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Zusammenfassung

Magnetfeldmodellierung mit Kugelflächenfunktionen basiert auf der Inversion nach
hunderten bis tausenden von Parametern. Dieses hochdimensionale Problem kann
grundsätzlich als ein Optimierungsproblem formuliert werden, bei dem ein globales
Minimum einer gewissen Zielfunktion berechnet werden soll. Um dieses Problem zu
lösen, gibt es eine Reihe bekannter Ansätze, dazu zählen etwa gradientenbasierte Ver-
fahren oder die Methode der kleinsten Quadrate und deren Varianten. Jede dieser
Methoden hat verschiedene Vor- und Nachteile, beispielsweise bezüglich der Anwend-
barkeit auf nicht-differenzierbare Funktionen oder der Laufzeit zugehöriger Algorith-
men. In dieser Arbeit verfolgen wir das Ziel, einen Algorithmus zu finden, der schneller
als die etablierten Verfahren ist und sich auch für nichtlineare Probleme anwenden
lässt. Solche nichtlinearen Probleme treten beispielsweise bei der Abschätzung von
Euler-Winkeln oder bei der Verwendung der robusteren L1-Norm auf. Dazu unter-
suchen wir die Anwendbarkeit stochastischer Optimierungsverfahren aus der CMAES-
Familie auf die Modellierung des geomagnetischen Feldes des Erdkerns. Es werden
sowohl die Grundlagen der Kernfeldmodellierung und deren Parametrisierung anhand
einiger Beispiele aus der Literatur besprochen, als auch die theoretischen Hintergründe
der stochastischen Verfahren gegeben. Ein CMAES-Algorithmus wurde erfolgreich
angewendet, um Daten der Swarm-Satellitenmission zu invertieren und daraus das
Magnetfeldmodell EvoMag abzuleiten. EvoMag zeigt gute Übereinstimmung mit eta-
blierten Modellen, sowie mit Observatoriumsdaten aus Niemegk. Wir thematisieren
einige beobachtete Schwierigkeiten und präsentieren und diskutieren die Ergebnisse
unserer Modellierung.
Diese Arbeit ist in vier Kapitel unterteilt. Im Kapitel 1 werden Eigenschaften

des Erdmagnetfeldes und die Modellierung des Kernfeldes mit Kugelflächenfunktionen
beschrieben. Außerdem werden verschiedene etablierte Magnetfeldmodelle dargestellt.
Kapitel 2 behandelt zunächst Inversionsalgorithmen und stochastische Optimierung.
Dann folgt eine Beschreibung von Evolutionsstrategien, einer für uns wichtigen Klasse
von stochastischen Optimierungsalgorithmen. Anschließend werden der CMAES-Algo-
rithmus und verwandte Algorithmen erklärt, die in dieser Arbeit angewendet wurden.
Schließlich wird der Einfluss der Konditionszahl des Vorwärtsoperators auf die Anzahl
der für die Inversion benötigten Funktionsaufrufe untersucht. In Kapitel 3 stellen wir
zunächst die Parametrisierung unseres Kernfeldmodells EvoMag dar, und beschreiben
dabei insbesondere die verwendeten Daten und einige Details der Implementierung in
Python. Dann werden die Ergebnisse unseres Modells präsentiert und mit etablierten
Magnetfeldmodellen verglichen. Schließlich werden im vierten Kapitel die Vor- und
Nachteile der stochastischen Optimierung für die Kernfeldmodellierung zusammenge-
fasst. Wir benennen nicht gelöste Probleme und skizzieren dazu einige Lösungsideen.
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Summary

Geomagnetic field modeling using spherical harmonics requires the inversion for hun-
dreds to thousands of parameters. This large-scale problem can always be formulated
as an optimization problem, where a global minimum of a certain cost function has to
be calculated. A variety of approaches is known in order to solve this inverse problem,
e.g. derivative-based methods or least-squares methods and their variants. Each of
these methods has its own advantages and disadvantages, which affect for example the
applicability to non-differentiable functions or the runtime of the corresponding algo-
rithm. In this work, we pursue the goal to find an algorithm which is faster than the
established methods and which is applicable to non-linear problems. Such non-linear
problems occur for example when estimating Euler angles or when the more robust
L1 norm is applied. Therefore, we will investigate the usability of stochastic optimiza-
tion methods from the CMAES family for modeling the geomagnetic field of Earth’s
core. On one hand, basics of core field modeling and their parameterization are dis-
cussed using some examples from the literature. On the other hand, the theoretical
background of the stochastic methods are provided. A specific CMAES algorithm was
successfully applied in order to invert data of the Swarm satellite mission and to derive
the core field model EvoMag. The EvoMag model agrees well with established models
and observatory data from Niemegk. Finally, we present some observed difficulties and
discuss the results of our model.
This work is divided into four chapters. In Chapter 1 we describe properties of the

Earth’s magnetic field and core field modeling using spherical harmonics. Furthermore,
we portray some established magnetic field models. Chapter 2 starts with a treatment
of inversion algorithms and random optimization, followed by a description of Evolution
Strategies, an important class of stochastic optimization algorithms for our purposes.
Then, the CMAES algorithm and related algorithms, which were used for this work, will
be explained. Finally, the influence of the condition number of the forward operator on
the number of function calls that are required for the inversion, will be investigated. In
Chapter 3 we present the parameterization of our core field model EvoMag. Thereby, we
describe the used data and some details of the implementation in Python. We present
the results of our model, and compare it with established magnetic field models. Finally,
in the fourth chapter, the advantages and disadvantages of stochastic optimization
applied to core field modeling are summarized. We list non-solved problems and sketch
some ideas for their solution.
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1 Introduction

In this chapter we state the assumptions and considerations which will lead us to the
problem of geomagnetic field inversion. We also comment on some properties of this
inverse problem. For further details we refer to Morschhauser (2016).

1.1 The Earth’s magnetic field

The Earth’s magnetic field is composed of several sources, which can be separated into
internal sources and external sources. Internal sources include the core field and the
lithospheric field, and external fields arise through electric currents in the ionosphere
and magnetosphere (see figure 1.1).
The largest contribution comes from the core field, generated in the Earth’s outer

core by a self-generating geodynamo. For the core field, 20, 000 nT up to 70, 000 nT can
be measured on the Earth’s surface. This magnetic field can be approximated within
90% by a dipole with its origin centered at the center of the Earth. An important
property of the core field is that the field is time dependent. The time changes of the
core field are also referred to as secular variation and vary with timescales ranging from
several months to thousands of years.
The magnetic field of the Earth has several distinct features. One of these features

is the South Atlantic Anomaly (SAA). The anomaly is an intrinsic characteristic of the
core field and arises directly in the core. This area stretches from southern Africa over
to South America and is described by a zone of weak and decreasing field strength (see
also figure 1.2). It is noteworthy that the radiation comes closer to the Earth over the
SAA, imposing a threat to satellites.
Compared to the core field, the lithospheric field, which arises from induced and

remanent magnetization of minerals in the Earth’s crust, is rather weak. The field
strength can reach several thousands of nanoteslas at the Earth’s surface and the
corresponding time scales vary between thousands and millions of years. For this
reason, the lithospheric field is assumed to be constant in field models.
Another weak contribution to the magnetic field comes from induced sources. For

example, currents are induced within the oceans. The corresponding field strength
usually varies between 2 nT and 2.5 nT at satellite altitude. Moreover, an even larger
induced contribution arises from induced currents in the mantle.
Finally, there are contributions from the ionosphere and magnetosphere. The iono-

sphere extends from the mesosphere up to the exosphere, which includes heights be-
tween 60 km and 2000 km. More precisely, the magnetic field in the ionosphere is
generated by electric currents which are induced within the E- and F- region in ap-
proximately 110 kilometers altitude. These currents occur more frequently on the day



2 1 Introduction

Figure 1.1: Sources contributing to the near-Earth magnetic field. Abbreviations: B,
ambient magnetic field; EEJ, equatorial electrojet; FAC, field-aligned cur-
rent; g, Earth’s gravity vector; IHFAC, interhemispheric field-aligned cur-
rent; PEJ, polar electrojet; Sq, solar quiet daily magnetic variation. Figure
taken from Olsen and Stolle (2012, figure 2).

side because of the increased conductivity through the ionization of charged particles.
The magnetosphere is the region where the magnetic field of the Earth dominates.
Behind the magnetopause, the solar magnetic field is dominating. The solar wind is
a current of charged particles which interacts with the magnetosphere, such that cur-
rents are induced. The field strength in this region is in the order of 6 nT, measured
at Earth’s surface, but can rise to several hundred nT during geomagnetic storms.

In this thesis, we will investigate stochastic inversion schemes for the derivation of
magnetic field models from satellite data. Such models are important for a variety of
reasons. For example, they allow to describe the field in regions where no measurements
are available (within certain assumptions). As a result, several scientific studies become
possible. This includes for example the study of ionospheric currents and the possibility
to understand how the field changes with time. Further, by downward-continuation to
the core mantle boundary, information on the material flux and the core dynamo can
be obtained. Further usage includes important civic applications such as navigation.
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Figure 1.2: Swarm single event upsets and global geomagnetic field strength. Within
the region of the South Atlantic Anomaly, a huge number of upsets is
recorded. The figure was created by Ingo Michaelis at GFZ Potsdam.

1.2 Mathematical description of the core field

In this section, we will describe the common approach to describe the core magnetic
field in terms of spherical harmonic functions. Here, we restrict ourselves to regions
Ω without electric currents and temporarily changing electric fields. In this case, it
follows from Ampère’s law and the non-existence of magnetic monopoles (Maxwell’s
equations) that

∇ ·B = 0,

∇×B = 0.
(1.1)

Here, B denotes the magnetic induction field. The second equation in (1.1) precisely
describes the integrability condition for vector fields. Hence, B is conservative within
the region Ω, which implies that there is a scalar potential V such that

B = −∇V. (1.2)

Therefore, V must be a solution of Laplace’s equation:

∆V = 0. (1.3)

It is well-known that a separation ansatz in spherical coordinates V = V (r, θ, ϕ) reveals
a representation of V which is given by

V = a
∞∑
l=1

l∑
m=0

[(
gml cos(mφ) + hml sin(mφ)

) (a
r

)l+1

Pm
l (cos(θ))

+
(
qml cos(mφ) + sml sin(mφ)

) (r
a

)l
Pm
l (cos(θ))

]
,

(1.4)
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where a is the reference radius and Pm
l (cos(θ)) are the Schmidt semi-normalized asso-

ciated Legendre functions of degree l and order m. Usually, we take a = 6371.2 km
(Earth’s mean radius). The real coefficients {gml , hml } and {qml , sml } are called Gauss
coefficients and have the same physical dimensions as B. The term for l = 0 is omitted
from the series since it describes a magnetic monopole.
In equation (1.4), the angular contributions are referred to as real spherical harmonic

functions Y m
l . We use the convention that negative orders (m < 0) are associated with

sin(mφ) terms whereas positive orders (m ≥ 0) are associated with cos(mφ) terms.
Then the Y m

l take the form

Y m
l (θ, φ) =

{
sin(|m|φ)P

|m|
l (cos(θ)) for m < 0

cos(mφ)Pm
l (cos(θ)) for m ≥ 0,

(1.5)

where −l ≤ m ≤ l. The usage of spherical harmonics is very natural since they are
eigenfunctions of the Laplacian when Ω is the 2-sphere.
The potential equation (1.4) can be separated into an internal part Vint and an

external part Vext such that

Vint = a
∞∑
l=1

l∑
m=−l

(a
r

)l+1

gml Y
m
l (θ, ϕ),

Vext = a
∞∑
l=1

l∑
m=−l

(r
a

)l
qml Y

m
l (θ, ϕ),

(1.6)

where we set gml = hml and qml = sml for m < 0. We remark that the term (a/r)l+1 of
the internal potential Vint vanishes at infinity (r → ∞). This corresponds to internal
fields. The terms in (r/a)l describe fields of external origin with respect to the surface
on which the data were measured, not necessarily with respect to the Earth’s mean
radius or the reference radius a.
For numerical calculations, the series expansions in equations (1.6) are truncated at

a certain degree L. The choice of L depends, for example, on the quality of the data
and the spatial wavelength of the field which has to be modeled (Finlay, Lesur, et al.,
2017). We refer to L as the maximum spherical harmonic degree. The number L can
also be regarded as a measure for the complexity of a model.
The three vector components X, Y and Z of the field are related to the potential V

by

X =
1

r

∂V

∂θ
, Y = − 1

r sin(θ)

∂V

∂φ
, Z =

∂V

∂r
, (1.7)

whereX is horizontal and north, Y is horizontal and east, and Z is vertically downwards
(Whaler and Gubbins, 1981). Since differentiation in equations (1.6) is linear and
the coefficients in the representation of V appear linear, a substitution of equations
(1.6) (with a truncated series) into equation (1.7) shows that the parameterization by
spherical harmonics can be described as a linear equation system

Gm = d, (1.8)
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where G ∈ Rn×k describes the spherical harmonics model, m ∈ Rk is the model vector
which is associated to the Gauss coefficients, and d ∈ Rn is the vector containing
the data. An important property of G is that the columns of the matrix are linearly
independent due to the fact that the spherical harmonics form an orthonormal basis
of the Hilbert space of square-integrable functions.
Suppose that the three components of B are measured at Nobs locations, then one

possible and convenient sorting scheme for the data vector is given by

d = (BX1 , BY1 , BZ1 , BX2 , BY2 , BZ2 , . . . , BXNobs
, BYNobs

, BZNobs
)ᵀ ∈ R3Nobs . (1.9)

The data usually consist of a set of satellite or ground observatory measurements, and
often more than a million of data points are available. Further, if the series expansions
in equations (1.6) are truncated at degree L, it can be shown that k = L(L+2). Hence,
the model vector is given as m ∈ RL(L+2) and the linear equation system (1.8) has a
coefficient matrix G of size 3Nobs×L(L+ 2). For better interpretation and separation
of the core field, the Gauss coefficients describing the magnetic potential V have to be
estimated from the data with the help of the forward model as described by equation
(1.8). This inverse problem is highly over-determined, and is usually solved by a least-
squares inversion scheme. In this work, we will investigate the usability of stochastic
inversion methods for solving the inverse problem, as detailed in section 2.1.

1.2.1 Time dependence

In the parameterization described by equations (1.6) and (1.7), it is assumed that
the Gauss coefficients are static. Since the core field is time dependent, this will not
result in a satisfactory model, especially as the data necessary to invert for a global
field model are usually obtained over several years. Hence, the Gauss coefficients are
treated as time dependent and will be expanded as

gml (t) =

Nb∑
i=1

igml ψi(t), (1.10)

where the ψi are some sort of basis functions, Nb is the number of basis functions, and
igml are the corresponding expansion coefficients. Independent of the choice of the ψi,
equation (1.10) is linear in the expansion coefficients {igml , ihml } and can be written as
a linear equation system as in equation (1.8). As a result, the matrix G has L(L+2)Nb

columns, and the number of unknown model parameters has hence increased by the
factor Nb.
A typical choice (Olsen, Lühr, et al., 2014; Rother, Korte, et al., 2020) for the basis

functions are sixth-order B-splines (De Boor, 1978). B-splines are defined over a set
of knots t = (ti : i ∈ I), which represent a non-decreasing sequence of real numbers,
where the index set I ⊆ N is finite or countably infinite. The i-th B-spline of order
k = 1 is defined by

Bi,1(x) :=

{
1 ti ≤ x < ti+1

0 otherwise
(1.11)
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and the higher order B-splines are defined recursively by

Bi,k+1(x) := ωi,k(x)Bi,k(x) + [1− ωi+1,k(x)]Bi+1,k(x), (1.12)

with

ωi,k(x) :=

{
x−ti

ti+k−ti
ti+k 6= ti

0 otherwise.
(1.13)

B-splines have small support, i.e. Bi,k(x) = 0 for x /∈ [ti, ti+k]. Furthermore, the Bi,k

are positive on their support, i.e. Bi,k(x) > 0 for ti < x < ti+k. Using B-splines as
basis functions, equation (1.10) becomes

gml (t) =

Nb∑
i=1

igml Bi,k(t). (1.14)

Nowadays, this parameterization is used in a large number of models and was essentially
inspired by the example of Bloxham and Jackson (1992). There are several reasons why
B-splines are highly popular in magnetic field modeling. One point is that since the Bi,k

vanish outside a small neighborhood, the matrix G in equation (1.8) becomes sparse.
This is a major advantage as memory-efficient algorithms exist for sparse matrix linear
operations. Furthermore, a k-th order B-spline is infinitely often differentiable, except
at the knots. Here, the B-spline is (k − 2)-times differentiable at a single knot. The
differentiability is reduced by one for each multiplicity on multiple knots.

1.2.2 Remarks on ill-posedness

Let us recall that a mathematical problem is called well-posed in the sense of Hada-
mard if the problem has a solution for all admissible data, if this solution is unique,
and if the solution depends continuously on the data (Engl, Hanke, and Neubauer,
2000). A problem which is not well-posed is called ill-posed. Nearly all (geophysical)
inverse problems are ill-posed. In particular this is also true for the problem of the
determination of Gauss coefficients:

• In general we have n � k, i.e. more data than model parameters. In Rk, a set
of n > k vectors is always linearly dependent. Since all of the data are measured
at different points in space and time, and since the magnetic field always differs
at least slightly at these points, it follows that the linear equation system (1.8) is
not uniquely solvable. A reduction to n = k data points in principle could result
in an uniquely solvable system. However, in practice, data errors would lead to
non-physical results.

• The used parameterization does not exactly describe reality. For example, iono-
spheric sources are usually greatly simplified. Only with a perfect parameteri-
zation (or model), one could simply measure on n = k positions on the Earth’s
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surface and would obtain a robust and unique solution. What is even more im-
portant to consider is that the geomagnetic potential on the Earth’s surface is not
uniquely determinable. This is a consequence of the fact that the series expansion
of Vint in equations (1.6) is truncated at a certain degree L, since the potential is
not any longer known from this truncation degree on (Wardinski, 2005).

• In general, the condition number of G is high. Small perturbations in the data
lead to significant changes in the Gauss coefficients, such that the solution is not
stable a priori. This problem is amplified by downward-continuation, where the
term (a/r)l+1 increases with decreasing altitude, r, and small errors in the Gauss
coefficients will hence become more and more dominant.

Caused by the mentioned properties of the problem, regularization techniques are
widely applied. We will give some examples in the following field model descriptions.

1.3 Existing field models

Two common possible approaches are known for developing geomagnetic field models:
“Comprehensive modeling” and “consecutive modeling”. The idea of comprehensive
modeling is to include all sources and then to invert them together with the internal
core field model. A known representative of this method is the CMmodel series (Sabaka
et al., 2018). Using this approach, one obtains a self-consistent model that is aimed
to represent the field in its entirety, at least theoretically. On the other hand, the
model will contain a lot of parameters, making the model and inversion more complex.
Moreover, dependencies between different parameters need to be properly considered
and accounted for. In other words, the different sources of the field may be hard to
separate due to similar spatial or temporal characteristics. A common workaround is
to include a-priori information from physics-based models.

Regarding “consecutive modeling”, the influence of external sources is reduced by
proper data selection and data “cleaning”, e.g. by the subtraction of dedicated models.
As an example, we point out the POMME-BOUMME model series (Maus et al., 2006).
However, we have to be aware of one danger: It is very difficult to control whether
the field of two models overlap, i.e. part of the field may be erroneously subtracted.
Consider for example the situation that a core field model shall be developed and
therefore, a dedicated crustal field model will be subtracted a priori. In that case, the
subtracted part may be already too large as it may contain parts of the core field.
This implies the need for a good understanding about the parameterization and other
properties of the used models.

Finally, we mention that there are models that are a mix of the above explained
strategies. Examples are the CHAOS-model (Finlay, Olsen, et al., 2016) and the
GRIMM model (Lesur, Wardinski, et al., 2010).

In the following, we exemplarily give more details on the International Geomagnetic
Reference Model (IGRF), the CHAOS core field model, and the GFZ Mag.num core
field model.
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1.3.1 IGRF

The IGRF is not only used by scientists, but also by commercial institutions, making it
the most widely used geomagnetic field model. The model is updated every five years
by the International Association of Geomagnetism and Aeronomy (IAGA). These reg-
ular revisions are necessary in order to take the continuous time development of the
geomagnetic field in the outer Earth’s core into account. The model is updated by
the IAGA working group V-MOD and starts with a call for candidate models several
months ahead of the new release date. In order to obtain coefficients of new con-
stituent models, weighted means of the coefficients of selected candidate models are
taken (Macmillan and Finlay, 2010). We shortly describe its parameterization, and
more details can be found in Thébault et al. (2015).
The model describes the core field without describing external sources. Here, the

usual expansion of the scalar potential in spherical harmonics is carried out in geocentric
coordinates. The IGRF is composed of the coefficients for a global representation of the
Earth’s magnetic field from years beginning at 1900, in five-year distances (epochs). In
addition, the time derivatives of the coefficients are also included for the most recent
epoch.
With the usual notation, the scalar potential satisfies the equation

V (r, θ, φ, t) = a
L∑
l=1

l∑
m=0

(a
r

)l+1

[gml (t) cos(mφ) +hml (t) sin(mφ)]Pm
l

(
cos(θ)

)
. (1.15)

It is assumed that the Gauss coefficients depend linearly on the time over a five year
interval by

gml (t) = gml (T0) + ġml (T0)(t− T0),

hml (t) = hml (T0) + ḣml (T0)(t− T0),
(1.16)

where ġml (respectively ḣml ) is a five-year average of the first time derivative between
two epochs. By convention, the Gauss coefficients are given in nanotesla (nT). The
five-year averages are given in units of nT/year. The time t is given in units of year and
T0 is an epoch preceding t which fulfills T0 ≤ t < (T0 + 5.0) and is an exact multiple of
five years.
In equation (1.15) the maximal spherical harmonics degree L = 10 was chosen for

coefficients up to including 1995.0, and L = 13 afterwards. As a result, the crustal
magnetic field contributions are reduced, which dominate at higher degrees (Langel
and Estes, 1982). The secular variation coefficients ġml (t) and ḣml (t) are given up to
degree and order eight to a nominal precision of 0.1-nT/year.

1.3.2 CHAOS

The CHAOS series is a family of global geomagnetic field models with the goal to
provide a description of the Earth’s magnetic field with high spatial and temporal
resolution. Satellite data of Ørsted, CHAMP and SAC-C from different time periods
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are used. Different data selection criteria are applied, for example, the contributions
of ionospheric currents shall be reduced (Mandea and Korte, 2011) by the usage of
data only from dark regions (sun 10◦ below the horizon). Further, data were selected
according to the Kp index which measures geomagnetic activity. Here, data from non-
polar regions with Kp > 2o, which corresponds to a variation (peak-to-peak) range of
≤ 7 nT, were excluded, leaving data from mainly undisturbed days.
Although the latest version of the model is CHAOS-7, we will mostly have a look on

the parameterization of CHAOS-4 (Olsen, Lühr, et al., 2014), as the parameterization
of CHAOS-4 is the basis for later models, and no comprehensive description has been
published since. The final model is composed of a combination of coefficients of two sub
models, namely CHAOS-4l and CHAOS-4h, that are parameterized according to equa-
tion (1.15). Here, the letters “l” and “h” stand for “low” and “high”, respectively. Both
models differ in the choice of the maximal degree and order of the internal expansion
L = Nint, where Nint = 80 and Nint = 100 was chosen for CHAOS-4l and CHAOS-4h,
respectively. For the low-degree-model, CHAOS-4l, analogously to equation (1.14), the
coefficients {gml (t), hml (t)} up to l = 20 are assumed to be time dependent. The time
dependence is described by sixth-order B-splines, where the knots are separated by
sixth months. The coefficients for l = 21 − 80 are static. Within CHAOS-4l, Euler
angles are additionally estimated. This is done separately for Ørsted and CHAMP and
leads to 1107 additional model parameters. On the other hand, for the high degree
model the core field coefficients up to l = 16 are assumed to depend quadratically
on time, whereas the coefficients for l = 17 − 100 are static. For the final model the
coefficients up to l = 24 are taken from the low degree model and the coefficients for
the degrees l = 25− 100 are obtained from the high degree model.
Overall, the model contains 25177 parameters. These parameters are estimated by

applying a regularized iteratively reweighted least-squares approach with Huber weights
in order to minimize the objective function

f(m) = eᵀC−1e+ λ3m
ᵀΛ3m+ λ2m

ᵀΛ2m. (1.17)

Here,m is the model vector, e = dobs−dmod is the residual vector as a difference between
the observation dobs and the model prediction dmod, and C is the data covariance matrix.
Furthermore, Λ3 and Λ2 are block-diagonal regularization matrices. The matrix Λ3 is
designed such that it acts as a minimizer of the average of the squared third time
derivative, by fulfilling

1

∆t

∫ 2013.5

t=1997

∫ ∣∣∣∣∂3Br

∂t3

∣∣∣∣2 dΩc dt = mᵀΛ3m, (1.18)

with ∆t = 2013.5 − 1997.0 = 16.5 years. The usage of this regularization can lead to
field oscillations (Olsen, Lühr, et al., 2014). In order to suppress them, the expression
|∂2
tBr| is minimized at the time points t = 1997 and 2013.5, leading to the matrix

Λ2. The scalars λ3 and λ2 are regularization parameters which control the influence
of the respective terms. By testing a series of values, finally λ2 = 10(nT yr−2)−2 and
λ3 = 0.33(nT yr−3)−2 were chosen.
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1.3.3 Mag.num

The Mag.num.IGRF13 core field model (thereafter called Mag.num) is the parent for
GFZ’s IGRF-13 candidate models (Rother, Korte, et al., 2020).
The model is based on vector field data from three Swarm satellites obtained between

November 2013 and August 2019. As for CHAOS, the data were selected according
to several criteria, such as the usage of nighttime data for low-latitude regions, or the
requirement that the z-component of the interplanetary magnetic field must be positive
for selected data (for more details, see Rother et al. (2013)). Additionally to ordinary
satellite data, their along-track and cross-track differences, as well as observatory data
were used. The usage of observatory data has the goal to better constrain secular
variation.
The internal potential is parameterized as in equations (1.6) and the maximum

spherical harmonic degree L for the internal potential was assumed to be L = 20.
Similar to equation (1.14), the Gauss coefficients are time dependent and expanded in
a basis of sixth-order B-splines on the interval from December 31, 2012 to January 1st,
2020. The knots are half-year separated and Nb = 9 spline functions represent each
Gauss coefficient. The higher coefficients of the model were assumed to be static.
The inversion of the data is done by minimizing the function

f(m) = (d−Gm)ᵀW ᵀW (d−Gm), (1.19)

where the diagonal matrix W contains the estimated data weights wi as described be-
low. In order to reduce the influence of outliers, a modified Huber norm (Morschhauser,
Lesur, and Grott, 2014; Lesur, Rother, Wardinski, et al., 2015) was used. Iteratively
re-weighted least-squares (Farquharson and Oldenburg, 1998) are used for approximat-
ing this norm, and the resulting weight of the data point di at iteration (j+ 1) is given
by

wj+1
i =


1
σi

for |di − (Gmj)i| ≤ ki

1
σi

[
ki

|di−(Gmj)i|

]1−ai/2
for |di − (Gmj)i| > ki.

(1.20)

Here, mj denotes the estimated Gauss coefficients at iteration j, and ai and ki are used
to adapt the modified Huber norm. The σi are assumed standard deviations, they
differ between different data subsets, can be regarded as representatives of the noise
associated with the data, and need to be estimated a priori.
Due to unmodeled signals in the data, the model is regularized in a similar way as

CHAOS. In more detail, unrealistically strong spatial and temporal field variations are
reduced by damping the third time derivative of the radial field at Earth’s core radius
c, i.e. by minimizing

Φ1 =
1

4πc2(t2 − t1)

∫ t2

t1

∫
Ω(c)

|∂3
tBr| dω dt (1.21)

(beginning at the start point t1 and ending at the end point t2 of the model). Moreover,
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by minimizing the functions

Φ2(t) =
1

4πc2

∫
Ω(c)

|∂2
tBr| dω , Φ3(t) =

1

4πc2

∫
Ω(c)

|∂tBr| dω , (1.22)

at the times t = t1 and t = t2, oscillations due to the lack of data near the end points
can be avoided.



2 Optimization with Evolution
Strategies

In the following, we give an overview about inversion algorithms and random optimiza-
tion. Then we continue with a description of Evolution Strategies, these are nature-
inspired optimization methods which are based on the idea of evolution. Within an it-
erative procedure, better candidate solutions are evolved by applying certain principles
to individuals, such as random mutation. Then, we present the particular algorithms
which we want to use for the inversion of geomagnetic data.

2.1 Inversion algorithms

The development of geomagnetic core field models requires the inversion of magnetic
field data as described in section 1.1. A first approach is to solve the linear equation
system (1.8) in a least-squares sense, i.e. to minimize the corresponding L2 norm of
the residuals. Therefore, we seek for a minimum norm solution mL2 which fulfills

mL2 = arg min
m∈Rk

‖Gm− d‖2
2. (2.1)

Due to the orthogonality of the spherical harmonic functions, G has linearly indepen-
dent columns. Hence, there exists a unique solution mL2 to equation (2.1) which is
given by the normal equations (Aster, Borchers, and Thurber, 2019)

mL2 = (GᵀG)−1Gᵀd. (2.2)

However, due to numerical instabilities, the calculation of the inverse matrix in equation
(2.2) is avoided in practical calculations.
Furthermore, it is desirable to use other norms than the L2 norm as a least-squares

fit is in general very sensitive to non-normally distributed errors. By using the L2

norm, errors enter quadratically into the result. The usage of norms as the L1 norm
can help to circumvent this problem. There are also more sophisticated norms which
can be used, for instance the already mentioned (modified) Huber norm is a mixture of
the L1 norm and the L2 norm. However, the L2 norm is widely used since there exists
a closed-form solution of the least-squares problem, given by equation (2.2), and since
the least-squares solution corresponds to the maximum-likelihood solution, if the errors
are assumed to be normally distributed. The normal distribution arises frequently due
to the central limit theorem.
As described in subsection 1.2.2, applying regularization techniques is often neces-

sary. Therefore, the problem is often reformulated as an optimization problem. This
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is done since it is possible to obtain every geomagnetic field model by minimizing a
certain cost function (Gubbins and Herrero-Bervera, 2007). Such a cost function al-
ways takes the form “error + regularization”. For example, consider the inversion with
respect to the L2 norm and an additional regularization term R(m). A corresponding
cost function f : Rk −→ R can be written as

f(m) = ‖Gm− d‖2
2 + λR(m), (2.3)

where λ is a regularization parameter which has to be chosen. The regularization term
R(m) could, for example, force the solution to approach a given power spectrum at a
given altitude. Solving the inverse problem is equivalent to finding a global minimum
of the function f .
There exists a variety of popular algorithms for numerically calculating a minimum

of a given function. Many of these algorithms rely on using derivatives, i.e. they use
the gradient of a (sufficiently smooth) function. However, derivative-based methods
often only find local minima and strongly depend on an initial guess (e.g. Grayver
and Kuvshinov (2016)). This is one reason why we are not interested in using such a
method for our optimization problem.
Moreover, since the L1 norm of a vector x = (x1, . . . , xn)ᵀ is given by

‖x‖1 =
n∑
i=1

|xi|, (2.4)

it is clear that a corresponding objective function f becomes non-differentiable in gen-
eral, such that derivative-based methods are not suitable to tackle such problems.
Although there are approaches to circumvent this problem (Borsic and Adler, 2012),
such methods often influence the convergence rate of the algorithm and need more
computational resources (Grayver and Kuvshinov, 2016).
We are therefore interested to apply stochastic optimization methods for finding the

minimum-norm solution and solving the inverse problem (Sen and Stoffa, 2013). Such
methods can be considered as global optimization methods. They are also suitable
for non-differentiable and non-convex functions. Some established and well-known al-
gorithms like Particle Swarm Optimization exist, which iteratively calculate a global
minimum without using derivatives. Here, we would like to use another stochastic opti-
mization method called Covariance Matrix Adaptation Evolution Strategy (CMAES).
Besides the fact that the method can be used for non-smooth functions, it can also be
applied to ill-posed problems, which are often encountered in geophysics. CMAES was
shown to exceed other established stochastic algorithms such as Genetic Algorithms
and to reveal extraordinary robustness on ill-conditioned problems (Auger et al., 2009;
Hansen, Ros, et al., 2011). Despite these convincing results, the usage of CMAES in
geophysics is still not common. For that reason, our aim is to investigate the usability
of the algorithm for magnetic field modeling.
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f(x) < f(y)?
x, y ∈ Rn

f(x) ≥ f(y)?

Figure 2.1: Comparison-based optimization. In the
black-box scenario, the optimization al-
gorithm is only allowed to use function
value comparisons.

2.2 Random optimization

Given a function

f : Rn −→ R, x 7−→ f(x), (2.5)

a point x0 ∈ Rn is called global minimum of f , if

f(x0) ≤ f(x) for all x ∈ Rn (2.6)

holds. If there is an ε > 0 such that the inequality in equation (2.6) is only true
for all x within the ε-environment Uε(x0) ⊆ Rn, then x0 is called a local minimum.
The terms global maximum and local maximum are defined accordingly. We remark
that the formulation of a minimization problem is equivalent to the formulation of
a maximization problem, since f has a (local, global) minimum at x0 if and only if
g = −f has a (local, global) maximum at x0.
The function f is also called objective function or fitness function. Our objective

is to find a point x ∈ Rn such that the corresponding function value f(x) becomes as
small as possible. We explicitly note that in general this will not mean that we are
searching for a global minimum of f , since we often cannot assure the existence of such
a minimum. However, there are functions from which we know in advance that they
have a global minimum. An example is the least-squares optimization problem, where
f(m) = ‖Gm− d‖2

2, and ‖Gm− d‖2 corresponds to the L2 norm of the residuals (with
the notation as in chapter 1). If G has linearly independent columns, then there exists
a unique least-squares solution mL2 which corresponds to the global minimum of f .
The convexity of the least-squares optimization function also guarantees that there is
no local minimum.
Here, we will mostly consider black box optimization scenarios. This term refers to

the situation that the gradient of the objective function is not available, for example
if f is not differentiable. In such cases the function values f(x) can be regarded as
the only available information on f , and comparison-based algorithms are used to
simply compare the function values (see figure 2.1). Due to this situation, the costs of
corresponding optimization algorithms are mostly measured by the number of required
function calls. Even more, we do not constrain f by any other assumptions, such that
f may be non-convex, discontinuous, non-differentiable, or ill-conditioned.
Now, in order to select good candidates x for function evaluation, a widely applied

number of algorithms is based on stochastic search methods. This is also referred to
as randomized black box search and is well-suited in order to search for minima in a
rugged search landscape (see algorithm 1). A basic random optimization algorithm first
initializes the distribution parameters and a candidate solution. Then the probability
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distribution is used in order to sample a new candidate solution. The two candidate
solutions are compared by their function value. The point which corresponds to the
lower function value is set to be the candidate solution for the next iteration, and the
distribution parameters get updated.

Algorithm 1: Outline of a basic random optimization algorithm
Initialize distribution parameters θ
Initialize a candidate solution x ∈ Rn

repeat
Sample a new candidate solution y ∈ Rn from the distribution pθ
Evaluate y on f ; if f(y) < f(x), set x = y
Update the distribution parameters θ ← F (θ, (x, f(x)), (y, f(y)))

until Termination criterion fulfilled ;

It is also possible to select multiple random candidate solutions x1, . . . , xλ from the
probability distribution. These λ values are then evaluated on f , and get sorted by the
corresponding function values. The number λ is usually called population size (note
that λ referred to the regularization parameter in chapter 1).

2.3 Evolution Strategies

CMAES is a specific Evolution Strategy. Evolution Strategies are methods which are
inspired by natural evolution processes and they are applied for deriving new candidate
solutions of the optimization problem. Charles Darwin was a famous naturalist who
defined Natural Selection as the preservation of favorable individual differences and
variations, and the destruction of those that are injurious, see also Coello Coello (2005).
In this context, the term evolution refers to a process in which individuals try to survive
with an adaptation to their environment. The idea of an Evolution Strategy is to
numerically simulate such a process. This is done iteratively, where the iterations can
be thought of as generations.
In order to underline the idea of Evolution Strategies, we consider a closed natural

environment which is located in a huge box. Suppose that within this environment
a family of individuals of a certain species lives. Although these individuals are of
the same species, it is clear that they can have some different properties, for example
they can be distinguished by their height, by their weight, or by the location where
they live (see also Scherrmann (2020)). If the search space is Rn, individuals can be
thought of as vectors x ∈ Rn together with their associated fitness values f(x), where
f is the objective function. Now, the individuals with the best properties for the given
environment, i.e. fitness value, will survive. These properties should be inherited to
later generations in order to improve their ability to survive in the environment. The
characteristics of the individuals can be imagined as their coordinates x1, . . . , xn ∈ R,
if x = (x1, . . . , xn)ᵀ. In order to generate new individuals from former ones, natural
processes such as recombination, mutation and selection are applied (see algorithm
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2). Due to the black-box scenario, we will later see that some of these processes are
implemented using probabilistic approaches.

Algorithm 2: General outline of an Evolutionary Algorithm (Algorithm 2.1
from Bäck, Foussette, and Krause (2013))
Initialization
repeat

Recombination
Mutation
Evaluation
Selection

until Termination criterion fulfilled ;

Evolution Strategies refer to a specific implementation of the recombination, mu-
tation, evaluation, and selection steps. For example, the mutation operator may be
parameterized such that it can be adapted during the optimization process (consider
for example the phase of approaching the optimum). More such requirements can be
found in Rudolph (2012).
We continue with an explanation of recombination, mutation and selection, the three

core ingredients of an Evolution Strategy. Thereby we will use the material which is
contained in Bäck and Hoffmeister (1994), Bäck, Foussette, and Krause (2013), Hansen,
Arnold, and Auger (2015), Hansen (2016), and Rudolph (2012).

2.3.1 Recombination

Recombination describes the process of passing characteristics of several parents (also
more than two) to their children (offspring). In biology, recombination processes are
in general very difficult to understand, if possible at all. For Evolution Strategies, the
principles are simplified. Here, we will describe some of the most common recombina-
tion operators.
The easiest principle is discrete recombination. Suppose that there are ρ parents,

out of which two are randomly selected. For each component of the x-vector (such a
component is also referred to as variable) one parent is chosen with probability 1/2
and the variable of this parent is copied to the offspring individual. There is also a
global version of this type of recombination, where for each single variable one parent
is chosen randomly from the parent population.
A slightly more complex possibility is called intermediate recombination. First, two

parents are randomly chosen. Then the average value of their two variables is assigned
to the offspring individuals’ variable. Here, for all new offspring variables, the same
parents are chosen, such that only two parents are involved within the recombination
process. This method can also be extended when one takes the average value of all ρ
parents’ attributes.
An even more sophisticated possibility is to take a weighted mean of the ρ parents’

variables, and this method is called weighted recombination. The weights may, for
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example, depend on the fitness ranking. It is also possible to generalize the weight
selection by taking the weights randomly.
All possible recombination procedures have in common that the possible values for

the new individuals are located and limited within an area which is spanned by the
properties of the parents. In general, the optimum which describes the best suitable
family of variables does not have to be located within this area. Therefore, the concept
of mutation was introduced.

2.3.2 Mutation

In biology, the term mutation describes random changes occurring in the DNA. These
changes can have various reasons, such as UV radiation. Mutation can result in indi-
viduals with very distinct and different characteristics.
Mutation in Evolution Strategies is described by a random change of parameters

that is applied after the recombination process. This random change makes it possible
to leave the area which is spanned by the parents’ properties. In detail, a random
number is added to each variable, such that

x(g+1) = x(g+1)
rec + r(g), r(g) = (r

(g)
1 , . . . , r(g)

n )ᵀ, (2.7)

where x(g+1)
rec is the offspring after recombination, r(g)

i is a random mutation of the i-th
characteristic and the uppercase (g) denotes the generation g. Equation (2.7) can be
thought of as a perturbation of x(g+1)

rec by r(g).
However, the random changes which are described by equation (2.7) should not be

completely arbitrary. Therefore, Rudolph (2012) defines three guiding principles for
mutation, namely

• Reachability: Every point of the search space should be attainable with a proba-
bility strictly larger than zero after applying the mutation operator finitely many
times. This allows to test every possible parameter set to be the optimal set.

• Unbiasedness: The operator should treat all possible solutions as equal, without
preferences. This can be achieved by using a maximum entropy distribution.

• Control: The shape of the distribution should be adjustable by parameters of
the variation operator. This allows to vary the mutation operator at all times,
particularly when approaching the minimum.

In Rn, the multivariate normal distribution fulfills all of the three requirements, and
is also used in CMAES. Therefore, we stop a moment and review some mathematical
facts which will be needed in order to understand the sampling procedure better.

The Eigendecomposition of a positive definite matrix

We recall that a symmetric matrix C ∈ Rn×n is called positive definite if xᵀCx > 0 for
all x ∈ Rn \ {0}. It can be proven that this is the case if and only if all eigenvalues
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λ1, . . . , λn of C are strictly larger than zero. Hence, the eigenvalues can be written
as d2

1, . . . , d
2
n with di =

√
λi. Furthermore, it is a well-known fact that there exists an

orthonormal basis of Rn which consists of eigenvectors of C. This leads to the existence
of an eigenvalue decomposition

C = UD2Uᵀ, (2.8)

where U ∈ Rn×n is an orthogonal matrix (U−1 = Uᵀ, and the columns of U are the
eigenvectors of C) and D2 = diag(d2

1, . . . , d
2
n) is a diagonal matrix which contains the

eigenvalues of C as diagonal elements.
The eigendecomposition in equation (2.8) of C leads to two important consequences

which will be required in the following considerations. First, we can directly obtain an
expression for the inverse matrix of C. By means of equation (2.8) and the orthogonality
of U it follows that

C−1 = UD−2Uᵀ, (2.9)

with D−2 = diag(1/d2
1, . . . , 1/d

2
n). Second, an expression for the square root of C is also

obtained automatically. Recall that a symmetric positive definite matrix B is called
square root of C, if B2 = C holds. We will write B = C1/2. This notation is not
ambiguous since the assumptions on B and C imply that there exists exactly one such
B which is given by

C1/2 = UDUᵀ, (2.10)

with D = diag(d1, . . . , dn). A straightforward consequence is that

C−1/2 = UD−1Uᵀ. (2.11)

The Multivariate Normal Distribution

Let X be an n-dimensional random vector. We say that X is multivariate normally
distributed with expectation m ∈ Rn and positive definite covariance matrix C ∈ Rn×n

if X has a probability density function of the form

fX(x) =
1

(2π)n/2|C|1/2
exp

(
−1

2
(x−m)ᵀC−1(x−m)

)
, (2.12)

where we denote |C| = detC. In short, we will write X ∼ N(m,C). An important
property of N(m,C) is that it can be expressed in terms of the standard multivariate
normal distribution N(0, I) by

N(m,C) ∼ m+N(0, C), (2.13)

where “∼” denotes equality in distribution. Furthermore, N(0, C) fulfills (Tong, 1990,
Theorem 3.3.2)

N(0, C) ∼ C1/2N(0, I). (2.14)
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The usage of N(0, I) is desirable by several reasons. First, N(0, I) generates an
isotropic distribution with the shape of a sphere. This distribution is invariant under
rotations around its mean. More generally, if we consider the contour lines of the
probability density function, given by equation (2.12), for an arbitrary positive definite
symmetric covariance matrix C, then we can identify C with the (hyper-)ellipsoid
{x ∈ Rn : xᵀC−1x = 1}, which is a surface of equal density of the distribution.
Second, N(0, I) is a vector which has independent (0, 1)-normally distributed numbers
as coordinates. Such a distribution can be easily realized in computer programs.

Different types of mutation operators

The perturbation in equation (2.7) shall be point symmetric and is sampled from a
multivariate normal distribution N(0, C) with zero mean and covariance matrix C.
Since a + N(0, C) ∼ N(a, C) holds for all a ∈ Rn, it follows that a is a representative
of the expected value of the new individual. Hence, we can rewrite equation (2.7) as

x ∼ m+N(0, C), (2.15)

where x is a new search point and m is the mean vector which represents the favorite
solution and is drawn from the recombination procedure. Different mutation operators
can be constructed depending on the choice of C. In order to better understand the
sampling, we rewrite N(0, C) (c.f. equation (2.15)) by using equation (2.14) such that

x ∼ m+ C1/2N(0, I). (2.16)

Now, plugging equation (2.10) into equation (2.16) implies that

x ∼ m+ UDUᵀN(0, I). (2.17)

Since U is orthogonal, we have UᵀN(0, I) ∼ N(0, I). Hence, our final equation for the
sampling becomes

x ∼ m+ UDN(0, I) (2.18)

for the individuals with the distribution

N(m,C) ∼ m+ UDN(0, I). (2.19)

The term UDN(0, I) offers a good possibility for a geometrical explanation of the re-
alization of the perturbation distribution. First of all, N(0, I) initializes a spherical
distribution as in figure 2.2, left. Within figure 2.2, the blue points represent the indi-
viduals, and the green lines depict 1-σ and 2-σ lines of the corresponding distributions.
By applying the diagonal matrix D, the spherical distribution gets scaled as shown in
figure 2.2, middle. Finally, the matrix U acts as a rotation (figure 2.2, right).
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Figure 2.2: Two-dimensional multivariate normal distributions N(0, C) ∼ C1/2N(0, I).
From left to right, the covariance matrix C of the distribution is I, the
diagonal matrix diag(1/2, 5) and the matrix

(
2

√
18/2√

18/2 7/2

)
with the same

eigenvalues as the diagonal matrix. In each figure the mean of the distri-
bution is shown as a black dot at 0 and the green curves show the 1-σ and
2-σ lines of equal density. The blue dots represent a sample of 100 points,
where it is possible that some of these points lie outside the shown area.
The thin grey lines depict contour lines of a possible objective function.
Here, the objective function was chosen to be f(x, y) = (x− 2)2 + (y− 2)2.
The figure is inspired by figure 1 in Hansen, Arnold, and Auger (2015).

2.3.3 Selection

Finally, we address the question of how individuals of one parent generation are chosen
for the recombination process. This process is called selection and it works com-
pletely deterministic. Two common approaches will be explained, the (µ, λ)-selection
(“comma”-selection) and the (µ+ λ)-selection (“plus”-selection).
We assume that the parent population contains µ individuals and that we select λ

individuals as parents for the next generation. Furthermore, we consider in general
the case µ ≤ λ. The both methods differ in whether the individuals’ age is taken into
account. Firstly, suppose that the individuals die out after one iteration step. If so, the
µ most suitable individuals out of λ offspring are taken. Hence, only the youngest indi-
viduals are considered. Secondly, suppose that also previous parents (“grand-parents”)
are considered. Here, the new parents are chosen from (µ+λ) individuals. In this case,
the parents can be regarded as the all-time best individuals.
The performance of both approaches in general varies depending on the problem.

Often, (µ, λ)-selection is recommended to use since the (µ+λ)-selection is not suitable
for the application to non-stationary environments (see Bäck and Hoffmeister (1994)).
We remark that sometimes the notation as (µ/ρ, λ) can be encountered. This in-
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dicates that ρ ≤ µ parent individuals (out of µ) are used in the recombination step.
Additionally, there are sometimes subscripts to ρ used for denoting the type of recombi-
nation, for example ρI or ρW for intermediate or weighted recombination, respectively.
Finally, we remark that λ should be chosen accordingly to the optimization situation.

Smaller values lead in general to a faster convergence, whereas larger values help to
avoid local optima. A default value which is often used is λ = 4 + b3 ln(n)c, where n
is the problem dimension. A typical choice for µ is µ = bλ/2c.

2.3.4 Advantages and disadvantages of Evolution Strategies

We continue with mentioning some upsides and downsides of Evolution Strategies (see
also Fogel (1997)).
One very remarkable point is that such algorithms can be applied to black-box opti-

mization scenarios in which no additional knowledge on the topology of the problem is
available. Speaking in terms of functions, for example no information about derivatives
is available. Therefore, Evolution Strategies can be applied to a large class of (difficult)
problems. This also includes the case where it is unknown whether the problem has
a solution. Another positive point is that due to the simplicity of the above steps
mutation, recombination and selection (see also algorithm 2), the optimization process
can be parallelized up to the selection process. Even more, the parallelization will scale
almost linearly with the number of available cores.
On a downside, it is possible that there are many function evaluations needed for

solving a problem. This is often the case if the number of variables increases. Further-
more, the running time of such an algorithm suffers significantly if the cost of function
evaluation is high. If we consider for example a function whose evaluation depends
in some sense on a dot product between a large matrix G and a vector m, then the
matrix multiplication can take some time. Therefore, the function calls have to be
implemented in a way such that the evaluation is very efficient. We discuss this issue
in more detail in subsection 3.1.3.

2.4 The CMAES algorithm

The CMAES algorithm is a particular Evolution Strategy which can be regarded as a
very popular and very efficient one. This is achieved by two special features: Covari-
ance Matrix Adaptation (CMA) and Cumulative Step-Size Adaptation (CSA). In this
section, we give an overview about the most important ingredients. However, we will
not give very detailed mathematical derivations and motivations for some formulas.
For details, we refer to Hansen (2016).
In view of our considerations in subsection 2.3.2, new search points xi ∈ Rn are

sampled by usage of a normal distribution such that

xi ∼ m+ σNi(0, C) for i = 1, . . . , λ, (2.20)

where the roles of the expectation value m and the covariance matrix C are analog to
equation (2.15) and σ is a global step size which controls the step length.



22 2 Optimization with Evolution Strategies

In order to explain the principles of the algorithm, we will discuss how the parameters
m,C and σ are updated.

2.4.1 The selection and recombination procedure

In what follows and for better readability we will occasionally omit the subscripts
which indicate the generation. In principle, CMAES uses a slightly modified version
of the (µ, λ)-selection algorithm (see also subsection 2.3.3). Let x1, . . . , xλ be a sample
obtained from equation (2.20), such that there are λ offspring points. Then a number
µ > 1 is chosen such that µ ≤ λ, and µ is the number of selected individuals (see also
figure 2.3). Furthermore, let xi:λ denote the i-th best individual out of x1, . . . , xλ such
that f(x1:λ) ≤ f(x2:λ) ≤ · · · ≤ f(xλ:λ). Then the new mean m is calculated by means
of a weighted average with

m =

µ∑
i=1

wixi:λ, (2.21)

where the wi=1,...,µ > 0 are weights such that
µ∑
i=1

wi = 1 and w1 ≥ w2 ≥ · · · ≥ wµ > 0. (2.22)

We give several comments on this:

• Equation (2.21) is an application of weighted intermediate recombination. Fur-
thermore, a (µ, λ)-selection is used and the usage of different weights wi can also
be regarded as part of the selection. In CMAES-related algorithms, µ ≈ λ/2 is a
frequently applied choice.

• The multiplication of the decreasing weights with the sequence of i-th best ranked
search points favors better solutions and downweights worse solutions.

• A possible choice for the wi is wi = w′i/
∑
w′i, where

w′i = ln

(
λ+ 1

2

)
− ln(i), i = 1, . . . , µ. (2.23)

In view of equation (2.21), it is desirable to rewrite the equation as an update of m.
This is usually done by considering the assignment

m← m+ cm

µ∑
i=1

wi(xi:λ −m). (2.24)

In equation (2.24), the number cm is a learning rate which is usually set to 1, and
was also set to 1 in our calculations. The choice of cm can for example depend on the
noisyness of the objective function. A usage of cm < 1 results in a decrease of the
distance between the old mean vector and the new one. For further details concerning
the choice of cm we refer to Miyazawa and Akimoto (2017).



2.4 The CMAES algorithm 23

Figure 2.3: For recombination, µ ≤ λ
parents are chosen from the
λ offspring points. The
generation contains λ =
100 individuals. Here, the
µ = 20 parents are depicted
by dark blue points, which
are closest to the optimum
(red point), and remain-
ing individuals are shown in
light blue.

2.4.2 The update of the covariance matrix

We continue with a description of the update of the covariance matrix. The covariance
matrix adaptation aims to approximate the contour lines of the fitness function f . The
derivation of the update is a long and winding road which contains a lot of techni-
cal considerations which are not particularly relevant within the scope of this work.
Therefore, we restrict ourselves to a short overview of its main ingredients. Details can
for example be found in Hansen (2016).
We start with evolution paths, which describe former consecutive steps of particular

search strategy parameters. The idea behind them is to realize an accumulation of
information over several generations, allowing to increase the likelihood of formerly
successful steps. In CMAES, two evolution paths are used, namely pc for the update of
the covariance matrix and pσ for the update of the global step size (for pσ see subsection
2.4.3). Starting with pc = 0 for the first generation, the path pc is defined recursively
by

p′c = (1− cc)pc +
√
cc(2− cc)µeff

m′ −m
σ

. (2.25)

We comment on the meaning of variables in equation (2.25).

• (1− cc) is a decay factor which regulates the influence of the former path.

•
√
cc(2− cc)µeff is a normalization factor and the number µeff = 1/

∑µ
i=1w

2
i is

called “variance effective selection mass” (Hansen, 2016).

• (m′ −m)/σ can be considered as new input, since the concept of the evolution
path relies on a sum of consecutive steps of the mean m. Primes indicate the
variables of the current generation.

The evolution paths pc are used for the so-called rank-one-update of the covariance
matrix, such that

C ′ = (1− cc)C + ccpcp
ᵀ
c . (2.26)
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It can be shown that this update can reduce the number of function evaluations to
adapt to a straight ridge from O(n2) to O(n) (Hansen, Müller, and Koumoutsakos,
2003).
There is another core ingredient to the final update. Recall that the new search

points xi are sampled by xi = m + σyi with yi ∼ Ni(0, C). The outer product of the
vectors yi can be taken with a weighted mean in order to construct the matrix

Cµ =

µ∑
i=1

wiyi:λy
ᵀ
i:λ. (2.27)

Let n be the dimension of the search space. The matrix Cµ in equation (2.27) has
rank min{µ, n} almost surely (if µ weights are non-zero; it is theoretically possible
to get a matrix with lower rank by a sample of the distribution) and is used for the
rank-µ-update

C ′ = (1− cc)C + ccCµ. (2.28)

This update can be regarded as an extension for the update rule for large population
sizes and can reduce the number of necessary generations approximately from O(n2)
to O(n) (Hansen, Müller, and Koumoutsakos, 2003).
The final update of the covariance matrix combines the rank-one-update and the

rank-µ-update and is given by

C ′ = (1− cl − cµ)C + clpcp
ᵀ
c + cµ

µ∑
i=1

wiyi:λy
ᵀ
i:λ, (2.29)

with decay factors cl and cµ. The update feeds the new covariance matrix in every
iteration with the data of the most successful preceding steps such that the likelihood
of similar steps increases.

2.4.3 The update of the step-size

The considerations in the preceding subsection showed that the covariance matrix
adaptation regulates the search direction for selected steps. However, it is still desirable
to have a control mechanism of the global step size. For example, the update in
equation (2.29) cannot realize a dependency of the step size σ on µ, as is required for
some situations (Beyer, 2001).
There are several possibilities for step-size adaptation which can be used in Evolution

Strategies. A classical example is the 1/5-th success rule (Rechenberg, 1973), where
the decision on increasing or decreasing the step-size is made by checking whether more
than 20% of the new solutions are successful.
CMAES uses a technique called cumulative step length adaptation (CSA). This

technique relies on evolution paths like in subsection 2.4.2. In order to understand the
approach we consider figure 2.4, which is inspired by figure 1.1 in Hansen (1998). Figure
2.4 depicts three evolution paths which are composed by five intermediate steps with
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=⇒ Decrease σ =⇒ Increase σ

Figure 2.4: Evolution paths. The three evolution paths differ in their total length. Left:
The step size should be decreased since the intermediate steps cancel out
each other. As a result, the evolution path is short. Right: The step size
should be increased since it is possible to cover the distance by fewer but
longer steps into the same direction. The evolution path is long. Middle:
The desired situation. Here, the intermediate steps can be considered as
perpendicular in expectation. The length of the evolution path is in some
sense “optimal”.

approximately identical step lengths. The left path corresponds to a situation where
the step size should be decreased, the path in the middle shows the optimal situation
and the path on the right depicts a situation where the step size should be increased.
In an optimal situation, the length of an evolution path should be equal to its expected
length under random selection. However, it is usually biased by the selection process.
Hence, we will adapt the length of an evolution path by comparing with its expected
length E‖N(0, I)‖ (where E denotes the expectation value), as explained below. If
the path is longer than expected, the step size should be increased, and if the path is
shorter than expected, the step size should be decreased.
The used evolution path pσ is constructed similar to the one in equation (2.25) and

is given by

p′σ = (1− cσ)pσ +
√
cσ(2− cσ)µeff C

−1/2 m
′ −m
σ

, (2.30)

with notation analogously as in equation (2.25) and C−1/2 given by equation (2.11).
It is known that the expected length of pσ in general depends on its direction. This
is avoided by using C−1/2, making the expected length independent of the direction of
the evolution path. Furthermore, given p(0)

σ ∼ N(0, I), one can assume that p(g+1)
σ ∼

N(0, I) holds for all generations g (Hansen, 2016). In order to update the step size σ,
the number ‖p(g+1)

σ ‖ is compared with its expected length E‖N(0, I)‖ by

σ(g+1) = σ(g) exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E‖N(0, I)‖

− 1

))
, (2.31)
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with scaling parameters cσ < 1 and dσ ≈ 1. The constant dσ is a damping parameter,
similar to the learning rate in equation (2.24). Equation (2.31) shows that if ‖p(g+1)

σ ‖ >
E‖N(0, I)‖, the step size will be increased, and decreased otherwise.
The number E‖N(0, I)‖ can be expressed by the Gamma function Γ. In numerical

calculations, equation (2.31) is evaluated by means of the approximation

E‖N(0, I)‖ =
√

2Γ

(
n+ 1

2

)/
Γ
(n

2

)
≈
√
n

(
1− 1

4n
+

1

21n2

)
, (2.32)

with n equal to the search space dimension.
Figure 2.5 depicts a summary of the CMAES algorithm, where the update of the

covariance matrix and the sampling of the search space are illustrated.

2.5 Remarks on large-scale optimization

Typically, geophysical inversion is done with respect to a large number of parameters.
Consider for example our model vector m from chapter 1. There, m was introduced as
an element of Rk, with

k = L(L+ 2)Nb. (2.33)

A convenient choice for L and Nb is e.g. given by (L,Nb) = (13, 18). As a result, the
Evolution Strategy reaches an optimum within a search space of dimension 3510.

2.5.1 Problems with CMAES

Recall from equations (2.16) and (2.30) that the CMAES algorithm heavily relies on
the factorization

C = AAᵀ (2.34)

of the covariance matrix C with a suitable matrix A in order to sample the multivariate
normal distribution. The evaluation of C is a core ingredient in order to calculate the
evolution path pσ which is given by equation (2.30) and it is needed for the sampling
of new solutions according to equation (2.16). The matrices A and Aᵀ in equation
(2.34) are also referred to as Cholesky factors. For the computation of the Cholesky
factors, an eigendecomposition of C is needed which a priori has to be calculated
every time when a new sample shall be created. Even more, it is possible to show
that the eigendecomposition of C is in general O(n3) in complexity, where n is the
dimension of the problem. A method to mitigate this problem was already proposed
when the original CMAES was published and is based on the suggestion to perform the
eigendecomposition only every n/10 generations. This results in a complexity of O(n2)
per function evaluation (Hansen and Ostermeier, 2001). However, even O(n2) is too
high for our problem size and excludes the standard CMAES due to the resulting time
costs for the optimization process. This implies our interest in a large-scale variant of
CMAES which is suitable for high-dimensional problems.
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First generation Intermediate generation Final generation

Figure 2.5: Summary of the CMAES-algorithm. During the optimization process, the
parameters get adapted such that new distributions are stretched in direc-
tions where better candidate solutions are located. In the final generation,
the whole population is located in a very small environment of the opti-
mum, such that the individual with the lowest function value corresponds
to the desired approximate solution.

The problem of calculating and storing huge matrices and their factorizations in
large-scale optimization is not new. A general approach in order to circumvent such
difficulties is to calculate matrix factorizations not directly, but to reconstruct matrices
from the last m iterations. This ends up in an iteratively working procedure.

2.5.2 LMCMA

The Limited Memory CMAES (LMCMA) is an Evolution Strategy which is very sim-
ilar to the original CMAES and is highly applicable to high-dimensional problems.
Compared to the original CMAES, there are some smaller changes in the algorithm
which concern for example the update of the step size. Here, we will focus on the main
changes that reduce time and space complexity of the algorithm. For details we refer
to Loshchilov (2014).
The key idea is essentially inspired from the Cholesky-CMAES (Suttorp, Hansen,

and Igel, 2009). Instead of calculating the factors of C in equation (2.34) directly, they
are iteratively computed and updated. More precisely, there exist constants a and b(g)

such that

A(g+1) = aA(g) + b(g)p(g)
c v(g)ᵀ, (2.35)

with v(g) = A(g)z(g) and z(g) sampled from the normal distribution.
We consider now first the generation g = 0. Then, A0 = I implies that the first

updated Cholesky factor is given by

A1 = aI + b0p0
cv

0ᵀ (2.36)
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and it holds that

A1z = (aI + b0p0
cv

0ᵀ)z = az + b0p0
c(v

0ᵀz). (2.37)

For g = 1 it follows similarly that

A2 = a(aI + b0p0
cv

0ᵀ) + b1p1
cv

1ᵀ. (2.38)

Continuing this procedure implies the existence of a simple iterative procedure which
can be applied to sample candidate solutions in Rn using the Cholesky factors A(g).
Also, similar considerations hold for the second Cholesky factor of C. As an advantage,
only m pairs of vectors p(g)

c and v(g) have to be stored to reconstruct A(g). This
procedure just scales as O(mn).
Finally, we have to address the question of how the numberm is chosen. The choice of

m can be thought of as a representation of how much information will be reconstructed
from the covariance matrix within the iterative procedure. While there can be seen
reasonable differences in performance between different choices ofm (Loshchilov, 2015),
there is a default value of the algorithm which equals the default value of λ in CMAES,
i.e.

m = 4 + b3 ln(n)c . (2.39)

Then, for our problem with n = 3510, we have m = 28, such that we obtain an
algorithm with O(mn) = O(98280) complexity instead of O(n3) = O(12320100).

2.5.3 LMMAES

The Limited Memory Matrix Adaptation Evolution Strategy (LMMAES; Loshchilov,
Glasmachers, and Beyer (2017)) is the current state of the art of Evolution Strategies
for large-scale optimization and is heavily influenced by CMAES and LMCMA. First,
it was shown by Beyer and Sendhoff (2017) that the construction of the covariance
matrix C in the CMAES algorithm can completely be avoided. Instead of using C,
only one transformation matrix M is needed which is a representation of C1/2. Hence,
all CMAES-related equations (e.g. equation (2.30)), which need C1/2 and related
terms, can be simplified and reduced to terms which depend on M only, although all
the explained principles remain the same.
Following Beyer and Sendhoff (2017), we give the idea of the proof of the main

update equation. By the definition of M , it holds that

M (g)(M (g))ᵀ = C(g) (2.40)

for all generations g. If equation (2.40) is plugged into the update equation (2.29) for
C, some term manipulations show that M obeys the equation

M (g+1)(M (g+1))ᵀ = M (g)

[
I+c1

(
p(g+1)
σ (p(g+1)

σ )ᵀ−I
)

+cµ

( µ∑
i=1

wiy
(g)
i:λ (y

(g)
i:λ )ᵀ−I

)]
. (2.41)
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As shown below, this result allows to obtain an approximation formula for M and
therefore to avoid complex covariance matrix updates. Equation (2.41) is of the form

AAᵀ = M(I +B)Mᵀ (2.42)

with a symmetric matrix B and A = M (g+1). The matrix A will later be used for an
approximation of M . In order to calculate A, we take a power series ansatz

A = M

∞∑
k=0

γkB
k (2.43)

with a real coefficient sequence (γk). Inserting equation (2.43) into equation (2.41)
shows that

A = M

(
I +

1

2
B − 1

8
B2 + . . .

)
(2.44)

satisfies equation (2.42) up to the second power in B. Without loss of generality, ‖B‖
can assumed to be small, such that the power series expansion in equation (2.44) can
be truncated after the linear term, yielding the approximation

M (g+1) = M (g)

[
I +

c1

2

(
(p(g+1)
σ (p(g+1)

σ )ᵀ− I
)

+
cµ
2

( µ∑
i=1

wiy
(g)
i:λ (y

(g)
i:λ )ᵀ− I

)]
. (2.45)

The simplified version of CMAES without the covariance matrix is referred to as Matrix
Adaptation Evolution Strategy. The “Limited Memory”- aspect (Loshchilov, Glasmach-
ers, and Beyer, 2017) for large-scale optimization comes in, for example, since it can
be proven that the sampling procedure

d
(g)
i = M (g)N(0, I) (2.46)

does not require the matrix M to be stored. Instead, the storage of the direction
vectors pσ, which are used in order to construct M , is sufficient.

2.5.4 The impact of the condition number

In practice, we observed that the convergence speed heavily decreased when the opti-
mum was approached. Thereby, even after several hundred thousand of function calls,
the fitness value decreased only very slowly. This problem is not only related to large-
scale optimization, but in particular arises within geophysical inverse problems. In this
subsection, we investigate the reason.

As explained in chapter 1, our problem is ill-conditioned and therefore, the design
matrix G has a high condition number. In order to investigate the influence of the
condition number on the convergence of LMMAES, we construct a test problem with
smaller matrices where we can directly control the condition number. Then we evaluate
the number of needed function calls to obtain a predefined threshold of the fitness value.
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Recall that the condition number κA of a regular matrix A ∈ Rn×n is given by

κA =
σmax(A)

σmin(A)
, (2.47)

where σmax(A) and σmin(A) are the largest and smallest singular values of A, respec-
tively. We let a > 0 and set A to be a diagonal matrix such that

A = diag(
√
a,
√
a, . . . ,

√
a, 1/
√
a, 1/
√
a, . . . , 1/

√
a) ∈ Rn×n, (2.48)

where the first n/2 = 3510/2 = 1755 diagonal entries are set to
√
a and the other half

is set to 1/
√
a. Since A is diagonal, this implies

κA =
√
a/(1/

√
a) = a. (2.49)

We evaluate how many function calls are needed in order to reduce the function value
of the objective function f(x) := ‖Ax‖2

2 below the threshold of 103. Please note that
an absolute threshold can be used since the LMMAES algorithm adapts the step size
such that the objective function is scaled accordingly. This situation can be regarded
as a test problem for an L2 minimization of the residual norm of the linear equation
system Ax = 0, where the right hand side can be set to 0 without loss of generality.
Furthermore, in each run we start the optimization process at the point (1, 1, . . . , 1, 1)ᵀ

and remark that each fitness function f has a global minimum at 0. The results are
shown in figure 2.6, where the number of needed function calls is depicted, depending
on the condition number of A.
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Figure 2.6: Number of needed function calls in order to reduce the residual norm ‖Ax‖2
2

below the threshold of 103, depending on the condition number of A. Each
of the three runs is composed of ten sub-runs, shown is the respective
average of these sub-runs. All sub-runs started at the point (1, 1, . . . , 1, 1)ᵀ.
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Since the condition number κG of our forward operator G tends to infinity (see
also the remarks in subsection 1.2.2), the results depicted by figure 2.6 explain the
large number of needed function calls in order to achieve the optimum. The high
condition number implies that small changes in the function argument (which are
needed in a small neighborhood of the optimum) often lead to larger changes in the
function values, and hence the algorithm needs time in order to adapt the covariance
matrix such that it converts the objective function into the sphere function, which is
easy to handle. In order to get a faster convergence towards the optimum, a suitable
stabilization technique is to regularize G with respect to its singular values. However,
such an additional regularization term has to be calculated a priori and is in general
very difficult to determine. The reason is that adding such a term corresponds to an
additional a-priori assumption, which can lead to an unrealistic model. Moreover, the
regularization term can even change the results to physically meaningless ones, if it is
not carefully chosen. Hence, instead of regularizing the matrix, it is more suitable to
develop an effective implementation of the function calls.
Another regularization technique regarding G is to consider a truncated singular

value decomposition. Here, instead of calculating the exact decomposition G = UΣV ᵀ,
only a truncated decomposition G̃ = UtΣtV

ᵀ
t is used, where t is the number of column

vectors of U and row vectors of V ᵀ
t which correspond to the t largest singular values

of G. The smaller singular values and the associated rest of the matrix are discarded
in order to reduce the influence of smaller singular values. However, the difficulty
here is to determine the number t. For concrete parameter-choosing strategies and the
associated problems we refer to the literature (see e.g. Mendivil et al. (2013)).
We tried to calculate κG explicitly, but since G consists of several millions of entries,

it was computationally not suitable. Therefore, we reduced the data set to one year
in order to reduce the size of G. Here, we found the largest singular value σmax of G
to be approximately 106, but the smallest singular value turned out to be 0. We note
that, since G has linearly independent columns, this may result from limited machine
precision and is more likely to be a very small number such that κG becomes very
large as predicted. The small singular values result from the spline matrix Gs (see also
equation (3.8)), which is needed for the construction of the forward operator matrix G.
Since for every observation date we need three times the same spline values (separately
for the x-, the y-, and the z-component), it follows that Gs has repeated rows.



3 Application to core field modeling

We apply the LMMAES algorithm, described in subsection 2.5.3, in order to invert
Swarm satellite data. Our resulting model is called the “EvoMag model”. The first
section gives details about the used Swarm satellite data, about the parameterization
of the model and the inversion process. Within the second section, we present the
model results and compare EvoMag with other established models such as the IGRF.

3.1 Derivation of the EvoMag model

3.1.1 Data and data pre-processing

The Swarm satellite mission was launched by the European Space Agency (ESA) on
22nd November 2013 and is still operative. It consists of three identical satellites which
orbit the Earth in the ionosphere at altitudes of 462 kilometers up to 510 kilometers.
The satellites measure the strength and the orientation of the Earth’s magnetic field
with the aim to provide a high-quality survey of the geomagnetic field and its tempo-
ral evolution. For this purpose, every satellite carries a proton magnetometer which
measures the scalar field along with a vector field magnetometer which measures the
magnetic field vector itself. In addition, three star tracker cameras are used for the
attitude information of the satellite in space.
The measured magnetic field data are provided in the sensor coordinate system.

However, for our purpose, we need the data to be given in Earth-references north-
east-center coordinates (NEC), within a Cartesian, local and geocentric coordinate
system. Here, we will use quaternions for the necessary coordinate transformation. A
quaternion

q = (q1, q2, q3, q4) (3.1)

is a 4-tuple of real numbers which can be thought of as a representation of the axis of
rotation and rotation angle in R3. Quaternions are usually normed in the sense that q
in equation (3.1) fulfills

1 = q2
1 + q2

2 + q2
3 + q2

4. (3.2)

In general, the rotation of a point can be described by multiplication with an orthogonal
rotation matrix Rq. The rotation matrix can be expressed with the help of quaternions
as

Rq =

1− 2(q2
2 + q2

3) 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) 1− 2(q2

1 + q2
3) 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) 1− 2(q2
1 + q2

2)

 . (3.3)
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Figure 3.1: Scatter plot for the visualization of the global coverage of the used Swarm
data. The differences in data density at the poles result from the fact that
data selection criteria differed with respect to that region.

We have to apply two rotations, one is static and the other one depends on the position
of the satellite. These quaternions are contained in the data set.

Data selection is necessary for reducing contributions of unmodeled sources, e.g.
ionospheric currents. We used the same criteria as given in the GFZ Mag.numIGRF13
model, as described in subsection 1.3.3. For example, within low-latitude regions be-
tween ±55◦ geomagnetic latitude, we use Swarm satellite nighttime data from 2014 to
2019 (compare also figure 3.1). The usage of nighttime data (23 h until 05 h local time)
reduces ionospheric currents’ contributions in the data. It is also desirable to reduce
contributions from the ring current. In this respect, the MMA_SHA_2F index was
used to reduce such contributions. This index is similar to the Dst index and can be
regarded as a measure of the ring current. Finally, the data set which we used consists
of 1,202,003 data points of the Swarm-A satellite. Figure 3.1 depicts the global cov-
erage of the used Swarm data, whereas figure 3.2 shows the measured magnetic field,
separately for the x-, the y-, and the z-component pointing north, east, and down,
respectively.
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Figure 3.2: Scatter plot for the visualization of the measured magnetic field.

3.1.2 Parameterization of the EvoMag model

In our model, we parameterize the magnetic field as the gradient of the scalar magnetic
potential

V = Vint + Vext (3.4)

with

Vint(r, θ, φ, t) = a

Lint∑
l=1

l∑
m=−l

(a
r

)l+1

gml (t)Y m
l (θ, φ),

Vext(r, θ, φ) = a
Lext∑
l=1

l∑
m=−l

(r
a

)l
qml Y

m
l (θ, φ).

(3.5)

We note that this implies the restriction to a source-free region. The reference radius a
was set to 6371.2 km and the maximal expansion degrees Lint and Lext were chosen to
be 13 and 1, respectively. The Gauss coefficients gml of the internal potential represent
the core magnetic field. To model secular variation, these need to be time dependent
and are expanded in a basis of sixth-order B-splines Bi,6 such that

gml (t) =

Nb∑
i=1

igml Bi,6(t), (3.6)

where we use Nb = 18 spline functions to represent each Gauss coefficient and the
spline coefficients igml have to be inverted for. The time dependence is modeled on the
interval from November 26th, 2013 up to February 1st, 2020. The internal knots for the
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Figure 3.3: Normalized histogram of the residuals of our model where we ignored the
external field contributions. Shown are the residuals for the x-component
of the magnetic field (left), for the y-component (middle) and for the z-
component (right). On top of each subfigure the associated mean value µ
and the standard deviation σ are depicted.

spline functions are equidistant and we use five-fold repeated knots at the boundary
points of the interval. Further, the three coefficients for the external potential are
assumed to be static, and mainly represent the magnetospheric ring current. Finally,
this leads to 3513 model parameters which have to be estimated.
We also inverted for a model with internal coefficients gml only, but the obtained

results showed the necessity to include the external field as well. Histograms of the
residuals for the model without external coefficients are depicted in figure 3.3. Clearly,
a shift of the distribution mean is visible for the x-component of the magnetic field.
This shift results from the magnetic signature of the ring current which is mainly
oriented along the x-direction. Theoretically, the separation into internal and external
sources should work. However, the data are noisy and parts of the external fields can
leak into our model. The shift of the distribution disappeared when we also considered
the external coefficients, see figure 3.11.
As a further improvement of our model we also tried to estimate the static internal

Gauss coefficients for the spherical harmonic degrees l = 14− 60. This corresponds to
a consideration of the crustal field. However, requirements for computing memory are
challenging. In more detail, every spherical harmonic degree l consists of (2l+1) Gauss
coefficients gml . Adding 29 new coefficients for l = 14 only, corresponds to already 29
columns in our forward operator matrix. As a result, the size of the matrix G increases
by 29 · 3 · 1, 202, 003 (rows correspond to number of data) elements which have to be
kept in storage. With 8-byte float numbers, an additional crustal field with l = 14−60
would therefore correspond to an additional demand of 94 GB main memory. Hence,
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we did not invert for the crustal part of the field. For further discussion of memory
efficiency see chapter 4.

3.1.3 Inversion

Applied inversion technique

We inverted data by solving the linear equation system Gm = d from equation (1.8)
in a least-squares sense, i.e. we minimize the function

f(m) = ‖Gm− d‖2
2. (3.7)

In order to minimize f , we applied the LMMAES algorithm with λ = m = 28 and
µ = 14, where λ is the number of individuals in each generation, m is the number of
used direction vectors, and µ is the number of parents used for recombination. We did
not use any particular model as a start point for the optimization run. The start point
m0 was chosen to be the zero vector. We set the termination criterion for the algorithm
depending on the function value changes over five generations. If the function value
changes only by a maximal value of 102, the algorithm stopped. Please note that 102 is
a small value due to the large number of data points (1, 202, 003). In order to calculate
our model vector, we needed around 1.5 million function evaluations.

Remarks on implementation in Python

In LMMAES, the calculation of the forward model is crucial. However, straightforward
implementation of the needed matrix-vector product Gm (equation (1.8)) is not feasi-
ble due to memory reasons, as the complete matrix G with more than 94 GB would
be required to be kept in memory. Therefore, we divided the matrix product into
smaller parts and implemented the matrix-vector multiplication as a multiplication
with submatrices, such that

B = (Gd ⊗Gs)m (3.8)

holds, where B is the magnetic field vector, the matrix Gd contains the values of the
spherical harmonics functions, the matrix Gs contains the spline function values, and
⊗ denotes the row-wise outer product of Gd and Gs. In EvoMag, we use the FieldTools
library (Matuschek and Mauerberger, 2019) for the evaluation of Gd. Further, equation
(3.8) can be evaluated efficiently by the einsum function of the Python library NumPy.
In each generation, λ = 28 model vectors have to be evaluated on the objective func-

tion. This process can be accelerated by evaluating the objective function for all model
vectors at once. For this purpose, we store the whole sample of 28 model vectors into
a matrix M (note that M referred to the transformation matrix in subsection 2.5.3),
whose rows are the individual model vectors. Using this M , the threaded einsumt
(Wojciechowski, 2020) function of Python can be applied for an effective evaluation of
the corresponding forward model, since einsumt performs better on large arrays.
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Bi −→ CPU0

Bi+1 −→ CPU1

...
...

Bi+n −→ CPUn

Figure 3.4: Idea of the parallelization approach.
The calculation is split into chunks,
where the magnetic field vectors get dis-
tributed to different CPUs.

Remarks on parallelization in Python

One computational advantage of Evolution Strategies is that every individual step offers
room for parallelization. Some approaches in order to parallelize CMAES exist, see e.g.
Khan (2018). Here, we present our efforts to parallelize LMMAES using Python.

In general, a purely multithreaded approach (shared memory) is desirable because
it does not require additional function calls for splitting and memory allocation. In
contrast, a process-based distributed memory approach is only effective, if the ratio of
times spent for allocation and computation is small. Compared to memory allocation,
however, numerical evaluation of dot-products is usually very fast. Unfortunately,
Python does not admit “real” multithreading because it relies on a technique called
“Global Interpreter Lock” (GIL). This lock allows only one thread to execute written
statements, and results from the fact that Python is an interpreted language.

The evaluation of the objective function can be parallelized as the forward calculation
in equation (3.7) is independent for each datum. This idea is illustrated in figure 3.4.
In order to circumvent the GIL, we use einsumt (Wojciechowski, 2020) for the matrix
multiplication, which relies on the built-in subprocess module of Python. In contrast
to multithreading, the subprocess module spawns new processes. The overhead is a
function call and reallocation of memory. Hence, we cannot expect the performance
which is offered by a real multithreading approach. Nevertheless, we were able to
implement the calculations in a way such that 250,000 function evaluations per day are
possible on an ordinary workstation featuring eight threads.

First attempts using “real” multithreading are promising and give hope for a speedup
factor of 3 (see also chapter 4). There are also attempts to parallelize the individual
samples across physical machines using MPI. For the EvoMag model, the number of
individual samples in each generation is small (λ = 28), therefore it must be carefully
examined how much latency is lost in the communication overhead. Two to three
machines seem realistic, which leads to a speedup of maybe by a factor of two.

3.2 Results and model validation

3.2.1 Model surface magnetic field

In figure 3.5 we show the magnetic field predicted by our model at an altitude of
R = 6371.2 km for the year 2015, separately for the x-, y-, and z-component of B. In
addition, the bottom right subfigure shows the total field F = (B2

x +B2
y +B2

z )
1/2.
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Figure 3.5: Model prediction of the magnetic field B for 2015; Bx (top left), By (top
right), Bz (bottom left), and total field F (bottom right) at Earth’s mean
radius R = 6371.2 km.

All subfigures show the expected main characteristics of the Earth’s core magnetic
field. For example, the magnetic field for the z-component shows the typical dipole
dominance, with high values above the equator and low values below the equator.
The figure also shows that the the equator is bent within the region of the South
Atlantic Anomaly. This anomaly is also well depicted in the figure with the total
field, where the minimal value Fmin = 22, 388 nT is reached. This value is reasonable
since the Mag.num.IGRF13 model predicts 22,250 nT (Rother, Korte, et al., 2020).
Furthermore, the total field is strong at the north pole and within a region over Russia
and Canada. Here, the two “wobbles” are characteristically and responsible for the
recent fast pole wandering.

3.2.2 Time dependence of Gauss coefficients

In order to investigate the secular variation of the core field, it is possible to have a
look at the temporal behavior of certain Gauss coefficients. For example, the three
coefficients g−1

1 , g0
1 and g1

1 describe a dipole magnetic field. In figure 3.6 we show
the temporal evolution of the leading Gauss coefficient g0

1 as given by our model.
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Figure 3.6: Time dependence of the Gauss coefficient g0
1 for our model, compared with

the results of the Mag.num.IGRF13 model and CHAOS-7. The time in-
terval spans from the 26th November 2013 up to the first February 2020,
these are the boundary points of our model time span.

Furthermore, we compare our results with the Mag.num.IGRF13 model since we apply
the same data selection criteria, and we also compare our results with the established
CHAOS-7 model.
On one hand, figure 3.6 depicts that our results lie in the same range as the es-

tablished models. On the other hand, we recognize several oscillations near the end
points of the interval. We want to check whether they are systematically and therefore
have a look at two other Gauss coefficients of higher degree, namely g−4

4 (figure 3.7)
and g7

7 (figure 3.8). Compared to our other coefficients, g−4
4 is a typical example for

low oscillations and a good agreement with CHAOS, and g7
7 is a typical example for

higher oscillations and a worse agreement with CHAOS. For the temporal behavior of
g−4

4 we see that our model agrees very well with the CHAOS-7 model and with the
Mag.num.IGRF13 model, except for some differences at the end point of the model time
span. Here, the differences between our model and CHAOS are very small. Moreover,
the Mag.num model predicts a slightly different value for 2020. This is not surprising
because in the Mag.num model, the temporal evolution is more strongly damped, and
we use an undamped model.
Regarding g7

7, figure 3.8 also shows oscillations near the end points, and they are
stronger than the ones of the lower degree coefficients. The oscillations result from the
absence of regularization terms in our model. An additional minimization of terms (see
e.g. equation 1.21) as given in the Mag.num.IGRF13 model described in subsection
1.3.3 should stabilize the results. The stronger oscillations of the high degree coefficient
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Figure 3.9: Fourier analysis of the fluctuations of g0
1. The polynomial p in the left hand

figure was subtracted from g0
1. Left: g0

1(t) (red) and p (blue). Right: Ampli-
tudes and their corresponding frequencies. The frequency of the maximal
amplitude corresponds to the wavelength which we seek for.

could result from a decrease of the signal-to-noise ratio, also see subsection 3.2.3.
Both figures 3.6 and 3.8 also reveal smaller fluctuations away from the boundaries

of our model. The established models do not show such oscillations, and we want to
investigate whether they are in some sense physically meaningful. Therefore, we apply
discrete Fourier transform with the goal to calculate the wavelength of the intermediate
oscillations. Since we want to study the oscillations, we take a second degree polynomial
fit of g0

1 and subtract it from the original g0
1 signal. We apply the discrete Fourier

Transform to the resulting function f . The original g0
1 signal and the polynomial fit

are shown in figure 3.9, left. Moreover, the results of the Fourier Transform are shown
on the right hand side plot in figure 3.9. There, the amplitudes corresponding to |f |2
are shown, together with their associated frequency. They reveal that the wavelength
of the inner fluctuations is one year. For this reason, we conclude that the inner
oscillations may result from seasonal variations of the external field. This conclusion is
underlined by our observation that the same results for this wavelength holds for the
other oscillating coefficients.

3.2.3 Correlation coefficients

A measure for the similarity of two models is given by their degree correlation coeffi-
cients (Arkani-Hamed, 2001). Suppose that {glm, hlm} are the Gauss coefficients of the
first model and {g′lm, h′lm} are the Gauss coefficients of the second model. Then, the
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Figure 3.10: Degree correlation coefficients between different models. The blue curves
correspond to 2015 and the red curves are associated to 2020. Solid lines
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degree-l-correlation-coefficient ηl is given by

ηl =

∑l
m=0(glmg

′
lm + hlmh

′
lm)

[
∑l

m=0(g2
lm + h2

lm)×
∑l

m=0(g
′2
lm + h

′2
lm)]1/2

. (3.9)

We calculated the degree correlation coefficients between the internal part of EvoMag
and the IGRF, CHAOS-7 and Mag.num, respectively, for the years 2015 and 2020.
The results are shown in figure 3.10. Figure 3.10 depicts a decrease of the correlation
coefficients with increasing spherical harmonic degree. This results from a decrease of
the signal-to-noise ratio at higher degrees. This situation can be explained by having a
sharper look at the equation (3.5) for the internal potential. Here, the term (a/r)l+1 is
crucial. This term shows that with increasing r, the Gauss coefficients decrease more
rapidly with larger l. The noise stays the same over all wavelengths, but the signal
decreases with increasing wavelength. This behavior explains why the results become
worse with increasing spherical harmonic degree. On the other hand, comparing the
blue and the red curves in figure 3.10 shows that the results for 2015 are better than
the ones for 2020. The reason therefore is that 2020 is a boundary of our model and
that less data are available at this boundary (see also subsection 3.2.2).
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3.2.4 Residuals

The residuals of a model are an important tool for investigating the quality of a re-
gression. They are given by the vector Gm − d, where m is our model vector. The
vector Gm is also referred to as the predicted data, and d is the vector of the observed
data. We look at the residuals always separately for the x-, y-, and z-component. In
figure 3.11 normalized histograms of the residuals of the EvoMag model are depicted.
Clearly visible is that the shift of the distribution mean for the x-component (see figure
3.3) disappeared after including the three additional external field Gauss coefficients.
It is also visible that all three distributions largely correspond to a normal distribu-
tion, as expected. Still, some outliers are present as compared to a normal distribution
(longer tails). For comparison, figure 3.12 shows normalized histograms of the residuals
of EvoMag and Mag.num. In this figure, only the core field part of the models was
considered, i.e. without external field contributions. The largest difference between
the histograms can be seen in the z-component. Here, the Mag.num distribution is
bimodal, whereas the EvoMag distribution is not. Probably, the reason is that the
Mag.num parameterization also includes the induced part of the ring current, which
is not part of our model. Therefore, the signal of the induced ring current leaks into
our core field coefficients. Hence, our model fits the data better, as the data also in-
clude the signal of the ring current. This cannot be seen within the diagram for the
y-components (where the two models agree very well), as the ring current is largely
dipolar and therefore rotationally symmetric (there is no signal induced by the ring
current, assuming a 1-D electrical conductivity profile for Earth’s interior).
Figure 3.13 shows a color-coded scatter plot of the residuals. A closer investigation

of the right hand panel in figure 3.13 may indicate lithospheric field contributions.
For a more detailed examination of any lithospheric field structures, in figure 3.15, the
EvoMag residuals of the field intensity are shown. These residuals are large on the poles
due to field-aligned currents. Moreover, the Bangui anomaly is clearly visible north
from the equator and east of the central meridian. The Bangui anomaly (see figure
3.14) in Central Africa is the “largest lithospheric magnetic field anomaly on Earth
at low latitudes” (Ouabego et al., 2013). Furthermore, other anomalies are visible,
e.g. in Europe. These anomalies are also predicted by the LCS-1 model (compare
figure 3.14). However, some north-south-elongated systematic spatial patterns are also
visible in the residuals, which are not related to any crustal anomalies as predicted
by LCS-1. These patterns can result from temporal differences in adjacent satellite
tracks (Lesur, Rother, Vervelidou, et al., 2013). Additionally, there seem to be some
systematic residuals, which are not resulting from lithospheric field contributions, but
are due to the fact that the model is not perfect and that some signals are not included
in the parameterization.
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Figure 3.11: Normalized histogram of the residuals of the EvoMag model. Shown are
the residuals for the x-component of the magnetic field (left), for the y-
component (middle) and for the z-component (right). On the top of each
subfigure the associated mean value µ and the standard deviation σ are
depicted.
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3.2.5 Changes in the declination

As an application of our model, we predict the temporal variation of the magnetic dec-
lination and compare our predictions with observations. The declination D is defined
as the eastward angle between geographic north and magnetic north. If a spherical
coordinate system is used with BN pointing to geographic north and BE to geographic
east, then D can be calculated as (Campbell, 2003)

D = arctan

(
BE

BN

)
. (3.10)

We use EvoMag to predict D in daily steps between 2015 and 2019 at the location
of the Niemegk geomagnetic observatory (r = 6364.95 km, θ = 38.120◦, and ϕ =
12.683◦) and compare the results with the observations. The results are shown in
figure 3.16, where daily means of the observations (turquoise line) are plotted along
with our daily model predictions (red line). The observed daily means show oscillations
during the whole time span, whereas our predictions do not. Observations include
information about disturbances of the magnetic field due to sources (currents) in the
ionosphere and magnetosphere. Such disturbances are due to varying ionospheric and
magnetic currents or geomagnetic storms and substorms. Both impact the declination.
Additionally, an offset is visible. The static part of this offset results from unmodeled
crustal field contributions, the dynamic part of the offset may result from unmodeled
core field contributions. The offset increases at the end of the modeled time span.
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Figure 3.14: Lithospheric field of scalar anomaly F at Earth’s surface from the LCS-
1 model. The Bangui anomaly in Central Africa is a roughly elliptical
anomaly centered at Bangui. The figure was taken from Olsen, Ravat,
et al. (2017, figure 7).
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Figure 3.16: Declination of the magnetic field at Niemegk (r = 6364.95 km, θ =
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4 Summary and outlook

Here, we summarize our work and discuss the observed advantages and disadvantages
of stochastic optimization for core field modeling. We also mention unsolved problems
and sketch some ideas for their solution.
Models of the Earth’s magnetic field lay the foundation for several scientific studies

and provide a physically consistent description of the magnetic field, or at least specific
parts thereof. In this work, we presented the theoretical basis of core field modeling
and set up the parameterization of a basic core field model which we call the EvoMag
model. In order to invert for the model coefficients, we used the stochastic optimization
algorithm LMMAES, which is a member of the CMAES family. We explained the
theoretical foundations of these algorithms and implemented the inversion within a
Python environment. The obtained EvoMag model is based on six years of Swarm
A satellite data, and was discussed in detail before comparing it with results from
established models such as CHAOS and the IGRF. On one hand, these results clearly
show the missing external field part in EvoMag, but on the other hand, they often show
very good agreement with established models. For example, the predicted minimum
value of the magnetic field within the SAA differs only by 0.62% (138 nT) from the value
given by the Mag.num model. The coefficients with the minimal and maximal root
mean square difference between EvoMag and CHAOS-7 are g−5

7 (predicted by EvoMag
as −2.91 nT for 2015.0) and g0

1 (predicted by EvoMag as −29442.39 nT for 2015.0),
respectively. The maximal differences over the six-year model time span between g−5

7

and g0
1 are 0.39 nT and 3.26 nT, respectively, and the minimal differences are 7.21 ·10−6

nT and 8.99 · 10−5 nT, respectively. The dipole moment of EvoMag evaluates to
1.45124 · 10−6 nT/km3 and this value differs by only 0.04% from the CHAOS value.
This implies the applicability of Evolution Strategies for magnetic field modeling. Also,
as explained in subsection (3.1.3) and below, advanced implementations should give
rise to shorter calculation times as compared to alternative strategies such as Iteratively
Reweighted Least Squares (IRLS).
One of the advantages of Evolution Strategies is their flexible applicability to a large

variety of problems and the low number of iterations which are required to approach
the optimum, as compared to, e.g. IRLS. Another positive point is that stochastic
optimization algorithms are able to find a global minimum almost independently of
their initial value. This is not the case for derivative-based methods and for IRLS, since
these algorithms do not converge in many cases, or the convergence is only assured if the
starting point is close enough to the solution (e.g. Adil, Peng, and Sachdeva (2019)). In
addition, it is often not known whether the obtained solution is only a local minimum.
In contrast, Evolution Strategies effectively sample the parameter space with the help
of a high population size, and hence find the global minimum (if it exists) and avoid
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local minima, even if the initial solution is next to a local minimum. However, for these
situations it should be also kept in mind that stochastic optimization methods are not
determinable and that, in the worst case, results are not exactly reproducible. This
problem could be solved by initializing several runs and testing the reproducibility.
Furthermore, Evolution Strategies are not only less sensitive to the chosen starting
value, but also to other choices of a-priori search parameters. Even if obviously “wrong”
parameters were chosen within the initialization of the algorithm, the self-adaptation
mechanisms regulate the parameters in a way such that they are best suited for the
given search space.

On the downside, the usual ill-posedness of an underlying geophysical problem gives
rise to a lot of function calls which are needed for the calculation of the model vector
solution. Hence, the efficiency of the algorithm relies in particular on a very fast im-
plementation of the forward model function calls. With our implementation, 250, 000
function calls per day were possible and the calculation took approximately six days
on a single working station with eight cores. Although we did not compare this time
directly with a classical algorithm, for more complex problems (than L2) a runtime
advantage is expectable due to aforementioned reasons (number of iterations, local
minima). As explained in subsection 3.1.2, another challenge arises as the memory re-
quirements for the calculations are very high in the case of geomagnetic field modeling,
due to the large amount of data and the basis spline function values. More precisely,
the complete forward operator matrix G (see equation (1.8)) needs to be kept in mem-
ory for efficient calculation of the forward problem. However, modern workstations
on high performance machines can have several hundred GB of RAM accessible and
therefore are able to store the forward operator accordingly. For the purpose of this
work, a machine with 256 GB of RAM would be suitable. An even better possibility
for circumventing the memory problems is to parallelize the function calls themselves
using shared memory and Message Passing Interface. For our forward model, this is
easily realizable since the matrix vector multiplication can be split into multiplications
with submatrices, and these smaller parts can be shared to different computers.

For this work, the LMMAES algorithm was used for the minimization of an objec-
tive function which uses a simple L2 norm as a measure of misfit, and a linear forward
operator. As a first improvement of the EvoMag model, regularization terms (see e.g.
equations (1.21) and (2.3)) should be considered. The absence of such terms was ob-
vious in e.g. the oscillations of the temporal behavior of g7

7 in figure 3.8. Additionally,
the usage of such regularization terms is not only important for stabilizing the model
results, but also to better condition the objective function. Most importantly, this
improvement could result in less function evaluations when calculating the solution. In
more sophisticated models the forward operator will become nonlinear, for example, if
Euler angles for the adjustment of the sensor coordinates are estimated. Also, in such
situations the number of unknowns as well as data points increases. In order to get a
serious benefit from the investigated algorithms and to adapt them to more complex
models, it is a promising idea to embed the LMMAES algorithm into the present FOR-
TRAN implementation of the Mag.num model. The usage of FORTRAN in this setting
is highly desirable because this language is very optimized for linear algebra calcula-
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tions and offers extensive possibilities for the usage of multithreading. Furthermore,
there already exists a FORTRAN 90 library for CMAES which additionally provides
parallelization (Müller et al., 2009). A parallelized implementation of LMMAES will be
straightforward to adapt from the currently available implementation. First attempts
using “real” multithreading in C++ are promising and may result in a speedup factor
3.
Another idea to investigate is whether it is possible to exploit the covariance matrix

for model error estimations. These are usually not provided with models, and difficult
to obtain, as both the data errors need to be estimated, and their propagation to model
coefficients needs to be understood, especially when non-linearities and regularization
are introduced. Although the transformation matrix M in the LMMAES algorithm is
only an approximation of C1/2, the transformation matrix of the i-th generation is still
connected to a covariance matrix C. An interesting question to investigate is whether
in some sense there exists a limit covariance matrix Σ, i.e. that

lim
i→∞

Σi = Σ (4.1)

holds, where i denotes the i-th generation. Equation (4.1) means that the final result of
the algorithm has a “meaningful” covariance matrix associated with it. If this would be
the case, then the variance could be interpreted as a standard error and it would open
the possibility for direct parameter error estimations (see also Grayver and Kuvshinov
(2016)).
All in all, we recommend the application of Evolution Strategies for the usage of

modeling the geomagnetic field of Earth’s core. An efficient implementation of such an
algorithm allows a fast inversion even for non-linear problems, for example when Euler
angles are considered. This is particularly advantageous as core field models become
more complex in the future.
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