike by the force εH(t) as follows,

p =

∫ 4π

2π
(P (θ, T )− P0(θ, T ))dθ. (2.20)

Here P (θ, T ) is the solution of Eq. (2.19), while P0(θ, T ) is the corresponding solution
of the unforced Fokker-Planck equation (i.e., of Eq. (2.19) with ε = 0) – it describes
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Figure 2.7: Probability to induce a spike by time delayed feedback for different delay force
amplitudes. The blue triangles, red circles, and black diamonds represent the simuation
results of Eq.(2.17) for D = 0.005, 0.007, 0.009 [we used the Euler-Maruyama method with
time step dt = 0.01, integration interval was 5× 105, and additionally averaging over 200
realizations was performed]. The solid lines with the same color is the corresponding
numerical results of Eq.(2.20). The black dashed line is the deterministic solution with
εc = 0.15. Parameters are chosen as a = 0.95, τ = 500. Figure reprinted with permission
from Ref. [ZP18].

spontaneous spikes. The total probabilities in domains [4π, 6π] and [6π, 8π] (they
correspond to the probabilities to induce 2 or 3 spikes) are actually very close to zero
and therefore can be neglected.

Practically, we solve Eq. (2.19) with a spectral method. We represent the prob-
ability density as a (truncated) Fourier series as P (θ, t) =

∑N
m=−N Cm(t)ei

m
4
θ, and

substitute it into the Fokker-Planck equation. In this way we obtain an large system
of non-autonomous ODEs for the Fourier modes

dCm
dt

=
m

8i
Cm−4 − (

i

4
ma+

i

4
mεH(t) +

m2

16
D)Cm +

m

8i
Cm+4. (2.21)

We truncated this system at N = 400 and solved the above ODEs by the 4th order
Runge-Kutta method with time step 0.001. As Fig. 2.7 depicts, the numerical method
described fits well with the simulation results. We also investigated how the noise
intensity influences the probability to induce a spike. To analyze the role of noise and
delay, we compare the results in presence of noise with the deterministic case, where
there is a critical value of ε to induce periodic spikes. Generally speaking, for ε < εc,
noise enhances the spiking by cooperation with the delay feedback, while for ε > εc
noise can prevent spikes otherwise induced by the delay feedback.

2.5.2 Analytic approaches to calculate induced probability

As we have shown above, the problem reduces to the analysis of a pulse-driven Fokker-
Planck equation. Such an analysis can be performed analytically in the limiting cases
of an adiabatic (very long) pulse, and of a kicked (δ-function) driving. The adiabatic
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Figure 2.8: Probability to induce a spike by delayed pulses with different sharpness vs the
amplitude of the delay force. The blue triangles, diamonds, circles and rectangles represent
the simulation results of Eq. (2.22) with q = 1, 5, 10 and 20 respectively. The red curve is
the analytical result from Eq. (2.25) for the δ-pulse. Parameters are chosen as a = 0.995,
D = 0.005 and τ = 500. Figure reprinted with permission from Ref. [ZP18].

approximation appears to be rather bad, while for a narrow pulse, as we show below,
the approximation of a δ-kick appears to be satisfactory.

It is convenient to introduce a parameter to control the width of the forcing pulse.
Therefore, Eq. (2.1) is modified into the following one:

θ̇ = a+ cos θ + εCq(a+ cos θ(t− τ))q +
√
Dξ(t) . (2.22)

Here parameter q determines the effective width of the pulse, and Cq is the normal-
ization coefficient defined as

Cq =
1∫∞

−∞(a+ cos Θsp(t))qdt
,

being consistent with Eq. (2.1) when q = 1. For large values of q, the force in (2.22)
is nearly a δ-pulse.

The analysis can be performed in terms of the so-called splitting probability. We
start with an equilibrium solution of the autonomous Fokker-Planck equation 1.3,
which for small noise is concentrated around the stable state (minimum of the poten-
tial). During the δ kick, the static potential and diffusion term don’t play a role, and
hence the effective evolution of the probability density from τ− to τ+ is just the shift

P (θ, τ+) = e−ε
∂
∂θP (θ, τ−) = Pst(θ − ε). (2.23)

Due to the noisy environment, the following evolution is a relaxation, described by the
autonomous Fokker-Planck equation. During this evolution, a “particle” can overcome
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the potential barrier, thus producing a spike, or return back to the stable state, this
corresponds to not inducing a spike. The main contribution is from the points around
θs + ε, for which we can approximate the potential by the inverted parabolic one.
Evolution in such a potential is known as the splitting problem [Gar09]. If the ’phase
particle’ is initially at the position θ, the probability to eventually be right to the
maximum θu is

ρ(θ) =
1

2

(
1− erf

[
(θu − θ)

√
|U ′′(θu)|

D

])
. (2.24)

Thus, the probability to induce a spike is

p(ε) =

∫ 2π+ε

ε
Pst(θ − ε)ρ(θ)dθ =

∫ 2π

0
Pst(θ)ρ(θ + ε)dθ. (2.25)

In Fig. 2.8 we compare the analytical expression for the delta-pulse with simula-
tions for different values of parameter q. For q = 1 the analytic formula is not a good
approximation, but for q = 5 and larger value, it fits numerics rather well.

2.6 Summary

We have demonstrated that the combined effect of time delay and noise can lead to
interesting spike patterns in excitable neurons. We have shown that a weak positive
(excitatory) time-delay feedback on the excitable neuron in a noisy environment leads
to delay-induced stochastic bursting. As an ideal mathematical model to describe the
spiking pattern we adopted a point process with the leader-follower relationship. The
main restriction in the applicability of this model is a separation of time scales, which
requires noise to be weak and the delay to be long. The model contains just two
parameters, the rate λ of the appearance of spontaneous spikes, and the probability
p to induce a follower spike. Roughly, the bursting pattern can be described as a
sequence with randomly appearing bursts (with average inter-burst interval λ−1),
having random durations (as an average, each burst has p(1− p)−1 spikes).

It is instructive to analyze the roles noise and time delay play in the model. When
the amplitude of the delayed force is below the critical value of onset of delay-induced
oscillations (i.e., ε < εc), noise and delay jointly induce spikes: delayed feedback
reduces temporary the potential barrier to overcome due to noisy forcing. On the
other hand, if the amplitude of the delayed force is above the threshold, i.e., ε > εc,
and delay feedback is large enough to induce spikes in the deterministic case, the noise
makes the probability to induce spikes to be less than one, so that the bursts remain
finite. As a very rough estimation, one can say that exactly at ε = εc the delayed force
brings the system to the unstable state (maximum of the effective potential), from
which noise can produce a spike with probability 1/2. This estimate is confirmed by
numerical results presented in Fig. 2.7, where the dashed line crosses the probability
p curves at p ≈ 1/2.

As we have shown in this chapter, two essential parameters determine the statis-
tical properties of the stochastic bursting: the spontaneous excitation rate λ and the
probability to induce a spike during the feedback p. While the former is the standard
quantity, easily calculated from the stationary solution of the autonomous Fokker-
Planck equation, the latter probability could be found only numerically (from the
solution of forced Fokker-Planck equation) or with some additional approximations.
We have found that the adiabatic approximation is not adequate for the theta-neuron
considered here, while the approximation of a narrow, δ-function-like pulse gives a
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qualitatively good result. A quantitative correspondence could be achieved, however,
only when we modified the form of the delayed force making it narrower than in the
original formulation.

Our basic system in this chapter was a one-dimensional equation similar to that
of a theta-neuron. This significantly simplified the analysis based on the Fokker-
Planck equation. However, we expect that the point process model of the dynamics
will be valid in other, more realistic systems of Hodgkin-Huxley type, like the the
noisy FitzHugh-Nagumo system with delayed feedback [Sch+09], provided the above-
mentioned separation of the characteristic time scales is valid.

The approach based on the point process and multiscale approximation developed
in this chapter is not limited to a single neuron case, while it can also be applied to
networks of delay-coupled noisy theta-neurons. This will be described in Chap. 3 and
Chap. 4.
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Chapter 3

Stochastic bursting in
unidirectionally delay-coupled
systems

In Chap. 2 we observed the stochastic bursting in a single noisy system, under the
influence of both time delay and noise. Since excitable systems such as neurons are
usually coupled with each other in terms of complex networks, a natural question
arises that whether or not the stochastic bursting also occurs in delay-coupled ex-
citable systems.

In this chapter, we first extend the theory developed in Chap. 2 to the case of
two mutually delay-coupled excitable units, and further to a simple but widely used
network of unidirectional ring topology. After outlining the main features and approx-
imations behind the theory of one unit, we describe stochastic bursting in two coupled
units in detail. The generalization to a chain of neurons will be then straightforward.
We consider in this chapter a network of unidirectionally coupled units, topology of
which is illustrated in Fig. 3.1 (a). The units are generally different, and the prop-
agation times for the interactions are also different. Each unit is described with a
prototypic model for an excitable system, a noisy theta-neuron [EK86] (or, in other
contexts, called active rotator [SK86]):

θ̇i = ai + cos θi + εi(ai−1 + cos θi−1(t− τ̂i−1)) +
√
Diξi(t). (3.1)

Variable θ is defined on a circle 0 ≤ θ < 2π. Here parameters ai define the excitability
property of the neurons. For ai < 1, there is a stable and an unstable steady states for
an isolated unforced unit, and these states collide in a SNIPER bifurcation at ai = 1.
Thus, close to this threshold, the unit is excitable: a small noise or a small force
may induce a spike (nearly 2π-rotation of θ back to the stable state on the circle).
Parameter Di describes intensity of the Gaussian white noises ξi(t), with 〈ξi(t)〉 = 0,
〈ξi(t)ξj(t′)〉 = 2δijδ(t − t′). Finally, parameters εi describe the strengths of delayed
coupling. The coupling force, amplitude of which is εi, is chosen to vanish in the
steady state of a driving unit. The forcing term on the r.h.s. of (3.1) produced by
one spike can be represented as

H(t) = a+ cos Θsp(t), (3.2)
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Figure 3.1: Panel (a): Schematic description of a ring of unidirectional delay-coupled
noisy systems, where a spike in neuron i induces a spike to neuron i+ 1 after delay time τi
with probability pi. Panel (b): The spike trains in a two-neuron network, obtained in direct
simulations of Eq. (2.1). Values of parameters: a = 0.95, D = 0.005, τ̂1 = 100, τ̂2 = 200, and
ε = 0.14. Figure reprinted with permission from Ref. [ZP19].

with Θsp(t) being the deterministic trajectory connecting the unstable point (the
threshold) with the stable one:

Θsp(t) = 2 arctan

(√
1 + a

1− a tanh

(√
1− a2

2
(t− t0)

))
. (3.3)

3.1 Network dynamics and point process

To describe qualitatively the dynamics in the network, we start with a non-coupled
unit. For a small noise, it produces independent spikes, constituting a Poisson process
with the rate λ, which is described by Eq. (1.4) in Sec. 1.1.1.

With coupling, i.e. with ε 6= 0, spikes of neuron i− 1 produce, with a delay, a kick
to its next neighbor i. Such a kick facilitates excitation, so that it will cause a pulse
in neuron i, as a combined effect of forcing and noise, with probability pi. The timing
of the induced spike is slightly shifted to the forcing, we will denote this shift τ̄ and
define a new effective delay τi = τ̂i + τ̄ (we will mainly consider the shift τ̄ as a fixed
one, but will briefly discuss the effect of fluctuations of this quantity in section 3.4.)
Hence, to be more general, units are described by different quantities λi (rates with
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Figure 3.2: Schematic description of the point process with the leader-follower
relationship for two neurons. A leader with a random number of its followers form a burst,
and the followers could be in both neurons. The leaders appear in both neurons. Figure
reprinted with permission from Ref. [ZP19].

which they ”spontaneously” produce spikes due to noise), pi (the probability with
which a spike is induced by the incoming force), and τi (time delay in forcing).

This allows us to describe the activity on the network as a point process, in
which we neglect the duration of the spikes (approximate them as delta-functions),
compared to the delay times τ and the inverse rate λ−1. This is well justified for
mammal brains, where the characteristic duration of a spike is ∼ 1ms, while the
delay time and the characteristic time interval between noise-induced spikes are of the
order ∼ 100ms [SW12; Lon13]. The spike occurred at time t in neuron i, will produce
a kick on neuron i+ 1 at time t+ τ̂i, and will generate a spike in neuron i+ 1 at time
t+ τi with probability pi, as depicted schematically in Fig. 3.1 (a).

Throughout the paper, in numerical illustrations we use parameters a = 0.95, D =
0.005. The small additional delay is τ̄ ≈ 7, it is much smaller than the characteristic
delay times we use τ̂ ∼ 100 and the inverse of the spontaneous rate λ−1 ≈ 1506. For
these parameters of the neuron, we use the coupling strength ε = 0.14, for which the
probability to induce a spike by the forcing is p = 0.53 (for details of the calculation
of this probability see Ref. [ZP18]). Empirically, this probability can be determined
in simulations of one unit with a delayed self-feedback. One calculates the numbers
of spikes, during a large time interval, in dependence on the coupling strength N(ε).
Then,

p(ε) =
N(ε)−N(0)

N(ε)
. (3.4)

3.2 Two coupled units

3.2.1 Statistics of interspike intervals

It is instructive to start with the case where there are only two neurons in the ring,
i.e. n = 2, and then to extend the theory to a more general case with arbitrary n > 2.
When n = 2, the two delay-coupled neurons are denoted as i and j (i, j could be 1 or
2). We simulate Eq. (2.1) and obtain spike trains with bursts of each neuron as shown
in Fig. 2.3(b). As outlined above, an idealized point process can be constructed to
describe the bursting phenomenon, as illustrated in Fig. 3.2. Spontaneously generated
spikes we denote as leaders. Each leader induces a finite set of followers (induced
spikes), and together with them constitutes a coherent burst. In a burst, spikes in
the two neurons appear alternatively with time intervals τ1 and τ2. The number of
spikes in a burst is random. Noteworthy, similar to the case of one single neuron with
delayed feedback (see Chap. 2) , the bursts can overlap; hence the analysis of the ISI
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(inter-spike intervals) distribution of the spike train in each unit is nontrivial. Here
the leaders in each neuron will have random followers in both the coupled neuron and
the neuron itself, as explained schematically in Fig. 3.2.

First, we determine the overall rate of the spikes in each unit. The probability for
a spike in unit i to induce a follower in the same unit is pipj . Thus, the probability for
a leader to have exactly m followers in the same unit is (pipj)

m(1−pipj). The average
number of followers in the same unit is

∑
mm(pipj)

m(1− pipj) = (pipj)(1− pipj)−1.
The total average number of spikes in a burst is 1 + (pipj)(1− pipj)−1 = (1− pipj)−1

Therefore, the total rate of spikes initiated in unit i is λi(1−pipj)−1. For the spikes in
unit i, initiated by a leader in unit j, we have first to find the rate of the first followers
in unit i, which is λjpj ; the total rate of these spikes is thus λjpj(1−pipj)−1. Summing,
we obtain the total rate of spikes µi as

µi = lim
m→∞

(λi + λjpj)[1 + pipj + (pipj)
2 + ...+ (pipj)

m] =
λi + λjpj
1− pipj

. (3.5)

To derive the statistics of the ISI, we assume that in one of the units there is a spike
at time t, and the next spike at time t′ > t, so that the inter-spike interval is T = t′−t.
Three different cases should be distinguished, namely, T > τi + τj , T = τi + τj , and
T < τi + τj . If T < τi + τj , the spikes at t and t′ can be either spontaneous (leader)
or delay-induced ones, but in the latter case they belong to different bursts, so they
are independent. Therefore, the survival function, i.e., the probability that there is
no spike in (t, t′), is determined by the full rate µi from (3.5): Si(T ) = exp(−µiT ).

In contradistinction, for the case T > τi + τj , the spike at time t′ in neuron i can
only be from a spontaneous one (leader) in neuron i itself, or the first induced spike
(with probability pj from neuron j). These events are independent on the occurrence
of a spike at time t, and have the total rate λi+λjpj . The probability that there is no
any spike in (t, t′) in neuron i is the product of three terms: the probability to have no
spikes in the interval (t, t+ τi+ τj ] with the survival function Sτb = exp(−µi(τi+ τj)),
the probability (1− pipj) not to have a follower for the spike at t, and the probability
to have no spike in the interval (t+ τi + τj , t

′), where only the spontaneous total rate
λi + λjpj applies with the survival function Sτa = exp(−(λi + λjpj)(T − τi − τj)).
Thus, the survival function for the case T > τi + τj is

Si(T ) = Sτb(1− pipj)Sτa = (1− pipj)e−µi(τi+τj)−(λi+λjpj)(T−τi−τj). (3.6)

Based on the above description, and on the relationship between the cumulative
ISI distribution Q(T ) and the survival function S(T ), which reads Q(T ) = 1− S(T ),
the cumulative ISI distribution of neuron i can be obtained as follows:

Qi(T ) =

{
1− e−µiT , T < τ̃ ,

1− (1− pipj)e−µiτ̃−(λi+λjpj)(T−τ̃), T ≥ τ̃ ,
(3.7)

where τ̃ = τi+τj . We compare this expression with results of numerical simulations in
Fig. 3.3. The point process described by Eq. (3.7) agrees well with direct simulations
of Eq. (3.1), where we assumed the parameters of the two neurons to be the same,
except for the time delays which are different.

3.2.2 Correlations and spectra

In the following, we derive the autocorrelation and the cross-correlation functions of
the spike trains, and the corresponding power spectrum and the cross-spectrum. The
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Figure 3.3: Cumulative ISI distribution Q(T ) vs T for n = 2 (panel (a)) and n = 3 (panel
(b)) in a ring of unidirectional delay-coupled neurons. The black lines are direct numerical
simulations of Eq. (2.1), where the values of parameters are chosen as: for n = 2, τ̂1 = 100,
τ̂2 = 200 for n = 3, τ̂1 = 100, τ̂2 = 200, τ̂3 = 300. Values of a, ε and D are chosen as
a = 0.95, ε = 0.14, D = 0.005 f or both cases. The red dotted lines correspond to the point
process with Eq. (2.9) for cumulative ISI, where λ = 6.64× 10−4, p = 0.53 are the same for
both cases. The effective time delays are τ1 = 107, τ2 = 207 for n = 2 case.
τ1 = 107, τ2 = 207, τ3 = 307 for n = 3 case. The inset is a logarithmic scale version to
validate the piecewise-linear spiking rate. Figure reprinted with permission from Ref. [ZP19].

autocorrelation function is defined via a joint probability to have a spike in unit i
within a small time interval (t, t+ ∆t), and a spike in unit j within the time interval
(t+ s, t+ s+ ∆t), no matter whether or not there are any spikes between t and t+ s.
The joint probability of these events is defined as

Pij(t, t+ ∆t; t+ s, t+ s+ ∆t) =

{
Wi(t, t+ ∆t)Pij(t+ s|t,∆t), s ≥ 0,

Wj(t, t+ ∆t)Pji(t|t+ s,∆t), s < 0.
(3.8)

Here Wi(t, t+ ∆t) = µi∆t is the probability to observe a spike in neuron i within the
time interval [t, t + ∆t]. The quantity Pij(t + s|t,∆t) is the probability to induce a
spike in neuron j at time t+ s, given a spike in neuron i at time t.

Correlations and spectra within one unit

We first calculate the conditional probability (3.8) for the same unit. The conditional
probability to have one induced spike with time shift τ̃ is pipj , while it is (pipj)

k for
the k-th induced spike with delay kτ̃ . Therefore,

Pii(t+ s|t,∆t) = δ(s)∆t+ pipjδ(s− τ̃)∆t+ · · ·+ (pipj)
kδ(s− kτ̃)∆t+ · · ·

=
∞∑
k=0

(pipj)
kδ(s− kτ̃)∆t, s ≥ 0;

Pii(t|t+ s,∆t) = Pii(t− s|t,∆t), s < 0,

(3.9)

where δ(·) is the Dirac delta function. Since the correlation function can be seen as the
mean rate of the joint event, after substituting Eq. (3.8) and (3.9), the auto-correlation
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function is

Cii(s) = 〈(xi(t)− 〈xi〉)(xi(t+ s)− 〈xi〉)〉

=
1

T

∫ T

0
dt lim

∆t→0

Pii(t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2
= µi

∞∑
n=−∞

(pipj)
|n|δ(s− nτ̃),

(3.10)
where we use the fact that Pii is t-independent, and have taken into account that
〈xi〉 = µi.

Taking the Fourier transform of the correlation function, we obtain the power
spectral density

Sii(ω) =

∞∫
−∞

Cii(s)e
−iωsds =

(λi + λjpj)(1 + pipj)

1 + (pipj)2 − 2pipj cosω(τi + τj)
. (3.11)

The derivations above are based on the time series xi(t) represented as a sum of delta-

peaks, i.e., xi(t) =
N∑
i=1

δ(t− ti). For a train of realistic spikes, the shape function can

be straightforwardly taken into account as done in Ref. [ZP18], namely the spectrum
(3.11) should be just multiplied by the squared amplitude of the Fourier transform of
the pulse shape. For example, if observable (2.4) is used, the spike train xi will be
convoluted with the shape function H(t). Hence, the power spectral density and the
cross-spectral density in the following illustrations will be multiplied by the spectral
density of H(t), which we denote as SH(ω). For simplicity, in the formulas below we
still use the delta-peak representation of xt, while we multiply by SH(ω) to compare
with numerical correlations and spectra obtained by simulations of Eq. (2.1). This
comparison is shown in Fig. 3.4(a), the theoretical predictions based on the point
process analysis agree well with the results of direct simulation of Eq. (2.1).

Cross-correlations and cross-spectra for two units

The conditional probability of the joint event between the two neurons can be ex-
pressed similarly to formula (3.9) above:

Pij(t+ s|t,∆t) =piδ(s− τi)∆t+ · · ·+ pi(pipj)
kδ(s− kτ̃ − τi)∆t+ · · ·

=

∞∑
k=0

pi(pipj)
kδ(s− kτ̃ − τi)∆t, s ≥ 0;

Pji(t|t+ s,∆t) =pjδ(s+ τj)∆t+ · · ·+ pj(pipj)
kδ(s+ kτ̃ + τj)∆t+ · · ·

=

∞∑
k=0

pj(pipj)
kδ(s+ kτ̃ + τj)∆t, s < 0.

(3.12)

This allows us to obtain the cross-correlation function of the two neurons, by substi-
tuting Eq. (3.12) into Eq. (3.8), leading to the Eq. (3.13):

Cij(s) = lim
∆t→0

Pij(t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2

= µi

∞∑
n=0

pi(pipj)
nδ(s− nτ̃ − τi) + µj

∞∑
n=0

pj(pipj)
nδ(s+ nτ̃ + τj) .

(3.13)
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Figure 3.4: Panels (a)-(c) show the power spectral density of neuron 1, and the real part
and the imaginary part of the cross-spectral density S12, respectively, for two delay-coupled
neurons. The blue lines are from direct simulation of Eq. (2.1) and the red lines are the
analytical results from Eq. (3.11), Eq. (3.15) and Eq. (3.16) for (a)-(c), respectively. Panels
(d)-(f) show the power spectral density, the real part and the imaginary part of the
cross-spectral density S13, respectively, for the ring of n = 3 neurons. The blue lines show
numerical simulations of Eq. (2.1) with n = 3. The red lines are the analytical results from
Eq. (3.24), Eq. (3.26) and Eq. (3.27) for (d)-(f), respectively. The parameter values in the
simulation and the analytical expressions are chosen the same as in Fig. 3.3. Noteworthy, all
the power and corss-spectral density are multiplied by the power spectral density of the
shape function SH , similar to Ref. [ZP18]. Figure reprinted with permission from
Ref. [ZP19].
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The cross-spectral density is the Fourier transform of the cross-correlation func-
tion:

Sij(ω) =

∞∫
−∞

Cij(s)e
−iωsds = µipi

e−iωτi

1− pipje−iωτ̃
+ µjpj

eiωτj

1− pipjeiωτ̃
. (3.14)

It is instructive to present explicitly the real part

Re [Sij ] =
pi(µi − µjpipj) cosωτi + pj(µj − µipipj) cosωτj

1 + (pipj)2 − 2pipj cosωτ̃
, (3.15)

and the imaginary part

Im [Sij ] =
pi(µi − µjpipj) sinωτi − pj(µj − µipipj) sinωτj

1 + (pipj)2 − 2pipj cosωτ̃
. (3.16)

of the cross-spectrum.
Unlike the power spectral density described by a real-valued function (3.11), the

cross-spectral density is generally a complex-valued function. It is real-valued only
when the two neurons are totally identical, i.e., λi = λj = λ, pi = pj = p, and
τ1 = τ2 = τ , resulting in a simple expression

Sij(ω) =
2λp(1 + p) cosωτ

1 + p4 − 2p2 cos 2ωτ
, (3.17)

which is very similar to the power spectral density of a single unit (3.11). We compare
the theoretical cross-spectra with simulations in Figs. 3.4b,c.

Correlation and spectra of the total output from the network

If we consider correlations and spectra from the viewpoint of the total network output,
the cross-correlations between all the pulses should be calculated. A joint probability
could be defined as having a spike in any unit within a small time interval (t, t+ ∆t),
and a spike in any unit within the time interval (t+ s, t+ s+ ∆t), no matter whether
or not there are any spikes between t and t+s. The joint probability P̂ of these events
is the sum of all contributions:

P̂ (t, t+ ∆t; t+ s, t+ s+ ∆t) =
2∑
i=1

2∑
j=1

Pij , (3.18)

where Pij is described by Eq. (3.8). Thus the correlation function is

Ĉ(s) =
1

T

∫ T

0
dt lim

∆t→0

P̂ (t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2
=

2∑
i=1

2∑
j=1

Cij (3.19)

where Cij is described by Eq. (3.10) when i = j and by Eq. (3.13) when i 6= j. The
spectral density of the total output , i.e. of the observable X(t) = x1(t) + x2(t), is
obtained as a Fourier transform of Ĉ(s), leading to

SX(ω) =

2∑
i=1

µi
1− (pipj)

2 + 2pi(cosωτi − pipj cosωτj)

1 + (pipj)2 − 2pipj cosωτ̃
. (3.20)
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Figure 3.5: Power spectral density of the total output from the networks with n = 2
(panel (a)) and n = 3 (panel (b)). The blue curves correspond to the simulation results and
the red lines are the theoretical expressions Eq. (3.20) for n = 2 and Eq. (3.28) for n = 3.
Values of parameters are chosen the same as in Fig. 2.5 and Fig. 3.4. Figure reprinted with
permission from Ref. [ZP19].

As is shown in Fig. 3.5 (a), the theoretical spectra of the total output agrees well
with simulation results.

3.3 General network

The case of many neurons with n > 2 in the ring topology is a direct extension of
the n = 2 case as described above; thus the analysis follows the same steps, only the
expressions are more involved. First, we extend the cumulative ISI distribution for
neuron i in the ring as follows,

Qi(T ) =

{
1− e−µiT , T < T̃ ,

1− (1− P̃ )e−µiT̃−µ̃i(T−T̃ ), T ≥ T̃ .
(3.21)

Here T̃ =
n∑
i=1

τi is the total round-trip delay time acround the ring, P̃ =
n∏
j=1

pj is the

probability to have a completed round trip around the ring, and µ̃i is the spiking rate
of all first spikes in bursts that include neuron i:

µ̃i =λi + λi−1pi−1 + λi−2pi−2pi−1 + · · ·+ λi−n+1pi−1 · · · pi−n+1

= λi +

n−1∑
l=1

λi−l

l∏
j=1

pi−j .
(3.22)

Here λi is the rate of spontaneous spikes in neuron i itself, λi−1pi−1 is the rate of
spontaneous spikes in neuron i − 1 that induce also a spike in neuron i, and so on.
Noteworthy, due to the ring structure of the coupling, λi is a periodic function, i.e.,
λi = λi+n = λi−n. The total activity in the network is characterized by the rate
µi, to which the rates from all spikes (both leaders and followers) contribute. Thus,
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similarly to Eq. (3.5), we get

µi = lim
m→∞

µ̃i(1 + P̃ + P̃ 2 + · · ·+ P̃m) =
µ̃i

1− P̃
. (3.23)

Differently formulated, the expression above follows from the fact that a spike can
have m followers (in the same unit) with probability P̃m(1 − P̃ ). Using the same
method as in the n = 2 case described above, we obtain the power spectral density of
neuron i in the ring by Fourier transform of the correlation function (not presented):

Sii(ω) =
µ̃i(1 + P̃ )

1 + P̃ 2 − 2P̃ cosωT̃
. (3.24)

The cross-spectral density of spike trains in neuron i and neuron j is:

Sij(ω) = µiP̄ij
e−iωTij

1− P̃ e−iωT̃
+ µjP̄ji

eiωTji

1− P̃ eiωT̃
, (3.25)

The real part of which is:

Re [Sij ] =
P̄ij(µi − µjP̃ ) cosωTij + P̄ji(µj − µiP̃ ) cosωTji

1 + P̃ 2 − 2P̃ cosωT̃
, (3.26)

and the imaginary part of which is

Im [Sij ] =
P̄ij(µi − µjP̃ ) sinωTij − P̄ji(µj − µiP̃ ) sinωTji

1 + P̃ 2 − 2P̃ cosωT̃
. (3.27)

Here Tij = τi+· · ·+τj−1 is the delay time from neuron i to neuron j along the direction

of the ring , i.e. clockwise as depicted in Fig. 2.3, with probability P̄ij =
j−1∏
l=i

pl.

Correspondingly, Tji = T̃ − Tij is the delay time from neuron j to come to neuron
i with probability P̄ji and P̄ijP̄ji = P̃ . The spectral density of total output, i.e.

X =
n∑
i=1

xi(t), from the network is

SX(ω) =
n∑
i=1

i+n−1∑
j=i+1

µi
1− P̃ 2 + 2P̄ij(cosωTij − P̃ cosωTji)

1 + P̃ 2 − 2P̃ cosωT̃
. (3.28)

In the case that all the units are totally identical, i.e. λi = λ, pi = p and τi = τ(i =

1, · · · , n), SX(ω) reduces to SX(ω) = nλ(1+p)
1+p2−2 cosωτ

.
Generally, the model works for any network size n, but for simplicity we choose n =

3 for comparison with numerics. The cumulative ISI described by Eq. (3.21), spectra
described by Eqs. (3.24), (3.26), (3.27) and (3.28) agree well with direct simulation
of Eq. (2.1), as shown in Fig. 2.5(b), Fig. 3.4(d)-(f) and Fig. 3.5(b), respectively.
Noteworthy, similar to the case n = 2, the cross-spectrum Sij is generally a real-
valued function only if n is an even number and neurons i and j are symmetric, i.e.,
|i− j| = n/2.

To further demonstrate that our theory works for a larger network, we choose
n = 10 and calculate the cross-spectra between neurons at different distances, e.g.
between neurons 1 and 3, and between neuron 1 and 4. As shown in Fig. 3.6, the
analytical results agree well with the simulations. Noteworthy, as ε goes larger, the
duration of the delay-induced pulse becomes shorter, leading to a smaller empirical
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Figure 3.6: Cross-spectra between 1 and neuron 3 (panel (a) and panel (b) for real and
imaginary part respectively, and between neuron 1 and neuron 4 (panel (c) and (d) for real
and imaginary part respectively). The blue lines show numerical simulations of Eq. (2.1)
where values of parameters are a = 0.95, D = 0.005, ε = 0.2, τi = 50(i = 1, · · · , 10). The red
lines are the analytical results from Eq. (3.26) and Eq. (3.27), where λi = 6.64× 10−4 is the
same as described in the n = 2 and n = 3 cases and pi = 0.85(i = 1, · · · , 10) is calculated
from Eq. (2.17). Figure reprinted with permission from Ref. [ZP19].

time shift τ̄ . In the case depicted in Fig. 3.6, τ̄ ≈ 5 for ε = 0.2.

3.4 Summary

In conclusion, we investigated the stochastic bursting phenomenon in the unidirec-
tionally delay-coupled noisy excitable systems. Under the condition of time-scale
separation, an idealized version of coupled point processes with a leader-follower rela-
tionship was formulated. Roughly speaking, occurrence of stochastic bursting is based
on three ingredients: excitability of the system, excitatory coupling with a fixed time
delay, and noise. Excitability combined with noise results in the spontaneous spikes
with a constant spiking rate, which are leaders of the bursts. A relatively weak cou-
pling is not strong enough to induce a follower deterministically, but it leads to an
increased probability to have a follower, characterized by the crucial parameter p. The
leader with the followers form a burst, which is rather coherent (because of the fixed
time interval between the followers, nearly equal to the delay time), but has a random
number of spikes in it.

To characterize the stochastic bursting, the cumulative ISI distribution was de-
rived; simulations demonstrated a good agreement with the theoretical prediction.
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Furthermore, via the calculation of the joint probability of the spikes, the autocor-
relation function of a single neuron spike train, the cross-correlation function of any
pair of neurons in the unidirectional ring, and the autocorrelation function of the total
output from the network are derived analytically. Calculation of the spectra and of
the cross-spectra is then straightforward. Noteworthy, the model in the present paper
not only shows an interesting coherent spiking pattern but also provides an alternative
way to investigate the cross-spectrum of different neurons beyond the linear response
theory (see, e.g., Refs. [LDL05; OBH09; Tro+12; VSL14], to name a few), which is
widely used in the analysis of correlated neuronal networks.

Above we assumed, based on the time scale separation, that the delay times
are constants. A generalization to the case of random delay times is also possible
and will be presented in details elsewhere; here we discuss a simple version of this
analysis. The essential point where the fixed delays appear, is the representation
of the correlation function (3.10) as a sum of delta-peaks at times nτ̃ . If we as-
sume the delay times to be independent Gaussian variables with mean value τ̃ and
standard deviation κ, then one has to replace in (3.10) delta-functions by Gaussian
peaks δ(t− nτ̃)→ (2nπκ2)−1/2 exp[−(t− nτ̃)2/(2nκ2)]. In the spectrum (3.11), this
correction corresponds to the replacement pipj → pipj exp[−nω2κ2/2]. Around the
main frequency peaks (i.e. with small values of n), the effect of this correction is, as
expected, small, due to the time scale separation κ� τ̃ .

In this chapter, we restricted our discussion to a unidirectional coupling in a
ring topology, because here overlapping of incoming spikes is not possible under the
condition of the time-scale separation. Such an overlap happens, e.g., in a network
of delay-coupling neurons demonstrating polychronization [Izh06]; study of stochastic
bursting in such a setup will be discussed in Chap. 4.
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Chapter 4

Stochastic bursting in a chain of
excitable units with delayed
coupling

In our previous chapters, we have demonstrated that a coherent spike pattern which
we call stochastic bursting can appear in simple excitable units due to the combined
effect of time-delayed feedback and noise. Noise plays a two-fold role in the stochastic
bursting. On one hand, it leads to spontaneous, quite rare statistically independent
spikes. On the other hand, when a delayed feedback pulse enters like an excitatory
under-threshold kick, noise results in an increased probability to create a new, induced
spike. Thus, a spontaneous spike (the leader) can be followed by a sequence of induced
spikes (the followers) separated approximately by the delay time interval. Because the
creation of a follower is a random event, the overall burst has a random number of
spikes. We describe stochastic bursting statistically in the case of a single excitable
unit in Chap. 2, and for networks of unidirectionally delay-coupled units in Chap. 3.
What these two cases have in common is that any two delay-induced kicks do not
overlap. This allowed a full statistical description of the bursting as a point process,
where the only parameters are the spontaneous rate of excitation, and the probability
to excite a follower.

The point process model is an idealization based on the time scale separation: it is
assumed that the characteristic duration of a spike is much less than other character-
istic times in the system, the delay time and the characteristic time interval between
the pulses (which depends on the spontaneous rate and the probability of induced
spikes). However, it’s not the case when neurons have multiple feedback or more com-
plex coupling topology, where two or more delay-induced spikes could overlap with
some probability. From the viewpoint of Fokker-Planck formalism, the non-markovian
nature of the Langevin equation in our model prevents us from obtaining an analytic
formula to describe how the phase density evolves, as many cases related to both noise
and delay. Thus, in this case, the point-process representation is still a good option
to describe the statistics of spike train in each neuron and between different neurons,
if an appropriate approximation is adopted.

In the present chapter, we extend the theory of stochastic bursting on the case
where incoming delayed pulses can overlap. Here, generally, one needs to define the
probability to induce a spike by two incoming pulses. We restrict our attention below
to the case of weak coupling, where this probability can be represented through one-
pulse probabilities. This allows for an analytical treatment that results in explicit
expressions for the power spectrum of the spike trains. First, in Section 4.1, we
investigate the stochastic bursting phenomenon in a noisy excitable unit with multiple
delay feedbacks. Then, in Section 4.2, we extend the theory to a network of three
delay-coupled units, with a star-type coupling.
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p1, τ1  p2, τ2 

Figure 4.1: Schematic description of a noisy excitable unit with two feedback loops.

4.1 One excitable unit with multiple delayed feedbacks

The main goal of this chapter is to extend the theory of stochastic bursting to the
situations where an overlap of delayed feedback pulses is possible. The simplest case
is one unit with two delayed feedbacks, Fig. 4.1. As a model we consider a scalar
equation on a circle 0 ≤ θ < 2π, which is a prototypical example of excitability:

θ̇ = a+ cos θ + ε1(a+ cos θ(t− τ̂1)) + ε2(a+ cos θ(t− τ̂2)) + ξ(t), (4.1)

Here parameter a < 1 defines the excitability level, parameters ε1, ε2 are coupling
strength for the two delayed feedbacks with delay times τ̂1 and τ̂2, respectively. The
system is driven by a Gaussian white noise ξ(t) with intensity D, i.e. 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). Without feedback (i.e. ε1 = ε2 = 0), the spiking rate is
described by Eq. (1.4) in Sec. 1.1.1. Below we will assume this rate to be small, i.e.
the characteristic time interval between the noise-excited spikes is much larger than
the duration of the spikes. Below we will also assume, that this separation of times is
valid for characteristic times of the delayed feedback: the delay times τ̂1, τ̂2 and their
difference |τ̂1 − τ̂1| are much larger than the duration of a pulse. If just one delay
feedback term is present, the bursting appears as described in Chap. 2.

We now qualitatively describe the phenomenon of stochastic bursting, illustrated
in Fig. 4.2. Because a feedback force acts as a kick on the unit after delay time
τ̂ , there is an increased probability p for a next pulse to be induced. Thus, each
spontaneously excited pulse can have a random number of “followers” separated by a
time interval τ = τ̂ + τr, together they constitute a regular burst. Here we take into
account, that the delay-induced effect is not instant, but rather it takes some relatively
small response time τr for the unit to generate a spike after receiving a delayed kick,
as described in Chap. 3. Generally speaking, the delay-induced spike occurs with
some deviation around the effective time delay, i.e., not exactly at t+ τ̂ + τr, but for
simplicity, we assume the deviation can be ignored. The essential parameter of the
stochastic bursting is the probability p to induce a follower, we discussed in Chap. 2
the ways to calculate it.

In the case of two delayed feedback, after a spontaneous pulse at time t, there are
two times t + τ1 and t + τ2 at which the followers can appear, with probabilities p1

and p2, these probabilities are the same as for single time-delay feedbacks, as shown
schematically in Fig. 4.2 (b). However, at the next level, there is an interaction of
delayed kicks, which makes the problem essentially more difficult than that of one
delayed feedback. Indeed, if both followers at times t + τ1 and t + τ2 are present, at
time t + τ1 + τ2 there will be an overlap of two incoming feedback kicks. Generally,
there are many such overlaps possible, at times t + kτ1 + lτ2 with k and l being
both positive integers. Thus, another probability p(2) to induce a spike mediated by
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Figure 4.2: (a) Spike train of a neuron with two feedback, with values of parameters
chosen as a = 0.95, D = 0.005, ε1 = 0.12, τ̂1 = 500, ε2 = 0.1, and τ̂2 = 600. Zooming in a
burst shows many spikes with interval of around 500 and 600. (b): Representation in
directed tree lattice, where the cross position of the lattice, i.e. kτ1 + lτ2 with k, l being
non-negative integers, represents where there is potentially a delay-induced spike with
probability P (kτ1 + lτ2). The blue numbers near the intersection kτ1 + lτ2 is the number of
paths to go to that point, i.e.,

(
k+l
k

)
in Eq. (4.4).
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Figure 4.3: Configurations and the corresponding probability to induce a spike at the
cross section τ1 + τ2 (a)-(c) and 2τ1 + τ2 (d)-(j) of the lattice shown in Fig. 4.2 (b).

the overlap of two incoming kicks is needed. Generally, this probability should be
calculated extra with the same methods as p1, p2 are determined. However, when two
feedbacks are both weak, we can assume a linear dependence of the probability to
induce a follower on the incoming pulse amplitude, which makes an approximation
p(2) ≈ p1 + p2 reasonable. It’s easy to see that potential followers of a spontaneous
spike form a tree as illustrated in Fig. 4.2 (b). If we compare the leader to the parent
and compare the followers to the offsprings, the stochastic process here is very similar
to the reproduction and extinction problem in theoretical ecology. Both of them can
be described by the branching process [Ath06] in probability theory.

On this tree there can be non-branching paths, which correspond just to sequences
of followers separated by time intervals τ1,2, which appear with probabilities p1,2.
However, any branching leads to an overlap, so we have to use p(2) to calculate the
probability to observe the corresponding induced spike.

It is instructive to start with the simplest overlap at time τ1 + τ2. The probability
to induce a spike at this time can be calculated as

P̃ (τ1 + τ2) = (1− p2)p1p2 + (1− p1)p1p2 + p1p2p
(2)

≈ 2p1p2,
(4.2)

where the first line in Eq. (4.2) describes contributions of different configuration with
corresponding probabilities, as shown in Fig. 4.3 (a)-(c).

Similarly, we can calculate the probability to induce a spike at the cross section
2τ1 + τ2 as

P̃ (2τ1 + τ2) = (1− p1)p2
1p2 + (1− p1)(1− p2)p2

1p2

+ (1− p2)(1− p2)p2
1p2 + p2

1p2p
(2)p(2)

+ (1− p2)p2
1p2p

(2) + p1p2(1− p(2))p1p2

+ p1p2p
(2)(1− p1)p1

≈ 3p2
1p2.

(4.3)

The corresponding configurations and their probabilities are shown in Fig. 4.3 (d)-(j).
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Now, by induction, it is easy to extend to the general case. One can easily check
that the general expression

P̃ (kτ1 + lτ2) =

(
k + l

k

)
pk1p

l
2 (4.4)

is consistent with calculation of the induced probability P̃ (kτ1 + lτ2) on the base of
the “parent” probabilities P̃ ((k − 1)τ1 + lτ2) and P̃ (kτ1 + (l − 1)τ2). By iteration of
the relationship

P̃ (kτ1 + lτ2) = P̃ ((k − 1)τ1 + lτ2)p1 + P̃ (kτ1 + (l − 1)τ2)p2 (4.5)

on the directed tree lattice, it’s easy to obtain Eq. (4.4). We stress that expression
(4.4) is valid only under assumption p(2) ≈ p1 + p2, in a general case p(2) 6= p1 + p2

we could not derive a simple expression for these probabilities.
Having determined the probabilities of the followers, we now derive statistical

properties of the bursts. To calculate the total firing rate µ, we have to determine
the average number of spikes in a burst. The probability to have k spikes with τ1

separation and l spikes with τ2 separation in the burst, is the product of P̃ (kτ1 + lτ2)
and probability 1 − p1 − p2, which is the probability to generate no spikes further.
Thus, the total fitring rate is

µ = λ(1− p1 − p2)
∑
k,l

P̃ (kτ1 + lτ2)(k + l)

=
λ

1− p1 − p2
.

(4.6)

We check this relation numerically in Fig. 4.4. Throughout the paper, the values of
parameters for a and D are fixed as a = 0.95, D = 0.005. This yields the sponta-
neous spike rate λ = 6.64 × 10−4, as calculated from Eq. (1.4). The probabilities to
induce a spike can be calculated by virtue of solving a forced Fokker-Planck equation
numerically like described in Chap. 2. For the delay coupling amplitudes ε = 0.1 and
ε = 0.12, this gives values p = 0.25 and p = 0.39, respectively. Furthermore, in this
case, the empirical value of the response time τr is approximately τr ≈ 7. In Fig. 4.4,
we set the value of ε1 fixed, i.e., ε1 = 0.12 and thus p1 = 0.39, and vary the strength of
the second feedback ε2. As shown if Fig. 4.4, the analytic result described by Eq. (4.6)
predicts well the spike rate when ε2 is small and moderate; deviations appear for large
values of ε2.

Our next goal is to calculate correlations and spectra of stochastic bursting in this
system. The autocorrelation function C(s) can be represented in terms of the joint
probability to have a spike in the time interval (t, t + ∆t) and a spike in the time
interval (t+ s, t+ s+ ∆t):

C(s) =
1

T

∫ T

0
dt lim

∆t→0

P (t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2
(4.7)
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Figure 4.4: Spike rate of the single excitable unit with two delayed feedback, where ε1 is
set to be 0.12 and ε2 is varied. The blue circles represent the result by direct simulation of
Eq. (4.1) and the red dashed line represents the analytical result described by Eq. (4.6).
Here τ1 and τ2 are chosen as 500 and 600 respectively.

Due to our representation of the burst as a point process,

C(s) = µ
∑
k,l

P̃ (kτ1 + lτ2)δ(s± (kτ1 + lτ2)) =

µ
∑
k,l

(
k + l

k

)
pk1p

l
2δ(s± (kτ1 + lτ2))

The Fourier transform of the correlation function gives the power spectrum:

S(ω) =

∫ ∞
−∞

ds C(s)e−iωs =

=µ
∑

k,l;k+l>0

(
k + l

k

)
pk1p

l
2e
ikωτ1+ilωτ2 + c.s. + µ

=µ

∞∑
m=0

(p1e
iωτ1 + p2e

iωτ2)m + c.s.− µ =

=2Re
(

µ

1− p1eiωτ1 − p2eiωτ2

)
− µ

(4.8)

We compare this theoretical prediction with the results of numerical simulation in
Fig. 4.5(a).

Using the same method, a noisy excitable unit with m delays described by the
following Langevin equation

θ̇ = a+ cos θ + ε1(a+ cos θ(t− τ̂1)) + · · ·
+ εm(a+ cos θ(t− τ̂m)) + ξ(t),

(4.9)
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Figure 4.5: Power spectral density of a noisy excitable unit with two delay feedback (a)
and three delay feedback. For the direct simulation of Eq. (4.1), with the results shown in
blue lines, parameters are chosen as ε1 = 0.12, τ̂1 = 500, ε2 = 0.1, τ̂2 = 600 in two-delay case
and ε1 = ε2 = ε3 = 0.1, τ̂1 = 300, τ̂2 = 430, τ̂3 = 500. for Eq. (4.9) in three-delay case. The
red lines are the analytic results described by Eq. (4.8) for two-delay case and Eq. (4.9) for
three-delay case.

can be studied. Here, the total spike rate can be expressed as µ = λ/(1−
m∑
l=1

pl), where

pl is the probability to induce a spike by the delay feedback with strength εl and time
delay τ̂l. The power spectral density of the corresponding spike train is described by
the following formula:

S(m)(ω) = 2Re

 µ

1−
m∑
l=1

pleiωτl

− µ, (4.10)

where τl = τ̂l + τr. Since the condition of time- scale separation becomes harder to
fulfill for large m (one needs the time intervals between pulses to be large), practically
only the case m = 3 is tested in Fig. 4.5(b).

As shown in Fig. 4.5 (a) and (b), the analytic results described by Eq. (4.8) for
two delayed feedback and Eq. (4.10) for three delayed feedback agree well with the
direct simulation of the Langevin Eq. (4.1) and (4.9) respectively.

4.2 Delay-coupling in a chain of three units

Here we use the approach above to study a network of three delay-coupled noisy
excitable units. The scheme of coupling is presented in Fig. 4.6, i.e., it is a star-type
network with a central unit 2 (a hub) coupled to peripheral units 1,3. The Langevin
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Figure 4.6: schematic description of three delay-coupled noisy excitable units in a chain,
where pij is the probability to induce a spike due to delay feedback with strength εij and
time delay τij .

equations, describing this network, read

θ̇1 = a+ cos θ1 + ε21(a+ cos θ2(t− τ̂21)) + ξ1(t),

θ̇2 = a+ cos θ2 + ε12(a+ cos θ1(t− τ̂12))

+ ε32(a+ cos θ3(t− τ̂32)) + ξ2(t),

θ̇3 = a+ cos θ3 + ε23(a+ cos θ2(t− τ̂23)) + ξ3(t).

(4.11)

Here εij(i, j = 1, 2, 3) is the delay feedback strength from unit i to unit j with delay
time τ̂ij , and ξi(t)(i = 1, 2, 3) is the Gaussian white noise in unit i with 〈ξi(t)〉 = 0,
〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′). In the absence of delay feedback, i.e., εij = 0, the three
units fire spontaneously with constant rates λi(i = 1, 2, 3), described by Eq. (1.4).
For simplicity, the noise intensities here in the three units are chosen to be the same.
When the delayed feedback is included, i.e., εij 6= 0, each spontaneous spike in unit 1
will induce another spike in unit 2 with probability p12 after time delay τ12, and the
induced spike in unit 2 will generate spikes in unit 1 with probability p21 after time
delay τ21, and in unit 3 with probability p23 after time delay τ23. Here τij includes
the response time, i.e., τij = τ̂ij + τr.

Thus, each spontaneous spike, which plays the role of leader, is followed by ran-
dom number of induced spikes (followers) across the network. Noteworthy, the above
description is based on time-scale separation as described in Sec. 4.1. The relation to
the model of one excitable unit with two feedbacks described in Section 4.1 above is
evident when one considers effective feedbacks from unit 2 to itself: there are two effec-
tive delay feedback channels, one with the probability p21p12 and time delay τ21 + τ12

to induce a spike back into unit 2 itself through unit 1, and the other one through
unit 3 with probability p23p32 and time delay τ23 + τ32. Therefore, the total spike rate
of unit 2 can be represented as

µ2 =
λ2 + p12λ1 + p32λ3

1− (p21p12 + p23p32)
, (4.12)

Here the numerator λ2 + p12λ1 + p32λ3 represents the total rate of first spikes in a
burst in unit 2. These are spikes initiated spontaneously in unit 2 (rate λ2), and the
first followers in unit 2 of spikes spontaneously created in units 1 and 3 (rates p12λ1

and p32λ3, respectively). The denominator in (4.12) comes from the same summation
as in Eq. (4.6).

Similarly, we can express the total spike rate of neuron 1 µ1 as

µ1 = λ1 + µ2p21

= λ1 +
λ2 + p12λ1 + p32λ3

1− (p21p12 + p23p32)
p21,

(4.13)
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Figure 4.7: Power spectral density of neuron 1 (a), 2 (b) and 3 (c) in a chain of three
delay-coupled noisy excitable neurons. Values of parameters are ε1 = ε2 = ε3 = 0.12,
τ12 = 350, τ21 = 300, τ23 = 300, τ32 = 400, a = 0.95 and D = 0.005. Noteworthy, all the
power density are multiplied by the power spectral density of the shape function SH , similar
to Ref. [ZP18; ZP19].

since the leading spikes in unit 1 is either from the spontaneous ones created in unit
1, or induced from spontaneous spikes of unit 2. For the unit 3, the total rate is

µ3 = λ3 + µ2p23

= λ3 +
λ2 + p12λ1 + p32λ3

1− (p21p12 + p23p32)
p23.

(4.14)

Using the same method as described in Sec. 4.1, we can write the power spectral
density of a spike train in unit 2 as

S2(ω) = 2Re
(

µ2

1− p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− µ2, (4.15)

where p̄1 = p21p12, τ̄1 = τ21 + τ12, p̄2 = p23p32 and τ̄2 = τ23 + τ32. Similarly, taking
into account all the delayed feedback loops connecting neuron 1, we obtain the power
spectral density of neuron 1 as follows,

S1(ω) = 2Re

 µ1

1− (p̄1eiωτ̄1 + p̄1p̄2eiωT
∑
n>0

(p̄2eiωτ̄2)n)

− µ1

= 2µ1Re
(

1− p̄2e
iωτ̄2

1− p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− µ1.

(4.16)

Here T = τ̄1 + τ̄2 in the first equality and p̄1p̄2e
iωT

∑
n>0

(p̄2e
iωτ̄2)n) is due to the sum-

mation of all the feedback loops starting from neuron 1, connecting neuron 2 and 3
and then going back to neuron 1. By the same method, the power spectral density of
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neuron 3 is

S3(ω) = 2µ3Re
(

1− p̄1e
iωτ̄1

1− p̄1eiωτ̄1 − p̄2eiωτ̄2

)
− µ3. (4.17)

We compare these expressions with the results of direct numerical simulations of model
(4.11) in Fig. 4.7 (a)-(c).

For networks of coupled units, it is instructive to calculate cross-correlations and
cross-spectra. The cross-correlation between neuron 1 and 2 can be described in terms
of the joint probability P12(t, t+ ∆t; t+ s, t+ s+ ∆t) that there is a spike in the time
interval (t + ∆t) in neuron 1 and a spike in the time interval (t + s, t + s + ∆t) in
neuron 2, i.e.,

C12(s) = lim
∆t→0

P12(t, t+ ∆t; t+ s, t+ s+ ∆t)

∆t2

= µ1p12

∑
k,l

P̃ (kτ̄1 + lτ̄2)δ(s− (kτ̄1 + lτ̄2 + τ12))

+ µ2p21

∑
k,l

P̃ (kτ̄1 + lτ̄2)δ(s+ (kτ̄1 + lτ̄2 + τ21)).

(4.18)

Here P̃ (kτ̄1 + lτ̄2) is the probability to induce a spike at time kτ̄1 + lτ̄2 after a spike
and according to Eq. (4.4) it is

P̃ (kτ̄1 + lτ̄2) =

(
k + l

k

)
p̄k1 p̄

l
2. (4.19)

Substituting Eq. (4.19) into Eq. (4.18) we obtain the cross-correlation function

C12(s) = µ1p12

∑
k,l

(
k + l

k

)
p̄k1 p̄

l
2δ(s− (kτ̄1 + lτ̄2 + τ12))

+ µ2p21

∑
k,l

(
k + l

k

)
p̄k1 p̄

l
2δ(s+ (kτ̄1 + lτ̄2 + τ21)).

(4.20)

So the cross-spectral density between neuron 1 and 2 is just Fourier-transfrom the
cross-correlation function, i.e.,

S12(ω) =

∞∫
−∞

Cij(s)e
−iωsds

=
µ1p12e

−iωτ12

1− p̄1e−iωτ̄1 − p̄2e−iωτ̄2
+

µ2p21e
iωτ21

1− p̄1eiωτ̄1 − p̄2eiωτ̄2
.

(4.21)

As shown in Fig. 4.8 (a) and (b) for the real and imaginary parts of the cross-
spectral density, the analytic results agree well with direct simulation of Eq. (4.10).
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Figure 4.8: Real part (a) and imaginary part (b) of the cross-spectral density between
neuron 1 and 2 in a chain of three delay-coupled noisy excitable neurons. Values of
parameters are chosen the same as in Fig. 4.7. Noteworthy, the cross-spectral density are
also multiplied by the power spectral density of the shape function SH as in Fig. 4.7.
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4.3 Summary

In summary, we investigated stochastic bursting in a single noisy excitable unit with
multiple feedback and a star-type network of three delay-coupled units. Our analysis
is based on two approximations. One is that of time-scale separation, valid for weak
noise and large delay times. It allows us to model the process as a point one, so
that only time instants of spikes are relevant for correlations and spectra. Another
approximation is based on the assumption that the induced probabilities are small,
and the probability for two overlapping inputs to induce a spike can be represented as
a sum of the corresponding one-input probabilities. This latter assumption appeared
to be extremely helpful, as it allowed us to express the probabilities of induced spikes
in a simple closed form. As a result, also the spectra of the point stochastic bursting
process have been analytically represented in a closed form. These power spectral and
cross-spectral densities agree well with direct simulation of the original Langevin equa-
tion (4.8), (4.9) and (4.11). Our approach works well for a small number of interacting
units and a small number of feedback loops, because here the time-scale separation is
well justified. In a network with a large number of units and many connections, the
spikes become denser, and the point process approximation may be violated. Simi-
larly, for strong feedbacks, the probability to induce a spike by overlapping inputs will
be violated as well. From the viewpoint of applications, we would like to mention that
correlation functions of the spike trains is an important indicator in computational
neuroscience [DLR+07; Doi+16; JR16; LCL05; NL03; Per+11]. Our analytic results
could be potentially compared with observed correlations and spectra, shedding light
on the origin of observed correlations.
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Chapter 5

Three-dimensional Kuramoto
Model

In Chap. 1.2, we introduce the basic property of the classical Kuramoto model, where
the evolution of phase is in one-dimensional space, or alternatively, the dynamics
of coupled unit vectors evolve in two-dimensional space as described by Eq. (1.25).
However, in many real physical systems in nature, collective motions occur in three
dimensions, e.g., fish schools [Par+80], flocks of birds [MD78] and bacterial colonies
[War+19]. It’s of great importance and interest to see how Kuramoto model can
describe these complex collective motion in three-dimensional space. Recently, sev-
eral versions of the high-dimensional Kuramoto model have been proposed, i.e., a
swarm model to describe the synchronous behavior on a sphere [OS06; Tan14], non-
Abelian Kuramoto model [Loh09], and generalized D-dimensional Kuramoto model
[CGO19a; CGO19b]. Tanaka extends the Watanabe–Strogatz theory [WS94] to the
high-dimensional case by the projection transformation (the Möbius transformation)
and also extends the Ott–Antonsen theory [OA08] to capture the low-dimensional be-
havior in the continuum limit system. Lohe describes non-Abelian generalizations of
the Kuramoto model in terms of a chirally covariant model [Loh09], for any classical
compact Lie group. Lohe also generalizes the Watanabe–Strogatz theory to a higher-
dimensional vector transform which deals with vector oscillator models of synchroniza-
tion [Loh18]. The relationship between these three versions of the high-dimensional
Kuramoto model is discussed in Ref. [LMS19], where the natural hyperbolic geometry
on a unit ball in the high-dimensional space is explained as the reason of the three
intimately related generalizations.

Similar to the vector form of the two-dimensional Kuramoto model described by
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Figure 5.1: Schematic description of 3 dimensional Kuramoto model.
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Eq. (1.25), the three-dimensional version as reported in Ref. [CGO19b] is described
by the following equation:

dσ̂i
dt

=
K

N

N∑
j

[σ̂j − (σ̂j · σ̂i)σ̂i] + ωi × σ̂i, (5.1)

where σ̂i is the unit vector of agent i in an ensemble of size N , K is the coupling
strength between every two agents. ωi = ωiω̂i is the natural frequency vector of
agent i and is chosen from a distribution gd(ω̂) for the direction vector ω̂ and another
distribution g(ω) for the amplitude ω. Defining the order parameter as

ρ =
1

N

N∑
j

σ̂j , (5.2)

we can rewrite Eq. (5.1) in terms of each agent coupled to the mean field:

dσ̂i
dt

= K(ρ− (ρ · σ̂i)σ̂i) + ωi × σ̂i. (5.3)

Here ρ can either be a mean field or an external force in general, as schematically
illustrated in Fig. 5.1.

As reported in Ref. [CGO19b], the cross product term ωi × σ̂i is represented
alternatively by the matrix multiplication of an antisymmetric matrixWi and the unit
vector σ̂i, in order to generalize to any dimension. In the odd-dimensional Kuramoto
model, the transition to synchrony always occurs at the coupling strength K → 0+,
e.g., a very small coupling strength will lead to synchrony with the order parameter
ρ ≥ 0.5 in three dimensions, while the even-dimensional version displays the second-
order phase transition (continuous). In this thesis, we focus on the three-dimensional
case that has real physical meaning in nature, as we will show below. Strikingly and in
stark contrast to the classical (2d) Kuramoto model, despite heterogeneous frequency
amplitudes and directions, the global coupling leads to a finite translational collective
motion for arbitrary small coupling strength K → 0+, when σ̂i · ω̂i = ±1 in the
direction of the mean field (σ̂i ·ρ > 0). Here, frequency heterogeneity is not sufficient
to prevent alignment. Below we will firstly introduce the fixed points in the three-
dimensional Kuramoto model and the self-consistent description of the mean field and
explore the stochastic dynamics with noise.

5.1 Self-consistent solution in the deterministic case

First, we study the fixed points of the unit vector, which obeys the following equation:

K[ρ− (ρ · σ̂i)σ̂i] + ω × σ̂i = 0. (5.4)

Defining β = ωi
Kρ with ρ being the amplitude of the order parameter, after some

calculations (see Appendix A) we obtain the fixed points:

σ̂fi =
1

β2 + b2
(βω̂i × ρ̂+ bρ̂+ aβ2ω̂i). (5.5)

Here b = ρ̂ · σ̂fi and a = ω̂i · σ̂fi . We see that the r.h.s of Eq. (5.5) contains the fixed
point self-consistently. By multiplying the both sides of Eq. (5.5), we obtain the fixed
point solution with respect to the mean field ρ, the frequency unit vector ω̂ and β in
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Figure 5.2: The amplitude of order parameter vs the coupling strength. The transition to
synchrony occurs when the coupling strength K → 0+ and the corresponding order
parameter is always 0.5 regardless of the frequency distribution.

terms of a scalar equation:

b = ρ̂ · σ̂fi = ±

√
1− β2 +

√
(1− β2)2 + 4β2(ρ̂ · ω̂i)2

2
. (5.6)

Here the plus and minus signs correspond to the stable and unstable fixed points
respectively. Therefore, the amplitude of the order parameter having integrals with
respect to both the direction ω̂ and the amplitude ω of the frequency vector ω is

ρ =

∫ ∫
ρ̂ · σ̂fgd(ω̂)g(ω)dω̂dω

=

∫ ∫
cos Θ(β, ω̂)gd(ω̂)g(ω)dω̂dω

=

∫ ∫
cos Θ(β, ω̂)gd(ω̂)g(Kβρ)Kρdω̂dβ.

(5.7)

Here Θ is the angle between the stable fixed points σ̂f and the direction of the order
parameter (mean field) ρ. Divided by ρ for both sides, an integral equation for general
frequency distribution can be obtained as follows [CGO19b]:

1 =

∫ ∫
cos Θ(β, ω̂)gd(ω̂)g(Kβρ)Kdω̂dβ. (5.8)

We consider an isotropic distribution for the frequency direction (gd(ω̂) = 1
4π ) and a

Maxwell-Boltzmann distribution for the amplitude, i.e., g(ω) = 4π( 1
2πδ )3/2ω2e−

ω2

2δ , as
in [CGO19b]. Therefore the integral equation (5.8) becomes

1 =
K3ρ2

2
√

2πδ3

∫ 1

−1
dν

∫ ∞
−∞

dβ

√
1− β2 +

√
(1− β2)2 + 4β2(ν)2

2
β2e−(Kβρ)2/(2δ2) (5.9)

where ν = ρ̂ · ω̂. Noteworthy, since the distribution of the frequency unit vector ω̂
is isotropic here, the location of the stable fixed points σi is of rotational symmetry
about the mean field ρ. Substituting K → 0+, it’s not difficult to prove that ρ = 0.5
regardless of the frequency distribution g(ω), as shown in Fig. 5.2. This is because
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the fixed points of the agents σ are uniformly distributed on the upper hemisphere
with ρ · σ̂ > 0.

In general, the mean field ρ can appear in terms of various kinds of forms, depend-
ing on the parameter regime and bifurcation. For instance, ρ can be a constant vector
with both amplitude and direction fixed, or either of them fixed, i.e., an oscillatory
mean field with the amplitude varying periodically but the direction fixed, or with
the amplitude fixed but direction rotating periodically. The latter case corresponds to
the so-called collective oscillation, which is widely studied both in nonlinear dynam-
ics and in experimental biophysics. We refer the readers to a recent work about the
collective oscillation in an E. Coli colony [Che+17], where the local coupling between
the cells makes the system self-organized into the weak synchronization state. For the
three-dimensional Kuramoto model, we will also discuss the collective oscillation in
Sec. 5.2.2 and Sec. 5.3.2.

5.2 Three-dimensional Kuramoto model with noise

As a ubiquitous influence in nature, noise plays an important role in the collective dy-
namics of the chemical, physical and biological systems, reminiscent of another promi-
nent model to describe collective motion, i.e., the Vicsek model [Vic+95]. Therefore,
understanding the three-dimensional Kuramoto model with noise is of considerable
interest.

The three-dimensional noisy Kuramoto model obeys the following equation:

dσ̂i
dt

=
K

N

N∑
j

[σ̂j − (σ̂j · σ̂i)σ̂i] + (ωi + ξi(t))× σ̂i, (5.10)

Here ξi(t) is the Gaussian white noise individually for agent i, with the components
in x, y, z directions being independent, i.e.,

〈ξki 〉 = 0 (k = x, y, z),

〈ξki (t)ξli(t
′)〉 = 2Dδklδ(t− t′) (k, l = x, y, z),

(5.11)

with D being the noise intensity. The other variables are the same as in the deter-
ministic model (5.1). Also, defining the order parameter as

ρ =
1

N

N∑
j

σ̂j , (5.12)

we can rewrite Eq. (5.10) as

dσ̂i
dt

= K(ρ− (ρ · σ̂i)σ̂i) + (ωi + ξi(t))× σ̂i, (5.13)

Positive coupling strength K always promotes the alignment of each agent σ̂i, while
individual noise is believed to prevent the agents from alignment (synchronization),
as described in the two-dimensional noisy Kuramoto model [Sak88; SM91]. There-
fore, it is expected that there exists a critical coupling strength Kc, above which the
incoherent state (ρ = 0) will lose stability and hence the system will enter into the
partial synchronization state.
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Figure 5.3: Visualization of 10000 coupled agents (red dots) in a noisy environment, as
described by Eq. (5.10). Each agent has no natural frequency, the noise intensity is D = 0.5
and the coupling strength is K = 2.5. (a) is the initial state with agents distributed
isotropically on the sphere, and (b) is when the observation time is t = 100, displaying
alignment or synchronization.

The Fokker-Planck equation to describe the probability density f(σ,ω, t) of the
agents is

∂f

∂t
+ ∇s · (f(σ,ω, t)V ) = D∇2

sf(σ,ω, t), (5.14)

where velocity V is given by

V = K(ρ− (ρ · σ̂)σ̂) + ω × σ̂. (5.15)

Here ∇s is the nabla operator along the surface of the three-dimensional unit sphere.
Below we will discuss two different situations, i.e., the case without natural fre-

quency and the case with a general frequency distribution. In the former case, we
will derive the exact analytical solution to the corresponding Fokker-Planck equation,
while in the latter case we will analyze the linear stability of the incoherent state
(ρ = 0). By a general frequency distribution, we mean there is a distribution gd(ω̂)
for the direction and the other distribution g(ω) for the amplitude.

5.2.1 Noisy Kuramoto Model without Natural Frequency

Firstly we consider the case where there is no natural frequency, i.e., g(ω) = δ(ω).
By direct simulation of the Langevin Eq. (5.10), we observe that a positive coupling
strength above some critical value, will lead to the agents’ alignment (synchroniza-
tion), as shown in Fig. 5.3. Due to that there is no probability current in this case,
the stationary solution obeys the following equation:

fK(ρ− (ρ · σ̂)σ̂) = D∇sf. (5.16)

Without loss of generality, we set ρ = ρẑ and multiply both sides of Eq. (5.16) by
ẑ. The resulting one-dimensional differential equation for the rotational symmetric
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density has the Boltzmann-type solution

f(θ, φ) = f(θ) =
Kρ

4πD sinh
(
Kρ
D

) exp

(
Kρ

D
cos θ

)
. (5.17)

The amplitude of the order parameter is

ρ =

∫ 2π

0

∫ π

0
ρ · σ̂f(θ, φ) sin θdθdφ

= coth

(
Kρ

D

)
− D

Kρ
.

(5.18)

Denoting ε = Kρ
D the system state has the parametric form

ρ = coth ε− 1/ε,

K/D = ε2/(ε coth ε− 1),
(5.19)

with 0 < ε < ∞ between the transition point at ε → 0, where ρ → 0 and the noise
free limit ε→∞, where ρ→ 1.

These analytical results show good agreement with direct simulation of Eq. (5.10),
as depicted in Fig. 5.5 (a). Expanding Eq. (5.18) to the third order of ρ we obtain

ρ ≈ Kρ

3D
− K3ρ3

45D3
, (5.20)

leading to the criticality with square-root relationship:

ρ ≈
√

15D2(K − 3D)

K3
. (5.21)

We recall that similar criticality of square-root relationship also holds true in the
classical (2D) Kuramoto model. A natural question arises that whether there is a
general formula about it. Below we will generalize it to the case in any q (q ≥ 2)
dimension.

Generalization to q-dimensional case

Similar to the three-dimensional noisy Kuramoto model without natural frequency
discussed above, it’s straightforward to extend to the q-dimensional (q ≥ 2) case,
where σ̂ is a q-dimensional unit vector coupled to the mean field ρ. Since the cross
product is not well defined in high-dimensional space, we replace the cross product
of the noise and the unit vector, i.e., ξi(t) × σ̂i, by Aiσ̂i with Ai being an q × q
antisymmetric matrix with noise entries. For instance, the antisymmetric matrix Ai
in 3 dimensions (q = 3) is

Ai =

 0 −ξzi (t) ξyi (t)
ξzi (t) 0 −ξxi (t)
−ξyi (t) ξxi (t) 0

 . (5.22)

The noise entries are Gaussian white and independent for each agent, as defined in
Eq. (5.11). It’s easy to check that ξi(t) × σ̂i = Aiσ̂i. The antisymmetric matrix of
independent noise entries ensures that the agents diffuse along the surface of the unit
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ball Bq in Rq. Therefore, the high-dimensional generalization of the noisy Kuramoto
model without natural frequency is described by the following equation:

dσ̂i
dt

= K(ρ− (ρ · σ̂i)σ̂i) +Aiσ̂i, (5.23)

The stationary solution obeys the same equation as Eq. (5.16) but in any q (q ≥ 2)
dimensions. The stationary distribution of the agents is

f(ρ, σ̂) = Cq(ε)e
ερ̂·σ̂, (5.24)

where ρ̂ is the unit vector in the direction of the mean field ρ, i.e., ρ = ρρ̂. The ε
is defined as ε = Kρ

D with D being the noise intensity. The normalization condition∫
f(ρ, σ̂)dσ̂ = 1 leads to the dimension-dependent normalization constant

Cq(ε) =
εq/2−1

(2π)q/2Iq/2−1(ε)
. (5.25)

Here Is(·) denotes the modified Bessel function of the first kind and order s, which
satisfies

Is(ε) =
(ε/2)s

Γ(s+ 1
2)Γ(1

2)

∫ 1

−1
eεt(1− t2)s−

1
2dt, (5.26)

with Γ being the Gamma function. Therefore, it follows that∫
S
eερ̂·σ̂dσ̂ = B(

q − 1

2
,
1

2
)−1

∫ 1

−1
eεt(1− t2)(q−3)/2dt

=
(2π)q/2

εq/2−1
Iq/2−1(ε),

(5.27)

corresponding to the inverse of the normalization constant in Eq. (5.25). The same
result for the Vicsek model is reported by Degond and collaborators in Ref. [DDM14].
In directional statistics, the distribution described by Eq. (5.24) on the (q− 1)-sphere
Rq is called von Mises–Fisher distribution, which was first used to describe the interac-
tion of electric dipoles in an electric field [MJ99]. In the case ε→ 0, f(ρ, σ̂)→ Γ(q/2)

2πq/2

and f(ρ, σ̂)→ δ(σ̂ − ρ̂) when ε→∞. Defining the order parameter

ρ =

∫
σ̂f(ρ, σ̂)dσ̂, (5.28)

then the amplitude of the order parameter is

ρ =

∫
ρ̂ · σ̂f(ρ, σ̂)dσ̂

=
Iq/2(ε)

Iq/2−1(ε)
,

(5.29)

The second line of Eq. (5.29) is done by substituting Eq. (5.24) and Eq. (5.25) into
the first line of Eq. (5.29).

We recall that in the classical Kuramoto model with q = 2, the order parameter
is given by

ρ =
I1(ε)

I0(ε)
, (5.30)

corresponding to our result described by Eq. (5.29) with q = 2. Also, in the three-
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Figure 5.4: Self-consistent solution of q-dimensional noisy Kuramoto model without
natural frequency, as described by Eq. (5.29).

dimensional case, the result coincides with Eq. (5.18) and Eq. (5.19), i.e.,

I3/2(ε)

I3/2−1(ε)
= coth (ε)− 1

ε
. (5.31)

Expanding Eq. (5.29) to the third order of ε, we obtain (see Appendix B)

ρ ≈ Kρ

qD
− K3ρ3

2D3
(

1

q2
− 1

q(q + 2)
), (5.32)

which indicates the square-root relationship of the criticality in general q dimension,
i.e.,

ρ ≈
√
q(q + 2)(K − qD)D2

K3
(5.33)

The critical coupling strength for the incoherent state (ρ = 0) to lose stability is qD
with D here being the noise intensity in q-dimensional noisy Kuramoto model, as
shown in Fig. 5.4.

Above, we derive the analytical solution of the probability density of the agents and
hence obtain the self-consistent solution of the order parameter, in the case without
natural frequency. However, for a general distribution both in direction and ampli-
tude of the frequency in three dimensions, it’s difficult to obtain the exact analytical
solution of the corresponding Fokker-Planck equation. This is due to the fact that
the probability current in three dimensions is dependent on both the azimuthal angle
φ and the polar angle θ of the agent σ̂. Therefore, in the following section, we will
investigate the linear stability of the incoherent state (ρ = 0) and we will restrict our
discussion to the three-dimensional case (q = 3) because of its real physical meaning
in nature. Various types of the distribution of the direction of the natural frequency
will be considered, and the critical coupling strength Kc for the incoherent state to
lose stability will be calculated in each case.

5.2.2 Linear Stability of the Incoherent State

Here we consider the linear stability of the incoherent state in the three-dimensional
Kuramoto model with general frequency distribution. We rewrite the Fokker-Planck
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equation (5.14) (see Appendix C) as

∂f

∂t
+K(∇sf(σ̂,ω, t)− 2f(σ̂,ω, t)σ̂) · ρ
+ (ω × σ̂) ·∇sf(σ̂,ω, t) = D∇2

sf(σ̂,ω, t)
(5.34)

Considering a small perturbation to the distribution f(σ̂,ω, t), i.e.,

f(σ̂,ω, t) = f0(σ̂,ω) + η(σ̂,ω)est. (5.35)

and then substituting Eq. (5.35) into Eq. (5.34), we obtain to the linear order in ρ
and η the equation

sη(σ̂,ω) + (ω × σ) ·∇sη(σ̂,ω)−D∇2
sη(σ̂,ω) = 2K(ρ · σ)f0(σ̂,ω). (5.36)

Assuming without loss of generality ω = ωω̂ = ωẑ, we obtain a simplified equation

sη(θ, φ, ω) + ω
∂

∂φ
η(θ, φ, ω)−D∇2

sη(θ, φ, ω) = 2K(ρ · σ̂)f0(θ, φ, ω), (5.37)

where the uniform incoherent distribution f0 = 1
4π and ρ · σ̂ in the r.h.s of Eq. (5.37)

is only related to the first spherical harmonics, i.e.,

ρ · σ̂ = ρz cos θ + ρx sin θ cosφ+ ρy sin θ sinφ

=

√
4π

3
ρzY

0
1 +

√
2π

3
(ρx + iρy)Y

−1
1 −

√
2π

3
(ρx − iρy)Y 1

1 .
(5.38)

Here Y 0
1 , Y

1
1 and Y −1

1 are the first spherical harmonics with the expressions

Y 0
1 (θ, φ) =

√
3

4π
cos θ,

Y −1
1 (θ, φ) =

√
3

8π
sin θe−iφ,

Y 1
1 (θ, φ) = −

√
3

8π
sin θeiφ.

(5.39)

In order to solve Eq. (5.37), we express η(θ, φ, ω) in terms of the linear combination
of the spherical harmonics

η(θ, φ, ω) =

∞∑
l=0

l∑
m=−l

bml Y
m
l (θ, φ), (5.40)

where Y m
l (θ, φ) is the spherical harmonics defined as

Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ. (5.41)

Here Pml (cos θ) is the associated Legendre polynomial. On the surface of the sphere
the action of the diffusion term reduces to

∇2
sY

m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ). (5.42)
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Substituting Eq. (5.40), (5.41), (5.42) into Eq. (5.37), we obtain a linear system of
equations for the coefficients bml

∞∑
l=0

l∑
m=−l

bml [s+ imω +Dl(l + 1)]Y m
l (θ, φ)

=

√
1

3π
KρzY

0
1 +

√
1

6π
K(ρx + iρy)Y

−1
1 −

√
1

6π
K(ρx − iρy)Y 1

1 .

(5.43)

Eq. (5.43) can be solved due to the orthonormality of the spherical harmonics, i.e.,∫ π

θ=0

∫ 2π

φ=0
Y m
l Y m′

l′
∗

sin θdθdφ = δmm′δll′ ,

where δij is the Kronecker delta and the complex conjugation of Y m
l is defined as

Y m∗
l (θ, φ) = (−1)mY −ml (θ, φ).

Since the l.h.s. of Eq. (5.43) only depends on Y m
l with l = 1 the components bml with

l > 1 decay exponentially at rates Dl(l + 1). For l = 1 the coefficients b01, b
−1
1 and b11

are calculated as follows,

b01 =

√
1

3π

Kρz
s+ 2D

; b−1
1 =

√
1

6π

K(ρx + iρy)

s+ 2D − iω ;

b11 = −
√

1

6π

K(ρx − iρy)
s+ 2D + iω

; bml = 0(l > 1).

(5.44)

Accordingly, the perturbation to the distribution, i.e., the solution of Eq. (5.37), is
only related to the first harmonics, i.e.,

η(θ, φ, ω, t) =

√
1

3π

Kρz
s+ 2D

Y 0
1 +

√
1

6π

K(ρx + iρy)

s+ 2D − iωY
−1

1 −
√

1

6π

K(ρx − iρy)
s+ 2D + iω

Y 1
1 .

(5.45)
By integrating with respect to the unit vector σ̂ and the frequency vector ωω̂, we
obtain the perturbation to the order parameter

ρ(t) =

∫ ∫ ∫
s
σ̂η(σ̂,ω, t)gd(ω̂)g(ω)dσ̂dω̂dω, (5.46)

where gd(ω̂) is the distribution of direction of the frequency, e.g., 1/(4π) for the
isotropic case, and g(ω) is the distribution of amplitude of the frequency.

First let’s calculate the integral with respect to σ̂, i.e., the frequency-dependent
mean field

R =

∫
s
σ̂η(σ̂,ω, t)dσ̂

=
2K

3


ρxλ−ρyω
λ2+ω2

ρyλ+ρxω
λ2+ω2

ρz
λ

 .

(5.47)

where λ = s+2D. According to the convention above, ω̂ is directed along ẑ while the
direction of ρ is arbitrary. However, expression (5.47) can be rewritten in a covariant
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form, allowing for arbitrary directions of ρ and ω̂

R =
2K

3

[
λρ

λ2 + ω2
+
ωω̂ × ρ
λ2 + ω2

+

(
1

λ
− λ

λ2 + ω2

)
ω̂ (ω̂ · ρ)

]
. (5.48)

Finally defining the averages

h1 =

∞∫
−∞

λ

λ2 + ω2
g(ω)dω, h2 =

∞∫
−∞

ω

λ2 + ω2
g(ω)dω, (5.49)

and h3 = 1
λ − h1, the antisymmetric matrix Ξ with

Ξ =

∫
S1

 0 −ω̂z ω̂y
ω̂z 0 −ω̂x
−ω̂y ω̂x 0

G(ω̂)|dω̂| (5.50)

and the frequency direction covariance matrix W with

W =

∫
S1

 ω̂2
x ω̂xω̂y ω̂xω̂z

ω̂xω̂y ω̂2
y ω̂yω̂z

ω̂xω̂z ω̂yω̂z ω̂2
z

G(ω̂)|dω̂|, (5.51)

we can express ρ self-consistently as

ρ =
2K

3
[h11 + h2Ξ + h3W]ρ. (5.52)

The eigenvalue problem (5.52) has a solution if the dispersion relation

det
[

2K

3
(h11 + h2Ξ + h3W)− 1

]
= 0 (5.53)

holds. Both, the real and the imaginary part of the determinant on the l.h.s. must be
zero which at criticality where s = iΩ and other system parameters fixed, occurs for
a discrete set of points (Kl,Ωl). At the smallest coupling strength Kc = minlKl the
incoherent state loses stability and a nonzero mean field with frequency Ωc emerges.
For any critical mode with (Kl,Ωl) the mode with (Kl,−Ωl) is also critical. Moreover,
there is always at least one solution (Kl,Ωl = 0) since the determinant is a cubic
polynomial inK with real coefficients when Ω = 0. For an isotropic or axial symmetric
distribution G(ω̂) the matrix can become reducible and the determinant a product
of linear or quadratic functions in K. With ẑ-axial symmetry of frequency directions
the matrix W is diagonal with

〈
ω̂2
z

〉
G

= Λ2
z,
〈
ω̂2
x

〉
G

=
〈
ω2
y

〉
G

= Λ2
xy and Matrix Ξ has

only ±µz = ±〈ω̂z〉G as nonzero entries, i.e., Eq. (5.53) becomes∣∣∣∣∣∣
2K
3 (h1 + Λ2

xyh3)− 1 −2K
3 µzh2 0

2K
3 µzh2

2K
3 (h1 + Λ2

xyh3)− 1 0

0 0 2K
3 (h1 + h3Λ2

z)− 1

∣∣∣∣∣∣ = 0. (5.54)
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Then the matrix determinant is a product of two factors so that one of the two
equations

0 = h1 + Λ2
zh3 −

3

2K
(5.55)

0 =

(
h1 + Λ2

xyh3 −
3

2K

)2

+ µ2
zh

2
2 (5.56)

must hold. If h2µz is zero, the numbers of left and right rotating oscillators around
each rotation axis are equal and we can immediately find the solutions with Ω = 0 as

K1 =
3

2

1

Λ2
zh3 + h1

∣∣∣∣
λ=2D

,

K2 =
3

2

1

Λ2
xyh3 + h1

∣∣∣∣
λ=2D

,

(5.57)

The smaller one of K1 and K2 determines the critical coupling strength, i.e.,

Kc = min(K1,K2). (5.58)

With Lorentzian frequency distribution g(ω) = 1
π

γ
(ω−ω0)2+γ2

the integrals (5.49) can
directly be evaluated (see Appendix D) as

h1 =
λ+ γ

(λ+ γ)2 + ω2
0

, h2 =
ω0

(λ+ γ)2 + ω2
0

, h3 =
1

λ
− h1. (5.59)

In this case and when h2µz = 0 one can show, by inspecting the imaginary part of
the r.h.s. in Eq. (5.58) with λ = 2D+ iΩ, that no oscillatory instabilities with Ω 6= 0
exist. Here we consider four cases:

• Case (i), the direction of the frequency vector is a constant unit vector ω̂1, i.e.,
gd(ω̂) = δ(ω̂ − ω̂1). In this case, Λ2

xy = 0,Λ2
z = 1 and therefore the coupling

strength determined by (5.57) are

K1 =
3

2(h3 + h1)
= 3D,

K2 =
3

2h1
=

3

2

(2D + γ)2 + ω2
0

2D + γ
.

(5.60)

It’s easy to prove that K1 < K2, since h3 is always larger than zero regardless
of the width γ of the frequency distribution, i.e.,

h3 =
γ2 + ω2

0 + λγ

λ
(
(λ+ γ)2 + ω2

0

) > 0. (5.61)

Therefore, the critical coupling strength for the incoherent state to lose stability
in this case is

Kc = K1 = 3D. (5.62)

As shown in Fig. 5.5(b), for D = 0.5, the critical coupling strength is always
1.5, regardless of the width γ and mean ω0 of the amplitude distribution for the
frequency.
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Figure 5.5: Transition to synchrony in the three-dimensional noisy Kuramoto model
described by Eq. (5.10), where the number of coupled agents is N = 1× 104 and the noise
intensity is D = 0.5. (a) is for the case where there is no natural frequency and the red
curve is the analytic self-consistent solution described by Eq. (5.18). (b) is for Case (i),
where the frequency direction is a constant vector, i.e., here we choose ω̂1 = ẑ. (c) is for
Case (ii), where the frequency vectors are located uniformly in the x− y plane. (d) is for
Case (iii), where the distribution of the frequency direction is isotropic. The amplitudes of
frequency in (b), (c) and (d) are all chosen from the same Cauchy distribution
g(ω) = γ

π(ω2+γ2) with width γ = 1. The blue triangles in (a)-(d) represent the direct
simulations of Eq. (5.10) and all the red dotted lines in (b)-(d) indicate the analytical
critical value Kc above which the incoherent state loses stability, i.e., Eq. (5.62) for Case (i),
Eq. (5.64) for Case (ii) and Eq. (5.65) for Case (iii).
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Figure 5.6: Two dimensional visualization of 20000 coupled agents (red dots) for K = 1.8
in Case (i) (left) and K = 2.3 in Case (ii) (right). The noise intensity in both cases is
D = 0.5 and the observation time is t = 200. The black arrows represent the mean field ρ,
which is close to the z direction for Case (i) and is in the x-y plane for Case (ii).

• Case (ii), all the frequency vectors are located uniformly on a plane. Without
loss of generality, here we choose the x− y plane. The direction distribution of
the frequency is gd(ω̂) = gd(ϑ, ψ) = δ(ϑ−π/2)

2π , with ϑ and ψ being the polar angle
and azimuthal angle of the unit vector ω̂ respectively. In this case, Λ2

xy = 1/2,
Λ2
z = 0 and k1 and k2 determined by Eq. (5.57) are

K1 =
3

h3 + 2h1
=

6D(γ + 2D)

γ + 4D
,

K2 =
3

2h1
=

3

2

(2D + γ)2 + ω2
0

2D + γ
.

(5.63)

Due to the inequality in (5.61), one can also easily prove that K1 < K2 al-
ways holds regardless of the width γ and mean ω0 for the Lorentzian fre-
quency distribution. Accordingly, the smaller one of the coupling strengths
min(K1,K2) = K1 determines the critical coupling strength Kc for the incoher-
ent state to lose stability in this case, i.e.,

Kc = K1 =
6D(γ + 2D)

γ + 4D
. (5.64)

As shown in Fig. 5.5 (c), the analytical result predicted by Eq. (5.64) coincides
well with direct simulation of the Langevin equation (5.10).

Close to the criticality, the mean field vector is in the direction of ẑ for Case (i)
and in the x − y plane in Case (ii), as shown in Fig. 5.6. This can be checked
easily by the linear mean-field equation (5.52)

• Case (iii), the frequency vector is isotropic, i.e., gd(ϑ, ψ) = 1
4π . In doing the sim-

ulation, we choose a vector ωg, of which each element is selected from Gaussian
distribution to make it isotropic, and then normalize it to obtain an isotropic
unit vector, i.e., ω̂ = ωg/|ωg|. In this case, Λ2

xy = Λ2
z = 1/3 determines the

critical coupling strength and thus Eq. (5.58) is reduced to:

Kc =
9

2(3h1 + h3)
=

9D(γ + 2D)

(γ + 6D)
. (5.65)

As shown in Fig. 5.5(d), the theoretical prediction described by Eq. (5.65)
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Figure 5.7: The order parameter evolves as a function of time, from the simulation of
Eq. (5.10). Here the noise intensity is D = 0.1, the frequency vectors are isotropic with the
amplitude a Cauchy distribution g(ω) = γ

π((ω−ω0)2+γ2) . Here the coupling strength is K = 2,
the mean value of frequency amplitude ω0 is 2 and γ is chosen as 0(black), 0.1(blue) and
1(red) respectively.

matches well with the direct simulation of the Langevin Eq. (5.10), where the
small mismatch is expected due to the finite-size effect.

The individual noise always stabilizes the incoherent state, as in the classical
Kuramoto model [SM91], and a transition to collective motion occurs at finite
coupling strength.

• Case (iv), asymmetric amplitude distribution for the frequency. Interestingly,
when g(ω) is symmetric but with a non-zero mean value, there will be more
rich dynamics displaying. Suppose the amplitude distribution of the frequency
g(ω) is the Cauchy distribution with the form g(ω) = γ

π((ω−ω0)2+γ2)
while the

direction distribution of the frequency is still isotropic as in Case (iii). With
the same procedure as in Case (iii), one can easily obtain the critical coupling
strength for the incoherent state to lose stability

Kc =
9λ[(λ+ γ)2 + ω2

0]

2[(λ+ γ)(3λ+ γ) + ω2
0]

∣∣∣∣
λ=2D

. (5.66)

The richer dynamics in this case lies in, in the regime where the incoherent
state is unstable, that the amplitude of the order parameter can be oscillatory,
as demonstrated in Ref. [Rit98] for γ = 0. Here we show this phenomenon
for different width γ in Fig. 5.7. This is induced by the symmetry-breaking
of the amplitude distribution of the frequency g(ω). However, more detailed
descriptions such as the phase diagram are needed, based on the nonlinear mean-
field equation. This is beyond the linear stability analysis we studied in this
chapter and we leave it to future work.
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Figure 5.8: (a) Lines of zero real part (bold) and zero imaginary part (light) of the
determinant (5.53) as function of coupling strength K and mode frequency Ω. The nonzero
frequency Ωc ≈ 1.95 of the unstable mode with the smallest coupling strength Kc ≈ 1.149
signifies a Hopf bifurcation from the incoherent state. (b) Time series of the x, y and z
component from N = 4× 104 uniformly distributed initial agents at K = 1.6 demonstrating
a uniformly rotating mean field in the xy-plane. (e) Snapshot of the agents (small dots) and
the mean field (black circle) in a Mercator equal-area projection of the unit sphere. Figure
reprinted with permission from Ref. [ZTP20].

Compared with an equivalent model called random top model [Rit98], in which the
analysis is hard to follow and is limited to the special case with γ = 0, the three-
dimensional noisy Kuramoto model we proposed here and the linear stability analysis
we did as above have more general solutions, e.g., for the critical coupling strength
Kc in Case (i)-(iv).

One common feature in Case (i)-(iv) is that when taking the limit D → 0, the
critical coupling strengths derived in all cases approach zero, coinciding with the
deterministic case where the transition occurs infinitely close to zero, i.e., Kc → 0+

(see Sec. 5.1).

Symmetry-breaking induced Hopf bifurcation

All the cases (i)-(iv) discussed above have a fixed direction of the mean field ρ̂, with
the collective frequency Ωc = 0 in the vicinity of criticalityK → Kc. This is due to the
high symmetry of both the direction and the amplitude distribution for the frequency,
i.e., gd(ω̂) and g(ω) respectively. As long as this kind of symmetry is broken to
some degree, the mean field can be rotating, leading to collective oscillation. Here we
show a non-trivial example where the incoherent state becomes unstable undergoing
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a Hopf bifurcation, which appears in terms of a non-zero collective frequency Ω in the
dispersion relation (5.53).

We consider the axial symmetric example of a uniform distribution G(ω̂) on the
upper half sphere with Λ2

xy = Λ2
z = 1/3 and µz = 1/2, a narrow Lorentzian frequency

amplitude distribution g(ω) with mean value ω0 = 2.0 and scale factor γ = 0.05, and
noise strengthD = 0.2. The zeros of dispersion relation (5.53) are shown in Fig. 5.8(a),
where two solutions of (5.56) have the smallest coupling strength Kc ≈ 1.149 at a
frequency Ωc ≈ ±1.95. Due to the fact that µzh2 is non-zero in this case, the numbers
of left and right rotating oscillators around each rotation axis are not equal, and hence
the collective frequency Ω of the mean field can also be non-zero, i.e., the mean field
ρ can be rotating instead of being static in the stationary state. In direct simulations,
we find that the mean field is rotating in the xy-plane, as shown in Fig. 5.8(b).
Moreover, we plot the snapshot of the agents σ̂ = (sin θ cosφ, sin θ sinφ, cos θ) on the
three-dimensional sphere, as shown in Fig. 5.8(c). It demonstrates further that the
mean field in this case is located in the x − y plane. In Sec. 5.3.2 we will see that,
by interpreting σ̂ as the velocity vector of a microswimmer, the Hopf bifurcation will
lead to the collective oscillation of the particles where the center of mass of them is
rotating while the individual particles are diffusing outwards.

5.3 Three-dimensional swarming described by the noisy
Kuramoto model

The unit vector σ̂ in the three-dimensional noisy Kuramoto model (5.13) can either
be a vector about the position or the velocity. If interpreting the vector σ as the posi-
tion vector of agents diffusing on the surface of a three-dimensional sphere, the model
can be potentially used to describe the dynamics of N interacting magnetic moments
[Rit98], where each unit has a natural precession vector ω̂i(i = 1, · · · , N). Also, the
model could potentially be used to describe the coupling of the active surface of the
cell cortex [Mie+19], displaying interesting pattern formation via dynamic instability.
Therein the polar instability determined by the first spherical harmonics and nematic
instability determined by the second spherical harmonics in Ref. [Mie+19] are very
similar to the instability of the incoherent state in the case of first-order coupling
and second-order coupling respectively in Kuramoto model. This kind of instability
determination is also seen in a mean-field version of the Vicsek model [PDB08], where
the ferromagnetic and liquid-crystal alignment are the counterparts of the first-order
and second-order coupling in the Kuramoto model. More deep connections among
these models need to be unveiled in future research.

If considering σ̂ as the unit velocity vector of a particle, i.e., v̂ = σ̂, the three-
dimensional Kuramoto model can be used to describe the swarming phenomenon of
microswimmers with flagella. The helical motion is induced by a non-zero rotational
frequency ω. In this case, all the analysis is the same as the above sections, just
replacing σ̂ with v̂. Therefore, the nonzero mean field ρ = 1

N

∑N
j=1 v̂j represents the

alignment of agents or particles, while ρ = 0 means all the particles move in uniformly
random directions in three-dimensional space.

In this case, the equation describing the alignment dynamics of N particles with
the same speed amplitude v0 but in various directions v̂i(t) (i = 1, · · · , N) is as
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Figure 5.9: Schematic description of two particles’s helical motion with the direction of
rotation frequency ω̂1 and ω̂2 respectively. Synchronization occurs when the coupling
strength is large enough.

follows:
ẋi = v0v̂i

dv̂i
dt

= K(ρ− (ρ · v̂i)v̂i) + (ωiω̂i + ξi(t))× v̂i,
(5.67)

or an alternative form:

ẋi = v0v̂i

˙̂vi = µi × v̂i,
µi = ωiω̂i +K (v̂i × ρ) + ξi,

(5.68)

In writing the expression in the third line of Eq. (5.68), we have used the triple product
expansion

(v̂ × ρ)× v̂ = ρ(v̂ · v̂)− v̂(v̂ · ρ). (5.69)

The torque µi can be any time-dependent global or individual forcing. Here we assume
it is the summation of a constant rotation bias of amplitude ω around an axis in the
direction ω̂, an alignment force rotating v̂ towards a vector ρ and a noise component
ξi, which is Gaussian white noise as in the model (5.13).

When there is rotational frequency ωi = ωiω̂i for each oscillator i(i = 1, · · · , N),
similar to the charged particle in magnetic field, a nonzero frequency in Eq. (5.68) will
make the particles move in a helical way. To better understand the synchronization
in the model, we consider two particles move in random directions, here we choose
two orthogonal vectors, and see how a large positive coupling strength K will align
or synchronize these two particles (see Fig. 5.9).

5.3.1 Connection to a mean-field version of the Vicsek model

In the case where there is no natural frequency, i.e., ωi = 0 (i = 1, · · · , N), the model
is actually a mean-field version of the Vicsek model [Vic+95] where the velocity of
each particle is aligned by the mean field ρ.

The Vicsek model is a model to study the collective motion in terms of velocity
alignment, observed in a wide range of scales in nature, from flocking of birds and fish
schools to bacteria colonies. It describes a collection of N particles moving with the
same constant speed and aligning their direction of motion with their local neighbours.
The Vicsek model is originally proposed in two dimensions, but for the generalization
for higher dimensions we adopt the following discrete equation for the updates of the
position of the i-th particle [Cha+08]:

xi(t+ ∆t) = xi(t) + v0v̂i(t)∆t, (5.70)
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Figure 5.10: Schematic description of the Vicsek model. Each particle (an example
marked yellow) interact locally with the neighbours within the distance r. In the long-range
limit (r →∞), the dynamics of the particles can be described by the mean-field approach.

with v0 being the speed amplitude of the particles, and the discrete equation describing
the orientation dynamics:

v̂i(t+ ∆t) = (Rη ◦ ϑ)

 ∑
|xi−xj |<r

v̂j(t)

 , (5.71)

where v̂i is the unit vector for the direction of the i-th particle and the aligning regime
is a ball of radius r (circle in 2 dimensions). Here ϑ is a normalization operator to
ensure ϑ(c) = c/|c| and Rη executes a random rotation uniformly distributed around
the argument vector. There are generally two versions of the time-continuous and
globally coupled Vicsek model, of which the schematic figure can be represented by
Fig. 5.10. One version is applied to the cases of ferromagnetic and liquid-crystal
alignment [PDB08], corresponding to the first-order and second-order coupling in the
Kuramoto model. Therefore, the linear stability of the disordered state is similar
to its counterpart, i.e., the linear stability of the incoherent state, in the Kuramoto
model. The stability in the case of ferromagnetic alignment (first-order coupling) is
determined by the first harmonic function, while in the case of liquid-crystal alignment
(second-order coupling) it is determined by the second harmonic function. The other
version is proposed by Degond and Motsch [DM08], where a projection matrix is used
to describe the coupling of neighbor particles. These two versions are both based on
the Fokker-Planck formalism but the former version is limited to two dimensions while
the latter one is straightforward to extend to the higher-dimensional case.

Instead, we formulate the alignment of velocities of the coupled particles in a vector
form, which not only is more convenient for the generalization to higher-dimensional
versions but also shows a direct connection to the Kuramoto model.

In Fig. 5.11 we show the order parameter (mean velocity) as a function of the
relative noise strength D/K for an isotropic distribution of rotation axes G(ω̂) =
1/(4π) for the direction of the frequency and Lorentzian distributions g(ω) = γ

π (ω2 +
γ2)−1 with mean frequency zero for the amplitude. Depending on the ratio γ/K a
stationary mean field bifurcates from the incoherent state (ρ = 0) at a critical value
of (D/K)cr, which the linear stability analysis in Sec. 5.2.2 can predict.

This bifurcation point on the horizontal axis is connected to a point on the verti-
cal axis in the noise-free limit discussed in[CGO19b]. The existence of a critical ratio
(D/K)cr for the transition from incoherence to coherence means that the noise-free
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Figure 5.11: Amplitude of the (stationary) mean velocity as a function of the ratio D/K.
Shown are the experimentally measured mean velocity in simulations for γ/K = 0.02(red
circles) and for γ/K = 10 (blue crosses) of N = 4× 104 velocity vectors, the parametric
analytic solution of the globally coupled Vicsek model (solid line) and the critical ratio
(D/K)cr for the example with γ/K = 10 (dashed vertical line). Figure reprinted with
permission from Ref. [ZTP20].

limit D → 0 is singular as the critical coupling strength also goes to zero. In Fig. 5.11
we show two examples, a very homogeneous frequency distribution with γ/K = 0.02,
very close to the rotation free case of the globally coupled Vicsek model, and a very
heterogeneous frequency distribution with γ/K = 10. Here the incoherent state,
where the mean velocity is zero, is stable for even lower ratios of D/K. For D = 0 the
mean velocity in the limit γ/K →∞ is ρ = 0.5, corresponding to the limit K → 0+ as
predicted in [CGO19b]. Therefore, the noise makes the dynamics much richer in terms
of bifurcation from the incoherent state, compared with the deterministic case where
the critical coupling strength is always zero regardless of the frequency distribution.

In the two, or generally speaking, even-dimensional Kuramoto model [CGO19b],
when D → 0, ρ will not approach 0.5 as in the three-dimensional case. Instead, there
always exists a critical coupling determined by the frequency distribution. However,
the role of noise would still be the same, i.e., it always stabilizes the incoherent state
and inhibits the synchronous state. For instance, in the classical two-dimensional case
[SM91], noise shifts the discrete spectrum of the linear operator to the left-half plane.

5.3.2 Swarming with helical trajectories

Helical motion is a common form of movement in active particles, e.g micro swimmers
using flagella for propulsion [LP09; Bec+16]. It facilitates chemotaxis even for small
particles. Oscillating in circles much larger than the body size, biological swarmers
can detect chemical gradients and adapt their translational motion accordingly. When
such self-propelled particles interact their velocities can align resulting in a directed
collective motion. In the swarming model described by Eq. 5.68, the rotational bias
ωω̂ results in the helical trajectories of the individual particle, while the distribution
of the amplitude and direction of it generally influences the swarming as a whole.
Here we mainly describe two cases:
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Figure 5.12: Trajectories of 100 particles (final position marked with black circles) in an
ensemble of 4× 104 particles with synchronized helical motion. (a) The mean field (bold red
line) is a constant vector. (b) The mean field (bold red line) is rotating while the particles
diffuse away from the center. Fig. (b) reprinted with permission from Ref. [ZTP20].

1), the individual particles diffusing in the same direction as that of the mean field

ρ = 1
N

N∑
j=1
v̂j , as shown in Fig. 5.12 (a). This phenomenon is widely expected in

the collective motion of microswimmers, e.g., sperm suspensions in which each
swimmer is propelled by rotating flagella [SK18].

2), each particle is diffusing and moving helically, while the center of mass of the
particles rotates in the x − y plane, as shown in Fig. 5.12 (b). The collective
oscillations here are nontrivial and are induced by a Hopf bifurcation from the
disordered state. The analysis of the linear stability of the disordered state
is in Sec. 5.2.2. Collective oscillations are ubiquitous in physical and biolog-
ical systems. One prominent example in experiments is reported recently in
Ref. [Che+17], where motile cells in dense bacterial suspensions undergo col-
lective oscillations by self-organization while individual cells move in an erratic
manner, corresponding to the diffusing behavior of individuals in our noisy ku-
ramoto model. In their model, a locally coupled version of the Kuramoto-type
(or Vicsek-type) model is adopted. It is hopeful that the mean-field theory
and the stability analysis in the noisy Kuramoto model will shed a light on the
analytical solution to explain the experiment results.
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5.4 Summary

In summary, firstly we introduce the generalization from the classical (2d) Kuramoto
model to the deterministic high-dimensional versions, of which we focus on the ver-
sion with vector model proposed by Chandra and coauthors [CGO19b]. Secondly, we
extend it to the three-dimensional noisy case that captures more realistic features in
nature, since the noise is ubiquitous and usually can not be ignored in the collective
motion of microswimmers.

We want to state that the vector σ can be either a position vector or a velocity
vector, depending on the considered context. On one hand, imagining the 3d sphere
as a cell, the model can be potentially used to describe the synchronization of the
active surface. On the other hand, considering σ as a velocity vector v, the model
can be used to describe synchronization in a swarming model with velocity alignment.
In this sense, the case with no bias (ω = 0) can be connected to a mean-field version
of the Vicsek model, while the case with bias (ω 6= 0) can be used to describe the
swarming with helical trajectories. The bias (frequency) ω makes the particles rotate
helically while the noise makes them diffusing, and hence the general paths of the
particles are rotating, diffusing and meanwhile are subject to a mean field ρ.

Our main results are boiled down to the following:

(a), in the case of no frequency, the self-consistent solution of the order parameter
is derived and a continuous transition with a square-root relation at the vicinity of
the criticality is demonstrated. By explaining σ as the velocity vector of a particle
moving in 3d space, the 3d Kuramoto model is connected to the 3d globally coupled
Vicsek model, which is widely used to describe the collective motion and swarming
with velocity alignment.

(b), the critical coupling strength Kc for the incoherent state (ρ = 0) to lose sta-
bility for a general frequency distribution, i.e., gd(ω̂) for the direction and g(ω) for
the amplitude, is derived in 3d by the linear stability analysis, where the spherical
harmonics serve as the orthogonal basis instead of Fourier series in classical (2d) Ku-
ramoto model.

(c), due to the influence of noise, the transition to synchrony is continuous (the
second order), rather than discontinuous (the first order) in the deterministic case
reported in [CGO19b], where the noise intensity D = 0 is a singular point by our
analysis. In general, the noise, by which we mean the individual noise instead of the
common noise [Gon+19], always stabilizes the incoherent state and therefore inhibits
synchronization.

(d), the noisy three-dimensional Kuramoto model simplifies an equivalent random-
top model proposed by Ritort [Rit98], where the amplitudes of frequency are limited
to a constant, i.e., g(ω) = δ(ω − ω0). However, the analysis in the present thesis is
more general for different kinds of distribution both in the direction gd(ω̂) and in the
amplitude g(ω).

(d), the swarming model with helical trajectories described by the noisy Kuramoto
model is hopefully to explain the collective motion of active particles, e.g., microswim-
mers with flagella such as C. reinhardtii cells [GPT09] and sperm cells [Jik+15].
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Chapter 6

Conclusions and Outlook

In conclusion, we investigated two problems in this thesis: a coherent spiking phe-
nomenon which we call stochastic bursting in excitable noisy systems with time-delay
feedback and a three-dimensional noisy Kuramoto model, which can be used to de-
scribe the synchronization of a swarming model with helical trajectories. The common
feature these two phenomena share is that they occur in the oscillatory systems with
noise. The conclusions of the thesis can be drawn as the following two main parts:

(A) We have investigated the stochastic bursting phenomenon in a single excitable
system with delayed feedback (Chap. 2), in unidirectionally delay-coupled systems
(Chap. 3) and in a chain of delay-coupled units (Chap. 4). The combined effects of
both time delay and noise result in complex statistics of the spike train, which is hard
to describe analytically due to its non-Markovian nature. However, the stochastic
bursting in our model is well described by a point process of a leader-follower rela-
tionship under the assumption of time-scale separation, which is based on the weak
noise and the large time delay. The leaders correspond to the spontaneous spikes in
excitable systems induced purely by noise, leading to Poisson statistics approximately.
The followers correspond to the induced spikes by the combined effect of noise and
delay, leading to random bursts. In a single excitable noisy system described in
Chap. 2, the stochastic bursting is determined mainly by two essential parameters:
the spontaneous spiking rate λ, which is easy to obtain analytically by the Fokker-
Planck formalism, and the probability p to induce a spike, which is obtained by a
high-precision numerical method.

The stochastic bursting phenomenon is not limited to a single system, but also
can be observed in networks of coupled systems. In Chap. 3 we consider unidirec-
tionally coupled ring networks of excitable systems that interact with each other by
delayed pulse coupling. The highlight in this chapter is that we describe the pairwise
correlation in terms of the conditional probability of a joint event that there is an
induced spike at time t + τ given that there is a spike at time t. In other words, we
consider the correlation function, which is usually seen as the second-order statistics,
as the first-order statistics of a joint event. Surprisingly, the correlation function of
the spike train in each unit and the cross-correlation function of the spikes between
any two units in the ring networks share a general formalism.

In Chap. 4, we investigate the stochastic bursting in a chain of three delay-coupled
excitable units, which serves as a minimum model of star-network coupled systems.
We use a lattice model that is similar to the branching process in probability theory
to represent the probabilities to induce spikes in each unit of the chain approximately.
By virtue of the method to describe the statistics of the spikes in each unit and that
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between any pair of units, the correlation function and hence the power spectrum are
derived straightforwardly.

One promising direction of the future study would be applying the model de-
veloped here to the real data from the experiments in neural labs. Moreover, the
analytical result in our model is not limited to the excitable neural system but can be
also be potentially applied to optical systems such as vertical-cavity surface-emitting
lasers [Sci+03] and semiconductor lasers [FS07].

However, a question remains open as to whether the point process with a leader-
follower relationship can be applied to more complex networks, e.g., the globally
delay-coupled excitable systems.

(B) We investigate a noisy version of the three-dimensional Kuramoto model and
connect it to two other models, i.e., the globally coupled Vicsek model [Vic+95],
in the case without frequency and a random top model [Rit98] potentially used to
describe strongly coupled magnetic systems. Compared with the classical (2d) Ku-
ramoto model, the dynamics in the 3d version are much richer in terms of the following
aspects:

• From the deterministic case to the noisy case, the transition from the incoher-
ent state to partial synchrony differs fundamentally in the 3d version. In the
deterministic case, the transition is discontinuous (the first-order) and happens
at an infinitely small coupling strength (Kc → 0+) [CGO19b] while it’s mostly
continuous (the second-order) in the case with noise. However, in the 2d Ku-
ramoto model, noise usually just stabilizes the incoherent state and leads to a
larger critical coupling strengthKc, but doesn’t change the type of the transition
[SM91].

• The frequency not only has the distribution of the amplitude g(ω) but also
has the distribution of the direction gd(ω̂) in 3d version, while it has only the
distribution of the amplitude. Our linear stability analysis in Sec. 5.2.2 shows
that the critical coupling strength Kc for the incoherent state to lose stability is
highly dependent on the frequency distribution of both the amplitude and the
direction. For instance, the most commonly considered distribution of the fre-
quency direction is the uniform distribution [CGO19b; ZTP20], i.e., the vectors
are isotropically located. It would be interesting to consider more complex but
realistic distribution in future work.

• In the classical (2d) Kuramoto model, there always exists a co-rotating reference
frame and therefore one can simply set the frequency distribution as g(ω) instead
of g(ω − ω0), with a zero mean. However, there is no such co-rotating reference
frame in the three-dimensional version, due to the influence of an additional
dimension. There exists not only limit cycle but also torus for the motion of the
agents moving on the spherical surface.

In the case without natural frequency for each oscillator, a self-consistent equation
of the mean field was derived in q-dimensional (q ≥ 2) space, with all the oscillators
diffusing on a q − 1 dimensional sphere. Actually similar generalization to the case
with natural frequency is also possible, provided that the cross product term is re-
placed by the product of a q × q antisymmetric matrix including noisy elements and
the unit vector in higher-dimensional space. However, in this thesis, we mainly focus
on the three-dimensional case, where the physical meaning is straightforward, e.g.,
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the microswimmers with flagella [LP09] in the living systems show collective motion
with velocity alignment.

Here we also list some future topics regarding the three-dimensional Kuramoto
model:

1) Further connections between the Kuramoto model and the Vicsek model should
be revealed, while in the present thesis we restrict the discussion to the globally
coupled case with all the unit vectors subject to a global mean field. However,
in many real living systems, such as the flocking, the fish school etc., a local
coupling with only some nearest neighbors are involved is believed to play an
important role in the collective motion. It would be interesting to see how the
three-dimensional Kuramoto model with local coupling describes the collective
motion in real physical systems. Is there also a hydrodynamic description in
this case, as in the Vicsek model or in more general flocking phenomenon [TT98;
TTR05]? Or is there a more general model that can connect these two models?
These are some interesting questions yet to be answered.

2) We have analyzed the linear stability of the incoherent state and calculated
the critical coupling strength above which the incoherent state loses stability.
To uncover the bifurcation of order parameter at the vicinity of the coupling
strength explicitly, one needs to derive the amplitude equations up to the third
order, promisingly by a multi-scale perturbation method, as done in the classical
Kuramoto model [Ace+05].

3) What is the stationary probability density of the oscillators with general fre-
quency distribution? The analytical solution of the corresponding Fokker-Planck
equation (5.34) is not easy to derive because the probability current is related to
both the polar angle and the azimuthal angle of the three-dimensional sphere.

Finally, we would like to say some words about some general aspects about the
role noise plays in the oscillatory systems because the bursting and the synchroniza-
tion discussed in this thesis are basically due to noise. The stochastic bursting in
excitable systems is induced by the combined effects of delay and noise, while the
synchronization in the Kuramoto model is influenced by the competing effects of the
coupling strength (or matrix), the heterogeneous frequency and the noise. More about
the topics about the combined effects of delay and noise especially in neuro systems,
we refer the readers to [Sch+09; Lin+04] for further references. The influence of noise
on synchronization differs for the individual noise studied in this thesis and for the
common noise, which always promotes synchrony [Pim+16; Gol+17]. In the field of
collective motion, noise due to the finite-size effect is recently demonstrated to induce
schooling of fish [Jha+20], where the larger the noise is, the more alignment it intro-
duces. Let us look forward to seeing more and more interesting phenomena induced
by noise.
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Appendix A

Derivation of the fixed points in
the three-dimensional Kuramoto
model

The 3 dimensional Kuramoto model in the deterministic case is described by the
equation (5.3) For simplicity we write all the vectors without i. The fixed points are
subject to the following equation:

K[ρ− (ρ · v̂)v̂] + ω × v̂ = 0. (A.1)

Defining β = ω
Kρ , Eq. (A.1) is reformulated as follows,

ρ̂− (ρ̂ · v̂)v̂ + βω̂ × v̂ = 0, (A.2)

which leads to
ω̂ × v̂ = − 1

β
[ρ̂− (ρ̂ · v̂)v̂]. (A.3)

Since the solution to the equation A× B = C is B = C × A/|A|2 + aA, the solution
to Eq. (A.3) is

v̂ = − 1

β
[ρ̂− (ρ̂ · v̂)v̂]× ω̂ + aω̂

= − 1

β
ρ̂× ω̂ +

1

β
(ρ̂ · v̂)v̂ × ω̂ + aω̂.

(A.4)

Multiplying ω̂ to the Eq. (A.4) to get a = ω̂ · v̂ and substituting Eq. (A.3) into
Eq. (A.4), leading to

v̂ =
1

β
ρ̂× ω̂ +

ρ̂ · v̂
β2

ρ̂− (ρ̂ · v̂)2

β2
v̂ + aω̂. (A.5)

Putting the third term of the r.h.s to the l.h.s and after some simplification, we obtain
the fixed points solution:

v̂ =
1

β2 + b2
(βω̂ × ρ̂+ bρ̂+ aβ2ω̂), (A.6)

where β = ω
Kρ , b = ρ̂ · v̂ and a = ω̂ · v̂. since multiplying Eq. (A.2) by ω̂ leads to

ω̂ · v̂ =
ρ̂ · ω̂
ρ̂ · v̂ or a =

ρ̂ · ω̂
b

, (A.7)
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then multiplying Eq. (A.6) with ρ̂ and substituting Eq. (A.7) into it, we obtain a
quadratic equation in b2 with the solution

b = ρ̂ · v̂ = ±

√
1− β2 +

√
(1− β2)2 + 4β2(ρ̂ · ω̂)2

2
. (A.8)

The plus and minus signs correspond to the stable and unstable fixed points respec-
tively, by linearizing the equation (5.3) with a small perturbation ε̂(t):

dε

dt
= −K(ρ · v̂)ε. (A.9)
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Appendix B

Derivation of the self-consistent
equation (5.29) of the mean field ρ
in general q dimensions

The self-consistent equation of the mean field in the linear order, according to Eq. (5.29),
is

ρ =

∫ π
0 cos θeε cos θ sinq−2 θdθ∫ π

0 eε cos θ sinq−2 θdθ

≈
∫ π

0 cos θ(1 + ε cos θ + 1
2ε

2 cos2 θ + 1
6ε

3 cos3 θ) sinq−2 θdθ∫ π
0 (1 + ε cos θ + 1

2ε
2 cos2 θ) sinq−2 θdθ

≈ εB(3
2 ,

q−1
2 ) + 1

6ε
3B(5

2 ,
q−1

2 )

B(1
2 ,

q−1
2 ) + 1

2ε
2B(3

2 ,
q−1

2 )
,

(B.1)

where B(x, y) is Beta function defined as

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt (B.2)

for Re x>0, Re y>0. Due to the property of the Beta function:

B(x+ 1, y) = B(x, y) · x

x+ y
, (B.3)

Eq. (B.1) can be further expanded to the third order of ε, i.e.,

ρ ≈ εB(3
2 ,

q−1
2 ) + 1

6ε
3B(5

2 ,
q−1

2 )

B(1
2 ,

q−1
2 ) + 1

2ε
2B(3

2 ,
q−1

2 )

≈ [B(
3

2
,
q − 1

2
) +

1

6
ε3B(

5

2
,
q − 1

2
)]

1

B(1
2 ,

q−1
2 )

[1− ε2B(3
2 ,

q−1
2 )

2B(1
2 ,

q−1
2 )

]

≈ ε

q
− ε3

2
(

1

q2
− 1

q(q + 2)
).

(B.4)

Substituting ε = Kρ
D to Eq. (B.4), we obtain Eq. (5.29), i.e.,

ρ ≈ Kρ

qD
− K3ρ3

2D3
(

1

q2
− 1

q(q + 2)
). (B.5)
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Appendix C

Derivation of the Fokker-Planck
equation (5.34)

We first extend the unit vector σ to a general vector σ = rσ̂, with r being the
amplitude and σ̂ being the unit vector. Therefore, the velocity can be rewritten as
follows,

v = K(ρ− (ρ · σ̂)σ̂) + ω × σ̂

= K(ρ− (ρ · σ)σ

r2
) +

1

r
ω × σ,

(C.1)

and hence

∇ · (fv) = f∇ · v + v ·∇f

= f∇ · [ρ− (ρ · σ̂)σ̂

r2
] + v · (1

r
∇sf + σ̂

∂f

∂r
)

= −(q − 1)
ρ · σ
r2

+
1

r
[
ω × σ
r

+K(ρ− (ρ · σ)σ

r2
)] ·∇sf

= −(q − 1)
ρ · σ̂
r

+
1

r
[ω × σ̂ +Kρ] ·∇sf.

(C.2)

In deriving Eq. (C.2), we have used the fact that v ·σ = 0, σ ·∇sf = 0. Then substi-
tuting Eq. (C.2) to the Fokker-Planck equation (5.14), and integrating the equation
over r from 1 − δ to 1 + δ with δ being a small number and we obtain the rewritten
Fokker-Planck equation (5.34).
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Appendix D

Integrals of the Lorentzian function
in the complex plane

Here we derive the integrals about a Lorentzian function g(ω) = 1
π

γ
(ω−ω0)2+γ2

in the
complex plane, i.e.,

h1 =

∫ ∞
−∞

λ

λ2 + ω2
g(ω)dω

=
1

4π

∫ ∞
−∞

(
1

λ+ iω
+

1

λ− iω )

[
1

γ + i(ω − ω0)
+

1

γ − i(ω − ω0)

]
dω.

(D.1)

For a complex value λ = a + ib, due to the cancelation of the two residues −b + ia
and ω0 + iγ in the upper complex plane of the corresponding complex function, it’s
easy to check that ∫ ∞

−∞

1

a+ i(b+ ω)

1

γ + i(ω − ω0)
dω = 0. (D.2)

Also, the term with respect to∫ ∞
−∞

1

a+ i(b− ω)

1

γ − i(ω − ω0)
dω (D.3)

vanishes since there is no singular points in the upper complex plane. The other two
terms in Eq. (D.1) can be calculated in terms of the residues at ω = −b + ia and
ω = ω0 + iγ, leading to

h1 =
1

2
(

1

λ+ γ + iω0
+

1

λ+ γ − iω0
)

=
λ+ γ

(λ+ γ)2 + ω2
0

.
(D.4)
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