
Hans-Joachim Petsche

In honour of Seymour Papert:
„Empirical Modelling“ of Logo in Forth

Philosophische Fakultät

Universität Potsdam

In honour of Seymour Papert: "Empirical Modelling" of Logo in
Forth

Hans-Joachim Petsche
Potsdam University, Potsdam, Germany, e-mail: petsche@uni-potsdam.de

Abstract

Forth is nice and flexible but to a philosopher and teacher educator Logo is the more impressing
language. Both are relatives of Lisp, but Forth has a reverse Polish notation where as Logo has an infix
notation. Logo allows top down programming, Forth only bottom up. Logo enables recursive
programming, Forth does not. Logo includes turtle graphics, Forth has nothing comparable. So what to
do if you can't get Logo and have no information about its inner architecture? This should be a case of
"empirical modelling": How can you model observable results of the behaviour of Logo in terms of
Forth? The main steps to solve this problem are shown in the first part of the paper.

The second part of the paper discusses the problem of modelling and shows that the modelling of
making and the modelling of recognition have the same mathematical structure. So "empirical
modelling" can also serve for modelling desired behaviour of technical systems.

The last part of the paper will show that the heuristic potential of a problem which should be modeled is
more important than the programming language. The Picasso construal shows, in a very simple way,
how children of different ages can model emotional relations in human behaviour with a simple Logo
system.

2

1 From Forth to Logo

1.1 The history of the idea

How does one get to the rather unusual idea of modelling the behaviour of the language Logo

in the language Forth?

In 1985 I completed my doctoral thesis in the field of philosophical problems in

applied mathematics and the role of computers in the new research field of experimental

mathematics (Petsche 1985). Some key points of my doctoral thesis about "Mathematics as

Driving Force of Scientific and Social Progress" were:

● The emergence of computers as processing tools changed mathematics in its characteristic

as a structural science. Simulation Modelling moved into the focus of applied

mathematics.

● The emergence of computers as finite tools led to a new status of approximation

mathematics (see Blekhman, Myshkis, Panovko 1976).

And last but not least:

● The emergence of computers (of the third generation) as dialog tools became the hour of

birth of experimental mathematics. (see also Moiseyev, 1979).

The possibility of a dialogue regime introduces an inductive moment into formal

thinking. We are no longer bound to autonomous processing algorithms; we can interact,

correct and modify formalisms. It is very interesting that in the same year (Beynon 1986),

when I thought about the dialogue with computers, the fascination of the dialogue regime

with computers led Meurig Beynon to his "paradigms for programming" and inspired him to

the first ideas of Empirical Modelling.

The role of computers as dialog tools was very interesting and new, so I wanted to

have a bit more experience in programming and in "what it means to work in dialogue with

3

the computer". And it happened that just at this time the first series of home computers (KC

85) were produced in the GDR (where I am from). But there was no possibility for me to

buy one for private use (only a few hundred a month were sold at selected places). So I used

the little amount of "Westgeld" (meaning foreign currency) I could get hold of (199

Deutschmarks) to buy an "Atari 800 XL" at the "Intershop" (a government-run retail store in

which only hard currencies could be used). I did not have enough money for a floppy disk or

datasette though. So I started with a basic decompiler which was so short, that I could enter it

into the Atari within 20 minutes. I used this decompiler during a two week illness to

decompile the whole operating system und write it down by hand (see Figure 1).

Figure 1. Part of a handwritten disassembled Atari OS

Then some friends helped me building an interface so I could use a normal cassette tape

recorder to save and load data. Thanks to the simply structured assembler code of the 6502

processor the reverse engineering of Atari’s operating system was not that hard. I never had

again such a feeling of knowing what's really going on in a computer! The built-in Basic was

not my cup of tea as a philosopher. So I turned to the easy to get Forth programming

language. This language was at this time unique. It was a programming language as well as an

operating system; it was able to compile programs as well as to work in an interpreter modus.

It was a list-processing language like LISP.

4

Programming was the creation of words by words. You could develop your own

private language. It seemed to be a wonderful programming language for philosophers...

But it uses Reverse Polish Notation (RPN), it has no graphic commands, it does not allow

recursive procedures, it needs a consistent bottom up design of programming and the final

programs are often hard to understand (in a "write-only" manner).

When I first read about Logo I was very fascinated by it. Like Forth, Logo is a relative of

Lisp. But it has an infix notation, allows top down programming, enables recursive

programming and includes turtle graphics: These are all advantages that Forth does not have.

So what to do if you can't get Logo for your computer and have no information on its

inner architecture? This should be a case of "Empirical Modelling". The problem to be solved

was:

How can you model the main observable results of the behaviour of Logo in terms of Forth?

Figure 2. Empirical Modelling as a new approach of computing (Russ, 2009, Slide 10)

Why do I call it "Empirical Modelling"?

The artefact – the "Logo in Forth" (FLOKC) – that is built on the computer is itself a source

of immediate experience which can be compared – through interaction – with experience of

5

its referent (LOGO). If we compare the characterization of Empirical Modelling by Steve

Russ (see Figure 2) with our approach, we find only a few differences:

1. The empirical referent of our artefact is a computer language (LOGO) and no lift, no ant,

no oxo, no poem or piece of music.

2. The construal is not build in definitive scripts in the environment of EDEN but in words

as lists of words of Forth.

3. The construal can serve as a partial replacement of its referent (but with a different inner

structure).

Two recursive programs – one for drawing a binary tree (Figure 3) and one for symbolic

differentiation (Figure 4) – should serve as yardstick for measuring the success of rebuilding

Logo in Forth.

Figure 3. Binary tree in Logo Figure 4. Program for symbolic differentiation in Logo

6

1.2 How to rebuild Logo in Forth?

The first problem was to replace the RPN with an infix notation. (see Baranov, Nozdrunov

1988). For this purpose I had to separate data from operations by means of a second stack and

find the agency which would do that. I found two kinds of agents: arithmetic and logic

operators with their priorities which will push themselves on the operation stack and all kinds

of brackets (including "Enter") which will start to collect the operators and end with the

execution of the operations. This agency with a second stack gives Forth the desired Logo-

like infix notation (see figure 5 and 6).

Figure 5. Changes of stackpointer in Forth Figure 6. Changes of stack- and operationpointer
 (RPN) in Forth-Logo (Infix notion)

7

Now I had to teach Forth the top down programming. For that we need a temporary

vocabulary and a redefinition of the word "abort" as an agent ("abort" usually outputs an error

message when we call an undefined word):

1. If a word in the vocabulary of the system is not found during the compilation of the

corresponding text screen and is not interpreted as a number, the word "abort" now carries

out an additional search run.

2. First, it is checked whether the given word represents the self-call of the word currently

being defined. If this is the case, it is compiled into the vocabulary and the program

returns to normal compilation mode (thus a first step is made in the direction of recursive

programming). If this check is unsuccessful, it also checks whether the unknown word

already exists in a temporary vocabulary. If this is the case, the word “??” is compiled into

the word to be defined. The address of this word is entered into the temporary vocabulary

under the name of the still undefined word. If the word is not found in the temporary

vocabulary, it is entered into this vocabulary.

3. In addition, we need four new agents, which we find in the words "create" and ":" (which

start compiling new words) as well as in "variable" and "constant" (which hold data).

These new agents perform their usual functions but also have the additional ability to test

if a new word is already in the temporary vocabulary.

If this is the case, the original word, which has now been defined, is entered at all points at

which this word was called and in which “??” was temporarily present. The execution of

the substitution is marked in the temporary vocabulary.

4. If some words remain undefined after compiling, we get an error message and can correct

this in a next loop.

The realization in Forth looks a bit crazy, if one is not familiar with programming in Forth.

But now we have the possibility to program top down as well as bottom up (see Table1)!

8

Table 1

TOP-DOWN-FORTH-Extension

HERE FIRST § 1000 - DP ! LATEST CONSTANT TD-
' (ABORT) § CONSTANT AB 0 VARIABLE HL 0 VARIABLE TP
0 VARIABLE CUL 0 VARIABLE CUH 0 VARIABLE T0 0 VARIABLE IM

: TER? PAD T0 § > IF ." TOP-STACK-ERROR" 1 ERROR ENDIF ;
: ?? CR ." UNKNOWN WORD IN ADR: " R> CFA U. CR SP! DECIMAL QUIT ;
: VOR CUH CURRENT DUP § CUL ! ! HERE HL ! TP § DP ! ;
: RE CUL § CURRENT ! HERE TP ! HL § DP ! ;
: EX WARNING ! ' (ABORT) ! ;
: CREA HL § HERE 40 CMOVE 0 BRANCH ((' CREATE 2+ HERE - ,)) ;
: REK SMUDGE LATEST PFA LFA DUP DUP § 0 ROT ! HERE LATEST (FIND)
 >R R IF DROP CFA , ENDIF SWAP ! R> SMUDGE ;
: MERK TER? HERE CUH § DUP
 IF (FIND) ELSE SWAP DROP ENDIF
 0= IF VOR CREA SMUDGE RE
 ELSE DROP CFA DUP § 2+ TP § DUP ROT ! SWAP !
 ENDIF
 4 TP HERE OVER § 0 OVER 2+ ! ! +! ' ?? CFA , ;
: TOP DUP 0= IF REK 0= IF MERK ENDIF
 DROP DROP DROP DROP R> R> R> R> R> R>
 DROP DROP DROP DROP DROP DROP ' INTERPRET >R ;S
 ENDIF R> DROP ;
: IN-TOP TER? TP § 0= IF TO § TP ! ENDIF
 0 CUH ! ' TOP CFA -1 EX ;
: PUT DROP 0 OVER CFA ! LATEST PFA CFA >R
 BEGIN R OVER § ! 2+ § DUP 0=
 UNTIL
 R> DROP DROP ;
: ?IN IN § IM ! ;
: NORM TD- TD- ! 0 TP ! AB 0 EX ;
: TOP-TEST 0 CUH §
 BEGIN DUP
 WHILE PFA DUP CFA §
 IF DUP NFA ID. 2 SPACES
 ." UNKNOWN WORD " CR
 SWAP 1+ SWAP
 ENDIF LFA §
 REPEAT
 DROP 0= IF NORM ENDIF ;
: ?TOP CUH §
 IF TER? IM § IN ! BL WORD HERE CUH § (FIND)
 IF PUT ENDIF
 ENDIF ;
: TOP-LOAD IN-TOP LOAD TOP-TEST :
: VARIABLE ?IN VARIABLE ?TOP ;
: CONSTANT ?IN CONSTANT ?TOP ;
: CREATE ?IN CREATE SMUDGE ?TOP SMUDGE ;
: : ?IN (COMPILE) : SMUDGE ?TOP SMUDGE ; IMMEDIATE
: Top CR ." 1. TOP-STACK-Anf. T0 ! " CR ." 2. Screen-Nr. TOP-LOAD " CR ;
DP ! HERE 13 + CONSTANT TD
: TOP ((TD ' TD NFA)) LITERAL LITERAL ! Top ;
: -TOP ((LATEST PFA LFA TD-)) LITERAL LITERAL ! ((LATEST))
 LITERAL DUP 32 TOGGLE 8224 OVER 1+ ! 40992 SWAP 3 + ! ;
' TD CFA ' NORM 2+ ! ? TD- TD !
 (H.-J.Petsche, 3.4.1989)

9

The last significant problem was to implement recursive programming. To enable this, we

created a new type of 'agent' - recursive variables. This new type of variables – which does

not exist in Logo – has an own stack for their values depending on the deepness of recursion.

If you call such a variable it looks at its recursion pointer and selects the corresponding value.

So a recursive variable is an agent to manage its own recursive values.

Modelling the rest of the Logo functions caused no serious problems. A test shows that our

program works in a Logo-like input-output manner.

If we finally compare Logo with our empirical model of Logo in Forth ("FLOKC"),

we see both similarities and differences. The program for drawing a binary tree is almost

identical in Logo and FLOKC (see Figure 7). Only in FLOKC we have to explicitly define a

recursive (local) variable.

 Figure 7. Flokc program of a binary tree

The programming of symbolic differentiation is almost word-for-word translatable from Logo

to FLOKC. But we can also translate it in a manner more typical of FLOKC’s basic idea. In

addition to the use of list operators ("L>"), we can determine the operators and the elementary

functions as agents that generate their own derivatives. This is shorter and makes the program

even more transparent (see Table 2) ...

10

Table 2

(* Symbolic Differentiation of a Function in FLOKC *)

lis function rek fct var f

to abl function ; (* start program *)
 cr make fct " function ; diff fct ;
end

to diff fct ; (* differentiation *)
 if (listp fct) = 0 then ? 0 stop endif
 if (count fct) = 1 then run fct stop endif
 if not ((count fct) = 3) then lp fct ? bad! stop endif
 "(run (item 2 fct))"
end

to op f ; (* Output *)
 if listp f then if (count f) > 1 then lp f stop endif
 endif pr f
end

(* elementary function *)

l> cos [? -sin] l> sin [? cos]
l> -sin [? -cos] l> -cos [? sin]
l> exp [? exp] l> x [? 1]
l> ln [p" x ex -1"]

to + ; (* sum rule *)
 diff first fct ; ? + diff last fct ;
end

to * ; (* product rule *)
 op first fct ; ? * diff last fct ; ? + diff first fct ; ? * op last fct ;
end

to o ; (* chain rule *)
 "(diff first fct ; ? o op last fct ;)” ? * diff last fct ;
end

to ex ; (* power rule *)
 make f last fct ;
 if listp f then lp fct ? bad! stop endif
 if f = 0 then ? 0 stop endif
 pr f p" * x ex " pr (f - 1)
end

1.3 Finally, what can be said about the fate of "Logo in Forth"?

In April 1989, a volume of the journal "Potsdamer Forschungen" (Potsdam researches), which

I authored together with a mathematician and computer scientist, was published entitled

11

"LOGO IN FORTH - Einführung in ein Sprachkonzept für die Informatikausbildung" (Logo

in Forth. Introduction to a language concept for education in computer science. Petsche,

Schachtzabel, Sprengel 1989).

 In June 1989, the Academy of Pedagogical Sciences in the GDR wrote to me that

they were interested in my program (see Figure 8).

Figure 8. The "Academy of Pedagogical Sciences in the GDR" wrote me a letter on June 21, 1989, saying that
they were interested in my logo implementation.

I also got a green light for the publication of three papers on "Top down in Forth" and "Logo

in Forth". Then in November 1989 came the "Wende" (the “Turnaround”) and already at the

beginning of 1990 no one in the GDR was interested in Logo or Forth anymore. With the

accession of the GDR to the Federal Republic of Germany the project came to an end. Now

there were other priorities (see Figure 9).

12

Figure 9. A letter from the Fachbuchverlag Leipzig, dated May 23, 1990, informing me about the Journal’s
discontinuation, because after the reunification of Germany no market would exist for it. My submitted article
would therefore not be published.

2 Some additional remarks about modelling

"Making construals is a new digital skill that aims to bridge the gap between computing

specialists and non-specialists. Its focus is on using the computer as an instrument to make

connections in experience - an activity that complements computational thinking." (Beynon et

al., 2015)

In general, mathematical modelling is used to solve three types of problems (see Petsche

1988):

13

1. The analysis problem: The behaviour of an external system with a defined (usually only

implicit or blurred) structure under (mostly blurred) conditions should be determined by

computer applications.

2. The synthesis problem: From a (mostly blurred given) set of objectively possible systems

of a specific type, the one that determines a (mostly blurred) preselected behaviour as far

as possible (under predominantly blurred criteria) must be determined by the use of

computer applications.

3. The recognition problem: From the behaviour of an external system signalled by

structured data sets, the specific structure of this system must be determined by computer

applications as precisely as possible within the framework of the given requirements and

in the context of a recognition hypothesis about the affiliation of this system to a certain

set of objectively possible systems of a particular type.

In my opinion Empirical Modelling generally belongs to the field of recognition problems.

Empirical modelling is a special way to solve recognition problems: It plays with models as

construals, as "objects-to-think-with" about empirically given objects. It does not build a

simulation model but it generates a deeper individual human insight into the behaviour of the

referent.

An "objects-to-think-with" can not only model an empirically given but also an

empirical wanted object. Construal as an "objects-to-think-with-about" could serve to think

about given as well as about desired objects. Construals could be placed in the field of

recognition as well as in the field of synthesis.

This broader look on empirical modelling has its reasons: As can be shown, that the

synthesis (2) and the recognition problem (3) have the same mathematical structure and the

modelling of these problems is essentially identical. “Recognition” and “Making” have the

same (mathematical) structure.

Modelling Logo in Forth is in my opinion an example for synthesising the behaviour

of a desired object (a programming language) by observing the behaviour of the original

object and by playing with agencies and dependencies.

14

I think that other examples of empirical modelling desired behaviour of technical

systems would be desirable. The just-in-time-modelling with definitive scripts in an

experimental computer environment will sharpen the technological sense of modellers.

3 The Picasso Construal: Papert meets Picasso

3.1 The Picasso problem

So FLOKC is dead. It was dead long before the Logo Tree Project started. Making it fit for

now – implementing it in a windows forth environment, adding an comfortable hypertext

editor, adding floating point instructions, adding multimedia possibilities – would not be so

hard. But there are enough versions of LOGO on the market.

Steve Russ, one of the organzisers of the Construit 2017 conference asked me a month

before the conference started, which programming language would I as a philosopher and

teacher educator consider to be the best for children? This seemed to be an easy question. But

it wasn't. Well known is Heideggers bon mot, that "Language is the House of Being".

Language is not the construct of Being and also not the universe of Being.

And language is not only a house of Being.

Language is build by man and by Being.

Language should work for logicians as well as for geometricians (how Poincaré would

say), for analysers, synthesists, constructivists and intuitionists.

Every child will develop his own access to the world. And I think that in this context

SCRATCH for example is too LEGO-like, too superficially oriented on making (and

constructing) and not on thinking, rethinking and problematising. Edutainment can be good

but not always is. So it seems to me, that a LOGO-like (LISP oriented) language could be a

good compromise.

And a final "but": The language is not the decisive point. If in the house of Being there is no

Being, language will not give us anything.

We need good problems, which are worth talking about, that are worthy of modelling. It is

only the next step to find a good representation. Faraday discovered such problems and found

excellent representations!

15

 "Discovery consists of seeing what everybody has seen and thinking what nobody has

thought." (Albert Szent-György, cited by Irving J. Good)

To use the computer for thought, you need not only a good programming

environment, but above all a paradigmatic problem. First you must have the problem then you

have to get its powerful representation.

There is a small example that occurred to me some weeks ago. Let me call it the

Picasso Construal. (I have programmed it in my old FLOKC environment, which was not

exactly simple, because it runs under DOS)

During his Cubist period, Picasso was asked if he could express "affection" and

"astonishment" with only a few brushstrokes (see Krumbholz 1969, p. 192). And he could

indeed! (see Figure 10)

Figure 10. Picasso’s visual interpretation of "affection" and "astonishment"

Picasso modelled human behaviour through the behaviour of dogs which for their part

were modelled with a few points, triangles, and rectangles. That was ingenious.

And he gave us a fantastic problem for empirical modelling:

Which other kinds of human behaviour could be expressed through modelling of dogs with

points, triangles, and rectangles. And what will occur if we add some kind of motion?

3.2 From turtle graphics to doggie graphics

In LOGO, we can use the commands of turtle graphics to create a doggie graphics

environment. An old LOGO (written in FORTH) running under DOS is already good enough

for this. Compilation of the following commands can be carried out by older children:

head_left / head_right

tail_up / tail_down

go_left / go_right

grow / shrink

16

color / steps

First you can do this for one dog - and a bit harder - for two independent dogs:

dog1 / dog2 / both

head_left1 / head_left2

…

go_left1 / go_left2 /

...

go_both / grow_both

...

Then you can use these new commands in interpreter mode. And now the younger children

can also experiment with the modelling of emotions in the doggie environment (for example

see Figure 11 – 14).

Figure 11. Inspect Figure 12. Joy

Figure 13. Disinterest Figure 14. Fear

And by modelling the motion of the Picasso dogs the children can also “tell” little visual

stories of emotional behaviour (they can make little "films" in a very easy way) and analyze

what's going on ...1

So we need more good problems to make construals on computers which give us more good

"things to think with" using a kind of empirical modelling which is suitable for children.

1 See a little example on YouTube (Petsche, 2017).

17

References

Baranov, S. N., & Nozdrunov, N. R. (1988). Yazyk Fort i yego realizatsii. Leningrad:

"Mashinostroyeniye".

Beynon, M. (1986). The LSD notation for communicating systems. University of Warwick.

Department of Computer Science. (Department of Computer Science Research

Report). (Unpublished) CS-RR-087. Permanent WRAP url:

http://wrap.warwick.ac.uk/60783

Beynon, M., et al. (2015). Making construals as a new digital skill: dissolving the program –

and the programmer – interface. Proceedings of the 2015 International Conference on

Interactive Technologies and Games, 22-23 October 2015, Nottingham, UK, pp9-16.

Blekhman, I. I., Myshkis, A. D., & Panovko, Ya. G. (1976). Prikladnaya matematika:

predmet, logika, osobennosti podkhodov. Kiyev: "Naukova dumka".

Krumbholz, E. (1969). Neue Fingerzeige. Anekdoten. Halle: Mitteldeutscher Verlag.

Moiseyev, N. N. (1979). Matematika stavit eksperiment. Moskva: "Nauka".

Petsche, H.-J. (1985). Zur Bestimmung der Rolle der Mathematik als Triebkraft der

wissenschaftlich-technischen Revolution – einige inhaltliche und methodologische

Aspekte einer philosophischen Analyse. 1985. Diss. B. Potsdam: Päd. Hochschule.

Petsche, H.-J. (1988). Zu einigen weltanschaulich-philosophischen Aspekten der

Mathematikanwendung bei der Synthese erkennungsfähiger technischer Systeme

(Identifikatoren). In: Potsdamer Forschungen. Reihe A; 87. Potsdam: Päd.

Hochschule, pp. 120-146.

Petsche, H.-J. (2017, August 8). The Picasso Construal - a Logo in Forth example. Retrieved

from https://www.youtube.com/watch?v=zxj25IrN044

Petsche, H.-J. (Ed.), Schachtzabel. H., & Sprengel, H.-J. (1989). LOGO in FORTH -

Einführung in ein Sprachkonzept für die Informatikausbildung. (Potsdamer

Forschungen. Naturwissenschaftliche Reihe, Heft 65). Potsdam: Päd. Hochschule.

Russ, S. (2009). Human Computing. (Slides). Retrieved from:

http://slideplayer.com/slide/7557293/

	Title
	Abstract
	1 From Forth to Logo
	1.1 The history of the idea
	1.2 How to rebuild Logo in Forth?
	1.3 Finally, what can be said about the fate of "Logo in Forth"?

	2 Some additional remarks about modelling
	3 The Picasso Construal: Papert meets Picasso
	3.1 The Picasso problem
	3.2 From turtle graphics to doggie graphics

	References

