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Abstract 

This work develops hybrid methods of imaging spectroscopy for open pit mining and examines their 

feasibility compared with state-of-the-art. The material distribution within a mine face differs in the 

small scale and within daily assigned extraction segments. These changes can be relevant to 

subsequent processing steps but are not always visually identifiable prior to the extraction. 

Misclassifications that cause false allocations of extracted material need to be minimized in order to 

reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the 

allocation of relevant deposit-specific materials before extraction, and allows for efficient material 

handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit 

mining applications and the development and evaluation of a workflow for a mine face, ground-based, 

spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor 

complexity is reduced by down-sampling the spectral resolution of the system based on the samples’ 

spectral characteristics. This was achieved by the evaluation of existing hyperspectral outcrop analysis 

approaches based on laboratory sample scans from the iron quadrangle in Minas Gerais, Brazil and by 

the development of a spectral mine face monitoring workflow which was tested for both an operating 

and an inactive open pit copper mine in the Republic of Cyprus.  

The workflow presented here is applied to three regional data sets: 1) Iron ore samples from Brazil, 

(laboratory); 2) Samples and hyperspectral mine face imagery from the copper-gold-pyrite mine Apliki, 

Republic of Cyprus (laboratory and mine face data); and 3) Samples and hyperspectral mine face 

imagery from the copper-gold-pyrite deposit Three Hills, Republic of Cyprus (laboratory and mine face 

data). The hyperspectral laboratory dataset of fifteen Brazilian iron ore samples was used to evaluate 

different analysis methods and different sensor models. Nineteen commonly used methods to analyze 

and map hyperspectral data were compared regarding the methods’ resulting data products and the 

accuracy of the mapping and the analysis computation time.  Four of the evaluated methods were 

determined for subsequent analyses to determine the best-performing algorithms: The spectral angle 

mapper (SAM), a support vector machine algorithm (SVM), the binary feature fitting algorithm (BFF) 

and the EnMap geological mapper (EnGeoMap). Next, commercially available imaging spectroscopy 

sensors were evaluated for their usability in open pit mining conditions. Step-wise downsampling of 

the data - the reduction of the number of bands with an increase of each band’s bandwidth - was 

performed to investigate the possible simplification and ruggedization of a sensor without a quality 

fall-off of the mapping results. The impact of the atmosphere visible in the spectrum between 1300–

2010nm was reduced by excluding the spectral range from the data for mapping. This tested the 

feasibility of the method under realistic open pit data conditions. Thirteen datasets based on the 

different, downsampled sensors were analyzed with the four predetermined methods. The optimum 
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sensor for spectral mine face material distinction was determined as a VNIR-SWIR sensor with 40nm 

bandwidths in the VNIR and 15nm bandwidths in the SWIR spectral range and excluding the 

atmospherically impacted bands. The Apliki mine sample dataset was used for the application of the 

found optimal analyses and sensors. Thirty-six samples were analyzed geochemically and 

mineralogically. The sample spectra were compiled to two spectral libraries, both distinguishing 

between seven different geochemical-spectral clusters. The reflectance dataset was downsampled to 

five different sensors. The five different datasets were mapped with the SAM, BFF and SVM method 

achieving mapping accuracies of 85-72%, 85-76% and 57-46% respectively. One mine face scan of 

Apliki was used for the application of the developed workflow. The mapping results were validated 

against the geochemistry and mineralogy of thirty-six documented field sampling points and a zonation 

map of the mine face which is based on sixty-six samples and field mapping. The mine face was 

analyzed with SAM and BFF. The analysis maps were visualized on top of a Structure-from-Motion 

derived 3D model of the open pit. The mapped geological units and zones correlate well with the 

expected zonation of the mine face. The third set of hyperspectral imagery from Three Hills was 

available for applying the fully-developed workflow. Geochemical sample analyses and laboratory 

spectral data of fifteen different samples from the Three Hills mine, Republic of Cyprus, were used to 

analyse a downsampled mine face scan of the open pit. Here, areas of low, medium and high ore 

content were identified.  

The developed workflow is successfully applied to the open pit mines Apliki and Three Hills and the 

spectral maps reflect the prevailing geological conditions. This work leads through the acquisition, 

preparation and processing of imaging spectroscopy data, the optimum choice of analysis 

methodology, and the utilization of simplified, robust sensors that meet the requirements of open pit 

mining conditions. It accentuates the importance of a site-specific and deposit-specific spectral library 

for the mine face analysis and underlines the need for geological and spectral analysis experts to 

successfully implement imaging spectroscopy in the field of open pit mining. 
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Zusammenfassung 

In dieser Dissertation wird die Machbarkeit und Anwendung moderner und eines eigen entwickelten 

Hybridverfahrens in der bildgebenden Spektroskopie für den Tagebau untersucht.  

Die Materialverteilung innerhalb einer Abbaufront unterscheidet sich oft innerhalb eines kleinen 

Maßstabs und variiert zudem innerhalb täglich zugeordneter Abbausegmente. Diese Veränderungen 

können für nachfolgende Verarbeitungsschritte relevant sein, sind aber vor dem Abbau nicht immer 

visuell erkennbar. Falsche Klassifizierungen des Materials führen zu Fehlverteilungen des abgebauten 

Materials, die minimiert werden müssen, um den energie-intensiven Materialtransport zu reduzieren. 

Mit Hilfe der bildgebenden Spektroskopie wird angestrebt, relevante Lagerstätten-spezifische 

Materialien vor der Extraktion korrekt zuzuordnen und ein effizientes Materialhandling nach der 

Extraktion zu ermöglichen. Ziel dieser Arbeit ist die Parametrisierung der bildgebenden Spektroskopie 

für den Bergbau und die Entwicklung und Evaluierung eines Workflows zur spektralen 

Charakterisierung von offenem Bergbau mittels bodengebundener Sensorik. Dies wurde durch die 

Evaluierung bestehender Ansätze zur hyperspektralen Aufschlussanalyse erreicht, die auf Grundlage 

von Laborscans von Proben aus dem Eisernen Vierecks in Minas Gerais, Brasilien, durchgeführt wurde. 

Eine spektralen Abbaufrontanalyse wurde mithilfe von Daten eines aktiven und eines inaktiven Kupfer-

Tagebaus in der Republik Zypern entwickelt.  

Der in dieser Arbeit vorgestellte Arbeitsablauf wird auf drei regionale Datensätze angewandt: 1) 

Eisenerzproben aus Brasilien (Labordaten); 2) Proben und hyperspektrale bildgebende Daten der 

Abbaufront aus dem Kupfer-Gold-Pyrit-Tagebau Apliki, Republik Zypern (Labor- und 

Abbaufrontdaten); und 3) Proben und hyperspektrale bildgebende Daten der Abbaufront aus der 

Kupfer-Gold-Pyrit-Lagerstätte Three Hills, Republik Zypern (Labor- und Abbaufrontdaten). Der 

hyperspektrale Labordatensatz von fünfzehn brasilianischen Eisenerzproben wurde zur Evaluierung 

verschiedener Analysemethoden und verschiedener Sensormodelle verwendet. Neunzehn 

gebräuchliche Methoden zur Analyse und Kartierung hyperspektraler Daten wurden im Hinblick auf 

ihre resultierenden Datenprodukte, die Genauigkeit der Kartierung und die Berechnungszeit der 

Analyse verglichen.  Vier der evaluierten Methoden wurden für nachfolgende Analysen bestimmt: Der 

Spectral Angle Mapper (SAM), ein Support Vector Machine Algorithmus (SVM), der Binary Feature 

Fitting Algorithmus (BFF) und der EnMap Geological Mapper (EnGeoMap). Als nächstes wurden 

kommerziell erhältliche bildgebende Spektroskopiesensoren auf ihre Verwendbarkeit unter 

Tagebaubedingungen evaluiert. Ein schrittweises Reduzieren der Datenkomplexität, das sog. 

“downsampling” (die Verringerung der Anzahl der Bänder und gleichzeitige Erhöhung der Bandbreite 

jedes Bandes), wurde durchgeführt, um eine Vereinfachung der Sensorkomplexität ohne 

Qualitätseinbußen der Kartierungsergebnisse zu untersuchen. Der Einfluss der Atmosphäre, die im 
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Spektrum zwischen 1300-2010nm sichtbar ist, wurde reduziert, indem der Spektralbereich aus den 

Daten für die Kartierung ausgeschlossen wurde. Dadurch wurde die Durchführbarkeit der Methode 

unter realistischen Tagebaubedingungen getestet. Dreizehn Datensätze, die auf den verschiedenen 

Sensoren basierten, wurden mit den vier vorher benannten Methoden analysiert. Der optimale Sensor 

für die spektrale Unterscheidung von Abbaufrontmaterial wurde als VNIR-SWIR-Sensor mit 40nm 

Bandbreite im VNIR- und 15nm Bandbreite im SWIR-Spektralbereich bestimmt, der atmosphärisch 

beeinflusste Spektralbereich wurde ausgeschlossen. Nun wurde der Datensatz von der Mine in Apliki 

verwendet, um die vorher bestimmten Analysen und Sensoren anzuwenden. Sechsunddreißig Proben 

wurden geochemisch und mineralogisch analysiert. Die Probenspektren wurden zu zwei 

Spektralbibliotheken zusammengestellt, die beide zwischen sieben verschiedenen geochemisch-

spektralen Clustern unterscheiden. Die Reflexionsdaten wurden auf fünf verschiedene Sensoren 

heruntergerechnet. Diese fünf verschiedenen Datensätze wurden mit der SAM-, BFF- und SVM-

Methode kartiert, wobei entsprechende Kartierungsgenauigkeiten von 85-72%, 85-76% bzw. 57-46% 

erreicht wurden. Ein Scan der Abbaufront von Apliki wurde verwendet, um den entwickelten 

Arbeitsablauf auf Daten unter realistische Bedingungen anzuwenden. Die Kartierungsergebnisse 

wurden auf der Grundlage der Feldbeprobung und einer geologischen Zonierungskarte der Abbaufront 

validiert. Die Abbaufront wurde mit SAM und BFF analysiert und die Analysekarten wurden auf einem 

von „Structure-from-Motion“ abgeleiteten 3D-Modell des Tagebaus visualisiert. Die kartographierten 

geologischen Einheiten und Zonen korrelierten gut mit der erwarteten Zonierung der Abbaufront. Ein 

dritter Datensatz stand für die Anwendung des entwickelten Arbeitsablaufs zur Verfügung. 

Geochemische Probenanalysen und Laborspektraldaten von fünfzehn verschiedenen Proben aus dem 

offenen Tagebau Three Hills in der Republik Zypern wurden zur Analyse eines Datensatzes der 

Abbaufron des Tagebaus verwendet. Dabei wurden Bereiche mit niedrigem, mittlerem und hohem 

Erzgehalt identifiziert. 

Der in der Arbeit entwickelte Arbeitsablauf konnte erfolgreich für die offenen Tagebaue Apliki und 

Three Hills angewandt werden. Die errechneten Spektralgeologischen Karten stellen die örtliche 

geologische Situation korrekt dar. Der entwickelte Arbeitsablauf erläutert die Erfassung, Aufbereitung 

und Verarbeitung von Daten aus der bildgebenden Spektroskopie und beschreibt die Wahl der 

Analysemethodik sowie die Verwendung robuster Sensoren, die den Anforderungen der 

Tagebaubedingungen entsprechen. Sie hebt die Bedeutung einer standort- und 

lagerstättenspezifischen Spektralbibliothek für die Analyse von Abbaufronten hervor und unterstreicht 

die nötige Einbindung von Experten im Bereich der Geologie und der Spektralanalyse für eine 

erfolgreiche Implementierung der bildgebenden Spektroskopie im Kontext des Abbaus von Material in 

offenen Tagebauten.  
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The aim of this project was to evaluate existing approaches of imaging spectroscopy for the mining 

sector and present a conclusive workflow to utilize imaging spectroscopy for open pit mining. The 

outcomes of this investigation are presented in this monographic dissertation. Current approaches are 

reviewed, challenges of the commonly used methods and sensors are highlighted and discussed and 

recommended procedures are presented. This work guides through a workflow of the application of 

imaging spectroscopy in the laboratory and for mine faces. The manuscript starts with an introduction 

into open pit mining conditions as well as imaging remote sensing principles and hyperspectral mine 

face scanning. The geological background of the utilized materials is presented as well as the datasets. 

The presented near-field imaging spectroscopy workflow starts with an introduction to the commonly 

used classification methods and an evaluation of these methods. This is followed by a theoretical 

investigation of an optimal robust imaging spectroscopy sensor for open pit mining. A workflow to 

handle laboratory imaging reflectance and radiance data is followed by a detailed description of a 

workflow for acquiring and analyzing imaging spectroscopy field data in open pits.  The presented 

methods and workflows are applied to three regionally different datasets: 1) Laboratory hyperspectral 

scans of iron ore samples from the Minas Gerais district, Brazil, 2) Laboratory and mine face 

hyperspectral scans of surface materials from the copper-gold-pyrite mine Apliki, Nicosia District, 

Republic of Cyprus, and 3) and Laboratory and mine face hyperspectral scans of samples from the 

Three Hills deposit in the operating copper-gold-pyrite mine Skouriotissa, Nicosia District, Republic of 

Cyprus. A section about the discussion of all workflow sections, a conclusion and an outlook complete 

the manuscript.  
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Abbreviations 

Table 1 List of not commonly known terms used throughout the work (acronyms). 

Terms  Abbreviation Description 
Abbreviations VNIR Visible light and near infrared 

SWIR Short wave infrared 

TIR Thermal infrared 

SNR Signal to noise ratio 

FWHM Full width at half maximum 

EMR Electromagnetic radiation 

HSI Hyperspectral Imagery 

EnMAP Environmental Mapping and Analysis Program: future earth 

observation satellite mission (www.enmap.org)1 

CCRSS-A China Commercial Remote Sensing Satellite System: future earth 

observation satellite mission 

HISUI Hyperspectral Imager Suite: future earth observation satellite mission 

DOM Digital Outcrop Model 

LiDAR Light detection and ranging 

SfM Structure-from-Motion 

 Instruments 

 

 

 

HySpex VNIR-

1600 

HySpex pushbroom spectrometer, VNIR camera 

HySpex SWIR-

320m-e 

HySpex pushbroom spectrometer, SWIR camera 

HySpex ground HySpex operational software for laboratory and near-field application 

HySpex rad HySpex calibration software to transform raw DN into radiance data 

Spectral 

analytical 

terms 

  

EM Endmember 

CR Continuum Removal 

SMACC Sequential Maximum Angle Convex Cone 

PPI Pixel Purity Index 

PCA Principle Component Analysis 

MWL Minimum Wavelength Mapping 

SAM Spectral Angle Mapper 

BFF Bi-Triangleside Feature Fitting 

SFF Spectral Feature Fitting 

PSLR Prinicpal Least Squares Regression 

GML Gaussian Maximum Likelihood 

MHD Mahalanobis Distance Likelihood 

ANN Artificial Neural Network 

CNN Convolutional Neural Networks 

SVM Support Vector Machines 

RF Random Forest 

MTMF Mixture Tuned Matched Filtering 

ICA Independent Component Analysis 

LSU Linear Spectral Unmixing 

ML Machine Learning 

PRISM - MICA Processing Routines in IDL for Spectroscopic Measurements - Material 

identification and characterization algorithm (Kokaly, 2011)  

EnGeoMap EnMap Geological Mapper (Rogass et al., 2013) 

Software and 

System 

IDL® Interactive Data Language (L3Harris-Geospatial-Solutions, 2018),IDL® 

8.7.0  
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ENVI® ENVI ® image analysis software (L3Harris-Geospatial-Solutions, 2018),  

Python 3.7.6 packages by conda-forge, IPython 7.13.0 

R Studio R 3.6.2, RStudio 1.2.5033 

System Linux Ubuntu 18.04.4, Processor Intel® Core TM i7-8550U CPU 1.80GHz x 8, 

Graphik Intel® UHD Graphics 620, OS type 64-bit, Memory 31,3GiB 

System 

Windows 

Intel® Core™ i7-2860QM CPU @ 2.50 GHz x 2.50 GHz,  

Memory 32 GB, 64-bit 

Agisoft  Agisoft Photoscan Professional v.1.2.6.2834 

rad. Data  

ReSens+ 

rad. Data Spectral Analytics UG (haftungsbeschränkt) and licenced 

ReSens+ spectral analysis algorithm 

QGIS Quantum GIS, QGIS3, version 3.4.12 

Python 

Toolboxes 

DeepHyperX (Audebert, 2020) 

Spy Spectral Python (spectralpython.net/, 2020) 

PySp Tools for hyperspectral imaging (Therien, 2020) 

HypPy Hyperspectral Python (Bakker and Oosthoek, 2020) 

scikit-learn Scikit-lear: Machine learning in Python (Pedregosa et al., 2011) 

Commercial 

Institutes 

BVM Bureau Veritas Minerals is an industry leader in the analysis of minerals 

for the Exploration and Mining industries. BVM is a service company 

that provides mineral preparation and laboratory testing services. 

Research and 

federal 

institutes or 

governmental-

funded  

projects 

 

 

 

USGS United States Geological Survey 

GSD Geological Survey Department, Ministry of Agriculture, Rural 

Development and Environment, Republic of Cyprus 

HCM Hellenic Copper Mines 

UP University of Potsdam 

GFZ German Research Centre for Geosciences 

REEMAP Rare Earth Element MAPping: Research project for the development of 

a modular multi-sensor processing chain for modern imaging 

spectrometers to detect REEs 
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1 Motivation 

A rapidly increasing world population drives an ever-increasing global demand for metals and other 

mining products. This demand is additionally fueled by ever-changing technology trends and the 

digitization of different sectors. In order to meet this demand in a sustainable manner or even to 

maintain a competitive edge in times of sharply dropping demand, mining companies implement 

innovative technologies that help further reduce environmental impact through more selective 

mining. The UN Sustainable Development Goals incorporate the need for meeting the metal demand 

in a sustainable manner in their Goal 9: “[To] build resilient infrastructure, promote sustainable 

industrialization and foster innovation” (sustainabledevelopment.un.org/, 2020). Middle-income 

countries particularly benefit from entering the basic and fabricated metals industries to support 

inclusive and sustainable industrialization. Based on estimates from the International Labour 

Organisation ILO, 30,000,000 people were employed by the mining industry in 2013 (IGF, 2013). It is a 

sector that has always imposed stress on the environment and the people working in mining and living 

around mine sites due to its extractive nature and the number of technologies and workforce 

employed in it (Bowell, 2017). A sustainable approach to mining is not based on the reduction of 

extraction alone, but on developing technologies to create a safer, highly efficient extraction-, sorting 

and recycling process. Multispectral and hyperspectral remote sensing techniques already play a role 

in a number of mining activities. These range from satellite- and aerial surveys prior to mining (Kruse 

et al., 2011; Kruse, 2012; Mielke et al., 2014; Notesco et al., 2014; Swayze et al., 2014; Salehi, 2018), 

aerial mapping approaches of open mine pits in order to update deposit models (Jakob, Zimmermann 

and Gloaguen, 2017; Kirsch et al., 2018) and laboratory based drill core and sample scanning to 

digitizing data for the process of mine development (http://www.corescan.com.au/, 2013; Koerting et 

al., 2015; Körting, 2019; Kraal and Ayling, 2019). The hyperspectral scanning of mine faces, fresh 

extraction sites and mine waste piles has been the objective of a number of publications (Kurz et al., 

2008; Kruse et al., 2011; Kurz et al., 2012; Buckley, Kurz and Schneider, 2012; Kurz, Buckley and Howell, 

2013; Dalm, Buxton and van Ruitenbeek, 2017; Jakob, Zimmermann and Gloaguen, 2017; Kirsch et al., 

2018; Lorenz et al., 2018; Salehi et al., 2018). Many of these methods were approached in the name 

of science or as a proof of concept and have yet to be implemented in the day-to-day activity of the 

mining industry as seen in a vision for the hyperspectral mining future in Figure 1.  
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Figure 1 Hyperspectral Imaging in Mining - Vision for future adaptations of hyperspectral mapping in the whole life cycle 

of open-pit mining. (Image sources: Conveyor belt: https://www.metso.com/contentassets/78a90df835f44b468a17d284 

65b8802b/conveyor-solutions-belts.jpg, open pit: https://i.ytimg.com/vi/ibzVZc7Qmeg/maxresdefault.jpg) 

 

In 2003, the International council on Mining & Metals (ICCM) established 10 principles to respond to 

key challenges in the mining sector. Principle 4 states the implementation of risk management 

strategies based on valid data and sound science. Principle 5 builds on the improvement of public 

health and safety performances and principle 6 seeks continual improvement of the environmental 

performances of mining (ICMM, 2013). All of these aims can be supported by implementing remote 

sensing technologies, for example by providing sound virtual outcrop models (e.g. (Buckley et al., 2019; 

virtualoutcrop.com, 2020). These outcrop models can define the areas of mineralization in a highly 

efficient manner and refine existing mine development models. This could reduce extraction to the 

area of highest mineralization and reduce the impact of the subsequent sorting and refinery processes. 

They can also map fault systems and areas of instability and decrease the direct contact with 

potentially risk-induced environments. This technology and the use of it requires a new workforce in 

mining, as well as new training for the geoscientists of the future (Jébrak and Montel, 2017). This is 

also indicated in the “Ernest & Young Top 10 Business risks facing mining and metals” in which the 

challenges facing the mining industry are ranked each year (EY, 2018). “Digital Effectiveness” and 

“Maximizing Portfolio Returns” has been in the top ranks since 2018 and EY repeatedly state the need 

for digital initiatives and innovation that span the entire value chain and induce a transformation 

rather than only applying digital solutions to singular issues. Investing a higher amount of the budget 
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to digital solutions is also one key point to increase the operation’s efficiency substantially (EY, 2018).  

Digitalization throughout the mining value chain has to happen across different disciplines; this 

includes production and value chain optimization, asset performance management and a workforce 

transformation (Aveva, 2020). Manish Chawla, Global Managing Director for Energy & Natural 

Resources at IBM, sees a future cognitive enterprise. These cognitive enterprises will be driven by AI 

and cognitive technology applications in geological, supply chain, production, equipment, worker 

safety and enterprise intelligence (Brightmore and Deane, 2020). Examples of the digital mining 

transformation include applying artificial intelligence to retain the knowledge of a retiring workforce, 

as is happening e.g. for Australia’s largest oil and gas company Woodside by implementing IBM Watson 

(IBM, 2020). It also means implementing machine learning algorithms to leverage exploration and 

reduce the cost of high-risk greenfield exploration by using the mining industries biggest asset – 

multisource data (Goodbody, 2018). The use of AI extends to route optimization for trucks, 

optimization of smelters and incident analysis for safety optimizations (Brightmore and Deane, 2020). 

A report on “Digital in Mining – Progress and Opportunity” by Accenture Consulting that is based on 

another report from the World Economic Forum (WEF) (Callahan and Long, 2017) compares the 

application level of digital solutions in the mining and mineral sector. According to Callahan and Long, 

in-mine operations embrace new digital technologies the heaviest in the sector, with 54% of the 

questioned mining companies applying robotics and automation for the mining operations. Real-time 

analytics, predictive machine learning analytics and image analytics are being applied at 35%, 38% and 

37% of the mines respectively. Exploration, mine development and ore processing are lagging behind 

in the race for digitalization. The successful implementation of hyper and superspectral monitoring 

approaches depends on a number of factors, these include the safety of operators and equipment, the 

scheduling of measurements within a busy mine planning schedule, the limitations of data quality by 

the incident light and atmospheric conditions (clouds, dust, humidity) and the robustness and 

simplicity of the spectral equipment.     

 

The objective of this work is: 

1. The development of a digital spectral mine face monitoring based on hyperspectral analysis 

methods for from an operating and an inactive open pit copper mine in Cyprus 

2. The evaluation of existing hyperspectral outcrop analysis approaches related to samples from 

the iron quadrangle in Minas Gerais, Brazil 

3. The parameterization of imaging spectroscopy for pit mining applications 

4. The development and evaluation of an imaging spectroscopy workflow for a mine face, 

ground-based characterization of open pit mine 
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2 Introduction 

2.1 Introduction into open pit mining: conditions and requirements 

A short overview about the challenges facing the short-term planning in the open-pit mining 

environment is given here and is based mainly on the review paper by Blom et al. (2019). 

Metal ore like iron, copper and gold as well as resources like coal and limestone are commonly 

extracted using the open-pit mining method. Here, horizontal layers of material are extracted from 

the top down. The extraction is divided in long-term planning processes (life-of-mine), short-term 

planning (from a week to about 2 years) and to the day-to-day, shift-to-shift planning. In the long-term 

planning the mine is divided into a grid of equally sized blocks assigned with their respective ore grade 

and other attributes like clay or silica content. A geologist selects the blocks that are to be extracted 

each year. For the short-term plan, the block model of the pre-selected blocks is divided into irregularly 

shaped blocks – the ore and waste blocks. These areas are blasted and a geologist partitions these 

blocks by their grade based on prior sampling. This material is referred to as the “broken stock” of the 

mine. In the day-to-day activities, the planner decides which material from the broken stock is fed to 

the crusher or processing plan in order to achieve the daily production rate (Blom, Pearce and Stuckey, 

2019). As seen in Figure 2 remote sensing can aid multiple processes along the life-of-mine value chain 

but also already prior to opening the mine in the exploration phase. By including remote sensing in 

this process, some of the financial risks connected to mining can be evaluated earlier and possibly 

avoided (e.g. target detection by satellite to avoid over-sampling and over-drilling). Short-term 

planning handles various uncertainties; these include the geological uncertainty (stability, ore grade), 

the equipment-based uncertainty (availability, reliability) and the economic uncertainty (commodity 

price, fuel price) (Blom, Pearce and Stuckey, 2019). It is predictable, that mine face and stockpile 

scanning and mapping by hyper- or superspectral sensors will play an important role in the future in 

optimizing short-term objectives like: maintaining the grade of ore production within the desired 

bounds for the extraction period or sorting the material that is sent to the crushers or waste site to 

minimize re-handling investments made in 2020 into AI companies and remote sensing companies like 

Plotlogic Pty Ltd solidify my expectations (im-mining.com/2020/04/30/plotlogic-raises-profile-funds-

bhp-iron-ore-contract/ and Gleeson, 2020). The need for imaging spectroscopy in mining is well 

summarized by a quote from the Founder & CEO of Plot Logic Andrew Job, who said: “The mining 

industry is years behind other industries in utilising big data and AI: as a result, there is a lack of fast 

and accurate orebody knowledge that ultimately restricts yield. With our technology we can grade 

every tonne of ore accurately, before it even leaves the ground – driving efficiency, sustainability, and 

profitability. Plotlogic [in this case hyperspectral imaging and AI] can optimise the mining process from 
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pit-to-port with pinpoint precision.” (im-mining.com/2020/04/30/plotlogic-raises-profile-funds-bhp-

iron-ore-contract/ and Gleeson, 2020). 

 Keeping the ore grade at the desired level for each extracted block can be aided by scanning the 

samples and cores from each assigned build or by scanning the mine face prior to blasting and the 

broken stock after blasting (Blom, Pearce and Stuckey, 2019). Hyper- and superspectral mine face 

scanning can be utilized as a tool to increase the certainty for mined ore grade. This can assist by 

maximizing the level of contaminants while remaining below upper limits in order to prolong the life 

of the mine. It ensures a correct ore-grade based stockpiling and minimizes the re-handling of material 

by correct deposition at stockpiles, processing plants or waste dumps. Built-in as real-time “vision” 

monitors into equipment, systems like these can optimize shovel allocation and excavator location and 

keep machinery movement at an optimum. Blasted mine faces will not only be evaluated in real-time 

for excavator activities but the mine face mapping will allow a precise modeling of extractive activities 

for the subsequent mine faces. By reducing misclassifications (in which waste is sent to the processing 

and ore to the waste dumps), the total operating cost can be minimized. 

In terms of energy consumption from mine to comminution, milling and material handling diesel 

account for the biggest consumers in a mine with 40% and 17% of respectively of total energy 

consumption (Lessard, De Bakker and McHugh, 2014). Ore sorting technologies operating on the run-

of-mine (ROM) stream can reduce the energy consumption by distinguishing the valuable material 

from the waste material. The ROM stream represents material of a size around 5cm that has been 

through preliminary, relatively low energy, crushing operations. An example from a molybdenum mine 

from (Lessard, De Bakker and McHugh, 2014) showed that 90% of the molybdenum was found in 7.4% 

of the mass of stone. By rejecting rocks below a certain cut-off grade and classifying them as waste, 

not only the material handling could be minimized but also, the energy consumption per ton of 

valuable ore could be reduced dramatically. The study by (Lessard, De Bakker and McHugh, 2014) used 

dual-energy X-ray transmission studies in order to sense the whole rock volume, but the reduction of 

transported material by sorting for base metals and industrial metals by VNIR, SWIR and TIR can also 

be applied to this assumption. These sensors identify the outermost few micrometers of the surface 

and thereby do not represent the whole rock volume. They do however work without the need of an 

active X-Ray source and decrease the associated risk.  
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Figure 2 Lassonde Curve: Life cycle of a mine, connected risks and the possible implementations of remote sensing, 

modified from LePan (2019), created by Friederike Koerting as promotional material for rad.Data Spectral Analytics UG. 

In order to implement hyper- and superspectral sensors into the open pit mining environments, a few 

challenges have to be addressed. A non-extensive list of requirements for hyper- or superspectral open 

pit monitoring systems are listed in Table 2. 

Table 2 Challenges and requirements of the open pit mining industry for hyper- or superspectral monitoring. 

# Challenges Development of Solution 
1 Ruggedness Protective casing, dust-proof ventilation, GUI adjusted to outdoor conditions 

& handling with Personal Protective Equipment 

2 Speed of Sensor 

and Analysis 

Optimal balance between spectral bands and spatial resolution to keep pace 

with the dynamics of mining operations; reduction of sensor complexity to 

decrease acquisition and analysis times; near-real time decision making 

3 Spatial Resolution Resulting grid resolution adjustable or matching with common grids used for 

geological mapping and modeling in mining operations 

4 Site Specific 

Analysis 

Sensor can be calibrated with site-specific spectral reference libraries for use 

along mine life cycle; adaptable to new or multiple operations; sensors 

spectral resolution and range adapted to the deposit type 

5 Size & Weight Sensor weight and UAVs that do not require special pilot, Sensors can be 

safely handled by one person. 

6 Power 

Consumption 

Battery and UAV optimization with respect to needed measurement and flight 

times and needed monitoring frequency 

7 Cooling Efficient and dust-proof cooling system to withstand high temperatures  

8 Albedo Correction  Automated pre-processing of data, at-sensor reflectance retrieval and feature 

retrieval enabling faster, flexible and easy to analyze datasets 

9 Humidity & Dust Spectrally inactive, easy to replace hardware filters against dust and wear on 

the lens 
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In order to make advances towards those requirements, this work discusses the simplification of the 

spectral dimensions of the data (theoretical hardware/ sensor development), the speed of data 

acquisition, processing and analysis (comparison of methods and application of different spectral 

regions) and to discuss how the demands for mining environments can be met by hardware or 

software adaptations in the future. 

 

2.2 Important definitions 

As the terminology for remote sensing is used with a variety of slightly different meanings in the 

community but is rather unknown outside of it, the main terms are described here for the context of 

this work. 

2.2.1 Spectroscopy 

Minerals absorb and scatter incident light characteristically and can thus be distinguished from each 

other. Minerals absorb photons by a variety of processes, which are wavelength dependent (Clark, 

1999). Spectroscopy describes the study of light as a function of wavelength. Spectrum refers to a plot 

of the intensity of reflection (y) as a function of wavelength (x) (Hunt, 1989). Spectroscopy can be 

applied to crystalline and amorphous materials alike and is sensitive to the chemical bonds in the 

material and the crystalline structure and the texture of the surface. Simplified, minerals can be 

identified by the position and shape of their absorption feature and semi-quantified by the depth of 

this feature (Figure 3). The differing chemical composition leads to position shifts and shape changes 

of the spectral features and makes them a complex study object. By identifying these changes and 

shifts, not only small changes of chemistry in the rock can be defined, but also some proxies for 

elements and substitution of elements in one mineral (Clark, 1999).   
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Figure 3 Simplified representation of the information contained in hyperspectral imagery (Körting, 2019). 

 

Multispectral imaging collects the incoming signal in a small number of specific wavelength ranges so 

called “bands” (typically between 3-15) along the electromagnetic spectrum. Hyperspectral imaging 

collects the incoming light within narrow, consecutive, overlapping wavelength ranges (between 100 

and 500+ bands). Due to the narrow, overlapping nature of the bands, narrow spectral absorption 

features can be resolved. Superspectral imagery is a term loosely describing imagery with band 

numbers between the multi- and hyperspectral resolution (between 15 and 100 bands). Superspectral 

imagery is able to distinguish broad spectral features (e.g. iron absorptions) but does not resolve 

narrow features. Figure 4 shows a comparison of bandwidths and numbers of hyper-, super- and 

multispectral data. For multispectral data, the Sentinel-2 spectral resolution is shown as an example 

and the hyperspectral data is shown schematically. The superspectral sensor example shows 

schematically how the band distribution of a VNIR-40nm bandwidth and SWIR-15nm bandwidth sensor 

would look like that does not collect spectral bands in the wavelength range that is influenced by 
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atmospheric absorptions (ca. 1300-2010nm). Additionally, the superspectral WorldView-3 satellite 

band setting is shown as an example for one exisiting superspectral sensor. The bands are shown 

without the overlap to distinguish the different width of the individual bands. 

 

 

Figure 4 Schematic visualization of bandwidth and band number differences between hyper-, super- and multispectral 

sensors. 

2.2.2 Wavelength ranges 

For geological remote sensing, the following wavelength ranges are of importance (Figure 5): the 

visible light (VIS 0.4 – 0.7μm) the near-infrared energy (NIR) from 0.7 – 1.0μm, the middle-infrared 

region (in remote sensing often referred to as shortwave-infrared SWIR) which spans from 1.0 – 2.5 or 

3μm and the thermal infrared (TIR) with two useful ranges at 3 – 5μm and 8 –14μm (Jensen, 2010). In 

this work, the VNIR (0.4 – 1.0μm) and the SWIR (1.0 – 2.5μm) are focused on, as the HySpex system 

for laboratory and outcrop scans is active in this wavelength range. 

 

Figure 5 The electromagnetic spectrum and the different types of interactions between EMR and material (Körting, 

2019). 
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2.2.3 Terms of spectroscopic systems 

Imaging spectrometers can produce a 3D cube with two spatial dimensions and a third dimension in 

the spectral range. The spectral range describes the region of wavelengths in which the sensor is able 

to collect quasi-continuously data. Data is being collected in defined spectral “channels” or “bands” of 

a certain bandwidth and sensitivity. The HySpex VNIR and SWIR system for example collects the 

spectral information in 408 bands in a spectral range from 414nm to 2498nm. The spectral bandwidth 

is the region of wavelengths of each individual channel in the spectrometer. In an ideal system, each 

channel collects only the light from a narrow wavelength range and rejects the rest. Only with 

continuously spaced, narrow bands adjacent to each other and overlapping, narrow absorption 

features can be detected. The full-width at half maximum (FWHM) spectral response of a spectrometer 

defines the width of the bandpass (Swayze et al., 2003). The distance in wavelengths between the 

centers of adjacent spectral channels is called spectral sampling. The HySpex VNIR sensor collects 160 

spectral bands in the range of 414 – 1000nm with a spectral sampling of 3.7nm. The HySpex SWIR 

collects from 1000 – 2498nm in 256 bands with a sampling of 6.25nm. And finally, the signal-to-noise 

ratio (SNR) is defined as the mean signal level divided by one standard deviation of the signal variety 

or noise (Swayze et al., 2003). To record details in the spectrum, the SNR has to be high enough to 

detect the spectral features of interest. The spectral bandwidth and the intensity of light reflected or 

emitted from the surface influence the SNR (Clark, 1999).  

In a grating imaging spectrometer - as the HySpex sensors used in this work - the spectral sampling is 

set by the geometry of the sensor. The dispersion of the grating of the prism, the focal length of the 

camera and the spacing of the adjacent centers of the detector elements affect the spectral sampling. 

The bandpass can be affected by the interplay between the sensor geometry, optical deviations and 

diffraction (Swayze et al., 2003). The maximum information is already obtained by a sampling interval 

at half the FWHM, as stated in the Nyquist theorem (“critical sampling”). The dominant bandpass in 

spectrometers is designed to have a Gaussian profile (Clark, 1999), as a Gaussian of varying order 

optimally approximate the band related spectral sensitivity and allows a quasi-continuous spectrum of 

spectrally adjacent bands at their FWHM. Figure 6 shows the simplified optical system of the HySpex 

sensors ((hyspex.no/products/disc.php, 2019). 
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Figure 6 The simplified HySpex optical system after (Körting, 2019) modified from (hyspex.no/products/disc.php, 2019). 

 

2.2.4 Outcrop/ Mine face scanning 

The terms “outcrop” and “mine face” are used interchangeably and describe near-vertical man-made 

cliff faces in the mining environment produced by extraction of material. Depending on the scale of 

the mining project, the scales of these vertical cliff faces may vary, in general each horizon of extraction 

spans around 10-20m of height. 

 

Outcrop scanning refers to the data acquisition of hyperspectral imagery from a distance. As the line 

scanners of the used sensor are moved line-by-line across the outcrop face by a rotation system, the 

outcrop is “scanned” hyperspectrally. Hyperspectral data can either be acquired by point 

spectrometers sampling one spectrum per location/ sample or by hyperspectral imaging 

spectrometers. Hyperspectral imagery (HSI) is referred to as a data cube with three dimensions (the 

spatial x- and y- dimensions and the third spectral dimension). Each pixel of the resulting image 

represents the full spectral information for said location on the outcrop face.  

2.2.5 Hyperspectral mapping 

Hyperspectral maps are the analysis result of hyperspectral imaging. Each pixel and spectrum of the 

hyperspectral scan can be analyzed and compared based on its spectral information. The term 

“mapping” is used for the final result of the analysis, usually a color-coded representation of the 

expected materials within the hyperspectral scan. The most common result is a hard classifier map in 

which each pixel is labeled and color-coded.  
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2.3 Introduction to remote sensing principles 

In order to use the information from the reflection of any given surface and to extract geological 

information from it, the way electromagnetic radiation interacts with the surface has to be considered. 

Hunt (1989) gives a brilliant introduction to the topic in his book chapter “Spectroscopic Properties of 

Rocks and Minerals” and focuses on the origin of the spectral signatures of rocks and minerals. In the 

following section a brief introduction to the physical principles of hyperspectral imaging (HSI) remote 

sensing will be given, in order to facilitate an understanding of the pros and cons of the method, this 

is based on Clark (1999) and Hunt (1989). The acquisition of information without direct contact to the 

object is one of the main advantages of remote sensing. HSI remote sensing describes the way of 

capturing whole image scenes in which each pixel represents a continuous spectrum of light in the 

given sensor ranges. From the light source to the object of measurement and to the collection in the 

sensor, the energy recorded by a remote sensing system is changed in many different ways. For passive 

satellite remote sensing the main energy source is the sun. The incoming energy is scattered, absorbed, 

transmitted and reflected first by particles in the atmosphere and then by the Earth’s surface and 

interacts again with the atmosphere on its way to the sensor. In the sensor, the incoming light is 

dispersed, filtered and interacts with the detectors (Jensen, 2010).  The light source, the travel path 

and the surface interactions define the energy that is collected by the sensor, each will be explained 

in more detail below. 

2.3.1 Electromagnetic radiation  

Electromagnetic radiation (EMR) has different sources of creation. Radioactive decay, energy level 

changes in electrons, electrical charge acceleration or thermal interactions and motion in molecules 

are mechanisms for EMR creation. The wave nature of EMR was described by James Clerk Maxwell’s 

wave model of EMR in the 1860s, whereas the explanation for the particulate nature of EMR is based 

on Sir Isaac Newton’s particle model from 1704 which is explained later on (Jensen, 2010). EMR can 

be characterized by its wavelength λ and its frequency υ, both are related (see Equation 1). 

Equation 1 Relationship between wavelength and frequency of EMR 

! = 	$% 

c is the speed of light, constant at 299,792,458 m/s (Jensen, 2010). 

All objects above absolute zero (0K or -273°C) emit electromagnetic energy. The sun is the main source 

of energy in remote sensing systems. Simplified, the sun is equivalent of a blackbody with a 

temperature of 5700K. A blackbody emits energy with perfect efficiency and radiates energy at the 

maximum possible rate per unit area at each wavelength (Jensen, 2010). Temperature variations are 
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the only influence on its efficiency as a radiator. Kirchoff’s law states the energy preservation in such 

a blackbody, meaning the ratio of absorbed radiation and emitted radiation is equal (Campbell and 

Randolph, 2011). The Stefan-Boltzmann law defines the relationship between the total emitted 

radiation from a blackbody and its absolute temperature (Equation 2). The higher the temperature of 

an object, the higher is the amount of radiated energy by the object and the shorter the wavelength 

of the radiation peak.  

Equation 2 Stefan-Boltzmann law describing the total emitted radiation from a blackbody M (λ) 

&($) = 	)	 ×	+! 

σ is the Stefan-Boltzmann constant (5.6697 x 10-8Wm-2K-4) and T is the absolute temperature [K] 

(Jensen, 2010). 

The sun produces a continuous spectrum of electromagnetic radiation from very short wavelengths, 

very high frequency gamma and cosmic waves to very long wavelength, very low frequency radio 

waves.  Wien’s displacement law defines the wavelength of maximum emission, which is in 

dependence to the absolute temperature of the object (Equation 3). The sun with a temperature of 

around 6000K has its dominant wavelength at 0.483μm (Jensen, 2010). 

Equation 3 Wien's displacement law 

$"#$ =	
,
-  

where k is a constant (2898K μm K) and T is the absolute temperature [K] (Jensen, 2010). 

EMR cannot only be described as a wave, but EMR is also transmitted as a stream of indivisible particles 

traveling in a straight line. Sir Isaac Newton was the first to recognize the dual nature of light and the 

discrete and continuous behavior of electromagnetic radiation (Campbell and Randolph, 2011). Niels 

Bohr and Max Planck discovered that EMR is absorbed and emitted in discrete units or packages of 

energy called "photon" or "quanta". They proposed the "quantum theory" of electromagnetic 

radiation (Equation 4). 

Equation 4 Quantum energy expressed by the frequency of radiation and the Planck constant 

. = ℎ% 

where Q is the energy of a quantum [J], h is the Planck constant (6.626 x 10-34 Js) and v is the frequency 

of the radiation [Hz]. 
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Spectral sensors collect the number of photons that are emitted or reflected per wavelengths by the 

material in each measured ground pixel. The type of reflecting surface varies. Specular reflection occurs 

from smooth reflecting surfaces where the reflected energy leaves the surface at an equal angle but 

opposite to the incident energy. Calm water bodies are near-perfect specular reflectors. If the surface 

exhibits a large surface height compared to the size of the wavelength of the incident energy (rough 

surfaces), the energy is reflected in many directions. This is called diffuse reflection. For perfect diffuse 

reflectors the “Lambertian surfaces” the reflected energy leaving the surface is constant for any angle 

of reflectance (Jensen, 2010). 

The time rate of flow of energy through, off of and onto a surface is called radiant flux (Φ) [W] (Jensen, 

2010). The exact monitoring of the incident radiant flux characteristics and its interaction with the 

surface allow a characterization of the surface itself. The radiation budget equation (Equation 5) states 

that the total amount of radiant flux in specific wavelengths incident to the terrain (Φiλ) is the total 

amount of the radiant flux reflected from, absorbed by and transmitted through the surface (Jensen, 

2010). 

Equation 5 Radiation budget equation 

0%& =	0'()*(+,(-	& +	0#/01'/(-	& +	0,'#20"%,,(-	& 

By dividing each variable by the original incident radiant flux (Φiλ), Equation 5 can be rewritten as: 

Equation 6 Raditation budget equation (2) 

23453!-36& +	789:2836& +	-27;9<=--36& = 1 

Kirchoff found that in the infrared portions of a spectrum the spectral emissivity (ε) equals its spectral 

absorbance (aλ), often stated as “good absorbers are good emitters and good reflectors are poor 

emitters” (Jensen, 2010)(Equation 6). 

Equation 7 Kirchoff's law 

7& =	?& 

Spectral sensors collect the number of photons that are emitted or reflected per wavelengths. The 

photons are collected by the sensor in raw digital numbers (DN) format. The DN values are transformed 

into radiance values [W x sr-1 x m-2 x nm-1] using manufacturer predefined sensor characteristic 

radiometric calibration coefficients. Radiance expresses the emitted energy per time unit from a 

specific direction of an area unit. The collected photons are made up from the total amount of radiance 

exiting the target study area (LT) and additional radiance from different paths that are in the field of 
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view (FOV) of the sensors (path radiance Lp) (Jensen, 2010). The total radiance collected at the sensor 

(LS) can be described as seen in Equation 8. 

Equation 8 Total radiance recorded by the sensor. 

@3 =	@4 +	@5 

Lp describes all radiance that intercepts the radiance exiting the target study area, either from 

neighboring areas or from scattering within the reflectance path from target to sensor (e.g. scattering 

of the reflected energy by dust particles or molecules within the atmosphere before it is collected by 

the sensor) (Jensen, 2010). The path radiance can have a high impact on the collected radiance at the 

sensors and distort the true signal of a measured target surface. This holds especially true for proximal 

remote sensing with a high amount of possible neighboring reflectors from concave surface trends e.g. 

in open pit mines with concave mine face increments. 

The collected data is transformed from radiance to reflectance by calculating the ratio of incident 

radiance (irradiance) and the backscattered, collected radiance of the surface. It aims to make use only 

of the material information independent from the source of energy. For near-field spectral data 

collection (e.g. measuring a mine face within a 100m distance) the influence of Lp is usually seen as 

negligible.  

2.3.2 Interaction with the surface  

The main focus of surface reflectance retrieval is to characterize the interaction of the EMR with the 

surface of interest and the resulting flux of energy. In the application for the field of geology the matter 

interacting with the incoming radiation are rocks and minerals, depending on the spatial resolution of 

the measurement and the size of crystallization. Rocks are an assemblage of minerals; The individual 

mineral grains can be interlocked by growth patterns or cemented together by fine-grained minerals 

(often silica or calcium carbonate). Most rock surfaces consist of a variety of grain sizes and minerals, 

all of which influence the interaction with the incoming EMR in a different manner (Clark, 1999; Jensen, 

2010). The interaction of the incoming light or radiant flux in a specific wavelength with the matter can 

reveal important information about the matter itself. If the reflection, absorption or transmittance 

through a surface dominates in this interaction is dependent on the nature of the surface, the angle of 

illumination and the wavelength of the EMR (Jensen, 2010). 
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On the rock or mineral scale, photons of incident light are reflected from the grain surface or pass 

through the surface and onto another mineral grain (refracted). Those particles are referred to as 

"scattered". The scattered photons can find their way onto another mineral grain or can be scattered 

away from the surface where they might be collected and measured by a remote sensing device 

(Jensen, 2010). A mineral grain can also absorb the photons. Each mineral at a temperature above 

absolute zero will additionally actively emit electromagnetic energy at certain wavelengths. Generally 

though, in laboratory experiments enough light is directed at the sample and the amount of photons 

emitted by the material can be neglected (Clark, 1999). At the outcrop scale, especially for a concave 

situation of an observer as in the open pit environment, adjacent effects of scattered EMR over 

multiple surfaces, topography induced illumination differences and diffuse illumination leading to 

multiple surface-light interactions can play an important role in altering the signal before reaching the 

detector and challenge the pre-processing and reflectance retrieval of the collected data (Kurz, Buckley 

and Howell, 2013; Lorenz et al., 2018).  

2.3.3 Spectra of materials  

The spectra of materials are affected by different factors, inherent to the material as the molecular 

composition and state of crystallization, and external factors that are caused by surrounding factors 

as the atmosphere or topographic shadows. Absorption features in satellite remote sensing are highly 

influenced by the atmospheric particles causing scattering, transmission and absorption. As this work 

is based in the near field range and on laboratory work, the distance from sensor to object of interest 

is kept small and an atmospheric correction of the data is not needed (Kurz, Buckley and Howell, 2013; 

Jakob, Zimmermann and Gloaguen, 2017; Lorenz et al., 2018). The measurements are nevertheless 

depending on the sun as a light source, therefore the absorption features of the atmosphere play a 

role in restricting the incoming energy in the wavelength regions of the atmospheric windows where 

the EMR is transmitted.  Most absorptions of EMR in the atmosphere occur due to ozone, oxygen, 

carbon-dioxide and water (Clark, 1999). Figure 7 from Jensen (2010) shows the absorption of the Sun’s 

incident EMR in the region from 0.1 to 30μm by various atmospheric gases and the cumulative result 

of all atmospheric constituents comparing the solar radiation at the top of the atmosphere and at sea 

level.  
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Figure 7 Solar irradiation and absorption of various atmospheric gases at the top of the atmosphere and at sea level, 

from Jensen (2010). 

 

2.3.3.1 Absorption features and their causes  

As mentioned before, different materials show different characteristic spectra due to different 

reactions to the incoming light on a molecular and atomic level. Absorption bands are created due to 

the change of energy state when a photon of a specific wavelength is absorbed or emitted. When an 

isolated atom or ion with a discrete energy state absorbs a photon its energy state changes. The energy 

emitted due to this process is not equal to the energy of absorption, causing emission at a different 

wavelength and creating “absorption bands” or “absorption features”. Their position, depth and width 

are due to the different absorption processes taking place, the absorbing ion or molecule and its 

position in the crystal lattice, the kind of chemical bond and the elements involved. These absorption 

features the VNIR wavelength region (400 to 1000nm) are caused by electronic and vibrational 



18   Introduction

 

 18 

processes within the crystal lattice in. Electronic processes require higher energies and therefore cause 

broad absorption features in the shorter wavelengths of the VNIR. Vibrational processes take place in 

the infrared regions (SWIR (1000 to 2500nm) and thermal regions (1.2 to 40+μm)) and cause sharp, 

small absorption features (Hunt, 1989; Clark, 1999) In the case of minerals, only hyperspectral sensors 

with a spectral bandwidth resolution of approximately 10nm or less can capture the very fine 

differences in reflectance at certain wavelength positions (Jensen, 2011).  

2.3.3.2 Electronic processes  

Absorption features related to electronic transition processes can be caused by crystal field effects, 

charge transfer absorption, conduction band transitions and color centers. The most common 

electronic process is related to unfilled electron shells of transition elements such as Cu, Ni, Cr, Ti, Co 

and especially Fe (Hunt, 1989; Jensen, 2010). These transition metal ions have discreet energy states. 

The absorption of a photon of a certain wavelength results in a jump into a higher energy state, this is 

called crystal field effect. The transition between these new energy levels is determined by the 

oxidation state of the ion (e.g. Fe2+ vs. Fe3+), it’s coordination number, it’s position in the crystal lattice 

and the type of connected ligand (Hunt, 1989; Kurz, 2011). The absorption of a photon of a certain 

wavelength does not usually cause the emission of the photon of the same wavelength. Variations in 

the crystal structure in minerals cause a variety of different absorption features (position, depth, 

width) even when the same ion is involved (Clark, 1999). An exception is the group of rare earth (REE) 

ions. The electrons lie deep and are shielded from the surrounding crystal field. The absorption 

features in REEs are diagnostic for the presence of the ion in the mineral and not the mineralogy. On 

the contrary, iron is a very common substitute element with very active bonding in the crystal lattice 

in the VNIR and SWIR. Even low iron concentrations cause broad absorption features and often 

dominate the spectral feature range of a material, not being diagnostic for iron presence in the mineral 

but rather in the wider mineralogical scale (Kurz, 2011). Absorbed energy can also cause the migration 

of an electron between neighboring ions or ions and ligands. This process is called charge transfer 

absorptions (Hunt, 1989). This occurs preferably when metal ions with different oxidation states are 

present in a mineral. Those absorption bands are usually diagnostic of the mineralogy and are stronger 

developed than those of the crystal field (Clark, 1999). The absorption maxima is found in the 

ultraviolet range but the edges extend towards the VNIR region (Kurz, 2011). Some minerals have two 

energy levels in which the electrons reside. The “valence bands” represent lower energy levels with 

atom-attached electrons. The "conduction band" is a level of higher energy in which the electrons 

move freely through the lattice. These two zones are separated by the “forbidden gap” or “band gap” 

a zone of energies which the electrons may not enter (Clark, 1999). The edge of the conduction band 

to the band gap shows an intense absorption edge in the VNIR (Hunt, 1989). The yellow color of some 
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minerals, e.g. sulfur is caused by such an absorption edge (Clark, 1999). This electronic process of 

exciting an electron across the forbidden gap is called conduction band transition. The fourth 

electronic process in minerals is called color centers. Those are discrete energy levels of excited 

electrons bound to lattice defects e.g. impurities. The energy of a photon can move electrons into the 

defect and causes an absorption (Hunt, 1989; Kurz, 2011).  

2.3.3.3 Vibrational processes  

The presence of different chemical bonds in a molecule or crystal lattice can cause the system to 

displace atoms within this lattice. This is causing a vibration similar to the oscillation of weights 

connected by a spring. The frequency of vibration depends on the strength of the bond in the molecule 

and the mass of each element in a molecule (Clark, 1999). The vibration is made up from a restricted 

number of simple motions the so-called fundamentals (Hunt, 1989). In general, the fundamentals 

produce spectral features at wavelengths longer than 2.7μm. If a fundamental mode is excited with 

more than 1 quanta of energy it produces vibrations with frequencies of integer multiplications of the 

fundamental frequencies, called overtones. When two or more fundamentals or overtones interact – 

are added or subtracted - a combination tone feature occurs. Features of geologic materials caused 

by overtones or combinations usually occur in the NIR region of light (Hunt, 1989). Carbonate ions, 

hydroxyl ions and water in a material for example show overtones and combination tones with very 

high fundamental frequencies. H2O has 3 fundamental vibrations, two caused by the symmetric OH 

stretch and one by the H O H bent (2.738μm, 2.553μm and 6.270μm respectively). H2O bearing 

minerals show the overtones of water in their reflectance spectra. The OH stretch overtones occur at 

about 1.4μm and the H O H bend and OH stretch combinations are found near 1.9μm. The occurrence 

of an absorption feature at 1.4μm but not at 1.9μm indicates the existence of hydroxyl (Clark, 1999).  

2.3.4 Spectral properties of rocks and minerals 

The spectrum of a rock is not as well defined as the spectra of its constituents as it is a mixture of 

overlapping and substituting minerals and elements. The features appear muted and minor 

constituents, impurities or substitutions often dominate the spectral appearance of a rock, allowing 

only a qualitative determination of its mineral assemblage but not its quantities within the rock matrix 

(Hunt, 1989). This is complicated by the fact that some minerals such a quartz and feldspar do not 

possess absorption features in the VNIR and SWIR region of light, whereas others as iron ions, organic 

material and hydroxyl ions dominate the spectrum and hide identifiable features of other constituent 

minerals. Generally, the identification of proxy minerals for a rock unit or area of interest enables the 

mapping of regions in a sample or outcrop instead of providing a detailed analysis of a petrographic 

manner. The proxy minerals that need to be matched to the unknown spectra are usually provided by 
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a number of accessible spectral libraries or can be built based on field samples or in-situ handheld 

spectroscopy. The spectral signatures of minerals and rocks have been studied widely and are 

presented in a number of works Clark (1999, 2003a), Hunt (1989), Hunt and Ashley (1979) and Swayze 

et al. (2003). The currently most distributed libraries of spectra is provided by the USGS as the USGS 

Spectral Library splib06a and splib07a (Clark et al., 2007; Kokaly et al., 2017). These spectra are usually 

based on powdered mineral samples, are measured with different spectrometers and are available 

online. I have contributed to the goal of making spectral libraries publicly available by publishing 

spectra of materials and their corresponding geochemical analysis (Koellner et al., 2019; Koerting, 

Herrmann, et al., 2019; Koerting, Rogass, et al., 2019). 

2.3.5 Influencing factors for the spectral response 

As already summarized in Kurz (2011), this paragraph summarizes his findings and adds to them. 

Most of the factors influencing and modifying the spectral curve of rocks and minerals affect the 

overall brightness and contrast and do not shift the absorption features. Some of these properties are 

visible in the laboratory, such as the effect of porosity (Hapke, 2008) but are negligible in the outcrop 

scale due to low spatial resolution and a high noise level (Kurz, 2011; Hapke, 2012). The particle size, 

mineral mixture, view geometry and surface roughness might alter the spectral curve. This is especially 

true for outcrop imagery due to large mixed pixels (mineral mixes and surface coatings) and a higher 

surface roughness (Hapke, 1981, 2012; Hapke and Wells, 1981). As stated earlier, the depth of the 

absorption feature is an indicator for the amount of light absorbed and is therefore a semi-quantitative 

measure for the abundance of the absorber (Clark, 1999). In non-opaque material, the intensity of 

absorption increases with grain or particle size, whereas the overall reflectance decreases. This is due 

to greater internal path travelled by the EMR in larger particles (Clark, 1999, 2003a). 

Mixtures of materials (mineral mixtures and grain size mixtures) alter the spectral response.  

We distinguish four different types of spectral mixtures: linear -, intimate -, molecular mixture and 

mixing due to coating (Clark, 1999; Kurz et al., 2012). Optically separate materials without multiple 

scattering between components result in a linear mixture. In this spatial mixture, the mixed spectrum 

is a linearly weighted sum of the individual components. In this kind of areal mixture, brighter 

components tend to dominate the spectrum (Clark, 2003a). Intimate mixtures are characterized by 

multiple scattering between materials with ingrown material borders, as is the case for minerals in a 

rock. The result is a complex non-linear mixed spectrum. Here, the darker of the two spectral 

components tends to dominate the spectrum (Clark, 2003a).  Molecular mixtures occur at molecular 

levels, for example when liquids or liquids-solids are mixed. Examples would be interlayered water in 

clays or on a bigger scale debris- or mudflows. Molecular mixtures result in band shifts in the spectrum. 

Coating leads to several scattering-transmittance layers for each coat, with different optical 
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thicknesses and material dependent absorption properties. Coating effects are to be expected in a 

mining environment due to work related settling dust and fresh reactive surfaces prone for oxidation.  

If each component in the mix is known and a spatial separation of different materials can be assumed, 

linear spectral unmixing can determine the fraction of each component present in the pixel as e.g. 

done by the EnGeoMap algorithm (Mielke et al., 2016). 

 

2.4 Hyperspectral mine face scanning 

Hyperspectral geological applications have been developed in big jumps over the past decades in the 

large field of remote sensing applications, as the development is both based on the innovation of 

technology and the era of machine learning and algorithm development. The most common platforms 

for geological hyperspectral applications include multispectral satellite-based and airborne imagery 

(van der Meer et al., 2012, 2002; Kruse, 2003; Bellian, Beck and Kerans, 2007; Bedini, 2011; Kokaly, 

King and Hoefen, 2011; Savage, Levy and Jones, 2012; Ngcofe et al., 2013; Mielke et al., 2014; Notesco 

et al., 2014; Yokoya, Chan and Segl, 2016; Kokaly, Graham, et al., 2016). Laboratory scale hyperspectral 

geological analyses were conducted to build precise spectral libraries (Clark et al., 2007; Baldridge et 

al., 2009; Koellner et al., 2019; Koerting, Herrmann, et al., 2019; Koerting, Rogass, et al., 2019; 

Meerdink et al., 2019) and to characterize hand specimen and drill cores in spatially high resolution 

imagery (Kruse et al., 2011; Zaini, van der Meer and van der Werff, 2014; Koerting et al., 2015; Hierold, 

2016; Körting, 2019; Kraal and Ayling, 2019). In the last decade, the first studies were conducted on 

hyperspectral outcrop scanning (Kurz et al., 2008, 2012; Kruse et al., 2011; Kurz, 2011; Buckley, Kurz 

and Schneider, 2012; Boesche, 2015; Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al., 2018) and 

only a few of them focus purely on the context of mining or aim at robust and cost-efficient 

technological developments to improve mining efficiency and security. (Krupnik and Khan, 2019) 

review the close-range, ground-based hyperspectral studies for mining applications thoroughly in their 

article from 2019, their findings are summarized below and added to. As this work is focused on raw 

material mapping, only details of studies that deal with mineral exploration, sedimentology and 

diagenesis are being shared here.  

 

2.4.1 Research Groups and predominant methodology 

Several working groups led advances in geological HSI in the past; a few of them are stated below. As 

a short disclaimer: the author realizes that the list and the respective research is subjective and hardly 

extensive to all groups focused on this topic and has a bias towards European and Northern American 

research groups. It is only used to introduce current state-of-the-art approaches. Even though the eight 
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groups listed below are representative of the geological proximal remote sensing community they are 

by no means covering the wide range of research activity in that field. 

 

1) The scientific group around Prof. Dr. van der Meer and Dr. van Ruitenbeek, from the Department 

of Earth Systems Analysis of the University of Twente. Van der Meer’s group works in several scales 

from infrared rock mineralogy and microstructure to broad satellite imagery analysis for hydrothermal 

structure detection. Hyperspectral efforts were focused on non-imaging point-spectrometers and 

spectral analysis of sample spectra (van der Meer et al., 2012; Dalm et al., 2014; Zaini, van der Meer 

and van der Werff, 2014; Dalm, Buxton and van Ruitenbeek, 2017; Hecker et al., 2019) but also 

ventured into SWIR imaging of porphyry copper related samples (Dalm, Buxton and van Ruitenbeek, 

2017) where spectral angle mapping (SAM) based on manually selected sample spectra and Minimum 

Wavelength Mapping (MWL) are used to assess white mica composition, white mica crystallinity and 

chlorite composition.  

2) The division Exploration Technology at the Helmholtz-Institute Freiberg for Resource Technology 

led by Dr. Richard Gloaguen, which focuses on multi-scale activities and UAV based remote sensing.  

They proposed new correction approaches for reflectance retrieval as well as geometric correction of 

the data based on LiDAR and RGB-photos for close- and long-range applications (Rosa et al., 2016; 

Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al., 2018). The mapping approaches include: Deriving 

spectral libraries of lithological endmembers (EMs) by pixel purity (PPI) EM extraction and visual EM 

spectral analysis of outcrop image- and from point-spectrometer sampling (Kirsch et al., 2018; Salehi 

et al., 2018). Laboratory-collected freely available spectral libraries as the USGS Spectral Library 

(Kokaly et al., 2017) are also used (Kirsch et al., 2018). These spectral libraries are then utilized for 

SAM. Additionally, minimum and maximum “peak” wavelength mapping of various wavelength ranges 

is performed with the Hyperspectral Python (HypPy) toolbox (van der Meer et al., 2018; Bakker and 

Oosthoek, 2020). MWL is performed in order to highlight variations in mineral abundances in the 

outcrop image. Some studies also include a minimum wavelength depth mapping (Lorenz et al., 2018). 

Band ratio determination for mica crystallinity index mapping is also part of the analysis. For the LWIR 

data, a random forest classification is performed based on abundance features retrieved from the 

lithological EM extraction (Kirsch et al., 2018).  

3) The hyperspectral imaging group lead by Benoit Rivard at the University of Alberta works on HSI 

techniques for mineral exploration. Even though their focus is on airborne remote sensing, they 

advanced VNIR-SWIR lithological mapping efforts, REE mineral, crude oil and shale mapping in 

outcrops and samples via imaging HSI (Rogge et al., 2014; Turner, Rivard and Groat, 2014; Scafutto, de 

Souza Filho and Rivard, 2016; Entezari et al., 2017; Feng, Rogge and Rivard, 2018). Only recently, large 
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amounts of samples and drill cores from a Cu porphyry deposit were analyzed with the purpose of 

applying the found metric for distinction to facilitate ore-sorting in a controlled environment 

(Lypaczewski et al., 2019, 2020). The proposed spectral alteration score has been developed for SWIR 

HSI. HSI of this group has been studied with an emphasis on the applicability for northern regions and 

tropical forests. 

4) The Remote Sensing Unit of the Czech Republic Survey around Veronika Kopackova-Strnadova 

focuses on soil parameter mapping and monitoring mainly from airborne or satellite-based 

hyperspectral sensors (Kopackova et al., 2012; Notesco et al., 2014; van der Meer et al., 2018).  

5) The United States Geological Survey (USGS) Geological and Mineral Mapping around Gregg A. 

Swayze, Raymond Kokaly and Roger N. Clark (formerly USGS, now the non-profit “Planetary Science 

Institute”) (Clark, Swayze and Gallagher, 1992; Kokaly, King and Hoefen, 2011; King et al., 2012; Swayze 

et al., 2014). The USGS was among the first to approach geological hyperspectral mapping and 

ventured into long-range HSI for tests on outcrops in Alaska (Kokaly, Graham, et al., 2016; Kokaly, 

Hoefen, et al., 2016). Their approach is based on the Material Identification and Classification 

Algorithm MICA (Kokaly, King and Hoefen, 2011) and the Tetracorder (Clark, 2003a) as a tool to map 

the mineral assemblages of VNIR-SWIR airborne, SWIR ground-based and VNIR-SWIR laboratory data. 

6) The geological remote sensing efforts at the Rio Tinto Centre for Mine Automation at the University 

of Sydney, centered around Richard Murphy, who is also affiliated with Plotlogic Pty Ltd, and Sven 

Schneider who led some of the efforts during his Ph.D. (Schneider et al., 2011). Plotlogic Pty Ltd. is a 

supplier of AI-based ore characterization technology (im-mining.com/2020/04/30/plotlogic-raises-

profile-funds-bhp-iron-ore-contract/ and Gleeson, 2020). The group concentrates on the topic of 

autonomous mapping of mine face geology in combination with LIDAR based 3D-modeling of open pit 

surfaces (Murphy, Monteiro and Schneider, 2012; Monteiro et al., 2013; Murphy et al., 2015). 

Regarding vertical geological mapping, SAM was found superior to Support Vector Machine (SVM) 

approaches for shadowed surfaces that are common in natural surface geometries (Murphy, Monteiro 

and Schneider, 2012). Their take on the influence of incident illumination for the classification is worth 

considering for the irregular surfaces vertical geology mapping has to deal with (Schneider et al., 2011). 

7) And then there is the group “GEOMAP”, the working group of the author, under Dr. Christian Mielke, 

formerly formed by Dr. Christian Rogass from the Helmholtz Centre Potsdam - German Research 

Centre of Geosciences GFZ Potsdam (GFZ). The group leads the geological, algorithm developments 

for the German satellite mission EnMap (Guanter et al., 2015). Within the EnMapBox, a geometric hull 

continuum removal and feature extraction was developed by Rogass and Mielke starting in 2013 

(Rogass et al., 2013; Mielke et al., 2015, 2016, 2018). This EnGeoMap algorithm was used for the 

geological mapping in the GEOMAP group and is showcased for outcrops and laboratory samples e.g. 
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in the Rare Earth Element Mapping report by Köllner et al. (2019). For REE detection, multi-temporal 

averaging was applied to reduce noise and Richardson-Lucy de-convolution in order to sharpen the 

small REE absorption features was utilized (Boesche, 2015). The MICA algorithm (Kokaly, 2011) was 

successfully applied on drill core characterization and compared to the EnGeoMap results (Hierold, 

2016; Körting, 2019). These mapping and characterization approaches are currently developed further 

in the scientific projects: “Remote Monitoring of Tailings using satellite and drones” (REMON) 

(Koellner, 2020) and “Lightweight Integrated Ground and Airborne Hyperspectral Topological 

Solution” (LIGHTS) (lights.univ-lorraine.fr/, 2020). Multispectral and superspectral mapping 

approaches are currently being developed for the REMON project, including the here presented 

“Binary Feature Fitting” (BFF) (Köllner et al., 2020; Mielke et al., 2020). The GFZ spin-off “rad. Data 

Spectral Analytics UG” which the author co-founded, advanced the BFF and EnGeoMap algorithms 

further to provide turnkey solutions along the whole value chain in the mining and metals industry 

under the name of “ReSens+” (Hummel and Krupa, 2020). ReSens+ is utilizing the advanced BFF 

algorithms in combination with other machine learning approaches and expert knowledge. The 

ReSens+ algorithms were successfully applied to 40+ satellite imagery based projects around the world 

in 2018, 2019 and 2020 (www.raddata.io, 2020). 

2.4.2 VNIR and SWIR proximal scanning in mining applications 

HSI in the VNIR and SWIR range has been used prototypically for sulfide ore detection, mainly focusing 

on iron and copper sulfides. Other research is based around easily detectable carbonate and clay 

features in the SWIR range. In the following paragraphs selected studies relevant to this work are listed 

and explained.  

 

Dalm et al. (2014, 2017) tested a set of rock samples being 5-7cm in diameter from a semi-autogenous 

grinding (SAG) mill at a South American mining operation. The capability of sorting by using VNIR-SWIR 

point-spectrometers (Dalm et al., 2014) and SWIR-only hyperspectral imaging techniques (Dalm, 

Buxton and van Ruitenbeek, 2017) was tested. The general results showed the possibility of identifying 

SWIR-active mineralogy but not Cu-bearing minerals. The SWIR-active mineralogy showed an indirect 

relation to Cu grade as SWIR-active mineral assemblages represent different hydrothermal alteration 

zones. By determining white mica NIR crystallinity and relative contents of chlorite, tourmaline and 

ferrous minerals, sub-economic ore samples could be identified. The sorting of ore vs. waste in 

porphyry copper systems by NIR sensors can therefore be accomplished. Open questions in this area 

are the prediction of bulk grade from surface measurements, the tolerability of surface contamination 

and the influence of water on the spectral characteristics. The samples by (Dalm et al., 2014; Dalm, 

Buxton and van Ruitenbeek, 2017) also represent solely the output of the SAG mill at a specific time 
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and might not be representative of the whole deposit. The data acquisition took place under controlled 

laboratory conditions and is therefore not representative of open pit mining or on-site sorting 

machinery.  

Kirsch et al. (2018) tested a multi-scale HSI approach in the Naundorf Quarry in Saxony, eastern 

Germany. The site is known for a polymetallic sulfide vein network and quartz bound copper 

occurrences. The approach included UAV-based VNIR data, ground-based VNIR, SWIR and LWIR data 

of former mine face scans and handheld VNIR-SWIR point spectroscopy. MWL was applied in order to 

identify areas with features chosen to indicate Al-OH (2160–2220nm), Fe-OH (2230–2295nm), CO3/ 

Mg-OH (2300–2360nm) and Fe (415–500nm). MWL mapping was also applied to the VNIR UAV data 

between 675–800nm to visualize existing lithologies. EM based classification (SAM and random forests 

(RF)) was performed based on EM derived by PPI. Additionally, a band ratio calculation (2002nm / 

1943nm) was performed on the data. Two lithological zones could be identified and the hydrothermal 

zones could be delineated. The image-derived spectra utilized for reflectance retrieval can be 

influenced by noise and it was found that the resulting reflectance data exhibits a shift in wavelength 

position from the image spectra to the reference mineral spectra. Additionally, supergene iron 

minerals were identified by hyperspectral means but not validated by XRD or thin sections. Kirsch et 

al. (2018) reasoned that iron spectrally tends to dominate the spectrum even if the abundance of 

occurrence is very low. It is argued that it therefor might be picked up by HSI but not XRD or in the thin 

section.  As stated earlier however, iron absorptions do not necessarily indicate mineralogical presence 

but an overall presence of iron as an element substitute in the crystal lattice and are therefore highly 

influential for the crystal field (Kurz, 2011). Sample bias can also play a role when low alteration parts 

were sampled instead of areas showing iron alteration crust. This has to be investigated further. Kirsch 

et al. (2018) applied the open source HypPy toolbox for their data analysis and their own “Mineral 

Exploration Python Hyperspectral Toolbox” (MEPHySTo) (Jakob, Zimmermann and Gloaguen, 2017) for 

image pre- and post-processing and data integration. 

Lorenz et al. (2018) investigated the Corta Atalaya mine near Mina de Rio Tinto in Spain. The mine 

started extracting iron and copper sulfides and closed in 1991 after mainly concentrating on the 

extraction of sulfur. VNIR and SWIR data was collected in the range of 380–2500nm in three scan lines, 

one from March 2016 and the second and third from October 2016. Radiometric correction is based 

on deriving a singular atmospheric correction spectrum automatically from the hyperspectral image 

itself. MWL mapping for the Al-OH feature position and depth (2190–2215nm) was conducted with 

the HypPy toolbox (Bakker and Oosthoek, 2020) for all three scenes and was validated by spectral field 

sampling. The resulting maps coincide well with the expected lithologies. The data was not 

topographically corrected as the pit walls were assumed to be evenly illuminated and the shadowed 
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areas were excluded from the subsequent analysis. The possible surface alteration changes between 

image acquisition times (March to October) were not taken into account and neither was the low 

density of ground sampling.  

Kruse et al. (2011) studied the inactive Trinity silver mine in Nevada, USA by means of aerial, ground-

based and laboratory HSI. Aerial scans of the area (1m pixel resolution), tripod-based scans of the mine 

face (4cm pixel resolution) and proximal laboratory scans of the drill-chips were conducted. The 

analysis is based on dimensionality reduction by minimum noise fraction, PPI EM determination and 

extraction by n-D scatter plotting and visualization. Mineral EMs were identified by visual inspection 

and spectral library comparison. Mineral maps were produced by MTMF. Again, the shift of 

wavelength minimum of the muscovite/ illite spectral feature is used as a proxy for Al content in 

muscovite and related to high-temperature hydrothermal alteration. Additionally, jarosite is included 

as an EM and used as a proxy for oxidized pyrite and thus un-mined reduced silver ore. The mapping 

of 23 core boxes and the mine-face scan showed a clear correlation between the area mapped as 

jarosite and the centrally exposed sulfide. Kaolinite is additionally mapped and associated with the 

periphery of the sulfide exposure indicating lateral movement of acidic fluids (Kruse et al., 2011).  

The recently published study of Lypaczewski et al. (2020) measures the relative abundance of twelve 

minerals and estimates white mica grain size with an additional metric. Coarse-grained white mica is 

associated with copper mineralization in two of four major porphyry Cu systems in the Highland Valley 

Copper district in British Columbia, Canada. In a third Cu system, tourmaline and epidote occurrence 

is linked to Cu mineralization. High spatial resolution HSI in the SWIR was achieved for 755 samples 

and 400m of continuous drill core. Absorption features produced by cation-OH bonds in hydrated 

minerals are used to identify the mineralogy. The mineralogy is detected by mapping the wavelength 

position of distinct absorption features for each mineral in combination with excluding absorption 

features that would interfere with or are not distinct enough for the sought minerals. The diagnostic 

absorption features utilized for mapping in Lypaczewski et al. (2020) are listed in  

Table 3. 
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Table 3 Spectrally detectable mineralogy at Highland Valley from Lypaczewski et al. (2020). 

General Group Mineral Diagnostic absorptions [nm] Interference with  
Al-bearing Montmorillonite (Mt) 1467 - 

Kaolinite (Kaol) 2160 Mt, Ms, Tr 

Muscovite (Ms) 2125, 2200 (coarse grained 

only) 

Kaol, Mt, Tr 

Ca-bearing Gypsum (Gyp)  Pump 

Prehnite (Prh) 1477 Chl (2250nm) 

Pumpellyite (Pmp) 1510 - 

(Fe,Mg)-bearing Epidote (Ep) 1540, 2250 Chl(2250nm), Tr 

Amphibole (Am) 2330, 2390 Chl 

Chlorite (Chl) 2000, 2250 Amp, Ep, Tr 

Tourmaline (Tur) 2205, 2245,  

Slope 1000/1180 

Ms, Kaol, Mt, Chl 

(2250nm) 

Spectrally inactive Sulfides (Sulf.) Flat spectrum - 

Quartz (Qz) Inferred from 1450 H2O 

absorption 

- 

 

Murphy et al. (2012) evaluated classification techniques with a spectral library taken under different 

illumination conditions. SVM and SAM results are compared. SAM is of importance here, because it is 

known to be less sensitive towards changes in albedo, illumination and topography. For both 

approaches, independent spectral libraries were used which were built from samples under different 

light conditions instead of retrieving spectra from the HSI itself. Spectrally pure core samples 

(homogeneous areas extending over the field of view of the sensor) were measured under “sunlit” and 

“shadowed” conditions as well as with an oblique illumination angle. Additionally, “whole” rock sample 

spectra (not spectrally homogeneous) were taken of the same rock types as the samples above. The 

classification showed changes between “no shadow” and “shadow” data, possibly induced by an 

increased slope between VNIR and SWIR in the spectrum caused by the detector jump. This reflectance 

offset leads to a change of spectral slope, causing a change of class/ rock type with increasing shadow. 

SVM outperformed SAM in classifying the spectral libraries but was inferior in the natural environment 

of the outcrop. Constructing a spectral library in the laboratory for shadowed areas proved difficult, as 

the influence of shadow is always a combination of influences of the adjacent environment and the 

scattering and absorption at each wavelength by the atmosphere and the surrounding rocks. Changes 

in illumination and topography have to be accounted for in the choice of spectral library, nevertheless 

albedo-insensitive techniques like SAM perform well for mine face geology. Schneider et al. (2011) 

took this approach in 2011 when comparing three mapping techniques: SAM and two machine learning 

techniques within a probabilistic Gaussian process (GP) framework. They were tested for their 

effectiveness under different conditions of illumination. The observation angle dependent (OAD) 

covariance functions (kernel) GP was found superior, as it showed to be insensitive to illumination 
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variability within and between imagery and can map geological zones utilizing an independent spectral 

library without a prior knowledge. The spectral library that was used differed from the outcrop 

conditions in the presence of illumination differences and the amounts of noise. Both SAM and the 

GP-OAD were found superior due to being based on spectral angle instead of the distance-based 

method. The GP-OAD modeled the variability within a class of rock of the training data and was 

therefore superior in mapping the geology for unknown targets (not included in the library). 

 

Murphy et al. (2015) used hyperspectral and LiDAR data to map vertical geological surfaces. Clay was 

mapped in an open pit environment of an iron-ore mining operation in the Pilbara, Western Australia. 

Clays are not only useful due to their clear diagnostic absorption feature between 2000–2500nm, they 

also often act as marker horizons between different geological units and can represent lines of 

stratigraphical weaknesses. Mapping clay can aid both the geological mapping as well as safety 

considerations for the extraction of material. Automated Feature Extraction (AFE) can be used to 

identify the strongest absorption features. AFE identifies and quantifies the deepest absorption 

feature in each spectrum, its wavelength position & feature depth. The feature depth and width 

provide information about mineral type and mineral relative abundance respectively. AFE thereby, is 

comparable or even identical in theory to the MWL approach utilized by e.g. Lorenz et al. (2018) with 

the HypPy toolbox. The spectral data was co-registered with geometric information provided by LiDAR. 

A mean distance error of 0.48m for the registration error between the LiDAR and the hyperspectral 

data was calculated and found to be acceptable at a mine front of around 700m width and at a distance 

of 120 to 700m away from the camera. In total, seven minerals were identified. The features used for 

spectral identification are listed in Table 4. The areal estimates for these minerals varied up to a factor 

of 2, under- and overestimating the area depicted in the 2D mineral map compared to the LiDAR co-

registered 2.5D map. This is caused by the difference in distance from the mine face to the sensor. 

Higher situated areas were underestimated in the 2D mineral map, whereas lower situated areas 

(closer to the sensor) were overestimated.  

 

Table 4 Absorption feature wavelength positions of minerals mapped by Murphy et al. (2015). 

Mineral Main Absorption feature for identification [nm] 
Illite-smectite main: 2208, weak 2235 

Ferruginous (Fe) smectite 2208 and 2233 (Fe and Al in octahedral sites) 

Nontronite 2282 - 2288 (Fe-OH) 

Kaolinite 2196 & 2202 (Al-OH absorption doublet) 

Chlorite 2319 (broad absorption centered around this wavelength) 

Talc 2041 – 2380 (several sharp features), strongest at 2306 
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The advantages found for AFE is the applicability to any data without the use of a spectral library or a 

prior knowledge. It does however “underuse” the data by neglecting the importance of the overall 

shape of the spectral curve and the variability within a spectrum apart from one distinct spectral 

feature. AFE (or likewise the MWL) can only be utilized well for data with a low level of noise and a 

high spectral resolution in order to identify sharp, narrow features and when the variability for the 

minimum of the feature is low (only a few nanometers of difference). 

 

Kurz (2011) developed the first workflow to utilize imaging spectroscopy from a ground-based setup 

to create Virtual Outcrop Models (VOMs). The focus was to analyze the mineralogical, lithological or 

geochemical variations in near-vertical outcrops and combine HSI data products with 3D LiDAR models. 

Two case studies with the HySpex SWIR-320m sensor were presented in carbonate systems. The 

images showed a significant amount of image artifacts, especially intensity gradients along-track. 

Atmospheric correction is applied by Empirical Line correction based on calibrated white reference 

panels; image noise was separated and removed by Maximum Noise Fraction transform. Close-range 

scanning showed to follow a conic-directional reflectance model due to a restricted view of the upper 

hemisphere. The obtained reflectance imagery was analyzed by band ratios, SAM, SFF and Mixture 

Tuned Matched Filtering. VOMs were integrated and textured with HSI based on a cylindrical camera 

model, reaching accuracies of 1 pixel (2.3–7.5cm for images with scanning ranges of 30–100m).  

Further research is advised in the areas of the:  

 

1) Extension of the spectral range from the VNIR to LWIR to map the major rock forming minerals  

2) Correction of image non-uniformities that are enhanced by close-range measurements (e.g., 

intensity gradients in along-track direction),  

3) Development of a more sophisticated reflectance retrieval method that includes solar illumination 

parameters and the viewing geometry from other systems (e.g., LiDAR),  

4) Finding automated ways for photogrammetric processing and  

5) Enhancing the visualization in this case the multi-texturing of the resulting VOMs. 

Not all working groups have taken the utilized sensors’ spectral performance and distortion patterns 

into account or analyzed the results critically based on the performance of the utilized sensors, neither 

is the aim of this study to characterize the HySpex sensor systems technical performance. The latter is 

still part of on-going research. For application and implementation in the mining industry, these off-

the-shelf solutions need to be bullet proof and easily adaptable. 
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The tests mentioned above were conducted in areas of inactive or dormant mining related to copper-

, iron-, carbonate- and clay mineralization. They show promising results regarding a broad mapping 

approach of lithological zones. The quality of the reflectance data however is very dependent on the 

radiometric correction and the pre-processing of the data and relies on different approaches and 

different assumptions of the different working groups. MWL mapping of spectral features which is 

indicative of hydrothermal alteration conditions is mostly used for copper ore zone characterization. 

Even Kruse et al. (2011), utilizing the presented mineral abundance mapping instead of using MWL, 

concentrate the analysis and classification on the shift of features in the distinct EM spectra. Thereby, 

in this work, the principles of MWL were taken into account for the hard mineral classification. 

Similarly, Murphy et al. (2015) utilize AFE to map the wavelength position and depth of certain minerals 

to find geological unit delimiters. A large part of the methodology needed for industry relevant 

geological solar optical mapping has been discussed theoretically and as part of feasibility studies in 

the scope of this PhD thesis and on-going research. In order to being able to map quickly and 

reproducible in active mining conditions, robust pre-processing and quick, reliable and reproducible 

analysis routines have yet to be developed and implemented.  

 

This includes: 

• Finding an optimum, illumination insensitive mapping algorithm  

• The selection of spectral characteristics (MWL or spectral libraries) for mapping  

• The determination of equipment (sensor characteristics, number of bands, complexity of the 

system, handling, pricing) 

• A robust reflectance retrieval routine without the need of targets that have to be placed in 

inaccessible regions and smart data pre-processing for reproducible results. 

 

This work aims to give an overview about the existing methodology and aims to develop a joint 

approach of existing methods and new approaches in order to address mine face geological mapping 

under open pit conditions.
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3 Materials 

3.1 Investigated samples 

Two sample suites and one mine face scan were investigated for the method development in this 

study. Additionally, one mine face scan and one sample suite were used for the application of the 

developed workflow. The datasets were utilized as shown in Figure 8. 

  

 

Figure 8 Method development based on the five available data sets. 

 

3.2 Datasets 

Five spectral datasets will be discussed in detail in this work.  

1. Dataset 1: The hyperspectral laboratory scan includes 15 iron ore samples from two mine sites 

in Brazil. These samples and their respective geochemical analysis were provided by clients 

from rad. Data Spectral analytics (www.raddata.io, 2020) who do not wish to be disclosed. This 

hyperspectral scan is used to review the common methods for hyperspectral data 

classification that are explained in Part I (p. 97) and for the robust sensor modeling (Part II, p. 

119) . The most promising methods are then applied to the other datasets with samples from 

the Apliki and Skouriotissa copper mine, Republic of Cyprus.  
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2. Dataset 2: This dataset includes samples taken in Apliki, Republic of Cyprus. A total of 9 

hyperspectral laboratory scans was combined to one big data set, including 44 samples from 

14 different sampling locations on the mine face. Only 36 of the 44 samples were analyzed 

geochemically, the spectral and geochemical data for these were published in 2019 (Koerting, 

Rogass, et al., 2019). This dataset is used to test the most promising algorithms and sensors 

found from dataset 1. Dataset 2 mainly utilizes the 36 samples and their reflectance data scan. 

Additionally, a smaller 11 samples radiance dataset was compiled to test a mapping approach 

based on radiance data. All of this is utilized in Part III (p. 136). 

3. Dataset 3: The samples taken in the Skouriotissa Three Hills deposit, Republic of Cyprus were 

combined into one laboratory data set. A total of 3 hyperspectral scans was combined to one 

big data set, including 15 samples from 5 different sampling locations on the mine face. 

Dataset 3 is used to apply the data preparation workflow explained in Part III (spike correction, 

detector jump correction and downsampling) and to build a site-specific spectral library for 

the Skouriotissa Three Hills open pit in Part V (p. 161). 

4. Dataset 4: This hyperspectral field scan of the mine face in Apliki, Republic of Cyprus utilized 

for Part IV, (p. 151) is used to demonstrate the field data workflow, including the data 

acquisition, -preparation & -pre-processing and the application of the analysis methods 

developed under laboratory conditions.  

5. Dataset 5: The hyperspectral field scan of the Three Hills open pit, in the Skouriotissa Mine, 

Republic of Cyprus is used to apply of the methods developed for the data from laboratory 

conditions and field conditions for the Apliki datasets 2 & 4. The site specific-library from 

Dataset 3 is utilized and the analysis is aimed at mapping high-grade ore (<0.27% Cu), ore 

(0.27%< Cu <0.1%) and waste (<0.1% Cu). This is demonstrated successfully in Part V (p. 161). 

 

The different datasets will be described in detail regarding the sampling location, the geology of 

the area of origin, the samples characteristics, their geochemistry, the data acquisition and the 

specifics of the data analysis. 
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3.3 Sample area 

The samples from dataset 1 originate in the state of Minas Gerais, Brazil and are related to iron ore 

mining. The other datasets (2-5) originated in the Republic of Cyprus in the inactive and active copper 

mines Apliki and Skouriotissa. 

3.3.1 Minas Gerais, Brazil 

Two sample suites of iron ore and related material were supplied from the state of Minas Gerais, in 

the South-East of Brazil, North of Rio de Janeiro (Figure 9). The mining companies supplying the 

samples from their sites are not to be disclosed in the scope of this work, neither are the exact locations 

of sampling. It was agreed upon the possibility for the samples and geochemistry to be included in this 

work.  

 

Figure 9 Locations of Minas Gerais and Quadrilatero Ferrifero. Base map source: ©OpenStreetMap Contributors. 

 

Figure 10 shows a photo from a visit from one of the mine sites that provided the samples. 
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Figure 10 Visit to a major open pit mine in the state of Minas Gerais in October 2019. 

 

The supergene iron ores of Minas Gerais and Quadrilatero Ferrifero are divided into three categories: 

enriched itabirite, intermediate grade ore and Canga (Dorr, 1964). Itabirite is a “laminated, 

metamorphosed, oxide-facies iron formation […] in which the iron is present as hematite, magnetite 

or martite” (Dorr, 1964) and the original jasper or chert bands have been recrystallized into granular 

quartz. Dolomite and amphiboles locally substitute for quartz and when substituted, magnetite and its 

oxidation products are present. Fresh Itabirite is dense, brittle, hard and resistant to mechanical 

erosion (Dorr, 1964). All supergene iron ores result from the weathering of itabirite, and degrade based 

on the same geological processes but undergo this weathering under varying degrees of intensity. They 

are therefore intergradational and clear lines of demarcation are impossible to draw.  Enriched itabirite 

is a disaggregated rock residually enriched in iron and leached of quartz and other constituents by 

supergene fluids. Intermediate grade ore is defined as material with an upper limit of iron content of 

about 65.5% and a lower limit of 57% iron and <7% SiO2. It derives from strong residual and secondary 

enrichment of itabirite (Dorr, 1964). Canga forms as consolidated, extensive blanket deposits at or 

near erosion surfaces. It is resistant to erosion and chemical weathering and composed of varying 

detrital materials derived from limonite cemented high-grade hematite ore or itabirite. (Dorr, 1964) 

defines the average composition of itabirite and its weathering products as presented in Table 5 and 

Table 6. 
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Table 5 Bulk rock composition of itabirite and its weathering products from Dorr (1964). 

Element or 
Oxide 

Unleached 
Itabirite [wt. %] 

Enriched 
Itabirite [wt. %] 

Intermediate grade 
ore [wt. %] 

Canga 
[wt. %] 

Fe 37.9 48.7 63.3 62.2 

Fe2O3 54.1 69.6 90.4 88.8 

SiO2 44.7 25.4 2.35 1.7 

Al2O3 0.5 1.3 2.6 2.8 

P 0.05 0.06 0.08 0.1 

H2O plus 0.3 Nd 4.6 5.4 
 

Table 6 Geochemical composition of samples received from the Minas Gerais district. Reduced to components stated by 

Dorr (1964). Categorization after Dorr (1964) and from information provided by Mine Site 2. 

ID Fe [%] SiO2  
[%] 

Al2O3 

[%] 
P [%] Categories after Dorr, 

1964 
Categories based on 
Mine Site 2 

Mine Site 
No. 

1 55,05 16,81 0,61 0,14 Itabirite Medium value ore 2 
2 49,72 18,51 1,05 0,11 Itabirite Medium value ore 2 
3 24,40 21,69 22,14 0,60 Itabirite, high clay 

contamination 
Low value ore 1 

4 46,39 30,33 1,41 0,04 Itabirite Medium value ore 1 
5 38,06 41,16 0,43 0,06 Itabirite Low value ore 2 
6 44,47 31,59 1,97 0,10 Itabirite Medium value ore 2 
7 58,22 10,14 3,94 0,09 Enriched Itabirite High value ore 1 
8 35,37 49,02 0,28 0,02 Itabirite Low value ore 1 
9 44,46 32,99 0,53 0,08 Itabirite Medium value ore 2 
10 68,49 0,53 0,45 0,05 Canga High value ore 2 
11 30,58 56,5 <0,05 <0,005 Itabirite Low value ore 1 
12 47,92 13,29 9,26 0,21 Itabirite Medium value ore 1 
13 37,17 41,64 1,29 0,18 Itabirite Low value ore 2 
14 38,23 37,45 1,54 0,05 Itabirite Low value ore, high 

Mn contamination 
2 

15 64,93 1,32 1,48 0,11 Intermediate grade ore High value ore 1 
 

3.3.2 Republic of Cyprus 

3.3.2.1 Porphyry copper systems and hydrothermal alteration 

Porphyry ore systems consist of large areas of hydrothermally altered rock centered on a porphyry 

stock intrusion. These may also contain skarn, carbonate-replacement, sediment-hosted and high- and 

intermediate-sulfication epithermal base mineralization. They are typically formed as magmatic arcs 

above active subduction zones and convergent plate margins. Currently, nearly 3 quarters of the 

world’s Cu is supplied by porphyry copper systems, along with half the Mo, one-fifth of the Au, most 

of the Re and minor amounts of Ag, Pd, Te, Se, Bi, Zn and Pb (Sillitoe, 2010; Okrusch and Matthes, 

2014). The alteration and mineralization in porphyry copper systems is zoned outwards from the stocks 

or dike swarms and occupy many cubic kilometers of rock (Sillitoe, 2010) (Figure 11). Oxidized magma 

intrudes and is saturated with sulfide and metal rich aqueous fluids. These fluids penetrated the 
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surrounding rock and due to the involved temperature and pressure this leads to addition, removal 

and/or redistribution of the pre-existing rock components (Dalm et al., 2014). The intensity of this 

alteration decreases with increasing distance from the intrusion and forms concentric hydrothermal 

alteration zones with characteristic mineral assemblages. The zonation is dominated from the bottom 

up by barren, early sodic-calcic to potentially ore grade potassic, chlorite-sericite, sericitic to argillic 

and finally the lithocaps of up to 1km thickness if erosion is not interfering. Cooling down of the fluid 

and intrusion from 700 °C to 300 °C leads to the formation of the chalcopyrite and bornite assemblage 

(potassic zone), whereas temperatures below 350°C and a low- to moderate salinity liquid are 

associated with sericite-chlorite and sericitic alteration and associated mineral assemblages (Lowell 

and Guilbert, 1970; Sillitoe, 2010; Dalm et al., 2014). The main ore zone is related to the boundary of 

potassic to phyllic hydrothermal alteration, but these spatial relations can be offset by the telescoping 

within the porphyry system (overprint of older alteration zone by more recent alteration), breccia 

intrusions and/or diatreme intrusions (Dalm et al., 2014). 

 

 

Figure 11 Left: Schematic cross sections of ore mineralization/ alteration zones (Ccp – Chalcopyrite, Au – Gold, Ag – 

Silver, Py – Pyrite, Cp – Copper, Mb - Molybdenite).  Right: Hydrothermal alteration mineral zones. (Chl - Chlorite, Epi - 

Epidote, Carb - Carbonate, Qtz - Quartz, Ser - Sericite, Py - Pyrite, Kaol - Kaolinite, K-feldspar - Potassium feldspar, Bt – 

Biotite, Mag – Magnetite). Modified from Lowell and Guilbert (1970). Typical dimensions are given as 1.2 x 2 km 

horizontally and 3 km vertically (Dalm et al., 2014). 

 

3.3.2.2 Geology of Cyprus copper ore deposits 

The Island of Cyprus became synonymous with copper in Late Antiquity. The Latin word “Cuprum” is 

based on “Aes Cyprium” = Cypriot copper, as Cyprus was one of the main sources of copper in the Old 

World (Kassianidou, 2013). All to-date mined ore bodies had surface indications stemming from 

activities of the Antiquity, showing major slag heaps close to the old mining centers (Adamides, 2010b). 

4 million tons of copper slag in 40 different locations have been estimated to exist in the proximity of 

Troodos (Kassianidou, 2013). Cyprus therefor became the ultimate test site for me in order to study 

hydrothermal alteration and copper ore deposits within Europe.  
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The Cyprus sulfide deposits belong to the mafic type of volcanogenic massive sulfides (VMS) and are 

associated with a supra-subduction zone fore-arc setting of the Troodos ophiolite complex around 91 

ma ago (Adamides, 2010b, 2010a). The ophiolite comprises a complete sequence from ultramafic rocks 

at the base overlain by gabbroic rock as sheeted dyke complexes and pillow lavas, topped by pelagic 

sediments (Adamides, 2010a). Structural studies of Cyprus identified several asymmetrical N-NW-

trending graben defined by opposing inward-dipping sheeted dyke complex domains. These domains 

correlate with major sulfide mineralization. These graben are, from west to east, Solea, Mitsero and 

the Larnaca Graben (Figure 12) (Adamides, 2010a; Martin et al., 2018). The Solea graben hosts the 

Apliki and the Skouriotissa deposit. 

 

 

Figure 12 Simplified geological map of the Troodos Ophiolite, Cyprus and a simplified structural cross-section of Troodos 

based on Martin et al., 2018. Contains modified Copernicus Sentinel-2 data (Sept. and Oct. 2019, RGB (490 nm, 560 nm, 

665 nm)). 

 

The classic Cyprus-type VMS deposit is characterized by an exhalative lens underlain by a stockwork 

zone which represents the channel veins by which the hydrothermal fluid reached the sea floor (Figure 

13) (Lydon, 1984; Galley, Hannington and Jonasson, 2007).  
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Figure 13 Sulfide cover zonation (Top) and characteristics of an idealized volcanogenic massive sulfide deposit (Bottom). 

Abbreviations in Figure: Sp - Sphalerite, Gn - Galena, Py - Pyrite, Ba -  Barite, Ccp - Chalcopyrite, Po – Pyrrhotite.  

Modified from Lydon (1984) and Galley, Hannington and Jonasson (2007). 

 

Some deposits show variations and some lack suitable observable structures that allowed access to 

the sea floor. Where no structural control is obvious as for the Skouriotissa deposit, a more deep-

seated heat source is suggested (Adamides, 2010b).  The Cyprus-type VMS is a hydrothermal ore 

deposit, which is formed by the interaction of mafic country rocks under greenshist-facies 

metamorphic conditions (350 °C) and evolved seawater (2 °C). The cold seawater reacts with volcanic 

glass by entering trough fractures and fissures in the rock, lowering the pH of the water. As it continues 

moving downwards, it becomes heated to 350-400 °C in the sheeted dyke complex with a pH of around 

2. Here, the seawater and the rock go into exchange and epidosites are formed, they are suggested to 

be the main source of base and trace metals in the Cyrus-type VMS of Troodos (Martin et al., 2018). 

Metal-laden from the exchange, hydrothermal fluids follow pathways of normal faults to the seafloor 
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where they are exhalated. The hot, reduced fluid mixes with the seawater and sulfides are precipitated 

to form VMS. The VMS mineralogy is dominated by pyrite, chalcopyrite and sphalerite with inclusions 

of galena and secondary copper-bearing minerals like covellite, digenite and chalcocite. The alteration 

around the VMS is silica and chlorite dominated and includes disseminated pyrite (Martin et al., 2018). 

Alteration mineralization is typified by feldspar destruction, quartz-chlorite growth, the removal of 

alkali elements from the inner parts of the ore zone and their deposition in the periphery of the ore 

bodies (Adamides, 2010b). K-feldspar and illite are associated with the margins of the deposits and 

seem related to the leaching of alkalis from the proximal ore zone. Epidote alteration is present at the 

margins of some hydrothermal systems and levels immediately underlying the stockwork zones. It is 

commonly associated with hematitic jasper as veins or interpillow glass replacement. Interaction 

between hydrothermal fluid and seawater through the permeable pillow lavas result in an alteration 

envelope of marginal chlorite passing inwards into silica and finally into the sulfide mineralization in 

the central part of the system (Adamides, 2010b). This is coherent with the hydrothermal alteration 

zones associated with porphyry copper deposits identified by Lowell and Guilbert (1970) and Rowan 

et al. (2006). 

 

The Cyprus deposits can be defined by two classes of deposits, these two classes are based on 

observations from Adamides (2010b): 

1. The deposit exhibits definite signs that hydrothermal fluids reached the sea floor. Exhalative 

processes deposited massive sulfides in the form of exhalative lenses. Evidence for this process 

is the presence of sedimentary structures, of sea-floor dwelling organisms and sea floor 

weathering of the sulfides. 

2. The deposit exhibits definite signs of sub-floor deposition of sulfides. It lacks the evidence of 

hydrothermal fluids reaching the sea floor and shows extensive zones of hydrothermally 

altered rock which grades inwards into ubiquitously mineralized rock. Agrokipia B, Skouriotissa 

- Three Hills and the West Apliki deposit show strong evidence for this deposition. 

 

This study will focus on the Skouriotissa group deposits “Three Hills” and “Apliki” (Figure 14), as these 

were the open pits that I had access to in March 2018 to conduct sampling and a hyperspectral 

measurement campaign. These deposit’s main characteristics are summarized in Table 7. 

Geographically, both deposits are situated within the Nicosia district and are located close to the 

ceasefire line South of the UN-controlled buffer zone. 
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Figure 14 Map of Cyprus showing the location of the Three Hills deposit in the SE of Skouriotissa and the Apliki deposit 

ca. 5km SW of the operating Skouriotissa mine, based on Copernicus Sentinel-2 data from 2019. 

 

Table 7 Summary of Apliki and Three Hills deposit based on Adamides (2010b, 2010a). 

Deposit Three Hills 
History Detected by drilling in area of alteration and weak oxidation. Explored by 

adit and cross-cut. Presently mined by Hellenic Copper Mining Ltd. (HCM) 
Tonnage and grade 6.2mt, 0.37% Cu  
Mineralization type Vein type deposit composed of pyrite and chalcopyrite, with limited 

supergene enrichment at the upper levels (chalcocite and covellite) 
Structural control North-northwest-striking structures 
Stratigraphic position Within Upper Pillow Lavas surrounded by chloritic alteration envelope 
 
Deposit Apliki 
History Detected during gold exploration in 1930s, initially mined underground 

followed by open cut mining in the 1960s. Operations ceased in 1973 but 

low-grade resource remains as well as the stockpiled oxidized ore. 

Tonnage and grade 1.65mt, 1.8% Cu, 36.0% S 

Mineralization type Massive sulfides with underlying stockwork in chlorite-bearing and silicified 

lavas 

Structural control Graben structure defined by two North-striking faults 

Stratigraphic position Contact between Lower and Upper Pillow Lavas 
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3.3.2.3 Three Hills, Republic of Cyprus 

The Three Hills deposit, often referred to as K-zone by HCM, was exploited in 2003 for a brief period 

of time and has not been exploited since (Naden et al., 2006; Adamides, 2010b). The Three Hills open 

pit is located in the western part of the Skouriotissa open pit mining area. Its surface expression is 

unimpressive only showing weak iron staining (Adamides, 2010b), the mineralization shows to be 

highly brecciated, highly silicified stockwork with hypogene mineralization (Naden et al., 2006). Based 

on maps by Adamides (2010b), the stockwork mineralization is enclosed by an EW-trending fault in 

the northern part and a NS-trending fault in the eastern part of the deposit (Figure 15). Communication 

with HCM confirmed the location of the fault in the open pit and the successive enrichment in Cu 

grades towards the SW and top down within the open pit (sketched out in Figure 16). This can be 

visually distinguished by cream-colored clay alterations of the siliceous matrix, distinct green colors of 

the host rock (presence of chlorite) and brown colors related to pyrite oxidation (Naden et al., 2006) 

(sketched out in Figure 17). 

 

 

Figure 15 Skouriotissa mine location of the pits Phoenix, Phoukasa and Three Hills and fault zone location based on 

Adamides (2010b). Source: "Skouriotissa Three Hills Deposit", 35°05'50.72''N, 32°53'48.81''E, GOOGLE EARTH, 3rd of 

April 2018, retrieved 21st of July 2020 (Google, 2018) 
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Figure 16 Hyperspectral scan within Three Hills open pit. View from the SSW wall (left) to the NNE entrance to the pit 

(right). Including line of fault as communicated during the field measurements by HCM and trend in Cu grades within the 

pit. 

 

Figure 17 Sketch of areas with clayish (low Cu grade) and greenish (chloritic, stockwork) appearance, indicating zones of 

pyrite oxidization and leached zones. Based on visual interpretation. 

 

The ore comprises pyrite, chalcopyrite and local sphalerite (hypogene mineralization). In the oxidized 

zone, common pyrite is replaced by hydroxides of goethite-lepidocrocite (Adamides, 2010b). Pillow 

lavas define the lithology, interspersed by local non-pillow units; Dykes are absent. The rocks are 

chloritized in the area around the deposit and an alteration envelope surrounds and partly overlies the 

deposit (Adamides, 2010b). Pyrite is mainly disseminated with the rock body or occupies the walls of 

veins and is deposited onto quartz in fractures (Adamides, 2010b). In areas of intense mineralization 

pockets of massive pyrite formed and replace the total host rock. Pyrite occurs in well-developed 

striated cubes or pyritohedrals (Figure 18, left). Chalcopyrite is present (Figure 18, right) but often 

replaced by secondary minerals, as chalcocite and covellite (Adamides, 2010b). Para-genetical pyrite 

appears to be the earliest sulfide to crystallize from hydrothermal fluids, covering the walls of veins. 

Chalcopyrite occupies central parts of veins often with sphalerite. Quartz is the sole gangue mineral in 

all parts of the deposits and fills veins and vesicles. In the chloritized zones it forms thin veinlets of 

euhedral clear crystals, in the ore zone (mineralized zone) it accompanies sulfides and lines the walls 

of veins. It’s intergrowth with sulfide shows the persisting precipitation throughout the mineralization 

episode. The hypogene mineralization is dominated by pyrite, marcasite and chalcopyrite, the 

sequence of supergene mineralization paragenesis was found to be digenite -> chalcocite -> bornite -

> covellite (Naden et al., 2006) 
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Expected ore mineralogy in the open-cut of Three Hills is based on Adamides (2010b) and Naden et al. 

(2006): 

1. pyrite, marcasite, chalcopyrite, local sphalerite (hypogene) 

2. digenite, chalcocite, bornite, covellite (supergene) 

3. quartz as sole gangue mineral 

4. chloritized lava  

5. hematite, jarosite, goethite, lepidocrocite as replacement of pyrite in oxidized zones  

 

Figure 18 Left: Striated cubes of pyrite on top of quartz crystals in former cavity. Right: Striated, hypogene chalcopyrite 

mineral cluster. Supergene chalcocite blanket is indicated by black remnants. Photos from field work in March 2018 in 

Three Hills. The photo size is approximately 5cm x 5cm. 

 

3.3.2.4 Apliki, Republic of Cyprus 

Apliki is a structurally controlled deposit, situated within the Lower Pillow Lava stratigraphy and 

confined by two axis parallel (N-S) normal faults. At depth the two faults are inferred to truncate in a 

major detachment surface (Adamides, 2010b; Martin et al., 2018), see Figure 19. Based on historic 

data and field observations by Martin et al. (2018), Apliki VMS is interpreted to be a typical Cyprus-

type VMS – a massive sulfide lens overlain by a cupriferous stockwork of quartz, jasper and sulfide 

veins within the basaltic host Lower Pillow Lavas (Antivachis, 2015). Adamides (2010a) reports a grade 

of 1.6wt.% of copper grade, whereas Antivachis (2015) reports grades between 0.01 to 3.5wt.% Cu. 

The mineralization does not cross the fault contact of the two faults and suggests a mineralization post 

fault movement. The fault-bound zone of mineralization is around 100 m wide and consists of silicified, 

chloritized, brecciated Lower Pillow Lava. Disseminated pyrite occurs but no massive sulfide 

mineralization.  
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Figure 19 Apliki deposit, interpretation from (Antivachis, 2015; Martin et al., 2018). Source: "Apliki mine", 

35°04'28.78''N, 32°50'35.40''E, GOOGLE EARTH, 03.04.2018, retrieved 23.07.2020. 

 

The eastern wall of the cut shows unmineralized Pillow Lavas and is associated with hyaloclastic 

material in between thick columnar-jointed flows. The lava east of the fault is increasingly chloritized 

and quartz is accompanied by analcime as vesicle-filling material. In the western site, the fresh, 

hyaloclastic-rich pillow lavas are exposed. The northern wall represents the contact with the ore 

zone. The Northern open cut area is approximately 150m in height and 150m width, the pit bottom 

located at around 200 m a.s.l (Antivachis, 2015). Satin spar gypsum veining occurs at the northern 

part of the open cut ( 

Figure 20, left) and is associated with leached lava, chloritic breccia and intense shearing (Adamides, 

2010b). Sulfate evaporates, possibly chalcanthite, covered the surface of the cut terraces in areas of 

surface water flow ( 

Figure 20, right). As the cupriferous massive sulfide ore has been mined out, Apliki is a typical 
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example of an oxidation zone overlying a stockwork type sulfide mineralization in chlorite-bearing 

and silicified lavas (Antivachis, 2015).  

The typical stockwork type mineralization shows cavity and vein fillings of pyrite and subordinate 

chalcopyrite in the southern part of the open pit. The altered lava shows occurrence of widespread 

jasper. The ore zone continues northwards as low-grade disseminated mineralization. The massive 

sulfide was originally on top of the stockwork zone and covered by Upper Pillow Lavas and tuffaceous 

sediments. Prior to mining, maps suggested a cover of shales and limestones (Adamides, 2010b). 

 

 

Figure 20 Left: Satin spar gypsum found in Apliki, ca. 7cm x 20cm. Right: Sulfate evaporates, possibly Chalcanthite, found 

in Apliki. 

 

The Apliki VMS outcrop that was scanned in 2018 shows 5 ½ levels of in the Northern part of Apliki 

VMS, situated in the fault bound zone of chloritized-silicified brecciated Pillow Lava. In the supergene 

enrichment succession it is directly below the iron cap and in the leached and oxide zone (after Asmus 

(2013)). 

 

Antivachis (2015) identified five facies within the mineralized zone: 1) a stockwork zone, 2) veins of 

amorphous silica in the NNW, 3) massive veins of Gypsum in the NNW, 4) the “red zone”, an oxidized 

vein of mineralization and 5) the oxidation zone at the top. Figure 21 from (Antivachis, 2015) shows a 

stylized, geological sketch. 
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Figure 21 Schematic geological section of the Northern part of Apliki as shown in Antivachis (2015). Red, dashed window 

represents the dimensions of the hyperspectral mine face scan. 

 

The associated stockwork zone (“mineralization zone” in Figure 21) dominates the area captured by 

the hyperspectral sensors in 2018. This zone is dominated by a network of quartz and jasper veins 

within the brecciated pillow lavas (Antivachis, 2015). The brecciation is assumed to be a result of the 

explosive hydrothermal activity within the W and E delimitated fault zone (Antivachis, 2015). 

 

The expected mineralization and hydrothermal alteration zone identification of the stockwork zone is 

based on the work of Antivachis (2015) who studied 66 samples of the north wall of the open cut. In 

the stockwork zone chlorite, clay minerals, albite, iron and titanium oxides and quartz are common. 

Chlorite is the main mineral of the non-metallic minerals formed by hydrothermal alteration of 

clinopyroxene and volcanic glass and often fills fractures in pyrite. Clay minerals are found in the 

chloritized ground mass and replace volcanic glass. Magmatic plagioclase was albitized and formed 

pure albite. Plagioclase and pyroxene are partially replaced by calcite that acts as filling material or 

within the groundmass. Iron-titanium oxides and ilmenite is replaced by anatase.  

The prevailing alteration in the mineralized zone is chloritization, which can spatially be classified into 

three subzones (see Figure 22):  
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1) Smectitic: montmorillonite, illite and limited chlorite; 2) Chloritic-smectitic: stronger chlorite 

content as replacement of pyroxenes; 3) Chloritic: magmatic minerals are absent, chlorite dominates 

(Antivachis, 2015).  

Jasper is widespread in the brecciated lavas that mainly constitute of quartz, goethite and hematite 

with minor amounts of clays and carbonates and jarosite (Antivachis, 2015). Contained sulfides are 

pyrite and minor sphalerite and chalcopyrite. Predominant ore minerals are pyrite, marcasite and 

chalcopyrite, with accessories of bornite, sphalerite, galena and barite. Chalcopyrite often shows 

inclusions of sphalerite. Chalcopyrite replacement by covellite and chalcocite due to supergene 

processes is also documented. 

 

 

Figure 22 Schematic cross-section of Apliki massive sulfide ore body and associated stockwork, from Antivachis (2015). 

Red, dashed lines indicate the hyperspectral mine face scan dimensions. The scanned area is dominated by three 

hydrothermal alteration subzones: smectitic, chloritic-smectitic and chloritic. 

 

The expected surface mineralization for the northern open cut is comprised of quartz, jasper, iron-

oxides (goethite, hematite), chlorite-group minerals (clinochlore), smectite-group minerals 

(montmorillonite, illite), sulfides (pyrite, marcasite, chalcopyrite, accessories of sphalerite, bornite, 

galena; chalcopyrite is often replaced by covellite and chalcocite); sulfates (barite, gypsum, 

Chalcanthite, jarosite), analcime, plagioclase (partly replaced by calcite or albitized to albite) and 

pyroxene. 
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3.4 Sample preparation  

In order to compare laboratory-derived spectral features with field-derived spectra the samples were 

not changed from their natural state.  

 

Brazilian iron ore samples 

Two companies operating open pit copper extraction in Brazil provided two sets of samples with the 

corresponding geochemical data. The open pits are located within the Iron Quadrangle of Brazil in the 

central-southern part of the Brazilian state Minas Gerais. The area is known for its large gold, diamond 

and iron ore deposits. Due to a non-disclosure agreement (NDA) we are not able to disclose the 

companies’ names or the detailed mine site locations in the context of this thesis. They will be called 

“Mine Site 1” and “Mine site 2” from here on. Mine Site 1 delivered 8 samples with the sample ID 3, 4, 

7, 8, 11, 12 and 15. Mine Site 2 delivered 7 samples of the sample ID 1, 2, 5, 6, 9, 10, 13 and 14. The 

total of 15 samples was left to dry, arranged in approximately 4x4cm squares on a black rubber lining 

and scanned without any sample preparation (Figure 23).  
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Figure 23 Brazilian iron ore samples hyperspectral scan (R: 640nm - band 63, G: 549nm - band 38, B: 458nm - band 13). 

Apliki mine samples 

37 samples were taken in March 2018 in the copper-gold-pyrite mine Apliki in the Republic of Cyprus 

during a measurement campaign of the Geological Survey Department of the Republic of Cyprus (GSD) 

and the German Research Centre for Geosciences (GFZ). The samples were scanned directly after the 

field expedition; all of the sampled material is present in the hyperspectral scan. For the scans, the 

samples were left in their natural state: partly dusty, showing heterogeneity in the small scale e.g., 

differently colored soil grains from the same sample location, inhomogeneous tarnish across individual 

samples and in a variety of states (e.g., soil, crystallized evaporitic material, fresh rock surface, 

tarnished rock, oxidation zones). The resulting laboratory scans represent exactly what we found in 

the field without changing the crystal lattice (e.g., by grounding the samples) or the small-scale 

heterogeneity (e.g., by homogenizing and grinding samples) and thereby changing the spectral signal 

of the material. For scanning, the samples were placed in black, plastic containers. The inside of the 

containers was sprayed with black spray-paint leaving them with a matt finish to avoid backscattering 

of plastic features from the box surface onto the samples (Figure 24). For rock samples, the original 



   Sample preparation                              

 

51 
 

surface that was directed at the sensor in field conditions was marked. This surface was directed 

towards the sensors for laboratory scanning. The bulk rock itself is not represented at the surface of 

the mine face but the rock’s weathered and altered state from external physical and chemical 

conditions. A total of 9 scans were taken of 36 samples and combined into one big data set (Figure 24). 

Only the samples that yielded enough sample weight for a geochemical analysis were considered 

excluding sample 1a from the analysis. For the subsequent geochemical analysis, sub-samples were 

taken with ranging sampling weights between 20,9g (sample 3b) to 237,5g (sample 10c). In case of 

rock samples, the original marked surface was separated from the whole rock sample to allow a 

geochemical analysis of the weathering crust only. A table with the sampling location, a sample 

description and sample photos can be found in the Appendix (Table 47, p. 209). 

 

Figure 24 Apliki mine samples hyperspectral scan compilation (R: 640nm – band 63, G: 549nm – band 38, B: 458nm – 

band 13).  
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Skouriotissa mine – Three Hills samples 

A total of 15 samples have been collected in the Three Hills open pit of Skouriotissa mine in March 

2018. The samples have been handled similar to the Apliki mine samples and were scanned with the 

HySpex system under laboratory conditions before preparing them for geochemical analysis. A total of 

three hyperspectral scans has been combined into one large dataset containing all samples.  The 

samples were scanned without any sample preparation (Figure 25). For rock samples, the original 

surface that was directed at the sensor in field conditions was marked. This surface was also directed 

towards the sensors for laboratory scanning and was later on separated from the bulk rock for 

geochemical analysis. A table with the sampling location, a sample description and sample photos can 

be found in the Appendix (Table 50, p. 253). 

 

 

Figure 25 Skouriotissa - Three Hills open pit samples. Collated hyperspectral scan of all 15 samples. 

 

3.5 Data acquisition 

3.5.1 Laboratory HSI data acquisition 

The HySpex VNIR-1600 and SWIR-320m-e (technical description available at: 

(hyspex.no/products/disc.php, 2019)) are two pushbroom line-scanning cameras that are mounted in 

parallel. The cameras cover the range of the visible to near infrared (VNIR, 414 – 1000nm) and the 

shortwave infrared (SWIR, 1000 – 2498nm). They record an array-line of 1600 pixel (VNIR) and 320 

pixels (SWIR). Every pixel contains a spectrum with a total spectral sampling number of 408 bands in 

total. The signal collected from each pixel is decomposed to its spectral components by a grating (see 

Figure 6, p. 11). The field of view (FOV) captures the spectral dimension (λ) for each pixel of a line of 

pixels (y-dimension). The pixels per line are fixed for each sensor. This is measured by a two 

dimensional focal plane array such as a silicon charge coupled device (silicon CCD) detector (VNIR-

sensors) or a mercury cadmium telluride (MCT) detector (SWIR-sensors) (Köhler, 2016). The spatial x 

dimension is acquired by subsequent collection of consecutive lines and a movement perpendicular to 

the line of pixels spanned by the FOV. Either the sensor or the object of interest can move 

perpendicular to the FOV, in the laboratory the movement of the samples is accomplished by the 
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movement of a translation stage, in the field the sensor head rotates the FOV line by line by use of a 

rotation stage.  The sensor parameters are presented in Table 8. Noteworthy for in-pit scanning and 

robust sensor requirements, is the increase in size and weight from the VNIR to the SWIR sensor and 

the technical requirement for cooling the SWIR MCT detector to 195 K for data collection with e.g. a 

nitrogen liquid cooling device (Lin et al., 2009; Köhler, 2016; Spragg, 2017).  

 

Table 8 HySpex VNIR-1600 and SWIR-230m-e sensor parameters from the HySpex User Manual 

(hyspex.no/products/disc.php, 2019). 

Parameter  VNIR-1600 SWIR-320m-e 

Spectral Range  400-1000nm  1000-2500nm  

Spectral Bands  160  256  

Spectral Sampling  3.7nm  6.25nm  

Spatial Pixels  1600  320  

Field of View (FOV) across track (y-dimension) 17° 13.5° 

Pixel FOV across track (y-dimension) 0.18mrad  0.75mrad  

Pixel FOV along track (x-dimension) 0.36mrad  0.75mrad  

Detector  Si CCD 1600 x 1200  HgCdTe 320 x 256  

FPA temperature N/A 195 K / -78.15°C 

Sensor head power consumption 6W 100W 

Sensor head weight 4.6kg 7.5kg 

Sensor head dimension [cm] 31.5 x 8.4 x 13.8 36.0 x 14.0 x 15.2 

 

The HySpex cameras are provided with two acquisition modes, one for airborne data collection and 

one for laboratory measurements. In laboratory mode, the cameras are combined with a trigger pulse 

moving sleight (translation stage) of definable frame period, which depends on the integration time of 

every array-line acquisition. The configuration of the translation stage framework, the cameras and 

the light source (45° illumination angle) are fixed, while the translation stage and the samples are 

moving through the focal plane (Rogass et al., 2017). The reflectance level of a white reference panel, 

placed in line with the samples, is chosen according to the albedo of the samples. The higher the albedo 

of the sample, the higher is the diffuse reflectance factor of the matching reference panel. The Brazilian 

iron ore samples as well as the Apliki and Skouriotissa mine samples required a 50% reflectance white 

reference panel. Both the geometrical setup and the heat up time of the lamp influence the 

configuration of the light source. The maximum illumination was obtained with a certain angle of 45° 

between incident light and the vertical plane. The distance between lamp and HySpex cameras was 

higher compared to the distance between samples and sensor to ensure diffuse illumination and to 

avoid thermal influence on the cameras and the samples. The integration time (= measurement time 

for each image line) was tested to be as high as possible to suppress the impact of signal uncorrelated 

Gaussian white noise and at the same time as low as needed to avoid detector saturation visible in the 

pre-view images during image capture. For all measurements the integration time was chosen with 
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respect to the sample albedo. The used settings for the Brazilian samples are listed in Table 41 

(Appendix, p. 207), for the Apliki mine samples in Table 42 (Appendix, p. 207) and for the Skouriotissa 

mine samples in Table 43 (Appendix, p. 208). The laboratory is equipped with black-painted walls and 

doors, as well as black curtains to avoid reflected or transmitted light from surfaces other than the 

sample, an exemplary setup can be seen in Figure 26. The laboratory conditions were kept stable, the 

air temperature was regulated to 21±0.5°C and the humidity was between 50 - 60% for all 

measurements. Black cellular rubber is used as a base material for all samples for hyperspectral data 

acquisition. It reflects less than 5% on average of the incoming radiation (Herrmann, 2019). Detailed 

descriptions for the GFZ’ standard measurements and the process chain can be found in Rogass et al. 

(2017). 

 

 

Figure 26 The HySpex translation stage setup (Körting, 2019). 

 

3.5.2 Laboratory HSI data processing 

Each measurement run produces one VNIR and one SWIR 3D-data cube. The three dimensions are the 

two spatial x-, y- and the spectral z-dimension. The 3D image cubes are produced, by sensing a moving 

sled with a homogeneous reflecting white reference panel and the samples through the focal plane of 

the two sensors. The software ‘HySpex ground’ is used to perform the measurements and the software 

‘HySpex rad’ is used to perform the radiometric calibration on the image data (Koerting et al., in prep). 

The measured image cubes (VNIR and SWIR) are then co-registered, resized and stacked to a 
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continuous image cube. For the laboratory scans, in order to produce a reflectance image, the image 

pixels that show the white standard were averaged to a one-line reference spectrum. The reflectance 

was calculated by dividing every image line spectrum by its reference spectrum from the reflecting 

white reference panel (Rogass et al., 2017). After the reflectance retrieval, the data was digitally 

cropped to the spatial sample extend, in case of the Brazilian iron ore samples that meant only creating 

a subset of the sample area. For the Brazilian iron ore samples, a visual check of the 280 x 280 pixels 

data did not reveal bad bands or the occurrence of a detector jump around 1000nm and therefor only 

the areas of low SNR (shadows and black rubber) were masked out. For the Apliki mine and the Three 

Hills mine samples, the single sample containers had to be cropped and combined into one big data 

frame containing all samples (Apliki: 1250x1280 pixel, Three Hills: 1500 x 250 pixel). The RGB 

representation of the Brazilian iron ore and the Apliki samples is shown in Figure 27.  Figure 28 shows 

the RGB representation of the Three Hills data. After visual inspection of the data, the pre-processing 

and correction included an interpolation of bad bands (spikes), a correction of the detector jump 

around 1000nm and a low SNR/ shadow masking. By masking pixels with reflectance values < 10%, 

shadowed areas, the black rubber and parts of the pixels of the sample containers were excluded from 

the data. Some areas of the non-matted sample containers reflected the incoming light back to the 

sensor and are still present in the data. In order to visually compare the classification results with a 

ground truth, regions of interest (ROIs) were created encompassing the identifiable samples for both 

datasets. The ROIs for the iron ore and the Apliki samples are shown in Figure 29. 

 

   

Figure 27 RGB representation of the hyperspectral sample scans. Left: Brazilian iron ore samples. Right: Apliki mine 

samples.  
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Figure 28 RGB representation of the hyperspectral sample scan of the Skouriotissa mine samples. Color-coded outline 

represents the mapping color-scheme for the analysis based on the spectral library created from these samples. Pink: 

ore, red: low grade ore, yellow: waste. 

 

   

Figure 29 ROIs of sample position. Left: 15 Brazilian iron ore sample ROIs with masked shadow areas, 280 x 280 pixels. 

Right: 36 Cyprus Apliki surface sample ROIs, 1250 x 1280 pixels. 

 

3.5.3 Geochemical sample analysis for validation  

Depending on the sample type, the geochemical validation methods differ. The methods used for each 

sample type, can be found in Table 9. 

 

Table 9 Sample type and corresponding geochemical validation method. 

Sample type Concentration level determination 
Brazilian iron ore samples 

(Mine site 1) 

Samples grinded and pulverized at 150 Tyler mesh (0.105 mm), 

analysis by fire assay XRF. Provided by company. 

Brazilian iron ore samples 

(Mine site 2) 

Sample grinded at 250 Tyler mesh (0.083 mm) and fused with 

lithium tetraborate. Analysis by XRF (Lithium Tetraborate Fusion 

Tablet). Provided by company.  

Apliki mine samples 

(Koerting at al., 2019b) 

Bureau Veritas Minerals Analysis 

Lithogeochemical Whole Rock Fusion, LiBO2/LiB4O7 fusion ICP-ES 

analysis & Carbon and Sulfur Analysis or Ultra Trace Geochemical 

Aqua Regia digestion, 1:1:1 Aqua Regia digestion ( HNO3-HCl acid 

digestion), Ultratrace ICP-MS analysis  

Skouriotissa – Three Hills mine 

samples 

 

Bureau Veritas Minerals Analysis 

Lithogeochemical Whole Rock Fusion, LiBO2/LiB4O7 fusion ICP-ES 

analysis, Carbon and Sulfur Analysis 
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3.5.3.1 Brazilian iron ore samples – geochemical analysis 

The samples provided by Mine Site 1 and Mine Site 2 were analyzed differently. Sample 3, 4, 7, 8, 11, 

12 and 15 (Mine Site 1) were ground and meshed to below 0.105 mm and analyzed by “fire assay XRF” 

analysis (as described by the company). Sample 1, 2, 5, 6, 9, 10, 13 and 14 (Mine Site 2) were ground 

to below 0.083 mm, fused with lithium tetraborate and analyzed by X-ray fluorescence (XRF). The only 

information regarding the XRF system used is the name “XRF79C” for Mine Site 2, no information about 

the instrument parameters were supplied. The elements and oxides contents were provided for Fe, 

SiO2, Al2O3, P, Mn, CaO, MgO, TiO2, Na2O, K2O and loss of ignition (LOI). The Fe content of the 15 

samples varies from 24.40-68.49%, the Si content from 0.53-49.02% and Al2O3 varies from 0.43-

22.14% (Table 10). 

 

In the comparison of Mine Site 1 and 2 and geochemical clustering, the Na2O and K2O content was not 

taken into consideration, as only Mine Site 1 provided those values. The LOI normalized geochemical 

data as later used for a hierarchical clustering to find geochemical clusters of the samples 

(geochemically similar samples) for the spectral library EM determination that presented in Section 

5.2.2 (p. 99).  

 

Table 10 Geochemistry provided for the samples from the two active mining sites. Values below the detection limit are 

labeled as “< DL”. The LOI is the loss mass during heating at 1000°C for 60 minutes. 

ID Fe [%] SiO2 
[%] 

Al2O3 
[%] 

P [%] Mn [%] CaO [%] MgO 

[%] 

TiO2 
[%] 

Na2O 

[%] 

K2O 

[%] 

LOI 

[%] 

Mine 

Site 

1 55.05 16.81 0.61 0.135 0.052 0.018 0.074 0.059 - - 2.970 2 

2 49.72 18.51 1.05 0.110 4.032 0.025 0.049 0.072 - - 3.120 2 

3 24.40 21.69 22.14 0.60 <0.015 0.023 0.12 7.66 < DL 0.33 12.03 1 

4 46.39 30.33 1.41 0.037 0.047 0.008 <0.05 0.26 < DL < DL 1.20 1 

5 38.06 41.16 0.43 0.063 0.899 0.011 0.002 0.014 - - 2.070 2 

6 44.47 31.59 1.97 0.104 0.130 0.010 0.051 0.055 - - 2.580 2 

7 58.22 10.14 3.94 0.090 <0.015 0.008 0.14 0.27 < DL < DL 1.85 1 

8 35.37 49.02 0.28 0.017 0.048 0.013 <0.05 0.012 < DL < DL 0.13 1 

9 44.46 32.99 0.53 0.081 0.063 0.009 0.023 0.026 - - 2.120 2 

10 68.49 0.53 0.45 0.050 0.054 0.010 0.013 0.027 - - 0.870 2 

11 30.58 56.5 < DL < DL < DL 0.006 < DL < DL < DL < DL 0.07 1 

12 47.92 13.29 9.26 0.21 0.015 0.010 0.088 2.87 <0.10 0.13 5.84 1 

13 37.17 41.64 1.29 0.184 0.051 0.012 0.025 0.062 - - 4.220 2 

14 38.23 37.45 1.54 0.053 1.505 0.013 0.061 0.309 - - 2.630 2 

15 64.93 1.32 1.48 0.11 < DL < DL <0.05 0.32 < DL < DL 3.74 1 

 

 



58   Materials 

 

 58 

The samples provided from one of the active mine site Nr. 1 were delivered including a threshold value 

for their geochemical analysis (Appendix, Table 44, p. 208) and a sample description (Appendix, Table 

46, p. 208). For mine site 2, only the analysis thresholds were provided (Appendix, Table 45, p. 208). 

 

3.5.3.2 Apliki mine sample - geochemical analysis  

BVM 

The Apliki mine samples were analyzed by the Bureau Veritas Minerals laboratories (BVM). The 

analysis was split in groups based on three analysis types: “aquatic”, “rock” and “soil”. The sample and 

their analysis type and BVM analysis codes can be found in the Table 11, an explanation of the BVM 

analysis codes is provided in the Appendix Table 48 (p. 214). One sample was analyzed with the aquatic 

analysis type, the rock analysis type included twenty-five samples and soil analysis type included 

eleven samples. A spectral library of the samples and their geochemistry was published in 2019 

(Koerting, Rogass, et al., 2019). The main geochemical analysis results of the Apliki mine samples can 

be found in in the Appendix (Table 49, p. 215). 

 

Table 11 Apliki mine samples and the corresponding analysis type and BVM code, from Koerting et al. (2019b). 

Analysis 
type 

Samples with prefix “AP/1-A”- BVM code 

Aquatic 1a SHP01, CRU80, PULHP, AQ250 

Rock 1b, 1d, 1e, 4c, 5a, 5b, 5c, 7d, 7d-Hem, 7e, 8a, 8b, 

8c, 9a, 9b, 10a, 10b, 10c, 10d, 11a, 11b, 13a, 15a, 

15b, 15c 

SHP01, PRP70-250, LF302-EXT, TC000 

Soil 1f, 2a, 3a, 3b, 4a, 4b, 6a, 6b, 6c, 6d, 13b SHP01, PRP70-250, DISP2, LF302-EXT, 

TC000 

 

X-Ray dffractometry 

For the samples powders, X-Ray diffractometry (XRD) was performed to obtain qualitative sample 

mineralogy results. XRD data was collected on a PANalytical Empyrean powder X-ray diffractometer in 

a Bragg–Brentano geometry. It was equipped with a PIXcel1D detector using Cu K_α radiation (λ= 

1.5419 Å) operating at 40 kV and 40 mA. θ/θscans were run in a 2θ range of 4-70° with step size of 

0.0131° and a sample rotation time of 1s. It was equipped with a programmable divergence and anti-

scatter slit and a large Ni-beta filter. The detector was set to continuous mode with an active length of 

3.0061°. Sample 15a, b and c were additionally analysed semi-quantitatively with the Rietveld-method. 

The XRD detected mineralogy for each sample is presented in Table 12. The diffractograms can be found 

in the Appendix (Section 10.5, pp. 217 - 252). 
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Table 12 Apliki mine sample mineralogy based on XRD. Sample 15a, b and c were additionally analysed semi-

quantitatively with the Rietveld-method. 

Sample Mineralogy based on XRD (in no particular order) 
1b Andesine (anorthic), Quartz, Magnetite, Montmorillonite 

1d Anorthite, Magnetite, Diopside, Quartz, Montmorillonite 

1e Magnetite, Quartz, Montmorillonite, Diopside, Anorthite 

1f Magnetite, Anorthite, Quartz, Montmorillonite, Pyrite 

2a Goethite, Quartz, Clinochlore, Jarosite-Natrojarosite, Andesine, Gypsum 

3a Andesine (anorthic), Quartz, Gypsum, Clinochlore, Jarosite, Montmorillonite 

3b Quartz, Andesine, Clinochlore, Gypsum, Jarosite, Montmorillonite 

4a Gypsum, Quartz, Clinochlore, Rozenite (Iron sulfate hydrate) 

4b Quartz, Clinochlore, Andesine, Gypsum, Montmorillonite 

4c Quartz, Clinochlore 

5a Clinochlore, Gypsum, Quartz 

5b Gypsum, Quartz, Clinochlore 

5c Quartz, Gypsum, Clinochlore, Goethite, Hexahydrite 

6a Quartz, Pyrite, Analcime, Goethite, Montmorillonite, Clinochlore, Anorthite 

6b Anorthite, Quartz, Magnetite, Diopside, Montmorillonite, Gypsum, Goethite 

6c Quartz, Clinochlore, Analcime, Gypsum, Calcite, Jarosite, Pyrite, Montmorillonite 

6d Quartz, Pyrite, Anorthite, Analcime, Clinochlore, Montmorillonite 

7d Quartz, Hexahydrite (Mg sulfate), Clinochlore, Gypsum, Pyrite 

7d-Hem Pyrite, Hematite, Quartz, Gypsum, Clinochlore 

7e Rozenite, Goethite, Quartz, Apjohnite, Ferrohexahydrite (Fe sulfate hydrate) 

8a Quartz, Clinochlore, Pyrite, Ajoite (minor copper ore) 

8b Quartz, Clinochlore, Pyrite, Ajoite 

8c Quartz, Ajoite, Clinochlore, Pyrite 

9a Quartz, Clinochlore (Mn), Clinochlore 

9b Quartz, Clinochlore, Pyrite, Hematite 

10a Clinochlore, Hematite, Quartz 

10b Quartz, Clinochlore 

10c Quartz, Clinochlore 

10d Quartz, Clinochlore, Pyrite 

11a Quartz, Clinochlore, Gypsum, Bassanite (Ca sulfate) 

11b Quartz, Clinochlore, Sphalerite 

13a Andesine, Quartz, Magnetite, Montmorillonite-Chlorite, Diopside 

13b Clinochlore, Quartz, Montmorillonite 

15a 

Quartz (82.6%), Pyrite (7.5%), Chalcopyrite (0.8%), Pentahydrate (cuprian) (9.1%) Cu 

sulfate) 

15b Quartz (86.1%), Pyrite (4.5%), Pentahydrate (cuprian) (7.1%), Covellite (2.4%) 

15c Covellite (18.9%), Quartz (39.9%), Chalcanthite (21.8%), Pyrite (20.0%) 
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3.5.3.3 Skouriotissa Three Hills samples – geochemical analysis 

The Skouriotissa mine samples were analyzed in the Bureau Veritas Minerals laboratories (BVM). The 

samples and their analysis type and BVM analysis codes can be found in Table 13,  an explanation of 

the BVM codes is provided in Table 48 in the Appendix (p. 214). All 15 samples were analyzed with the 

BVM “rock” analysis. The main components of geochemical analysis results of the Skouriotissa samples 

are listed in Table 51 in the Appendix (p. 256). 

 

Table 13 Three Hills mine sample numbers and the corresponding BVM analysis codes. 

Analysis 
type 

Samples with prefix “Sko1_B_”- BVM code 

Rock 1a, 1b, 1c, 2a, 2b, 2c, 3a, 3b, 3c, 4a, 4b, 4c, 5a, 5b, 5c SHP01, PRP70-250, TC000 

 

3.5.4 Field HSI data acquisition 

In the following paragraphs the Apliki and Three Hills mine field data acquisition workflow is explained 

in detail. It describes the data acquisition, sampling, reflectance retrieval, data pre-processing and 3D 

model reconstruction. 

3.5.5 Cyprus field work 

In the following chapter, the HSI data acquisition and processing in the field in the Apliki mine is 

explained. The correct field setup and sampling for validation is crucial and should be considered in 

depth before any analysis takes place (3D reconstruction, BFF, SAM or MWL). All the work in the 

Republic of Cyprus was conducted under the Permit to conduct a Geological Survey, Ref. No. 

02.13.005.002.005.022 from the 19th of March 2018, granted by the Geological Survey Department 

Cyprus, Ministry of Agriculture, Rural Development and Environment (GSD) and the Director Dr. Costas 

Constantinou. The permit terminated in 18th of September 2018. An agreement for a Memorandum of 

Understanding and Framework (MoU) for cooperation in the area of geo-science between the GSD 

and the Helmholtz Centre Potsdam (GFZ) German Research Centre for Geosciences was reached in 

March 2019 including the objective of “hyperspectral mapping of secondary minerals in the field of 

existing drill cores e.g. in abandoned mines or for the purpose of environmental monitoring”. This work 

is linked to both, the field sampling permit from March 2018 and the MoU agreement reached in 

March 2019. 
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3.5.6 Apliki HSI field data  

In order to scan the Apliki mine face, the open pit mine was accessed with supervision by the GSD from 

the SSW. As the Apliki mine is in close proximity to the UN buffer zone, the movement was limited to 

the SSE, the Northern-most accessible point was the NNE accessible levels of the mine face. The 

HySpex sensor was placed approximately parallel to the outcrop face at a distance of 100 m SEE to the 

mine face. The HySpex placement and distance was based on the accessibility and the safety for both 

the operator and the sensor. The placement of the sensors influences the height of the mine face that 

can be captured and the pixel sizes at mine face levels. The pixel size has to be small enough to capture 

deposit relevant changes. Furthermore, it has to capture the white reflectance targets with sizes of 20 

cm x 20 cm for the reflectance retrieval. For the HySpex system, the approximate pixel size captured 

at the mine face level for different sensor – mine face distances are presented in Table 14.  

 

Table 14 Approximate distance of sensor to mine face and expected, rounded pixel size at-mine-face for the HySpex 

VNIR-1600 and SWIR-320m-e cameras. 

 VNIR-1600 SWIR-320m-e 
FOV (with FOV expander) 34° 28° 

Pixels per line 1600 320 

 
Distance Expected pixel 

size 

Captured 
mine face 
height 

Expected pixel 
size 

Captured 
mine face 
height 

200m 3.8cm 122m 15.6cm 100m 

150m 2.8cm 91m 11.7cm 75m 

100m 1.9cm 61m 7.8cm 50m 

10m 0.2cm 6.1m 0.8cm 5m 

 

As the mine face is not level with the sensors view, the uppermost levels will be more distant, whereas 

the lower levels will be closer to the sensor, resulting in different pixel sizes. This is due to the man-

made topography of the levels in the mine and also the upward sensing geometry of the sensor. The 

expected pixel size in the lowermost, closest levels will be < 2.4cm and in the higher, most distant 

levels > 24cm. The mine face area represented by each pixel does not only vary line by line but also 

within the pixels of one line (mine face height). Figure 30 schematically shows the changes in pixel size 

not only with outcrop height but also with proximity of the sensor to the mine face.  
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Figure 30 Approximated pixel size with mine face height variations and proximity to sensor variations, relative to the 

HySpex SWIR-320m-e with a FOV of 28° and 320 pixels per line. 

 

Six white reflectance panels or “targets” were placed at the accessible part of the mine face. The 

reference panels are 5%, 20%, 50%, 90% and 95% calibrated reflectance standards and approximate 

an optimal Lambertian reflectance surface. Five smaller targets are placed with increasing reflectance 

standard from left to right along the outcrop face. A large 90% target (80 cm x 80cm) is placed at the 

center of the face, in-between the smaller 50% and 90% targets (20 cm x 20cm). The normal surface 

of each panel is oriented parallel to the mine face and the reflective surface is facing the sensors at 

150 m distance. The GPS positions of the sensor and the targets are listed in Table 15 and are based 

on the internal GPS system of the NIKON 1 AW1 camera. A sketch of the position of the HySpex within 

the open pit is shown in Figure 31  and the position and placement of the targets along the mine face 

is shown in Figure 32. 

 

Table 15 Latitude and Longitude of the HySpex and the six targets. 

 Latitude Longitude 
HySpex 35° 4' 35,49" N 32° 50' 33,66" E 

5% target 35° 4' 37,39" N 32° 50' 35,73" E 

20% target 35° 4' 37,28" N 32° 50' 35,78" E 

50% target 35° 4' 36,91" N 32° 50' 35,86" E 

90% target 35° 4' 36,72" N 32° 50' 36,14" E 

95% target 35° 4' 36,39" N 32° 50' 36,21" E 

Big target, 90% 35° 4' 36,89" N 32° 50' 35,95" E 
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Figure 31 Position of HySpex and reflectance targets in the Apliki open pit (outlined in black). 

 

 

Figure 32 A: HySpex and target setup shown in close-up photos. B: Position of the targets along the mine face from left to 

right: 5%, 20%, 50%, 90% large, 90% small, 95%. 
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The HySpex sensor head was at an approximate height of 1.50 m. The sensors were protected from 

the sun by a customary umbrella. The HySpex computer was placed in the nearby car trunk to protect 

it from the sun and dust (Figure 33), the system was powered by a generator (Honda EU 10 i inverter) 

that was positioned at a distance, downwind of the HySpex. An image series of eleven HySpex VNIR 

and SWIR images was recorded, beginning at 13:46 UTC+3 under the conditions of a solar azimuth 

angle of approximately 200° and a sun elevation angle of approximately 52° with occasional cirrus 

clouds covering a maximum of 20% of the visible sky. The data acquisition parameters can be found in 

the Appendix (Table 52, p. 257). 

 

 

Figure 33 Data acquisition at Apliki outcrop - computer setup. 

 

3.5.6.1 Apliki field sampling 

Figure 34 shows the expected lithology of the outcrop. Ten levels have been counted in total, each 

face of an approximate height of 10m. The high level of weathering, that has been taking place since 

the 1970s, results in downhill weathering of secondary mineralogy from the gossans cap at the top of 

the mine face. The levels are dominated by landslides - triangular cones of debris displaced from the 

levels on top - and by water carved troughs, wide at the top of an individual level face, narrowing down 
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towards the bottom of the level face. These troughs seem to have formed from surface runoff. 

 

 

Figure 34 Apliki mine face - expected lithology and extraction level numeration. 

 

These trough surfaces are covered in white-blue mineralization. Only the two lower most levels were 

accessible and of those, only level 2 was within the spatial range of the HySpex sensors. Sampling 

therefore concentrated on level 2. In order to identify spectrally homogenous regions for sampling, a 

PCA was calculated from the SWIR radiance data. The PCA method that was used is explained in 

general terms on page 84 and for the Brazil dataset on page 103. Instead of the reflectance data as for 

the Brazil dataset, here the radiance SWIR data was used to calculate the PCA and find spectrally 

homogeneous areas in the field. The RGB visualization of PCA band 3-5-6 is shown in Figure 35. Field 

sampling was conducted in the areas indicated by red stars in the PCA. Thirty-seven samples were 

collected on–site from fourteen different sampling areas (see Figure 36). Area 1 and 2 were located on 

the level of the HySpex sensor, area 3-11 and 14-15 were located on level 2 of the mine face. Area 12 
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was inaccessible for field sampling. The landslide marked as area 13 was sampled from the bottom of 

the open pit (level 1) where it was safely accessible.  

 

 

Figure 35 PCA based on SWIR radiance data marking spectrally homogeneous regions with red stars for possible field 

sampling.  

 

 

Figure 36 Sampling locations identified from SWIR radiance PCA analysis and marked as ROIs in the SWIR grey-scale 

image Sample area 1-11, 13 and 15 were included in the spectral characterization of the mine face (marked in their ROI 

color), area 12 & 14 were excluded (labeled in white). 

 

Several samples have been collected from each sample area and were analyzed spectrally and 

geochemically as described in the laboratory section of this work (and in Koerting, Rogass, et al., 2019). 

For the spectral library based on geochemical clustering of the samples (Subsection 5.4.1.1, p.136), 

only twelve sample areas were considered. Area 12 and 14 were excluded from the spectral 

characterization of the mine face and are marked by white rectangles in Figure 36 above. 

 

3.5.6.2 Apliki field data reflectance retrieval 

The raw Digital Number (DN) sensor output data is radiometrically scaled to radiance (W · sr -1 · m -2 · 

nm -1) using manufacturer predefined sensor characteristic radiometric calibration coefficients. The 

mean radiance spectrum of each reflectance target is calculated and normalized according to their 

relative reflectance level. The incident direct and diffuse irradiance is modelled polynomially for every 

spatial position (pixel) and for all bands of the reflectance panels present in the HSI. The reflectance 

targets are marked by ROIs in the ENVI software for this purpose. Table 16 lists the reflectance targets 

utilized for the Apliki mine face with the number of detectable pixels for each target. The irradiance 

model calculated for each target is applied to every HSI pixel to retrieve the reflectance value for each 

band. If an averaging over more than one HSI measurement is applied, a weighted average of all data 

cubes is calculated according to their spectral homogeneity. Consequently, for Apliki eleven data cubes 
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were averaged and combined into one reflectance dataset that was further processed and 

downsampled. Table 16 also states the variable area depicted by a pixel inferred from the known size 

of the different reflectance panels. As discussed above, the area depicted by each pixel varies due to 

the rotational manner of the measurement and the various distances from surface to sensor (along- 

track and within the captures line of pixels). For the white reference targets, this variation of area 

depicted by one pixel flank varied from 7.0 – 11.4 cm. For every image the spectral homogeneity of 

the calibrated reflectance standards was determined using the standard deviation of all pixel spectra 

at the reflectance standard locations (Boesche et al. 2015). The resulting data cube was then used for 

the analysis of the surface mineralogy.  

 

Table 16 White reference target size in pixel, cm, and approximate pixel size of the reflectance targets at the outcrop. 

Target Number of pixels found in 
SWIR per target lateral 

length 

Size of target Lateral pixel size at white reflectance 
target position [cm] 

5% 2.5 20 cm x 20cm 8 

20% 2 20 cm x 20cm 10 

50% 2 20 cm x 20cm 10 

90% 3 20 cm x 20cm 7 

95% 2.5 20 cm x 20cm 8 

90% 7 80 cm x 80 cm 11.4 

 

3.5.6.3 Apliki field data pre-processing  

The reflectance was retrieved from an image series average of eleven scans in total, acquired around 

noon (13:46 CEST) of an evenly lit mine face. Each scan was subject to slightly different illumination 

conditions due to the movement of clouds. Averaging the scenes results in an approximately evenly 

illuminated outcrop. The VNIR-SWIR scan has a size of 3013 x 320 pixel, including parts of the open pit 

in the Southeast. The scan was clipped to the extent of the mine face to 1600 x 320 pixel. The 

reflectance retrieval by Christian Rogaß (Boesche et al., 2015, explained above) includes a smoothing 

with a Gaussian filter with a sigma of 2. The smoothed data was clipped to the wavelength range of 

414 – 2390 nm, excluding the last 18 bands due to prevalent noise. The atmospheric bands, visible as 

broad spikes in the data, were clipped around bands 209 – 239 and bands 284- 327 and a shadow and 

Normalized Difference Vegetation Index (NDVI) masking was performed based on the Indexdatabase 

(indexdatabase.de/, 2020). The resulting vegetation mask is shown in Figure 37 and the shadow and 

NDVI-masked imagery is shown as an RGB in Figure 38. 

 



68 Materials 

 

 68 

 

Figure 37 NDVI of the Apliki field reflectance scan, shown in levels of grey. NVDI values ≥ 0.1 are depicted in light shades. 

 

Figure 38 NDVI & shadow masked reflectance field scan. Vegetation and areas of shadow (high SNR) are masked out and 

shown in black. (RGB composition: R: band 63, G: band 38, B: band 13.) 

 

3.5.6.4 Apliki mine 3D reconstruction 

The digital outcrop model was reconstructed on a Lenovo Thinkpad, Windows 10 64-bit, Intel® Core™ 

i7-2860QM CPU @ 2.50 GHz x 2.50 GHz and 32 GB Memory. The processing times of the 3D 

reconstruction are based on this hardware. The 3D modeling was performed in Agisoft Photoscan 

Professional v.1.2.6.2834. Neither the method of Structure-from-Motion (SfM) reconstruction nor the 

models’ accuracies are of particular interest in this work, the “digital outcrop models” are purely 

created for visualization purposes in the context of location within the open pit. To reconstruct a 3D 

model of the outcrop – often called a “digital outcrop model” (DOM) - 117 photos taken by a NIKON 1 

AW1, lens 11.0 – 27.5 mm, f/ 3.5 – 5.6 (4608 x 3072 pixels) and 1 HySpex RGB scan (1600 x 320 pixels) 

were utilized for SfM reconstruction. SfM allows us to align overlapping photos to form geometric 3D 

meshes (Caravaca et al., 2019). Similar points across the photo set, so-called matching tie points are 

detected and linked to create a sparse point cloud. Each tie-point is projected into 3D space, the 

position of each point is being calculated from the apparent displacement across several photos 

(Caravaca et al., 2019). Points detected not correlating to the outcrop itself are removed before 

calculating a dense point cloud. A network of vertices delimitating triangular polygons is calculated by 

linking the points of the dense point cloud, thereby creating a 3D mesh (Caravaca et al., 2019). The 

vertices are color-coded according to the RGB colors of the original source photo. The visualization of 

the single RGB representation of the HySpex scan is included in the SfM reconstruction to match tie 

points and construct a 3D model. To visualize the RGB HySpex scan within the 3D model or to visualize 

the resulting maps of the same spatial dimensions, the HySpex imagery (or map) is used as a single 

texture for the mesh, and visualized on top of the RGB photo-based DOM. This results in a 
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photorealistic representation of the digital outcrop model that is able to visualize the mapping results 

on the 3D texture. Two RGB DOMs for Apliki were reconstructed, the first one showing a wider view 

of the open pit and a second one showing a close-up of the mine face in the NNE of the open pit. The 

parameters for the two digital outcrop model reconstructions are listed in Table 54 in the Appendix (p. 

259). The dense point clouds of both DOMs are shown in Figure 39 and Figure 40.  

 

Figure 39 RGB digital outcrop model of the Apliki open-pit area, showing the NNE to SSW walls of the pit. One extraction 

level is approximately 10m of height. 

 

 

 

Figure 40 Close-up RGB model of the mine face in the NNE scanned by the hyperspectral system. One terrace is 

approximately 10m of height. 
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3.5.7 Three Hills HSI field data  

The Three Hills open pit was entered from the Northeast and the HySpex sensors and equipment were 

placed approximately parallel to the upper outcrop faces at a distance from 100m to 200m from the 

convex faces on the Eastern flank of the open cut. One white reflectance panel was placed at the 

accessible part of the mine face NW of the HySpex sensor. The 80cm x 80cm reference panel is 

calibrated as a 90% reflectance standard. The normal surface of the panel is oriented parallel to the 

mine face in the North and the reflective surface is facing the sensors from a 100m distance. Only one 

large WR panel could be placed on an accessible, safe part of the mine that is also visible within the 

collected image area due to its larger size. It can thus be identified correctly within the VNIR and SWIR 

scan for the needed reflectance retrieval. The difference to the placement and number of reflectance 

panels compared to Apliki here, is the accessibility to place the panels within Three Hills, the visibility 

of the panels within the image and the larger distance from sensor to mine front. The GPS positions of 

the sensor and the white reflectance panel are listed in Table 17. The position and placement of the 

sensors and the reflectance target in the open pit is shown in Figure 41 based on Google Earth imagery 

from April 2018 (Google, 2018). The line of surface sampling is marked, as well as the rotational 

scanning direction from S to NNW. 

 

Table 17 Latitude and Longitude of the HySpex and the target position. 

Position of: Latitude Longitude 
HySpex 35° 05’ 23.58’’ N 32° 54’ 01.34’’E 

Big target, 90% 35° 05’ 25.23’’ N 32° 54’ 00.27’’E 
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Figure 41 Top: Skouriotissa Mine overview; Bottom: Close-up of Three Hills deposit with marked sensor and target 

positions. Source: "Skouriotissa Three Hills Deposit", 35°05'50.72''N, 32°53'48.81''E, GOOGLE EARTH, 3rd of April 2018, 

retrieved 21st of July 2020 (Google, 2018). 

 

The HySpex sensor head was at an approximate height of 1.50m. Figure 42 shows the field setup with 

the placement of the sensors and equipment across from the open pit.  One VNIR and SWIR image was 

recorded with an averaging of 4 frames, the detailed data acquisition parameters can be found in the 

Appendix (Table 53, p. 258). 
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Figure 42 Data acquisition setup at Skouriotissa - Three Hills mine. 

 

3.5.7.1 Three Hills Field Data Pre-Processing  

The hyperspectral reflectance data derived from the field pre-processing routine from Boesche et al. 

(2015) and was cleaned up as explained for the Apliki field data including a shadow (<10% reflectance) 

masking. The field data was downsampled to the optimal sensor “40nm VNIR – 15nm SWIR, without 

atmospheric bands” (clipped and interpolated between the atmospherically influenced bands between 

1300–2010nm). The resulting dataset spans the spectral range of 414–2390nm within 54 spectral 

bands of 40nm (VNIR) and 15 nm (SWIR) bandwidths, the RGB representation of the mine face scan is 

shown in Figure 43. 

 

 

Figure 43 RGB representation of the superspectral mine face data of Skouriotissa, Three Hills, Republic of Cyprus. 

Viewers’ direction is approximately towards NNW. 
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3.5.7.2 Three Hills Mine 3D reconstruction 

To reconstruct a digital outcrop model (DOM), 184 photos taken by a NIKON 1 AW1, lens 11.0 – 27.5 

mm, f/ 3.5 – 5.6 (4608 x 3072 pixels) and 1 HySpex RGB scan (2500 x 320 pixels) were utilized for 

Structure-from-Motion (SfM) reconstruction. By including one HySpex RGB scan, the texturization of 

the DOM with the classification maps can be achieved. One DOM for Skouriotissa Three Hills was 

reconstructed, showing the open pit from the HySpex view position from approximately SE of the open 

pit. The dense point cloud model is shown in Figure 44, textured with the orthophoto mosic of the 

available Nikon photos und in Figure 45, textured with the RGB hyperspectral scan overlaid on the RGB 

photo texture. The parameters for the DOM reconstructions are listed in Table 55 in the Appendix (p. 

260). The DOM is created for visualization purposes only and neither its accuracy nor the methodology 

of SfM is under inspection in this work. 

 

 

Figure 44 The resulting 3D model, textured with the orthophoto mosaic of all available Nikon photos. 

 

 

Figure 45 The resulting 3D model, textured with the RGB hyperspectral scan overlaid on the RGB photo texture. 
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4 Near-Field Imaging Spectroscopy Methods 

4.1 Analysis of imaging spectroscopy data  

The analysis of any hyperspectral imagery is generally aggravated by the high variability of the material 

spectra due to subtle changes in chemical and molecular characteristics. By using corrected reflectance 

data instead of radiance data, the influence of the illumination source and changes is considered as 

negligible and the changes in the spectrum is considered as purely material dependent. The correction 

to reflectance is crucial yet handled differently by the different research groups; it is discussed in the 

following section. When the data is reflectance-corrected, the spectral, material-dependent features 

can be analyzed and distinguished. Some of the standard knowledge- and data-driven analysis 

approaches are explained in the following introductory chapter and will be applied to the Brazilian Iron 

Ore sample data in the subsequent chapter. Figure 46 schematically demonstrates how hyperspectral 

data is handled, corrected, processed and analyzed. All of the examples mentioned in the figure are 

explained in detail in this section and the following subsections. 
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Figure 46 Schematic generic workflow of how HSI is processed and analyzed. Explanation of the examples given in the 

figure are found here: data dimensionality reduction (pp. 76-77), continuum removal (pp. 81-83), SMACC (pp. 78-79), 

geochemical clustering (p. 78), in-situ site-specific (p. 77) and PPI + n-D (p. 79). The following methods are found here: 

PCA (pp. 84-85), MWL (pp. 85-86), MICA (p. 93), EnGeoMap (pp. 94-95), SAM (p. 86), BFF (pp. 86-87), Neural Networks 

(pp. 89-90), Random Forest (pp. 90-91), ICA (p. 92) and MTMF (p. 91). 

 

4.2 Correction of data – Reflectance Retrieval 

In order to acquire close-range data fit for mineral mapping, the collected radiance data has to be 

corrected and transferred to reflectance values. The radiometric correction is done by a couple of 

means. An atmospheric correction known for satellite data is not needed as the image acquisition 

either occurs at low altitudes (UAV) or from a distance of a couple of 10s to 100s of meters (ground-

based measurements). The atmospheric influence is therefore negligible, as it will be minimized 
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through empirical lining. The at-surface reflectance retrieval is usually performed by empirical line 

calibration. Empirical line methods use a single or a couple of spectrally homogeneous reference 

panels in the scene, whereas a dark current measurement is used to update the radiometric calibration 

coefficients (Boesche et al., 2015; Rogass et al., 2017). Another approach is to divide each pixel 

spectrum by an atmospheric correction spectrum derived from the scene by locating the pixel with the 

maximum absorption depth of water vapor (at 1126nm) (Rosa et al., 2016; Lorenz et al., 2018). This 

approach does not account for potential, multiple reflections that deepens the water vapor absorption 

and occurs in concave environments like open pits. Hence, it would overestimate the impact of the 

atmosphere on the measured signal. The geometrical fusion of VNIR and SWIR data cubes into a 

common Integrating the data into a 3D model requires the identification and matching of control 

points. Those can be picked manually (Kurz, Buckley and Howell, 2013) or automatically by scale 

invariant feature transform (SIFT) (Nieto, Monteiro and Viejo, 2010; Monteiro et al., 2013). To retrieve 

a surface model, RGB imagery from a handheld camera and 3D reconstruction by Structure-from-

Motion and Multi-View Stereo (SfM and MVS) are facilitated to create rapid 3D models from different 

image acquisition angles and positions (Kuras, 2017; Köllner et al., 2019). The SfM technique utilizes 

SIFT as well and can be considered as the state-of-the-art approach for photogrammetric analyses and 

the computation of digital surface models. This was also deployed for the long-range by Salehi et al. 

(2018) and for the close-range by Kirsch et al. (2018). Micro-topography can influence the captured 

signal, especially for UAV imagery and unpredictable platform shifts (Jakob, Zimmermann and 

Gloaguen, 2017). Surface geometry is a prominent factor for geological applications. The change of 

illumination angles can distort the spectral appearance distinctly (Kirsch et al., 2018). In order to 

correct the data, the research group around Richard Gloaguen attempt a topographic correction for 

UAV and long-range imagery in rough terrains (Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al., 

2018). My experience shows that a topographic correction can be avoided for open-pit imagery by 

choosing optimal scanning conditions: evenly illuminated mine-faces, close-range sensor position 

(between 10-200m) and in case of changes in convex and concave mine face behavior to partition the 

mine face into smaller increments. Shadowed areas are not used for the analysis and cropped out. 

Lorenz et al. (2018) took similar consideration into account when scanning an open pit area at Corta 

Atalaya, Minas de Rio Tinto, Spain from a distance of 400-1100m and forfeited the topographic 

correction here as well.  
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4.3 Data dimensionality reduction 

Before an EM extraction or spectral processing methods the spectral dimensionality of the data can 

be reduced. A reduction of spectral data complexity can be performed based on a de-correlation of 

the data by maximizing its variance, e.g. with a principal component analysis (PCA). Rodarmel and Shan 

(2002) for example, showed on HYDICE and AVIRIS data that including only the first 10% of PCA bands 

still achieves a correct classification rate of about 70% and reducing the PCA bands to the first 50% 

reaches up to 90% correct classification results. 

The data dimensionality can also be reduced based on-user defined constraints. The user can choose 

to exclude bands and wavelength ranges that are not of interest (e.g. exclude complete wavelength 

ranges due to influencing atmospheric features), clip the data to a shorter wavelength range or to 

increase the bandwidth of different bands and thereby reducing the band number that is needed to 

cover the spectral range of interest. A decrease of band number can decrease the noise in the data 

and the data size and increase the computation time for succeeding processing steps, e.g. the data 

analysis. Section 5.3 (pp. 122 - 128) shows a successive downsampling of the Brazilian iron ore dataset 

and how the subsequent analysis results and computation times change with decreasing data 

dimensionality. 

4.4 EM extraction and spectral libraries 

In order to settle for an approach to find the right spectral libraries for EM based classification 

approaches, four different spectral EM libraries where compared. 

 

Visual EM selection based on known sample homogeneity  

In case of laboratory-based scans of known sample of homogeneous geochemical parameters, spectral 

EMs of each sample were extracted in a 5x5 pixel average window. Some of the samples show 

inhomogeneous regions (different grain sizes, colors of grains compared to the sample average, 

different materials), here the 5x5 pixel average window was deliberately chosen to incorporate the 

visual variance in the material, as the geochemical analysis provided was based on bulk material 

analysis. In order to correlate geochemical and spectral material properties, the spectrum 

characteristic for each sample has incorporate small-scale mixed materials in the overall sample-scale 

homogeneous context. The spectral library based one spectrum for each sample can be seen in Figure 

47. 

 



78 Near-Field Imaging Spectroscopy Methods 

 

 78 

 

Figure 47 Spectral library based on visual spectrum extraction over a 5x5 pixel average. 

 

Spectral library reduction based on geochemical clusters  

Field sampling tends to be biased based on the experience of the sampling person, the time frame in 

which sampling can take place, the visual understanding and typically prone to oversampling distinct 

looking lithologies (colorful) and undersampling host rock lithologies that tend to look very similar to 

each other. Therefore, the samples taken might not represent the actual number of EMs in the 

sampled area. Geochemical analysis of the samples can additionally reveal that geochemically very 

similar lithologies have been sample multiple times and thereby several samples represent the same 

EM. In order to reduce the number of spectral library entries to the number of geochemically distinct 

EMs, the geochemical results of the samples were clustered hierarchically based on their element and 

oxide mass fractions. The result of this reduction is based on the geochemical analysis of each sample 

group (Iron ore samples: p. 57, Apliki mine samples: p. 58,). The geochemical analysis, results and the 

individual clustering and subsequent EM choice is explained in more detail in the respective sample 

sections (Iron ore samples: p. 98, Apliki mine samples: p.136, Skouriotissa Three Hills samples: p.162) 

. 

 

Sequential Maximum Angle Convex Cone (SMACC) 

The Sequential Maximum Angle Convex Cone (SMACC) algorithm initiates with the brightest EM and 

sequentially and iteratively selects as next EM the spectrally most extreme compared to the current 

EM set. It is based on the assumption of a linear mixing of EMs and a convex cone that spans the 

spectral variety as vectors. EMs are identified if they exhibit the largest angle towards the existing 
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cone. SMACC terminates when the number of permitted EMs is reached or the selected pixel EMs 

present the greatest spectral angles (Sykas, 2020).  

 

Pixel Purity Index (PPI) 

The Pixel Purity Index (PPI) is a supervised EM extraction algorithm. It starts with a noise-whitening 

and dimensionality reduction by MNF transform and then creates a large number of randomly oriented 

test vectors anchored at the origin of the MNF-transformed coordinate space. The spectral points are 

projected onto the vector and minimum and maximum projected values are flagged as extreme. After 

multiple projections the algorithms tallies the number of times a pixel is flagged “extreme” and the 

pixels above a threshold are defined as EMs. This can also be achieved randomly (R-PPI) (Sykas, 2020). 

4.5 Spectral Processing 

The spectral analysis or spectral mapping refers to extracting qualitative and/ or quantitative 

information from remotely sensed data based on albedo or wavelength-dependent properties of 

materials (Mustard and Sunshine, 1999). Included here are most of the techniques proposed for 

detection, classification, discrimination, identification, characterization and quantification of 

materials. These methods can be categorized e.g. by their date of emergence (conventional vs. 

advanced), their presumed randomness, the data type they are applied to (multi- or hyperspectral), 

the way the pixels are treated (hard, per-pixel and soft, sub-pixel classifiers), the need for training data. 

A review of the spectral processing methods for geological remote sensing given by Asadzadeh and de 

Souza Filho (2016) aims to categorize the well-known methods into knowledge-based and data-driven 

approaches and this categorization is followed here. Their spectral processing methods review is 

shown in a taxonomic tree (Figure 48) which in conjunction with categorization and taxonomic tree is 

taken up for the here-discussed methods. Aside the categorization approach by Asadzadeh and de 

Souza Filho (2016), this introduction to spectral processing methods is also based on the reviews by 

Audebert et al. (2019) on deep learning for geological hyperspectral classification and Rajan Girija and 

Mayappan (2019) on the mapping mineralogical and lithological units. Continuum removal and 

absorption feature detection prior to the analysis is inherent to many of the presented methods. 
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4.5.1 Continuum removal (CR) 

The continuum is the background absorption of the material on which finer absorption bands of 

interest are superimposed. It is thought to be the signal of non-selective multiple scattering due to 

matrix effects, Fresnel reflectance and spectrally inactive materials (Asadzadeh and de Souza Filho, 

2016). The continuum is also influenced by physical (e.g., particle size, texture, surface roughness) and 

chemical properties and illumination conditions. Most commonly, a convex hull is fitted over the top 

of the spectrum, linking all reflectance maxima with straight lines and bridging all absorption features. 

When the original spectrum is divided or subtracted by this continuum, the continuum-removed 

spectrum highlights the absorption features (Asadzadeh and de Souza Filho, 2016). Four different 

continuum removals are compared, three of them based on the creation of a convex hull and the last 

one on a novel approach of a geometric hull.  

 

4.5.1.1 Convex Hull 

In the ENVI software (harrisgeospatial.com/docs/using_envi_Home.html, 2020), the standard CR is 

performed by creating a convex hull over the top of the spectrum by straight-line segments of a 

Delauny triangulation and by interpolation between maxima. The spectrum is then divided by the 

continuum for each pixel, the resulting image is equal to 1 in regions where the actual spectrum and 

the continuum curve match and below 1 for regions where absorption features occur. The CR of the 

HypPy hyperspectral python toolbox by Wim Bakker (Bakker, 2018; Bakker and Oosthoek, 2020) offers 

the CR by creating a convex hull as in ENVI, based on a modified Quickhull approach, followed by either 

subtraction or division of the continuum curve. Only in case of true reflectance data (scaled from 0 to 

1) subtraction is actually an option. A division of the convex hull without cut off wavelengths was 

utilized to perform the CR here. The open source PySptools hyperspectral python toolbox by Cristian 

Therien (Therien, 2020) also uses a convex hull removal based on (Clark and Roush, 1984) and removes 

the convex-hull of the signal by hull quotient. 

Mielke et al. (2015) proposed a new approach for a convex hull calculation and continuum removal, 

the so-called “geometric hull”. The novel approach was tested against state-of-the-art approaches like 

convex hull, scale-space filtering and alpha shapes and the CR and feature extraction was tested on a 

the USGS digital spectral library (Clark et al., 2007). The geometric hull is defined by convolving the 

input spectrum twice with a 2% and 10% boxcar filter each. For each filter a pair of Gaussian 

distributions is estimated and the largest standard deviation of the difference between the Gaussians 

is taken as an indicator to find the correct length of the boxcar filter. This ensures the correct 

identification of absorption features. The smoothed spectra are divided and show the absorption 

minima of potential features. These minima are taken as nodes to construct a lower hull by linear 
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interpolation between them. This lower hull is subtracted from the input spectrum to set the 

preliminary minima to zero. In each non-zero segment, the maximum is found and listed as potential 

nodes for the upper continuum hull, which is constructed by linear interpolation between these 

maximum nodes. The points of the upper hull are now subtracted from the input spectrum to check 

for interference between the two-point sets (reo-crossing points). This process is iterated through new 

emerging maximum nodes until the final geometric hull can be constructed from the final maximum 

node list. Either subtraction or division of the input spectrum and the continuum hull accomplishes the 

CR. As for the HypPy CR, division is advised for non-true reflectance data. Mielke et al. (2015) compares 

the feature extraction quality from the different continuum definition techniques to the expert defined 

absorption features in the USGS Material Identification and Characterization Algorithm MICA (508 

features for 213 spectra) of the USGS spectral library (Clark et al., 2007; Kokaly, 2011).   

4.5.1.2 Geometric Hull 

Mielke et al. (2015) compares the following features: the position of the absorption maximum, the 

area of the absorption feature, the overlap between the defined feature shoulder regions, the 

maximum absorption depth, the albedo difference (height of continuum over absorption maximum) 

and the slope of the continuum line over the feature and the computational time. The geometric hull 

algorithm performs best for 5 of the 7 categories. It is outperformed in the computational time by the 

convex hull algorithm only but performs least of all for the median depth difference of the found 

absorption features. Here too, the convex hull approach performs best of all. The low performance of 

the depth characterization of the feature is based on the shape of large absorption features. They 

often exhibit small convex sections that cause the geometric hull approach to split one large feature 

into two smaller features.  Other than the convex hull approach, the geometric hull is instead able to 

detect absorption features in an overall concave trend in the spectrum. Especially for the large iron 

absorptions in the VNIR the geometric hull underperforms and should be used with caution as a 

preprocessing step. It is advisable to use the ordinary convex hull approach in this case. 

4.5.1.3 Continuum Removal in this work 

The here used routines rely on a convex hull removal for feature extraction. For laboratory conditions 

this means, detecting all spectral features, even those of mineral bound water around 1440nm and 

1900nm, which makes sense if only laboratory conditions are expected. If classification algorithms 

tested for the laboratory are supposed to be transferrable to field conditions this will provide trouble. 

Concave trends in the spectrum are treated as features by the convex hull and the features around 

1400nm and 1900nm are taken into account even though field conditions do not allow for utilizing this 

wavelength range due to strong water band influence (Mielke et al., 2015). When utilizing the convex 



Spectral Processing                                                                                     

 Continuum removal (CR)                                                                                                                          

 

 

83 

hull in field conditions, the wavelength range of the atmospheric water bands has to be masked 

completely. Otherwise, the geometric hull retrieval for field conditions is advisable, even though it 

tends to split the large iron feature around 900nm into two smaller features and thereby does not 

allow for feature depth and width analyses here. A comparison of all above-described continuum 

removal methods is shown in Figure 49 for two different spectra from the Brazilian Iron Ore dataset. 

The continuum removal based on convex hull is shown for the ENVI software (green spectrum), the 

HypPy toolbox (blue) and the PySp toolbox (red). Additionally, the geometric hull continuum retrieved 

spectrum is shown in yellow. 

 

 

Figure 49 Continuum Removal for two spectra of the Brazil dataset. Showing the spectrum of sample 3 (Right) and 
sample 13 (Left) of the Brazilian Iron Ore samples. Both samples are marked by red arrows in the RGB image of the Brazil 
sample set. The regular spectrum is shown on the top (in purple) and the continuum removed spectrum is shown below. 
For both samples, the continuum was removed by the methods accessible via the ENVI- (green), HypPy- (blue) and PySp 
toolbox (red). ENVI, Hyppy and PySp rely on the convex hull algorithm. The Geometric hull retrieval by Mielke et al. 
(2015) is also shown (yellow) and noted as “Geometric Hull”. The axes of the small graphs depict the wavelength (400 – 
2500nm, x-axis) and the scaled feature depth (0-1 for convex hull, 0-10,000 for Geometric Hull, y-axis). 

 

4.5.1.4 Absorption feature detection 

A common method is to identify the local spectral minima in the continuum-removed spectrum. This 

can be done manually or automatically. (Mielke et al., 2015) proposed a method for a new continuum 

removal and subsequent automatic feature retrieval. Finding and identifying the absorption features 

of a spectrum are often preliminary to subsequent analysis methods.  Absorption modeling is achieved 
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by partial modeling techniques that focus on band calculations or by full modeling that map the whole 

feature.  

 

4.5.2 Spectral processing methods 

4.5.2.1  I: Knowledge-based approach 

The knowledge-based approach relies on the knowledge of the expected spectral behavior of a desired 

target. It is based on distinct characteristics of absorption features (position, depth, asymmetry, width) 

(Asadzadeh and de Souza Filho, 2016). Three basic components describe a spectrum: 1) a continuum, 

2) absorption bands and 3) residuals or noise. Asadzadeh et al. (2016) argue, that all knowledge-based 

approaches aim to estimate the quality or quantity of one or more of these components interactively 

or automatically. This is done in manner that concentrates either on “absorption modeling” or on a 

“spectral modeling”, including only parts of the spectrum or the full spectrum to the analysis 

respectively.  

4.5.2.2 Absorption modeling – Band ratio, PCA and feature modeling 

Band calculation is the most common image processing method and provides a shape or grade of an 

absorption feature by using band math operations. As it only uses parts of the spectrum, it belongs to 

the “partial modeling” type of the available spectral analyses. Band ratio can use the difference in 

reflectance between an absorption feature band and one of its shoulders – in order to use published 

and proven band ratios for my hyperspectral test image of iron ore related samples, the data was 

resampled to the super-spectral resolution of World-View-3 (16 bands) to show an example of band 

ratios from the Index DataBase (Henrich et al., 2012; indexdatabase.de/, 2020) for ferrous iron (Fe2+) 

in comparison with the geochemical data delivered with the samples. 

 

Principal component analysis (PCA) uses spectral gradients in a more statistical manner. Images in the 

VNIR and SWIR range usually do not show sharp features such as the common Raman spectroscopy 

with its distinct absorption peaks. Due to the presence of rather wide absorption features, most 

features at different wavelength are highly correlated (Eisele, 2014). Due to that, dimensionality 

reductions can be performed.  

The PCA is based on the mathematical principal of eigenvalue decomposition (Rodarmel and Shan, 

2002). In the PCA, the highly dimensional data is reduced to few latent variables. This is achieved by 

transforming the X variable (the set of spectra) into an equivalent set X’ by a linear transformation 

using an Eigenvalue decomposition. After that, all the new “spectra” or principal components are 

linearly independent. The PCA minimizes the covariance between the different rows of X’, it processes 
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the spectral data only. The PCA bands are sorted by descending Eigenvalues representing their 

descending contrast/ variance and it aims to maximize the variance of the data as the data will be 

decorrelated. The first band shows the highest variance and the last band the lowest possible variance. 

The first few bands often contain the majority of the information whereas the last bands include a lot 

of the noise. Using PCA data for subsequent classification allows for a decrease of number of bands 

whilst also decreasing the noise and thus speeding up the processing time. PCA has been confined 

mostly to multispectral imagery as it relies on empirically chosen input bands and it is difficult to relate 

the PCs to specific image features or geological components. Nevertheless, PCA has drawbacks; a 

relevant one is the inability to reproduce the results. 

 

Feature mapping or full modeling 
Feature mapping aims to characterize an absorption feature by attributes like its wavelength position, 

depth, width or symmetry. Continuum-removed data and absorption feature detection have to 

typically take place before feature mapping methods can be used. 

 

Spectral feature characteristics (wavelength position, shape and asymmetry) correlate to the 

mineralogical content of the material. The wavelength position corresponds to the geochemical 

composition whereas the depth of the feature is related to the abundance of the compound. 

 

Minimum Wavelength Mapping (MWL): Wavelength position and feature depth mapping is often 

used to map specific mineral assemblages. It is using the minimum wavelength position and feature 

depth to calculate ratios of specific absorption features. Wavelength position maps were first present 

in context of mapping the Martian surface (Van Ruitenbeek et al., 2014). Here, the position was 

calculated over the wavelength rages of 1350–1500nm, 1700–2100nm and 2100–2400nm. Especially 

for hydrothermal deposits, the mapping of white mica composition, white mica crystallinity and 

chlorite composition has become a tool to determine mica formation und phyllic or argillic type 

hydrothermal alteration. For white mica composition the minimum of the feature between 2185nm 

and 2225nm is mapped (Dalm et al., 2014; Corescan, 2016; Dalm, Buxton and van Ruitenbeek, 2017; 

Lorenz et al., 2018). The minimum wavelength position for features in the SWIR range of approximately 

2190nm to 2390nm is also used to map the likelihood of occurrence of clay, jarosite and carbonate 

(Krupnik and Khan, 2019). The minimum wavelength (MWL) of a spectral feature can act as a proxy of 

material geochemistry and for certain wavelength ranges it provides information of element 

substitutions within a mineral between the different EMs. 

The wavelength minimum position and depth can be detected by using the HypPy toolbox (Bakker and 

Oosthoek, 2020). Here, the absorption wavelength at the maximum depth of the absorption feature is 
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located in a-priori defined wavelength range after continuum removal took place. The depth of the 

found diagnostic feature can also be calculated in HypPy and is correlated with the abundance. This 

continuum band-depth (CBD) method has a few drawbacks (e.g. depth is proportional to particle size 

and amount of opaque material, intimate mixing can lead to nonlinear behavior, absorption bands can 

overlap) but is still the most accepted spectroscopic method for semi-quantification (Asadzadeh and 

de Souza Filho, 2016). 

4.5.2.3 II: Data-driven approach 

The data-driven approach is based only on the hyperspectral data itself and possibly additional 

reference data. This reference data is called “training data” or EM sets. These can be derived directly 

from the image, can be imported in form of generic spectral libraries, such as by (Kokaly et al., 2017; 

Meerdink et al., 2019) or from ground based in-situ measurements of known areas (Shippert, 2003). 

Data-driven approaches can be further subdivided into “per pixel” and “sub-pixel” categories 

(Asadzadeh and de Souza Filho, 2016). The use of spectral libraries and EM extraction methods for this 

work is explained in Section 4.4 (p. 77). 

 

Per-pixel/ hard classifiers – similarity metric and least-squares estimations 
The per-pixel category is also called “hard classifier” as it compares each image pixel with the reference 

data and assigns one label to the pixel, based on a similarity metric, image statistics or least-square 

estimations. The most commonly used whole pixel analysis methods for hyperspectral data provided 

by ENVI are the Spectral Angle Mapper “SAM” (Yuhas, Goetz and Boardman, 1992) and the Spectral 

Feature Fitting “SFF”.  Another least-squares approach, additional to the SFF, is the principle least-

squares regression (PLSR). Also part of the classifiers are the training based approaches (Gaussian 

maximum likelihood and Mahalanobis distance classification) and learning based approaches (support 

vector machines, random forest classifications and artificial neural networks). 

 

The Spectral Angle Mapper (SAM) is a similarity-based approach and was developed by J.W. 

Boardman as part of the Spectral Image Processing System “SIPS” (Kruse et al., 1992, 1993, 2008; 

Yuhas, Goetz and Boardman, 1992). SAM, as part of this tool, plots a scatter plot of the pixel values of 

the bands of a spectral image. In this plot, the pixel spectra vs. the target spectra as points, SAM 

computes the angle between the vectors going through each of these points. A smaller angle between 

pixel spectrum and reference spectrum shows a higher similarity. The spectral angle is relatively 

insensitive to changes in pixel illumination, as the vector direction stays the same only the magnitude 

is changed by illumination differences (Schneider et al., 2011). The core algorithm of SAM is basically 

a correlator. 
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The Binary Feature Fitting or Bi-Triangleside Feature Fittung (BFF) algorithm was developed in 2020 

and will be published in more detail (Mielke et al., 2020, in prep.). It aims to bridge the gap between 

expert system mapping in the hyperspectral domain and multispectral mapping approaches. The BFF 

algorithms constructs characteristic features from non-continuous spectral data. The overall shape of 

the spectrum is preserved and characteristic features and spatial relationships between neighboring 

points are taken into account. The triangulation between three consecutive measurement points 

establishes feature parameters for the identified triangle. With increasing wavelength, for each new 

spectral measurement point and the last two points a triangle is established and parameterized. This 

allows the BFF algorithm to handle the spectral measurements according to their shape parameters 

instead of pure point data. The spectral reference library is resampled to the image characteristics 

(spectral resolution) for a subsequent correlation of the shape parameters of the unknown (imagery) 

with the known (library) spectra. Here, the correlation values are presented in a matrix, denominating 

the best, second-best, third-best etc. spectral correlation/fit for each pixel. For the library spectra that 

pass a user-defined threshold after the correlation a bound value least squares (bvls) unmixing the 

pixel feature data is calculated. The best, second-best, third-best, etc. spectral unmixing results are 

again presented within a data cube. Hard-classifier maps can be produced depicting only e.g., the best 

spectral fit or the best spectral unmixing results. Quality maps support the results and are compiled by 

summarizing the reflectance data and the triangle areas for each data point. The resulting pan-

chromatic images represent the changing albedo within an image. High reflectance/ albedo is 

represented by bright pixels in the panchromatic image.  For the sum of the triangles, pixel without 

significant features will not yield a high sum of their triangle areas and are represented in dark colors. 

Multiplying the yields can combine both measures.  The resulting grey-scale image identifies areas with 

low spectral contrast and thereby high possible material identification errors. The strength of this 

method is the depiction of second- and third-best results as well as the best-fit results. This holds 

especially true for satellite imagery in which the area depicted within one pixel is prone to represent 

a mixed spectral signal. The same is however applicable for any natural surface, each is likely to be 

represented by the mineral assemblages rather than spectrally pure minerals. In order to observe 

spatial and spectral changes within a geological surface not only the dominant mineral or material is 

of importance but the change of minerals within the assemblage due to different conditions whilst the 

surface formation but also processes active post-formation. Another advantage is the theoretical 

indifference towards changes in illumination as the shape of the spectrum that is depicted by the 

triangles is only dependent on the relationship of the triangles towards each other to extract useful 

features.  
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Spectral Feature Fitting (SFF) belongs to the least squares-based group based on Asadzadeh and de 

Souza Filho (2016) categorization. It examines specific absorption features in the spectrum and 

compares depth and shape of those features for the test spectrum (y, pixel) and the reference 

spectrum (x). It uses linear least square regression to find the fit between x and y. It can incorporate 

single or multiple features that can be set individually by the user, for example as part of the SFF tool 

in the ENVI image analysis software (Clark, Swayze and Gallagher, 1992; Clark, 1995; Shippert, 2003). 

As the SFF uses the continuum removal procedure and the user knowledge of the features for the 

regression, it can be categorized as a hybrid method of the knowledge- and data-driven approach. The 

SFF is presented in a more sophisticated version as the Tetracorder later on (Clark, 2003) and an 

automated version of the SFF is presented with the EnGeoMap 2.0 (Mielke et al., 2016). 

 

The Principal Least Squares Regression (PSLR) inherits features from the PCA analysis and multiple 

regression and finds a linear regression model to concentrate information from the spectrum in a few 

optimized variables (Asadzadeh and de Souza Filho, 2016). In other words, it ignores the redundant 

information in the data whilst simultaneously highlighting the significant spectral information for the 

variable of interest.  It is based on two matrices – the spectral bands (X-variable, independent variables, 

the spectra) and the y-variable or the Response-Variable. As for the PCA, the PLSR reduces the data to 

a few latent components, which are sorted with descending variances. In contrast to the PCA though, 

the PLSR maximizes the co-variance between X and y (Eisele, 2014). PLSR takes into account not only 

the spectra (X’) but also the response values.  PLSR is mostly used to relate spectra-inherent 

information to non-spectral variables. PLSR was considered for this work but the number of samples 

for which geochemical analyses were present was not sufficient for a PLSR analysis. 

 

The k-Means unsupervised clustering iteratively generates clusters. The k-Means algorithm tries to 

separate samples into k groups of equal variance by minimizing the within-cluster sum-of-squares or 

inertia (Pedregosa et al., 2011). Inertia is a measurement of the internal coherence of a cluster that 

offers several drawbacks. It assumes convex and isotropic clusters, which is the case for spatially 

coherent samples in the laboratory but not for field conditions. Elongated, irregular shaped areas 

cannot be differentiated well. Inertia is not normalized, in very high dimensional spaces the Euclidean 

distances tend to become inflated, to alleviate the problem a dimensionality reduction (e.g. PCA) can 

be used on the data before clustering (Pedregosa et al., 2011). The desired number of clusters to 

generate (k) has to be provided. The algorithm begins with an initial set of cluster centers before each 

pixel is assigned to the nearest cluster center, the cluster centers is then recomputed as the centroid 
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of all pixels assigned to a cluster, this is done iteratively until the specified maximum number of 

iterations is achieved (spectralpython.net/, 2020). 

 

Training-based classifiers aim to cluster the imagery by comparing the test spectrum with the training 

classes. This comparison is done by statistical criteria. Here the Gaussian maximum likelihood (GML) 

classifier and the Mahalanobis distance (MHD) classifier were tested on our HSI dataset. The GML 

uses the mean and covariance matrices of the clusters to calculate a probability distance whereas the 

MHD is direction sensitive but assumes equal covariance for all classes. Both of these were tested, 

using the Spectral Python Toolbox (spectralpython.net/, 2020). 

 

Learning-based approaches showed considerable advantages over training-based methods. Artificial 

neural networks are able to learn the relationship between a set of example patterns, to generalize 

those, combine the results and then apply them to new input patterns (Asadzadeh and de Souza Filho, 

2016). ANN attempt to model the biological nervous system to recognize patterns. The basic 

architecture is made up of a network of primitive functions able to receive multiple weighted inputs. 

These inputs are evaluated for their ability to discriminate classes. In the training phase, the class 

weights are adjusted if the separation of inputs and predefined classes results in an error. This 

proceeds until the iterations reach a decay threshold of yielded error (Cracknell and Reading, 2014). 

A review on Convolutional Neural Networks (CNN) and geological HSI applications is provided by 

(Audebert, Le Saux and Lefevre, 2019) along with the Python toolbox DeepHyperX (Audebert, Le Saux 

and Lefevre, 2019; Audebert, 2020) to perform deep learning experiments. 

Choosing the right approach based on the data should consider the following criteria (Audebert, Le 

Saux and Lefevre, 2019):  

• Is the data spatially correlated? This might be the case for large over flights of man-made 

structures or expected large-scale geological structure and would also be the case for small-

scale (laboratory) based sample scan data. In the case of outcrop data, surface alteration and 

disturbance does not exhibit a high spatial correlation and the material distribution at the 

surface is based on mechanical, physical chemical processes that tend to happen 

simultaneously. Each process might happen in a spatial context (oxidation of iron at the 

surfaces of high water run off) but influence each other and thereby do not exhibit clear spatial 

correlation. 

• What is the number of training samples? A higher number of training samples is required for 

bigger models with more parameters to optimize. Raczko and Zagajewski (2017) produced 

acceptable results with solely 76 training pixels per class but other studies recommend at least 
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400 pixels per class (Kavzoglu and Mather, 2003). Most supervised classifiers are sensitive to 

the data used for training, in order to avoid bias due to odd sample numbers, the different 

classes to be represented by roughly the same number of pixels (Raczko and Zagajewski, 2017). 

• What is the size of the convolutional kernel? Large 3D kernels tend to be slower and most 

implementations are optimized for 2D kernels. 

• What type of activation function should be used? Non-saturating activation functions help to 

build deeper networks and compute faster than sigmoidal or other activation function 

alternatives. 

• What choice of input data is used? An optimal band number has to be chosen to represent the 

variety in the training data. In order for the ANN to work relatively fast and produce robust 

results the number of input bands can be reduced via dimensionality reduction (Raczko and 

Zagajewski, 2017).  

 

DeepHyperX uses well-defined train/test splits where samples are extracted from significantly 

disjointed parts of the image, this is necessary as in hyperspectral data the neighboring pixels are highly 

correlated which would make a randomly sampled training set very close to a randomly sampled test 

set (Audebert, Le Saux and Lefevre, 2019). Comparing the different approaches, the 1D base line NN 

(4 fully connected layers with dropout) from DeepHyperX, the 1D CNN by Hu et al. (2015) and the 3D 

CNN from Li et al. (2017) yield the best results depending on the HSI dataset.  

 

A common non-parametric approach is the use of support vector machines (SVM). It is based on 

constructing a hyperplane within an n-dimensional feature space by utilizing the training samples. The 

margin between the hyperplane and the closest training samples, known as support vectors, is 

iteratively optimized by a structural risk minimization (Asadzadeh and de Souza Filho, 2016). The 

maximum margin M (distance) between the support vectors is the indicator to find the optimal 

decision boundary. In order to work with non-linearly separable classes, the input variables are 

transformed using a kernel function. An appropriate kernel function and sigma (kernel width) is 

required to optimize performance (Cracknell and Reading, 2014). For mapping, the linear SVM from 

the scikit-learn library (Pedregosa et al., 2011) integrated in the DeepHyperX (Audebert, 2020) toolbox 

was used. 

 

Another non-parametric technique is the decision tree (DT), and a variant of it the random forest (RF) 

(Breiman, 2001). RF is a logic-based learner, and has shown to be superior to ANN and SVM (Cracknell 

and Reading, 2014). RF randomly subsets a predefined number of variables to split each decision tree 



Spectral Processing                                                                                     

 Spectral processing methods                                                                                                                     

 

 

91 

und thus grows multiple trees. Training data for each tree is generated by bagging - by sampling with 

replacement a number of samples equal to the number of samples in the source data (Cracknell and 

Reading, 2014). To compare child node class heterogeneity to the parent node the Gini index is used, 

and determines the best split threshold of input values for the given classes. Cracknell and Reading 

(2014) found RF performed well in aspects like stability, ease of use, processing time and prediction 

accuracy, on top of that RF showed to be relatively insensitive to variations in parameter values and 

are thereby not likely to over fit. The study also highlights the need of 10-25% of training data, but no 

additional accuracy of classification above 25% of training samples from the total number of samples, 

which would come at higher computational cost. 

 

Sub-pixel/ soft classifiers – partial and full unmixing 
The sub-pixel or soft classifier category allows multiple labels per pixel and finds mixed pixel contents 

by partial or full unmixing (Asadzadeh and de Souza Filho, 2016). When the aim is to isolate specific 

spectral features from the background instead of deciphering the whole spectrum and finding all 

possible EMs, the detection of spectral signals can be reduced to match the known target. This is 

categorized as partial unmixing. Mixture tuned matched filtering (MTMF) is a common target 

detection algorithm. It is an enhancement of the matched filtering (MF) that maximizes the response 

of the target signature and minimizes the response of the background by a likelihood ratio. MTMF 

includes an infeasibility image for each target signature. The dominant material in the pixel is 

determined by using a high MF and a low infeasibility score (Asadzadeh and de Souza Filho, 2016). 

These scores are calculated for each EM in the spectral library. 

 

Full unmixing aims at decomposing the pixel spectrum linearly or non-linearly into deterministic EM 

spectra and to estimate their abundances. Linear spectral unmixing takes place when the incoming 

light only interacts with one material of the checkerboard type macroscopic mixture surface. Multiple 

scattering between the incident light and the mixed materials in the scene results in nonlinear mixing. 

Spectral unmixing consists of three steps: 

1) Finding the number and type of EMs that represent the entire scene variation,  

2) Finding the best EM subset that accounts for the spectral variation within each pixel and  

3) Estimating the abundance of each EM in the pixel  

 

The type and number of EMs has a profound effect on the unmixing result and thereby is an active 

topic of research (Asadzadeh and de Souza Filho, 2016). A way to avoid data based EM extraction is a 

supervised in-situ sample and spectra collection which is viable in outcrop scanning and proximal 

scanning approaches and harder to suffice for in satellite and airborne HSI (Rivard et al., 2009). 
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When the EMs are identified linear spectral unmixing (LSU) can take place. Independent component 

analysis (ICA) is only one example of this type of unmixing. ICA is a tool for blind source separation. 

The IC transformation is based on the assumption of non-Gaussian independent sources. Higher-order 

statistics are used to highlight features without prior information in the mixing for non-Gaussian 

hyperspectral data (harrisgeospatial.com/docs/using_envi_Home.html, 2020). 

 

4.5.2.4 Hybrid models – Tetracorder, MICA and EnGeoMap 

In general terms, the knowledge-based approach is simple, straightforward, easily attributable to 

mineralogical needs and transferable in different scales but comes with the disadvantages that is does 

not account for spectral mixing of absorption feature. The data-driven approach is more mature and 

robust but also more complicated, needs more computational power, a high variety, labeled reference 

data set to initially train the algorithm and is thereby more time consuming (Asadzadeh and de Souza 

Filho, 2016). This result calls for a hybrid form of models to 1) incorporate spectroscopy knowledge 

and mixing models and to 2) include geological knowledge with mixture theory. Sophisticated versions 

of this is are USGS Tetracorder, it’s modified version the material identification and characterization 

algorithm (MICA) and the EnGeoMap Algorithm with a new convex hull approach (Clark, 2003a; 

Kokaly, 2011; Rogass et al., 2013; Mielke et al., 2015, 2016). Figure 50 compares the continuum hull 

and thereby the feature definition of the USGS expert system (lower figure) and the geometric hull 

(top figure) for the USGS library spectrum “siderite”.  Mielke et al. (2015) shows that compared to 

expert feature definition, the proposed geometric hull technique outperformed the state-of-the-art-

modified scale-space filtering, the scale-space alpha hull technique and a pure python standard convex 

hull algorithm, in that order. Without prior knowledge to the expected features, the geometric hull is 

closest to the expert defined spectral features. It does not however include SNR ratios to isolate 

characteristic absorption bands. As seen in Figure 50, the geometric hull includes several features that 

the USGS did not define. A disadvantage of the algorithm is the definition of a local maximum inside 

the broad iron absorption feature (around 1100nm) and thereby dividing it into two separate smaller 

features.  
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Figure 50 Results for the continuum removal algorithms for USGS spectral library entry "Siderite" in blue. The continuum 
definition is shown in green, based on the geometric hull by Mielke et al., 2015 (a) and based on the Tetracorder expert 
system by Clark et al., 2003 (b). The found feature and their depth are shown in red. From Mielke et al. (2015). 

 

MICA is a part of the “Processing Routines in IDL for Spectroscopic Measurements (PRISM)” (Kokaly, 

2011) and based on the USGS Tetracorder. The following explanation is based on Clark (2003) and 

Kokaly (2011). Figure 51 shows the basics of the MICA analysis from Koerting et al. (2015). The 

Tetracorder and MICA are based on expert system rules, implemented in a decision tree structure 

where multiple algorithms are applied for the material analysis. Applying additional expert rules and 

algorithms to the initial result can refine this analysis. The goodness of fit (R2) and the band depth (D) 

are calculated for the continuum-removed image and the library spectra. The best fitting library 

spectrum is attached to the pixel after the results of an intelligent expert system decision making 

framework (Asadzadeh and de Souza Filho, 2016). The Tetracorder is verified by a combination of 

human verification of spectral analyses, field checking of results and laboratory analysis of collected 

samples. The analysis focuses on diagnostic absorption features in the spectrally “active” regions of a 

continuum removed spectrum only. This focus is based on the occurrence of nonlinear mixtures in 

nature like coatings, intimate mixtures or solutions that are not well distinguishable with simple 

matching algorithms alone. In order to rule out false identification of materials similar in the diagnostic 

wavelength regions, complementary spectral areas are taken into consideration. Additionally, to the 

defined and weighed diagnostic features for each material, spectral library entries also have defined 

(absolute and relative) “not-features” and the analysis allows a “no answer”. In summary, the 

Tetracorder matches an unknown material with a known reference spectrum by comparing how well 

the diagnostic features match, the reflectance level, the continuum slope and the presence or absence 

of key ancillary spectral features. If a match is below a certain threshold, a no detection is assigned as 

the material sought is not present or the Signal-to-Noise ratio is too low to allow detection (Clark, 

2003a).  
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Figure 51 Processing chain and key elements of the MICA image analysis from Koerting et al. (2015) modified after Kokaly 
(2011). The spectrum shown schematically in the lower left plot reflectance between 0-100% on the y-axis and the 
wavelength between 450 - 2500nm on x-axis. 

 

The EnGeoMap 2.0 algorithm from Mielke et al. (2016, 2018) is an automated material 

characterization system. It is based on the EnGeoMap 1.0, the Tetracorder and the MICA algorithm 

(Clark, 2003b; Kokaly, 2011; Rogass et al., 2013). The EnGeoMap 1.0 algorithm is included in the 

EnMapBox (van der Linden et al., 2015), now implemented in the QGIS module and available as 

freeware. It contains two sub-programs, the EnGeoMap-Base for basic mineral mapping and the 

EnGeoMap REE for rare earth mapping (Boesche, Mielke and Rogass, 2016). The base algorithm can 

map Al-OH, Ca-O and Fe-O containing minerals. User specific libraries can be imported and assigned 

to a user-defined color-coding. The difference compared to the Tetracorder and the MICA is the 

automated continuum removal and subsequent feature extraction. The “geometric hull” (Mielke et al., 

2015) retrieves absorption features according to the SNR without expert input, the features are 

weighed according to their shape and a linear spectral unmixing is performed. The results of the 

analysis are best-fit maps – based on the spectral shape matching and highest abundance maps based 

on the unmixing showing the material with the highest dominance in the spectrum. Additionally, 

spectro-spatial gradients are delivered in a data cube, assigning each pixel with all mapped spectra and 

their ranking. Figure 52 shows the processing chain of EnGeoMap Base, from Körting (2019). 
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Figure 52 Simplified illustration of the EnGeoMap processing chain from Körting (2019) modified after Boesche et al. 
(2016). 

Geological applications usually show predictable types of target minerals and mineral assemblages. 

This knowledge should be included in the process chain to allow for unmixing in a geological context. 

In order to account for this fact, for the samples of the Republic of Cyprus have been compiled into a 

spectral library to be used for the subsequent analysis of the hyperspectral outcrop scan (Koerting, 

Rogass, et al., 2019). EnGeoMap offers a standard spectral library, but allows the user to use site-

specific spectral libraries and color-coding of the classification results. EnGeoMap 2.1 from 2019 now 

includes the features derived by the lower geometric hull, additionally to the upper geometric hull 

(Mielke et al., 2019). 
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5 Near-field Imaging Spectroscopy results 

5.1 Overview of applied workflow 

The workflow presented here is based on four successive steps of data preparation and analysis that 

were tested on three different imaging spectroscopy datasets. This workflow was then applied to a 

fourth and fifth dataset. The datasets have been described in the “Materials” chapter on pp. 32 – 74. 

Figure 53 shows the five different successively applied workflow parts that are explained from Section 

I – V. The identified best-performing approaches will be described in detail in the upcoming workflow 

parts I – III. The best-performing approaches and their successive implementation for the mine face 

data analysis is visualized in a conclusive workflow scheme for the HSI mine face data on Figure 106 p. 

151. 

 

 
Figure 53 Methods and hybrid method development performed on the different HSI datasets utilized in this work. 

 

Workflow Part I & II) are applied to the hyperspectral laboratory imagery of the Brazilian Iron Ore 

Samples. Part I) compares different, common methods used to classify spectral imagery and the 

mapping results. Part II) deals with the need for a rugged, spectral, imaging sensor that can be 

deployed in the challenging open pit mining environment. Here, different rugged, theoretical sensors 

are tested to identify the ones best suited for open pit mining. Part III) explains the identification of a 

site-specific spectral library tailored to the Apliki deposit. The Apliki laboratory sample data is then 

analyzed according to the methods and the theoretical sensors identified in I) & II). Part IV) applies the 

data pre-processing and downsampling methods explained in “Methods” and Part II) to the mine face 
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data. The mine face is then analyzed with the methods identified in Part I) and with the spectral library 

compiled in Part III) Part I) to IV) represent a workflow for dealing with imaging spectroscopy 

laboratory and mine face data in a mining context. The aim is to produce sufficient results for decision 

makers under field conditions. Part V) All the methods explained above are then applied to another 

open pit mining location: the Skouriotissa – Three Hills deposit and the sample laboratory and mine 

face derived data from this location. 

 

5.2 I) Mapping method comparison - Results for Brazilian iron ore samples 

The different mapping methods were used to analyze the Brazilian Iron ore sample reflectance dataset 

(Dataset 1) including 15 samples. The analysis results will be compared in this chapter. 

The analyses were performed on a Ubuntu 18.04.4 system, Processor: Intel® Core TM i7-8550U CPU 

@ 1.80 GHz x 8, OS type 64-bit, Memory 32GB. The following Python toolboxes (Python version: 3.7.6.) 

were utilized: the DeepHyperX toolbox (Audebert, 2020), the Spectral Python  SPy toolbox 

(spectralpython.net/, 2020), the Pysptools toolbox (Therien, 2020), the HypPy toolbox (Bakker and 

Oosthoek, 2020) and the scikit-learn: Machine Learning in Python tools (Pedregosa et al., 2011). The 

image analysis software ENVI classic was utilized ENVI® Classic, version 5.5, IDL version 8.7.0 (L3Harris-

Geospatial-Solutions, 2018) and geochemical clustering was performed in R (R Studio version 1.2.5033, 

R version 3.6.2). For the PRISM MICA analysis the following software was utilized: ENVI® Classic 5.3.1, 

IDL 8.5.1, PRISM processing routines in IDL downloaded in September 2014 for ENVI 5.0 

“usgsprism_v1ae_envi50.sav” (pubs.usgs.gov/of/2011/1155/ and Kokaly, 2014). In the following 

sections only the shorthand for the software and toolboxes will be used. 

 

5.2.1 Analyzed data 

The file used for testing different analysis and classification methods is the HySpex scan with masked 

areas of low SNR/shadow. The file is the output from Rogass et al. (2017) translational reflectance 

retrieval and is otherwise unchanged. For validation purposes of the classification results, a ground 

truth file was created. Regions of interest (ROIs) for each sample region were created in ENVI® and 

exported, both as an classification file as well as a PNG file. Only the inner area of each sample was 

used to create a ROI, as mixing with the adjacent samples is possible around the sample edges. Note 

that this will lead to a constant overestimation of the different sample areas by the classification 

methods. As this is the case for every tested method, the results stay comparable.  The PNG file was 

used for the visual comparison of classification results. The color-coding of the samples corresponds 

to the color-coding chosen for the classification results of EnGeoMap for the spectral library used for 
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classification. Here, the shadow areas were masked out (Figure 54). The classification file was used for 

supervised classification, machine learning and deep learning approaches, the shadowed areas of low 

SNR that were removed in the original file could not be masked out and the color coding is different 

to the PNG validation file. 

 

    
Figure 54 Left: Validation PNG file including the shadow mask applied to the data; Right: ENVI classification file for 
supervised learning-based methods. 

 

5.2.2 Resulting EM spectral libraries 

Four different means to create spectral EM libraries are presented and discussed in the following 

section. The four resulting spectral libraries are compared and the full spectral library compiled from 

user-defined spectral EMs is utilized further on for the analyses requiring a spectral library. 

 

Visual user-defined spectral EM library 
A spectral library was extracted containing one spectrum for each sample from a 5x5 pixel average 

window. This spectral library was used further for the methods requiring a user-provided spectral 

library (e.g. EnGeoMap, SAM). It shows to be the best distinction tool to differentiate between all the 

15 samples or sample groups, Figure 55 shows a SAM analysis with the user-defined library and the 

library itself. 
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Figure 55 Spectra of all Brazilian iron ore samples in HySpex resolution (408 bands), each sample represented by a 5x5 
pixel average and SAM analysis based on the library. 

 

Reduced spectral EMs library by geochemical clustering 
In order to identify small clusters of few sample points, agglomerative bottom up clustering of the 

sample geochemical data was performed in R (R Studio version 1.2.5033, R version 3.6.2). The ward.D2 

method was utilized to minimize the total within-cluster variance (Murtagh and Legendre, 2011). The 

scree plot of the clustering showed an optimal cluster number between 4 and 5. The spectral library 

was reduced accordingly, choosing one spectrum for each cluster (Figure 56, right). Compared to the 

full 15 sample spectral library, especially the number of visually similar looking spectra with low 

spectral contrast is now reduced. A SAM analysis was performed to control how the new cluster center 

based spectral library translated into the hyperspectral images, the analysis result is shown in (Figure 

56, left)., following the color-coding of the spectral library. 

 

 
Figure 56 SAM analysis (left) based on the hyperspectral library reduced to geochemical cluster centers (right). 
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SMACC EM library 
The ENVI SMACC tool was used to find EMs (EMs) from the 408 band HySpex data the resulting EMs 

can be found in Figure 57. 

 

 
Figure 57 Brazilian iron ore SMACC EMs. 
 

The most extreme spectra were detected for EMs (EM), resulting in the detection of outlier spectra 

strongly influenced by noise or saturation (EM1, EM2, EM4 and EM6). Figure 58 shows a plot of 30 

randomly selected spectra from sample 03, where EM1, EM6 and EM10 are located. 

 

 
Figure 58 Thirty random spectra from the area of sample 03 (HySpex sensor, 408 bands). 

 

Figure 58 shows that some of the randomly selected spectra from sample 03 exhibit the same outliers 

as EM1, EM6 and EM10. The spectrum of sample 03 of the visually selected 15 EM spectral library 

(Figure 59) is similar to the above shown spectra but due to choosing a 5x5 pixel average and a central 

point for the spectral sampling, no oversaturated pixels were included. 
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A SAM analysis for the reflectance imagery with the SMACC EMs spectral library shows how unfit the 

SMACC EM are to represent all relevant samples in this case (Figure 59, left). 

 

 
Figure 59 SAM analysis (left) of the Brazilian iron ore samples with the SMACC 10 EM spectral library (right). 

 

PPI and n-D EM library 
To use the Pixel Purity Index (PPI) and n-D visualization in ENVI resulted in 6 user-detected EMs (Figure 

60).  

 

 
Figure 60 Six spectral EMs from PPI and n-D visualization tool. 

 

Again, a SAM analysis for the reflectance imagery with the PPI + n-D EM spectral library shows the 

quality of representation of the samples by the found EMs (Figure 61). 
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Figure 61 SAM analysis (left) of the Brazilian iron ore samples and the PPI + n-D 6 EM spectral library (right). 
 

5.2.3 Mapping Results 

The tests of knowledge-based approaches include band ratios, PCA analysis and feature modeling 

approaches. Of the last, the MWL and Continuum Band Depth are considered separately. 

 

5.2.3.1 Band ratios 

In order to work with defined and published band ratios, the data was resampled to WorldView-3 

sensor characteristics of 16 bands. To give a visual impression, the spectral library in WorldView-3 

characteristics is shown in Figure 62. The exact band setting and position of WorldView-3 is shown in 

figure 4 (p. 9) and is noted in the appendix in table 57 (p. 266). 

 

 
Figure 62 Spectra of Brazilian iron ore samples in WorldView-3 resolution (16 bands). 

 

To give an example of the method and use an established band ratio, a ferrous iron (Fe2+) and ferric 

oxide (Fe3+) index from the Index Database (Henrich et al., 2012; indexdatabase.de/, 2020) was chosen. 

The ferrous iron index for WorldView-3 data can be calculated from (SWIR 5/ Near_IR1) + (Green/ Red) 

(indexdatabase.de/, 2020), the resulting grey-scale image is shown in Figure 63 (right). Figure 63 also 
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shows an RGB of the samples (left) and the geochemically derived iron content (center). The ferric 

oxide index for WorldView-3 data can be calculated from (SWIR 3/ Near_IR1) (indexdatabase.de/, 

2020), the resulting grey-scale image can be found in Figure 64 (right). 

 

 
Figure 63 RGB (left), iron content based on XRF analysis (center) and ferrous iron index based on WorldView-3 band ratio 
(right). 

 

 
Figure 64 RGB (left), iron content based on XRF analysis (center) and ferric oxide index based in WorldView-3 band ratio 
(right). 

 

5.2.3.2 PCA 

The ENVI® Principal Component Analysis (PCA) Tool was used to calculate PC bands from the 

reflectance data. Some of the first, theoretically most relevant, PC bands were chosen for the RGB 

color composite (Figure 65). 

 

 
Figure 65 Brazilian iron ore true color image (left) and PCA image (R: PC band 1, G: PC band 2, B: PC band 4) (right). 
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5.2.3.3 Feature Modeling 

The Minimum Wavelength (MWL) Mapping of the HypPy toolbox (Bakker and Oosthoek, 2020) was 

performed on the reflectance data). As an example, the user-defined wavelength range for AlOH 

feature detection were used as defined in (Kirsch et al., 2018), the broad iron feature wavelength range 

was defined from the data itself. The AlOH feature was mapped between 2160-2220nm and the broad 

Fe feature was mapped between 850-1100nm. Figure 66 shows the feature position (center right) and 

feature depth (right) for the larger of the two AlOH features compared to the AlOH geochemical 

mapping (center left) based on the sample geochemistry. The MWL map for AlOH is presented in Figure 

67 and is color-coded based on the feature position (color) and depth (saturation). Figure 68 shows 

the feature position (center right) and depth (right) of the iron feature compared to the iron content 

of the samples (center left). 

 

 
Figure 66 Minimum wavelength mapping for the large AlOH feature between 2160 - 2220nm. Left: RGB of samples, 
Center-Left: Al2O3 content based on geochemistry, Centre-Right: MWL feature position mapping (color stretched from 
2160nm-blue to 2220nm-red), Right: MWL feature depth mapping (color stretched from 0-blue to 0.2-red). 

 

 

 
Figure 67 Minimum wavelength map of AlOH, feature position shown by the color-coding, feature depth by the color-
saturation. 
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Figure 68 Minimum wavelength mapping for the broad iron feature between 850 - 1100 nm. Left: RGB of samples, 
Center-Left: Fe content based on geochemistry, Centre-Right: MWL feature position mapping (color stretched from 
850nm-blue to 1050nm-red), Right: MWL feature depth mapping (color stretched from 0-blue to 0.2-red). 

 

The data-driven mapping approaches as explained in Section 4.5.2.3 are separated into hard/ per-

pixel classifiers and soft/ sub-pixel classifiers. Hard classifiers shown here include k-means clustering, 

SAM and SFF. Training-based hard-classification is represented by Gaussian Maximum Likelihood 

(GML) and Mahalanobis Distance (MHD) classifiers, learning-based classification is compared by 

showing Artificial neural network approaches (ANN), support vector machine learning (SVM) and 

random forest (RF). For the soft/ sub-pixel classifier, Mixture Tuned Matched Filtering (MTMF) and the 

Independent Component Analysis (ICA) are shown exemplarily.  

 

5.2.3.4 k-Means 

The k-means clustering was performed in the SPy toolbox (spectralpython.net/, 2020). k-means 

clustering took place for 15 (Figure 69) and 7 cluster centers (Figure 70). 

 

  
Figure 69 k-Means clustering for Brazilian iron ore, 15 clusters, defined after 100 iterations. 
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Figure 70 k-Means clustering for Brazilian iron ore, 7 clusters, defined after 100 iterations. 

 

5.2.3.5 SAM 

The reflectance data and the 15-EM user-defined spectral library were used for the SAM analysis. The 

resulting classification image was compared to the ground truth, 51703 of 78400 pixels were classified 

correctly, resulting in an accuracy of 0,659. The classification image is shown in Figure 71. 

 

 
Figure 71 SAM classification result (left), incorrectly classified pixels (center) and overall correct vs. incorrect classified 
pixels (right). 

 

5.2.3.6 Binary Feature Fitting 

The binary feature fitting needs a super- to multispectral input data file for the triangulation. The 408 

band HySpex data were downsampled to 42 band data with a constant FWHM of 50nm for each band 

to test the BFF mapping. The 15 user-defined EM spectral library was downsampled to the same 

spectral resolution. The third input is the CSV file containing the color palette in RGB. The classification 

has an overall accuracy of 0,743. The results can be found in Figure 72. 
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Figure 72 Classification result of BFF for the sample derived spectral library. RGB and ground truth are shown at the top, 
below from left to right: the best-fit classification image, the incorrect classification shown in the incorrect color with the 
correct ROI overlaid in gray and the correctly (gray) vs. incorrectly (black) classified areas in the image. 

 

5.2.3.7 SFF 

The reflectance data and the 15 EM spectral library data were used for the analysis in ENVI®. Classes 

had to be defined for each spectral library input RMS + Scale pair. Figure 73 shows the scale image of 

input spectrum 01 (left) and the user defined classes for sample 01 and 03 (right). 

 

 
Figure 73 Spectral Feature Fitting. Greyscale image of the scale for spectral library entry 01 (left) and user-defined classes 
for sample 01 and 03 (right). Classes were defined from their respective 2D RMS and Scale scatterplots. 
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5.2.3.8 GML 

The Gaussian Maximum Likelihood (GML) classification was performed in the Spy toolbox 

(spectralpython.net/, 2020). GML was performed on the reflectance data with the input of a class file 

as ground truth. The resulting classification has an accuracy of 0.646 and is shown in Figure 74. 

 

 
Figure 74 True color and ground truth image of the Brazilian iron ore samples (upper part) and GML results and accuracy 
(lower part). 

 

5.2.3.9 MHD 

The Mahalanobis Distance classifier was performed in the Spy toolbox (spectralpython.net/, 2020) 

with the same input image and ground truth as for the GML. The resulting classification shows an 

accuracy of 0.648 as shown in Figure 75. 

 

 
Figure 75 MHD results and accuracy for Brazilian iron ore samples. 
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5.2.3.10 Learning-based data-driven (SVM, ANN, CNN) 

The learning-based data-driven approach is represented by the use of a support vector machine (SVM) 

from the DeepHyperX toolbox (Audebert, 2020) using the scikit-learn SVM (Pedregosa et al., 2011). 

The artificial neural networks (ANN) are represented by testing a 1D baseline neural network (NN) 

(Audebert, Le Saux and Lefevre, 2019), a 1D convolutional neural network (CNN) (Hu et al., 2015) and 

a 3D CNN (Li, Zhang and Shen, 2017). To compare the different NNs, the number of epochs was set to 

100 and the number of batches to 100 (not for the SVM). The number of epochs was based on testing 

with the dataset and evaluating the number of epochs related to a sufficient training loss and 

validation accuracy within a time limit of 6000s (100min) as an acceptable training time for the end-

user. The time limit is based on quick, on-site training of the NNs and achieving classification results 

within typical 8h-shifts. A training set of 60% was selected for all learning-based approaches, also based 

on trial and suggested defaults from the DeepHyperX toolbox. Training samples were collected disjoint 

within the image. The reflectance data as used as input data with the classification ground truth file. 

Parameters of the models are listed below ( 

Table 18), the classification images for the 1D NN, 1D CNN, 3D CNN and SVM are shown in Figure 76. 
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Table 18 Training based (1D NN, 1D CNN, 3D CNN and SVM) analysis parameters and results. 

Model 1D Baseline NN 1D CNN 3D CNN SVM 

Based on 
(Audebert, Le 
Saux and Lefevre, 
2019) 

(Hu et al., 2015) (Li, Zhang and 
Shen, 2017) 

(Pedregosa et al., 
2011; Audebert, 
2020) 

Epochs 100 100 100 100 
Training sample 0.6 0.6 0.6 0.6 
Selected 
samples 

20858  20858 20858 20858 

Sampling mode Disjoint Disjoint Disjoint Disjoint 
Patch Size 1 1 5 - 
Learning Rate 
(LR) 

0.0001 0.01 0.01 - 

Batch size 100 100 100 - 

Computation 
time (real) [s] 

5432.5 
 
 

347.6 
 

5318.4 
 

659.5 
 

Accuracy [%]  89.8 75.2 93.9 84.5 

Kappa 
89.1 
 

73.4 93.4 83.4 

Training ground 
truth 

    

Test ground 
truth 

    

Comment 
Long training 
time 

Fastest but worst 
accuracy 

Best accuracy, long 
training time 

Fast and medium 
accuracy  
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Figure 76 True color image of the Brazilian iron ore samples (left), prediction of respective model (center) and 40% 
ground truth for testing (right), shown for the SVM, 1D NN, 1D CNN and 3D CNN (from top to bottom). 



112 Near-field Imaging Spectroscopy results 

 

 112 

5.2.3.11 Random Forest 

The Pysptools “HyperRandomForest Classifier” (Therien, 2020) was trained with the parameters: 

n_estimators = 100, max_depth = 30. The data was split into 60% training and 40% test-data and the 

classifier was fit with an accuracy score of 0.80. Comparing the classification image with the ground 

truth image, the overall classification accuracy is 0.87 (Figure 77). 

 

 
Figure 77 “HyperRandomForest” classification results for Brazilian iron ore samples. 

 

Soft classifiers presented here include the MTMF and the ICA analysis. 

 

5.2.3.12 MTMF 

The results of the MTMF are 15 MF bands and 15 infeasibility bands, one pair for each EM. An example 

of a MF band for sample 01 is shown in Figure 78 (left) and of the user-defined classes for sample 01 

and 03 are shown in Figure 78 (right). 
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Figure 78 MTMF classification, MF image of spectral library entry 01 (left) and user defined classes for spectral library 
entry 01 and 03 from their respective MF and infeasibility 2D scatterplots (right). 

 

5.2.3.13 ICA 

The independent component analysis was performed in the ENVI® using the reflectance data. The 

result of ICA are 408 de-correlated IC bands that are sorted by spatial coherence. An RGB color 

composite of the first, most coherent IC bands (R: band 4, B: band 6, G: band 7), is shown in Figure 79. 

 
Figure 79 Left: Labeled true color composite of the Brazilian iron samples. Right: ICA RGB composite (band 4 - band 6 - 
band 7). 

 

5.2.3.14 Hybrid methods 

For the hybrid methods, the MICA algorithm and the EnGeoMap 2.0 and EnGeoMap 2.1 were 

deployed. EnGeoMap 2.0 and 2.1 are based on the 15 EM user-defined spectral library. The MICA 

classification is based on the USGS splib06a (Clark et al., 2007) and the therein defined diagnostic 

spectral features and ranges. In order to compare the MICA results, an EnGeoMap BFF and SAM 

classification was performed on the data utilizing the MICA spectral library and the USGS color-coding 

scheme. 

MICA 
MICA is based on splib06 (Clark et al., 2007), a SPECPR file containing the spectral library information 

and a MICA command file (Kokaly, 2011). The aim is to compare a system with integrated expert 
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knowledge (MICA) with automated approaches (EnGeoMap and BFF); therefore, a MICA default library 

and color-coding was used for classification instead of providing a user-defined library. This makes the 

MICA classification harder to compare to the classifications above as the utilized spectral libraries 

differ. Therefore, EnGeoMap, BFF and SAM classifications were performed with the MICA default 

spectral library. The MICA default libraries are split up in “group1” containing iron bearing minerals 

and “group 2” containing clay-group minerals. To compare the classification results, the “group 2” 

spectral library and color-coding scheme from the USGS was used, concentrating on the clay features 

in the SWIR. The default MICA command file for the mapping is based on a spectral library in Hymap 

spectral resolution. Based on this, the HySpex data was downsampled to 124 band Hymap data 

resolution. The MICA classification result is shown in Figure 80. 

 

 
Figure 80 PRISM MICA group 2 classification of the Brazilian iron ore. 

 

To recreate the classification with the other hybrid models and have a comparison between them, the 

splib06b group 2 was used as a separate spectral library for the EnGeoMap, SAM and BFF algorithm. 

The results of SAM, EnGeoMap and BFF is shown in Figure 81. The dominantly mapped material spectra 

are shown in Figure 82. 
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Figure 81 MICA group 2 spectral library analysis of the Brazilian iron ore samples with MICA (top left), SAM (top right), 
EnGeoMap (bottom left) and BFF (bottom right). 

 

 

Figure 82 The dominantly mapped material spectra mapped from the MICA group 2 spectral library. (dark blue: kaolinite, 
medium blue: kaolinite mixture, light blue: Montmorillonite, pink: alunite + kaolinite, dark red: pyrophyllite, dark red-
brown: pyrophyllite + alunite, yellow: Buddingtonite, orange: Muscovite, purple: carbonate Fe-bearing, light brown: 
vegetation green, brown: vegetation dry) 

 

EnGeoMap 

EnGeoMap 2.0 (feature retrieval by an upper geometric hull) and EnGeoMap 2.1 (feature retrieval by 

a lower and an upper geometric hull) were used for the classification. Both classifications were run 

with the same user-defined settings (Table 19).  
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Table 19 Settings for EnGeoMap 2.0 and EnGeoMap 2.1 analysis. 

Parameter Setting 
Input files - Masked reflectance data (HySpex 408 bands),  

- Spectral library file with 15 EM spectra (5x5 pixel 
average), 
- Color palette for each EM spectra  
- Geometric options file including the unmixing 
thresholds and the sensor SNR model 

No. of components for unmixing 15 
Unmixing threshold 0.0 
SNR estimation  From EnMap sensor 

 

The accuracy of the resulting classification for EnGeoMap 2.0 is 0,419 for EnGeoMap 2.1 is 0,533, the 

resulting maps can be found in Figure 83. 

 

 
Figure 83 Classification results of EnGeoMap 2.0 and EnGeoMap 2.1 with the sample derived spectral library. RGB and 
ground truth are shown at the top, below from left to right: the best fit classification image, the incorrect classification 
shown in the incorrect color with the correct ROI overlaid in gray and the correctly (gray) vs. incorrectly (black) classified 
areas in the image. 
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5.2.4 Comparison of the results  

The results of the analysis are compared in detail in Chapter 6 “Discussion”, starting at page 165.  

The analyses resulting in a hard classifier map (assigning each pixel with the material that is most likely 

present) are compared quantitatively based on their computation time and accuracy of mapping. The 

analysis methods resulting in single material likelihood maps are compared qualitatively (Table 37, p. 

165 in Section 6.1 “Iron ore sample mapping results”, starting at p.165). Table 20 summarizes the 

compared methods, input for classification or analysis, number of user specified EMs (EM), the overall 

accuracy of the data in the case of hard classifier maps and the software used for the analysis. Python 

3.7 and ENVI® Classic 5.5 (on IDL 8.7.3) was utilized for the analysis, unless stated otherwise. The input 

data was the 408 bands HySpex reflectance data for all methods but the band ratio analysis (16 bands, 

WV-3) and the Binary Feature Fitting (42 bands). The spectral library utilized was compiled from the 

408 band data unless stated otherwise in Table 20. 

 

Table 20 Comparison of the applied HSI analysis method, input spectral library (speclib), number of EMs (EM), overall 
mapping accuracy [%] and software used to carry out the analysis.  

Method 
Input spectral 
library 

Number of EM Overall 
accuracy [%] 

Software/ 
Toolbox 

HYBRID         
EnGeoMap 2.0 5x5 AVG speclib 15 EM spectra 0.419 Python 3.6 
EnGeoMap 2.1  5x5 AVG speclib 15 EM spectra 0.533 Python 3.6 

PRISM MICA 

USGS Group 2 
for AlOH speclib, 
124 bands 
(HyMap)   

61 EM spectra None ENVI® 5.3.1, 
IDL 8.5.1, 
“usgsprism_v1
ae_envi50.sav
”, from 2014 

KNOWLEDGE-DRIVEN         
Absorption modeling         
PCA None None None ENVI® 
Band ratios None None None SPy 

Feature modeling 
  Wavelength 

range 
    

Minimum Wavelength 
Mapping (MWL) 

None 2160 - 2220nm None HypPy 

 MWL None 850 - 1100nm None HypPy 
DATA-DRIVEN         
 Hard classifier         
    Cluster number     
k-means None 15 None SPy 
  None 7 None SPy  
SAM (ENVI) 5x5 AVG speclib 15 EM spectra 0.659 ENVI®  

Binary Feature Fitting 
5x5 AVG speclib, 
42 bands 

15 EM spectra 0.744 Python 3.6 

SFF 5x5 AVG speclib 15 EM spectra None ENVI® 
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Method 
Input spectral 
library 

Number of EM Overall 
accuracy [%] 

Software/ 
Toolbox 

Training based   Ground truth file     
Gaussian maximum 
likelihood  

Ground truth: 
class file 

15 EM ROIs 0.646 Spy 

Mahalanobis Distance  
Ground truth: 
class file 

15 EM ROIs 0.649 SPy  

Learning based         
SVM:     
SVM (Pedregosa et al., 
2011) 

None 15 EM ROIs 0.845 DeepHyperX,  

ANN:         
1D Baseline NN (Audebert 
et al, 2019) 

None 15 EM ROIs 0.898 DeepHyperX,  

1D CNN (Hu et al., 2015) None 15 EM ROIs 0.752 DeepHyperX,  
3D CNN (Li et al., 2017) None 15 EM ROIs 0.939 DeepHyperX 
Random Forest:         
RandomForestClassifier 
(Pedregosa et al., 2011) 

None 15 EM ROIs 0.805 Pysp + scikit-
learn  

Soft-classifier         

MTMF 

5x5 AVG speclib, 
MNF stats, 408 
MNF bands 

15 EM spectra None ENVI® 

ICA None None None ENVI® 
 

Going forward, four different analysis methods were chosen for the development of a sensor that is 

robust and can easily be integrated into the mining environment. For the following chapters, the best 

performing analyses are chosen based on the highest accuracy but also the computation time and 

repeatability, this decision is discussed in depth in Section 6.1 (pp 165 - 171). The obvious best accuracy 

reached by the 3D CNN was not considered due to presumptions of overfitting of the NN. 

 

The analysis methods used to test the different theoretical sensors in the following chapter are:  

• SAM as the algorithm with the lowest computation time, as time is a key factor in the 

active extraction process in the mining sector. 

• SVM, as the best performing learning-based classifier below 1000s computation time. 

Keeping in mind that once trained on a specific deposit, the computation time will 

decrease rapidly. 

• BFF, as the best performing comparison-based data-driven method below 1000s. 

• EnGeoMap 2.1 despite its lower accuracy, as it is another hybrid data- and knowledge-

driven analysis algorithm. 
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5.3 II) Robust Sensor Modeling 

Mining equipment in an open pit mining environment is not only dependent on precise analytics but 

also on rugged hardware, fast measurements and results (high turnover rate) and soft- and hardware 

that can be handled by non-engineers and non-computer scientists. In the context of build definition 

for extraction planning, millimeter-precise spatial result and ppm- precise geochemical distinctions 

inferred from spectral fingerprints are of secondary importance to a decimeter-scale bulk rock 

determination of ore, contaminants and waste material.   

 

In order to make spectral analytics available to the mining sector and allow a frequent monitoring, the 

sensors have to be present in every mining operation. This implies systems of a moderate price range 

and handling by a variety of non-experts on different work shifts. For UAV based operations the weight 

of the system is additionally of importance. Most mining operations take place in a tropical 

environment. The major producers of iron ore (in metric tons) in 2019 were Brazil and Australia 

(https://www.statista.com/statistics/267380/iron-ore-mine-production-by-country/, last visited 

12.06.2020), the biggest copper ore producer (in metric tons) in 2019 was Chile 

(https://www.statista.com/statistics/264626/copper-production-by-country/, last visited 

12.06.2020). These countries show harsh conditions not only in major changes of surface temperature 

and near zenith sun angles but in the case of Brazil also due to massive rainfall events. In these cases, 

the ideal time and sun angle to take measurements in the open pit will decrease to a small window 

each day, which can additionally be influenced by precipitation. Table 21 summarizes the possible 

influences on spectral mining equipment, the implications of each influencing factor and a possible 

theoretical solution. 

 
Table 21 Influencing factors, implication and solutions for spectral sensor development in active mining operations. 

Influencing 
factor 

Implication 
 

Possible solution 

Rugged 
Equipment 

The sensor needs to be rugged 
to be handled in uneven 
terrain and by a work force 
wearing personal protective 
equipment (PPE). 

Protective casing that does not hinder the 
ventilation of the sensor. PPE like helmets and 
glasses can hinder the visibility of the surface 
interface during measurement, protective 
gloves need adjustment for the sensor and GUI 
handling. The GUI and hardware need to be 
adjusted to these conditions. 

Fast 
measurement 

A high turnover rate and short 
available time frames for 
measurements ask for a 
minimal measurement time. 
This also reduces the in-pit 
time and thus the risk for the 

A smaller number of bands, possibly full frame 
instead of line scanner and a lower pixel number 
reduce the measurement time. This needs to be 
adjusted within the needed spatial and spectral 
resolution required for the task. 
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Influencing 
factor 

Implication 
 

Possible solution 

workforce. 
Fast Analysis 
(real-time) 

High turnover rates ask for 
quick decisions in order to save 
money and keep succeeding 
processes in time.  

In-sensor reflectance retrieval by at sensor 
irradiance measurements or quicker reflectance 
retrieval routines are needed. If VNIR and SWIR 
is used, the data has to be accessible in the same 
spatial resolution and grid. Reduced spectral 
and spatial dimensions optimize analytical 
computation times. 

Determination 
between ore, 
main 
contaminants 
and waste 

A variability of ore grade and 
contaminants can influence 
the transport and processing 
that succeeds the extraction. 
Broad material categorization 
before extraction can 
economize fuel use for 
transport as well as energy use 
for crushing (Blom, Pearce and 
Stuckey, 2019). 

Site-specific determination of contaminants that 
influence the processing; Site-specific spectral 
libraries able to sort for ore, main contaminants 
and waste; Sensor with band positions ideal to 
detect the materials of interest. 

Pricing Lower hardware prices will 
enable decision makers to 
purchase systems for each 
mine site and implement in 
series. 

A smaller band number and smaller spectral 
range enables lower hardware prices; SWIR 
detectors and optics are more expensive than 
VNIR systems. 

Size & Weight Lower hardware weight will 
enable UAV monitoring; heavy 
UAVs need specific licenses 
and pose a higher risk to the 
work force. 

Smaller band numbers will decrease the size and 
weight of the sensor. VNIR sensors are already 
small and light and could be used solely for UAV 
monitoring. 

Power 
consumption 

Lower power consumption will 
enable longer measurements, 
reducing both strain on 
batteries or diesel-generator 
based energy sources. Lower 
power consumption of the 
sensor also directly influences 
the UAV flight time that is 
based on battery duration. 

The HySpex VNIR-1024 system only consumes 
6W (https://www.hyspex.com/hyspex-
products/hyspex-classic/hyspex-vnir-1024/, last 
visited 03.09.2020) in contrast to the 30W of the 
HySpex SWIR-384 system  
(https://www.hyspex.com/hyspex-
products/hyspex-classic/hyspex-swir-384/, last 
visited 03.09.2020). Using VNIR solely could be 
a solution. 

High 
temperatures 

Hot climate conditions take a 
toll on electric systems. 
Commercial products for 
average wear on Earth are not 
tailored to the extreme 
conditions of open pit mining. 
The cone-shaped topography 
of the pit and near-zenith sun 
angles in regions of the global 
south lead to above average 
conditions in the pit. Similarly, 
high flight lines of the UAV 

VNIR systems work well in hot conditions and 
the silicon CCD detector does not need to be 
cooled by liquid nitrogen as the SWIR MCT 
detector does (Lin et al., 2009; Spragg, 2017). 
This makes their utilization more reliable in 
variable temperature conditions. Murphy et al. 
(2015) reported in-pit temperatures of  >55 °C. 
Their SWIR system was utilized by additionally 
enclosing it in an insulted box and passing cold, 
desiccated air over it. 
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Influencing 
factor 

Implication 
 

Possible solution 

present below average 
temperatures for the sensors.  
 

Sun angles of 
regions in the 
global South 

Sun angles increase towards 
the equator; regions close to 
the equator have higher 
overall sun angles throughout 
the year. 

High sun angle can be an advantage when field 
scanning takes place in the deepest points of an 
open pit. Sun angle variation changes the 
illumination of walls in the periphery of the pit 
or different terrace levels. With a lower sun 
angle variance and shorter time ranges for 
sunrise and sunset, measurements have a 
limited time frame for optimum illumination.  
The end-user screens (e.g., of a GUI) need to 
well visible even in very reflective, sunny 
conditions. 

Variable 
incident light 
and 
illumination 
conditions 

Mine face scans in active open 
pit mining have to be acquired 
on flexible schedules. 
Acquisition times have to be 
coordinated with workforce 
availability, upkeeping safety 
measures and mine planning 
schedules. Taking 
measurements at ideal 
illumination conditions is 
secondary to the majority of 
mine planning parameters.  

Classification algorithms must yield consistent 
results under changing illumination conditions 
(including  shade and shadow and changing 
data acquisition times). Murphy et al. (2015) 
found that e.g., SAM is relatively insensitive to 
changing illumination and performs well also in 
variably shaded regions. Gaussian process 
observation angle dependent machine learning 
(GP-OAD) (Schneider et al., 2011) was also 
proposed for the variable illumination. The BFF 
algorithm showed promising results for 
measurements with changing incident 
illumination. 

Precipitation Strong, regular precipitation 
events change the spectral 
signal surface of the material 
by adding non-mineral-bound 
water-based features.  

Not only do precipitation events require 
different fast, reliable measurements in 
precipitation free periods, but they also require 
sensors that are either insensitive to water 
content regarding the spectral signal or sensors 
that suppress the water features in the collected 
spectral signal.  

Dust Machinery activity, deposit 
mineralogy and climate highly 
influence the amount of dust 
present in the air column 
between the mine face and the 
sensor. 

Sensors need to be deployed during times of 
lower activity. Mine face scanning could be 
possible during night times with strong artificial 
illumination. Measurements have to be 
coordinate with other ongoing activities. 
Sensors need protective casing and spectrally 
inactive safety filters in front of the optical 
lenses. Murphy et al. (2015) used cooled, 
desiccated air to keep the lens and optics dust 
free. They did not find a way to account for the 
wind-blown dust in the air column between 
sensor and outcrop. 
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5.3.1 Data dimensionality reduction 

In order to find the ideal compromise between mapping accuracy, sensor complexity, varying impact 

of atmosphere and illumination and computation time, the Brazilian iron ore data was downsampled 

to different, successively decreasing band numbers. The downsampled data either includes the full 

spectral range from approximately 400–2500nm, or additionally excludes the spectral area influenced 

highly by water related features (between 1300–2010nm) and was downsampled up to the point of 

only using the VNIR data range (400–1000nm).  

As the new, tested sensors are only compared theoretically and downsampled from HySpex data, the 

minimum and maximum wavelength range of the VNIR and SWIR is dependent on the HySpex 

characteristics. The downsampling is tested based on the assumption, that with decreasing band 

numbers the data acquisition time and the computation times for processing and analysis likewise 

decreases. The same is assumed for the sensor size and cost, both will decrease with decreasing 

complexity (band number or exclusion of SWIR spectral range).  

5.3.2 Downsampling of hyperspectral to superspectral (VNIR-SWIR) 
 

Table 22 shows the entirety of the different downsampling approaches. The corresponding spectral 

library images, showing the decrease of spectral detail within the absorption features in the 

progressively downsampled data are shown in Table 56 in the Appendix, (p. 261). The downsampling 

approaches include sampling down the full wavelength range of the VNIR and SWIR to equal 1nm, 

5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 40nm, 50nm, 75nm, 100nm bandwidths and to the 

WorldView-3 (WV3) sensor characteristics with 16 bands (FWHM varies between 30 and 125 nm) and 

the EnMap sensor characteristics of 242 bands (FWHM varies between 5.7 and 14.4 nm). WorldView-

3 and EnMap are satellite based sensors, that are operating and in design, respectively (Guanter et al., 

2015; euspaceimaging.com/about/satellites/worldview-3/, 2018). SAM and SVM analyses were used 

to compare the quality of the mapping for each of the sensors listed in Table 23. The MWL analysis of 

the AlOH feature between 2160 and 2220 was also performed to determine to which point of the 

downsampling analyzing the minimum wavelength position and depth could be performed. 

EnGeoMap 2.1 and BFF analysis was only performed on the downsampled data with bandwidths of 

5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 40nm and 50nm. The best performing sensors were then used 

in the second scenario in which the wavelength range influenced by atmospheric features was clipped 

out (1300–2010nm). In the last scenario, not only the range predominated by atmospheric water was 

clipped out, but the data with the best performing band width was analyzed and compared only taking 

the VNIR spectral range into account. A schematic overview of the downsampling from a field 
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spectrum, a smoothing of the spectrum, downsampling to 15nm and 40nm bandwidth and the 

exclusion of the wavelength ranges impacted by the atmosphere is shown Figure 84. 

 
Figure 84 Schematic successive downsampling and band reduction including the exclusion of wavelength ranges 
impacted by the atmosphere (between 1300 - 2010nm). 
 

Table 22 Downsampling approaches of the Brazilian iron ore samples. 

Sensor / band width [nm] Wavelength 
range [nm] 

Number of 
bands 

Analysis method for testing 

1 414-2497 2084 SAM, SVM, MWL 
5 414-2494 417 SAM, SVM, MWL, EnGeoMap 2.1, BFF 
EnMAP 423-2493 242 SAM, SVM, MWL 
10 414-2494 209 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
15 414-2484 139 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
20 414-2494 105 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
15, 1314 – 2004nm clipped 414-2484 94 SAM, EnGeoMap 2.1 2.1, BFF 
25 414-2489 84 SAM, SVM, MWL, EnGeoMap 2.1, BFF 
30 414-2484 70 SAM, EnGeoMap 2.1 2.1, BFF 
40nm VNIR, 15nm SWIR, 
1314 – 2004 nm clipped 

414-2484 57 SAM, EnGeoMap 2.12.1, BFF 

40 414-2494 53 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
50 414-2464 42 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
15nm VNIR only 414-1014 41 SAM, BFF, (EnGeoMap 2.1 unsuccessful) 
40nm, 1334 – 2004nm 
clipped 

414-2494 37 SAM, EnGeoMap 2.1 2.1, BFF 

75 414-2439 28 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
100 414-2414 21 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
WorldView-3 425-2330 16 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF 
40nm VNIR only 414-1014 16 SAM, BFF, (EnGeoMap 2.1 unsuccessful) 
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Table 56 (Appendix, p. 261) presents the wavelength and FWHM characteristic of the successively 

downsampled data. Table 57 (Appendix, p. 265) list the different systematically downsampled sensors 

with their respective wavelength range, band numbers and the applied analysis methods. 

5.3.3 Analysis of the superspectral VNIR+SWIR downsampled data 

5.3.3.1 Hard-pixel classification based on spectral reference library 

The downsampled data was analyzed using SVM, SAM, EnGeoMap 2.1 and BFF. 

Table 23 lists the accuracies for SVM, SAM, EnGeoMap 2.1 and BFF. The computation times for SVM, 

EnGeoMap 2.1 and BFF were collected. The SAM analysis collectively took below 5s per scan and was 

not collected. EnGeoMap 2.1 and BFF were only utilized for the sensors with FWHM bandwidth 

between 5 and 50 nm. 

 

Table 23 Accuracy and computation time of SVM, EnGeoMap 2.1 and BFF analysis and accuracies of the SAM analysis for 
the different theoretical sensors. 

Sensor/ 

band width 

(nm) 

no. of 

bands 

SAM 

accuracy 

[%] 

SVM 

time [s] 

SVM 

accuracy 

(kappa) 

[%] 

EnGeo 

Map 

accuracy 

EnGeo 

Map 

time [s] 

BFF 

accuracy 

[%] 

BFF time 

[s] 

1 2084 65.2 3361.8 82.4  - -  - - 

5 417 65.2 775.1 82.4 48.7 765.8 60.5 2722.5 

EnMAP 242 64.5 397.8 83.5  - -  -  -  

10 209 65.2 362.7 82.4 48.8 690.7 67.2 1425.4 

15 139 65.1 254.9 82.4 48.9 654.1 70.3 1009.4 

20 105 65.3 203.2 82.4 49.0 632.8 71.1 799.6 

25 84 65.2 169.5 82.4 48.5 623.6 71.4 691.8 

30 70 65.2 150.1 82.4 48.2 625.3 71.5 595.3 

40 53 65.3 107.6 82.4 49.3 614.8 71.6 500.5 

50 42 65.1 90.6 82.4 44.6 618.6 71.7 450.7 

75 28 64.9 71.5 82.2  - -  -  -  

100 21 64.9 66.7 82.2  - -  -  -  

World View3 16 63.9 52.5 83.2  - -  -  -  

 

The accuracy of the different analysis methods for the different band numbers of the sensors can be 

seen in Figure 85. 
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Figure 85 Band number vs. accuracy for SAM, SVM, EnGeoMap 2.1 and BFF. 

 

The mapping accuracies of SVM and SAM are at an approximately constant level with increasing band 

numbers (from 16 to 2084 bands), around 83% and 65% respectively. SVM training time decreases 

from 3361.8s (1nm bandwidth) to 52.5s of training time for the WorldView-3 setting (16 bands) but 

the mapping accuracy (kappa) increases from 82.4% to 83.2% respectively. 

The BFF mapping results shows a slight increase in accuracies with decreasing band. The computation 

time for BFF decreases from 2722.5s and 60.5% of accuracy for 5nm bandwidth data to 450.7s and 

71.7% of accuracy for 50nm bandwidths. EnGeoMap 2.1 peaks around 53 bands with an accuracy of 

49% and stays consistent with increasing band numbers constantly at around 48%.  

Figure 86 shows the correlation of computation time and increasing band number. The accuracy of the 

resulting map does not increase with band number and computation time for SAM, SVM and 

EnGeoMap 2.1. The BFF mapping accuracy decreases with increasing band number and computation 

time. A more detailed discussion of these results can be found in Section 6.2 (p. 172 -174). 
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Figure 86 Accuracy and computation time with increasing band number. Note the logarithmic scale for both the band 
number and the accuracy [%] and computation time [s] sharing the y-axis. 

 

To keep computation times reasonably low for all analysis methods, the downsampling to 53 equal 

bands with 40nm bandwidth each was determined as one of the optimal downsampling approaches 

for mining applications. Here the BFF computation time is reasonably low. With increasing band 

numbers, the BFF computation time outpaces that of the EnGeoMap 2.1.  

 

5.3.3.2 Hard-pixel classification based on MWL  

In order to compare how well the narrow, distinct features in the SWIR can be mapped, the MWL of 

the kaolinite feature was calculated with the HypPy Toolbox (Bakker and Oosthoek, 2020). The 

wavelength range between 2100–2230nm was analyzed to detect two spectral absorption features.  

The literature on the wavelength position and range of AlOH spectral feature differs: Lypaczewski et 

al. (2020) suggest the range of 2195–2215nm for MWL mapping, (Lorenz et al., 2018) uses the range 

of 2190–2215nm and Kirsch et al. (2018) uses an even broader range of 2160–2220nm. The target 

features for the Kaolinite feature for comparison were derived from Lypaczewski et al. (2020). Based 

on (Lypaczewski et al., 2020) the kaolinite AlOH double feature has minimum wavelength positions for 

feature 1 at 2205nm and for feature 2 at 2156nm. Both features can be mapped distinctly until a 
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bandwidth of 15nm. The feature positions for each sensor and the difference in regard to the target 

features (Lypaczewski et al., 2020) are presented in Table 24. Figure 87 shows the change of minimum 

wavelength for both features with changing band numbers. Here, downsampling to 15nm wide bands 

in the SWIR showed to be the maximum amount of downsampling that still allowed the detection of 

two distinct absorption features for Kaolinite.  Figure 88 then shows the wavelength position and 

feature depth mapping by MWL for the sensors with decreasing band numbers from 2084 to 105 bands 

(1nm to 20nm FWHM).  

Table 24 MWL for the kaolinite feature with changing band number. “None” entries represent no possible detection of a 
feature by MWL. The offset of the detected feature position and the expected feature position is noted. Expected 
positions: Feature 1: 2205nm, Feature 2: 2156nm. 
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Sensor / band 
width (nm) 

Band nr. 
Feature 1 
position 

Feature 2 
position  

Feature 1 off 
target 

Feature 2 off 
target 

1 2084 2206.63 2162.64 1.63 6.64 
5 417 2206.48 2163.19 0.48 7.19 
EnMAP 242 2206.21 2163.22 0.21 7.22 
10 209 2204.17 2164.43 1.83 8.43 
15 139 2201.12 2168.59 4.88 12.59 
20 105  None 
25 84 2203.00 2175.81 3.00 19.81 
30 70 2201,68  None 4.32   
40 53  None 2174.00  - 18.00 
50 42  None 2164.00  - 8.00 
75 and higher 28 and lower None 

 

 
Figure 87 Wavelength position of the two detected kaolinite features with changing band number. Blue: position and 
linear trend of the position with changing band number for feature 1. Red:  position and linear trend of the position with 
changing band number for feature 2 
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Figure 88 - MWL feature position and depth results and spectral library visualization for downsampled data with 
bandwidth between 10nm and 20nm. The spectra are shown schematically, the x-axis plots the wavelength [nm] from 
ca. 400 - 2500, and the y-axis plots the reflectance from 0-100%. The detected feature wavelength minimum position is 
stretched between 2100nm (blue) and 2220nm (red), and the feature depth stretches between 0 (blue) and 0.2 (red).
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5.3.4 Excluding atmospheric features 

Both, the mapping of materials and the mapping of wavelength positions of known features was shown 

successfully for ore-waste-discrimination in laboratory and even conveyor belt settings (Dalm et al., 

2014; Dalm, Buxton and van Ruitenbeek, 2017; Lypaczewski et al., 2020). The conditions here were 

controlled and the samples have assumingly been stored for a sufficient time frame to not be 

influenced by surface water. It is assumed that the spectral features present in the spectral range of 

≈1400nm and ≈1900nm are caused solely by mineral bound water. The features in the spectral range 

dominated by atmospheric absorptions include the slope between 1450–1850nm produced by ferrous 

iron and the absorption depth between 1900/ 2200nm to characterize crystallinity of white mica (Dalm 

et al., 2014; Dalm, Buxton and van Ruitenbeek, 2017). Lypaczewski et al. (2020) uses absorption 

feature between the total wavelength range of ≈1450–2390nm to detect and classify mineralogy. In a 

laboratory or conveyor belt setting these predictors work well as the physical distance between the 

sensor and the sample are small and the air column in between is a negligible factor.  

 

Mine face scanning on the other hand poses the challenge of up to 100m of air column between sensor 

and sample. Additionally, the influence of run-off and surface water on the rock will affect the material 

spectrum. The complexity of material distribution and water-run-off patterns increases from within 

one mine face to within multiple mine faces. The water surface content for one material does not only 

change spatially but also temporally (e.g., in the case of periodic precipitation events) and creates a 

high spectral variability of that same material.  

 

So, in order to be able to avoid this influence on hyper- and superspectral mapping and still achieve 

sufficient results, the spectral range influenced by atmospheric absorptions (≈1300-2010nm) was 

clipped out completely for the 15nm and 40nm bandwidth data. Three different datasets were created 

and utilized for this purpose; these are: 

1) The dataset with 40nm wide band in a range of 414-2494nm was used and the wavelength range 

between 1314-2014nm was clipped, creating a dataset with 37 bands.  

2) The 15nm bandwidth dataset from 414-2484nm was utilized in order to detect smaller absorption 

features in the SWIR. Here, the wavelength range spanning from 1314-2004nm was clipped and a 

dataset of 94 bands in total was created.  

3) A dataset combining both sensors from 1) & 2) with 40nm wide bands from 414-1314nm and 15nm 

wide bands from 2004-2484nm.  The range from 1314-004nm is excluded thereby creating a sensor 

with 57 bands. 



130 Near-field Imaging Spectroscopy results 

 

 130 

5.3.5 Analysis of the VNIR+SWIR downsampled data (atmospheric band excluded) 

The three sensors listed above were analyzed by SAM, EnGeoMap 2.1 and BFF. The BFF algorithm and 

SAM take the whole spectral shape into account for mapping, whereas EnGeoMap 2.1 automatically 

isolates distinct spectral features for characterization and comparison. 

Again, all downsampled sensors with bandwidth from 5nm to 50nm are listed with their bandwidths 

and number of bands and their corresponding mapping accuracies (Table 25). Listing all sensors 

analyzed by SAM, EnGeoMap 2.1 and BFF is supposed to give a comparison of the analysis results 

(accuracies) of the full spectral range vs. the new sensors with a spectral range excluding the 

atmospheric bands. 

 

Table 25 Sensors with bands from 417 - 37, including the sensors with clipped wavelength ranges influenced by the 
atmosphere (≈ 1300 – 2010 nm). The accuracies for SAM, EnGeoMap 2.1 and BFF are compared. 

Bandwidth [nm]  
Number 
of bands 

Water band 
range 
excluded 

SAM 
accuracy [%] 

EnGeoMap 2.1 
accuracy [%] 

BFF accuracy 
[%] 

5 417 No 65.19 48.71 60.52 
10 209 No 65.21 48.79 67.20 
15 139 No 65.15 48.99 70.34 
20 105 No 65.26 49.05 71.08 
15nm without 
atmosphere  

94 1314 – 2004 
nm 

65.09 48.97 69.29 

25 84 No 65.24 48.50 71.37 
30 70 No 65.22 48.23 71.49 
40nm VNIR, 
15nm SWIR 
without 
atmosphere 

57 1314 – 2004 
nm 

64.84 48.31 71.05 

40 53 No 65.34 49.29 71.60 
50 42 No 65.34 44.61 71.68 
40nm without 
atmosphere 

37 1314 - 2014 
nm 

65.41 48.28 71.15 

 

Figure 89 shows the accuracy reached by all aforementioned sensors in Table 22 (p. 123). The sensors 

without atmospheric wavelength affects are the sensors with the band number 37, 57 and 94. It shows 

that excluding the atmospheric affected wavelength does not affect the SAM results and only slightly 

affects the results for the 94 bands data for the BFF analysis, resulting in 69.29% of overall accuracy, 

compared to 70.34% of accuracy for the full VNIR+SWIR range. 
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Figure 89 BFF, EnGeoMap 2.1 and SAM accuracies for sensors with systematically downsampled band numbers from 37 
to 417, (excluding the results for the 242 bands EnMap sensor). 

 

5.3.6 Downsampling to VNIR-only data  

The results of the mapping accuracy for the sensors excluding the entire atmospherically affected 

wavelength range (between 1300 – 2010 nm) are promising enough to go a step further and exclude 

the whole SWIR range.  

 

5.3.6.1 Reasons to exclude the SWIR sensor 

As an example, the VNIR-1600 and SWIR-320m-e sensor characteristics of the HySpex are compared. 

Be aware, that with time both the price and size of the digital electronics will decrease further and the 

spatial resolution (number of pixels) will increase as generally observed for digital electronics by 

Moore’s law. The SWIR-320m-e sensor is also more susceptible to temperature changes as it depends 

on a cooling with liquid nitrogen (Spragg, 2017) to stabilize the MCT detector performance to enable 

a high sensitivity and a high speed response. The HySpex SWIR-320m-e operates at FPA temperatures 

of 195K which is accomplished by 4 stage TE cooling (Lin et al., 2009; boselec.com/wp-

content/uploads/Linear/Vigo/VigoLiterature/BEC-Vigo-IR-Detector-Catalog-03-08-19.pdf, 2020). That 

increases the power consumption of the SWIR-320m-e to a factor higher than that of the VNIR-1600 

(hyspex.no/products/disc.php, 2019). These key parameters are again summarized in Table 26. In 

short, the VNIR-1600-only setup allows for a lighter and smaller sensor with a lower power-

consumption, higher tolerance towards temperature changes and a higher spatial resolution.  
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Table 26 HySpex VNIR - 1600 and SWIR - 230m-e sensor parameters from the HySpex User Manual 
(hyspex.no/products/disc.php, 2019; Körting, 2019). 

Parameter  VNIR-1600 SWIR-320m-e 
Spectral Range  400-1000nm  1000-2500nm  
Spatial Pixels  1600  320  
Field of View (FOV) across track (y-
dimension) for objectives (30 cm, 1 m lens) 

17° 14° 

FOV of FOV expander objective (> 10 m) 34° 28° 
Detector  Si CCD 1600 x 1200  HgCdTe 320 x 256  
FPA temperature N/A 195 K / -78.15°C 
Sensor head power consumption 6 W 100W 
Sensor head weight 4.6 kg 7.5 kg 
Sensor head dimension [cm] 31.5 x 8.4 x 13.8 36.0 x 14.0 x 15.2 

 

 

5.3.6.2 Distinct spectral features in the VNIR and SWIR 

Excluding the SWIR range excludes the SWIR-only active minerals. To compare the importance of the 

SWIR response for different minerals, Table 58 and Table 59 in the Appendix (Section 10.11, p. 266) 

list the most common silicate and non-silicate minerals relevant to hydrothermal deposits with their 

VNIR and SWIR responses (Krupnik and Khan, 2019). Table 58 (p. 266)Table 59 (p. 268) in the Appendix 

underline the importance of SWIR features for the majority of the listed minerals. From this list, only 

iron rich minerals can be detected based on their diagnostic absorption features by VNIR-only data. A 

detection of materials rich in e.g., carbonates or phyllosilicates based on characteristic absorption 

features is only possible by including the SWIR. This infers, that to distinguish and map different 

materials in the VNIR-only data, only data-driven mapping approaches e.g., training-based methods 

like SVM can be utilized. Here, the whole deposit has to be characterized and “learned” in order to 

map and detect the materials of interest. 

5.3.7 Analysis of the VNIR-only downsampled data 

Table 27 shows the sensor characteristics of the VNIR-only sensors with bandwidth of 15 nm and 40 

nm compared to the sensors with clipped atmospheric absorption feature wavelength ranges and 

compares their SAM, BFF and EnGeoMap 2.1 analyses results. The automated EnGeoMap algorithm 

was not able to perform the analysis and to create hard classifier maps. BFF dropped to approximately 

68% of accuracy for both VNIR-only sensors, whereas SAM increased compared to the VNIR-SWIR 

system to approximately 68% of accuracy for both VNIR-only sensors. The SAM, BFF and EnGeoMap 

2.1 mapping results are plotted in Figure 90 including the VNIR only sensors marked in bold. 
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Table 27 Accuracies of SAM, EnGeoMap 2.1 and BFF of the VNIR only sensors compared to the sensors with the clipped 
wavelength affected by the atmosphere (≈ 1300–2010 nm). 

Bandwidth nm  Number 
of 
bands 

SAM 
accuracy 
[%] 

EnGeoMap 
2.1 
accuracy 
[%] 

EnGeoMap 
2.1 time [s] 

BFF 
accuracy 
[%] 

BFF time 
[s] 

15nm w/o water 
band (1314 - 2004 
cut), 94 bands 94 65.09 48.97 Unknown 69.29 717.14 
40nm VNIR, 15nm 
SWIR w/o water band 
(1314 - 2004 cut), 57 
bands,  57 64.84 48.31 682.40 71.05 493.94 
15 nm VNIR 41 68.09  No results No results 68.16 281.19 
40nm w/o water 
band (1334 - 2014 
clipped) 37 65.41 48.28 654.78 71.15 400.65 
40nm VNIR only 16 67.67  No results No results 67.71 424.9 

 

 

 
Figure 90 Comparison of the SAM, EnGeoMap 2.1 and BFF accuracies of all tested theoretical sensors. 

 



134 Near-field Imaging Spectroscopy results 

 

 134 

Figure 91 visualizes the accuracy vs. the computation time for the analysis of all presented sensors 

with EnGeoMap 2.1 and BFF. Note, that EnGeoMap 2.1 was not able to analyze all of the datasets. The 

BFF analysis shows a constant increase in mapping accuracy and decreasing computation time with 

decreasing band numbers. The EnGeoMap 2.1 mapping accuracy and computation time appear nearly 

constant with decreasing band number up to 37. Below 37 bands, EnGeoMap 2.1 is not able to perform 

a mapping. 

 

 
Figure 91 BFF and EnGeoMap 2.1 accuracy vs. computation times for all presented sensors. Time [s] (dotted line) and 
Accuracy [%] (continuous line) is logarithmically denoted on the y-axis 

 

The resulting maps and corresponding spectral libraries of the mapping for the VNIR-only and 

atmospheric absorption-free sensors are shown in Figure 92. 
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A detailed discussion of the presented results for the different robust sensors is presented in the 

“Discussion” Chapter (pp. 165 - 187).  

 

Going forward, a total of five sensors where modeled for the subsequent analyses:  

 

1) the “VNIR-only” sensor with a bandwidth of 40nm,  

2) the “40nm VNIR – 15nm SWIR, without atmospheric bands” sensor (clipped and interpolated 

between the atmospherically influenced bands between 1300 – 2010 nm),  

3) a modified “40nm VNIR – 15nm SWIR” sensor that includes the atmospheric bands in a bandwidth 

of 40nm. This sensor is able to represent the overall albedo and shape of the spectrum without being 

able to depict distinct, narrow bands between 1300 – 2010 nm.  

4) The 400nm HySpex data to compare the mapping results to a validation and  

5) data based on the WorldView-3 sensor model, in order to compare the results that would be 

achieved with a well-known satellite-based sensor. 

 

5.4 III) Apliki Sample Data - Analysis of Laboratory Scans  

The workflow parts I – II  from Section 5.2 and 5.3, (pp. 97 - 136) is applied to the sample scan of the 

Apliki mine samples in Section V). The method is adjusted for the sample set and applied on the Apliki 

mine face scan. Mapping is tested for the laboratory reflectance dataset containing 36 samples and a 

laboratory radiance VNIR-only dataset containing a subset of eleven samples from full Apliki sample 

suite. 

5.4.1 Apliki mine sample – reflectance data  

The VNIR-SWIR reflectance data of the Apliki mine sample scans is analyzed first. In the following 

paragraphs, the samples are geochemically and spectrally clustered, a spectral library is compiled. The 

imaging spectroscopy data is downsampled, pre-processed and analyzed. 

 

5.4.1.1 Geochemical clustering of sample data 

Agglomerative bottom-up clustering (Murtagh and Legendre, 2011) of the sample geochemical data 

was performed in R Studio to identify clusters within the geochemical data of 36 samples and reduce 

the input spectra for the spectral library. The 36 samples are shown in Figure 93.  
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Figure 93 Hyperspectral scan of the Apliki samples showing all 36 samples used for geochemical clustering, spectral 
library extraction and analysis.  

 

To compare the data, some geochemical results needed to be adjusted in order to be comparable. This 

applies to element or oxide content yielding below or above the detection limit. The geochemical 

values were adapted as seen in Table 60 in the Appendix (p. 269). 

 

The ward.D2 method was utilized to minimize the total within-cluster variance. An optimal minimal 

cluster number of 7 clusters was determined to describe the geochemical variance of the data. The 

clusters are outlined in red in Figure 94. The full geochemistry of 36 samples was used for the clustering 

approach. Euclidian distance and the ward.D2 clustering method were applied to cluster 36 samples 

with a total of 21 different element and oxide concentrations for each sample.  
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Figure 94 Bottom-up hierarchic cluster dendrogram for 7 clusters based on the full bulk geochemistry of 36 samples. 

 

Figure 95 shows the hyperspectral sample scan color-coded for the determined geochemical clusters. 

 

 

Figure 95 Geochemical clusters color-coded for the hyperspectral sample scan. 36 samples were clustered into 7 
geochemically and spectrally distinct clusters. 
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5.4.1.2 EM selection  

The sample spectra were compared and manually checked for each of the seven clusters. The spectra 

of the samples allocated within one geochemical cluster show enough spectral similarities to be also 

accepted as spectral clusters. The only exception from that is sample 7e. 7e was sorted into cluster 7 

geochemically but its spectral expression is closer to the spectra found in cluster 2, it was therefore 

sorted to cluster 2 for the spectral library. This new cluster is now called “Spectral Cluster 2”. This re-

clustering results in spectral cluster 2 including sample 15a, 15b, 15c and 7e and cluster 7 to be reduced 

to containing solely sample 4a. The other clusters remain unchanged. For the different spectral clusters 

see Figure 96.  

The following spectral libraries were compiled: 

• A spectral library was compiled containing all 36 spectra, one for each sample. Each spectrum 

in the subsequent classification is color-coded according to their cluster identity (Figure 96) 

• A reduced spectral library was compiled containing representative spectra for each cluster. 

One to three spectra were determined visually and chosen for each cluster resulting in a 

spectral library of 11 sample spectra within 7 clusters (Figure 98) 

 

The samples and their affiliation within each of the two spectral libraries and their cluster-identity and-

color is listed in Table 28. 

 

Table 28 Spectral libraries after geochemical clustering and visual spectral similarity assessment 

Full spectral library (36 sample 
spectra) 

Reduced spectral library (11 
sample spectra) 

Cluster + color-code 

1b, 1d, 1e, 1f, 13a 1e, 1f, 13a 1 
15c, 15a, 15b, 7e 15c, 15b 2 
11a, 11b, 10a, 7d_hem, 9b 10a 3 
2a 2a 4 
13b, 3a, 3b, 4b, 6b, 6c, 6a, 6d 4b 5 
4c, 8b, 5a, 5c, 5b, 8a, 8c, 9a, 
10c, 10b, 10d, 7d 

9a, 10d 6 

4a 4a 7 
 

All geochemical clusters are shown in Figure 96, including the associated sample spectra. The 

“spectral cluster 2” is shown in addition to highlight the spectral similarity between the samples 15a 

and 15b with sample 7e (formerly sorted into geochemical cluster 7) 

.
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The location of each sampling point within the outcrop spatial scale and its cluster-identity are shown 

in Figure 97. 

 

 
Figure 97 Sampling point location in decimal latitude and longitude and each sample points color-coding according to its 
cluster. 

 

The reduced spectral library of 11 spectra within 7 clusters is shown in Figure 98. 

 

 
Figure 98 Spectral library based on geochemical and spectral clustering into 7 clusters with a total of 11 sample spectra 
and 4 laboratory "background" spectra. 
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The 6 geochemical clusters and the 7th spectral cluster can be validated through their geochemical and 

mineralogical composition. In the following paragraphs, the geochemical and spectral clusters are 

validated by their average geochemistry, mineralogy and by linking the 7 cluster to the different 

geological units and zones in the Apliki mine face described by Antivachis (2015). The XRD results are 

compared for each sample in one cluster and the dominant cluster mineralogy is defined. This average 

cluster geochemistry and dominant mineralogy is linked to the associated zones. To compare the 

geochemistry of each cluster, the geochemistry of the samples within a cluster were averaged. The 

geochemical average of the main components of each cluster is listed in Table 29 and Table 30. 

 

Table 29 Average geochemistry of the samples in a cluster. Highest value per oxide and element, marked in grey. (Part 1) 

Cluster SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 
 % % % % % % % % % 
Limit 0.01 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 
1 49.14 16.34 12.07 4.84 6.36 2.94 0.73 1.06 0.10 
2 44.78 2.31 13.00 3.28 0.08 0.08 0.01 0.12 0.00 
3 81.10 3.89 6.61 3.23 0.49 0.05 0.00 0.08 0.04 
4  40.72 8.00 31.22 2.67 0.75 0.31 0.67 0.38 0.20 
5 40.79 11.58 15.68 4.54 2.14 0.70 0.69 0.50 0.04 
6 44.25 12.91 12.62 11.33 0.57 0.06 0.01 0.30 0.00 
7 33.97 10.29 10.62 9.96 8.00 0.22 0.02 0.24 0.01 

 

Table 30 Average geochemistry of the samples in a cluster. Highest value per oxide and element, marked in grey. (Part 2) 

Cluster MnO Cr2O3 Cu Zn TOT/C TOT/S 
 % % % % % % 
Limit 0.01 0.002 0.0005 0.0005 0.02 0.02 
1 0.14 0.00 0.07 0.01 0.15 0.07 
2 0.10 0.01 1.00 0.06 0.02 16.48 
3 0.03 0.01 0.10 0.05 0.01 1.28 
4  0.24 0.02 0.17 0.05 0.04 2.98 
5 0.12 0.02 0.19 0.06 0.05 2.45 
6 0.11 0.02 0.08 0.03 0.01 1.16 
7 0.35 0.01 0.04 0.36 0.12 6.56 

 

Table 31 lists the dominant cluster geochemistry per cluster and links it to the associated geological 

units identified in Antivachis (2015). The mineralogical compositions of the samples in a cluster are 

listed in Table 32 and based on XRD measurements of the samples.  
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Table 31 Zonation based on Antivachis (2015), correlated with the predominant geochemical average of each cluster. 

Cluste
r 

Average cluster geochemistry 
relative to other clusters 

Associated zones and geological units based on 
(Antivachis, 2015) 

1 Highest TiO2, Al2O3, Na2O and K2O 
content, high TOT/C content 

Apliki pillow lavas (main magmatic minerals: iron- and 
titanium oxides, plagioclase, pyroxenes) and rarely 
olivine.  

2 Highest Cu and TOT/S content Disseminated sulfide ore, Cu-Fe sulfides and sulfates  
3 Highest SiO2 content Quartz veining, areas of silicification 
4
  

Highest Fe2O3 and P2O5 content Jasper veining/ amorphous silica, veins of massive 
mineralization (goethite, jarosite and natrojarosite as 
predominant minerals, Fe-Ti. Pb, Cu, and Zn oxides as 
accessories) 

5 Medium content of all oxides and 
elements compared to other 
clusters, relatively high K2O, Fe2O3, 
Al2O3 and MgO contents 

Clay minerals identified in Pillow Lavas and smectitic 
alteration zone dominated by montmorillonite and illite 
(both can not easily be distinguished as per Antivachis 
(2015) 

6 Highest MgO content, relatively 
high Fe2O3 content, low K2O 

Chloritic stockwork zone 

7 Highest CaO, MnO and Zn content, 
relatively high MgO and TOT/S, 
medium MgO and Fe2O3, lowest 
SiO2 

Gypsum mineralization indicated by high CaO and 
TOT/S and weathering products from overlying oxidized 
zone 

 

Table 32 Apliki mine sample clusters, associated sample IDs and cluster mineralogy. 

Cluster Samples Cluster Mineralogy  
01 1b, 1d, 1e, 1f, 

13a 
Quartz, Plagioclase Feldspar (Andesine, Anorthite), Pyroxene (Diopside), 
Smectite-group: Montmorillonite, Fe-Oxide: Magnetite, Sulfide: (Pyrite 
(Fe, one sample only)); Dominated by: Plagioclase and Montmorillonite. 

02 15c, 15a, 15b, 
7e 

Quartz, Fe-Oxide: Goethite, Sulfides (Cu, Fe, CuFe): Covellite, Pyrite, 
Chalcopyrite, Sulfates (Cu, Fe, Mn-Al, Mg): Chalcanthite, 
Ferrohexhydrite, Apjohnite, Rozenite, Pentahydrate (cuprian); 
Dominated by: Quartz, Sulfates and Sulfides, Fe-Hydrate (7e) 

03 11a, 11b, 10a, 
7d_hem, 9b 

Quartz; Fe-Oxide: Goethite; Sulfides (Cu): Pyrite; Sulfates (Cu, Zn-Fe): 
Gypsum, Bassanite, Sphalerite; Chlorite group: Clinochlore; Dominated 
by: Quartz (+ Chlorite-group (sample 11a, 11b)) 

04 2a Fe-Oxide: Goethite; Sulfate (K-Fe): Jarosite-Natrojarosite; Quartz; 
Plagioclase Feldspar (Andesine); Chlorite Group: Clinochlore; Dominated 
by:  Sulfates  

05 13b, 3a, 3b, 4b, 
6b, 6c, 6a, 6d 

Quartz; Plagioclase (Andesine, Anorthite); Analcime; Pyroxene 
(Diopside); Smectite-group: Montmorillonite; Fe-Oxide: Goethite, 
Magnetite; Sulfate (K-Fe, Ca): Jarosite, Gypsum; Chlorite-group: 
Clinochlore; Sulfide (Fe): Pyrite;  
Dominated by: Clays, Smectite-chlorite group 

06 4c, 5a, 5b, 5c, 
8a, 8b, 8c, 9a, 
10b, 10c, 10d, 
7d 

Chlorite-group: Clinochlore; Smectite-group: Montmorillonite; Sulfate 
(Ca, Mg): Gypsum, Hexahydrite; Quartz; Sulfide: Pyrite; Fe-Oxide: 
Goethite; Ajoite (minor copper ore, silicate hydroxide); Dominated by: 
Chlorite-group 

07 4a Sulfate (Ca, Fe): Gypsum, Rozenite; Quartz, Chlorite-group: Clinochlore; 
Dominated by: Gypsum  
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The mineral assemblages found for each sample in a cluster correlated well within a cluster and can 

be seen as a cluster-coherent mineral assemblage. The diffractograms of each sample can be found in 

the Appendix (Section 10.5, p. 217). 

The average geochemistry, the cluster-coherent mineralogy and the possible linkage to the geological 

units and zones described in Antivachis (2015), confirm the 7 geochemically and spectrally defined 

clusters. These spectral clusters are utilized further for the spectral library-based mapping. For 

mapping, each spectrum is color-coded according to its cluster-identity.  

 

5.4.1.3 Data preparation  

The reflectance data derived from the pre-processing routines by Rogass et al. (2017) was corrected 

as described in Section 4.2 (p. 75) A total of five sensors where modeled for the subsequent analysis. 

The data was downsampled to two sensors identified as being well suited for open pit mining 

applications: the “VNIR-only” sensor with a bandwidth of 40nm and the “40nm VNIR – 15nm SWIR, 

without atmospheric bands” sensor (clipped and interpolated between the atmospherically influenced 

bands between 1300–2010nm). A third sensor was included, as modified “40nm VNIR – 15nm SWIR” 

sensor that includes the atmospheric bands in a bandwidth of 40nm. This sensor is able to represent 

the overall albedo and shape of the spectrum without being able to depict distinct, narrow bands 

between 1300–2010nm. As a fourth sensor, the full 400nm HySpex data was used for a comparison 

for mapping. WorldView-3 is included as a fifth sensor model, in order to compare with a well-known 

satellite-based sensor. The data specifications are listed in Table 33. Figure 99 shows the spectrum of 

sample 1e and 15b for each of the sensors used for the different classification approaches. 

 

Table 33 Sensor specifications for the five datasets classified and compared of the Apliki sample laboratory data, sorted 
by descending band numbers. 

Sensor Wavelength range 
[nm] 

Band number FWHM VNIR 
[nm] 

FWHM SWIR [nm] 

HySpex 414–2450 400 3.6 6.0 
40nm VNIR - 
15nm SWIR 

414–2439 70 40.0 40.0 (974-2004nm)  
15.0 (2004-
2439nm) 

40nm VNIR – 
15nm SWIR, 
atmospheric 
bands clipped 

414–2439 
clipped and 
interpolated 1334–
2004 nm 

54 40.0 15.0 

40nm VNIR-only 414–1014 16 40.0 - 
WorldView-3 425–2330 16 40.0–125.0nm 30.0–70.0nm 
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Figure 99 Comparison of spectra 1e and 15b showing their spectral shape for the five different sensors. A: 40nm VNIR 
and 15nm SWIR with and without clipping and interpolating the spectral range influence by atmospheric absorptions 
(1300–2010nm), B: VNIR-only 40nm sensor, WorldView-3 and HySpex 

 

5.4.1.4 Analysis and classification 

The spectral scan was analyzed with SAM, BFF and the standard SVM from the DeepHyperX toolbox 

(Audebert, 2020). For SAM and BFF, the data was analyzed with the 36 samples spectra- and the 11 

samples spectra- spectral library each. The resulting mapping accuracies are plotted in Figure 100. The 

SAM, BFF and SVM analysis parameters are described in Sub-Section 5.2.3.10 (p. 109). 
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Figure 100 Apliki sample scan classification accuracies for five different sensors and three different classification 
algorithms (SAM, BFF and SVM). 

 

Figure 101 present the computation times for each sensor, note the logarithmic scale of the y-axis. 

 

 
Figure 101 Computations times plotted for each sensor for the Apliki sample dataset. 

 

The mapping results are shown in Figure 102 with the mapping accuracies. The maps are compared to 

the color-coded validation. 
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Figure 102 Mapping of 36 Apliki mine sample reflectance data. 1st column: validation image, 2-6th column: classification 
results for the five different sensors. Left to right: SVM, SAM 11 sample spectra, SAM 36 sample spectra, BFF 11 sample 
spectra, BFF 36 sample spectra.  

 

Comparing the mean classification accuracies depicted in Figure 102 for the two different libraries, the 

underperformance of the results from the reduced spectral library (11 samples) becomes apparent. 

Based on this comparison, the library with the 36 sample spectra was utilized for the following mine 

face scan analysis. A detailed discussion of the results presented here can be found in Chapter 6, p. 

165. 
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5.4.2 Apliki mine sample – radiance data  

5.4.2.1 Data preparation 

To test the comparability of the radiance signal of the 11 samples identified for the reduced spectral 

library, a VNIR radiance data set was compiled for these samples. A data set of the dimensions 

1200x1290 pixel was created in the wavelength range of the VNIR from 414–993nm. The original 

radiance VNIR HySpex data has a spatial resolution of 160 bands with bandwidths of 3.6nm. This 

original radiance data was downsampled to 15 bands, 40nm bandwidths data. SAM and BFF were 

utilized for mapping. The RGB of the VNIR radiance dataset and the location of spectra extraction for 

the spectral library are shown in Figure 103. Eleven spectra were extracted from a 15 x 15 pixel 

average, one spectrum for each sample, and four background spectra (of the WR panel, the plastic and 

white paper showing underneath samples). All spectra are shown in Figure 104. The color-coding of 

the spectra and results is the same as for the 7 clusters identified in Sub-Section 5.4.1, p. 136. 

 

 
Figure 103 Complied radiance data set of eleven samples and a 50% white reference panel. Red rectangles mark the area 
of spectra extraction for the spectral library. 
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Figure 104 Radiance sample spectra for 11 Apliki mine samples. 

 

5.4.2.2 Analysis and classification 

SAM and BFF were performed for the 160 bands “HySpex-VNIR rad” and the 15 bands “40nm-VNIR 

rad” data. The classification maps and accuracies are shown in Figure 105. The mapping accuracies 

differ between classes and show an overall higher accuracy for the 40nm downsampled data (SAM: 

62%, BFF: 68%) compared to the original HySpex data (SAM: 60%, BFF: 32%).  
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Figure 105 VNIR radiance data analysis with SAM and BFF for HySpex 160band (bottom) and 40nm-bandwith 15band 
data (center) compared to a validation image containing color-coded ROIs (top). 
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5.5 IV) Proposed field workflow related to Apliki mine 

For the field data, the methods applied in Section I – III) are utilized for the Apliki mine face scan data. 

In the Materials Chapter, Sub-Section 3.5.4, pp. 60 - 70 the HSI field data acquisition, processing and 

the field sampling was described in detail. A workflow scheme from data acquisition to the mapping 

results of the mine face data is presented Figure 106. 

 

 
Figure 106 Hyperspectral mine face acquisition, processing and analysis workflow. 

 

The field sampling, data acquisition and pre-processing were explained in detail in Chapter 3 (p. 32). 

The spectral library compilation and geochemical clustering is described as a result of the laboratory 

data analysis (Section 5.4, pp. 136).  
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The reflectance HSI was downsampled to the specifications listed in Table 34. Three sensors were 

utilized for the subsequent analysis: 1) the 40nm VNIR-15nm SWIR, atmospheric band excluded data, 

2) the 40nm VNIR-only data and 3) the WorldView-3 sensor characteristic data. 

 

Table 34 Sensor characteristics for the downsampled sensors, downsampled from 390 band, pre-processed Apliki field 
reflectance data. 

Sensor Wavelength range 
[nm] 

Band 
number 

FWHM VNIR 
[nm] 

FWHM SWIR [nm] 

40nm VNIR – 
15nm SWIR 
(atmospheric 
bands clipped) 

414-2390; 
(Interpolated 
between 1334 – 
2004nm) 

51 40 15 

40nm VNIR-only 414-1014 16 40 - 

WorldView-3 425-2330 16 50, 60, 70, 40, 60, 40, 125, 80, 30, 40, 
40, 40, 40, 40, 50, 70 

 

The differences in the overall shape of the spectrum for these three sensors have been visualized in 

Table 56 when systematically downsampling the Brazilian iron ore samples (Appendix, p. 261). 

Nevertheless, the spectral library for the “40nm VNIR-15nm SWIR, atmospheric band excluded data” 

for 11 spectra is shown in Figure 107 to give an insight into the type and shape of spectra that the 

subsequent mapping and analysis is based on. 

 

 

 
Figure 107 Spectral library spectra of 11 Apliki samples, downsampled to 40nm VNIR - 15nm SWIR. The atmospheric 
range between 1300–2010nm was clipped and interpolated. 
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5.5.1 Ground truth for the Apliki mine 

In order to validate the HSI maps, the mapping results are compared with two sources of validation for 

the spatial data: 1) the known, identifiable field sample collection positions and the expected mapping 

result based on those samples and 2) the geological map of the northern face of Apliki based on 66 

samples taken in 2015 by (Antivachis, 2015).  

 

5.5.1.1 Validation based on sample points 

Figure 108 shows the hyperspectral scan with marked sample position (color-coded circles). Twenty-

two sample positions could be identified within the HSI and were color-coded according to the cluster 

color-coding scheme utilized for the laboratory sample mapping. Eleven representative spectra of the 

laboratory based spectral library are shown and color-coded based on their cluster identity in Figure 

108.  

 

  
Figure 108 Field sampling positions marked in imagery. Color-coding of circles (sample points) and spectra of spectral 
library (laboratory based) is according to the 7 identified geochemical and spectral clusters for the Apliki samples. 
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5.5.1.2 Validation based on 66 outcrop samples from (Antivachis, 2015) 

Antivachis (2015) mapped the northern open cut of Apliki based on 66 samples that were subsequently 

investigated by ICP-MS, AAS, petrography and X-ray diffraction. Primary and secondary mineralogy and 

backscattered imaging was performed with a Scanning Electron Microscope (SEM) and silicate 

minerals were analyzed by microprobe analyses. The result of his work is a map of the geological 

features of the outcrop as well as an alteration zone map. Figure 109 shows the zonation mapping of 

the HySpex mine face scan based on Antivachis (2015) geological mapping and is color-coded based 

on the 7 geochemical-spectral clusters. Figure 110 shows the combination of both the geological 

feature and the alteration map by Antivachis (2015). 

 

 
Figure 109 Apliki HySpex mine face scan RGB (top) and geological interpretation based on Antivachis (2015) (bottom). 
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Figure 110 Combination of hydrothermal alteration zones and schematic geological section for the northern open cut in 
Apliki mine, Republic of Cyprus. Information derived from maps created by Antivachis (2015). 

 

The identified geochemical-spectral clusters, the cluster-coherent dominant geochemistry and 

mineralogy and the associated zonation as describe in Antivachis (2015) is shown in Table 35. The 

cluster-coherent geochemistry and mineralogy can be linked to the geological units described by 

Antivachis (2015). Mapping with the cluster-color-coded spectral library should therefore be 

comparable to the cluster-color-coded validation map from Figure 109 (bottom). This enables a 

validation of the mapping by the map based on Antivachis (2015). 
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Table 35 Apliki mine sample clusters, dominant geochemistry and mineralogy and linked geological units. 

Cluster Generalized cluster geochemistry relative 
to other clusters and dominant 
mineralogy (XRD) 

Associated zones and geological units based 
on Antivachis (2015) 

1 Highest TiO2, Al2O3, Na2O and K2O 
content, high TOT/C content 
Dominated by: Plagioclase and 
Montmorillonite. 

Apliki pillow lavas (main magmatic minerals: 
iron- and titanium oxides, plagioclase, 
pyroxenes) and rarely olivine.  

2 Highest Cu and TOT/S content 
Dominated by: Quartz, Sulfates and 
Sulfides, Fe-Hydrate (7e) 

Disseminated sulfide ore, Cu-Fe sulfides and 
sulfates  

3 Highest SiO2 content 
Dominated by: Quartz (+ chlorite-group 
(sample 11a and 11b)) 

Quartz veining, areas of silicification 

4
  

Highest Fe2O3 and P2O5 content 
Dominated by: Sulfates 

Jasper veining/ amorphous silica, veins of 
massive mineralization (goethite, jarosite and 
natrojarosite as predominant minerals, Fe-Ti. 
Pb, Cu, and Zn oxides as accessories). 

5 Medium content of all oxides and 
elements compared to other clusters, 
relatively high K2O, Fe2O3, Al2O3 and 
MgO contents. 
Dominated by: Clays and smectite-
chlorite group 

Clay minerals identified in Pillow Lavals and 
smectitic alteration zone dominated by 
montmorillonite and illite (both can not easily 
be distinguished as per (Antivachis, 2015) 

6 Highest MgO content, relatively high 
Fe2O3 content, low K2O 
Dominated by: Chlorite-group 

Chloritic stockwork zone. 

7 Highest CaO, MnO and Zn content, 
relatively high MgO and TOT/S, medium 
MgO and Fe2O3, lowest SiO2 
Dominated by: Gypsum  

Gypsum mineralization indicated by high CaO 
and TOT/S and weathering products from 
overlying oxidized zone 

 

5.5.2 Superspectral analysis of downsampled Apliki mine face data 

For the superspectral data analysis, the BFF and SAM algorithm were chosen and performed for all 

three downsampled datasets. Mapping took part with the 36 spectra spectral library created in the 

laboratory in Sub-Section 5.4.1. (p. 136). Additionally for the “40nm VNIR- 15nm SWIR” 51 band-

dataset, MWL mapping was performed for the Al-OH feature, defined between 2160 – 2220nm (Kirsch 

et al., 2018). The results were compared to the known and identifiable sample points in the HSI 

imagery. For validation purposed, the sample points were color-coded in the geochemical cluster 

color-scheme provided for the laboratory based analysis (Table 28, p. 139). Figure 111 repeatedly 

shows the sample points with their according color-coding. 
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Figure 111 Field sampling position, color-coded according to geochemical and spectral cluster identity characterized in 
Section 5.4, p. 136 . 

 

Figure 112 & Figure 113 present the mapping results for the BFF and SAM algorithms. Disagreement 

between mapping and sample validation points is indicated with yellow arrows. 

 

 
Figure 112 BFF analysis results for three different sensors. From top down: RGB representation of the mine face, analysis 
result for 40nm VNIR - 15nm SWIR sensor, 40nm VNIR-only sensor and WorldView-3 sensor. Color-coding based on the 
geochemical clusters and spectral library identified in the laboratory for the Apliki samples. Yellow arrows indicate 
disagreement of the mapping results with the color-coded validation sample points. 
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Figure 113 SAM analysis result for three different sensors. From top down: RGB representation of the mine face, analysis 
result for 40nm VNIR - 15nm SWIR sensor, 40nm VNIR-only sensor and WorldView-3 sensor. Color-coding based on the 
geochemical clusters and spectral library identified in the laboratory for the Apliki samples. Yellow arrows indicate 
disagreement of the mapping results with the color-coded validation sample points. 

 

The analyses for the 40nm VNIR – 15nm SWIR, 51 bands dataset show the highest agreement between 

sample points and mapping results. Only this dataset could be used to map the wavelength position 

and feature depth of the AlOH feature between 2160 – 2220nm due to its higher spectral resolution 

of 15nm in the SWIR. The results of the BFF, SAM and MWL mapping for this dataset are presented in 

Figure 114. 
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Figure 114 Analysis results for 40nm VNIR - 15nm SWIR data with atmospheric bands removed. From Top to Bottom: BFF 
analysis result, SAM analysis result, MWL mapping: wavelength position map for AlOH, feature depth map for AlOH. 

 

The analysis results of the BFF and the MWL mapping for the 40nm VNIR-15nm SWIR, 51 bands- 

dataset is visualized on top of both DOMs in Figure 115 and Figure 116. 

 



160 Near-field Imaging Spectroscopy results 

 

 160 

 
Figure 115 Binary Feature Fitting analysis of 51 bands-dataset visualized on DOM of the full Apliki open pit. 

 

 

 
Figure 116 MWL analysis for the AlOH feature wavelength position between 2160 - 2220 nm (Top) and the AlOH feature 
depth (Bottom) visualized on the DOM of the full Apliki open pit. 
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The result can also be visualized on the close-up DOM of the NNE mine face, exemplary showing the 

SAM results in Figure 117. 

 

 
Figure 117 SAM results visualized on DOM. 

 

The results for both mine face scans from Apliki mine will be interpreted and discussed together with 

the results of the Three Hills mine in the Skouriotissa deposit. This discussion can be found following 

Section 6.4 in Chapter 6 (starting p.178). 

 

5.6 V) Three Hills mine – application for proposed workflow for laboratory & field data 

In this chapter the methodology utilized trough Section I) – IV) is applied to laboratory and field 

hyperspectral data from the Three Hills open pit, Republic of Cyprus. 

5.6.1 Three Hills sample laboratory data  

5.6.1.1 Laboratory data preparation 

The laboratory-based data acquisition for the Three Hills open cut field samples was presented in 

Chapter 3. As previously mentioned, the reflectance data was derived by the routines by (Rogass et 

al., 2017). The reflectance dataset was pre-processed as a described in Section 3.2 before being 

downsampled to the sensor identified as being well suited for open pit mining applications: the “40nm 

VNIR – 15nm SWIR, without atmospheric bands” sensor (clipped and interpolated between the 

atmospherically influenced bands between 1300 – 2010 nm). The resulting superspectral dataset 

comprises 54 bands in the wavelength range of 414 – 2450 nm. 



162 Near-field Imaging Spectroscopy results 

 

 162 

5.6.1.2 Spectral Library EM  

A spectral library was built from the laboratory sample dataset. A 5x5 pixel average spectrum was 

collected from the prepared laboratory scan data from the “40nm VNIR-15nm SWIR, without 

atmospheric bands” 54 bands-sensor data. The laboratory scan of the samples is shown in Figure 118, 

including an outline representing the color-coding of the spectral library (pink, red, yellow) and a red 

rectangle showing the position of spectra collection for the EM spectral library. Where apparent, 

spectra have been collected from the original native surface angled towards the sensor in the field 

scan. The samples have been positioned with both of these factors in mind for the laboratory scan.  

 

 
Figure 118 Three Hills sample laboratory scan. Color-coded outline of the samples is based on the mapping colors for the 
image-retrieved spectral library. Red, dashed rectangles mark the position of 5x5 pixel average spectra retrieval. Color-
coding is based on Cu mass fraction: pink: > 0.27 % Cu; red: 0.27% < Cu < 0.1%; yellow: < 0.1% Cu 

 

The color-coding of the spectral library is based on the categorization of the samples above 0.27wt% 

of Cu as “high grade ore” (pink), between 0.27wt% - 0.1wt% Cu as “ore” (red) and below 0.1wt% Cu as 

“waste” (yellow).  This categorization was communicated by GSD during the fieldwork in March 2018. 

Table 36 shows the samples’ Cu mass fraction and the color-coding of the sample spectra for the 

subsequent analysis.  

 

Table 36 Three Hills mine samples with associated copper content. Color-coding is based on Cu mass fraction: pink: > 
0.27 % Cu; red: 0.27% < Cu < 0.1%; yellow: < 0.1% Cu 

Sample 1a 1b 1c 2a 2b 2c 3a 3b 
Cu [wt%] 0.22 0.43 >1.00 0.08 >1.00 0.16 0.02 0.04 
Sample 3c 4a 4b 4c 5a 5b 5c  
Cu [wt%] 0.01 0.03 0.05 0.12 0.01 0.09 0.01  

 

Figure 119 shows the resulting spectral library that was applied for the field mine face dataset. 
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Figure 119 Spectral library plot of the Three Hills mine samples. Spectra were taken from a 5x5 pixel average window, 
the position of the spectral sampling is shown in Figure 118, p.162 . 

5.6.2 Analysis of Three Hills mine face 

After the laboratory and the field data preparation, the pre-processed and downsampled 

superspectral 54 band data was analyzed using the BFF algorithm. The analysis is based on the 

laboratory-sample-scan spectral library. The result of the mapping is shown in Figure 120 and 

visualized on top of the RGB DOM in Figure 121. 

 

 
Figure 120 The analysis result of the BFF algorithm for Skouriotissa Three Hills, overlaid on the HySpex RGB 
representation. 
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Figure 121 Textured 3D model with the BFF analysis result as an overlay over the RGB 3D model. 
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6 Discussion  

6.1 Iron ore sample mapping results  

Table 37 compares the mapping results for dataset 1 with a validation image (if possible) and 

comments on the achieved quality of mapping and repeatability of the approach. 

 

Table 37 Comparison of the mapping results with a validation image (expected mapping, if available). 

Method Validation image Result image Evaluation Repeatable? 
HYBRID 
EnGeoMap 2.0 

  

Based on user-specific 
library, 408 band data, 
classification result not 
satisfactory 

Yes 

EnGeoMap 2.1  

  

Based on user-specific 
library, 408 band data, 
classification result 
improved 

Yes 

PRISM MICA 

 
Al2O3content 

 

Based on USGS 
command group 2 
library for AlOH-rich 
minerals, does not 
indentify the diversity 
of AlOH-poor samples 

Yes 

KNOWLEDGE-DRIVEN 
Absorption modeling 
PCA (RGB, 1-2-4) None 

 

Identifies spectrally 
homogeneous areas, 
no information about 
material label, user 
input about RGB band 
combination needed 

No 

Band ratio for 
ferrous iron for 
WorldView-3 
data, based on 
published index 
(indexdatabase.de
/, 2020)  

Fe Content 
 

Mapping does not 
match suggested Fe 
content from XRF 

Yes 
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Method Validation image Result image Evaluation Repeatable? 
Band ratio for 
ferric oxide for 
WorldView-3 
data, based on 
published index 
(indexdatabase.de
/, 2020)  

Fe Content 
 

Mapping does not 
match suggested Fe 
content from XRF 

Yes 

Feature modeling     
Minimum 
Wavelength 
Mapping for AlOH 
feature 2160 - 
2220 

 
Al2O3 content 

 

Matches well with the 
overall Al2O3 content 
suggested by XRF 

Yes 

DATA-DRIVEN 
 Hard classifier 
      
k-means: 7 
clusters 

None 

 

Clustering not in 
correlation with either 
sample position or 
geochemical clusters 

No 

 k-means: 15 
clusters 

None 

 

Clustering not in 
correlation with either 
sample position or 
geochemical clusters 

No 

SAM (ENVI) 

  

Overall satisfactory 
result, shadowed areas 
and sample-intern, 
inhomogeneous areas 
are not mapped 
correctly 

Yes 

BFF 

  

Based on user-specific 
library, 42 band data, 
classification result is 
satisfactory 

Yes 
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Method Validation image Result image Evaluation Repeatable? 
SFF Light pink: sample 

1,  
grey: sample 2 
 

 

Area of single material 
maps coincide well 
with position of 
samples, but user 
input is required for 
low RMS and high scale 
value class definition 

No, user 
input needed 
to define 
classes 
 

Training based 
Gaussian 
maximum 
likelihood 
classification 

  

Overall satisfactory 
result, background 
(pixels with value 0) 
mapped  

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

Mahalanobis 
Distance 
classification 

  

Overall satisfactory 
result, background 
(pixels with value 0) 
mapped 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

Learning based 
SVM:     
SVM  

  

Overall satisfactory 
result, shadowed areas 
and sample-intern 
inhomogeneous areas 
are not mapped 
correctly 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

ANN:     
1D Baseline NN 

  

Overall satisfactory 
result, shadowed areas 
and sample-intern 
inhomogeneous areas 
are not mapped 
correctly 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

1D CNN 

  

Overall satisfactory 
result, shadowed areas 
and sample-intern 
inhomogeneous areas 
are not mapped 
correctly 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 
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Method Validation image Result image Evaluation Repeatable? 
3D CNN 

  

Overall satisfactory 
result, shadowed areas 
and sample-intern 
inhomogeneous areas 
are not mapped 
correctly 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

Random Forest:     
scikit-learn 
RandomForestCla
ssifier (Pedregosa 
et al., 2011) 

  

Overall satisfactory 
result, shadowed areas 
are mapped as 
“unclassified” 

Yes, but 
model for 
inference has 
to be trained 
on 
representativ
e data 

Soft-classifier 
MTMF None 

 

Area of single material 
maps coincide with 
position of samples, 
but user input is 
required for high MF 
and low infeasibility 
score class definition 

No, user 
input needed 
to define 
classes 
 

ICA (RGB, 4-7-6) None 

 

Identifies spectrally 
homogeneous areas, 
no information about 
material label, user 
input about RGB band 
combination needed 

No 

 

In the knowledge-driven area, the feature modeling MWL map of AlOH coincides well with the known 

Al2O3 content of the samples. As for the absorption modeling, the band ratio iron index maps based 

on WorldView-3 do not correlate well with the iron content – neither the ferric nor the ferrous index, 

similar results are shown for the chosen RGB band combination of the PCA. The random PC band 

generation and needed user input for the PCA RGB is another problem that does not allow for 

repeatability of results – at best it can be considered as a first guess of differing material portions in 

an unknown area. In the data-driven portion of the hard classifier analysis methods, the classic SAM 

analysis gives reliable results when choosing the correct spectral library as input. The SAM results 

based on different possible spectral libraries in Section 5.2 (p. 97) shows clearly how dependent each 

of these methods is for the correct choice of EM spectra. The BFF algorithm is mapping the samples 

with a sufficient accuracy (≈ 75%) and reduced data to superspectral (42 band) resolutions. GML and 

MHD perform well, but are unable to classify the pixels set to zero as unclassified or to exclude them. 
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SVM, 1D NN, 1D CNN and 3D CNN map equally well but the computation time for training and testing 

significantly differs. The 3D CNN accuracy of 93% is assumingly caused by overfitting of the NN. The RF 

classifier gives equally well results. Evaluating the soft classifiers, the MTMF performs well for each 

component but needs a user input to define the classes based on best MF and lowest infeasibility 

score. This is not yet reproducible and requires expert knowledge. The same challenge is present for 

the SFF analysis in the data driven analyses section. ICA as well as PCA need user input for RGB band 

composition and rather high computation times without labeling or matching. The k-means clustering 

only requires the user to set the number of clusters expected in the imagery but the results do not 

coincide well with the actual material clusters. 

In the hybrid model comparison, MICA is clearly able to map the clay dominant mineralogy and the 

mapping results are superior to those of EnGeoMap 2.0 and 2.1. Without expert knowledge, MICA can 

only be used with one of the two default spectral libraries from the USGS (clay vs. iron rich material). 

For new material spectral libraries, specific user input of the expected spectral is required as well as 

material dependent thresholds and weighting factors. This expert knowledge and individual level of 

implementation is not to be expected of the average mining workforce as of today. 

 

Figure 122 shows the hard pixel classifier accuracies [%] relative to the computation time [s] needed. 

Please note the logarithmic scale of the computation time. The two EnGeoMap algorithm versions 

show to yield results with low overall accuracies but requiring high computation times. Random Forest, 

1D CNN, BFF and SVM are present in the range below 1000s of computation time for the Brazilian iron 

ore samples but around or above 75% accuracy. SAM, MHD and GML plot with lower accuracies but 

very fast computation times (below 10s) and the two 1D NNs, 3D CNN plot with accuracies beyond 

85% but computation times higher than 1000s. The exact values can be found in Table 38. 
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Figure 122 Hard classifier analysis results (accuracy) and computation times. 

 

Table 38 Hard classifier analysis computation time and accuracy. 

Method 
Computation time [s] 

Accuracy 
[%] 

EnGeoMap 2.0 816.52 41.96 
EnGeoMap 2.1  808.23 53.32 
Binary Feature Fitting 422.59 74.36 
SAM 5.00 65.95 
Gaussian maximum likelihood classification 7.07 64.61 
Mahalanobis Distance Classification 6.84 64.88 
SVM - disjoint 659.47 84.50 
1D Baseline NN - disjoint 5432.47 89.80 
1D Baseline NN - random 8923.74 89.98 
1D CNN - disjoint 347.58 75.20 
3D CNN - disjoint 5318.44 93.90 
HyperRandomForestClassifier 115.75 80.54 
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The analysis methods used to test the different theoretical sensors in Section 5.3 "II) Robust Sensor 

Modeling, p.119 were:  

• SAM as the algorithm with the lowest computation time, as time is a key factor in the 

active extraction process in the mining sector. 

• SVM, as the best performing learning-based classifier below 1000s computation time. 

Keeping in mind that once trained on a specific deposit, the computation time will 

decrease rapidly. 

• BFF, as the best performing, comparison-based, data-driven method below 1000s. 

• EnGeoMap 2.1 despite its lower accuracy, as it is another GFZ in-house hybrid data- and 

knowledge-driven analysis algorithm. 

• The MWL method as a representative for a knowledge-based approach. It was tested for 

the systematic downsampling and the preservation of the AlOH absorption feature in the 

SWIR. 

 

These analysis methods represent the different mapping approaches – “data-driven learning based”, 

“data-driven comparison-based”, a “knowledge-based approach” and a “hybrid”. The methods using 

the comparison-based methods were preferred, as they rely on an endmember set of spectral libraries 

that can be compiled from thoroughly defined sample sets. The training-based approach relies on 

training set and a well-defined dataset of regions of interest. These regions of interest have to be 

defined manually within the hyperspectral image. This can pose a challenge as the geological material 

is hardly homogeneous - neither in the sample scale (laboratory scale) and less so in the mine face 

scale where spectrally homogeneous regions of interest cannot be defined clearly enough for training. 

The testing showed that the trained algorithms based on laboratory data could not be inferred well to 

the mine face data (see example for Apliki mine on p. 183, fig. 132). This complicates the utilization of 

the training-based approach in the context of mine face mapping.  

6.2 Robust sensor modeling  

6.2.1 Spectral downsampling of VNIR & SWIR 

Downsampling both in the VNIR and in the SWIR suppresses small, distinct spectral features that are 

indicative of minerals or elements. This is the case for example for distinct, small features of Rare Earth 

Elements (REE) in the VNIR (Herrmann, 2019) but also narrow features in the SWIR indicative of Al-

bearing phyllosilicates (e.g. kaolinite) or Fe-, Mg- bearing minerals (e.g. chlorite, epidote and 

tourmaline) (Lypaczewski et al., 2020). These smaller features can be utilized for absorption feature 

modeling e.g., MWL or EnGeoMap 2.1. The identification of the kaolinite double feature is possible up 
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to a downsampling to bandwidth of 15nm (see Table 24). This only proves the distinction based on 

spectral form (in this case the distinct doublet feature) and not exact location of feature wavelength 

position that is usually aimed for with MWL mapping. Interestingly, by increasing the FWHM up to 

40nm and decreasing the number of bands for the theoretical sensor, the mapping accuracy of 

EnGeoMap 2.1 constantly improves, showing that the overall shape and location of all features can be 

mapped even for downsampled systems.  

To repeat some of the findings for SVM, SAM, BFF and EnGeoMap that were stated in table 23 (p. 124, 

showing the mapping accuracy plotted against the computation time), figure 85 (p. 125, showing the 

mapping accuracies plotted against the band number of the sensors) and figure 86 (p. 126, showing 

the mapping accuracy and computation time plotted against the band number): The mapping 

accuracies of SVM and SAM are at an approximately constant level with increasing band numbers they 

plot around 83% and 65% respectively. SVM training time decreases from 3361.8s (1nm bandwidth, 

2084 bands) to 52.5s of training time for the WorldView-3 setting (16 bands) and the mapping accuracy 

(kappa) increases slightly from 82.4% to 83.2% respectively. 

The BFF mapping results shows an increase in accuracies with decreasing band numbers. The 

computation time for BFF decreases from 2722.5s and 60.5% of accuracy to 450.7s and 71.7% of 

accuracy for 5nm and 50nm bandwidths respectively. EnGeoMap 2.1 peaks around 53 bands with an 

accuracy of 49% and stays consistent with increasing band numbers at around 48%.  

Figure 86 shows the correlation of computation time and increasing band number. The accuracy of the 

resulting map does not increase with band number and computation time for SAM, SVM and 

EnGeoMap 2.1. The BFF mapping accuracy decreases with increasing band number and computation 

time (see pp. 124-126). The increase in mapping accuracy for the BFF with decreasing band number 

can be explained by the underlying calculations of the method. The comparison of the unknown pixel 

spectrum with the endmember set spectrum is based on the triangle parameters. With decreasing 

bandnumbers the triangles that are created between three consecutive datapoints become more 

distinct and represent larger triangles. The created triangles get larger with decreasing bandnumbers 

and reflect better upon the absorption features themselves instead of small incremental changes 

within larger absorption features. This is shown in Mielke et al., 2020 and this is also why the BFF was 

originally created for multispectral data. The constant mapping accuracies of SAM and SVM might 

reflect on two different factors: First, for a distinction between material spectra the exact position of 

narrow features does not play as important a role. The position of wide features, the overall trend of 

the curve and the albedo of the spectrum might be enough to characterize a material sufficiently. A 

second factor for the iron ore samples – the dataset used for this test – is that the different sample 

spectra are already very similar to each other and a distinction of them is based on the trend of the 
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curve and the albedo rather than on narrow absorption features. The iron ore samples themselves do 

not exhibit a large variety of narrow features in the SWIR region. This also means that the 

downsampling process and the optimum sensor design has to be thoroughly reviewed for any new 

deposit (with a different level of spectral variety) and the optimal sensors will differ for different 

deposits and the needed level of spectral resolution for a material distinction. 

 

Based on these findings and the aim to simplify the theoretical sensor and lower the overall costs 

related to the system, the 15nm and 40nm bandwidth sensors were considered for further sensor 

improvements regarding the application in active mining. The MWL mapping of distinct, sharp features 

that only change their wavelength position by a few nanometers cannot be based on these sensors. 

The mapping of white mica for example (feature around 2200nm (Lypaczewski et al., 2020)) and the 

change of wavelength position around the 2200nm feature can be an indicator for white mica 

(2195nm) or green, phengitic mica (2210nm) (Lypaczewski et al., 2020). These distinctions cannot be 

achieved by downsampled spectral data but only by upsampled, 1nm FHWM data. 

6.2.2 Reduction of atmospheric impact 

By excluding the atmospherically affected wavelength regions (≈1300-2010nm) the material 

classification results were not affected considerably, but it reduced the effects of atmospheric changes 

on the data and reduced the dimensionality of the data further, resulting in three sensors with 37, 57 

and 94 bands and 40nm, 40nm and 15nm, and 15nm bandwidth respectively. By reducing the data 

again to two theoretical VNIR-only datasets, two sensors of 57 bands (15nm bandwidth) and 16 bands 

(40nm bandwidth) were created and yielded acceptable classification results. 

 

6.2.3 VNIR-only downsampling 

The analysis that is based on VNIR-only data can only take into account broad absorption features in 

the VNIR (usually caused by the presence of iron) for knowledge-based approaches e.g. iron feature 

depth modeling. Here, SWIR-active mineral features cannot be included for a knowledge-based 

approach. The distinction of different materials can be achieved by using data-driven analysis 

approaches. The results for SAM and BFF are promising and show a possible distinction of the 

spectrally very similar Brazilian iron ore samples. This is shown for the BFF analysis for the sensors with 

excluded atmospheric bands and the VNIR-only sensors in Figure 123. Both SAM and BFF are 

insensitive to variable illumination as they consider spectral shape parameters for classification instead 

of absolute spectra positions. 
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Figure 123 BFF results and spectral library of the 3 datasets with excluded atmospheric wavelength ranges (left) (414–
2498nm) and of the two VNIR-only datasets (414 – 1000nm). The spectra of the spectral library are shown stylized to 
highlight the changes in the overall spectrum.  

 

In short, the VNIR-only setup allows for a lighter and smaller sensor with a lower power-consumption, 

higher tolerance towards temperature changes and a higher spatial resolution. Additionally, the price 

point ratio of VNIR to SWIR is around 1:2. Utilizing spectrally lower resolved sensors and going from 

hyper- to superspectral can significantly reduce data size, storage cost and computation time. 

 

The reduction of data size with reduced spectral band numbers is another factor to consider as routine 

monitoring will not only add up a lot of data for storage, but as shown, the reduction of data size 

enormously reduces the computation time for subsequent analyses. Figure 124 plots the data size 

against the band number for all systematically downsampled sensors (18 sensors with band numbers 

from 2084 to 16), note the logarithmic scale of the x-axis. 
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Figure 124 Plot of the data size of the successively downsampled data of the Brazilian iron ore hyperspectral scan. 

 

The advantages and disadvantages in the context of mine face mapping in active open pit 

environments have to be considered in a case-specific context. Based on this laboratory-derived data 

of iron ore samples from Brazil, two main analysis requirements appear: 

• If the detection of diagnostic SWIR-active minerals is important to map e.g. the clay content in 

a mine face, then VNIR and SWIR data of a high enough spectral resolution have to be utilized. 

This results in component maps that enable a distinction between ore bearing and waste rock 

by analysis distinct spectral mineral features e.g. by MWL or EnGeoMap 2.1. 

• If a deposit can be characterized by a number of distinguishable, distinct rocks or mineral 

assemblages that can be summarized by site-specific sampling and in spectral libraries (e.g. 

iron rich rock, clay-iron-mix, silica-clay-mix) then a VNIR-only approach can save time and 

money and provides a system that is robust in handling. This results in material maps based 

on a site-specific library. SAM and BFF deliver acceptable results (around 70% of accuracy) and 

are relatively insensitive to variable illumination, another key factor for data acquisition in an 

open pit mining environment (Schneider et al., 2011). 
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6.3 Apliki laboratory scan analysis 

The resulting mapping accuracies for the different sensors utilized to analyze the Apliki mine sample 

laboratory data are again shown plotted in Figure 125. 

 
Figure 125 Apliki sample scan classification accuracies for five different sensors and three different classification 
algorithms (SAM, BFF and SVM). 

 

Figure 126 present the computation times for each sensor, note the logarithmic scale of the y-axis. 

 
Figure 126 Computations times plotted for each sensor for the Apliki sample dataset. 
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Figure 126 shows significantly decreasing computation times with decreasing complexity of the sensor 

from hyper- (400 bands) to super- (74-54 bands) to multispectral (16 bands). The overall accuracy for 

the classification does not decline significantly with lower band numbers and only shows a lower 

accuracy for four of the five analysis methods – namely when excluding a significant portion of the 

wavelength range for the “VNIR-only” data. Comparing the mean classification accuracies for the two 

different libraries used (Table 49), it is apparent that the reduced spectral library based on the 

geochemical clustering underperforms.  

 

Table 39 Classification accuracy mean compared for SAM and BFF and the two different spectral libraries utilized. 

Classification  11 sample spectral library 36 sample spectral library 
SAM mean result % 78.84 78.32 
BFF mean result % 83.72 83.99 

 

This leads to the conclusion, that the choice of library and of material to characterize a deposit or 

outcrop is one of the key factors to gain meaningful insight and accurate mapping results.  

The overall accuracy of mapping is roughly similar for the BFF algorithm and SAM, but the computation 

time of the former is up to the factor of 3400 times higher than for the latter (see Figure 126 above).  

 

The analysis of the radiance data set showed promising results but needs further research both in 

testing VNIR-based analyses and material distinctions for different deposit types and mineral samples 

and for developing a workflow in the field to include a physical rock/ mineral library within the outcrop 

scans to compile a radiance spectral library from areas of the scan.  This is necessary as laboratory 

radiance data is not comparable with field radiance data. As the radiance data is highly influenced by 

the source of illumination, laboratory radiance spectra can only be applied to data derived in the same 

environment and not be applied to field radiance data. When deriving spectra directly from the scan 

(field or laboratory), either from the mine face itself or a panel positioned in front of the camera that 

is coated by the deposit relevant materials, even the VNIR radiance data seem promising for 

preliminary distinctions between different materials of interest.   
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6.4 Mine face mapping results 

6.4.1 Apliki mine 

The superspectral mapping results are compared to two validation sources. The first source for 

validation are the field samples, geochemical analyses and a set of color-coded sample points located 

in the accessible, 2nd level of the open cut. The second source to validate the mapping is the subzone 

mapping of the open cut based on the interpretation of 66 samples of the open cut (Antivachis, 2015). 

The Apliki open cut was analyzed with BFF and SAM. The SVM method was tested for the Apliki 

laboratory data but did not show sufficient results and the NN methods were not considered due to 

suspected overfitting or computation time concerns related to the test with the Brazilian iron ore 

dataset. Figure 127 shows the results of mapping for BFF and SAM compared to the 22 sample points 

for the 40nm VNIR- 15nm SWIR data. Both mapping approaches map the areas of sample points with 

the same accuracy for the optimum 40nm VNIR - 15nm SWIR data (approximately 82% in 18/22 points), 

but the correctly mapped points differ between the BFF and the SAM analysis.  

 

 

 

 

 

Figure 127 BFF and SAM mapping for 40nm VNIR - 15nm SWIR data of 390 spectral bands, compared to the validation 
field sampling points. 
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The BFF analysis maps an area in the west of the open cut (left side of the image) as “cluster 4” 

(turquoise) which correlates well with the mapped amorphous silica by Antivachis (2015). The western 

and eastern parts of the image scan are correctly mapped as “cluster 1” (red), related to the pillow 

lava occurrence. The Cu-rich precipitates in the areas of visible water runoff are mapped as “cluster 2” 

(yellow) in the BFF map but not the SAM map. The area of the stockwork zone is predominantly 

mapped as “cluster 6” (chloritic stockwork, purple) and “cluster 7” (gypsum, weathering products, 

pink) as well as “cluster 5” (clay alteration, smectitic-chloritic alteration, blue) for both the BFF and 

SAM map. The small landslide in the east of the image is either mapped as “cluster 3” (high SiO2, green 

BFF) or as “cluster 4” (high Fe2O3, turquoise, SAM). The sampling validation in the area was classified 

as either “cluster 1” or “cluster 5”, red or blue respectively, and does not confirm either mapping of 

the BFF and SAM. SAM is unable to map the Cu-rich precipitates (color-coded in yellow, cluster 2) and 

seems to react stronger to albedo differences is the imagery, especially visible in the pit walls east of 

the open cut. Figure 128 shows a comparison of both the BFF and the SAM mapping results compared 

to the validation map of the open cut based on Antivachis (2015). BFF and SAM show a similar 

distribution of areal main components, especially in the open cut stockwork related zone. Compared 

to the SAM results, BFF finds more diverse material covers in the western part of the outcrop. SAM on 

the other hand distinguished different materials in the eastern part, where the BFF mainly maps 

“cluster 1”. SAM does have a higher number of “unclassified” pixels, especially in areas of higher 

albedo, e.g. the light precipitates in runoff, conical areas and in the western, upper levels of the open 

cut. The BFF analysis is able to map the light precipitates and hereby outperforms the SAM analysis for 

the Apliki outcrop. 

 



180 Discussion 

 

 180 

 
Figure 128 BFF (B) and SAM (C) analysis results for 40nm VNIR - 15nm SWIR data compared to the geological mapping of 
the open cut (A), based on Antivachis (2015). 

 

Both BFF and SAM overestimate the occurrence of cluster 7 (gypsum dominated, dispersed weathering 

products, pink) especially in the central part of the outcrop compared to the expected geological map. 

When looking at the downsampled spectra used for the classification and comparing them with their 

full hyperspectral impression (Figure 129 & Figure 130) two apparent changes can be noticed: 1) the 

interpolation between 1300-2010nm excludes absorption features that are valuable in differentiating 

between the spectra and 2) due to downsampling from 400 to  54 bands, narrow small absorption 

features are smoothed out (e.g. the Fe feature around 450nm) this might additionally influence the 

mapping results. 
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Figure 129 Spectral Library from 11 Apliki mine samples - full 400 bands, HySpex spectra. Color-coded is based on 7 
clusters. Reflectance value scaled between 0-10000 (0-100%). 

 

 
Figure 130 Spectral Library from 11 Apliki mine samples - downsampled, 40nm VNIR - 15nm SWIR spectra with 
interpolated spectral range between 1300 - 2010nm. Color-coding is based on 7 clusters. Reflectance value scaled 
between 0 – 10000 (0-100%). 

Excluding the spectral range between 1300-2010nm enables the classification of field-derived data 

that is highly impacted by atmospheric absorption features. It also excludes valuable spectral features 

that can be crucial to differentiate between the different spectra. For example, gypsum (cluster 7, 

sample 4a, pink) shows a distinct feature around 1450nm as described in Moreira et al. (2014). This 

feature however is removed due to the interpolation in this range. The resulting spectrum 4a is now 

not representing the gypsum fingerprint anymore but resembles a spectral shape that is similar to the 

cluster spectrum represented by sample 1e (cluster 1, red) and 9a (cluster 6, purple). It is thereby not 

possible to map cluster 7 based on spectrum of 4a in its downsampled state. The color-coding “pink” 

now instead represents other spectra (1e, 9a) not typical for gypsum. In order to show an un-biased 



182 Discussion 

 

 182 

analysis that is not influenced by the over-representation of the pink color-coding, the BFF analysis 

was repeated with a spectral library excluding cluster 7 (spectrum 4a). The analysis result is shown in 

Figure 131 below. 

 

 
Figure 131 BFF analysis of Apliki based on 6 clusters, excluding cluster 7 (gypsum). 

 

The new analysis based on 6 clusters represents the zones well that are mapped by Antivachis (2015). 

By excluding cluster 7 from the classification, the central part of the mine face becomes dominated by 

cluster 6 (chloritic stockwork zone) and cluster 2 (disseminated sulfide ore). From the central part 

outwards, the classification is dominated a mixture of cluster 6 and cluster 5 (smectitic alteration 

zone). Cluster 3 is now dominant in the landslide to the East but is also classified within the Western 

part of the mine face. As cluster 3 represents areas of silicification, a more pronounced mapping in the 

West correlates with the area identified as amorphous silica by Antivachis (2015). Reducing the 

clusters by excluding the downsampled and now spectrally inactive cluster 7 from the analysis results 

in a more coherent concise mapping of the mine face. This highlights how important both the 

geological and spectral validation is. Geologically, the ground truth needed is the comprehension of 

the expected zonation and the ability to realize when a material is overrepresented in the spectral 

map. The needed spectral validation comprises the evaluation of the spectral reference library and the 
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continuous re-evaluation of the data and the spectral library during the downsampling process. This 

holds especially true when the mapping is not based on spectral libraries (that can easily be checked 

and evaluated for their spectral interpretative value) but results from training-based classifiers and 

small training areas. An SVM was trained on the 54 bands laboratory dataset of the Apliki samples 

(downsampled to “40nm VNIR – 15nm SWIR atmospheric impact excluded”). The trained SVM model 

for the laboratory data showed results of below 60% accuracy for the mapping. When inferring the 

SVM model to the 54 bands field data, the resulting map does not show with the expected geological 

situation of the mine face (Figure 132). Please note the different color-coding of the clusters for the 

SVM, which is according to the validation for the SVM in the laboratory tests. Not only is the vegetation 

mapped as cluster 6, even though it was masked out from the data but the majority of the area is 

mapped as cluster 5 (“weathered pillow lava”) allowing nearly no differentiation of the zonation in the 

mine face. This result again underlines the importance of geological and spectral experts that 

understand the nature of the open pit and recognize an incorrect biased mapping result when they 

see one. Training based algorithms can have a huge advantage and they showed the highest accuracies 

in the laboratory testing for the iron samples. But when inferring the SVM model to the outcrop scale 

and to data impacted by different acquisition conditions the mapping results have to be scrutinized. 

Even when excluding the obvious atmospheric impact from both the training dataset (laboratory) and 

the dataset for mapping (mine face) the resulting map has to be considered carefully and in the case 

of the map shown in Figure 132 does not pass the examination. 

 

 
Figure 132 Apliki mine face map based on SVM trained on laboratory data. Note the different color-coding compared to 
the BFF and SAM maps. 
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6.4.2 Three Hills mine 

The analysis of Three Hills was based on a rudimentary color-coding scheme and is supposed to map 

areas of high, medium and low Cu-content. The color-coding that was chosen in Section 5.6 (p. 161) is 

deliberately only supposed to depict trends in the Cu-content and did not focus on mineralogy, mineral 

assemblages or contaminants. From communications with HCM and the position of the stockwork 

indicated by geological maps of Adamides (2010b), the Cu-grade distribution in the open pit shows an 

increase of Cu-content towards the S of the fault line (indicated in white in Figure 133) and a decrease 

towards the north. An increased brecciation within the stockwork zone is accompanied by clayish 

alteration zones (low in Cu), whereas the upper contact to the former surface is accompanied with a 

higher oxidation of pyrite and brown horizons (Naden et al., 2006).  

Figure 133 shows the Three Hills deposit fault position and Cu-grade trends and Figure 134 depicts a 

sketch of visible zones from the field work performed in 2018. 

 

 
Figure 133 Three Hills deposit, fault position and Cu-grade trend. 

 
Figure 134 RGB vision based sketch of areas of clayish and chloritic appearance (yellow and pink respectively) and of 
areas of oxidized pyrite (red outline) and leached zones (white outline). 

 
The applied spectral library depicts the copper trends, color-coded for high, medium and low contents. 

The samples color-coded as medium (red) indicate an overall average sample composition, whereas 

the low-Cu samples (yellow) show an increase in Na2O and Al2O3, indicating the presence of feldspar 

and associated clay alterations in the area. Figure 135 presents the mapping results of the BFF for 

Three Hills.  

 

 
Figure 135 Mapping result of BFF with color-coding based on high, medium and low copper grade. 
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The open pit shows a trend along the indicated (Figure 133 above) fault line, mapping dominantly 

average/ medium Cu-contents in the northern part of the fault and the high- and low-Cu grades south 

of the fault line, lower in the open pit. The mapping of high-grade (>0.27% Cu) is constricted to the 

lower open pit as communicated by HCM in March 2018. The area mapped as low-Cu-grade is also 

associated with the lower parts of the open pit and areas mapped as “leached” in the RGB imagery 

(Figure 134 above). Qualitatively, the superspectral mapping of the pit follows the geological reasoning 

and along the fault line and can be seen as valid.  
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7 Conclusion  

The material distribution within a mine face can differ substantially in the small scale and within daily 

assigned extraction segments. These changes are not always visually identifiable but prove to be 

relevant for the processing steps that follow extraction. These steps are influenced by mineralogical 

changes within the extracted material depending on the ore grade and contaminant content.  

Misclassifications result in sending ore to waste dumps and waste to the stockpiles. This must be 

minimized in order to reduce energy-intensive material re-handling.  

The evaluated and compared approaches in this area have concentrated on mapping the mineral 

composition (Kurz, 2011; Schneider et al., 2011; Murphy, Monteiro and Schneider, 2012), using specific 

mineral horizons as markers (Murphy et al., 2015) and mapping units based on image-derived spectra 

limiting the number of geological units to those visible by the naked eye (Kirsch et al., 2018). The main 

approach is to map minerals based on the position and depth of distinct, narrow mineral features 

(Dalm, Buxton and van Ruitenbeek, 2017; Kirsch et al., 2018; Lypaczewski et al., 2020). Mapping based 

on mineral-specific features is a useful tool in identifying areas dominated by different contaminants 

(e.g. clay, carbonates) but does not account for the natural variability and complexity of mineral 

compositions in the rock surfaces. Additionally, relying on hyperspectral systems for narrow 

absorption features implies using expensive, heavy, complex, delicate sensors that are not easy to 

handle for the average workforce in a mining project, neither for data acquisition nor the subsequent 

data processing and analysis. Additionally, the hyperspectral data cubes from the acquisition and the 

analyses result in the necessity of providing high volume data storage.  There is a need for virtual 

outcrop models to accurately depict the geological units of the mine face;some proposed workflows 

and methods have started to find solutions for this need.  

 

In this work, I propose an application-based sensor adaptation and analysis. This is achieved by 

reducing the sensor complexity, effectively by downsampling the spectral resolution of the system. 

The downsampling is performed by systematically decreasing the number of spectral bands whilst 

increasing each band’s bandwidth. The successful preservation of the material-specific spectral 

characteristics is evaluated throughout the downsampling process and the best-fitting sensor model 

to represent the materials’ spectral properties is selected. This spectral dimensionality reduction 

reduces the complexity of the data and enables reduced data sizes and computation times. The 

mapping results are presented as per-pixel, hard classifier maps. They were evaluated geologically and 

spectrally and represented the expected regional geological situation. 
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The main outcomes of this work are: 

 

The theoretical reduction of sensor complexity  

The hyperspectral laboratory data cubes were downsampled to superspectral resolutions and reduced 

in their spectral range. The results of the spectrally downsampled datasets were compared and 

showed good results. In order to apply this to outcrop conditions, particularly data impacted by the 

atmosphere, the atmospherically impacted bands were removed and interpolated between the 

shoulders of 1300–2010nm. The analysis of this further downsampled data again showed promising 

results. Successfully applying the analysis to VNIR-only data in the end presented the possibility for a 

lighter, less cost-intensive, robust and easy to handle system for superspectral rock differentiation. 

This questioned the need for a full spectral range VNIR-SWIR hyperspectral system and focused on the 

idea of simplifying the spectral range and spectral resolution without compromising the quality of the 

results achieved for the mining industry. Spectral sensors should instead be customized 1) to geological 

use cases and 2) to the deposit of interest. This concludes the need for further testing to develop 

sensors for geological applications and create sensors with deposit-specific sensor characteristics. 

 

The correct choice of spectral libraries 

The right choice of spectral library is imperative to get acceptable results for hard and soft classifier 

maps. The three test cases showed that automated PPI + n-D visualization or SMACC spectral EM 

determination is not sufficient to spectrally characterize a geological sample set or deposit. Image-

derived EM spectra were not describing the complexity of the sample range sufficiently. Instead, 

image-derived spectra were shown to bias towards spectral peacocks at the outer ranges of the 

spectral variability and did not account for the more average and abundant rocks or minerals 

assemblages. The acquisition of spectral EMs at the mine face with handheld spectral equipment and 

the sampling for geochemical validation captures the variety of materials and mixtures; it does not, 

however, comply with the security regulations and the potentially instable cliff sections.  

The on-site geologists are experts in the mineralization of the deposit and best suited to sample and 

provide all geologically relevant samples of the deposit. The sampling can take place from the 

extracted, characterized material instead of taking place at the risky mine front. Rock (mixture) 

samples are superior to one-phase mineral samples. The spatial resolution of the sensors almost never 

allows for a spectral sampling of single-phase minerals on-site, therefor providing the analysis 

algorithms with single-phase mineral EMs is not sufficient. This leads to the conclusion that the spectral 

library has to be defined around the needs of the geologist on site, sampling spectra from rocks with 

known ore and contaminant levels. Whilst the analysis and algorithms themselves do not have to be 
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expert-based, the compilation of the spectral library should be. The establishment of a suitable 

spectral library therefore remains an expert job both for the on-site geologist by providing the relevant 

samples and the spectral expert to collect and cluster the relevant spectral fingerprints for each 

geological unit. 

 

Geological and spectral expert knowledge input is inevitable 

The comparison of the ground truth field mapping with the BFF and SAM mapping showed a bias 

towards the classification of cluster 7 (gypsum-dominated). Only with the geological knowledge that 

gypsum occurrence is not that widespread in the mine face could the site-specific spectral library be 

re-evaluated. It turned out that excluding wavelengths ranges impacted by the atmosphere from the 

spectrum of class 7 also excluded the distinct gypsum feature. Class 7 therefore was not classifying 

areas of gypsum occurrence but classified a random, lab-made synthetic spectrum not indicative of 

any real material. This example shows that even when compiling a site-specific spectral library based 

on geological expert knowledge, the data and inputs for the classification have to be checked for their 

spectral soundness. As for many computing applications, “garbage in, garbage out” can only be 

avoided by a sound screening of the input files in this case the HSI and the spectral library. 

 

Indications from measurement conditions at the mine face scale 

Measurements at the mine face level have to be further improved to allow for safe labor with regard 

to the spectral measurements. Ground-based tripod measurements can theoretically be taken from 

any distance but are dependent on the desired spatial resolution of the mine face (area captured by 

each pixel). With distance the impact of the atmosphere is also increasing.  For the SWIR-320m-e 

sensor (28° FOV), this means in order to capture an average mine face of 10m height, the minimum 

distance of the sensor to the mine face is 20m. This results in ca. 2cm of lateral pixel size. Positioning 

the sensor at longer distances is dependent on the size of geological structures that have to be resolved 

and the size of the white reflectance targets that need to be captured for the reflectance retrieval. A 

distance of >200m and resulting pixel size of ca. 15cm is an approximate maximum for the 28° FOV 

SWIR system to resolve geological structures, while still allowing for a large white reflectance target of  

>80 x 80cm to be resolved.  The position of the tripod within the mine is reliant on safe areas to setup 

the cameras and to take measurements for 30min without interruptions. This leads to another 

challenge regarding the safety concerns. The setup of the white reflectance targets for reflectance 

retrieval is a major safety issue and requires the operators to access the mine face and place the targets 

in front of the rock outcrop. This is not always possible due to inaccessibility and instability of the 

outcrops nor should this be an advised procedure. Additionally, the placement of the targets is time 
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consuming and not easily integrated in the busy schedule regarding mine face related planning. Two 

possible solutions come to mind: 1) measurement of the mine face by UAVs calibrated before takeoff, 

flying in proximity to the mine face thereby negating the necessity to approach the outcrop to place a 

tripod and target. 2) Built-in irradiance sensors measuring the changes of illumination during the 

tripod- or UAV-based spectral measurement and allowing for a reflectance retrieval that is accurate to 

the split second and does not rely on physical white reflectance targets. 

 

Within this work a non-conclusive list of challenges for the application of HSI in the context of mining 

was presented (Table 2, p. 6). These challenges have been addressed and discussed theoretically and 

some were approached in more detail. Table 40 includes the results of this work in regard to some of 

these challenges.  

 

Table 40 Challenges for superspectral measurement equipment in the context of mine face scanning and possible 
solutions as a result of this work. 

# Challenges Development of Solution Results of this work 

1 Ruggedness Protective casing, dust-proof 
ventilation, GUI adjusted to 
outdoor conditions & 
handling with Personal 
Protective Equipment 

A decrease of band numbers and spectral range 
can aid in developing smaller, lighter, less 
complex sensors, ruggedness could be improved 
simultaneously. A hardware solution for this 
challenge e.g. protective casing is yet to be 
found. 

2 Measurement 
and analysis 
speed 

Definition of optimal 
balance between spectral 
bands and spatial resolution 
in order to keep pace with 
the dynamics of mining 
operations 

Downsampling to superspectral 40nm FWHM 
VNIR and 15nm FWHM SWIR and excluding 
wavelengths areas impacted by the atmosphere 
is a reasonable option to increase scanning 
speed and decrease data size, data acquisition 
time and analysis computation time.  

3 Fast analysis Allowing for quick decision 
making in the mine-pit 
(near-real time); Ideally 
onboard processing 

Downsampling the data to superspectral is a 
valid option to increase the analysis speed. 
Built-in irradiance sensors can speed up the 
reflectance retrieval and increase the safety of 
the measurement. 

4 Increased 
demand for 
application in 
mining still 
limited by 
pricing of 
sensors 

Lower hardware prices will 
enable decision makers to 
purchase systems for each 
mine and advance the 
understanding and 
applications for the tool 
“HSI” whilst simultaneously 
increasing their efficiency 

Smaller band numbers and smaller spectral 
ranges (site- or deposit-specific) enable lower 
hardware prices. Future research will develop 
“deposit-specific” sensors that have improved 
spectral characteristics for a geological use case 
and additionally for specific deposits. If the 
demand for the technology increases it will 
evolve around that demand. 
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# Challenges Development of Solution Results of this work 

5 Determination 
between ore, 
main 
contaminants 
and waste 

Broad material 
categorization to distinguish 
ore grade and contaminant 
variability 

The site-specific spectral libraries (1 spectrum 
per relevant sample) were superior to the 
automated, spectral EM retrieval from the 
sample suites (e.g. PPI, SMACC). Field imagery 
derived EMs are nearly impossible to validate 
sufficiently and sampling at the mine front 
poses too many safety risks both for physical 
sampling and spectral sampling with handheld 
systems. 

6 Size & weight Size and weight need to be 
reasonable for drones that 
do not require special pilot 
licenses and can be safely 
handled  

Downsampling the sensors can improve the size 
and weight of the sensor by decreasing the 
overall complexity of the system. 

7 Power 
consumption 

Optimization of battery 
utilization with respect to 
commonly needed 
measurement and flight 
time 

Again, downsampling can be part of a solution 
to decrease power consumption. A VNIR-only 
setup can negate the need for power-consuming 
liquid nitrogen cooling needed for the SWIR 
detector. The VNIR-only analyzes in this work 
showed promising results, but this is highly 
dependent on the spectral characteristics of the 
material of interest. 

8 Cooling of 
sensor 

Efficient and dust-proof 
cooling system to withstand 
high temperatures in mine 
pits 

A VNIR-only setup negates the need for the 
SWIR detector liquid nitrogen cooling and 
showed sufficient results in this work. 

9 Albedo 
correction and 
feature 
retrieval of 
data 

Automated pre-processing 
of data, at-sensor 
reflectance retrieval and 
feature retrieval/ 
enhancement enabling 
faster, more flexible and 
easier to analyze datasets 

Common sense determines a solution for 
reflectance retrieval based on built-in irradiance 
measurements instead of targets that have to 
be placed along the mine front and do not 
comply with safety requirements. This is yet to 
be achieved. The reflectance retrieval utilized in 
this work produces sufficient results but is too 
slow to consider for big amounts of data.  

10 Impact of 
variable 
incident light 
conditions 

Flexible schedules in mining 
require variable acquisition 
times for HSI data this leads 
to different illumination 
conditions  

Classification algorithms must yield consistent 
results under varying illumination conditions. 
The BFF algorithm shows consistent results even 
in areas of shadows and is in theory relatively 
insensitive to changing illumination. It 
performed slightly better than the SAM 
algorithm for the here presented data. 
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8 Outlook 

8.1 Application to World-View 2 satellite data 

WorldView-2 (WV2) VNIR archive data was provided by European Space Imaging® after it was granted 

within the third-party mission (TPM) Project ID 61058 by the European Space Agency (ESA) on 24th July 

2020. A subset of the data was created that includes the open pit and surrounding area of Apliki. The 

data was delivered orthorectified in 8 VNIR bands and collected on the 15th of August 2018 at 08:58am 

local time with a mean sun azimuth angle of 146.1°, a mean sun elevation angle of 65.69°, a mean 

satellite azimuth of 244.6° and a mean satellite elevation of 62.5°. The mean off nadir angle is 24.2°. 

The delivered pixel size is 2mx2m. The data is projected in EPSG: 32636 - WGS 84 / UTM zone 36N and 

was corrected with ATCOR version 9.3.0 © DLR/ ReSe 2019, IDL 8.5 (Richter, 2007; Richter and 

Schläpfer, 2011). The RGB imagery of a subset of the WV2 data is shown in Figure 136. Please note, 

that the waste piles in the North of the open pit are located within the UN Buffer Zone and are 

therefore not shown. 

 

 
Figure 136 RGB imagery of the WV2 scene from 15th of August 2018. European Space Imaging WorldView-2 data has 
been provided the European Space Agency ESA within TPM Project ID 61058. 

 

The data was analyzed using the BFF algorithm and the spectral library of Apliki with 35 samples. The 

spectral library without cluster 7 was applied as it showed to bias towards mapping the gypsum 
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occurrence. Figure 137 shows a grey-scale image of the data showing the size of the summarized 

triangle areas of each pixel spectrum. Pixels without significant features will not yield a high sum of 

their triangle areas and are represented in dark colors. Pixels with significant spectral contrast (e.g. 

vegetation) are represented in light colors. Areas with low spectral contrast can be identified and 

represent the areas with higher possible material identification errors.  

 

 
Figure 137 Quality map, pixels with high spectral contrast and therefore low possible classification error are represented 
in light colors. European Space Imaging WorldView-2 data has been provided the European Space Agency ESA within 
TPM Project ID 61058. 

 

Figure 138 shows the result of the surface material mapping. The area is dominated by vegetation 

cover as already visible in Figure 138. The main surface materials is mineralized Apliki pillow lavas (red, 

cluster 1) and areas of higher silicification + chlorite group minerals (light green, cluster 3). The mine 

faces in the NNE of the open pit are mapped as chloritic stockwork (purple, cluster 6). A smaller area 

SSW of the open pit lake is also mapped as chloritic stockwork. This correlates well with the zone of 

brecciated lavas that is enclosed by two major parallel faults west and east of the pit lake, as identified 

by Antivachis (2015). 
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Figure 138 BFF analysis of the Apliki WV2 data with site-specific spectral library with 35 samples, color-coded within 6 
geochemical clusters. European Space Imaging WorldView-2 data has been provided the European Space Agency ESA 
within TPM Project ID 61058. 

 

The application of the site-specific spectral library for high-resolution satellite imagery shows the 

possibility of acquiring consistent geological information of larger areas and understanding the spatial 

relationships of materials covers in a deposit. It also shows the high level of vegetation cover 

occurrence and that 2m x 2m pixels will be spectrally dominated by vegetation even when the RGB 

representation of the image does not indicate such a high level of vegetation cover.  
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8.2 Topics of future research 

This work showed a few approaches to solve persisting challenges in applying HSI for near-field 

geological maps within a mining context. Other challenges are mentioned below but have not been 

part of this work. They will need to be considered within future research projects. 

 

Sensor improvements  

Rugged and portable instrumentation is needed that can be handled easily by the on-site workforce. 

Its size and weight have to be handled by one person and need to be below the requirements for 

special UAV license certifications. This could be achieved by detector and sensor chip developments 

for HSI sensors or as proposed in this work by downsampling and simplifying the spectral resolution 

and by creating superspectral, deposit-specific sensors. The theoretically downsampled sensors are in 

fact theoretical. The practical realization has to be achieved in collaboration with sensor 

manufacturers willing to develop and offer superspectral instead of hyperspectral systems. Higher 

spatial resolutions and built-in irradiance sensors for accurate reflectance retrieval are additional steps 

that need to be solved to achieve a successful implementation in the mining sector. In order to 

characterize geological materials sufficiently, the sensors have to be adapted for the environment of 

application. This means developing sensors with wavelength ranges and sensitivities suited to 

geological materials or to deposit-specific purposes. This could mean e.g. a reduced wavelength-range 

sensor operating in the SWIR wavelength range to map different clays and monitoring contaminant 

levels in a copper mine.  

 

Image Geometry and data integration 

Close-range panoramic imagery shows an angular component in the along-track direction of the sensor 

rotation. This results in a significant amount of non-uniformities or intensity gradients as stated by 

Kurz (2011). A varying amount of diffuse irradiance is received at the sensor due to the sensor’s 

rotational movement and different mine face surfaces in the FOV as well as different exposures to the 

open sky. Image non-uniformity correction has been part of the outlook of Kurz (2011)‘s PhD thesis. 

The change in the area size depicted by each pixel for ground-based measurements is another topic 

that has not been heavily researched. Murphy et al. (2015) showed that improper or no geometric 

correction of the rotational HSI resulted in over- and underestimation of surface area up to a factor of 

two. The change of area depicted by each pixel in the x and y direction of the imagery has to be 

accounted for to make volume predictions of the extractable material. 
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The integration of the hyper- or superspectral data has to be achieved seamlessly, not only with 

geometric data (e.g. LiDAR) but also within the modeling programs used on-site. To this end, the 

sensors need to be equipped with GPS systems to accurately provide geo-referenced data to be 

integrated with geometric models and mine planning and management software. A potential solution 

to reduce geometric inaccuracy offer high-spatial-resolution full frame sensors as state-of-the-art 

geometry approaches like SfM can be utilized straightforward on the data. 

 

Data processing improvement 

The illumination conditions and scattering effects do not only change due to differing mine face 

geometries or the representation of different amounts of mine face vs. sky in the recorded line but 

also by the changing illumination conditions during the measurements (Kurz, 2011). An ideal cloud-

free sky is the optimum but far from the reality, this has to be accounted for to acquire useful data 

under sub-optimal conditions. Reflectance retrieval by calibrating to white reflectance targets placed 

in front of the outcrop do not only insufficiently model the changing illumination conditions but pose 

a safety hazard to the on-site workforce. It is time-consuming and inadequately fits into the busy 

schedules of parallel tasks taking place at the mine front. Reflectance retrieval needs to be achieved 

by built-in irradiance sensors. In the case of ground-based rotational measurements this implies 

measuring the changing irradiance for each line of the HSI. 

 

Spectral resolution 

Downsampling the spectral resolution to sensors with 50+ bands showed to be sufficient to map 

geological characteristics in the sample sets and mine face scans. Excluding the spectral bands 

impacted by interactions with the atmosphere improves the results on average. As the library based 

SAM and BFF analyses showed the best results but are methods that take the full spectral range and 

shape into consideration, a few broad spectral bands should be present in the range of atmospheric 

bands (1300–2010nm) in order to depict the overall shape of the spectrum better than done by be 

excluding these wavelength ranges completely and interpolating between them. The impact of 

preserving the overall spectral shape whilst excluding the impact of the atmosphere was not tested in 

this work and should be included in future tests. 

 

Data products 

Implementation in mine management and planning cycles requires a consistent data product that is 

used for planning purposes. The best-suited data product has yet to be defined by the mining sector 

and geologists working with this data in their day-to-day activities. Open questions need to be 
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addressed. Are hard classifier maps needed in order to characterize the deposit? Is it sufficient to base 

the classification on site- or deposit-specific spectral libraries of samples with known ore grades and 

contaminant content? Or is it better to map clay, mica and epidote/chlorite content (SWIR active 

mineralogy) separately by creating feature position and -depth maps for single mineral phases with 

high resolution, hyperspectral systems? The implementation to active mine planning will need some 

trial and error to find a way that best serves the industry and the workforce to benefit from the data. 

Additionally to these questions (hard- or soft pixel classifier maps) even the right visualization of the 

results has yet to be found (Kurz, 2011). 

 

 
This research does not only illustrate the existing challenges in the field of proximal, geological remote 

sensing in context of the open-pit mining sector, but also highlights the possible solutions and already 

existing approaches. The need for fast, reproducible imaging approaches to map quickly changing 

deposits, open pits and mine faces will increase in the future and calls for simple, cost-efficient 

solutions either by ground-based or UAV-based measurements. The need for routine monitoring can 

only be met with robust, reliable, lightweight, safe systems. The main requirements for this future 

sensor and methodology have been discussed in this work and a number of building blocks towards a 

future solution have been presented. The hope of Tobias Kurz is as valid today as it has been 10 years 

ago, that “close-range imaging spectrometry will become a sub-discipline in remote sensing, and a 

standard tool in field-based geoscience studies” (Kurz, 2011). Adding to this, it is anticipated for 

superspectral imaging to become a regular tool in the mining sector to assess and characterize deposits 

in the mine-face scale based on ground- or UAV-based measurements in the upcoming years. 
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10 Appendix 

10.1 HySpex laboratory data acquisition settings 

 

Table 41 HySpex settings for laboratory measurements of the Brazilian samples. 

HySpex settings 
Lamp arrangement 45° 
Distance, sample to sensor 1m 
Wavelength range 414 to 2498nm 
SNR mode (frames to average) 4 
      VNIR SWIR 
Objective 1m lens, CCD 

equalizer 1m lens 

Field of View (FOV) of objective 17° 14° 
Sampling interval [nm] 3.7 6.25 
Radiometric resolution 12 bit 14 bit 
Light source  Halogen GX6.35, 2 x 1000W 
 VNIR (1600 px) SWIR (320 px) 
Integration time [μs] 130000 5500 
Frame period [μs] 130993 521884 

 
Table 42 HySpex setting for the laboratory measurements of the unprepared Apliki samples. 

HySpex settings 
Lamp arrangement 45° 
Distance, sample to sensor 1m  
Wavelength range 414 to 2498nm 

 VNIR  SWIR 
Objective 1m lens, CCD 

equalizer 
1m lens 

Field of View (FOV) of objective 17° 14° 
Sampling interval [nm] 3.7 6.25 
Radiometric resolution 12 bit 14 bit 
Light source Halogen GX6.35, 2 x 1000W 

 VNIR (1600 px) SWIR (320 px) 
Integration time [μs] 70000 - 90000 15000 – 20000 
Frame period [μs] 70998 - 91000 282860 - 362549 
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Table 43 HySpex setting for the laboratory measurements of the unprepared Skouriotissa samples. 

HySpex settings 
Lamp arrangement 45° 
Distance. sample to sensor 1m 
Wavelength range 414 to 2498nm 
      VNIR SWIR 
Objective 1m lens. CCD 

equalizer 
1m lens 

Field of View (FOV) of objective 17° 14° 
Sampling interval [nm] 3.7 6.25 
Radiometric resolution 12 bit 14 bit 
Light source  Halogen GX6.35. 2 x 1000W 
 VNIR (1600 px) SWIR (320 px) 
Integration time [μs] 40000 - 80000 8000 
Frame period [μs] 41000 - 80998 163346 - 322701 

 

10.2 Brazilian iron ore samples detection limits and descriptions  

Table 44 Detection limit for the geochemical results from mine site 1 (sample 3, 4, 7, 8, 11, 12 and 15). 

 SiO2 Al2O3 P Mn CaO MgO TiO2 Na2O K2O 
 [%] [%] [%] [%] [%]  [%] [%]  [%] [%] 
 Detection limit <0,05 <0,05 <0,005 <0,015 <0,005 <0,05 <0,010 <0,10 <0,100 

 

Table 45 Detection limit for the geochemical results from mine site 2 (sample 1, 2, 5, 6, 9, 10, 13 and 14).  

 SiO2 Al2O3 P Mn CaO MgO TiO2 Fe 
  [%] [%] [%] [%] [%]  [%] %[%] [%] 
Detection limit <0,10 <0,10 <0,005 <0,008 <0,01 <0,10 <0,01 <0,007 
Method XRF79C XRF79C XRF79C XRF79C XRF79C XRF79C XRF79C XRF79C 

 

Table 46 Sample descriptions for samples from mine site 1, for sample 3, 4, 7, 8, 11, 12, 15. 

ID Company provided sample description  
3 Crispy rock, decomposed yellow to ocher with presence of clay minerals and 

phyllosilicates 
4 Crumbly, dark gray, decomposed on contact with intrusive rock rich in lamellar hematite 

crystals, quartz and possible presence of phyllosilicates and clay minerals 
7 Crumbly, structured, friable rock rich in hematite crystals and banding marked by 

alternation of clay minerals and hematite + phyllosilicate levels 
8 Semi-compact, gray, structured itabirite containing banding marked by dissymmetric 

quartz and hematite levels. Presence of hematite and quartz crystals and possible 
presence of phyllosilicates 

11 Compact, structured, gray color with central quartz and hematite banding. 
12 Crispy itabirite contaminated with decomposed intrusive rock, presence of clay 

minerals and lamellar hematite crystals 
15 Mineralized canga, formed from latering over the itabirite, red to ocher in color, with 

presence of goethite and hematite minerals and contamination of clay minerals, 
manganese and phyllosilicates 
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10.3 Apliki mine sample description and location of sampling 

Table 47 Apliki mine samples, including description, coordinates of sampling in March 2018 and a field photo of the 
sample (Koerting, Rogass, et al., 2019) 

Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_1a 

      

"fresh" 

surface 

 

35,077033 

 

32,842833 

 

 

Apl1_A_1b 

 

hematite 

coloured 

 

35,077017 

 

32,842833 

 

 

Apl1_A_1d 

 

"fresh"dark 

green 

 

35,077017 

 

32,842833 

 

 

Apl1_A_1e 

 

yellow-ish 

orange 

weathered 

 

35,077033 

 

32,8428 

 

 

Apl1_A_1f 

 

"soil 

formation", 

gravel 

 

35,07700 

 

32,84275 

 

 

Apl1_A_2a 

 

waste, soil 

 

35,076867 

 

32,84275 
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Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_3a 

 

yellow-ish 

weathered, 

soil 

 

35,076983 

 

32,843083 

 

 

Apl1_A_3b 

 

brownish 

weathered, 

soil 

 

35,077 

 

32,84305 

 

 

  

Apl1_A_4a 

 

white, soil-

ish 

 

35,076967 

 

32,843067 

 

 

Apl1_A_4b 

 

grey, soil-ish 

 

35,077 

 

32,843033 

 

 

Apl1_A_4c 

 

grey-green 

 

35,077 

 

32,842633 

 

 

Apl1_A_5a 

 

grey-medium 

 

35,076983 

 

32,843167 

 

 



 

211 
 

Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_5b 

 

grey-dark 

 

35,07705 

 

32,843167 

 

 

Apl1_A_5c 

 

grey-light 

 

35,077083 

 

32,843183 

 

 

Apl1_A_6a 

 

soil, gravel 

 

35,076967 

 

32,8431 

 

 

Apl1_A_6b 

 

soil, gravel 

 

35,07695 

 

32,8432 

 

All samples from same spot, 

see 6a 

Apl1_A_6c 

 

soil, gravel 

 

not available 

 

not 

available 

 

All samples from same spot, 

see 6a 

Apl1_A_6d 

 

soil, gravel 

 

not available 

 

not 

available 

 

All samples from same spot, 

see 6a 

Apl1_A_7d 

 

Grey, crust 

unstable 

35,076967 

 

32,84325 

 

 

Apl1_A_7d

_Hem 

 

Red, 

hematite 

35,076967 

 

32,84325 
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 212 

Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_7e 

 

blue crystal 

 

35,076833 

 

32,843217 

 

 

Apl1_A_8a 

 

grey, soil-ish,  

 

35,076917 

 

32,8433 

 

 

Apl1_A_8b 

 

grey, soil-ish,  

 

35,076933 

 

32,84335 

 

 

Apl1_A_8c 

 

grey, soil-ish,  

 

35,076917 

 

32,8433 

 

 

Apl1_A_9a 

 

light green 

 

35,076883 

 

32,843333 

 

 

Apl1_A_9b 

 

hematite 

vein 

 

35,076833 

 

32,843317 

 

 

Apl1_A_10

a 

 

white with 

pink 

 

35,076733 

 

32,843383 

 

 



 

213 
 

Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_10

b 

 

white with 

purple 

 

35,076833 

 

32,843383 

 

 

Apl1_A_10

c 

 

green-ish 

veins 

 

35,07685 

 

32,843333 

 

 

Apl1_A_10

d 

 

white 

 

35,076833 

 

32,84335 

 

See overview photo from 10c, 

no detail photo available 

Apl1_A_11

a 

 

weathering 

crust 

 

35,076783 

 

32,843533 

 

 

Apl1_A_11

b 

 

green 

 

35,076767 

 

32,843517 

 

 

Apl1_A_13

a 

 

red, rock 35,076133 

 

32,843333 

 

 

Apl1_A_13

b 

 

red, gravel, 

weathered 

hillside rock 

 

35,076117 

 

32,8434 
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 214 

Sample 

      

Description 

 

Decimal 

latitude 

 

Decimal 

longitude 

 

Photo 

Apl1_A_15

a 

 

dark blue 

 

35,076133 

 

32,843217 

 

 

Apl1_A_15

b 

 

light blue 

rock+ blue 

crust 

35,076133 

 

32,843217 

 

See sample Apl1_A_15a 

Apl1_A_15

c 

 

black pyrite 35,076133 

 

32,843217 

 

See sample Apl1_A_15a 

 

 

10.4 Geochemical analysis of Apliki mine samples 

 

Table 48 Sample preparation and description of BVM codes, from Koerting et al. (2019b). 

BVM Code Description 
SHP01 Per sample shipping charges for branch shipments  
CRU80 Crush to 80% passing 10 mesh (1.70 mm) 
PULHP Hand Pulverize samples mortar and pestle 
AQ250 Ultra Trace Geochemical Aqua Regia digestion, 1:1:1 Aqua Regia digestion (HNO3-HCl 

acid digestion), Ultratrace ICP-MS analysis 
PRP70-250 Crush, split and pulverize 250 g rock to 200 mesh (0.075 mm) 
LF302-EXT 
 

Lithogeochemical Whole Rock Fusion, LiBO2/LiB4O7 fusion ICP-ES analysis. Comment: 
Major oxides do not sum to 100% due to possible incomplete fusion of some minerals 
or other element oxides may be present.  

DISP2 Heat treatment of soils and sediments. 
TC000 Carbon and Sulfur Analysis 
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10.6 Three Hills mine sample description and location of sampling 

Table 50 Skouriotissa - Three Hills mine samples, including a description, the coordinates of sampling in March 2018 and 
a lab photo of the sample. 

Sample Description Sampling Coordinate Photo 
Sko1_B_1a 
      

Hematite 
 

N 35° 5.359,  
E 32° 53.945' 
 

 
Sko1_B_1b 
 

Light grey, 
weathered 
 

N 35° 5.362,  
E 32° 53.942' 
 

 
Sko1_B_1c 
 

Brownish 
 

N 35° 5.364,  
E 32° 53.944' 
 

 
Sko1_B_2a 
 

Brownish 
 

N 35° 5.368,  
E 32° 53.944' 
 

 
Sko1_B_2b Yellow 

brownish 
N 35° 5.367,  
E 32° 53.943' 
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Sample Description Sampling Coordinate Photo 
Sko1_B_2c 
 

Dark brown N 35° 5.365,  
E 32° 53.946' 
 

 
Sko1_B_3a Sand colored N 35° 5.371,  

E 32° 53.928' 
 

 
Sko1_B_3b Brownish N 35° 5.369,  

E 32° 53.931' 
 

 
Sko1_B_3c Dark grey N 35° 5.367,  

E 32° 53.929' 
 

 
Sko1_B_4a Very light 

grey 
N 35° 5.381,  
E 32° 53.926' 
 

 
Sko1_B_4b Dark brown N 35° 5.381  

E 32° 53.927' 
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Sample Description Sampling Coordinate Photo 
Sko1_B_4c Yellow 

brownish 
N 35° 5.381,  
E 32° 53.928' 
 

 
Sko1_B_5a White N 35° 5.388,  

E 32° 53.923' 
 

 
Sko1_B_5b Dark brown N 35° 5.390,  

E 32° 53.925' 
 

 
Sko1_B_5c Grey N 35° 5.388,  

E 32° 53.925' 
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10.8 HySpex field data acquisition settings for Apliki and Three Hills 

Table 52 HySpex data acquisition parameters for Apliki mine. 

HySpex settings 
Sensor position Latitude Longitude 
 35° 4' 35,49" N 32° 50' 33,666" E 
Atmospheric conditions Sahara dust in atmosphere, occasionally cirrus 

clouds (max. 20% coverage) 
Start time of measurement 13:46 UTC+3 
No. of measurements averaged  11 
Approximated solar azimuth angle 200° 
Approximated sun elevation angle 52° 
Distance, sample to sensor 1 m 
Lense objective FOV expander 
Wavelength range 414 to 2498 nm 
SNR mode (frames to average) 1 
      VNIR (1600 px) SWIR (320 px) 
FOV 34° 28° 
Sampling interval 3.7 6.25 
Radiometric resolution 12 bit 14 bit 
Frames 12000 3013 
Integration time [μs] 4000 6000 
Frame period [μs] 10000 47808 
Data size radiance BSQ file / Header file 6.1 GB/ 2.6 kB 495.6 MB/ 4.0 kB 
Data size: BSQ file/ Header file  1.6 GB / 22.3 kB 
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Table 53 HySpex data acquisition parameters for Three Hills mine. 

HySpex settings 
Sensor position Latitude Longitude 
 35° 05’ 23.58’’ N 

 
32° 54’ 01.34’’E 

Atmospheric conditions Sahara dust in atmosphere, occasional cirrus 
clouds (max. 10% coverage) 

Start time of measurement 13:46 UTC+3 
Approximated solar azimuth angle 143° 
Approximated sun elevation angle 47° 
Distance, sample to sensor, approximately 100 - 200m 
Lens objective FOV expander 
Wavelength range 414 to 2498nm 
SNR mode (frames to average) 4 
      VNIR (1600px) SWIR (320px) 
FOV 34° 28° 
Sampling interval 3.7 6.25 
Radiometric resolution 12 bit 14 bit 
Frames 10000 2511 
Integration time [μs] 3000 6000 
Frame period [μs] 9000 35856 
Data size radiance BSQ file  5.1GB 413MB 
Data size: reflectance BSQ file/ Header file  1.3 GB / 29.4kB 
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10.9 3D reconstruction parameters for Apliki and Three Hills 

 
Table 54 3D reconstruction parameters for the Apliki DOMs with Agisoft Professional PhotoScan Software 

 Full Open Pit Mine Face Close-Up 
 Nikon 1AW1 + HySpex RGB Nikon 1AW1 + HySpex RGB 
General   
Aligned Cameras/ Total Cameras 118 98/98 
Nikon 1 AW1 Cameras  117 97 
HySpex RGB 1 1 
   
Point Cloud   
Points 4,007 of 9,159 3,072 of 6,833 
RMS projection error 0.122611 (0.745662 pix) 0.119667 (0.760139 pix) 
Max projection error 0.524674 (16.0471 pix) 0.650378 (13.1985 pix) 
Mean key point size 5.72367 pix 5.56145 pix 
Effective overlap 16.9367 19.2295 
Accuracy/ Pair pre-selection Medium/ Disabled Medium/ Disabled 
Key point limit/ tie point limit 4,000 / 1,000 4,000 / 1,000 
Adaptive camera fitting Yes Yes 
Matching time 5 min 32 sec 3 min 38 sec 
Alignment time 1 min 9 sec 52 sec 
Dense Point Cloud   
Points 7,566,533 5,779,009 
Quality Medium Medium 
Depth filtering Mild Mild 
Depth map generation time 30 min 51 sec 36 min 7 sec 
Dense cloud generation time 30 min 51 sec 12 min 53 sec 
Model   
Faces 168,145 128,421 
Vertices 86,275 65,514 
Surface Type Arbitrary Arbitrary 
Source Data Dense Dense 
Interpolation Enabled Enabled 
Quality Medium Medium 
Depth filtering Mild Mild 
Face count 168,145 128,421 
Processing time 9 min 54 sec 7 min 10 sec 
Mapping mode Orthophoto Orthophoto 
Blending mode Mosaic Mosaic 
Texture size/ count 4,096 x 4,096 4,096 x 4096 
Enable color correction Yes Yes 
Enable hole filling Yes Yes 
Blending time  14 min 59 sec 
Tiled Model   
Source data Dense cloud Dense cloud 
Tile size 256 256 
Processing time 32 min 21 sec 20 min 44 sec 
Pixel size 0.0258 m 0.0258 m 
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Table 55 3D reconstruction parameters for the Three Hills DOM with Agisoft Professional PhotoScan Software 

 Skouriotissa Three Hills - Open Pit 
 Nikon 1AW1 + HySpex 

RGB 
  

General  Model  
Aligned Cameras 185 Faces 133,117 
Nikon 1 AW1 Cameras  184 Vertices 68,695 
HySpex RGB 1 Surface Type Arbitrary 
Markers 28 Source Data Dense 
  Interpolation Enabled 
Point Cloud  Quality Medium 
Points 10,839 of 19,447 Depth filtering Mild 
RMS projection error 0.643958 (4.7003 pix) Face count 133,118 
Max projection error 83.2283 (556.025 pix) Processing time 7 min 41 sec 
Mean key point size 5.16612 pix Mapping mode Orthophoto 
Effective overlap 10.6046 Blending mode Mosaic 
Accuracy/ Pair pre-selection Medium/ Disabled Texture size/ count 4,096 x 4,096 
Key point limit/ tie point limit 4,000 / 1,000 Enable color correction Yes 
Adaptive camera fitting Yes Enable hole filling Yes 
Matching time 10 min 0 sec Blending time 14min 7 sec 
Alignment time 2 min 55 sec   
  Tiled Model  
Dense Point Cloud  Source data Dense cloud 
Points 5,990,609 Tile size 256 
Quality Medium Processing time 46 min 39 sec 
Depth filtering Mild Pixel size 0.0231 m 
Depth map generation time 1 h 29 min   
Dense cloud generation time 47 min 32 sec   
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10.10 Downsampling of data from hyperspectral to superspectral dimensions 

Table 56 Downsampling approaches of the Brazilian iron ore samples. 

Sensor / 
band 
width [nm] 

Wavelength 
range [nm] 

Number 
of 
bands 

Spectral Library of Brazilian Ore samples Analysis method for 
testing 

1 414-2497 2084  

SAM, SVM, MWL 

5 414-2494 417  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

EnMAP 423-2493 242  

SAM, SVM, MWL 

10 414-2494 209  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 
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Sensor / 
band 
width [nm] 

Wavelength 
range [nm] 

Number 
of 
bands 

Spectral Library of Brazilian Ore samples Analysis method for 
testing 

15 414-2484 139  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

20 414-2494 105  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

15, 1314 – 
2004nm 
clipped 414 - 2484 94  

SAM, EngeoMap 2.1, BFF 

25 414-2489 84  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

30 414-2484 70  

SAM, EngeoMap 2.1, BFF 
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Sensor / 
band 
width [nm] 

Wavelength 
range [nm] 

Number 
of 
bands 

Spectral Library of Brazilian Ore samples Analysis method for 
testing 

40nm 
VNIR, 
15nm 
SWIR, 1314 
– 2004 nm 
clipped 414 – 2484 57  

SAM, EngeoMap 2.1, BFF 

40 414-2494 53  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

50 414-2464 42  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

15nm VNIR 
only 414 – 1014 41  

SAM, BFF, (EnGeoMap 2.1 

was tested but was unable 

to give results) 

 

40nm, 
1334 – 
2004nm 
clipped 414 – 2494 37  

SAM, EngeoMap 2.1, BFF 
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Sensor / 
band 
width [nm] 

Wavelength 
range [nm] 

Number 
of 
bands 

Spectral Library of Brazilian Ore samples Analysis method for 
testing 

75 414-2439 28  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

100 414-2414 21  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

WorldView
-3 425-2330 16  

SAM, SVM, MWL,  
EngeoMap 2.1, BFF 

40nm VNIR 
only 414 – 1014 16  

SAM, BFF, (EnGeoMap 2.1 
was tested but was unable 
to give results) 
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10.12 Geochemical clustering of Apliki sample data 

To compare the data, some geochemical results had to be adjusted to be comparable. This only applies 

to element or oxide mass fractions yielding below or above the detection limit and therefor being 

denoted with “<” or “>“ values. The geochemical values were adapted as seen in Table 60. 

 

Table 60 Adaptation of the element and oxide geochemical values that could not clearly be denoted as they were below 
or above the detection limit. 

Element or Oxide Detection Limit Notation Adaptation for geochemical clustering 
Na2O 0.01 % < 0.01 0 
K2O 0.01 % < 0.01 0 
TiO2 0.01 % < 0.01 0 
P2O5 0.01 % < 0.01 0 
Cr2O3 0.002 % < 0.002 0 
Cu 5 - 10000 ppm > 10000 10000 
Ba 5 ppm < 5 0 
Ni 20 ppm < 20 0 
Co 20 ppm < 20 0 
Sr 2 ppm < 2 0 
Zr 5 ppm < 5 0 
Y 3 ppm < 3 0 
Nb 5 ppm < 5 0 
Ce 30 ppm <30 0 
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