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Abstract

This work develops hybrid methods of imaging spectroscopy for open pit mining and examines their
feasibility compared with state-of-the-art. The material distribution within a mine face differs in the
small scale and within daily assigned extraction segments. These changes can be relevant to
subsequent processing steps but are not always visually identifiable prior to the extraction.
Misclassifications that cause false allocations of extracted material need to be minimized in order to
reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the
allocation of relevant deposit-specific materials before extraction, and allows for efficient material
handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit
mining applications and the development and evaluation of a workflow for a mine face, ground-based,
spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor
complexity is reduced by down-sampling the spectral resolution of the system based on the samples’
spectral characteristics. This was achieved by the evaluation of existing hyperspectral outcrop analysis
approaches based on laboratory sample scans from the iron quadrangle in Minas Gerais, Brazil and by
the development of a spectral mine face monitoring workflow which was tested for both an operating
and an inactive open pit copper mine in the Republic of Cyprus.

The workflow presented here is applied to three regional data sets: 1) Iron ore samples from Brazil,
(laboratory); 2) Samples and hyperspectral mine face imagery from the copper-gold-pyrite mine Apliki,
Republic of Cyprus (laboratory and mine face data); and 3) Samples and hyperspectral mine face
imagery from the copper-gold-pyrite deposit Three Hills, Republic of Cyprus (laboratory and mine face
data). The hyperspectral laboratory dataset of fifteen Brazilian iron ore samples was used to evaluate
different analysis methods and different sensor models. Nineteen commonly used methods to analyze
and map hyperspectral data were compared regarding the methods’ resulting data products and the
accuracy of the mapping and the analysis computation time. Four of the evaluated methods were
determined for subsequent analyses to determine the best-performing algorithms: The spectral angle
mapper (SAM), a support vector machine algorithm (SVM), the binary feature fitting algorithm (BFF)
and the EnMap geological mapper (EnGeoMap). Next, commercially available imaging spectroscopy
sensors were evaluated for their usability in open pit mining conditions. Step-wise downsampling of
the data - the reduction of the number of bands with an increase of each band’s bandwidth - was
performed to investigate the possible simplification and ruggedization of a sensor without a quality
fall-off of the mapping results. The impact of the atmosphere visible in the spectrum between 1300—
2010nm was reduced by excluding the spectral range from the data for mapping. This tested the
feasibility of the method under realistic open pit data conditions. Thirteen datasets based on the

different, downsampled sensors were analyzed with the four predetermined methods. The optimum



sensor for spectral mine face material distinction was determined as a VNIR-SWIR sensor with 40nm
bandwidths in the VNIR and 15nm bandwidths in the SWIR spectral range and excluding the
atmospherically impacted bands. The Apliki mine sample dataset was used for the application of the
found optimal analyses and sensors. Thirty-six samples were analyzed geochemically and
mineralogically. The sample spectra were compiled to two spectral libraries, both distinguishing
between seven different geochemical-spectral clusters. The reflectance dataset was downsampled to
five different sensors. The five different datasets were mapped with the SAM, BFF and SVM method
achieving mapping accuracies of 85-72%, 85-76% and 57-46% respectively. One mine face scan of
Apliki was used for the application of the developed workflow. The mapping results were validated
against the geochemistry and mineralogy of thirty-six documented field sampling points and a zonation
map of the mine face which is based on sixty-six samples and field mapping. The mine face was
analyzed with SAM and BFF. The analysis maps were visualized on top of a Structure-from-Motion
derived 3D model of the open pit. The mapped geological units and zones correlate well with the
expected zonation of the mine face. The third set of hyperspectral imagery from Three Hills was
available for applying the fully-developed workflow. Geochemical sample analyses and laboratory
spectral data of fifteen different samples from the Three Hills mine, Republic of Cyprus, were used to
analyse a downsampled mine face scan of the open pit. Here, areas of low, medium and high ore
content were identified.

The developed workflow is successfully applied to the open pit mines Apliki and Three Hills and the
spectral maps reflect the prevailing geological conditions. This work leads through the acquisition,
preparation and processing of imaging spectroscopy data, the optimum choice of analysis
methodology, and the utilization of simplified, robust sensors that meet the requirements of open pit
mining conditions. It accentuates the importance of a site-specific and deposit-specific spectral library
for the mine face analysis and underlines the need for geological and spectral analysis experts to

successfully implement imaging spectroscopy in the field of open pit mining.



Zusammenfassung

In dieser Dissertation wird die Machbarkeit und Anwendung moderner und eines eigen entwickelten
Hybridverfahrens in der bildgebenden Spektroskopie fiir den Tagebau untersucht.

Die Materialverteilung innerhalb einer Abbaufront unterscheidet sich oft innerhalb eines kleinen
Mafstabs und variiert zudem innerhalb taglich zugeordneter Abbausegmente. Diese Veranderungen
kénnen fir nachfolgende Verarbeitungsschritte relevant sein, sind aber vor dem Abbau nicht immer
visuell erkennbar. Falsche Klassifizierungen des Materials fihren zu Fehlverteilungen des abgebauten
Materials, die minimiert werden missen, um den energie-intensiven Materialtransport zu reduzieren.
Mit Hilfe der bildgebenden Spektroskopie wird angestrebt, relevante Lagerstadtten-spezifische
Materialien vor der Extraktion korrekt zuzuordnen und ein effizientes Materialhandling nach der
Extraktion zu ermoglichen. Ziel dieser Arbeit ist die Parametrisierung der bildgebenden Spektroskopie
fir den Bergbau und die Entwicklung und Evaluierung eines Workflows zur spektralen
Charakterisierung von offenem Bergbau mittels bodengebundener Sensorik. Dies wurde durch die
Evaluierung bestehender Ansatze zur hyperspektralen Aufschlussanalyse erreicht, die auf Grundlage
von Laborscans von Proben aus dem Eisernen Vierecks in Minas Gerais, Brasilien, durchgefihrt wurde.
Eine spektralen Abbaufrontanalyse wurde mithilfe von Daten eines aktiven und eines inaktiven Kupfer-
Tagebaus in der Republik Zypern entwickelt.

Der in dieser Arbeit vorgestellte Arbeitsablauf wird auf drei regionale Datensatze angewandt: 1)
Eisenerzproben aus Brasilien (Labordaten); 2) Proben und hyperspektrale bildgebende Daten der
Abbaufront aus dem Kupfer-Gold-Pyrit-Tagebau Apliki, Republik Zypern (Labor- und
Abbaufrontdaten); und 3) Proben und hyperspektrale bildgebende Daten der Abbaufront aus der
Kupfer-Gold-Pyrit-Lagerstatte Three Hills, Republik Zypern (Labor- und Abbaufrontdaten). Der
hyperspektrale Labordatensatz von flinfzehn brasilianischen Eisenerzproben wurde zur Evaluierung
verschiedener Analysemethoden und verschiedener Sensormodelle verwendet. Neunzehn
gebrauchliche Methoden zur Analyse und Kartierung hyperspektraler Daten wurden im Hinblick auf
ihre resultierenden Datenprodukte, die Genauigkeit der Kartierung und die Berechnungszeit der
Analyse verglichen. Vier der evaluierten Methoden wurden fir nachfolgende Analysen bestimmt: Der
Spectral Angle Mapper (SAM), ein Support Vector Machine Algorithmus (SVM), der Binary Feature
Fitting Algorithmus (BFF) und der EnMap Geological Mapper (EnGeoMap). Als nachstes wurden
kommerziell erhéltliche bildgebende Spektroskopiesensoren auf ihre Verwendbarkeit unter
Tagebaubedingungen evaluiert. Ein schrittweises Reduzieren der Datenkomplexitdt, das sog.
“downsampling” (die Verringerung der Anzahl der Bander und gleichzeitige Erhéhung der Bandbreite
jedes Bandes), wurde durchgefiihrt, um eine Vereinfachung der Sensorkomplexitdit ohne

QualitatseinbuBen der Kartierungsergebnisse zu untersuchen. Der Einfluss der Atmosphare, die im
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Spektrum zwischen 1300-2010nm sichtbar ist, wurde reduziert, indem der Spektralbereich aus den
Daten flr die Kartierung ausgeschlossen wurde. Dadurch wurde die Durchfiihrbarkeit der Methode
unter realistischen Tagebaubedingungen getestet. Dreizehn Datensatze, die auf den verschiedenen
Sensoren basierten, wurden mit den vier vorher benannten Methoden analysiert. Der optimale Sensor
fir die spektrale Unterscheidung von Abbaufrontmaterial wurde als VNIR-SWIR-Sensor mit 40nm
Bandbreite im VNIR- und 15nm Bandbreite im SWIR-Spektralbereich bestimmt, der atmospharisch
beeinflusste Spektralbereich wurde ausgeschlossen. Nun wurde der Datensatz von der Mine in Apliki
verwendet, um die vorher bestimmten Analysen und Sensoren anzuwenden. Sechsunddreifig Proben
wurden geochemisch und mineralogisch analysiert. Die Probenspektren wurden zu zwei
Spektralbibliotheken zusammengestellt, die beide zwischen sieben verschiedenen geochemisch-
spektralen Clustern unterscheiden. Die Reflexionsdaten wurden auf finf verschiedene Sensoren
heruntergerechnet. Diese funf verschiedenen Datensdtze wurden mit der SAM-, BFF- und SVM-
Methode kartiert, wobei entsprechende Kartierungsgenauigkeiten von 85-72%, 85-76% bzw. 57-46%
erreicht wurden. Ein Scan der Abbaufront von Apliki wurde verwendet, um den entwickelten
Arbeitsablauf auf Daten unter realistische Bedingungen anzuwenden. Die Kartierungsergebnisse
wurden auf der Grundlage der Feldbeprobung und einer geologischen Zonierungskarte der Abbaufront
validiert. Die Abbaufront wurde mit SAM und BFF analysiert und die Analysekarten wurden auf einem
von ,Structure-from-Motion” abgeleiteten 3D-Modell des Tagebaus visualisiert. Die kartographierten
geologischen Einheiten und Zonen korrelierten gut mit der erwarteten Zonierung der Abbaufront. Ein
dritter Datensatz stand fir die Anwendung des entwickelten Arbeitsablaufs zur Verfligung.
Geochemische Probenanalysen und Laborspektraldaten von flinfzehn verschiedenen Proben aus dem
offenen Tagebau Three Hills in der Republik Zypern wurden zur Analyse eines Datensatzes der
Abbaufron des Tagebaus verwendet. Dabei wurden Bereiche mit niedrigem, mittlerem und hohem
Erzgehalt identifiziert.

Der in der Arbeit entwickelte Arbeitsablauf konnte erfolgreich fiir die offenen Tagebaue Apliki und
Three Hills angewandt werden. Die errechneten Spektralgeologischen Karten stellen die ortliche
geologische Situation korrekt dar. Der entwickelte Arbeitsablauf erldutert die Erfassung, Aufbereitung
und Verarbeitung von Daten aus der bildgebenden Spektroskopie und beschreibt die Wahl der
Analysemethodik sowie die Verwendung robuster Sensoren, die den Anforderungen der
Tagebaubedingungen entsprechen. Sie hebt die Bedeutung einer standort- und
lagerstattenspezifischen Spektralbibliothek fiir die Analyse von Abbaufronten hervor und unterstreicht
die notige Einbindung von Experten im Bereich der Geologie und der Spektralanalyse fir eine
erfolgreiche Implementierung der bildgebenden Spektroskopie im Kontext des Abbaus von Material in

offenen Tagebauten.
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Preface

This thesis has been submitted in compliance with the requirements for the Ph.D. degree at the Faculty
of Science, University of Potsdam, Germany. The work described in this Ph.D. dissertation was
undertaken at the Institute of Geosciences, University of Potsdam and the Helmholtz Centre Potsdam,
GFZ German Research Centre for Geosciences in Section 1.4 Remote Sensing and Geoinformatics. The
work was carried out from June 2017 to October 2020. Apl. Prof. Dr. Uwe Altenberger was the principal
supervisor from the Institute of Geosciences, University of Potsdam. For the German Research Centre,
apl. Prof. Dr. Helmut Echtler acted as co-supervisor and Dr. Christian Rogass (Helmholtz Centre for
Environmental Research UFZ) acted as co-supervisor and mentor throughout the whole project.

This work was funded in part by the “REEMAP” scientific project, supported by the r4 subsidy program
for innovative technologies for resource efficiency and the German Federal Ministry of Education and
Research. Furthermore, this work would not have been possible without additional funding provided
by the EU-ERAMIN-2 joint project “LIGHTS”, in which part of my non-PhD related research took place.
The aim of this project was to evaluate existing approaches of imaging spectroscopy for the mining
sector and present a conclusive workflow to utilize imaging spectroscopy for open pit mining. The
outcomes of this investigation are presented in this monographic dissertation. Current approaches are
reviewed, challenges of the commonly used methods and sensors are highlighted and discussed and
recommended procedures are presented. This work guides through a workflow of the application of
imaging spectroscopy in the laboratory and for mine faces. The manuscript starts with an introduction
into open pit mining conditions as well as imaging remote sensing principles and hyperspectral mine
face scanning. The geological background of the utilized materials is presented as well as the datasets.
The presented near-field imaging spectroscopy workflow starts with an introduction to the commonly
used classification methods and an evaluation of these methods. This is followed by a theoretical
investigation of an optimal robust imaging spectroscopy sensor for open pit mining. A workflow to
handle laboratory imaging reflectance and radiance data is followed by a detailed description of a
workflow for acquiring and analyzing imaging spectroscopy field data in open pits. The presented
methods and workflows are applied to three regionally different datasets: 1) Laboratory hyperspectral
scans of iron ore samples from the Minas Gerais district, Brazil, 2) Laboratory and mine face
hyperspectral scans of surface materials from the copper-gold-pyrite mine Apliki, Nicosia District,
Republic of Cyprus, and 3) and Laboratory and mine face hyperspectral scans of samples from the
Three Hills deposit in the operating copper-gold-pyrite mine Skouriotissa, Nicosia District, Republic of
Cyprus. A section about the discussion of all workflow sections, a conclusion and an outlook complete

the manuscript.
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Motivation

1 Motivation

A rapidly increasing world population drives an ever-increasing global demand for metals and other
mining products. This demand is additionally fueled by ever-changing technology trends and the
digitization of different sectors. In order to meet this demand in a sustainable manner or even to
maintain a competitive edge in times of sharply dropping demand, mining companies implement
innovative technologies that help further reduce environmental impact through more selective
mining. The UN Sustainable Development Goals incorporate the need for meeting the metal demand
in a sustainable manner in their Goal 9: “[To] build resilient infrastructure, promote sustainable
industrialization and foster innovation” (sustainabledevelopment.un.org/, 2020). Middle-income
countries particularly benefit from entering the basic and fabricated metals industries to support
inclusive and sustainable industrialization. Based on estimates from the International Labour
Organisation ILO, 30,000,000 people were employed by the mining industry in 2013 (IGF, 2013). Itis a
sector that has always imposed stress on the environment and the people working in mining and living
around mine sites due to its extractive nature and the number of technologies and workforce
employed in it (Bowell, 2017). A sustainable approach to mining is not based on the reduction of
extraction alone, but on developing technologies to create a safer, highly efficient extraction-, sorting
and recycling process. Multispectral and hyperspectral remote sensing techniques already play a role
in a number of mining activities. These range from satellite- and aerial surveys prior to mining (Kruse
et al., 2011; Kruse, 2012; Mielke et al., 2014; Notesco et al., 2014; Swayze et al., 2014; Salehi, 2018),
aerial mapping approaches of open mine pits in order to update deposit models (Jakob, Zimmermann
and Gloaguen, 2017; Kirsch et al., 2018) and laboratory based drill core and sample scanning to
digitizing data for the process of mine development (http://www.corescan.com.au/, 2013; Koerting et
al., 2015; Korting, 2019; Kraal and Ayling, 2019). The hyperspectral scanning of mine faces, fresh
extraction sites and mine waste piles has been the objective of a number of publications (Kurz et al.,
2008; Kruse et al., 2011; Kurz et al., 2012; Buckley, Kurz and Schneider, 2012; Kurz, Buckley and Howell,
2013; Dalm, Buxton and van Ruitenbeek, 2017; Jakob, Zimmermann and Gloaguen, 2017; Kirsch et al.,
2018; Lorenz et al., 2018; Salehi et al., 2018). Many of these methods were approached in the name
of science or as a proof of concept and have yet to be implemented in the day-to-day activity of the

mining industry as seen in a vision for the hyperspectral mining future in Figure 1.
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Figure 1 Hyperspectral Imaging in Mining - Vision for future adaptations of hyperspectral mapping in the whole life cycle
of open-pit mining. (Image sources: Conveyor belt: https://www.metso.com/contentassets/78a90df835f44b468a17d284
65b8802b/conveyor-solutions-belts.jpg, open pit: https://i.ytimg.com/vi/ibzVZc7Qmeg/maxresdefault.jpg)

In 2003, the International council on Mining & Metals (ICCM) established 10 principles to respond to
key challenges in the mining sector. Principle 4 states the implementation of risk management
strategies based on valid data and sound science. Principle 5 builds on the improvement of public
health and safety performances and principle 6 seeks continual improvement of the environmental
performances of mining (ICMM, 2013). All of these aims can be supported by implementing remote
sensing technologies, for example by providing sound virtual outcrop models (e.g. (Buckley et al., 2019;
virtualoutcrop.com, 2020). These outcrop models can define the areas of mineralization in a highly
efficient manner and refine existing mine development models. This could reduce extraction to the
area of highest mineralization and reduce the impact of the subsequent sorting and refinery processes.
They can also map fault systems and areas of instability and decrease the direct contact with
potentially risk-induced environments. This technology and the use of it requires a new workforce in
mining, as well as new training for the geoscientists of the future (Jébrak and Montel, 2017). This is
also indicated in the “Ernest & Young Top 10 Business risks facing mining and metals” in which the
challenges facing the mining industry are ranked each year (EY, 2018). “Digital Effectiveness” and
“Maximizing Portfolio Returns” has been in the top ranks since 2018 and EY repeatedly state the need
for digital initiatives and innovation that span the entire value chain and induce a transformation

rather than only applying digital solutions to singular issues. Investing a higher amount of the budget
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to digital solutions is also one key point to increase the operation’s efficiency substantially (EY, 2018).
Digitalization throughout the mining value chain has to happen across different disciplines; this
includes production and value chain optimization, asset performance management and a workforce
transformation (Aveva, 2020). Manish Chawla, Global Managing Director for Energy & Natural
Resources at IBM, sees a future cognitive enterprise. These cognitive enterprises will be driven by Al
and cognitive technology applications in geological, supply chain, production, equipment, worker
safety and enterprise intelligence (Brightmore and Deane, 2020). Examples of the digital mining
transformation include applying artificial intelligence to retain the knowledge of a retiring workforce,
asis happening e.g. for Australia’s largest oil and gas company Woodside by implementing IBM Watson
(IBM, 2020). It also means implementing machine learning algorithms to leverage exploration and
reduce the cost of high-risk greenfield exploration by using the mining industries biggest asset —
multisource data (Goodbody, 2018). The use of Al extends to route optimization for trucks,
optimization of smelters and incident analysis for safety optimizations (Brightmore and Deane, 2020).
A report on “Digital in Mining — Progress and Opportunity” by Accenture Consulting that is based on
another report from the World Economic Forum (WEF) (Callahan and Long, 2017) compares the
application level of digital solutions in the mining and mineral sector. According to Callahan and Long,
in-mine operations embrace new digital technologies the heaviest in the sector, with 54% of the
guestioned mining companies applying robotics and automation for the mining operations. Real-time
analytics, predictive machine learning analytics and image analytics are being applied at 35%, 38% and
37% of the mines respectively. Exploration, mine development and ore processing are lagging behind
in the race for digitalization. The successful implementation of hyper and superspectral monitoring
approaches depends on a number of factors, these include the safety of operators and equipment, the
scheduling of measurements within a busy mine planning schedule, the limitations of data quality by
the incident light and atmospheric conditions (clouds, dust, humidity) and the robustness and

simplicity of the spectral equipment.

The objective of this work is:
1. The development of a digital spectral mine face monitoring based on hyperspectral analysis
methods for from an operating and an inactive open pit copper mine in Cyprus
2. The evaluation of existing hyperspectral outcrop analysis approaches related to samples from
the iron quadrangle in Minas Gerais, Brazil
3. The parameterization of imaging spectroscopy for pit mining applications
4. The development and evaluation of an imaging spectroscopy workflow for a mine face,

ground-based characterization of open pit mine
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2 Introduction
2.1 Introduction into open pit mining: conditions and requirements

A short overview about the challenges facing the short-term planning in the open-pit mining
environment is given here and is based mainly on the review paper by Blom et al. (2019).

Metal ore like iron, copper and gold as well as resources like coal and limestone are commonly
extracted using the open-pit mining method. Here, horizontal layers of material are extracted from
the top down. The extraction is divided in long-term planning processes (life-of-mine), short-term
planning (from a week to about 2 years) and to the day-to-day, shift-to-shift planning. In the long-term
planning the mine is divided into a grid of equally sized blocks assigned with their respective ore grade
and other attributes like clay or silica content. A geologist selects the blocks that are to be extracted
each year. For the short-term plan, the block model of the pre-selected blocks is divided into irregularly
shaped blocks — the ore and waste blocks. These areas are blasted and a geologist partitions these
blocks by their grade based on prior sampling. This material is referred to as the “broken stock” of the
mine. In the day-to-day activities, the planner decides which material from the broken stock is fed to
the crusher or processing plan in order to achieve the daily production rate (Blom, Pearce and Stuckey,
2019). As seen in Figure 2 remote sensing can aid multiple processes along the life-of-mine value chain
but also already prior to opening the mine in the exploration phase. By including remote sensing in
this process, some of the financial risks connected to mining can be evaluated earlier and possibly
avoided (e.g. target detection by satellite to avoid over-sampling and over-drilling). Short-term
planning handles various uncertainties; these include the geological uncertainty (stability, ore grade),
the equipment-based uncertainty (availability, reliability) and the economic uncertainty (commodity
price, fuel price) (Blom, Pearce and Stuckey, 2019). It is predictable, that mine face and stockpile
scanning and mapping by hyper- or superspectral sensors will play an important role in the future in
optimizing short-term objectives like: maintaining the grade of ore production within the desired
bounds for the extraction period or sorting the material that is sent to the crushers or waste site to
minimize re-handling investments made in 2020 into Al companies and remote sensing companies like
Plotlogic Pty Ltd solidify my expectations (im-mining.com/2020/04/30/plotlogic-raises-profile-funds-
bhp-iron-ore-contract/ and Gleeson, 2020). The need for imaging spectroscopy in mining is well
summarized by a quote from the Founder & CEO of Plot Logic Andrew Job, who said: “The mining
industry is years behind other industries in utilising big data and Al: as a result, there is a lack of fast
and accurate orebody knowledge that ultimately restricts yield. With our technology we can grade
every tonne of ore accurately, before it even leaves the ground — driving efficiency, sustainability, and

profitability. Plotlogic [in this case hyperspectral imaging and Al] can optimise the mining process from
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pit-to-port with pinpoint precision.” (im-mining.com/2020/04/30/plotlogic-raises-profile-funds-bhp-
iron-ore-contract/ and Gleeson, 2020).

Keeping the ore grade at the desired level for each extracted block can be aided by scanning the
samples and cores from each assigned build or by scanning the mine face prior to blasting and the
broken stock after blasting (Blom, Pearce and Stuckey, 2019). Hyper- and superspectral mine face
scanning can be utilized as a tool to increase the certainty for mined ore grade. This can assist by
maximizing the level of contaminants while remaining below upper limits in order to prolong the life
of the mine. It ensures a correct ore-grade based stockpiling and minimizes the re-handling of material
by correct deposition at stockpiles, processing plants or waste dumps. Built-in as real-time “vision”
monitors into equipment, systems like these can optimize shovel allocation and excavator location and
keep machinery movement at an optimum. Blasted mine faces will not only be evaluated in real-time
for excavator activities but the mine face mapping will allow a precise modeling of extractive activities
for the subsequent mine faces. By reducing misclassifications (in which waste is sent to the processing
and ore to the waste dumps), the total operating cost can be minimized.

In terms of energy consumption from mine to comminution, milling and material handling diesel
account for the biggest consumers in a mine with 40% and 17% of respectively of total energy
consumption (Lessard, De Bakker and McHugh, 2014). Ore sorting technologies operating on the run-
of-mine (ROM) stream can reduce the energy consumption by distinguishing the valuable material
from the waste material. The ROM stream represents material of a size around 5cm that has been
through preliminary, relatively low energy, crushing operations. An example from a molybdenum mine
from (Lessard, De Bakker and McHugh, 2014) showed that 90% of the molybdenum was found in 7.4%
of the mass of stone. By rejecting rocks below a certain cut-off grade and classifying them as waste,
not only the material handling could be minimized but also, the energy consumption per ton of
valuable ore could be reduced dramatically. The study by (Lessard, De Bakker and McHugh, 2014) used
dual-energy X-ray transmission studies in order to sense the whole rock volume, but the reduction of
transported material by sorting for base metals and industrial metals by VNIR, SWIR and TIR can also
be applied to this assumption. These sensors identify the outermost few micrometers of the surface
and thereby do not represent the whole rock volume. They do however work without the need of an

active X-Ray source and decrease the associated risk.
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Figure 2 Lassonde Curve: Life cycle of a mine, connected risks and the possible implementations of remote sensing,
modified from LePan (2019), created by Friederike Koerting as promotional material for rad.Data Spectral Analytics UG.

In order to implement hyper- and superspectral sensors into the open pit mining environments, a few

challenges have to be addressed. A non-extensive list of requirements for hyper- or superspectral open

pit monitoring systems are listed in Table 2.

Table 2 Challenges and requirements of the open pit mining industry for hyper- or superspectral monitoring.

#| Challenges Development of Solution
1| Ruggedness Protective casing, dust-proof ventilation, GUI adjusted to outdoor conditions
& handling with Personal Protective Equipment
2| Speed of Sensor Optimal balance between spectral bands and spatial resolution to keep pace
and Analysis with the dynamics of mining operations; reduction of sensor complexity to
decrease acquisition and analysis times; near-real time decision making
3| Spatial Resolution | Resulting grid resolution adjustable or matching with common grids used for
geological mapping and modeling in mining operations
4| Site Specific Sensor can be calibrated with site-specific spectral reference libraries for use
Analysis along mine life cycle; adaptable to new or multiple operations; sensors
spectral resolution and range adapted to the deposit type
5| Size & Weight Sensor weight and UAVs that do not require special pilot, Sensors can be
safely handled by one person.
6| Power Battery and UAV optimization with respect to needed measurement and flight
Consumption times and needed monitoring frequency
7| Cooling Efficient and dust-proof cooling system to withstand high temperatures
8| Albedo Correction | Automated pre-processing of data, at-sensor reflectance retrieval and feature
retrieval enabling faster, flexible and easy to analyze datasets
9| Humidity & Dust Spectrally inactive, easy to replace hardware filters against dust and wear on
the lens
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Spectroscopy

In order to make advances towards those requirements, this work discusses the simplification of the
spectral dimensions of the data (theoretical hardware/ sensor development), the speed of data
acquisition, processing and analysis (comparison of methods and application of different spectral
regions) and to discuss how the demands for mining environments can be met by hardware or

software adaptations in the future.

2.2 Important definitions

As the terminology for remote sensing is used with a variety of slightly different meanings in the
community but is rather unknown outside of it, the main terms are described here for the context of

this work.

2.2.1 Spectroscopy

Minerals absorb and scatter incident light characteristically and can thus be distinguished from each
other. Minerals absorb photons by a variety of processes, which are wavelength dependent (Clark,
1999). Spectroscopy describes the study of light as a function of wavelength. Spectrum refers to a plot
of the intensity of reflection (y) as a function of wavelength (x) (Hunt, 1989). Spectroscopy can be
applied to crystalline and amorphous materials alike and is sensitive to the chemical bonds in the
material and the crystalline structure and the texture of the surface. Simplified, minerals can be
identified by the position and shape of their absorption feature and semi-quantified by the depth of
this feature (Figure 3). The differing chemical composition leads to position shifts and shape changes
of the spectral features and makes them a complex study object. By identifying these changes and
shifts, not only small changes of chemistry in the rock can be defined, but also some proxies for

elements and substitution of elements in one mineral (Clark, 1999).
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Figure 3 Simplified representation of the information contained in hyperspectral imagery (Kérting, 2019).

Multispectral imaging collects the incoming signal in a small number of specific wavelength ranges so
called “bands” (typically between 3-15) along the electromagnetic spectrum. Hyperspectral imaging
collects the incoming light within narrow, consecutive, overlapping wavelength ranges (between 100
and 500+ bands). Due to the narrow, overlapping nature of the bands, narrow spectral absorption
features can be resolved. Superspectral imagery is a term loosely describing imagery with band
numbers between the multi- and hyperspectral resolution (between 15 and 100 bands). Superspectral
imagery is able to distinguish broad spectral features (e.g. iron absorptions) but does not resolve
narrow features. Figure 4 shows a comparison of bandwidths and numbers of hyper-, super- and
multispectral data. For multispectral data, the Sentinel-2 spectral resolution is shown as an example
and the hyperspectral data is shown schematically. The superspectral sensor example shows
schematically how the band distribution of a VNIR-40nm bandwidth and SWIR-15nm bandwidth sensor

would look like that does not collect spectral bands in the wavelength range that is influenced by
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Wavelength ranges

atmospheric absorptions (ca. 1300-2010nm). Additionally, the superspectral WorldView-3 satellite
band setting is shown as an example for one exisiting superspectral sensor. The bands are shown

without the overlap to distinguish the different width of the individual bands.
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Figure 4 Schematic visualization of bandwidth and band number differences between hyper-, super- and multispectral

sensors.

2.2.2 Wavelength ranges

For geological remote sensing, the following wavelength ranges are of importance (Figure 5): the
visible light (VIS 0.4 — 0.7um) the near-infrared energy (NIR) from 0.7 — 1.0um, the middle-infrared
region (in remote sensing often referred to as shortwave-infrared SWIR) which spans from 1.0 — 2.5 or
3um and the thermal infrared (TIR) with two useful ranges at 3 — 5um and 8 —14um (Jensen, 2010). In

this work, the VNIR (0.4 — 1.0um) and the SWIR (1.0 — 2.5um) are focused on, as the HySpex system

for laboratory  and outcrop scans is active in  this  wavelength range.
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Figure 5 The electromagnetic spectrum and the different types of interactions between EMR and material (Korting,

2019).
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2.2.3 Terms of spectroscopic systems

Imaging spectrometers can produce a 3D cube with two spatial dimensions and a third dimension in
the spectral range. The spectral range describes the region of wavelengths in which the sensor is able
to collect quasi-continuously data. Data is being collected in defined spectral “channels” or “bands” of
a certain bandwidth and sensitivity. The HySpex VNIR and SWIR system for example collects the
spectral information in 408 bands in a spectral range from 414nm to 2498nm. The spectral bandwidth
is the region of wavelengths of each individual channel in the spectrometer. In an ideal system, each
channel collects only the light from a narrow wavelength range and rejects the rest. Only with
continuously spaced, narrow bands adjacent to each other and overlapping, narrow absorption
features can be detected. The full-width at half maximum (FWHM) spectral response of a spectrometer
defines the width of the bandpass (Swayze et al., 2003). The distance in wavelengths between the
centers of adjacent spectral channels is called spectral sampling. The HySpex VNIR sensor collects 160
spectral bands in the range of 414 — 1000nm with a spectral sampling of 3.7nm. The HySpex SWIR
collects from 1000 — 2498nm in 256 bands with a sampling of 6.25nm. And finally, the signal-to-noise
ratio (SNR) is defined as the mean signal level divided by one standard deviation of the signal variety
or noise (Swayze et al., 2003). To record details in the spectrum, the SNR has to be high enough to
detect the spectral features of interest. The spectral bandwidth and the intensity of light reflected or

emitted from the surface influence the SNR (Clark, 1999).

In a grating imaging spectrometer - as the HySpex sensors used in this work - the spectral sampling is
set by the geometry of the sensor. The dispersion of the grating of the prism, the focal length of the
camera and the spacing of the adjacent centers of the detector elements affect the spectral sampling.
The bandpass can be affected by the interplay between the sensor geometry, optical deviations and
diffraction (Swayze et al., 2003). The maximum information is already obtained by a sampling interval
at half the FWHM, as stated in the Nyquist theorem (“critical sampling”). The dominant bandpass in
spectrometers is designed to have a Gaussian profile (Clark, 1999), as a Gaussian of varying order
optimally approximate the band related spectral sensitivity and allows a quasi-continuous spectrum of
spectrally adjacent bands at their FWHM. Figure 6 shows the simplified optical system of the HySpex
sensors ((hyspex.no/products/disc.php, 2019).
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Figure 6 The simplified HySpex optical system after (Korting, 2019) modified from (hyspex.no/products/disc.php, 2019).

2.2.4 Outcrop/ Mine face scanning

The terms “outcrop” and “mine face” are used interchangeably and describe near-vertical man-made
cliff faces in the mining environment produced by extraction of material. Depending on the scale of
the mining project, the scales of these vertical cliff faces may vary, in general each horizon of extraction

spans around 10-20m of height.

Outcrop scanning refers to the data acquisition of hyperspectral imagery from a distance. As the line
scanners of the used sensor are moved line-by-line across the outcrop face by a rotation system, the
outcrop is “scanned” hyperspectrally. Hyperspectral data can either be acquired by point
spectrometers sampling one spectrum per location/ sample or by hyperspectral imaging
spectrometers. Hyperspectral imagery (HSI) is referred to as a data cube with three dimensions (the
spatial x- and y- dimensions and the third spectral dimension). Each pixel of the resulting image

represents the full spectral information for said location on the outcrop face.

2.2.5 Hyperspectral mapping

Hyperspectral maps are the analysis result of hyperspectral imaging. Each pixel and spectrum of the
hyperspectral scan can be analyzed and compared based on its spectral information. The term
“mapping” is used for the final result of the analysis, usually a color-coded representation of the
expected materials within the hyperspectral scan. The most common result is a hard classifier map in

which each pixel is labeled and color-coded.
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2.3 Introduction to remote sensing principles

In order to use the information from the reflection of any given surface and to extract geological
information from it, the way electromagnetic radiation interacts with the surface has to be considered.
Hunt (1989) gives a brilliant introduction to the topic in his book chapter “Spectroscopic Properties of
Rocks and Minerals” and focuses on the origin of the spectral signatures of rocks and minerals. In the
following section a brief introduction to the physical principles of hyperspectral imaging (HSI) remote
sensing will be given, in order to facilitate an understanding of the pros and cons of the method, this
is based on Clark (1999) and Hunt (1989). The acquisition of information without direct contact to the
object is one of the main advantages of remote sensing. HSI remote sensing describes the way of
capturing whole image scenes in which each pixel represents a continuous spectrum of light in the
given sensor ranges. From the light source to the object of measurement and to the collection in the
sensor, the energy recorded by a remote sensing system is changed in many different ways. For passive
satellite remote sensing the main energy source is the sun. The incoming energy is scattered, absorbed,
transmitted and reflected first by particles in the atmosphere and then by the Earth’s surface and
interacts again with the atmosphere on its way to the sensor. In the sensor, the incoming light is
dispersed, filtered and interacts with the detectors (Jensen, 2010). The light source, the travel path
and the surface interactions define the energy that is collected by the sensor, each will be explained

in more detail below.

2.3.1 Electromagnetic radiation

Electromagnetic radiation (EMR) has different sources of creation. Radioactive decay, energy level
changes in electrons, electrical charge acceleration or thermal interactions and motion in molecules
are mechanisms for EMR creation. The wave nature of EMR was described by James Clerk Maxwell’s
wave model of EMR in the 1860s, whereas the explanation for the particulate nature of EMR is based
on Sir Isaac Newton’s particle model from 1704 which is explained later on (Jensen, 2010). EMR can

be characterized by its wavelength A and its frequency u, both are related (see Equation 1).

Equation 1 Relationship between wavelength and frequency of EMR

c=

c is the speed of light, constant at 299,792,458 m/s (Jensen, 2010).

All objects above absolute zero (0K or -273°C) emit electromagnetic energy. The sun is the main source
of energy in remote sensing systems. Simplified, the sun is equivalent of a blackbody with a
temperature of 5700K. A blackbody emits energy with perfect efficiency and radiates energy at the

maximum possible rate per unit area at each wavelength (Jensen, 2010). Temperature variations are
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the only influence on its efficiency as a radiator. Kirchoff’s law states the energy preservation in such
a blackbody, meaning the ratio of absorbed radiation and emitted radiation is equal (Campbell and
Randolph, 2011). The Stefan-Boltzmann law defines the relationship between the total emitted
radiation from a blackbody and its absolute temperature (Equation 2). The higher the temperature of
an object, the higher is the amount of radiated energy by the object and the shorter the wavelength

of the radiation peak.

Equation 2 Stefan-Boltzmann law describing the total emitted radiation from a blackbody M (A)

M(A) =0 xT*

o is the Stefan-Boltzmann constant (5.6697 x 10®Wm™2K*) and T is the absolute temperature [K]

(Jensen, 2010).

The sun produces a continuous spectrum of electromagnetic radiation from very short wavelengths,
very high frequency gamma and cosmic waves to very long wavelength, very low frequency radio
waves. Wien’s displacement law defines the wavelength of maximum emission, which is in
dependence to the absolute temperature of the object (Equation 3). The sun with a temperature of

around 6000K has its dominant wavelength at 0.483um (Jensen, 2010).

Equation 3 Wien's displacement law

k
t

Amax

where k is a constant (2898K um K) and T is the absolute temperature [K] (Jensen, 2010).

EMR cannot only be described as a wave, but EMR is also transmitted as a stream of indivisible particles
traveling in a straight line. Sir Isaac Newton was the first to recognize the dual nature of light and the
discrete and continuous behavior of electromagnetic radiation (Campbell and Randolph, 2011). Niels
Bohr and Max Planck discovered that EMR is absorbed and emitted in discrete units or packages of
energy called "photon" or "quanta". They proposed the "quantum theory" of electromagnetic

radiation (Equation 4).

Equation 4 Quantum energy expressed by the frequency of radiation and the Planck constant

Q=hv

where Q is the energy of a quantum [J], h is the Planck constant (6.626 x 103* Js) and v is the frequency

of the radiation [Hz].

13



14

Introduction

Spectral sensors collect the number of photons that are emitted or reflected per wavelengths by the
material in each measured ground pixel. The type of reflecting surface varies. Specular reflection occurs
from smooth reflecting surfaces where the reflected energy leaves the surface at an equal angle but
opposite to the incident energy. Calm water bodies are near-perfect specular reflectors. If the surface
exhibits a large surface height compared to the size of the wavelength of the incident energy (rough
surfaces), the energy is reflected in many directions. This is called diffuse reflection. For perfect diffuse
reflectors the “Lambertian surfaces” the reflected energy leaving the surface is constant for any angle

of reflectance (Jensen, 2010).

The time rate of flow of energy through, off of and onto a surface is called radiant flux (®) [W] (Jensen,
2010). The exact monitoring of the incident radiant flux characteristics and its interaction with the
surface allow a characterization of the surface itself. The radiation budget equation (Equation 5) states
that the total amount of radiant flux in specific wavelengths incident to the terrain (®Dn) is the total
amount of the radiant flux reflected from, absorbed by and transmitted through the surface (Jensen,

2010).

Equation 5 Radiation budget equation

¢il = q)reflected 2t (pabsorbed 2t (ptransmitted A
By dividing each variable by the original incident radiant flux (®a), Equation 5 can be rewritten as:

Equation 6 Raditation budget equation (2)

reflected; + absorbed); + transmitted; =1

Kirchoff found that in the infrared portions of a spectrum the spectral emissivity (g) equals its spectral
absorbance (o)), often stated as “good absorbers are good emitters and good reflectors are poor

emitters” (Jensen, 2010)(Equation 6).

Equation 7 Kirchoff's law

a, = &

Spectral sensors collect the number of photons that are emitted or reflected per wavelengths. The
photons are collected by the sensor in raw digital numbers (DN) format. The DN values are transformed
into radiance values [W x sr! x m? x nm?] using manufacturer predefined sensor characteristic
radiometric calibration coefficients. Radiance expresses the emitted energy per time unit from a
specific direction of an area unit. The collected photons are made up from the total amount of radiance

exiting the target study area (L) and additional radiance from different paths that are in the field of
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view (FOV) of the sensors (path radiance L,) (Jensen, 2010). The total radiance collected at the sensor

(Ls) can be described as seen in Equation 8.

Equation 8 Total radiance recorded by the sensor.

LS= LT+ Lp

Lp describes all radiance that intercepts the radiance exiting the target study area, either from
neighboring areas or from scattering within the reflectance path from target to sensor (e.g. scattering
of the reflected energy by dust particles or molecules within the atmosphere before it is collected by
the sensor) (Jensen, 2010). The path radiance can have a high impact on the collected radiance at the
sensors and distort the true signal of a measured target surface. This holds especially true for proximal
remote sensing with a high amount of possible neighboring reflectors from concave surface trends e.g.

in open pit mines with concave mine face increments.

The collected data is transformed from radiance to reflectance by calculating the ratio of incident
radiance (irradiance) and the backscattered, collected radiance of the surface. It aims to make use only
of the material information independent from the source of energy. For near-field spectral data
collection (e.g. measuring a mine face within a 100m distance) the influence of Lp is usually seen as

negligible.

2.3.2 Interaction with the surface

The main focus of surface reflectance retrieval is to characterize the interaction of the EMR with the
surface of interest and the resulting flux of energy. In the application for the field of geology the matter
interacting with the incoming radiation are rocks and minerals, depending on the spatial resolution of
the measurement and the size of crystallization. Rocks are an assemblage of minerals; The individual
mineral grains can be interlocked by growth patterns or cemented together by fine-grained minerals
(often silica or calcium carbonate). Most rock surfaces consist of a variety of grain sizes and minerals,
all of which influence the interaction with the incoming EMR in a different manner (Clark, 1999; Jensen,
2010). The interaction of the incoming light or radiant flux in a specific wavelength with the matter can
reveal important information about the matter itself. If the reflection, absorption or transmittance
through a surface dominates in this interaction is dependent on the nature of the surface, the angle of

illumination and the wavelength of the EMR (Jensen, 2010).
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On the rock or mineral scale, photons of incident light are reflected from the grain surface or pass
through the surface and onto another mineral grain (refracted). Those particles are referred to as
"scattered". The scattered photons can find their way onto another mineral grain or can be scattered
away from the surface where they might be collected and measured by a remote sensing device
(Jensen, 2010). A mineral grain can also absorb the photons. Each mineral at a temperature above
absolute zero will additionally actively emit electromagnetic energy at certain wavelengths. Generally
though, in laboratory experiments enough light is directed at the sample and the amount of photons
emitted by the material can be neglected (Clark, 1999). At the outcrop scale, especially for a concave
situation of an observer as in the open pit environment, adjacent effects of scattered EMR over
multiple surfaces, topography induced illumination differences and diffuse illumination leading to
multiple surface-light interactions can play an important role in altering the signal before reaching the
detector and challenge the pre-processing and reflectance retrieval of the collected data (Kurz, Buckley

and Howell, 2013; Lorenz et al., 2018).

2.3.3 Spectra of materials

The spectra of materials are affected by different factors, inherent to the material as the molecular
composition and state of crystallization, and external factors that are caused by surrounding factors
as the atmosphere or topographic shadows. Absorption features in satellite remote sensing are highly
influenced by the atmospheric particles causing scattering, transmission and absorption. As this work
is based in the near field range and on laboratory work, the distance from sensor to object of interest
is kept small and an atmospheric correction of the data is not needed (Kurz, Buckley and Howell, 2013;
Jakob, Zimmermann and Gloaguen, 2017; Lorenz et al., 2018). The measurements are nevertheless
depending on the sun as a light source, therefore the absorption features of the atmosphere play a
role in restricting the incoming energy in the wavelength regions of the atmospheric windows where
the EMR is transmitted. Most absorptions of EMR in the atmosphere occur due to ozone, oxygen,
carbon-dioxide and water (Clark, 1999). Figure 7 from Jensen (2010) shows the absorption of the Sun’s
incident EMR in the region from 0.1 to 30um by various atmospheric gases and the cumulative result
of all atmospheric constituents comparing the solar radiation at the top of the atmosphere and at sea

level.
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Figure 7 Solar irradiation and absorption of various atmospheric gases at the top of the atmosphere and at sea level,
from Jensen (2010).

2.3.3.1 Absorption features and their causes

As mentioned before, different materials show different characteristic spectra due to different
reactions to the incoming light on a molecular and atomic level. Absorption bands are created due to
the change of energy state when a photon of a specific wavelength is absorbed or emitted. When an
isolated atom or ion with a discrete energy state absorbs a photon its energy state changes. The energy
emitted due to this process is not equal to the energy of absorption, causing emission at a different
wavelength and creating “absorption bands” or “absorption features”. Their position, depth and width
are due to the different absorption processes taking place, the absorbing ion or molecule and its
position in the crystal lattice, the kind of chemical bond and the elements involved. These absorption

features the VNIR wavelength region (400 to 1000nm) are caused by electronic and vibrational
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processes within the crystal lattice in. Electronic processes require higher energies and therefore cause
broad absorption features in the shorter wavelengths of the VNIR. Vibrational processes take place in
the infrared regions (SWIR (1000 to 2500nm) and thermal regions (1.2 to 40+um)) and cause sharp,
small absorption features (Hunt, 1989; Clark, 1999) In the case of minerals, only hyperspectral sensors
with a spectral bandwidth resolution of approximately 10nm or less can capture the very fine

differences in reflectance at certain wavelength positions (Jensen, 2011).

2.3.3.2 Electronic processes

Absorption features related to electronic transition processes can be caused by crystal field effects,
charge transfer absorption, conduction band transitions and color centers. The most common
electronic process is related to unfilled electron shells of transition elements such as Cu, Ni, Cr, Ti, Co
and especially Fe (Hunt, 1989; Jensen, 2010). These transition metal ions have discreet energy states.
The absorption of a photon of a certain wavelength results in a jump into a higher energy state, this is
called crystal field effect. The transition between these new energy levels is determined by the
oxidation state of the ion (e.g. Fe?* vs. Fe**), it’s coordination number, it’s position in the crystal lattice
and the type of connected ligand (Hunt, 1989; Kurz, 2011). The absorption of a photon of a certain
wavelength does not usually cause the emission of the photon of the same wavelength. Variations in
the crystal structure in minerals cause a variety of different absorption features (position, depth,
width) even when the same ion is involved (Clark, 1999). An exception is the group of rare earth (REE)
ions. The electrons lie deep and are shielded from the surrounding crystal field. The absorption
features in REEs are diagnostic for the presence of the ion in the mineral and not the mineralogy. On
the contrary, iron is a very common substitute element with very active bonding in the crystal lattice
in the VNIR and SWIR. Even low iron concentrations cause broad absorption features and often
dominate the spectral feature range of a material, not being diagnostic for iron presence in the mineral
but rather in the wider mineralogical scale (Kurz, 2011). Absorbed energy can also cause the migration
of an electron between neighboring ions or ions and ligands. This process is called charge transfer
absorptions (Hunt, 1989). This occurs preferably when metal ions with different oxidation states are
present in a mineral. Those absorption bands are usually diagnostic of the mineralogy and are stronger
developed than those of the crystal field (Clark, 1999). The absorption maxima is found in the
ultraviolet range but the edges extend towards the VNIR region (Kurz, 2011). Some minerals have two
energy levels in which the electrons reside. The “valence bands” represent lower energy levels with
atom-attached electrons. The "conduction band" is a level of higher energy in which the electrons
move freely through the lattice. These two zones are separated by the “forbidden gap” or “band gap”
a zone of energies which the electrons may not enter (Clark, 1999). The edge of the conduction band

to the band gap shows an intense absorption edge in the VNIR (Hunt, 1989). The yellow color of some
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minerals, e.g. sulfur is caused by such an absorption edge (Clark, 1999). This electronic process of
exciting an electron across the forbidden gap is called conduction band transition. The fourth
electronic process in minerals is called color centers. Those are discrete energy levels of excited
electrons bound to lattice defects e.g. impurities. The energy of a photon can move electrons into the

defect and causes an absorption (Hunt, 1989; Kurz, 2011).

2.3.3.3 Vibrational processes

The presence of different chemical bonds in a molecule or crystal lattice can cause the system to
displace atoms within this lattice. This is causing a vibration similar to the oscillation of weights
connected by a spring. The frequency of vibration depends on the strength of the bond in the molecule
and the mass of each element in a molecule (Clark, 1999). The vibration is made up from a restricted
number of simple motions the so-called fundamentals (Hunt, 1989). In general, the fundamentals
produce spectral features at wavelengths longer than 2.7um. If a fundamental mode is excited with
more than 1 quanta of energy it produces vibrations with frequencies of integer multiplications of the
fundamental frequencies, called overtones. When two or more fundamentals or overtones interact —
are added or subtracted - a combination tone feature occurs. Features of geologic materials caused
by overtones or combinations usually occur in the NIR region of light (Hunt, 1989). Carbonate ions,
hydroxyl ions and water in a material for example show overtones and combination tones with very
high fundamental frequencies. H,O has 3 fundamental vibrations, two caused by the symmetric OH
stretch and one by the H O H bent (2.738um, 2.553um and 6.270um respectively). H.O bearing
minerals show the overtones of water in their reflectance spectra. The OH stretch overtones occur at
about 1.4um and the H O H bend and OH stretch combinations are found near 1.9um. The occurrence

of an absorption feature at 1.4um but not at 1.9um indicates the existence of hydroxyl (Clark, 1999).

2.3.4 Spectral properties of rocks and minerals

The spectrum of a rock is not as well defined as the spectra of its constituents as it is a mixture of
overlapping and substituting minerals and elements. The features appear muted and minor
constituents, impurities or substitutions often dominate the spectral appearance of a rock, allowing
only a qualitative determination of its mineral assemblage but not its quantities within the rock matrix
(Hunt, 1989). This is complicated by the fact that some minerals such a quartz and feldspar do not
possess absorption features in the VNIR and SWIR region of light, whereas others as iron ions, organic
material and hydroxyl ions dominate the spectrum and hide identifiable features of other constituent
minerals. Generally, the identification of proxy minerals for a rock unit or area of interest enables the
mapping of regions in a sample or outcrop instead of providing a detailed analysis of a petrographic

manner. The proxy minerals that need to be matched to the unknown spectra are usually provided by
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a number of accessible spectral libraries or can be built based on field samples or in-situ handheld
spectroscopy. The spectral signatures of minerals and rocks have been studied widely and are
presented in a number of works Clark (1999, 2003a), Hunt (1989), Hunt and Ashley (1979) and Swayze
et al. (2003). The currently most distributed libraries of spectra is provided by the USGS as the USGS
Spectral Library splibO6a and splib07a (Clark et al., 2007; Kokaly et al., 2017). These spectra are usually
based on powdered mineral samples, are measured with different spectrometers and are available
online. | have contributed to the goal of making spectral libraries publicly available by publishing
spectra of materials and their corresponding geochemical analysis (Koellner et al., 2019; Koerting,

Herrmann, et al., 2019; Koerting, Rogass, et al., 2019).

2.3.5 Influencing factors for the spectral response

As already summarized in Kurz (2011), this paragraph summarizes his findings and adds to them.
Most of the factors influencing and modifying the spectral curve of rocks and minerals affect the
overall brightness and contrast and do not shift the absorption features. Some of these properties are
visible in the laboratory, such as the effect of porosity (Hapke, 2008) but are negligible in the outcrop
scale due to low spatial resolution and a high noise level (Kurz, 2011; Hapke, 2012). The particle size,
mineral mixture, view geometry and surface roughness might alter the spectral curve. This is especially
true for outcrop imagery due to large mixed pixels (mineral mixes and surface coatings) and a higher
surface roughness (Hapke, 1981, 2012; Hapke and Wells, 1981). As stated earlier, the depth of the
absorption feature is an indicator for the amount of light absorbed and is therefore a semi-quantitative
measure for the abundance of the absorber (Clark, 1999). In non-opaque material, the intensity of
absorption increases with grain or particle size, whereas the overall reflectance decreases. This is due
to greater internal path travelled by the EMR in larger particles (Clark, 1999, 2003a).

Mixtures of materials (mineral mixtures and grain size mixtures) alter the spectral response.
We distinguish four different types of spectral mixtures: linear -, intimate -, molecular mixture and
mixing due to coating (Clark, 1999; Kurz et al., 2012). Optically separate materials without multiple
scattering between components result in a linear mixture. In this spatial mixture, the mixed spectrum
is a linearly weighted sum of the individual components. In this kind of areal mixture, brighter
components tend to dominate the spectrum (Clark, 2003a). Intimate mixtures are characterized by
multiple scattering between materials with ingrown material borders, as is the case for minerals in a
rock. The result is a complex non-linear mixed spectrum. Here, the darker of the two spectral
components tends to dominate the spectrum (Clark, 2003a). Molecular mixtures occur at molecular
levels, for example when liquids or liquids-solids are mixed. Examples would be interlayered water in
clays or on a bigger scale debris- or mudflows. Molecular mixtures result in band shifts in the spectrum.

Coating leads to several scattering-transmittance layers for each coat, with different optical
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thicknesses and material dependent absorption properties. Coating effects are to be expected in a
mining environment due to work related settling dust and fresh reactive surfaces prone for oxidation.
If each component in the mix is known and a spatial separation of different materials can be assumed,
linear spectral unmixing can determine the fraction of each component present in the pixel as e.g.

done by the EnGeoMap algorithm (Mielke et al., 2016).

2.4 Hyperspectral mine face scanning

Hyperspectral geological applications have been developed in big jumps over the past decades in the
large field of remote sensing applications, as the development is both based on the innovation of
technology and the era of machine learning and algorithm development. The most common platforms
for geological hyperspectral applications include multispectral satellite-based and airborne imagery
(van der Meer et al., 2012, 2002; Kruse, 2003; Bellian, Beck and Kerans, 2007; Bedini, 2011; Kokaly,
King and Hoefen, 2011; Savage, Levy and Jones, 2012; Ngcofe et al., 2013; Mielke et al., 2014; Notesco
et al., 2014; Yokoya, Chan and Segl, 2016; Kokaly, Graham, et al., 2016). Laboratory scale hyperspectral
geological analyses were conducted to build precise spectral libraries (Clark et al., 2007; Baldridge et
al., 2009; Koellner et al., 2019; Koerting, Herrmann, et al., 2019; Koerting, Rogass, et al., 2019;
Meerdink et al., 2019) and to characterize hand specimen and drill cores in spatially high resolution
imagery (Kruse et al., 2011; Zaini, van der Meer and van der Werff, 2014; Koerting et al., 2015; Hierold,
2016; Korting, 2019; Kraal and Ayling, 2019). In the last decade, the first studies were conducted on
hyperspectral outcrop scanning (Kurz et al., 2008, 2012; Kruse et al., 2011; Kurz, 2011; Buckley, Kurz
and Schneider, 2012; Boesche, 2015; Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al., 2018) and
only a few of them focus purely on the context of mining or aim at robust and cost-efficient
technological developments to improve mining efficiency and security. (Krupnik and Khan, 2019)
review the close-range, ground-based hyperspectral studies for mining applications thoroughly in their
article from 2019, their findings are summarized below and added to. As this work is focused on raw
material mapping, only details of studies that deal with mineral exploration, sedimentology and

diagenesis are being shared here.

2.4.1 Research Groups and predominant methodology

Several working groups led advances in geological HSI in the past; a few of them are stated below. As
a short disclaimer: the author realizes that the list and the respective research is subjective and hardly
extensive to all groups focused on this topic and has a bias towards European and Northern American

research groups. Itis only used to introduce current state-of-the-art approaches. Even though the eight
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groups listed below are representative of the geological proximal remote sensing community they are

by no means covering the wide range of research activity in that field.

1) The scientific group around Prof. Dr. van der Meer and Dr. van Ruitenbeek, from the Department
of Earth Systems Analysis of the University of Twente. Van der Meer’s group works in several scales
from infrared rock mineralogy and microstructure to broad satellite imagery analysis for hydrothermal
structure detection. Hyperspectral efforts were focused on non-imaging point-spectrometers and
spectral analysis of sample spectra (van der Meer et al., 2012; Dalm et al., 2014; Zaini, van der Meer
and van der Werff, 2014; Dalm, Buxton and van Ruitenbeek, 2017; Hecker et al., 2019) but also
ventured into SWIR imaging of porphyry copper related samples (Dalm, Buxton and van Ruitenbeek,
2017) where spectral angle mapping (SAM) based on manually selected sample spectra and Minimum
Wavelength Mapping (MWL) are used to assess white mica composition, white mica crystallinity and
chlorite composition.

2) The division Exploration Technology at the Helmholtz-Institute Freiberg for Resource Technology
led by Dr. Richard Gloaguen, which focuses on multi-scale activities and UAV based remote sensing.
They proposed new correction approaches for reflectance retrieval as well as geometric correction of
the data based on LiDAR and RGB-photos for close- and long-range applications (Rosa et al., 2016;
Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al., 2018). The mapping approaches include: Deriving
spectral libraries of lithological endmembers (EMs) by pixel purity (PPl) EM extraction and visual EM
spectral analysis of outcrop image- and from point-spectrometer sampling (Kirsch et al., 2018; Salehi
et al., 2018). Laboratory-collected freely available spectral libraries as the USGS Spectral Library
(Kokaly et al., 2017) are also used (Kirsch et al., 2018). These spectral libraries are then utilized for
SAM. Additionally, minimum and maximum “peak” wavelength mapping of various wavelength ranges
is performed with the Hyperspectral Python (HypPy) toolbox (van der Meer et al., 2018; Bakker and
Oosthoek, 2020). MWL is performed in order to highlight variations in mineral abundances in the
outcrop image. Some studies also include a minimum wavelength depth mapping (Lorenz et al., 2018).
Band ratio determination for mica crystallinity index mapping is also part of the analysis. For the LWIR
data, a random forest classification is performed based on abundance features retrieved from the
lithological EM extraction (Kirsch et al., 2018).

3) The hyperspectral imaging group lead by Benoit Rivard at the University of Alberta works on HSI
techniques for mineral exploration. Even though their focus is on airborne remote sensing, they
advanced VNIR-SWIR lithological mapping efforts, REE mineral, crude oil and shale mapping in
outcrops and samples via imaging HSI (Rogge et al., 2014; Turner, Rivard and Groat, 2014; Scafutto, de

Souza Filho and Rivard, 2016; Entezari et al., 2017; Feng, Rogge and Rivard, 2018). Only recently, large
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amounts of samples and drill cores from a Cu porphyry deposit were analyzed with the purpose of
applying the found metric for distinction to facilitate ore-sorting in a controlled environment
(Lypaczewski et al., 2019, 2020). The proposed spectral alteration score has been developed for SWIR
HSI. HSI of this group has been studied with an emphasis on the applicability for northern regions and
tropical forests.

4) The Remote Sensing Unit of the Czech Republic Survey around Veronika Kopackova-Strnadova
focuses on soil parameter mapping and monitoring mainly from airborne or satellite-based
hyperspectral sensors (Kopackova et al., 2012; Notesco et al., 2014; van der Meer et al., 2018).

5) The United States Geological Survey (USGS) Geological and Mineral Mapping around Gregg A.
Swayze, Raymond Kokaly and Roger N. Clark (formerly USGS, now the non-profit “Planetary Science
Institute”) (Clark, Swayze and Gallagher, 1992; Kokaly, King and Hoefen, 2011; King et al., 2012; Swayze
et al., 2014). The USGS was among the first to approach geological hyperspectral mapping and
ventured into long-range HSI for tests on outcrops in Alaska (Kokaly, Graham, et al., 2016; Kokaly,
Hoefen, et al., 2016). Their approach is based on the Material Identification and Classification
Algorithm MICA (Kokaly, King and Hoefen, 2011) and the Tetracorder (Clark, 2003a) as a tool to map
the mineral assemblages of VNIR-SWIR airborne, SWIR ground-based and VNIR-SWIR laboratory data.
6) The geological remote sensing efforts at the Rio Tinto Centre for Mine Automation at the University
of Sydney, centered around Richard Murphy, who is also affiliated with Plotlogic Pty Ltd, and Sven
Schneider who led some of the efforts during his Ph.D. (Schneider et al., 2011). Plotlogic Pty Ltd. is a
supplier of Al-based ore characterization technology (im-mining.com/2020/04/30/plotlogic-raises-
profile-funds-bhp-iron-ore-contract/ and Gleeson, 2020). The group concentrates on the topic of
autonomous mapping of mine face geology in combination with LIDAR based 3D-modeling of open pit
surfaces (Murphy, Monteiro and Schneider, 2012; Monteiro et al., 2013; Murphy et al., 2015).
Regarding vertical geological mapping, SAM was found superior to Support Vector Machine (SVM)
approaches for shadowed surfaces that are common in natural surface geometries (Murphy, Monteiro
and Schneider, 2012). Their take on the influence of incident illumination for the classification is worth
considering for the irregular surfaces vertical geology mapping has to deal with (Schneider et al., 2011).
7) And then there is the group “GEOMAP”, the working group of the author, under Dr. Christian Mielke,
formerly formed by Dr. Christian Rogass from the Helmholtz Centre Potsdam - German Research
Centre of Geosciences GFZ Potsdam (GFZ). The group leads the geological, algorithm developments
for the German satellite mission EnMap (Guanter et al., 2015). Within the EnMapBox, a geometric hull
continuum removal and feature extraction was developed by Rogass and Mielke starting in 2013
(Rogass et al., 2013; Mielke et al., 2015, 2016, 2018). This EnGeoMap algorithm was used for the

geological mapping in the GEOMAP group and is showcased for outcrops and laboratory samples e.g.
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in the Rare Earth Element Mapping report by Kéllner et al. (2019). For REE detection, multi-temporal
averaging was applied to reduce noise and Richardson-Lucy de-convolution in order to sharpen the
small REE absorption features was utilized (Boesche, 2015). The MICA algorithm (Kokaly, 2011) was
successfully applied on drill core characterization and compared to the EnGeoMap results (Hierold,
2016; Korting, 2019). These mapping and characterization approaches are currently developed further
in the scientific projects: “Remote Monitoring of Tailings using satellite and drones” (REMON)
(Koellner, 2020) and “Lightweight Integrated Ground and Airborne Hyperspectral Topological
Solution” (LIGHTS) (lights.univ-lorraine.fr/, 2020). Multispectral and superspectral mapping
approaches are currently being developed for the REMON project, including the here presented
“Binary Feature Fitting” (BFF) (Kollner et al., 2020; Mielke et al., 2020). The GFZ spin-off “rad. Data
Spectral Analytics UG” which the author co-founded, advanced the BFF and EnGeoMap algorithms
further to provide turnkey solutions along the whole value chain in the mining and metals industry
under the name of “ReSens+” (Hummel and Krupa, 2020). ReSens+ is utilizing the advanced BFF
algorithms in combination with other machine learning approaches and expert knowledge. The
ReSens+ algorithms were successfully applied to 40+ satellite imagery based projects around the world

in 2018, 2019 and 2020 (www.raddata.io, 2020).

2.4.2 VNIR and SWIR proximal scanning in mining applications

HSI in the VNIR and SWIR range has been used prototypically for sulfide ore detection, mainly focusing
on iron and copper sulfides. Other research is based around easily detectable carbonate and clay
features in the SWIR range. In the following paragraphs selected studies relevant to this work are listed

and explained.

Dalm et al. (2014, 2017) tested a set of rock samples being 5-7cm in diameter from a semi-autogenous
grinding (SAG) mill at a South American mining operation. The capability of sorting by using VNIR-SWIR
point-spectrometers (Dalm et al., 2014) and SWIR-only hyperspectral imaging techniques (Dalm,
Buxton and van Ruitenbeek, 2017) was tested. The general results showed the possibility of identifying
SWIR-active mineralogy but not Cu-bearing minerals. The SWIR-active mineralogy showed an indirect
relation to Cu grade as SWIR-active mineral assemblages represent different hydrothermal alteration
zones. By determining white mica NIR crystallinity and relative contents of chlorite, tourmaline and
ferrous minerals, sub-economic ore samples could be identified. The sorting of ore vs. waste in
porphyry copper systems by NIR sensors can therefore be accomplished. Open questions in this area
are the prediction of bulk grade from surface measurements, the tolerability of surface contamination
and the influence of water on the spectral characteristics. The samples by (Dalm et al., 2014; Dalm,

Buxton and van Ruitenbeek, 2017) also represent solely the output of the SAG mill at a specific time
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and might not be representative of the whole deposit. The data acquisition took place under controlled
laboratory conditions and is therefore not representative of open pit mining or on-site sorting
machinery.

Kirsch et al. (2018) tested a multi-scale HSI approach in the Naundorf Quarry in Saxony, eastern
Germany. The site is known for a polymetallic sulfide vein network and quartz bound copper
occurrences. The approach included UAV-based VNIR data, ground-based VNIR, SWIR and LWIR data
of former mine face scans and handheld VNIR-SWIR point spectroscopy. MWL was applied in order to
identify areas with features chosen to indicate Al-OH (2160-2220nm), Fe-OH (2230-2295nm), CO3/
Mg-OH (2300-2360nm) and Fe (415-500nm). MWL mapping was also applied to the VNIR UAV data
between 675—-800nm to visualize existing lithologies. EM based classification (SAM and random forests
(RF)) was performed based on EM derived by PPI. Additionally, a band ratio calculation (2002nm /
1943nm) was performed on the data. Two lithological zones could be identified and the hydrothermal
zones could be delineated. The image-derived spectra utilized for reflectance retrieval can be
influenced by noise and it was found that the resulting reflectance data exhibits a shift in wavelength
position from the image spectra to the reference mineral spectra. Additionally, supergene iron
minerals were identified by hyperspectral means but not validated by XRD or thin sections. Kirsch et
al. (2018) reasoned that iron spectrally tends to dominate the spectrum even if the abundance of
occurrence is very low. It is argued that it therefor might be picked up by HSI but not XRD or in the thin
section. As stated earlier however, iron absorptions do not necessarily indicate mineralogical presence
but an overall presence of iron as an element substitute in the crystal lattice and are therefore highly
influential for the crystal field (Kurz, 2011). Sample bias can also play a role when low alteration parts
were sampled instead of areas showing iron alteration crust. This has to be investigated further. Kirsch
et al. (2018) applied the open source HypPy toolbox for their data analysis and their own “Mineral
Exploration Python Hyperspectral Toolbox” (MEPHySTo) (Jakob, Zimmermann and Gloaguen, 2017) for
image pre- and post-processing and data integration.

Lorenz et al. (2018) investigated the Corta Atalaya mine near Mina de Rio Tinto in Spain. The mine
started extracting iron and copper sulfides and closed in 1991 after mainly concentrating on the
extraction of sulfur. VNIR and SWIR data was collected in the range of 380-2500nm in three scan lines,
one from March 2016 and the second and third from October 2016. Radiometric correction is based
on deriving a singular atmospheric correction spectrum automatically from the hyperspectral image
itself. MWL mapping for the Al-OH feature position and depth (2190-2215nm) was conducted with
the HypPy toolbox (Bakker and Oosthoek, 2020) for all three scenes and was validated by spectral field
sampling. The resulting maps coincide well with the expected lithologies. The data was not

topographically corrected as the pit walls were assumed to be evenly illuminated and the shadowed
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areas were excluded from the subsequent analysis. The possible surface alteration changes between
image acquisition times (March to October) were not taken into account and neither was the low
density of ground sampling.

Kruse et al. (2011) studied the inactive Trinity silver mine in Nevada, USA by means of aerial, ground-
based and laboratory HSI. Aerial scans of the area (1m pixel resolution), tripod-based scans of the mine
face (4cm pixel resolution) and proximal laboratory scans of the drill-chips were conducted. The
analysis is based on dimensionality reduction by minimum noise fraction, PPI EM determination and
extraction by n-D scatter plotting and visualization. Mineral EMs were identified by visual inspection
and spectral library comparison. Mineral maps were produced by MTMF. Again, the shift of
wavelength minimum of the muscovite/ illite spectral feature is used as a proxy for Al content in
muscovite and related to high-temperature hydrothermal alteration. Additionally, jarosite is included
as an EM and used as a proxy for oxidized pyrite and thus un-mined reduced silver ore. The mapping
of 23 core boxes and the mine-face scan showed a clear correlation between the area mapped as
jarosite and the centrally exposed sulfide. Kaolinite is additionally mapped and associated with the
periphery of the sulfide exposure indicating lateral movement of acidic fluids (Kruse et al., 2011).

The recently published study of Lypaczewski et al. (2020) measures the relative abundance of twelve
minerals and estimates white mica grain size with an additional metric. Coarse-grained white mica is
associated with copper mineralization in two of four major porphyry Cu systems in the Highland Valley
Copper district in British Columbia, Canada. In a third Cu system, tourmaline and epidote occurrence
is linked to Cu mineralization. High spatial resolution HSI in the SWIR was achieved for 755 samples
and 400m of continuous drill core. Absorption features produced by cation-OH bonds in hydrated
minerals are used to identify the mineralogy. The mineralogy is detected by mapping the wavelength
position of distinct absorption features for each mineral in combination with excluding absorption
features that would interfere with or are not distinct enough for the sought minerals. The diagnostic
absorption features utilized for mapping in Lypaczewski et al. (2020) are listed in

Table 3.
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Table 3 Spectrally detectable mineralogy at Highland Valley from Lypaczewski et al. (2020).

Al-bearing Montmorillonite (Mt) | 1467 -
Kaolinite (Kaol) 2160 Mt, Ms, Tr
Muscovite (Ms) 2125, 2200 (coarse grained | Kaol, Mt, Tr
only)
Ca-bearing Gypsum (Gyp) Pump
Prehnite (Prh) 1477 Chl (2250nm)
Pumpellyite (Pmp) 1510 -
(Fe,Mg)-bearing Epidote (Ep) 1540, 2250 Chl(2250nm), Tr
Amphibole (Am) 2330, 2390 Chl
Chlorite (Chl) 2000, 2250 Amp, Ep, Tr
Tourmaline (Tur) 2205, 2245, Ms, Kaol, Mt, Chl
Slope 1000/1180 (2250nm)
Spectrally inactive | Sulfides (Sulf.) Flat spectrum -
Quartz (Qz) Inferred from 1450 H20 | -
absorption

Murphy et al. (2012) evaluated classification techniques with a spectral library taken under different
illumination conditions. SVM and SAM results are compared. SAM is of importance here, because it is
known to be less sensitive towards changes in albedo, illumination and topography. For both
approaches, independent spectral libraries were used which were built from samples under different
light conditions instead of retrieving spectra from the HSI itself. Spectrally pure core samples
(homogeneous areas extending over the field of view of the sensor) were measured under “sunlit” and
“shadowed” conditions as well as with an oblique illumination angle. Additionally, “whole” rock sample
spectra (not spectrally homogeneous) were taken of the same rock types as the samples above. The
classification showed changes between “no shadow” and “shadow” data, possibly induced by an
increased slope between VNIR and SWIR in the spectrum caused by the detector jump. This reflectance
offset leads to a change of spectral slope, causing a change of class/ rock type with increasing shadow.
SVM outperformed SAM in classifying the spectral libraries but was inferior in the natural environment
of the outcrop. Constructing a spectral library in the laboratory for shadowed areas proved difficult, as
the influence of shadow is always a combination of influences of the adjacent environment and the
scattering and absorption at each wavelength by the atmosphere and the surrounding rocks. Changes
in illumination and topography have to be accounted for in the choice of spectral library, nevertheless
albedo-insensitive techniques like SAM perform well for mine face geology. Schneider et al. (2011)
took this approach in 2011 when comparing three mapping techniques: SAM and two machine learning
techniques within a probabilistic Gaussian process (GP) framework. They were tested for their
effectiveness under different conditions of illumination. The observation angle dependent (OAD)

covariance functions (kernel) GP was found superior, as it showed to be insensitive to illumination
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variability within and between imagery and can map geological zones utilizing an independent spectral
library without a prior knowledge. The spectral library that was used differed from the outcrop
conditions in the presence of illumination differences and the amounts of noise. Both SAM and the
GP-OAD were found superior due to being based on spectral angle instead of the distance-based
method. The GP-OAD modeled the variability within a class of rock of the training data and was

therefore superior in mapping the geology for unknown targets (not included in the library).

Murphy et al. (2015) used hyperspectral and LiDAR data to map vertical geological surfaces. Clay was
mapped in an open pit environment of an iron-ore mining operation in the Pilbara, Western Australia.
Clays are not only useful due to their clear diagnostic absorption feature between 2000—2500nm, they
also often act as marker horizons between different geological units and can represent lines of
stratigraphical weaknesses. Mapping clay can aid both the geological mapping as well as safety
considerations for the extraction of material. Automated Feature Extraction (AFE) can be used to
identify the strongest absorption features. AFE identifies and quantifies the deepest absorption
feature in each spectrum, its wavelength position & feature depth. The feature depth and width
provide information about mineral type and mineral relative abundance respectively. AFE thereby, is
comparable or even identical in theory to the MWL approach utilized by e.g. Lorenz et al. (2018) with
the HypPy toolbox. The spectral data was co-registered with geometric information provided by LiDAR.
A mean distance error of 0.48m for the registration error between the LiDAR and the hyperspectral
data was calculated and found to be acceptable at a mine front of around 700m width and at a distance
of 120 to 700m away from the camera. In total, seven minerals were identified. The features used for
spectral identification are listed in Table 4. The areal estimates for these minerals varied up to a factor
of 2, under- and overestimating the area depicted in the 2D mineral map compared to the LiDAR co-
registered 2.5D map. This is caused by the difference in distance from the mine face to the sensor.
Higher situated areas were underestimated in the 2D mineral map, whereas lower situated areas

(closer to the sensor) were overestimated.

Table 4 Absorption feature wavelength positions of minerals mapped by Murphy et al. (2015).

Mineral Main Absorption feature for identification [nm]
lllite-smectite main: 2208, weak 2235

Ferruginous (Fe) smectite 2208 and 2233 (Fe and Al in octahedral sites)

Nontronite 2282 - 2288 (Fe-OH)

Kaolinite 2196 & 2202 (Al-OH absorption doublet)

Chlorite 2319 (broad absorption centered around this wavelength)
Talc 2041 - 2380 (several sharp features), strongest at 2306
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The advantages found for AFE is the applicability to any data without the use of a spectral library or a
prior knowledge. It does however “underuse” the data by neglecting the importance of the overall
shape of the spectral curve and the variability within a spectrum apart from one distinct spectral
feature. AFE (or likewise the MWL) can only be utilized well for data with a low level of noise and a
high spectral resolution in order to identify sharp, narrow features and when the variability for the

minimum of the feature is low (only a few nanometers of difference).

Kurz (2011) developed the first workflow to utilize imaging spectroscopy from a ground-based setup
to create Virtual Outcrop Models (VOMs). The focus was to analyze the mineralogical, lithological or
geochemical variations in near-vertical outcrops and combine HSI data products with 3D LiDAR models.
Two case studies with the HySpex SWIR-320m sensor were presented in carbonate systems. The
images showed a significant amount of image artifacts, especially intensity gradients along-track.
Atmospheric correction is applied by Empirical Line correction based on calibrated white reference
panels; image noise was separated and removed by Maximum Noise Fraction transform. Close-range
scanning showed to follow a conic-directional reflectance model due to a restricted view of the upper
hemisphere. The obtained reflectance imagery was analyzed by band ratios, SAM, SFF and Mixture
Tuned Matched Filtering. VOMs were integrated and textured with HSI based on a cylindrical camera
model, reaching accuracies of 1 pixel (2.3—7.5cm for images with scanning ranges of 30-100m).

Further research is advised in the areas of the:

1) Extension of the spectral range from the VNIR to LWIR to map the major rock forming minerals

2) Correction of image non-uniformities that are enhanced by close-range measurements (e.g.,
intensity gradients in along-track direction),

3) Development of a more sophisticated reflectance retrieval method that includes solar illumination
parameters and the viewing geometry from other systems (e.g., LiDAR),

4) Finding automated ways for photogrammetric processing and

5) Enhancing the visualization in this case the multi-texturing of the resulting VOMs.

Not all working groups have taken the utilized sensors’ spectral performance and distortion patterns
into account or analyzed the results critically based on the performance of the utilized sensors, neither
is the aim of this study to characterize the HySpex sensor systems technical performance. The latter is
still part of on-going research. For application and implementation in the mining industry, these off-

the-shelf solutions need to be bullet proof and easily adaptable.
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The tests mentioned above were conducted in areas of inactive or dormant mining related to copper-
, iron-, carbonate- and clay mineralization. They show promising results regarding a broad mapping
approach of lithological zones. The quality of the reflectance data however is very dependent on the
radiometric correction and the pre-processing of the data and relies on different approaches and
different assumptions of the different working groups. MWL mapping of spectral features which is
indicative of hydrothermal alteration conditions is mostly used for copper ore zone characterization.
Even Kruse et al. (2011), utilizing the presented mineral abundance mapping instead of using MWL,
concentrate the analysis and classification on the shift of features in the distinct EM spectra. Thereby,
in this work, the principles of MWL were taken into account for the hard mineral classification.
Similarly, Murphy et al. (2015) utilize AFE to map the wavelength position and depth of certain minerals
to find geological unit delimiters. A large part of the methodology needed for industry relevant
geological solar optical mapping has been discussed theoretically and as part of feasibility studies in
the scope of this PhD thesis and on-going research. In order to being able to map quickly and
reproducible in active mining conditions, robust pre-processing and quick, reliable and reproducible

analysis routines have yet to be developed and implemented.

This includes:
e Finding an optimum, illumination insensitive mapping algorithm
e The selection of spectral characteristics (MWL or spectral libraries) for mapping
e The determination of equipment (sensor characteristics, number of bands, complexity of the
system, handling, pricing)
e A robust reflectance retrieval routine without the need of targets that have to be placed in

inaccessible regions and smart data pre-processing for reproducible results.
This work aims to give an overview about the existing methodology and aims to develop a joint

approach of existing methods and new approaches in order to address mine face geological mapping

under open pit conditions.
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3  Materials

3.1 Investigated samples

Two sample suites and one mine face scan were investigated for the method development in this
study. Additionally, one mine face scan and one sample suite were used for the application of the

developed workflow. The datasets were utilized as shown in Figure 8.

Brazil Iron Ore Samples

Comparison of:

Hyperspectral imagery
analysis method

Rugged sensor design and
downsampling from hyper-
to superspectral

Dataset 1
Dataset 4

Apliki Mine Samples

Identification of site-specific
spectral library

Application of best-performing
sensors and analyses methods

Dataset 2

Comparison of results identifying
the best-performing workflow
for the mine face data

Dataset 3 (Lab)
Dataset 5 (Field)

Figure 8 Method development based on the five available data sets.

3.2 Datasets

Five spectral datasets will be discussed in detail in this work.

1. Dataset 1: The hyperspectral laboratory scan includes 15 iron ore samples from two mine sites
in Brazil. These samples and their respective geochemical analysis were provided by clients
from rad. Data Spectral analytics (www.raddata.io, 2020) who do not wish to be disclosed. This
hyperspectral scan is used to review the common methods for hyperspectral data
classification that are explained in Part | (p. 97) and for the robust sensor modeling (Part I, p.
119) . The most promising methods are then applied to the other datasets with samples from

the Apliki and Skouriotissa copper mine, Republic of Cyprus.
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2. Dataset 2: This dataset includes samples taken in Apliki, Republic of Cyprus. A total of 9
hyperspectral laboratory scans was combined to one big data set, including 44 samples from
14 different sampling locations on the mine face. Only 36 of the 44 samples were analyzed
geochemically, the spectral and geochemical data for these were published in 2019 (Koerting,
Rogass, et al., 2019). This dataset is used to test the most promising algorithms and sensors
found from dataset 1. Dataset 2 mainly utilizes the 36 samples and their reflectance data scan.
Additionally, a smaller 11 samples radiance dataset was compiled to test a mapping approach
based on radiance data. All of this is utilized in Part Ill (p. 136).

3. Dataset 3: The samples taken in the Skouriotissa Three Hills deposit, Republic of Cyprus were
combined into one laboratory data set. A total of 3 hyperspectral scans was combined to one
big data set, including 15 samples from 5 different sampling locations on the mine face.
Dataset 3 is used to apply the data preparation workflow explained in Part Ill (spike correction,
detector jump correction and downsampling) and to build a site-specific spectral library for
the Skouriotissa Three Hills open pit in Part V (p. 161).

4. Dataset 4: This hyperspectral field scan of the mine face in Apliki, Republic of Cyprus utilized
for Part IV, (p. 151) is used to demonstrate the field data workflow, including the data
acquisition, -preparation & -pre-processing and the application of the analysis methods
developed under laboratory conditions.

5. Dataset 5: The hyperspectral field scan of the Three Hills open pit, in the Skouriotissa Mine,
Republic of Cyprus is used to apply of the methods developed for the data from laboratory
conditions and field conditions for the Apliki datasets 2 & 4. The site specific-library from
Dataset 3 is utilized and the analysis is aimed at mapping high-grade ore (<0.27% Cu), ore

(0.27%< Cu <0.1%) and waste (<0.1% Cu). This is demonstrated successfully in Part V (p. 161).

The different datasets will be described in detail regarding the sampling location, the geology of

the area of origin, the samples characteristics, their geochemistry, the data acquisition and the

specifics of the data analysis.
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3.3 Sample area

The samples from dataset 1 originate in the state of Minas Gerais, Brazil and are related to iron ore
mining. The other datasets (2-5) originated in the Republic of Cyprus in the inactive and active copper

mines Apliki and Skouriotissa.

3.3.1 Minas Gerais, Brazil

Two sample suites of iron ore and related material were supplied from the state of Minas Gerais, in
the South-East of Brazil, North of Rio de Janeiro (Figure 9). The mining companies supplying the
samples from their sites are not to be disclosed in the scope of this work, neither are the exact locations
of sampling. It was agreed upon the possibility for the samples and geochemistry to be included in this

work.
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Figure 9 Locations of Minas Gerais and Quadrilatero Ferrifero. Base map source: ©OpenStreetMap Contributors.

Figure 10 shows a photo from a visit from one of the mine sites that provided the samples.
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Figure 10 Visit to a major open pit mine in the state of Minas Gerais in October 2019.

The supergene iron ores of Minas Gerais and Quadrilatero Ferrifero are divided into three categories:
enriched itabirite, intermediate grade ore and Canga (Dorr, 1964). Itabirite is a “laminated,
metamorphosed, oxide-facies iron formation [...] in which the iron is present as hematite, magnetite
or martite” (Dorr, 1964) and the original jasper or chert bands have been recrystallized into granular
quartz. Dolomite and amphiboles locally substitute for quartz and when substituted, magnetite and its
oxidation products are present. Fresh Itabirite is dense, brittle, hard and resistant to mechanical
erosion (Dorr, 1964). All supergene iron ores result from the weathering of itabirite, and degrade based
on the same geological processes but undergo this weathering under varying degrees of intensity. They
are therefore intergradational and clear lines of demarcation are impossible to draw. Enriched itabirite
is a disaggregated rock residually enriched in iron and leached of quartz and other constituents by
supergene fluids. Intermediate grade ore is defined as material with an upper limit of iron content of
about 65.5% and a lower limit of 57% iron and <7% SiO.. It derives from strong residual and secondary
enrichment of itabirite (Dorr, 1964). Canga forms as consolidated, extensive blanket deposits at or
near erosion surfaces. It is resistant to erosion and chemical weathering and composed of varying
detrital materials derived from limonite cemented high-grade hematite ore or itabirite. (Dorr, 1964)
defines the average composition of itabirite and its weathering products as presented in Table 5 and

Table 6.
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Table 5 Bulk rock composition of itabirite and its weathering products from Dorr (1964).

Fe 37.9 48.7 63.3 62.2
Fe.03 54.1 69.6 90.4 88.8
SiO, 44.7 25.4 2.35 1.7
Al,03 0.5 1.3 2.6 2.8
P 0.05 0.06 0.08 0.1
H,0 plus 0.3 Nd 4.6 5.4

Table 6 Geochemical composition of samples received from the Minas Gerais district. Reduced to components stated by
Dorr (1964). Categorization after Dorr (1964) and from information provided by Mine Site 2.

1 55,05 16,81 0,61 0,14 Itabirite Medium value ore 2
2 49,72 18,51 1,05 0,11 Itabirite Medium value ore 2
3 24,40 21,69 22,14 0,60 Itabirite, high clay Low value ore 1
contamination
4 46,39 30,33 1,41 0,04 Itabirite Medium value ore 1
5 38,06 41,16 0,43 0,06 Itabirite Low value ore 2
6 44,47 31,59 1,97 0,10 Itabirite Medium value ore 2
7 58,22 10,14 3,94 0,09 Enriched Itabirite High value ore 1
8 35,37 49,02 0,28 0,02 Itabirite Low value ore 1
9 44,46 32,99 0,53 0,08 Itabirite Medium value ore 2
10 68,49 0,53 0,45 0,05 Canga High value ore 2
11 30,58 56,5 <0,05 <0,005 | Itabirite Low value ore 1
12 47,92 13,29 9,26 0,21 Itabirite Medium value ore 1
13 37,17 41,64 1,29 0,18 Itabirite Low value ore 2
14 38,23 37,45 1,54 0,05 Itabirite Low value ore, high | 2
Mn contamination
15 64,93 1,32 1,48 0,11 Intermediate grade ore | High value ore 1

3.3.2 Republic of Cyprus

3.3.2.1 Porphyry copper systems and hydrothermal alteration

Porphyry ore systems consist of large areas of hydrothermally altered rock centered on a porphyry
stock intrusion. These may also contain skarn, carbonate-replacement, sediment-hosted and high- and
intermediate-sulfication epithermal base mineralization. They are typically formed as magmatic arcs
above active subduction zones and convergent plate margins. Currently, nearly 3 quarters of the
world’s Cu is supplied by porphyry copper systems, along with half the Mo, one-fifth of the Au, most
of the Re and minor amounts of Ag, Pd, Te, Se, Bi, Zn and Pb (Sillitoe, 2010; Okrusch and Matthes,
2014). The alteration and mineralization in porphyry copper systems is zoned outwards from the stocks
or dike swarms and occupy many cubic kilometers of rock (Sillitoe, 2010) (Figure 11). Oxidized magma

intrudes and is saturated with sulfide and metal rich aqueous fluids. These fluids penetrated the
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surrounding rock and due to the involved temperature and pressure this leads to addition, removal
and/or redistribution of the pre-existing rock components (Dalm et al., 2014). The intensity of this
alteration decreases with increasing distance from the intrusion and forms concentric hydrothermal
alteration zones with characteristic mineral assemblages. The zonation is dominated from the bottom
up by barren, early sodic-calcic to potentially ore grade potassic, chlorite-sericite, sericitic to argillic
and finally the lithocaps of up to 1km thickness if erosion is not interfering. Cooling down of the fluid
and intrusion from 700 °C to 300 °C leads to the formation of the chalcopyrite and bornite assemblage
(potassic zone), whereas temperatures below 350°C and a low- to moderate salinity liquid are
associated with sericite-chlorite and sericitic alteration and associated mineral assemblages (Lowell
and Guilbert, 1970; Sillitoe, 2010; Dalm et al., 2014). The main ore zone is related to the boundary of
potassic to phyllic hydrothermal alteration, but these spatial relations can be offset by the telescoping
within the porphyry system (overprint of older alteration zone by more recent alteration), breccia

intrusions and/or diatreme intrusions (Dalm et al., 2014).
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Figure 11 Left: Schematic cross sections of ore mineralization/ alteration zones (Ccp — Chalcopyrite, Au — Gold, Ag —
Silver, Py — Pyrite, Cp — Copper, Mb - Molybdenite). Right: Hydrothermal alteration mineral zones. (Chl - Chlorite, Epi -
Epidote, Carb - Carbonate, Qtz - Quartz, Ser - Sericite, Py - Pyrite, Kaol - Kaolinite, K-feldspar - Potassium feldspar, Bt —
Biotite, Mag — Magnetite). Modified from Lowell and Guilbert (1970). Typical dimensions are given as 1.2 x 2 km
horizontally and 3 km vertically (Dalm et al., 2014).

3.3.2.2 Geology of Cyprus copper ore deposits

The Island of Cyprus became synonymous with copper in Late Antiquity. The Latin word “Cuprum” is
based on “Aes Cyprium” = Cypriot copper, as Cyprus was one of the main sources of copper in the Old
World (Kassianidou, 2013). All to-date mined ore bodies had surface indications stemming from
activities of the Antiquity, showing major slag heaps close to the old mining centers (Adamides, 2010b).
4 million tons of copper slag in 40 different locations have been estimated to exist in the proximity of
Troodos (Kassianidou, 2013). Cyprus therefor became the ultimate test site for me in order to study

hydrothermal alteration and copper ore deposits within Europe.
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The Cyprus sulfide deposits belong to the mafic type of volcanogenic massive sulfides (VMS) and are
associated with a supra-subduction zone fore-arc setting of the Troodos ophiolite complex around 91
ma ago (Adamides, 2010b, 2010a). The ophiolite comprises a complete sequence from ultramafic rocks
at the base overlain by gabbroic rock as sheeted dyke complexes and pillow lavas, topped by pelagic
sediments (Adamides, 2010a). Structural studies of Cyprus identified several asymmetrical N-NW-
trending graben defined by opposing inward-dipping sheeted dyke complex domains. These domains
correlate with major sulfide mineralization. These graben are, from west to east, Solea, Mitsero and
the Larnaca Graben (Figure 12) (Adamides, 2010a; Martin et al., 2018). The Solea graben hosts the

Apliki and the Skouriotissa deposit.
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Figure 12 Simplified geological map of the Troodos Ophiolite, Cyprus and a simplified structural cross-section of Troodos
based on Martin et al., 2018. Contains modified Copernicus Sentinel-2 data (Sept. and Oct. 2019, RGB (490 nm, 560 nm,
665 nm)).

The classic Cyprus-type VMS deposit is characterized by an exhalative lens underlain by a stockwork
zone which represents the channel veins by which the hydrothermal fluid reached the sea floor (Figure

13) (Lydon, 1984; Galley, Hannington and Jonasson, 2007).
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Figure 13 Sulfide cover zonation (Top) and characteristics of an idealized volcanogenic massive sulfide deposit (Bottom).

Abbreviations in Figure: Sp - Sphalerite, Gn - Galena, Py - Pyrite, Ba - Barite, Ccp - Chalcopyrite, Po — Pyrrhotite.
Modified from Lydon (1984) and Galley, Hannington and Jonasson (2007).

Some deposits show variations and some lack suitable observable structures that allowed access to
the sea floor. Where no structural control is obvious as for the Skouriotissa deposit, a more deep-
seated heat source is suggested (Adamides, 2010b). The Cyprus-type VMS is a hydrothermal ore
deposit, which is formed by the interaction of mafic country rocks under greenshist-facies
metamorphic conditions (350 °C) and evolved seawater (2 °C). The cold seawater reacts with volcanic
glass by entering trough fractures and fissures in the rock, lowering the pH of the water. As it continues
moving downwards, it becomes heated to 350-400 °C in the sheeted dyke complex with a pH of around
2. Here, the seawater and the rock go into exchange and epidosites are formed, they are suggested to
be the main source of base and trace metals in the Cyrus-type VMS of Troodos (Martin et al., 2018).

Metal-laden from the exchange, hydrothermal fluids follow pathways of normal faults to the seafloor
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where they are exhalated. The hot, reduced fluid mixes with the seawater and sulfides are precipitated
to form VMS. The VMS mineralogy is dominated by pyrite, chalcopyrite and sphalerite with inclusions
of galena and secondary copper-bearing minerals like covellite, digenite and chalcocite. The alteration
around the VMS is silica and chlorite dominated and includes disseminated pyrite (Martin et al., 2018).
Alteration mineralization is typified by feldspar destruction, quartz-chlorite growth, the removal of
alkali elements from the inner parts of the ore zone and their deposition in the periphery of the ore
bodies (Adamides, 2010b). K-feldspar and illite are associated with the margins of the deposits and
seem related to the leaching of alkalis from the proximal ore zone. Epidote alteration is present at the
margins of some hydrothermal systems and levels immediately underlying the stockwork zones. It is
commonly associated with hematitic jasper as veins or interpillow glass replacement. Interaction
between hydrothermal fluid and seawater through the permeable pillow lavas result in an alteration
envelope of marginal chlorite passing inwards into silica and finally into the sulfide mineralization in
the central part of the system (Adamides, 2010b). This is coherent with the hydrothermal alteration
zones associated with porphyry copper deposits identified by Lowell and Guilbert (1970) and Rowan
et al. (2006).

The Cyprus deposits can be defined by two classes of deposits, these two classes are based on

observations from Adamides (2010b):

1. The deposit exhibits definite signs that hydrothermal fluids reached the sea floor. Exhalative
processes deposited massive sulfides in the form of exhalative lenses. Evidence for this process
is the presence of sedimentary structures, of sea-floor dwelling organisms and sea floor
weathering of the sulfides.

2. The deposit exhibits definite signs of sub-floor deposition of sulfides. It lacks the evidence of
hydrothermal fluids reaching the sea floor and shows extensive zones of hydrothermally
altered rock which grades inwards into ubiquitously mineralized rock. Agrokipia B, Skouriotissa

- Three Hills and the West Apliki deposit show strong evidence for this deposition.

This study will focus on the Skouriotissa group deposits “Three Hills” and “Apliki” (Figure 14), as these
were the open pits that | had access to in March 2018 to conduct sampling and a hyperspectral
measurement campaign. These deposit’'s main characteristics are summarized in Table 7.
Geographically, both deposits are situated within the Nicosia district and are located close to the

ceasefire line South of the UN-controlled buffer zone.
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Copernicus Sentinel-2 data from Sept. & Oct. 2019, RGB (R: 2190 nm, G: 783 nm, B: 665 nm)
Zoom in to Skouriotissa and Apliki area

440000

460000

480000 500000 520000 540000 560000 580000 600000

3900000

3860000 3880000

3840000

3820000

Figure 14 Map of Cyprus showing the location of the Three Hills deposit in the SE of Skouriotissa and the Apliki deposit
ca. 5km SW of the operating Skouriotissa mine, based on Copernicus Sentinel-2 data from 2019.

Table 7 Summary of Apliki and Three Hills deposit based on Adamides (2010b, 2010a).

Deposit

Three Hills

History

Tonnage and grade
Mineralization type

Structural control
Stratigraphic position

Detected by drilling in area of alteration and weak oxidation. Explored by
adit and cross-cut. Presently mined by Hellenic Copper Mining Ltd. (HCM)
6.2mt, 0.37% Cu

Vein type deposit composed of pyrite and chalcopyrite, with limited
supergene enrichment at the upper levels (chalcocite and covellite)
North-northwest-striking structures

Within Upper Pillow Lavas surrounded by chloritic alteration envelope

Deposit

Apliki

History
Tonnage and grade
Mineralization type

Structural control
Stratigraphic position

Detected during gold exploration in 1930s, initially mined underground
followed by open cut mining in the 1960s. Operations ceased in 1973 but
low-grade resource remains as well as the stockpiled oxidized ore.

1.65mt, 1.8% Cu, 36.0% S

Massive sulfides with underlying stockwork in chlorite-bearing and silicified
lavas

Graben structure defined by two North-striking faults

Contact between Lower and Upper Pillow Lavas
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3.3.2.3 Three Hills, Republic of Cyprus

The Three Hills deposit, often referred to as K-zone by HCM, was exploited in 2003 for a brief period
of time and has not been exploited since (Naden et al., 2006; Adamides, 2010b). The Three Hills open
pit is located in the western part of the Skouriotissa open pit mining area. Its surface expression is
unimpressive only showing weak iron staining (Adamides, 2010b), the mineralization shows to be
highly brecciated, highly silicified stockwork with hypogene mineralization (Naden et al., 2006). Based
on maps by Adamides (2010b), the stockwork mineralization is enclosed by an EW-trending fault in
the northern part and a NS-trending fault in the eastern part of the deposit (Figure 15). Communication
with HCM confirmed the location of the fault in the open pit and the successive enrichment in Cu
grades towards the SW and top down within the open pit (sketched out in Figure 16). This can be
visually distinguished by cream-colored clay alterations of the siliceous matrix, distinct green colors of
the host rock (presence of chlorite) and brown colors related to pyrite oxidation (Naden et al., 2006)

(sketched out in Figure 17).

32°53'{|)D.33"E 32°54'23.97"E

Skouriotissa Mine, Republic of Cyprus
Google Earth, 3rd of April 2018,

35° 05'50.72" N, 32°53'48.81"E

35°05'47.33"N

35°05'06.34"N

Figure 15 Skouriotissa mine location of the pits Phoenix, Phoukasa and Three Hills and fault zone location based on
Adamides (2010b). Source: "Skouriotissa Three Hills Deposit", 35°05'50.72"'N, 32°53'48.81"E, GOOGLE EARTH, 3rd of
April 2018, retrieved 21st of July 2020 (Google, 2018)
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Figure 16 Hyperspectral scan within Three Hills open pit. View from the SSW wall (left) to the NNE entrance to the pit
(right). Including line of fault as communicated during the field measurements by HCM and trend in Cu grades within the

pit.
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Figure 17 Sketch of areas with clayish (low Cu grade) and greenish (chloritic, stockwork) appearance, indicating zones of
pyrite oxidization and leached zones. Based on visual interpretation.

The ore comprises pyrite, chalcopyrite and local sphalerite (hypogene mineralization). In the oxidized
zone, common pyrite is replaced by hydroxides of goethite-lepidocrocite (Adamides, 2010b). Pillow
lavas define the lithology, interspersed by local non-pillow units; Dykes are absent. The rocks are
chloritized in the area around the deposit and an alteration envelope surrounds and partly overlies the
deposit (Adamides, 2010b). Pyrite is mainly disseminated with the rock body or occupies the walls of
veins and is deposited onto quartz in fractures (Adamides, 2010b). In areas of intense mineralization
pockets of massive pyrite formed and replace the total host rock. Pyrite occurs in well-developed
striated cubes or pyritohedrals (Figure 18, left). Chalcopyrite is present (Figure 18, right) but often
replaced by secondary minerals, as chalcocite and covellite (Adamides, 2010b). Para-genetical pyrite
appears to be the earliest sulfide to crystallize from hydrothermal fluids, covering the walls of veins.
Chalcopyrite occupies central parts of veins often with sphalerite. Quartz is the sole gangue mineral in
all parts of the deposits and fills veins and vesicles. In the chloritized zones it forms thin veinlets of
euhedral clear crystals, in the ore zone (mineralized zone) it accompanies sulfides and lines the walls
of veins. It's intergrowth with sulfide shows the persisting precipitation throughout the mineralization
episode. The hypogene mineralization is dominated by pyrite, marcasite and chalcopyrite, the
sequence of supergene mineralization paragenesis was found to be digenite -> chalcocite -> bornite -

> covellite (Naden et al., 2006)
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Expected ore mineralogy in the open-cut of Three Hills is based on Adamides (2010b) and Naden et al.

(2006):

1.
2.
3.
4.
5.

pyrite, marcasite, chalcopyrite, local sphalerite (hypogene)
digenite, chalcocite, bornite, covellite (supergene)

guartz as sole gangue mineral
chloritized lava

hematite, jarosite, goethite, lepidocrocite as replacement of pyrite in oxidized zones

3 v - = ST . .

Figure 18 Left: Striated cubes of pyrite on top of quartz crystals in former cavity. Right: Striated, hypogene chalcopyrite
mineral cluster. Supergene chalcocite blanket is indicated by black remnants. Photos from field work in March 2018 in
Three Hills. The photo size is approximately 5cm x 5cm.

3.3.2.4 Apliki, Republic of Cyprus

Apliki is a structurally controlled deposit, situated within the Lower Pillow Lava stratigraphy and
confined by two axis parallel (N-S) normal faults. At depth the two faults are inferred to truncate in a
major detachment surface (Adamides, 2010b; Martin et al., 2018), see Figure 19. Based on historic
data and field observations by Martin et al. (2018), Apliki VMS is interpreted to be a typical Cyprus-
type VMS — a massive sulfide lens overlain by a cupriferous stockwork of quartz, jasper and sulfide
veins within the basaltic host Lower Pillow Lavas (Antivachis, 2015). Adamides (2010a) reports a grade
of 1.6wt.% of copper grade, whereas Antivachis (2015) reports grades between 0.01 to 3.5wt.% Cu.
The mineralization does not cross the fault contact of the two faults and suggests a mineralization post
fault movement. The fault-bound zone of mineralization is around 100 m wide and consists of silicified,
chloritized, brecciated Lower Pillow Lava. Disseminated pyrite occurs but no massive sulfide

mineralization.
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Figure 19 Apliki deposit, interpretation from (Antivachis, 2015; Martin et al., 2018). Source: "Apliki mine",
35°04'28.78'"'N, 32°50'35.40"'E, GOOGLE EARTH, 03.04.2018, retrieved 23.07.2020.

The eastern wall of the cut shows unmineralized Pillow Lavas and is associated with hyaloclastic
material in between thick columnar-jointed flows. The lava east of the fault is increasingly chloritized
and quartz is accompanied by analcime as vesicle-filling material. In the western site, the fresh,
hyaloclastic-rich pillow lavas are exposed. The northern wall represents the contact with the ore
zone. The Northern open cut area is approximately 150m in height and 150m width, the pit bottom
located at around 200 m a.s.| (Antivachis, 2015). Satin spar gypsum veining occurs at the northern
part of the open cut (

Figure 20, left) and is associated with leached lava, chloritic breccia and intense shearing (Adamides,
2010b). Sulfate evaporates, possibly chalcanthite, covered the surface of the cut terraces in areas of
surface water flow (

Figure 20, right). As the cupriferous massive sulfide ore has been mined out, Apliki is a typical
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example of an oxidation zone overlying a stockwork type sulfide mineralization in chlorite-bearing
and silicified lavas (Antivachis, 2015).

The typical stockwork type mineralization shows cavity and vein fillings of pyrite and subordinate
chalcopyrite in the southern part of the open pit. The altered lava shows occurrence of widespread
jasper. The ore zone continues northwards as low-grade disseminated mineralization. The massive
sulfide was originally on top of the stockwork zone and covered by Upper Pillow Lavas and tuffaceous

sediments. Prior to mining, maps suggested a cover of shales and limestones (Adamides, 2010b).

Figure 20 Left: Satin spar gypsum found in Apliki, ca. 7cm x 20cm. Right: Sulfate evaporates, possibly Chalcanthite, found
in Apliki.

The Apliki VMS outcrop that was scanned in 2018 shows 5 % levels of in the Northern part of Apliki
VMS, situated in the fault bound zone of chloritized-silicified brecciated Pillow Lava. In the supergene
enrichment succession it is directly below the iron cap and in the leached and oxide zone (after Asmus

(2013)).

Antivachis (2015) identified five facies within the mineralized zone: 1) a stockwork zone, 2) veins of
amorphous silica in the NNW, 3) massive veins of Gypsum in the NNW, 4) the “red zone”, an oxidized
vein of mineralization and 5) the oxidation zone at the top. Figure 21 from (Antivachis, 2015) shows a

stylized, geological sketch.
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Figure 21 Schematic geological section of the Northern part of Apliki as shown in Antivachis (2015). Red, dashed window
represents the dimensions of the hyperspectral mine face scan.

The associated stockwork zone (“mineralization zone” in Figure 21) dominates the area captured by
the hyperspectral sensors in 2018. This zone is dominated by a network of quartz and jasper veins
within the brecciated pillow lavas (Antivachis, 2015). The brecciation is assumed to be a result of the

explosive hydrothermal activity within the W and E delimitated fault zone (Antivachis, 2015).

The expected mineralization and hydrothermal alteration zone identification of the stockwork zone is
based on the work of Antivachis (2015) who studied 66 samples of the north wall of the open cut. In
the stockwork zone chlorite, clay minerals, albite, iron and titanium oxides and quartz are common.
Chlorite is the main mineral of the non-metallic minerals formed by hydrothermal alteration of
clinopyroxene and volcanic glass and often fills fractures in pyrite. Clay minerals are found in the
chloritized ground mass and replace volcanic glass. Magmatic plagioclase was albitized and formed
pure albite. Plagioclase and pyroxene are partially replaced by calcite that acts as filling material or
within the groundmass. Iron-titanium oxides and ilmenite is replaced by anatase.

The prevailing alteration in the mineralized zone is chloritization, which can spatially be classified into

three subzones (see Figure 22):
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1) Smectitic: montmorillonite, illite and limited chlorite; 2) Chloritic-smectitic: stronger chlorite
content as replacement of pyroxenes; 3) Chloritic: magmatic minerals are absent, chlorite dominates
(Antivachis, 2015).

Jasper is widespread in the brecciated lavas that mainly constitute of quartz, goethite and hematite
with minor amounts of clays and carbonates and jarosite (Antivachis, 2015). Contained sulfides are
pyrite and minor sphalerite and chalcopyrite. Predominant ore minerals are pyrite, marcasite and
chalcopyrite, with accessories of bornite, sphalerite, galena and barite. Chalcopyrite often shows

inclusions of sphalerite. Chalcopyrite replacement by covellite and chalcocite due to supergene

processes is also documented.
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Figure 22 Schematic cross-section of Apliki massive sulfide ore body and associated stockwork, from Antivachis (2015).
Red, dashed lines indicate the hyperspectral mine face scan dimensions. The scanned area is dominated by three

hydrothermal alteration subzones: smectitic, chloritic-smectitic and chloritic.

The expected surface mineralization for the northern open cut is comprised of quartz, jasper, iron-

oxides (goethite, hematite), chlorite-group minerals (clinochlore),

(montmorillonite, illite), sulfides (pyrite, marcasite, chalcopyrite, accessories of sphalerite, bornite,
galena; chalcopyrite is often replaced by covellite and chalcocite); sulfates (barite, gypsum,

Chalcanthite, jarosite), analcime, plagioclase (partly replaced by calcite or albitized to albite) and

pyroxene.
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3.4 Sample preparation

In order to compare laboratory-derived spectral features with field-derived spectra the samples were

not changed from their natural state.

Brazilian iron ore samples

Two companies operating open pit copper extraction in Brazil provided two sets of samples with the
corresponding geochemical data. The open pits are located within the Iron Quadrangle of Brazil in the
central-southern part of the Brazilian state Minas Gerais. The area is known for its large gold, diamond
and iron ore deposits. Due to a non-disclosure agreement (NDA) we are not able to disclose the
companies’ names or the detailed mine site locations in the context of this thesis. They will be called
“Mine Site 1” and “Mine site 2” from here on. Mine Site 1 delivered 8 samples with the sample ID 3, 4,
7, 8,11, 12 and 15. Mine Site 2 delivered 7 samples of the sample ID 1, 2, 5, 6, 9, 10, 13 and 14. The
total of 15 samples was left to dry, arranged in approximately 4x4cm squares on a black rubber lining

and scanned without any sample preparation (Figure 23).
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Figure 23 Brazilian iron ore samples hyperspectral scan (R: 640nm - band 63, G: 549nm - band 38, B: 458nm - band 13).
Apliki mine samples

37 samples were taken in March 2018 in the copper-gold-pyrite mine Apliki in the Republic of Cyprus
during a measurement campaign of the Geological Survey Department of the Republic of Cyprus (GSD)
and the German Research Centre for Geosciences (GFZ). The samples were scanned directly after the
field expedition; all of the sampled material is present in the hyperspectral scan. For the scans, the
samples were left in their natural state: partly dusty, showing heterogeneity in the small scale e.g.,
differently colored soil grains from the same sample location, inhomogeneous tarnish across individual
samples and in a variety of states (e.g., soil, crystallized evaporitic material, fresh rock surface,
tarnished rock, oxidation zones). The resulting laboratory scans represent exactly what we found in
the field without changing the crystal lattice (e.g., by grounding the samples) or the small-scale
heterogeneity (e.g., by homogenizing and grinding samples) and thereby changing the spectral signal
of the material. For scanning, the samples were placed in black, plastic containers. The inside of the
containers was sprayed with black spray-paint leaving them with a matt finish to avoid backscattering

of plastic features from the box surface onto the samples (Figure 24). For rock samples, the original
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surface that was directed at the sensor in field conditions was marked. This surface was directed
towards the sensors for laboratory scanning. The bulk rock itself is not represented at the surface of
the mine face but the rock’s weathered and altered state from external physical and chemical
conditions. A total of 9 scans were taken of 36 samples and combined into one big data set (Figure 24).
Only the samples that yielded enough sample weight for a geochemical analysis were considered
excluding sample 1a from the analysis. For the subsequent geochemical analysis, sub-samples were
taken with ranging sampling weights between 20,9g (sample 3b) to 237,5g (sample 10c). In case of
rock samples, the original marked surface was separated from the whole rock sample to allow a

geochemical analysis of the weathering crust only. A table with the sampling location, a sample

description and sample photos can be found in the Appendix (Table 47, p. 209).

Figure 24 Apliki mine samples hyperspectral scan compilation (R: 640nm — band 63, G: 549nm — band 38, B: 458nm —
band 13).
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Skouriotissa mine — Three Hills samples

A total of 15 samples have been collected in the Three Hills open pit of Skouriotissa mine in March
2018. The samples have been handled similar to the Apliki mine samples and were scanned with the
HySpex system under laboratory conditions before preparing them for geochemical analysis. A total of
three hyperspectral scans has been combined into one large dataset containing all samples. The
samples were scanned without any sample preparation (Figure 25). For rock samples, the original
surface that was directed at the sensor in field conditions was marked. This surface was also directed
towards the sensors for laboratory scanning and was later on separated from the bulk rock for
geochemical analysis. A table with the sampling location, a sample description and sample photos can

be found in the Appendix (Table 50, p. 253).

Figure 25 Skouriotissa - Three Hills open pit samples. Collated hyperspectral scan of all 15 samples.

3.5 Data acquisition
3.5.1 Laboratory HSI data acquisition

The HySpex VNIR-1600 and SWIR-320m-e (technical description available at:
(hyspex.no/products/disc.php, 2019)) are two pushbroom line-scanning cameras that are mounted in
parallel. The cameras cover the range of the visible to near infrared (VNIR, 414 — 1000nm) and the
shortwave infrared (SWIR, 1000 — 2498nm). They record an array-line of 1600 pixel (VNIR) and 320
pixels (SWIR). Every pixel contains a spectrum with a total spectral sampling number of 408 bands in
total. The signal collected from each pixel is decomposed to its spectral components by a grating (see
Figure 6, p. 11). The field of view (FOV) captures the spectral dimension (A) for each pixel of a line of
pixels (y-dimension). The pixels per line are fixed for each sensor. This is measured by a two
dimensional focal plane array such as a silicon charge coupled device (silicon CCD) detector (VNIR-
sensors) or a mercury cadmium telluride (MCT) detector (SWIR-sensors) (Kéhler, 2016). The spatial x
dimension is acquired by subsequent collection of consecutive lines and a movement perpendicular to
the line of pixels spanned by the FOV. Either the sensor or the object of interest can move

perpendicular to the FOV, in the laboratory the movement of the samples is accomplished by the
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Laboratory HSI data acquisition

movement of a translation stage, in the field the sensor head rotates the FOV line by line by use of a
rotation stage. The sensor parameters are presented in Table 8. Noteworthy for in-pit scanning and
robust sensor requirements, is the increase in size and weight from the VNIR to the SWIR sensor and
the technical requirement for cooling the SWIR MCT detector to 195 K for data collection with e.g. a

nitrogen liquid cooling device (Lin et al., 2009; Kéhler, 2016; Spragg, 2017).

Table 8 HySpex VNIR-1600 and SWIR-230m-e sensor parameters from the HySpex User Manual
(hyspex.no/products/disc.php, 2019).

Spectral Range 400-1000nm 1000-2500nm
Spectral Bands 160 256

Spectral Sampling 3.7nm 6.25nm

Spatial Pixels 1600 320

Field of View (FOV) across track (y-dimension) | 17° 13.5°

Pixel FOV across track (y-dimension) 0.18mrad 0.75mrad

Pixel FOV along track (x-dimension) 0.36mrad 0.75mrad
Detector Si CCD 1600 x 1200 HgCdTe 320 x 256
FPA temperature N/A 195 K /-78.15°C
Sensor head power consumption 6w 100W

Sensor head weight 4.6kg 7.5kg

Sensor head dimension [cm] 31.5x8.4x13.8 36.0x14.0x15.2

The HySpex cameras are provided with two acquisition modes, one for airborne data collection and
one for laboratory measurements. In laboratory mode, the cameras are combined with a trigger pulse
moving sleight (translation stage) of definable frame period, which depends on the integration time of
every array-line acquisition. The configuration of the translation stage framework, the cameras and
the light source (45° illumination angle) are fixed, while the translation stage and the samples are
moving through the focal plane (Rogass et al., 2017). The reflectance level of a white reference panel,
placed in line with the samples, is chosen according to the albedo of the samples. The higher the albedo
of the sample, the higher is the diffuse reflectance factor of the matching reference panel. The Brazilian
iron ore samples as well as the Apliki and Skouriotissa mine samples required a 50% reflectance white
reference panel. Both the geometrical setup and the heat up time of the lamp influence the
configuration of the light source. The maximum illumination was obtained with a certain angle of 45°
between incident light and the vertical plane. The distance between lamp and HySpex cameras was
higher compared to the distance between samples and sensor to ensure diffuse illumination and to
avoid thermal influence on the cameras and the samples. The integration time (= measurement time
for each image line) was tested to be as high as possible to suppress the impact of signal uncorrelated
Gaussian white noise and at the same time as low as needed to avoid detector saturation visible in the

pre-view images during image capture. For all measurements the integration time was chosen with
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respect to the sample albedo. The used settings for the Brazilian samples are listed in Table 41
(Appendix, p. 207), for the Apliki mine samples in Table 42 (Appendix, p. 207) and for the Skouriotissa
mine samples in Table 43 (Appendix, p. 208). The laboratory is equipped with black-painted walls and
doors, as well as black curtains to avoid reflected or transmitted light from surfaces other than the
sample, an exemplary setup can be seen in Figure 26. The laboratory conditions were kept stable, the
air temperature was regulated to 21+0.5°C and the humidity was between 50 - 60% for all
measurements. Black cellular rubber is used as a base material for all samples for hyperspectral data
acquisition. It reflects less than 5% on average of the incoming radiation (Herrmann, 2019). Detailed

descriptions for the GFZ’' standard measurements and the process chain can be found in Rogass et al.

(2017).

Adjustable angle of
the Light Source

-t—— Movement of
Translation

[ ] Position of White
Reference

O  Position of samples
® VNR

SWIR

Figure 26 The HySpex translation stage setup (Kérting, 2019).

3.5.2 Laboratory HSI data processing

Each measurement run produces one VNIR and one SWIR 3D-data cube. The three dimensions are the
two spatial x-, y- and the spectral z-dimension. The 3D image cubes are produced, by sensing a moving
sled with a homogeneous reflecting white reference panel and the samples through the focal plane of
the two sensors. The software ‘HySpex ground’ is used to perform the measurements and the software
‘HySpex rad’ is used to perform the radiometric calibration on the image data (Koerting et al., in prep).

The measured image cubes (VNIR and SWIR) are then co-registered, resized and stacked to a
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continuous image cube. For the laboratory scans, in order to produce a reflectance image, the image
pixels that show the white standard were averaged to a one-line reference spectrum. The reflectance
was calculated by dividing every image line spectrum by its reference spectrum from the reflecting
white reference panel (Rogass et al., 2017). After the reflectance retrieval, the data was digitally
cropped to the spatial sample extend, in case of the Brazilian iron ore samples that meant only creating
a subset of the sample area. For the Brazilian iron ore samples, a visual check of the 280 x 280 pixels
data did not reveal bad bands or the occurrence of a detector jump around 1000nm and therefor only
the areas of low SNR (shadows and black rubber) were masked out. For the Apliki mine and the Three
Hills mine samples, the single sample containers had to be cropped and combined into one big data
frame containing all samples (Apliki: 1250x1280 pixel, Three Hills: 1500 x 250 pixel). The RGB
representation of the Brazilian iron ore and the Apliki samples is shown in Figure 27. Figure 28 shows
the RGB representation of the Three Hills data. After visual inspection of the data, the pre-processing
and correction included an interpolation of bad bands (spikes), a correction of the detector jump
around 1000nm and a low SNR/ shadow masking. By masking pixels with reflectance values < 10%,
shadowed areas, the black rubber and parts of the pixels of the sample containers were excluded from
the data. Some areas of the non-matted sample containers reflected the incoming light back to the
sensor and are still present in the data. In order to visually compare the classification results with a
ground truth, regions of interest (ROIs) were created encompassing the identifiable samples for both

datasets. The ROIs for the iron ore and the Apliki samples are shown in Figure 29.

Figure 27 RGB representation of the hyperspectral sample scans. Left: Brazilian iron ore samples. Right: Apliki mine
samples.
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Figure 28 RGB representation of the hyperspectral sample scan of the Skouriotissa mine samples. Color-coded outline
represents the mapping color-scheme for the analysis based on the spectral library created from these samples. Pink:

ore, red: low grade ore, yellow: waste.

Figure 29 ROIs of sample position. Left: 15 Brazilian iron ore sample ROIs with masked shadow areas, 280 x 280 pixels.
Right: 36 Cyprus Apliki surface sample ROIs, 1250 x 1280 pixels.

3.5.3 Geochemical sample analysis for validation

Depending on the sample type, the geochemical validation methods differ. The methods used for each

sample type, can be found in Table 9.

Table 9 Sample type and corresponding geochemical validation method.

Sample type

Concentration level determination

Brazilian iron ore samples
(Mine site 1)

Samples grinded and pulverized at 150 Tyler mesh (0.105 mm),
analysis by fire assay XRF. Provided by company.

Brazilian iron ore samples
(Mine site 2)

Sample grinded at 250 Tyler mesh (0.083 mm) and fused with
lithium tetraborate. Analysis by XRF (Lithium Tetraborate Fusion
Tablet). Provided by company.

Apliki mine samples
(Koerting at al., 2019b)

Bureau Veritas Minerals Analysis

Lithogeochemical Whole Rock Fusion, LiBO2/LiB40O7 fusion ICP-ES
analysis & Carbon and Sulfur Analysis or Ultra Trace Geochemical

Aqua Regia digestion, 1:1:1 Aqua Regia digestion ( HNO3-HCl acid
digestion), Ultratrace ICP-MS analysis

Skouriotissa — Three Hills mine
samples

Bureau Veritas Minerals Analysis
Lithogeochemical Whole Rock Fusion, LiBO2/LiB407 fusion ICP-ES
analysis, Carbon and Sulfur Analysis
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3.5.3.1 Brazilian iron ore samples — geochemical analysis

The samples provided by Mine Site 1 and Mine Site 2 were analyzed differently. Sample 3, 4, 7, 8, 11,
12 and 15 (Mine Site 1) were ground and meshed to below 0.105 mm and analyzed by “fire assay XRF”
analysis (as described by the company). Sample 1, 2, 5, 6, 9, 10, 13 and 14 (Mine Site 2) were ground
to below 0.083 mm, fused with lithium tetraborate and analyzed by X-ray fluorescence (XRF). The only
information regarding the XRF system used is the name “XRF79C” for Mine Site 2, no information about
the instrument parameters were supplied. The elements and oxides contents were provided for Fe,
Si02, Al,Os, P, Mn, CaO, MgO, TiO,, Na;0, K,0 and loss of ignition (LOI). The Fe content of the 15
samples varies from 24.40-68.49%, the Si content from 0.53-49.02% and AI203 varies from 0.43-
22.14% (Table 10).

In the comparison of Mine Site 1 and 2 and geochemical clustering, the Na,O and KO content was not
taken into consideration, as only Mine Site 1 provided those values. The LOI normalized geochemical
data as later used for a hierarchical clustering to find geochemical clusters of the samples
(geochemically similar samples) for the spectral library EM determination that presented in Section

5.2.2 (p. 99).

Table 10 Geochemistry provided for the samples from the two active mining sites. Values below the detection limit are
labeled as “< DL”. The LOI is the loss mass during heating at 1000°C for 60 minutes.

1 55.05 16.81 | 0.61 0.135 | 0.052 0.018 0.074 | 0.059 | - - 2.970 2
2 49.72 18.51 1.05 0.110 | 4.032 0.025 0.049 | 0.072 | - - 3.120 2
3 24.40 21.69 | 22.14 | 0.60 <0.015 0.023 0.12 7.66 <DL 0.33 12.03 1
4 46.39 30.33 141 0.037 | 0.047 0.008 <0.05 0.26 <DL <DL 1.20 1
5 38.06 | 41.16 | 0.43 0.063 0.899 0.011 0.002 | 0.014 | - - 2.070 2
6 44.47 31.59 1.97 0.104 | 0.130 0.010 0.051 | 0.055 | - - 2.580 2
7 58.22 10.14 | 3.94 0.090 | <0.015 0.008 0.14 0.27 <DL <DL 1.85 1
8 35.37 | 49.02 | 0.28 0.017 | 0.048 0.013 <0.05 0.012 | <DL <DL 0.13 1
9 44.46 3299 | 0.53 0.081 | 0.063 0.009 0.023 0.026 | - - 2.120 2
10 | 68.49 | 0.53 0.45 0.050 | 0.054 0.010 0.013 0.027 | - - 0.870 2
11 | 30.58 56.5 <DL <DL <DL 0.006 <DL <DL <DL <DL 0.07 1
12 | 47.92 13.29 | 9.26 0.21 0.015 0.010 0.088 2.87 <0.10 | 0.13 5.84 1
13 | 37.17 | 4164 | 1.29 0.184 | 0.051 0.012 0.025 | 0.062 | - - 4.220 2
14 | 38.23 37.45 1.54 0.053 1.505 0.013 0.061 | 0.309 | - - 2.630 2
15 | 64.93 1.32 1.48 0.11 <DL <DL <0.05 0.32 <DL <DL 3.74 1
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The samples provided from one of the active mine site Nr. 1 were delivered including a threshold value
for their geochemical analysis (Appendix, Table 44, p. 208) and a sample description (Appendix, Table

46, p. 208). For mine site 2, only the analysis thresholds were provided (Appendix, Table 45, p. 208).

3.5.3.2 Apliki mine sample - geochemical analysis

BVM
The Apliki mine samples were analyzed by the Bureau Veritas Minerals laboratories (BVM). The

n o«

analysis was split in groups based on three analysis types: “aquatic”, “rock” and “soi

|II

. The sample and
their analysis type and BVM analysis codes can be found in the Table 11, an explanation of the BVM
analysis codes is provided in the Appendix Table 48 (p. 214). One sample was analyzed with the aquatic
analysis type, the rock analysis type included twenty-five samples and soil analysis type included
eleven samples. A spectral library of the samples and their geochemistry was published in 2019
(Koerting, Rogass, et al., 2019). The main geochemical analysis results of the Apliki mine samples can

be found in in the Appendix (Table 49, p. 215).

Table 11 Apliki mine samples and the corresponding analysis type and BVM code, from Koerting et al. (2019b).

Analysis | Samples with prefix “AP/1-A"- BVM code

type

Aquatic la SHPO1, CRU80, PULHP, AQ250

Rock 1b, 1d, 1e, 4c, 5a, 5b, 5¢, 7d, 7d-Hem, 7e, 8a, 8b, | SHPO1, PRP70-250, LF302-EXT, TCO00
8¢, 9a, 9b, 10a, 10b, 10c, 10d, 11a, 11b, 133, 1543,
15b, 15¢

Soil 1f, 2a, 3a, 3b, 443, 4b, 63, 6b, 6¢, 6d, 13b SHPO1, PRP70-250, DISP2, LF302-EXT,

TCO00

X-Ray dffractometry

For the samples powders, X-Ray diffractometry (XRD) was performed to obtain qualitative sample
mineralogy results. XRD data was collected on a PANalytical Empyrean powder X-ray diffractometer in
a Bragg—Brentano geometry. It was equipped with a PIXcellD detector using Cu K_a radiation (A=
1.5419 A) operating at 40 kV and 40 mA. 8/6scans were run in a 20 range of 4-70° with step size of
0.0131° and a sample rotation time of 1s. It was equipped with a programmable divergence and anti-
scatter slit and a large Ni-beta filter. The detector was set to continuous mode with an active length of
3.0061°. Sample 153, b and c were additionally analysed semi-quantitatively with the Rietveld-method.
The XRD detected mineralogy for each sample is presented in Table 12. The diffractograms can be found

in the Appendix (Section 10.5, pp. 217 - 252).
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Table 12 Apliki mine sample mineralogy based on XRD. Sample 153, b and c were additionally analysed semi-
quantitatively with the Rietveld-method.

Sample Mineralogy based on XRD (in no particular order)
1b Andesine (anorthic), Quartz, Magnetite, Montmorillonite
1d Anorthite, Magnetite, Diopside, Quartz, Montmorillonite
1le Magnetite, Quartz, Montmorillonite, Diopside, Anorthite
1f Magnetite, Anorthite, Quartz, Montmorillonite, Pyrite
2a Goethite, Quartz, Clinochlore, Jarosite-Natrojarosite, Andesine, Gypsum
3a Andesine (anorthic), Quartz, Gypsum, Clinochlore, Jarosite, Montmorillonite
3b Quartz, Andesine, Clinochlore, Gypsum, Jarosite, Montmorillonite
43 Gypsum, Quartz, Clinochlore, Rozenite (lron sulfate hydrate)
4b Quartz, Clinochlore, Andesine, Gypsum, Montmorillonite
Ac Quartz, Clinochlore
5a Clinochlore, Gypsum, Quartz
5b Gypsum, Quartz, Clinochlore
5c Quartz, Gypsum, Clinochlore, Goethite, Hexahydrite
6a Quartz, Pyrite, Analcime, Goethite, Montmorillonite, Clinochlore, Anorthite
6b Anorthite, Quartz, Magnetite, Diopside, Montmorillonite, Gypsum, Goethite
6C Quartz, Clinochlore, Analcime, Gypsum, Calcite, Jarosite, Pyrite, Montmorillonite
6d Quartz, Pyrite, Anorthite, Analcime, Clinochlore, Montmorillonite
7d Quartz, Hexahydrite (Mg sulfate), Clinochlore, Gypsum, Pyrite
7d-Hem Pyrite, Hematite, Quartz, Gypsum, Clinochlore
7e Rozenite, Goethite, Quartz, Apjohnite, Ferrohexahydrite (Fe sulfate hydrate)
8a Quartz, Clinochlore, Pyrite, Ajoite (minor copper ore)
8b Quartz, Clinochlore, Pyrite, Ajoite
8c Quartz, Ajoite, Clinochlore, Pyrite
93 Quartz, Clinochlore (Mn), Clinochlore
9b Quartz, Clinochlore, Pyrite, Hematite
10a Clinochlore, Hematite, Quartz
10b Quartz, Clinochlore
10c Quartz, Clinochlore
10d Quartz, Clinochlore, Pyrite
113 Quartz, Clinochlore, Gypsum, Bassanite (Ca sulfate)
11b Quartz, Clinochlore, Sphalerite
133 Andesine, Quartz, Magnetite, Montmorillonite-Chlorite, Diopside
13b Clinochlore, Quartz, Montmorillonite
Quartz (82.6%), Pyrite (7.5%), Chalcopyrite (0.8%), Pentahydrate (cuprian) (9.1%) Cu
15a sulfate)
15b Quartz (86.1%), Pyrite (4.5%), Pentahydrate (cuprian) (7.1%), Covellite (2.4%)
15¢ Covellite (18.9%), Quartz (39.9%), Chalcanthite (21.8%), Pyrite (20.0%)
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3.5.3.3 Skouriotissa Three Hills samples — geochemical analysis

The Skouriotissa mine samples were analyzed in the Bureau Veritas Minerals laboratories (BVM). The
samples and their analysis type and BVM analysis codes can be found in Table 13, an explanation of
the BVM codes is provided in Table 48 in the Appendix (p. 214). All 15 samples were analyzed with the
BVM “rock” analysis. The main components of geochemical analysis results of the Skouriotissa samples

are listed in Table 51 in the Appendix (p. 256).

Table 13 Three Hills mine sample numbers and the corresponding BVM analysis codes.

Analysis Samples with prefix “Skol_B_"- BVM code
type
Rock 1a, 1b, 1¢, 2a, 2b, 2c, 34, 3b, 3c, 443, 4b, 4c, 5a, 5b, 5¢ SHPO1, PRP70-250, TCO00

3.5.4 Field HSI data acquisition

In the following paragraphs the Apliki and Three Hills mine field data acquisition workflow is explained
in detail. It describes the data acquisition, sampling, reflectance retrieval, data pre-processing and 3D

model reconstruction.

3.5.5 Cyprus field work

In the following chapter, the HSI data acquisition and processing in the field in the Apliki mine is
explained. The correct field setup and sampling for validation is crucial and should be considered in
depth before any analysis takes place (3D reconstruction, BFF, SAM or MWL). All the work in the
Republic of Cyprus was conducted under the Permit to conduct a Geological Survey, Ref. No.
02.13.005.002.005.022 from the 19" of March 2018, granted by the Geological Survey Department
Cyprus, Ministry of Agriculture, Rural Development and Environment (GSD) and the Director Dr. Costas
Constantinou. The permit terminated in 18" of September 2018. An agreement for a Memorandum of
Understanding and Framework (MoU) for cooperation in the area of geo-science between the GSD
and the Helmholtz Centre Potsdam (GFZ) German Research Centre for Geosciences was reached in
March 2019 including the objective of “hyperspectral mapping of secondary minerals in the field of
existing drill cores e.g. in abandoned mines or for the purpose of environmental monitoring”. This work
is linked to both, the field sampling permit from March 2018 and the MoU agreement reached in
March 2019.

60




Data acquisition

Apliki HSI field data
3.5.6 Apliki HSI field data

In order to scan the Apliki mine face, the open pit mine was accessed with supervision by the GSD from
the SSW. As the Apliki mine is in close proximity to the UN buffer zone, the movement was limited to
the SSE, the Northern-most accessible point was the NNE accessible levels of the mine face. The
HySpex sensor was placed approximately parallel to the outcrop face at a distance of 100 m SEE to the
mine face. The HySpex placement and distance was based on the accessibility and the safety for both
the operator and the sensor. The placement of the sensors influences the height of the mine face that
can be captured and the pixel sizes at mine face levels. The pixel size has to be small enough to capture
deposit relevant changes. Furthermore, it has to capture the white reflectance targets with sizes of 20
cm x 20 cm for the reflectance retrieval. For the HySpex system, the approximate pixel size captured

at the mine face level for different sensor — mine face distances are presented in Table 14.

Table 14 Approximate distance of sensor to mine face and expected, rounded pixel size at-mine-face for the HySpex
VNIR-1600 and SWIR-320m-e cameras.

VNIR-1600 SWIR-320m-e
FOV (with FOV expander) 34° 28°
Pixels per line 1600 320
Distance Expected pixel Ca.ptured Expected pixel Ca.ptured
size mine face size mine face
height height
200m 3.8cm 122m 15.6cm 100m
150m 2.8cm 91m 11.7cm 75m
100m 1.9cm 61m 7.8cm 50m
10m 0.2cm 6.1m 0.8cm 5m

As the mine face is not level with the sensors view, the uppermost levels will be more distant, whereas
the lower levels will be closer to the sensor, resulting in different pixel sizes. This is due to the man-
made topography of the levels in the mine and also the upward sensing geometry of the sensor. The
expected pixel size in the lowermost, closest levels will be < 2.4cm and in the higher, most distant
levels > 24cm. The mine face area represented by each pixel does not only vary line by line but also
within the pixels of one line (mine face height). Figure 30 schematically shows the changes in pixel size

not only with outcrop height but also with proximity of the sensor to the mine face.
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Pixel sizes at-mine face - level

Top of the FOV: >2.4cm
Average: 24cm
Bottom of the FOV: ' <2.4cm

Figure 30 Approximated pixel size with mine face height variations and proximity to sensor variations, relative to the
HySpex SWIR-320m-e with a FOV of 28° and 320 pixels per line.

Six white reflectance panels or “targets” were placed at the accessible part of the mine face. The
reference panels are 5%, 20%, 50%, 90% and 95% calibrated reflectance standards and approximate
an optimal Lambertian reflectance surface. Five smaller targets are placed with increasing reflectance
standard from left to right along the outcrop face. A large 90% target (80 cm x 80cm) is placed at the
center of the face, in-between the smaller 50% and 90% targets (20 cm x 20cm). The normal surface
of each panel is oriented parallel to the mine face and the reflective surface is facing the sensors at
150 m distance. The GPS positions of the sensor and the targets are listed in Table 15 and are based
on the internal GPS system of the NIKON 1 AW1 camera. A sketch of the position of the HySpex within
the open pit is shown in Figure 31 and the position and placement of the targets along the mine face

is shown in Figure 32.

Table 15 Latitude and Longitude of the HySpex and the six targets.

HySpex 35°4'35,49" N 32°50'33,66" E
5% target 35°4'37,39" N 32°50'35,73"E
20% target 35°4'37,28"N 32°50'35,78"E
50% target 35°4'36,91" N 32°50'35,86" E
90% target 35°4'36,72" N 32°50'36,14" E
95% target 35°4'36,39" N 32°50'36,21"E
Big target, 90% 35°4'36,89" N 32°50'35,95"E
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Figure 31 Position of HySpex and reflectance targets in the Apliki open pit (outlined in black).

Figure 32 A: HySpex and target setup shown in close-up photos. B: Position of the targets along the mine face from left to
right: 5%, 20%, 50%, 90% large, 90% small, 95%.
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The HySpex sensor head was at an approximate height of 1.50 m. The sensors were protected from
the sun by a customary umbrella. The HySpex computer was placed in the nearby car trunk to protect
it from the sun and dust (Figure 33), the system was powered by a generator (Honda EU 10 i inverter)
that was positioned at a distance, downwind of the HySpex. An image series of eleven HySpex VNIR
and SWIR images was recorded, beginning at 13:46 UTC+3 under the conditions of a solar azimuth
angle of approximately 200° and a sun elevation angle of approximately 52° with occasional cirrus
clouds covering a maximum of 20% of the visible sky. The data acquisition parameters can be found in

the Appendix (Table 52, p. 257).

glass fibre cables

. /}
connecting computer
[ to sensors

Figure 33 Data acquisition at Apliki outcrop - computer setup.

3.5.6.1 Apliki field sampling

Figure 34 shows the expected lithology of the outcrop. Ten levels have been counted in total, each
face of an approximate height of 10m. The high level of weathering, that has been taking place since
the 1970s, results in downhill weathering of secondary mineralogy from the gossans cap at the top of
the mine face. The levels are dominated by landslides - triangular cones of debris displaced from the

levels on top - and by water carved troughs, wide at the top of an individual level face, narrowing down
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towards the bottom of the level face. These troughs seem to have formed from surface runoff.

oxidized
zone

Silicified,
chloritized,
brecciated pillow lava

Disseminated pyrite,
pyrite + chalcopyrite
as cavity fillings

blueish mineralization
in areas of surface
water (chalcanthite)

level of
reflectance
targets_ N

total height
ca. 100m

Figure 34 Apliki mine face - expected lithology and extraction level numeration.

These trough surfaces are covered in white-blue mineralization. Only the two lower most levels were
accessible and of those, only level 2 was within the spatial range of the HySpex sensors. Sampling
therefore concentrated on level 2. In order to identify spectrally homogenous regions for sampling, a
PCA was calculated from the SWIR radiance data. The PCA method that was used is explained in
general terms on page 84 and for the Brazil dataset on page 103. Instead of the reflectance data as for
the Brazil dataset, here the radiance SWIR data was used to calculate the PCA and find spectrally
homogeneous areas in the field. The RGB visualization of PCA band 3-5-6 is shown in Figure 35. Field
sampling was conducted in the areas indicated by red stars in the PCA. Thirty-seven samples were
collected on-site from fourteen different sampling areas (see Figure 36). Area 1 and 2 were located on

the level of the HySpex sensor, area 3-11 and 14-15 were located on level 2 of the mine face. Area 12
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was inaccessible for field sampling. The landslide marked as area 13 was sampled from the bottom of

the open pit (level 1) where it was safely accessible.

Figure 35 PCA based on SWIR radiance data marking spectrally homogeneous regions with red stars for possible field
sampling.

Figure 36 Sampling locations identified from SWIR radiance PCA analysis and marked as ROIs in the SWIR grey-scale
image Sample area 1-11, 13 and 15 were included in the spectral characterization of the mine face (marked in their ROI
color), area 12 & 14 were excluded (labeled in white).

Several samples have been collected from each sample area and were analyzed spectrally and
geochemically as described in the laboratory section of this work (and in Koerting, Rogass, et al., 2019).
For the spectral library based on geochemical clustering of the samples (Subsection 5.4.1.1, p.136),
only twelve sample areas were considered. Area 12 and 14 were excluded from the spectral

characterization of the mine face and are marked by white rectangles in Figure 36 above.

3.5.6.2 Apliki field data reflectance retrieval

The raw Digital Number (DN) sensor output data is radiometrically scaled to radiance (W -sr?-m 2

nm ) using manufacturer predefined sensor characteristic radiometric calibration coefficients. The
mean radiance spectrum of each reflectance target is calculated and normalized according to their
relative reflectance level. The incident direct and diffuse irradiance is modelled polynomially for every
spatial position (pixel) and for all bands of the reflectance panels present in the HSI. The reflectance
targets are marked by ROIs in the ENVI software for this purpose. Table 16 lists the reflectance targets
utilized for the Apliki mine face with the number of detectable pixels for each target. The irradiance
model calculated for each target is applied to every HSI pixel to retrieve the reflectance value for each
band. If an averaging over more than one HSI measurement is applied, a weighted average of all data

cubes is calculated according to their spectral homogeneity. Consequently, for Apliki eleven data cubes
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were averaged and combined into one reflectance dataset that was further processed and
downsampled. Table 16 also states the variable area depicted by a pixel inferred from the known size
of the different reflectance panels. As discussed above, the area depicted by each pixel varies due to
the rotational manner of the measurement and the various distances from surface to sensor (along-
track and within the captures line of pixels). For the white reference targets, this variation of area
depicted by one pixel flank varied from 7.0 — 11.4 cm. For every image the spectral homogeneity of
the calibrated reflectance standards was determined using the standard deviation of all pixel spectra
at the reflectance standard locations (Boesche et al. 2015). The resulting data cube was then used for

the analysis of the surface mineralogy.

Table 16 White reference target size in pixel, cm, and approximate pixel size of the reflectance targets at the outcrop.

5% 2.5 20 cm x 20cm 8
20% 2 20 cm x 20cm 10
50% 2 20 cm x 20cm 10
90% 3 20 cm x 20cm 7
95% 2.5 20 cm x 20cm 8
90% 7 80cmx80cm 11.4

3.5.6.3 Apliki field data pre-processing

The reflectance was retrieved from an image series average of eleven scans in total, acquired around
noon (13:46 CEST) of an evenly lit mine face. Each scan was subject to slightly different illumination
conditions due to the movement of clouds. Averaging the scenes results in an approximately evenly
illuminated outcrop. The VNIR-SWIR scan has a size of 3013 x 320 pixel, including parts of the open pit
in the Southeast. The scan was clipped to the extent of the mine face to 1600 x 320 pixel. The
reflectance retrieval by Christian Rogal} (Boesche et al., 2015, explained above) includes a smoothing
with a Gaussian filter with a sigma of 2. The smoothed data was clipped to the wavelength range of
414 — 2390 nm, excluding the last 18 bands due to prevalent noise. The atmospheric bands, visible as
broad spikes in the data, were clipped around bands 209 — 239 and bands 284- 327 and a shadow and
Normalized Difference Vegetation Index (NDVI) masking was performed based on the Indexdatabase
(indexdatabase.de/, 2020). The resulting vegetation mask is shown in Figure 37 and the shadow and

NDVI-masked imagery is shown as an RGB in Figure 38.
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Figure 38 NDVI & shadow masked reflectance field scan. Vegetation and areas of shadow (high SNR) are masked out and
shown in black. (RGB composition: R: band 63, G: band 38, B: band 13.)

3.5.6.4 Apliki mine 3D reconstruction

The digital outcrop model was reconstructed on a Lenovo Thinkpad, Windows 10 64-bit, Intel® Core™
i7-2860QM CPU @ 2.50 GHz x 2.50 GHz and 32 GB Memory. The processing times of the 3D
reconstruction are based on this hardware. The 3D modeling was performed in Agisoft Photoscan
Professional v.1.2.6.2834. Neither the method of Structure-from-Motion (SfM) reconstruction nor the
models’ accuracies are of particular interest in this work, the “digital outcrop models” are purely
created for visualization purposes in the context of location within the open pit. To reconstruct a 3D
model of the outcrop — often called a “digital outcrop model” (DOM) - 117 photos taken by a NIKON 1
AWI1, lens 11.0—27.5 mm, f/ 3.5 - 5.6 (4608 x 3072 pixels) and 1 HySpex RGB scan (1600 x 320 pixels)
were utilized for SfM reconstruction. SfM allows us to align overlapping photos to form geometric 3D
meshes (Caravaca et al., 2019). Similar points across the photo set, so-called matching tie points are
detected and linked to create a sparse point cloud. Each tie-point is projected into 3D space, the
position of each point is being calculated from the apparent displacement across several photos
(Caravaca et al., 2019). Points detected not correlating to the outcrop itself are removed before
calculating a dense point cloud. A network of vertices delimitating triangular polygons is calculated by
linking the points of the dense point cloud, thereby creating a 3D mesh (Caravaca et al., 2019). The
vertices are color-coded according to the RGB colors of the original source photo. The visualization of
the single RGB representation of the HySpex scan is included in the SfM reconstruction to match tie
points and construct a 3D model. To visualize the RGB HySpex scan within the 3D model or to visualize
the resulting maps of the same spatial dimensions, the HySpex imagery (or map) is used as a single

texture for the mesh, and visualized on top of the RGB photo-based DOM. This results in a
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photorealistic representation of the digital outcrop model that is able to visualize the mapping results
on the 3D texture. Two RGB DOMs for Apliki were reconstructed, the first one showing a wider view
of the open pit and a second one showing a close-up of the mine face in the NNE of the open pit. The
parameters for the two digital outcrop model reconstructions are listed in Table 54 in the Appendix (p.

259). The dense point clouds of both DOMs are shown in Figure 39 and Figure 40.

Figure 39 RGB digital outcrop model of the Apliki open-pit area, showing the NNE to SSW walls of the pit. One extraction
level is approximately 10m of height.

50 m

Figure 40 Close-up RGB model of the mine face in the NNE scanned by the hyperspectral system. One terrace is
approximately 10m of height.
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3.5.7 Three Hills HSI field data

The Three Hills open pit was entered from the Northeast and the HySpex sensors and equipment were
placed approximately parallel to the upper outcrop faces at a distance from 100m to 200m from the
convex faces on the Eastern flank of the open cut. One white reflectance panel was placed at the
accessible part of the mine face NW of the HySpex sensor. The 80cm x 80cm reference panel is
calibrated as a 90% reflectance standard. The normal surface of the panel is oriented parallel to the
mine face in the North and the reflective surface is facing the sensors from a 100m distance. Only one
large WR panel could be placed on an accessible, safe part of the mine that is also visible within the
collected image area due to its larger size. It can thus be identified correctly within the VNIR and SWIR
scan for the needed reflectance retrieval. The difference to the placement and number of reflectance
panels compared to Apliki here, is the accessibility to place the panels within Three Hills, the visibility
of the panels within the image and the larger distance from sensor to mine front. The GPS positions of
the sensor and the white reflectance panel are listed in Table 17. The position and placement of the
sensors and the reflectance target in the open pit is shown in Figure 41 based on Google Earth imagery
from April 2018 (Google, 2018). The line of surface sampling is marked, as well as the rotational

scanning direction from S to NNW.

Table 17 Latitude and Longitude of the HySpex and the target position.

HySpex 35°05’ 23.58” N 32°54’ 01.34"E
Big target, 90% 35° 05’ 25.23"” N 32°54’ 00.27"E
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Google Earth, 3rd of April 2018,
35° 05'50.72" N, 32°53'48.81" E

Skouriotissa Mine, Republic of Cyprus S X " k Three Hills
’ | Open pit

VNIR and SWIR sensor

Direction of scan

Reflectance target

100 m

Figure 41 Top: Skouriotissa Mine overview; Bottom: Close-up of Three Hills deposit with marked sensor and target
positions. Source: "Skouriotissa Three Hills Deposit", 35°05'50.72"N, 32°53'48.81"E, GOOGLE EARTH, 3rd of April 2018,
retrieved 21st of July 2020 (Google, 2018).

The HySpex sensor head was at an approximate height of 1.50m. Figure 42 shows the field setup with
the placement of the sensors and equipment across from the open pit. One VNIR and SWIR image was
recorded with an averaging of 4 frames, the detailed data acquisition parameters can be found in the

Appendix (Table 53, p. 258).
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Figure 42 Data acquisition setup at Skouriotissa - Three Hills mine.

3.5.7.1 Three Hills Field Data Pre-Processing

The hyperspectral reflectance data derived from the field pre-processing routine from Boesche et al.
(2015) and was cleaned up as explained for the Apliki field data including a shadow (<10% reflectance)
masking. The field data was downsampled to the optimal sensor “40nm VNIR — 15nm SWIR, without
atmospheric bands” (clipped and interpolated between the atmospherically influenced bands between
1300-2010nm). The resulting dataset spans the spectral range of 414-2390nm within 54 spectral
bands of 40nm (VNIR) and 15 nm (SWIR) bandwidths, the RGB representation of the mine face scan is

shown in Figure 43.

Figure 43 RGB representation of the superspectral mine face data of Skouriotissa, Three Hills, Republic of Cyprus.
Viewers’ direction is approximately towards NNW.
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3.5.7.2 Three Hills Mine 3D reconstruction

To reconstruct a digital outcrop model (DOM), 184 photos taken by a NIKON 1 AW1, lens 11.0 — 27.5
mm, f/ 3.5 — 5.6 (4608 x 3072 pixels) and 1 HySpex RGB scan (2500 x 320 pixels) were utilized for
Structure-from-Motion (SfM) reconstruction. By including one HySpex RGB scan, the texturization of
the DOM with the classification maps can be achieved. One DOM for Skouriotissa Three Hills was
reconstructed, showing the open pit from the HySpex view position from approximately SE of the open
pit. The dense point cloud model is shown in Figure 44, textured with the orthophoto mosic of the
available Nikon photos und in Figure 45, textured with the RGB hyperspectral scan overlaid on the RGB
photo texture. The parameters for the DOM reconstructions are listed in Table 55 in the Appendix (p.
260). The DOM is created for visualization purposes only and neither its accuracy nor the methodology

of SfM is under inspection in this work.

N

100 m

Figure 44 The resulting 3D model, textured with the orthophoto mosaic of all available Nikon photos.

100 m

Figure 45 The resulting 3D model, textured with the RGB hyperspectral scan overlaid on the RGB photo texture.
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4 Near-Field Imaging Spectroscopy Methods

4.1 Analysis of imaging spectroscopy data

The analysis of any hyperspectral imagery is generally aggravated by the high variability of the material
spectra due to subtle changes in chemical and molecular characteristics. By using corrected reflectance
data instead of radiance data, the influence of the illumination source and changes is considered as
negligible and the changes in the spectrum is considered as purely material dependent. The correction
to reflectance is crucial yet handled differently by the different research groups; it is discussed in the
following section. When the data is reflectance-corrected, the spectral, material-dependent features
can be analyzed and distinguished. Some of the standard knowledge- and data-driven analysis
approaches are explained in the following introductory chapter and will be applied to the Brazilian Iron
Ore sample data in the subsequent chapter. Figure 46 schematically demonstrates how hyperspectral
data is handled, corrected, processed and analyzed. All of the examples mentioned in the figure are

explained in detail in this section and the following subsections.
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[ Generic Workflow for HSI data j

e )
Data processing prior to analysis

—> Reflectance Retrieval
— Data processing and cleaning
¢ e.g. detector jump reduction, outlier detection
e shadow/ low SNR masking
—> Data dimensionality reduction ("Downsampling")
Application dependent sensor model

—> Feature Retrieval
e Convex Hull
e Geometric Hull

Geochemical clustering of samples (Lab)
In-situ site-specific (user-defined)

Knowledge-based
Absorption modeling Spectral modeling
€.g.: PCA, MWL Expert systems
(MICA, EngeoMap)

Data-driven
Per-Pixel Sub-Pixel
SAM, BFF, ICA, MTMF

Neural Networks,
Random Forest

Figure 46 Schematic generic workflow of how HSI is processed and analyzed. Explanation of the examples given in the
figure are found here: data dimensionality reduction (pp. 76-77), continuum removal (pp. 81-83), SMACC (pp. 78-79),
geochemical clustering (p. 78), in-situ site-specific (p. 77) and PPI + n-D (p. 79). The following methods are found here:
PCA (pp. 84-85), MWL (pp. 85-86), MICA (p. 93), EnGeoMap (pp. 94-95), SAM (p. 86), BFF (pp. 86-87), Neural Networks
(pp. 89-90), Random Forest (pp. 90-91), ICA (p. 92) and MTMF (p. 91).

4.2 Correction of data — Reflectance Retrieval

In order to acquire close-range data fit for mineral mapping, the collected radiance data has to be
corrected and transferred to reflectance values. The radiometric correction is done by a couple of
means. An atmospheric correction known for satellite data is not needed as the image acquisition
either occurs at low altitudes (UAV) or from a distance of a couple of 10s to 100s of meters (ground-

based measurements). The atmospheric influence is therefore negligible, as it will be minimized
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through empirical lining. The at-surface reflectance retrieval is usually performed by empirical line
calibration. Empirical line methods use a single or a couple of spectrally homogeneous reference
panels in the scene, whereas a dark current measurement is used to update the radiometric calibration
coefficients (Boesche et al., 2015; Rogass et al., 2017). Another approach is to divide each pixel
spectrum by an atmospheric correction spectrum derived from the scene by locating the pixel with the
maximum absorption depth of water vapor (at 1126nm) (Rosa et al., 2016; Lorenz et al., 2018). This
approach does not account for potential, multiple reflections that deepens the water vapor absorption
and occurs in concave environments like open pits. Hence, it would overestimate the impact of the
atmosphere on the measured signal. The geometrical fusion of VNIR and SWIR data cubes into a
common Integrating the data into a 3D model requires the identification and matching of control
points. Those can be picked manually (Kurz, Buckley and Howell, 2013) or automatically by scale
invariant feature transform (SIFT) (Nieto, Monteiro and Viejo, 2010; Monteiro et al., 2013). To retrieve
a surface model, RGB imagery from a handheld camera and 3D reconstruction by Structure-from-
Motion and Multi-View Stereo (SfM and MVS) are facilitated to create rapid 3D models from different
image acquisition angles and positions (Kuras, 2017; Koéllner et al., 2019). The SfM technique utilizes
SIFT as well and can be considered as the state-of-the-art approach for photogrammetric analyses and
the computation of digital surface models. This was also deployed for the long-range by Salehi et al.
(2018) and for the close-range by Kirsch et al. (2018). Micro-topography can influence the captured
signal, especially for UAV imagery and unpredictable platform shifts (Jakob, Zimmermann and
Gloaguen, 2017). Surface geometry is a prominent factor for geological applications. The change of
illumination angles can distort the spectral appearance distinctly (Kirsch et al., 2018). In order to
correct the data, the research group around Richard Gloaguen attempt a topographic correction for
UAV and long-range imagery in rough terrains (Kirsch et al., 2018; Lorenz et al., 2018; Salehi et al.,
2018). My experience shows that a topographic correction can be avoided for open-pit imagery by
choosing optimal scanning conditions: evenly illuminated mine-faces, close-range sensor position
(between 10-200m) and in case of changes in convex and concave mine face behavior to partition the
mine face into smaller increments. Shadowed areas are not used for the analysis and cropped out.
Lorenz et al. (2018) took similar consideration into account when scanning an open pit area at Corta
Atalaya, Minas de Rio Tinto, Spain from a distance of 400-1100m and forfeited the topographic

correction here as well.
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4.3 Data dimensionality reduction

Before an EM extraction or spectral processing methods the spectral dimensionality of the data can
be reduced. A reduction of spectral data complexity can be performed based on a de-correlation of
the data by maximizing its variance, e.g. with a principal component analysis (PCA). Rodarmel and Shan
(2002) for example, showed on HYDICE and AVIRIS data that including only the first 10% of PCA bands
still achieves a correct classification rate of about 70% and reducing the PCA bands to the first 50%
reaches up to 90% correct classification results.

The data dimensionality can also be reduced based on-user defined constraints. The user can choose
to exclude bands and wavelength ranges that are not of interest (e.g. exclude complete wavelength
ranges due to influencing atmospheric features), clip the data to a shorter wavelength range or to
increase the bandwidth of different bands and thereby reducing the band number that is needed to
cover the spectral range of interest. A decrease of band number can decrease the noise in the data
and the data size and increase the computation time for succeeding processing steps, e.g. the data
analysis. Section 5.3 (pp. 122 - 128) shows a successive downsampling of the Brazilian iron ore dataset
and how the subsequent analysis results and computation times change with decreasing data

dimensionality.

4.4 EM extraction and spectral libraries

In order to settle for an approach to find the right spectral libraries for EM based classification

approaches, four different spectral EM libraries where compared.

Visual EM selection based on known sample homogeneity

In case of laboratory-based scans of known sample of homogeneous geochemical parameters, spectral
EMs of each sample were extracted in a 5x5 pixel average window. Some of the samples show
inhomogeneous regions (different grain sizes, colors of grains compared to the sample average,
different materials), here the 5x5 pixel average window was deliberately chosen to incorporate the
visual variance in the material, as the geochemical analysis provided was based on bulk material
analysis. In order to correlate geochemical and spectral material properties, the spectrum
characteristic for each sample has incorporate small-scale mixed materials in the overall sample-scale
homogeneous context. The spectral library based one spectrum for each sample can be seen in Figure

47.
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Spectra from Library (HySpex)
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Figure 47 Spectral library based on visual spectrum extraction over a 5x5 pixel average.

Spectral library reduction based on geochemical clusters

Field sampling tends to be biased based on the experience of the sampling person, the time frame in
which sampling can take place, the visual understanding and typically prone to oversampling distinct
looking lithologies (colorful) and undersampling host rock lithologies that tend to look very similar to
each other. Therefore, the samples taken might not represent the actual number of EMs in the
sampled area. Geochemical analysis of the samples can additionally reveal that geochemically very
similar lithologies have been sample multiple times and thereby several samples represent the same
EM. In order to reduce the number of spectral library entries to the number of geochemically distinct
EMs, the geochemical results of the samples were clustered hierarchically based on their element and
oxide mass fractions. The result of this reduction is based on the geochemical analysis of each sample
group (Iron ore samples: p. 57, Apliki mine samples: p. 58,). The geochemical analysis, results and the
individual clustering and subsequent EM choice is explained in more detail in the respective sample

sections (lron ore samples: p. 98, Apliki mine samples: p.136, Skouriotissa Three Hills samples: p.162)

Sequential Maximum Angle Convex Cone (SMACC)

The Sequential Maximum Angle Convex Cone (SMACC) algorithm initiates with the brightest EM and
sequentially and iteratively selects as next EM the spectrally most extreme compared to the current
EM set. It is based on the assumption of a linear mixing of EMs and a convex cone that spans the

spectral variety as vectors. EMs are identified if they exhibit the largest angle towards the existing
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cone. SMACC terminates when the number of permitted EMs is reached or the selected pixel EMs

present the greatest spectral angles (Sykas, 2020).

Pixel Purity Index (PPI)

The Pixel Purity Index (PPI) is a supervised EM extraction algorithm. It starts with a noise-whitening
and dimensionality reduction by MNF transform and then creates a large number of randomly oriented
test vectors anchored at the origin of the MNF-transformed coordinate space. The spectral points are
projected onto the vector and minimum and maximum projected values are flagged as extreme. After
multiple projections the algorithms tallies the number of times a pixel is flagged “extreme” and the

pixels above a threshold are defined as EMs. This can also be achieved randomly (R-PPI) (Sykas, 2020).

4.5 Spectral Processing

The spectral analysis or spectral mapping refers to extracting qualitative and/ or quantitative
information from remotely sensed data based on albedo or wavelength-dependent properties of
materials (Mustard and Sunshine, 1999). Included here are most of the techniques proposed for
detection, classification, discrimination, identification, characterization and quantification of
materials. These methods can be categorized e.g. by their date of emergence (conventional vs.
advanced), their presumed randomness, the data type they are applied to (multi- or hyperspectral),
the way the pixels are treated (hard, per-pixel and soft, sub-pixel classifiers), the need for training data.
A review of the spectral processing methods for geological remote sensing given by Asadzadeh and de
Souza Filho (2016) aims to categorize the well-known methods into knowledge-based and data-driven
approaches and this categorization is followed here. Their spectral processing methods review is
shown in a taxonomic tree (Figure 48) which in conjunction with categorization and taxonomic tree is
taken up for the here-discussed methods. Aside the categorization approach by Asadzadeh and de
Souza Filho (2016), this introduction to spectral processing methods is also based on the reviews by
Audebert et al. (2019) on deep learning for geological hyperspectral classification and Rajan Girija and
Mayappan (2019) on the mapping mineralogical and lithological units. Continuum removal and

absorption feature detection prior to the analysis is inherent to many of the presented methods.
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4.5.1 Continuum removal (CR)

The continuum is the background absorption of the material on which finer absorption bands of
interest are superimposed. It is thought to be the signal of non-selective multiple scattering due to
matrix effects, Fresnel reflectance and spectrally inactive materials (Asadzadeh and de Souza Filho,
2016). The continuum is also influenced by physical (e.g., particle size, texture, surface roughness) and
chemical properties and illumination conditions. Most commonly, a convex hull is fitted over the top
of the spectrum, linking all reflectance maxima with straight lines and bridging all absorption features.
When the original spectrum is divided or subtracted by this continuum, the continuum-removed
spectrum highlights the absorption features (Asadzadeh and de Souza Filho, 2016). Four different
continuum removals are compared, three of them based on the creation of a convex hull and the last

one on a novel approach of a geometric hull.

4.5.1.1 Convex Hull

In the ENVI software (harrisgeospatial.com/docs/using_envi_Home.html, 2020), the standard CR is
performed by creating a convex hull over the top of the spectrum by straight-line segments of a
Delauny triangulation and by interpolation between maxima. The spectrum is then divided by the
continuum for each pixel, the resulting image is equal to 1 in regions where the actual spectrum and
the continuum curve match and below 1 for regions where absorption features occur. The CR of the
HypPy hyperspectral python toolbox by Wim Bakker (Bakker, 2018; Bakker and Oosthoek, 2020) offers
the CR by creating a convex hull as in ENVI, based on a modified Quickhull approach, followed by either
subtraction or division of the continuum curve. Only in case of true reflectance data (scaled from 0 to
1) subtraction is actually an option. A division of the convex hull without cut off wavelengths was
utilized to perform the CR here. The open source PySptools hyperspectral python toolbox by Cristian
Therien (Therien, 2020) also uses a convex hull removal based on (Clark and Roush, 1984) and removes
the convex-hull of the signal by hull quotient.

Mielke et al. (2015) proposed a new approach for a convex hull calculation and continuum removal,
the so-called “geometric hull”. The novel approach was tested against state-of-the-art approaches like
convex hull, scale-space filtering and alpha shapes and the CR and feature extraction was tested on a
the USGS digital spectral library (Clark et al., 2007). The geometric hull is defined by convolving the
input spectrum twice with a 2% and 10% boxcar filter each. For each filter a pair of Gaussian
distributions is estimated and the largest standard deviation of the difference between the Gaussians
is taken as an indicator to find the correct length of the boxcar filter. This ensures the correct
identification of absorption features. The smoothed spectra are divided and show the absorption

minima of potential features. These minima are taken as nodes to construct a lower hull by linear
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interpolation between them. This lower hull is subtracted from the input spectrum to set the
preliminary minima to zero. In each non-zero segment, the maximum is found and listed as potential
nodes for the upper continuum hull, which is constructed by linear interpolation between these
maximum nodes. The points of the upper hull are now subtracted from the input spectrum to check
for interference between the two-point sets (reo-crossing points). This process is iterated through new
emerging maximum nodes until the final geometric hull can be constructed from the final maximum
node list. Either subtraction or division of the input spectrum and the continuum hull accomplishes the
CR. As for the HypPy CR, division is advised for non-true reflectance data. Mielke et al. (2015) compares
the feature extraction quality from the different continuum definition techniques to the expert defined
absorption features in the USGS Material Identification and Characterization Algorithm MICA (508

features for 213 spectra) of the USGS spectral library (Clark et al., 2007; Kokaly, 2011).

4.5.1.2 Geometric Hull

Mielke et al. (2015) compares the following features: the position of the absorption maximum, the
area of the absorption feature, the overlap between the defined feature shoulder regions, the
maximum absorption depth, the albedo difference (height of continuum over absorption maximum)
and the slope of the continuum line over the feature and the computational time. The geometric hull
algorithm performs best for 5 of the 7 categories. It is outperformed in the computational time by the
convex hull algorithm only but performs least of all for the median depth difference of the found
absorption features. Here too, the convex hull approach performs best of all. The low performance of
the depth characterization of the feature is based on the shape of large absorption features. They
often exhibit small convex sections that cause the geometric hull approach to split one large feature
into two smaller features. Other than the convex hull approach, the geometric hull is instead able to
detect absorption features in an overall concave trend in the spectrum. Especially for the large iron
absorptions in the VNIR the geometric hull underperforms and should be used with caution as a

preprocessing step. It is advisable to use the ordinary convex hull approach in this case.

4.5.1.3 Continuum Removal in this work

The here used routines rely on a convex hull removal for feature extraction. For laboratory conditions
this means, detecting all spectral features, even those of mineral bound water around 1440nm and
1900nm, which makes sense if only laboratory conditions are expected. If classification algorithms
tested for the laboratory are supposed to be transferrable to field conditions this will provide trouble.
Concave trends in the spectrum are treated as features by the convex hull and the features around
1400nm and 1900nm are taken into account even though field conditions do not allow for utilizing this

wavelength range due to strong water band influence (Mielke et al., 2015). When utilizing the convex
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hull in field conditions, the wavelength range of the atmospheric water bands has to be masked
completely. Otherwise, the geometric hull retrieval for field conditions is advisable, even though it
tends to split the large iron feature around 900nm into two smaller features and thereby does not
allow for feature depth and width analyses here. A comparison of all above-described continuum
removal methods is shown in Figure 49 for two different spectra from the Brazilian Iron Ore dataset.
The continuum removal based on convex hull is shown for the ENVI software (green spectrum), the
HypPy toolbox (blue) and the PySp toolbox (red). Additionally, the geometric hull continuum retrieved

spectrum is shown in yellow.
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Figure 49 Continuum Removal for two spectra of the Brazil dataset. Showing the spectrum of sample 3 (Right) and
sample 13 (Left) of the Brazilian Iron Ore samples. Both samples are marked by red arrows in the RGB image of the Brazil
sample set. The regular spectrum is shown on the top (in purple) and the continuum removed spectrum is shown below.
For both samples, the continuum was removed by the methods accessible via the ENVI- (green), HypPy- (blue) and PySp
toolbox (red). ENVI, Hyppy and PySp rely on the convex hull algorithm. The Geometric hull retrieval by Mielke et al.
(2015) is also shown (yellow) and noted as “Geometric Hull”. The axes of the small graphs depict the wavelength (400 —
2500nm, x-axis) and the scaled feature depth (0-1 for convex hull, 0-10,000 for Geometric Hull, y-axis).

4.5.1.4 Absorption feature detection

A common method is to identify the local spectral minima in the continuum-removed spectrum. This
can be done manually or automatically. (Mielke et al., 2015) proposed a method for a new continuum
removal and subsequent automatic feature retrieval. Finding and identifying the absorption features

of a spectrum are often preliminary to subsequent analysis methods. Absorption modeling is achieved
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by partial modeling techniques that focus on band calculations or by full modeling that map the whole

feature.

4.5.2 Spectral processing methods

4.5.2.1 I: Knowledge-based approach

The knowledge-based approach relies on the knowledge of the expected spectral behavior of a desired
target. Itis based on distinct characteristics of absorption features (position, depth, asymmetry, width)
(Asadzadeh and de Souza Filho, 2016). Three basic components describe a spectrum: 1) a continuum,
2) absorption bands and 3) residuals or noise. Asadzadeh et al. (2016) argue, that all knowledge-based
approaches aim to estimate the quality or quantity of one or more of these components interactively
or automatically. This is done in manner that concentrates either on “absorption modeling” or on a
“spectral modeling”, including only parts of the spectrum or the full spectrum to the analysis

respectively.

4.5.2.2 Absorption modeling — Band ratio, PCA and feature modeling

Band calculation is the most common image processing method and provides a shape or grade of an
absorption feature by using band math operations. As it only uses parts of the spectrum, it belongs to
the “partial modeling” type of the available spectral analyses. Band ratio can use the difference in
reflectance between an absorption feature band and one of its shoulders — in order to use published
and proven band ratios for my hyperspectral test image of iron ore related samples, the data was
resampled to the super-spectral resolution of World-View-3 (16 bands) to show an example of band
ratios from the Index DataBase (Henrich et al., 2012; indexdatabase.de/, 2020) for ferrous iron (Fe?*)

in comparison with the geochemical data delivered with the samples.

Principal component analysis (PCA) uses spectral gradients in a more statistical manner. Images in the
VNIR and SWIR range usually do not show sharp features such as the common Raman spectroscopy
with its distinct absorption peaks. Due to the presence of rather wide absorption features, most
features at different wavelength are highly correlated (Eisele, 2014). Due to that, dimensionality
reductions can be performed.

The PCA is based on the mathematical principal of eigenvalue decomposition (Rodarmel and Shan,
2002). In the PCA, the highly dimensional data is reduced to few latent variables. This is achieved by
transforming the X variable (the set of spectra) into an equivalent set X’ by a linear transformation
using an Eigenvalue decomposition. After that, all the new “spectra” or principal components are

linearly independent. The PCA minimizes the covariance between the different rows of X’, it processes
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the spectral data only. The PCA bands are sorted by descending Eigenvalues representing their
descending contrast/ variance and it aims to maximize the variance of the data as the data will be
decorrelated. The first band shows the highest variance and the last band the lowest possible variance.
The first few bands often contain the majority of the information whereas the last bands include a lot
of the noise. Using PCA data for subsequent classification allows for a decrease of number of bands
whilst also decreasing the noise and thus speeding up the processing time. PCA has been confined
mostly to multispectral imagery as it relies on empirically chosen input bands and it is difficult to relate
the PCs to specific image features or geological components. Nevertheless, PCA has drawbacks; a

relevant one is the inability to reproduce the results.

Feature mapping or full modeling
Feature mapping aims to characterize an absorption feature by attributes like its wavelength position,

depth, width or symmetry. Continuum-removed data and absorption feature detection have to

typically take place before feature mapping methods can be used.

Spectral feature characteristics (wavelength position, shape and asymmetry) correlate to the
mineralogical content of the material. The wavelength position corresponds to the geochemical

composition whereas the depth of the feature is related to the abundance of the compound.

Minimum Wavelength Mapping (MWL): Wavelength position and feature depth mapping is often
used to map specific mineral assemblages. It is using the minimum wavelength position and feature
depth to calculate ratios of specific absorption features. Wavelength position maps were first present
in context of mapping the Martian surface (Van Ruitenbeek et al., 2014). Here, the position was
calculated over the wavelength rages of 1350-1500nm, 1700-2100nm and 2100-2400nm. Especially
for hydrothermal deposits, the mapping of white mica composition, white mica crystallinity and
chlorite composition has become a tool to determine mica formation und phyllic or argillic type
hydrothermal alteration. For white mica composition the minimum of the feature between 2185nm
and 2225nm is mapped (Dalm et al., 2014; Corescan, 2016; Dalm, Buxton and van Ruitenbeek, 2017;
Lorenz etal., 2018). The minimum wavelength position for features in the SWIR range of approximately
2190nm to 2390nm is also used to map the likelihood of occurrence of clay, jarosite and carbonate
(Krupnik and Khan, 2019). The minimum wavelength (MWL) of a spectral feature can act as a proxy of
material geochemistry and for certain wavelength ranges it provides information of element
substitutions within a mineral between the different EMs.

The wavelength minimum position and depth can be detected by using the HypPy toolbox (Bakker and

Oosthoek, 2020). Here, the absorption wavelength at the maximum depth of the absorption feature is
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located in a-priori defined wavelength range after continuum removal took place. The depth of the
found diagnostic feature can also be calculated in HypPy and is correlated with the abundance. This
continuum band-depth (CBD) method has a few drawbacks (e.g. depth is proportional to particle size
and amount of opaque material, intimate mixing can lead to nonlinear behavior, absorption bands can
overlap) but is still the most accepted spectroscopic method for semi-quantification (Asadzadeh and

de Souza Filho, 2016).

4.5.2.3 |I: Data-driven approach

The data-driven approach is based only on the hyperspectral data itself and possibly additional
reference data. This reference data is called “training data” or EM sets. These can be derived directly
from the image, can be imported in form of generic spectral libraries, such as by (Kokaly et al., 2017;

Meerdink et al., 2019) or from ground based in-situ measurements of known areas (Shippert, 2003).

|ll Ill

Data-driven approaches can be further subdivided into “per pixel” and “sub-pixel” categories
(Asadzadeh and de Souza Filho, 2016). The use of spectral libraries and EM extraction methods for this

work is explained in Section 4.4 (p. 77).

Per-pixel/ hard classifiers — similarity metric and least-squares estimations
The per-pixel category is also called “hard classifier” as it compares each image pixel with the reference

data and assigns one label to the pixel, based on a similarity metric, image statistics or least-square
estimations. The most commonly used whole pixel analysis methods for hyperspectral data provided
by ENVI are the Spectral Angle Mapper “SAM” (Yuhas, Goetz and Boardman, 1992) and the Spectral
Feature Fitting “SFF”. Another least-squares approach, additional to the SFF, is the principle least-
squares regression (PLSR). Also part of the classifiers are the training based approaches (Gaussian
maximum likelihood and Mahalanobis distance classification) and learning based approaches (support

vector machines, random forest classifications and artificial neural networks).

The Spectral Angle Mapper (SAM) is a similarity-based approach and was developed by J.W.
Boardman as part of the Spectral Image Processing System “SIPS” (Kruse et al., 1992, 1993, 2008;
Yuhas, Goetz and Boardman, 1992). SAM, as part of this tool, plots a scatter plot of the pixel values of
the bands of a spectral image. In this plot, the pixel spectra vs. the target spectra as points, SAM
computes the angle between the vectors going through each of these points. A smaller angle between
pixel spectrum and reference spectrum shows a higher similarity. The spectral angle is relatively
insensitive to changes in pixel illumination, as the vector direction stays the same only the magnitude
is changed by illumination differences (Schneider et al., 2011). The core algorithm of SAM is basically

a correlator.
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The Binary Feature Fitting or Bi-Triangleside Feature Fittung (BFF) algorithm was developed in 2020
and will be published in more detail (Mielke et al., 2020, in prep.). It aims to bridge the gap between
expert system mapping in the hyperspectral domain and multispectral mapping approaches. The BFF
algorithms constructs characteristic features from non-continuous spectral data. The overall shape of
the spectrum is preserved and characteristic features and spatial relationships between neighboring
points are taken into account. The triangulation between three consecutive measurement points
establishes feature parameters for the identified triangle. With increasing wavelength, for each new
spectral measurement point and the last two points a triangle is established and parameterized. This
allows the BFF algorithm to handle the spectral measurements according to their shape parameters
instead of pure point data. The spectral reference library is resampled to the image characteristics
(spectral resolution) for a subsequent correlation of the shape parameters of the unknown (imagery)
with the known (library) spectra. Here, the correlation values are presented in a matrix, denominating
the best, second-best, third-best etc. spectral correlation/fit for each pixel. For the library spectra that
pass a user-defined threshold after the correlation a bound value least squares (bvls) unmixing the
pixel feature data is calculated. The best, second-best, third-best, etc. spectral unmixing results are
again presented within a data cube. Hard-classifier maps can be produced depicting only e.g., the best
spectral fit or the best spectral unmixing results. Quality maps support the results and are compiled by
summarizing the reflectance data and the triangle areas for each data point. The resulting pan-
chromatic images represent the changing albedo within an image. High reflectance/ albedo is
represented by bright pixels in the panchromatic image. For the sum of the triangles, pixel without
significant features will not yield a high sum of their triangle areas and are represented in dark colors.
Multiplying the yields can combine both measures. The resulting grey-scale image identifies areas with
low spectral contrast and thereby high possible material identification errors. The strength of this
method is the depiction of second- and third-best results as well as the best-fit results. This holds
especially true for satellite imagery in which the area depicted within one pixel is prone to represent
a mixed spectral signal. The same is however applicable for any natural surface, each is likely to be
represented by the mineral assemblages rather than spectrally pure minerals. In order to observe
spatial and spectral changes within a geological surface not only the dominant mineral or material is
of importance but the change of minerals within the assemblage due to different conditions whilst the
surface formation but also processes active post-formation. Another advantage is the theoretical
indifference towards changes in illumination as the shape of the spectrum that is depicted by the
triangles is only dependent on the relationship of the triangles towards each other to extract useful

features.
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Spectral Feature Fitting (SFF) belongs to the least squares-based group based on Asadzadeh and de
Souza Filho (2016) categorization. It examines specific absorption features in the spectrum and
compares depth and shape of those features for the test spectrum (y, pixel) and the reference
spectrum (x). It uses linear least square regression to find the fit between x and y. It can incorporate
single or multiple features that can be set individually by the user, for example as part of the SFF tool
in the ENVI image analysis software (Clark, Swayze and Gallagher, 1992; Clark, 1995; Shippert, 2003).
As the SFF uses the continuum removal procedure and the user knowledge of the features for the
regression, it can be categorized as a hybrid method of the knowledge- and data-driven approach. The
SFF is presented in a more sophisticated version as the Tetracorder later on (Clark, 2003) and an

automated version of the SFF is presented with the EnGeoMap 2.0 (Mielke et al., 2016).

The Principal Least Squares Regression (PSLR) inherits features from the PCA analysis and multiple
regression and finds a linear regression model to concentrate information from the spectrum in a few
optimized variables (Asadzadeh and de Souza Filho, 2016). In other words, it ignores the redundant
information in the data whilst simultaneously highlighting the significant spectral information for the
variable of interest. Itis based on two matrices —the spectral bands (X-variable, independent variables,
the spectra) and the y-variable or the Response-Variable. As for the PCA, the PLSR reduces the data to
a few latent components, which are sorted with descending variances. In contrast to the PCA though,
the PLSR maximizes the co-variance between X and y (Eisele, 2014). PLSR takes into account not only
the spectra (X’) but also the response values. PLSR is mostly used to relate spectra-inherent
information to non-spectral variables. PLSR was considered for this work but the number of samples

for which geochemical analyses were present was not sufficient for a PLSR analysis.

The k-Means unsupervised clustering iteratively generates clusters. The k-Means algorithm tries to
separate samples into k groups of equal variance by minimizing the within-cluster sum-of-squares or
inertia (Pedregosa et al., 2011). Inertia is a measurement of the internal coherence of a cluster that
offers several drawbacks. It assumes convex and isotropic clusters, which is the case for spatially
coherent samples in the laboratory but not for field conditions. Elongated, irregular shaped areas
cannot be differentiated well. Inertia is not normalized, in very high dimensional spaces the Euclidean
distances tend to become inflated, to alleviate the problem a dimensionality reduction (e.g. PCA) can
be used on the data before clustering (Pedregosa et al., 2011). The desired number of clusters to
generate (k) has to be provided. The algorithm begins with an initial set of cluster centers before each

pixel is assigned to the nearest cluster center, the cluster centers is then recomputed as the centroid
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of all pixels assigned to a cluster, this is done iteratively until the specified maximum number of

iterations is achieved (spectralpython.net/, 2020).

Training-based classifiers aim to cluster the imagery by comparing the test spectrum with the training
classes. This comparison is done by statistical criteria. Here the Gaussian maximum likelihood (GML)
classifier and the Mahalanobis distance (MHD) classifier were tested on our HSI dataset. The GML
uses the mean and covariance matrices of the clusters to calculate a probability distance whereas the
MHD is direction sensitive but assumes equal covariance for all classes. Both of these were tested,

using the Spectral Python Toolbox (spectralpython.net/, 2020).

Learning-based approaches showed considerable advantages over training-based methods. Artificial
neural networks are able to learn the relationship between a set of example patterns, to generalize
those, combine the results and then apply them to new input patterns (Asadzadeh and de Souza Filho,
2016). ANN attempt to model the biological nervous system to recognize patterns. The basic
architecture is made up of a network of primitive functions able to receive multiple weighted inputs.
These inputs are evaluated for their ability to discriminate classes. In the training phase, the class
weights are adjusted if the separation of inputs and predefined classes results in an error. This
proceeds until the iterations reach a decay threshold of yielded error (Cracknell and Reading, 2014).
A review on Convolutional Neural Networks (CNN) and geological HSI applications is provided by
(Audebert, Le Saux and Lefevre, 2019) along with the Python toolbox DeepHyperX (Audebert, Le Saux
and Lefevre, 2019; Audebert, 2020) to perform deep learning experiments.

Choosing the right approach based on the data should consider the following criteria (Audebert, Le
Saux and Lefevre, 2019):

e Is the data spatially correlated? This might be the case for large over flights of man-made
structures or expected large-scale geological structure and would also be the case for small-
scale (laboratory) based sample scan data. In the case of outcrop data, surface alteration and
disturbance does not exhibit a high spatial correlation and the material distribution at the
surface is based on mechanical, physical chemical processes that tend to happen
simultaneously. Each process might happen in a spatial context (oxidation of iron at the
surfaces of high water run off) but influence each other and thereby do not exhibit clear spatial
correlation.

e What is the number of training samples? A higher number of training samples is required for
bigger models with more parameters to optimize. Raczko and Zagajewski (2017) produced

acceptable results with solely 76 training pixels per class but other studies recommend at least
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400 pixels per class (Kavzoglu and Mather, 2003). Most supervised classifiers are sensitive to
the data used for training, in order to avoid bias due to odd sample numbers, the different
classes to be represented by roughly the same number of pixels (Raczko and Zagajewski, 2017).

e What is the size of the convolutional kernel? Large 3D kernels tend to be slower and most
implementations are optimized for 2D kernels.

e What type of activation function should be used? Non-saturating activation functions help to
build deeper networks and compute faster than sigmoidal or other activation function
alternatives.

e What choice of input data is used? An optimal band number has to be chosen to represent the
variety in the training data. In order for the ANN to work relatively fast and produce robust
results the number of input bands can be reduced via dimensionality reduction (Raczko and

Zagajewski, 2017).

DeepHyperX uses well-defined train/test splits where samples are extracted from significantly
disjointed parts of the image, this is necessary as in hyperspectral data the neighboring pixels are highly
correlated which would make a randomly sampled training set very close to a randomly sampled test
set (Audebert, Le Saux and Lefevre, 2019). Comparing the different approaches, the 1D base line NN
(4 fully connected layers with dropout) from DeepHyperX, the 1D CNN by Hu et al. (2015) and the 3D
CNN from Li et al. (2017) yield the best results depending on the HSI dataset.

A common non-parametric approach is the use of support vector machines (SVM). It is based on
constructing a hyperplane within an n-dimensional feature space by utilizing the training samples. The
margin between the hyperplane and the closest training samples, known as support vectors, is
iteratively optimized by a structural risk minimization (Asadzadeh and de Souza Filho, 2016). The
maximum margin M (distance) between the support vectors is the indicator to find the optimal
decision boundary. In order to work with non-linearly separable classes, the input variables are
transformed using a kernel function. An appropriate kernel function and sigma (kernel width) is
required to optimize performance (Cracknell and Reading, 2014). For mapping, the linear SVM from
the scikit-learn library (Pedregosa et al., 2011) integrated in the DeepHyperX (Audebert, 2020) toolbox

was used.

Another non-parametric technique is the decision tree (DT), and a variant of it the random forest (RF)

(Breiman, 2001). RF is a logic-based learner, and has shown to be superior to ANN and SVM (Cracknell

and Reading, 2014). RF randomly subsets a predefined number of variables to split each decision tree
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und thus grows multiple trees. Training data for each tree is generated by bagging - by sampling with
replacement a number of samples equal to the number of samples in the source data (Cracknell and
Reading, 2014). To compare child node class heterogeneity to the parent node the Gini index is used,
and determines the best split threshold of input values for the given classes. Cracknell and Reading
(2014) found RF performed well in aspects like stability, ease of use, processing time and prediction
accuracy, on top of that RF showed to be relatively insensitive to variations in parameter values and
are thereby not likely to over fit. The study also highlights the need of 10-25% of training data, but no
additional accuracy of classification above 25% of training samples from the total number of samples,

which would come at higher computational cost.

Sub-pixel/ soft classifiers — partial and full unmixing
The sub-pixel or soft classifier category allows multiple labels per pixel and finds mixed pixel contents

by partial or full unmixing (Asadzadeh and de Souza Filho, 2016). When the aim is to isolate specific
spectral features from the background instead of deciphering the whole spectrum and finding all
possible EMs, the detection of spectral signals can be reduced to match the known target. This is
categorized as partial unmixing. Mixture tuned matched filtering (MTMF) is a common target
detection algorithm. It is an enhancement of the matched filtering (MF) that maximizes the response
of the target signature and minimizes the response of the background by a likelihood ratio. MTMF
includes an infeasibility image for each target signature. The dominant material in the pixel is
determined by using a high MF and a low infeasibility score (Asadzadeh and de Souza Filho, 2016).

These scores are calculated for each EM in the spectral library.

Full unmixing aims at decomposing the pixel spectrum linearly or non-linearly into deterministic EM
spectra and to estimate their abundances. Linear spectral unmixing takes place when the incoming
light only interacts with one material of the checkerboard type macroscopic mixture surface. Multiple
scattering between the incident light and the mixed materials in the scene results in nonlinear mixing.
Spectral unmixing consists of three steps:

1) Finding the number and type of EMs that represent the entire scene variation,

2) Finding the best EM subset that accounts for the spectral variation within each pixel and

3) Estimating the abundance of each EM in the pixel

The type and number of EMs has a profound effect on the unmixing result and thereby is an active
topic of research (Asadzadeh and de Souza Filho, 2016). A way to avoid data based EM extraction is a
supervised in-situ sample and spectra collection which is viable in outcrop scanning and proximal

scanning approaches and harder to suffice for in satellite and airborne HSI (Rivard et al., 2009).
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When the EMs are identified linear spectral unmixing (LSU) can take place. Independent component
analysis (ICA) is only one example of this type of unmixing. ICA is a tool for blind source separation.
The IC transformation is based on the assumption of non-Gaussian independent sources. Higher-order
statistics are used to highlight features without prior information in the mixing for non-Gaussian

hyperspectral data (harrisgeospatial.com/docs/using_envi_Home.html, 2020).

4.5.2.4 Hybrid models — Tetracorder, MICA and EnGeoMap

In general terms, the knowledge-based approach is simple, straightforward, easily attributable to
mineralogical needs and transferable in different scales but comes with the disadvantages that is does
not account for spectral mixing of absorption feature. The data-driven approach is more mature and
robust but also more complicated, needs more computational power, a high variety, labeled reference
data set to initially train the algorithm and is thereby more time consuming (Asadzadeh and de Souza
Filho, 2016). This result calls for a hybrid form of models to 1) incorporate spectroscopy knowledge
and mixing models and to 2) include geological knowledge with mixture theory. Sophisticated versions
of this is are USGS Tetracorder, it's modified version the material identification and characterization
algorithm (MICA) and the EnGeoMap Algorithm with a new convex hull approach (Clark, 2003a;
Kokaly, 2011; Rogass et al., 2013; Mielke et al., 2015, 2016). Figure 50 compares the continuum hull
and thereby the feature definition of the USGS expert system (lower figure) and the geometric hull
(top figure) for the USGS library spectrum “siderite”. Mielke et al. (2015) shows that compared to
expert feature definition, the proposed geometric hull technique outperformed the state-of-the-art-
modified scale-space filtering, the scale-space alpha hull technique and a pure python standard convex
hull algorithm, in that order. Without prior knowledge to the expected features, the geometric hull is
closest to the expert defined spectral features. It does not however include SNR ratios to isolate
characteristic absorption bands. As seen in Figure 50, the geometric hull includes several features that
the USGS did not define. A disadvantage of the algorithm is the definition of a local maximum inside
the broad iron absorption feature (around 1100nm) and thereby dividing it into two separate smaller

features.
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Figure 50 Results for the continuum removal algorithms for USGS spectral library entry "Siderite" in blue. The continuum
definition is shown in green, based on the geometric hull by Mielke et al., 2015 (a) and based on the Tetracorder expert
system by Clark et al., 2003 (b). The found feature and their depth are shown in red. From Mielke et al. (2015).

MICA is a part of the “Processing Routines in IDL for Spectroscopic Measurements (PRISM)” (Kokaly,
2011) and based on the USGS Tetracorder. The following explanation is based on Clark (2003) and
Kokaly (2011). Figure 51 shows the basics of the MICA analysis from Koerting et al. (2015). The
Tetracorder and MICA are based on expert system rules, implemented in a decision tree structure
where multiple algorithms are applied for the material analysis. Applying additional expert rules and
algorithms to the initial result can refine this analysis. The goodness of fit (R2) and the band depth (D)
are calculated for the continuum-removed image and the library spectra. The best fitting library
spectrum is attached to the pixel after the results of an intelligent expert system decision making
framework (Asadzadeh and de Souza Filho, 2016). The Tetracorder is verified by a combination of
human verification of spectral analyses, field checking of results and laboratory analysis of collected
samples. The analysis focuses on diagnostic absorption features in the spectrally “active” regions of a
continuum removed spectrum only. This focus is based on the occurrence of nonlinear mixtures in
nature like coatings, intimate mixtures or solutions that are not well distinguishable with simple
matching algorithms alone. In order to rule out false identification of materials similar in the diagnostic
wavelength regions, complementary spectral areas are taken into consideration. Additionally, to the
defined and weighed diagnostic features for each material, spectral library entries also have defined
(absolute and relative) “not-features” and the analysis allows a “no answer”. In summary, the
Tetracorder matches an unknown material with a known reference spectrum by comparing how well
the diagnostic features match, the reflectance level, the continuum slope and the presence or absence
of key ancillary spectral features. If a match is below a certain threshold, a no detection is assigned as
the material sought is not present or the Signal-to-Noise ratio is too low to allow detection (Clark,

2003a).
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Figure 51 Processing chain and key elements of the MICA image analysis from Koerting et al. (2015) modified after Kokaly
(2011). The spectrum shown schematically in the lower left plot reflectance between 0-100% on the y-axis and the
wavelength between 450 - 2500nm on x-axis.

The EnGeoMap 2.0 algorithm from Mielke et al. (2016, 2018) is an automated material
characterization system. It is based on the EnGeoMap 1.0, the Tetracorder and the MICA algorithm
(Clark, 2003b; Kokaly, 2011; Rogass et al., 2013). The EnGeoMap 1.0 algorithm is included in the
EnMapBox (van der Linden et al., 2015), now implemented in the QGIS module and available as
freeware. It contains two sub-programs, the EnGeoMap-Base for basic mineral mapping and the
EnGeoMap REE for rare earth mapping (Boesche, Mielke and Rogass, 2016). The base algorithm can
map Al-OH, Ca-0 and Fe-O containing minerals. User specific libraries can be imported and assigned
to a user-defined color-coding. The difference compared to the Tetracorder and the MICA is the
automated continuum removal and subsequent feature extraction. The “geometric hull” (Mielke et al.,
2015) retrieves absorption features according to the SNR without expert input, the features are
weighed according to their shape and a linear spectral unmixing is performed. The results of the
analysis are best-fit maps — based on the spectral shape matching and highest abundance maps based
on the unmixing showing the material with the highest dominance in the spectrum. Additionally,
spectro-spatial gradients are delivered in a data cube, assigning each pixel with all mapped spectra and

their ranking. Figure 52 shows the processing chain of EnGeoMap Base, from Korting (2019).
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Figure 52 Simplified illustration of the EnGeoMap processing chain from Kérting (2019) modified after Boesche et al.

(2016).

Geological applications usually show predictable types of target minerals and mineral assemblages.

This knowledge should be included in the process chain to allow for unmixing in a geological context.

In order to account for this fact, for the samples of the Republic of Cyprus have been compiled into a

spectral library to be used for the subsequent analysis of the hyperspectral outcrop scan (Koerting,

Rogass, et al., 2019). EnGeoMap offers a standard spectral library, but allows the user to use site-

specific spectral libraries and color-coding of the classification results. EnGeoMap 2.1 from 2019 now

includes the features derived by the lower geometric hull, additionally to the upper geometric hull

(Mielke et al., 2019).
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5 Near-field Imaging Spectroscopy results

5.1 Overview of applied workflow

The workflow presented here is based on four successive steps of data preparation and analysis that
were tested on three different imaging spectroscopy datasets. This workflow was then applied to a
fourth and fifth dataset. The datasets have been described in the “Materials” chapter on pp. 32 — 74.
Figure 53 shows the five different successively applied workflow parts that are explained from Section
| — V. The identified best-performing approaches will be described in detail in the upcoming workflow
parts | — lll. The best-performing approaches and their successive implementation for the mine face
data analysis is visualized in a conclusive workflow scheme for the HSI mine face data on Figure 106 p.

151.

Brazil Iron Ore Samples

Comparison of:

Hyperspectral imagery
analysis method

Rugged sensor design and
downsampling from hyper-
to superspectral

Apliki Mine Samples

Identification of site-specific
spectral library

Application of best-performing
sensors and analyses methods
Comparison of results identifying
the best-performing workflow
for the mine face data

Figure 53 Methods and hybrid method development performed on the different HSI datasets utilized in this work.

Workflow Part | & Il) are applied to the hyperspectral laboratory imagery of the Brazilian Iron Ore
Samples. Part |) compares different, common methods used to classify spectral imagery and the
mapping results. Part 1l) deals with the need for a rugged, spectral, imaging sensor that can be
deployed in the challenging open pit mining environment. Here, different rugged, theoretical sensors
are tested to identify the ones best suited for open pit mining. Part lll) explains the identification of a
site-specific spectral library tailored to the Apliki deposit. The Apliki laboratory sample data is then
analyzed according to the methods and the theoretical sensors identified in 1) & II). Part IV) applies the

data pre-processing and downsampling methods explained in “Methods” and Part Il) to the mine face
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data. The mine face is then analyzed with the methods identified in Part I) and with the spectral library
compiled in Part lll) Part 1) to IV) represent a workflow for dealing with imaging spectroscopy
laboratory and mine face data in a mining context. The aim is to produce sufficient results for decision
makers under field conditions. Part V) All the methods explained above are then applied to another
open pit mining location: the Skouriotissa — Three Hills deposit and the sample laboratory and mine

face derived data from this location.

5.2 1) Mapping method comparison - Results for Brazilian iron ore samples

The different mapping methods were used to analyze the Brazilian Iron ore sample reflectance dataset
(Dataset 1) including 15 samples. The analysis results will be compared in this chapter.

The analyses were performed on a Ubuntu 18.04.4 system, Processor: Intel® Core TM i7-8550U CPU
@ 1.80 GHz x 8, OS type 64-bit, Memory 32GB. The following Python toolboxes (Python version: 3.7.6.)
were utilized: the DeepHyperX toolbox (Audebert, 2020), the Spectral Python SPy toolbox
(spectralpython.net/, 2020), the Pysptools toolbox (Therien, 2020), the HypPy toolbox (Bakker and
Oosthoek, 2020) and the scikit-learn: Machine Learning in Python tools (Pedregosa et al., 2011). The
image analysis software ENVI classic was utilized ENVI® Classic, version 5.5, IDL version 8.7.0 (L3Harris-
Geospatial-Solutions, 2018) and geochemical clustering was performed in R (R Studio version 1.2.5033,
R version 3.6.2). For the PRISM MICA analysis the following software was utilized: ENVI® Classic 5.3.1,
IDL 8.5.1, PRISM processing routines in IDL downloaded in September 2014 for ENVI 5.0
“usgsprism_vlae_envi50.sav” (pubs.usgs.gov/of/2011/1155/ and Kokaly, 2014). In the following

sections only the shorthand for the software and toolboxes will be used.

5.2.1 Analyzed data

The file used for testing different analysis and classification methods is the HySpex scan with masked
areas of low SNR/shadow. The file is the output from Rogass et al. (2017) translational reflectance
retrieval and is otherwise unchanged. For validation purposes of the classification results, a ground
truth file was created. Regions of interest (ROIs) for each sample region were created in ENVI® and
exported, both as an classification file as well as a PNG file. Only the inner area of each sample was
used to create a ROI, as mixing with the adjacent samples is possible around the sample edges. Note
that this will lead to a constant overestimation of the different sample areas by the classification
methods. As this is the case for every tested method, the results stay comparable. The PNG file was
used for the visual comparison of classification results. The color-coding of the samples corresponds

to the color-coding chosen for the classification results of EnGeoMap for the spectral library used for
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classification. Here, the shadow areas were masked out (Figure 54). The classification file was used for
supervised classification, machine learning and deep learning approaches, the shadowed areas of low

SNR that were removed in the original file could not be masked out and the color coding is different

to the PNG validation file.

Figure 54 Left: Validation PNG file including the shadow mask applied to the data; Right: ENVI classification file for
supervised learning-based methods.

5.2.2 Resulting EM spectral libraries

Four different means to create spectral EM libraries are presented and discussed in the following
section. The four resulting spectral libraries are compared and the full spectral library compiled from

user-defined spectral EMs is utilized further on for the analyses requiring a spectral library.

Visual user-defined spectral EM library
A spectral library was extracted containing one spectrum for each sample from a 5x5 pixel average

window. This spectral library was used further for the methods requiring a user-provided spectral
library (e.g. EnGeoMap, SAM). It shows to be the best distinction tool to differentiate between all the
15 samples or sample groups, Figure 55 shows a SAM analysis with the user-defined library and the

library itself.
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Figure 55 Spectra of all Brazilian iron ore samples in HySpex resolution (408 bands), each sample represented by a 5x5
pixel average and SAM analysis based on the library.

Reduced spectral EMs library by geochemical clustering
In order to identify small clusters of few sample points, agglomerative bottom up clustering of the

sample geochemical data was performed in R (R Studio version 1.2.5033, R version 3.6.2). The ward.D2
method was utilized to minimize the total within-cluster variance (Murtagh and Legendre, 2011). The
scree plot of the clustering showed an optimal cluster number between 4 and 5. The spectral library
was reduced accordingly, choosing one spectrum for each cluster (Figure 56, right). Compared to the
full 15 sample spectral library, especially the number of visually similar looking spectra with low
spectral contrast is now reduced. A SAM analysis was performed to control how the new cluster center
based spectral library translated into the hyperspectral images, the analysis result is shown in (Figure

56, left)., following the color-coding of the spectral library.
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Figure 56 SAM analysis (left) based on the hyperspectral library reduced to geochemical cluster centers (right).
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SMACC EM library
The ENVI SMACC tool was used to find EMs (EMs) from the 408 band HySpex data the resulting EMs

can be found in Figure 57.
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Figure 57 Brazilian iron ore SMACC EMs.

The most extreme spectra were detected for EMs (EM), resulting in the detection of outlier spectra
strongly influenced by noise or saturation (EM1, EM2, EM4 and EM6). Figure 58 shows a plot of 30

randomly selected spectra from sample 03, where EM1, EM6 and EM10 are located.
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Figure 58 Thirty random spectra from the area of sample 03 (HySpex sensor, 408 bands).

Figure 58 shows that some of the randomly selected spectra from sample 03 exhibit the same outliers
as EM1, EM6 and EM10. The spectrum of sample 03 of the visually selected 15 EM spectral library
(Figure 59) is similar to the above shown spectra but due to choosing a 5x5 pixel average and a central

point for the spectral sampling, no oversaturated pixels were included.
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Resulting EM spectral libraries

A SAM analysis for the reflectance imagery with the SMACC EMs spectral library shows how unfit the

SMACC EM are to represent all relevant samples in this case (Figure 59, left).

Endmember spectra from SMACC
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Figure 59 SAM analysis (left) of the Brazilian iron ore samples with the SMACC 10 EM spectral library (right).

PPl and n-D EM library
To use the Pixel Purity Index (PPI) and n-D visualization in ENVI resulted in 6 user-detected EMs (Figure

60).
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Figure 60 Six spectral EMs from PPI and n-D visualization tool.

Again, a SAM analysis for the reflectance imagery with the PPl + n-D EM spectral library shows the

quality of representation of the samples by the found EMs (Figure 61).
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Spectra from Library
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Figure 61 SAM analysis (left) of the Brazilian iron ore samples and the PPI + n-D 6 EM spectral library (right).

5.2.3 Mapping Results

The tests of knowledge-based approaches include band ratios, PCA analysis and feature modeling

approaches. Of the last, the MWL and Continuum Band Depth are considered separately.

5.2.3.1 Band ratios

In order to work with defined and published band ratios, the data was resampled to WorldView-3
sensor characteristics of 16 bands. To give a visual impression, the spectral library in WorldView-3
characteristics is shown in Figure 62. The exact band setting and position of WorldView-3 is shown in

figure 4 (p. 9) and is noted in the appendix in table 57 (p. 266).

Spectra from Library (WorldView-3)
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Figure 62 Spectra of Brazilian iron ore samples in WorldView-3 resolution (16 bands).

To give an example of the method and use an established band ratio, a ferrous iron (Fe?*) and ferric
oxide (Fe**) index from the Index Database (Henrich et al., 2012; indexdatabase.de/, 2020) was chosen.
The ferrous iron index for WorldView-3 data can be calculated from (SWIR 5/ Near_IR1) + (Green/ Red)

(indexdatabase.de/, 2020), the resulting grey-scale image is shown in Figure 63 (right). Figure 63 also
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shows an RGB of the samples (left) and the geochemically derived iron content (center). The ferric
oxide index for WorldView-3 data can be calculated from (SWIR 3/ Near_IR1) (indexdatabase.de/,

2020), the resulting grey-scale image can be found in Figure 64 (right).
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Figure 64 RGB (left), iron content based on XRF analysis (center) and ferric oxide index based in WorldView-3 band ratio
(right).

5.2.3.2 PCA
The ENVI® Principal Component Analysis (PCA) Tool was used to calculate PC bands from the
reflectance data. Some of the first, theoretically most relevant, PC bands were chosen for the RGB

color composite (Figure 65).

Figure 65 Brazilian iron ore true color image (left) and PCA image (R: PC band 1, G: PC band 2, B: PC band 4) (right).
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5.2.3.3 Feature Modeling

The Minimum Wavelength (MWL) Mapping of the HypPy toolbox (Bakker and Oosthoek, 2020) was
performed on the reflectance data). As an example, the user-defined wavelength range for AIOH
feature detection were used as defined in (Kirsch et al., 2018), the broad iron feature wavelength range
was defined from the data itself. The AIOH feature was mapped between 2160-2220nm and the broad
Fe feature was mapped between 850-1100nm. Figure 66 shows the feature position (center right) and
feature depth (right) for the larger of the two AIOH features compared to the AIOH geochemical
mapping (center left) based on the sample geochemistry. The MWL map for AIOH is presented in Figure
67 and is color-coded based on the feature position (color) and depth (saturation). Figure 68 shows
the feature position (center right) and depth (right) of the iron feature compared to the iron content

of the samples (center left).
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Figure 66 Minimum wavelength mapping for the large AIOH feature between 2160 - 2220nm. Left: RGB of samples,
Center-Left: Al,O; content based on geochemistry, Centre-Right: MWL feature position mapping (color stretched from
2160nm-blue to 2220nm-red), Right: MWL feature depth mapping (color stretched from 0-blue to 0.2-red).
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Figure 67 Minimum wavelength map of AIOH, feature position shown by the color-coding, feature depth by the color-
saturation.
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Figure 68 Minimum wavelength mapping for the broad iron feature between 850 - 1100 nm. Left: RGB of samples,
Center-Left: Fe content based on geochemistry, Centre-Right: MWL feature position mapping (color stretched from
850nm-blue to 1050nm-red), Right: MWL feature depth mapping (color stretched from 0-blue to 0.2-red).

The data-driven mapping approaches as explained in Section 4.5.2.3 are separated into hard/ per-
pixel classifiers and soft/ sub-pixel classifiers. Hard classifiers shown here include k-means clustering,
SAM and SFF. Training-based hard-classification is represented by Gaussian Maximum Likelihood
(GML) and Mahalanobis Distance (MHD) classifiers, learning-based classification is compared by
showing Artificial neural network approaches (ANN), support vector machine learning (SVM) and
random forest (RF). For the soft/ sub-pixel classifier, Mixture Tuned Matched Filtering (MTMF) and the

Independent Component Analysis (ICA) are shown exemplarily.
5.2.3.4 k-Means

The k-means clustering was performed in the SPy toolbox (spectralpython.net/, 2020). k-means

clustering took place for 15 (Figure 69) and 7 cluster centers (Figure 70).

Cluster centers from k-means clustering (15 clusters)
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Figure 69 k-Means clustering for Brazilian iron ore, 15 clusters, defined after 100 iterations.
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Figure 70 k-Means clustering for Brazilian iron ore, 7 clusters, defined after 100 iterations.

5.2.3.5 SAM
The reflectance data and the 15-EM user-defined spectral library were used for the SAM analysis. The
resulting classification image was compared to the ground truth, 51703 of 78400 pixels were classified

correctly, resulting in an accuracy of 0,659. The classification image is shown in Figure 71.

incorrect pixels shown in
misclassified colour,
Classification result correct pixels in grey correct (grey), incorrect (black)

~ il

ENVI Spectral Angle mapper
Input HSI cube with 408 bands (HySpex)
=none)

(maximum angle

# correct pixel: 51703
accuracy: 0.6594

Figure 71 SAM classification result (left), incorrectly classified pixels (center) and overall correct vs. incorrect classified
pixels (right).

5.2.3.6 Binary Feature Fitting

The binary feature fitting needs a super- to multispectral input data file for the triangulation. The 408
band HySpex data were downsampled to 42 band data with a constant FWHM of 50nm for each band
to test the BFF mapping. The 15 user-defined EM spectral library was downsampled to the same
spectral resolution. The third input is the CSV file containing the color palette in RGB. The classification

has an overall accuracy of 0,743. The results can be found in Figure 72.

106



I) Mapping method comparison - Results for Brazilian iron ore samples

Mapping Results

Input HSl cube of 15 iren ore samples  Validation image of expected result
i)

Validation Rois showing areas of
viswally distinguishable sample
regions [excluding bordering areas
with possibile sample mixing)

Taotal # pixed: TRA0D
Incarrect plxels shown in
misclassifeed colour,
Classification result oofneck pinels i grey eofrect {grey], incoonect (Black)

Binary Feature Fitting
Input HSI culbe with 42 bands
[generc sensor SOmm Fuimh)

# correct pixel: 58268
accuracy: 0, 7435

Figure 72 Classification result of BFF for the sample derived spectral library. RGB and ground truth are shown at the top,
below from left to right: the best-fit classification image, the incorrect classification shown in the incorrect color with the
correct ROl overlaid in gray and the correctly (gray) vs. incorrectly (black) classified areas in the image.

5.2.3.7 SFF
The reflectance data and the 15 EM spectral library data were used for the analysis in ENVI®. Classes
had to be defined for each spectral library input RMS + Scale pair. Figure 73 shows the scale image of

input spectrum 01 (left) and the user defined classes for sample 01 and 03 (right).

SFF
ENVI Spectral Feature Fitting
Input: HSI cube with 408 bands (HySpex)
& Spectral library, Output: Scale and RMS
image For each endmember

Areas for spectrum 01 (rose)
and spectrum 02 (grey) chosen
manually for each individual
spectrum in ENVIin 2D
scatterplot, by chosing

values of high Scale and

low RMS error.

Figure 73 Spectral Feature Fitting. Greyscale image of the scale for spectral library entry 01 (left) and user-defined classes
for sample 01 and 03 (right). Classes were defined from their respective 2D RMS and Scale scatterplots.

107



108 | Near-field Imaging Spectroscopy results

5.2.3.8 GML
The Gaussian Maximum Likelihood (GML) classification was performed in the Spy toolbox
(spectralpython.net/, 2020). GML was performed on the reflectance data with the input of a class file

as ground truth. The resulting classification has an accuracy of 0.646 and is shown in Figure 74.

Input HSI cube of 15 iron ore samples  Validation image ol expected result

Validation Rois showing areas of
visually distinguishable sample
regions (excluding bordering areas
with possible sample mixing

incorrect pixels shown in
misclassified colour,
Classification result correct pixels in grey correct (grey), incorrect (black)

Gaussian Maximum Likelihood
Classifier Spectral Python
Input HSI cube with 408 bands (HySpex)

# correct pixel: 50657
accuracy: 0.6461

Figure 74 True color and ground truth image of the Brazilian iron ore samples (upper part) and GML results and accuracy
(lower part).

5.2.3.9 MHD

The Mahalanobis Distance classifier was performed in the Spy toolbox (spectralpython.net/, 2020)
with the same input image and ground truth as for the GML. The resulting classification shows an

accuracy of 0.648 as shown in Figure 75.

Mahalanobis Distance
Classifier Spectral Python
Input HSI cube with 408 bands (HySpex)

# correct pixel: 50868
accuracy: 0.6488

Figure 75 MHD results and accuracy for Brazilian iron ore samples.
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5.2.3.10 Learning-based data-driven (SVM, ANN, CNN)

The learning-based data-driven approach is represented by the use of a support vector machine (SVM)
from the DeepHyperX toolbox (Audebert, 2020) using the scikit-learn SVM (Pedregosa et al., 2011).
The artificial neural networks (ANN) are represented by testing a 1D baseline neural network (NN)
(Audebert, Le Saux and Lefevre, 2019), a 1D convolutional neural network (CNN) (Hu et al., 2015) and
a 3D CNN (Li, Zhang and Shen, 2017). To compare the different NNs, the number of epochs was set to
100 and the number of batches to 100 (not for the SVM). The number of epochs was based on testing
with the dataset and evaluating the number of epochs related to a sufficient training loss and
validation accuracy within a time limit of 6000s (100min) as an acceptable training time for the end-
user. The time limit is based on quick, on-site training of the NNs and achieving classification results
within typical 8h-shifts. A training set of 60% was selected for all learning-based approaches, also based
on trial and suggested defaults from the DeepHyperX toolbox. Training samples were collected disjoint
within the image. The reflectance data as used as input data with the classification ground truth file.
Parameters of the models are listed below (

Table 18), the classification images for the 1D NN, 1D CNN, 3D CNN and SVM are shown in Figure 76.
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Table 18 Training based (1D NN, 1D CNN, 3D CNN and SVM) analysis parameters and results.

Model 1D Baseline NN 1D CNN 3D CNN SVM
(Audebert, Le | (Huetal., 2015) (Li, Zhang and | (Pedregosa et al.,
Based on Saux and Lefevre, Shen, 2017) 2011; Audebert,
2019) 2020)
Epochs 100 100 100 100
Training sample | 0.6 0.6 0.6 0.6
Selected 20858 20858 20858 20858
samples
Sampling mode | Disjoint Disjoint Disjoint Disjoint
Patch Size 1 1 5 -
Learning Rate | 0.0001 0.01 0.01 -
(LR)
Batch size 100 100 100 -
. 5432.5 347.6 5318.4 659.5
Computation
time (real) [s]
Accuracy [%] 89.8 75.2 93.9 84.5
89.1 73.4 93.4 83.4
Kappa

Training ground
truth

Test ground
truth

Long training | Fastest but worst | Best accuracy, long | Fast and medium

Comment . . .
time accuracy training time accuracy
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SVM (Pedregosa et al. 2011)
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Figure 76 True color image of the Brazilian iron ore samples (left), prediction of respective model (center) and 40%
ground truth for testing (right), shown for the SVM, 1D NN, 1D CNN and 3D CNN (from top to bottom).
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5.2.3.11 Random Forest

The Pysptools “HyperRandomForest Classifier” (Therien, 2020) was trained with the parameters:
n_estimators = 100, max_depth = 30. The data was split into 60% training and 40% test-data and the
classifier was fit with an accuracy score of 0.80. Comparing the classification image with the ground

truth image, the overall classification accuracy is 0.87 (Figure 77).

Input HSI cube of 15 iron ore samples  Validation image of expected result

Validation Rois showing areas of
visually distinguishable sample
regions (excluding bordering areas
with possible sample mixing

Total # pixel: 78400

incorrect pixels shown in

misclassified colour,
correct pixels in grey

Classification result correct (grey), incorrect (black)

HyperRandomForestClassifier
Pysptools + Scikit-learn
Input HSI cube with 408 bands (HySpex)

n_estimators = 100, max_depth = 30 # correct pixel: 68707
min_sample_split = 2, bootstrap = True accuracy: 0.8764

Figure 77 “HyperRandomForest” classification results for Brazilian iron ore samples.

Soft classifiers presented here include the MTMF and the ICA analysis.

5.2.3.12 MTMF
The results of the MTMF are 15 MF bands and 15 infeasibility bands, one pair for each EM. An example
of a MF band for sample 01 is shown in Figure 78 (left) and of the user-defined classes for sample 01

and 03 are shown in Figure 78 (right).
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library file in MF space.
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MTMF
ENVI Mixture Tune Matched Filtering
Input: HSI cube with 408 bands (HySpex)

& Spectral library, Output: MF score and
Infeasibility image for each endmember

Figure 78 MTMF classification, MF image of spectral library entry 01 (left) and user defined classes for spectral library
entry 01 and 03 from their respective MF and infeasibility 2D scatterplots (right).

5.2.3.13 ICA
The independent component analysis was performed in the ENVI® using the reflectance data. The

result of ICA are 408 de-correlated IC bands that are sorted by spatial coherence. An RGB color

Figure 79 Left: Labeled true color composite of the Brazilian iron samples. Right: ICA RGB composite (band 4 - band 6 -
band 7).

5.2.3.14 Hybrid methods

For the hybrid methods, the MICA algorithm and the EnGeoMap 2.0 and EnGeoMap 2.1 were
deployed. EnGeoMap 2.0 and 2.1 are based on the 15 EM user-defined spectral library. The MICA
classification is based on the USGS splibO6a (Clark et al., 2007) and the therein defined diagnostic
spectral features and ranges. In order to compare the MICA results, an EnGeoMap BFF and SAM
classification was performed on the data utilizing the MICA spectral library and the USGS color-coding

scheme.

MICA
MICA is based on splib06 (Clark et al., 2007), a SPECPR file containing the spectral library information

and a MICA command file (Kokaly, 2011). The aim is to compare a system with integrated expert
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knowledge (MICA) with automated approaches (EnGeoMap and BFF); therefore, a MICA default library
and color-coding was used for classification instead of providing a user-defined library. This makes the
MICA classification harder to compare to the classifications above as the utilized spectral libraries
differ. Therefore, EnGeoMap, BFF and SAM classifications were performed with the MICA default
spectral library. The MICA default libraries are split up in “group1” containing iron bearing minerals
and “group 2” containing clay-group minerals. To compare the classification results, the “group 2”
spectral library and color-coding scheme from the USGS was used, concentrating on the clay features
in the SWIR. The default MICA command file for the mapping is based on a spectral library in Hymap
spectral resolution. Based on this, the HySpex data was downsampled to 124 band Hymap data

resolution. The MICA classification result is shown in Figure 80.

MICA command group 2 classification

Kaolinite mixture ;
(Clay, Muscovite, Smectite, Calcite) Vegetation green

Montmorillonite Vegetation dry

Alunite Snow

Water + Sediment

. Calcite O Alunite + Kaolinite
. Calcite . Pyrophyllite
. Calcite + Muscovite ‘ Pyrophyllite + Alunite
O Calcite + Montmorillonite O Jarosite
O Carbonate Fe-bearing . Kaolinite/ Alunite/ Dickite
. Dolomite O Buddingtonite
. Dolomite + Montmorillonite O Serpentine
‘ Epidote + Chlorite O Serpentine/ Dolomite/ Calcite
O Muscovite . Tremolite or Talc
. Illite O Chalcedony
' Kaolinite . Gypsum
© O
o O
O O
o

Figure 80 PRISM MICA group 2 classification of the Brazilian iron ore.

To recreate the classification with the other hybrid models and have a comparison between them, the
splib06b group 2 was used as a separate spectral library for the EnGeoMap, SAM and BFF algorithm.
The results of SAM, EnGeoMap and BFF is shown in Figure 81. The dominantly mapped material spectra

are shown in Figure 82.
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Mapping Results

Figure 81 MICA group 2 spectral library analysis of the Brazilian iron ore samples with MICA (top left), SAM (top right),
EnGeoMap (bottom left) and BFF (bottom right).

Dominant spectra from classification - MICA group 2 spectral library
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Figure 82 The dominantly mapped material spectra mapped from the MICA group 2 spectral library. (dark blue: kaolinite,
medium blue: kaolinite mixture, light blue: Montmorillonite, pink: alunite + kaolinite, dark red: pyrophyllite, dark red-

brown: pyrophyllite + alunite, yellow: Buddingtonite, orange: Muscovite, purple: carbonate Fe-bearing, light brown:
vegetation green, brown: vegetation dry)

EnGeoMap

EnGeoMap 2.0 (feature retrieval by an upper geometric hull) and EnGeoMap 2.1 (feature retrieval by
a lower and an upper geometric hull) were used for the classification. Both classifications were run

with the same user-defined settings (Table 19).
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Table 19 Settings for EnGeoMap 2.0 and EnGeoMap 2.1 analysis.

Parameter

Setting

Input files

- Masked reflectance data (HySpex 408 bands),

- Spectral library file with 15 EM spectra (5x5 pixel
average),

- Color palette for each EM spectra

- Geometric options file including the unmixing
thresholds and the sensor SNR model

No. of components for unmixing

15

Unmixing threshold

0.0

SNR estimation

From EnMap sensor

The accuracy of the resulting classification for EnGeoMap 2.0 is 0,419 for EnGeoMap 2.1 is 0,533, the

resulting maps can be found in Figure 83.

Input HSI cube of 15 iron ore samples  Validation image of expected result

Total # pixel: 78400

-

Validation Rois showing areas of
visually distinguishable sample
regions (excluding bordering areas
with possible sample mixing

incorrect pixels shown in
misclassified colour,

Classification result correct pixels in grey correct (grey), incorrect (black)

EnGeoMap 2.0
Input HSI cube with 408 bands (HySpex)

EnGeoMap 2.1
Input HSI cube with 408 bands (HySpex)

correct ixel:32896
accuracy: 0.4195

# correct pixel: 41806 .
accuracy: 0.5332

Figure 83 Classification results of EnGeoMap 2.0 and EnGeoMap 2.1 with the sample derived spectral library. RGB and
ground truth are shown at the top, below from left to right: the best fit classification image, the incorrect classification
shown in the incorrect color with the correct ROI overlaid in gray and the correctly (gray) vs. incorrectly (black) classified

areas in the image.
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Comparison of the results
5.2.4 Comparison of the results

The results of the analysis are compared in detail in Chapter 6 “Discussion”, starting at page 165.

The analyses resulting in a hard classifier map (assigning each pixel with the material that is most likely
present) are compared quantitatively based on their computation time and accuracy of mapping. The
analysis methods resulting in single material likelihood maps are compared qualitatively (Table 37, p.
165 in Section 6.1 “lIron ore sample mapping results”, starting at p.165). Table 20 summarizes the
compared methods, input for classification or analysis, number of user specified EMs (EM), the overall
accuracy of the data in the case of hard classifier maps and the software used for the analysis. Python
3.7 and ENVI® Classic 5.5 (on IDL 8.7.3) was utilized for the analysis, unless stated otherwise. The input
data was the 408 bands HySpex reflectance data for all methods but the band ratio analysis (16 bands,
WV-3) and the Binary Feature Fitting (42 bands). The spectral library utilized was compiled from the

408 band data unless stated otherwise in Table 20.

Table 20 Comparison of the applied HSI analysis method, input spectral library (speclib), number of EMs (EM), overall
mapping accuracy [%] and software used to carry out the analysis.

PRISM MICA

Absorption modeling

124
(HyMap)

bands

Input spectral | Number of EM | Overall Software/
Method library accuracy [%] | Toolbox
EnGeoMap 2.0 5x5 AVG speclib | 15 EM spectra 0.419 Python 3.6
EnGeoMap 2.1 5x5 AVG speclib | 15 EM spectra 0.533 Python 3.6

USGS Group 2 | 61 EM spectra None ENVI® 5.3.1,

for AIOH speclib, IDL 8.5.1,

“usgsprism_v1
ae_envi50.sav
” from 2014

PCA None None None ENVI®
Band ratios None None None SPy
Wavelength
Feature modeling range
Minimum Wavelength | None 2160 - 2220nm None HypPy
Mapping (MWL)
MWL None 850-1100nm None HypPy
| DATA-DRIVEN |
Hard classifier
Cluster number
k-means None 15 None SPy
None 7 None SPy
SAM (ENVI) 5x5 AVG speclib | 15 EM spectra 0.659 ENVI®
5x5 AVG speclib, | 15 EM spectra 0.744 Python 3.6
Binary Feature Fitting 42 bands
SFF 5x5 AVG speclib | 15 EM spectra None ENVI®
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Input spectral | Number of EM | Overall Software/
Method library accuracy [%] | Toolbox
Training based Ground truth file
Gaussian maximum | Ground truth: | 15 EM ROIs 0.646 Spy
likelihood class file

Ground  truth: | 15 EM ROIs 0.649 SPy
Mahalanobis Distance class file
Learning based
SVM:
SVM (Pedregosa et al., | None 15 EM ROIs 0.845 DeepHyperX,
2011)
ANN:
1D Baseline NN (Audebert | None 15 EM ROIs 0.898 DeepHyperX,
et al, 2019)
1D CNN (Hu et al., 2015) None 15 EM ROls 0.752 DeepHyperX,
3D CNN (Li et al., 2017) None 15 EM ROIs 0.939 DeepHyperX
Random Forest:
RandomForestClassifier None 15 EM ROIs 0.805 Pysp + scikit-
(Pedregosa et al., 2011) learn
Soft-classifier

5x5 AVG speclib, | 15 EM spectra None ENVI®

MNF stats, 408
MTMF MNF bands
ICA None None None ENVI®

Going forward, four different analysis methods were chosen for the development of a sensor that is
robust and can easily be integrated into the mining environment. For the following chapters, the best
performing analyses are chosen based on the highest accuracy but also the computation time and
repeatability, this decision is discussed in depth in Section 6.1 (pp 165 - 171). The obvious best accuracy

reached by the 3D CNN was not considered due to presumptions of overfitting of the NN.

The analysis methods used to test the different theoretical sensors in the following chapter are:

e SAM as the algorithm with the lowest computation time, as time is a key factor in the
active extraction process in the mining sector.

e SVM, as the best performing learning-based classifier below 1000s computation time.
Keeping in mind that once trained on a specific deposit, the computation time will
decrease rapidly.

e BFF, as the best performing comparison-based data-driven method below 1000s.

e EnGeoMap 2.1 despite its lower accuracy, as it is another hybrid data- and knowledge-

driven analysis algorithm.
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5.3 Il) Robust Sensor Modeling

Mining equipment in an open pit mining environment is not only dependent on precise analytics but
also on rugged hardware, fast measurements and results (high turnover rate) and soft- and hardware
that can be handled by non-engineers and non-computer scientists. In the context of build definition
for extraction planning, millimeter-precise spatial result and ppm- precise geochemical distinctions
inferred from spectral fingerprints are of secondary importance to a decimeter-scale bulk rock

determination of ore, contaminants and waste material.

In order to make spectral analytics available to the mining sector and allow a frequent monitoring, the
sensors have to be present in every mining operation. This implies systems of a moderate price range
and handling by a variety of non-experts on different work shifts. For UAV based operations the weight
of the system is additionally of importance. Most mining operations take place in a tropical

environment. The major producers of iron ore (in metric tons) in 2019 were Brazil and Australia

(https://www.statista.com/statistics/267380/iron-ore-mine-production-by-country/, last visited
12.06.2020), the biggest copper ore producer (in metric tons) in 2019 was Chile
(https://www.statista.com/statistics/264626/copper-production-by-country/, last visited

12.06.2020). These countries show harsh conditions not only in major changes of surface temperature
and near zenith sun angles but in the case of Brazil also due to massive rainfall events. In these cases,
the ideal time and sun angle to take measurements in the open pit will decrease to a small window
each day, which can additionally be influenced by precipitation. Table 21 summarizes the possible
influences on spectral mining equipment, the implications of each influencing factor and a possible

theoretical solution.

Table 21 Influencing factors, implication and solutions for spectral sensor development in active mining operations.

Influencing Implication Possible solution
factor
Rugged The sensor needs to be rugged | Protective casing that does not hinder the
Equipment to be handled in uneven | ventilation of the sensor. PPE like helmets and
terrain and by a work force | glasses can hinder the visibility of the surface
wearing personal protective | interface during measurement, protective
equipment (PPE). gloves need adjustment for the sensor and GUI
handling. The GUI and hardware need to be
adjusted to these conditions.
Fast A high turnover rate and short | A smaller number of bands, possibly full frame
measurement | available time frames for | instead of line scanner and a lower pixel number
measurements ask for a | reduce the measurement time. This needs to be
minimal measurement time. | adjusted within the needed spatial and spectral
This also reduces the in-pit | resolution required for the task.
time and thus the risk for the
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Influencing
factor

Implication

Possible solution

workforce.

Fast Analysis
(real-time)

High turnover rates ask for
quick decisions in order to save
money and keep succeeding
processes in time.

In-sensor reflectance retrieval by at sensor
irradiance measurements or quicker reflectance
retrieval routines are needed. If VNIR and SWIR
is used, the data has to be accessible in the same
spatial resolution and grid. Reduced spectral
and spatial dimensions optimize analytical
computation times.

Determination
between ore,
main
contaminants
and waste

A variability of ore grade and
contaminants can influence
the transport and processing
that succeeds the extraction.
Broad material categorization
before extraction can
economize fuel use for
transport as well as energy use
for crushing (Blom, Pearce and
Stuckey, 2019).

Site-specific determination of contaminants that
influence the processing; Site-specific spectral
libraries able to sort for ore, main contaminants
and waste; Sensor with band positions ideal to
detect the materials of interest.

Pricing

Lower hardware prices will
enable decision makers to
purchase systems for each
mine site and implement in
series.

A smaller band number and smaller spectral
range enables lower hardware prices; SWIR
detectors and optics are more expensive than
VNIR systems.

Size & Weight

Lower hardware weight will
enable UAV monitoring; heavy
UAVs need specific licenses
and pose a higher risk to the
work force.

Smaller band numbers will decrease the size and
weight of the sensor. VNIR sensors are already
small and light and could be used solely for UAV
monitoring.

Power Lower power consumption will | The HySpex VNIR-1024 system only consumes
consumption enable longer measurements, | 6W (https://www.hyspex.com/hyspex-
reducing both strain on | products/hyspex-classic/hyspex-vnir-1024/, last
batteries or diesel-generator | visited 03.09.2020) in contrast to the 30W of the
based energy sources. Lower | HySpex SWIR-384 system
power consumption of the | (https://www.hyspex.com/hyspex-
sensor also directly influences | products/hyspex-classic/hyspex-swir-384/, last
the UAV flight time that is | visited 03.09.2020). Using VNIR solely could be
based on battery duration. a solution.
High Hot climate conditions take a | VNIR systems work well in hot conditions and
temperatures | toll on electric systems. | the silicon CCD detector does not need to be
Commercial  products for | cooled by liquid nitrogen as the SWIR MCT

average wear on Earth are not
tailored to the extreme
conditions of open pit mining.
The cone-shaped topography
of the pit and near-zenith sun
angles in regions of the global
south lead to above average
conditions in the pit. Similarly,
high flight lines of the UAV

detector does (Lin et al., 2009; Spragg, 2017).
This makes their utilization more reliable in
variable temperature conditions. Murphy et al.
(2015) reported in-pit temperatures of >55 °C.
Their SWIR system was utilized by additionally
enclosing it in an insulted box and passing cold,
desiccated air over it.
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Influencing
factor

Implication

Possible solution

present below average
temperatures for the sensors.

Sun angles of
regions in the
global South

Sun angles increase towards
the equator; regions close to
the equator have higher
overall sun angles throughout
the year.

High sun angle can be an advantage when field
scanning takes place in the deepest points of an
open pit. Sun angle variation changes the
illumination of walls in the periphery of the pit
or different terrace levels. With a lower sun
angle variance and shorter time ranges for
sunrise and sunset, measurements have a
limited time frame for optimum illumination.
The end-user screens (e.g., of a GUI) need to
well visible even in very reflective, sunny
conditions.

Variable
incident light

Mine face scans in active open
pit mining have to be acquired

Classification algorithms must yield consistent
results under changing illumination conditions

and on flexible schedules. | (including shade and shadow and changing

illumination Acquisition times have to be | data acquisition times). Murphy et al. (2015)

conditions coordinated with workforce | found that e.g., SAM is relatively insensitive to
availability, upkeeping safety | changing illumination and performs well also in
measures and mine planning | variably shaded regions. Gaussian process
schedules. Taking | observation angle dependent machine learning
measurements  at  ideal | (GP-OAD) (Schneider et al., 2011) was also
illumination  conditions is | proposed for the variable illumination. The BFF
secondary to the majority of | algorithm showed promising results for
mine planning parameters. measurements  with  changing incident

illumination.

Precipitation Strong, regular precipitation | Not only do precipitation events require
events change the spectral | different fast, reliable measurements in
signal surface of the material | precipitation free periods, but they also require
by adding non-mineral-bound | sensors that are either insensitive to water
water-based features. content regarding the spectral signal or sensors

that suppress the water features in the collected
spectral signal.

Dust Machinery activity, deposit | Sensors need to be deployed during times of

mineralogy and climate highly
influence the amount of dust
present in the air column
between the mine face and the
sensor.

lower activity. Mine face scanning could be
possible during night times with strong artificial
illumination. Measurements have to be
coordinate with other ongoing activities.
Sensors need protective casing and spectrally
inactive safety filters in front of the optical
lenses. Murphy et al. (2015) used cooled,
desiccated air to keep the lens and optics dust
free. They did not find a way to account for the
wind-blown dust in the air column between
sensor and outcrop.
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5.3.1 Data dimensionality reduction

In order to find the ideal compromise between mapping accuracy, sensor complexity, varying impact
of atmosphere and illumination and computation time, the Brazilian iron ore data was downsampled
to different, successively decreasing band numbers. The downsampled data either includes the full
spectral range from approximately 400-2500nm, or additionally excludes the spectral area influenced
highly by water related features (between 1300-2010nm) and was downsampled up to the point of
only using the VNIR data range (400-1000nm).

As the new, tested sensors are only compared theoretically and downsampled from HySpex data, the
minimum and maximum wavelength range of the VNIR and SWIR is dependent on the HySpex
characteristics. The downsampling is tested based on the assumption, that with decreasing band
numbers the data acquisition time and the computation times for processing and analysis likewise
decreases. The same is assumed for the sensor size and cost, both will decrease with decreasing

complexity (band number or exclusion of SWIR spectral range).

5.3.2 Downsampling of hyperspectral to superspectral (VNIR-SWIR)

Table 22 shows the entirety of the different downsampling approaches. The corresponding spectral
library images, showing the decrease of spectral detail within the absorption features in the
progressively downsampled data are shown in Table 56 in the Appendix, (p. 261). The downsampling
approaches include sampling down the full wavelength range of the VNIR and SWIR to equal 1nm,
5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 40nm, 50nm, 75nm, 100nm bandwidths and to the
WorldView-3 (WV3) sensor characteristics with 16 bands (FWHM varies between 30 and 125 nm) and
the EnMap sensor characteristics of 242 bands (FWHM varies between 5.7 and 14.4 nm). WorldView-
3 and EnMap are satellite based sensors, that are operating and in design, respectively (Guanter et al.,
2015; euspaceimaging.com/about/satellites/worldview-3/, 2018). SAM and SVM analyses were used
to compare the quality of the mapping for each of the sensors listed in Table 23. The MWL analysis of
the AIOH feature between 2160 and 2220 was also performed to determine to which point of the
downsampling analyzing the minimum wavelength position and depth could be performed.
EnGeoMap 2.1 and BFF analysis was only performed on the downsampled data with bandwidths of
5nm, 10nm, 15nm, 20nm, 25nm, 30nm, 40nm and 50nm. The best performing sensors were then used
in the second scenario in which the wavelength range influenced by atmospheric features was clipped
out (1300-2010nm). In the last scenario, not only the range predominated by atmospheric water was
clipped out, but the data with the best performing band width was analyzed and compared only taking

the VNIR spectral range into account. A schematic overview of the downsampling from a field
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spectrum, a smoothing of the spectrum, downsampling to 15nm and 40nm bandwidth and the

exclusion of the wavelength ranges impacted by the atmosphere is shown Figure 84.

Un-processed field spectra
Smoothed spectra
Downsampled to 15nm bandwidth
Downsampled to 40nm bandwidth
Reduction of atmospheric impact

Interpolation between 1300 - 2010nm

Atmospheric impact window

500 1000 1500 2000

wavelength [nm]

2500

Figure 84 Schematic successive downsampling and band reduction including the exclusion of wavelength ranges
impacted by the atmosphere (between 1300 - 2010nm).

Table 22 Downsampling approaches of the Brazilian iron ore samples.

Sensor / band width [nm] Wavelength Number of | Analysis method for testing

range [nm] bands
1 414-2497 2084 SAM, SVM, MWL
5 414-2494 417 SAM, SVM, MWL, EnGeoMap 2.1, BFF
EnMAP 423-2493 242 SAM, SVM, MWL
10 414-2494 209 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
15 414-2484 139 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
20 414-2494 105 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
15, 1314 — 2004nm clipped | 414-2484 94 SAM, EnGeoMap 2.1 2.1, BFF
25 414-2489 84 SAM, SVM, MWL, EnGeoMap 2.1, BFF
30 414-2484 70 SAM, EnGeoMap 2.1 2.1, BFF
40nm VNIR, 15nm SWIR, | 414-2484 57 SAM, EnGeoMap 2.12.1, BFF
1314 — 2004 nm clipped
40 414-2494 53 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
50 414-2464 42 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
15nm VNIR only 414-1014 41 SAM, BFF, (EnGeoMap 2.1 unsuccessful)
40nm, 1334 - 2004nm | 414-2494 37 SAM, EnGeoMap 2.1 2.1, BFF
clipped
75 414-2439 28 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
100 414-2414 21 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
WorldView-3 425-2330 16 SAM, SVM, MWL, EnGeoMap 2.1 2.1, BFF
40nm VNIR only 414-1014 16 SAM, BFF, (EnGeoMap 2.1 unsuccessful)
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Table 56 (Appendix, p. 261) presents the wavelength and FWHM characteristic of the successively
downsampled data. Table 57 (Appendix, p. 265) list the different systematically downsampled sensors
with their respective wavelength range, band numbers and the applied analysis methods.

5.3.3 Analysis of the superspectral VNIR+SWIR downsampled data

5.3.3.1 Hard-pixel classification based on spectral reference library

The downsampled data was analyzed using SVM, SAM, EnGeoMap 2.1 and BFF.

Table 23 lists the accuracies for SVM, SAM, EnGeoMap 2.1 and BFF. The computation times for SVM,
EnGeoMap 2.1 and BFF were collected. The SAM analysis collectively took below 5s per scan and was
not collected. EnGeoMap 2.1 and BFF were only utilized for the sensors with FWHM bandwidth

between 5 and 50 nm.

Table 23 Accuracy and computation time of SVM, EnGeoMap 2.1 and BFF analysis and accuracies of the SAM analysis for
the different theoretical sensors.

Sensor/ no. of SAM SVM SVM EnGeo EnGeo BFF BFF time
band width bands accuracy | time [s] accuracy | Map Map accuracy | [s]
(nm) [%] (kappa) accuracy | time [s] [%]

[%]
1 2084 65.2 3361.8 82.4 - - - -
5 417 65.2 775.1 82.4 48.7 765.8 60.5 2722.5
EnMAP 242 64.5 397.8 83.5 - - - -
10 209 65.2 362.7 82.4 48.8 690.7 67.2 1425.4
15 139 65.1 254.9 82.4 48.9 654.1 70.3 1009.4
20 105 65.3 203.2 82.4 49.0 632.8 71.1 799.6
25 84 65.2 169.5 82.4 48.5 623.6 71.4 691.8
30 70 65.2 150.1 82.4 48.2 625.3 715 595.3
40 53 65.3 107.6 82.4 49.3 614.8 71.6 500.5
50 42 65.1 90.6 82.4 44.6 618.6 71.7 450.7
75 28 64.9 715 82.2 - - - -
100 21 64.9 66.7 82.2 - - - -
World View3 | 16 63.9 52.5 83.2 - - - -

The accuracy of the different analysis methods for the different band numbers of the sensors can be

seen in Figure 85.
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Figure 85 Band number vs. accuracy for SAM, SVM, EnGeoMap 2.1 and BFF.

The mapping accuracies of SVM and SAM are at an approximately constant level with increasing band
numbers (from 16 to 2084 bands), around 83% and 65% respectively. SVM training time decreases
from 3361.8s (1nm bandwidth) to 52.5s of training time for the WorldView-3 setting (16 bands) but
the mapping accuracy (kappa) increases from 82.4% to 83.2% respectively.

The BFF mapping results shows a slight increase in accuracies with decreasing band. The computation
time for BFF decreases from 2722.5s and 60.5% of accuracy for 5nm bandwidth data to 450.7s and
71.7% of accuracy for 50nm bandwidths. EnGeoMap 2.1 peaks around 53 bands with an accuracy of
49% and stays consistent with increasing band numbers constantly at around 48%.

Figure 86 shows the correlation of computation time and increasing band number. The accuracy of the
resulting map does not increase with band number and computation time for SAM, SVM and
EnGeoMap 2.1. The BFF mapping accuracy decreases with increasing band number and computation

time. A more detailed discussion of these results can be found in Section 6.2 (p. 172 -174).
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Figure 86 Accuracy and computation time with increasing band number. Note the logarithmic scale for both the band
number and the accuracy [%] and computation time [s] sharing the y-axis.

To keep computation times reasonably low for all analysis methods, the downsampling to 53 equal
bands with 40nm bandwidth each was determined as one of the optimal downsampling approaches
for mining applications. Here the BFF computation time is reasonably low. With increasing band

numbers, the BFF computation time outpaces that of the EnGeoMap 2.1.

5.3.3.2 Hard-pixel classification based on MWL

In order to compare how well the narrow, distinct features in the SWIR can be mapped, the MWL of
the kaolinite feature was calculated with the HypPy Toolbox (Bakker and Oosthoek, 2020). The
wavelength range between 2100-2230nm was analyzed to detect two spectral absorption features.

The literature on the wavelength position and range of AIOH spectral feature differs: Lypaczewski et
al. (2020) suggest the range of 2195-2215nm for MWL mapping, (Lorenz et al., 2018) uses the range
of 2190-2215nm and Kirsch et al. (2018) uses an even broader range of 2160—-2220nm. The target
features for the Kaolinite feature for comparison were derived from Lypaczewski et al. (2020). Based
on (Lypaczewski et al., 2020) the kaolinite AIOH double feature has minimum wavelength positions for

feature 1 at 2205nm and for feature 2 at 2156nm. Both features can be mapped distinctly until a
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bandwidth of 15nm. The feature positions for each sensor and the difference in regard to the target

features (Lypaczewski et al., 2020) are presented in Table 24. Figure 87 shows the change of minimum

wavelength for both features with changing band numbers. Here, downsampling to 15nm wide bands

in the SWIR showed to be the maximum amount of downsampling that still allowed the detection of

two distinct absorption features for Kaolinite. Figure 88 then shows the wavelength position and

feature depth mapping by MWL for the sensors with decreasing band numbers from 2084 to 105 bands

(1nm to 20nm FWHM).

Table 24 MWL for the kaolinite feature with changing band number. “None” entries represent no possible detection of a
feature by MWL. The offset of the detected feature position and the expected feature position is noted. Expected
positions: Feature 1: 2205nm, Feature 2: 2156nm.

Wavelength of found minimum feature [nm]

Sensor / band Feature 1 Feature 2 | Feature 1 off | Feature 2 off
. Band nr. " -
width (nm) position position target target
1 2084 2206.63 2162.64 1.63 6.64
£ 5 417 2206.48 2163.19 | 0.48 7.19
2 EnMAP 242 2206.21 2163.22 0.21 7.22
ﬁl 10 209 2204.17 2164.43 1.83 8.43
= 15 139 2201.12 2168.59 4.88 12.59
= 20 105 None
§ 25 84 2203.00 2175.81 3.00 19.81
s 30 70 2201,68 None 4.32
40 53 None 2174.00 - 18.00
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Figure 87 Wavelength position of the two detected kaolinite features with changing band number. Blue: position and
linear trend of the position with changing band number for feature 1. Red: position and linear trend of the position with
changing band number for feature 2
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Figure 88 - MWL feature position and depth results and spectral library visualization for downsampled data with
bandwidth between 10nm and 20nm. The spectra are shown schematically, the x-axis plots the wavelength [nm] from
ca. 400 - 2500, and the y-axis plots the reflectance from 0-100%. The detected feature wavelength minimum position is
stretched between 2100nm (blue) and 2220nm (red), and the feature depth stretches between 0 (blue) and 0.2 (red).
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5.3.4 Excluding atmospheric features

Both, the mapping of materials and the mapping of wavelength positions of known features was shown
successfully for ore-waste-discrimination in laboratory and even conveyor belt settings (Dalm et al.,
2014; Dalm, Buxton and van Ruitenbeek, 2017; Lypaczewski et al., 2020). The conditions here were
controlled and the samples have assumingly been stored for a sufficient time frame to not be
influenced by surface water. It is assumed that the spectral features present in the spectral range of
=1400nm and =1900nm are caused solely by mineral bound water. The features in the spectral range
dominated by atmospheric absorptions include the slope between 1450-1850nm produced by ferrous
iron and the absorption depth between 1900/ 2200nm to characterize crystallinity of white mica (Dalm
et al., 2014; Dalm, Buxton and van Ruitenbeek, 2017). Lypaczewski et al. (2020) uses absorption
feature between the total wavelength range of =1450-2390nm to detect and classify mineralogy. In a
laboratory or conveyor belt setting these predictors work well as the physical distance between the

sensor and the sample are small and the air column in between is a negligible factor.

Mine face scanning on the other hand poses the challenge of up to 100m of air column between sensor
and sample. Additionally, the influence of run-off and surface water on the rock will affect the material
spectrum. The complexity of material distribution and water-run-off patterns increases from within
one mine face to within multiple mine faces. The water surface content for one material does not only
change spatially but also temporally (e.g., in the case of periodic precipitation events) and creates a

high spectral variability of that same material.

So, in order to be able to avoid this influence on hyper- and superspectral mapping and still achieve
sufficient results, the spectral range influenced by atmospheric absorptions (=1300-2010nm) was
clipped out completely for the 15nm and 40nm bandwidth data. Three different datasets were created
and utilized for this purpose; these are:

1) The dataset with 40nm wide band in a range of 414-2494nm was used and the wavelength range
between 1314-2014nm was clipped, creating a dataset with 37 bands.

2) The 15nm bandwidth dataset from 414-2484nm was utilized in order to detect smaller absorption
features in the SWIR. Here, the wavelength range spanning from 1314-2004nm was clipped and a
dataset of 94 bands in total was created.

3) A dataset combining both sensors from 1) & 2) with 40nm wide bands from 414-1314nm and 15nm
wide bands from 2004-2484nm. The range from 1314-004nm is excluded thereby creating a sensor
with 57 bands.
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5.3.5 Analysis of the VNIR+SWIR downsampled data (atmospheric band excluded)

The three sensors listed above were analyzed by SAM, EnGeoMap 2.1 and BFF. The BFF algorithm and
SAM take the whole spectral shape into account for mapping, whereas EnGeoMap 2.1 automatically
isolates distinct spectral features for characterization and comparison.

Again, all downsampled sensors with bandwidth from 5nm to 50nm are listed with their bandwidths
and number of bands and their corresponding mapping accuracies (Table 25). Listing all sensors
analyzed by SAM, EnGeoMap 2.1 and BFF is supposed to give a comparison of the analysis results
(accuracies) of the full spectral range vs. the new sensors with a spectral range excluding the

atmospheric bands.

Table 25 Sensors with bands from 417 - 37, including the sensors with clipped wavelength ranges influenced by the
atmosphere (= 1300 — 2010 nm). The accuracies for SAM, EnGeoMap 2.1 and BFF are compared.

. Number AR ORI SAM EnGeoMap 2.1 BFF accuracy

Eandeistina of bands range accuracy [%] | accuracy [%] [%]
excluded

5 417 No 65.19 48.71 60.52
10 209 No 65.21 48.79 67.20
15 139 No 65.15 48.99 70.34
20 105 No 65.26 49.05 71.08
15nm without 94 1314 - 2004 65.09 48.97 69.29
atmosphere nm
25 84 No 65.24 48.50 71.37
30 70 No 65.22 48.23 71.49
40nm VNIR, 57 1314 - 2004 64.84 48.31 71.05
15nm SWIR nm
without
atmosphere
40 53 No 65.34 49.29 71.60
50 42 No 65.34 44.61 71.68
40nm without 37 1314 -2014 65.41 48.28 71.15
atmosphere nm

Figure 89 shows the accuracy reached by all aforementioned sensors in Table 22 (p. 123). The sensors
without atmospheric wavelength affects are the sensors with the band number 37, 57 and 94. It shows
that excluding the atmospheric affected wavelength does not affect the SAM results and only slightly
affects the results for the 94 bands data for the BFF analysis, resulting in 69.29% of overall accuracy,

compared to 70.34% of accuracy for the full VNIR+SWIR range.
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Downsampling to VNIR-only data
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Figure 89 BFF, EnGeoMap 2.1 and SAM accuracies for sensors with systematically downsampled band numbers from 37
to 417, (excluding the results for the 242 bands EnMap sensor).

5.3.6 Downsampling to VNIR-only data

The results of the mapping accuracy for the sensors excluding the entire atmospherically affected
wavelength range (between 1300 — 2010 nm) are promising enough to go a step further and exclude

the whole SWIR range.

5.3.6.1 Reasons to exclude the SWIR sensor

As an example, the VNIR-1600 and SWIR-320m-e sensor characteristics of the HySpex are compared.
Be aware, that with time both the price and size of the digital electronics will decrease further and the
spatial resolution (number of pixels) will increase as generally observed for digital electronics by
Moore’s law. The SWIR-320m-e sensor is also more susceptible to temperature changes as it depends
on a cooling with liquid nitrogen (Spragg, 2017) to stabilize the MCT detector performance to enable
a high sensitivity and a high speed response. The HySpex SWIR-320m-e operates at FPA temperatures
of 195K which is accomplished by 4 stage TE cooling (Lin et al, 2009; boselec.com/wp-
content/uploads/Linear/Vigo/VigoLiterature/BEC-Vigo-IR-Detector-Catalog-03-08-19.pdf, 2020). That
increases the power consumption of the SWIR-320m-e to a factor higher than that of the VNIR-1600
(hyspex.no/products/disc.php, 2019). These key parameters are again summarized in Table 26. In
short, the VNIR-1600-only setup allows for a lighter and smaller sensor with a lower power-

consumption, higher tolerance towards temperature changes and a higher spatial resolution.
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Table 26 HySpex VNIR - 1600 and SWIR - 230m-e sensor parameters from the HySpex User Manual
(hyspex.no/products/disc.php, 2019; Korting, 2019).

Spectral Range 400-1000nm 1000-2500nm
Spatial Pixels 1600 320

Field of View (FOV) across track (y- 17° 14°

dimension) for objectives (30 cm, 1 m lens)

FOV of FOV expander objective (> 10 m) 34° 28°

Detector Si CCD 1600 x 1200 HgCdTe 320 x 256
FPA temperature N/A 195 K /-78.15°C
Sensor head power consumption 6W 100W

Sensor head weight 4.6 kg 7.5 kg

Sensor head dimension [cm] 31.5x8.4x13.8 36.0x14.0x15.2

5.3.6.2 Distinct spectral features in the VNIR and SWIR

Excluding the SWIR range excludes the SWIR-only active minerals. To compare the importance of the
SWIR response for different minerals, Table 58 and Table 59 in the Appendix (Section 10.11, p. 266)
list the most common silicate and non-silicate minerals relevant to hydrothermal deposits with their
VNIR and SWIR responses (Krupnik and Khan, 2019). Table 58 (p. 266)Table 59 (p. 268) in the Appendix
underline the importance of SWIR features for the majority of the listed minerals. From this list, only
iron rich minerals can be detected based on their diagnostic absorption features by VNIR-only data. A
detection of materials rich in e.g., carbonates or phyllosilicates based on characteristic absorption
features is only possible by including the SWIR. This infers, that to distinguish and map different
materials in the VNIR-only data, only data-driven mapping approaches e.g., training-based methods
like SVM can be utilized. Here, the whole deposit has to be characterized and “learned” in order to

map and detect the materials of interest.

5.3.7 Analysis of the VNIR-only downsampled data

Table 27 shows the sensor characteristics of the VNIR-only sensors with bandwidth of 15 nm and 40
nm compared to the sensors with clipped atmospheric absorption feature wavelength ranges and
compares their SAM, BFF and EnGeoMap 2.1 analyses results. The automated EnGeoMap algorithm
was not able to perform the analysis and to create hard classifier maps. BFF dropped to approximately
68% of accuracy for both VNIR-only sensors, whereas SAM increased compared to the VNIR-SWIR
system to approximately 68% of accuracy for both VNIR-only sensors. The SAM, BFF and EnGeoMap

2.1 mapping results are plotted in Figure 90 including the VNIR only sensors marked in bold.
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Table 27 Accuracies of SAM, EnGeoMap 2.1 and BFF of the VNIR only sensors compared to the sensors with the clipped
wavelength affected by the atmosphere (= 1300-2010 nm).

15nm w/o water
band (1314 - 2004
cut), 94 bands 94 65.09 48.97 Unknown 69.29 717.14

40nm VNIR, 15nm
SWIR w/o water band
(1314 - 2004 cut), 57
bands, 57 64.84 48.31 682.40 71.05 493.94

15 nm VNIR 41 68.09 No results | No results 68.16 281.19
40nm w/o water
band (1334 - 2014

clipped) 37 65.41 48.28 654.78 71.15 400.65
40nm VNIR only 16 67.67 No results | No results 67.71 424.9
75,00
Wi g
o
70,00
68
65,00 -
%5 B3, 65 65 g5 65
60,00
55,00
50,00 i 49 m “15_19 43 4% 19
. - -
4
45,00
40,00
o 50 200 150 200 250 300 350 400 450
Nr. of bands
i "Binary Feature Fitting"

e "Engeomap 2.1

e SAM

Figure 90 Comparison of the SAM, EnGeoMap 2.1 and BFF accuracies of all tested theoretical sensors.
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Figure 91 visualizes the accuracy vs. the computation time for the analysis of all presented sensors
with EnGeoMap 2.1 and BFF. Note, that EnGeoMap 2.1 was not able to analyze all of the datasets. The
BFF analysis shows a constant increase in mapping accuracy and decreasing computation time with
decreasing band numbers. The EnGeoMap 2.1 mapping accuracy and computation time appear nearly

constant with decreasing band number up to 37. Below 37 bands, EnGeoMap 2.1 is not able to perform

a mapping.

400000

40,00
450 400 350 i 250 0 150 0
Nurnber of bands

BFF EnGeaMap 2.1 BFF time EnGenMap 2 1time

Figure 91 BFF and EnGeoMap 2.1 accuracy vs. computation times for all presented sensors. Time [s] (dotted line) and
Accuracy [%] (continuous line) is logarithmically denoted on the y-axis

The resulting maps and corresponding spectral libraries of the mapping for the VNIR-only and

atmospheric absorption-free sensors are shown in Figure 92.
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1) Apliki Sample Data - Analysis of Laboratory Scans

Apliki mine sample - reflectance data

A detailed discussion of the presented results for the different robust sensors is presented in the

“Discussion” Chapter (pp. 165 - 187).

Going forward, a total of five sensors where modeled for the subsequent analyses:

1) the “VNIR-only” sensor with a bandwidth of 40nm,

2) the “40nm VNIR — 15nm SWIR, without atmospheric bands” sensor (clipped and interpolated
between the atmospherically influenced bands between 1300 — 2010 nm),

3) a modified “40nm VNIR — 15nm SWIR” sensor that includes the atmospheric bands in a bandwidth
of 40nm. This sensor is able to represent the overall albedo and shape of the spectrum without being
able to depict distinct, narrow bands between 1300 — 2010 nm.

4) The 400nm HySpex data to compare the mapping results to a validation and

5) data based on the WorldView-3 sensor model, in order to compare the results that would be

achieved with a well-known satellite-based sensor.

5.4 1ll) Apliki Sample Data - Analysis of Laboratory Scans

The workflow parts | — Il from Section 5.2 and 5.3, (pp. 97 - 136) is applied to the sample scan of the
Apliki mine samples in Section V). The method is adjusted for the sample set and applied on the Apliki
mine face scan. Mapping is tested for the laboratory reflectance dataset containing 36 samples and a
laboratory radiance VNIR-only dataset containing a subset of eleven samples from full Apliki sample

suite.

5.4.1 Apliki mine sample - reflectance data

The VNIR-SWIR reflectance data of the Apliki mine sample scans is analyzed first. In the following
paragraphs, the samples are geochemically and spectrally clustered, a spectral library is compiled. The

imaging spectroscopy data is downsampled, pre-processed and analyzed.

5.4.1.1 Geochemical clustering of sample data

Agglomerative bottom-up clustering (Murtagh and Legendre, 2011) of the sample geochemical data
was performed in R Studio to identify clusters within the geochemical data of 36 samples and reduce

the input spectra for the spectral library. The 36 samples are shown in Figure 93.
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Apliki mine sample - reflectance data

Figure 93 Hyperspectral scan of the Apliki samples showing all 36 samples used for geochemical clustering, spectral
library extraction and analysis.

To compare the data, some geochemical results needed to be adjusted in order to be comparable. This
applies to element or oxide content yielding below or above the detection limit. The geochemical

values were adapted as seen in Table 60 in the Appendix (p. 269).

The ward.D2 method was utilized to minimize the total within-cluster variance. An optimal minimal
cluster number of 7 clusters was determined to describe the geochemical variance of the data. The
clusters are outlined in red in Figure 94. The full geochemistry of 36 samples was used for the clustering
approach. Euclidian distance and the ward.D2 clustering method were applied to cluster 36 samples

with a total of 21 different element and oxide concentrations for each sample.
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Figure 94 Bottom-up hierarchic cluster dendrogram for 7 clusters based on the full bulk geochemistry of 36 samples.

Figure 95 shows the hyperspectral sample scan color-coded for the determined geochemical clusters.

cluster 1
cluster 2
cluster 3
cluster 4
cluster 5
cluster 6
cluster 7

Figure 95 Geochemical clusters color-coded for the hyperspectral sample scan. 36 samples were clustered into 7
geochemically and spectrally distinct clusters.
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Apliki mine sample - reflectance data

5.4.1.2 EM selection
The sample spectra were compared and manually checked for each of the seven clusters. The spectra
of the samples allocated within one geochemical cluster show enough spectral similarities to be also
accepted as spectral clusters. The only exception from that is sample 7e. 7e was sorted into cluster 7
geochemically but its spectral expression is closer to the spectra found in cluster 2, it was therefore
sorted to cluster 2 for the spectral library. This new cluster is now called “Spectral Cluster 2”. This re-
clustering results in spectral cluster 2 including sample 15a, 15b, 15c and 7e and cluster 7 to be reduced
to containing solely sample 4a. The other clusters remain unchanged. For the different spectral clusters
see Figure 96.
The following spectral libraries were compiled:
e A spectral library was compiled containing all 36 spectra, one for each sample. Each spectrum
in the subsequent classification is color-coded according to their cluster identity (Figure 96)
e A reduced spectral library was compiled containing representative spectra for each cluster.
One to three spectra were determined visually and chosen for each cluster resulting in a

spectral library of 11 sample spectra within 7 clusters (Figure 98)

The samples and their affiliation within each of the two spectral libraries and their cluster-identity and-

color is listed in Table 28.

Table 28 Spectral libraries after geochemical clustering and visual spectral similarity assessment

1b, 1d, 1e, 1f, 13a le, 1f, 13a
15c, 15a, 15b, 7e 15c, 15b
113, 11b, 10a, 7d_hem, 9b 10a

2a 2a

13b, 3a, 3b, 4b, 6b, 6¢, 6a, 6d 4b

4c, 8b, 5a, 5¢, 5b, 8a, 8c, 9a, | 9a, 10d
10c, 10b, 10d, 7d
4a 4a

All geochemical clusters are shown in Figure 96, including the associated sample spectra. The
“spectral cluster 2” is shown in addition to highlight the spectral similarity between the samples 15a

and 15b with sample 7e (formerly sorted into geochemical cluster 7)
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II1) Apliki Sample Data - Analysis of Laboratory Scans

Apliki mine sample - reflectance data

The location of each sampling point within the outcrop spatial scale and its cluster-identity are shown

in Figure 97.

Buttom-Up Hirarchic Cluster Dendogram (Dataset = Apl_1)
36 Samples, 7 Cluster
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Figure 97 Sampling point location in decimal latitude and longitude and each sample points color-coding according to its

cluster.

The reduced spectral library of 11 spectra within 7 clusters is shown in Figure 98.

—— 1e[5x5AVG] @ cluster1
7000 A = 1f[5x5AVG] ® cluster2
13a[5x5AVG] ® cluster3
6000 - —— 15b[5x5AVG] ® cluster4
o 15¢[5x5AVG] ® clusters
g 5 —— 10a[5x5AVG] © cluster6
§4000_ —— 2a[5x5AVG] ® cluster7
G = Ab[5x5AVG]
E’ 3000 4 = 9a[5x5AVG]
= 10d[5x5AVG]
5000 4 ~—— 4a[5x5AVG]
= backgroundblackwood[5x5AVG]
1000 - - plasticlight[5x5AVG]
—— plastic[5x5AVG]
0 ' | = plastic[5x5AVG]
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Wavelength (nm)

Figure 98 Spectral library based on geochemical and spectral clustering into 7 clusters with a total of 11 sample spectra

and 4 laboratory "background" spectra.
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The 6 geochemical clusters and the 7t spectral cluster can be validated through their geochemical and
mineralogical composition. In the following paragraphs, the geochemical and spectral clusters are
validated by their average geochemistry, mineralogy and by linking the 7 cluster to the different
geological units and zones in the Apliki mine face described by Antivachis (2015). The XRD results are
compared for each sample in one cluster and the dominant cluster mineralogy is defined. This average
cluster geochemistry and dominant mineralogy is linked to the associated zones. To compare the
geochemistry of each cluster, the geochemistry of the samples within a cluster were averaged. The

geochemical average of the main components of each cluster is listed in Table 29 and Table 30.

Table 29 Average geochemistry of the samples in a cluster. Highest value per oxide and element, marked in grey. (Part 1)

49.14 16.34 12.07 4.84 6.36 2.94 0.73 1.06 0.10

4478 |231  |1300 [328 [o008 |008 |001 |012 [o0.00
8110 |3.89 |6.61 323 049 |005 000 |008 |0.04
4 la072 |so0 [3122 |267 |o75 |031 o067 |038 |o020
| 4079 | 1158 |1568 |454 |214 |070 |0.69 |050 |0.04
| 4425 |1291 |1262 |1133 |057 |006 |0.01 |030 |0.00
| 3397 1029 |1062 |996 |800 |022 |002 |024 |o0.01

Table 30 Average geochemistry of the samples in a cluster. Highest value per oxide and element, marked in grey. (Part 2)

0.14 0.00 0.07 0.01 0.15 0.07
0.10 0.01 1.00 0.06 0.02 16.48
0.03 0.01 0.10 0.05 0.01 1.28
0.24 0.02 0.17 0.05 0.04 2.98
0.12 0.02 0.19 0.06 0.05 2.45
0.11 0.02 0.08 0.03 0.01 1.16
0.35 0.01 0.04 0.36 0.12 6.56

Table 31 lists the dominant cluster geochemistry per cluster and links it to the associated geological
units identified in Antivachis (2015). The mineralogical compositions of the samples in a cluster are

listed in Table 32 and based on XRD measurements of the samples.

142



1) Apliki Sample Data - Analysis of Laboratory Scans

Apliki mine sample — reflectance data

Table 31 Zonation based on Antivachis (2015), correlated with the predominant geochemical average of each cluster.

Cluste
r

Average cluster geochemistry
relative to other clusters

Associated zones and geological units based on
(Antivachis, 2015)

Highest TiO2, Al203, Na20 and K20
content, high TOT/C content

Apliki pillow lavas (main magmatic minerals: iron- and
titanium oxides, plagioclase, pyroxenes) and rarely
olivine.

Highest Cu and TOT/S content

Disseminated sulfide ore, Cu-Fe sulfides and sulfates

Highest SiO2 content

Quartz veining, areas of silicification

Highest Fe203 and P205 content

Jasper veining/ amorphous silica, veins of massive
mineralization (goethite, jarosite and natrojarosite as
predominant minerals, Fe-Ti. Pb, Cu, and Zn oxides as
accessories)

Medium content of all oxides and
elements compared to other
clusters, relatively high K20, Fe203,
Al203 and MgO contents

Clay minerals identified in Pillow Lavas and smectitic
alteration zone dominated by montmorillonite andillite
(both can not easily be distinguished as per Antivachis
(2015)

Highest MgO content, relatively
high Fe203 content, low K20

Chloritic stockwork zone

Highest CaO, MnO and Zn content,
relatively high MgO and TOT/S,
medium MgO and Fe203, lowest
Si02

Gypsum mineralization indicated by high CaO and
TOT/S and weathering products from overlying oxidized
zone

Table 32 Apliki mine sample clusters, associated sample IDs and cluster mineralogy.

Cluster

Samples

Cluster Mineralogy

1b, 1d, 1e, 1f,
13a

Quartz, Plagioclase Feldspar (Andesine, Anorthite), Pyroxene (Diopside),
Smectite-group: Montmorillonite, Fe-Oxide: Magnetite, Sulfide: (Pyrite
(Fe, one sample only)); Dominated by: Plagioclase and Montmorillonite.

15c, 15a, 15b,
7e

Quartz, Fe-Oxide: Goethite, Sulfides (Cu, Fe, CuFe): Covellite, Pyrite,
Chalcopyrite, Sulfates (Cu, Fe, Mn-Al, Mg): Chalcanthite,
Ferrohexhydrite, Apjohnite, Rozenite, Pentahydrate (cuprian);
Dominated by: Quartz, Sulfates and Sulfides, Fe-Hydrate (7¢e)

11a, 11b, 104,

Quartz; Fe-Oxide: Goethite; Sulfides (Cu): Pyrite; Sulfates (Cu, Zn-Fe):

7d_hem, 9b Gypsum, Bassanite, Sphalerite; Chlorite group: Clinochlore; Dominated
by: Quartz (+ Chlorite-group (sample 11a, 11b))
2a Fe-Oxide: Goethite; Sulfate (K-Fe): Jarosite-Natrojarosite; Quartz;

Plagioclase Feldspar (Andesine); Chlorite Group: Clinochlore; Dominated
by: Sulfates

13b, 3a, 3b, 4b,
6b, 6¢, 63, 6d

Quartz; Plagioclase (Andesine, Anorthite); Analcime; Pyroxene
(Diopside); Smectite-group: Montmorillonite; Fe-Oxide: Goethite,
Magnetite; Sulfate (K-Fe, Ca): Jarosite, Gypsum; Chlorite-group:

Clinochlore; Sulfide (Fe): Pyrite;
Dominated by: Clays, Smectite-chlorite group

4c, 5a, 5b, 5c,
8a, 8b, 8c, 9a,
10b, 10c, 10d,
7d

Chlorite-group: Clinochlore; Smectite-group: Montmorillonite; Sulfate
(Ca, Mg): Gypsum, Hexahydrite; Quartz; Sulfide: Pyrite; Fe-Oxide:
Goethite; Ajoite (minor copper ore, silicate hydroxide); Dominated by:
Chlorite-group

43

Sulfate (Ca, Fe): Gypsum, Rozenite; Quartz, Chlorite-group: Clinochlore;
Dominated by: Gypsum
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The mineral assemblages found for each sample in a cluster correlated well within a cluster and can
be seen as a cluster-coherent mineral assemblage. The diffractograms of each sample can be found in
the Appendix (Section 10.5, p. 217).

The average geochemistry, the cluster-coherent mineralogy and the possible linkage to the geological
units and zones described in Antivachis (2015), confirm the 7 geochemically and spectrally defined
clusters. These spectral clusters are utilized further for the spectral library-based mapping. For

mapping, each spectrum is color-coded according to its cluster-identity.

5.4.1.3 Data preparation

The reflectance data derived from the pre-processing routines by Rogass et al. (2017) was corrected
as described in Section 4.2 (p. 75) A total of five sensors where modeled for the subsequent analysis.
The data was downsampled to two sensors identified as being well suited for open pit mining
applications: the “VNIR-only” sensor with a bandwidth of 40nm and the “40nm VNIR — 15nm SWIR,
without atmospheric bands” sensor (clipped and interpolated between the atmospherically influenced
bands between 1300-2010nm). A third sensor was included, as modified “40nm VNIR — 15nm SWIR"
sensor that includes the atmospheric bands in a bandwidth of 40nm. This sensor is able to represent
the overall albedo and shape of the spectrum without being able to depict distinct, narrow bands
between 1300-2010nm. As a fourth sensor, the full 400nm HySpex data was used for a comparison
for mapping. WorldView-3 is included as a fifth sensor model, in order to compare with a well-known
satellite-based sensor. The data specifications are listed in Table 33. Figure 99 shows the spectrum of

sample 1e and 15b for each of the sensors used for the different classification approaches.

Table 33 Sensor specifications for the five datasets classified and compared of the Apliki sample laboratory data, sorted
by descending band numbers.

Sensor Wavelength range | Band number | FWHM VNIR | FWHM SWIR [nm]
[nm] [nm]

HySpex 414-2450 400 3.6 6.0

40nm VNIR - 414-2439 70 40.0 40.0 (974-2004nm)

15nm SWIR 15.0 (2004-

2439nm)

40nm VNIR — 414-2439 54 40.0 15.0

15nm SWIR, clipped and

atmospheric interpolated 1334—

bands clipped 2004 nm

40nm VNIR-only | 414-1014 16 40.0 -

WorldView-3 425-2330 16 40.0-125.0nm 30.0-70.0nm
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Apliki mine sample - reflectance data

A Comparison of spectrum 1e and 15b :llgb B Comparison of spectrum 1e and 15b ::Eb
VNIR-only, 40nm
16 bands

2 2
5 5
= =
8 8
] K]
5 5
[ [
c =
k! g
g 2

40nm VNIR - 15nm SWIR, WorldView-3,

70 bands 16 bands

40nm VNIR - 15nm SWIR, HySpex

atmosphere excluded 450%35(15

54 bands

500 750 1000 1250 1500 1750 2000 2250 2500 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm) Wavelength (nm)

Figure 99 Comparison of spectra 1e and 15b showing their spectral shape for the five different sensors. A: 40nm VNIR
and 15nm SWIR with and without clipping and interpolating the spectral range influence by atmospheric absorptions
(1300-2010nm), B: VNIR-only 40nm sensor, WorldView-3 and HySpex

5.4.1.4 Analysis and classification

The spectral scan was analyzed with SAM, BFF and the standard SVM from the DeepHyperX toolbox
(Audebert, 2020). For SAM and BFF, the data was analyzed with the 36 samples spectra- and the 11
samples spectra- spectral library each. The resulting mapping accuracies are plotted in Figure 100. The

SAM, BFF and SVM analysis parameters are described in Sub-Section 5.2.3.10 (p. 109).
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40,00%

HySpex, 400 bands 40nm VNIR 15nm SWIR, 70 40nm VMIR 15nm SWIR, 54 40nm VNIR, 16 bands
bands bands, atmosphere clipped

WorldView-3, 16 bands

Figure 100 Apliki sample scan classification accuracies for five different sensors and three different classification

algorithms (SAM, BFF and SVM).

Figure 101 present the computation times for each sensor, note the logarithmic scale of the y-axis.

- = SAM 1lspectra|s] =———SAM 36spectrals] =— = BFF11spectra[s] —BFF 36 spectra [s]

100000

10000

— S training [s]

1000

1w

HySpex, 400 bands 40nm VNIR 15nm SWIR, 7040nm VNIR 15nm SWIR, 54  40nm VNIR, 16 bands
bands bands, atmosphere clipped

Figure 101 Computations times plotted for each sensor for the Apliki sample dataset.

WorldView-3, 16 bands

The mapping results are shown in Figure 102 with the mapping accuracies. The maps are compared to

the color-coded validation.
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Apliki mine sample - reflectance data

Spectral Library Spectral Library
11 spectra 36 spectra 11 spectra 36 spectra

Validation

40nm VNIR,
15nm SWIR,
full, 70 bands

40nm VNIR,
15nm SWIR,
atm clipped,
54 bands

VNIR-only 40nm
16 bands

reflectance

HySpex,
400 bands

WorldView-3,
16 bands

Figure 102 Mapping of 36 Apliki mine sample reflectance data. 1st column: validation image, 2-6t" column: classification
results for the five different sensors. Left to right: SVM, SAM 11 sample spectra, SAM 36 sample spectra, BFF 11 sample
spectra, BFF 36 sample spectra.

Comparing the mean classification accuracies depicted in Figure 102 for the two different libraries, the
underperformance of the results from the reduced spectral library (11 samples) becomes apparent.
Based on this comparison, the library with the 36 sample spectra was utilized for the following mine
face scan analysis. A detailed discussion of the results presented here can be found in Chapter 6, p.

165.
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5.4.2 Apliki mine sample — radiance data

5.4.2.1 Data preparation

To test the comparability of the radiance signal of the 11 samples identified for the reduced spectral
library, a VNIR radiance data set was compiled for these samples. A data set of the dimensions
1200x1290 pixel was created in the wavelength range of the VNIR from 414-993nm. The original
radiance VNIR HySpex data has a spatial resolution of 160 bands with bandwidths of 3.6nm. This
original radiance data was downsampled to 15 bands, 40nm bandwidths data. SAM and BFF were
utilized for mapping. The RGB of the VNIR radiance dataset and the location of spectra extraction for
the spectral library are shown in Figure 103. Eleven spectra were extracted from a 15 x 15 pixel
average, one spectrum for each sample, and four background spectra (of the WR panel, the plastic and
white paper showing underneath samples). All spectra are shown in Figure 104. The color-coding of

the spectra and results is the same as for the 7 clusters identified in Sub-Section 5.4.1, p. 136.

Figure 103 Complied radiance data set of eleven samples and a 50% white reference panel. Red rectangles mark the area
of spectra extraction for the spectral library.
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Apliki mine sample — radiance data
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Figure 104 Radiance sample spectra for 11 Apliki mine samples.

5.4.2.2 Analysis and classification

SAM and BFF were performed for the 160 bands “HySpex-VNIR rad” and the 15 bands “40nm-VNIR
rad” data. The classification maps and accuracies are shown in Figure 105. The mapping accuracies
differ between classes and show an overall higher accuracy for the 40nm downsampled data (SAM:

62%, BFF: 68%) compared to the original HySpex data (SAM: 60%, BFF: 32%).
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SAM BFF

Validation

62.49% 68.41%

rad
40nm VNIR
15 bands

radiance VNIR

rad
HySpex VNIR
160 bands

Figure 105 VNIR radiance data analysis with SAM and BFF for HySpex 160band (bottom) and 40nm-bandwith 15band
data (center) compared to a validation image containing color-coded ROIs (top).
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5.5 1V) Proposed field workflow related to Apliki mine

For the field data, the methods applied in Section | — lll) are utilized for the Apliki mine face scan data.
In the Materials Chapter, Sub-Section 3.5.4, pp. 60 - 70 the HSI field data acquisition, processing and
the field sampling was described in detail. A workflow scheme from data acquisition to the mapping

results of the mine face data is presented Figure 106.

[ Proposed Mine Face Workflow ]

Binary Feature Fitting (BFF))(Spectral Angle Mapper (SAM)

Minimum Wavelength Mapping (MWL)
of SWIR feature (for sensor model 1)

Figure 106 Hyperspectral mine face acquisition, processing and analysis workflow.

The field sampling, data acquisition and pre-processing were explained in detail in Chapter 3 (p. 32).

The spectral library compilation and geochemical clustering is described as a result of the laboratory

data analysis (Section 5.4, pp. 136).
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The reflectance HSI was downsampled to the specifications listed in Table 34. Three sensors were

utilized for the subsequent analysis: 1) the 40nm VNIR-15nm SWIR, atmospheric band excluded data,

2) the 40nm VNIR-only data and 3) the WorldView-3 sensor characteristic data.

Table 34 Sensor characteristics for the downsampled sensors, downsampled from 390 band, pre-processed Apliki field

reflectance data.

Sensor Wavelength range | Band FWHM  VNIR | FWHM SWIR [nm]
[nm] number [nm]
40nm VNIR —| 414-2390;
15nm SWIR | (Interpolated
(atmospheric between 1334 - >1 40 15
bands clipped) 2004nm)
40nm VNIR-only 414-1014 16 40 -
, 50, 60, 70, 40, 60, 40, 125, 80, 30, 40,
WorldView-3 425-2330 16 40, 40, 40, 40, 50, 70

The differences in the overall shape of the spectrum for these three sensors have been visualized in

Table 56 when systematically downsampling the Brazilian iron ore samples (Appendix, p. 261).

Nevertheless, the spectral library for the “40nm VNIR-15nm SWIR, atmospheric band excluded data”

for 11 spectra is shown in Figure 107 to give an insight into the type and shape of spectra that the

subsequent mapping and analysis is based on.

6000 -

5000 A

4000 A

3000 A

Reflectance

2000 A

1000 A

500 750

1000 1250

1500

1750 2000
Wavelength (nm)

1e[5x5AVG] cluster 1
1f[5x5AVG] cluster 2
13a[5x5AVG] ® cluster3

15b[5x5AVG] cluster 4
15c[5x5AVG] ® cluster5
10a[5x5AVG] cluster 6
2a[5x5AVG] cluster 7
4b[5x5AVG]

9a[5x5AVG]

10d[5x5AVG]

4a[5x5AVG]

backgroundblackwood[5x5AVG]
plasticlight[5x5AVG]
plastic[5x5AVG]
plastic[5x5AVG]

Figure 107 Spectral library spectra of 11 Apliki samples, downsampled to 40nm VNIR - 15nm SWIR. The atmospheric
range between 1300-2010nm was clipped and interpolated.
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Ground truth for the Apliki mine
5.5.1 Ground truth for the Apliki mine

In order to validate the HSI maps, the mapping results are compared with two sources of validation for
the spatial data: 1) the known, identifiable field sample collection positions and the expected mapping
result based on those samples and 2) the geological map of the northern face of Apliki based on 66

samples taken in 2015 by (Antivachis, 2015).

5.5.1.1 \Validation based on sample points

Figure 108 shows the hyperspectral scan with marked sample position (color-coded circles). Twenty-
two sample positions could be identified within the HSI and were color-coded according to the cluster

color-coding scheme utilized for the laboratory sample mapping. Eleven representative spectra of the

laboratory based spectral library are shown and color-coded based on their cluster identity in Figure

108.

Sample spectra collected with HySpex VNIR and SWIR under laboratory conditions,
wavelength region 414 - 2498 nm
HySpex Scene of Apliki outcrop collected 20th of March 2018

° 4000 Example: Sample 1f

g 3000 /\/—’ﬁ/—\
c

®

T 2000

500 1000 1500 2000 2500
wavelength (nm)

Figure 108 Field sampling positions marked in imagery. Color-coding of circles (sample points) and spectra of spectral
library (laboratory based) is according to the 7 identified geochemical and spectral clusters for the Apliki samples.
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5.5.1.2 Validation based on 66 outcrop samples from (Antivachis, 2015)

Antivachis (2015) mapped the northern open cut of Apliki based on 66 samples that were subsequently
investigated by ICP-MS, AAS, petrography and X-ray diffraction. Primary and secondary mineralogy and
backscattered imaging was performed with a Scanning Electron Microscope (SEM) and silicate
minerals were analyzed by microprobe analyses. The result of his work is a map of the geological
features of the outcrop as well as an alteration zone map. Figure 109 shows the zonation mapping of
the HySpex mine face scan based on Antivachis (2015) geological mapping and is color-coded based
on the 7 geochemical-spectral clusters. Figure 110 shows the combination of both the geological

feature and the alteration map by Antivachis (2015).

Clay minerals or

Smectite - chlorite alteration i PPN
Associated stockwork zone  precipitation surfaces, Landslide from top of opencut
Chleritic zone highest Cu grade in sampled

Gypsum Amorphous silica

‘man-made plateau
(leveled, material not £
identified as in-situ) &

Figure 109 Apliki HySpex mine face scan RGB (top) and geological interpretation based on Antivachis (2015) (bottom).
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Ground truth for the Apliki mine

Zonation of hydrothermal Schematic geological section
alteration. of northern part of Apliki.

(based on Antivachis, 2015).

Pillow Lavas . Landslide

Subzone of smectites Massive gypsum
Subzone of veins
chlorite-smectites Veins of amorphous
Subzone of chlorite silica

o . Oxidized vein of
Oxidation zone massive mineralization
Weak silification Landslide (unsampled)

Figure 110 Combination of hydrothermal alteration zones and schematic geological section for the northern open cut in
Apliki mine, Republic of Cyprus. Information derived from maps created by Antivachis (2015).

The identified geochemical-spectral clusters, the cluster-coherent dominant geochemistry and
mineralogy and the associated zonation as describe in Antivachis (2015) is shown in Table 35. The
cluster-coherent geochemistry and mineralogy can be linked to the geological units described by
Antivachis (2015). Mapping with the cluster-color-coded spectral library should therefore be
comparable to the cluster-color-coded validation map from Figure 109 (bottom). This enables a

validation of the mapping by the map based on Antivachis (2015).
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Table 35 Apliki mine sample clusters, dominant geochemistry and mineralogy and linked geological units.

Cluster

Generalized cluster geochemistry relative
to other clusters and dominant
mineralogy (XRD)

Associated zones and geological units based
on Antivachis (2015)

Highest TiO2, AI203, Na20 and K20
content, high TOT/C content
Dominated by: Plagioclase
Montmorillonite.

and

Apliki pillow lavas (main magmatic minerals:
iron- and titanium oxides, plagioclase,
pyroxenes) and rarely olivine.

Highest Cu and TOT/S content
Dominated by: Quartz, Sulfates and
Sulfides, Fe-Hydrate (7e)

Disseminated sulfide ore, Cu-Fe sulfides and
sulfates

Highest SiO2 content
Dominated by: Quartz (+ chlorite-group
(sample 11a and 11b))

Quartz veining, areas of silicification

Highest Fe203 and P205 content
Dominated by: Sulfates

Jasper veining/ amorphous silica, veins of
massive mineralization (goethite, jarosite and
natrojarosite as predominant minerals, Fe-Ti.
Pb, Cu, and Zn oxides as accessories).

Medium content of all oxides and
elements compared to other clusters,
relatively high K20, Fe203, AI203 and
MgO contents.
Dominated by: Clays and smectite-
chlorite group

Clay minerals identified in Pillow Lavals and
smectitic alteration zone dominated by
montmorillonite and illite (both can not easily
be distinguished as per (Antivachis, 2015)

Highest MgO content,
Fe203 content, low K20
Dominated by: Chlorite-group

relatively high

Chloritic stockwork zone.

Highest CaO, MnO and Zn content,
relatively high MgO and TOT/S, medium
MgO and Fe203, lowest Si0O2

Dominated by: Gypsum

Gypsum mineralization indicated by high CaO
and TOT/S and weathering products from
overlying oxidized zone

5.5.2 Superspectral analysis of downsampled Apliki mine face data

For the superspectral data analysis, the BFF and SAM algorithm were chosen and performed for all

three downsampled datasets. Mapping took part with the 36 spectra spectral library created in the

laboratory in Sub-Section 5.4.1. (p. 136). Additionally for the “40nm VNIR- 15nm SWIR” 51 band-

dataset, MWL mapping was performed for the Al-OH feature, defined between 2160 —2220nm (Kirsch

et al., 2018). The results were compared to the known and identifiable sample points in the HSI

imagery. For validation purposed, the sample points were color-coded in the geochemical cluster

color-scheme provided for the laboratory based analysis (Table 28, p. 139). Figure 111 repeatedly

shows the sample points with their according color-coding.
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Superspectral analysis of downsampled Apliki mine face data

B
representative sample points, cluster color-coding
-

Sy o

Figure 111 Field sampling position, color-coded according to geochemical and spectral cluster identity characterized in
Section 5.4, p. 136 .

Figure 112 & Figure 113 present the mapping results for the BFF and SAM algorithms. Disagreement

between mapping and sample validation points is indicated with yellow arrows.
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Figure 112 BFF analysis results for three different sensors. From top down: RGB representation of the mine face, analysis
result for 40nm VNIR - 15nm SWIR sensor, 40nm VNIR-only sensor and WorldView-3 sensor. Color-coding based on the
geochemical clusters and spectral library identified in the laboratory for the Apliki samples. Yellow arrows indicate
disagreement of the mapping results with the color-coded validation sample points.
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SAM
36 spectra, laboratory built spectral library
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Figure 113 SAM analysis result for three different sensors. From top down: RGB representation of the mine face, analysis
result for 40nm VNIR - 15nm SWIR sensor, 40nm VNIR-only sensor and WorldView-3 sensor. Color-coding based on the
geochemical clusters and spectral library identified in the laboratory for the Apliki samples. Yellow arrows indicate
disagreement of the mapping results with the color-coded validation sample points.

The analyses for the 40nm VNIR — 15nm SWIR, 51 bands dataset show the highest agreement between
sample points and mapping results. Only this dataset could be used to map the wavelength position
and feature depth of the AIOH feature between 2160 — 2220nm due to its higher spectral resolution
of 15nm in the SWIR. The results of the BFF, SAM and MWL mapping for this dataset are presented in
Figure 114.
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Wavelength position of AIOH feature between 2160 - 2220nm (from Kirsch et al., 2018)
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Figure 114 Analysis results for 40nm VNIR - 15nm SWIR data with atmospheric bands removed. From Top to Bottom: BFF
analysis result, SAM analysis result, MWL mapping: wavelength position map for AIOH, feature depth map for AIOH.

The analysis results of the BFF and the MWL mapping for the 40nm VNIR-15nm SWIR, 51 bands-

dataset is visualized on top of both DOMs in Figure 115 and Figure 116.
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Binary Feature Fitting with 36 spectra spectral library
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Figure 115 Binary Feature Fitting analysis of 51 bands-dataset visualized on DOM of the full Apliki open pit.
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Figure 116 MWL analysis for the AIOH feature wavelength position between 2160 - 2220 nm (Top) and the AIOH feature
depth (Bottom) visualized on the DOM of the full Apliki open pit.
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Three Hills sample laboratory data

The result can also be visualized on the close-up DOM of the NNE mine face, exemplary showing the

SAM results in Figure 117.

Spectral Angle Mapper with 36 spectra spectral library

@ cluster1
. cluster 2
. cluster 3
. cluster 4
. cluster 5
. cluster &
@ cluster7
. unclassified

50 m '

Figure 117 SAM results visualized on DOM.

The results for both mine face scans from Apliki mine will be interpreted and discussed together with
the results of the Three Hills mine in the Skouriotissa deposit. This discussion can be found following

Section 6.4 in Chapter 6 (starting p.178).

5.6 V) Three Hills mine — application for proposed workflow for laboratory & field data

In this chapter the methodology utilized trough Section I) — IV) is applied to laboratory and field
hyperspectral data from the Three Hills open pit, Republic of Cyprus.

5.6.1 Three Hills sample laboratory data

5.6.1.1 Laboratory data preparation

The laboratory-based data acquisition for the Three Hills open cut field samples was presented in
Chapter 3. As previously mentioned, the reflectance data was derived by the routines by (Rogass et
al., 2017). The reflectance dataset was pre-processed as a described in Section 3.2 before being
downsampled to the sensor identified as being well suited for open pit mining applications: the “40nm
VNIR — 15nm SWIR, without atmospheric bands” sensor (clipped and interpolated between the
atmospherically influenced bands between 1300 — 2010 nm). The resulting superspectral dataset

comprises 54 bands in the wavelength range of 414 — 2450 nm.
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5.6.1.2 Spectral Library EM

A spectral library was built from the laboratory sample dataset. A 5x5 pixel average spectrum was
collected from the prepared laboratory scan data from the “40nm VNIR-15nm SWIR, without
atmospheric bands” 54 bands-sensor data. The laboratory scan of the samples is shown in Figure 118,
including an outline representing the color-coding of the spectral library (pink, red, yellow) and a red
rectangle showing the position of spectra collection for the EM spectral library. Where apparent,
spectra have been collected from the original native surface angled towards the sensor in the field

scan. The samples have been positioned with both of these factors in mind for the laboratory scan.

Figure 118 Three Hills sample laboratory scan. Color-coded outline of the samples is based on the mapping colors for the
image-retrieved spectral library. Red, dashed rectangles mark the position of 5x5 pixel average spectra retrieval. Color-
coding is based on Cu mass fraction: pink: > 0.27 % Cu; red: 0.27% < Cu < 0.1%; yellow: < 0.1% Cu

The color-coding of the spectral library is based on the categorization of the samples above 0.27wt%
of Cu as “high grade ore” (pink), between 0.27wt% - 0.1wt% Cu as “ore” (red) and below 0.1wt% Cu as
“waste” (yellow). This categorization was communicated by GSD during the fieldwork in March 2018.
Table 36 shows the samples’ Cu mass fraction and the color-coding of the sample spectra for the

subsequent analysis.

Table 36 Three Hills mine samples with associated copper content. Color-coding is based on Cu mass fraction: pink: >
0.27 % Cu; red: 0.27% < Cu < 0.1%; yellow: < 0.1% Cu

Sample \ \ \ 3a 3b

Cu [wt%] | | | 0.02 0.04
Sample 3c 4a 4b 5a 5b 5c
Cu [wt%] | 0.01 0.03 0.05 0.01 0.09 0.01

Figure 119 shows the resulting spectral library that was applied for the field mine face dataset.
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Analysis of Three Hills mine face
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Figure 119 Spectral library plot of the Three Hills mine samples. Spectra were taken from a 5x5 pixel average window,
the position of the spectral sampling is shown in Figure 118, p.162 .

5.6.2 Analysis of Three Hills mine face

After the laboratory and the field data preparation, the pre-processed and downsampled
superspectral 54 band data was analyzed using the BFF algorithm. The analysis is based on the
laboratory-sample-scan spectral library. The result of the mapping is shown in Figure 120 and

visualized on top of the RGB DOM in Figure 121.

@ unclassified

@ >0.27%Cu
@ 0.1% < Cu<0.27%
() <0.1%Cu

SRS

Figure 120 The analysis result of the BFF algorithm for Skouriotissa Three Hills, overlaid on the HySpex RGB
representation.
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@ unclassified

@ >0.27% Cu

@ 0.1%<Cu<0.27%

() <0.1% Cu

Figure 121 Textured 3D model with the BFF analysis result as an overlay over the RGB 3D model.
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6 Discussion
6.1 Iron ore sample mapping results

Table 37 compares the mapping results for dataset 1 with a validation image (if possible) and

comments on the achieved quality of mapping and repeatability of the approach.

Table 37 Comparison of the mapping results with a validation image (expected mapping, if available).

Evaluation Repeatable?

Method

Validation image | Result image

EnGeoMap 2.0 Based on user-specific
library, 408 band data,
classification result not

satisfactory

EnGeoMap 2.1 Based on user-specific | Yes
library, 408 band data,
classification result

improved

Based on USGS | Yes
command group 2
library for AIOH-rich
minerals, does not
indentify the diversity
of AIOH-poor samples

PRISM MICA

N

Al,Oscontent

Absorption modeling
PCA (RGB, 1-2-4) None

Identifies  spectrally | No
homogeneous areas,
no information about
material label, user
input about RGB band
combination needed

Mapping does not | Yes
match suggested Fe
content from XRF

Band ratio for
ferrous iron for
WorldView-3
data, based on
published index
(indexdatabase.de
/, 2020)

Fe Content
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Evaluation Repeatable?

Method Validation image | Result image
Band ratio for =
ferric oxide for
WorldView-3
data, based on
published index
(indexdatabase.de
/, 2020)

Mapping does not | Yes
match suggested Fe
content from XRF

“ I8

Feature modeling

Minimum
Wavelength
Mapping for AIOH
feature 2160 -
2220

Matches well with the | Yes
overall Al,0s content
suggested by XRF

IS

Al,O3 content

Hard classifier

k-means: 7
clusters

Clustering not in | No
correlation with either
sample position or
geochemical clusters

k-means: 15
clusters

Clustering not in| No
correlation with either
sample position or
geochemical clusters

SAM (ENVI) Overall satisfactory | Yes
result, shadowed areas
and sample-intern,
inhomogeneous areas
are not mapped

correctly

BFF Based on user-specific | Yes
library, 42 band data,
classification result is

satisfactory
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Method Validation image | Result image Evaluation Repeatable?
SFF Light pink: sample Em Area of single material | No, user
1, maps coincide well | input needed
grey: sample 2 with position of | to define
samples, but user | classes
input is required for
low RMS and high scale
value class definition
Training based
Gaussian Overall satisfactory | Yes, but
maximum result, background | model for
likelihood (pixels with value 0) | inference has

classification

Mahalanobis
Distance
classification

mapped

to be trained
on
representativ
e data

Overall satisfactory
result, background
(pixels with value 0)
mapped

Yes, but
model for
inference has
to be trained
on
representativ
e data

Learning based

SVM:

SVM Overall satisfactory | Yes, but
result, shadowed areas | model for
and sample-intern | inference has
inhomogeneous areas | to be trained
are not mapped | on
correctly representativ

e data

ANN:

1D Baseline NN Overall satisfactory | Yes, but
result, shadowed areas | model for

1D CNN

5 B EEs

and sample-intern
inhomogeneous areas

inference has
to be trained

are not mapped | on

correctly representativ
e data

Overall satisfactory | Yes, but

result, shadowed areas | model for

and sample-intern
inhomogeneous areas
are not mapped
correctly

inference has
to be trained
on
representativ
e data
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Method Validation image | Result image Evaluation Repeatable?
3D CNN Overall satisfactory | Yes, but
result, shadowed areas | model for

ssifier (Pedregosa
et al., 2011)

are mapped as
“unclassified”

and sample-intern | inference has
inhomogeneous areas | to be trained
are not mapped | on
correctly representativ
e data
Random Forest:
scikit-learn Overall satisfactory | Yes, but
RandomForestCla result, shadowed areas | model for

inference has
to be trained
on
representativ
e data

Soft-classifier

MTMF

None

ICA (RGB, 4-7-6)

None

Area of single material | No, user
maps coincide with | input needed
position of samples, | to define
but user input is | classes
required for high MF

and low infeasibility

score class definition

Identifies  spectrally | No

homogeneous areas,
no information about
material label, user
input about RGB band
combination needed

In the knowledge-driven area, the feature modeling MWL map of AIOH coincides well with the known

Al,O5 content of the samples. As for the absorption modeling, the band ratio iron index maps based

on WorldView-3 do not correlate well with the iron content — neither the ferric nor the ferrous index,

similar results are shown for the chosen RGB band combination of the PCA. The random PC band

generation and needed user input for the PCA RGB is another problem that does not allow for

repeatability of results — at best it can be considered as a first guess of differing material portions in

an unknown area. In the data-driven portion of the hard classifier analysis methods, the classic SAM

analysis gives reliable results when choosing the correct spectral library as input. The SAM results

based on different possible spectral libraries in Section 5.2 (p. 97) shows clearly how dependent each

of these methods is for the correct choice of EM spectra. The BFF algorithm is mapping the samples

with a sufficient accuracy (= 75%) and reduced data to superspectral (42 band) resolutions. GML and

MHD perform well, but are unable to classify the pixels set to zero as unclassified or to exclude them.
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SVM, 1D NN, 1D CNN and 3D CNN map equally well but the computation time for training and testing
significantly differs. The 3D CNN accuracy of 93% is assumingly caused by overfitting of the NN. The RF
classifier gives equally well results. Evaluating the soft classifiers, the MTMF performs well for each
component but needs a user input to define the classes based on best MF and lowest infeasibility
score. This is not yet reproducible and requires expert knowledge. The same challenge is present for
the SFF analysis in the data driven analyses section. ICA as well as PCA need user input for RGB band
composition and rather high computation times without labeling or matching. The k-means clustering
only requires the user to set the number of clusters expected in the imagery but the results do not
coincide well with the actual material clusters.

In the hybrid model comparison, MICA is clearly able to map the clay dominant mineralogy and the
mapping results are superior to those of EnGeoMap 2.0 and 2.1. Without expert knowledge, MICA can
only be used with one of the two default spectral libraries from the USGS (clay vs. iron rich material).
For new material spectral libraries, specific user input of the expected spectral is required as well as
material dependent thresholds and weighting factors. This expert knowledge and individual level of

implementation is not to be expected of the average mining workforce as of today.

Figure 122 shows the hard pixel classifier accuracies [%] relative to the computation time [s] needed.
Please note the logarithmic scale of the computation time. The two EnGeoMap algorithm versions
show to yield results with low overall accuracies but requiring high computation times. Random Forest,
1D CNN, BFF and SVM are present in the range below 1000s of computation time for the Brazilian iron
ore samples but around or above 75% accuracy. SAM, MHD and GML plot with lower accuracies but
very fast computation times (below 10s) and the two 1D NNs, 3D CNN plot with accuracies beyond

85% but computation times higher than 1000s. The exact values can be found in Table 38.
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Figure 122 Hard classifier analysis results (accuracy) and computation times.

Table 38 Hard classifier analysis computation time and accuracy.

3D CNN
2

disjoint

disjoint & L
1D NN - random

Method Accuracy
Computation time [s] | [%]
EnGeoMap 2.0 816.52 41.96
EnGeoMap 2.1 808.23 53.32
Binary Feature Fitting 422.59 74.36
SAM 5.00 65.95
Gaussian maximum likelihood classification 7.07 64.61
Mahalanobis Distance Classification 6.84 64.88
SVM - disjoint 659.47 84.50
1D Baseline NN - disjoint 5432.47 89.80
1D Baseline NN - random 8923.74 89.98
1D CNN - disjoint 347.58 75.20
3D CNN - disjoint 5318.44 93.90
HyperRandomForestClassifier 115.75 80.54
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The analysis methods used to test the different theoretical sensors in Section 5.3 "Il) Robust Sensor
Modeling, p.119 were:

e SAM as the algorithm with the lowest computation time, as time is a key factor in the
active extraction process in the mining sector.

e SVM, as the best performing learning-based classifier below 1000s computation time.
Keeping in mind that once trained on a specific deposit, the computation time will
decrease rapidly.

e BFF, as the best performing, comparison-based, data-driven method below 1000s.

e EnGeoMap 2.1 despite its lower accuracy, as it is another GFZ in-house hybrid data- and
knowledge-driven analysis algorithm.

e The MWL method as a representative for a knowledge-based approach. It was tested for
the systematic downsampling and the preservation of the AIOH absorption feature in the

SWIR.

These analysis methods represent the different mapping approaches — “data-driven learning based”,
“data-driven comparison-based”, a “knowledge-based approach” and a “hybrid”. The methods using
the comparison-based methods were preferred, as they rely on an endmember set of spectral libraries
that can be compiled from thoroughly defined sample sets. The training-based approach relies on
training set and a well-defined dataset of regions of interest. These regions of interest have to be
defined manually within the hyperspectral image. This can pose a challenge as the geological material
is hardly homogeneous - neither in the sample scale (laboratory scale) and less so in the mine face
scale where spectrally homogeneous regions of interest cannot be defined clearly enough for training.
The testing showed that the trained algorithms based on laboratory data could not be inferred well to
the mine face data (see example for Apliki mine on p. 183, fig. 132). This complicates the utilization of

the training-based approach in the context of mine face mapping.

6.2 Robust sensor modeling
6.2.1 Spectral downsampling of VNIR & SWIR

Downsampling both in the VNIR and in the SWIR suppresses small, distinct spectral features that are
indicative of minerals or elements. This is the case for example for distinct, small features of Rare Earth
Elements (REE) in the VNIR (Herrmann, 2019) but also narrow features in the SWIR indicative of Al-
bearing phyllosilicates (e.g. kaolinite) or Fe-, Mg- bearing minerals (e.g. chlorite, epidote and
tourmaline) (Lypaczewski et al., 2020). These smaller features can be utilized for absorption feature

modeling e.g., MWL or EnGeoMap 2.1. The identification of the kaolinite double feature is possible up
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to a downsampling to bandwidth of 15nm (see Table 24). This only proves the distinction based on
spectral form (in this case the distinct doublet feature) and not exact location of feature wavelength
position that is usually aimed for with MWL mapping. Interestingly, by increasing the FWHM up to
40nm and decreasing the number of bands for the theoretical sensor, the mapping accuracy of
EnGeoMap 2.1 constantly improves, showing that the overall shape and location of all features can be
mapped even for downsampled systems.

To repeat some of the findings for SVM, SAM, BFF and EnGeoMap that were stated in table 23 (p. 124,
showing the mapping accuracy plotted against the computation time), figure 85 (p. 125, showing the
mapping accuracies plotted against the band number of the sensors) and figure 86 (p. 126, showing
the mapping accuracy and computation time plotted against the band number): The mapping
accuracies of SYM and SAM are at an approximately constant level with increasing band numbers they
plot around 83% and 65% respectively. SVM training time decreases from 3361.8s (1nm bandwidth,
2084 bands) to 52.5s of training time for the WorldView-3 setting (16 bands) and the mapping accuracy
(kappa) increases slightly from 82.4% to 83.2% respectively.

The BFF mapping results shows an increase in accuracies with decreasing band numbers. The
computation time for BFF decreases from 2722.5s and 60.5% of accuracy to 450.7s and 71.7% of
accuracy for 5nm and 50nm bandwidths respectively. EnGeoMap 2.1 peaks around 53 bands with an
accuracy of 49% and stays consistent with increasing band numbers at around 48%.

Figure 86 shows the correlation of computation time and increasing band number. The accuracy of the
resulting map does not increase with band number and computation time for SAM, SVM and
EnGeoMap 2.1. The BFF mapping accuracy decreases with increasing band number and computation
time (see pp. 124-126). The increase in mapping accuracy for the BFF with decreasing band number
can be explained by the underlying calculations of the method. The comparison of the unknown pixel
spectrum with the endmember set spectrum is based on the triangle parameters. With decreasing
bandnumbers the triangles that are created between three consecutive datapoints become more
distinct and represent larger triangles. The created triangles get larger with decreasing bandnumbers
and reflect better upon the absorption features themselves instead of small incremental changes
within larger absorption features. This is shown in Mielke et al., 2020 and this is also why the BFF was
originally created for multispectral data. The constant mapping accuracies of SAM and SVM might
reflect on two different factors: First, for a distinction between material spectra the exact position of
narrow features does not play as important a role. The position of wide features, the overall trend of
the curve and the albedo of the spectrum might be enough to characterize a material sufficiently. A
second factor for the iron ore samples — the dataset used for this test — is that the different sample

spectra are already very similar to each other and a distinction of them is based on the trend of the
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curve and the albedo rather than on narrow absorption features. The iron ore samples themselves do
not exhibit a large variety of narrow features in the SWIR region. This also means that the
downsampling process and the optimum sensor design has to be thoroughly reviewed for any new
deposit (with a different level of spectral variety) and the optimal sensors will differ for different

deposits and the needed level of spectral resolution for a material distinction.

Based on these findings and the aim to simplify the theoretical sensor and lower the overall costs
related to the system, the 15nm and 40nm bandwidth sensors were considered for further sensor
improvements regarding the application in active mining. The MWL mapping of distinct, sharp features
that only change their wavelength position by a few nanometers cannot be based on these sensors.
The mapping of white mica for example (feature around 2200nm (Lypaczewski et al., 2020)) and the
change of wavelength position around the 2200nm feature can be an indicator for white mica
(2195nm) or green, phengitic mica (2210nm) (Lypaczewski et al., 2020). These distinctions cannot be

achieved by downsampled spectral data but only by upsampled, 1nm FHWM data.

6.2.2 Reduction of atmospheric impact

By excluding the atmospherically affected wavelength regions (=1300-2010nm) the material
classification results were not affected considerably, but it reduced the effects of atmospheric changes
on the data and reduced the dimensionality of the data further, resulting in three sensors with 37, 57
and 94 bands and 40nm, 40nm and 15nm, and 15nm bandwidth respectively. By reducing the data
again to two theoretical VNIR-only datasets, two sensors of 57 bands (15nm bandwidth) and 16 bands

(40nm bandwidth) were created and yielded acceptable classification results.

6.2.3 VNIR-only downsampling

The analysis that is based on VNIR-only data can only take into account broad absorption features in
the VNIR (usually caused by the presence of iron) for knowledge-based approaches e.g. iron feature
depth modeling. Here, SWIR-active mineral features cannot be included for a knowledge-based
approach. The distinction of different materials can be achieved by using data-driven analysis
approaches. The results for SAM and BFF are promising and show a possible distinction of the
spectrally very similar Brazilian iron ore samples. This is shown for the BFF analysis for the sensors with
excluded atmospheric bands and the VNIR-only sensors in Figure 123. Both SAM and BFF are
insensitive to variable illumination as they consider spectral shape parameters for classification instead

of absolute spectra positions.
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Figure 123 BFF results and spectral library of the 3 datasets with excluded atmospheric wavelength ranges (left) (414—

2498nm) and of the two VNIR-only datasets (414 — 1000nm). The spectra of the spectral library are shown stylized to
highlight the changes in the overall spectrum.

In short, the VNIR-only setup allows for a lighter and smaller sensor with a lower power-consumption,
higher tolerance towards temperature changes and a higher spatial resolution. Additionally, the price
point ratio of VNIR to SWIR is around 1:2. Utilizing spectrally lower resolved sensors and going from

hyper- to superspectral can significantly reduce data size, storage cost and computation time.

The reduction of data size with reduced spectral band numbers is another factor to consider as routine
monitoring will not only add up a lot of data for storage, but as shown, the reduction of data size
enormously reduces the computation time for subsequent analyses. Figure 124 plots the data size
against the band number for all systematically downsampled sensors (18 sensors with band numbers

from 2084 to 16), note the logarithmic scale of the x-axis.
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Figure 124 Plot of the data size of the successively downsampled data of the Brazilian iron ore hyperspectral scan.

The advantages and disadvantages in the context of mine face mapping in active open pit
environments have to be considered in a case-specific context. Based on this laboratory-derived data
of iron ore samples from Brazil, two main analysis requirements appear:

e Ifthe detection of diagnostic SWIR-active minerals is important to map e.g. the clay content in
a mine face, then VNIR and SWIR data of a high enough spectral resolution have to be utilized.
This results in component maps that enable a distinction between ore bearing and waste rock
by analysis distinct spectral mineral features e.g. by MWL or EnGeoMap 2.1.

e If a deposit can be characterized by a number of distinguishable, distinct rocks or mineral
assemblages that can be summarized by site-specific sampling and in spectral libraries (e.g.
iron rich rock, clay-iron-mix, silica-clay-mix) then a VNIR-only approach can save time and
money and provides a system that is robust in handling. This results in material maps based
on a site-specific library. SAM and BFF deliver acceptable results (around 70% of accuracy) and
are relatively insensitive to variable illumination, another key factor for data acquisition in an

open pit mining environment (Schneider et al., 2011).
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6.3 Apliki laboratory scan analysis

The resulting mapping accuracies for the different sensors utilized to analyze the Apliki mine sample

laboratory data are again shown plotted in Figure 125.
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Figure 125 Apliki sample scan classification accuracies for five different sensors and three different classification
algorithms (SAM, BFF and SVM).

Figure 126 present the computation times for each sensor, note the logarithmic scale of the y-axis.
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Figure 126 Computations times plotted for each sensor for the Apliki sample dataset.
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Figure 126 shows significantly decreasing computation times with decreasing complexity of the sensor
from hyper- (400 bands) to super- (74-54 bands) to multispectral (16 bands). The overall accuracy for
the classification does not decline significantly with lower band numbers and only shows a lower
accuracy for four of the five analysis methods — namely when excluding a significant portion of the
wavelength range for the “VNIR-only” data. Comparing the mean classification accuracies for the two
different libraries used (Table 49), it is apparent that the reduced spectral library based on the

geochemical clustering underperforms.

Table 39 Classification accuracy mean compared for SAM and BFF and the two different spectral libraries utilized.

Classification 11 sample spectral library 36 sample spectral library
SAM mean result % 78.84 78.32
BFF mean result % 83.72 83.99

This leads to the conclusion, that the choice of library and of material to characterize a deposit or
outcrop is one of the key factors to gain meaningful insight and accurate mapping results.
The overall accuracy of mapping is roughly similar for the BFF algorithm and SAM, but the computation

time of the former is up to the factor of 3400 times higher than for the latter (see Figure 126 above).

The analysis of the radiance data set showed promising results but needs further research both in
testing VNIR-based analyses and material distinctions for different deposit types and mineral samples
and for developing a workflow in the field to include a physical rock/ mineral library within the outcrop
scans to compile a radiance spectral library from areas of the scan. This is necessary as laboratory
radiance data is not comparable with field radiance data. As the radiance data is highly influenced by
the source of illumination, laboratory radiance spectra can only be applied to data derived in the same
environment and not be applied to field radiance data. When deriving spectra directly from the scan
(field or laboratory), either from the mine face itself or a panel positioned in front of the camera that
is coated by the deposit relevant materials, even the VNIR radiance data seem promising for

preliminary distinctions between different materials of interest.
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6.4 Mine face mapping results
6.4.1 Apliki mine

The superspectral mapping results are compared to two validation sources. The first source for
validation are the field samples, geochemical analyses and a set of color-coded sample points located
in the accessible, 2" level of the open cut. The second source to validate the mapping is the subzone
mapping of the open cut based on the interpretation of 66 samples of the open cut (Antivachis, 2015).
The Apliki open cut was analyzed with BFF and SAM. The SVM method was tested for the Apliki
laboratory data but did not show sufficient results and the NN methods were not considered due to
suspected overfitting or computation time concerns related to the test with the Brazilian iron ore
dataset. Figure 127 shows the results of mapping for BFF and SAM compared to the 22 sample points
for the 40nm VNIR- 15nm SWIR data. Both mapping approaches map the areas of sample points with
the same accuracy for the optimum 40nm VNIR - 15nm SWIR data (approximately 82% in 18/22 points),

but the correctly mapped points differ between the BFF and the SAM analysis.

BFF

A /08

Agreement of mapping with identifiable sample points: 18/22

SAM

\ /e /X

Agreement of mapping with identifiable sample points: 18/22

. Cluster 1 - Apliki pillow lavas, Cluster 4 - Veins of massive mineralization, Disagreement
dominated by plagioclase and montmorillonite . dominated by sulfates Eapﬂjng_
validation

. Cluster 2 - Disseminated and weathered sulfide ore, . Cluster 5 - Weather pillow lavas, smectitic alteration,
dominated by quartz, sulfides, sulfates dominated by clay, smecite-chlorite-group minerals

. Cluster 3 - Areas of higher silicification, Jasper, . Cluster 6 - Chloritic stockwork;
quartz (+ chlorite-group minerals) dominated by chlorite-group minerals

. Cluster 7 - Gypsum mineralization

Figure 127 BFF and SAM mapping for 40nm VNIR - 15nm SWIR data of 390 spectral bands, compared to the validation
field sampling points.
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Apliki mine

The BFF analysis maps an area in the west of the open cut (left side of the image) as “cluster 4”
(turguoise) which correlates well with the mapped amorphous silica by Antivachis (2015). The western
and eastern parts of the image scan are correctly mapped as “cluster 1” (red), related to the pillow
lava occurrence. The Cu-rich precipitates in the areas of visible water runoff are mapped as “cluster 2”
(yellow) in the BFF map but not the SAM map. The area of the stockwork zone is predominantly
mapped as “cluster 6” (chloritic stockwork, purple) and “cluster 7” (gypsum, weathering products,
pink) as well as “cluster 5” (clay alteration, smectitic-chloritic alteration, blue) for both the BFF and
SAM map. The small landslide in the east of the image is either mapped as “cluster 3” (high SiO2, green
BFF) or as “cluster 4” (high Fe203, turquoise, SAM). The sampling validation in the area was classified
as either “cluster 1” or “cluster 5”, red or blue respectively, and does not confirm either mapping of
the BFF and SAM. SAM is unable to map the Cu-rich precipitates (color-coded in yellow, cluster 2) and
seems to react stronger to albedo differences is the imagery, especially visible in the pit walls east of
the open cut. Figure 128 shows a comparison of both the BFF and the SAM mapping results compared
to the validation map of the open cut based on Antivachis (2015). BFF and SAM show a similar
distribution of areal main components, especially in the open cut stockwork related zone. Compared
to the SAM results, BFF finds more diverse material covers in the western part of the outcrop. SAM on
the other hand distinguished different materials in the eastern part, where the BFF mainly maps
“cluster 1”. SAM does have a higher number of “unclassified” pixels, especially in areas of higher
albedo, e.g. the light precipitates in runoff, conical areas and in the western, upper levels of the open
cut. The BFF analysis is able to map the light precipitates and hereby outperforms the SAM analysis for

the Apliki outcrop.
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. Cluster 3 - Areas of higher silicification, Jasper, . Cluster 6 - Chloritic stockwork;
quartz (+ chlorite-group minerals) dominated by chlorite-group minerals

. Cluster 7 - Gypsum mineralization

Figure 128 BFF (B) and SAM (C) analysis results for 40nm VNIR - 15nm SWIR data compared to the geological mapping of
the open cut (A), based on Antivachis (2015).

Both BFF and SAM overestimate the occurrence of cluster 7 (gypsum dominated, dispersed weathering
products, pink) especially in the central part of the outcrop compared to the expected geological map.
When looking at the downsampled spectra used for the classification and comparing them with their
full hyperspectral impression (Figure 129 & Figure 130) two apparent changes can be noticed: 1) the
interpolation between 1300-2010nm excludes absorption features that are valuable in differentiating
between the spectra and 2) due to downsampling from 400 to 54 bands, narrow small absorption
features are smoothed out (e.g. the Fe feature around 450nm) this might additionally influence the

mapping results.
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Figure 129 Spectral Library from 11 Apliki mine samples - full 400 bands, HySpex spectra. Color-coded is based on 7
clusters. Reflectance value scaled between 0-10000 (0-100%).

Apliki Spectral Library 40nm VNIR- 15nm SWIR, atmospherical waterbands excluded
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Figure 130 Spectral Library from 11 Apliki mine samples - downsampled, 40nm VNIR - 15nm SWIR spectra with
interpolated spectral range between 1300 - 2010nm. Color-coding is based on 7 clusters. Reflectance value scaled
between 0 — 10000 (0-100%).

Excluding the spectral range between 1300-2010nm enables the classification of field-derived data

that is highly impacted by atmospheric absorption features. It also excludes valuable spectral features

that can be crucial to differentiate between the different spectra. For example, gypsum (cluster 7,

sample 4a, pink) shows a distinct feature around 1450nm as described in Moreira et al. (2014). This

feature however is removed due to the interpolation in this range. The resulting spectrum 4a is now

not representing the gypsum fingerprint anymore but resembles a spectral shape that is similar to the

cluster spectrum represented by sample 1e (cluster 1, red) and 9a (cluster 6, purple). It is thereby not

possible to map cluster 7 based on spectrum of 4a in its downsampled state. The color-coding “pink”

now instead represents other spectra (1e, 9a) not typical for gypsum. In order to show an un-biased
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analysis that is not influenced by the over-representation of the pink color-coding, the BFF analysis
was repeated with a spectral library excluding cluster 7 (spectrum 4a). The analysis result is shown in
Figure 131 below.

Clay minerals or

Gypsum Smectite - chlorite alteration Associated stockwork zone

Precipitation surfaces, Landslide from top of opencut
Chloritic zone highest Cu grade in sampled

Amorphous silica

an-me plateau
(leveled, material not
identified as i‘|_1~s‘|bu)

6 cluster analysis

Cluster 1 - Apliki pillow lavas,
dominated by plagioclase and montmorillonite

Cluster 4 - Veins of massive mineralization,
dominated by sulfates

Cluster 5 - Weather pillow lavas, smectitic alteration,
dominated by clay, smecite-chlorite-group minerals

Cluster 2 - Disseminated and weathered sulfide ore,
dominated by quartz, sulfides, sulfates

Cluster 6 - Chloritic stockwork;
dominated by chlorite-group minerals

Cluster 3 - Areas of higher silicification, Jasper,
quartz (+ chlorite-group minerals)

unclassified

Figure 131 BFF analysis of Apliki based on 6 clusters, excluding cluster 7 (gypsum).

The new analysis based on 6 clusters represents the zones well that are mapped by Antivachis (2015).
By excluding cluster 7 from the classification, the central part of the mine face becomes dominated by
cluster 6 (chloritic stockwork zone) and cluster 2 (disseminated sulfide ore). From the central part
outwards, the classification is dominated a mixture of cluster 6 and cluster 5 (smectitic alteration
zone). Cluster 3 is now dominant in the landslide to the East but is also classified within the Western
part of the mine face. As cluster 3 represents areas of silicification, a more pronounced mapping in the
West correlates with the area identified as amorphous silica by Antivachis (2015). Reducing the
clusters by excluding the downsampled and now spectrally inactive cluster 7 from the analysis results
in @ more coherent concise mapping of the mine face. This highlights how important both the
geological and spectral validation is. Geologically, the ground truth needed is the comprehension of
the expected zonation and the ability to realize when a material is overrepresented in the spectral

map. The needed spectral validation comprises the evaluation of the spectral reference library and the
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Apliki mine

continuous re-evaluation of the data and the spectral library during the downsampling process. This
holds especially true when the mapping is not based on spectral libraries (that can easily be checked
and evaluated for their spectral interpretative value) but results from training-based classifiers and
small training areas. An SVM was trained on the 54 bands laboratory dataset of the Apliki samples
(downsampled to “40nm VNIR — 15nm SWIR atmospheric impact excluded”). The trained SVM model
for the laboratory data showed results of below 60% accuracy for the mapping. When inferring the
SVM model to the 54 bands field data, the resulting map does not show with the expected geological
situation of the mine face (Figure 132). Please note the different color-coding of the clusters for the
SVM, which is according to the validation for the SVM in the laboratory tests. Not only is the vegetation
mapped as cluster 6, even though it was masked out from the data but the majority of the area is
mapped as cluster 5 (“weathered pillow lava”) allowing nearly no differentiation of the zonation in the
mine face. This result again underlines the importance of geological and spectral experts that
understand the nature of the open pit and recognize an incorrect biased mapping result when they
see one. Training based algorithms can have a huge advantage and they showed the highest accuracies
in the laboratory testing for the iron samples. But when inferring the SVM model to the outcrop scale
and to data impacted by different acquisition conditions the mapping results have to be scrutinized.
Even when excluding the obvious atmospheric impact from both the training dataset (laboratory) and

the dataset for mapping (mine face) the resulting map has to be considered carefully and in the case

of the map shown in Figure 132 does not pass the examination.

3 cluster 1

O cluster 2
@ cluster 3
©® cluster 4
@ cluster 5
@ cluster 6
©® cluster 7

Figure 132 Apliki mine face map based on SVM trained on laboratory data. Note the different color-coding compared to
the BFF and SAM maps.
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6.4.2 Three Hills mine

The analysis of Three Hills was based on a rudimentary color-coding scheme and is supposed to map
areas of high, medium and low Cu-content. The color-coding that was chosen in Section 5.6 (p. 161) is
deliberately only supposed to depict trends in the Cu-content and did not focus on mineralogy, mineral
assemblages or contaminants. From communications with HCM and the position of the stockwork
indicated by geological maps of Adamides (2010b), the Cu-grade distribution in the open pit shows an
increase of Cu-content towards the S of the fault line (indicated in white in Figure 133) and a decrease
towards the north. An increased brecciation within the stockwork zone is accompanied by clayish
alteration zones (low in Cu), whereas the upper contact to the former surface is accompanied with a
higher oxidation of pyrite and brown horizons (Naden et al., 2006).

Figure 133 shows the Three Hills deposit fault position and Cu-grade trends and Figure 134 depicts a

sketch of visible zones from the field work performed in 2018.

V7] el /]

] / / approximated fault
> line from field visit INJ

I R
= |eached zone
= oxidized pyrite
QO clayish appearance i
@ greenish appearance H

Figure 134 RGB vision based sketch of areas of clayish and chloritic appearance (yellow and pink respectively) and of
areas of oxidized pyrite (red outline) and leached zones (white outline).

The applied spectral library depicts the copper trends, color-coded for high, medium and low contents.
The samples color-coded as medium (red) indicate an overall average sample composition, whereas
the low-Cu samples (yellow) show an increase in Na20 and Al203, indicating the presence of feldspar
and associated clay alterations in the area. Figure 135 presents the mapping results of the BFF for

Three Hills.

- ff;." @ unclassified

@ >0.27% Cu

@ 0.1%<Cu<0.27%
() <0.1% Cu

&

Figure 135 Mapping result of BFF with color-coding based on high, medium and low copper grade.
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Three Hills mine

The open pit shows a trend along the indicated (Figure 133 above) fault line, mapping dominantly
average/ medium Cu-contents in the northern part of the fault and the high- and low-Cu grades south
of the fault line, lower in the open pit. The mapping of high-grade (>0.27% Cu) is constricted to the
lower open pit as communicated by HCM in March 2018. The area mapped as low-Cu-grade is also
associated with the lower parts of the open pit and areas mapped as “leached” in the RGB imagery
(Figure 134 above). Qualitatively, the superspectral mapping of the pit follows the geological reasoning

and along the fault line and can be seen as valid.
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7 Conclusion

The material distribution within a mine face can differ substantially in the small scale and within daily
assigned extraction segments. These changes are not always visually identifiable but prove to be
relevant for the processing steps that follow extraction. These steps are influenced by mineralogical
changes within the extracted material depending on the ore grade and contaminant content.
Misclassifications result in sending ore to waste dumps and waste to the stockpiles. This must be
minimized in order to reduce energy-intensive material re-handling.

The evaluated and compared approaches in this area have concentrated on mapping the mineral
composition (Kurz, 2011; Schneider et al., 2011; Murphy, Monteiro and Schneider, 2012), using specific
mineral horizons as markers (Murphy et al., 2015) and mapping units based on image-derived spectra
limiting the number of geological units to those visible by the naked eye (Kirsch et al., 2018). The main
approach is to map minerals based on the position and depth of distinct, narrow mineral features
(Dalm, Buxton and van Ruitenbeek, 2017; Kirsch et al., 2018; Lypaczewski et al., 2020). Mapping based
on mineral-specific features is a useful tool in identifying areas dominated by different contaminants
(e.g. clay, carbonates) but does not account for the natural variability and complexity of mineral
compositions in the rock surfaces. Additionally, relying on hyperspectral systems for narrow
absorption features implies using expensive, heavy, complex, delicate sensors that are not easy to
handle for the average workforce in a mining project, neither for data acquisition nor the subsequent
data processing and analysis. Additionally, the hyperspectral data cubes from the acquisition and the
analyses result in the necessity of providing high volume data storage. There is a need for virtual
outcrop models to accurately depict the geological units of the mine face;some proposed workflows

and methods have started to find solutions for this need.

In this work, | propose an application-based sensor adaptation and analysis. This is achieved by
reducing the sensor complexity, effectively by downsampling the spectral resolution of the system.
The downsampling is performed by systematically decreasing the number of spectral bands whilst
increasing each band’s bandwidth. The successful preservation of the material-specific spectral
characteristics is evaluated throughout the downsampling process and the best-fitting sensor model
to represent the materials’ spectral properties is selected. This spectral dimensionality reduction
reduces the complexity of the data and enables reduced data sizes and computation times. The
mapping results are presented as per-pixel, hard classifier maps. They were evaluated geologically and

spectrally and represented the expected regional geological situation.
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The main outcomes of this work are:

The theoretical reduction of sensor complexity

The hyperspectral laboratory data cubes were downsampled to superspectral resolutions and reduced
in their spectral range. The results of the spectrally downsampled datasets were compared and
showed good results. In order to apply this to outcrop conditions, particularly data impacted by the
atmosphere, the atmospherically impacted bands were removed and interpolated between the
shoulders of 1300-2010nm. The analysis of this further downsampled data again showed promising
results. Successfully applying the analysis to VNIR-only data in the end presented the possibility for a
lighter, less cost-intensive, robust and easy to handle system for superspectral rock differentiation.
This questioned the need for a full spectral range VNIR-SWIR hyperspectral system and focused on the
idea of simplifying the spectral range and spectral resolution without compromising the quality of the
results achieved for the mining industry. Spectral sensors should instead be customized 1) to geological
use cases and 2) to the deposit of interest. This concludes the need for further testing to develop

sensors for geological applications and create sensors with deposit-specific sensor characteristics.

The correct choice of spectral libraries

The right choice of spectral library is imperative to get acceptable results for hard and soft classifier
maps. The three test cases showed that automated PPI + n-D visualization or SMACC spectral EM
determination is not sufficient to spectrally characterize a geological sample set or deposit. Image-
derived EM spectra were not describing the complexity of the sample range sufficiently. Instead,
image-derived spectra were shown to bias towards spectral peacocks at the outer ranges of the
spectral variability and did not account for the more average and abundant rocks or minerals
assemblages. The acquisition of spectral EMs at the mine face with handheld spectral equipment and
the sampling for geochemical validation captures the variety of materials and mixtures; it does not,
however, comply with the security regulations and the potentially instable cliff sections.

The on-site geologists are experts in the mineralization of the deposit and best suited to sample and
provide all geologically relevant samples of the deposit. The sampling can take place from the
extracted, characterized material instead of taking place at the risky mine front. Rock (mixture)
samples are superior to one-phase mineral samples. The spatial resolution of the sensors almost never
allows for a spectral sampling of single-phase minerals on-site, therefor providing the analysis
algorithms with single-phase mineral EMs is not sufficient. This leads to the conclusion that the spectral
library has to be defined around the needs of the geologist on site, sampling spectra from rocks with

known ore and contaminant levels. Whilst the analysis and algorithms themselves do not have to be
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expert-based, the compilation of the spectral library should be. The establishment of a suitable
spectral library therefore remains an expert job both for the on-site geologist by providing the relevant
samples and the spectral expert to collect and cluster the relevant spectral fingerprints for each

geological unit.

Geological and spectral expert knowledge input is inevitable

The comparison of the ground truth field mapping with the BFF and SAM mapping showed a bias
towards the classification of cluster 7 (gypsum-dominated). Only with the geological knowledge that
gypsum occurrence is not that widespread in the mine face could the site-specific spectral library be
re-evaluated. It turned out that excluding wavelengths ranges impacted by the atmosphere from the
spectrum of class 7 also excluded the distinct gypsum feature. Class 7 therefore was not classifying
areas of gypsum occurrence but classified a random, lab-made synthetic spectrum not indicative of
any real material. This example shows that even when compiling a site-specific spectral library based
on geological expert knowledge, the data and inputs for the classification have to be checked for their
spectral soundness. As for many computing applications, “garbage in, garbage out” can only be

avoided by a sound screening of the input files in this case the HSI and the spectral library.

Indications from measurement conditions at the mine face scale

Measurements at the mine face level have to be further improved to allow for safe labor with regard
to the spectral measurements. Ground-based tripod measurements can theoretically be taken from
any distance but are dependent on the desired spatial resolution of the mine face (area captured by
each pixel). With distance the impact of the atmosphere is also increasing. For the SWIR-320m-e
sensor (28° FOV), this means in order to capture an average mine face of 10m height, the minimum
distance of the sensor to the mine face is 20m. This results in ca. 2cm of lateral pixel size. Positioning
the sensor at longer distances is dependent on the size of geological structures that have to be resolved
and the size of the white reflectance targets that need to be captured for the reflectance retrieval. A
distance of >200m and resulting pixel size of ca. 15cm is an approximate maximum for the 28° FOV
SWIR system to resolve geological structures, while still allowing for a large white reflectance target of
>80 x 80cm to be resolved. The position of the tripod within the mine is reliant on safe areas to setup
the cameras and to take measurements for 30min without interruptions. This leads to another
challenge regarding the safety concerns. The setup of the white reflectance targets for reflectance
retrieval is a major safety issue and requires the operators to access the mine face and place the targets
in front of the rock outcrop. This is not always possible due to inaccessibility and instability of the

outcrops nor should this be an advised procedure. Additionally, the placement of the targets is time
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consuming and not easily integrated in the busy schedule regarding mine face related planning. Two
possible solutions come to mind: 1) measurement of the mine face by UAVs calibrated before takeoff,
flying in proximity to the mine face thereby negating the necessity to approach the outcrop to place a
tripod and target. 2) Built-in irradiance sensors measuring the changes of illumination during the
tripod- or UAV-based spectral measurement and allowing for a reflectance retrieval that is accurate to

the split second and does not rely on physical white reflectance targets.

Within this work a non-conclusive list of challenges for the application of HSI in the context of mining
was presented (Table 2, p. 6). These challenges have been addressed and discussed theoretically and
some were approached in more detail. Table 40 includes the results of this work in regard to some of

these challenges.

Table 40 Challenges for superspectral measurement equipment in the context of mine face scanning and possible
solutions as a result of this work.

# | Challenges Development of Solution Results of this work
1 | Ruggedness Protective casing, dust-proof [A decrease of band numbers and spectral range
ventilation, GUI adjusted to [can aid in developing smaller, lighter, less
outdoor conditions & complex sensors, ruggedness could be improved
handling with Personal simultaneously. A hardware solution for this
Protective Equipment challenge e.g. protective casing is yet to be
found.

2 | Measurement | Definition of optimal Downsampling to superspectral 40nm FWHM
and analysis balance between spectral VNIR and 15nm FWHM SWIR and excluding
speed bands and spatial resolution |wavelengths areas impacted by the atmosphere

in order to keep pace with  |is a reasonable option to increase scanning
the dynamics of mining speed and decrease data size, data acquisition
operations time and analysis computation time.

3 | Fast analysis Allowing for quick decision |Downsampling the data to superspectral is a

making in the mine-pit valid option to increase the analysis speed.
(near-real time); Ideally Built-in irradiance sensors can speed up the
onboard processing reflectance retrieval and increase the safety of

the measurement.

4 | Increased Lower hardware prices will  [Smaller band numbers and smaller spectral
demand for enable decision makersto  [ranges (site- or deposit-specific) enable lower
application in | purchase systems for each  |hardware prices. Future research will develop
mining still mine and advance the “deposit-specific” sensors that have improved
limited by understanding and spectral characteristics for a geological use case
pricing of applications for the tool and additionally for specific deposits. If the
sensors “HSI” whilst simultaneously |demand for the technology increases it will

increasing their efficiency evolve around that demand.
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# | Challenges Development of Solution Results of this work

5 | Determination | Broad material The site-specific spectral libraries (1 spectrum
between ore, | categorization to distinguish |per relevant sample) were superior to the
main ore grade and contaminant Jautomated, spectral EM retrieval from the
contaminants | variability sample suites (e.g. PPI, SMACC). Field imagery
and waste derived EMs are nearly impossible to validate

sufficiently and sampling at the mine front
poses too many safety risks both for physical
sampling and spectral sampling with handheld
systems.

6 | Size & weight | Size and weight need to be |Downsampling the sensors can improve the size

reasonable for drones that  Jand weight of the sensor by decreasing the
do not require special pilot |overall complexity of the system.

licenses and can be safely

handled

7 | Power Optimization of battery Again, downsampling can be part of a solution

consumption | utilization with respect to to decrease power consumption. A VNIR-only
commonly needed setup can negate the need for power-consuming
measurement and flight liquid nitrogen cooling needed for the SWIR
time detector. The VNIR-only analyzes in this work
showed promising results, but this is highly
dependent on the spectral characteristics of the
material of interest.

8 | Cooling of Efficient and dust-proof A VNIR-only setup negates the need for the

sensor cooling system to withstand [SWIR detector liquid nitrogen cooling and
high temperatures in mine  |showed sufficient results in this work.
pits

9 | Albedo Automated pre-processing  [Common sense determines a solution for
correction and | of data, at-sensor reflectance retrieval based on built-in irradiance
feature reflectance retrieval and measurements instead of targets that have to
retrieval of feature retrieval/ be placed along the mine front and do not
data enhancement enabling comply with safety requirements. This is yet to

faster, more flexible and be achieved. The reflectance retrieval utilized in
easier to analyze datasets this work produces sufficient results but is too
slow to consider for big amounts of data.

10 | Impact of Flexible schedules in mining [Classification algorithms must yield consistent
variable require variable acquisition Jresults under varying illumination conditions.
incident light | times for HSI data this leads [The BFF algorithm shows consistent results even
conditions to different illumination in areas of shadows and is in theory relatively

conditions

insensitive to changing illumination. It
performed slightly better than the SAM
algorithm for the here presented data.
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8  Outlook
8.1 Application to World-View 2 satellite data

WorldView-2 (WV2) VNIR archive data was provided by European Space Imaging® after it was granted
within the third-party mission (TPM) Project ID 61058 by the European Space Agency (ESA) on 24™" July
2020. A subset of the data was created that includes the open pit and surrounding area of Apliki. The
data was delivered orthorectified in 8 VNIR bands and collected on the 15" of August 2018 at 08:58am
local time with a mean sun azimuth angle of 146.1°, a mean sun elevation angle of 65.69°, a mean
satellite azimuth of 244.6° and a mean satellite elevation of 62.5°. The mean off nadir angle is 24.2°.
The delivered pixel size is 2mx2m. The data is projected in EPSG: 32636 - WGS 84 / UTM zone 36N and
was corrected with ATCOR version 9.3.0 © DLR/ ReSe 2019, IDL 8.5 (Richter, 2007; Richter and
Schlapfer, 2011). The RGB imagery of a subset of the WV2 data is shown in Figure 136. Please note,
that the waste piles in the North of the open pit are located within the UN Buffer Zone and are

therefore not shown.

32°50.40°E 32°50.70°E

35°4.50'N

1 2
0 00 00m == UN Buffer Zone

Figure 136 RGB imagery of the WV2 scene from 15th of August 2018. European Space Imaging WorldView-2 data has
been provided the European Space Agency ESA within TPM Project ID 61058.

The data was analyzed using the BFF algorithm and the spectral library of Apliki with 35 samples. The

spectral library without cluster 7 was applied as it showed to bias towards mapping the gypsum
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occurrence. Figure 137 shows a grey-scale image of the data showing the size of the summarized
triangle areas of each pixel spectrum. Pixels without significant features will not yield a high sum of
their triangle areas and are represented in dark colors. Pixels with significant spectral contrast (e.g.
vegetation) are represented in light colors. Areas with low spectral contrast can be identified and

represent the areas with higher possible material identification errors.

32°50.40°E 32°50.70'E

35°4.50'N
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Figure 137 Quality map, pixels with high spectral contrast and therefore low possible classification error are represented
in light colors. European Space Imaging WorldView-2 data has been provided the European Space Agency ESA within
TPM Project ID 61058.

Figure 138 shows the result of the surface material mapping. The area is dominated by vegetation
cover as already visible in Figure 138. The main surface materials is mineralized Apliki pillow lavas (red,
cluster 1) and areas of higher silicification + chlorite group minerals (light green, cluster 3). The mine
faces in the NNE of the open pit are mapped as chloritic stockwork (purple, cluster 6). A smaller area
SSW of the open pit lake is also mapped as chloritic stockwork. This correlates well with the zone of
brecciated lavas that is enclosed by two major parallel faults west and east of the pit lake, as identified

by Antivachis (2015).
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Figure 138 BFF analysis of the Apliki WV2 data with site-specific spectral library with 35 samples, color-coded within 6
geochemical clusters. European Space Imaging WorldView-2 data has been provided the European Space Agency ESA
within TPM Project ID 61058.

The application of the site-specific spectral library for high-resolution satellite imagery shows the
possibility of acquiring consistent geological information of larger areas and understanding the spatial
relationships of materials covers in a deposit. It also shows the high level of vegetation cover
occurrence and that 2m x 2m pixels will be spectrally dominated by vegetation even when the RGB

representation of the image does not indicate such a high level of vegetation cover.
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8.2 Topics of future research

This work showed a few approaches to solve persisting challenges in applying HSI for near-field
geological maps within a mining context. Other challenges are mentioned below but have not been

part of this work. They will need to be considered within future research projects.

Sensor improvements

Rugged and portable instrumentation is needed that can be handled easily by the on-site workforce.
Its size and weight have to be handled by one person and need to be below the requirements for
special UAV license certifications. This could be achieved by detector and sensor chip developments
for HSI sensors or as proposed in this work by downsampling and simplifying the spectral resolution
and by creating superspectral, deposit-specific sensors. The theoretically downsampled sensors are in
fact theoretical. The practical realization has to be achieved in collaboration with sensor
manufacturers willing to develop and offer superspectral instead of hyperspectral systems. Higher
spatial resolutions and built-in irradiance sensors for accurate reflectance retrieval are additional steps
that need to be solved to achieve a successful implementation in the mining sector. In order to
characterize geological materials sufficiently, the sensors have to be adapted for the environment of
application. This means developing sensors with wavelength ranges and sensitivities suited to
geological materials or to deposit-specific purposes. This could mean e.g. a reduced wavelength-range
sensor operating in the SWIR wavelength range to map different clays and monitoring contaminant

levels in a copper mine.

Image Geometry and data integration

Close-range panoramic imagery shows an angular component in the along-track direction of the sensor
rotation. This results in a significant amount of non-uniformities or intensity gradients as stated by
Kurz (2011). A varying amount of diffuse irradiance is received at the sensor due to the sensor’s
rotational movement and different mine face surfaces in the FOV as well as different exposures to the
open sky. Image non-uniformity correction has been part of the outlook of Kurz (2011)‘s PhD thesis.
The change in the area size depicted by each pixel for ground-based measurements is another topic
that has not been heavily researched. Murphy et al. (2015) showed that improper or no geometric
correction of the rotational HSI resulted in over- and underestimation of surface area up to a factor of
two. The change of area depicted by each pixel in the x and y direction of the imagery has to be

accounted for to make volume predictions of the extractable material.
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The integration of the hyper- or superspectral data has to be achieved seamlessly, not only with
geometric data (e.g. LiDAR) but also within the modeling programs used on-site. To this end, the
sensors need to be equipped with GPS systems to accurately provide geo-referenced data to be
integrated with geometric models and mine planning and management software. A potential solution
to reduce geometric inaccuracy offer high-spatial-resolution full frame sensors as state-of-the-art

geometry approaches like SfM can be utilized straightforward on the data.

Data processing improvement

The illumination conditions and scattering effects do not only change due to differing mine face
geometries or the representation of different amounts of mine face vs. sky in the recorded line but
also by the changing illumination conditions during the measurements (Kurz, 2011). An ideal cloud-
free sky is the optimum but far from the reality, this has to be accounted for to acquire useful data
under sub-optimal conditions. Reflectance retrieval by calibrating to white reflectance targets placed
in front of the outcrop do not only insufficiently model the changing illumination conditions but pose
a safety hazard to the on-site workforce. It is time-consuming and inadequately fits into the busy
schedules of parallel tasks taking place at the mine front. Reflectance retrieval needs to be achieved
by built-in irradiance sensors. In the case of ground-based rotational measurements this implies

measuring the changing irradiance for each line of the HSI.

Spectral resolution

Downsampling the spectral resolution to sensors with 50+ bands showed to be sufficient to map
geological characteristics in the sample sets and mine face scans. Excluding the spectral bands
impacted by interactions with the atmosphere improves the results on average. As the library based
SAM and BFF analyses showed the best results but are methods that take the full spectral range and
shape into consideration, a few broad spectral bands should be present in the range of atmospheric
bands (1300-2010nm) in order to depict the overall shape of the spectrum better than done by be
excluding these wavelength ranges completely and interpolating between them. The impact of
preserving the overall spectral shape whilst excluding the impact of the atmosphere was not tested in

this work and should be included in future tests.

Data products
Implementation in mine management and planning cycles requires a consistent data product that is
used for planning purposes. The best-suited data product has yet to be defined by the mining sector

and geologists working with this data in their day-to-day activities. Open questions need to be
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addressed. Are hard classifier maps needed in order to characterize the deposit? Is it sufficient to base
the classification on site- or deposit-specific spectral libraries of samples with known ore grades and
contaminant content? Or is it better to map clay, mica and epidote/chlorite content (SWIR active
mineralogy) separately by creating feature position and -depth maps for single mineral phases with
high resolution, hyperspectral systems? The implementation to active mine planning will need some
trial and error to find a way that best serves the industry and the workforce to benefit from the data.
Additionally to these questions (hard- or soft pixel classifier maps) even the right visualization of the

results has yet to be found (Kurz, 2011).

This research does not only illustrate the existing challenges in the field of proximal, geological remote
sensing in context of the open-pit mining sector, but also highlights the possible solutions and already
existing approaches. The need for fast, reproducible imaging approaches to map quickly changing
deposits, open pits and mine faces will increase in the future and calls for simple, cost-efficient
solutions either by ground-based or UAV-based measurements. The need for routine monitoring can
only be met with robust, reliable, lightweight, safe systems. The main requirements for this future
sensor and methodology have been discussed in this work and a number of building blocks towards a
future solution have been presented. The hope of Tobias Kurz is as valid today as it has been 10 years
ago, that “close-range imaging spectrometry will become a sub-discipline in remote sensing, and a
standard tool in field-based geoscience studies” (Kurz, 2011). Adding to this, it is anticipated for
superspectral imaging to become a regular tool in the mining sector to assess and characterize deposits

in the mine-face scale based on ground- or UAV-based measurements in the upcoming years.
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10 Appendix

10.1 HySpex laboratory data acquisition settings

Table 41 HySpex settings for laboratory measurements of the Brazilian samples.

HySpex settings
Lamp arrangement 45°
Distance, sample to sensor Im
Wavelength range 414 to 2498nm
SNR mode (frames to average) 4
VNIR SWIR
Objective Im lens, CCD
equalizer 1m lens
Field of View (FOV) of objective 17° 14°
Sampling interval [nm] 3.7 6.25
Radiometric resolution 12 bit 14 bit
Light source Halogen GX6.35, 2 x 1000W
VNIR (1600 px) SWIR (320 px)
Integration time [us] 130000 5500
Frame period [us] 130993 521884

Table 42 HySpex setting for the laboratory measurements of the unprepared Apliki samples.

HySpex settings
Lamp arrangement 45°
Distance, sample to sensor Im
Wavelength range 414 to 2498nm

VNIR SWIR
Objective Im lens, CCD

equalizer 1m lens
Field of View (FOV) of objective 17° 14°
Sampling interval [nm] 3.7 6.25
Radiometric resolution 12 bit 14 bit
Light source Halogen GX6.35, 2 x 1000W

VNIR (1600 px) SWIR (320 px)
Integration time [us] 70000 - 90000 15000 — 20000
Frame period [us] 70998 - 91000 282860 - 362549
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Table 43 HySpex setting for the laboratory measurements of the unprepared Skouriotissa samples.

HySpex settings
Lamp arrangement 45°
Distance. sample to sensor 1m
Wavelength range 414 to 2498nm
VNIR SWIR
Objective Im lens. CCD
equalizer 1m lens
Field of View (FOV) of objective 17° 14°
Sampling interval [nm] 3.7 6.25
Radiometric resolution 12 bit 14 bit
Light source Halogen GX6.35. 2 x 1000W
VNIR (1600 px) SWIR (320 px)
Integration time [us] 40000 - 80000 8000
Frame period [us] 41000 - 80998 163346 - 322701

10.2 Brazilian iron ore samples detection limits and descriptions

Table 44 Detection limit for the geochemical results from mine site 1 (sample 3, 4, 7, 8, 11, 12 and 15).

<0,10 | <0,100

Table 45 Detection limit for the geochemical results from mine site 2 (sample 1, 2, 5, 6, 9, 10, 13 and 14).

<0,10 <0,10 <0,005 | <0,008 | <0,01 <0,10 <0,01 <0,007
XRF79C | XRF79C | XRF79C | XRF79C | XRF79C | XRF79C | XRF79C XRF79C

Table 46 Sample descriptions for samples from mine site 1, for sample 3, 4, 7, 8, 11, 12, 15.

3 Crispy rock, decomposed yellow to ocher with presence of clay minerals and
phyllosilicates

4 Crumbly, dark gray, decomposed on contact with intrusive rock rich in lamellar hematite
crystals, quartz and possible presence of phyllosilicates and clay minerals

7 Crumbly, structured, friable rock rich in hematite crystals and banding marked by
alternation of clay minerals and hematite + phyllosilicate levels

8 Semi-compact, gray, structured itabirite containing banding marked by dissymmetric

quartz and hematite levels. Presence of hematite and quartz crystals and possible
presence of phyllosilicates

11 Compact, structured, gray color with central quartz and hematite banding.

12 Crispy itabirite contaminated with decomposed intrusive rock, presence of clay
minerals and lamellar hematite crystals

15 Mineralized canga, formed from latering over the itabirite, red to ocher in color, with

presence of goethite and hematite minerals and contamination of clay minerals,
manganese and phyllosilicates
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10.3 Apliki mine sample description and location of sampling

Table 47 Apliki mine samples, including description, coordinates of sampling in March 2018 and a field photo of the
sample (Koerting, Rogass, et al., 2019)

"fresh" 35,077033 32,842833
surface

Apl1_A_1b | hematite 35,077017 32,842833
coloured

Apl1_A_1d | "fresh"dark 35,077017 32,842833
green

Apll_A le | yellow-ish 35,077033 32,8428
orange
weathered

Apl1_A_1f | "soil 35,07700 32,84275
formation”,
gravel

Apll_A 2a | waste, soil 35,076867 32,84275
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yellow-ish 35,076983 32,843083
weathered,
soil
Apl1_A_3b | brownish 35,077 32,84305
weathered,
soil
white,  soil- | 35,076967 32,843067
Apll_A_4a | ish
Apll_A_4b | grey, soil-ish | 35,077 32,843033
Apll_A_4c | grey-green 35,077 32,842633
Apll_A_5a | grey-medium | 35,076983 32,843167
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grey-dark

35,07705

32,843167

Apll_A_5c | grey-light 35,077083 32,843183
Apll_A_6a | soil, gravel 35,076967 32,8431
Apll_A_6b | soil, gravel 35,07695 32,8432 All samples from same spot,
see 6a
Apll_A_6c | soil, gravel not available | not All samples from same spot,
available see 6a
Apll_A_6d | soil, gravel not available | not All samples from same spot,
available see 6a
Apll_A_7d | Grey, crust | 35,076967 32,84325
unstable
Apl1_A_7d | Red, 35,076967 32,84325
Hem hematite
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blue crystal

35,076833

32,843217

Apll_A_8a | grey, soil-ish, | 35,076917 32,8433
Apll_A_8b | grey, soil-ish, | 35,076933 32,84335
Apll_A_8c | grey, soil-ish, | 35,076917 32,8433
Apll_A_9a | light green 35,076883 32,843333
Apl1_A_9b | hematite 35,076833 32,843317
vein
Apll1_A_10 | white with | 35,076733 32,843383
a pink
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Apll_A_10

white  with

35,076833

32,843383

b purple
Apll_A_10 | green-ish 35,07685 32,843333
C veins
Apll_A_10 | white 35,076833 32,84335 See overview photo from 10c,
d no detail photo available
Apll_A_11 | weathering 35,076783 32,843533
a crust
Apll_A_11 | green 35,076767 32,843517
b
Apll_A_13 | red, rock 35,076133 32,843333
a
Apll_A_13 | red, gravel, | 35076117 32,8434
b weathered
hillside rock
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Apl1_A_15 | dark blue 35,076133 32,843217
a
Apll_A 15 | light blue | 35,076133 32,843217 | See sample Apll_A_15a
b rock+  blue

crust
Apll_A_15 | black pyrite 35,076133 32,843217 | See sample Apl1_A_15a
c

10.4 Geochemical analysis of Apliki mine samples

Table 48 Sample preparation and description of BVM codes, from Koerting et al. (2019b).

SHPO1 Per sample shipping charges for branch shipments

CRUS80 Crush to 80% passing 10 mesh (1.70 mm)

PULHP Hand Pulverize samples mortar and pestle

AQ250 Ultra Trace Geochemical Aqua Regia digestion, 1:1:1 Aqua Regia digestion (HNO3-HCI
acid digestion), Ultratrace ICP-MS analysis

PRP70-250 | Crush, split and pulverize 250 g rock to 200 mesh (0.075 mm)

LF302-EXT Lithogeochemical Whole Rock Fusion, LiBO2/LiB407 fusion ICP-ES analysis. Comment:
Major oxides do not sum to 100% due to possible incomplete fusion of some minerals
or other element oxides may be present.

DISP2 Heat treatment of soils and sediments.

TCO00 Carbon and Sulfur Analysis
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Appendix

10.6 Three Hills mine sample description and location of sampling

Table 50 Skouriotissa - Three Hills mine samples, including a description, the coordinates of sampling in March 2018 and

a lab photo of the sample.

Photo

Sample Description | Sampling Coordinate
Skol B 1a | Hematite N 35° 5.359,
E 32°53.945'
Skol B 1b | Light grey, | N 35°5.362,
weathered E 32°53.942'
Skol B 1c | Brownish N 35° 5.364,
E 32°53.944'
Skol B 2a | Brownish N 35° 5.368,
E 32°53.944'
Skol B 2b | Yellow N 35° 5.367,
brownish E 32°53.943'

253




254

Appendix

Sample Description | Sampling Coordinate
Skol B 2c | Dark brown N 35° 5.365,
E 32°53.946'
Skol B 3a | Sand colored | N 35°5.371,
E 32°53.928'
Skol B 3b | Brownish N 35° 5.369,
E 32°53.931"
Skol B 3c | Dark grey N 35° 5.367,
E 32°53.929'
Skol B 4a | Very light | N 35°5.381,
grey E 32°53.926'
Skol B 4b | Dark brown N 35°5.381
E 32°53.927'

254




Sample Description | Sampling Coordinate
Skol B 4c | Yellow N 35°5.381,
brownish E 32°53.928'
Skol B 5a | White N 35° 5.388,
E 32°53.923'
Skol B 5b | Dark brown N 35° 5.390,
E 32°53.925'
Skol B 5c | Grey N 35° 5.388,
E 32°53.925'
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Appendix

10.8 HySpex field data acquisition settings for Apliki and Three Hills

Table 52 HySpex data acquisition parameters for Apliki mine.

HySpex settings

Sensor position

Latitude

Longitude

35°4'35,49" N

32°50'33,666"E

Atmospheric conditions

Sahara dust in atmosphere, occasionally cirrus

clouds (max. 20% coverage)

Start time of measurement 13:46 UTC+3
No. of measurements averaged 11
Approximated solar azimuth angle 200°
Approximated sun elevation angle 52°

Distance, sample to sensor Im

Lense objective FOV expander

Wavelength range

414 to 2498 nm

SNR mode (frames to average)

1

VNIR (1600 px)

SWIR (320 px)

Fov 34° 28°

Sampling interval 3.7 6.25

Radiometric resolution 12 bit 14 bit

Frames 12000 3013

Integration time [us] 4000 6000

Frame period [us] 10000 47808

Data size radiance BSQ file / Header file 6.1 GB/ 2.6 kB 495.6 MB/ 4.0 kB

Data size: BSQ file/ Header file

1.6 GB/22.3kB
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Appendix

Table 53 HySpex data acquisition parameters for Three Hills mine.

HySpex settings

Sensor position

Latitude

Longitude

35°05’ 23.58” N

32°54’ 01.34"E

Atmospheric conditions

Sahara dust in atmosphere, occasional cirrus

clouds (max. 10% coverage)

Start time of measurement 13:46 UTC+3
Approximated solar azimuth angle 143°
Approximated sun elevation angle 47°

Distance, sample to sensor, approximately 100 - 200m
Lens objective FOV expander
Wavelength range 414 to 2498nm
SNR mode (frames to average) 4

VNIR (1600px)

SWIR (320px)

Fov 34° 28°
Sampling interval 3.7 6.25
Radiometric resolution 12 bit 14 bit
Frames 10000 2511
Integration time [us] 3000 6000
Frame period [us] 9000 35856
Data size radiance BSQ file 5.1GB 413MB

Data size: reflectance BSQ file/ Header file

1.3 GB/ 29.4kB
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10.9 3D reconstruction parameters for Apliki and Three Hills

Table 54 3D reconstruction parameters for the Apliki DOMs with Agisoft Professional PhotoScan Software

Full Open Pit

Mine Face Close-Up

General

Aligned Cameras/ Total Cameras
Nikon 1 AW1 Cameras

HySpex RGB

Point Cloud

Points

RMS projection error

Max projection error

Mean key point size
Effective overlap

Accuracy/ Pair pre-selection
Key point limit/ tie point limit
Adaptive camera fitting
Matching time

Alignment time

Dense Point Cloud

Points

Quality

Depth filtering

Depth map generation time
Dense cloud generation time
Model

Faces

Vertices

Surface Type

Source Data

Interpolation

Quality

Depth filtering

Face count

Processing time

Mapping mode

Blending mode

Texture size/ count

Enable color correction
Enable hole filling

Blending time

Tiled Model

Source data

Tile size

Processing time

Pixel size

Nikon 1AW1 + HySpex RGB

118
117
1

4,007 of 9,159
0.122611 (0.745662 pix)
0.524674 (16.0471 pix)
5.72367 pix

16.9367

Medium/ Disabled
4,000/ 1,000

Yes

5 min 32 sec

1 min 9 sec

7,566,533
Medium

Mild

30 min 51 sec
30 min 51 sec

168,145
86,275
Arbitrary
Dense
Enabled
Medium
Mild
168,145

9 min 54 sec
Orthophoto
Mosaic
4,096 x 4,096
Yes

Yes

Dense cloud
256

32 min 21 sec
0.0258 m
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Nikon 1AW1 + HySpex RGB

98/98
97
1

3,072 of 6,833
0.119667 (0.760139 pix)
0.650378 (13.1985 pix)
5.56145 pix

19.2295

Medium/ Disabled
4,000/ 1,000

Yes

3 min 38 sec

52 sec

5,779,009
Medium

Mild

36 min 7 sec
12 min 53 sec

128,421
65,514
Arbitrary
Dense
Enabled
Medium
Mild
128,421

7 min 10 sec
Orthophoto
Mosaic
4,096 x 4096
Yes

Yes

14 min 59 sec

Dense cloud
256

20 min 44 sec
0.0258 m
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Appendix

Skouriotissa Three Hills - Open Pit

Table 55 3D reconstruction parameters for the Three Hills DOM with Agisoft Professional PhotoScan Software

General

Aligned Cameras
Nikon 1 AW1 Cameras
HySpex RGB

Markers

Point Cloud

Points

RMS projection error

Max projection error

Mean key point size
Effective overlap

Accuracy/ Pair pre-selection
Key point limit/ tie point limit
Adaptive camera fitting
Matching time

Alignment time

Dense Point Cloud

Points

Quality

Depth filtering

Depth map generation time
Dense cloud generation time

Nikon 1AW1 + HySpex
RGB

185
184
1
28

10,839 of 19,447
0.643958 (4.7003 pix)
83.2283 (556.025 pix)
5.16612 pix

10.6046

Medium/ Disabled
4,000/ 1,000

Yes

10 min O sec

2 min 55 sec

5,990,609
Medium

Mild

1h 29 min
47 min 32 sec
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Model

Faces

Vertices

Surface Type
Source Data
Interpolation
Quality

Depth filtering
Face count
Processing time
Mapping mode
Blending mode
Texture size/ count
Enable color correction
Enable hole filling
Blending time

Tiled Model
Source data
Tile size
Processing time
Pixel size

133,117
68,695
Arbitrary
Dense
Enabled
Medium
Mild
133,118

7 min 41 sec
Orthophoto
Mosaic
4,096 x 4,096
Yes

Yes

14min 7 sec

Dense cloud
256

46 min 39 sec
0.0231m




10.10 Downsampling of data from hyperspectral to superspectral dimensions

Table 56 Downsampling approaches of the Brazilian iron ore samples.

Sensor / Wavelength Number | Spectral Library of Brazilian Ore samples Analysis method for
band range [nm] of testing
width [nm] bands
Spectra from Library SAM, SVM, MWL
B000
5000 4
E 4000
g 3000 4
= 2000 4
1000
0 T T T T T
500 1000 1500 2000 2500
1 414-2497 2084 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
000 | EngeoMap 2.1, BFF
5000
E 4000
g 3000 1
= 2000 4
1000 4
0 T T T T T
500 1000 1500 2000 2500
5 414-2494 417 Wavelength (nm)
Spectra from Library SAM, SVM, MWL
5000
5000
o 4000
g 3000
= 2000 4
1000
0 - - T - T - r - T
500 750 1000 1250 1500 1750 2000 2250 25
EnMAP 423-2493 242 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
000 4 EngeoMap 2.1, BFF
5000 4
U 4000 -
g 3000 4
= 2000 4
1000 4
0+ T T T T T
500 1000 1500 2000 2500
10 414-2494 209 Wavelength (nm)
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Sensor / Wavelength Number | Spectral Library of Brazilian Ore samples Analysis method for
band range [nm] of testing
width [nm] bands
Spectra from Library SAM, SVM, MWL,
000 | EngeoMap 2.1, BFF
5000 -
B 4000 1
g 3000 4
“ 2000 ]
1000 4
0 r T T T T
500 1000 1500 2000 250
15 414-2484 139 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
5000 | EngeoMap 2.1, BFF
5000 -
U 4000 4
g 3000 4
“ 2000 |
1000 4
0 : T T T T
500 1000 1500 2000 250(]
20 414-2494 105 Wavelength (nm)
Spectra from Library SAM, EngeoMap 2.1, BFF
6000 1
5000 -
B 4000
g 3000 4
“ 2000 |
1000 4
15,1314 -
2004nm "Tde ww mm ww =
cllpped 414 - 2484 94 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
000 EngeoMap 2.1, BFF
5000
g 4000 |
g 3000 4
* 2000 ]
1000 4
0 T T T T T
500 1000 1500 2000 250
25 414-2489 84 Wavelength (nm)
Spectra from Library SAM, EngeoMap 2.1, BFF
6000
5000
B 4000 1
g 3000 4
“ 2000 |
woo { 4 =
0 r T T T T
500 1000 1500 2000 250
30 414-2484 70 Wavelength (nm)
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Sensor / Wavelength Number | Spectral Library of Brazilian Ore samples Analysis method for
band range [nm] of testing
width [nm] bands
Spectra from Library SAM, EngeoMap 2.1, BFF
G000
5000
E 4000
40nm % 3000
VNIR, = 2000
15nm
1000
SWIR, 1314
—2004 nm > 500 1000 1500 2000 250
cllpped 414 — 2484 57 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
5000 4 EngeoMap 2.1, BFF
5000
o 4000 -
g 3000 4
= 2000 4
1000
L — . ‘ . .
500 1000 1500 2000 2500
40 414-2494 53 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
000 EngeoMap 2.1, BFF
5000
g 4000
g 3000 A
“ 2000 1
1000 4
0 T T T T T
500 1000 1500 2000 250
50 414-2464 42 Wavelength (nm)
Spectra from Library SAM, BFF, (EnGeoMap 2.1
4000 1 was tested but was unable
3000 to give results)
% 2000 4
1000
15nm VNIR & =m0 w0 w0 m %0 b
0n|y 414 -1014 41 Wavelength (nm})
Spectra from Library SAM, EngeoMap 2.1, BFF
G000
5000
E 4000
g 3000
= 2000
40nm,
1000
1334 -
2004nm T mw sk mw =
cllpped 414 — 2494 37 Wavelength (nm)
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Sensor / Wavelength Number | Spectral Library of Brazilian Ore samples Analysis method for
band range [nm] of testing
width [nm] bands
Spectra from Library SAM, SVM, MWL,
000 EngeoMap 2.1, BFF
5000
E 4000
g 3000
= 2000
1000
500 730 1000 12500 1500 1750 2000 2250 25
75 414-2439 28 Wavelength (nm}
Spectra from Library SAM, SVM, MWL,
5000 EngeoMap 2.1, BFF
5000
L 4000
g 3000
= 2000
1000
500 730 1000 1250 1500 1750 2000 2250 2§
100 414-2414 21 Wavelength (nm)
Spectra from Library SAM, SVM, MWL,
6000 EngeoMap 2.1, BFF
5000
4 4000
g 3000
= 2000
1000
WOrldVieW > 5(50 'J'SICI 1060 12‘50 ]5&]0 17‘50 20‘00 22‘50
-3 425-2330 16 Wavelength (nm)
Spectra from Library SAM, BFF, (EnGeoMap 2.1
w000 was tested but was unable
to give results)
” 3000
% 2000 —_—
1000
40nm VNIR & s o 70 w0 %0 ww
0n|y 414 -1014 16 Wavelength (nm})
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Appendix

10.12 Geochemical clustering of Apliki sample data

To compare the data, some geochemical results had to be adjusted to be comparable. This only applies

to element or oxide mass fractions yielding below or above the detection limit and therefor being

denoted with “<” or “>“ values. The geochemical values were adapted as seen in Table 60.

Table 60 Adaptation of the element and oxide geochemical values that could not clearly be denoted as they were below

or above the detection limit.

Element or Oxide [Detection Limit Notation /Adaptation for geochemical clustering
Na,O 0.01 % < 0.01 0

KO 0.01 % < 0.01 0

TiO2 0.01 % < 0.01 0
P,05 0.01 % < 0.01 0
Cr,03 0.002 % < 0.002 0

Cu 5 - 10000 ppm > 10000 10000
Ba 5 ppm <5 0

Ni 20 ppm < 20 0

Co 20 ppm < 20 0

Sr 2 ppm <2 0

Zr 5 ppm <5 0

Y 3 ppm <3 0

Nb 5 ppm <5 0

Ce 30 ppm <30 0
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