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When there is little information on which to base our conclusions, we

cannot expect reasoning (no matter how clever or thorough) to reveal a

most probable hypothesis or a uniquely reasonable course of action. There

are limits to the power of reason.

Peter Walley, 1991,

in Statistical Reasoning with Imprecise Probabilities, London, pg. 2

In a predestinate world, decision would be illusory; in a world of perfect

foreknowledge, empty; in a world without natural order, powerless. Our

intuitive attitude to life implies non-illusory, non-empty, non-powerless

decision... Since decision in this sense excludes both perfect foresight

and anarchy in nature, it must be defined as choice in face of bounded

uncertainty.

George L.S. Shackle, 1961,

in Decision, Order, and Time in Human Affairs, Cambridge, pg. 43





Abstract

We present an application of imprecise probability theory to the quantification of uncertainty in

the integrated assessment of climate change. Our work is motivated by the fact that uncertainty

about climate change is pervasive, and therefore requires a thorough treatment in the integrated

assessment process. Classical probability theory faces some severe difficulties in this respect,

since it cannot capture very poor states of information in a satisfactory manner. A more general

framework is provided by imprecise probability theory, which offers a similarly firm evidential

and behavioural foundation, while at the same time allowing to capture more diverse states of

information. An imprecise probability describes the information in terms of lower and upper

bounds on probability.

For the purpose of our imprecise probability analysis, we construct a diffusion ocean energy

balance climate model that parameterises the global mean temperature response to secular

trends in the radiative forcing in terms of climate sensitivity and effective vertical ocean heat

diffusivity. We compare the model behaviour to the 20th century temperature record in order to

derive a likelihood function for these two parameters and the forcing strength of anthropogenic

sulphate aerosols. Results show a strong positive correlation between climate sensitivity and

ocean heat diffusivity, and between climate sensitivity and absolute strength of the sulphate

forcing. We have applied a series of statistical tests to the residual stochasticity, on the basis

of which only values of climate sensitivity below 1.1 K, and a sulphate aerosol cooling above

1.75 W m−2 in the year 1990 could be rejected at the 5% significance level.

We identify two suitable imprecise probability classes, probability boxes and ε-contamination

models, for an efficient representation of the uncertainty about the climate model parameters

and provide an algorithm to combine the information content of these two classes into a single

imprecise probability representation described by a belief function. We construct a belief func-

tion for the prior parameter uncertainty from a set of probability estimates in the literature

(climate sensitivity, sulphate aerosol cooling) and observational estimates of 20th century ocean

heat uptake (ocean heat diffusivity). For the purpose of updating the prior with the likelihood

function, we establish a methodological framework that allows us to perform the updating pro-

cedure efficiently on the entire event space and for two different updating rules: Dempster’s

rule of conditioning and the Generalised Bayes’ rule. Dempster’s rule yields a posterior belief

function in good qualitative agreement with previous studies that tried to constrain climate

sensitivity and sulphate aerosol cooling. It allocates small weight to high values of climate

sensitivity (upper 95% quantile: T2x ≈ 6.9 K) and excludes low values of climate sensitivity

T2x < 1.5 K with almost certainty. Moreover, the sulphate aerosol forcing in the year 1990 can

be constrained to [−1.53 W m−2,−0.33 W m−2] with 99% lower confidence. In contrast, we are

not able to produce meaningful imprecise posterior probability bounds from the application of

the Generalised Bayes’ Rule. We can attribute this result mainly to our choice of representing

the prior uncertainty by a belief function.

We project the Dempster-updated belief function for the climate model parameters onto es-

timates of future global mean temperature change under several emissions scenarios for the 21st

century, and several long-term stabilisation policies. The upper end of the warming estimates is

dominated by the possibility of high values of climate sensitivity, and exceeds corresponding es-

timates of the Intergovernmental Panel on Climate Change by more than 30%. At the low end,

it is very unlikely that the warming in the 21st century will remain below 2 Kelvin in the absence

of policy interventions. Within the limitations of our analysis we find that it requires a stringent

stabilisation level of around 450 ppm CO2 equivalent to obtain a non-negligible lower proba-

bility of limiting the warming to 2 Kelvin. We discuss several frameworks of decision-making
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under ambiguity and show that they can lead to a variety of, possibly imprecise, climate policy

recommendations. We find, however, that poor states of information do not necessarily impede

a useful policy advice.

We conclude that imprecise probabilities constitute indeed a promising candidate for the

adequate treatment of uncertainty in the integrated assessment of climate change. We have

constructed prior belief functions that allow much weaker assumptions on the prior state of

information than a prior probability would require and, nevertheless, can be propagated through

the entire assessment process. As a caveat, the updating issue needs further investigation.

Belief functions constitute only a sensible choice for the prior uncertainty representation if

more restrictive updating rules than the Generalised Bayes’ Rule are available.
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Zusammenfassung

Diese Arbeit untersucht die Eignung der Theorie der unscharfen Wahrscheinlichkeiten für die

Beschreibung der Unsicherheit in der integrierten Analyse des Klimawandels. Die wissenschaft-

liche Unsicherheit bezüglich vieler Aspekte des Klimawandels ist beträchtlich, so dass ihre an-

gemessene Beschreibung von großer Wichtigkeit ist. Die klassische Wahrscheinlichkeitstheorie

weist in diesem Zusammenhang einige Probleme auf, da sie Zustände sehr geringer Informa-

tion nicht zufriedenstellend beschreiben kann. Die unscharfe Wahrscheinlichkeitstheorie bietet

ein gleichermaßen fundiertes Theoriegebäude, welches jedoch eine größere Flexibilität bei der

Beschreibung verschiedenartiger Informationszustände erlaubt. Unscharfe Wahrscheinlichkeiten

erfassen solche Informationszustände durch die Spezifizierung von unteren und oberen Grenzen

an zulässige Werte der Wahrscheinlichkeit.

Unsere Analyse des Klimawandels beruht auf einem Energiebilanzmodell mit diffusivem

Ozean, welches die globale Temperaturantwort auf eine Änderung der Strahlungsbilanz in

Abhängigkeit von zwei Parametern beschreibt: die Klimasensitivität, und die effektive vertikale

Wärmediffusivität im Ozean. Wir vergleichen das Modellverhalten mit den Temperaturmessun-

gen des 20. Jahrhunderts, um eine sogenannte Likelihood-Funktion für die Hypothesen zu diesen

beiden Parametern sowie dem kühlenden Einfluss der Sulfataerosole zu ermitteln. Im Ergebnis

zeigt sich eine stark positive Korrelation zwischen Klimasensitivität und Wärmediffusivität im

Ozean, und Klimasensitivität und kühlendem Einfluss der Sulfataerosole. Wir haben eine Rei-

he von statistischen Tests angewandt, um den Raum möglicher Hypothesen einzuengen. Auf

diese Weise lassen sich lediglich eine Strahlungswirkung der Sulfataerosole, die −1.75 W m−2

im Jahr 1990 unterschritten hat, und eine Klimasensitivität unterhalb von 1.1 K mit einem

Signifikanzniveau von 5% ausschließen.

Für die effiziente Beschreibung der Parameterunsicherheit ziehen wir zwei geeignete Modell-

typen aus der unscharfen Wahrscheinlichkeitstheorie heran: Wahrscheinlichkeitsverteilungsbän-

der und sogenannte ε-Kontaminationsmodelle. Wir formulieren einen Algorithmus, der den In-

formationsgehalt beider Modelle vereint und durch eine sogenannte Belief-Funktion beschreibt.

Mit Hilfe dieses Algorithmus konstruieren wir Belief-Funktionen für die A-priori-Parameter-

unsicherheit auf der Grundlage von divergierenden Wahrscheinlichkeitsschätzungen in der Li-

teratur (Klimasensitivität, Strahlungswirkung des Sulfats) bzw. auf der Grundlage von auf

Beobachtungsdaten beruhenden Schätzungen der Wärmeaufnahme des Ozeans in der zweiten

Hälfte des 20. Jahrhunderts (Wärmediffusivität im Ozean). Wir leiten eine Methode her, um

die A-priori-Belief-Funktion im Lichte der Likelihood-Funktion zu aktualisieren. Dabei ziehen

wir zwei verschiedene Regeln zur Durchführung des Lernprozesses in Betracht: die Dempster-

sche Regel und die verallgemeinerte Bayessche Regel. Durch Anwendung der Dempsterschen

Regel erhalten wir eine A-posteriori-Belief-Funktion, deren Informationsgehalt qualitativ mit

den Ergebnissen bisheriger Studien übereinstimmt, die eine Einschränkung der Unsicherheit

über die Klimasensitivität und die kühlende Wirkung der Sulfataerosole versucht haben. Ei-

ner hohen Klimasensitivität wird ein kleines, aber nicht verschwindendes Gewicht zugemessen

(oberes 95% Quantil: T2x = 6.9 K), während eine Klimasensitivität unterhalb von 1.5 K mit fast

vollständiger Sicherheit ausgeschlossen werden kann. Außerdem kann die Strahlungswirkung der

Sulfataerosole im Jahr 1990 auf den Bereich [−1.53 W m−2,−0.33 W m−2] mit einem unterem

Konfidenzgrad von 99% eingeengt werden. Im Gegensatz dazu finden wir bei Anwendung der

verallgemeinerten Bayesschen Regel keine sinnvollen unteren und oberen Grenzen an die A-

posteriori-Wahrscheinlichkeit. Wir haben festgestellt, dass dieses Resultat maßgeblich durch

die Wahl einer Belief-Funktion zur Beschreibung der A-priori-Unsicherheit bedingt ist.

Die A-posteriori-Belief-Funktion für die Modellparameter, die wir aus der Anwendung der

v



Dempsterschen Regel erhalten haben, wird zur Abschätzung des zukünftigen Temperaturan-

stiegs eingesetzt. Wir betrachten verschiedene Emissionsszenarien für das 21. Jahrhundert so-

wie verschiedene Stabilisierungsziele für den Treibhausgasgehalt in der Atmosphäre. Der obe-

re Bereich der geschätzten Erwärmung gegen Ende des 21. Jahrhunderts liegt ca. 30% ober-

halb der Schätzung des Zwischenstaatlichen Ausschusses über Klimaänderungen (IPCC), was

auf die Zulässigkeit sehr hoher Klimasensitivitäten im Rahmen der A-posteriori-Unsicherheit

zurückzuführen ist. Bezüglich des unteren Bereichs läßt sich im Rahmen unserer Analyse sa-

gen, dass eine Erwärmung unterhalb von 2 Kelvin im 21. Jahrhundert äußerst unwahrschein-

lich ist. Darüberhinaus finden wir, dass sehr strikte Stabilisierungsziele im Bereich einer CO2-

Äquivalentkonzentration von ca. 450 ppm in der Atmosphäre notwendig sind, um nicht eine

vernachlässigbar kleine untere Wahrscheinlichkeit für die Begrenzung der Erwärmung auf 2

Kelvin zu erhalten. Wir diskutieren verschiedene Kriterien für die Entscheidungsfindung unter

unscharfer Wahrscheinlichkeit, und zeigen dass sie zu verschiedenen teilweise unscharfen Politik-

empfehlungen führen können. Nichtsdestotrotz stellen wir fest, dass eine klare Politikempfehlung

auch bei Zuständen schwacher Information möglich sein kann.

Wir schließen, dass unscharfe Wahrscheinlichkeiten tatsächlich ein geeignetes Mittel zur

Beschreibung der Unsicherheit in der integrierten Analyse des Klimawandels darstellen. Wir

haben Algorithmen zur Generierung und Weiterverarbeitung von Belief-Funktionen etabliert,

die eine deutlich größere A-priori-Unsicherheit beschreiben können, als durch eine A-priori-

Wahrscheinlichkeit möglich wäre. Allerdings erfordert die Frage des Lernprozesses für unscharfe

Wahrscheinlichkeiten eine weitergehende Untersuchung. Belief-Funktionen stellen nur dann eine

vernünftige Wahl für die Beschreibung der A-priori-Unsicherheit dar, wenn striktere Regeln als

die verallgemeinerte Bayessche Regel für den Lernprozess gerechtfertigt werden können.
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Preface

This work has been motivated by the objective to demonstrate the applicability of im-

precise probability theory to the integrated assessment of climate change. To achieve

this goal, we believe it to be important to demonstrate the applicability to each indi-

vidual step in the assessment chain, i.e., 1. assessing an imprecise prior probability for

a set of hypotheses about pertinent characteristics of the climate response (Chapter 3),

2. deriving a likelihood function for the set of hypotheses from a comparison with past

and present climate observations (Chapter 2), 3. updating the imprecise prior proba-

bility with the likelihood information (Chapter 4), 4. projecting the resulting imprecise

posterior probability onto estimates of future climate change (Chapter 5), and finally,

5. conducting a climate policy analysis under imprecise probability on the basis of these

warming estimates (Chapter 5). An omission of any of these steps would have greatly

diminished the value of this thesis. If we had omitted the first step, we would not

have explicated how to generate the imprecise probability representation used later on.

If we had omitted the second and third step, we would not have demonstrated how

observational data can be included to constrain the uncertainty. If we had omitted the

fourth and fifth step, we would not have delivered the results of our effort. Therefore,

we believe that we had to include all of these steps into the thesis.

As a consequence, it was impossible to cover the wealth of material on a limited

space of 100 pages. We want to assure the faculty that we have not breached this

regulation light-heartedly. In contrast, we have taken every effort to limit the size of

the presentation in the main body of the text as well as in the appendix. We have

completely omitted all of our work that is not directly related to the application of

imprecise probability theory to the integrated assessment of climate change (Kriegler

and Bruckner, 2002, 2004; Edenhofer et al., 2005). Moreover, we have delegated our

derivation of the climate model that is used throughout the analysis as well as a survey

of imprecise probability theory that is necessary to understand our particular choice

of imprecise probability analysis to the appendix. We have also taken care to avoid

redundancies and excessive presentation. We have consulted a considerable number of

proof-readers to double-check that this goal has been achieved in a satisfactory manner.

As a result of our efforts, we could limit the main body of this thesis to 156 pages. Any

further reduction would have detracted from the clarity of the presentation. Therefore,

we are confident that the exceeding of the page limit will be met with acceptance.
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Chapter 1

Introduction

Anthropogenic environmental change is altering the flow of natural services as well as

natural hazards to societies in many regions of the world. Meanwhile, the human impact

on the environment continues to grow on a global scale, as the increasing land and water

use and the rising concentrations of greenhouse gases in the atmosphere show. Decision

makers are confronted with the difficult problem to address environmental change on

the local, regional and global level and on time horizons of years to centuries. Among

global environmental change, climate change is an issue of paramount concern. It has

the potential to deliver severe consequences to societies around the globe ranging from

extreme events like floods and droughts to abrupt changes of long-term climate regimes

(Smith et al., 2001). At the same time, climate change constitutes an example of the

intricate challenge posed to global environmental policy. As the spatial and temporal

scales increase, the scientific uncertainty about the web of causal relationships grows,

while the power of political institutions to take action becomes more and more limited.

In this situation, thorough assessments of the past and future impact of humankind

on the climate and the past and future impact of the climate on humankind are needed

to provide guidelines for action. Scientific investigations that are deliberately designed

to support climate related economic, social and political decision making processes are

called integrated assessments of climate change (e.g., Rotmans, 1990; Dowlatabadi and

Morgan, 1995; Schellnhuber and Yohe, 1997). Ideally, such assessments have two key

characteristics: their research objective is motivated by a real-world policy question;

and their research findings provide a direct input to a normative decision making process

with the objective to protect our well-being and environment in the face of climate

change. As a minimum, integrated assessments will have to include models of the

climate and socio-economic system and the interaction between them. Beyond this,

there is the need for a consistent treatment of information about model structures,

their validity in the light of historical data and their relevance with respect to the

policy question under consideration. This can be a difficult task, since the assessment

ranges across the border between the natural and social sciences.

A particularly important and still unresolved problem in the assessment process

is the treatment of epistemic uncertainty like, e.g., lack of knowledge about causal
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2 Chapter 1: Introduction

relationships. Epistemic uncertainty is pervasive in the integrated assessment of climate

change. How sensitive is the climate to an increase of the atmospheric carbon dioxide

content? How strong is the cooling effect of anthropogenic aerosols? How will the ocean

circulation react to a warming and freshening in the high latitudes? How large is the

potential of renewable energy technologies to outcompete fossil fuels in the future? How

fast and how resource intensive will the developing world develop in the 21st century?

We could continue the list of open questions for the remaining pages of the thesis.

Integrated assessments of climate change will have to address many of them. This can

be done by inserting the open questions as branching points in the analysis, by collecting

the range of possible answers and by weighing their likelihood against each other as

far as possible - in short, by measuring the uncertainty on the basis of the available

evidence. However, the measure of uncertainty needs to be flexible enough to capture

the widely different types of evidence from the natural sciences such as time series of

stochastic climate variables, as well as from the social sciences such as stylised facts

of economic growth. Moreover, the measure of uncertainty needs to be amenable to a

decision analysis, since it is the very objective of an integrated assessment of climate

change to support the real-word decision making process.

Probability theory provides a well-founded mathematical framework for quantifying

epistemic uncertainty. The use of probability to deal with epistemic uncertainty rests

in particular on a behavioural interpretation as degree of belief that is reflected in the

disposition to act (de Finetti, 1974). In contrast, frequentist interpretations of prob-

ability are only of limited use if the uncertainty emerges from a lack of information

rather than from stochasticity in observables. There exists also an impressive body

of theoretical results and practical experience about the use of probabilities in deci-

sion making. Hence, probability theory exhibits several assets that are needed in the

integrated assessment of climate change.

However, probability theory faces also severe difficulties in treating the diverse and

often very poor information about the many aspects of climate change. In situations

of near ignorance about a set of hypotheses, it is often recommended to assume that

all possible hypotheses are equally probable. Obviously, such an expression of belief is

something very different than ignorance. Since the equiprobability assumption gener-

ates the least informative probability model, additional information that is not backed

by evidence has to be assumed deliberately in such situations. Indeed, probability

assessments that do not rest firmly on an evidential basis can lead to controversial

policy advice. Stakeholders may feel that the risk of recommended actions and the

opportunity of discarded actions is undervalued. Others may reject the use of proba-

bilities in light of the poor state of information. At the root of this controversy is a

discomfort with the original probability assessment as accurate representation of the

available information. In such situations probabilities cannot provide a satisfactory

evidential foundation and, by this very reason, a convincing behavioural implication in

a normative decision making context.
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1.1 Motivation of the thesis

This thesis is motivated by the need for a framework of epistemic uncertainty with a

clear evidential foundation and a clear behavioural implication that is well suited for

the integrated assessment of climate change. Due to the poor state of information about

many aspects of climate change, quantitative estimates of the associated uncertainty

have been specified in the past mostly in terms of intervals or scenarios that delineate

a range of plausible values for the quantity in question. The Third Assessment Report

(TAR) of the Intergovernmental Panel on Climate Change (IPCC) serves as a good

example to illustrate this point. However, such uncertainty estimates are not well-

suited for a climate policy analysis. They are likely to produce large ranges of plausible

policy outcomes, which will make it very difficult to distinguish the policies under

consideration decisively.

Therefore, a debate ignited whether the IPCC should be more outspoken and pro-

vide probability assessments for, e.g., future emissions trajectories and climate sen-

sitivity. While some argued that this is exactly what climate policy analysis needs

(Schneider, 2001; Dessai and Hulme, 2003), others emphasised that this is not what

a scientific inquiry can currently provide, in particular concerning socio-economic pro-

jections (Grübler and Nakicenovic, 2001). However, some climate scientists have been

more optimistic about the prospect of probabilistic climate change forecasts (Allen and

Ingram, 2002), and such forecasts have become indeed more widespread in the recent

years (e.g., Stott and Kettleborough, 2002).

Probabilistic analyses of climate change are usually based on (i) probability es-

timates from experts or (ii) an ensemble of model runs with altered parameters or

boundary conditions that are constrained by observations of past and present climate.

In the former case, the subjectivity of the probability assessment is evident. Poor states

of information usually disclose themselves by widely disagreeing expert opinions as was

illustrated, e.g., by the expert elicitation of Morgan and Keith (1995) on climate sen-

sitivity and other climate change related quantities. If the analyst insists on relying

upon a single probability estimate for her assessment of climate change, she needs to

choose some mechanism to aggregate the expert opinions (Genest and Zidek, 1986).

Such a mechanism usually has to be based on a distribution of (probability) weights

over the experts, whose existence and shape will be hard to justify (see, e.g., Keith

1996, Paté-Cornell 1997 for a discussion in the context of climate change). A more sat-

isfactory solution would be to process all expert opinions on an equal footing. In this

case, however, each emissions scenario or climate policy would have to be associated

with an entire set of probabilities. Obviously, such a situation calls for a different policy

analysis than can be provided by conventional decision frameworks such as expected

utility theory (von Neumann and Morgenstern, 1944). Moreover, we have to ask the

analyst if she really believes to have captured the state of information adequately by

taking into account all elicited expert opinions. Given the large disagreement among

the experts, she will hardly be able to dispute the fact that there can be many more
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probability estimates which are compatible with the state of information.

The example of subjective expert opinions highlights the difficulties that probabilis-

tic uncertainty representations will have to face in the presence of poor information.

The situation is similar, albeit less obvious for the second type of probabilistic climate

change assessments that are based on an ensemble of model runs. In general, two in-

gredients are necessary to generate a probability distribution for the model ensemble

from a comparison with observations. First, one need to specify a conditional probabil-

ity that the model simulation reproduces the observations for each ensemble member.

The collection of these conditional probabilities over the entire ensemble is called a

likelihood function. Second, one needs to specify a probability distribution over the

ensemble that expresses the degree of confidence in the individual ensemble members

prior to comparing them with the data. The first, by no means trivial, requirement can

be met by adapting the technique of optimal fingerprinting (Hasselmann, 1993; Allen

and Tett, 1999). This method employs control run data from coupled atmosphere-ocean

general circulation models (AOGCMs) to generate an estimate for the stochasticity in

the climate, which is then fed into a linear regression of the ensemble of model response

patterns against the observations. Hence, optimal fingerprinting allows to conduct a

classical statistical analysis, on the basis of which ensemble members can be rejected at

some confidence level. It can also be adapted to construct a likelihood function for the

ensemble members (Berliner et al., 2000). However, in order to construct a probability

distribution for the ensemble members, one needs to assume a second ingredient, the

prior probability and update it with the likelihood function via Bayes’ rule (Bayes,

1763). Hence, the subjective element of a probabilistic climate change assessment has

re-entered the analysis in the shape of the prior probability.

Analysts that openly adopt a Bayesian framework usually consider several priors for

generating probabilistic estimates of climate change or pertinent quantities like climate

sensitivity (e.g., Forest et al., 2002). Again, their result is a set of probabilities with

all its implications for climate policy analysis. Moreover, we can ask them the same

question posed above as to why they did not consider all the uncountable prior prob-

abilities that were compatible with the prior state of information. Other analysts that

cling to the idea of objective probabilities usually make the implicit assumption that

the prior probability is uniformly distributed, which enables them to identify the nor-

malised likelihood function as posterior probability. This assumption is in accordance

with both the concept of noninformative prior in objective Bayesianism (e.g., Kass and

Wasserman, 1996) and the ‘principle of indifference’ in subjective Bayesianism, yet it

can be challenged on both counts.

Turning first to the idea of an objective prior probability that ought to represent the

‘absence of information’ before any observation is received, we point to the fact that any

probability distribution specifies a set of precise weights on the set of alternatives and,

therefore, is markedly distinct from a state of complete ignorance. Due to this property,

any attempt of identifying a specific probability distribution with complete ignorance

will run into paradoxes. A nice example in the context of climate change is presented by
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Frame et al. (2005). They consider two standard parameterisations for the sensitivity

of the climate response to secular trends in the radiative forcing. This sensitivity can

be either captured in terms of the climate feedback strength λ or in terms of the climate

sensitivity T2x ∼ 1/λ to a doubling of the atmospheric CO2 concentration relative to

its preindustrial value (see Section 2.1.1). Due to the inverse proportional relationship

between the two quantities, it is impossible to specify identical probabilities for both of

them. Hence, if one identifies a single probability distribution with complete ignorance,

then one can produce the paradoxical situation that there is complete ignorance about

climate sensitivity, while at the same time there is some information about climate

feedback strength and vice versa. More paradoxes can be constructed in a similar

manner. For example, if you assumed complete ignorance about the atmospheric CO2

concentration in the year 2100, you could not make the same assumption about the

associated radiative forcing (logarithmic dependency). Or you might be completely

ignorant about the effective ocean heat diffusivity, but not so about ocean heat uptake

(square root dependency). Obviously, the attempt to associate a single probability with

complete ignorance is doomed. On a much more informed basis than we can produce,

Peter Walley states in his seminal book on the generalisation of probability theory

(Walley, 1991, pg. 234):

Our conclusion is that the quest for Bayesian noninformative priors is futile.

So called ‘noninformative priors’ are not ‘noninformative’ (they have strong

implications for behaviour),... The problem is not that Bayesians have yet

to discover the ‘truly’ noninformative priors, but rather that no precise

probability distribution can adequately represent ignorance.

It is fair to add that objective Bayesians have long retreated from the position that

a noninformative prior represents a state of complete ignorance. It suffices, so they

claim, that it ‘lets the data speak’, i.e., it does not bias the likelihood function in the

process of constructing a posterior probability via Bayes’ rule. However, we have to ask:

‘Speak about what?’ Ultimately, climate policy makers will be interested in a measure

that combines climatic and socio-economic consequences of a particular policy under

consideration. Hence, we would need to construct a likelihood function for the costs and

benefits of climate policies. What kind of interdisciplinary data should be used, and

what kind of interdisciplinary statistical method would be applicable to identify such

a likelihood function? The author believes that such an attempt would be futile for a

long time to come. The complexity of an integrated assessment of climate change will

prevent the use of the objective Bayesian approach of simply ‘letting the data speak’.

This brings us to ‘the principle of indifference’ which does not try to take recourse to

the notion of ‘objectivity’, but instead, to the notion of ‘rationality’. In the absence of

any information, so it claims, it is rational to be indifferent between the alternatives. It

can be shown that this behavioural disposition entails a uniform probability distribution

on the set of alternatives. There have been more sophisticated approaches to motivate

the existence of a probability distribution that describes the underlying subjective belief

even in a state of complete ignorance. Conventional expected utility theories can be
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based on a set of ‘rationality axioms’ for individual preferences among a set of available

actions, which guarantee the existence of such a subjective probability (Savage, 1954).

However, this result hinges crucially on the restrictive nature of the rationality axioms,

in particular on the comparability requirement for all acts and the so-called ‘sure thing’-

principle.

Ellsberg (1961) demonstrated in a famous experiment that these peculiar rational-

ity requirements are at odds with real-life decision making. In an adjusted form the

experiment consists in presenting an urn with altogether 90 red, yellow and black balls

to a set of subjects. 30 balls are known to be red, while the other two colours are

contained in unknown proportions. The subjects are offered a prize if they manage to

obtain the colour of their choice with a random draw of a single ball from the urn. It

turns out that the majority of subjects will pick the colour red, where they know the

probability of winning the prize beforehand. They avoid the other two colours whose

proportion of balls are surrounded by ambiguity. Obviously, the subjects refuse to

make an equiproportion assumption for the black and yellow balls - in violation of the

principle of indifference. Moreover, there exists no other pair of subjective probability

weights for black and yellow that would make both colours less attractive than red.

Hence, this instance of ambiguity aversion is incompatible with the exclusive use of

subjective probabilities in the decision making process as motivated by Savage (1954).

Ellsberg’s experiment shows that it can be misleading to discard the ambiguity in a

decision situation by applying the principle of indifference or postulating a subjective

probability in any other way. The author believes that this would be a particularly

poor basis for conducting a viable climate policy analysis, because there exists indeed a

large amount of ambiguity about the outcome of climate policies. It can be argued that

concepts like the precautionary principle are motivated by the presence of ambiguity.

The European Commission, for instance, states in a guideline on the applicability of

the principle that a recourse to it presupposes “a scientific evaluation of the risk which

because of the insufficiency of the data, their inconclusive or imprecise nature, makes

it impossible to determine with sufficient certainty the risk in question” (European

Commission, 2000, pg. 15). In the literature, various attempts have been made to

formalise the precautionary principle by drawing on the difference between ambiguity

and classical probabilistic uncertainty (e.g., Henry and Henry, 2002; Chevé and Congar,

2003).

Our discussion has highlighted the difficulties that an application of probability

theory to the integrated assessment of climate change will inevitably encounter. The

question naturally arises if the epistemic uncertainty about climate change can be pro-

cessed by other means that avoid these difficulties at least to some extent? Since we

have identified the major source for the inadequacy of the probability calculus in its

inability to describe poor states of information, any other more promising framework

would have to provide a satisfactory description of the state of complete ignorance.

We have already seen above that a full treatment of subjectivity in probabilistic as-

sessments gives easily rise to imprecise probability statements that encompass an entire
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set of plausible probability estimates. It is interesting to note that in response to the

Ellsberg experiment axiomatic decision theories have been established that point in the

same direction (Gilboa, 1987; Gilboa and Schmeidler, 1989; Schmeidler, 1989). These

theories motivate the description of subjective beliefs in terms of convex sets of prob-

abilities, which allows them to accommodate the phenomenon of ambiguity aversion

as illustrated by Ellsberg (1961). At the same time, statisticians such as Peter Walley

(1991) and philosophers like Isaac Levi (1980) have argued with fervor that a general-

isation of probability to imprecise probability is necessary and sufficient for providing

a satisfactory evidential and behavioural foundation for the treatment of epistemic

uncertainty.

Imprecise probabilities come in several forms with different levels of generality (see

Appendix C), but they all share the following characteristics: they yield a lower bound

P (A) and upper bound P (A) on the probability that an event A will occur. When

lower and upper bound fall onto each other, the classical case of probability theory

obtains. When the lower bound is strictly smaller than the upper bound, the state

of information is said to be imprecise. This concept allows to capture the state of

complete ignorance in a satisfactory manner (Walley, 1996a). It is modelled by the

vacuous lower and upper probability P (A) = 0 and P (A) = 1 for all nonempty events

A that constitute a strict subset of the set Ω of all alternatives. It is easy to see that

the vacuous probability bounds encompass the set of all probability distributions on

Ω. Since imprecise probability theory includes such a state of complete ignorance as

well as the other extreme of complete information, it can model the entire continuum

of information between the two extremes. It is important to note, however, that this

does not allow to completely avoid subjective elements in an imprecise probability

assessment along the lines of a Bayesian analysis. The reason is that the assumption of

prior complete ignorance will also lead to posterior complete ignorance after updating

the prior ‘absence of information’ with whatever observation is received (at least on the

set of alternatives that cannot by excluded with certainty in light of the data) (Walley,

1991, Section 7.3.7). This indicates that likelihood information about some quantity

in question can only convey a meaning if there is known more than nothing about this

quantity beforehand. However, this condition is much weaker than requiring to know

a precise prior probability beforehand. Imprecise probability theory allows to work

with a set of (subjective) constraints that characterise a set of plausible probability

distributions that are compatible with the prior state of information. These constraints

can be very weak, and still might yield meaningful imprecise posterior probabilities in

the updating process. Only the complete absence of any such constraints will render

the inference process meaningless.

In summary, we believe that imprecise probability theory could be indeed a promis-

ing candidate for the consistent treatment of epistemic uncertainty in the integrated

assessment of climate change. However, any promising uncertainty framework will be

useless to the practitioner, if it cannot be applied to the complex problem of assess-

ing climate change, e.g., due to a lack of mathematical tractability. Moreover, even
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if tractability can be established for some special type of imprecise probability model,

the question remains whether the application will still show the particular strength of

imprecise probability to describe the continuum of possible states of information. Ulti-

mately, these questions can only be answered by giving it a try. This is the underlying

motivation of the thesis presented here. We want to attempt a prototypical applica-

tion of imprecise probability theory to the treatment of epistemic uncertainty in the

integrated assessment of climate change. In doing so, we are seeking answers to the

following three underlying questions:

1. Do mathematically tractable methods for processing imprecise probability infor-

mation exist that suit the requirements of an integrated assessment of climate

change?

2. Can the ability of imprecise probability to capture poor states of information be

capitalised on for the quantification of uncertainties about climate change?

3. Can the impact of providing imprecise information to the climate policy process

lead to a distinctly different decision support (e.g., more robust or more diffuse

advice) than can be obtained from standard probability based decision analyses?

1.2 Outline of the thesis

To the best of our knowledge, we are undertaking the first attempt to investigate the po-

tential of imprecise probability analysis in the integrated assessment of climate change.

Therefore, we believe it to be important to cover the entire assessment chain from

generating the imprecise prior probability representation for pertinent characteristics

of the climate response, to updating it with likelihood information from a comparison

with past and present climate observations, to projecting the imprecise posterior un-

certainty onto estimates of future climate change, to finally conducting a climate policy

analysis under imprecise probability. If imprecise probability theory is to be a viable

uncertainty framework for the integrated assessment of climate change, it needs to be

amenable to all these steps in a consistent manner.

The structure of the thesis reflects the stepwise proceeding through the assessment

process. Chapter 2 contains the basis for our assessment of climate change by con-

structing the set of model hypothesis for the global mean climate response to human

interference and by comparing it with the instrumental temperature record in the 20th

century. For the former task, we need a simple physical-statistical climate model that

parameterises the global mean temperature response to secular trends in the radiative

forcing in an efficient manner. The model is briefly outlined in Section 2.1.1, while its

construction is discussed in detail in Appendices A and B. To compare the model re-

sponse with the instrumental temperature record in the 20th century, we need to specify

an assumption about the radiative forcing during the industrial era (Section 2.2). In

a next step, we define the likelihood that a particular model hypothesis can reproduce

the observed 20th century temperature change on the basis of assumptions about the
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residual stochasticity between model simulation and data (Section 2.3 and 2.4). Fi-

nally, we calculate the resulting likelihood function on the uncertain model parameter

space that is spanned by three key quantities influencing the climate response to secular

trends in the radiative forcing: climate sensitivity, effective vertical ocean heat diffusiv-

ity, and the strength of the combined direct and indirect sulphate aerosol cooling effect

(Section 2.5).

Chapter 3 turns to the problem of generating an imprecise prior probability for

the model parameters. In doing so, we will use a variety of concepts from imprecise

probability theory. To guide the reader through the rich hierarchy of these concepts we

have provided a survey of imprecise probability theory in Appendix C. In Section 3.1

we identify a particular efficient representation that can be obtained for special cases

of imprecise probability, and that has the potential to greatly improve mathematical

tractability. We then discuss several imprecise probability models that might fit into

this framework and show how they can be derived from expert opinions or diverse

probability estimates in the literature (Section 3.2 and 3.3). In the remaining part of

the chapter we construct prior belief functions, a special type of imprecise probability,

for the individual model parameters (Section 3.4) and combine them to a joint belief

function on the entire parameter space (Section 3.5).

Chapter 4 discusses the problem of updating the prior belief function with the

likelihood function calculated in Chapter 2. After outlining the challenge of applying

a generalised version of Bayes’ rule in Section 4.1, we establish a methodology for the

updating process in Section 4.2. The remaining section 4.3 discusses the imprecise

posterior probability models that can be obtained under two different updating rules.

Chapter 5 tackles the remaining two steps of an integrated assessment of climate

change. A methodology for projecting a posterior belief function for the climate model

parameters onto future temperature change is discussed in Section 5.1. We apply

the method under several scenarios for anthropogenic greenhouse gas emissions in the

21st century (Section 5.2), as well as several climate policies that aim to stabilise the

atmospheric CO2 concentration at various levels (Section 5.3). On the basis of these

results, a stylised climate policy analysis under imprecise probability is conducted in

Section 5.4.

Chapter 6 summarises our findings and arrives at a conclusion. To enhance read-

ability, proofs of formal statements that are found throughout the text are delegated

to Appendix D.



Chapter 2

An Energy Balance Climate

Model and Its Likelihood

In order to estimate future climate change as well as to conduct a climate policy anal-

ysis, we need a model M(θ) : Q → Y that calculates the mean response y ∈ Y of

the climate system to secular trends in the radiative forcing q ∈ Q due to anthro-

pogenic emissions of greenhouse gases. Naturally, such a model will contain uncertain

parameters θ that influence the model projection of future climate change. For the

purpose of demonstrating an imprecise probability analysis of this uncertainty, we have

constructed a Diffusion Ocean Energy balance CLIMate model (DOECLIM). Energy

balance models (EBMs) have been used in the past to derive the global or latitudi-

nal surface temperature from the energy balance of the Earth system (Budyko, 1969;

Sellers, 1969). They have found renewed interest for estimating the response of global

surface temperature to a human-induced increase in atmospheric GHG concentrations

(see, e.g., Hoffert et al., 1980; Harvey and Schneider, 1985; Schlesinger and Jiang, 1990;

Wigley and Raper, 1992; Dutton, 1995; Murphy, 1995; Andronova and Schlesinger,

2000; Harvey and Huang, 2001), and are widely used in integrated assessments of cli-

mate impacts and policies (see, e.g., Nordhaus, 1994; Wigley et al., 1996; Harvey, 2004;

Kriegler and Bruckner, 2004; Edenhofer et al., 2005). These energy balance models are

mostly based on a linearised treatment of the climate response to small perturbations of

the earth’s energy balance. Section 2.1 discusses briefly the basic assumptions behind

such linearised energy balance models, and then describes the structure of the model

DOECLIM. At the end of the section, the model behaviour will be compared to simu-

lations with more complex climate models. Due to the wealth of material that will be

presented in the main body of this thesis, we have to delegate a detailed description of

the model construction, the estimation of its parameters, and its numerical integration

to Appendix A.

We then turn to the problem of estimating a likelihood that the model can repro-

duce the instrumental temperature record for a given choice of model parameters θ.

DOECLIM contains two free parameters: the climate sensitivity T2x, and the effective

vertical diffusivity κv of heat in the ocean (see Section A.4). In addition, we include the

10
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cooling effect of anthropogenic sulphate aerosol into our set of model parameters, since

it is the most important contributor to the uncertainty about the radiative forcing from

anthropogenic agents (Ramaswamy, 2001). The cooling effect is parameterised by the

combined direct and indirect forcing strength of sulphate aerosols QS90 in the year 1990.

A similar choice of uncertain parameters has been made by recent studies that tried

to quantify the uncertainty about climate sensitivity in terms of a probability measure

(Andronova and Schlesinger, 2001; Knutti et al., 2002; Forest et al., 2002).

The model DOECLIM can be regarded as an ensemble of hypotheses

H = { y := M(θ) | θ ∈ Ω} (2.1)

about the climate response y to radiative perturbations, where θ = (T2x, κv , QS90) is the

set of free model parameters, and Ω ⊂ R3 the domain of possible assumptions about the

parameters. Having made an actual observation ŷ, the likelihood function L(θ; ŷ) can

be determined by comparing the hypotheses M(θ) with the observation. The likelihood

is defined by the conditional probability of observing the event ŷ, if hypothesis θ ∈ Ω

is true. In case of an uncountable space of possible observations, as for climate data,

the likelihood function equals the ŷ-value of the set of conditional probability densities

ρ(y|θ) on Y , i.e. L(θ; ŷ) := ρ(ŷ|θ).
The likelihood function is an important concept in classical as well as Bayesian

statistics. In classical statistics, it is frequently used to determine the parameter constel-

lation θ∗, which has the maximum likelihood to reproduce the observation. In Bayesian

statistics, the likelihood function is used to update a prior probability to a posterior

probability that includes the information gained from the observation ŷ. In the present

analysis we will follow the Bayesian approach. However, since this requires us to calcu-

late the likelihood function on the entire parameter space Ω, we can conduct a classical

statistical analysis en route.

Bayesian statistics constitutes a long-established paradigm (Berger, 1985) which

has deep epistemological implications. The use of probabilistic information that is as-

sembled prior to testing a hypothesis presupposes that such beliefs contribute eligible

information for the evaluation of data from test experiments. In this sense, Bayesian

statistics resembles an ‘expert mode’, where knowledge emerges from an interplay be-

tween beliefs and observations on hypotheses. In contrast, classical statistics tries to

base knowledge purely on observations. We believe that the former model better suits

the requirements of an integrated assessment of climate change, in which knowledge

is collected for policy advice, and a set of repeated experiments is often not available.

Bayesian analyses of climate change have been advocated by Hasselmann (1998), Leroy

(1998) and Berliner et al. (2000). Compared to the large body of applications of tech-

niques from classical statistics to climate research (von Storch and Zwiers, 1999), they

have not yet received much attention. However, Bayesian applications are most likely

to be found in climate change analyses that are directed to support some kind of climate

policy decision making process.

The situation is illustrated by the efforts to detect and attribute an anthropogenic
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influence on 20th century climate. The state-of-the-art method consists in comparing

observations with a superposition of (space-time) climate patterns from 3D climate

models that were distilled from model runs with and without anthropogenic forcing

agents (Hasselmann, 1993, 1997). The method has been called optimal fingerprinting

because the patterns are chosen so that they maximise the signal-to-noise ratio for the

detection of an anthropogenic influence. The estimation technique for the weighting

factors of the patterns, and their variances, is firmly based on the classical technique

of generalised linear regression (Allen and Tett, 1999; Allen and Stott, 2003). On this

basis, several studies have shown that the hypothesis of a solely natural climate signal

in the 20th century can be rejected with high confidence, and a large fraction of the

warming is attributable to anthropogenic forcing agents (Hegerl et al., 1996; Tett et al.,

1999; Stott, 2001; Tett, 2002). Due to the need to produce information for climate

policy makers, Bayesian methods have been adopted that retain the classical core of

optimal fingerprinting for estimating some kind of posterior probability for pertinent

characteristics about climate change (e.g., Berliner et al., 2000).

In this analysis we will follow a different approach than is pursued in optimal finger-

printing and its Bayesian derivatives. The reliance on linear regression analysis is owed

to the complex spatio-temporal structure of climate information that is not resolved by

our energy balance model. Therefore, we have to restrict ourselves to the time series of

global mean temperature in the 20th century. As an ancillary benefit from the reduc-

tion of complexity, we do not need to specify the ensemble of model hypotheses as a

superposition of distinct patterns. Instead, we can use the continuous set of hypotheses

M(θ) directly to derive a likelihood function L(θ; ŷ) : Ω → R+ from a comparison of

model response with the instrumental temperature record. This approach has been

used by Kaufmann and Stern (1997) and Smith et al. (2003) in the classical context of

maximum likelihood estimation.

Section 2.2 lists the past contributions of anthropogenic and natural forcing agents

that we include in our analysis. Section 2.3 discusses our assumptions about the stochas-

tic process that underlies the residual between model output and data in the ideal case

of a truthful representation of the climate response to the radiative forcing in the indus-

trial era. Section 2.4 formalises these assumptions by defining a likelihood function for

the climate model parameters in terms of the conditional probability density to observe

the actual temperature record given some θ = (T2x, κv , QS90). Section 2.5 discusses the

likelihood function that emerges from the comparison of model simulations with the

20th century temperature record.

2.1 The diffusion ocean energy balance model DOECLIM

2.1.1 Energy balance of the earth system

In radiative equilibrium the infrared radiation from the earth’s surface FS ↑ is balanced

by the portion of solar radiation FSol ↓ that is absorbed by the earth system and

the additional amount of energy G that is distributed to the earth’s surface due to
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the absorption of infrared radiation in the atmosphere. In a good approximation, the

earth’s surface radiates like a blackbody. According to the Stefan-Boltzmann law, it

is FS ↑= σ T 4
S with TS the surface temperature and σ = 5.67 · 10−8 W m−2 K−4 the

Stefan-Boltzmann constant. Hence, the energy balance is described by

σ T 4
S = FSol ↓ +G . (2.2)

The presence of G = σ T 4
S − FSol ↓> 0 is called the natural greenhouse effect. Given a

present day surface temperature TS ≈ 287 K and an absorbed solar radiation of FSol ↓
≈ 240 W m−2 on the annual average, we find G ≈ 150 W m−2. Thus, the greenhouse

effect contributes considerably to the energy received by the earth’s surface. A more

detailed account of the greenhouse effect can be found in Appendix A.

A perturbation of the energy balance in Equation 2.2 induces a heat flux Ḣ(t) at

the earth’s surface. This leads to an adjustment of surface temperature ∆TS(t), which

corresponds to a change in emitted infrared radiation, i.e.,

∆FS ↑ (t) = σ (TS,eq + ∆TS(t))4 − σ T 4
S,eq ≈ 4σ (TS,eq)3 ∆TS(t) ,

The linear approximation is valid for ‘small’ adjustments ∆TS relative to TS,eq ≈ 287 K.

In this approximation, the heat flux Ḣ(t) is constituted by the net energy difference

between the perturbation ∆E(t) := ∆G(t) + ∆FSol ↓ (t) of the incident energy and a

radiative damping that is proportional to ∆TS(t),

Ḣ(t) = ∆E(t)− r∆TS(t) , with r := 4σ (TS,eq)3 .

In energy balance studies of climate change it is usually assumed that a small

perturbation ∆E(t) of the incident energy can be separated into two terms:

• a radiative forcing Q(t) that captures alterations of the global energy balance

due to changes in the solar constant, atmospheric content of aerosols (due to

volcanos and industrial activity) and GHG concentrations (due to industrial ac-

tivity). There exist several ways to define the radiative forcing. At current, the

so-called adjusted radiative forcing is employed in most energy balance studies of

climate change. It is defined as the net heat flux at the top of the atmosphere

(TOA) after the stratosphere has returned to equilibrium, but before tropospheric

and surface temperatures were allowed to adjust. This is a sensible concept, be-

cause the stratosphere will adjust independently and much faster (within months)

than the troposphere-surface system. The different concepts of radiative forcing

are discussed in greater detail in Appendix A.

• a temperature feedback on the incident energy at the surface that scales linear with

the surface temperature change ∆TS . The nature of the temperature feedback

will be discussed below.

Under this assumption, the heat flux at the earth’s surface can be modelled by a
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linear ordinary differential equation,

Ḣ(t) = Q(t)− λ∆TS(t) , with λ = r (1− f) (2.3)

where the climate feedback parameter λ summarizes the net strength of the combined

radiative damping r∆TS(t) and temperature feedback rf ∆TS(t) on the incident energy.

The temperature feedback is positive if f > 0. In this case, the radiative damping is

weakened by feedback loops that enhance the greenhouse effect for rising temperatures.

It has been investigated extensively whether it is justified to separate radiative forcing

and temperature feedback and to approximate the latter by a linear relationship with

∆TS(t). Appendix A will give a brief account of these investigations.

The human-induced accumulation of greenhouse gases (GHG) and aerosols in the

atmosphere has lead to a radiative forcing on the order of 1 W m−2 in the last decade,

which is projected to increase to 4 − 8 W m−2 in 2100, if no mitigation policies are

put in place to reduce anthropogenic GHG emissions (Cubasch and Meehl, 2001). The

resulting change in the natural greenhouse effect G is called the anthropogenic or en-

hanced greenhouse effect. A crucial role in the assessment of the enhanced greenhouse

effect is played by the feedback of surface temperature on the radiation balance, whose

strength is captured by the climate feedback parameter λ. In the following, we will

briefly discuss the dominant feedback mechanisms, that contribute to the magnitude of

λ. A more detailed discussion can be found in Harvey (2000, Chapter 9).

Rising temperatures increase the atmospheric water vapour content, which further

enhances the absorption of infrared radiation from the surface. This water vapour

feedback is of paramount importance, since it is the single largest positive feedback on

global warming. Clouds influence the greenhouse effect in several ways. They absorb

the infrared radiation from warmer lower atmospheric layers and re-emit it with the

colder temperature that prevails at their location. This supports the greenhouse effect,

since part of the surface radiation is ‘shielded’ from an escape to space. The impact is

the larger the higher the clouds. On the other hand, clouds reflect the incoming solar

radiation and, therefore, also exert a cooling influence. It depends on the height of the

clouds whether the two opposing effects lead to a net cooling or warming. Hence, the

direction of the cloud feedback on the incident energy ∆E(t) hinges crucially on the

change in cloud distribution in a warmer and wetter atmosphere. Although this change

is still very uncertain, most models project a positive cloud feedback.

The strength of the temperature feedback depends also on changes in the surface

albedo. If the surface temperature rises, the surface albedo will decrease due to a

reduction in snow cover and sea ice extent. This would lead to a positive albedo feedback

on the energy ∆E(t) incident at the surface. However, concurrent changes in cloud

cover, atmospheric water vapour and lapse rate might partially offset the feedback.

While the strength of the net feedback on the planetary albedo remains uncertain, most

models project it to be positive. Despite all the uncertainties, the overall temperature

feedback on the energy ∆E(t) incident at the surface is unanimously estimated to be

positive due to the strong positive water vapour feedback (f > 0).
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It has become evident that the temperature feedback is a complex and highly un-

certain quantity. In the context of the anthropogenic greenhouse effect, it is common

practice to quantify the temperature feedback in terms of the climate sensitivity T2x.

Climate sensitivity is defined as the increase in global mean surface temperature that

would result from a doubling of the atmospheric CO2 concentration relative to its prein-

dustrial value. Climate sensitivity is closely linked to the climate feedback parameter

λ in Equation (2.3). If the radiative forcing due to a doubling of the atmospheric CO2

concentration is denoted by Q2x, we find for equilibrium conditions (Ḣ = 0)

T2x =
Q2x

λ
. (2.4)

2.1.2 Model description

While Equation (2.3) provides a good approximation to the net global mean heat flux

that warms or cools the surface, a detailed comparison with the historical temperature

record will require a more resolved energy balance model. Since the transient climate

response is dominated by the heat uptake of the world’s ocean, a minimum requirement

will be to consider the ocean and landmass separately. Many EBMs used for the

integrated assessment of climate change go a step further, and also separate the southern

and northern hemisphere. Two-hemisphere models are useful to capture the spatially

inhomogeneous forcing from anthropogenic aerosols and tropospheric ozone, which are

concentrated over the northern hemisphere landmass. However, they come at the cost

of additional parameters to describe the inter-hemispheric heat fluxes.

The focus of our analysis lies on a prototypical assessment of model uncertainty with

imprecise probabilities. We wish to keep the model as simple as possible in order to limit

the number of uncertain parameters. For our purposes, the gain from a separation of

hemispheres is outweighed by the associated costs of additional parameter uncertainty.

Hence, we restrict ourselves to model the response of global mean land surface air

temperature TL, and global mean sea surface temperature TS to a radiative forcing QL

over land, and QS over the ocean, respectively. As motivated in detail in Appendix A,

the model equations of our diffusion ocean energy balance model DOECLIM are given

by

CAL ṪL = QL − λL TL −
k

fL
(TL − bSI TS) (2.5)

CAS ṪS = QS − λS TS −
k

1− fL
(bSI TS − TL)− FO . (2.6)

TS and TL describe temperature anomalies that are measured relative to the idealised

radiative equilibrium before the perturbations QL and QS were applied. It is important

to note that the heat fluxes on the left-hand and right-hand side of Equation (2.5)

and (2.6) are modelled per unit area (see Table 2.1 for the units).

CAL denotes the combined heat capacity of upper land layer and atmosphere over
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land, while CAS captures the much larger heat capacity of the ocean mixed layer com-

bined with the (neglectable) heat capacity of the atmosphere over the sea. The climate

feedback parameters λL and λS can take on different values over land and over the

ocean. Since we are considering two neighbouring boxes, we need to include the anoma-

lous heat transfer between the boxes in the model. In an often used approximation, the

heat flux anomaly is assumed to be proportional to the temperature anomaly gradient

TL−bSITS between the boxes. The scaling factor bSI for sea surface temperature (SST)

derives from the fact that the heat exchange between ocean mixed layer and land is

mediated through the atmosphere, and that the marine air warms faster than the sea

surface due to the retreating sea ice cover (see Appendix A for details). Since we model

the heat fluxes per unit area, we need to weigh the heat transfer between land and sea

by the land fraction fL of the earth’s surface.

The remaining term FO in Equation (2.6) denotes the heat flux from the mixed layer

into the interior ocean. We have modeled the interior ocean as a 1-D pure diffusion

ocean with a uniform vertical heat diffusivity κv throughout the water column (see

Appendix B for a motivation of this choice). Under this assumption, the anomalous

heat transfer in the interior ocean can be modelled by the 1-D heat diffusion equation

with Dirichlet boundary condition at the interface to the mixed layer (depth z = 0),

i.e., TO(z = 0, t) = TS(t)), and Neumann boundary condition at the ocean bottom

z = zB , i.e., ∂
∂z TO(zB , t) = 0 (see Appendices A and B for further details). We have

solved this heat diffusion problem analytically in Appendix B. The analytical solution

allows us to calculate the heat flux into the interior ocean

FO(t) = −cV κv
∂

∂z
TO(z, t)|z=0

as a function of the mixed layer temperature TS , which then can be inserted into

Equation (2.6) to close the energy balance model without having to model the entire

ocean column explicitly. We find

FO(t) = fSO cV

√
κv
π

∫ t

0

ṪS(t′)√
t− t′

(
1 + 2

+∞∑

n=1

(−1)n e
− n2z2B
κv(t−t′)

)
dt′ . (2.7)

The infinite series converges very fast, so that it will be sufficient for our application to

consider just the zeroth order term describing the behavior of an infinitely deep ocean

and a few next order bottom correction terms (see Appendix B, in particular Fig. B.4).

In Equation (2.7), the heat flux FO (in Watts per unit area) has been scaled by a

parameter fSO < 1, which captures the reduction of ocean area at the bottom of the

mixed layer relative to the ocean surface area. This accounts for the portion of shallow

coastal water, where the heat cannot diffuse into the interior ocean.

Due to the inclusion of an 1-D ocean model, the dynamics of the mixed layer tem-

perature is described by an integro-differential equation. This complicates the model

integration, but numerical solutions can still be obtained straightforwardly (see Ap-

pendix A.5). A similar approach for including a 1-D ocean model in an energy balance
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Topographical parameters Value
Fractional land area fL 0.29
Ocean fractional area below 60 m depth fSO 0.95
Interior ocean depth zB 4000 m

Heat capacities Value

Effective troposphere-land heat capacity CAL 0.52 Wyr m−2K−1

Effective troposphere-ocean mixed layer heat capacity CAS 7.80 Wyr m−2K−1

Specific heat capacity of seawater cV 0.13 Wyr m−3K−1

Heat flux parameterisation Value
Land-sea heat exchange coefficient k k = bk − ak λL
Heat exchange coefficient parameters ak 0.31

bk 1.59 W m−2K−1

Marine surface air warming enhancement bSI 1.3
Climate feedback parameterisation Value

Climate feedback parameter over land λL(T2x, Q2x, Rλ, bSI , ak, bk, fL)
Climate feedback parameter over sea λS(T2x, Q2x, Rλ, bSI , ak, bk, fL)
Climate sensitivity over land enhancement Rλ 1.43
Radiative forcing for atmospheric CO2 doubling Q2x 3.7 W m−2

Free model parameters Unit
Global climate sensitivity T2x K
Effective vertical heat diffusivity κv m2 s−1

Table 2.1: The parameters of the 1-D diffusion ocean energy balance model (2.5)-(2.6).
The climate feedback parameterisation is given by Equation (2.8).

model of anthropogenic climate change was pursued by Wigley and Schlesinger (1985).

They approximated the analytical solution of the heat diffusion problem in the idealised

case of an infinitely deep ocean (zB → ∞) to derive an ordinary differential equation

for the mixed layer temperature TS. The drawback of their approximation was that

they had to introduce an artificial parameter which depended on the particular forc-

ing scenario under consideration. In contrast, we consider the more realistic case of

an ocean with finite depth, and do not approximate the resulting integro-differential

equation by an ordinary differential equation, since we are seeking a general solution

for arbitrary forcing trajectories.

In summary, our diffusion ocean energy balance climate model DOECLIM consists

of the (integro)-differential equations (2.5) and (2.6), where the expression for the heat

flux into the interior ocean is given by Equation (2.7). The model parameters of DOE-

CLIM are listed in Table 2.1. We have detailed the estimation of the parameter values

in Appendix A. The climate feedback parameters λS and λL are directly related to the

climate sensitivity over land, TL,2x, and over the sea, TS,2x = bSI TS,2x. The functional

dependence between these quantities can be identified from the equilibrium solution of

Model (2.5)-(2.6), i.e., ṪS = ṪL = 0, and FO = 0, for a doubling of the atmospheric

CO2 concentration relative to its preindustrial value. We find

λL =
Q2x

TL,2x
− k

fL

TL,2x − bSI TS,2x
TL,2x

, λS =
Q2x

TS,2x
+

k

1− fL
TL,2x − bSI TS,2x

TS,2x
. (2.8)
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We have investigated the relationship between the climate sensitivity TL,2x of the surface

air over land and the climate sensitivity TS,2x of the sea surface with data from an

ensemble of CLIMBER-2 CO2 doubling experiments (Schneider von Deimling et al.,

2005), and found an almost strictly linear relationship TL,2x = Rλ TS,2x with Rλ =

1.43±0.02 (see Appendix A for details). The larger climate sensitivity over land reflects

the fact that temperatures at high latitudes will respond more strongly to an increase

in atmospheric carbon dioxide concentrations than temperatures at low latitudes. Since

the land fraction is highest at mid to high latitudes, this suggests a higher equilibrium

temperature increase averaged over land than averaged over the sea (see also Murphy

1995, Raper and Cubasch 1996).

The proportionality between climate sensitivity over land and sea enables us to

express these to parameters in terms of just one tunable quantity that is widely used to

capture the uncertainty about the climate response to anthropogenic interference: the

global climate sensitivity T2x = fL TL,2x+(1−fL) bSI TS,2x defined in Equation (2.4). As

a consequence, we can reduce the number of free parameters in DOECLIM to two key

factors influencing the climate response to radiative perturbations: climate sensitivity

T2x, and the effective vertical ocean heat diffusivity κv.

2.1.3 Comparison with coupled atmosphere-ocean climate models

The model DOECLIM can be seen as a hybrid physical-statistical model. The model

is partly physical, because it has been derived from energy balance considerations and

the fundamental heat diffusion equation. It is also partly statistical, because it does not

derive pertinent climate system properties from physical principles, but either deter-

mines them from a comparison with (model) data (in the case of CAL, CAS , k, bSI , Rλ),

or includes them as a degree of freedom (in the case of T2x, κv) to emulate observations

and the behaviour of more complex models.

We have compared the response of DOECLIM to a doubling of the atmospheric

CO2 concentration from 280 ppm to 560 ppm in 70 years with a set of analogous exper-

iments conducted with the climate model of intermediate complexity CLIMBER-2 for

different model parameterizations (Schneider von Deimling et al., 2005). Fig. 2.1.a-c

shows the sea surface temperature anomalies (lower curves) and land surface air tem-

perature anomalies (upper curves) simulated by CLIMBER-2 for its standard version

exhibiting a climate sensitivity of T2x = 2.68 K (Panel b), and two altered model pa-

rameterisations with a low climate sensitivity of T2x = 1.57 K (Panel a), and a high

climate sensitivity of T2x = 3.45 K (Panel c), respectively. The temperature response

simulated by DOECLIM was fitted to these CLIMBER-2 experiments by setting the

climate sensitivity T2x to the CLIMBER-2 value, and adjusting the effective vertical

diffusivity κv of heat in the ocean in order to match the transient temperature response.

Since the marine air warming enhancement, bSI , and the enhancement of climate sen-

sitivity over land, Rλ, were adopted from the ensemble of CLIMBER-2 experiments,

it is no surprise that DOECLIM accurately reproduces the long term behaviour of sea

surface and land surface air temperature simulated by CLIMBER-2. It can be seen,
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Figure 2.1: Comparison of CO2 doubling experiments (doubling until year 70) with the diffu-
sion ocean energy balance model integrated by numerical approximation (A.27) and the inter-
mediate complexity climate model CLIMBER-2 (Panels a, b, c). Also shown is a comparison
for a CO2 quadrupling experiment (quadrupling until year 70) with the Hadley Center’s general
circulation model HadCM3 (Panel d). Lower curves depict sea surface temperature anomalies,
upper curves land surface temperature anomalies. HadCM3 data were provided by courtesy of
Simon Gosling from the UK MetOffice.

however, that DOECLIM is also able to reproduce the transient temperature behaviour

in a satisfactory manner, if appropriate values for the vertical diffusivity κv are chosen.

As an independent check, we have compared the behaviour of DOECLIM with a

CO2 quadrupling experiment conducted with the Hadley centre’s current atmosphere-

ocean general circulation model HadCM3 (Gordon et al., 2000). In this experiment,

the equilibrated Hadley centre model was run for 1040 years with a quadrupling of the

atmospheric CO2 concentration from 280 ppm to 1120 ppm in the first 70 years. The sea

surface and land surface air temperature response in HadCM3 are shown in Fig. 2.1.d.

It can be seen that the land surface air warming exceeds the sea surface warming by a

much bigger factor than in the CLIMBER-2 doubling experiments. Since the marine air

warming enhancement is slightly smaller in HadCM3 than in CLIMBER-2 (bSI ≈ 1.22
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instead of 1.3), the difference persists between land surface air and marine surface air.

CO2 doubling experiments with HadCM2, the predecessor of HadCM3, exhibited an

enhancement of climate sensitivity over land that is very close to the CLIMBER-2

value of Rλ = 1.43 (Raper et al., 2001). The reason for the much larger land warming

enhancement in HadCM3 remains unclear.

For the purpose of this analysis, it is sufficient to test DOECLIM against the

HadCM3 data by adjusting the climate sensitivity over land enhancement to the larger

value displayed by HadCM3. We find a value of Rλ = 1.99 by comparing the mean

anomaly of land surface air temperature in the last 100 years of the HadCM3 experi-

ment to the mean SST anomaly in the same period. The global climate sensitivity in

DOECLIM was set to T2x = 4.1 K, which is the effective climate sensitivity of HadCM3

at the end of the simulation period identified by Gregory et al. (2004). Due to the

computational costs of the full coupled model, and the long time scales of the ocean to

equilibrate, the true climate sensitivity of HadCM3 is unknown. Given these choices for

Rλ and T2x, we have adjusted the vertical heat diffusivity κv so that DOECLIM repro-

duces the temperature response of HadCM3 to a CO2 quadrupling scenario. Fig. 2.1

shows that DOECLIM can approximate the HadCM3 behaviour convincingly.

We conclude that the diffusion ocean energy balance model DOECLIM, as captured

by Equations (2.5) and (2.6) and numerically integrated by Equation (A.27), provides a

flexible and reasonable description of the global mean temperature response to radiative

perturbations on the order of magnitude of the anthropogenic interference with the

climate system. In the following we will use the model DOECLIM to simulate the

temperature behaviour in the industrial era, and compare it with the instrumental

temperature record in the 20th century. This experiment requires knowledge of the

historical radiative forcing trajectory, which will be established in the next section.

2.2 Radiative forcing during the industrial era

The radiative forcing trajectory during the industrial era is determined by the an-

thropogenic increase in atmospheric concentrations of forcing agents like well-mixed

greenhouse gases, tropospheric ozone, and aerosols, as well as by natural contributions

from solar and volcanic activity. There exists great uncertainty about the individual

contribution of some forcing agents to a perturbation of the earth’s radiation balance.

It results from sparse data about the atmospheric load of these agents and from com-

plex chemical as well as radiative interactions in the atmosphere. Since there are so

many facets to the historical radiative forcing, an adequate consideration of the large

body of literature would go beyond the scope of this thesis. Knowledge of the his-

torical radiative forcing trajectory does not directly influence estimates of the climate

response to scenarios of future anthropogenic interference. However, it will have an in-

direct influence since this knowledge is needed to constrain important properties of the

climate system like climate sensitivity with observations of the 20th century climate.

In this sense, the historical radiative forcing trajectory can be regarded as a nuisance
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parameter θN . Nuisance parameters are characterised by the fact that they have no

direct concern for the analysis, but uncertainty about them impedes the derivation of

a likelihood function L(θ; ŷ) for a set of ‘primary’ parameters θ of interest.

By varying the nuisance parameters θN within a plausible range, one will receive

a set of plausible likelihood functions LθN (θ; ŷ) for the ‘primary’ parameters θ. In

this way, the presence of nuisance parameters can lead naturally to imprecise likelihood

functions, if a full treatment of the uncertainty about θN in probabilistic terms is to be

avoided, e.g., due to a lack of prior information or due to computational limitations.

Imprecise probability theory provides methods to deal with such objects, in particular

in the context of the robust Bayesian approach (Berger, 1985). We regard the impre-

cise treatment of nuisance parameters as an important extension of our investigation

into the usefulness of imprecise probability concepts for the integrated assessment of

climate change. In this thesis, however, we make a first step and limit ourselves to im-

precision in prior probabilities that are needed for a Bayesian analysis (see Chapter 3).

Therefore, we will determine a precise likelihood function Lθ̂N (θ; ŷ) by either making

fixed assumptions about the historical forcing contribution of radiative agents, or by

adjusting the remaining nuisance parameters θN in a way so to provide a best match

between model output and historical temperature record (see Section 2.5).

2.2.1 Well-mixed greenhouse gases and tropospheric ozone

The well-mixed greenhouse gases include carbon dioxide (CO2), methane (CH4), ni-

trous oxide (N2O), and halocarbons from industrial processes (HCFCs, CFCs, HFCs,

PFCs, SF6). Well-mixed greenhouse gases have long life times in the atmosphere so

that the atmospheric circulation can distribute them fairly homogeneously around the

globe. Their atmospheric concentration can be deduced from point measurements at

locations that are distant from centres of agriculture, industrial production or fossil

fuel combustion. The longest instrumental record of the atmospheric CO2 concentra-

tion comes from air samples that have been collected since 1958 at the Mauna Loa

Observatory, Hawaii (Keeling and Whorf, 2004). The instrumental record can be ex-

tended into the past for 600,000 years by analysing air bubbles that are trapped in ice

cores from Greenland and Antarctica (e.g., EPICA community members, 2004). Hence,

the historical concentrations of well-mixed greenhouse gases are well-known. The cor-

responding radiative forcings can be deduced from radiative transfer calculations, and

simple parameterisations in terms of the concentrations are available in most cases (Ra-

maswamy, 2001, Table 6.2). In our analysis, we have used the radiative forcing estimates

from the energy balance model MAGICC (Wigley and Raper, 1992; Raper et al., 1996),

which was employed in the Third Assessment Report of the IPCC (Cubasch and Meehl,

2001), and includes a simple representation of the atmospheric chemistry (Wigley and

Raper, 2002, Table 3). Figure 2.2.a summarises the radiative forcing contribution from

well-mixed greenhouse gases. The halocarbon forcing of 0.34 W m−2 in the year 2000

(Ramaswamy, 2001, Table 6.11) has been reduced by the net negative forcing impact

from the depletion of stratospheric ozone due to chlorfluorocarbons (CFCs) and hy-



22 Chapter 2: An Energy Balance Climate Model and Its Likelihood

drochlorofluorocarbons (HCFC) controlled under the Montreal Protocol (Ramaswamy,

2001, Chapter 6.4).

Tropospheric ozone (O3) differs from the well-mixed greenhouse gases in many re-

spects. It is not directly emitted by humankind, but formed by photochemical reactions

of precursor substances like carbon monoxide (CO), volatile organic compounds (VOC),

and nitrogen oxides (NOx) in the lower troposphere. These substances are emitted

mainly from the transport sector and biomass burning, so that the increase in tropo-

spheric ozone in the last century clearly is of anthropogenic origin. Unlike well mixed

greenhouse gases, tropospheric ozone is depleted very fast in the lower troposphere

by photochemical reactions with cleansing agents like hydroxyl (OH). Therefore, the

tropospheric ozone load is distributed very inhomogenously around the globe. Con-

centrations downwind of polluted metropolitan areas can be two to three orders of

magnitude higher than over remote tropical oceans. Due to the inhomogenous loading

and the complex photochemistry for the creation and depletion of ozone, it is very

difficult to estimate the ozone contribution to the radiative forcing on a global scale,

let alone its development during the industrial era (Ramaswamy, 2001, Table 6.11). In

this situation, we have adopted the scenario employed for the model MAGICC in the

Third Assessment Report of the IPCC (Cubasch and Meehl, 2001).

Since the forcing is spatially inhomogenous, we need to specify it separately for

the oceans and for the landmass. Since tropospheric ozone of anthropogenic origin is

concentrated around metropolitan areas, we expect its abundance to be higher over land

than over the oceans, and higher in the northern than in the southern hemisphere. We

assume that the land-ocean ratio of the corresponding radiative forcing is of comparable

magnitude as the NH:SH ratio, which has been estimated to range between 1.4 and 2

from studies with various atmospheric chemistry and radiative transfer models (Harvey,

2000, Table 7.3). Hence, we roughly estimate that the tropospheric ozone forcing over

land exceeds the forcing over the oceans by a factor RO3 = 1.5. Fig. 2.2.a depicts the

forcing contribution of tropospheric ozone. It can be seen that tropospheric ozone is the

third most important GHG of anthropogenic origin after carbon dioxide and methane.

2.2.2 Aerosols

Aerosols scatter and absorb solar and infrared radiation, thereby perturbing the energy

budget of the earth system and exerting a direct radiative forcing. They also influence

the radiation balance indirectly by altering cloud formation processes (1st indirect

effect) and decreasing the precipitation efficiency of warm clouds (2nd indirect effect).

Optically active aerosol particles of anthropogenic origin can be broadly categorised

into organic and black carbon from the combustion of fossil fuels and biomass, and

sulphate aerosols (NH4HSO4) produced by chemical reactions in the atmosphere with

SO2 from fossil fuel burning as precursor substance. Aerosols have very short lifetimes

in the atmosphere ranging from hours to days for sulphate, and up to several weeks for

carbonaceous aerosols of submicron size. Therefore, their forcing contribution is fairly

localised around the centres of emissions. Due to the localised nature of the forcing and
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the variety of optical properties exhibited by aerosols, it is difficult to estimate their

direct effect on the global radiation balance. The strength of their 1st and 2nd indirect

forcing effect is even less understood (Penner, 2001).

Sulphate is believed to be the most important aerosol species of anthropogenic origin

that had an impact on the global radiation balance in the past. It backscatters solar

radiation from space and enhances cloud formation, so that its presence reduces the

energy received by the earth’s surface. Therefore, sulphate aerosols exert a negative

radiative forcing. Given the large uncertainty about its direct and indirect radiative

forcing, we will parameterize the range of assumptions about its forcing contribution,

and include it in the calculation of the likelihood function. For this purpose, we adopt

the simple parameterisation by Harvey et al. (1997) that has been used frequently in

the literature:

QSul(t) = QS90


λ

ESO2(t)

ESO2(1990)
+ (1− λ)

ln (1 +
ESO2

(t)

Enat
)

ln (1 +
ESO2

(1990)

ENat
)


 , (2.9)

with λ = 0.33 , ESO2(1990) = 71.5 MtS , ENat = 42 MtS .

Obviously, the parameter QS90 captures the total radiative forcing contribution of sul-

phate aerosols in the year 1990. The first term of the sum describes the direct forcing

effect of sulphate aerosols. It can be assumed to vary linearly with the sulphate load-

ing of the atmosphere and, hence close to linear with the total anthropogenic sulphur

emissions ESO2 . The indirect forcing is captured in the second term. Its absolute

value is highly uncertain, but should saturate the more the natural sulphur emissions

from volcanos and biogenic sources like marine plankton are exceeded by anthropogenic

emissions. The saturation process is modelled by a logarithmic dependency on the ratio

of anthropogenic and natural sulphur emissions. The latter are typically assumed to

amount to an average value of ENat = 42 Megatons of sulphur (MtS) (Harvey, 2000,

Table 7.9).

The anthropogenic SO2 emissions are relatively well-known, since they are mostly

related to fossil fuel burning. For this analysis we have adopted the emissions data

for the period 1850-1990 from Lefohn et al. (1999, publicly available at www.asl-

associates.com/sulfur.htm). We extended the data to earlier years by ramping SO2

from zero to 1.2 megatons sulphur in the period 1839-1849. For the time after 1990,

we have adopted estimates from Smith et al. (2001) for the years 1995 and 2000, and

interpolated the data to the remaining years in the period 1991-2002. The resulting tra-

jectory of anthropogenic sulphur emissions in the industrial era is shown in Fig. 2.2.c.

Lefohn et al. (1999) estimate a value of ESO2(1990) = 71.5 MtS for the year 1990.

The combined direct and indirect radiative forcing from sulphate aerosols in the

year 1990 and the relative strength of direct and indirect effect, captured by λ ∈ (0, 1),

are uncertain. Estimates for the 1990s range between −0.2 W m−2 and −0.8 W m−2

for the direct effect, with a mean estimate of −0.4 W m−2, and between 0 W m−2 and

−1.5 W m−2 for the 1st indirect effect (Ramaswamy, 2001, Table 6.11). The 2nd indirect
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Figure 2.2: Radiative forcing during the period 1750-2002 (Industrial era).
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effect could not be quantified at all by Ramaswamy (2001) and, therefore, is ignored

in most assessments of past climate change. Under this assumption, QS90 might vary

between −0.2 and −2.3 W m−2, which is the range that will be considered for the

calculation of the likelihood function. Although the ratio of direct and indirect effect

is also highly uncertain, we choose a fixed value of λ = 0.33. This is value is obtained

by assuming mean values of −0.4 W m−2 for the direct effect and −0.8 W m−2 for the

indirect effect.

Since DOECLIM resolves ocean and landmass, we need to separate the radiative

forcing contribution of anthropogenic sulphate aerosols over land and over sea. The

bulk of the atmospheric SO2 load is concentrated over Central Europe, the Eastern

United States, and Southeast Asia, so that the direct forcing effect will be much larger

over land. We make the rough estimate that it exceeds the direct sulphate forcing

over the sea by a factor RSul ≈ 2 (Harvey, 2000, Figure 7.10, Plate 9). The situation

is completely different for the indirect effect of sulphate aerosols. It is estimated to

be of similar strength or even stronger over the ocean than over land. This is due to

some combination of greater percentage cover of low-level stratus clouds and greater

susceptibility of cloud optical properties to sulphate aerosols over the ocean (Harvey,

2000, Chapter 7.4). In this analysis, we assume equal strength of the indirect radiative

forcing from sulphate aerosols over land and over the ocean. Fig. 2.2.d depicts the

total radiative forcing from sulphate aerosols over land and ocean for two different

assumptions about the combined direct and indirect global mean forcing strength QS90

in the year 1990.

The radiative forcing from organic and black carbon of anthropogenic origin is even

less understood than the forcing contribution of sulphate aerosols. Among others, this

is due to the lack of reliable estimates about anthropogenic emissions and the resulting

atmospheric loads of these substances. Moreover, black carbon is an absorber of solar

radiation, which leads to an inhomogeneous heating of the atmospheric column influ-

encing cloud cover (see Appendix A). If black carbon is mixed with sulphate aerosols,

the resulting net radiative forcing depends heavily on the assumed mixing scheme (Har-

vey, 2000, Chapter 7.4). Some models even show that black carbon can neutralise the

cooling effect of sulphate aerosols (Jacobson, 2001). Therefore, the radiative impact

of black carbon might have been underestimated to date (e.g., Hansen et al., 2002).

However, we do not wish to go into this field of active research here. Instead, we simply

adopt the forcing scenarios for carbonaceous aerosols from Myhre et al. (2001). They

are depicted in Fig. 2.2.b. Due to the absorptive properties of black carbon, the car-

bonaceous aerosols from fossil fuel combustion contribute a net positive forcing. The

trajectory reflects the increase in fossil fuel use until 1950. Thereafter, the reduction

of soot emissions from fossil power plants results in a steadily diminishing role of black

carbon vs. organic carbon. The scenario for biomass burning aerosols reflects the rapid

increase in deforestation activity after 1950 with its peak in the 80s.

Myhre et al. (2001) specified the historical forcing trajectory for the period 1850-

1995. To extend the scenarios to the period 1750-2002, we have ramped them from



26 Chapter 2: An Energy Balance Climate Model and Its Likelihood

1826 (fossil fuel combustion) and 1790 (biomass burning), respectively, to their 1850

values, and kept the 1995 values constant thereafter (a total of 0.05 W m−2 for black

and organic carbon from fossil fuel combustion, and −0.20 W m−2 for biomass burning

aerosols). The latter value agrees with the mean estimate of Ramaswamy (2001) for the

forcing from biomass burning aerosols around the year 2000 (uncertainty −0.07 W m−2

to −0.6 W m−2). Concerning carbonaceous aerosols from fossil fuel combustion, Ra-

maswamy (2001) considered a net negative as well as net positive forcing plausible

(+0.1 W m−2 to +0.4 W m−2 for black carbon, and −0.3 W m−2 to 0 W m−2 for organic

carbon). Fossil fuel aerosols are highly concentrated over land (Ramaswamy, 2001, Fig-

ure 6.7f). We roughly estimate that their radiative forcing over land exceeds the forcing

over the oceans by a factor of RFF ≈ 3 (Harvey, 2000, Figure 7.10). The situation is

slightly different for biomass burning aerosols. While the plume from burning biomass

in the Amazonian area is concentrated over land, the African and Indonesian plumes

spread over land as well as over the oceans (Ramaswamy, 2001, Figure 6.7e). Therefore,

we roughly estimate a somewhat lower factor of RBB ≈ 2 by which the forcing from

biomass burning aerosols over land exceeds the forcing over the oceans.

2.2.3 Solar and volcanic forcing

Changes in solar activity and volcanic eruptions constitute the major sources of natural

perturbations of the earth’s energy balance on secular time scales. The sun fluctuates

between states of low and high magnetic activity with a period of approximately 11

years. During periods of high activity, the irradiance is 0.5 W m−2 to 1 W m−2 larger

than during periods of low activity. Satellite measurements have shown that the solar

irradiance fluctuates currently between 1366 W m−2 and 1367 W m−2 (Fröhlich, 2000).

Long-term trends of solar irradiance on secular time scales are more speculative. They

have been invoked on the basis of evidence from solar-like stars, and variations in the

interplanetary magnetic field. This evidence suggested a long-term increase of solar

insolation from the Maunder Minimum to present day conditions by approx. 3 W m−2,

which has been included in most reconstructions of solar irradiance since the 17/18th

century (e.g., Hoyt and Schatten, 1993; Lean et al., 1995; Fligge and Solanki, 2000;

Lean, 2000). In recent years, however, the existence of a long-term trend in solar

irradiance has been questioned. New data from solar-like stars have not supported

the old findings, and the increase in interplanetary magnetic activity does not seem to

have influenced solar irradiance significantly (Lean et al., 2002; Foukal et al., 2004).

Therefore, it is likely that the available reconstructions exaggerate the increase in solar

forcing during the 20th century. In the absence of corrected estimates, however, we

employ the widely used reconstruction by Lean et al. (1995) in our analysis that was

updated to 1997 with the results of Fröhlich and Lean (1998) (data publicly available

at www.sparc.sunysb.edu/html/clim forc.html). In the light of the new developments,

this can be seen as a very optimistic assumption about the influence of the sun on

the climate. The time series of solar irradiance since 1600 is shown in Fig. 2.2.e. We

have extrapolated the solar cycle for the period 1998-2002 and decreased all irradiance
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values by 1 W m−2 to adjust them to the absolute values presented by Lean (2000).

The solar forcing in the industrial era can be directly calculated from knowledge of the

solar irradiance S. If the average holocene irradiance is set to S0 = 1365 W m−2, the

solar forcing ∆QL over land and ∆QO over the oceans, respectively, is given by

∆QL(t) =
DQL

4
(S(t)− S0) (1− αL) , ∆QO(t) =

DQO
4

(S(t)− S0) (1− αO) ,

where DQL = 0.96 and DQO = 1.02 are the fractions of global mean solar insolation

received by land and oceans, respectively, and αL = 0.35 and αO = 0.28 is the albedo

over land and oceans, respectively (see Section A.4.1). The resulting solar forcing

scenarios are shown in Fig. 2.2.f.

Volcanic eruptions can influence the climate by injecting large amounts of chemi-

cal active gases and aerosol particles into the stratosphere (Robock, 2000). In several

weeks, a volcanic cloud forms by SO2 conversion to sulphate aerosols, which is advected

rapidly around the globe. The stratospheric sulphate cloud alters the radiation bal-

ance mainly by backscattering solar radiation to space, thus exerting a strong cooling

effect. Since the sulphate aerosols remain 1-3 years in the stratosphere, the radia-

tive forcing after large volcano eruptions has the form of a distinct negative spike of

several years. The 20th century has experienced five major eruptions that injected

a large amount of particles into the stratosphere: two early eruptions (Santa Maria,

Guatemala, 1902; Novarupta, Alaska, 1912), followed by a period of relative calm, and

three eruptions interspersed in the second half of the century (Agung, Bali in Indonesia,

1963; El Chichón, Mexiko, 1982; Pinatubo, Phillipines, 1991). Since the climate forcing

from these eruptions was very strong, with typical estimates for, e.g., Pinatubo around

3 W m−2 (Hansen et al., 2002), they are imprinted in the instrumental temperature

record. Therefore, it is necessary to account for these events in our analysis. We use

the reconstruction of volcanic aerosols by Ammann et al. (2003) (data publicly avail-

able at www.ngdc.noaa.gov/paleo/pubs/ammann2003/ammann2003.html). Fig. 2.2.g

shows the aerosol optical depth in the mid-visible wave length for the period 1900-19991 .

The major eruptions in the 20th century clearly stand out.

The spatial distribution of aerosol optical depth will depend on the location of erup-

tion. Ammann et al. (2003) provide the zonal mean optical depth on a 2.8◦ latitudinal

grid, which does not suffice to separate the data for land and oceans. In this situation,

we will use the global mean aerosol optical depth for both land and ocean. This as-

sumption will not be completely unreasonable, since volcanoes are situated mostly on

the rims of continental plates, and the volcanic cloud circles the globe rapidly.

Aerosol optical depth τ(λ) is specified as the fraction of light with wavelength λ

that is scattered when passing through the aerosol layer. It provides an excellent

proxy for the radiative forcing Qvol that is exerted by the volcanic cloud. In a good

approximation, Qvol = βVol τ (e.g., Andronova et al., 1999). We do not use direct

1Ammann et al. (2003) reconstruct aerosol optical depth for the period 1890-99. We have omitted
their data for 1890-1899 to avoid a sharp cut-off in 1890 in the aftermath of preceding eruptions.
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estimates of Qvol for two reasons. First, there exists considerable uncertainty about the

radiative forcing from volcanic aerosol after stratospheric adjustments that adds to the

uncertainty about aerosol optical depth τ . For the well-monitored Pinatubo eruption,

for instance, estimates range from Qvol = −15 W m−2 τ (Ramachandran et al., 2000),

and Qvol = −21 W m−2 τ (Hansen et al., 2002), to Qvol = −25.4 W m−2 τ (Andronova

et al., 1999). Second, we want to employ a simple energy balance model which only

resolves ocean and landmass. Since the volcanic forcing is strongly localised horizontally

over the earth’s surface, and vertically in the atmospheric column, our model might

produce an inadequate response to a global mean forcing that was generated from a

3-D general circulation model. There are indications that highly aggregated energy

balance models might overestimate the temperature response to global mean volcanic

forcing (Andronova and Schlesinger, 2000). Hansen et al. (1997) have shown that the

sensitivity of surface temperature to a forcing in the stratosphere is lower than it is to a

rather uniform heating of the troposphere induced by an increase in CO2 concentration.

Therefore, we introduce the conversion factor βVol as a nuisance parameter to the

analysis. When estimating the likelihood L(θ; ŷ;βVol), we allow βVol to be adjusted

freely, so that the maximum likelihood for a given θ = (T2x, κv, QS90) is achieved (see

Section 2.5). Figure 2.2.h summarises our best estimate for the total radiative forcing

during the industrial era. The forcing trajectory was generated for values of QS90 =

−0.97 W m−2 and βVol = −9.21 W m−2 which provided a good fit to the 20th century

temperature record (see Fig. 2.5). The low value for βVol indicates that the volcanic

forcing had to be scaled down considerably in order to simulate a realistic surface

temperature response.

It can be seen that the total forcing is a complex mixture of a strongly increas-

ing anthropogenic contribution modulated by solar forcing and interspersed by strong

radiative cooling events after volcano eruptions. Note that we have only taken into

account volcano eruptions in the 20th century. The 19th century has seen some of

the largest eruptions in history, in particular the eruptions of Tambora (Sumbawa in

Indonesia, 1815) and Krakatau (Indonesia, 1883). However, the volcanic forcing in the

early part of the instrumental record, i.e., in the period 1870-1899, is very uncertain.

Estimates for the Krakatau eruption are generally high, but its climatic fingerprint is

virtually absent from the SST time series (see Fig. 2.3.a). Harvey and Kaufmann (2002)

noted that this mismatch lead to the endorsement of low climate sensitivities from a

comparison of their energy balance model with the instrumental temperature record.

To avoid the possibility of spurious results due to an overestimation of the Krakatau

aerosol, we restrict ourselves to the better-known forcing and temperature estimates

for the 20th century. In contrast to Harvey and Kaufmann (2002), an overestimation

of volcanic forcing would lead to a bias to higher climate sensitivities in our analysis

(see Section 2.5).
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Figure 2.3: Global mean temperature record for the period 1870-2002. Note the different
scalings of the y-axis.

2.3 The residual between model response and data

The response of our energy balance model to the radiative forcing in the industrial

era can be compared with observations of global mean sea surface temperature (SST)

and land surface air temperature (LAT). Figure 2.3 shows the time series of globally

aggregated temperature measurements since 1870. The global mean LAT series is based

on the comprehensive CRU data set of instrumental temperature observations on land

(Jones and Moberg, 2003). The SST series has been derived from the HadSST data set

(Jones et al., 2001). Both time series were provided by courtesy of the UK MetOffice.

Measurement errors are estimated to be around 0.05 K for the first half, and 0.025 K for

the second half of the 21st century (Folland et al., 2001). We neglect measurement errors

here, since they are superseded by fluctuations due to natural temperature variability.

Estimates of the standard deviation of global and annual mean surface temperatures

from detrended observational data and control runs with atmosphere-ocean general

circulation model lie in the range 0.09−0.14 K (Collins et al., 2001; Harvey and Wigley,

2003). The variance of natural temperature variability over land is approximately three

times larger than over the ocean, so that standard deviations of annual mean global

LAT and SST can be estimated to lie in the range 0.12 K− 0.20 K and 0.07 K− 0.11 K,

respectively.

As is apparent from Fig. 2.3, it is not possible to directly observe the undiluted

secular response of the climate system to the radiative forcing in the industrial era.

The annual global mean temperature responds not only to the external forcing, but

also to heat fluxes from fast atmospheric processes as well as to interannual variability

of the ocean-atmosphere system. Therefore, we need to state carefully our assumptions

about the residual between the observed temperature record and the model response

to the radiative forcing. On the basis of these assumptions, we will have to specify the

functional form of the likelihood function L(θ; ŷ;βVol).

Hasselmann (1976) proposed to account for the influence of fast atmospheric pro-
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cesses on the slow components of the climate system by adding them as white noise

to the deterministic dynamics on longer times scales. Weather phenomena usually ex-

hibit time scales of days to weeks, while the ocean operates on decadal and longer time

scales. Hasselmann (1976) showed that slow climate components like the ocean act

as a low pass filter that dampens the fast frequencies, and retains the slow frequen-

cies in the weather noise. Hence, the weather-driven variability in SSTs constitutes a

red noise process, which concentrates more energy in the slow frequencies. In contrast,

white noise includes all frequencies indiscriminately (Honerkamp, 1994). If the dynamic

equations underlying the slow climate component are fairly linear, the weather forcing

of the sea surface is converted into an Autoregressive Process (AR) of low order, typi-

cally AR(1), which is the simplest stochastic process exhibiting a red power spectrum.

An AR(1) process emerges when the realisation Xt of a random variable X depends on

its predecessor Xt−1, and a white noise process η, i.e.,

Xt = αXt−1 + ηt , (2.10)

where 0 ≤ α < 1 is the propagator of the AR(1) process, and η = N(0, σ) a normal IID

random variable with zero mean and variance σ2 (von Storch and Zwiers, 1999).

In many cases, AR(1) processes are successful to explain the residual variability

in slow climate components after removal of a decadal or secular trend. Collins et al.

(2001), for instance, analyse a 1000 year control run of HadCM3, and find the in-

terannual variability of global mean surface air and sea surface temperatures to be

statistically indistinguishable from an AR(1) process with the exception of the El Niño

Southern Oscillation (ENSO) (see below). Therefore, we will assume in the following

that the weather driven variability in the annual SST time series constitutes an AR(1)

process. We will check, however, whether the residual between modelled trend and

instrumental SST record is better explained by higher order AR processes. There ex-

ists an ongoing discussion about the presence of a power-law persistence in observed

temperature time series (Koscielny-Bunde et al., 1998; Maraun et al., 2004), but an

inclusion of this hypothesis is beyond the scope of our analysis.

The AR(1) assumption extends our set of model hypotheses M(θ;βVol) to a set

M(θ;βVol) +X(α) that also includes the interannual variability of SST due to weather

forcing. Since our AR(1) assumption introduces the propagator α as new parameter,

we have added another nuisance parameter to the analysis. It captures our uncertainty

about the stochastic variability of SST that emerges from heat exchange with fast

atmospheric processes. In analogy to our treatment of the volcanic forcing uncertainty,

we will allow α to be adjusted freely, so that the maximum likelihood for a given

θ = (T2x, κv, QS90) is achieved (see Section 2.5).

The variability in the HadCM3 ocean as well as in the detrended instrumental tem-

perature record shows that not all of it can be explained in terms of an AR(1) process.

Notably the El Niño Southern Oscillation in the tropical Pacific can be identified as a

pattern of interannual variability that is neither directly related to stochastic weather

forcing nor determined by radiative perturbations at the top of the atmosphere (Collins
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et al., 2001). ENSO consists of two components: a dramatic warming of the normally

cold waters of the eastern equatorial Pacific Ocean (El Niño) and large east-west shifts

of mass in the tropical atmosphere over the Pacific (Southern Oscillation) (Peixoto and

Oort, 1992, Chapter 16.3). During normal conditions, convection of air parcels occur

over the warm surface waters of the Indonesian area, which sink back to the surface

over the eastern Pacific (Walker circulation). The resulting pressure difference induces

an easterly trend wind over the equatorial Pacific, which deepens the thermocline in the

Western Pacific. During El Niño conditions the surface waters near the South American

coast warm up, which leads to a reduction of the east-west pressure difference and a

weakening of the easterly trade winds. This further supports the warming of the eastern

Pacific, since warm water sloshes east. During Anti-ENSO (La Niña) conditions the

easterly trade winds are stronger than normal, and the temperature difference between

the cold eastern and warm western Pacific waters is larger.

A good indicator of the ENSO phenomenon is the pressure difference between the

Eastern and the Western Pacific. This is captured by the Southern Oscillation Index

(SOI), which constitutes the difference between sea level pressure anomalies in Tahiti

(17S, 149W, French Polynesia) and Darwin (12S, 131E, Australia) (e.g., Ropelewski and

Jones, 1987; Allan et al., 1991, data publicly available at www.cru.uea.ac.uk/cru/data/-

soi.htm). Negative SOI values, i.e. weaker than normal east (Tahiti) - west (Darwin)

pressure gradients, indicate ENSO conditions, while positive SOI values indicate Anti-

ENSO (La Niña) conditions. Hence, we can use the SOI as a record of ENSO variability

in the 20th century. In analogy to the fingerprinting methodology (Hasselmann, 1993;

Allen and Tett, 1999), we will account for the possibility that ENSO explains some of

the variability in the instrumental SST and land temperature record by extending our

set of hypotheses as follows (cmp. Equation 2.1):

H̃ =

{
M̃(θ; θN ) =

(
TL(θ;βVol) + rL + βL,SOI ISOI

TS(θ;βVol) +X(α) + βS,SOI ISOI

)
| (θ, θN ) ∈ Ω× ΩN

}
,

(2.11)

where ISOI denotes the ENSO ‘fingerprint’ in time, i.e., the SOI, which is simply added to

the model with a free scaling vector βSOI. Since ENSO affects ocean as well as land areas,

βSOI = (βL,SOI, βS,SOI) contains two components for land and sea surface temperature,

respectively. The treatment of the residual variability rL of land temperature will be

discussed in Section 2.4. A similar ansatz for the inclusion of ENSO was pursued by

Kaufmann and Stern (1997) and Smith et al. (2003). In the framework of our analysis,

the scaling vector βSOI introduces two additional nuisance parameters, which can be

adjusted to fit the instrumental SST and LAT record. The set of nuisance parameters

is summarised by θN = (βVol, α, βL,SOI, βS,SOI).

Fig. 2.4.a shows the annual fluctuations of the SOI since 1870. We have aggregated

the monthly SOI data to x-month lagged annual averages by averaging over the last x

months of the preceding, and the first 12− x months of the present year. The time lag

for the annual aggregation was chosen in a way that provides the largest explanatory
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power for the observed temperature in the 20th century. To identify the ‘optimal lag’,

we have calculated the maximum likelihood that the set of hypothesesM(θ; θN ) explains

the instrumental temperature record in the period 1900-2002 by maximising the Log

Likelihood (2.19) across the parameters space θ, θN for different x months lagged SOI

indices. The results are shown in Fig. 2.4.b for lags between 0 and 12 months. The

use of the Bayesian Information Criterion (BIC) (see Equation 2.20) as the goodness

of fit measure is substantiated in Section 2.4. For comparisons between fits with the

same number of fit parameters, it simply constitutes a negative linear transformation

of the maximum Log Likelihood. Hence, the lower BIC the better the fit. Fig. 2.4.b

shows that lags between 3 and 6 months provide the best fits to the data with a distinct

minimum of BIC at a lag of 4 months. The qualitative behaviour of BIC is not affected

if we switch off the forcing from volcanoes (βVol = 0 W m−2). Our result agrees well

with Smith et al. (2003), who identified optimal lags between 4 and 7 months for the

annual SOI average from a comparison of hemispheric temperature data with the model

MAGICC. In the following, we will use the 4-month lagged SOI index.

The inclusion of the SOI improves the fit to the global temperature record con-

siderably. Hence, a portion of the observed variability shows the fingerprint of the El

Niño Southern Oscillation in the 20th century. This is not a surprising result, since

the modulation of global mean SST by ENSO has been noted for some time (Jones,

1989). For our best fit to the data, we find values of βS,SOI = −0.063 for SST, and

βL,SOI = −0.148 for LAT. The difference between land and ocean reflects the fact that

the temperature variability over land is larger. The scaling factor needs to be negative

since the east-west pressure gradient is weaker than normal in warm El Niño years.

Besides ENSO, we have considered other modes of interannual climate variability.

The North Atlantic Oscillation (NAO) is associated with cyclical fluctuations of air

pressure between Iceland and the Azores. It explains a large fraction of the variability

of atmospheric disturbances in the North Atlantic region, and consequently changes in

temperature and moisture distribution and the intensity, number and track of storms

(Hurrell et al., 2003). A frequently used NAO index comprises the difference in sea

level pressure anomalies between Ponta Delgada (Azores) and Rejkyavik (Iceland).

Fig. 2.4.c shows an extended version of the index which was supplemented by pressure

differences between Gibraltar and Rejkyavik for the winter half of the year (Hurrell,

1995, data publicly available at www.cru.uea.ac.uk/cru/data/nao.htm). In the same

manner as for ENSO, we checked the power of the index to explain the variability in the

global SST and LAT record for different lags in the annual aggregation. As depicted

in Fig 2.4.d, the index helps little to explain the temperature variability, no matter

what lag is assumed for the annual aggregation. The minimum at a lag of 11 months is

due to an improved match of variability in land temperatures, but this correlation may

be spurious. The overall result is not unexpected, since NAO owes its existence not to

atmosphere-ocean interactions, but to dynamics intrinsic to the troposphere (Thompson

et al., 2003). Furthermore, it covers only a small region of the world’s land and ocean

surface. If NAO is included together with ENSO, its explanatory power improves, but
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the running year; Panel e). Right panels show the goodness of fit in terms of the Bayesian
Information Criterion (BIC) that can be achieved when the indices with various lags (SOI,
NAO), respectively running means (PDO), are added to the model response.

the gain is still outweighed by the introduction of two more nuisance parameters (SOI:

BIC = -298.4, NAO+SOI: BIC =-296.2). Therefore, we will not include NAO in our

analysis. Since the analysis of NAO confirms the expectation that purely atmospheric
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oscillations contribute little to interannual variability in global mean temperatures, we

do not consider other modes of such variability. This concerns in particular the large

scale annular modes in the northern and southern hemisphere, known as the Arctic

Oscillation (AO) and Antarctic Oscillation (AAO).

Long-lived patterns of SST variability have been identified predominantly in the

Pacific ocean: an ENSO-like decadal variability in the tropical Pacific (Zhang et al.,

1997; Knutson and T. R. Manabe, 1998), and an interdecadal variability of SSTs in the

North Pacific (Latif and Barnett, 1996; Zhang et al., 1997), which was called Pacific

Decadal Oscillation (PDO) by Mantua et al. (1997). It has remained speculative to

date whether the PDO constitutes a genuine pattern of atmosphere-ocean oscillation

apart from ENSO (Mantua and Steven, 2002). Collins et al. (2001) have found similar

patterns of SST variability in HadCM3, but could not identify a cyclic mode of vari-

ability. Nevertheless, we have investigated an index of PDO variability for the period

1900-1993 that was provided by Zhang et al. (1997), and whose extended version to

2003 is available publicly at jisao.washington.edu/pdo/PDO.latest. It comprises the

leading principal component from an EOF analysis of monthly ‘residual’ North Pacific

SST anomalies, poleward of 20N. Residuals are here defined as the difference between

observed anomalies and the monthly mean global average SST anomaly. Fig. 2.4.e

shows the time series of the annual PDO index, along with 8-year and 16-year centered

running means. Incorporating the PDO index in our set of hypotheses improves the fit

to the global SST record notably, but much less than an incorporation of the SOI can

achieve (SOI: BIC = -298.4, PDO: BIC = -282.4). Since the PDO index is strongly

correlated with ENSO, much of this improvement can be attributed to ENSO variabil-

ity. The question remains, whether the specific interdecadal fingerprint of the PDO,

which is not present in the ENSO signal, helps to explain SST variability on these time

scales. Therefore, we have checked the explanatory power of adding the smoothed PDO

index for running means of 2 to 20 years together with ENSO to the set of hypotheses.

Fig. 2.4.f shows that the improvement is too small to justify an inclusion of the PDO

index in our analysis (PDO+SOI: BIC = -293.6). The result might be surprising since

the PDO index seems to reflect the cooling and warming periods in the 20th century.

A close inspection reveals, however, that the Pacific cooling in the 40s and the Pacific

warming in the late 70s precedes global trends by 4-5 years.

2.4 Definition of a likelihood for the model parameters

The extended set of hypotheses H̃ = {M(θ, θN ) | (θ, θN ) ∈ Ω × ΩN } about the cli-

mate response to the radiative forcing and the residual temperature variability can be

directly compared with the temperature record in the 20th century. We recall that θ

summarises the climate and forcing model parameters of interest, and θN the nuisance

parameters. In the following, we establish a likelihood function L(θ; θN ; T̂S) that the

combined SST and LAT record would have been observed for a given assumption about

(θ, θN ). The joint likelihood function consists of two components: one for SST, and the
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other for the difference TL−S = TL− TS between land air and sea surface temperature.

SST: The likelihood for observing the SST record T̂S for a hypothesis H̃(θ, θN )

can be calculated from the residual rS = T̂S − TS(θ;βVol) − βS,SOI ISOI between the

data and the deterministic part of our model including the SOI. If our hypothesis was

true, then the residual would have to be a realization of the AR(1) process X(α) (see

Equation 2.11). The probability density of obtaining a time series y with length n as a

realization of an AR(1) process X(α) is well-known from the literature, i.e.,

ρ(y|α) =
(√

2π
n√|Σ(α, σS)|

)−1
e−

1
2
yT Σ−1(α,σS) y ,

with Σ(α, σS) the n×n covariance matrix of the n-step AR(1) process X(α) (von Storch

and Zwiers, 1999, Chapter 11). Thus, the likelihood function is given by

LS(θ; θS,N ; T̂S) =
e−

1
2
rS(θ,βVol,βS,SOI)

T Σ−1(α,σS) rS(θ,βVol,βS,SOI)

√
2π

n√|Σ(α, σS)|
, (2.12)

where we have summarised the active nuisance parameters by θS,N = (βVol, α, βS,SOI).

The functional form of LS(θ; θS,N , ŷS) can be simplified by noting

rTS Σ−1(α, σS) rS =
1

σ2
S

n∑

i=1

(rS,i − αrS,i−1)2 , (2.13)

|Σ(α, σS)| =
σ2n
S

1− α2
, (2.14)

where rS = (rS,1, ..., rS,n) is the time series of the residual (von Storch and Zwiers, 1999,

12.2.4). Since we compare the model output with the SST record in the period 1900-

2002, the time series contains 103 data points between t1 = 1900 and tn = 2002. If the

predecessor residual rS,0 was unknown, the term (rS,1−αrS,0)2 in Equation (2.13) would

need to be replaced by r2
S,1 (1 − α2). In our case, however, the predecessor residual in

the year 1899 is known. We note that the exponent of the likelihood function as written

in Equation (2.13) constitutes the square sum of n IID random variables ∼ N(0, 1),

and is distributed like χ2. To further simplify matters, the logarithm of the likelihood

function is usually used instead of the likelihood itself. When inserting Equations (2.13)

and (2.14) into expression (2.12), the Log Likelihood (LLH) is given by

LLHS = −1

2

n∑

i=1

(rS,i − αrS,i−1)2

σ2
S

− n

2
ln
(
2π σ2

S

)
+

1

2
ln
(
1− α2

)
.

In contrast to α, we do not treat the variance σ2
S of the Gaussian white noise process

η (see Equation 2.10) as a nuisance parameter. Under the AR(1) assumption, σ2
S is

determined by the variance V ar(rS) of the residual, and the propagator α via σ2
S =
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V ar(rS) (1− α2). Hence, the Log Likelihood can be rewritten as

LLHS = −1

2

n∑

i=1

(rS,i − αrS,i−1)
2

V ar(rS)(1− α2)
− n

2
ln (2π V ar(rS))− n− 1

2
ln
(
1− α2

)
. (2.15)

An accurate value for V ar(rS) is difficult to extract from control runs with AOGCMs

because it describes the variance of internal variability in global and annual mean SST

after substraction of the ENSO signal as described by the Southern Oscillation Index.

All state-of-the-art AOGCMs produce some kind of ENSO, but the model signals often

deviate in aspects like periodicity, amplitude and spatial extent from the observations

(Harvey and Wigley, 2003). In this situation, we estimate V ar(rS) directly from the

observations after detrending the instrumental SST record from the forced climate

response and the ENSO signal. The detrending is done by fitting our energy balance

model together with the SOI index to the data, so that the Log Likelihood (2.15) is

maximised. In each step of the optimisation process, V ar(rS) is estimated from the

variance V̂ arS(r) = 1
n−1

∑n
i=1 (rS,i − r̄S)2 of the residual between data and model plus

ENSO signal. In this way, we find a maximum likelihood estimate of σ̂S := σ̂(rS) =

0.078 K for the standard deviation of the detrended SST variability. If ENSO is included

in the SST variability, the standard deviation increases to 0.090 K. This value is in the

centre of the range of estimates that can be deduced from AOGCM control runs (see

Section 2.3). If the observations are detrended only with a linear trend, we find a higher

standard deviation of 0.10 K for SST variability.

The question remains if the detrended SST variability conforms indeed with our

assumption of an AR(1) process. We test the hypothesis in three steps. First, the

residual is decorrelated by calculating the time series ηS,i = rS,i − α̂rS,i−1 of the sup-

posedly Gaussian white noise process (see Equation 2.10), where α̂ = 0.45 is the max-

imum likelihood estimate for the propagator. Secondly, we test the residual ηS for

white noise with a Portmanteau statistics, which evaluates the variability of autocorre-

lation in the residual over various lags. If the residual was white, the autocorrelation

ρτ over the first τ ≤ k lags would fluctuate around zero, and its square sum should

be distributed like χ2(k − 1) with k − 1 degrees of freedom (von Storch and Zwiers,

1999, Chapter 12.2). Since the sample size of n = 103 is small, we can only use lags

up to k ≤ 5 − 7 for the calculation of the square sum. To account for the bias in the

estimator of the autocorrelation function, i.e., ρ̂τ = 1
n

1
V̂ ar(η)

∑n
i=τ (ηi−τ − η̄) (ηi − η̄)

(von Storch and Zwiers, 1999, Chapter 12.1), we use the Young-Box-Pierce Portman-

teau Test which inflates the empirical autocorrelation ρ̂τ by a factor n/(n − τ). The

test yields a p-value of 0.49 (lags up to k = 5) which means that the Null hypothesis

of ηS being the realisation of a white noise process cannot be rejected at any reason-

able significance level. To check the power of the test we apply it to the correlated

residual rS , and find a p-value of 10−4. Hence, the test correctly rejects the white

noise hypothesis for the residual between observations and model plus ENSO signal.

Finally, we need to test the hypothesis that ηS is normally distributed. The standard
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normality tests compare the empirical distribution function of the realisation ηS with

the normal distribution function N(µ̂, σ̂), where mean and variance are estimated from

the sample. We have applied a set of established normality tests to the realisation

of ηS (Kolmogorov-Smirnov-Lilliefors, Cramer-von Mises, Anderson-Darling, Pearson

chi-square, Shapiro-Wilk, Shapiro-Francia), and found p-values between 0.09 and 0.30.

On this basis, the Null hypothesis of ηS being normally distributed cannot be rejected

at the 5% significance level by any of these tests. To check their power, we have applied

them to the correlated residual rS between model output and data. 4 out of 6 tests

correctly rejected the Null hypothesis of a normally distributed residual rS at a 5% sig-

nificance level. We conclude that the residual variability in observations after removal

of the model and ENSO signal exhibits no significant evidence against the assumption

of an AR(1) process.

LAT: The variability in global and annual mean land temperatures will be highly

correlated with the variability in global and annual mean sea surface temperatures.

Therefore, it is not possible to aggregate likelihoods for the reproduction of LAT and

SST observations under an independence assumption. This is highlighted by investi-

gating the residuals between data and model plus ENSO signal for our best fit depicted

in Fig. 2.5. We check for correlations between the residual rL for LAT and the residual

rS for SST by means of an asymptotically optimal test that was recently presented by

Hallin and Saidi (2003, 2005) for time series of multivariate ARMA processes. They

showed that their test is more powerful and exhibits more accurate rejection frequencies

for small time series with n ≈ 100 data points, than the classical Portmanteau test of

cross-correlations by Haugh (1976). When applying the test to the residual time series

for LAT and SST that were obtained from our best fit to the data depicted in Fig. 2.5,

we find a p-value of 0.004. Hence, the test is powerful enough to clearly reject the Null

Hypothesis of no correlation between LAT and SST residuals.

Since the variability in the SST and LAT record is correlated, we need to find some

piece of additional information in the LAT record, that is fairly independent of the

SST record. A good candidate is the difference in warming and cooling trends over

land and over the ocean, ∆T = T̂L − T̂S . When applying the test of Hallin and Saidi

(2003) to the residuals for SST and ∆T in the period 1900-2002, we find a p-value of

0.14 for the Null Hypothesis of no correlation between the two residuals (under the

restrictive assumption that the ∆T residual is white noise). A problem arises from the

presence of radiative forcing spikes after volcano eruptions. Since the thermal inertia

of the ocean is much larger than that of the landmass, these spikes are more visible in

the land temperature record than in the SST record. Since the energy balance model

DOECLIM has no spatial resolution, it overestimates the amplitude of the resulting

spikes in ∆T , i.e., the cooling over land relative to the cooling of the sea surface is

too large. In addition, we are using a globally uniform volcanic forcing, which is an

inadequate choice when it comes to assess the difference in cooling over ocean and

land. As a result of this model inadequacy, inclusion of the residual on ∆T along with
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the residual on SST in the likelihood function leads to artificially low choices for the

nuisance parameter βVol (βVol ≈ −5.4 W m−2 instead of βVol ≈ −11.2 W m−2 for a fit

to SST alone). In order limit the bias from the inadequate representation of volcanic

spikes in ∆T , we remove periods of high volcanic activity from the ∆T time series to be

included in the likelihood function. Only periods of five years or longer were retained

that are not interspersed with years of volcanic aerosol optical depth that surpassed an

heuristically chosen threshold value (τ ≤ 0.007). This leaves us with the periods 1914-

1921, 1924-1928, 1934-1952, 1955-1962, 1977-1981, 1986-1990, and 1996-2002, where

no globally significant volcanic activity took place (see Figure 2.2.e). If the model

plus ENSO signal is fitted to the ∆T values in these 57 years together with the SST

values for the period 1900-2002, the optimisation algorithm adopts a volcanic forcing

conversion factor of βVol ≈ −9.4 W m−2. Hence, the overestimation of volcanic spikes

in the modelled ∆T signal was indeed responsible for the artificially low estimates of

βVol. The removal of periods with volcanic activity also increases the p-value from 0.14

to 0.55 that can be obtained from the test of Hallin and Saidi (2003) for a correlation

between the residuals in SST and ∆T in the remaining 57 years.

Encouraged by these preliminary checks, we have decided to incorporate the in-

formation provided by the observed temperature differences T̂L−S = T̂L − T̂S in the

remaining 57 years into the likelihood function. Let rL−S(θ, βVol, βL−S,SOI) = T̂L−S −
(TL(θ;βVol)− TS(θ;βVol)) − (βL,SOI − βS,SOI) ISOI be the residual between the land-sea

temperature differences in the instrumental record and in the model plus ENSO signal.

Since the variability over land is essentially a white noise process (Collins et al., 2001),

any autocorrelation in the LAT series will stem from heat exchange with the ocean

areas. We expect this autocorrelation to be largely removed in the land-sea temper-

ature difference ∆T̂ . Hence, we specify the likelihood function for reproducing T̂L−S
with our model plus ENSO hypothesis by assuming that the residual rL−S constitutes

a Gaussian white noise process, i.e.,

LL−S(θ; θL−S,N ;TL−S) =
1√

2π
m
σmL−S

e
− 1

2 σ2
L−S

Pm
i=1 r

2
L−S,i(θ,βVol,βL−S,SOI)

, (2.16)

where m = 57 is the number of years included in the likelihood estimation, and the

active nuisance parameters are summarised by θL−S,N = (βVol, βL−S,SOI := βL,SOI −
βS,SOI).

In analogy to the standard deviation of the residual SST variability, we estimate

σL−S directly from observations after detrending them with the model plus ENSO

signal. This is done by maximising the Log Likelihood,

LLHL−S = −1

2

m∑

i=1

r2
L−S,i
σ2
L−S

− m

2
ln
(
2π σ2

L−S
)
, (2.17)

where σ2
L−S is estimated from the variance V̂ ar(rL−S) of the residual in each step of the

optimisation procedure. In this way, we find a best estimate of σ̂L−S = 0.126 K for the
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standard deviation of the variability in the residual rL−S. If we do not remove the ENSO

signal from the T̂L−S record when calculating the residual, the standard deviation in-

creases to 0.139 K. An analysis of the global and annual mean temperature difference

TL−S in a 1000-year HadCM3 control run yields a little lower estimate of 0.132 K. We

conclude that the estimate from our detrending procedure lies in a reasonable range

supported by the HadCM3 control run. For completeness, we test the residual rL−S for

our assumption of Gaussian white noise. The Young-Box-Pierce Portmanteau test for

white noise yields a p-value of 0.49 (lags up to k = 3), and the standard normality tests

find p-values above 0.5 with the exception of the Kolmogorov-Smirnov-Lilliefors test

(p-value = 0.25). Hence, the tests provide no significant evidence that our assumption

of Gaussian white noise is false.

We aggregate the two likelihood functions for SST and the land-sea temperature

difference by assuming independence of the corresponding residual time series between

data and model plus ENSO signal, i.e.,

L( θ; θN ; (T̂S , T̂L−S) ) = LS(θ; θS,N ; T̂S) · LL−S(θ; θL−S,N ; T̂L−S) . (2.18)

For the calculation of the likelihood function, we compute the joint Log Likelihood

LLH = −1

2

n∑

i=1

(rS,i − αrS,i−1)2

σ̂2
S (1− α2)

− n− 1

2
ln
(
1− α2

)
− 1

2

m∑

j=1

r2
L−S,j
σ̂2
L−S

+N , (2.19)

which includes altogether n+m = 160 data points. The constant N = − n
2 ln

(
2π σ̂2

S

)

−m
2 ln

(
2π σ̂2

L−S
)

summarises the fixed contribution from the estimated variance of

natural variability in the residuals. As discussed above, we assume values of σ̂S =

0.078 K and σ̂L−S = 0.126 K. The Log Likelihood is a function of the uncertain cli-

mate model and forcing parameters θ = (T2x, κv , QS90), and the nuisance parameters

θN = (βVol, α, βL,SOI, βS,SOI). The maximum likelihood estimate for these parameters

can be found by maximising Expression (2.19) under the dynamic constraints (2.5)

and (2.6) provided by the energy balance model DOECLIM, and the linear addition

of the scaled SOI index (see Equation 2.11). We tackled the optimisation problem

by implementing the model in the optimisation package GAMS (Brooke et al., 1992),

and solving it with the non-linear problem solver CONOPT2 (Drud, 1992). GAMS

views the difference equations (A.25) and (A.26) for the numerical integration of DOE-

CLIM as 2 l static constraints (l = 253 years in the period 1750-2002). In a first step,

CONOPT2 searches for a feasible solution satisfying the constraints, which is equivalent

to a forward integration of DOECLIM for some parameter constellation. In a second

step, the free parameters θ, θN are varied with a gradient-based optimisation procedure

to search for a local maximum of expression (2.19), while assuring dynamic consistency

by observing the 2l constraints. It is important to note that the simple structure of

DOECLIM allows us to search the uncountable space of possible hypotheses in an ef-

ficient way. This is complementary to the case of complex climate models, which only
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Figure 2.5: Comparison of the model simulation with the instrumental temperature record
for the period 1870-2002. The model was fitted to the SST record in the period 1900-2002
and to the difference in land and sea surface temperatures in the periods 1914-1921, 1924-1928,
1934-1952, 1955-1962, 1977-1981, 1986-1990, and 1996-2002.

allow to compare a linear superposition of a finite number of response patterns with

the observations.

The optimisation procedure finds a maximum of the likelihood function at the point

T ∗2x = 3.26 K, κ∗v = 0.55 cm2 s−1, Q∗S90 = −0.97 W m−2, β∗Vol = −9.21 W m−2, α∗ =

0.45, β∗S,SOI
= −0.063, and β∗L,SOI

= −0.147. We have varied the initial point of the

optimisation to check for multiple local maxima, and found no indication for their

existence. Our scan of the entire parameter space Ω discussed below reveals a quasi-

concave shape of the likelihood function which further supports this finding. However,

we warn to put too much emphasis on the maximum likelihood estimate. There exists

a large range of other parameter constellations with similarly high likelihood values.

The full structure of the likelihood function will be discussed in Section 2.5.

Figure 2.5.a-b shows the resulting best fit of the model and ENSO signal to the

instrumental temperature record. The response of DOECLIM to the radiative forcing

in the industrial era is depicted in red, and the model hypothesis after the addition

of the ENSO signal is shown in blue. The model plus ENSO signal reproduces the
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instrumental temperature record well. This is also true for the period 1870-1899, which

was not included in the fit. Significant deviations of the hypothesized SST trajectory

exist for the periods 1907-11, and 1922-25, where the observations show a stronger

cooling than simulated by the model, and for the exceptionally warm years 1937-38,

and 1943-45 (The exceptionally warm year 1941 was a strong El Niño year, and therefore

can be explained). The deviations between modelled SST and observed SST in the early

20th century are not found for land temperatures. Therefore, we speculate that they

might arise from a combination of interannual ocean variability that is not accounted

for in the model, and a bias to cooler SSTs in the observations due to sparse data

coverage in these periods. However, the exceptionally warm years 1937-38, and 1943-

45 are present in the SST and LAT record, and cannot be explained by the model.

We also note that the model fits the data considerably better in the second half of

the 20th century than in the first half. We attribute this to the combination of two

effects. First, the temperature record in the last decades was dominated by the strong

increase in anthropogenic forcing which the model can reproduce well. In the earlier

years, a greater role was played by natural variability and forcing, which are more

difficult to account for adequately. Secondly, the systematic errors in the instrumental

temperature record are certainly lower for the second half of the 20th century. This

is also true for the Southern Oscillation Index, whose quality has been questioned for

Tahitian sea level pressure measurements before 1935 (Ropelewski and Jones, 1987).

Histograms of the residuals between instrumental temperature record and the max-

imum likelihood fit of model plus ENSO signal are shown in Figure 2.5.c-d together

with fits of a normal distribution (SST: Time decorrelated ηS in the period 1900-2002,

TL−S : rL−S in the years 1914-1921, 1924-1928, 1934-1952, 1955-1962, 1977-1981, 1986-

1990, and 1996-2002). We test the residuals for our Null hypothesis of independent

Gaussian white noise by the series of tests established above. The Young-Box-Pierce

Portmanteau test for white noise yields p-values of 0.61 (ηS , up to k = 5 lags) and 0.45

(rL−S , up to k = 3 lags). The standard normality tests find p-values for ηS in the range

0.12 to 0.36, and p-values for rL−S above 0.52. The test of Hallin and Saidi (2003) for

correlation between ηS and rL−S yields a p-value of 0.54. We conclude again that there

exists no evidence for rejecting our Null hypothesis at any reasonable significance level.

Nevertheless, we have checked whether our likelihood improves considerably, if we

extend the hypothesis about the residual between observations and model simulation in

several directions. As already discussed in Section 2.3, we have considered the inclusion

of two other modes of interannual to decadal climate variability, i.e., NAO and PDO.

We have also checked whether the remaining residual after removal of the ENSO signal

is better explained by a higher order AR process rather than an AR(1) process. Since

the different hypotheses about the residual include different numbers of free parameters,

we need to apply a criterion that allows us to compare the value of the maximum Log

Likelihood (2.19) under these circumstances. The Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC) are common choices (von Storch and

Zwiers, 1999, Chapter 12.2). They both penalise the introduction of new parameters
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to avoid overfitting. In our analysis, we will use BIC which is defined by

BIC = −2 lnL+ p lnn , (2.20)

where p is the number of free parameters in the likelihood function, and n the number

of data points. In contrast to AIC, BIC scales the penalty with the number of data

points, and therefore selects less complex models (in terms of p) than AIC even for small

samples with n > 7. This is an important feature for our application, because we are

seeking for new parameters that improve the performance of our hypothesis throughout

the period under consideration, i.e., at all data points. Since such improvements are

summed up in the Log Likelihood, we want a threshold for the inclusion of a new

parameter to depend on the sample size.

The comparison of different model hypotheses is shown in Figure 2.6. Since the

BIC comprises the negative Log Likelihood together with a positive penalty for the

parameters, the model hypothesis with the lowest BIC is the winner. We have conducted

two experiments. In the first experiment, we assumed an AR(1) process for the residual

variability between model output and observations, and then increased the complexity

of the model hypothesis. We started with a model that excluded the contribution

of volcanos to the radiative forcing as well as the temperature signal of ENSO (free

parameters: T2x, κv, QS90, α) and then switched on consecutively the ENSO signal (two

new parameters: βS,SOI, βL,SOI), volcanic forcing (one new parameter: βVol), the NAO

signal (two new parameters: βS,NAO, βL,NAO) and the PDO signal (two new parameters:

βS,PDO, βL,PDO). In this experiment as well as in the second, the variances V ar(X) of the

residual SST variability, and σ2
L−S of the residual land-sea temperature difference, were

estimated directly from the residual between observations and model hypothesis. It
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can be seen that the inclusion of the ENSO signal improved the BIC the most, followed

by the inclusion of volcanic forcing. In contrast, the addition of NAO and PDO is not

supported by the BIC. This repeats our discussion in Section 2.3.

The second experiment consisted in including volcanic forcing and the ENSO signal

throughout, and increasing the order of the AR hypothesis for the residual from white

noise (AR(0), six free parameters: T2x, κv , QS90, βVol, βS,SOI, βL,SOI) to AR(4) (addition

of new parameters α, α2, α3, α4 one at a time). A change in the AR hypothesis re-

quires to modify the Log Likelihood (2.19). The case of white noise is obtained by

simply setting α = 0. For AR(k), we need to replace the terms in the square sum

for the SST residuals by rS,i −
∑k

j=1 αj rS,i−j. In our case, no additional complica-

tions arise from the truncation of the time series, since the predecessor residuals rS,0
to rS,−3 in the years 1896-99 are known. In addition, we need to adjust the estimator

V̂ ar(X)/(1−α2) for the variance of the white noise process ηS in the AR(k) process by

V̂ ar(X)/(1−∑k
j=1 ρj αj), where ρj is the autocorrelation of the AR(k) process at lag

j. The autocorrelation function ρ is completely determined by the k propagators, and

can be derived analytically from the Yule-Walker equations (von Storch and Zwiers,

1999, Chap. 11.1). We have implemented the dependence of ρj as additional constraints

to the optimisation in order to ensure that a change in the free parameters αj is ac-

companied by the corresponding change in the autocorrelation function. Hence, the

complexity of the optimisation problem increases with the order of the AR hypothesis.

Figure 2.6 shows that the assumption of a white residual for sea surface temperature

performs badly compared with the AR(1) hypothesis. In contrast, the assumption of

higher order AR-processes is not supported by the BIC. The BIC recommends a model

that includes volcanic forcing, the ENSO signal, and an AR(1) hypothesis for the resid-

ual SST variability, but no other extension that we have considered here. Hence, we

will continue to use the set of model hypotheses (2.11).

2.5 The likelihood function for the climate model

Since we want to use the likelihood function L( θ; θN ; (T̂S , T̂L−S) ) in the framework of

a Bayesian analysis, we would ideally evaluate it on the entire space of assumptions

θ, θN . However, the dimensionality of the set of parameters θ, θN precludes such an

evaluation, as it will be the case in most other analyses of climate change. Fortunately,

we have separated the parameters into a set θ = (T2x, κv , QS90) of interest, and a set θN
of nuisance parameters that are solely needed for the determination of the likelihood.

As pointed out before, we will restrict the calculation of the likelihood function to the

space Ω ⊂ R3 spanned by θ, and use the power of optimisation routines to search the

remaining space ΩN of nuisance parameters for the combination that maximises the

likelihood at a given point θ. Hence, we construct the upper envelope L(θ; T̂ ) of all

intersects LθN (θ; T̂ ) of the likelihood function at fixed points θN . Ideally, we should

take all these intersects into account, not just their upper envelope. This would give rise

to an imprecise likelihood function on the space Ω, which would need to be treated with
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robust Bayesian methods and imprecise probability analysis, respectively. As pointed

out before, we consider this a potentially important area of application of imprecise

probability methods in climate change research. In this thesis, however, we need to

make a first step, and limit ourselves to imprecision in the prior probabilities that are

needed for a Bayesian analysis (see Section 3).

However, we briefly want to assess the implication of using the upper envelope

L(θ; T̂ ) of the set of possible likelihood functions, instead of the likelihood function

LθN (θ; T̂ ) for some fixed value θN . Typically, the choice of θN would be the maximum

likelihood estimate θ∗N , which in our case is given by β∗Vol = −9.21 W m−2, α∗ = 0.45,

β∗S,SOI
= −0.063, and β∗L,SOI

= −0.147 (see Section 2.4). We compare the two choices

by evaluating the likelihood of the maximum likelihood estimate θ∗, i.e., in our case

T ∗2x = 3.26 K, κ∗v = 0.55 cm2 s−1, Q∗S90 = −0.97 W m−2, relative to the likelihood of any

other assumption about θ. Clearly, it is

Lθ∗N (θ∗; T̂ )

Lθ∗N (θ; T̂ )
=

L(θ∗; T̂ )

Lθ∗N (θ; T̂ )
≥ L(θ∗; T̂ )

L(θ; T̂ )
.

Hence, the choice of the upper envelope decreases the weight of evidence for the maxi-

mum likelihood estimate θ∗ relative to the weight of evidence for other assumptions θ.

Since the likelihood ratio influences the posterior probability density ratio directly by

ρ(θ∗|T̂ )

ρ(θ|T̂ )
=

L(θ∗; T̂ )

L(θ; T̂ )
· ρ(θ∗)
ρ(θ)

,

the adoption of the upper envelope L(θ; T̂ ) can be seen as the most conservative choice

for accumulating probability mass around the maximum likelihood.

We have evaluated the likelihood L(θ; T̂ ) at 35 × 30 × 13 = 13650 points of the

parameter space Ω = ΩT2x × Ωκv × ΩQS90
, and used a cubic spline to interpolate in

between these points. Since each evaluation involved an optimisation of the nuisance

parameters θN , we have fully capitalised on the computational efficiency of our energy

balance model. Fig. 2.7 shows six intersects of the three-dimensional likelihood function

for fixed values of the sulphate aerosol forcing. The likelihood values are displayed in

units of the maximum likelihood. It can be seen that the area of (T2x, κv) pairs with

non-negligible likelihood shrinks considerably towards low values |QS90| < 0.4 W m−2

and high values |QS90| > 1.4 W m−2 for the cooling effect of sulphate aerosols. The

shape of the likelihood function shows a positive correlation between climate sensitivity

and ocean heat diffusivity, which is particularly strong at intermediate values of QS90.

The rotation of the ‘likelihood dumbbell’ from an almost horizontal κv-extension to

an almost vertical T2x-extension for an increase from |QS90| = 0.4 W m−2 to |QS90| =

1.4 W m−2 indicates also a strong positive correlation between climate sensitivity and

the strength of the sulphate aerosol cooling. As a consequence of these correlations

between T2x, κv, and QS90 in the likelihood function, the point of maximum likelihood

reacts very sensitive to changing assumptions about the nuisance parameters θN . If
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Figure 2.7: Likelihood function for the parameters θ = (T2x, κv, QS90) generated from the
comparison of the model simulations with the 20th century temperature record. Values are
given in percentage of the maximum likelihood at the point T2x = 3.26 K, κv = 0.55 cm2 s−1,
QS90 = −0.97 W m−2.
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we fixed the volcanic forcing strength, for instance, at a higher value than β ∗Vol =

−9.21 W m−2, the optimisation routine would increase the ocean heat diffusivity in

order to smooth out the emerging volcanic spikes in the residual between modelled and

observed temperatures. This would also result in an increase of climate sensitivity at

the point of maximum likelihood. It is interesting to note that an opposite effect was

identified by Harvey and Kaufmann (2002). Since these authors did not include ocean

heat uptake as an additional degree of freedom into the maximisation of the likelihood,

a smoothing of volcanic spikes could only be accomplished by a decrease in climate

sensitivity.

To further explore the structure of the likelihood function L(θ; T̂ ), we investigate

its projection onto the dimensions of the individual model parameters. Fig. 2.8 shows

the ‘ridges’ of the likelihood function, i.e., the maximum likelihood values that can be

obtained for fixed values of T2x (Panel a), κv (Panel c), and QS90 (Panel d), when

adjusting the remaining parameters appropriately (shown for climate sensitivity in

Panel b). It can be seen that the likelihood drops sharply towards low climate sen-

sitivities T2x ≤ 1.5 K (maximum likelihood: e−4.1) and strongly negative sulphate

aerosol forcing QS90 ≤ −1.7 W m−2 (maximum likelihood: e−6.9). In contrast, very

high climate sensitivities T2x ≥ 10 K (maximum likelihood e−2.2) have a non-negligible

likelihood, when combined with a sulphate forcing around −1.3 W m−2, and an effective

ocean heat diffusivity around 2 cm2 s−1 (see Fig. 2.8.b). The low end of the sulphate

cooling is better constrained (maximum likelihood for QS90 = 0 W m−2: e−3.9). These

results are in qualitative agreement with the findings of previous studies that tried to

constrain climate sensitivity and the radiative forcing from aerosols by means of a com-

parison between model simulations and 20th century temperature data (Andronova and

Schlesinger, 2001; Knutti et al., 2002; Forest et al., 2002). They all failed to exclude

very high values of climate sensitivity, but could produce stringent constraints on the

net cooling effect of aerosols. For ocean heat diffusivity κv , we find that the area of

high likelihoods is concentrated at κv < 2 cm2 s−1. Values above κv > 5 cm2 s−1 obtain

their maximum likelihood for unrealistically high climate sensitivities T2x > 10 K. If we

had constrained climate sensitivity to values T2x ≤ 10 K then the likelihood would drop

faster beyond κv = 5 cm2 s−1. Hence, the likelihood function constrains κv at the high

end, but not at the low end. Fig. 2.8.b underlines that there exists a strong positive

correlation between climate sensitivity and the other two parameters κv and QS90. The

optimisation procedure utilises the compensating effect of the sulphate aerosols up to

T2x ≈ 4 − 5 K, beyond which it relies more and more on the compensating effect of a

larger heat uptake of the ocean. This indicates that a restriction of ocean heat diffu-

sivity from above will be necessary to exclude very large values of climate sensitivity

(cf. Forest et al., 2002).

We conclude the chapter by comparing the likelihood information with the accep-

tance regions of the parameter space Ω that can be obtained from a series of statistical

tests on the decorrelated residuals ηS(θ) between modelled and measured SST values,

and on the residual rL−S(θ) between modelled and measured land-sea temperature dif-
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Figure 2.8: Maximum likelihood for fixed values of the parameters T2x, κv, and QS90 with
respect to the absolute maximum of the likelihood function at T2x = 3.26 K, κv = 0.55 cm2 s−1,
QS90 = −0.97 W m−2 (Panels a, c, d). Panel b shows the adjustment of κv , and QS90 that tracks
the maximum likelihood for fixed values of T2x.

ference. Since both residuals are assumed to constitute IID normal random variables

(see Equations 2.12 and 2.16), there individual as well as combined square sums needs

to be distributed like χ2. Therefore, we test the square sum
∑n=103

i=1 ηS,i(θ)
2/σ̂2

S for χ2

with n−3 DoF (free parameters α, βVol, βS,SOI), the square sum
∑m=57

j=1 rL−S,j(θ)2/σ̂2
L−S

for χ2 with m−3 DoF (free parameters α, βVol, βL−S,SOI), and the sum of the two square

sums for χ2 with n + m − 4 DoF. In addition, we apply the Young-Box-Pierce Port-

manteau Test to ηS(θ) (lags up to k = 5) and rL−S(θ) (lags up to k = 3) to test both

residuals for white noise. On the basis of these five tests, we can define the α-acceptance

region A(α) ⊂ Ω as the collection of all parameter constellations θ = (T2x, κv , QS90), for

which the corresponding residuals could not be rejected at significance level α by any

of the five tests.

Fig. 2.9 shows the projections of the resulting acceptance regions for various sig-

nificance levels α onto the κv-T2x plane (Panel a) and QS90-T2x plane (Panel b). It is

surprising that only a small portion of the (T2x, κv) and (T2x, QS90) pairs can be rejected

on the basis of all five tests. We can only exclude climate sensitivities below 1.1 K and

a sulphate aerosol cooling effect |QS90| ≥ 1.75 W m−2 in the year 1990 at a 5% signif-
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maximum likelihood (dark red area). Non-convexities in the regions are due to the resolution
of the grid, on which the likelihood function was evaluated.

icance level. The result shows how the multi-dimensionality of the parameter space

impedes the confinement of the uncertainty about the individual parameters. For most

values of T2x, κv , and QS90, one can find a constellation of the other two parameters

that improves the simulation of the 20th century temperature record to a degree which

suffices to pass the statistical tests. It is also interesting to note that the 5%-cut of the

likelihood function (in units of the maximum likelihood) is more restrictive than the

5%-acceptance region, and more similar to the 20%-acceptance region of the combined

five tests (see Fig 2.9, dark red area). However, the likelihood function as such conveys

no probabilistic meaning, since it collects the T̂ -values of an uncountable number of

conditional probabilities ρ(T̂ |θ) (see Equation 2.12). This highlights the importance of

a Bayesian analysis that employs the likelihood information to update an (imprecise)

prior probability.



Chapter 3

Generating Imprecise

Probabilities for Climate Change

Assessments

Uncertainty is often separated into two categories: epistemic uncertainty and aleatory

uncertainty (cf., e.g., Walley, 1991, Chap. 1). Aleatory uncertainty arises from variabil-

ity in observable quantities, which originates from randomness or chaotic behaviour.

It is ubiquitous in the climate system as exemplified, e.g., by the natural variability

of climatic variables. The concept of aleatory uncertainty fits in nicely with the fre-

quentist interpretation of probability. In this context, a probability of P (A) = 0.5 for

observing an event A means that A will be observed half of the time in an infinite

sequence of identical and independent experiments. The natural sciences in the tradi-

tion of physics have thought about uncertainty almost exclusively in terms of aleatory

uncertainty. This corresponds to the tradition of requiring a number of repeated, iden-

tical experiments for testing a hypothesis. But what to do if no repeatable, identical

experiments are available to determine the uncertainty about an unknown quantity?

In almost every assessment of climate change there exist such quantities that evade

a frequentist assessment. Climate sensitivity serves as a paramount example, which

we will use throughout this chapter. The uncertainty about climate sensitivity is not

aleatory, but epistemic in nature.

Epistemic uncertainty arises from a lack of information about a quantity in question.

Aleatory uncertainty may contribute to this lack of information, but in general there

are many more sources of epistemic uncertainty. The assessment of climate change,

for instance, is confronted with a lack of knowledge about causal relationships that

is much larger than the inherent variability of the climate system would imply. The

social sciences have always had a type of epistemic uncertainty in mind, where the

lack of information is generated by ignorance rather than the existence of random

variables. Consequently, they have used a concept of probability which is completely

different from the frequentist concept based on aleatory uncertainty. They proposed

49
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a behavioural approach which identifies probabilities with degrees of belief that are

reflected in behaviour (Ramsey, 1931; de Finetti, 1937). In this approach, probabilities

are not revealed by observation, but by a disposition to act. Betting situations have

served as a paradigm for the behavioural interpretation. If belief can be separated from

risk aversion in an idealized betting situation, your degree of belief (probability) about

the occurrence of an event A is defined by the maximum amount of utility 0 ≤ u ≤ 1

you are willing to trade for a gamble which pays you one unit of utility if A occurs and

nothing else.

The interpretation of probability as degree of belief expressed by the actions of an

individual gives rise to subjective probabilities. Beliefs will differ among individuals.

We have tried to point out in the introduction that probabilities based purely on be-

havioural dispositions face severe difficulties when applied to the important class of

normative social decision problems. Clearly, climate policy making belongs to this class

as exemplified by the guiding principle to protect our welfare and environment in the

face of climate change. To address this challenge, it is not sufficient to base a policy

analysis on subjective degrees of belief. Rather, it should be based on the available

evidence that society has gathered up to this point in time.

Hence, what is needed is a framework of epistemic uncertainty with a clear evidential

foundation and a clear behavioural implication. We have argued in the introduction

that the evidential basis about many aspects of climate change is too weak to be

described by a single probability measure. As a remedy, statisticians such as Peter

Walley (1991) and philosophers like Isaac Levi (1980) have proposed a generalisation

of the classical concept of probability to imprecise probability. The main theme of this

thesis is motivated by the question in how far the theory of imprecise probability can

meet this promise in the integrated assessment of climate change.

The term ‘Imprecise Probability ’ summarises a variety of mathematical representa-

tions, e.g. convex sets of probabilities (Good, 1962; Levi, 1980), lower previsions (Wal-

ley, 1991), Choquet capacities (Choquet, 1953), and interval probabilities (Kuznetsov,

1991; Weichselberger, 2000). They have become an object of active research during the

last two decades (for introductions see Cozman 1999a and the website of the Society of

Imprecise Probabilities and Their Applications at www.sipta.org). Imprecise probabil-

ities of whatever form share the following characteristics: they yield a lower and upper

bound on the probability that an event will occur and a lower and upper bound on the

expected value of a gamble and random variable, respectively. When lower and upper

bound fall onto each other, the classical case of probability theory obtains1. When the

lower bound is strictly smaller than the upper bound, we say that the belief is imprecise.

In this chapter we will focus on the evidential foundation of imprecise probability

models that are chosen prior to the consideration of data. As pointed out in the intro-

duction, the assumption of an (imprecise) prior probability is necessary and sufficient to

1 Here and in the following, “classical probability theory” means the axiomatic theories of countably
additive and finitely additive probability measures as presented by Kolmogorov (1933) and de Finetti
(1937), respectively.
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convert information about the likelihood of alternative hypotheses from a comparison

with observations (see Chapter 2) into an (imprecise) posterior probability for these hy-

potheses. In what follows, we will make use of various concepts and relationships from

the theory of imprecise probability. Due to the wealth of material that we have to cover

on a limited space, we cannot introduce these concepts in the main body of the thesis.

However, we have provided a survey of imprecise probability theory in Appendix C.

If the reader is unfamiliar with imprecise probabilities, we recommend to consult this

survey before proceeding with the remaining part of the chapter. In Section 3.1, we

investigate suitable mathematical representations of imprecise probabilities that can

match the computational requirements of an integrated assessment of climate change.

Section 3.2 discusses what type of imprecise probability model is generated from what

type of evidence. As an illustration, we will amalgamate a set of recently published

probability estimates for climate sensitivity to various types of imprecise probability.

Section 3.3 describes the belief function representation of the particular imprecise prob-

ability model that will be used in this analysis. On the basis of this representation,

marginal belief functions for climate sensitivity T2x, anthropogenic sulphate aerosol

forcing QS90 in 1990, and effective vertical ocean heat diffusivity κv are constructed in

Section 3.4. Section 3.5 combines the information to generate a joint belief function on

the entire parameter space Ω = Ω(T2x)× Ω(κv)× Ω(QS90).

3.1 Tractability of imprecise probability models

Integrated assessments of climate change are usually based on dynamic models, whose

complexity ranges from simple box models to fully coupled three-dimensional earth

system models. To date, probabilistic analyses of climate change are mainly conducted

with energy balance models (e.g., Andronova and Schlesinger, 2001) that have inte-

gration times of seconds to minutes, and two- or three-dimensional climate models of

intermediate complexity (e.g., Forest et al., 2002) with integration times on the order of

hours. Only recently, atmosphere general circulation models coupled to a mixed layer

ocean were employed to generate probability estimates for climate sensitivity (Murphy

et al., 2004; Stainforth et al., 2005). However, they require the massive use of parallel

computing power to produce a sample of even a moderate number of model realisations.

Therefore, energy balance models and models of intermediate complexity will continue

to play a crucial role in probabilistic assessments of climate change.

Applications of imprecise probabilities will have to cope with the complexity of these

models, if they want to be useful for the integrated assessment of climate change. Given

the prototypical character of our analysis, we will focus on a low level of complexity

as exhibited by one-dimensional energy balance climate models. Despite being very

simple climate models, they are fairly complex for imprecise probability standards. In

addition to their dynamic nature, they include in general several real-valued uncertain

parameters. The associated uncertainty space will be described by an uncountable uni-

versal set Ω of elementary events (in frequentist language) or possible states of the world
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(in behavioural language). Even if the uncertainty space is simplified by considering

a finite partition of Ω, the finite approximation can easily contain thousands or more

elements. The challenge is to collect concepts from imprecise probability theory that

are mathematical tractable enough to be applied to dynamic problems with such large

uncertainty spaces Ω, and still flexible enough to capture different types of uncertainty

about climate change.

The survey in Appendix C shows that the body of imprecise probability theory is

very rich, since it collects a variety of uncertainty models under one umbrella. These

models range from the general concepts of convex sets of probabilities (see Defini-

tion C.2) and coherent lower previsions (see Definition C.4) to special classes like belief

functions (see Definition C.13). For our application of imprecise probabilities in the

integrated assessment of climate change, we basically have two options. The first option

is to stick to the general concepts and try to establish methods for solving problems of

natural extension (see Definition C.5) in climate change and climate policy analysis. In

the context of reliability analysis, such an approach has been pushed, e.g. by Utkin and

Gurov (1999), Kozine and Filimonov (2000), and Utkin and Kozine (2002). It has the

advantage of working with a flexible representation that can incorporate a very wide

class of assessments about epistemic uncertainty. The drawback will be that the natural

extension is very difficult to compute already for problems with modest complexity, let

alone the complexity of integrated assessment models for climate change.

The second option is to give up some generality of the uncertainty representation in

return for an increase in mathematical tractability. This involves the search for special

classes of imprecise probability that simplify the statistical reasoning considerably, while

still retaining enough flexibility to capture at least some aspects of our large uncertainty

about climate change. In this thesis we have chosen to go down this road. Our choice

does not imply, however, that it would not be worthwhile investigating the other option

of approaching a greatly simplified climate change assessment with a very general and

flexible concept of imprecise probability. We see both approaches as complementary,

and potentially very fruitful for an improved treatment of epistemic uncertainty in

climate change assessments. However, they require two different types of analysis which

cannot be pursued simultaneously within the scope of this thesis.

A special class of imprecise probabilities will be the more mathematically tractable

the more it allows for a simple representation of its information content. Additive prob-

ability measures, for instance, are defined on the field of events A (see Appendix C.1 for

a definition; an event A ∈ A is a subset of Ω), but can be represented by a probability

(mass) distribution on the universal set Ω. This allows to process probabilities even

in cases of uncountable Ω. We do not expect imprecise probability representations to

be of similar simplicity but want to move into this direction as far as possible without

losing the gain from accounting for imprecision in the uncertainty assessment. There-

fore, we restrict our investigation to coherent lower probabilities (see Definition C.7)

and their associated structures (see Definition C.8) in the following. As pointed out in

Appendix C.1, coherent lower probabilities and structures are less general than coherent



3.1 Tractability of imprecise probability models 53

lower previsions and convex sets of probabilities.

As is the case for additive probabilities, coherent lower probabilities P : A → [0, 1]

are defined on the field of events A, which we will also call event space in the following.

An assessment of coherent lower probabilities on the entire event space A becomes

intractable for large universal sets Ω. This can be seen easily by recalling that the field

of all possible events in a finite universal set Ωn = {θ1, ..., θn} with n atoms, i.e., the

power set P(Ωn), contains 2n elements. In this situation, we need to look for an efficient

representation of the coherent lower probability, from which we can reconstruct lower

and upper probability bounds P (A) and P (A) for arbitrary events A ∈ A. The set

of extreme points (see Definition C.6) of the associated structure Γ(P ) is a potential

candidate since it contains all additive probabilities that set up the lower and upper

probability bounds on the entire event space A. However, it can be shown that a

structure Γ(P ) for a universal set Ωn with n elements can have as much as n! extreme

points (see, e.g., Chateauneuf and Jaffray 1989 for the case of structures associated

with 2-monotone lower probabilities). Since n!� 2n for universal sets with more than

5 elements, a representation of coherent lower probabilities in terms of the extreme

points of their associated structure will be impractical in most cases.

Fortunately, there exists an alternative. Every coherent lower probability P : Pn →
[0, 1] for a finite universal set Ωn allows for an additive representation on the event

space in terms of its Möbius inverse ν : P(Ωn)→ R (see Definition C.12):

∀A ∈ P(Ωn) P (A) :=
∑

B⊆A
ν(B) . (3.1)

The Möbius inverse provides an efficient representation of a coherent lower probability

if it is sparse, i.e., if it contains non-zero values ν(A) 6= 0 only for a limited number k of

events A in the power set P(Ωn) (k � 2n). The Möbius inverse of a probability measure,

for instance, has only non-zero values ν({θi}) ≥ 0 on the elementary events θi ∈ Ωn. In

this case, the Möbius inverse coincides with the probability mass distribution.

Therefore, the concept of the Möbius inverse is particularly interesting for the pur-

pose of our analysis. It carries the potential to greatly simplify the treatment of coherent

lower probabilities if problems of statistical inference like updating or propagating in-

formation can be rephrased in terms of manipulations of the Möbius inverse. There is

one potential caveat, however, which we will need to watch out for during the course of

our analysis. If the statistical inference converts a structure into a convex set of prob-

abilities that cannot be fully described by its lower envelope any more, the restriction

to coherent lower probabilities and their Möbius inverse will lead to a loss of informa-

tion. Nevertheless, we have decided to emphasise mathematical tractability and seek

for imprecise probability models that allow for an efficient representation in terms of

a sparse Möbius inverse. We think that these models are easiest to implement in cli-

mate change analyses, and therefore provide a good starting-point for an investigation

into the applicability of imprecise probabilities to the integrated assessment of climate

change.
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3.2 Imprecise probability models for various evidence

In the following, we will discuss various imprecise probability models that dwell on

different types of information. As an example, we will use the wide range of different

uncertainty statements about climate sensitivity in order to see how they can fit into

the various imprecise probability models.

3.2.1 Interval estimates

Interval estimates of uncertain climate system properties are ubiquitous in the literature

about climate change. This is illustrated nicely by the Third Assessment Report of the

IPCC. Prominent examples are the radiative forcing strength of various anthropogenic

forcing agents (Ramaswamy, 2001, Table 6.11), the global mean temperature change in

the period 1990-2100, which is estimated to be in the range ∆T = [1.4 K, 5.8 K], and

the estimate of climate sensitivity, T2x = [1.5 K, 4.5 K] (Cubasch and Meehl, 2001).

An interval estimate of an uncertain parameter θ can be given a probabilistic con-

tent if its bounds are interpreted as quantiles of the random variable Xθ capturing

the uncertainty about θ. However, this generally requires knowledge of the parent

distribution of Xθ, in which case the uncertainty could be stated directly in terms of

probabilities. In classical statistics, confidence intervals are used to quantify a param-

eter range [θ, θ], which contains the actual parameter θ∗ at some confidence level α.

In this case, no probabilistic information about the random variable Xθ is conveyed

beyond the confidence value that has to be given to the event [θ, θ]. However, none

of the two cases is implied by the interval estimates discussed above. They specify a

plausible range of values within which no further distinction between more or less likely

values is attempted. This characterises the large uncertainty lying at the heart of such

interval estimates. As a consequence, the exact meaning of the interval bounds remains

opaque. They are usually chosen wide enough to consider values outside their range

‘implausible’, but they rarely delineate such values as ‘impossible’.

Imprecise probability models of interval uncertainty can hardly be specified if the

meaning of the interval bounds is unclear. However, if the bounds are meant to exclude

all values outside the interval, the interval estimate can be easily transformed into an

imprecise probability model. The appropriate candidate is the vacuous lower probability

model that contains all probability measures whose support is confined to the interval

S = [θ, θ]. This model is described by a vacuous lower probability P V : A → [0, 1]

(Walley, 1991, Section 2.9.1) with

P V (A) = 0 if A 6⊇ S , and P V (A) = 1 if A ⊇ S . (3.2)

The set of extreme points of the corresponding structure Γ(P V ) contains all Dirac

measures with degenerate densities δ(θ − θ0) on the interval S, i.e., θ0 ∈ [θ, θ]. The

Möbius inverse νV : A → R of P V allows for an even simpler representation of the

interval uncertainty. It assigns Möbius mass νV (S) = 1 to the interval S = [θ, θ], and



3.2 Imprecise probability models for various evidence 55

no mass to the remaining events. It can easily be seen that this assignment characterises

indeed the vacuous lower probability by P V (A) =
∑

B⊆A νV (B) for all A ∈ A.

P V constitutes a special case of a belief function (see Definition C.13). Belief func-

tions have been introduced by Dempster (1967) and further explored by Shafer (1976).

Since they will play a central role in our analysis, we briefly recapitulate the main

concepts and properties about belief functions that are discussed in Appendix C. Be-

lief functions constitute totally monotone coherent lower probabilities bel : A → [0, 1].

Such set functions have favourable properties. In particular, a set function is totally

monotone if and only if its Möbius inverse ν : A→ R, exhibits only non-negative entries

ν(B) ≥ 0 which sum up to unity (Shafer, 1976). Thus, ν : A → R can be interpreted

as a basic probability assignment on A. The sets A ∈ A with ν(A) > 0 are called

focal elements, and the tuple (E , ν) := {(E1, ν(E1)), ..., (En, ν(En))} is called a (finite

support) random set (see Definition C.14). In this analysis, we will only consider belief

functions with a finite number of focal elements. Knowledge of the random set (E , ν)

suffices to determine bel and its conjugate set function pl, called plausibility function

(see Definition C.13), which constitutes a coherent upper probability. It is

bel(A) :=
∑

B⊆A
ν(B) =

∑

i |Ei⊆A
νi , (3.3)

pl(A) :=
∑

B∩A6=∅
ν(A) =

∑

i |Ei∩A6=∅
νi . (3.4)

Equations (3.3) and (3.4) will be used frequently in this analysis to calculate lower and

upper probabilities from a random set representation of the uncertainty.

3.2.2 Convex hull of diverse probability estimates

It has been argued that interval estimates of future climate change contain too little

information to guide the implementation of climate protection policies (e.g., Schnei-

der, 2001; Dessai and Hulme, 2003). Subjective probability estimates of experts were

proposed as a remedy. In some respect, they constitute the opposite extreme of the

interval uncertainty that was critisised. While interval estimates are born out of large

uncertainty about many factors that influence the quantity in question, subjective prob-

ability estimates need to condense the available information about these factors into a

single measure. In this situation, it is not unusual that estimates about the probability

distribution of a random variable Xθ diverge. A good example is given by climate

sensitivity. Morgan and Keith (1995) elicited 16 climate experts for their subjective

probability distribution about the actual value of climate sensitivity. Although they de-

clared the expert estimates as ‘remarkably similar’ with the exception of one outlier, the

support, quantiles and means of the elicited distributions varied considerably. Remov-

ing the outlier, 5% quantiles were estimated in the range qT5 ≈ [−1.5 K, 1.8 K], means

in the range T̄2x = [1.9 K, 3.6 K], and 95% quantiles in the range qT95 ≈ [4 K, 8 K].

A set of diverse probability estimates P1, ..., Pn constitutes a special case of imprecise
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probability. Its convex hull, defined by

M(P1, ..., Pn) = {P | ∃ λ1 ≥ 0 , ... , λn ≥ 0 with

n∑

i=1

λi = 1 ,

so that ∀ A ∈ A P (A) =
n∑

i=1

λi Pi(A) } , (3.5)

is a closed convex set of probabilities with extreme points P1, ..., Pn. As discussed

in Appendix C, it suffices to work with the extreme points in problems of statistical

inference like updating the information, projecting it onto prognostic model variables

and subjecting it to a decision analysis. Hence, if the set of extreme points is small and

specified, each extreme point can be processed separately with the standard methods

of classical probability theory. A notable exception is decision analysis, which now

has to deal with a set of expected utilities or the like. This requires new decision

criteria that are fashioned for the general case of imprecise probability. Such criteria

are readily available from the decision theoretic and economic literature and will be

briefly discussed in Chapter 5.4.

3.2.3 An example: Probability estimates for climate sensitivity

In this analysis we will consider a set of probability estimates for climate sensitivity

that were published in the recent literature (Andronova and Schlesinger, 2001; Forest

et al., 2002; Knutti et al., 2002; Murphy et al., 2004). These estimates improve upon

the purely subjective expert opininions elicited by Morgan and Keith (1995) in so

far as they involved a comparison of observational data with the output of a climate

model. Forest et al. (2002) used the MIT two-dimensional statistical dynamic model

(Sokolov and Stone, 1998) to simulate the zonal mean climate for the 1860-1995 period,

and to compare it with observational records for upper-air temperature, surface air

temperature and interior ocean temperature. They conducted a series of model runs

with perturbed values of climate sensitivity and effective ocean heat diffusivity and

different assumptions about the net aerosol forcing strength in the 1980s. Hence, they

have considered a very similar set of parameters than we do here. Forest et al. (2002)

applied the r2-statistics of an F test to evaluate the residual between model output

and observations and used it later on to generate a likelihood function on the three-

dimensional parameter space. The likelihood was employed to update two different

prior probabilities: one uniform prior to all three parameters, and one expert prior

(Webster and Sokolov, 2000) that included the averaged expert estimates elicited by

Morgan and Keith (1995). This led to two different posterior probabilities on the joint

parameter space, whose marginals for climate sensitivity are shown in Fig. 3.1. It can

be seen that the primary effect of the expert prior was to dampen the long tail of the

posterior probability for climate sensitivity.
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Figure 3.1: Probability density functions (left panel) and cumulative distribution functions
(right panel) for climate sensitivity from the literature.

Knutti et al. (2002) also used a zonally averaged climate model of intermediate

complexity to assess the range of climate sensitivity and indirect aerosol forcing that is

consistent with observed surface air warming and ocean heat uptake in the 20th century.

While Forest et al. (2002) based their analysis explicitely on a Bayesian framework,

Knutti et al. (2002) introduce a Bayesian flavour rather implicitely. They assumed

uniform, normal and log-normal sampling distributions for climate sensitivity and ra-

diative forcing parameters in order to generate an ensemble of model responses and

removed those responses that did not accord with observations. While their choice

of sampling distributions coincided with the Bayesian choice of a prior, their removal

of “inconsistent” model responses resembled a crisp likelihood update that allocates

full likelihood to model realisations within a prespecified region around the data and

no likelihood to the others. On this basis, they obtained a “data-filtered” ensemble

of model realisations, from which they generate histogrammed frequency distributions

for climate sensitivity and indirect aerosol forcing. If one takes a Bayesian viewpoint,

and accepts the 0-1 likelihood formulation, these frequency distributions can be inter-

preted as probability distributions for the uncertain parameters. It turned out that the

constraints provided by the global mean temperature and ocean heat uptake records

had a strong impact on the probability estimate for aerosol forcing, but imposed little

structure on the uniform prior distribution for climate sensitivity over the large range

of T2x ∈ [1 K, 10 K]. The empirical distribution function and the associated probability

density function (PDF) for the data-filtered ensemble of climate sensitivities are shown

in Fig. 3.1.

It is striking that the probability estimate of Knutti et al. (2002) is much less con-

strained by the comparison with the observational record than the estimate of Forest

et al. (2002) for a uniform prior. Some of the difference can be attributed to the fact

that Forest et al. (2002) used a more sophisticated likelihood formulation and consid-

ered in particular a richer data set against which the model response was evaluated.
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However, Knutti et al. (2002) also included uncertainty about the historical radiative

forcing trajectory beside the aerosol contribution, which was not accounted for by For-

est et al. (2002). Since Knutti et al. (2002) have shown convincingly that this additional

uncertainty is an important reason for their inability to further constrain climate sen-

sitivity, the major part of the difference in the probability estimates of Knutti et al.

(2002) and Forest et al. (2002) might be attributable to a different appreciation of ra-

diative forcing uncertainty. Therefore, we include the estimate of Knutti et al. (2002)

into our analysis as a viable probability representation that cannot be discarded given

our current uncertainty about climate change in the 20th century.

The work of Andronova and Schlesinger (2001) does not fit easily in with the like-

lihood framework, because they dwelled on surrogate data along with the actual tem-

perature observations to determine a probability distribution for climate sensitivity.

They used a hemispheric upwelling/diffusion ocean energy balance model (Schlesinger

et al., 1997) of slightly higher complexity than the model that we have constructed in

Appendix A. The model response to various historical radiative forcing scenarios was

compared to the global mean temperature record and inter-hemispheric temperature

differences in the 1856-1997 period. Andronova and Schlesinger (2001) considered 16

different forcing models that all included the greenhouse gas contribution (labeled by

G), but in- or excluded the forcing contributions of other agents, i.e., sulphate arerosol

forcing (A), tropospheric ozone forcing (T), solar forcing (S), and volcanic forcing (V).

For each forcing scenario, a maximum likelihood estimation of climate sensitivity and

sulphate aerosol forcing (when included) was performed that reproduced the observa-

tions best. Andronova and Schlesinger (2001) then used a bootstrapping method on the

residual between maximum likelihood response and observation to create a sample of

surrogate observations, for which the maximum likelihood estimates of climate sensitiv-

ity and sulphate aerosol forcing were recalculated. The resulting samples of maximum

likelihood estimates were used to generate an empirical distribution function for each

of the 16 forcing scenarios.

If one can assume (near to) complete ignorance about whether the forcing agents

A, T, S, or V have contributed significantly to the temperature increase in the past, it

is possible to interpret all probability estimates that include and exclude A, T, S, V,

respectively, as extreme points of an imprecise probability. This argument clearly does

not apply to aerosol forcing A, since most studies suggest that it played a large role

in offsetting the warming in the 20th century (see Section 2.2.2). In an earlier work

(Kriegler and Held, 2005), we therefore considered only the scenarios GAS, GTAS, GA

and GTA, with solar and tropospheric ozone forcing switched on and off. We discarded

the scenarios with volcanic forcing (V) altogether, since it was noted by Andronova and

Schlesinger (2000) themselves that their energy balance model combined with the high

volcanic forcing estimates of Andronova et al. (1999) largely overestimated the volcanic

spikes in the global mean temperature record. As a consequence, the volcanic spikes

will have been strongly visible in the residual, which might have caused the bootstrap-

ping method to produce spurious results. In this analysis, we will further restrict our
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selection from Kriegler and Held (2005). First of all, assuming ignorance about the

significance of tropospheric ozone is not warranted, because this substance has been

identified as the thirdmost important agent of anthropogenic greenhouse gas forcing in

the last two decades. Ignorance prevails only in the case of solar forcing. As pointed

out in Section 2.2.3, it is still unclear whether or not secular trends in solar forcing

have existed over the 20th century. Hence, we could choose to include the probability

estimates for GTAS and GTA in our analysis. However, the estimates of Andronova

and Schlesinger (2001) without solar forcing allocate considerable probability mass to

extraordinaryly high values T2x > 15 K of climate sensitivity. This result is not sup-

ported by any other model-based analysis so far. Moreover, most experts exclude such

high values of climate sensitivity. Therefore, we will only consider the probability es-

timate for GTAS in this analysis (see Fig. 3.1). The GTAS forcing scenario was also

emphasised by Andronova and Schlesinger (2000, 2001) as it seems to produce the best

fit to the temperature record.

Recently, the first probability estimate of climate sensitivity from ensemble simu-

lations with an atmospheric general circulation model coupled to a mixed layer ocean

became available (Murphy et al., 2004). It revealed the computational limitations that

plague ensemble calculations with complex climate models. Due to the high computing

costs, the model parameters could be perturbed from their standard values only one

at a time yielding a small ensemble of 53 model realisations for the present day and

doubled CO2 climates. Murphy et al. (2004) extended the ensemble to multi-parameter

variations by assuming that the response patterns for the individual perturbations com-

bine linearly. It is debatable whether the errors inflicted from this assumption do not

outweigh the benefit of using a general circulation model instead of less complex climate

models that were employed in the other studies. From the extended ensemble, Murphy

et al. (2004) generate two probability estimates for climate sensitivity. The unweighted

probability estimate was constructed by assuming a uniform prior distribution over

the model parameter space without any assessment of the likelihood for reproducing

the observed present-day climate. The second estimate took such information into

account by weighing each ensemble member with a likelihood that depended on the

r.m.s difference between model response pattern and observations for a set of climate

variables. The r.m.s difference did not take into account spatial correlations as well as

cross-correlations between variables, since the high computational costs inhibited long

control simulations for each ensemble member, from which such correlations could have

been deduced.

The unweighted and weighted probability estimates of Murphy et al. (2004) are

shown in Fig. 3.1. It can be seen that including information about the difference

between observed and modelled climate induces a shift to higher values of climate

sensitivity. Nevertheless, the probability distribution functions of Murphy et al. (2004)

lie in a relatively narrow band together with the estimates of Forest et al. (2002, expert

prior) and Andronova and Schlesinger (2001, GTAS). The four estimates exhibit 90%

confidence intervals in the range between 1.3 K and 6.3 K. The estimates of Forest
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et al. (2002, uniform prior) and particularly Knutti et al. (2002) deviate from the other

probability distributions by allocating considerable probability mass to very high values

of climate sensitivity. The corresponding 90% confidence intervals are [1.4 K, 7.7 K] and

[2.2 K, 9.3 K], respectively. All estimated probability density functions (PDFs) have the

same asymmetric shape with a long tail towards high values of climate sensitivity. The

shape can be understood by recalling that climate sensitivity is proportional to the

inverse of the climate feedback parameter λ (see Equation 2.4). As is apparent in the

analysis of Murphy et al. (2004), the typical shape of the PDF for climate sensitivity

results from a normal distribution of the climate feedback parameter, which emerges

from the superposition of the multiple feedback mechanisms contributing to λ (Gregory

et al., 2002).

This concludes our discussion of the six probability estimates that we will take into

account for the formulation of our prior uncertainty about climate sensitivity. They

are drawn from a comprehensive set of studies that derived probability distributions

for climate sensitivity from a comparison of model behaviour and observational data.

We note that more probability distributions appeared in the literature based on expert

assessments (e.g., Tol and De Vos, 1998; Webster and Sokolov, 2000; Wigley and Raper,

2001), or purely on observations (Gregory et al., 2002). Moreover, our assessment

constitutes only the snapshot of the current literature. During the IPCC preparation

for the Fourth Assessment Report, more probability distributions of climate sensitivity

derived from model-data comparisons are scheduled to appear (IPCC, 2004). Very

recently, for instance, a frequency distribution for climate sensitivity has been published

that represents the first result from a massive parallelisation experiment distributing

an ensemble of general circulation model simulations to a large number of personal

computers around the world (Stainforth et al., 2005).

3.2.4 Distribution bands and p-boxes

We have tried to point out that probability estimates for key determinants of climate

change can differ significantly. This can already be demonstrated for the case of climate

sensitivity which is relatively well understood compared to factors like, e.g., solar and

aerosol forcing, meridional ocean circulation and feedbacks involving the terrestrial and

marine biosphere, let alone technological and socio-economic determinants of climate

change. What to do in situations where diverging probability estimates have surfaced in

the literature or have emerged from expert elicitations? As pointed out in Section 3.2.2,

one possible choice is to consider the convex hull of the diverse probability distributions.

It allows the analyst to stick to the standard methods of classical probability theory,

since it suffices to process the individual distributions separately. However, such a

choice will generally be too restrictive for an assessment of the full uncertainty. If

probability distributions from the literature diverge, why should all plausible probability

estimates that are compatible with the current state of knowledge be restricted to

convex combinations of the published distributions? In most cases, this will not be a

very reasonable assumption.
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An alternative would be to restrict the class of plausible probabilities only by some

characteristics of the probability estimates from the literature. A natural choice are the

lower and upper bounds on their cumulative distribution functions (CDF) (Billingsley,

1995, Section 14, Definition 14.2). Such uncertainty models have been called distribu-

tion bands in the literature (Basu and DasGupta, 1990). They contain a very large

convex set of probabilities. It would emerge from the following two assumptions:

(A) Every probability whose CDF lies between the lower and upper bounds set up by

the family of literature estimates is compatible with the current state of informa-

tion.

(B) Every probability whose CDF is not included in these bounds is not supported

by the current state of information.

Assumption (B) is rather reasonable if the distribution band is constructed from all

probability estimates that are approved by the scientific community under the current

state of knowledge2. In this case, every estimate outside the distribution band would

be considered implausible until a scientific analysis has demonstrated the contrary. The

situation is more difficult with Assumption (A). It basically says that every estimate

should be considered plausible which cannot be excluded on the basis of Assumption

(B). This is a very conservative statement, because we can imagine Dirac δ-measures

with their masses concentrated at point values that are rather implausible but are still

fully contained in the distribution band. In this sense, a distribution band constitutes

the antipode of a convex hull from diverse probability estimates. It contains too much

rather than too few probabilities, and therefore overstates rather than understates the

uncertainty.

It can be criticised that probability bounds from the literature, whether specified

for CDFs or for other aspects of a probability measure, should be given the status of

distinguishing between plausible and implausible probability estimates. Why should

future estimates not violate these bounds? This is possible, of course. Assumptions

(A) and (B) require to accept the notion that the uncertainty assessment is conditional

on the given state of information. There might be future estimates that violate the

bounds, but these have not been demonstrated yet. Moreover, if the analyst has seri-

ous doubts about the ability of the available estimates to paint a complete picture of

the current uncertainty, there is nothing that prevents him from widening the bounds

by subjective safety margins. In the extreme case of a complete lack of confidence, he

would feel inclined to decrease all lower probability bounds to zero, and to increase all

upper probability bounds to one. It is obvious, however, that this state of complete

ignorance makes any statistical reasoning superfluous. If a statistical inference is seri-

ously considered, then there will be some non-trivial set of probability bounds that can

be considered a plausible prior assessment of the uncertainty.

2 We acknowledge that this definition, like any other definition of ‘scientific approval’, is a difficult
notion to work with, since it is both fuzzy and not necessarily related to truth.
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It is also important to note that distribution bands can be directly elicited from

experts. Expert elicitations often ask for probability assessments on cumulative events.

If the experts are allowed to specify intervals on cumulative probability rather than

precise values, the resulting uncertainty model is a distribution band. Since a distri-

bution function is the inverse of the quantile function (Billingsley, 1995, Section 14,

Definition 14.5), distribution bands are also in one-to-one correspondence to quantile

bands. Hence, if the experts are asked to provide intervals for the plausible range of a

set of quantiles, the result is again a distribution band. Therefore, distribution bands

indeed constitute an important uncertainty model for the treatment of epistemic uncer-

tainty in climate change assessments. In the following we will investigate this imprecise

probability model for the case of real-valued random variables X, which are generally

encountered in climate models and integrated assessment models of climate change. We

have published the work that is presented in the next subsection in Kriegler and Held

(2005).

Belief function representation of p-boxes

Let the uncertainty about X be described by a lower bounding function F X : R→ [0, 1]

and an upper bounding function FX : R → [0, 1] for a set of cumulative distribution

functions FX(x) := P (X ≤ x) on the real line R. Since the uncertain parameter X is

real-valued, a natural choice of event space for a probability measure is the Borel field

R of R3 (Billingsley, 1995, Sect. 10 and 14).

The resulting distribution band is defined by the set of Borel-measurable probabil-

ities

ΓX(F , F ) := {P | ∀ x ∈ R F (x) ≤ P (−∞, x] ≤ F (x) } . (3.6)

ΓX is convex, since for any two probabilities P,Q ∈ ΓX and λ ∈ (0, 1), also λP + (1−
λ)Q ∈ ΓX .

An important special case of a distribution band is constituted by lower and upper

step functions SF , SF : R→ {0, a1, ..., an, 1}. The resulting convex set of probabilities

ΓX(SF , SF ) is called a probability box (p-box) (Ferson et al., 2002). P-boxes naturally

emerge, when the distribution of a continuous random variable on the real line is ap-

proximated by lower and upper step functions SF ≤ F ≤ SF , where F ≤ SF denotes

pointwise domination. Such an approximation was employed to calculate bounds for

the convolution of two random variables with unknown dependency (Williamson and

Downs, 1990).

Likewise, a continuous distribution band ΓX(F , F ) can be enclosed by a p-box

ΓX(SF , SF ) ⊃ ΓX(F , F ). The smallest such p-box is bounded by a right-continuous

step function SF ≤ F from below and a left-continuous step function SF ≥ F from

above (see Fig. 3.2). Right- and left-continuity of the bounds are necessary conditions

3R is the field of sets generated by arbitrary unions of the countable family of intervals (a, b]R with
rational numbers a ≤ b. The Borel field is the largest σ-field on the real line, for which the existence of
a probability measure can be guaranteed
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for the p-box to be the smallest discrete approximation that encompasses the continuous

distribution band.

In the following, we focus on p-boxes ΓX(SF , SF ) with right- and left-continuous

bounding functions. Our goal is to identify a simple uncertainty representation for these

p-boxes, which fully captures their information content. Since ΓX(SF , SF ) is a convex

set of probabilities, we know that its lower envelope on the Borel field R, defined by

∀ A ∈ R PX(A) := inf
P∈ΓX(SF,SF )

P (A) , (3.7)

is a coherent lower probability (Walley, 1991, Theorem 3.3.3).

We will show in the following that PX is a belief function (see Definition C.13).

The close relationship between p-boxes and belief functions was already noted by Yager

(1986). Our new result establishes equivalence between p-boxes and their belief function

representation on the real line. Assume that the bounding step functions of the p-box

have the form

SF (x) =





SF (x∗i) x∗i ≤ x < x∗i+1

0 x < x∗1
1 x∗n ≤ x

, SF (x) =





SF (x∗j+1) x∗j < x ≤ x∗j+1

0 x ≤ x∗1
1 x∗m < x

.

(3.8)

with x∗1 < ... < x∗n ∈ R and x∗1 < ... < x∗m ∈ R. The following algorithm can be used

to construct a random set (E , ν) (see Definition C.14) from SF and SF (see Fig. 3.2).

Algorithm 3.1 1. Initialize indices k = 1 (running over the focal elements of the

random set to be constructed), i = 1 (running over x∗i), j = 1 (running over x∗j).

Let pk denote the cumulative probability already accounted for in step k. Assign

p0 = 0.

2. Construct focal element Ek = (x∗j , x∗i].

3. If j = m, choose arbitrary x∗m+1 > x∗m , thus SF (x∗m+1) = 1.

(a) SF (x∗i) < SF (x∗j+1): νk = SF (x∗i)−pk−1 , pk = SF (x∗i). Raise indices

k → k + 1, i→ i+ 1. Return to Step 2.

(b) SF (x∗i) > SF (x∗j+1): νk = SF (x∗j+1) − pk−1 , pk = SF (x∗j+1). Raise

indices k → k + 1, j → j + 1. Return to Step 2.

(c) SF (x∗i) = SF (x∗j+1): νk = SF (x∗j+1)− pk−1 .

If SF (x∗i) = SF (x∗j+1) = 1, stop.

If SF (x∗i) = SF (x∗j+1) < 1, set pk = SF (x∗j+1). Raise indices k → k + 1,

i→ i+ 1, j → j + 1. Return to Step 2.

For each step k, it is x∗j ≤ x∗i (since SF ≥ SF ), and νk > 0 (since SF , SF monotone

increasing). The algorithm will always reach the points x∗n, x∗m+1 with SF (x∗n) =

SF (x∗m+1) = 1 and stop.
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Figure 3.2: Illustration of the p-box approximation of a distribution band (left panel), and the
construction of a random set from a p-box by use of Algorithm 3.1 (right panel).

Lemma 3.1 Algorithm 3.1 constructs a random set (E , ν), which has the following

properties:

(I) (E , ν) contains q < n+m half-closed intervals Ek = (x∗j(k), x∗i(k)] as focal elements.

(II) (E , ν) includes no pair of focal elements Ek, El with x∗j(k) < x∗j(l) < x∗i(l) < x∗i(k).

(III) ∀ x ∈ R, the associated belief and plausibility functions fulfil

belE (−∞, x] = SF (x), plE(−∞, x] = SF (x).

The proof of Lemma 3.1 is given in Appendix D. Similar algorithms have been

presented in the literature (Ferson et al., 2002; Regan et al., 2004). The main dif-

ference is constituted by the fact that Algorithm 3.1 generates half-closed intervals

Ek = (x∗k, x∗k], while other formulations usually choose the corresponding closed in-

terval Ẽk = [x∗k, x∗k]. Since for all k Ek ⊂ Ẽk, we have belE > belẼ and plE < plẼ
for some sets in R. Consider, e.g., the set (−∞, x∗l ]. Due to property (II), it is

plE(−∞, x∗l ] =
∑

k<l νk <
∑

k≤l νk = plẼ(−∞, x∗l ]. Since plE(−∞, x∗l ] = SF (x∗l ), the

choice of closed intervals instead of half-closed intervals leads to plẼ(−∞, x] > SF (x) at

the points x = {x∗1, ..., x∗q}. For application purposes, this additional imprecision does

not matter much, since plẼ(−∞, x] and SF (x) agree almost everywhere on the real line.

However, if we want to show that the information content of a p-box ΓX(SF , SF ) is

completely captured by the random set constructed from Algorithm 3.1, we need to be

more precise.

Theorem 3.1 Let ΓX(SF , SF ) be a p-box on the real line bounded by a left-continuous

step function SF : R→ [0, 1] from above and a right-continuous step function SF : R→
[0, 1] from below (see Definition 3.6).

Let PX : R → [0, 1] be the lower envelope of ΓX on the Borel field R as defined in

Equation (3.7).

Let (E , ν) be the random set constructed from SF and SF by Algorithm 3.1, and

belE : R→ [0, 1] the associated belief function.
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Then, ∀ A ∈ R belE(A) = PX(A).

Theorem 3.1 is proved in Appendix D. As a direct consequence of Theorem 3.1, the

p-box ΓX(SF , SF ) coincides with the convex set of probabilities

ΓX(belE ) := {P | ∀ A ∈ R belE (A) ≤ P (A) }

that is encompassed by the belief function belE . This can be seen by noting that every

PX ∈ ΓX(belE ) has to be an element of ΓX(SF , SF ), since ∀x ∈ R it is bel(−∞, x] :=

SF (x) ≤ PX(−∞, x] ≤ pl(−∞, x] := SF (x). In turn, every PX ∈ ΓX(SF , SF ) has to

be an element of ΓX(belE ), since belE is the lower envelope of ΓX(SF , SF ).

Thus, the p-box ΓX(SF , SF ) can be represented indeed by a belief function belE .
However, not every belE constitutes a p-box. The following corollary of Theorem 3.1

establishes necessary and sufficient conditions for belE to be the representation of a

p-box.

Corollary 3.1 Let belE : R → [0, 1] be a belief function with (finite support) random

set (E , ν), which defines a right-continuous SF : R → [0, 1] and left-continuous SF :

R→ [0, 1] by SF (x) := bel(−∞, x] and SF (x) := pl(−∞, x] = 1− bel(x,+∞) for all

x ∈ R. Then,

ΓX(belE ) ⊆ ΓX(SF , SF ) ,

where equality holds if and only if (E , ν) has Properties (I) and (II) in Lemma 3.1.

The proof of Corollary 3.1 can be found in Appendix D.

Application to climate sensitivity

We will use Algorithm 3.1 to construct the random set of a p-box ΓT2x(SF , SF ) for

climate sensitivity which encloses the distribution band of the recently published prob-

ability estimates assembled in Section 3.2.3. As shown in Fig. 3.1.b, the upper bound

of the distribution band is constituted by a single CDF which was estimated in Forest

et al. (2002) under the assumption of an expert prior. The lower bound is set up by two

CDFs which stem from the weighted estimate of Murphy et al. (2004) and the filtered

ensemble of Knutti et al. (2002), respectively. Before we can apply Algorithm 3.1, we

need to approximate the continuous distribution band by a right-continuous step func-

tion SF from below and a left-continuous step function SF from above. Obviously,

the choice of step functions is an important one. The p-box approximation always

entails a loss of information, since it encompasses more probabilities than the original

distribution band.

Following Williamson and Downs (1990), it is common practice to fix the num-

ber n of focal elements beforehand, and then define an equiprobable partition of the

unit interval for generating best possible bounding functions of the continuous distri-

bution band that jump between the associated probability levels of 0, 1/n, ..., n−1/n, 1

(Tonon, 2004; Ferson et al., 2002). In this process, the number of focal elements is
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usually chosen heuristically based on the trade-off between the accurate representation

of the continuous band (n large) and computational efficiency (n small). In Kriegler

and Held (2005), we have proposed a different approach to enhance the accuracy of the

p-box approximation for a fixed number n of focal elements. This can be achieved by

adjusting the step height of the approximating step functions to reflect the shape of the

continuous bounding functions. We specified a nonlinear program for finding the opti-

mal n-partition of the unit probability interval that minimizes the area between lower

and upper step functions enclosing the distribution band. The resulting step functions

coincide with the p-box approximation that yields the smallest possible increase in area

between bounding functions w.r.t to the original distribution band.

In this analysis, we will employ yet another approach. The reason is that we want to

amalgamate the p-box representation with another imprecise probability model later on

and, more importantly, update the resulting imprecise prior with the likelihood function

calculated in Chapter 2. Both steps require the specification of a finite partition of

the continuous climate model parameter space Ω = R(T2x) × R(κv) × R(QS90). Our

approach in Kriegler and Held (2005) would automatically generate a partition for

climate sensitivity on the basis of which the most accurate p-box approximation of the

continuous distribution band with n focal elements can be constructed. However, it

will become apparent in Chapter 4 that the updating procedure can introduce large

imprecision to the posterior probability estimate, if the choice of partition does not

reflect the shape of the likelihood function L(·; ŷ) : Ω → R+
0 . Since this effect will

outweigh the initial gain in accuracy provided by the approach of Kriegler and Held

(2005), we will adapt our choice of partition to the likelihood function rather than to

the prior distribution band.

The method to construct the likelihood-adapted partition is presented in detail in

Section 3.4.1. Here, we only report the result for the domain Ω(T2x) = (0.5 K, 10 K] of

climate sensitivity. The partition separates this domain into 20 half-closed intervals,

on which we have to construct the p-box approximation of the continuous distribution

band. Fig. 3.3.a shows the spacing of the interval bounds on the T2x-axis along with

the lower and upper cumulative probability that the distribution band exhibits at these

points. The p-box approximation is constructed by an upper step function SF > F , and

a lower step function SF < F which jump to higher probability levels at the interval

bounds. We have derived the exact form of these step functions heuristically from the

condition to approximate the continuous distribution band as close as possible on the

given partition with a limited number n ≤ 10 of probability levels. The restriction to 10

or less probability levels limits the number of focal elements that we will have to include

in the random set representation of the p-box. It will become evident in the further

analysis that a strong limitation of the number of focal elements at this stage is crucial.

Since we will add additional information to the p-box model, combine the random sets

for T2x, κv and QS90 to an imprecise probability model on the joint parameter space,

and update it later on with the likelihood function, the total number of focal elements

will increase by three orders of magnitude.



3.2 Imprecise probability models for various evidence 67

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Climate Sensitivity [K]

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Distribution band

Partition of Ω

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Climate Sensitivity [K]

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Distribution band

P−Box

a. Distribution band b. P-box approximation

Figure 3.3: Distribution band ΓT2x(F , F ) and p-box approximation ΓT2x(SF , SF ) for climate
sensitivity. Also shown are the partitioning points of the domain Ω(T2x) = (0.5 K, 10 K] (red
bars), and the lower and upper cumulative probabilities at these points (red stars). Dotted lines
in Panel b indicate the random set (ET2x , ν).

Focal element Möbius mass Focal element Möbius mass

E1 (0.50 K, 2.52 K] 0.066 E6 (2.37 K, 5.77 K] 0.083
E2 (1.51 K, 2.88 K] 0.089 E7 (2.52 K, 6.90 K] 0.118
E3 (1.51 K, 3.47 K] 0.094 E8 (2.88 K, 8.26 K] 0.158
E4 (1.88 K, 4.17 K] 0.132 E9 (3.47 K, 10.00 K] 0.126
E5 (2.08 K, 5.09 K] 0.135

Table 3.1: Random set (ET2x , ν) of the p-box ΓT2x(SF , SF ) for climate sensitivity.

The lower and upper step functions generated in this way are shown in Fig. 3.3.b.

They define a p-box ΓT2x(SF , SF ) which fully encloses the continuous distribution

band. We apply Algorithm 3.1 to construct the random set (ET2x , ν) from knowledge

of SF : Ω(T2x)→ [0, 1] and SF : Ω(T2x)→ [0, 1]. As highlighted in Fig. 3.3.b, (ET2x , ν)

includes the 9 half-closed intervals which are formed between the probability steps of

the lower and upper step function. They carry a Möbius mass that is equal to the step

height. The resulting random set is tabulated in Table 3.1.

We recall that the p-box ΓT2x(SF , SF ) includes all probability estimates for climate

sensitivity whose distribution functions F fulfil SF (x) ≤ F (x) ≤ SF (x) for all x ∈ R.

It was shown in Theorem 3.1 that the belief function belT2x : R → [0, 1] associated

with the random set (ET2x , ν) constitutes the lower envelope of these probabilities on

the Borel field R. This result is important because it allows us to calculate the min-

imum and maximum probability that can be obtained from probabilities contained in

ΓT2x(SF , SF ) for any event A ∈ R in a simple manner. We demonstrate the calculation

for the IPCC estimate of T2x ∈ [1.5 K, 4.5 K]. The lower and upper probability for the
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IPCC estimate are given by (see Definitions 3.3 and 3.4)

belT2x(T2x ∈ [1.5 K, 4.5 K]) =
∑

i |Ei⊆[1.5 K,4.5 K]

νi = 0.31 ,

plT2x(T2x ∈ [1.5 K, 4.5 K]) =
∑

i |Ei∩[1.5 K,4.5 K]6=∅
νi = 1 .

By analogous calculations, the probability for T2x < 1.5 K is found in the inter-

val [0, 0.07], and for T2x > 4.5 K in the interval [0, 0.62]. The numbers show that

ΓT2x(SF , SF ) supports the lower bound, but not the upper bound of the IPCC esti-

mate. This reflects the fact that the probability estimates from the literature allocate

considerable probability mass to high climate sensitivities T2x > 4.5 K (Andronova and

Schlesinger, 2001; Knutti et al., 2002; Forest et al., 2002; Murphy et al., 2004).

We note that the lower and upper probability of an interval event A = [x∗, x∗] can

be deduced directly from knowledge of the lower bound F : Ω(T2x)→ [0, 1] and upper

bound F : Ω(T2x)→ [0, 1] of the continuous distribution band by4

P [x∗, x
∗] = max[0, F (x∗)− F (x∗)] , P [x∗, x

∗] = F (x∗)− F (x∗) .

Hence, we can assess the information loss accompanying the p-box approximation for

the case of the IPCC estimate. The continuous distribution band yields a probability

interval [0.37, 0.97] for the event T2x ∈ [1.5 K, 4.5 K], which is only slightly stricter than

the interval generated by the p-box. However, we should not conclude from this single

comparison that the overall information loss associated with the p-box approximation

is negligible. Since the number of focal elements contained in (ET2x , ν) is small, the

lower and upper probabilities defined by Equations (3.3) and (3.4) are highly discon-

tinuous on the Borel field R. The close agreement between the continuous distribution

band and the p-box approximation can disappear, e.g., when narrowing the bounds

of the interval estimate. Consider, for instance, the event T2x ∈ [1.52 K, 4.5 K]. Since

it is very similar to the IPCC estimate, the corresponding interval probability from

the continuous distribution band undergoes only a negligible change. However, the

lower probability from the p-box approximation decreases abruptly from 0.31 to 0.13,

because two focal elements are not contained in [1.52 K, 4.5 K] that were contained in

[1.5 K, 4.5 K]. Therefore, it is important to explore the neighbourhood of an event A

for discontinuities, when working with a small number of focal elements. Since the

probability intervals from the p-box will always provide a conservative outer bound on

the continuous distribution band, the probability interval with the tightest bounds in

the neighbourhood of A will yield the best indication of the range of probability values

that the distribution band allows on and around A. The impact of discontinuities will

be reduced, if the number of focal elements is increased. As a rule of thumb, it is often

suggested to work with approximately one hundred focal elements on one-dimensional

4Since the bounds F and F are continuous, the probability of an interval A = [x∗, x
∗] will not

depend on whether it is open, closed or half-closed.
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continuous spaces (Ferson et al., 2002). In our analysis, we cannot meet this benchmark

because we have to cover a three-dimensional parameter space. In this respect, we are

suffering from the curse of dimensionality that also plagues probabilistic analyses based

on Monte Carlo simulations. In contrast to Monte Carlo methods, however, the lack of

computational power to resolve uncertainty on high-dimensional spaces affects impre-

cise probability analyses by inducing overly conservative probability intervals, which

might contain less information than warranted, but which do not contain unwarranted

information.

3.2.5 Lower and upper probability mass functions

There are many other imprecise probability models besides distribution bands and p-

boxes. Any specification of compatible lower probability bounds on a collection of Borel

fields B ⊂ R defines a set of probabilities

Γ(P |B) := {P | ∀ B ∈ B P (B) ≥ P (B)} .

In this context compatibility means that the constraints have to be fulfilled by at least

one probability measure, i.e., Γ(P |B) 6= ∅. In the case of a p-box, the lower probability

bounds were specified on a finite series of cumulative events (P (−∞, xi] ≥ SF (xi)) and

their complements (P (xi,∞) ≥ 1 − SF (xi) with 1 ≤ i ≤ q). Although the bounds

are specified only on a subset B of the Borel field, they have implications for the lower

probability of events A 6∈ B. P (A) cannot be smaller than the infimum probability

mass that is allocated by the probability measures contained in Γ(P |B) to the event A.

Hence, the lower envelope of Γ(P B) extends the implication of the bounds P |B onto the

entire Borel field R. It is called natural extension of P B (see Definition C.5; Walley

1991, Chapter 3.1). We have shown in Theorem 3.1 that the natural extension of the

probability bounds on a finite number of cumulative events and their complements is a

belief function.

Beside a series of cumulative events, another natural choice of collection B for speci-

fying lower probability bounds is constituted by a partition {A1, ..., Ak} of the universal

set Ω = ∪nj=1Aj, together with the complementary events {Ac1, ..., Ack} . In this case,

the lower probability on the atoms Aj are specified by a lower probability mass function

p = {p
1
, ..., p

k
}. Compatibility requires

∑k
j=1 pj ≤ 1, because otherwise an additive

probability measure could not fulfil all constraints simultaneously. The lower proba-

bility bounds on the complements Acj can be defined in terms of an upper probability

mass function p = {p1, ..., pk}, since P (Acj) = 1− pj . Obviously, compatibility requires∑k
j=1 pj ≥ 1 and pj ≥ p

j
for all 1 ≤ j ≤ k. The resulting imprecise probability model

Γ(p, p) has been called an atomic lower and upper probability (ALUP) model in the

literature (Herron et al., 1997).

Fig. 3.4 shows the ALUP model for climate sensitivity that can be generated from

the diverse probability estimates discussed in Section 3.2.3. Here, the choice of par-

tition {A1, ..., Ak} is the same that was used in Section 3.2.4 to construct the p-box
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Figure 3.4: Lower and upper probability mass functions on the atoms of Ω(T2x) (converted
to densities by division with atom length), and lower and upper density functions for climate
sensitivity as set up by the probability estimates from the literature (Section 3.2.3).

approximation of the continuous distribution band. The lower and upper probability

masses on the atoms of the partition constitute the minimum and maximum values that

can be obtained from one of the six probability estimates of Andronova and Schlesinger

(2001), Forest et al. (2002), Knutti et al. (2002) and Murphy et al. (2004). Obviously,

the convex hull co(P1, ..., P6) of these probability estimates are included in the structure

Γ(p, p) = {P | ∀ 1 ≤ j ≤ k p
j
≤ P (Aj) ≤ pj} , (3.9)

but Γ(p, p) contains much more probability measures than co(P1, ..., P6). As was the

case for the distribution band, the ALUP model is less informative than the convex

hull. It is also important to note that it describes a different set of probabilities than

the p-box constructed in Section 3.2.4. This can be seen by comparing, e.g., the lower

probabilities belT2x(Aj) implied by the p-box with the lower mass function of the ALUP

model. Since no focal element of the p-box is contained in a single atom, we find

belT2x(Aj) = 0 for all atoms Aj . Hence, the p-box contains probability measures which

violate the ALUP constraints. It can be shown that the reverse is also true.

The resolution of the partition {A1, ..., Ak} can be increased up to the resolution of

the real line R . In this limit, the lower and upper mass functions become lower and

upper probability densities, and the ALUP model turns into a so-called density band

or density bounded class, respectively. This model has been studied in robust Bayesian

analysis (Berger, 1993). A density band Γ(ρ, ρ) is completely determined by a lower

PDF ρ : Ω→ R+
0 and an upper PDF ρ : Ω→ R+

0 . The density band obtained from the

probability estimates for climate sensitivity discussed above is shown in Fig. 3.4. It en-

compasses a convex set of probabilities that is fully included in the ALUP model, since

the lower and upper density functions guarantee the ALUP constraints on the parti-
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tion {A1, ..., Ak}, but provide additional constraints on any refinement of {A1, ..., Ak}.
Density band and ALUP model relate to each other like distribution band and p-box.

The natural extension of ALUP model and density band onto the entire Borel field

R can be calculated directly from the knowledge of the lower and upper mass functions

and densities, respectively (e.g. Wasserman and Kadane, 1990). For arbitrary A ∈ R,

P (A) = max[

∫

A
ρ(x)dx , 1 −

∫

Ac
ρ(x)dx] , (3.10)

and an analogous relation holds for lower and upper probability mass functions. The

natural extension (3.10) describes the lower envelope of the set of probabilities Γ(ρ, ρ).

It can be shown that it is a 2-monotone lower probability (see Definition C.10; e.g.,

Wasserman and Kadane 1990). The same is true for the ALUP model. Therefore,

both models allow for a powerful representation in terms of lower probabilities. In

particular, the lower and upper expectation of a function f : Ω→ R under the ALUP

model / density band can be calculated directly from the knowledge of P by means of

the Choquet integral (see Appendix C). However, P is not a belief function in general.

Its Möbius inverse can contain negative Möbius masses on some focal elements that

cancel out positive probability masses on other focal elements. Hall and Lawry (2004)

have provided an algorithm to construct a belief function approximation for the ALUP

model. The algorithm basically rescales the Möbius inverse of the lower probability P

to eliminate negative Möbius masses in exchange for a loss of information. However,

this algorithm easily produces Möbius inverses that contain a large number of focal

elements.

Since we are looking for imprecise probability models with relatively sparse Möbius

inverses, the ALUP model would constitute a difficult choice. The model simplifies

greatly if we ignore the information about the upper probability masses {p1, ..., pk} that

can be allocated to the atoms of the partition. The lower mass function p = {p
1
, ..., p

k
}

alone defines a set of probabilities Γ(p), whose lower and upper envelope is given by

P (Ω) = P (Ω) = 1, and

P (A) =
∑

j|Aj⊆A
p
j
, P (A) =

∑

j|Aj⊆A
p
j

+ 1−
k∑

j=1

p
j

for A ⊂ Ω . (3.11)

This imprecise probability model is equivalent to the so-called ε-contamination model

(e.g., Herron et al., 1997). The latter model is defined in terms of the ε-mixture

P(P, ε) = (1− ε)P + εM(Ω)

of an additive probability measure P : R→ [0, 1] with the set of all possible probability

measures M(Ω). The name stems from the idea that the model describes the set of

arbitrary ε-perturbations of the probability P . Since M(Ω) is characterised by lower

probability P (A) = 0 and upper probability P (A) = 1 for arbitrary events A ⊂ Ω, the
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lower and upper envelope of the ε-contamination model on the partition {A1, ..., Ak}
are given by

P (A) =
∑

j|Aj⊆A
(1− ε) pj , P (A) =

∑

j|Aj⊆A
(1− ε) pj + ε for A ⊂ Ω , (3.12)

where p = {p1, ..., pk} specifies the probability mass function of P on {A1, ..., Ak}. By

setting p
j

:= (1 − ε) pj for all 1 ≤ j ≤ k, the lower and upper envelope of the ε-

contamination model in Equation (3.12) can be identified with the lower and upper

envelope of Γ(p) in Equation (3.11). Hence, we will call Γ(p) ε-contamination model in

the following. As mentioned above, compatibility requires ε := 1−∑k
j=1 pj ≥ 0.

From inspection of Equation (3.11), the Möbius inverse of the lower envelope P :

R → [0, 1] can be easily identified. The focal elements with non-zero Möbius assign-

ments are constituted by the atoms A1, ..., Ak̃ with p
j
> 0 (k̃ ≤ k), and by the universal

set Ω, on which the remaining probability mass ε has to be allocated. Hence, the ran-

dom set (F , p) of the Möbius inverse is given by

(F , p) :=



(A1, p1

), ..., (Ak̃ , pk̃), (Ω, ε := 1−
k∑

j=1

p
j
)



 . (3.13)

Since all focal elements carry positive probability mass, the associated lower probability

is a belief function belp : R → [0, 1]. By recalling Relation (3.3) between a belief

function and its associated random set, it can be seen that belp is equal to the lower

envelope of the ε-contamination model as specified in Equation (3.11). Therefore, we

conclude without formal proof that the ε-contamination model is represented by a

belief function whose random set (3.13) can be derived directly from knowledge of the

partition {A1, ..., Ak} and the lower probability mass function p = {p
1
, ..., p

k
}.

The ε-contamination model for climate sensitivity as obtained from the probability

estimates in the literature is shown in Fig 3.5. By definition, the lower mass function on

the partition {A1, ...Ak} must be identical with the ALUP model. However, the upper

bound on the probability masses has become much weaker, since we have ignored the

information provided by the upper mass function (shown by the dashed red line). The

resulting loss of information is aggrevated by the fact that the lower probability mass

Focal element Möbius mass Focal element Möbius mass

A4 (2.08 K, 2.23 K] 0.008 A11 (3.17 K, 3.47 K] 0.048
A5 (2.23 K, 2.37 K] 0.019 A12 (3.47 K, 3.60 K] 0.021
A6 (2.37 K, 2.52 K] 0.022 A13 (3.60 K, 3.75 K] 0.018
A7 (2.52 K, 2.69 K] 0.028 A14 (3.75 K, 4.17 K] 0.034
A8 (2.69 K, 2.88 K] 0.029 A15 (4.17 K, 4.59 K] 0.022
A9 (2.88 K, 3.00 K] 0.023 A16 (4.59 K, 5.09 K] 0.016
A10 (3.00 K, 3.17 K] 0.024 A17 (5.09 K, 5.77 K] 0.010

Ω(T2x) (0.50 K, 10.0 K] 0.680

Table 3.2: Random set (F , p) of the ε-contamination model for climate sensitivity.
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Figure 3.5: Lower and upper probability mass function (converted to densities) of the ε-
contamination model for climate sensitivity. For comparison, the upper bound of the ALUP
model is also shown.

function p = {p
1
, ..., p

k
} binds less than a third of the total probability mass, so that

the ‘contamination factor’ ε is large. The spikes in the density plot arise from the fact

that ε can be moved freely within the domain Ω(T2x), and therefore might be fully

contained in every atom independently of its size. Therefore, the added amount of

density must be inverse proportonial to the atom size. The random set (F , ν) of the

ε-contamination model is tabulated in Table 3.2. Thereby, we have neglected atoms

with lower probability mass p
j
< 0.005 (see Section 3.4.2).

3.2.6 Summary of imprecise probability models

So far we have only discussed imprecise probability models that can be represented by

a coherent lower probability. However, as pointed out in our survey of imprecise prob-

ability theory in Appendix C, not all convex sets of probabilities can be described in

this way. A classical example is the probability ratio model (Walley, 1991, Chapter 4.6).

It is described by lower and upper bounds on the probability (density) ratio of elemen-

tary events θ ∈ Ω) w.r.t. to a distinguished elementary event θ∗ ∈ Ω. While we have

seen that bounds on probability distributions and probability masses can be captured

in terms of coherent lower probabilities, this is not possible for bounds on probability

ratios. In this sense, probability ratio information has a different structure than lower

probability information. Taking into account both types of information simultaneously

would require the use of the general formalism of coherent lower previsions that was

laid out by Walley (1991). As discussed in Section 3.1, we have decided to restrict our-

selves to coherent lower probabilities for reasons of mathematical tractability. Another

possible choice would be, of course, to just dwell on probability ratio information. The

lower and upper ratio bounds allow for an efficient representation of the uncertainty,
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Model T2x ∈ [0 K, 1.5 K] T2x ∈ [1.5 K, 4.5 K] T2x ∈ [4.5 K, 10.0 K]
co(P1, ..., P6) [0, 0.07] [0.43, 0.90] [0.03, 0.56]

Γ(F , F ) [0, 0.07] [0.37, 0.97] [0.02, 0.56]
Γ(SF , SF ) [0, 0.07] [0.31, 1.00] [0, 0.62]
Γ(ρ, ρ) [0, 0.07] [0.35, 0.97] [0.03, 0.58]
Γ(p, p) [0, 0.07] [0.28, 0.97] [0.03, 0.65]
Γ(p) [0, 0.68] [0.27, 0.98] [0.02, 0.73]

Γ(SF , SF , p) [0, 0.07] [0.31, 0.98] [0.02, 0.62]

Table 3.3: Probability intervals for climate sensitivity below, within, and above the range of
the IPCC estimate for various imprecise probability models discussed in the text.

and there exists a simple way to update them with a likelihood function. Moreover,

probability ratio information can emerge naturally from expert elicitations, since ex-

perts might feel more comfortable to specify probabilities relative to a reference event.

Therefore, we earmark the application of the probability ratio model to climate change

assessments as an important area of future research.

In the preceding sections we have discussed six imprecise probability models: the

convex hull co(P1, ..., Pn) of a finite number of additive probabilities, the continu-

ous distribution band Γ(F , F ) and the corresponding discrete p-box Γ(SF , SF ), the

density band Γ(ρ, ρ) and the corresponding discrete ALUP model Γ(p, p), and the ε-

contamination model Γ(p). Interval estimates S ⊂ Ω constitute the simplest form of a

p-box with just one focal element. They are also the simplest form of an ε-contamination

model with ε = 1, and the set of all possible probability distributionsM(S) restricted

to the interval S. We have generated these models for the uncertainty about climate

sensitivity from a set of diverse probability estimates in the literature. Our goal was

to construct classes of plausible prior probabilities in the light of literature estimates.

It is important to note, however, that the construction of these imprecise probability

models does not rest on probability estimates from the literature. They can also emerge

from expert elicitations, observational constraints and plausibility considerations (see

Section 3.4.4).

Table 3.3 compares the different models for climate sensitivity in terms of what they

tell us about the imprecise probability of the IPCC estimate T2x ∈ [1.5 K, 4.5 K]. Note

that the last imprecise probability model listed in Table 3.3 has not been discussed

so far, but will be introduced in Section 3.3. The partial hierarchy of the imprecise

probability models from strong to weak information, i.e.,

co(P1, ..., P6) ⊂ Γ(F , F ) ⊂ Γ(SF , SF ) ,

co(P1, ..., P6) ⊂ Γ(ρ, ρ) ⊂ Γ(p, p) ⊂ Γ(p) ,

is clearly reflected in the probability bounds. Moreover, all probability models except of

the ε-contamination model support the lower bound of the IPCC estimate. The situa-

tion is different for the upper bound. As already inherent in the probability estimates of

Andronova and Schlesinger (2001), Forest et al. (2002), Knutti et al. (2002) and Murphy
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et al. (2004), considerable weight is given to the possibility of T2x > 4.5 K. We cannot

end this section without noting that there are many more imprecise probability models

that we have not discussed here. Two of these many models will be briefly mentioned

in Section 3.4.4. An illuminating survey can be found in Walley (1991, Chapter 4).

3.3 Joint belief function representation of p-box and ε-

contamination model

We have discussed various types of evidence that can be cast into the rich language of

imprecise probability models. At this point we need to decide which class, or which

combination of classes, to use for our prototypical imprecise probability analysis of

climate change. We assert that the convex hull of diverse probability estimates from

the literature contains too much information to be a sensible choice. It will be hard

to justify that all plausible probability measures to be included in the prior need to

be convex combinations of the published estimates. Hence, we are looking for less

informative models.

The restriction to lower probabilities implies that we are searching for an uncer-

tainty model described by lower probability bounds on a collection B of events B ∈ R.

We have seen above that lower probability bounds on a series of cumulative events

(−∞, x1] ⊂ ... ⊂ (−∞, xm], x1 < ... < xm ∈ R, and (y1,∞) ⊃ ... ⊃ (ym′ ,∞),

y1 < ... < ym′ ∈ R, generate a p-box Γ(SF , SF ). However, this class can contain

very little information on the probability masses that have to be allocated to the atoms

of a partition {A1, ..., Ak} of a subset S of the the real line. In many cases, the resulting

lower probability bounds P (Aj), 0 ≤ j ≤ k will be considered implausibly low. More-

over, this lack of information can lead to very imprecise results in problems of statistical

inference (Kozine and Krymsky, 2003; Kriegler and Held, 2005). Therefore, we believe

it to be necessary to consider also a lower probability mass function p = {p
1
, ..., p

k
}

on the atoms of a partition {A1, ..., Ak} of a Borel set S ⊆ R. S shall denote the

largest possible support of plausible probability estimates for the uncertain quantity

in question. As discussed above, such a lower probability mass function defines an

ε-contamination model Γ(p).

Hence, a sensible collection of events B ∈ B for which lower probability bounds

should be specified is given by

B = {(−∞, x1], ..., (−∞, xm], (y1,∞), ..., , (ym′ ,∞), A1, ..., Ak} (3.14)

for some choice of x1 < ... < xm ∈ R, y1 < ... < ym′ ∈ R and partition {A1, ..., Ak} of

S ⊆ R. The collection B can be considered a conservative choice, since it includes only

a very limited selection of possible events. As illustrated by the comparison of imprecise

probability models in Section 3.2.6, the models become the less informative, the smaller

the number of events B ∈ B. We also note that expert elicitations frequently elicit the

expert opinion on (a subset of) the events contained in B.
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For all these reasons, we choose to specify the prior uncertainty about the climate

model parameters by lower probability bounds on the collection B of events. The

corresponding structure Γ(SF , SF , p) contains all probability measures P : R → [0, 1]

which obey the constraints

SF (xi) ≤ P (−∞, xi] , 1 ≤ i ≤ m , 1− SF (yi′) ≤ P (yi′ ,∞) , 1 ≤ i′ ≤ m′ ,
p
j
≤ P (Aj) , 1 ≤ j ≤ k , (3.15)

on the events B ∈ B. Γ(SF , SF , p) constitutes the intersection of a p-box Γ(SF , SF ),

and an ε-contamination model Γ(p). As discussed in Section 3.2.4 and 3.2.5, the latter

two classes can be represented efficiently in terms of the random set associated with their

lower envelope. Algorithm 3.1 constructs the random set (E , ν) = {(E1, ν1), ..., (En, νn)}
of the lower envelope belE of the p-box Γ(SF , SF ) (see Theorem 3.1). As shown in

Lemma 3.1, the focal elements Ei ∈ E , constitute half-closed intervals of the real line.

Likewise, the lower envelope belp : R → [0, 1] of the ε-contamination model Γ(p) is de-

termined by the the random set (F , p) =
{

(A1, p1
), ..., (Ak̃ , pk̃), (S, ε := 1−∑k

j=1 pj)
}

,

where the focal elements Aj ∈ F are the atoms with p
j
> 0 (k̃ ≤ k), and S = A1∪...∪Ak

is the largest support for probabilities in Γ(p). Both lower envelopes belE and belp are

belief functions.

In the following, we will try to identify the lower envelope P : R→ [0, 1] of the inter-

section Γ(SF , SF , p) and to construct the random set (G, ν∗) that describes its Möbius

inverse. Such an attempt is only meaningful if Γ(SF , SF ) and Γ(p) are compatible, i.e.,

if their exists at least one probability measure P : R→ [0, 1] that is contained in both

sets of probabilities5. Such a P will exist if and only if

belE (A) ≤ plp(A) ⇔ belp(A) ≤ plE(A) for all A ∈ R , (3.16)

where the equivalence follows from the conjugacy between lower and upper probability.

In the further analysis, we will always assume compatibility of Γ(SF , SF ) and Γ(p).

Compatibility will be guaranteed, if we construct the p-box and the ε-contamination

class from the same set of probabilities. In addition, we will have to make the following

assumption about the focal elements Ei ∈ E and atoms {A1, ..., Ak}.

Assumption 3.1 The support S = A1 ∪ ...Ak constitutes a half-closed interval of the

real line, and all focal elements Ei ∈ E are also elements of the power set of the partition

{A1, ..., Ak}.

As a direct consequence of this assumption, it is either Aj ⊆ Ei or Aj ∩ Ei = ∅
for arbitrary pairs 1 ≤ i ≤ n, 1 ≤ j ≤ k. Moreover, the union of all focal elements

E = ∪ni=1Ei needs to be included in the support S of the partition. The following

Lemma establishes a closed form expression for the lower envelope of the intersection

Γ(SF , SF , p) of a p-box and an ε-contamination model.

5 In the language of Walley (1991), the set of probabilities Γ(SF , SF , p) needs to avoid sure loss.
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Lemma 3.2 Let belE : R→ [0, 1] be the lower envelope of a p-box Γ(SF , SF ) and (E , ν)

its associated random set. Let {A1, ..., Ak} be a partition of the largest possible support

S ⊆ R, on which the focal elements Ei ∈ E fulfil Assumption 3.1. Let belp : R → [0, 1]

be the lower envelope of an ε-contamination model Γ(p), with the lower mass function

p defined on this partition, and (F , ν) its associated random set.

Let U be the set of all possible unions E = ∪si=1Ei, 1 ≤ s ≤ n, of Ei ∈ E, including

the focal elements Ei themselves. Construct a set function P ∗ : R → [0, 1] from belE
and belp by

P ∗(A) = max
E∈U , E⊆A

(
max[belE (E) + belp(A ∩Ec), belp(A)]

)
(3.17)

= max
E∈U , E⊆A


max[

∑

Ei⊆E
νi +

∑

Aj⊆(A∩Ec)
p
j
,
∑

Aj⊆A
p
j

]


 for all A ∈ R .

Let Γ(SF , SF ) and Γ(p) be compatible, i.e., Γ(SF , SF , p) = Γ(SF , SF )∩Γ(p) 6= ∅.
Let PE : R→ [0, 1] be the lower envelope of Γ(SF , SF , p), i.e.,

PE(A) = inf
Γ(SF,SF,p)

P (A) for all A ∈ R .

Then, P ∗ constitutes a lower probability bound of P E, i.e., PE(A) ≥ P ∗(A) for all

A ∈ R.

The proof of Lemma 3.2 is given in Appendix D. Here, we only note that belE (E) +

belp(A ∩Ec) ≤ 1 for arbitrary E ∈ U and A ∈ R. Due to compatibility, it is

belE (E) + belp(A ∩Ec) ≤ belE (E) + plE(A ∩Ec) ≤ plE(A) ≤ 1 ,

where we have used the property pl(A ∪ B) ≥ bel(A) + pl(B) for disjoint sets A,B

(Walley, 1991, Property 2.7.4.(e)). Compatibility also requires belp(Aj) ≤ plE(Aj),
implying that every atom Aj ∈ {A1, ..., Ak} with p

j
≥ 0 needs to be contained in at

least one focal element Ei ∈ E .

Lemma 3.2 establishes an analytical expression for the lower probability P ∗ : R →
[0, 1] that confines the convex set of probabilities Γ(SF , SF , p). We will show in the

following that P ∗ constitutes not only a lower bound for Γ(SF , SF , p), but is in fact

identical with its lower envelope P E. This can be seen from the Möbius inverse ν∗ :

R → [0, 1] of P ∗ : R → [0, 1], albeit it is far from obvious. We are also interested

in the Möbius inverse from the application point of view, since it allows us to process

the information contained in the lower probability P ∗ more efficiently (see Section 3.1).

The following algorithm constructs the random set (G, ν∗) that characterizes the Möbius

inverse ν∗ of P ∗.

Algorithm 3.2 1. Let 1 ≤ i ≤ n denote the running index over the n focal elements

Ei contained in E. Let 1 ≤ j ≤ k be the running index over the k atoms Aj of
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the partition {A1, ..., Ak}. The algorithm is designed under the premise that the

focal elements Ei ∈ E fulfil Assumption 3.1. Let (G, ν∗) denote the random set

that will be constructed with this algorithm.

Consider the k̃ ≤ k atoms Aj ∈ F with p
j
> 0. Include all these focal elements

Aj ∈ F with Möbius assignment

ν∗j = p
j
, 1 ≤ j ≤ k̃ in (G, ν∗) .

Label the collection {(A1, ν
∗
1), ..., (Ak̃ , ν

∗
k̃
)} with (G, ν∗)0.

2. Construct all unions of the focal elements E1, ..., En ∈ E. This will generate a

family of sets U ,

Ei , 1 ≤ i ≤ n ,
for i 6= j , Ei(2) = Ei ∪Ej , 1 ≤ i(2) ≤ n!

n− 2!2!
,

for i 6= j, j 6= l, i 6= l , Ei(3) = Ei ∪Ej ∪El , 1 ≤ i(3) ≤ n!

n− 3!3!
,

... , ... , ... ,

Ei(n) = E1 ∪ ... ∪En , i(n) = 1 ,

which contains at most 2n − 1 elements. The number can be smaller, if some

unions are identical.

3. For each E ∈ U , calculate

P ∗(E) = max
Ẽ∈U , Ẽ⊆E


max[

∑

Ei⊆Ẽ
νi +

∑

Aj⊆(E∩Ẽc)

p
j
,
∑

Aj⊆E
p
j

]


 .

4. Construct a hierarchy of focal elements Ei and their unions as follows. For each

E ∈ U , count the number h(E) of sets E ′ ∈ U with E′ ⊆ E. Since each set

contains itself, it is h(E) ≥ 1. Let h1 < ... < ht be the ordered set of numbers

h(E) that are obtained in this way. For each level 1 ≤ s ≤ t of the hierarchy,

collect the sets E ∈ U that contain hs sets E′ ∈ U . We will call these sets “level-s

sets” in the following, and label them Es
i(s) with running index 1 ≤ i(s) ≤ n(s).

The level-1 sets at the bottom of the hierarchy are constituted by the focal elements

Ei ∈ E which do not contain other focal elements.

5. In the following loop, more focal elements will be added successively to the collec-

tion (G, ν∗)0 with increasing level s of the hierarchy imposed on the sets E ∈ U .

Initialize the loop by setting s = 1.
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6. If n(s) > 0, calculate for 1 ≤ i(s) ≤ n(s)

ν∗i(s) = P ∗(Esi(s))−
∑

l|Gl∈Gs−1

Gl⊆Esi(s)

νl .

Add all sets Es
i(s) with Möbius mass ν∗i(s) 6= 0 as focal elements to the collection

(G, ν∗)s−1. Label the expanded collection with (G, ν∗)s.

7. If s = t stop the construction of the random set, and set (G, ν ∗) := (G, ν∗)t. If

s < t, set s = s+ 1, and repeat Step 5.

Algorithm 3.2 constructs a random set (G, ν∗), which can contain as much as k+ 2n−1

focal elements. The following Lemma establishes that (G, ν ∗) describes indeed the

Möbius inverse of P ∗ : R→ [0, 1].

Lemma 3.3 Let P ∗ : R → [0, 1] be the lower probability constructed from belE and

belp by means of Definition (3.17). Let the focal elements E1, ..., En ∈ E of the belief

function belE fulfil Assumption 3.1.

Let (G, ν∗) be the random set constructed from Algorithm 3.2. Then, (G, ν∗) de-

scribes the Möbius inverse of P ∗, i.e.,

P ∗(A) =
∑

l|Gl⊆A
ν∗l for all A ∈ R .

The proof of Lemma 3.3 is given in Appendix D. As mentioned above, compatibility

requires that all atoms Aj contained in (G, ν∗) need to be subsets of E† = E1 ∪ ...∪En.

Therefore, ∑

l|Gl∈G
ν∗l =

∑

l|Gl⊆E†
ν∗l = P ∗(E†) = 1 ,

i.e., the Möbius masses in (G, ν∗) add to unity.

We will show in the following that (G, ν∗) exhibits very useful properties for appli-

cation purposes.

Lemma 3.4 Let (G, ν∗) be constructed from the random sets (E , ν) of the p-box and

(F , p
j
) of the ε-contamination model by means of Algorithm 3.2. Let the focal elements

Ei ∈ E fulfil Assumption 3.1.

Consider an arbitrary level-s set Es
i(s) ∈ U . If there exists two other sets Es′

∗ , E
s′′
∗∗ ∈

U with Es
i(s) = Es

′
∗ ∪Es

′′
∗∗ and Es

′
∗ ∩Es

′′
∗∗ = ∅, then it is ν∗i(s) = 0.

Lemma 3.4 is proved in Appendix D. Since all focal elements Ei in E are half-closed

intervals (see Lemma 3.1), Lemma 3.4 shows that all their unions with non-zero Möbius

assignment ν∗ need to be half-closed intervals as well. This is an important result for

application purposes because it excludes the emergence of non-convex focal elements

in the random set (G, ν∗). Such non-convexities could cause severe difficulties in opti-

misation problems that need to be solved, e.g., when projecting imprecise probability
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onto prognostic model variables (see Chapter 5) or when conducting a decision analysis

under imprecise probability. Moreover, Lemma 3.4 assures that the number of focal

elements in G will be substantially lower than k + 2n − 1, since all non-convex level-s

sets Es
i(s) are not contained in G. This assessment remains true even in the special case

where most focal elements intersect each other, and the number of non-convex level-s

sets Es
i(s) will be small (see, e.g., the random set for climate sensitivity in Fig. 3.3). In

this particular case, most unions will be identical, and therefore, merge into a small

number � 2n of convex focal elements contained in G. We conclude that the Möbius

inverse of P ∗, although richer than the Möbius inverse of a p-box, remains sparse when

compared to the cardinality of the power set P(A1, ..., Ak) or the number 2n − 1 of all

possible unions of focal elements Ei ∈ E .

Lemma 3.5 Let the assumptions of Lemma 3.4 be fulfilled. For each level-s set Es
i(s) ∈

U , it is ν∗i(s) ≥ 0.

Lemma 3.5 is proved in Appendix D. It provides the last cornerstone to establish the

following Theorem.

Theorem 3.2 Let belE : R → [0, 1] be the lower envelope of Γ(SF , SF ), and (E , ν)

its associated random set. Let {A1, ..., Ak} be a partition, on which the focal elements

Ei ∈ E fulfil Assumption 3.1.

Let belp : R → [0, 1] be the lower envelope of Γ(p), with the lower mass function p

defined on the partition {A1, ..., Ak} and (F , ν) its associated random set.

Let P ∗ : R→ [0, 1] be the lower probability given by Definition (3.17).

If the p-box Γ(SF , SF ) and the ε-contamination model Γ(p) are compatible (see In-

equalities 3.16), then P ∗ constitutes the lower envelope of Γ(SF , SF , p) = Γ(SF , SF )∩
Γ(p). Moreover, P ∗ is a belief function.

The proof of Theorem 3.2 can be found in Appendix D. We conclude that Algorithm 3.2

provides us with a method to establish a belief function representation for the inter-

section of a p-box Γ(SF , SF ) and an ε-contamination model Γ(p). This constitutes an

important achievement, since it allows us to combine lower probability constraints on

cumulative events with lower probability masses on the atoms of a partition {A1, ..., Ak}.
In many instances of statistical reasoning with imprecise probabilities, both types of

information are needed to avoid overly large imprecision in the inference process. More-

over, the random set (G, ν∗) shares the nice properties of the random set (E , ν) of the

p-box to some extent. Although richer in the variety of elements, it contains only con-

vex focal elements, and their number will still be far below the cardinality 2k of the

partition or the number 2n − 1 of unions of focal elements Ei ∈ E . Therefore, (G, ν∗)
provides a suitable model from the application perspective. In the following, we will

use Algorithm 3.2 to construct the random sets (G, ν∗) for the uncertain climate model

parameters T2x, QS90 and κv.
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3.4 Belief functions for the climate model parameters

In order to quantify the uncertainty about T2x, QS90 and κv we need to specify a

universal set Ω ⊂ R(T2x) × R(κv) × R(QS90) of possible values for the climate model

parameters. We choose

Ω = (T 2x = 0.5 K, T 2x = 10 K]× (κv = 0.05 cm2 s−1, κv = 5 cm2 s−1]

× (Q
S90

= −1.9 W m−2, QS90 = 0 W m−2] . (3.18)

For the case of climate sensitivity, a similar choice was made by Knutti et al. (2002)

and Forest et al. (2002). Other studies without a predefined range of climate sensitivity

can reject values below 0.5 K with high confidence (Gregory et al., 2002; Murphy et al.,

2004; Schneider von Deimling et al., 2005). Moreover, such small climate sensitivities

are assigned a very low likelihood < e−40 Lmax from the comparison of the historical

temperature record and the response of our energy balance model in Chapter 2. The

situation is less clear for the upper bound T 2x = 10 K. Incidents of climate sensitivities

above 10 K have surfaced in perturbed parameter experiments with atmosphere general

circulation models coupled to a mixed layer ocean (Stainforth et al., 2005). Moreover,

such cases cannot be excluded by model-data comparisons with high confidence (for

an extreme example see Andronova and Schlesinger 2001). This is also true for our

analysis in Chapter 2, where we have calculated a likelihood ≈ e−2.2 Lmax for T2x = 10 K.

However, as mentioned in Section 3.2.3, most experts view such high values of climate

sensitvity as unrealistic, and we therefore exclude them from our analysis.

The domain for total sulphate aerosol forcing QS90 is bounded from above by

QS90 = 0 W m−2. A positive heating contribution would contradict the basic prop-

erties of sulphate aerosols which mainly reflect the incoming solar radiation. This is

reflected in the Third Assessment Report of the IPCC which establishes a negative

upper bound of QS90 < −0.2 W m−2 (Ramaswamy, 2001). However, we also want to ac-

count for the possibility that the net heating effect of black carbon was underestimated

in the specification of the historical radiative forcing trajectory in Section 2.2.2. To

counterbalance an undervaluation of black carbon, the cooling contribution of sulphate

aerosols would need to be reduced. We allow for such a compensation up to the point

of a vanishing sulphate cooling. Given our estimate of −0.15 W m−2 for the net forcing

from carbonaceous aerosol species in the 1990s, this provides an upper bound for the

total aerosol forcing of QAer < −0.15 W m−2. Forest et al. (2002) exclude a smaller

cooling contribution from aerosols with 98% confidence. The model-data comparison

in Chapter 2 yields a likelihood of ≈ e−3.9 Lmax for QS90 = 0 W m−2.

Our choice of lower bound Q
S90

= −1.9 W m−2 is not supported by the IPCC assess-

ment of a combined direct and indirect sulphate aerosol forcing between −2.8 W m−2

and −0.2 W m−2 (Ramaswamy, 2001). A recent literature survey has even reported

aerosol model simulations that allow for a global cooling effect up to 4 W m−2 (Ander-

son et al., 2003). However, our analysis in Chapter 2 has identified only a very low
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likelihood for a sulphate aerosol cooling larger than Q
S90

= −1.9 W m−2 (< e−22 Lmax).

Since every prior assessment of QS90 < −1.9 W m−2 would be nullified by such a small

factor in the updating procedure, it makes little sense to include such prior estimates

deliberately in our analysis. The probability estimates from the literature that will be

considered for the construction of the prior imprecise probability model in Section 3.4.3

do not support values of QS90 < −1.9 W m−2.

Plausible values for the effective vertical ocean heat diffusivity κv are constrained

by observations of the ocean heat uptake in the second half of the 20th century (Levitus

et al., 2000). It will be shown in Section 3.4.4 that these observations do not support

ocean heat diffusivities above 5 cm2 s−1 in the particular modelling framework derived

in Appendix A. The lower bound for κv will be motivated on a different count in

that section. Since we have considered only surface temperature information for the

estimation of the likelihood function in Chapter 2, the observational constraints from

ocean heat uptake measurements are not reflected in the likelihood values for the lower

bound κv = 0.05 cm2 s−1 (≈ e−1.1 Lmax) and upper bound κv = 5 cm2 s−1 (≈ e−3.7 Lmax).

3.4.1 Likelihood-adapted partition of the parameter space

Since the uncertain parameter space Ω is continuous, we need to construct a finite

partition {A1, ..., Ak} of Ω = ∪kj=1Aj , on which the random sets for the p-box, the ε-

contamination model, and the intersection of the two models can be specified. As was

discussed in Section 3.2.3, the choice of partition is usually motivated by the objective

to approximate a continuous imprecise probability model as accurately as possible. In

this analysis, however, we are concerned with the accuracy of the imprecise posterior

probability approximation that emanates from updating a discretised prior model in

place of its continuous counterpart. The updating method presented in Chapter 4 will

require to discretise the likelihood function as well. Our experiments have shown that

this step is key to a meaningful approximation of the imprecise posterior probability

that would result in the continuous case. As will be discussed in Chapter 4, the updating

procedure can introduce large artificial imprecision to the posterior probability estimate,

if the choice of partition does not reflect the shape of the continuous likelihood function

L(·; ŷ) : Ω→ R+
0 . Therefore, we will search for a partition {A1, ..., Ak} that is adapted

to the likelihood function.

It can be seen from Fig. 2.7 that the likelihood function incorporates a strong pos-

itive correlation between climate sensitivity and ocean heat diffusivity and a strong

positive correlation between climate sensitivity and sulphate aerosol cooling. Due

to these correlations, a partitioning of Ω by hyperplanes that are orthogonal to the

T2x, κv, and QS90-axes cannot provide the best adaptation to the likelihood function.

However, if we adopted another choice of partitioning hyperplanes, we would lose the

possibility of constructing the imprecise prior model for each model parameter sepa-

rately, because the atoms Aj would be no longer constituted by simple product sets

AT2x×Aκv ×AQS90
⊂ Ω. This would complicate the construction of the imprecise prior

probability greatly. Firstly, it is more difficult to specify and represent a continuous
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distribution or density band on multi-dimensional spaces. Secondly, and more impor-

tantly, Algorithm 3.1 for the construction of a random set (E , ν) of a p-box Γ(SF , SF ),

as well as the statements provided in Lemma 3.1 and Theorem 3.1, are restricted to the

real line R. We speculate that they can be extended to higher dimensions, but this will

require further investigations. Within the scope of this prototypical analysis, we will

not attempt to generalise the formalism to higher dimensions or explore more sophisti-

cated grid methods that might help to circumvent the problem. These things need to

be left to future research. Therefore, we will limit our search to partitions {A1, ..., Ak},
whose atoms constitute product sets of marginal events on the one-dimensional spaces

Ω(T2x), Ω(κv), Ω(QS90), although such partitions cannot provide the best adaptation

to the shape of the likehood function.

A partition {A1, ..., Ak} of the cubic parameter space Ω = (T 2x, T 2x] × (κv, κv] ×
(Q

S90
, QS90], whose atoms are product sets of marginal events, is generated by a set of

grid points

(T2x, κv, QS90) ∈ G(l1, l2, l3) := {T1, ..., Tl1} × {κ1, ..., κl2} × {Q1, ..., Ql3} .

with T1 := T 2x, Tl1 := T 2x, κ1 := κv, κl2 := κv, Q1 := Q
S90

, and Ql3 := QS90. The grid

G(l1, l2, l3) specifies l1, l2 and l3 hyperplanes that are orthogonal to the dimension

of T2x, κv and QS90, respectively. These hyperplanes define a partition of Ω with

k = (l1 − 1) · (l2 − 1) · (l3 − 1) atoms Aqrs = (Tq, Tq+1] × (κr, κr+1] × (Qs, Qs+1]. For

the purpose of this analysis we have chosen the number of grid points to be l1 = 15

for climate sensitivity, l2 = 11 for ocean heat diffusivity and l3 = 11 for sulphate

aerosol forcing. The proportion of these numbers reflects the relative importance of the

individual parameters for determining the climate response. The absolute values were

chosen heurestically under the requirement that the overall number of atoms should be

on the order of 103 for reasons of computational feasibility. It becomes apparent that

computational feasibility exerts a strong limitation on the resolution of the partition in

a multi-dimensional space. As indicated by the discussion at the end of Section 3.2.4,

the number of atoms in each dimension should ideally be at least an order of magnitude

higher, which would yield about 106 atoms for the entire parameter space Ω. Hence, the

curse of dimensionality forces us to adopt only a coarse resolution of the uncertainty

space. The resulting loss of information causes an imprecise probability analysis to

widen the bounds for the lower and upper probability of events A ⊂ Ω. However,

these bounds will always contain the probability interval that would be obtained with

any finer partition of the continuous parameter space. Therefore, adopting a coarse

resolution can produce overly conservative, but not spurious estimates. It is interesting

to note that lower and upper probability bounds will rapidly approach zero and one,

respectively, if too much information has been given up in the process of the analysis.

This leads to a state of complete ignorance, which tells the analyst that his information

base was too weak to conduct the statistical inference in question.

In order to generate a likelihood-adapted partititon {A1, ..., Ak}, we are looking for

a grid G∗(l1, l2, l3) which yields a similar change of likelihood
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∆Lqrs = sup
Tq≤T2x≤Tq+1
κr≤κv≤κr+1

Qs≤QS90≤Qs+1

L(T2x, κv, QS90; ŷ) − inf
Tq≤T2x≤Tq+1
κr≤κv≤κr+1

Qs≤QS90≤Qs+1

L(T2x, κv, QS90; ŷ)

over each atom Aqrs. More formally, we require for all 1 ≤ q ≤ l1 − 1, 1 ≤ r ≤ l2 − 1,

and 1 ≤ s ≤ l3− 1 that

∆Lqrs =
1

k

l1−1∑

q=1

l2−1∑

r=1

l3−1∑

s=1

∆Lqrs . (3.19)

This will require the atoms to have smaller than average volume in areas of strong

likelihood changes and larger than average volume in areas of a flat likelihood function.

Since the quadratic mean is minimised at the point where Condition (3.19) is fulfilled for

all atoms, a likelihood-adapted grid G∗(l1, l2, l3) can be found by solving the nonlinear

program

G∗(l1, l2, l3) = arg min
G(l1,l2,l3)

l1−1∑

q=1

l2−1∑

r=1

l3−1∑

s=1

∆L2
qrs . (3.20)

Program (3.20) is very difficult to solve for arbitrary likelihood functions L(·; ŷ) : Ω→
R+

0 . The optimisation will be greatly simplified if L is quasi-concave. In this case, the

cuts C(L) = {θ|L(θ, ŷ) ≥ L}, with L ∈ R+, are convex, and the infimum likelihood

Lqrs,∗ over an atom Aqrs is obtained at the vertices of Aqrs, while the supremum like-

lihood L∗qrs will be situated on the edges of Aqrs (except for the atom A∗ containing

the maximum likelihood). Since the likelihood function L(θ; ŷ) calculated in Chapter 2

for 13650 grid points in Ω is approximately quasi-concave (see Fig. 2.7), we can indeed

restrict our search for Lqrs,∗ and L∗qrs to the edges and vertices of the atoms Aqrs.

However, the simplified program is still computationally expensive, because it requires

line searches for the supremum likelihood on all edges of the k atoms in each step of

the optimisation procedure. In our application, for example, we want to construct a

partition with 14 ·10 ·10 = 1400 atoms that have 4994 distinct edges. As a consequence,

the calculation of the sum in the objective function of Program (3.20) involves 4994

line searches. Since the number of free hyperplanes to be adjusted to the shape of the

likelihood function is (l1− 2) + (l2− 2) + (l3− 2) = 32, we have to expect on the order

of thousand iterations to solve Program (3.20).

In this situation we have decided to reduce the complexity of the optimisation

problem by choosing a more heuristic approach for identifying a likelihood-adapted

partition. In a first step, we have restricted us to the projections L(T2x; ŷ), L(κv ; ŷ)

and L(QS90; ŷ) of the likelihood function L(θ; ŷ) onto the individual dimensions X ∈
{T2x, κv , QS90} of the parameter space (see Fig. 2.8). They represent the upper envelope

L(X) of all intersects of the likelihood function that are parallel to the T2x, κv and QS90-

axes, respectively. Therefore, they capture the descent of the ridges of the likelihood

function from the point of maximum likelihood. We solved a one-dimensional version of

Program (3.20) for each parameter T2x, κv and QS90 separately. In the one-dimensional
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case, a set of grid points {x1, ..., xl} partitions the universal set Ω = (x1, xl] into l − 1

half-closed intervals Aj. Since the projected likelihood functions are quasi-concave, the

infimum and supremum likelihood over an Aj will be obtained at the interval bounds

of Aj (except for the atom A∗ which contains the maximum likelihood). This greatly

simplifies the evaluation of the objective function, and the one-dimensional version of

Program 3.20 can be solved efficiently for T2x, κv and QS90.

The resulting partitions of the domains Ω(T2x), Ω(κv), and Ω(QS90) are shown in

Fig. 3.6 (black points in left panels). It can be seen that the likelihood changes are

indeed equally spaced over the atoms. We joined the one-dimensional partitions to a

three-dimensional partition of the entire parameter space Ω = Ω(T2x)×Ω(κv)×Ω(QS90)

and checked its performance of adapting to the full likelihood function by calculating

∆Lqrs for all atoms Aqrs. The average change of likelihood over the atoms was only

∆̄Lqrs = 0.05Lmax. However, this small average change is produced by the portion of

atoms on the outskirts of the partition where the likelihood function is flat, and ∆Lqrs
is close to zero. In the center around the maximum likelihood, we have found atoms

where the likelihood dropped from almost maximum to near zero. This shows that the

upper envelopes L(X) do not capture the steep slopes around the point of maximum

likelihood.

Therefore, we have also looked at the intersects L∗(X) through the point of max-

imum likelihood T2x = 3.26 K, κv = 0.55 cm2 s−1, and QS90 = −0.97 W m−2 that run

parallel to the X = T2x, κv, and QS90-axes. As shown in Fig. 3.6 (left panels), they

drop much faster to zero than the ridges L(X) of the likelihood. To include this steep

drop into the optimisation of the partition, we have recalculated the one-dimensional

version of Program 3.20 for the sum L(X) + L∗(X) in each dimension X = T2x, κv,

and QS90. The resulting partition is also shown in Fig. 3.6 (red points in left pan-

els). It can be seen that the atom sizes around the point of maximum likelihood have

decreased considerably, while the atoms on the outskirts of the domain were inflated.

We have checked again the performance of the joint partition of Ω against the three-

dimensional likelihood function. The average change of likelihood over the atoms was

now ∆̄Lqrs = 0.12Lmax, which is considerably higher than before. Part of the increase

can be explained by the larger portion of atoms that have been placed on the steep

slopes of the likelihood function. However, the inflation of atoms on the outskirts of

the partition has also increased ∆Lqrs significantly in this area.

In this situation, we have chosen to combine the partitions that can be obtained

from L(X) and L(X) + L∗(X). The combined partition was constructed by replacing

the L(X)-atoms around the maximum likelihood with the denser coverage of atoms that

was obtained from solving the one-dimensional version of Program (3.20) for the sum

L(X)+L∗(X). In this way, we generate a partition that concentrates on the maximum

likelihood area without thinning the number of atoms on the outskirts. Fig. 3.6 (right

panels) shows the combined partitions for each dimension T2x, κv, and QS90. As a

consequence of the denser coverage around the maximum likelihood, the number of

atoms in the joint partition of Ω has increased from 1400 to 2592 (18 atoms for climate
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Figure 3.6: Likelihood-adapted partitions for the domains Ω(T2x), Ω(κv) and Ω(QS90). The
left panels show the optimally adapted grid (black points) to the upper envelope L(X) (black
line, X ∈ {T2x, κv, QS90}), as well as the optimally adapted grid (red points) that emerges from
inclusion of the intersect L∗(X) (red line). The right panels show the combined set of grid
points that define the partitions to be used in the following analysis.

sensitivity, and 12 atoms for ocean heat diffusivity and aerosol forcing each). We have

checked the performance of the partition in adapting to the likelihood function, and

found an average change of likelihood of ∆̄Lqrs = 0.07Lmax. This value change is close
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to the value for the original partition, albeit the portion of atoms in the steep slopes

around the maximum likelihood has been increased. We have compared the partitions

also in terms of the minimum likelihood that is allocated to the atoms. It turns out

that the average minimum likelihood of the combined partition is a factor two smaller

than for the maximum-likelihood centered partition generated from L(X)+L∗(X), but

exceeds the average minimum over the L(X)-partition by a factor five. We conclude

that the combined partition indeed provides a good compromise between a maximum-

likelihood centered and an upper-envelope based partition. Hence, we will use the

combined partition as shown in Fig. 3.6 (right panels) in the following. It will be

discussed below that further atoms need to be added to this partition to capture the

structure in the tails of the prior uncertainty for T2x, κv, and QS90.

3.4.2 A belief function for climate sensitivity

We generate a belief function representation for the prior uncertainty about climate sen-

sitivity from recent probability estimates in the literature (Andronova and Schlesinger,

2001; Knutti et al., 2002; Forest et al., 2002; Murphy et al., 2004). The published

probability distributions and the various methods of their derivation are discussed in

Section 3.2.3. Fig. 3.1 shows the six estimates that we have selected to include in the

prior uncertainty. The choice of selection is motivated in Section 3.2.3. As explained

above, we want to construct the convex set of of all probability measures whose

1. cumulative distribution functions lie between the lower envelope F and upper

envelope F : Ω(T2x) → [0, 1] of the six distribution functions from the literature

(see Definition 3.6), and whose

2. probability masses on a likelihood-adapted partition {A1, ..., Ak}T2x are larger or

equal than the lower envelope p : {A1, ..., Ak}T2x → [0, 1] of the probability masses

which are allocated by the six literature estimates to the atoms of the partition.

It was shown in Section 3.2.4 that a continuous distribution band Γ(F , F ) can be

approximated by a p-box Γ(SF , SF ) ⊇ Γ(F , F ), whose lower and upper step functions

confine the envelope of the distribution band from below and above, respectively. For

the reasons explained in Section 3.4.1, we want to construct the right-continuous lower

step function SF : {x1∗, ..., xn∗} → {SF 1, ..., SF n} and left-continuous upper step

function SF : {x∗1, ..., x∗m} → {SF 1, ..., SFm} (see Definition 3.8) on the likelihood-

adapted partition {A1, ..., A18}T2x which was generated above. This requires that the

points {x1∗, ..., xn∗} and {x∗1, ..., x∗m} have to be chosen from the set of grid points

{T 2x, a1, ..., ak−1, T 2x} which define the partition Ω(T2x) = (T 2x, a1] ∪ (a1, a2] ∪ ... ∪
(ak−1, T 2x]. It turns out that the likelihood-adapted partition for climate sensitivity

does not provide enough grid points to approximate the tails of the continuous distribu-

tion bands without an unreasonably large error. Therefore, we extend the partition by

inserting two more grid points in the tails of the distribution band. As a consequence,

the adjusted partition for climate sensitivity now contains 20 atoms {A1, ..., A20}T2x .



88 Chapter 3: Imprecise Probabilities for Climate Change Assessments

Fig. 3.3.a in Section 3.2.4 shows the lower and upper cumulative probability val-

ues that the continuous distribution band ΓT2x(F , F ) exhibits at the grid points of the

atoms. This information is used to construct the p-box approximation ΓT2x(SF , SF ) ⊃
ΓT2x(F , F ) for climate sensitivity (shown in Fig. 3.3.b). Algorithm 3.1 was used to con-

struct the random set (ET2x , ν) which provides a representation of the p-box ΓT2x(SF , SF )

(see Theorem 3.1). It is constituted by 9 half-closed intervals of the real line that are

included in the power set of the partition {A1, ..., A20}T2x (see Fig. 3.3.b and Table 3.1).

In a next step we construct the random set (FT2x , p) of the ε-contamination model

Γ(p) that is generated by the lowest probability masses {p
1
, ..., p

20
} from the selected

set of literature estimates. Equation 3.13 shows that (FT2x , p) can be deduced im-

mediately from the knowledge of the partition {A1, ..., A20}T2x , and the lower mass

function p : {A1, ..., A20}T2x → [0, 1]. The six probability estimates in Andronova

and Schlesinger (2001), Knutti et al. (2002), Forest et al. (2002), and Murphy et al.

(2004) allocate positive probability mass unanimously only to the 16 atoms in the

range T2x ∈ (1.88 K, 6.90 K]. Since the minimum probability mass allocated to the

outer atoms (1.88 K, 2.08 K] and (5.77 K, 6.9 K] is small, i.e., p
j
< 0.005, we exclude

this information from our analysis. The small loss of information is outweighed by the

considerable gain in computational efficiency from working with a smaller number of

focal elements. Hence, the random set for Γ(p) comprises the 14 atoms in the range

(2.08 K, 5.77 K] carrying altogether lower probability mass 0.32 and the domain Ω(T2x)

carrying the remaining probability mass ε = 0.68 . (FT2x , p) is tabulated in Table 3.2,

and the corresponding lower and upper mass functions p and p+ε are shown in Fig. 3.5.

We can now apply Algorithm 3.2 to combine the random set (ET2x , ν) of the p-box

and the random set (FT2x , p) of the ε-contamination model to the random set (GT2x , ν
∗)

of their intersection ΓT2x(SF , SF , p). We have shown in Section 3.3 that (GT2x , ν
∗)

provides a representation of the convex set of probabilities which observe the p-box

constraints and the lower bound on the probability masses simultaneously. The random

set (GT2x , ν
∗) constructed by means of Algorithm 3.2 is tabulated in Table 3.4. As we

have predicted in Lemma 3.5, all Möbius masses are positive. Hence, (GT2x , ν
∗) defines

a belief function constituting the lower envelope of the structure ΓT2x(SF , SF , p) (see

Theorem 3.2).

The random set (GT2x , ν
∗) contains 29 focal elements, which represents only a mild

increase from the original number of 9+14 = 23 focal elements collected in (ET2x , ν) and

(FT2x , p). In particular, the number is an order of magnitude smaller than the number

29 + 14− 1 = 531 of potential focal elements that could be identified by Algorithm 3.2.

This underlines our assertion in Section 3.3 that the benign properties of the intersection

ΓT2x(SF , SF , p) prevent an explosion of non-zero Möbius assignments associated with

its lower envelope P ∗ : R → [0, 1]. To put the number of 29 focal elements into

perspective, we can contrast it with the number k = 20 of atoms in the partition.

Every probability measure on the power set P(A1, ..., Ak) would need to be represented

by 20 probability masses p1, ..., p20. To the other extreme, the power set P(A1, ..., Ak)

contains 220 − 1 ≈ 106 non-empty sets which could carry in principle non-zero Möbius
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Focal element Möbius mass Focal element Möbius mass

G1 (2.08 K, 2.23 K] 0.008 G15 (0.50 K, 2.52 K] 0.017
G2 (2.23 K, 2.37 K] 0.019 G16 (3.47 K, 10.0 K] 0.005
G3 (2.37 K, 2.52 K] 0.022 G17 (0.50 K, 2.88 K] 0.032
G4 (2.52 K, 2.69 K] 0.028 G18 (2.52 K, 8.26 K] 0.003
G5 (2.69 K, 2.88 K] 0.029 G19 (2.88 K, 10.0 K] 0.063
G6 (2.88 K, 3.00 K] 0.023 G20 (1.51 K, 4.17 K] 0.041
G7 (3.00 K, 3.17 K] 0.024 G21 (1.88 K, 5.77 K] 0.028
G8 (3.17 K, 3.47 K] 0.048 G22 (2.08 K, 6.90 K] 0.014
G9 (3.47 K, 3.60 K] 0.021 G23 (2.37 K, 8.26 K] 0.061
G10 (3.60 K, 3.75 K] 0.018 G24 (2.52 K, 10.0 K] 0.058
G11 (3.75 K, 4.17 K] 0.034 G25 (1.51 K, 5.09 K] 0.097
G12 (4.17 K, 4.59 K] 0.022 G26 (0.50 K, 4.17 K] 0.017
G13 (4.59 K, 5.09 K] 0.016 G27 (1.88 K, 6.90 K] 0.104
G14 (5.09 K, 5.77 K] 0.010 G28 (2.08 K, 8.26 K] 0.094

G29 (1.51 K, 5.77 K] 0.045

Table 3.4: Random set (GT2x , ν
∗) of the intersection ΓT2x(SF , SF , p) of p-box and ε-

contamination model for climate sensitivity.

masses. Hence, the Möbius inverse constructed from Algorithm 3.2 can be considered

sparse indeed.

Fig. 3.7 shows the distribution and probability mass bands that are spanned by the

probabilities contained in ΓT2x(SF , SF , p). It can be seen that the p-box information

is tightened by the inclusion of the lower probability masses on the atoms, but only

in areas with atoms Aj carrying p
j
> 0. Since p-box and ε-contamination model

have been constructed from the same set of probabilities co(P1,T2x , ..., P6,T2x), the lower

and upper distribution function emerging from ΓT2x(SF , SF , p) need to fully include

the distribution band set up by co(P1,T2x , ..., P6,T2x). However, a tightening of the

p-box approximation can happen in so far as the lower mass function information

recovers some of the information that was lost in the approximation process. The

information gain from combining the two models can also be seen in the mass band.

Here, the p-box information helps to tighten the upper bound on the probability masses

pj. This effect is particularly large in areas where no atoms Aj with p
j
> 0 existed.

Table 3.3 compares the information content of ΓT2x(SF , SF , p) with the convex hull, the

continuous distribution band, the p-box and the ε-contamination model for the example

of the IPCC estimate for climate sensitivity. It can be seen that the intersection of p-box

and ε-contamination model always collects the tighter bounds from the two models.

For the subsequent analysis, we will adjust the random set (GT2x , ν
∗) listed in Ta-

ble 3.4 slightly. The focal elements G16 = (3.47 K, 10.0 K] and G18 = (2.52 K, 8.26 K]

carry only small probability mass ≤ 0.005. We remove the two focal elements from

(GT2x , ν
∗), and redistribute their masses on the supersets G24 = (2.89 K, 10.0 K] and

G23 = (2.37 K, 8.26 K], respectively. Inspection of the relationships (3.3) and (3.4)

between a belief function, its conjugate plausibility function and the Möbius inverse

reveals that such a redistribution of probability mass on supersets results in losening

the probability bounds for all events A ∈ R. Hence, we have induced a small loss of

information, which is easily outweighed by the gain in computational efficiency from
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Figure 3.7: Distribution band and mass band (converted to probability densities) generated
from the random set (GT2x , ν

∗) of the intersection ΓT2x(SF , SF , p) (black lines). The left panel
also shows the corresponding bounding functions of the p-box and the continuous distribution
band. The right panel compares the upper mass function with the ε-contamination model and
the ALUP model.

reducing the number of focal elements. The adjusted random set (GT2x , ν
∗) contains 27

focal elements. In the following, we will use this random set as the representation of

the prior uncertainty about climate sensitivity.

3.4.3 A belief function for sulphate aerosol forcing

We construct a belief function representation for the prior uncertainty about the com-

bined direct and indirect sulphate aerosol forcing around the year 1990 in analogy to

the case of climate sensitivity. Andronova and Schlesinger (2001), Knutti et al. (2002)

and Forest et al. (2002) have considered aerosol forcing besides climate sensitivity as

uncertain parameter in their probabilistic analyses that were discussed in Section 3.2.3.

They all provided marginal probability distributions for the aerosol forcing strength,

albeit with varying sets of aerosol species that were accounted for in these estimates.

Andronova and Schlesinger (2001) have focused on the sulphate aerosol forcing in the

year 1990 as we want to do here. Moreover, they used the same parameterisation of

the direct and indirect forcing effect of sulphate aerosols that was employed for the

calculation of the likelihood function in Chapter 2. The ratio between indirect and

direct forcing effect was set to 0.8 / 0.3, which is slightly different than the ratio of 0.8

/ 0.4 that we have adopted in Equation (2.9). However, this difference is small and,

therefore, the probability estimate of Andronova and Schlesinger (2001) for the total

sulphate aerosol forcing can be directly related to the uncertain parameter QS90 that we

consider here. The probability distribution for the GTAS forcing scenario (Greenhouse

gases + Tropospheric Ozone + Sulphate Aerosols + Sun) is shown in Fig. 3.8. We have

motivated this choice of forcing scenario in Section 3.2.3.
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Figure 3.8: Cumulative distribution functions for direct and indirect sulphate aerosol forcing
from the literature.

The situation is different for the probability estimates of Knutti et al. (2002) and

Forest et al. (2002). In their publication, Knutti et al. (2002) focused on constraining

the indirect aerosol forcing effect of aerosols. We have obtained the corresponding

probability estimate for the combined direct and indirect aerosol forcing directly from

the authors. As can be seen in Fig. 3.8, it is shifted towards larger negative values in

the tail of the distribution relative to the GTAS estimate of Andronova and Schlesinger

(2001). A reason may be that the forcing includes the possibility of a significant cooling

from carbonaceous aerosols. Knutti et al. (2002) consider forcings in their Monte Carlo

analysis that can be as large as QCar = −0.4 W m−2 (Knutti et al., 2003, Table 1).

We include the forcing estimate of Knutti et al. (2002) into our uncertainty about

QS90 to account for a possible underestimation of the cooling contribution from organic

carbon and biomass burning aerosols in our forcing scenario. If this was the case, the

effective sulphate aerosol forcing QS90 would need to be increased (in absolute terms)

to reproduce the total forcing of all aerosol species.

However, a similar argument can be set up for decreasing the effective cooling from

sulphate aerosols. Black carbon is an absorber of solar radiation and, therefore, pro-

vides a net heating of the atmosphere. As discussed in Section 2.2.2, the magnitude

of this heating is subject to scientific debate. Some authors have even suggested that

it might counterbalance most of the cooling from sulphate aerosols (Jacobson, 2001;

Hansen et al., 2002). In this case, we would have strongly underestimated the heating

contribution of black carbon, since it is already outweighed by the negative forcing from

organic and biomass burning aerosols in the scenario adopted in Section 2.2.2. To ac-

count for this possibility, we also include the probability estimates of Forest et al. (2002)

for the net total aerosol forcing in the 1980s in our prior uncertainty model. Their two

estimates under different assumptions about the prior probability (see Section 3.2.3)
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ε-contamination model & p-box Intersection of both models

Focal element Möbius mass Focal element Möbius mass
(in W m−2) (in W m−2)

B1 (−1.05,−0.99] 0.010 G1 (−1.05,−0.99] 0.010
B2 (−0.99,−0.89] 0.036 G2 (−0.99,−0.89] 0.036
B3 (−0.89,−0.81] 0.062 G3 (−0.89,−0.81] 0.062
B4 (−0.81,−0.71] 0.042 G4 (−0.81,−0.71] 0.042
B5 (−0.71,−0.60] 0.034 G5 (−0.71,−0.60] 0.034
B6 (−0.60,−0.45] 0.020 G6 (−0.60,−0.45] 0.020

E1 (−1.90,−0.81] 0.144 G7 (−1.90,−0.81] 0.036
E2 (−1.53,−0.71] 0.224 G8 (−1.53,−0.71] 0.074
E3 (−1.34,−0.60] 0.230 G9 (−1.34,−0.60] 0.046
E4 (−1.12,−0.45] 0.212 G10 (−1.12,−0.45] 0.008
E5 (−0.99,−0.33] 0.117 G11 (−0.71, 0.00] 0.019
E6 (−0.71, 0.00] 0.073 G12 (−1.90,−0.71] 0.108

G13 (−1.53,−0.60] 0.150
G14 (−1.34,−0.45] 0.184
G15 (−1.12,−0.33] 0.117
G16 (−1.12, 0.00] 0.054

Table 3.5: Random sets (FQS90
, p) of the ε-contamination model (upper left, focal element

Ω(QS90) with mass 0.80 omitted), (EQS90
, p) of the p-box (lower left), and (GQS90

, ν∗) of their

intersection ΓQS90
(SF , SF , p) (right side) for sulphate aerosol forcing.

are shown in Fig. 3.8. They are shifted towards a considerably smaller forcing contri-

bution of sulphate aerosols as compared to the estimates of Knutti et al. (2002) and

Andronova and Schlesinger (2001). They even give some support to the possibility of

a vanishing cooling effect of sulphate aerosols.

Since the following construction of the prior imprecise probability model for QS90

evolves completely analogous to the case of climate sensitivity, we comment the individ-

ual steps only briefly. We use the convex hull co(P1,QS90
, ..., P4,QS90

) of the four probabil-

ity estimates from the literature to generate a continuous distribution band ΓQS90
(F , F ).

Fig. 3.9.a shows the lower and upper distribution functions of the band. The blue points

denote the lower and upper cumulative probabilities that are obtained at the grid points

of the likelihood-adapted partition Ω(QS90) = (QS90 = −1.9 W m−2, b1] ∪ (b1, b2] ∪ ... ∪
(bk−1, QS90 = 0 W m−2], with k = 12 atoms, which was generated in Section 3.4.1. It

turns out that the spacing of grid points on the outskirts of the domain is too sparse

to approximate the tails of the distribution band in a reasonable manner. Therefore,

we insert two more grid points into the support of the tails (red points in Fig. 3.9.a),

which extends the partition to 14 atoms {B1, ..., B14}QS90
. The p-box approximation

ΓQS90
(SF , SF ) of the continuous distribution band is now constructed on the extended

set of grid points for a choice of n = 6 probability levels (see Fig. 3.9.a). We use Algo-

rithm 3.1 to generate the random set (EQS90
, ν) that captures the information content

of the p-box. The resulting random set with 6 focal elements is listed in Table 3.5.

Fig. 3.9.b shows the lower mass function p : {B1, ..., B14}QS90
→ [0, 1] on the like-

lihood adapted partition that is defined by the set of probability estimates from the

literature. Only the 6 atoms in the range (−1.05 W m−2,−0.45] carry a significant
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Figure 3.9: P-Box approximation of the continuous distribution band (Panel a) and ε-
contamination model (Panel b) for sulphate aerosol forcing. Lower panels show the distribution
and mass band of the intersection ΓQS90

(SF , SF , p) of the two models in comparison.

lower probability mass p > 0.005. The corresponding random set (FQS90
, ν) is listed

in Table 3.5. Its focal elements are comprised by 6 atoms carrying altogether lower

probability mass p = 0.20 and the domain Ω(QS90) carrying the remaining probability

mass ε = 0.80.

We employ Algorithm 3.2 to generate the random set (GQS90
, ν∗) of the intersection

ΓQS90
(SF , SF , p) from knowledge of (EQS90

, ν) and (FQS90
, ν). The result is tabulated

in Table 3.5. (GQS90
, ν∗) contains 16 focal elements with positive Möbius mass as

predicted in Lemma 3.5. It defines a belief function constituting the lower envelope

of ΓQS90
(SF , SF , p). Note that the number of focal elements is only slightly larger than

the number of atoms of the partition. Fig. 3.9.c compares the information content of

the intersection ΓQS90
(SF , SF , p) to p-box and continuous distribution band on the

series of cumulative events. By definition, the intersection provides identical or tighter

bounds for the distribution band than the p-box. An analogous comparison is made
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in Fig. 3.9.d for the lower and upper mass functions on the partition {B1, ..., B14}QS90
.

Compared to the ε-contamination model, the inclusion of the p-box information tightens

the upper bounds on the probability masses particularly on the outskirts of the domain

Ω(QS90). In the following, we will use the random set (GQS90
, ν∗) as the representation

of the prior uncertainty about QS90.

3.4.4 A belief function for ocean heat diffusivity

A belief function for the prior uncertainty about effective vertical ocean heat diffusivity

κv cannot be constructed in the same manner as for T2x and QS90, because κv is a

model dependent parameter. It captures the overall thermal conductivity of the ocean

column which is determined by a multitude of processes. Only a small portion of

the conductivity stems from molecular heat diffusion, while the larger part is due to

turbulent mixing in the water column. Therefore, the value of κv will depend on

the modeller’s choice which mixing processes to resolve explicitly and which processes

to include in the κv parameterisation. In our 1-D diffusion ocean model derived in

Appendix B all diffusive processes are subsumed in κv. Hence, we can assess a plausible

magnitude of κv from estimates for the globally and vertically averaged effective heat

diffusivity in the ocean which lie around κv = 1 cm2 s−1 (Munk, 1966; Simmons et al.,

2004).

This plausibility assessment does not suffice to construct an imprecise probability

model for the prior uncertainty about effective ocean heat diffusivity κv . However, the

value of κv can be directly related to the ocean heat uptake in the second half of the

20th century which has been estimated from ocean temperature measurements recently

(Levitus et al., 2000, 2001). In our modelling framework the ocean heat uptake in a

given period [to, t1] is specified by (see Section 2.1.2 and Appendix B, Equation B.26)

HO(to, t1) :=

∫ t1

to

(
CAS ṪS(t′) + FO(t′)

)
dt′ (3.21)

= CAS (TS(te)− TS(to)) + fSO cV

√
κv
π

∫ t1

to

∫ t′

0

ṪS(t′′)√
t′ − t′′

dt′′ dt′ ,

where we have neglected the higher order bottom correction terms. They do not influ-

ence the heat uptake for several hundred years after the development of a temperature

anomaly TS at the sea surface. The first term specifies the heat uptake of the mixed

layer with a depth of 60 m and a heat capacity of CAS = 7.80 Wyr m−2K−1 (see Ta-

ble 2.1). The second term captures the integral of the heat flux into the interior ocean.

It depends only on κv, since the parameters fSO and cV are fixed by topographical and

physical considerations, respectively (see Appendix A.4.1). Hence, knowledge of the

historical SSTs allows us to directly calculate a mapping from vertical heat diffusivity

κv onto ocean heat uptake for an arbitrary period [to, t1].

Fig. 3.10 shows the relationship between κv and the heat uptake in the period 1955

to 1996. It was derived by inserting the global mean SST record based on the HadSST



3.4 Belief functions for the climate model parameters 95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

40

Effective vertical ocean heat diffusivity [cm2/s]

O
ce

an
 h

ea
t u

pt
ak

e 
in

 th
e 

pe
rio

d 
19

55
−9

6 
[1

022
 J

]

Observation (Annan et al., 2003)

Figure 3.10: Relationship between effective vertical ocean heat diffusivity κv and ocean heat
uptake in the period 1955-1996 under the assumption of the global mean SST record based
on the HadSST data set. The central value and standard deviation of the observation based
estimate of Annan and Hargreaves (2003) (see Text) are shown for comparison.

data set (Jones et al. 2001, see Fig. 2.3.a) in Equation (3.21). As can be seen directly

from Equation (3.21) the heat uptake increases in proportion to the square root of

κv, i.e., HO(1955, 1996) = a + b
√
κv. Here, a = 3.3 · 1022 J specifies the amount of

heat that is taken up by the mixed layer6. Observational errors in the instrumental

SST record will introduce uncertainty about the heat uptake of both the mixed layer

(coefficient a) and the interior ocean (coefficient b). The amount of this uncertainty is

hard to assess because the global mean SST record derived from the HadSST data set

was not attached with error estimates. What is more important, the inclusion of these

errors into Equation (3.21) requires an assumption about their serial correlation, since

we cannot expect the observation errors to be a set of IID normal random variables.

However, a plausible assumption about this serial correlation was not available to us.

In this situation, we abstain from specifying an error in the relationship depicted in

Fig. 3.10, albeit we acknowledge that it can be sensitive to the measurement error in

the instrumental temperature record. This issue needs to be investigated in further

research which is beyond the prototypical analysis presented here. Plausible values of

vertical diffusivity can be assessed by comparing its implication for ocean heat uptake

with observations of the heat content in the world ocean (Levitus et al., 2000). Fig. 3.10

includes an estimate of heat uptake over the period 1955-96 (Annan and Hargreaves,

2003) that has been derived from the data of Levitus et al. (2000). It can be seen that

its central value at 19.7 · 1022 J suggest an ocean heat diffusivity of κv ≈ 1 cm2 s−1 in

agreement with the canonical estimate of Munk (1966).

If the observational estimate of ocean heat uptake was only afflicted with proba-

bilistic uncertainty, we could directly deduce a probability distribution for ocean heat

6A heat uptake of 1.14 · 1022 J equals an average heat uptake of 1 Wyr m−2 over the world ocean
area.
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diffusivity κv from knowledge of the transfer function HO(κv). Since imprecise proba-

bility constitutes a generalisation of additive probability, this special case could be ac-

commodated easily in the framework of our analysis. All we need to do is to coarsen the

probabilistic information to a probability mass function p : {C1, ..., C12}κv → [0, 1] on

the likelihood-adapted partition of the support of κv. It is important to note that such a

mass function can be interpreted as a random set (D, p) = {(C1, p1), ..., (C12, p12)} which

allocates the probability masses pj exclusively to the atoms Aj. Since all the masses

are positive, the random set describes a belief function (see Appendix C). However, in

the special case of (D, p) belief and plausibility function collapse to a single additive

probability measure (see Equations 3.3 and 3.4). Moreover, the random set (D, p) fulfils

the conditions in Corollary 3.1, and therefore represents a p-box. It was indeed this

special case of p-boxes that appeared first to construct lower and upper bounds for the

convolution of random variables with unknown dependency (Williamson and Downs,

1990). Hence, we could include the probabilistic information {(C1, p1), ..., (C12, p12)}
into our analysis without any need for an adjustment of the mathematical framework.

However, the situation is less favourable because the world ocean heat uptake is

not a direct observable. Levitus et al. (2000) reconstructed a spatial field of temper-

ature anomalies in the ocean column down to 3000 m, and deduced a time series of

heat content anomalies in the world ocean from it. Simply adding the resulting heat

fluxes in the period 1955-96 requires an assumption about the time correlation of the

observational errors. This is in essence the same problem that we have encountered

above for the SST record, but it is aggravated here because the relative error of the

observations is much larger. Levitus et al. (2001) fitted a linear trend model to the heat

content anomaly data to arrive at a central estimate of 18.2 · 1022 J. To the best of our

knowledge, they did not specify error bars for this estimate. Annan and Hargreaves

(2003) tried to reproduce the linear fit under the assumption of IID deviations from the

data, and found a different estimate of (16.4 ± 1.9) · 1022 J for the heat uptake in the

period 1955-96. However, they also noted that a linear trend model combined with the

assumption of IID errors must be clearly rejected. It cannot explain the reduction of

heat content in the 1960s and 80s that interspersed the increasing heat content in the

2nd half of the 20th century. As a remedy, Annan and Hargreaves (2003) proposed a lin-

ear trend model together with the assumption of an AR(1) process (see Equation 2.10)

for the deviations from the data. Under this assumption they found an estimate of

(19.7± 4.9) · 1022 J, which exhibited a markedly larger standard deviation. The AR(1)

assumption is not perfect, of course. Like surface air temperature, the time series of

ocean heat content anomaly will also be modulated by changes in the radiative forcing.

Nevertheless, we will use the heat uptake estimates of Levitus et al. (2001) and

Annan and Hargreaves (2003) to construct an imprecise probability for the prior un-

certainty about ocean heat diffusivity κv. The central values of the estimates span a

range HO(1955, 1996) ∈ [µ = 16.4 · 1022 J, µ = 19.7 · 1022 J]. The standard deviations

for the IID and AR(1) assumptions of Annan and Hargreaves (2003) set up a domain

σ ∈ [σ = 1.9 · 1022 J, σ = 4.9 · 1022 J]. Under the assumption of a normally distributed
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Figure 3.11: Distribution band for ocean heat uptake that is spanned by the four normal
distributions constituting the extreme points of the class NHO (µ ≤ µ ≤ µ, σ ≤ σ ≤ σ).

estimation error, these two intervals define a parametric imprecise probability model

NHO(µ ≤ µ ≤ µ, σ ≤ σ ≤ σ) containing all normal distributions whose mean and

standard deviation lie in the respective intervals. Such parametric classes of proba-

bilities have been investigated in the framework of robust Bayesian analysis (Berger,

1993). They cannot be represented by belief functions in general. This does not matter

for our analysis, because we want to choose a larger class of probabilities to describe

the uncertainty about the heat uptake in 1955-96. In analogy to the case of climate

sensitivity and sulphate aerosol forcing, we are looking for the set of all probabilities

whose distribution lies between the lower and upper distribution functions of NHO ,

and whose mass function dominates the lower mass function of NHO on the partition

{(C1, ν1), ..., (C12, ν12)}.
Fig. 3.11 shows the distribution band ΓHO(F , F ) that is set up by the extreme points

of the normal distributions contained inNHO . We have used Equation 3.21 to transform

the likelihood adapted grid for κv onto the domain of heat uptake HO(1955, 1996).

Thereby, we have neglected the uncertainty in the SST record that would prevent us

from specifying a deterministic mapping between the two quantities. The following

analysis proceeds in complete analogy to the cases of climate sensitivity and sulphate

aerosol forcing, and therefore will not be commented any further here. Fig. 3.12.a shows

the p-box approximation ΓHO(SF , SF ) that we have constructed on the likelihood-

adapted partition as transformed to the range of heat uptake. It cuts the infinite

support of the distribution band at the points HO = 5.7 · 1022 J and HO = 38.9 · 1022 J

corresponding to a domain that ranges over two orders of magnitude of ocean heat

diffusivity. A heat uptake above 38.9 ·1022 J has an upper probability smaller than 10−4

and therefore can be neglected easily. A heat uptake below 5.7 · 1022 J exhibits a larger

upper probability of 0.015, but will be excluded on the basis of physical considerations.

They would imply the unrealistic situation that the mixed layer of 60 m depth takes up
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Figure 3.12: P-Box approximation of the continuous distribution band (Panel a), and ε-
contamination model (Panel c) for ocean heat uptake in the period 1955-96. Right panels b, d
show the associated p-box and ε-contamination model for effective ocean heat diffusivity κv.

more heat over a period of 50 years than the entire interior ocean.

The random set representation of the p-box for the heat uptake in 1955-1996 is

also indicated in Fig. 3.12.a. By means of Equation 3.21, it can be retransformed to

a random set (E , ν)κv (see Table 3.6). Its associated p-box Γκv(SF , SF ) is shown in

Fig. 3.12.b. We proceed in a similar manner for the ε-contamination model that is set up

by the extreme points of the normal distributions contained in NHO . Fig. 3.12.c shows

its defining lower mass function on the transformed partition of the heat uptake domain.

Fig. 3.12.d depicts the corresponding lower mass function on the domain of vertical

diffusivity. The associated random set (F , )κv of the ε-contamination model Γκv(p) is

listed in Table 3.6. Only four out of 12 atoms in the partition {(C1, ν1), ..., (C12, ν12)}
carry positive lower probability mass p

j
> 0.005 which altogether amounts to p = 0.32.

As before, we construct the random set (G, ν∗)κv for the intersection Γκv(SF , SF , p)

of p-box and ε-contamination model by means of Algorithm 3.2. It contains 15 focal

elements which are listed in Table 3.6. Fig. 3.13 compares the information contained in
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Figure 3.13: Mass band (converted to probability densities) generated from the random set
(Gκv , ν∗) of the intersection Γκv (SF, SF , p). The upper mass function of the ε-contamination
model is shown for comparison.

ε-contamination model & p-box Intersection of both models

Focal element Möbius mass Focal element Möbius mass
(in cm2 s−1) (in cm2 s−1)

C6 (0.41, 0.71] 0.057 G1 (0.41, 0.71] 0.057
C7 (0.71, 0.93] 0.145 G2 (0.71, 0.93] 0.145
C8 (0.93, 1.21] 0.108 G3 (0.93, 1.21] 0.108
C9 (1.21, 1.52] 0.010 G4 (1.21, 1.52] 0.010

E1 (0.05, 0.71] 0.057 G5 (0.10, 0.93] 0.019
E2 (0.10, 0.93] 0.085 G6 (0.71, 1.92] 0.050
E3 (0.24, 0.93] 0.136 G7 (0.93, 5.00] 0.005
E4 (0.41, 1.21] 0.285 G8 (0.24, 1.21] 0.111
E5 (0.71, 1.52] 0.181 G9 (0.41, 1.52] 0.146
E6 (0.71, 1.92] 0.132 G10 (0.05, 0.93] 0.057
E7 (0.93, 2.58] 0.093 G11 (0.71, 2.58] 0.093
E8 (0.93, 5.00] 0.030 G12 (0.10, 1.21] 0.066

G13 (0.41, 1.92] 0.082
G14 (0.24, 1.52] 0.025
G15 (0.71, 5.00] 0.025

Table 3.6: Random sets (Fκv , p) of the ε-contamination model (upper left, focal element Ω(κv)
with mass 0.68 omitted), (Eκv , p) of the p-box (lower left), and (Gκv , ν∗) of their intersection

Γκv(SF , SF , p) (right side) for ocean heat diffusivity.

Γκv(SF , SF , p) with the ε-contamination model. It can be seen that the addition of the

p-box information tightens the upper mass function considerably for small diffusivities

κv. For the subsequent analysis, we will adjust the random set (Gκv , ν∗) listed in

Table 3.4 slightly. The focal element G7 carries only small probability mass 0.005.

We remove it (Gκv , ν∗) and redistribute its mass on the superset G15 = (0.71 K, 5.0 K]

(cmp. Section 3.4.2).
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3.5 Combination of marginal belief functions

In the preceding section we have constructed three belief function representations for

the prior uncertainty about the individual climate model parameters T2x, QS90 and κv.

In order to use this information in statistical inferences with the climate model, we

need to combine it to a joint imprecise probability model on the full parameter space

Ω = Ω(T2x) × Ω(κv) × Ω(QS90). This is an important problem, since uncertainty will

accumulate from different sources in most assessments of climate change.

In general terms, the problem consists in generating a multivariate uncertainty

model from uncertain variables X = {X1, ..., Xn}, each of which is described by a

structure ΓXi on the real line. If the uncertain quantities Xi were independent and

described by marginal probability measures PXi , there would exist a unique way to

construct a product measure PX . If they are described by coherent lower probabilities

constituting the lower envelopes of the structures ΓXi , however, the situation is more

complicated. For lower probabilities, the joint lower envelope P X of the independent

product depends on the concept of independence that is considered (Walley, 1991).

Couso et al. (2000) have provided an instructive survey of independence concepts in

imprecise probability theory and their underlying semantics. The concept of epistemic

independence (Walley, 1991, Chapter 9) captures the intuitive notion that two uncertain

variables are independent if learning about one of them is irrelevant to our knowledge

about the other. This mutual irrelevance of variables is encoded in the product rule

for combining additive probabilities. However, when combining each P ∈ ΓX1(P 1)

with each Q ∈ ΓX2(P 2) by the product rule, we generate a set of joint probabilities

P × Q ∈ MX1×X2 that does not conform with the notion of epistemic independence.

More precisely, the set MX1×X2 can be strictly smaller than the set of probabilities

that would be desribed by the natural extension of the lower envelopes P 1 and P 2

onto the joint space X1×X2 under the assumption of epistemic independence (Walley,

1991, Chapter 9.3). MX1×X2 has been called type-1 product in the literature, and the

associated independence concept is often named strong independence.

If the uncertainty about the marginal random variables is described by belief func-

tions, there exists an additional concept of independence. Assuming that the uncer-

tainty about the quantities Xi is represented by belief functions belXi with associated

random sets (Ei, νi) = {(E1i , ν1i), ..., (Eki , νki)} , 1 ≤ i ≤ n. The random set indepen-

dent product is calculated from the marginal random sets (Ei, νi) by

(E , ν) := { (El1 ...ln = El1 × ...×Eln , νl1...ln = νl1 · ... · νln), 1 ≤ li ≤ ki } . (3.22)

The random set (E , ν) derived from the independent product (3.22) determines a joint

belief function bel1×...×n : Rn → [0, 1] on a field Rn of the product space ΩX1 ×
...Xn. The underlying independence concept associated with Definition (3.22) has been

called random set independence in the literature. Using the example of random draws

from two urns with unknown proportions of red and white balls, Couso et al. (2000)

have compared random set independence with the concepts of epistemic and strong
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independence. Their example showed that a semantics for random set independence

cannot be constructed easily. In any case, it would apply only to a very limited set of

situations compared with the more natural concept of epistemic independence.

However, here we are less concerned with a semantics of random set independence,

but with its relationship to the other independence concepts. Recently, Fetz and Ober-

guggenberger (2004) and de Cooman (2004) showed that the convex set of joint prob-

abilities encompassed by the belief function bel1×...×n always constitutes a superset of

the set of probabilities that can be derived from epistemic and strong independence.

Hence, random set independence yields the most conservative estimate of the joint un-

certainty obtained under the three different independence assumptions. Therefore, it

provides us with a simple method to construct a belief function bel1,...,n on the joint

uncertainty space that constitutes an outer bound for the convex set of probabilities

emerging from the more natural assumption of epistemic independence. It is important

to note that the latter cannot be represented by a coherent lower probability in general.

Having assured ourselves that a simple belief function approximation for the inde-

pendent lower envelope of a set of marginal structures Γbel1 , ..., Γbeln exists, we need

to ask whether an independence assumption for the climate model parameters T2x, κv
and QS90 would be justified. We will separate the discussion into a consideration of the

physical and the ‘informational’ dependence of these quantities. Clearly, the factors

influencing the radiative properties of sulphate aerosols and their impact on clouds are

physically unrelated to the factors influencing climate sensitivity and ocean heat diffu-

sivity. Hence, QS90 on the one hand, and κv and T2x on the other hand are physically

independent. Moreover, climate sensitivity depends on atmospheric feedbacks related

to water vapour and clouds, rather than on mixing schemes in the ocean (e.g. Harvey,

2000, Chapter 9). Therefore, we can assume that T2x does not physically depend on

κv. However, the reverse assumption is less clear. Raper et al. (2002) have observed

a larger ocean heat uptake per unit temperature increase in models with higher cli-

mate sensitivity. The finding could have been an artifact due to the small sample size

of models, but could also be related to physical feedbacks of a larger warming onto

the ocean. Raper et al. (2002) speculated that the impact of a warmer climate on

the stratification of the high latitude ocean and the meridional overturning circulation

might provide a possible mechanism for such a feedback. However, these effects are

not represented in our simple diffusion ocean energy balance model, since this would

require a temperature dependence of the vertical diffusivity parameter κv . Moreover,

these feedbacks if existent might have played a minor role for ocean heat diffusivity in

the 20th century.

Although the climate model parameters can be assumed to be physically indepen-

dent, they are linked by our knowledge of, inter alia, the historical temperature record.

Comparisons of model results with instrumental temperature data will have a tendency

to produce high estimates of T2x for a large negative radiative forcing QS90 of sulphate

aerosols, and vice versa (Forest et al., 2002). The same is true for high climate sensitivi-

ties and high ocean heat diffusivities κv. Both types of ‘informational’ dependencies are
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clearly visible in the likelihood function that we have derived in Chapter 2 (see Fig. 2.7).

These dependencies are also present in the joint probability estimates of Andronova and

Schlesinger (2001), Forest et al. (2002) and Knutti et al. (2002), whose marginals were

used to construct the belief function representation for our prior uncertainty about

T2x, κv and QS90. As discussed in Section 3.4.1, a dependency structure in the prior

uncertainty that matches the shape of the likelihood function would greatly aid the

employment of a likelihood-adapted grid. However, we are still lacking the means to

construct a belief function representation in the style of the preceding sections directly

on a multi-dimensional space. This will require more theoretical work, which is beyond

the scope of this analysis.

Therefore, we will take a pragmatic perspective and assume that our prior uncer-

tainty reflects a state of knowledge prior to receiving the instrumental temperature

record. Then, ‘informational’ dependencies are solely introduced by updating the prior

uncertainty with the likelihood function L(θ; T̂ ) (see Chapter 4). If the emergence

of ‘informational’ dependencies is delegated to the updating process, an independence

assumption for the prior uncertainty can be justified on the grounds of physical inde-

pendence. Hence, we will combine the random sets (G, ν∗)T2x , (G, ν∗)QS90
, and (G, ν∗)κv

which represent our prior uncertainty for the parameters T2x, QS90, and κv by means

of the random set independent product (3.22) to a joint random set (G, ν∗)CM on the

climate model parameter space Ω = Ω(T2x) × Ω(κv) × Ω(QS90). It is associated with

a belief function belCM : R3 → [0, 1] that encompasses the convex set of joint prob-

abilities incorporated in our prior uncertainty about the model parameters. By the

result of Fetz and Oberguggenberger (2004) and de Cooman (2004) it will include all

products of probability measures contained in ΓT2x(SF , SF , p), ΓQS90
(SF , SF , p), and

Γκv(SF , SF , p), and more probabilities beyond that. Hence, belCM : R3 → [0, 1] repre-

sents a large set of prior probabilities.

The random set (G, ν∗)CM contains 27 · 14 · 16 = 6048 focal elements. The increase

in the number of focal elements by three orders of magnitude mirrors the increase in

complexity associated with the “curse of dimensionality”. Nevertheless, the Möbius

inverse described by (G, ν∗)CM is extremely sparse, because the partition {A1, ..., Ak} of

the joint domain Ω encompasses k = 20·12·14 = 3360 atoms. Hence, the Möbius inverse

is defined on a power set with the huge number of 23360 elements. In the following, we

will use (G, ν∗)CM and the associated belief function as the representation of our prior

uncertainty about the climate model parameters.



Chapter 4

Updating An Imprecise

Probability for the Climate

Model

In the preceding chapter we have constructed a belief function for three uncertain

climate and forcing model parameters, namely climate sensitivity T2x, effective vertical

ocean heat diffusivity κv, and the radiative forcing from anthropogenic sulphate aerosols

in the year 1990, QS90. The belief function captures the imprecise information provided

by a set of recently published probability density estimates for T2x and QS90, and

by estimates of the heat uptake of the world’s oceans in the second half of the 20th

century. However, this prior information does not include the likelihood L(θ; T̂ ) that

our energy balance model reproduces the observed temperature record T̂ for a given

choice θ = (T2x, κv , QS90), which was estimated in Chapter 2.

This chapter is devoted to the derivation of a posterior imprecise probability amal-

gamating the likelihood and the prior information. We will use Bayes’ rule in its

generalized form for imprecise probabilities to update the prior information with the

likelihood of observing the historic temperature record given a model hypothesis M(θ).

As explained in the introduction to Chapter 2, we believe that the Bayesian paradigm

suits the requirements of an integrated assessment of climate change well. While the

prior information includes the information from the literature about the parameters

θ, the likelihood L(θ; T̂ ) qualifies our ensemble of model hypotheses M(θ) in the light

of historical temperature observations. Both pieces of information are vital parts that

should be included in an assessment of future climate change on the basis of M(θ).

For given likelihood function L(·; ŷ) : Ω→ R+ and prior probability density ρ : Ω→
R+, Bayes’ rule takes on the form

ρ(θ|ŷ) =
L(θ; ŷ) ρ(θ)∫

Ω L(θ; ŷ) ρ(θ) dθ
, (4.1)

where ρ(θ|ŷ) is the posterior probability density for the truth of the hypothesis M(θ).

103
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The denominator assures that ρ(θ|ŷ) is properly normalized. Bayes’ rule in its familiar

form can be recovered from Equation (4.1) by noting that L(θ; ŷ) := ρ(ŷ|θ), and ρ(ŷ) :=∫
Ω L(θ; ŷ) ρ(θ) dθ constitutes the marginal probability density of observing ŷ. Then,

Bayes’ rule is given by ρ(θ|ŷ) = ρ(ŷ|θ) ρ(θ) / ρ(ŷ) provided that ρ(ŷ) > 0. If ρ(ŷ) = 0,

Bayes’ rule is not applicable, and the posterior probability density is undefined.

The generalisation of Bayes rule to structures Γ(P ) (see Definition C.8) is straight-

forward. If
∫

Ω L(θ; ŷ) ρ(θ) dθ > 0 for all probability densities ρ ∈ Γ(P ), then the

posterior convex set of probabilities M(ŷ), which is not necessarily a structure any

more, is given by

M(ŷ) :=

{
ρ(·|ŷ) : ∃ ρ ∈ Γ(P ) ∀ θ ∈ Ω ρ(θ|ŷ) =

L(θ; ŷ) ρ(θ)∫
Ω L(θ; ŷ) ρ(θ) dθ

}
. (4.2)

Definition (4.2) is the special version for continuous random variables and likelihoods

of what has been called Divisive Conditioning or Generalised Bayes Rule (GBR) in

the literature. Walley (1991, Chapter 6.4) used the principle of coherence to establish

the GBR in its general form for lower previsions. However, a discussion of this work

is beyond the scope of our analysis. Here and in the following, we refer to the special

form (4.2) when talking about the GBR.

We discuss the challenges that are posed by an application of the GBR in Section 4.1.

Section 4.2 provides an algorithm to update belief functions with a likelihood by means

of the GBR and a more restrictive updating rule formulated by Dempster (1968). In

Section 4.3 we will apply this algorithm to update the prior belief function for the model

parameters with the likelihood function L(θ; T̂ ) under both updating rules.

4.1 The Generalised Bayes’ Rule

Updating convex sets of probabilities with the Generalised Bayes’ rule is a thorny is-

sue, in particular when restricting the analysis to the special case of coherent lower

probabilities P on event spaces (see Definition C.7) or even to belief functions. Two

major difficulties arise from the application of the GBR: the dilation of imprecise poste-

rior probabilities (Section 4.1.1) and the generation of convex sets of probabilities that

cannot be described by a coherent lower probability any more (Section 4.1.2).

4.1.1 Dilation

Application of the GBR can generate very large, and therefore uninformative, sets

of posterior probabilities M(ŷ). This is due to the normalisation of the posterior

probability density ρ(θ|ŷ) with the marginal density ρ(ŷ) of observing the data ŷ. Since

ρ(ŷ) might vary substantially across the set of priors, the bounds on the posterior

probability of an event A can be dilated by an observation ŷ, i.e.,

P (A|ŷ) ≤ P (A) ≤ P (A) ≤ P (A|ŷ) , (4.3)
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where at least one of the outer inequalities is strict. Consider the example of a universal

set Ω = {e1, e2, e3} and a likelihood function L(e1; ŷ) = 0, L(e2; ŷ) = 1, L(e3; ŷ) =

10. Let the imprecise prior probability assessment be given by P ({e1}) = 1/2 and

P ({e2, e3}) = 1/2. It is fully described by the two extreme points p1 = {1/2, 1/2, 0} and

p2 = {1/2, 0, 1/2}. We can infer the lower and upper posterior probability for the event

{e2} by only updating the two extreme points with the likelihood function (Walley,

1991, Chapter 8.4.8). Application of Bayes’ rule yields P ({e2}|ŷ) = P ({e2}) = 0, and

P ({e2}) = 1/2 < P ({e2}|ŷ) = 1. Although the event e2 receives only a low likelihood

in the light of the observation ŷ, its posterior upper probability is twice as large than

its prior upper probability. This is due to the fact that the prior includes a probability

assessment under which the much more likely event e3 cannot occur at all. Hence, the

incorporation of the likelihood will aggravate the imprecision in the prior assessment

if it varies strongly over events A ⊂ Ω, where the distribution of prior probability is

(largely) unknown.

We will see below that prior information described by belief functions is partic-

ularly prone to this problem. Therefore, we need to take utmost care to limit the

imprecision of the prior in areas of large changes of the likelihood function. We have

done so by adapting the resolution of the grid that discretises the uncertain param-

eter space Ω = R(T2x) × R(κv) × R(QS90) to the shape of the likelihood function.

However, the computational costs pose a natural limit on the improvement to be

achieved in this way, in particular for multi-dimensional uncertainty spaces. An al-

ternative would be to use an updating rule that implicitely penalises prior probabil-

ities which imply a low probability (density) of observing the data ŷ, i.e., for which∫
Ω L(θ; ŷ) ρ(θ) dθ � supρ′∈M(ŷ)

∫
Ω L(θ; ŷ) ρ′(θ) dθ. Such a candidate is Dempster’s rule

of conditioning that was originally proposed for updating belief functions (Dempster,

1968). It was shown by Gilboa and Schmeidler (1993, Theorem 3.3) that a generalised

version of Dempster’s rule (to arbitrary coherent lower probabilities P ) coincides with

the so-called maximum likelihood classical update rule (if the joint probability on the

space Ω× Y is 2-monotone). Under this rule, only those prior probabilities in the as-

sociated structure Γ(P ) are retained and updated via Bayes’ rule which maximise the

probability (density) of observing ŷ. Hence, application of Dempster’s rule always yields

a more informative posterior imprecise probability model than the GBR. If the prior

information is described by a precise probability, both rules collapse to the well-known

Bayes’ rule (4.1). In this analysis, we will calculate the posterior imprecise probabilities

under both updating rules and compare them with each other.

It is important to note that the possibility of dilated bounds on the posterior prob-

ability P (A|ŷ) is not confined to the use of simplified imprecise probability models

described by coherent lower probabilities, but part and parcel of the application of the

GBR in general. If the observation ŷ is surprising in the light of the prior informa-

tion, dilation of the posterior bounds on P (A|ŷ) will be a reasonable thing to happen.

This might also be the case for the example presented above, where a large change of

likelihood in an area of large imprecision in the prior information is responsible for the
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occurrence of dilation. However, Seidenfeld and Wasserman (1993) and Herron et al.

(1997) have identified instances of dilation that are much more severe. They showed

that the bounds on the posterior probability P (A|B) can be dilated for any event B

from a (finite or countable) partition B of the space of possible observations Y . This

means that no matter what B ∈ B will be observed, we will know less about A than we

knew before. As a result, the value of information for the experiment B is negative, and

a Bayesian decision maker should be inclined to a pay a positive price not to conduct

this experiment. This contradicts the commonly accepted wisdom that new informa-

tion is always welcome, and any experiment available at no additional costs should be

performed. The occurrence of dilation has spurred an ongoing debate about whether

and how this counterintuitive consequence of the GBR should be accommodated in a

decision-theoretical framework for updating imprecise beliefs. In the context of climate

research, a dilation of climate model uncertainty no matter what type of climate obser-

vation is received would be clearly unacceptable. However, we speculate that the space

of climate observations is sufficiently rich to prevent such an instance of dilation for an

entire experiment B.

Seidenfeld and Wasserman (1993) and Herron et al. (1997) have established their

dilation result for a variety of frequently used imprecise probability models including the

ε-contamination model and the atomic lower and upper probability model. Moreover,

the probability ratio model is the only model class that has been shown to be dilation

immune. Since this model class also allows for a simple implementation of the GBR, it

provides an important alternative to the model class considered here. However, since

it cannot be captured in terms of a coherent lower probability (see Appendix C), it

does not fit our choice of Möbius representation that was motivated in Section 3.1.

Therefore, we do not pursue the probability ratio model any further here, but earmark

it as an important area of future research. In this analysis, we rely on belief function

models, and thus have to watch out for dilation when applying the GBR. Dempster’s

rule of conditioning provides an alternative that is dilation immune.

4.1.2 Application to coherent lower probabilities

As was discussed in Appendix C, coherent lower probabilities P and their associated

structures Γ(P ) constitute only a special class of imprecise probabilities. This lack of

generality becomes apparent when updating the structure Γ(P ) via the GBR as defined

in Equation (4.2). In general, the resulting convex set of posterior probabilities M(ŷ)

is not a structure any more. Its lower envelope P (·|ŷ) describes a structure Γ(P (·|ŷ))

of posterior probabilities that can be strictly larger than M(ŷ). Hence, the restriction

to the posterior coherent lower probability P (·|ŷ) will include a loss of information.

Even if we accept this loss of information, we need to be aware of the consequence that

the updating operation on coherent lower probabilities is non-commutative (Chrisman,

1995). The posterior lower probability will depend on whether we update first on

observation ŷ1 and then on observation ŷ2, or vice versa (P (·|ŷ1, ŷ2) 6= P (·|ŷ2, ŷ1). Since

updating is often performed incrementally on a sequence of observations (ŷ1, ŷ2, ...), this
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can be a severe problem. Chrisman (1995) has proposed a remedy, which we will utilise

in Section 4.2.

Notwithstanding these difficulties, the restriction to lower envelopes of convex sets of

probabilities can improve the mathematical tractability of the updating task. Wasser-

man and Kadane (1990) provide lower bounds on the posterior lower probability P (·|ŷ) :

A(Ω) → [0, 1] from updating a prior lower probability P : A(Ω) → [0, 1] with a likeli-

hood function L(·; ŷ) : Ω→ R+
0 . To simplify the presentation, we adopt their notation

in the following. Let IA : Ω → {0, 1} be the indicator function of the event A, i.e.

I(θ) = 1, if θ ∈ A, and I(θ) = 0 otherwise. Let

E(LA; ρ) :=

∫

Ω
IA(θ)L(θ; ŷ) ρ(θ) dθ =

∫

A
L(θ; ŷ) ρ(θ) dθ

be the expected value of the likelihood function L(·; ŷ) restricted to the event A ∈ A(Ω)

w.r.t. the prior probability density ρ : Ω→ R+
0 . Since L(θ; ŷ) := ρ(ŷ|θ) is a conditional

probability, the expected value E(LA; ρ) can be also regarded as the joint probability

density of the event ρ(ŷ × A). Likewise, let E(L; ρ) := E(LΩ; ρ) be the expectation

value of the likelihood (i.e., the marginal probability density of the observation ŷ,

ρ(ŷ) := ρ(ŷ×Ω)). According to Bayes’ rule (4.1), the posterior probability of the event

A ∈ A(Ω) is given by

P (A|ŷ; ρ) =
E(LA; ρ)

E(LA; ρ) +E(LAc ; ρ)
if E(L; ρ) > 0 . (4.4)

Let EΓ(LA) := inf
ρ∈Γ(P )

E(LA; ρ) , EΓ(LA) := sup
ρ∈Γ(P )

E(LA; ρ)

be the lower and upper bounds of the expectation E(LA) on the structure Γ(P ) which

constitutes the imprecise prior probability model. Moreover, let

CP (LA) :=

∫ ∞

0
P ({θ|IA(θ)L(θ; ŷ) > x}) dx , (4.5)

CP (LA) :=

∫ ∞

0
P ({θ|IA(θ)L(θ; ŷ) > x}) dx (4.6)

=

∫ ∞

0
( 1− P ({θ|IA(θ)L(θ; ŷ) ≤ x}) ) dx

be the lower and upper Choquet integral (see Definition C.11) of the A-restricted likeli-

hood function IA L(·; ŷ) w.r.t the coherent lower probability P , and its conjugate upper

probability P , respectively. Given these definitions, Wasserman and Kadane (1990)

show that the infimum of the posterior probabilities P (A|ŷ; ρ) in the set M(ŷ), is

bounded from below by

P (A|ŷ) := inf
ρŷ∈M(ŷ)

P (A|ŷ; ρ) ≥ EΓ(LA)

EΓ(LA) +EΓ(LAc)
≥

CP (LA)

CP (LA) + CP (LAc)
, (4.7)
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when the denominators of the ratios are larger than zero. The left inequality is fairly

obvious, since no prior probability in the structure Γ(P ) can yield expectation values

E(LA) < EΓ(LA), or E(LcA) > EΓ(LcA). The right inequality stems from the fact

that the lower (upper) Choquet integral w.r.t. to a coherent lower (upper) probability

provides an outer bound on the lower (upper) expectation value w.r.t. to the associated

structure of probabilities.

Wasserman and Kadane (1990) move on to show that the inequalities in Expres-

sion (4.7) become equalities if, and only if, P is a 2-monotone Choquet capacity (see

Definition C.10). The right equality follows from the fact that the lower (upper) ex-

pectation equals the lower (upper) Choquet integral if, and only if, the coherent lower

probability P is 2-monotone (see Appendix C). Establishing the left equality requires

to find a prior probability density ρ ∈ Γ(P ) with E(LA) = E(LA) and E(LcA) = E(LcA).

Such a probability density exists if and only if P is 2-monotone.

Hence, Wasserman and Kadane (1990) provide a closed form expression to calculate

the lower posterior probability for arbitrary events A ∈ A(Ω) directly from knowledge

of the likelihood function L(·; ŷ) and the prior lower probability P . The calculation is

further simplified if P is characterised by a Möbius inverse (see Definition C.12) with

a finite number of focal elements E1, ..., En with non-zero Möbius assignments νi > 0

for 1 ≤ i ≤ n. Let (E , ν) := { (E1, ν1 := ν(E1)) , ..., (En, νn := ν(En)) } the collection of

focal elements and their associated Möbius assignments which fully characterises the

Möbius inverse.

Then, the posterior lower probability is given by

P (A|ŷ) ≥

∑
Ei⊆A

inf
θ∈Ej
L(θ; ŷ) νi

∑
Ei⊆A

inf
θ∈Ej
L(θ; ŷ) νi +

∑
Ej∩Ac 6=∅

sup
θ∈Ej∩Ac

L(θ; ŷ) νj
, (4.8)

where equality holds if and only if P is 2-monotone. Expression (4.8) can be deduced

from rewriting the Choquet integral in terms of a summation of Möbius assignments

(CP (f) =
∑

Ei
infθ∈Ei f(θ) νi , CP (f) =

∑
Ei

supθ∈Ei f(θ) νi, see Appendix C).

We note that bounds for the posterior upper probability P (ŷ) can be specified

in a similar fashion. Since P (ŷ) is the conjugate set function of the posterior lower

probability, i.e. P (A|ŷ) = 1− P (Ac|ŷ) for all A ∈ A(Ω), we find immediately

P (A|ŷ) ≤ CP (LA)

CP (LA) + CP (LAc)
=

∑
Ei∩A

sup
θ∈Ei∩A

L(θ; ŷ) νi

∑
Ei∩A

sup
θ∈Ei∩A

L(θ; ŷ) νi +
∑

Ej⊆Ac
inf
θ∈Ej
L(θ; ŷ) νj

,

where equality holds if and only if P (ŷ) is 2-alternating (see Definition C.10). Indeed,

Wasserman and Kadane (1990) have chosen to state their results for the upper posterior

probability. Since we have preferred to work with the lower probability in this analysis,

we have transferred the expressions accordingly. Due to the conjugacy between lower

and upper probability, it suffices to consider just one set function. The choice among
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the two is a matter of mere convention.

4.2 Updating belief functions with a likelihood

We will use Expressions (4.7) and (4.8) as a guideline for updating belief functions

bel : A(Ω) → [0, 1] with a likelihood function L(·; ŷ) : Ω → R+
0 . This problem has

received little attention in the literature. Most discussions of statistical inference with

belief functions operate on a joint space Ω′ = Ω × Y , with no explicit distinction

between model hypotheses θ ∈ Ω and observations y ∈ Y . Here the problem is to find

a conditional lower probability P (·|B) : A(Ω′|B) → [0, 1] from the unconditional lower

probability P : A(Ω′) → [0, 1] after B ∈ Ω′ has occurred. We will refer to this type of

statistical inference as conditioning on an event B in order to distinguish it from the

more special case of updating with an observation y.

In the general framework, the application of the Generalised Bayes’ rule to a coher-

ent lower probability P yields the conditional lower probability

P (A|B) ≥ P (A ∩B)

P (A ∩B) + P (Ac ∩B)
, (4.9)

where equality holds if and only if P is 2-monotone (see, e.g., Chrisman, 1995). Hence,

equality holds in particular if P is a belief function. There exists a different updating

rule which is most widely used in the statistical reasoning with belief functions. This

rule, called Dempster’s rule of conditioning, is defined by (Dempster, 1968)

P (A||∗B) :=
P (A ∩B)

P (B)
⇒ P (A||∗B) =

P ((A ∩B) ∪Bc)− P (Bc)

1− P (Bc)
(4.10)

As discussed above, Gilboa and Schmeidler (1993) have identified Dempster’s rule with

the maximum likelihood update rule (if the joint probability on the space Ω × Y is

2-monotone). Note that we have used different symbols for the conditional lower and

upper probabilities that emerge from the two rules to mark their difference.

If P : A(Ω) → [0, 1] is a belief function, both conditioning rules can be phrased in

terms of the Möbius inverse ν : A(Ω)→ [0, 1] of P . Let (E , ν) := { (E1, ν1) , ..., (En, νn) }
be the random set that characterises the Möbius inverse ν. Then the random set

(E , ν)||∗B of the Dempster-conditioned lower probability P (·||∗B) : A(Ω′|B)→ [0, 1] can

be calculated directly from (E , ν) by (Dempster, 1968)

ν||∗B(A) =

∑
Ei∩B=A νi∑
Ei′∩B 6=∅ νi′

. (4.11)

It can be seen that ν||∗B(A) ≥ 0 for all A ∈ Ω, if (E , ν) contains only positive Möbius

assignments. Therefore, P (·||∗B) is a belief function if P was a belief function.

Jaffray (1992, Theorem 1) presented an analogous relation between the uncondi-

tional Möbius assignment ν and the conditional ν|B that follows from the application
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of the GBR described in Equation (4.9). However, the resulting formula is much more

intricate than for Dempster conditioning. Although the conditional Möbius inverse

ν|B defines another belief function, the number of focal elements with ν|B > 0 can

increase exponentially. Hence, even if we established an imprecise prior probability

model with a sparse Möbius inverse, this achievement would be nullified when updat-

ing it via the GBR. Moreover, Jaffray (1992) showed that the conditional belief function

bel(·|B) : A(Ω′|B) → [0, 1] so obtained does not fully describe the updated set of prob-

abilities M(B) that results from conditioning each probability in the structure Γ(bel).

As a consequence, the conditional Möbius inverse depends on the order of conditioning

events B1, B2, ... and therefore, is not applicable to incremental updating.

Chrisman (1995) proposed a remedy for the non-commutativity as well as expo-

nential explosion of focal elements that plague the conditional Möbius assignment ν |B
of Jaffray (1992). He observed that if the lower probability for the occurrence of B is

positive (P (B) > 0), then

P (A ∩B)

P (A ∩B) + P (Ac ∩B)
=

P (A||∗B)P (B)

P (A||∗B)P (B) + P (Ac||∗B)P (B)
, (4.12)

where P (Ac||∗B) is the Dempster-conditioned upper probability from Equation (4.10),

and P (A||∗B) the lower probability from a dual conditioning rule defined by

P (A||∗B) =
P (A ∩B)

P (B)
. (4.13)

As for Dempster’s rule of conditioning, the Möbius inverse of P (A||∗B) can be easily

derived from the unconditionial Möbius assignment (Chrisman, 1995). It is

ν||∗B(A) =

∑
Ei=A

νi∑
Ei′⊆B νi′

. (4.14)

Hence, knowledge of P (·||∗B), P (·||∗B), P (B) and P (B) suffice to determine the

conditional lower probability P (·|B) for arbitrary A ∈ A(Ω′|B) by means of Equa-

tion (4.12). Since the Möbius inverses of P (·||∗B) and P (·||∗B) can be easily computed

via Equations (4.11) and (4.14), an exponential explosion of the number of focal ele-

ments is avoided. Moreover, Chrisman (1995) shows that both P (·||∗B) and P (·||∗B)

can be updated incrementally. As a consequence, the resulting estimate for the lower

bound P (·|B) will be independent of the order of conditioning events.

In the following, we will try to adopt the approach of Chrisman (1995) for the

case of updating a prior belief function with a likelihood function that was discussed

by Wasserman and Kadane (1990). The similarity between Expression (4.7) for the

likelihood update and Expression (4.9) for conditioning on the joint probability space
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is striking. We reformulate Expression (4.7) in analogy to Equation (4.12) by

CP (LA)

CP (LA) + CP (LAc)
=

P (A||∗ŷ)CP (L)

P (A||∗ŷ)CP (L) + P (Ac||∗ŷ)CP (L)
,

where we have defined

P (A||∗ŷ) :=
CP (LA)

CP (L)
, P (A||∗ŷ) :=

CP (LA)

CP (L)
, (4.15)

with CP (L) := CP (LΩ), and CP (L) := CP (LΩ). Obviously, the ratios in Equa-

tion (4.15) are only defined if the denominators are non-zero. In the following, we

will always assume CP (L) ≥ CP (L) > 0.

By definition, it is P (Ω||∗ŷ) = P (Ω||∗ŷ) = 1. Since L(θ|ŷ) ≥ 0 for all θ ∈ Ω, we

also have P (·||∗ŷ) ≥ 0 and P (·||∗ŷ) ≥ 0 for all A ∈ A(Ω). By the same token, both set

functions are monotone, i.e., P (A||∗ŷ) ≤ P (B||∗ŷ) and P (A||∗ŷ) ≤ P (B||∗ŷ) for A ⊆ B.

Hence, they are normalised Choquet capacities (see Definition C.9).

We assume in the following that the imprecise prior probability P to be updated

constitutes a belief function bel : A(Ω)→ [0, 1] associated with a random set (E , ν) :=

{ (E1, ν1) , ..., (En, νn) }. Then, we can show that P (A||∗ŷ) is a belief function, whose

random set can be calculated immediately from (E , ν) and knowledge of

L∗,i = inf
θ∈Ei

L(θ; ŷ) for all 1 ≤ i ≤ n . (4.16)

Lemma 4.1 Let bel : A(Ω) → [0, 1] be a belief function with random set (E , ν) as

described above. Let L∗,i be the infimum likelihood that ŷ is observed over all hypotheses

θ ∈ Ei (see Definition 4.16). Let CP (LA) be the Choquet integral of the A-restricted

likelihood function w.r.t. to bel as given in Definition (4.5). Assume that CP (L) > 0.

Let P (·||∗ŷ) : A(Ω) → [0, 1] be the set function defined in Equation (4.15). Let

bel(·||∗ŷ) : A(Ω)→ [0, 1] be a belief function associated with the random set

(E , ν)||∗ŷ :=

{(
E1, ν∗,1 :=

L∗,1 ν1∑n
i=1 L∗,i νi

)
, ...,

(
En, ν∗,n :=

L∗,n νn∑n
i=1 L∗,i νi

)}
. (4.17)

Then, it is P (·||∗ŷ) = bel(·||∗ŷ).

The short proof of Lemma 4.1 is given in Appendix D. Here, we only note that

bel(·||∗ŷ) : A(Ω) → [0, 1] is indeed a belief function, since
∑n

i=1 ν∗,i = 1, and ν∗,i ≥
0 for all 1 ≤ i ≤ n. Comparison of Expression (4.17) with Equation (4.14) re-

veals that Lemma (4.1) describes the updating equivalent to the dual conditioning

rule (4.13). Therefore, we will call the prescription for constructing bel(·||∗ŷ) specified

in Lemma (4.1) ‘dual updating rule’ in the following.

Likewise, the set function P (·||∗ŷ) constitutes the updating equivalent to the con-

ditional upper probability P (·||∗B) that is obtained from Dempster’s rule of condition-

ing (4.10). We now investigate whether we can identify a ‘Dempster updating rule’ in



112 Chap. 4: Updating An Imprecise Probability for the Climate Model

the style of Expression (4.11) that would allow us to construct P (·||∗ŷ) directly from

a combination of the likelihood information with the Möbius inverse of the prior belief

function. Obviously, the situation is more complicated than for the case of the dual

updating rule, because

P (A||∗ŷ) :=
CP (LA)

CP (L)
=

∑
Ei∩A6=∅

sup
θ∈Ei∩A

L(θ; ŷ) νi

∑n
i′=1 sup

θ∈Ei′
L(θ; ŷ) νi′

depends on the supremum of the likelihood over the sets Ei∩A. Since these supremum

likelihood values will differ among the events A under consideration, a general rule for

combining prescribed likelihood values with the Möbius masses of the focal elements

cannot be available. However, we can approximate the likelihood function by an outer

step function on a finite partition {A1, ..., Ak} of Ω, whose power set contains the focal

elements Ei ∈ E . Then, it is indeed possible to specify a general rule for constructing

an approximation of P (A||∗ŷ) that is based on the supremum likelihood values

L∗j = sup
θ∈Aj

L(θ; ŷ) , for all 1 ≤ j ≤ k , (4.18)

over the k atoms of the partition. We will discuss below that the approximation works

the better the less the likelihood function L(·; ŷ) varies over the atoms. This property

of the updating rule has motivated us to choose a likelihood-adapted partition of the

uncertain parameter space Ω = R(T2x)× R(κv)× R(QS90) in Section 3.4.1.

Knowledge of L∗j for 1 ≤ j ≤ k and the random set (E , ν) of the prior belief function

enables us to construct the random set (E , ν)||∗ŷ of a belief function bel(·||∗ŷ) : A(Ω)→
[0, 1] by the following algorithm.

Algorithm 4.1 1. Order the likelihoods L∗j from small to large. Let {L∗1, ...,L∗l } be

the ordered set with L∗i < L∗j for i < j. Obviously, l ≤ k.

2. Construct all L∗j -cuts of the likelihood function by generating Cj =
⋃
j′ | L∗

j′≥L
∗
j
Aj′

for all 1 ≤ j ≤ l. Obviously, the cuts Cj are nested with Cj ⊃ Cj′, if j < j′. The

largest cut is C1 = Ω, and the smallest cut Cl is constituted by the atom(s) over

which the maximum likelihood L∗l is attained.

3. For each focal element Ei in E = {E1, ..., En}, construct the chain of sets Eij =

Ei ∩ Cj with 1 ≤ j ≤ l. Obviously, the Eij are nested with Eij′ ⊇ Eij, if j′ < j.

The largest element is Ei1 = Ei. Let l(i) be the largest j for which Eij 6= ∅.

4. The random set (E , ν)||∗B contains the sets Eij, with 1 ≤ i ≤ n and 1 ≤ j ≤ l(i),
as focal elements. Their Möbius masses are generated as follows:

For i = 1 to n

For j = 1 to l(i)

Assign Möbius mass ν∗ij =
(L∗j−L∗j−1) νiPn
i′=1

L∗
l(i′) νi′

, with L∗0 := 0,
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to the focal element Eij defined in Step 3.

end

end

Algorithm 4.1 constructs a random set (E , ν)||∗ŷ with at most
∑n

i=1 l(i) focal elements.

The number of focal elements will be smaller than the sum, if some Eij and Ei′j′ are

identical, and thus can be lumped together by adding their respective Möbius masses.

The associated set function bel(·||∗ŷ) : A(Ω) → [0, 1] is indeed a belief function, since

ν∗ij > 0 for all pairs (i, j), and

n∑

i=1

l(i)∑

j=1

ν∗ij =
n∑

i=1

(∑l(i)
j=1 L∗j −L∗j−1

)
νi

∑n
i′=1 L∗l(i′) νi′

= 1 .

Lemma 4.2 Let {A1, ..., Ak} be a finite partition of a (possibly uncountable) space Ω.

Let bel : A(Ω) → [0, 1] be a belief function and pl : A(Ω) → [0, 1] its conjugate plau-

sibility function, which are associated with a random set (E , ν). Let L′(·|ŷ) : Ω →
{L∗1, ...,L∗l } be a likelihood function, which takes on constant values L∗j (see Defini-

tion 4.18) on the atoms Aj.

Let CP (L′A) be the upper Choquet integral of the A-restricted likelihood function

w.r.t. to pl as given in Definitions (4.6). Assume that CP (L′) > 0.

Let P (·||∗ŷ) : A(Ω) → [0, 1] be the set function defined in Equation (4.15). Let

bel(·||∗ŷ) : A(Ω) → [0, 1] be the belief function, and pl(·||∗ŷ) : A(Ω) → [0, 1] the

conjugate plausibility function, that are associated with the random set generated by

Algorithm 4.1.

Then it is P (·||∗ŷ) = pl(·||∗ŷ).

Lemmas (4.1) and (4.2) show that P (·||∗ŷ) is a belief function and P (·||∗ŷ) ap-

proximately a plausibility function if the prior lower probability P is a belief function.

Moreover, we have established formulas to compute the random sets of these set func-

tions from knowledge of the random set of the prior belief function and the infimum or

supremum value of the likelihood function on the atoms and focal elements, respectively.

This provides the means to (approximately) update the prior bel : A(Ω) → [0, 1] with

a likelihood function L(·|ŷ) : Ω → R+
0 to the posteriors bel(·||∗ŷ) : A(Ω) → [0, 1] and

bel(·||∗ŷ) : A(Ω)→ [0, 1] directly on the level of Möbius assignments. From knowledge

of these posterior belief functions, we can approximate the posterior lower probability

that results from application of the GBR.

Theorem 4.1 Let bel : A(Ω) → [0, 1] be a belief function with random set (E , ν) =

{ (E1, ν1) , ..., (En, νn) }, and Γ(bel) its associated structure.

Let L′(·|ŷ) : Ω → {L∗1, ...,L∗l } be a likelihood function with constant values on the

elements of a finite partition {A1, ..., Ak} of Ω, as described in Lemma 4.2. Let C(L′) =∑n
i=1 infθ∈Ei L′(θ|ŷ) νi, and C(L′) =

∑n
i=1 supθ∈Ei L′(θ|ŷ) νi be the lower and upper

expectation, respectively, for observing ŷ. Assume C(L′) > 0.
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Let M(ŷ) be the convex set of posterior probabilities that emerges from updating the

structure Γ(bel) with the likelihood function L′ by application of the Generalised Bayes

Rule (Definition 4.2). Let P (·|ŷ) be the lower envelope of M(ŷ), i.e.,

P (A|ŷ) = inf
P∈M(ŷ)

P (A) for all A ∈ A(Ω) .

Let bel(·||∗ŷ) : A(Ω) → [0, 1] be the posterior belief function generated from (E , ν)

and L′(·|ŷ) as described in Lemma 4.1. Let bel(·||∗ŷ) : A(Ω) → [0, 1] be the posterior

belief function generated from (E , ν) and L′(·|ŷ) as described in Algorithm 4.1. Let

pl(·||∗ŷ) : A(Ω)→ [0, 1] be the conjugate plausibility function of bel(·||∗ŷ).

Then P (·|ŷ) can be derived from knowledge of bel(·||∗ŷ), pl(·||∗ŷ), C(L′), and C(L′):

P (A|ŷ) =
bel(A||∗ŷ)C(L′)

bel(A||∗ŷ)C(L′) + pl(Ac||∗ŷ)C(L′) for all A ∈ A(Ω) . (4.19)

Theorem 4.1 holds for a likelihood function L′ with constant values over the atoms

of a partition {A1, ..., Ak} of Ω. Typically, such a step function will only be an approx-

imation of a continuous likelihood function L(·|ŷ) : Ω→ R+
0 . Since the constant values

L∗j were chosen to be the suprema of the continuous likelihood function on the atoms Aj

(see Definition 4.18), the step function constitutes an upper envelope of the likelihood,

i.e., L(θ|ŷ) ≤ L′(θ|ŷ) for all θ ∈ Ω. As a consequence, the upper Choquet integral for

the A-restricted continuous likelihood function L will be bounded from above by the

estimate that is obtained from the envelope L′, i.e.,

CP (LA) =
∑

Ei∩A6=∅
sup

θ∈Ei∩A
L(θ|ŷ) νi ≤

∑

Ei∩A6=∅
sup

j |Aj∩(Ei∩A)6=∅
L∗j . (4.20)

It is shown in detail in the proof of Lemma 4.2 that the right-hand side of the in-

equality is described by C(L′) pl(A||∗ŷ). Hence, the plausibility function generated in

Algorithm 4.1 provides an upper bound on the value of CP (LA) that would be obtained

from the continuous likelihood function. As a consequence, Equation (4.19) will yield a

lower bound on the posterior lower probability P (·|ŷ). The true value of P (·|ŷ) will be

approximated the better the closer CP (LA) is approximated by C(L′) pl(A||∗ŷ). This

can be achieved by increasing the resolution of the partition, and/or adapting it to the

shape of the likelihood function as we have done in Section 3.4.1.

However, we might also go into the opposite direction and decrease the accuracy

of the approximation in exchange for a reduction in computational complexity. The

number l̃ ≤∑n
i=1 l(i) of focal elements in the random set (E , ν)||∗ŷ can be large if the

cardinality k of the partition {A1, ..., Ak} is on the order of hundreds or more atoms.

This will usually be the case in multi-dimensional problems as exemplified by our anal-

ysis. In order to reduce the number of focal elements, one can decide to work just

with a limited number s of L∗j -cuts of the likelihood function. This would correspond

to fixing s likelihood values {L∗min,L∗2, ...,L∗s−1,L∗max} and assigning only these s val-

ues to all atoms. Then, the number of focal elements in (E , ν)||∗ŷ will be limited to
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s · n� l̃, which can reduce the computational costs of processing the posterior impre-

cise probability greatly. As a consequence, however, the upper approximation of the

likelihood is coarsened, and the lower bound on the posterior lower probability from

Equation (4.19) will further decrease. We will investigate below in how far the coars-

ening of the likelihood information leads to overly imprecise bounds on the posterior

probability.

The question might arise why we have not been content with Expression (4.8)

that follows from the result of Wasserman and Kadane (1990). It already allows to

compute the posterior lower probability from knowledge of the likelihood function and

the random set (E , ν) of the prior belief function. Nevertheless, Approximation (4.19)

provides an improvement, because it builds on two posterior belief functions bel(·||∗ŷ)

and bel(·||∗ŷ) that already include the likelihood information. Application of the explicit

formula (4.8) to calculate P (A|ŷ) would require to find the supremum likelihood on all

intersections Ei ∩ Ac, with Ei ∈ E , for each event A under consideration. Moreover,

the posterior belief functions define two structures Γ(bel(·||∗ŷ)) and Γ(bel(·||∗ŷ)) of

posterior probabilities. Since we want to process the imprecise probability information

in an integrated assessment of climate change, it is important to continue to work with

posterior imprecise probability models.

4.3 Imprecise posterior probability for the climate model

In this section we will apply the newly established methodology to updating the im-

precise prior probability for the climate model parameters from Chapter 3 with the

likelihood of reproducing the historical temperature record estimated in Chapter 2.

The imprecise prior probability is described by a random set (G, ν ∗)CM with 6048 focal

elements G (see Section 3.5). In the following, we will drop the superscript ∗ for the

Möbius masses in order to simplify the notation. The focal elements are defined on a

partition {A1, ..., Ak}CM of the joint parameter domain Ω = Ω(T2x)× Ω(κv)× Ω(QS90)

(see Definition 3.18) with k = 20 · 12 · 14 = 3360 atoms Aj . Due to the construction

of the joint imprecise prior probability from marginal random sets by means of the

Möbius independent product (3.22), all focal elements G ∈ G constitute cubic product

sets (T2x,∗, T ∗2x] × (κv,∗, κ∗v ]× (QS90,∗, Q∗S90] ⊆ Ω. Hence, they can be fully described by

their lower and upper bound in each dimension of the parameter space. (G, ν)CM defines

a belief function belCM : R3 → [0, 1] that represents the lower envelope of a convex set

of prior probabilities Γ(belCM) on the Borel field R3 of Ω.

For constructing the posterior belief function belCM(·||∗T̂ ) and its associated random

set (G, ν)||∗T̂ defined in Equation 4.17, we need to know the infimum likelihood L∗,i on

all focal elements Gi ∈ G. Since the focal elements are included in the power set of the

partition {A1, ..., Ak}CM, it suffices to find the infimum likelihood L∗,j for each atom

Aj. Then, we can calculate immediately

L∗,i := inf
θ∈Gi

L(θ; T̂ ) = min
Aj⊆Gi

L∗,j := min
Aj⊆Gi

(
inf
θ∈Aj

L(θ; T̂ )

)
(4.21)
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for each Gi ∈ G. In addition, we need to know the supremum likelihood L∗j :=

supθ∈Aj L(θ; T̂ ) for each atom Aj in order to identify the Dempster-conditioned random

set (G, ν)||∗T̂ by means of Algorithm 4.1.

We have pointed out in Section 2.4 that the simple structure of our diffusion ocean

energy balance model DOECLIM allows us to employ gradient-based search algorithms

for the combination of climate model parameters θ∗ = (T2x, κv, QS90) ∈ Ω and nui-

sance parameters θ∗N = (βVol, α, βL,SOI, βS,SOI) ∈ ΩN which maximises the likelihood of

reproducing the instrumental temperature record (see Section 2.4). We use the imple-

mentation of DOECLIM in the optimisation environment GAMS (Brooke et al., 1992)

which was established for the calculation of the likelihood function in Section 2.4 to iden-

tify the maximum likelihood L∗j for each atom Aj . L∗j is calculated by a gradient-based

search of the joint parameter space Ω×ΩN subject to confining θ = (T2x, κv , QS90) to the

area of the respective atom Aj . The derivation of the minimum likelihoods L∗,j requires

a different approach. Since the definition of the likelihood function L(·; T̂ ) : Ω → R+
0

in Section 2.4 involved a maximal choice of nuisance parameters θN at each point

θ ∈ Ω, the search for L∗,j on the domain of an atom Aj would constitute a minimax

optimisation problem. Fortunately, the minimum likelihoods L∗,j have to be situated

at the vertices of the atoms Aj , since the likelihood function is approximately quasi-

concave (see Section 3.4.1). Hence, we have calculated the likelihood L(θj′ |T̂ ) at the

21·13·15 = 4095 vertices θj′ of the atoms that define in effect the partition {A1, ..., Ak}.
The calculation involved a gradient based search for the optimal choice of nuisance pa-

rameters θN,j′ at each of the points θj′ . The minimum likelihood L∗,j can now be

inferred by collecting the 8 vertices of the respective atom Aj and picking the minimum

of the corresponding likelihood values. After calculating the minimum and maximum

likelihood for all atoms of the partition {A1, ..., Ak}, and hence, for all focal elements

Gi ∈ G, we can now turn to the derivation of the posterior random sets (G, ν)||∗T̂ and

(G, ν)||∗T̂ that follow from Dempster’s rule (4.10) and its dual rule (4.13) respectively.

4.3.1 Belief functions from Dempster’s and its dual rule

The random set (G, ν)||∗T̂ can be calculated immediately from knowledge of the min-

imum likelihoods L∗,i and the prior Möbius masses νi of the focal elements Gi ∈ G
(see Equation 4.17). The resulting posterior Möbius masses ν||∗,i are normalised by the

lower expectation value of the likelihood of reproducing the instrumental temperature

record, i.e.,

C(L) =
∑

Gi∈G
inf
θ∈Gi

L(θ; T̂ ) νi =
∑

Gi∈G
L∗,i νi = 0.0017 , (4.22)

in units of the maximum likelihood. The small value of C(L) has to be compared with

the upper expectation value of the likelihood, i.e.,

C(L) =
∑

Gi∈G
sup
θ∈Gi

L(θ; T̂ ) νi =
∑

Gi∈G
L∗i νi = 0.856 , (4.23)



4.3 Imprecise posterior probability for the climate model 117

which is approximately 500 times larger. The large ratio between lower and upper ex-

pected likelihood already heralds our difficulties to produce meaningful posterior lower

probability bounds from the application of the Generalised Bayes’ rule (cf. Equa-

tion 4.19). We will discuss these difficulties as well as the reasons for the large relative

difference between C(L) and C(L) in the subsequent section.

The small value of C(L) indicates that there exists only a small number of focal

elements Gi ∈ G with non-negligible lower likelihood L∗i . These focal elements consist

primarily of atoms of the partition around the area of maximum likelihood that are

included in G. Larger focal elements ranging over several atoms are apparently not

confined enough to exclude areas of the parameter space where the likelihood is close to

zero. As a consequence, the posterior Möbius assignment ν||∗ that follows from the dual

updating rule as described in Equation (4.17) will allocate almost all Möbius mass to the

atoms around the point of maximum likelihood. This can be seen clearly in Fig. 4.1 (left

panels) which depicts the resulting lower and upper posterior probability distributions

on the series of marginal cumulative events in each dimension of the parameter space.

The lower and upper distribution functions confine a tight band of distributions that

rise steeply at the point of maximum likelihood. It becomes evident that not only most

of the imprecision in the prior uncertainty model has been eliminated, but also the

possible support of admissible posterior probabilities is strongly constrained. Hence,

the fixation on the infimum likelihoods L∗,i of the focal elements Gi would lead to an

overvaluation of the maximum likelihood information if the belief function bel(·||∗T̂ ) was

considered an eligible posterior probability model as such. In this analysis, however,

we do not intend to endow it with this status but use it solely as a means to find the

lower and upper probability bounds under the generalised Bayes’ rule.

The situation is different for Dempster’s rule of conditioning defined in Equa-

tion (4.10). In the context of updating a set of prior probabilities with a likelihood,

Gilboa and Schmeidler (1993) have shown it to be identical with the so-called max-

imum likelihood classical update rule (if the joint probability on the space Ω × Y is

2-monotone). This rule employs the likelihood information in two ways. First, all prior

probabilities yielding a smaller expected likelihood E(L) than the upper expected like-

lihood C(L) are eliminated from the set of prior probabilities. Then all remaining prior

probabilities with E(L) = C(L) are updated with the likelihood via Bayes’ rule to form

the set of posterior probabilities. It is important to note, however, that this proba-

bilistic interpretation of Dempster’s rule does not accord with the Generalised Bayes’

rule, which follows from the minimum requirement of coherence between conditional

and unconditional lower probabilities (Walley, 1991, Chapter 6). Under the GBR, all

prior probabilities have to be updated indiscriminately (Walley, 1991, Theorem 6.4.2

and Remark 8.4.8). Dempster’s rule of conditioning has been demonstrated to yield

unreasonable conditional lower probabilities in some instances, where the combination

of unconditional and Dempster-conditioned beliefs would allow an observer to construct

a series of bets which are acceptable under the given beliefs but which, nevertheless,

will inflict a sure loss (e.g., Walley, 1996b). Therefore, many authors criticised the
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application of Dempster’s rule in the framework of imprecise probabilities. However,

to the best of our knowledge all examples of inconsistencies from the application of

Dempster’s rule are related to the problem of conditioning a lower probability on an

event B rather than to the problem of updating a prior assessment with the likelihood

of an observation ŷ. As mentioned above, the latter case has received little scrutiny in

the literature. Therefore, we cannot oversee whether similar instances of sure loss under

a behavioural interpretation of imprecise probabilities can be identified for a ‘Dempster

rule of likelihood updating’ as formulated in Equation (4.15) and Algorithm 4.1. Intu-

itively, we regard the application of the maximum likelihood update rule as a reasonable

alternative to the GBR in the context of our analysis. Therefore, we will consider the

Dempster-updated belief function as a viable model for our posterior uncertainty that

amalgamates the prior and the likelihood information.

In order to apply Algorithm (4.1) to generate the random set (G, ν)||∗T̂ of the

Dempster-updated belief function bel(·||∗T̂ ), we need to coarsen the continuous like-

lihood information to a step function that takes on constant likelihood values L ′j ≥ L∗j
on the atoms Aj of the partition {A1, ..., Ak}. Given the large number of k = 3360

atoms and n = 6048 prior focal elements in our analysis, Algorithm (4.1) could gen-

erate more than a million posterior focal elements if the likelihood function was not

coarsened beyond the size of the atoms Aj . To ensure computational feasibility, we have

reduced the likelihood information to 22 levels L′22 = {0.001, 0.01, 0.05, 0.1, ..., 0.95, 1}
(in units of the maximum likelihood), on which an outer step function approximation

of the likelihood function was constructed. This involved the allocation of the smallest

likelihood level L′s ≥ L∗j , 1 ≤ s ≤ 22 to each atom Aj. Algorithm 4.1 can now be used

to construct the posterior focal elements G||∗,is constituted by the intersections between

the prior focal elements Gi ∈ G and the s-cuts of the likelihood function. Since the cuts

are in general not cubic product subsets of the 3-dimensional parameter space Ω, many

of the posterior focal elements will not be cubic product sets as well. This additional

complexity considerably slowed the construction of the posterior random set, since we

needed to compare each set Eij constructed by Algorithm 4.1 with the list of other sets

Ei′j′ contained in G||∗ in order to eliminate repetitions of focal elements. For the case

of 22 likelihood levels, we have found 26910 distinct focal elements G||∗,is ∈ G||∗.
The resulting posterior lower and upper probability distributions on the series of

marginal cumulative events for the climate model parameters are shown in Fig. 4.1

(right panels). A comparison with the marginal prior imprecise probability models

ΓX(SF, SF, p) from Section 3.4 reveals that the updating procedure has considerably

tightened the admissible distribution bands for climate sensitivity and sulphate aerosol

forcing, while the impact on the prior uncertainty about ocean heat diffusivity is less

pronounced. In particular, the Möbius masses allocated to the low and high end of

the prior range for these quantities have been strongly reduced. Inter alia, this reflects

the fact that the likelihood function presented in Section 2.5 drops steeply towards

small climate sensitivities and large coolings from sulphate aerosols. The reduction of

Möbius mass at the high end of climate sensitivities follows from a combined effect of the
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Figure 4.1: Posterior lower and upper distribution functions for the climate model parameters
from the application of Dempster’s rule (right panels) and its dual updating rule (left panels).

likelihood information and the observationally based estimate for the prior uncertainty

about ocean heat diffusivity (see Section 3.4.4). Since the prior allocates only small

Möbius mass to diffusivities κv ≥ 2.5 cm2 s−1, the Möbius mass for large values of T2x,

which require either large diffusivities κv or large sulphate coolings QS90 to obtain a

considerable likelihood (see Fig. 2.7), is reduced accordingly.
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# likelihood levels # distinct focal elements C(L′)
7 15979 0.912
12 20110 0.889
22 26910 0.876

Table 4.1: Results from Algorithm 4.1 for three different approximations of the likelihood
function by upper step functions with 7, 12, and 22 likelihood levels.

The accuracy of approximating the likelihood function with 22 likelihood levels L ′22

relative to the ideal case of using the full set of supremum likelihoods L∗j can be as-

sessed, inter alia, by comparing the resulting value for the upper expected likelihood,

C(L′22) = 0.876, with C(L∗) = 0.856. The approximation L′22 needs to yield a larger

value for the upper expected likelihood by definition, since it constitutes an upper

envelope of L∗. To put the comparison into perspective, we have also constructed

coarser likelihood approximations with 7 levels L′7 = {0.001, 0.01, 0.2, 0.4, ..., 0.8, 1} and

12 levels L′12 = {0.001, 0.01, 0.1, 0.2, ..., 0.9, 1} and calculated the resulting Dempster-

updated random sets (G, ν)||∗T̂ ,7 and (G, ν)||∗T̂ ,12 by means of Algorithm 4.1. Table 4.1

shows that the accuracy in terms of C(L′)−C(L∗) improves by roughly a factor three,

while the number of focal elements increases by approximately 70%. We have also

assessed the implications of coarsening the likelihood approximation for the Dempster-

updated lower and upper probability bounds on the series of marginal cumulative

events. Fig. 4.2 shows the result for the case of climate sensitivity. It can be seen that

the L22-approximation yields slightly different bounds than the L7-approximation, but

the change due to the higher resolution is surprisingly small. This is underlined by

the fact that the lower and upper distribution bounds from the L12-approximation are

almost identical with the bounds from the L22-case, for which reason we do not show it

explicitly in Fig. 4.2. It is important to note that a Dempster-updated belief function

bel(·||∗T̂ , s) for a Ls-approximation does not need to completely dominate a posterior

belief function bel(·||∗T̂ , s′) based on a smaller number s′ < s of likelihood levels, since

it is only required that

C(L′s) pl(A||∗ŷ, s) ≤ C(L′s′) pl(A||∗ŷ, s′) ,

as we have discussed at the end of Section 4.2. We conclude that the L22-approximation

of the likelihood function already yields a satisfactory approximation of the Dempster-

updated random set (G, ν)||∗T̂ that would be obtained by taking the full information

about the supremum likelihoods L∗j over the atoms Aj into account. Henceforth, we will

always refer to the approximations (G, ν)||∗T̂ ,22 and bel(·||∗T̂ , 22) when talking about

the Dempster-updated random set and belief function, respectively. To simplify the

notation we will drop the reference to the 22 levels of the likelihood approximation in

the following.

On the basis of the Dempster-updated imprecise probability model, we can con-

strain the radiative forcing from sulphate aerosols in the year 1990 to the interval
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Figure 4.2: Comparison of the lower and upper distribution functions for climate sensitivity
from the application of Algorithm 4.1 for two different approximations of the likelihood function
by upper step functions with 7 and 22 likelihood levels.

(−1.53 W m−2, 0.33 W m−2] with lower probability bel((−1.53 W m−2, 0.33 W m−2]||∗T̂ )

= 0.99. This estimate can be compared with the 1%-99% quantile ranges of Andronova

and Schlesinger (2001, GTAS scenario) (≈ −1.5 W m−2 to −0.4 W m−2), Knutti et al.

(2002) (≈ −1.8 to −0.5 W m−2) and Forest et al. (2002) (≈ −1.0 to −0.1 W m−2). Since

our imprecise posterior probability supports a strictly negative forcing from sulphate

aerosols, we do not find any evidence that the heating contribution of black carbon

might have neutralised the cooling from sulphate aerosols.

Concerning climate sensitivity, the posterior belief function bel(·||∗T̂ ) virtually ex-

cludes values of T2x < 1.5 K with lower probability bel((1.5 K, 10 K]||∗T̂ ) = 0.9996.

This strong rejection of low climate sensitivities is in agreement with the results of

Murphy et al. (2004) and Andronova and Schlesinger (2001) who allocate probability

mass < 0.005 to values of T2x ≤ 1.5 K. The probability estimates of Forest et al. (2002)

support low climate sensitivities to a greater extent, with their 5% quantiles situated at

T2x = 1.3−1.4 K. On the upper end of climate sensitivity, the Dempster-updated belief

function cannot provide a strict constraint on high values of T2x, albeit it allocates much

less Möbius mass to this area compared with the prior belief function (see Fig. 4.1). We

find upper probabilities of 0.047 for T2x > 6.9 K and 0.014 for T2x > 8.3 K. The upper

95% quantile of T2x ≈ 6.9 K can be compared with the 95% quantiles of Andronova and

Schlesinger (2001, GTAS scenario) (≈ 6.2 K), Forest et al. (2002) (7.7 K for uniform

prior, 5.3 K for expert prior), Knutti et al. (2002) (≈ 9.1 K), and Murphy et al. (2004)

(5.3− 5.4 K).

In contrast to climate sensitivity and sulphate aerosol forcing, the Dempster-updated

imprecise probability has added little information to the prior belief function about ver-

tical ocean heat diffusivity κv. This is mainly due to the fact that the construction of

the prior uncertainty model was already based on observations of ocean heat uptake

in the 20th century (see Section 3.4.4). The only noteworthy effect of the updating
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T2x ∈ [0 K, 1.5 K] T2x ∈ [1.5 K, 4.5 K] T2x ∈ [4.5 K, 10.0 K]

Prior Γ(SF , SF , p) [0, 0.07] [0.31, 0.98] [0.02, 0.62]

Posterior Γ(bel(·||∗T̂ )) [0, 0.00] [0.53, 0.99] [0.01, 0.47]

Table 4.2: Probability intervals for climate sensitivity below, within and above the range of
the IPCC estimate for the prior and Dempster-updated imprecise probability models.

procedure consists in a reduction of Möbius masses for high diffusivities κv . We find

κv to be smaller than 2 cm2 s−1 with lower probability bel((0, 2 cm2 s−1]||∗T̂ ) = 0.953.

Taking the results for all three model parameters T2x, κv and QS90 together, we con-

clude that the likelihood information from the comparison of our energy balance model

DOECLIM with the instrumental surface temperature record allows us to constrain

the prior imprecise probability model under Dempster updating considerably. This is

underlined by the change in lower and upper probability for the IPCC estimate that

is highlighted in Table 4.2. It is also important to note that the Dempster-updated

imprecise probability model tightens not only the probability bounds for the marginal

events on the subspaces Ω(T2x), Ω(κv) and Ω(QS90), but also includes the dependency

structure between the three model parameters that is introduced by the likelihood

information.

4.3.2 Result from the Generalised Bayes’ rule

Having calculated the Dempster-updated belief function bel(·||∗T̂ ) (for the L′22 - ap-

proximation) and its dual bel(·||∗T̂ ), respectively, we can now apply the GBR to up-

date the entire set of prior probabilities ΓCM(SF , SF , p) with the likelihood function

L(·; T̂ ) : Ω → R+ derived in Chapter 2. Equation (4.19) allows us to derive the re-

sulting posterior lower probability P (A|T̂ ) and posterior upper probability P (A|T̂ ) for

arbitrary subsets A ∈ Ω(T2x)×Ω(κv)×Ω(QS90) directly from knowledge of the random

sets (G, ν)||∗T̂ and (G, ν)||∗T̂ , and the lower and upper expected likelihoods C(L∗) and

C(L′), respectively. The results for the lower and upper distribution functions on the

series of marginal cumulative events are shown in Fig. 4.3 for vertical ocean heat diffu-

sivity κv and total sulphate aerosol forcing QS90, and in Fig. 4.4 for climate sensitivity.

It can be seen that the bounds are extremely wide, approaching a state of complete

ignorance with lower bound P ((−∞, x]|T̂ ) = 0 and upper bound P ((−∞, x]|T̂ ) = 1

over most of the domains Ω(T2x), Ω(κv), and Ω(QS90). Hence, we have to report a

negative result here. Obviously, we were not able to produce a meaningful posterior

imprecise probability model under the application of the GBR. Since the marginal prior

distribution bands are fully included in the probability bounds of the posterior model,

they were dilated by the incorporation of the likelihood information. Although the

general phenomenon of dilation has been recorded as a potential outcome of statistical

inferences with imprecise probabilities (Seidenfeld and Wasserman, 1993), it constitutes

an unreasonable result in the context of our analysis. Inspection of the prior imprecise

probability model constructed in Chapter 3 and the likelihood function from Chapter 2
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Figure 4.3: Posterior lower and upper distribution for effective vertical ocean heat diffusivity
(left panel) and total sulphate aerosol forcing in 1990 (right panel) functions from the application
of Dempster’s rule and the GBR.

reveals that the likelihood information can hardly be considered a surprise in the light

of the prior information, which might have justified an increase of the uncertainty.

Therefore, we need to inquire the steps of our analysis in order to identify the

reason for the occurrence of dilation under the GBR. Inspection of Equation (4.19)

reveals that the dilated bounds result from the large relative difference between the

lower and upper expected likelihoods C(L∗) = 0.0017 and C(L′) = 0.876. Since C(L′)
is more than 500 times larger than C(L∗), we can only produce posterior lower bounds

significantly larger than zero for events A with bel(A||∗T̂ ) ' 500 pl(Ac||∗T̂ ). This will

only happen in the rare cases where pl(Ac||∗T̂ ) is close to zero. Hence, meaningful

posterior probability bounds can only be produced with the GBR if C(L∗) and C(L′)
differ by less than an order of magnitude. Obviously, this is not the case in our analysis.

We can exclude as possible reason the approximation of the likelihood function by 22

likelihood levels L′22 that preceded the construction of the Dempster-updated random

set (G, ν)||∗T̂ . The corresponding increase in upper expected likelihood from C(L∗) =

0.856 to C(L∗) = 0.876 is negligible compared with the difference with C(L∗) = 0.0017.

Instead, the main reason can be found in the large average change of likelihood on the

focal elements, because

C(L∗)− C(L∗) =

n∑

i=1

(L∗i −L∗,i) νi . (4.24)

Since we are working with belief functions, all Möbius masses νi are positive, so that

large changes L∗i − L∗,i cannot be cancelled out, but will accumulate. Hence, one

potential cause for the dilation of posterior bounds might be our choice of prior un-

certainty model. However, we have made an effort in Chapter 3 to allocate a por-

tion of Möbius mass to the atoms of the partition {A1, ..., Ak} (see Section 3.3), on

which we have tried to limit the change of likelihood by equally distributing it over



124 Chap. 4: Updating An Imprecise Probability for the Climate Model

all atoms. Therefore, another potential cause might be that the construction of the

likelihood-adapted grid was not sophisticated enough. It was based solely on projec-

tions of the likelihood function on the individual dimensions of the parameter space Ω,

and more importantly did only allow for a partition of Ω into a set of cubic product

sets Aqrs = Aq(T2x) × Ar(κv) × As(QS90) whose ability to adapt to the shape of the

likelihood function is limited.

In order to separate the importance of these two potential causes, we apply the

methodology for updating a Möbius inverse under the GBR as developed in Section 4.2

to the special case of probability mass functions. We have pointed out before that

probability mass functions constitute a simple case of Möbius inverse, where all prob-

ability (Möbius) mass is allocated to the atoms of a partition of the domain Ω. Hence,

additive probabilities can be included immediately in the framework of belief functions

with a finite random set by coarsening the probabilistic information to a finite par-

tition (which has to be done anyway for conducting numerical analyses). Therefore,

Section 4.2 provides also an alternative to Monte Carlo methods for updating additive

probabilities with Bayes rule. Having chosen a partition on which the probability mass

function p : {A1, ..., Ak} → [0, 1] is defined, we can calculate the Dempster updated

mass function p||∗ and its counterpart p||∗ under the dual updating rule by

p||∗,j =
L∗,j pj∑k
j=1 L∗,j pj

, p||∗,j =
L∗j pj∑k
j=1 L∗j pj

. (4.25)

The latter formula for the Dempster-updated mass function can be seen to emerge

directly from Algorithm 4.1 by noting that the intersects of the atoms with the cuts

of the likelihood function are either empty or equal to the atoms themselves. Then,

Equation (4.19) can be used to generate lower and upper bounds that will include

the posterior additive probability emerging from Bayes’ rule. As highlighted by Equa-

tion (4.24), this will only produce meaningful bounds if and only if the change of

likelihood over atoms with significant prior probability mass is small. Hence, we can

use the updating of probability mass functions to check whether the construction of the

likelihood-adapted grid in Section 3.4.1 allows to generate such meaningful bounds. If

this was the case, our failure to avoid dilation of the prior imprecise probability after

application of the GBR would need to be attributed entirely to the choice of a prior

belief function model.

We used the probability estimates of Andronova and Schlesinger (2001), Forest et al.

(2002), Knutti et al. (2002), and Murphy et al. (2004) to generate six mass functions

on the likelihood-adapted partition for climate sensitivity and four mass functions for

sulphate aerosol forcing (cf. Fig. 3.1 and 3.8). Probability mass functions for vertical

ocean heat diffusivity were constructed from the four extreme points of the parametric

class of normal distributions specified in Section 3.4.4 (see also Fig. 3.11). In analogy

to the combination of marginal random sets to our prior imprecise probability model

in Section 3.5, we formed all possible products of these functions, thus generating a

set of 96 probability mass functions pi : {A1, ..., Ak} → [0, 1], 1 ≤ i ≤ 96 on the
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Figure 4.4: Posterior lower and upper distribution functions for climate sensitivity from the
application of the GBR. The left panel also shows the Dempster-updated lower and upper
distributions functions. The right panel includes the envelope of the posterior bounds from
updating a set of 96 probability mass functions with the GBR (see text for further explanation).

partition of the joint climate model parameter space Ω. The upper expected likelihoods

Ci(L∗) =
∑n

i=1 L∗j pij for the 96 probability mass functions were situated in the range

0.08 to 0.33, which is considerably lower than the value of C(L∗) = 0.856 for the prior

belief function model. Likewise, the lower expected likelihoods Ei(L∗) were found in

the range 0.01 and 0.04, which is significantly higher than C(L∗) = 0.0017. As a

result, the relative differences between lower and upper expected likelihoods for the

mass functions were reduced by almost two orders of magnitude relative to the prior

belief function model. Ei(L∗) exceeded the value of Ei(L∗) by a factor between 6.6 and

10.3 . Therefore, the major part of our dilation result has to be attributed indeed to our

choice of a prior belief function model. However, a smaller part can also be attributed

to the insufficiency of the likelihood adapted grid. While we could produce meaningful

posterior bounds from Equation (4.19) for some of the 96 mass functions, others were

dilated. Fig. 4.4 (right panel) shows the envelope of the resulting 96 lower and upper

posterior distribution functions on the series of marginal cumulative events for climate

sensitivity (black line). It can be seen that this envelope is still wider than the prior

distribution band encompassing the probability mass functions for climate sensitivity

from the literature (dotted line), albeit the near-ignorance result for the prior belief

function model (red line) has disappeared. We conclude that an improvement of the

likelihood-adapted grid could further tighten the posterior bounds from updating the

96 mass functions with the likelihood information. However, it will do little to tighten

the posterior bounds from the application of the GBR to the prior belief function.

Since the belief function allocates most of the Möbius mass to focal elements extending

over several atoms, large changes of likelihood on these focal elements and, hence, a

large relative difference between C(L∗) and C(L∗) cannot be avoided. Our attempt

to include lower mass functions on the atoms of the partition into the prior model did
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not succeed, because the lower envelope of the probability estimates from the literature

allowed us to do this only to a very limited extent (Lower probability mass 0.32 for

T2x and κv, and 0.2 for QS90, see Section 3.4). We speculate that the application of

the GBR to the intersection Γ(SF, SF, p) of p-box and ε-contamination model will only

produce meaningful posterior bounds if the contamination ε is small compared to the

lower probability mass.

Our result shows that belief functions will constitute an inappropriate prior uncer-

tainty model in most cases, in which an application of the GBR is attempted. The

fundamental reason for this lies in the fact that in the presence of imprecision the focal

elements will generally spread over portions of the uncertainty space, where the likeli-

hood changes considerably. Since all the focal elements carry positive Möbius mass in

the case of belief functions, such changes in likelihood cannot be compensated for (see

Equation 4.24). As a result, the expected likelihood EP (L) will vary greatly over prob-

abilities P contained in the corresponding structure Γ(bel), giving rise to the dilation of

posterior probability bounds after application of the GBR (see Equation 4.19). In this

sense, belief functions are not informative enough to exclude probabilities with widely

different expectations about the likelihood. The situation might be different with lower

probability models that allow for negative Möbius masses on the focal elements. The

ALUP model is a natural candidate, albeit a general dilation result has been obtained

also for this model (Herron et al., 1997). However, such models do not exhibit a sparse

Möbius inverse in general, so that their mathematical tractability along the lines of this

analysis would be lost. Therefore, the Generalised Bayes’ rule points to the limitations

of the approach of building on uncertainty representations with a sparse Möbius inverse

that we are pursuing here.

An alternative will be to work with updating rules that are more restrictive than the

Generalised Bayes rule. Dempster’s updating rule provides such an alternative, since

it is equivalent to the maximum likelihood updating rule (if the joint probability on

the space Ω× Y is 2-monotone). The rejection of probabilities that yield a lower than

maximum expected likelihood safeguards against dilation even if the prior imprecise

probability model was not informative enough to exclude probabilities with widely

different expected likelihoods from the beginning. As discussed above, we regard the

maximum likelihood update rule as a reasonable choice in the context of our analysis.

This is reinforced by the corresponding Dempster-updated belief function for the climate

model parameters, which reflects the likelihood information from Chapter 2 in a clearly

visible manner (see Section 4.3.1). Therefore, we will employ the Dempster-updated

belief function bel(·||∗T̂ ) : R3 → [0, 1] as representation of the posterior imprecise

probability for the climate model parameters to conduct an assessment of future climate

change in the remaining part of this thesis.



Chapter 5

Imprecise Probability of Future

Climate Change and

Consequences for Climate Policy

In the preceding chapter, we have constructed an imprecise posterior probability for the

climate model parameters that amalgamates the likelihood information from Chapter 2

with the imprecise prior probability determined in Chapter 3. We are now in a position

to assess the uncertainty about future climate change under several scenarios for future

anthropogenic greenhouse gas and aerosol emissions. To estimate the uncertainty about

the future temperature increase, we need to project the uncertainty about the model

parameters θ = (T2x, κv, QS90) onto the state variables, also called prognostic variables,

of the energy balance model. In Section 5.1 we investigate a method that achieves this

goal for the special case of parameter uncertainty that is quantified by belief functions.

Section 5.2 applies the method to generate imprecise probabilities for the temperature

increase in the 21st century for several SRES emissions scenarios (Nakićenović and

Swart, 2000). The imprecise probabilities for the outcome of climate policy scenarios

that aim to stabilise the atmospheric CO2 concentration are assessed in Section 5.3.

An integrated assessment of climate change calls for a policy analysis under uncer-

tainty. Therefore, it is important that we also address this key element of the assessment

process. We have pointed out before that a decision analysis under imprecise probabili-

ties cannot simply dwell on the classical expected utility criterion or other probabilistic

criteria, because all these measures will become intervals in the presence of sets of

probabilities. Hence, criteria that represented a weak ordering � of acts under additive

probabilities, will only represent a partial ordering in the presence of imprecision. This

formal argument reveals the fundamental difference between a decision under classical

probabilistic uncertainty and a decision under imprecise probabilistic uncertainty or

ambiguity, as it is often called in the economics literature.

We have mentioned the importance of ambiguity aversion for the evaluation of

climate policies in our introduction, and a more detailed discussion can be found in

127
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Kriegler et al. (2005). Since the focus of this analysis lies on the evidential founda-

tion of imprecise probabilities for the integrated assessment of climate change, we will

only briefly summarise a variety of decision criteria under ambiguity in Section 5.4. To

demonstrate their applicability, we will conduct a stylised decision analysis of stabili-

sation policies under imprecise probability.

5.1 Projecting belief functions onto the model output

Consider a dynamical model of some causal relationship, which generates a transfer

function f : Rn → Rm , y = f(x). Here y denotes the state variables of the model,

while x constitutes the set of uncertain model inputs comprising model parameters and

uncertain initial conditions. Then knowledge of the differential model equations and

the remaining initial conditions suffices to determine the transfer function f . In our

application the initial conditions are set to preindustrial “equilibrium” conditions, and

the uncertainty is constituted by imprecise information about the model parameters

θ = (T2x, κv, QS90).

Let the uncertainty in the input variables x be described by ΓX(belE ) := {PX | ∀ A ∈
Rn belE (A) ≤ PX(A) }, i.e. a structure with a belief function as lower envelope. The

associated random set (E ,m) = {(E1,m1), ..., (Ek ,mk)} can be transferred to the model

output y by applying the so-called extension principle for random sets. It appeared

already in Yager (1986) and was later named in analogy to the extension principle for

fuzzy sets by Dubois and Prade (1991). The extension principle is defined by

f(Ei) := { y | ∃ x ∈ Ei y = f(x) } , mf (B) :=
∑

f(Ei)=B

mi . (5.1)

We denote the transferred random set by (f(E),mf ) and the associated belief function

by belf(E).

The question remains whether Extension (5.1) is a useful tool to transfer the convex

set of probabilities ΓX(belE ) to the model output space? Let the transfer function f :

Rn → Rm be Borel measurable, i.e., ∀ B ∈ Rm f−1(B) = {x ∈ Rn : f(x) ∈ B } ∈ Rn.

Then every probability measure PX on (Rn,Rn) is transformed by the mapping f into

a probability measure PY on (Rm,Rm) defined by ∀ B ∈ Rm PY (B) := PX(f−1(B)).

Using this definition, we can generate the transformed set of probabilities

f(ΓX(belE )) := {PY | ∃PX ∈ ΓX(belE ) ∀B ∈ Rm PY (B) = PX(f−1(B)) } .

Thus, the question is how f(ΓX(belE )) relates to the set of probabilities ΓY (belf(E))

encompassed by the extended belief function belf(E)? To give a satisfactory answer, we

need to know how to define a probability measure PX from a probability PY on Rm.

Lemma 5.1 Let f : Rn → Rm be a Borel measurable transfer function, whose range

is a Borel set, i.e., Rg(f) ∈ Rm. Let F be the collection of inverse images of the Borel

sets, i.e., F := {f−1(B) |B ∈ Rn ∩ Rg(f)}. Define for each PY on Rm ∩ Rg(f) a set
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function PX|F on F by

∀A ∈ F PX|F (A) := PY (f(A)) . Then,

(a) F is a σ-field of subsets of Rn with F ⊆ Rn,

(b) the atoms of F are constituted by the sets f−1(y) with y in the range of f ,

(c) PX|F is a countably additive probability measure on F .

Using the definition of PX|F presented in Lemma 5.1, we can transform each element

of ΓY (belf(E)) to a probability measure on F , generating

f−1(ΓY (belf(E))) := {PX|F | ∃PY ∈ ΓY (belf(E)) ∀A ∈ F PX|F (A) = PY (f(A)) } .

The following theorem shows that Extension (5.1) yields indeed a belief function belf(E),

which describes the transformed set of probabilities f(ΓX(belE )) in a meaningful man-

ner.

Theorem 5.1 Let Rn, Rm be Borel fields, f : Rn → Rm a Borel measurable transfer

function with Rg(f) ∈ Rm.

Let belE be a belief function, encompassing the set of probabilities ΓX(belE ) and

(E ,m) the associated random set. Let

ΓX|F (belE ) := {PX|F | ∀A ∈ F PX|F (A) ≥ belE(A) }

be the projection of ΓX(belE ) on F .

Let (f(E),mf ) be the f -extension of (E ,m) calculated from Equation (5.1) and

belf(E) the associated belief function. Let

ΓY (belf(E)) := {PY | ∀ B ∈ Rm belf(E)(B) ≤ PY (B) } .

Then, (a) f(ΓX(belE )) ⊆ ΓY (belf(E)) ,

(b) ΓX|F (belE ) ⊇ f−1(ΓY (belf(E))) .

Theorem 5.1 shows that by applying the extension principle (5.1), we are not un-

wittingly adding information by excluding probabilities in f(ΓX(belE )) from the set of

probabilities ΓY (belf(E)). Whether we might lose some information, i.e., ΓY (belf(E)) ⊃
f(ΓX(belE )), is more difficult to assess. No information will be lost if each probability

measure PX|F ∈ ΓX|F (belE ) can be extended onto the larger Borel field Rn in such a

manner that the extended probability PX is contained in ΓX(belE ). Whether this is

possible will depend on the type of transfer function f as well as belief function belE .
Fetz and Oberguggenberger (2004) have shown that in any case

inf
PY ∈f(ΓX (belE ))

PY (B) = inf
PY ∈ΓY (belf(E))

PY (B)
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for arbitrary events B ∈ Rn.

5.2 Uncertainty about the warming in the 21st century

In this section we will apply extension (5.1) to project the Dempster-updated random

set (G, ν)||∗T̂ derived in Section 4.3.1 onto a random set (D, ν) for global mean temper-

ature change in the 21st century. In line with many other assessments of 21st century

temperature change, we will use the four marker scenarios A1B, A2, B1, and B2 of the

Special Report on Emissions Scenarios (SRES) of the IPCC (Nakićenović and Swart,

2000) as a proxy for the set of plausible assumptions about anthropogenic emissions of

greenhouse gases (GHG) and aerosols in the 21st century. The SRES scenarios specify

a host of socio-economic indicators and GHG emissions. Here we are only interested in

the resulting radiative forcing trajectory. We have deduced this information from IPCC

(2001, Appendix II, Table II.3.11). The tabulated forcing values were employed in the

Third Assessment Report (TAR) of the IPCC to estimate the temperature increase in

the 21st century (Cubasch and Meehl, 2001, Fig. 9.13.a). Since we want to include

the uncertainty about the cooling effect from sulphate aerosols into our projections,

we have to separate the direct and indirect sulphate forcing from the remaining part

of the radiative forcing trajectory. This was achieved by using Parameterisation (2.9)

to convert the sulphur dioxide emissions in the SRES marker scenarios to a radiative

forcing, and subtracting it from the total radiative forcing. As a result, we obtained a

radiative forcing trajectory for the combined effect of greenhouse gases and carbona-

ceous aerosols for each SRES marker scenario. This trajectory can now be combined

with the cooling effect of sulphate aerosols for different assumptions about the sulphate

forcing QS90 in 1990. Fig. 5.1 depicts the development of combined GHG and carbona-

ceous aerosol forcing (left panel) and SO2 emissions (right panel) under the 4 marker

scenarios considered here. It can be seen that the A2 scenario yields the largest in-

crease in forcing followed by the A1B scenario. Both scenarios describe a fast growing

world with little emphasis on sustainable production patterns (Nakićenović and Swart,

2000). Such production patterns are accounted for in the B1 and B2 scenarios, which

consequently lead to lower radiative forcing projections.

For a given SRES scenario about the anthropogenic forcing in the 21st century and

a given assumption about the climate model parameters θ = (T2x, κv , QS90), we can

calculate the global mean sea surface and land air temperature response with our dif-

fusion ocean-energy balance model DOECLIM, which is described by Equations (2.5)

and (2.6) and numerically integrated by Equation (A.27). Since the model contains

an integro-differential equation inducing a path dependency between future and past

temperature change since the onset of the anthropogenic perturbation, we need to in-

clude the historical radiative forcing trajectory from anthropogenic and natural sources

in our model simulation. Therefore, we have joined the SRES projection for the pe-

riod 2000-2100 with the historical forcing trajectory from 1750 to 2000 as estimated in

Section 2.2. For this purpose, we have fixated the solar forcing after 2000 to an inter-
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Figure 5.1: SRES marker scenarios A1B, A2, B1, and B2 for the anthropogenic interference
with the climate system in the 21st century (Nakićenović and Swart, 2000). Panel a shows
the combined radiative forcing from greenhouse gases and carbonaceous aerosols (solar forcing
fixed, see text). Panel b depicts the anthropogenic SO2 emissions.

mediate value for the solar cycles in the second half of the 20th century (Fröhlich and

Lean, 1998; Lean, 2000). Moreover, we do not include a scenario for the volcanic forcing

in the 21st century. The value of the volcanic forcing strength βVol for the historical

forcing from volcano eruptions has been chosen separately for each parameter constel-

lation θ = (T2x, κv , QS90) in such a way that it maximises the likelihood L(θ, βVol; T̂ ) of

reproducing the instrumental temperature record (see Section 2.4).

Fig. 5.2 shows the resulting global mean temperature projection for the SRES A1B

scenario and a selected set of parameter constellations θ = (T2x, κv , QS90). It can be

seen that the model response is very sensitive to variations in the model parameters θ.

We have generated a huge range of hypotheses for the warming in the 21st century (red

and black lines) even for a single radiative forcing trajectory. We can try to narrow

down this range by removing all model hypotheses which are rejected by the statistical

tests conducted in Section 2.5. The red lines in Fig. 5.2 depict the set of remaining

temperature projections. It can be seen that the classical tests have indeed strongly

restricted the band of model projections for the 20th century. However, they fail to

narrow down the model projections for the 21st century decisively. This result shows

that the information provided by the instrumental temperature record does not suffice

to exclude low and high warming projections for the future. Therefore, it is important

to use a robust Bayesian framework for assigning imprecise probabilities to the possible

warming outcomes. This is exactly what we are aiming at in this analysis.

The energy balance model DOECLIM generates a transfer function ft∗ : Ω → R
that maps the model parameters θ = (T2x, κv, QS90) to an increase in global mean

temperature ∆T (t∗) for an arbitrary time t∗ in the 21st century. Following Folland and

Karl (2001), we have chosen the late 19th century as baseline from which the deviation

of global mean temperature is measured. In order to derive the random set (D, ν)∆T (t∗)
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Figure 5.2: Bundle of global mean temperature projections for the SRES A1B scenario and
a sample of parameter constellations θ = (T2x, κv, QS90) (black lines). Red lines show the
filtered bundle retaining only those parameter constellations which passed the statistical test
in Section 2.5.

for the temperature change ∆T (t∗), Extension (5.1) requires us to calculate the image

D∆T (t∗),i = ft∗(G||∗,i) of each focal element G||∗,i of parameter constellations that is

contained in the Dempster-updated random set (G, ν)||∗T̂ (see Section 4.3.1). Since

the focal elements G||∗,i ∈ G||∗T̂ constitute connected subsets of the parameter space

Ω, and ft∗ : Ω → R is a continuous transfer function onto the real line, the resulting

images need to be intervals1, whose lower and upper bound are determined by the

minimum and maximum temperature change that can be obtained from the parameter

constellations θ ∈ G||∗,i. Hence, the projections D∆T (t∗),i onto global mean temperature

change ∆T (t∗) are given by

D∆T (t∗),i := [∆T i(t
∗),∆T i(t

∗)] (5.2)

with ∆T i(t
∗) = inf

θ∈G||∗,i
ft∗(θ) , ∆T i(t

∗) = sup
θ∈G||∗,i

ft∗(θ) .

The random set (D, ν)∆T (t∗) for ∆T (t∗) can be constructed immediately from knowledge

of D∆T (t∗),i for all focal elements G||∗,i ∈ G||∗ by means of Equation (5.1). Hence, the

calculation of (D, ν)∆T (t∗) requires to find the minimum and maximum temperature

change ∆T (t∗) for each focal element G||∗,i. In principle, this could be a difficult task,

since the Dempster-updated random set contains 26910 focal elements (for the L ′22-

1The extension of a half-closed connected set through a continuous transfer function can result in
an open, half-closed or closed interval. To avoid unnecessary technicalities, we consider the convex
hull of the extended focal elements. The clear distinction of open, half-closed and closed intervals was
necessary to establish Theorem 3.1, but does not influence the results almost everywhere on the space
of measurable events.
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Figure 5.3: Global mean temperature change in the year 2100 (relative to the late 19th century)
for the SRES A1B scenario in dependence of climate sensitivity T2x (Left panel, black diamonds)
and ocean heat diffusivity κv (Right panel, black diamonds). The temperature change for fixed
T2x and κv, respectively, is smeared out due to variations in the remaining two parameters. Red
diamonds show the temperature change for only those parameter constellations which passed
the statistical test in Section 2.5.

approximation, see Section 4.3.1), where only 30% of them constitute convex cubes

in the three-dimensional parameter space Ω. However, since all focal elements are

contained in the power set of the partition {A1, ..., Ak} of Ω, it suffices to calculate

the minimum and maximum global mean temperature changes that emerge from each

individual atom Aj ∈ {A1, ..., Ak}. Given this information, ∆T i(t
∗) and ∆T i(t

∗) can

be derived by collecting the atoms contained in the focal element G||∗,i and picking the

minimum and maximum of the corresponding temperature changes.

The calculation of the random set (D, ν)∆T (t∗) can be further simplified by observ-

ing that the energy balance model DOECLIM responds monotone to changes in the

parameters θ = (T2x, κv, QS90). This is illustrated in Fig. 5.3 for the case of climate

sensitivity (left panel) and ocean heat diffusivity (right panel). It can be seen that the

temperature change ∆T (2100) under the SRES A1B scenario is the larger the larger

the value of climate sensitivity. Likewise, the temperature change is reduced if the

ocean heat diffusivity is increased. This is due to the fact that larger heat uptake of

the ocean delays the surface temperature response. A similar monotone behaviour can

be identified for sulphate aerosol forcing. The larger the cooling effect of the sulphate

aerosols, the smaller the temperature increase.

Due to the monotone response of DOECLIM to changes in θ = (T2x, κv, QS90), the

minimum and maximum temperature change emerging from an individual atom Aj of

the parameter space will be realised at one of the vertices of Aj . Hence, all we need to

do is to calculate the temperature response at the 21 · 13 · 15 = 4095 vertices θj′ of the

atoms that define effectively the partition {A1, ..., Ak} for each SRES marker scenario

A1B, A2, B1 and B2. Since the model DOECLIM is computationally very efficient, the

required 16380 model integrations for the period 1750-2100 could be performed in less

than an hour. The minimum and maximum temperature change for each atom Aj can
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Figure 5.4: Distribution bands for the global mean temperature change in the years 2050 and
2100 that result from the four SRES marker scenarios.

now be inferred by collecting its 8 vertices and picking the minimum and maximum

of the corresponding temperature changes. This approach has been called the vertex

method in the literature (Dong and Shah, 1987). It was advocated by Tonon et al.

(2000) as an efficient way to calculate the random set extension from model parameters

onto prognostic variables for complex models. Clearly, this approach is only viable as

long as the model behaves fairly monotone on the individual atoms of the partition.

If the model is not globally monotone, one needs to check carefully if the partition is

sufficiently adapted to the model behaviour, so that non-monotonicities on the subgrid

scale can be neglected. However, such a check will be particularly difficult to perform for

the case of complex models. Moreover, if the number of required grid points to resolve

the non-monotonicities becomes too large, the integration of the complex model at all

of these points might become infeasible. Obviously, this is an particularly important

issue for the case of climate models which are notoriously complex, albeit they behave

surprisingly monotone in their global mean temperature response.

As explained above, knowledge of minimum and maximum temperature change

emerging from each atom Aj of the parameter space Ω suffices to calculate the ran-
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dom set (D, ν)∆T (t∗). We have shown in Theorem 5.1 that the associated belief func-

tion bel∆T (t∗) : R → [0, 1] defines a structure Γ(bel∆T (t∗)) which fully contains the

transformations of the probabilities P ∈ Γ(bel(·||∗T̂ )) onto global mean temperature

change ∆T (t∗). Fig. 5.4 shows the resulting lower and upper probability distribu-

tion functions for ∆T (t∗) in the years 2050 and 2100 under the four SRES marker

scenarios A1B, A2, B1 and B2. It is important to note that the underlying belief

functions bel∆T (t∗) : R → [0, 1] contain more information than the distribution bands

Γ∆T (t∗)(SF , SF ) depicted in Fig. 5.4. This can be checked by looking at the proper-

ties of the random sets (D, ν)∆T (t∗) associated with bel∆T (t∗). They do not fulfil the

requirements of Lemma 3.1, and therefore it follows from Corollary 3.1 that the belief

functions bel∆T (t∗) strictly dominate the lower envelopes (see Definition 3.7) of the dis-

tributions bands Γ∆T (t∗)(SF , SF ). Fig. 5.4 shows that the lower and upper bounds of

the distribution bands do not exhibit the step function characteristics any more that

were markedly visible in the prior and Dempster-updated imprecise probability models

(see Fig. 3.7 and Fig. 4.1, upper right panel). This is due to the fact that the random

sets (D, ν)∆T (t∗) contain a large number of focal elements on the order of 10000 which

emerged as distinct images of the 26910 focal elements G||∗,i ∈ G||∗.
The distribution bands span a large range of possible values for the global mean

warming until the end of the 21st century, no matter what scenario is considered.

The corresponding lower bounds ∆T∗(t∗) = F
−1
t∗ (0.05) and upper bounds ∆T ∗(t∗) =

F−1
t∗ (0.95) for the range of 90% confidence intervals supported by the probabilities

P ∈ Γ(bel∆T (t∗)) are listed in Table 5.1. We observe that the upper bound ∆T ∗(2100)

for any of the SRES scenarios except of B1 is significantly higher than the estimate

of the IPCC for the global mean warming until the end of the 21st century (upper

bound ∆T (2100) = 5.8 K relative to the year 1990 plus ≈ 0.4 K until 1990, see Cubasch

and Meehl 2001). This is due to the fact that the Dempster-updated belief function

bel(·||∗T̂ ) allows for high values of climate sensitivity up to 10 K (see Table 4.2) which

have not been considered by the IPCC (upper bound T2x = 4.5 K, Cubasch and Meehl

2001). Such high values of climate sensitivity could not be fully excluded on the basis

of the likelihood information (see Section 2.5). They are responsible for the long tail

towards large warmings in the 21st century that can be seen in the distribution bands.

It is interesting to note that a different result is obtained for the lower bound

on the warming in the 21st century. Although we have initially included values of

climate sensitivity as low as 0.5 K, they were not supported by the comparison with the

instrumental temperature record (see Section 2.5). As a consequence, the Dempster-

updated belief function bel(·||∗T̂ ) did only allow for values of climate sensitivity as low

as 1.5 K (see Table 4.2), which agrees with the low estimate of the IPCC (Cubasch and

Meehl, 2001). Therefore, we find a similar lower bound for the warming until the end

of the 21st century as the IPCC (∆T ∗(2100) = 1.4 K relative to the year 1990 plus

≈ 0.4 K until 1990, see Cubasch and Meehl 2001). As a consequence, we find only a

small upper probability PB1(∆T (2100) ≤ 2 K) = 0.076 that the lowest SRES scenario

considered here, i.e., SRES B1, will lead to a warming of less than 2 Kelvin until 2100.
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SRES scenario A1B A2 B1 B2

[∆T∗(2050), ∆T ∗(2050)] [1.7 K,4.3 K] [1.7 K,3.9 K] [1.4 K,3.6 K] [1.5 K,4.0 K]
[∆T∗(2100), ∆T ∗(2100)] [2.7 K,7.8 K] [3.5 K,9.3 K] [1.9 K,5.7 K] [2.5 K,7.1 K]

Table 5.1: Lower and upper bound for the range of 90% confidence intervals for global mean
temperature increase in the years 2050 and 2100 (relative to the late 19th century) that are
supported by the structure Γ(bel∆T (t∗)).

Since the B1 scenario constitutes one of the most moderate scenarios for anthropogenic

interference with the climate system, it is very unlikely that the warming until the end

of the 21st century will remain below 2 Kelvin in the absence of policy intervention.

5.3 Uncertainty about the outcome of stabilisation poli-

cies

The temperature projections for the 21st century highlight the challenge that is faced

by climate policy makers. Article 2 of the United Nations Framework Convention on

Climate Change calls for a “stabilization of greenhouse gas concentrations in the at-

mosphere at a level that would prevent dangerous anthropogenic interference with the

climate system. Such a level should be achieved within a time-frame sufficient to al-

low ecosystems to adapt naturally to climate change, to ensure that food production is

not threatened and to enable economic development to proceed in a sustainable man-

ner.” (United Nations, 1992). In the aftermath of the Framework Convention, several

stabilisation targets for atmospheric CO2 have been investigated with respect to their

consequences for the climate (e.g., Cubasch and Meehl, 2001) and for the economy (e.g.,

Wigley et al., 1996). The discussion about the level of greenhouse gas concentrations

in the atmosphere “that would prevent dangerous anthropogenic interference with the

climate system” has gained new vigour at a time where the entry into force of the

Kyoto Protocol on February 16, 2005, is imminent, and the focus shifts to long-term

climate protection targets to guide the implementation of the Post-Kyoto commitment

period. Therefore, the investigation of the uncertainty about long-term temperature

change that results from different stabilisation targets for CO2 and other GHGs in the

atmosphere is an important contribution to the climate policy debate which can be

provided by an application of imprecise probability theory.

In this analysis, we consider four policies that aim to stabilise the atmospheric CO2

concentration at 400 ppm, 450 ppm, 550 ppm and 650 ppm, respectively. The latter

three stabilisation policies were adopted directly from Wigley et al. (1996). The 400 ppm

policy was constructed as an intermediate case between the 350 ppm and 450 ppm poli-

cies investigated by the same authors. Fig. 5.5 shows the corresponding concentration

trajectories of atmospheric CO2 (solid lines). Since the other GHGs of anthropogenic

origin like methane, nitrous oxide, and tropospheric ozone amplified the CO2 forcing by

approximately a factor of two third in the year 2000, it is important to include them in
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Figure 5.5: Climate policies for stabilising the atmospheric CO2 content at 400, 450, 550, and
650 ppm (solid lines). The corresponding trajectories of the CO2 equivalent concentration are
shown by dotted lines with the same colour.

the specification of the stabilisation policy. For this investigation, we assumed that the

forcing contribution of the other GHGs was reduced from 67% of the concurrent CO2

forcing to 33% in a time frame of 150 years. The resulting combined radiative forcing

of CO2 and the other GHGs can be expressed in terms of the CO2 equivalent concentra-

tion (in units ppm eqv.) that would lead to the same amount of radiative forcing. The

trajectories for the CO2 equivalent concentrations are shown in Fig. 5.5 (solid lines). It

can be seen that the inclusion of the other GHGs increases the stabilisation levels con-

siderably, in particular for the leaner stabilisation policies. The larger increase at higher

levels of atmospheric CO2 is due to the fact that the CO2 forcing saturates as the CO2

absorption bands in the atmosphere are filled with molecules. Therefore, the forcing

effect of the other GHGs which occupy different absorption bands has to be mimicked

by a larger portion of additional CO2. Under our assumption about the forcing con-

tribution of the other GHGs, CO2 levels of 400 ppm, 450 ppm, 550 ppm and 650 ppm

correspond to CO2 equivalent concentrations of approx. 450 ppm eqv., 530 ppm eqv.,

690 ppm eqv., and 860 ppm eqv., respectively. Finally, we have also added the cooling

effect of aerosols to the forcing scenarios for the various stabilisation policies, because

we want to include the uncertainty about QS90 in our assessment. Following Cubasch

and Meehl (2001), we have simply prescribed the SRES A1B SO2 emissions scenario

for the 21st century (see Fig. 5.1, right panel) and fixated the emissions beyond this

period at the value of ESO2(2100) = 27.6 MtS emitted in the year 2100.

The construction of the random sets (D, ν)∆T for the global mean temperature

change since the late 19th century that results from the four stabilisation policies pro-

ceeds in complete analogy to the case of the SRES marker scenarios. Therefore, we

do not comment the derivation process any further here. We only mention that we

have integrated the energy balance model DOECLIM up to the year 2500 in order to

approach a new equilibrium of the climate system after the stabilisation of the GHG
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Figure 5.6: Distribution bands for the global mean temperature change in the years 2100 and
2500 that result from the four different stabilisation policies.

concentrations in the atmosphere. However, the model continues to warm after the

year 2500, albeit with very small rates. Fig. 5.6 depicts the resulting lower and up-

per distribution functions for the temperature change in the years 2100 and 2500. It

can be seen that the step function characteristics of the Dempster-updated lower and

upper distribution functions for climate sensitivity (Fig. 4.1, upper right panel) begin

to re-emerge in the distribution bands for ∆T (2500). This indicates a close approach

to the equilibrium temperature change which is determined predominantly by climate

sensitivity, since the aerosol cooling effect is small.

Fig. 5.6 delivers a disturbing perspective on the prospects of the stabilisation policies

to protect the climate. The uncertainty is large enough that even for the most stringent

stabilisation level of 400 ppm CO2 a warming in excess of 4 Kelvin cannot be excluded.

The situation is even less favourable for the higher stabilisation levels. As discussed

above, the large values of climate sensitivity up to 10 K that could not be discarded

from the Dempster-updated belief function bel(·||∗T̂ ) are responsible for the long tails

of the distribution bands reaching out to high warming values. Therefore, it will be of
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Stabilisation policies ∆T ≤ 2 K 2 K < ∆T ≤ 4 K ∆T > 4 K

400 ppm (≈ 450 ppm eqv.) [0.30, 0.97] [0.03, 0.70] [0, 0.02]

450 ppm (≈ 530 ppm eqv.) [0.03, 0.57] [0.41, 0.97] [0, 0.19]

550 ppm (≈ 690 ppm eqv.) [0, 0.02 ] [0.27, 0.96] [0.04, 0.73]

650 ppm (≈ 860 ppm eqv.) 0 [0.06, 0.70] [0.32, 0.94]

Table 5.2: Probability intervals for three complementary outcomes of the stabilisation policies.

utmost importance for the climate policy debate to better constrain climate sensitivity

from above. We have listed the probability intervals for the events that the stabilisation

policies limit the global mean temperature change to 2 Kelvin, to a value between 2

and 4 Kelvin or fail to avoid a larger warming, in Table 5.2. It can be seen that

the prospects of a warming below 2 Kelvin decrease rapidly when moving to leaner

stabilisation levels, while the chances of obtaining a warming above 4 Kelvin increase in

a similarly rapid manner. It is also important to note from Fig 5.6 that the imprecision

in the distribution bands, i.e., the area between the lower and upper bound, increases

with increasing stabilisation level. Hence, the leaner a stabilisation policy the more

uncertain its consequence for global mean temperature change.

A warming of 2 Kelvin since preindustrial times constitutes a benchmark in the cli-

mate policy debate, since it has been frequently proposed as a climate protection target

in its own right to prevent dangerous anthropogenic interference with the climate sys-

tem (WBGU, 1995). Recently, the European Union has adopted this goal of limiting

warming to 2 Kelvin above the preindustrial level. Table 5.2 shows that such a climate

protection goal cannot be easily identified with a stabilisation target for the concen-

tration of greenhouse gases in the atmosphere. The numbers tell us, however, that it

requires a very stringent stabilisation level of approximately 450 ppm CO2 equivalent

to obtain a significant lower probability of meeting the 2 Kelvin target.

5.4 Climate policy analysis under imprecise probability

As a final step of our analysis we want to evaluate the stabilisation policies considered

above with a stylised decision analysis under imprecise probability. Formally, each

stabilisation policy can be considered as an act f : S → X with outcome X (in whatever

measure), which depends on a complex set S of possible states of the world. In our

context S is constituted by the set of possible hypotheses θ = (T2x, κv , QS90) ∈ Ω for

the climate model parameters. The outcome X shall be quantified in terms of the

global mean temperature change ∆T since the late 19th century. In order to conduct a

climate policy analysis, we also would need to include the socio-economic consequences

of a stabilisation policy into the outcome vector X. This would require to account

for the uncertainty about pertinent socio-economic factors in the set S of possible

states of the world. Obviously, a serious effort in this direction is beyond the scope
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Stabilisation policies Objectives Article 2

Climate (∆T ≤ 2 K) Socio-economic All

400 ppm (≈ 450 ppm eqv.) [0.30, 0.97] [0,p400] [0, 0.97p400]

450 ppm (≈ 530 ppm eqv.) [0.03, 0.57] [0,1] [0, 0.57]

550 ppm (≈ 690 ppm eqv.) [0, 0.02 ] [p
550

,1] [0, 0.02 ]

650 ppm (≈ 860 ppm eqv.) 0 1 0

Table 5.3: Stylised probability intervals for meeting the climate, socio-economic and combined
objective of Article 2 of the UNFCCC. See text for further explanation.

of this thesis. However, it is our long term goal to combine the imprecise probability

for the climate model parameters presented here with an imprecise probability for the

key parameters of an economic growth model to the development of which we have

contributed (Edenhofer et al., 2005). Such key parameters are constituted by, inter

alia, the elasticity of substitution between energy, labour and capital, the impact of

research and development investments on labour and energy efficiency, the learning

rate in the renewable energy sector, and the remaining fossil resource base.

In the stylised decision analysis presented here we will short-circuit the socio-

economic dimension of the climate change problem by simply considering two possible

socio-economic outcomes of a stabilisation policy: it either meets the related objec-

tive of Article 2 of the United Nations Framework Convention on Climate Change to

“ensure that food production is not threatened and to enable economic development to

proceed in a sustainable manner”, or it does not. For the sake of demonstration, we

simply stipulate imprecise probabilities for these two possible outcomes of each stabil-

isation policy (see Table 5.3, second column). Our stylised probability bounds reflect

an increase in socio-economic viability with an increase in stabilisation level (which, of

course, can be questioned) as well as the large imprecision about the socio-economic

outcome of the stabilisation policies (with the exception of the 650 ppm policy).

The imprecise probability for meeting the socio-economic objective of Article 2 has

to be contrasted with the imprecise probability for observing its climate protection

goal to “prevent dangerous anthropogenic interference with the climate system”. Here,

we will adopt the climate policy goal of the European Union to limit warming since

preindustrial times to 2 Kelvin as a possible specification of the climate protection

objective of Article 2. The imprecise probability of a temperature change ∆T ≤ 2 K

is a direct outcome of our analysis and has already been looked at in the preceding

section. The resulting probability intervals for the 4 stabilisation scenarios are listed in

Table 5.3 (first column).

The overall imprecise probability for fulfiling the objectives of Article 2 can now be

calculated from the imprecise probabilities of the socio-economic and climatic compo-

nent. If we assume independence between global mean temperature change ∆T and the

economic consequences of a given stabilisation policy, such a calculation is straightfor-

ward. Let A×XSE ⊂ X be the event of observing the 2 Kelvin target, and XCL×B ⊂ X
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the event of fulfiling the socio-economic requirements of Article 2. Then the joint ful-

filment of all requirements, i.e., the event A × XSE ∩ XCL × B = A × B exhibits the

imprecise probability

[P (A×B), P (A×B) ] = [P (A) · P (B), P (A) · P (B) ] . (5.3)

Table 5.3 (third column) shows the resulting imprecise probabilities for the complete

fulfilment of Article 2 by the 4 stabilisation policies. It is important to note that Equa-

tion (5.3) holds unanimously whether epistemic, strong or random set independence

is assumed (Couso et al., 2000, see also Section 3.5), because all three independence

concepts lead to the same result on product sets A×B (Walley, 1991, 9.3.5). Assum-

ing independence between temperature change and the economic outcome of a given

stabilisation policy can be justified on the grounds that the uncertainty about these

quantities arises from factors located either in the realm of the natural system or in the

realm of the socio-economic system.

The situation listed in Table 5.3 constitutes a decision problem under imprecise

probability. What stabilisation policies are superior to meet the objectives of Article

2 of the UNFCCC? In the following, we discuss briefly a number of decision criteria

under imprecise probability that have been proposed and axiomatically justified in the

literature. All these criteria are based on the notion of a lower and upper expectation,

or prevision, of gambles Gf = u ◦ f : S → R constituting the combination of an act

f : S → X and a real-valued utility function u : X → R for the set of possible outcomes.

This framework is general enough to accommodate the special case listed in Table 5.3

where we want to evaluate the acts according to their implication for the lower and

upper probability of a specific event A×B ⊂ X. This case can be described by the in-

dicator gamble IC(f) : S → {0, 1} for the set C(f) = {s ∈ S|f(s) ∈ A×B} of all ‘good’

states of the world in which the act f can meet the objective of Article 2. IC(f) pays

one unit of utility if s ∈ C(f) and nothing in the remaining case. As briefly mentioned

in Appendix C, the lower prevision (expectation) of the indicator gamble Pr(IC(f)) in-

deed equals the lower probability P (C(f)) = P f (A× B)2. Therefore, decision criteria

that establish a (partial) ordering of gambles will also induce a (partial) ordering of sets

C(f) of ‘good’ states of the world, in which the objective of the UNFCCC can be met

for a given stabilisation policy f . Since the sets C(f) depend directly on the policies,

this piece of information allows to rank the policies themselves.

Maximality: The criterion of maximality was proposed by Walley (1991, Chap-

ter 3.9) and received an axiomatic foundation by Seidenfeld et al. (1995). A gamble

G : S → R is called maximal if it is not dominated by any other available gamble F ∈ K

2It is important to note that the lower probability for the event A × B of meeting the UNFCCC
objective with a stabilisation policy f is determined by the lower probability of the set C(f) of ‘good’
states of the world, i.e. PX(A × B) := PS(f−1(A × B)) = PS(C(f)). We need to assume that f is
measurable for this definition to make sense (see Section 5.1).
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in terms of

∀ F ∈ K Pr(F −G) ≤ 0 . (5.4)

Walley (1991) motivated the criterion on the basis of a lower and upper betting rate

interpretation of imprecise probabilities. If your infimum buying price for all gambles

F − G is smaller or equal to zero, then you are not willing to pay a positive price

for exchanging the gamble G with any other gamble F . It is important to note that

maximality defines only a partial ordering of gambles. In general, there will exist

more than one maximal gamble. This will also happen frequently in practice, since

maximality is the weakest criterion that is discussed here.

In our special case of meeting Article 2 of the UNFCCC, a stabilisation policy g is

maximal in the set of policies F , if

∀ f ∈ F Pr(IC(f) − IC(g))
2 monotone

= P (C(f) ∩ C(g)c)− P (C(g) ∩ C(f)c) ≤ 0 , (5.5)

where the equality holds if and only if the imprecise probability about the possible states

of the world can be described by a 2-monotone lower probability P : A(S)→ [0, 1] (see

Definition C.10). In this case, the lower prevision Pr(IC(f) − IC(g)) equals the Choquet

integral of the indicator gamble IC(f) − IC(g), which can be evaluated immediately to

yield the expression on the right-hand side of the equality (see Definition C.11). Since

the uncertainty about the climate model parameters is described by a belief function,

we can assume 2-monotonicity of P in our stylised decision analysis.

Hence, we have to evaluate the expression on the right-hand side of Equation 5.5

for each combination of stabilisation policies at 400, 450, 550, and 650 ppm CO2.

The situation is complicated by the fact that we have not specified the socio-economic

constituents of the possible states of the world, and therefore cannot determine the sets

C(f) of ‘good’ states explicitly. However, this is not necessary in this specific decision

situation because the lower probability P f (A × B) = P (C(f)) ≥ P (C(f) ∩ C(g)c) is

zero for all stabilisation policies under consideration (see Table 5.3). As a consequence,

Pr(IC(f) − IC(g)) ≤ 0 for all combinations g, f of stabilisation policies, and therefore

all of them are maximal under Definition (5.4). Obviously, the maximality criterion is

too weak to discriminate between the decision alternatives. In our particular case, it

even assigns the status of maximality to the 650 ppm stabilisation policy which will fail

to meet the Article 2 objective with certainty. This is an unreasonable result. We can

remove the 650 ppm policy from the set of maximal policies by requiring a stronger

version of maximality, i.e.,

∀ F ∈ K Pr(F −G) < 0 or Pr(G− F ) ≥ 0 .

The behavioural interpretation is that for any gamble F you have either to be paid to

exchange G in return for F , or you would always be willing to exchange F in return

for G without payment. Since P (C(g) ∩ C(f)c) ≤ P (C(g) = 0 for the g = 650 ppm

stabilisation policy independently of the choice of f , we find Pr(IC(f) − IC(g)) = 0 for
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all f ∈ F . Since there will exist some policies f ∈ F with Pr(G−F ) < 0, the 650 ppm

stabilisation policy does not fulfil the strengthened condition of maximality.

E-admissibility: This criterion was formulated for decisions under uncertainty

that is described by a (not necesarily convex) set of probabilitiesM (Levi, 1974, 1980).

A gamble G ∈ K is E-admissible if there exists a classical probability P ∈M, for which

the expected utility EP (G) reaches a maximum on the set of all gambles K, i.e.,

∃ P ∈M ∀F ∈ K EP (G) ≥ EP (F ) . (5.6)

An underlying rationale for E-admissibility can be constructed, inter alia, in the con-

text of group decisions. A group of Savage-type decision makers is imagined that hold

subjective probabilities, which are compatible with the ambiguous state of information.

For each E-admissible gamble, a decision maker in this group might be found who

supports this act. Thus, the size of the E-admissible choice set indicates the scope

for controversy that might arise in a group of expected utility maximizers due to the

presence of ambiguity. There exists a clear relationship between E-admissibility and

maximality discussed above. Every E-admissible gamble is also maximal, but the re-

verse is only true if the set of probabilitiesM is convex (Walley, 1991, Theorem 3.9.5).

Schervish et al. (2003) provide a nice example of a discrete set of probabilities, for which

the choice set of E-admissible gambles is a true subset of the maximal gambles.

In our special case, E-admissibility of a stabilisation policy g ∈ F boils down to

the existence of a probability measure P ∈M under which g yields the maximal prob-

ability of meeting the objectives of Article 2, i.e., P (C(g)) ≥ P (C(f)) for all f ∈ F .

Hence, for identifying the E-admissible stabilisation policies, we need to reconstruct the

set of probability measures M that gave rise to the imprecise probabilities of meeting

Article 2 listed in Table 5.3 (third column). This can be done even without having

specified the socio-economic dimension of the possible states of the world explicitly.

Since we are only interested in two different outcomes of the stabilisation policies (to

meet or not to meet the objective of Article 2), we can base the reconstruction of M
on a reduced event space that is generated by the sets C(f) ⊂ S of ‘good’ states of

the world associated with the stabilisation policies f ∈ F . The field of sets generated

from {C(400 ppm), C(450 ppm), C(550 ppm), C(650 ppm)} by union and complementa-

tion contains 216 elements that can be derived from a partition of S with 16 elementary

events {C1, ..., C16}. Then, the set of probabilities M contains all probability mass

functions that distribute their masses over the 16 elementary events in a way which re-

spects the lower and upper probability constraints of meeting Article 2 (see Table 5.3).

To identify a stabilisation policy as E-admissible, it suffices to construct a probabil-

ity mass function compatible with the constraints, which maximises the probability of

meeting Article 2 for the given policy. For the sake of brevity, we do not describe the

tedious calculation explicitly here. We can find probability mass functions inM, under

which the 400 ppm, 450 ppm and 550 ppm stabilisation policies maximise the probabil-

ity of meeting Article 2. Obviously, it is impossible to identify such a mass function for
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the 650 ppm policy, since it will fail to meet the objectives of Article 2 with certainty.

Hence, only the lower three stabilisation policies are E-admissible. Nevertheless, the

criterion of E-admissibility is too weak to narrow down the choice set of policy options

decisively, which highlights the scope for controversy in the climate policy arena.

Γ-Maximin: The Γ-Maximin criterion is maybe the most prominent decision crite-

rion under ambiguity that can be found in the economic literature. It was axiomatically

justified by Gilboa and Schmeidler in a series of seminal papers (Gilboa, 1987; Gilboa

and Schmeidler, 1989; Schmeidler, 1989), in which they constructed various decision

theories under uncertainty that accommodate the phenomenon of ambiguity aversion

as identified in the famous experiment of Ellsberg (1961) (see introduction to this

thesis). Their decision theories motivated both convex sets of probabilities as well as

2-monotone lower probabilities as eligible models of subjective belief (using the classical

frameworks of Savage 1954 and Anscombe and Aumann 1963; see Casadesus-Masanell

et al. 2000 for the completion of the cycle of theories).

Unlike the aforementioned decision criteria, Γ-Maximin induces a weak ordering �
of available gambles G ∈ K in terms of their lower expected value, i.e.,

g � f ⇔ Pr(G) ≥ Pr(F ) . (5.7)

Hence, the set of optimal gambles includes all G ∈ K which maximise the lower expected

outcome. It is interesting to note that there can be Γ-maximin optimal gambles that

are not E-admissible (see Schervish et al. 2003 who give an example).

In the special case of our application, the optimal stabilisation policy under Γ-

Maximin will be the one which maximises the lower probability of meeting Article 2.

However, Table 5.3 shows that the lower probability for this event is zero across all

stabilisation policies. Hence, a Γ-Maximin decision maker will be indifferent among

them. This type of indifference might be best described as the ‘agony of the desperate’.

Hurwicz Criterion: The failure of Γ-Maximin to yield a useful decision support

in our example indicates that it is sometimes important to include information on the

upper expected outcome in the decision criterion. Such a criterion has been already

proposed by Hurwicz (1951) for the case of complete ignorance within the range of

outcomes of the acts under consideration. The proposal is referred to as Hurwicz crite-

rion by Luce and Raiffa (1957) and was axiomatically justified by Arrow and Hurwicz

(1972). Later on, Jaffray (1989) and Strat (1990) adopted the Hurwicz criterion in the

context of belief functions. An axiomatic foundation can be found in Jaffray (1994).

In its general form for imprecise probabilities, the Hurwicz-criterion ranks the gam-

bles G ∈ K on the basis of a linear combination of lower and upper expected outcomes,

G � F ⇔ αPr(G) + (1− α)Pr(G) >

αPr(F ) + (1− α)Pr(F ) , with α ∈ [0, 1] . (5.8)
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α is a security index that determines the proportion in which considerations of security,

related to the lower expected outcome Pr(G) and opportunity, related to the upper

expected outcome Pr(G) influence the decision criterion. The security index adds an

additional degree of freedom to the policy analysis. It allows to explore the continuum

between completely security-based (α = 1) and completely opportunity-based decision

rules (α = 0). Note that the Γ-Maximin rule is recovered for α = 1. In an interesting

paper, Chevé and Congar (2000) used this property of the Hurwicz criterion to identify

precautionary behaviour in a consumption-pollution problem. Like Γ-Maximin, the

Hurwicz-Criterion establishes a weak ordering of available gambles. The optimal choice

is constituted by the gambles which maximise the α-mixture between lower and upper

probability in Equation 5.8.

In our special application, the Hurwicz criterion is easy to implement. For a pre-

scribed α ∈ [0, 1], we have to search for the optimal stabilisation policy g∗(α) ∈ F
which maximises

αPr(IC(g)) + (1− α)Pr(IC(g)) = αP g(A×B) + (1− α)P g(A×B) . (5.9)

Inspection of the imprecise probabilities for meeting Article 2 (see Table 5.3) reveals

that their exists only one stabilisation policy that will be endorsed unanimously for all

values α < 1. The optimal choice is constituted either by the 400 ppm or the 450 ppm

stabilisation policy. It will depend on the upper probability p400 for the economic viabil-

ity of the 400 ppm stabilisation policy under Article 2, which of the two are preferable.

If p400 > 0.58, the 400 ppm policy should be chosen. If the upper probability of eco-

nomic viability is smaller than 0.58, then the 450 ppm policy is preferable.

This concludes our discussion of decision theory under imprecise probability. The

list of decision criteria presented above is by no means exhaustive. However, it suffices

to point out that imprecise probability theory can be embedded in a rich set of well-

founded decision theories, most of which have been derived with the same rigour as

expected utility theory (von Neumann and Morgenstern, 1944; Savage, 1954; Anscombe

and Aumann, 1963). Moreover, the decision criteria under imprecise probability can

accommodate a variety of behaviour like ambiguity aversion - or ambiguity seeking -

that cannot be represented in the framework of an expected utility theory. This aspect

is particularly relevant to climate policy analysis since the ambiguity about climate

change and the potential mitigation options is large. We conclude that the application

of imprecise probabilities in the integrated assessment of climate change is reinforced

rather then discouraged by the need to conduct a viable climate policy analysis.

We have applied the various decision criteria to an important climate policy ques-

tion: at which level should the atmospheric CO2 concentration be stabilised in order to

meet the objectives of Article 2 of the UNFCCC? This is a typical example of a policy

question, which does not easily fit the expected utility concept (see Schellnhuber 1998,

1999 for a discussion of various policy paradigms in the context of climate change). It

can be addressed, inter alia, in the framework of the tolerable windows approach (TWA;
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Tóth et al., 1997; Petschel-Held et al., 1999; Bruckner et al., 1999). The TWA tries

to identify a set of admissible policies that meet predefined constraints in the outcome

space (such as the requirements of Article 2). We have shown in earlier work (Kriegler

and Bruckner, 2002, 2004), which is not included in this thesis, that the admissibility of

policies is very sensitive to the uncertain states of the world in which they might be re-

alised. Hence, it is crucial to account for uncertainty in the identification of admissible

policies. By now, a probabilistic extension of the tolerable windows approach has been

presented, which takes an important step into this direction (Kleinen, 2005). We have

shown above that the concept of indicator gambles provides another way which extends

the results of conventional and non-conventional decision theories under uncertainty to

the realm of the TWA. In this sense, we have pointed to a set of potential decision

criteria for a tolerable windows approach under imprecise probability.

However, our main objective in evaluating a set of stabilisation policies in the light

of Article 2 was to demonstrate that the introduction of imprecision does not necessarily

lead to a weaker policy recommendation. As can be seen from Table 5.3 we have intro-

duced large imprecision by making only weak assumptions about the economic viability

of the stabilisation policies (with the exception of the 650 ppm policy). Nevertheless,

we could successively narrow down the choice set of optimal stabilisation policies by

moving - in a lexicographic manner - from weaker to stronger decision criteria. In

this way, we have identified the policies with a stringent stabilisation target at either

400 ppm or 450 ppm as the best choice in order to meet the objectives of Article 2 of the

Framework Convention on Climate Change. This policy recommendation reflects the

information about future global mean temperature change that we have collected from

the analysis in the preceding chapters. Although we have allowed for large imprecision

in the specification of the prior uncertainty (see Chapter 3) and smoothed the likelihood

function by optimising the nuisance parameters at each point of the uncertainty space

(see Chapter 2), we have found little ambiguity about the prospects of the 550 ppm and

650 ppm stabilisation policies to limit the temperature change since preindustrial times

to 2 Kelvin. The 650 ppm policy will fail to meet this objective with certainty, while

the 550 ppm policy exhibits only a negligible upper probability for success. This shows

clearly how imprecise probabilities can help to make a policy recommendation more

robust. In order to challenge our recommendation of a stringent stabilisation target,

one would need to point to important information that is discarded by the imprecise

probability model. In the context of our prototypical analysis this can, of course, be

done. We will discuss at length in the following summary that there is much room for

improvement. However, we want to make the point here that a clear-cut policy rec-

ommendation emerging from an assessment that accounts for large uncertainty will be

more trustworthy than this would be the case if part of the uncertainty was neglected.
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Summary and Conclusion

The analysis presented here has demonstrated an application of imprecise probability

theory to the integrated assessment of climate change. To the best of our knowledge, it

constitutes the first such application that attempts to cover the entire assessment chain

from generating the imprecise probability on the basis of available evidence to a climate

policy analysis. Even in a more limited context, applications of imprecise probabilities

in climate change assessments have been rare (Luo and Caselton, 1997; Lange, 2000;

Ha Duong, 2003; Kriegler and Held, 2005; Hall et al., 2005). This might be attributed

to the fact that imprecise probability theory matured only in the last decade, a process

that was particularly fostered by the seminal work of Walley (1991). Moreover, many

theoretical questions relating to, e.g., dynamic decision frameworks, problems of natural

extension and efficient representations of imprecise probability models, still await major

advancement. This is rough terrain for the practitioner, as she cannot rely on textbook

knowledge in many instances. Therefore, we have also established several theoretical

results that in some cases substantiated the steps of our analysis and in other cases

where necessary in order to proceed.

6.1 Summary of the imprecise probability analysis

In the light of the complexity of a serious climate change assessment, we have decided to

rely on imprecise probability models that allow for an efficient representation in terms

of a coherent lower probability with sparse Möbius inverse (see Section 3.1). Sparse

Möbius inverses are characterised by only a small number of focal elements carrying

non-zero Möbius mass. The sparseness of a Möbius inverse can be capitalised on if

methods are available to process coherent lower probabilities directly on the level of

focal elements.

Probability boxes (p-boxes) constitute an important example of an imprecise prob-

ability model that allows for a sparse Möbius representation (Ferson et al., 2002). We

have relied on them as a starting point for constructing a prior imprecise probability

for the climate model parameters, since they can be generated easily in most instances

of imprecise information, including diverse probability estimates in the literature and
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expert elicitations (see Section 3.2.4). The algorithm to construct a random set from

a p-box (see Algorithm 3.1) is well known from the literature. Adding to this, we have

shown that it conforms indeed with a ‘convex set of probability’-interpretation of the

p-box even on continuous spaces (see Theorem 3.1). Since p-boxes contain a large class

of probabilities including many that might be considered an unreasonable choice in the

light of the prior information, we have attempted to narrow down the set of admissi-

ble probabilities without losing the virtue of a sparse Möbius representation. This has

been achieved by including lower bounds for eligible probability mass functions on a

predefined partition of the uncertainty space into the model. We provided an algorithm

to construct the associated random set for this more informative imprecise probability

model, and showed that it exhibits indeed the favourable properties of sparseness and

non-negativity (see Algorithm 3.2, Theorem 3.2 and the preceding lemmas). To the

best of our knowledge, this is a new result which might also be of interest for applica-

tions in other fields that try to process imprecise probability information on the basis

of random sets.

We demonstrated the applicability of this methodological framework to an assess-

ment of climate change by constructing random sets for the prior uncertainty about

climate sensitivity, ocean heat diffusivity and sulphate aerosol forcing from information

that is found in the literature. A key step in this process was the discretisation of the

continuous parameter space in order to arrive at a finite uncertainty model. This step

is not specific to an imprecise probability analysis as it surfaces also in conventional

probabilistic applications, e.g., when processing histogrammed data. However, the par-

titioning of a continuous space might be guided by different objectives in the imprecise

probability context. We can identify at least three objectives, which are closely linked

to the three steps of a Bayesian analysis from constructing a prior model to updating

the prior model and to projecting the posterior information on the prognostic quantity

in question.

1. Approximation of the continuous prior uncertainty model as nearly as possible

in order to generate the most informative imprecise prior with a predefined level

of finite complexity. For the case of p-boxes, this objective was recast in an

optimisation problem for partitioning a continuous space by Kriegler and Held

(2005).

2. Approximation of the continuous likelihood function as close as possible in order

to avoid overly imprecise results in the updating process. We have adopted this

objective in the present analysis. However, as discussed in Section 4.3.2 and

taken up below, our attempt did not suffice to avoid overly imprecise posterior

probability bounds from the application of the Generalised Bayes’ rule. This

result depended more on the choice of prior model than on the choice of partition

of the continuous parameter space. Hence, a likelihood adapted partition is a

necessary, but by no means sufficient condition for obtaining meaningful results

under the Generalised Bayes’ rule.
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3. Partitioning of the model parameter space in a manner that reflects the mono-

tonicity properties of the model transfer function onto the prognostic variables.

If this, admittedly very difficult, task can be achieved, methods like the vertex

method might become applicable to the problem of random set extension. This

would greatly simplify the extension problem because the vertex method allows

to reduce an optimisation problem to a finite number of forward integrations (see

Section 5.1 and 5.2). So far, we have not seen any work in this direction. Nev-

ertheless, we believe that advancements in the computability of the random set

extension are strongly needed, in particular for its application to more complex

climate models.

Despite the importance of discretising the continuous parameter space, we have devoted

little attention to it in this analysis. We have neither tried to identify a systematic way

to reconcile the conflicting requirements of the first two objectives (the third was not

in issue here, since the transfer function was globally monotone), nor have we searched

the literature for advanced methods concerning adaptive grids. Therefore, we think

that there is much room for improvement here.

Having established an imprecise prior probability for the climate model parameters

in terms of a belief function and its associated random set, we went on to the problem

of updating the prior information with a likelihood function. As pointed out in Sec-

tion 4.1, the application of the Generalised Bayes’ rule (GBR) is a thorny issue for many

imprecise probability models (with the notable exception of the probability ratio class)

due to the computational complexity and the presence of dilation. We have established

a methodology for updating a belief function with a likelihood function via the GBR

by adapting the framework of Chrisman (1995) to this particularly important case (see

Theorem 4.1 and the preceding lemmas). En route, we have also derived an algorithm

to apply an alternative updating rule, i.e., Dempster’s rule of conditioning, to the prob-

lem of updating with likelihood information (see Algorithm 4.1). The algorithm allows

us to perform the updating operation directly on the associated (sparse) random set

of the belief function. This is an important result of its own, since Dempster’s rule is

widely used in other contexts. Moreover, Dempster’s rule has been shown to be equiva-

lent to the maximum likelihood update rule (if the joint probability on the parameter ×
observation space is 2-monotone; Gilboa and Schmeidler 1993) which gives its applica-

tion to the lower envelope of a convex set of probabilities a clear interpretation. To the

best of our knowledge, the established methodology has not appeared in the literature

so far. It constitutes an achievement that might also be of interest for applications in

other fields.

We have demonstrated the applicability of our version of Dempster’s rule of condi-

tioning to the prior belief function for the climate model parameters. However, we have

failed to produce meaningful imprecise posterior probability bounds from the applica-

tion of the GBR. We have been able to attribute this result primarily to our choice of

prior model (see Section 4.3.2). If the likelihood function changes strongly on the focal

elements of a belief function, it will dilate the imprecise probability model under the
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application of the GBR. This is an important, albeit less comforting result. Since it will

be the rule rather than the exception that the prior imprecision ranges over areas of

large likelihood changes, belief functions do not constitute a viable model for updating

via the GBR. This highlights a critical branching point in our analysis. Either other

more restrictive updating rules can be justified, or other prior models have to be con-

structed. The latter would impede many of the steps that we have taken in this analysis

to process imprecise probabilities. Consequently, we have dwelled on the former option

by employing Dempster’s rule of conditioning for generating a posterior belief function.

Whether this is a reasonable choice will have to be subject to close scrutiny in future

research. Hence, the updating issue continues to await theoretical advancements that

will help the practitioner to calculate imprecise posterior probabilities on the entire

event space in a computationally efficient way (for the calculation of posterior bounds

for single events or expectation values see Cozman 1999b).

The final steps of our analysis consisted in projecting the posterior belief function

for the climate model parameters onto global mean temperature change and then in

conducting a stylised climate policy analysis on the basis of the imprecise temperature

information. Belief functions can be projected onto prognostic model variables by

means of random set extension, which is a long established concept in the literature.

We have added an investigation of the relationship between the convex set of projected

probabilities and the convex set of probabilities defined by the extended belief function

(Theorem 5.1, see also Fetz and Oberguggenberger 2004 for establishing equality of the

lower envelopes). In the particular case of our analysis, the random set extension was

easy to calculate due to the monotonicity properties and the computational efficiency

of the energy balance model. Hence, we have spared ourselves the difficulties that will

be encountered with more complex models. As mentioned above, an improvement of

methods for calculating the random set extension will be an important prerequisite for

the applicability of random set based imprecise probability analysis to assessments of

climate change with complex climate models. Our stylised policy analysis provided an

overview of several decision criteria under imprecise probability. By drawing on the

concept of indicator gambles we illustrated that the decision theories are not only able

to deal with imprecise expected utilities, but also apt to assess imprecise probabilities

for sets of admissible outcomes. This points the way to their application to constraint-

based decision making frameworks like the tolerable windows approach, which play a

significant role in climate policy analysis.

6.2 Summary of the integrated assessment of climate change

Having discussed the methodological advances and weaknesses in our application, we

now turn to the ‘climate side of things’. We have tried to avoid a common fallacy

when applying a new methodology to a subject, i.e., the fancier the method the less

serious one can be about the subject itself. Therefore, we have made a serious effort

to account for the uncertainty about the global mean climate response to a secular
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trend in the radiative forcing. For this purpose, we have constructed an energy balance

model resolving land and ocean boxes with a 1-D diffusive interior ocean (DOECLIM).

The model formulation was fairly standard besides the fact that we have solved the

heat diffusion in the interior ocean analytically. As a consequence, the model could

be closed by adding a memory to the differential equation for sea surface temperature.

We calibrated DOECLIM against the seasonal cycle and an ensemble of CO2 doubling

experiments with the climate system model of intermediate complexity CLIMBER-2.

Due to the calibration process, the number of free parameters could be reduced to just

two key quantities for the climate response to secular changes in the radiative forcing:

global climate sensitivity T2x, and effective vertical ocean heat diffusivity κv. The

model compared well against CO2-multiplication experiments with CLIMBER-2 and

the coupled atmosphere-ocean general circulation model HadCM3. It was also able to

reproduce the instrumental temperature record in the 20th century, and the total heat

uptake of the world ocean after 1950. Therefore, we conclude that the model provides

a satisfactory description of the global mean temperature response to secular trends in

radiative forcing.

In the following, we have interpreted DOECLIM in a statistical sense as representing

a set of hypotheses about the global mean climate response to secular forcing trends.

The space of possible hypotheses was spanned by the model parameters T2x, κv, and the

direct and indirect sulphate aerosol forcing in 1990, QS90. This set of parameters con-

stitutes a frequent choice in a series of widely received studies on the uncertainty about

climate change (e.g., Andronova and Schlesinger, 2001; Knutti et al., 2002; Forest et al.,

2002). By investigating the uncertainty about three parameters simultaneously, we have

not spared ourselves the additional complexity of working on a multi-dimensional un-

certainty space. This is a very important point, since most integrated assessments of

climate change will exhibit several uncertain key quantities. Therefore, an application

of imprecise probability theory that works nicely in one dimension, but can hardly be

extended to higher dimensions, would have demonstrated little. In this analysis, we

have suffered from the ‘curse of dimensionality’ in two ways. First, the number of focal

elements increased from an average of 20 on the marginal spaces to more than 6000

on the joint uncertainty space, to more than 26000 after updating with the likelihood

information, to approx. 10000 for the projection on global mean temperature change.

Second, the Dempster-updated focal elements did not inherit the simple cubic struc-

ture of their prior predecessors. Despite these complications, we have shown that the

imprecise probability analysis remained feasible. We could have even processed a larger

amount of focal elements if we had invested more in the improvement of computational

efficiency.

The space of model hypotheses about the climate response was scanned for a given

scenario about the radiative forcing trajectory in the industrial era (excluding sulphate

which was part of the hypotheses). We have compared the resulting set of hypotheses

about the global mean sea surface temperature (SST) and land surface air temperature

(LAT) change in the 20th century with the instrumental temperature record in order
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to generate a likelihood function for the model parameters. The likelihood function

was derived, inter alia, from the conditional probability that the residual between the

simulated SST response and the stochastic SST data constitutes an AR(1) process after

removal of the ENSO signal. The inclusion of the ENSO signal in the likelihood defini-

tion was crucial, since it could be easily identified as a significant source of deviations

from a residual AR(1) process that emerges from weather noise. Compared to ENSO,

two other modes of interannual climate variability, the NAO and the PDO, had a much

smaller impact on the residual, so that a removal of these signals was not justified.

Moreover, a statistical Portmanteau test could not reject the AR(1)-assumption for the

ENSO adjusted residual, and higher order AR-processes (up to fourth order) did also

not provide a significantly better explanation. We conclude that the AR(1) assumption

for the SST part of the likelihood function is a reasonable choice. A similar conclusion

can be drawn for the remaining part involving the difference between LAT and SST

response (see Section 2.4). We note as potential caveats that statistical tests are not

very powerful for short time series, and that we have not considered all potentially

influential modes of interannual climate variability, nor did we check for long-range

correlations in the residual.

In the process of constructing the likelihood function, we have capitalised on the

simple structure of the model DOECLIM by directly implementing it in an optimisa-

tion framework. Obviously, this is an infeasible task for complex general circulation

models. As a consequence, we did not need to fit the model response in terms of a

linear superposition of response patterns to the data, but could subject the full model

to the fitting procedure. The trade-off is, of course, that we can only estimate the

likelihood from global mean temperature data. The implementation of DOECLIM in

an optimisation framework allowed us to treat the remaining unknowns in our assump-

tion about the radiative forcing scenario and the temperature residual (amplitude of

ENSO signal, propagator of AR(1) process, strength of volcanic forcing) as nuisance

parameters that have to be chosen in an optimal way to provide the best fit to the data

at each point θ = (T2x, κv , QS90) of the set of hypotheses. This particular treatment

of the nuisance parameters gives less weight to the point of maximum likelihood (see

Section 2.5). The resulting likelihood function for the parameters θ = (T2x, κv , QS90)

reveals a strong positive correlation between climate sensitivity and effective vertical

heat diffusivity, and between climate sensitivity and strength of the sulphate cooling

effect. Due to this correlation, high values of climate sensitivity cannot be excluded, as

long as the upper range of values for sulphate cooling and/or ocean heat diffusivity is

not further constrained. This result has been identified by many other studies before

(e.g., Forest et al., 2002; Knutti et al., 2002). If we apply a series of classical statistical

tests to the residuals between model response and instrumental temperature record on

the parameter space θ = (T2x, κv , QS90), we can only exclude values of climate sensitiv-

ity below 1.1 K and sulphate aerosol coolings that are stronger than 1.75 W m−2 at the

5% significance level.

Along the lines of the robust Bayesian approach, we have used the likelihood function
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to update a set of prior probabilities for the climate model parameters including a

large class of prior assumptions. The prior uncertainty assessment for T2x and QS90

was based on a set of probability estimates in the literature and allowed for very low

(T2x ≈ 0.5 K) as well as very high values (T2x ≈ 10 K) of climate sensitivity. It also

included the extreme case of a vanishing sulphate cooling (QS90 ≈ 0 W m−2) due to a

neutralising effect of black carbon. The imprecise prior for ocean heat diffusivity κv was

constrained directly by observations of ocean heat uptake in the second half of the 20th

century and strongly discarded large values of κv. As a caveat, the relationship between

heat uptake and heat diffusivity was established by neglecting the uncertainty in the

instrumental SST record, albeit it can be sensitive to it depending on the (unknown)

serial correlation of the measurement errors. As a consequence of discarding large

κv, the Dempster-updated imprecise probability allocated much smaller weight to high

values of climate sensitivity (upper 95% quantile: T2x ≈ 6.9 K), but did not fully exclude

values as high as T2x = 10 K (upper probability P T2x(10 K) = 0.014). This result

agrees qualitatively with the finding of Forest et al. (2002). In contrast, the imprecise

posterior probability excluded low values of climate sensitivity T2x < 1.5 K with almost

certainty, offering strong support for the lower bound of the IPCC estimate of T2x ∈
[1.5 K, 4.5 K]. Overall, the lower probability of the IPCC estimate increased from 0.31

in the prior assessment to 0.53 after inclusion of the likelihood information. Moreover,

the radiative forcing from sulphate aerosols in the year 1990 could be constrained to

QS90 ∈ [−1.53 W m−2,−0.33 W m−2] with 99% lower confidence, giving little support to

the idea of a complete compensation of the sulphate cooling by black carbon.

We have projected the imprecise posterior probability for the climate model param-

eters onto estimates of future global mean temperature change under several emissions

scenarios for the 21st century and several long-term stabilization policies. The uncer-

tainty in the estimates for the end of the century and beyond was dominated by the

uncertainty about climate sensitivity. Due to the admission of high values of T2x, the

upper end of the warming estimates for the late 21st century is more than 30% higher

than the already high upper estimate of the IPCC. This points to the strain that a

large climate sensitivity would inflict on humankind in the late 21st century and be-

yond. Moreover, in this case stabilisation policies as low as 450 ppm CO2 equivalent

concentration in the atmosphere will generally fail to limit the warming to 2 or even 3

Kelvin. Therefore, it is of utmost importance for the discussion about long-term climate

policies to better constrain climate sensitivity from above than this could be achieved

in the present analysis and in most preceding analyses of the uncertainty about climate

sensitivity (for a noteworthy exception see Schneider von Deimling et al. 2005). We

can identify tighter limits to the low end of warming estimates. It is very unlikely that

the warming in the 21st century will remain below 2 Kelvin in the absence of policy

intervention. Moreover, we find that it will require a very stringent stabilisation level of

around 450 ppm CO2 equivalent in the atmosphere to obtain a non-negligible value for

the lower probability of limiting the warming to 2 Kelvin. This highlights the serious

challenge for climate policy.
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In the light of the preceding paragraphs we claim to have made indeed a serious

effort to capture and constrain the uncertainty about the climate response to secular

trends in the radiative forcing. What then would prevent us from regarding our results

as robust statements about the plausible range of climate sensitivity, sulphate cooling

effect and future global mean temperature change? We can identify several critical

points in our analysis that offer room for improvement. First and foremost, we have

specified a scenario for the radiative forcing in the industrial era, which only allowed

uncertainty about the contribution of sulphate and volcanic aerosols. However, the

overall uncertainty about the historical forcing trajectory is much larger due to the

poorly understood contribution of black carbon, biomass burning aerosols, solar activ-

ity and, to a lesser extent, tropospheric and stratospheric ozone (Ramaswamy, 2001).

Although the sum of these forcings is likely to be small compared to the contribution of

well-mixed greenhouse gases and sulphate aerosols, they nevertheless can influence the

shape of the likelihood function considerably. This is due to the unfortunate fact that

the assumptions about these forcings determine to a large extent whether the forcing

trajectory in the 20th century reflects the marked shaped of the 20th century warming

with a switch between warming and cooling periods around 1950 and 1980, or whether

it does not. Therefore, it will be important to include the uncertainty about these

forcings into the likelihood estimation in a next step. Second, the likelihood function

is also sensitive to the assumptions about the residual between model simulation and

data. Although the AR(1) assumption has passed several tests after removal of the

ENSO signal, we have by no means compared it against an exhaustive list of alter-

native hypotheses. Third, we have allowed for some uncertainty in our assumptions

by introducing nuisance parameters to the estimation of the likelihood function. In

principle, this could be done for any of the neglected uncertainties mentioned above.

However, we have resolved the uncertainty about these parameters by adjusting them

at each point θ = (T2x, κv , QS90) in a way that achieved the best fit to the data. While

this is better than simply fixing them, it would be much better to allow for a set of

likelihood functions LθN (θ; ŷ) : Ω→ R+, one for each constellation of nuisance param-

eters θN . In this case, we would need to update an imprecise prior probability with an

imprecise likelihood function. We believe that the methodological framework presented

in Chapter 4 can be extended in this direction. However, it will require utmost care to

limit the imprecision in the likelihood information to a degree that allows the derivation

of meaningful posterior probability bounds.

6.3 Conclusion

In summarising the entire scope of this analysis, we want to point out that we have

attached great importance to providing an imprecise probability analysis of climate

change that covers all pertinent aspects of an integrated assessment. We believe this

to be an important prerequisite for demonstrating that imprecise probability theory

provides indeed a viable uncertainty framework for an integrated assessment of climate
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change. Any such framework must be able to cope with all steps of the assessment

in order to produce meaningful results that can be fed into the climate policy arena.

Therefore, we have gone through the entire assessment chain from generating the prior

uncertainty representation for the climate model parameters to updating it with like-

lihood information, to projecting the posterior uncertainty onto estimates of future

climate change, to finally conducting a climate policy analysis under imprecise proba-

bility.

Moreover, we think that this analysis has not only demonstrated the applicability

of imprecise probabilities to the entire assessment chain, but also has revealed their

strength from treating uncertainty in more general terms than classical probability. We

want to point out the following aspects of this strength that played out in the particular

application presented here.

• We have utilised the ability of imprecise probability concepts to capture poor

states of information. We were able to construct prior uncertainty models for the

climate model parameters that contained a large class of plausible prior probabili-

ties. In doing so, it became evident that the construction of imprecise probability

models resembles a constraint-based approach where probability bounds on a lim-

ited set of events are chosen, and only those probabilities are excluded from the

analysis which violate these bounds.

• By the same token, we could construct necessary approximations for, e.g., con-

verting a continuous uncertainty model into a finite one by simply giving up

information. Therefore, the approximation always fully contained the approxi-

mated set of probabilities. This assures that our results are robust in the sense

that anything not supported by the approximation would also not have been sup-

ported by the original information. On the other hand, the approximation might

support a host of statements that would not have been supported by the original

information. Hence, if we give up too much information in the approximation

process, we will end up with meaningless results close to the state of complete

ignorance. We want to emphasise that we consider this a virtue rather than a

deficiency of the imprecise probability framework. It prevents the analyst from

gaining a false sense of precision and points her into the direction where the

informational basis needs improvement.

• We have also drawn on the flexibility of imprecise probability theory to incor-

porate very different types of evidence. For the construction of the prior belief

function, we have combined bounds on probability distribution functions with a

lower bound on probability mass functions. Most importantly, we have pointed

out at several instances that any classical probability can be directly included in

our methodological framework by means of its mass functions. As a consequence,

the updating framework presented in Chapter 4 is directly applicable to calculate

lower and upper posterior bounds for a classical probability. It is also noteworthy
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that we could have included interval uncertainty with similar ease into our analy-

sis. We have not done so because the introduction of interval uncertainty induces

much imprecision, which quickly reduces the analysis to a problem of interval

propagation.

• Finally, we have demonstrated that a larger uncertainty as captured by imprecise

probabilities does not necessarily need to impede a useful decision support. In

contrast, it can help to make the policy advice more robust since it emerged from

a much larger set of eventualities under consideration. Moreover, we have high-

lighted the rich structure of decision criteria under imprecise probability which

are much more likely to capture (at least parts of) the complexity of climate

policy making than the conventional expected utility frameworks.

We conclude that our analysis has demonstrated imprecise probability theory to

be indeed a promising framework for processing uncertainty in the integrated assess-

ment of climate change. It goes without saying that a final verdict on the usefulness of

imprecise probabilities in this field will require more experience with applications and

more methodological work in response to it than we could produce here. As already

pointed out above, improvements are particularly needed for discretising continuous

uncertainty spaces, for identifying reasonable and efficient updating procedures, for

tackling the problem of random set extension even with complex models and for in-

cluding imprecise likelihood information in the analysis. We also need investigations

of the usefulness of other imprecise probability models that do not dwell on sparse

Möbius representations. This includes, but is not limited to, probability ratio models,

density bands and ALUP models. Definitely, there is a strong need to generate prior

imprecise probability models about climate change directly from expert elicitations or

constraint-based reasoning with evidence. What is ultimately needed are applications

to real-world climate policy analysis to assess how it is impacted by the presence of im-

precision which might lead to more robust choices in some instances and might diffuse

taken for granted choices in other instances. Hence, much more work is required until

imprecise probabilities can be used as a standard tool for an improved treatment of

uncertainty in the integrated assessment of climate change. With this analysis, we have

started to build the bridge between imprecise probability theory and climate (change)

research. We hope this work to be appealing enough that researchers from either side

will feel invited to join the construction. Whether they will, is ultimately in their and

the future’s hands. We can only await the resolution of yet another uncertainty.



Appendix A

Construction of a diffusion ocean

energy balance model

In this appendix, we will describe in detail the construction of the Diffusion Ocean

Energy balance CLIMate model (DOECLIM) that is used throughout the analysis.

Section A.1 provides a deeper discussion of the assumptions underlying the linearised

treatment of the climate response to perturbations in the Earth’s energy budget than

could be provided in Section 2.1.1. Section A.2 motivates the dynamic core of the

model. Section A.3 outlines the treatment of the interior ocean which dominates the

transient model response. In Section A.4, the set of free model parameters is narrowed

to climate sensitivity T2x and effective vertical diffusivity κv of heat in the ocean.

Finally, Section A.5 describes the numerical integration of DOECLIM.

A.1 Separation of radiative forcing and temperature feed-

back

The earth surface receives almost all of its energy from the sun.1 The incoming solar

insolation exhibits the spectral density of a black body with a temperature T ≈ 6000 K,

and thus contains radiation centered around the spectral range λ = 0.4µm − 0.7µm

of visible light. The total amount of solar radiation at the average distance sun-earth

is specified by the solar “constant” S0. It depends on the 23-kyr precession of the

earth’s axis, its obliquity (tilt with respect to the orbital plane), changing with 41-kyr

periodicity, and the eccentricity of the earth orbit, exhibiting 100-kyr, 400-kyr and 2-

Myr periodicities (Milankovitch, 1941). In addition, S0 depends on the solar activity

which fluctuates with a period of approximately 11 years. Currently, the solar constant

varies between S0 = 1366 W m−2 and S0 = 1367 W m−2 (Fröhlich, 2000). The earth

receives a solar insolation of S0/4, where one factor of 1/2 stems from the fact that

only half of the earth surface receives daylight. The other factor of 1/2 accounts for the

1The contribution of geothermal processes is estimated to be less than 0.03% of the solar radiation
absorbed by the earth, and therefore can be neglected (Peixoto and Oort, 1992, Chap. 6.8.1).

I
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fact that the earth surface is approximately a sphere. About α ≈ 0.3 of the incoming

solar insolation is reflected back to space, and the remaining fraction is either absorbed

by the surface (aS ≈ 0.5) or by the atmosphere (aA ≈ 0.2) (Peixoto and Oort, 1992,

Chap. 6.1). α is called the planetary albedo.

In contrast to the short-wave radiation λ < 4µm emitted by the sun, the radiation

from the earth surface, with temperature TS ≈ 287 K, lies in the infrared spectral band

λ = 4 − 60µm. Due to the negligible overlap of the spectral bands, the atmosphere

exhibits very different absorption properties for the long-wave radiation from the surface

and for the short-wave radiation from the sun. Only a small fraction tA ≈ 0.06 of the

surface radiation can escape to space, while the largest portion is absorbed by water

vapour and GHGs like carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).

In addition, energy is exchanged by physical transport of latent heat (evaporation) and

sensible heat (convection of air parcels) from the surface to the atmosphere. This

physical heat transport, whose energy content amounts to approximately 30% of the

solar insolation, induces a strong coupling between surface and troposphere. Thus, a

perturbation of the radiation balance at the surface-troposphere interface has only a

small influence on surface temperature compared to a perturbation at the top of the

atmosphere (Harvey, 2000, pp. 41–43).

Given the situation described above, the energy balance at the surface and the

top of the atmosphere (TOA) can be cast in the following two equations (compare to

Equation 2.2),

Surface σT 4
S + L = σ (TA,eff + δTA)4 + aS

S0

4
, (A.1)

TOA tAσT
4
S + σT 4

A,eff = (1− α)
S0

4
, (A.2)

with TS Earth surface temperature ,

TA,eff Effective radiating temperature of the atmosphere to space ,

TA,eff + δTA Effective rad. temperature of the atmosphere to the surface ,

L latent and sensible heat fluxes .

Since the actual temperature in the atmosphere decreases with height, the effective

radiating temperature TA,eff for upward radiation is lower than the effective radiating

temperature TA,eff + δTA as seen from the surface. TA,eff + δTA incorporates the effect

of warmer lower layers absorbing and re-emitting radiation from colder upper layers.

We define R = (TA,eff + δTA)/TA,eff as the ratio of the two effective temperatures.

The sensible and latent heat fluxes can be parameterised by L = cL (TS − TA,eff),

with cL ≈ 2.5 W m−2K−1 a constant. Under this assumption, Equations (A.1) and (A.2)

can be solved numerically for surface temperature TS and atmospheric effective radi-

ating temperature TA,eff given R, tA, aS , α and S0. With R ≈ 1.1, S0 = 1366 W m−2

and the values of the other quantities as specified above, we find TS ≈ 287 K and

TA,eff ≈ 248 K. This amounts to a surface radiation FS ↑:= σT 4
S ≈ 390 W m−2. As
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pointed out in Section 2.1.1, FS ↑ is considerably larger than the spacebound radia-

tion at the TOA, which equals the absorbed incoming solar radiation. The greenhouse

effect G = FS ↑ −(1 − α)S0/4 specifies the amount of energy (per second and square

meter) that contributes to the warming of the earth surface due to absorption of in-

frared radiation in the atmosphere. As can be seen from Equations (A.1) and (A.2),

G = G(tA, R, aS , α, S0) is a function of the incoming solar radiation absorbed by the

surface and the earth system as a whole, of the atmospheric transmissivity tA for in-

frared radiation, and of the ratio R of effective temperature for downward and upward

radiation, which depends on the temperature profile and the distribution of clouds,

water vapour and GHGs in the atmosphere.

The sensitivity of the energy balance to small deviations of the radiation parameters

tA, R, aS, α can be assessed by a Taylor approximation. Let E = G + (1 − α) S0
4

denote the total energy received by the surface (per second and square meter). Then,

a perturbation ∆E of the incident energy at the surface is approximated by

∆E ≈ ∂E

∂R

∣∣∣∣
eq

∆R+
∂E

∂tA

∣∣∣∣
eq

∆tA +
∂E

∂α

∣∣∣∣
eq

∆α+
∂E

∂aS

∣∣∣∣
eq

∆aS +
∂E

∂S0

∣∣∣∣
eq

∆S0 . (A.3)

The resulting perturbation of the radiative equilibrium induces a heat flux Ḣ(t) at the

surface that can be described in a good approximation by (see Section 2.1.1)

Ḣ(t) ≈ ∆E(t) − 4σ T 3
S,eq ∆TS(t) . (A.4)

We can simplify Equation (A.4) by approximating ∆E(t) with Equation (A.3). The

changes ∆R, ∆tA, ∆α, and ∆aS depend on surface temperature TS and various other

climate system properties y (not necessarily independent of TS), some of which might

be altered due to human and natural interferences. Obviously, the solar constant S0

is independent of any earth system properties. In a second approximation, we assume

that the quantities x ∈ {R, tA, α, aS } vary linearly around their equilibrium values,

ẋ(y, Ts) =
∂x

∂y
(y, TS) ẏ(t) +

∂x

∂TS
(y, TS) ṪS(t)

≈ ∂x

∂y
(yeq, TS,eq) ẏ(t) +

∂x

∂TS
(yeq, TS,eq) ṪS(t) . (A.5)

Approximation (A.5) is valid, if the sensitivity of x to small interferences ∂x
∂y as

well as the magnitude of the instantaneous temperature feedback ∂x
∂TS

neither saturates

nor is exacerbated significantly with increasing (or decreasing) surface temperature in

the range of TS, y and x under consideration. These assumptions need close scrutiny.

It can be expected, for example, that the sensitivity of surface albedo to a change in

surface temperature differs considerably for different extents of continental ice sheets.

Thus, the validity of Approximation (A.5) will be limited to small temperature changes

∆TS, and time scales of a few centuries. Keeping this in mind, the heat flux into (or
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out of) the earth system can be approximated by inserting Equations (A.3) and (A.5)

into Equation (A.4). We have

Ḣ(t) =
∂E

∂R

∣∣∣∣
eq

∆R(t, TS,eq) +
∂E

∂tA

∣∣∣∣
eq

∆tA(t, TS,eq)

︸ ︷︷ ︸
QAtm

+

∂E

∂α

∣∣∣∣
eq

∆α(t, TS,eq) +
∂E

∂aS

∣∣∣∣
eq

∆aS(t, TS,eq)

︸ ︷︷ ︸
QAlb

+
∂E

∂S0

∣∣∣∣
eq

∆S0(t)

︸ ︷︷ ︸
QSol

−

(
4σ T 3

S,eq −
∂E

∂tA

∂tA
∂TS

∣∣∣∣
eq

− ∂E

∂R

∂R

∂TS

∣∣∣∣
eq

− ∂E

∂aS

∂aS
∂TS

∣∣∣∣
eq

− ∂E

∂α

∂α

∂TS

∣∣∣∣
eq

)

︸ ︷︷ ︸
λ

∆TS(t)

= QAtm(t) +QAlb(t) +QSol(t)− λ∆TS(t) , (A.6)

with QAtm radiative forcing due to changes in atmospheric parameters,

QAlb changes in albedo parameters, QSol changes in solar activity,

λ climate feedback strength .

Hence, the approximations made so far have allowed us to recover the linear energy

balance model (2.3) postulated in Section 2.1.1. As a direct consequence of separating

∆E(t) into a radiative forcing and a linear temperature feedback on the radiation bal-

ance, the equilibrium temperature response to a radiative perturbation is predicted to

be proportional to the amount of radiative forcing independently of the forcing mech-

anism. We will briefly discuss in how far this strong assumption is justified.

The radiative perturbation at the tropopause before any temperatures are allowed

to adjust is called the instantaneous radiative forcing. Since the stratosphere and tropo-

sphere are only weakly coupled, while the surface and troposphere are tightly coupled

due to the presence of large physical heat fluxes, the stratospheric temperatures will

adjust independently and much faster (within months) than the troposphere-surface

temperatures. This alters in turn the net radiation at the tropopause, which will equal,

in stratospheric equilibrium, the net radiation at the TOA. The remaining radiative

perturbation after stratospheric adjustments, but before any surface-troposphere tem-

peratures are allowed to adjust, is called the adjusted radiative forcing (Harvey, 2000,

pp. 42). Studies with atmospheric general circulation models (AGCMs) have confirmed

that the equilibrium surface temperature response was indeed proportional to the ad-

justed radiative forcing (e.g. Marshall et al., 1994). It is also rather independent, to

within 20%, of the type of forcing mechanism whether constituted by solar variations,

well mixed GHGs or scattering aerosols (mostly sulphate) (Hansen et al., 1997; Forster

et al., 2000; Rotstayn and Penner, 2001; Stuber et al., 2001; Joshi et al., 2003).

However, these studies also indicated that the temperature response to the adjusted



A.1 Separation of radiative forcing and temperature feedback V

radiative forcing of tropospheric and stratospheric ozone and absorbing aerosols (mostly

soot) was markedly different. For some species of absorbing aerosols, the adjusted

radiative forcing does not even predict the sign of the consequent temperature change

(Cook and Highwood, 2004). The markedly different response is due to the strong

vertical variation of ozone and aerosol concentrations in the atmospheric column. This

leads to an inhomogeneous heating of the atmospheric layers due to absorption of

infrared radiation by ozone and absorption of solar radiation by soot. Since cloud cover

tends to decrease in the atmospheric layers having the greatest direct heating, ozone

and absorbing aerosols induce a direct cloud feedback on the ratio of effective radiating

temperatures R. In the case of absorbing aerosols, the direct cloud feedback counteracts

the net negative radiative forcing after stratospheric adjustments.

To address the issue, Shine et al. (2003) recently proposed the concept of adjusted

troposphere and stratosphere forcing (ATS forcing), which specifies the radiative per-

turbation at the TOA after stratosphere and troposphere were allowed to adjust for

fixed surface temperature. They showed with an intermediate AGCM that the ATS

forcing differs considerably from the adjusted (stratosphere only) forcing for ozone and

absorbing aerosols, and that the equilibrium temperature response was indeed propor-

tional to the ATS forcing induced by these substances. Moreover, the relative strength

of the temperature feedback to the ATS forcing, captured by the parameter λ in Equa-

tion (A.6), depends much less on the forcing mechanism (within 10%) than it is the

case with the adjusted (stratosphere only) forcing. Thus, the ATS forcing seems to be

the proper concept to use in simple energy balance models based on Equation (A.6).

Unfortunately, the proposal of Shine et al. (2003) is too recent to be included in this

analysis, since there exists no other estimates for the ATS forcing of GHGs and aerosol

species, and the corresponding feedback strength to date. Therefore, we will continue

the common practice of using the adjusted (stratosphere only) forcing.

Given the complexity of the climate feedback mechanisms discussed in Section 2.1.1,

it is not a trivial result that the equilibrium surface temperature change depends fairly

linear on the adjusted radiative forcing in the range of the anthropogenic perturbations

considered here (Q < 10 W m−2). Another question concerns the transient behaviour of

the climate feedback strength λ. Since the transient temperature response is dominated

by the ocean, an investigation of the time-dependence of λ requires experiments with

atmosphere-ocean general circulation models (AOGCMs). The feedback strength at

any given point in time, for a fixed radiative forcing Q, can be calculated by (cf.

approximation A.6)

λ(t) =
Q− Ḣ(t)

∆TS(t)
. (A.7)

λ(t) is generally expressed in terms of effective climate sensitivity T2x,eff(t) := Q2x/λ(t),

which constitutes the climate sensitivity due to a doubling of CO2 that would occur

at equilibrium, if the feedback strength was held fixed at its value at time t (Mur-

phy, 1995). Several experiments with different versions of the Hadley Centre Coupled

Model (HadCM2 and HadCM3) have shown an increase of effective climate sensitiv-
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ity with time (Murphy, 1995; Senior and Mitchell, 2000; Gregory et al., 2004). This

time-dependence was associated with differences in cloud feedback arising from inter-

hemispheric temperature differences due to the slower warming rate of the southern

ocean. However, other AOGCMs show little dependence of effective climate sensitiv-

ity on time. Watterson (2000), for instance, found with the Commonwealth Scientific

and Industrial Research Organisation (CSIRO) coupled model that T2x,eff does not vary

significantly during the experiments. Moreover, a suite of transient runs with various

AOGCMs have been successfully emulated by an 1-D upwelling-diffusion energy bal-

ance model (Cubasch and Meehl, 2001) and a 2-D model of intermediate complexity

(Sokolov and Stone, 1998; Sokolov et al., 2003), which both assumed constant climate

sensitivity. Thus, besides its limitations, Approximation (A.6) provides a useful basis

to separate an anthropogenic (or natural) perturbation of the earth’s energy balance,

captured in terms of radiative forcing, from an assumed linear surface temperature

response. This allows to work with the concept of an overall climate sensitivity to

radiative perturbations in a meaningful manner.

A.2 Atmosphere-ocean-land model

In its initial form, the energy balance model (EBM) of the atmosphere-ocean-land

system is constituted by four stylized boxes: land L, troposphere over land AL, tro-

posphere over the sea AS, and ocean mixed layer S. The model does not include the

stratosphere, since it adjusts to a radiative perturbation within months (Harvey, 2000).

Hence, we will assume an equilibrated stratosphere throughout the analysis, so that the

radiative perturbation at the tropopause equals the radiative perturbation at the TOA.

The radiative heating is distributed among the boxes, before diffusing into the interior

ocean. Such a 4-box energy balance model is described by (cf. Murphy, 1995):

Troposphere (land) CA ṪAL = Q̃AL − λ̃AL TAL −
k̃

fL
(TAL − TAS)− k̃L (TAL − TL)

Land CL ṪL = Q̃L − λ̃L TL − k̃L (TL − TAL)

Troposphere (sea) CA ṪAS = Q̃AS − λ̃AS TAS −
k̃

1− fL
(TAS − TAL)− k̃S (TAS − TS)

Ocean mixed layer cV zS ṪS = Q̃S − λ̃S TS − k̃S (TS − TAS)− FO ,

with λ̃AL,L,AS,S climate feedback parameter in the respective boxes (in [ W m−2K−1]),

k̃ atmospheric land-sea heat exchange coefficient (in [ W m−2K−1]),

k̃L, k̃S atmosphere-land/sea heat exchange coefficients (in [ W m−2K−1]),

FO heat flux into the interior ocean (in [ W m−2]),

CA, CL heat capacity of atmosphere, land (in [ J m−2K−1]),

cV heat capacity of cubic metre of seawater (in [ J m−3K−1]),

zS depth of ocean mixed layer (in [m]),

fL land fraction of earth surface area.
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TAL, TL, TAS , TS are the effective temperature anomalies in the respective boxes

relative to their equilibrium temperatures before the radiative perturbation is applied.

They have replaced the single state variable TS in Equation (2.3). Likewise, the globally

aggregated radiative perturbation Q at the TOA, after stratospheric adjustments, is

replaced by radiative forcings Q̃AL and Q̃AS of the troposphere over land and sea, re-

spectively, and radiative forcings Q̃L, Q̃S at the troposphere-land/sea interface. Hence,

the differential equations are based on the linear ansatz (2.3), and include in addi-

tion the anomalous heat transfer to the neighbouring boxes (no direct heat transfer is

assumed between land and sea box). In an often used approximation, the heat flux

anomaly is assumed to be proportional to the temperature anomaly gradient between

the boxes. Since we express the heat flux per unit area, we need to weigh the heat

transfer coefficient between troposphere over land and sea by the land fraction of the

earth surface.

The 4-Box model exhibits a variety of parameters, of which in particular the climate

feedback parameters of the individual boxes will be difficult to estimate. Moreover, the

partitioning of the radiative forcing onto the four boxes will depend on the forcing agent.

Hence, the separation of troposphere and surface introduces a detail, that complicates

the assessment of radiative forcing and climate feedback strength. However, there exists

a strong coupling between surface and troposphere due to large physical heat fluxes of

latent and sensible heat (see Equation A.1). A perturbation of the radiation balance

at the surface-troposphere interface equilibrates much faster due to readjustments of

the surface-troposphere temperature gradient than a perturbation at the TOA due to

a change of the effective radiating temperature of the entire earth system (Harvey,

2000, Chap. 3). Hence, for the sake of modelling the secular climate response to a

radiative perturbation, we can assume that the tightly coupled surface and troposphere

temperatures increase in proportion to each other (ṪAL ≈ aΓ,LṪL, ṪAS ≈ aΓ,S ṪS). It

is generally expected that the troposphere warms faster than the surface (aΓ,L > 1,

aΓ,S > 1). This follows from the fact that the lapse rate is smaller in moist air than

in dry air. If the atmosphere warms, its moisture content will increase on the global

average and, therefore, the lapse rate decreases. The enhancement of effective tropo-

sphere warming relative to surface warming has been investigated in several AOGCM

experiments, suggesting a globally averaged value of aΓ = 1.2 (Hansen et al., 2002).

Satellite-borne measurements have seemingly indicated the opposite behavior with sur-

face warming outpacing troposphere warming (Mears et al., 2003). Recently, Fu et al.

(2004) proposed an explanation to reconcile model projections with observations by

correcting the satellite data for the stratosphere cooling.

Since a large portion of the ocean covers the humid low latitudes while much of

the land mass is situated at the drier high latitudes, the enhancement of troposphere

warming will be more pronounced over the ocean (aΓ,S > aΓ,L). The sea ice feedback

provides an additional, strong mechanism that warms the marine atmosphere faster

than the sea surface. In areas with sea ice, the marine air is in contact with the cold

ice, and therefore much colder than the underlying water temperature. If the sea ice
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cover retreats in a warming climate, the marine atmosphere over a significant portion

of the high latitudes will warm rapidly as the cold ice is replaced by the warmer water

surface. On the global average, this can lead to a 20% stronger increase in marine air

temperature than in sea surface temperature (Raper and Cubasch, 1996).

By drawing on the proportionality between surface and troposphere warming we

can attempt to simplify the 4-box model. EBMs that lump together atmosphere and

surface boxes have been constructed before for the assessment of anthropogenic climate

change (e.g., Rowntree, 1998). For our modelling purpose, we express the increase in

effective atmospheric temperatures TAL and TAS in terms of the corresponding increase

in near surface air temperature (SAT), i.e. ṪAL = aΓ,L Ṫ
SAT
L , and ṪAS = aΓ,S Ṫ

SAT
S .

Over land, the increase in SAT is taken to be equal to the increase in land surface

temperature TL. Over the sea, the increase in SAT being enhanced by a reduction in

sea ice cover is taken proportional to the increase in ocean mixed layer temperature

TS , i.e. Ṫ SATS = bSI ṪS . Under these assumptions, we can amalgamate the differential

equations for the land and surface boxes, and the model simplifies to

Land + Tropos. ( aΓ,LCA + CL ) ṪL = QL − λL TL −
k

fL
(TL − bSI

aΓ,S

aΓ,L
TS) (A.8)

Sea + Tropos. ( aΓ,S bSI CA + cV zS ) ṪS = QS − λS TS (A.9)

− k

1− fL
(bSI

aΓ,S

aΓ,L
TS − TL)− FO ,

where QL = Q̃AL + Q̃L, QS = Q̃AS + Q̃S are the radiative forcings at the TOA after

stratospheric adjustments, λL = aΓ,L λ̃AL+λ̃L, λS = aΓ,S bSI λ̃AS+λ̃S the climate feed-

back parameters of the surface-troposphere system over land (relative to land surface

temperature) and sea (relative to SST), respectively, and k = aΓ,L k̃ the effective land-

sea heat exchange coefficient relative to the temperature gradient in the surface air. In

the following we will neglect the fraction aΓ,S/aΓ,L, so that the dynamic core of our

energy balance DOECLIM is represented by Equation (2.5) and (2.6) in Section 2.1.2.

A.3 Interior ocean model

The transient behavior of the EBM is dominated by the heat uptake of the ocean.

Therefore, we need a reasonable model to calculate the heat flux FO into the interior

ocean. Most EBMs for the assessment of anthropogenic climate change utilize a 1-D

upwelling-diffusion ocean model that describes the transfer of heat in the oceanic water

column (Hoffert et al., 1980; Dickinson and Schaudt, 1998). The model is described

by the so-called diffusion-convection equation of heat in fluid or gaseous media (see

Appendix B),

∂

∂t
TO(z, t) =

∂

∂z

(
κv(z)

∂

∂z
TO(z, t)

)
+ w

∂

∂z
TO(z, t) , (A.10)
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where z > 0 denotes the depth of the interior ocean below the mixed layer, TO(z, t) the

ocean temperature at depth z and time t, κv the effective vertical diffusivity of heat (in

units of m2 s−1) and w the upwelling velocity in the water column, which transports heat

from the bottom to the surface. In the context of climate modelling, Equation (A.10)

is called upwelling-diffusion equation, and we will adopt this terminology in order to

avoid confusion. It gained interest as a model of the globally averaged ocean column,

because its equilibrium solution,

∂

∂t
TO(z, t) = 0 ⇒ TO,eq(z) = TS,eq e

−
R z
0 w/κ(z′) dz′ ,

provides a good explanation for the observed global mean temperature profile in the

ocean for plausible values of upwelling velocity w ≈ 4 m yr−1 and uniform vertical

diffusivity κv(z) = 1 cm2 s−1 (Munk, 1966).

Consequently, the 1-D upwelling-diffusion model has been employed to model the

penetration of a heat anomaly into the ocean due to rising surface temperatures (Hof-

fert et al., 1980; Wigley and Raper, 1992; Schlesinger et al., 1997; Harvey and Huang,

2001). Since the upwelling-diffusion equation is linear, the anomalous heat fluxes are

governed by Equation (A.10) with initial equilibrium condition TO(z, 0) = 0. Then

TO(z, t) represents the temperature anomaly at depth z and time t relative to its equi-

librium value at depth z and time t = 0. Typical upwelling-diffusion ocean models for

the anomalous heat fluxes are discussed in detail in Appendix B. They usually include

a heat source at the ocean floor which is motivated by downwelling polar water entering

the main ocean column at the bottom. Here, we only mention that a “bucket” ocean

model with depth zB = 4000 m, and a uniform cross-section and vertical diffusivity of

the water column yields a good approximation of a more realistic upwelling-diffusion

model with depth-dependent cross section and diffusivity profiles. The heat accumula-

tion that arises from the decrease of ocean cross-section with depth is counteracted to

a large degree by the increase of vertical diffusivity with depth (see Fig. B.2). It is also

discussed in Appendix B that upwelling-diffusion models have difficulties to describe the

warming of the ocean column as it is seen in CO2 doubling experiments with coupled

atmosphere-ocean general circulation models (AOGCMs). In contrast, the temperature

anomaly profiles seem to be well described by a pure diffusion ocean with vanishing up-

welling velocity w = 0 m yr−1 (Raper et al., 2001). Since our intention is to construct a

model which is as simple as possible, and exhibits a minimum of uncertain parameters,

we restrict ourselves to a pure diffusion ocean model.

Hence, we consider an ocean model defined by the following heat diffusion problem:

for 0 < z < zB :
∂

∂t
T (z, t) = κv

∂2

∂z2
TO(z, t) , (A.11)

B.C.: TO(0, t) = TS(t) ,
∂

∂z
TO(zB , t) = 0 ,

I.C.: TO(z, 0) = 0 .
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The boundary conditions ensure that the interior ocean temperature at z = 0, i.e., the

boundary to the mixed layer, equals the mixed layer temperature TS, and that the heat

flux into the ocean floor at z = zB vanishes. As shown in Appendix B, Problem (A.11)

can be solved analytically. The solution consists in an infinite series of solutions for the

heat diffusion problem on the half line, i.e.,

TO(z, t) = TS(t)−
∫ t

0
ṪS(t′) Erf

(
z

2
√
κv(t− t′)

)
dt′ (A.12)

+

+∞∑

n=1

(−1)n
∫ t

0
ṪS(t′)

(
Erf

(
2nzB − z

2
√
κv(t− t′)

)
− Erf

(
2nzB + z

2
√
κv(t− t′)

))
dt′ .

Expression (A.12) allows us to calculate the heat flux into the interior ocean as a func-

tion of the mixed layer temperature TS , which then can be inserted into Equation (A.9)

to close the energy balance model (A.8)-(A.9) (see Section 2.1.2). Once Equations (2.5)-

(2.6) are solved, we can recover the development of the entire temperature anomaly

profile in the interior ocean by use of Equation (A.12).

A.4 Model parameterisation

Equations (2.5) and (2.6) constitute the dynamic core of DOECLIM, which is com-

plemented by Expression (2.7) for the heat flux in the interior ocean. The model

parameters are summarised in Table 2.1. For the purpose of the imprecise probability

analysis conducted in the main body of this thesis, we want to limit the free model

parameters to the global climate sensitivity T2x, and the effective vertical diffusivity

κv of heat in the ocean. Hence, we have to determine the remaining parameter values

from a comparison with complementary data that are not directly related to the global

mean temperature response on secular time scales.

We have used seasonal data to estimate the land-sea heat exchange coefficient k and

the thermal inertia of the land-troposphere box CAL (see Section A.4.1). Admittedly,

this constitutes a difficult choice since our highly aggregated energy balance model is

better suited to simulate secular trends in response to a much smaller forcing modu-

lation than is represented by the seasonal cycle. On secular time scales, the interior

ocean rather than the mixed layer dominates the inertia of the earth system, so that

a detailed representation of the atmosphere-ocean interaction becomes less important.

Nevertheless, simple energy balance models have been successfully calibrated with sea-

sonal data (Schlesinger et al., 1997), or even been used to deduce estimates for climate

sensitivity from seasonal variations (Dutton, 1995). Therefore, we consider it a viable

approach to calibrate those model parameters with seasonal data that influence the

model response on monthly time scales (k, CAL).

Concerning the remaining parameters, we have estimated the marine surface air

warming enhancement bSI (see Section A.4.2) and the climate feeback parameters λL
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and λS (see Section A.4.3) from an ensemble of model runs with the climate model

of intermediate complexity CLIMBER-2 (Schneider von Deimling et al., 2005). The

geographical parameters fL and fSO can be derived from topographical data of the

earth surface. The choice of a “bucket” ocean with depth zB = 4000 m is motivated

in Appendix B. It is the usual choice for 1-D upwelling-diffusion ocean models with

uniform water column (Wigley and Raper, 1992; Schlesinger et al., 1997). The specific

heat capacity cV of seawater is well known from the literature (e.g., Dickinson, 1981).

A.4.1 Estimation of thermal inertia and land-sea heat flux

We follow the approach by Schlesinger et al. (1997), who used the model response

to the seasonal cycle of solar insolation to calibrate the effective heat capacities and

the land-sea heat exchange coefficient k. Fig. A.1.a shows the seasonal cycle of solar

insolation averaged over land, ocean and global surface area around the mean value

of S0/4 ≈ 341.5 W m−2. It was calculated by weighing a latitudinally resolved map of

daily insolation with fractional land, ocean, and global surface area, respectively. The

average solar insolation at a given latitude and day of the year can be derived from

the seasonal variation of solar declination (latitude where sun is overhead at noon) and

sun-earth distance (Peixoto and Oort, 1992, Chap. 6.3.2). Due to the concentration of

land masses on the Northern hemisphere (NH), the seasonal cycle of solar insolation

over land is quite pronounced. It peaks during NH summer, and attains its minimum

in NH winter. Since the larger part of the ocean area lies in the Southern hemisphere,

the solar insolation over the ocean shows the opposite, albeit less pronounced behavior.

The global average insolation reflects the fact that the earth reaches its aphelion during

NH summer.

For estimating the seasonal cycle of solar radiation that is absorbed by the earth

system, we also need to know the albedo of land and ocean areas. More precisely,

the global daily radiation SQi(t) taken up by surface type i = L,O (land/ocean)

is determined by the solar constant S0, the modulation of solar insolation DQ(θ, t)

at a given latitude and day of the year, the fractional longitudinal and latitudinal

distribution fi(φ, θ) of a particular surface type, and the spatial and seasonal variation

of planetary albedo α(φ, θ, t), i.e.,

SQi(t) =
1

fi

S0

4

1

4π

∫ π/2

−π/2

∫ π

−π
DQ(θ, t) fi(φ, θ) (1− α(φ, θ, t)) dφ cos(θ) dθ

:=
S0

4
DQi(t) (1− αi(t)) (A.13)

⇒ DQi(t) =
1

fi

1

4π

∫ π/2

−π/2

∫ π

−π
DQ(θ, t) fi(φ, θ) dφ cos(θ) dθ (A.14)

⇒ αi(t) =

∫ π/2
−π/2

∫ π
−π DQ(θ, t) fi(φ, θ)α(φ, θ, t) dφ cos(θ) dθ

∫ π/2
−π/2

∫ π
−π DQ(θ, t) fi(φ, θ) dφ cos(θ) dθ

, (A.15)
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Figure A.1: Seasonal cycles of solar insolation (a), effective planetary albedo (b), solar radiation
absorbed by the earth system (c), and corresponding surface air temperatures (d). Shown
are the averages over land and ocean surfaces. The monthly temperature data (indicated by
diamonds with error bars delineated by ’+’) was interpolated with a cubic spline.

where DQi(t) is the modulation of solar insolation at a given day of the year averaged

over surface type i, and αi(t) the daily average effective planetary albedo over surface

type i. On the annual average, the land surface receives only a fraction DQL = 0.96 of

the solar insolation S0/4, while the ocean receives a fraction DQO = 1.02.

We use the 2.5◦ × 2.5◦ climatology of monthly mean planetary albedo provided

by the NASA Earth Radiation Budget Experiment (ERBE, data publicly available at

iridl.ldeo.columbia.edu/SOURCES/.NASA/) to derive the seasonal variation of albedo

over land, ocean and global surface areas. Missing data for high latitude NH albedo

during NH winter months, and high latitude SH albedo during NH summer months

were filled by inserting the maximum measured albedo at the respective grid points.

We generated a daily time series by interpolating the monthly data at each grid point

with a cubic spline. Fig A.1.b shows the seasonal variations of the effective planetary

albedo αi(t) over land, ocean, and on the global average. The land albedo is clearly
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dominated by the NH seasonal cycle, reaching its maximum during NH winter and its

minimum during NH summer. The situation is different for the albedo of the oceans. It

peaks both during NH winter and SH winter, when the sea ice extent in the Arctic ocean

and around Antarctica, respectively, reaches its maximum. In the annual average, the

albedo αL = 0.35 over land is larger than the albedo αO = 0.28 over the oceans.

Fig. A.1.c shows the seasonal anomalies of the solar radiation absorbed over land

and over oceans from the respective annual mean values (dashed-dotted line). They are

compared with the anomalies that would be derived under the assumption of a time-

invariant albedo fixed at the annual average value αi (solid line). It can be seen that

the seasonal variation of albedo enhances the seasonal cycle of absorbed solar radiation.

While the effect is small over the oceans, it is considerable over land. In particular, the

distinct minimum of land albedo during NH summer enhances the positive anomaly of

absorbed radiation in NH summer by approx. 30%, and delays its maximum by approx.

1 to 2 weeks.

The radiation anomalies can be compared with the seasonal cycle of temperature

anomalies over land and oceans as shown in Fig. A.1.d. The data were derived from

the monthly global mean land and sea surface temperature time series for the period

1880-2003 provided by the US National Climatic Data Center (NCDC; data publicly

available at www.ncdc.noaa.gov/oa/climate/research/anomalies/anomalies.html). The

time series was based on the monthly mean 1961-90 climatology of Jones et al. (1999).

Seasonal anomalies showed no significant trend over the last 120 years, so that the

mean anomaly averaged over the period 1880-2003 and its standard deviation could

be directly estimated for each month. The much larger amplitude of the temperature

anomaly over land than over the oceans indicates the much smaller thermal inertia of

the land-troposphere system compared to the ocean mixed layer. Since the seasonal

signal over land is more pronounced, we will try to determine the land-sea heat exchange

coefficient k by fitting Equation (2.5) to the observed land temperature anomalies.

The energy balance model was initially constructed to simulate annual mean tem-

perature changes in response to secular perturbations of the radiation balance. We

need to check carefully if the same modelling framework can be used to simulate daily

mean temperature anomalies in response to the seasonal cycle of absorbed solar radia-

tion. Therefore, we repeat the perturbation analysis around the radiative equilibrium

as outlined in Appendix A for the case of seasonal radiation changes over land. By

neglecting any decadal or slower perturbations to the radiation balance, we assume

that the outgoing longwave radiation from the land surface (σT 4
L) plus the heat flux to

the sea equals, on the annual average, the solar radiation absorbed over land plus the

additional radiation energy G provided by the greenhouse effect (cf. Equation 2.2), i.e.,

E := G+ (1− αL)DQL
S0

4
= σT 4

L +
k

fL
(TL − T̃S) .

Here, T̃S denotes the sea surface temperature as depicted in Fig. A.1.d. We neglect

warming differentials between sea surface and marine air temperature due to changes
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in sea ice cover, since seasonal changes in Arctic and Antarctic sea ice roughly coun-

terbalance each other (Peixoto and Oort, 1992, Fig. 9.3).

A seasonal perturbation ∆E(t) of the radiation balance leads to a heat fluxCALṪL(t)

into the land-troposphere system, and consequently to a change ∆T (t) of land temper-

ature, i.e.

CALṪL(t) = E + ∆E(t)− σ (TL + ∆TL(t))4 − k

fL
(TL + ∆TL(t)− T̃S + ∆T̃S(t)) .

Neglecting second order perturbation terms, we can approximate the radiative damp-

ing by a linear term, and separate the radiative perturbation into a greenhouse effect

anomaly, a seasonal anomaly of solar insolation over land (for annual mean albedo),

and a seasonal perturbation of land albedo (for annual mean insolation), i.e.

CALṪL(t) ≈ ∆G(t) + (1− αL) ∆DQL(t)
S0

4
−∆αL(t)DQL

S0

4

−4σT 3
L∆TL(t)− k

fL
(∆TL(t)−∆T̃S(t)) ,

where ∆DQL(t) := DQL(t) − DQL, and ∆αL(t) := αL(t) − αL. While the change

of solar insolation constitutes the radiative forcing that drives the seasonal cycle, the

land albedo and the greenhouse effect respond to changes of the land temperature. If

we assume that the temperature feedback on the radiation balance varies linearly with

temperature change around its equilibrium value, we can add up the greenhouse, albedo

and direct radiative feedback, so that

CALṪL(t) = (1− αL) ∆DQL(t)
S0

4
− λL ∆TL −

k

fL
(∆TL −∆T̃S) , (A.16)

where λL denotes the climate feedback parameter discussed above. The radiative forcing

Q(t) = (1 − αL) ∆DQL(t)S0/4 in Equation (A.16) is the daily solar insolation that

would be absorbed by a land mass with the annual mean albedo αL (solid line in

Fig. 5c).

The climate feedback parameter λL will be of similar magnitude on seasonal and sec-

ular time scales, if the feedback processes over land respond very fast, i.e., on the order

of hours and days, to a temperature change. This is particularly true for the green-

house feedback, which involves changes of atmospheric water vapour content, lapse rate

and cloud cover. Analyses of ERBE data have shown that the seasonal change of the

natural greenhouse effect scales indeed fairly linear with seasonal surface temperature

anomalies (e.g., Dutton, 1995). The albedo feedback is more critical, since the response

of continental snow cover might lag surface temperature up to several weeks. Fig. A.2

clearly shows the delay of the albedo response to rising temperatures in spring (MAM),

which leads to deviations from a linear relationship between the two quantities. Since

Model (A.16) neglects the inertia in the albedo feedback, a comparison with the tem-

perature data depicted in Fig. A.1.d might give rise to a bias in the estimates for the
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Figure A.2: Relationship between the seasonal cycle of land surface air temperature and the
seasonal variation of effective planetary albedo over land.

land-sea heat exchange coefficient k and the effective heat capacity CAL of the land-

troposphere system. We check for such a possible bias by comparing the observations

with a second model, which treats the albedo feedback separately, i.e.,

CALṪL(t) = (1− αL) ∆DQL(t)
S0

4
−∆αL(t)DQL

S0

4
− λ′L ∆TL −

k

fL
(∆TL −∆T̃S) .

(A.17)

The first two terms on the right-hand side of Equation (A.17) summarize, in a first order

approximation, the seasonal anomaly of absorbed solar radiation over land including the

albedo feedback (dashed-dotted line in Fig. A.1.c). The second order term proportional

to ∆DQL(t) ∆αL(t) contributes only approx. 1 W m−2 to the anomaly, and therefore

can be neglected. The climate feedback parameter λ′L in Model (A.17) explicitely

excludes the albedo feedback, and therefore overestimates the negative temperature

feedback on the radiation balance. Comparing with Model (A.16), it is λ′L > λL.

We have used a simple Euler scheme to solve Models (A.16) and (A.17) numer-

ically. The time step of the discretization, i.e. one day, is an order of magnitude

smaller than the time scales of the temperature feedback and the heat flux to the

ocean. The seasonal anomaly of absorbed solar radiation, for annual average land

albedo in Model (A.16) and seasonally varying albedo in Model (A.17), was prescribed

(see Fig. A.1.c). Likewise, the observed seasonal anomaly of sea surface temperature

(see Fig. A.1.d) was used to calculate the heat flux to the ocean. Models (A.16) and

(A.17) generate the seasonal cycle of land surface air temperature anomaly ∆TL(t),

whose shape and amplitude depends on three parameters: the climate feedback pa-

rameter λL, and λ′L respectively, the land-see heat exchange coefficient k, and the

effective heat capacity CAL of the land-troposphere system. We have estimated the

latter two parameters k and CAL from a comparison of the model output with the

observed monthly mean land temperature anomalies (see Fig. A.1.d) for fixed values of



XVI App. A: Construction of a diffusion ocean energy balance model

λL(λ′L) ∈ [−0.5 W m−2K−1, 5.1 W m−2K−1].

It can be expected that the seasonal data for the period 1880-2003 scatters around

the monthly mean climatology in a highly correlated manner. Therefore, it would be

misleading to fit Models (A.16) and (A.17) to the data by directly minimizing the least

square sum of the residuals between monthly averaged model output and observations.

Instead, we have estimated the covariance matrix Covij between temperature deviations

from the mean climatology in months i and j. It turned out that Covij was degenerate

so that one linear combination of monthly mean deviations from the climatology was

fully determined by knowledge of the remaining 11 independent linear combinations.

We have calculated this 11D-eigenbasis of the 12D-measurement space by diagonalising

the covariance matrix, and projected both observations and model output onto it. Then

Models (A.16) and (A.17) were fitted to the data by minimizing the least square sum

of the residuals between the projected observations and model outputs weighted by

the variance of the data along the directions of the eigenbasis. Error ellipsoids around

the minimizing point (k∗, C∗AL) were calculated from the curvature of the least square

sum around the minimum. Under the assumption of normally distributed residuals

on this eigenbasis, we expect the least square sum to constitute a realisation of a χ2

distribution with 9 degrees of freedom (11 data points, 2 parameters). Hence, a 95%

confidence ellipsoid encloses the parameter region, for which χ2(k,CAL) < 16.92.

Fig. A.3 summarizes the result of the model data comparison. A typical fit to the

data is shown in Fig. A.3.a for Model (A.16) and λL = 1.5 W m−2K−1. The agreement

is generally very good except for NH winter, for which the model shows a slightly larger

cooling. The least square minima for Models (A.16) and (A.17) and different values

of climate feedback strength λL exhibited χ2(k,CAL)-values between 4 and 7. 60% to

90% of the realizations of a χ2 random variable with 9 degrees of freedom would have

yielded higher values. This indicates that the agreement between model and data is

too good given the error estimates. The errors might be slightly overestimated due

to a small trend in some months of the seasonal cycle during the period 1880-2003.

Nevertheless, the data strongly constrains the two parameters k and CAL. Fig. A.3.b

shows the ‘95% confidence’-ellipsoids for Model (A.16) and 13 different values of λL.

The ellipsoids show a small positive correlation between k and CAL.

The best estimate of the land-sea heat exchange coefficient k∗ scales strictly linear

with the climate feedback parameter λL, and λ′L respectively (see Fig. A.3.c). The

error margins on the k∗ values (depicted by +) constitute the projection of the ‘95%

confidence’-ellipsoids onto the k-axis. The two Models (A.16) and (A.17) produce

exactly the same slope of the linear dependence between k∗, and λL and λ′L, respectively.

Their λ-offset is λ′L(k∗)− λL(k∗) = 1.69 W m−2K−1 (see dotted lines in Fig. A.3.c). It

reflects the fact that λL includes all temperature feedbacks, while λ′L does not contain

the positive (λ reducing) albedo feedback. Hence, the offset can be used to estimate the

impact of the albedo feedback on the radiation balance to amount to approx. 1.7 W m−2

per unit temperature. This value agrees well with estimates that can be deduced from

Fig. (A.2). An albedo reduction ∆α = 0.06 − 0.07 for a temperature increase of
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Figure A.3: Comparison of Models (A.16) and (A.17) with observed seasonal cycle in the
period 1880-2003.

∆T = 12 K amounts to an increase ∆αDQLS0/4 ≈ 20 − 23 W m−2 of absorbed solar

radiation over land.

We conclude that Model (A.16) provides a very good representation of the seasonal

temperature anomaly over land. Including the albedo feedback in the linear tempera-

ture feedback terms does not bias the estimates for k∗. A strictly linear relationship

between the land-sea heat exchange coefficient k∗ and the climate feedback parameter

λL over land can be identified:

k = bk − ak λL , with bk = 1.59 ± 0.063 W m−2K−1 , ak = 0.31 (A.18)

Since the best fit values k∗ do not scatter around the linear relationship, we assume that

the slope estimate contains only a negligible error. The error margin on the intersect

was calculated from the average range of the ‘95% confidence’-intervals around the best

fit values. The relative error on the intersect is approximately 4%, and will be neglected

in the following.
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The best estimates C∗AL for the effective heat capacity of the land-troposphere

system are shown in Fig. A.3.d. They exhibit only a small dependence on the cli-

mate feedback parameter λL. As a consequence, they also do not depend strongly on

whether the albedo feedback is included or excluded in λL. The estimates generated

with Model (A.17) lie within the range of the 95%-confidence error margins of the C ∗AL
values estimated with Model (A.16). For the purpose of our study, it suffices to choose

a value CAL = 0.52 Wyr m−2K−1 from the middle of the range of possible values. Such

a heat capacity corresponds to a land column of approx. 8 m. Since the atmospheric

heat capacity equals the heat capacity of a land column of approx. 5 m, the remaining

3 m are the effective depth of the land surface that contributes to the overall heat ca-

pacity of the land-troposphere system on seasonal time scales. It needs to be noted that

the effective land heat capacity increases with the time scale as the heat can penetrate

deeper into the ground. However, this effect will play only a minor role on secular and

shorter time scales.

It would be desirable to estimate the effective heat capacity CAS of the ocean

mixed layer-troposphere system in the same manner. In principle, we could try to fit

Equation (2.6) to the observed seasonal cycle of global sea surface temperature (SST)

(see Fig. A.1.d) by prescribing the seasonal variation of absorbed solar radiation over

the oceans (see Fig. A.1.c), and the seasonal anomalies of land temperature. However,

the sea surface temperature anomaly shows a flat maximum during NH summer, when

the global mean absorbed solar radiation is at its minimum. The anti-correlation results

from the difference in land fraction between Northern and Southern hemisphere. The

strong increase of SSTs in the 30N to 60N latitudinal band during NH summer more

than outweighs the SST cooling in the 30S to 60S latitudinal band, even when correcting

for the larger ocean area in the Southern hemisphere. Such a behaviour can not be

explained solely on the basis of heat fluxes between two aggregated land and ocean

boxes. Its description would require, as a minimum, the resolution of Northern and

Southern hemisphere.

Hence, Equation (2.6) can reproduce the amplitude, but not the phase of the sea-

sonal cycle of global mean SST. If we restrict ourselves to the amplitude, we find an

effective heat capacity in the range CAS = 5.5 Wyr m−2K−1 − 10.5 Wyr m−2K−1 de-

pending on different assumptions about the strength of the land-sea heat exchange.

This corresponds to an effective mixed layer depth of approximately 40 m − 80 m, in-

cluding the thermal inertia of the troposphere (which is equivalent to the inertia of

a water column with ≈ 2.5 m depth). For the purpose of our analysis, we choose an

effective mixed layer depth of 60 m (7.8 Wyr m−2K−1) from the center of this range.

This value has been adopted in the energy balance model MAGICC for emulating the

behavior of several AOGCMs (Raper et al., 2001). Schlesinger et al. (1997) find an

effective value of 55.9 m (53.9 m ocean mixed layer + 2 m tropospheric contribution)

from a fit of their hemispherically resolved energy balance model to the seasonal cycle

of land and sea surface temperatures in both hemispheres.

Given the difficulty to constrain the effective heat capacity CAS by seasonal data,
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Figure A.4: Dependence of sea surface temperature response on the effective heat capacity
CAS of the ocean mixed layer-troposphere system compared to its dependence on the effective
vertical heat diffusivity κv.

it is fortunate that it does not influence markedly the model response to radiative

perturbations on decadal to secular time scales. The transient temperature behaviour

on these time scales is dominated by the heat flux into the interior ocean. Fig. A.4

shows the sea surface warming in CO2 doubling experiments with two different values

of vertical diffusivity, and three different values of the troposphere-ocean mixed layer

heat capacity which span the plausible range of CAS identified above. The experiments

consisted in a linear increase of radiative forcing Q from a presupposed equilibrium

state with 280 ppm CO2 (Q = 0 W m−2) to 580 ppm CO2 in the atmosphere (Q2x =

3.7 W m−2) in 70 years, with stabilized radiative perturbation thereafter. It can be seen

that the influence of effective heat capacity on the model response can be neglected when

compared to the influence of vertical diffusivity. We want to point out, however, that

this observation is concerned with decadal to secular time scales. The picture looks

different on shorter time scales. The statistical properties of annual variability in SSTs

due to stochastic weather forcing will depend strongly on the value of CAS .

A.4.2 Estimation of marine air warming enhancement

Raper and Cubasch (1996) have estimated that retreating sea ice leads to a 20% larger

warming of marine surface air than of the sea surface itself (bSI ≈ 1.2). To assess

their estimate, we have compared the increase in sea surface temperature (SST) to

the corresponding increase in marine surface air temperature (MAT) in a dataset

of CO2 doubling experiments with the model CLIMBER-2 (Schneider von Deimling

et al., 2005). CLIMBER-2 is a 2.5-dimensional climate system model with a statistical-

dynamical atmosphere module coupled to ocean, sea ice, and terrestrial vegetation

modules (Petoukhov et al., 2000). The dataset comprised 62 individual model runs

with perturbed parameter values covering a wide range of climate sensitivity. The pa-
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rameters related to a variety of processes like the radiative scheme, heat transport in

the ocean, and atmospheric lapse rate, cloud cover, and water vapour. Despite the

heterogeneity among individual experiments, they all agreed very well on the ratio be-

tween MAT and SST anomalies. At the time of CO2 doubling (year 70), all experiments

showed ratios in the range bSI = 1.43±0.05, which decreased to bSI = 1.32±0.05 after

300 years, and remained constant (with narrowing range) thereafter. During the first

hundred years, a small time dependence of bSI could be identified indicating that SST

response slightly lags behind MAT response. In our model, we have neglected this time

dependence. It will reduce even further, when considering less extreme greenhouse gas

scenarios than a CO2 doubling within 70 years. On the basis of the CLIMBER-2 CO2

doubling experiments, we choose a value of bSI = 1.3, which is close to the estimate of

Raper and Cubasch (1996). We neglect the associated uncertainty, probably less than

±10%, since the marine air warming enhancement bSI exerts only a small influence on

the model behaviour compared to k, λL, λS and κv (see, e.g., Equation A.22).

A.4.3 Estimation of climate feedback strength

As mentioned in Section 2.1.2, we have investigated the relationship between the climate

sensitivity TL,2x of the surface air over land and the climate sensitivity TS,2x of the

sea surface with data from the ensemble of CLIMBER-2 CO2 doubling experiments

described above (Schneider von Deimling et al., 2005). It entails model sensitivities T2x

that range from 1.6 K to 4.2 K, and therefore provides a particularly useful basis for the

investigation. Fig. A.5 plots TL,2x versus TS,2x for all 62 model runs in the data set.

The linear relationship between climate sensitivity over land and climate sensitivity of

the sea surface is evident. A linear regression of the data yields TL,2x = Rλ TS,2x with

Rλ = 1.43 ± 0.02. The error range specifies the 95% confidence interval that the slope

of a supposedly linear relationship lies indeed in this interval under the assumption of

independent and identically distributed (IID) normal fluctuations in the model behavior

due to subglobal scale processes. We do not further investigate whether this assumption

is justified, since the confidence interval is merely used to illustrate how strongly the

linear regression is constrained by the data. For our modelling purpose, we neglect

the minor uncertainty, and only consider the best estimate of Rλ = 1.43. This value is

close to other land-sea ratios of climate sensitivity employed in EBMs for the emulation

of climate change simulations in complex AOGCMs (Raper et al., 2001; Cubasch and

Meehl, 2001).

Knowledge of Rλ and the global climate sensitivity T2x suffices to determine TL,2x
and TS,2x:

TL,2x =
Rλ T2x

Rλ fL + (1− fL) bSI
, TS,2x =

T2x

Rλ fL + (1− fL) bSI
.

By use of Equation (2.8) linking the climate feedback parameters λL and λS to TL,2x
and TS,2x, respectively, and Equation (A.18) specifying the land-sea heat exchange
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coefficient k as function of λL, we can express λL, λS, and k as functions of global

climate sensitivity T2x:

λL = fL
Rλ fL + (1− fL) bSI
Rλ fL − ak (Rλ − bSI)

Q2x

T2x
− bk

Rλ − bSI
Rλ fL − ak (Rλ − bSI)

, (A.19)

λS =

(
Rλ fL − ak

(Rλ − bSI)
1− fL

)
Rλ fL + (1− fL) bSI
Rλ fL − ak (Rλ − bSI)

Q2x

T2x
+ (A.20)

Rλ fL
1− fL

bk
Rλ − bSI

Rλ fL − ak (Rλ − bSI)
,

k = bk
Rλ fL

Rλ fL − ak (Rλ − bSI)
− ak fL

Rλ fL + (1− fL) bSI
Rλ fL − ak (Rλ − bSI)

Q2x

T2x
. (A.21)

The dependence of λL, λS and k on climate sensitivity T2x is shown in Fig. A.6. The

climate feedback parameters decrease in proportion to 1/T2x for increasing climate

sensitivity, with λL consistently lower than λS. The land-sea heat exchange coefficient

increases in proportion to −1/T2x for increasing climate sensitivity.



XXII App. A: Construction of a diffusion ocean energy balance model

A.5 Numerical integration of the model

Equations (2.5)-(2.6) exhibit six different time scales. With

τL :=
CAL
λL

, τLS := fL
CAL
k

, τBO :=
z2
B

κv
(A.22)

τS :=
CAS
λS

, τSL := (1− fL)
CAS
k

, τFO :=

(
CAS
cV

)2 π

κv
,

the model can be rewritten as

ṪL =
QL
CAL

− TL
τL
− TL − bSI TS

τLS
(A.23)

ṪS =
QS
CAS

− TS
τS
− bSI TS − TL

τSL

− fSO√
τFO

∫ t

0

ṪS(t′)√
t− t′

(
1 + 2

+∞∑

n=1

(−1)n e
−n

2τBO
t−t′

)
dt′. (A.24)

The time scales vary from the order of months (τLS , and τL for small climate sensitivity

TL,2x) to decades (τS for large climate sensitivity TS,2x, and τFO for large diffusivities

κv) to even several thousand years (τBO). A numerical integration with a simple Euler

scheme yields only stable results, if the time step ∆t of the integration is significantly

smaller than the time scale of the fastest process in the model. In our case, ∆t would

need to be on the order of weeks. However, we want to choose a time step of one year

for the numerical approximation. Therefore, we need to employ an implicit scheme,

Ṫi =
Ti+1 − Ti

∆t
= f

(
ti +

∆t

2
,
Ti + Ti+1

2

)
, i : time step index ,

to integrate Equations (A.23)-(A.24). The resulting difference equations are

TL,i+1 − TL,i
∆t

=
QL(ti + ∆t

2 )

CAL
− TL,i + TL,i+1

2τL
− (TL,i + TL,i+1)− bSI (TS,i + TS,i+1)

2τLS
, (A.25)

TS,i+1 − TS,i
∆t

=
QS(ti + ∆t

2 )

CAS
− TS,i + TS,i+1

2τS
− bSI (TS,i + TS,i+1)− (TL,i + TL,i+1)

2τSL

− fSO√
τFO∆t

i∑

j=0

(TS,j+1 − TS,j)
∫ j+1

j

1 + 2
∑+∞

n=1 (−1)
n
e−

n2τBO
∆t

1
i+1−t′

√
i+ 1− t′ dt′ .

By integrating

ai−j :=

∫ j+1

j

1 + 2
∑+∞

n=1 (−1)n e−
n2τBO

∆t
1

i+1−t′
√
i+ 1− t′ dt′
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= 2
√
i− j + 1

(
1 + 2

+∞∑

n=1

(−1)
n
e−

n2τBO
∆t

1
i−j+1

)
− 2
√
i− j

(
1 + 2

+∞∑

n=1

(−1)
n
e−

n2τBO
∆t

1
i−j

)

+ 4
+∞∑

n=1

(−1)n+1 n

√
π
τBO
∆t

(
Erf

(
n

√
τBO
∆t

1

i− j

)
− Erf

(
n

√
τBO
∆t

1

i− j + 1

))
,

and reshuffling the sum, the difference equation for the mixed layer temperature can

be transformed to

TS,i+1 − TS,i
∆t

=
QS(ti + ∆t

2 )

CAS
− TS,i + TS,i+1

2τS
− bSI (TS,i + TS,i+1)− (TL,i + TL,i+1)

2τSL

− fSO√
τFO∆t

a0 TS,i+1 +
fSO√
τFO∆t

i∑

j=1

(ai−j − ai−j+1) TS,j . (A.26)

We have neglected the term fSO√
τFO∆t

ai TS,0, since TS,0 = 0 for a presumed equi-

librium state at t = 0. Note that a0 is well defined, since limx→0 e
−c/x = 0 and

limx→0 Erf(c/x) = 1. The infinite sum in the expression for the ai−j converges very

fast, if τBO is on the order of magnitude of the time period ∆t (i−j). In the extreme case

of a very large vertical diffusivity κv = 10 cm2 s−1, the time scale of heat penetration to

the bottom at zB = 4000 m is still on the order of several centuries (τBO = 507 yr). We

have found for this case that an approximation of ai−j up to the fourth order bottom

correction term accurately describes the SST response to a doubling of the atmospheric

CO2 concentration until 1000 years after the system has reached a new equilibrium.

For integrating Equations (A.23)-(A.24), we need to calculate the successor tem-

peratures (TL,i+1, TS,i+1) from their predecessors (TL,i, TS,j≤i). Since equations (A.25)

and (A.26) are linear, this can be accomplished with standard techniques of linear al-

gebra. Separating the successor and predecessor temperatures on both sides of the

equation, it is

B ·
(
TL,i+1

TS,i+1

)
= Q+A ·

(
TL,i

TS,i

)
, (A.27)

with B :=




1 + 1
2

∆t
τL

+ 1
2

∆t
τLS

− 1
2

∆t
τLS

bSI

− 1
2

∆t
τSL

1 + 1
2

∆t
τS

+ 1
2

∆t
τSL

bSI + fSO

√
∆t
τFO

a0


 ,

Q :=




∆t
2

QL(ti+
∆t
2 )

CAL

∆t
2

QS(ti+
∆t
2 )

CAS
+ fSO

√
∆t
τFO

i−1∑
j=1

(ai−j − ai−j+1) TS,j




A :=




1− 1
2

∆t
τL
− 1

2
∆t
τLS

1
2

∆t
τLS

bSI

1
2

∆t
τSL

1− 1
2

∆t
τS
− 1

2
∆t
τSL

bSI + fSO

√
∆t
τFO

(a0 − a1) ,


 .
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The sum over predecessors TS,j, j < i is only evaluated, if i ≥ 2. The temperatures

(TL,1, TS,1) in the first time step are calculated from the initial equilibrium conditions

TL,0 = TS,0 := 0.

The algorithm to integrate Model (A.23)-(A.24) up to time te = n∆t proceeds as

follows:

1. Invert B, i.e. find B−1 with B−1 ·B = 1. Set i = 0.

2. For given (TL,i, TS,j≤i), calculate

(
TL,i+1

TS,i+1

)
= B−1 ·

(
Q+A ·

(
TL,i

TS,i

))

3. Set i = i+ 1. If i = n abort, otherwise go back to step 2.

This concludes our discussion of the construction, calibration and numerical inte-

gration of the diffusion ocean energy balance model DOECLIM.



Appendix B

The Upwelling-Diffusion

Equation

The transport of heat in a medium obeys the conservation of energy: the net heat flux

across the boundaries of a volume segment equals the change in heat content H := cmT

of the segment, where c is thermal capacity (at constant volume), m mass, and T

temperature. In one-dimensional problems, where only a cross-sectionally uniform heat

transport in the direction z is considered, it is

∂

∂t

∫ z+∆z

z
cV A(z)T (z, t) = A(z)F (z, t) −A(z + ∆z)F (z + ∆z, t) , (B.1)

where cV = c ρ is the heat capacity per unit volume (in units of [ J m−3K−1]), here

assumed to be independent of z, A(z) the cross-sectional area of the medium at z,

F (z, t) the heat flux per unit area entering the volume segment at z, and F (z + ∆z, t)

the heat flux per unit area leaving the segment at z + ∆z.

A heat flux F (z, t) can be induced by two mechanisms: diffusion of heat from

warmer to colder layers, whose amount is proportional to the temperature gradient

between neighbouring layers, and advection of heat due to physical movement of the

medium in z-direction. Hence,

F (z, t) = −cV κ(z)
∂

∂z
T (z, t) + cV w̃(z)T (z, t) , (B.2)

where cV κ(z) is the thermal conductivity of the medium (in units of [ W m−1K−1]),

and w̃(z) the velocity of the medium in z-direction. In the limit ∆z → 0, we find the

differential form

A(z)Tt(z, t) = ∂z ( A(z)κ(z)Tz(z, t)−A(z) w̃(z)T (z, t) )

= ∂z ( A(z)κ(z)Tz(z, t) )−A(z) w̃(z)Tz(z, t) , (B.3)

where we have used the short hand Tx := ∂/∂xT . The conservation of mass requires

XXV
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that A(z) w̃(z) is constant in z.

In our particular case, Equation (B.3) constitutes a model for the heat transport in

a highly stylized one-dimensional ocean with z > 0 the ocean depth. At the boundary

to the ocean mixed layer (z = 0), the temperature T (0, t) := TS(t) is prescribed. The

heat is diffused to greater depth, while a cross-sectionally uniform upwelling of water

masses is assumed to transport heat from the ocean floor at z := zB to the surface.

We are interested in the ocean response to a temperature anomaly at the mixed-layer

boundary, and possibly also at the ocean floor. The full solution of Equation (B.3) is

given by a superposition of

• its equilibrium solution (Tt(z, t) = 0) before the temperature anomaly was im-

posed, i.e.

Teql(z) = TS,eql e
−
R z
0 w(z′)/ κ(z′) dz′ , (B.4)

where w(z) = −w̃(z) is the upwelling velocity against the z-direction, and

• a solution to the diffusion-convection equation for the anomalous heat fluxes with

initial temperature anomaly T (z, 0) = 0.

The upwelling-diffusion equation for the anomalous heat fluxes is fully specified by

for 0 < z < zB : Tt(z, t) =
1

A(z)
∂z ( A(z)κ(z)Tz(z, t) ) + w(z)Tz(z, t) , (B.5)

Bound. cond. (B.C.): T (0, t) = TS(t) F (zB , t) = −cV w(zB)TP (t) ,

Initial cond. (I.C.): T (z, 0) = 0 .

The boundary condition on the heat flux at the ocean floor needs further explanation.

To account for the upwelling water masses in the main ocean column, a second polar

ocean column is construed, in which downwelling with velocity wP occurs. The conser-

vation of mass in the volume exchange between main ocean column with cross-sectional

area A and polar column with cross-sectional area AP requires that Aw = AP wP at

the surface as well as at the bottom. Since A � AP , it is also wP � w. Hence, the

large downwelling velocity will dominate the heat transport in the polar column, which

leads to a fast temperature equilibration in the polar ocean with TP (z, t) = TP (0, t)

throughout the polar column. The polar water enters the main ocean column at its bot-

tom inducing a heat flux cV AP (zB)wP (zB)TP (zB , t) = cV A(zB)w(zB)TP (0, t), which

is then transported to the surface by the upwelling water masses. Hence, the bound-

ary condition at the bottom of the main ocean is constituted by the heat flux due to

incoming polar water with temperature TP (t) and area-averaged velocity w(zB). Since

the upwelling-diffusion equation (B.5) is solely concerned with anomalous heat fluxes,

the heat flux at the bottom will depend on the mixed layer temperature anomaly in

the polar ocean where downwelling occurs. If the downwelling sites simply shift north-

wards, so that the temperature of the downwelling water masses remains unchanged

from its equilibrium value, TP (t) = 0 and thus F (zB , t) = 0. If, however, the water
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at the downwelling sites warms along with the increasing mixed layer temperature of

the main ocean, TP (t) > 0 and a positive heat flux into the main ocean column at

its bottom, i.e. against the z-direction, is induced. In most upwelling-diffusion ocean

models that are used for the assessment of anthropogenic climate change, the temper-

ature anomaly in the polar ocean is taken proportional to the mixed-layer anomaly of

the main ocean, i.e. TP (t) = ΠTS(t), where Π ≥ 0 is a tunable parameter.

B.1 Numerical solutions

A numerical approximation to the partial differential equation (B.5) can be obtained

by a finite difference scheme. Discretise the ocean column into n layers with thickness

∆zi, so that
∑n

i=1 ∆zi = zB . Each layer exhibits a uniform cross-sectional area Ai, and

a temperature Ti. At the boundary between layers i − 1 and i, the vertical diffusivity

is given by κi and the upwelling velocity by wi. Conservation of mass requires wi =

A1/Ai w1, so that we only need to consider the upwelling velocity w := w1 at the

boundary to the mixed layer. Then, Equation (B.1) and (B.2) can be used to find

the following set of ordinary differential equations approximating Problem (B.5) (cf.

Murphy, 1995; Schlesinger et al., 1997):

1 < i < n : Ṫi = −κi
Ti − Ti−1

0.5 (∆zi−1 + ∆zi) ∆zi
− A1

Ai
w
Ti + Ti−1

2∆zi

+
Ai+1

Ai
κi+1

Ti+1 − Ti
0.5 (∆zi+1 + ∆zi) ∆zi

+
A1

Ai
w
Ti + Ti+1

2∆zi

top layer: Ṫ1 = −κ1
T1 − TS

0.5 ∆z1 ∆z1
− w TS

∆z1

+
A2

A1
κ2

T2 − T1

0.5 (∆z2 + ∆z1) ∆z1
+ w

T1 + T2

2∆z1

bottom layer: Ṫn = −κn
Tn − Tn−1

0.5 (∆zn−1 + ∆zn) ∆zn
− A1

An
w
Tn + Tn−1

2∆zn
+
A1

An
w

TP
∆zn

.

To simplify the notation, we introduce the diffusion time scales

τκ,1 :=
0.5 ∆z1 ∆z1

κ1
, τκ,i>1 :=

0.5 (∆zi−1 + ∆zi) ∆zi
κi

, τ ′κ,i :=
Ai
Ai+1

0.5 (∆zi+1 + ∆zi) ∆zi
κi+1

and the upwelling time scales τw,i := Ai
A1

∆zi
w .

Then, the ordinary differential equation for the temperature vector T = (T1, ..., Tn)T

can be written in the compact form

Ṫ −A · T = F , with (B.6)
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F :=

(
1

τκ,1
TS −

1

τw,1
TS , 0, · · · , 0,

1

τw,n
TP

)T

A :=




− 1
τκ,1
− 1

τ ′κ,1
+ 1

2τw,1
1
τ ′κ,1

+ 1
2τw,1

· · · · · ·
1
τκ,2
− 1

2τw,2
− 1
τκ,2
− 1

τ ′κ,2
1
τ ′κ,2

+ 1
2τw,2

· · ·
. . .

. . .
. . .

. . .




The numerical solution to the ordinary differential equation (B.6) requires a close

inspection of the time scales involved. An Euler scheme is only a reasonable choice,

if the smallest time scale is considerably larger than the time step of the numerical

approximation. The smallest time scale in Equation (B.6) is exhibited by the diffusion

component for large vertical diffusivity κ and small layer thickness ∆zi. Typical finite

difference schemes for a 1D-upwelling-diffusion ocean with zB ≈ 4000 m employ layer

thicknesses of ∆z ≈ 100 m. Reasonable values for the effective vertical diffusivity in such

models can be as large as 9 cm2 s−1 (Cubasch and Meehl, 2001). Hence, the diffusion

time scales τi ≈ (∆z)2/κi can be on the order of months. Since we do not account

for seasonal variations, we wish to choose time steps of a year or longer. Therefore,

we need to employ an implicit scheme for finding a numerical solution to differential

equation (B.6):

T j+1 = T j + 0.5 ∆t (A · (T j + T j+1) + F j + F j+1 )

with initial cond. T 0 = 0 , time t ∈ {t0, ..., te := t0 +m∆t} , 0 ≤ j ≤ m.

Reshuffling the left- and right-hand side leads to

(1− 0.5 ∆tA) · T j+1 = (1 + 0.5 ∆tA) · T j + 0.5∆t (F j + F j+1 ) . (B.7)

Linear equation (B.7) can be solved with standard techniques, e.g. by diagonalizing

B = (1− 0.5 ∆tA) with a transformation P −1 ·B ·P , and solving the resulting decou-

pled set of linear equations for the transformed temperature vectors P −1T . We have

solved Equation (B.7) for a “bucket” ocean with a uniform diffusivity and cross-section

of the water column, a depth of zB = 4000 m, a choice of 40 layers with ∆z = 100 m

(see Fig. B.1), a choice of time step ∆t = 1 yr, and idealized boundary conditions:

an instantaneous warming of the mixed layer by one temperature unit at t = 0, i.e.,

TS(t) = H(t) with H the Heavyside-function, and, in the presence of upwelling, an

increase of polar bottom water temperature by TP (t) = ΠH(t) with Π = {0, 0.2, 0.8}.

Fig. B.2 depicts the resulting ocean temperature anomaly profiles after 100, 500,

and 2000 years of applying the instantaneous heat forcing at the surface and, in the

cases depicted in Fig. B.2.e to .h, at the bottom. A pure diffusion ocean with vanishing

upwelling velocity w = 0 m yr−1 will lead to a uniform warming of the water column in

equilibrium. For an effective vertical diffusivity of κ = 1 cm2 s−1, which has been sug-
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Figure B.1: Hypsometric diagram of the earth surface. Also shown are the “bucket” ocean
approximation (depth 4000 m, 40 layers, uniform cross-section and diffusivity), and the “real”
ocean approximation (depth 6000 m, 60 layers, depth-dependent cross-section and diffusivity).
The diffusivity profiles are given in units of 40× κ(0).

gested as a vertical and global average in several studies (Munk, 1966; Simmons et al.,

2004), the heat anomaly reaches the bottom after several hundred years (Fig. B.2.a).

It will take τD = z2
B/κ ≈ 5000 years, however, until the bottom water has warmed

as much as the surface, and the ocean equilibrates. After 2000 years, for instance,

the ocean bottom will have received only approx. 60% of the surface warming. These

results, however, are very sensitive to the value of κ. When the diffusivity is doubled

to a value of κ = 2 cm2 s−1, the heat uptake proceeds much faster (Fig. B.2.b). In this

case, the ocean is close to equilibrium after 2000 years.

We have also investigated the sensitivity of the temperature profile, when we drop

the simplifying assumption of a uniform diffusivity and uniform cross-sectional area

of the ocean column with depth. We have solved Equation (B.7) for a “real” ocean

approximation with an increasing diffusivity below 2500 m due to tidally driven mixing

close to the ocean bottom (Simmons et al., 2004), and a depth-dependent cross-section

of the water column down to zB = 6000 m (see Fig. B.1). Accounting for the shape of

the ocean basin delays the warming at depths below 3000 m, since heat can now diffuse

into the deep ocean that was not included in the idealized “bucket” ocean. This effect is

only partially cancelled by heat accumulation due to the narrowing ocean basin profile.

However, the increasing vertical diffusivity κ at depths below 2500 m counteracts the

delayed ocean warming by transporting heat much faster to the bottom. Therefore,

the ocean temperature anomaly profiles for the “bucket” ocean and the “real” ocean

approximation are in good agreement for the case of pure diffusion (Fig. B.2.a-b) as well

as for upwelling-diffusion with no or little warming at the bottom from downwelling

polar water (Fig. B.2.c-d and to a lesser degree also Fig. B.2.e-g). Only for a substantial

heat source at the bottom, the two profiles deviate notedly from each other below 3000 m
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depth (Fig. B.2.f-h). This is due to the large diffusivities and upwelling velocities in

the lower part of the “real” ocean approximation which transfer heat from the bottom

to the interior much faster than in the “bucket” ocean.

When upwelling of water masses takes places, the downward diffusion of heat is

partially offset. If no warming at the bottom from downwelling polar water is assumed

(Fig. B.2.c: w = 2 m yr−1, Fig. B.2.d: w = 4 m yr−1), the heat anomaly is mainly con-

strained to the upper 2000 m of the ocean column (the larger w, the more constrained).

Moreover, equilbrium is reached much faster than for pure diffusion, namely on the

time scale τUD = 4κ/w2 for upwelling to balance diffusion , i.e. approx. 3160 years for

w = 2 m yr−1, κ = 1 cm2 s−1 and approx. 790 years for w = 4 m yr−1, κ = 1 cm2 s−1

(Dickinson and Schaudt, 1998). As can be already deduced from the equilibrium solu-

tion (B.4) for the temperature anomaly profile, little or no heat is transferred to the

bottom water at zB = 4000 m (the larger w, the less). Such a behaviour is clearly not

to be seen in CO2 doubling experiments with general circulation models (GCMs) (e.g.

Raper et al., 2001). In these experiments, the warming anomaly penetrates to the bot-

tom after a few hundred years of CO2 stabilization, with continued warming thereafter.

Hence, the assumption of bottom heating from downwelling polar water seems to be

an important prerequisite to account for the simulated bottom warming in GCMs, but

also for the overall heat uptake of the ocean.

Fig. B.2.e and .g show the ocean temperature anomaly profile for incoming polar

bottom water with TP = 0.2TS and two different upwelling velocities, and Fig. B.2.f

and .h the corresponding profiles for TP = 0.8TS . The “U-shaped” profiles reflect the

fact that heat sources are now located at the surface as well as at the bottom. The

shape will be less pronounced, if a gradual instead of an instantaneous temperature

rise is assumed, but, nevertheless, will remain a characteristic of this type of ocean

model formulation (Raper et al., 2001, Fig. 5 and 11a). Equilibrium is reached as fast

as in the cases without warming from polar bottom water (the larger w, the faster),

but exhibits now a bottom temperature anomaly T (zB) = TP + e−w/κ zB . Hence, the

bottom warming can be tuned to reproduce GCM simulations. The typical “U-Shape”

of the profiles, however, is not confirmed by these simulations (Raper et al., 2001).

In this respect, the simple case of pure heat diffusion can better reproduce the ocean

temperature anomaly that is seen in CO2 doubling experiments with GCMs.

B.2 Analytical solutions

The preceding discussion has shown that an idealized “bucket” ocean model, as used

in many models for the assessment of anthropogenic climate change, captures the

anomalous heat fluxes well enough for being considered an interesting application. In

the case of uniform diffusivity and cross-section of the ocean column, the upwelling-

diffusion problem (B.5) for the anomalous heat fluxes simplifies to (with parameteriza-
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Figure B.2: Numerical solutions for the ocean temperature anomaly profiles under different
assumptions of vertical diffusivity κ, upwelling velocity w and polar bottom water warming
relative to surface warming Π. Shown are the solutions for an idealized “bucket” ocean and a
“real” ocean approximation with depth-dependent diffusity and ocean cross-section profile.
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tion TP = ΠTS)

for 0 < z < zB : Tt(z, t) = κTzz(z, t) +w Tz(z, t) , (B.8)

B.C.: T (0, t) = TS(t) , F (zB , t) = −cV wΠTS(t) ,

I.C.: T (z, 0) = 0 ,

Problem (B.8) is accessible, at least for the case zB →∞, to analytical solution meth-

ods. Analytical solutions are of particular interest for our application, since they will

allow us to directly calculate the heat flux from the mixed layer into the interior ocean

at z = 0, i.e.

FO(t) = −cV wTS(t) (1 −Π)− cV κ Tz(z, t)|z=0 , (B.9)

in terms of the mixed layer temperature TS(t). Knowledge of FO in terms of TS closes

the energy balance model (A.8)-(A.9), and hence will save us to model the ocean column

explicitely which would require the addition of a large number of ordinary differential

equations to the model (see Equation B.6). The usage of analytical solutions of the

heat diffusion equation in energy balance models of anthropogenic climate change was

proposed by Wigley and Schlesinger (1985). Analytical solutions of the full upwelling-

diffusion problem, albeit without an ocean mixed layer, were studied by Dickinson and

Schaudt (1998).

Problem (B.8) can be solved, at least partly, by converting it to a form accessible to

the Green’s function approach. It is well known that the inhomogenuous heat diffusion

equation

for −∞ < z <∞ : ut − κuzz = f̃(z, t) , (B.10)

I.C. u(z, 0) = Φ̃(z)

on the real line can be solved by means of the retarded Green’s function (e.g., Honerkamp

and Römer, 1989, Chap. 10),

G(z, t) = H(t)D(z, t) , with heat diffusion kernel D(z, t) =
e−z

2/(4κt)

2
√
πκt

, (B.11)

and Heavyside function H(t). The retarded Green’s function constitutes the tempera-

ture response to a δ-heat pulse at t = 0 and z = 0, i.e.

Gt − κGzz = δ(t) δ(z) .

The solution to problem (B.10) has the form:

u(z, t) =

∫ ∞

−∞
D(z − z′, t) Φ̃(z′) dz′ +

∫ t

0

∫ ∞

−∞
D(z − z′, t− t′) f̃(z′, t′) dz′ dt′ (B.12)

The method of images allows to extend the Green’s function formalism to the heat
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difffusion problem on the half line, i.e.,

for 0 < z <∞ : ut − κuzz = f(z, t) , (B.13)

B.C. u(0, t) = 0 ,

I.C. u(z, 0) = Φ(z) .

Its basic idea is to extend the initial and boundary condition onto the domain −∞ <

x < 0, so that they constitute odd functions on the real line. Define Φ̃(z) = Φ(z) on

0 < z < +∞, Φ̃(0) = 0 and Φ̃(z) = −Φ(−z) on −∞ < z < 0, and similarly f̃(z, t) =

f(z, t) on 0 < z < +∞, f̃(0, t) = 0 and f̃(z) = −f(−z, t) on −∞ < z < 0. Then,

the solution (B.12) of the real line problem (B.10), including a solution of the partial

differential equation on the half line, is also an odd function with u(−z, t) = −u(z, t).

As a result, it is u(0, t) = 0, and u(z, t) fulfills the boundary condition at z = 0.

Moreover, u(z, 0) = Φ̃(z) = Φ(z) on 0 < z < +∞, and the initial condition is fulfilled.

Hence, u(z, t) constitutes the solution to Problem (B.13). Since Φ̃(z) and f̃(z, t) are

odd functions, they can be rewritten on the half line 0 < z < +∞ as

u(z, t) =

∫ ∞

0

(
D(z − z′, t)−D(z + z′, t)

)
Φ(z′) dz′+

∫ t

0

∫ ∞

0

(
D(z − z′, t− t′)−D(z + z′, t− t′)

)
f(z′, t′) dz′ dt′ . (B.14)

The task is now to transform the initial problem (B.8) for the idealized case of an

infinitely deep ocean with zB → +∞ into a problem of the type (B.13). To simplify

notation, we non-dimensionalize the upwelling-diffusion equation by indexing depth

z∗ := z/λ in units of its characteristic length scale λ = κ/w, and time t∗ := t/τ in

units of its characteristic time scale τ = κ/w2. Then, the upwelling-diffusion problem

without bottom reads

for 0 < z < +∞ : Tt∗(z
∗, t∗) = Tz∗z∗(z

∗, t∗) + Tz∗(z
∗, t∗) , (B.15)

B.C.: T (0, t∗) = TS(t∗) ,

I.C.: T (z∗, 0) = 0 ,

Problem (B.15) can be transformed by the ansatz T (z∗, t∗) = u(z∗, t∗) e−z
∗/2−t∗/4 +

TS(t∗). The resulting problem for u(z∗, t∗) is indeed of the type (B.13), namely

for 0 < z < +∞ : ut∗ − uz∗z∗ = −TS,t∗(t∗) ez
∗/2+t∗/4 , (B.16)

B.C. u(0, t∗) = 0 ,

I.C. u(z∗, 0) = −TS(0) ez
∗/2 := 0 .

Inserting Solution (B.14) for u(z∗, t∗) into the ansatz for T (z∗, t∗), Problem (B.15) is
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solved by

T (z∗, t∗) = TS(t∗)−
∫ t∗

0

∫ +∞

0
TS,t′(t

′) e−(z∗−z′)/2−(t∗−t′)/4

×
(
e−0.25 (z∗−z′)2/(t∗−t′)

2
√
π(t∗ − t′

− e−0.25 (z∗+z′)2/(t∗−t′)

2
√
π(t∗ − t′)

)
dz′ dt′

= TS(t∗)−
∫ t∗

0

∫ +∞

0
TS,t′(t

′)

×
(
e−0.25 (z∗−z′+t∗−t′)2/(t∗−t′)

2
√
π(t∗ − t′)

− e−0.25 (z∗+z′−t∗+t′)2/(t∗−t′)

2
√
π(t∗ − t′)

e−z
∗
)
dz′ dt′

The integration over depth z can be performed analytically:

∫ +∞

0

e−0.25 (z∗−z′+t∗−t′)2/(t∗−t′)

2
√
π(t∗ − t′)

dz′ = 0.5 + 0.5 Erf

(
z∗ + t∗ − t′
2
√
t∗ − t′

)
,

∫ +∞

0

e−0.25 (z∗+z′−t∗+t′)2/(t∗−t′)

2
√
π(t∗ − t′)

dz′ = 0.5 − 0.5 Erf

(
z∗ − t∗ + t′

2
√
t∗ − t′

)
.

Hence, the solution to Problem (B.15) is given by

T (z∗, t∗) = 0.5

(
TS(t∗)−

∫ t∗

0
TS,t′(t

′) Erf

(
z∗ + t∗ − t′
2
√
t∗ − t′

)
dt′
)

+ 0.5 e−z
∗
(
TS(t∗)−

∫ t∗

0
TS,t′(t

′) Erf

(
z∗ − t∗ + t′

2
√
t∗ − t′

)
dt′
)

(B.17)

Expression (B.17) yields the temperature anomaly profile in the interior ocean at any

time t for an arbitrary warming trajectory TS(t) of the mixed layer on top. It can be

used to calculate the heat flux (B.9) into the interior ocean for the case of an infinitely

deep ocean without polar bottom water (Π = 0):

FO(t) = cV

√
κ

π

∫ t

0
TS,t′(t

′)
e−

w2(t−t′)
4κ√

t− t′
dt′

− cV
w

2

(
TS(t)−

∫ t

0
TS,t′(t

′) Erf

(
w
√
t− t′

2
√
κ

)
dt′
)
, (B.18)

where we have reintroduced the dimension of time t and depth z. The analytical

solution (B.18) allows us to close the energy balance model (A.8)-(A.9) with an integro-

differential equation for the mixed layer temperature.

After the mixed layer temperature has been stabilized at some value T ∗S , Solu-
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tions (B.17) and (B.18) approach the new equilibrium asymptotically, i.e.,

lim
t→+∞

T (z, t) = T ∗S e
−w
k
z , lim

t→+∞
FO(t) = 0 .

This behaviour is a consequence of assuming an infinitely deep ocean in the underlying

problem (B.15). If the ocean has finite depth, the new equilibrium will be reached in

finite time. To compare the transient behavior of an infinitely deep ocean with the

behavior of a more realistic “bucket” ocean with depth zB = 4000 m, we compare the

analytical solutions (B.17) and (B.18) with the numerical solution to Equation (B.7)

for the idealized boundary condition of an instantaneous mixed layer warming by one

temperature unit at t = 0. Hence, TS(t) = H(t) is specified by the Heavyside-function

H, and the time derivative TS,t(t) = δ(t) equals the Dirac δ-function (Honerkamp and

Römer, 1989, Appendix E). For this boundary condition, Expressions (B.17) and (B.18)

greatly simplify to

T (z, t) = 0.5

(
1− Erf

(
z + wt

2
√
κt

))
+ 0.5 e−

w
κ
z

(
1− Erf

(
z − wt
2
√
κt

))
, (B.19)

FO(t) = cV

√
κ

π

e−
w2t
4κ√
t
− cV

w

2

(
1− Erf

(
w
√
t

2
√
κ

))
. (B.20)

Fig. B.3 shows the ocean temperature anomaly profiles after 100, 500, and 2000 years

of the instantaneous warming (Fig. B.3.a, .c, .e), and the heat flux into the interior

ocean (Fig. B.3.b, .d, .f) for different combinations of effective heat diffusivity κ and

upwelling velocity w. Analytical and numerical solutions deviate increasingly with

increasing depth. This has to be expected, since the “bucket” ocean stores the heat

penetrating to the ocean floor in the bottom layers, while an infinitely deep ocean

allows it to escape to ever greater depths. Moreover, the deviations grow in time until

the “bucket” ocean warming slows down upon approaching a new equilibrium. Most

strikingly, the deviations decrease with increasing upwelling velocity. This is due to

the fact that the upwelling induces an upward heat flux counteracting the downward

heat diffusion, so that the net heat flux at the bottom is significantly reduced. Hence,

the error made by the analytical expression by assuming that the heat flux at the

bottom can escape to infinite depths is reduced as well. By the same token, the error

grows substantially with increasing strength of downward diffusion as captured by the

effective vertical diffusivity κ.

We have discussed above that a pure diffusion ocean without upwelling yields the

most realistic picture of the ocean temperature anomaly profile in comparison with

GCM experiments. Therefore, we are particularly interested in this special case. For

w = 0 m yr−1, the analytical solutions (B.17) for the temperature profile and (B.18) for

the heat flux into the interior ocean simplify considerably:
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Figure B.3: Analytical solutions for the ocean temperature anomaly profiles (left panels) and
the heat flux into the interior ocean (right panels) compared to the numerical “bucket” ocean
solution.

T (z, t) = TS(t)−
∫ t

0
TS,t′(t

′) Erf

(
z

2
√
κ(t− t′)

)
dt′ , (B.21)

FO(t) = cV

√
κ

π

∫ t

0

TS,t′(t
′)√

t− t′
dt′ . (B.22)
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We could plug Expression (B.22) into the differential equation (A.9) for the mixed layer

ocean temperature in order to close our energy balance model (A.8)-(A.9). However,

we have just established that the idealised assumption of an infinitely deep ocean leads

to particularly large deviations from the behaviour of a finitely deep ocean in the case

of pure diffusion. It can be seen from Fig. B.3.b,d that the heat fluxes into the interior

ocean begin to deviate from each other after approx. 1300 years for κ = 1 cm2 s−1, and

approx. 550 years for κ = 2 cm2 s−1. Since we want to use the energy balance model for

assessing global mean temperature changes since the preindustrial period up to the end

of the 21st century, i.e. approx. 300 years, such late deviations do not matter here. In

the context of the uncertainty analysis, however, we will consider vertical diffusivities

up to k = 10 cm2 s−1, for which analytical (infinite depth) and numerical (finite depth)

solutions can deviate already after approx. 100 years.

Therefore, it is desirable to correct the analytical solutions (B.21) and (B.22) for

the finite depth of the pure diffusion ocean. To put it more precisely, we are looking

for the solution to the problem

for 0 < z < zB : Tt(z, t) = κTzz(z, t) , (B.23)

B.C.: T (0, t) = TS(t) , Tz(zB , t) = 0 ,

I.C.: T (z, 0) = 0 ,

with Dirichlet boundary condition at the top of the water column, and Neumann bound-

ary condition at its bottom. The latter boundary condition simply requires that no heat

flows into or out of the ocean floor. An analytical solution of Problem (B.23) can be

obtained by superposition of an infinite series of solutions on the half line. Consider

Solution (B.21) for an infinitely deep diffusive ocean with a heat source of temperature

TS(t) at the top of the water column (z = 0). It entails a heat flux

FO(zB , t) := −cV κ Tz(z, t)|z=zB = cV

√
κ

π

∫ t

0

TS,t′(t
′)√

t− t′
e
− z2B

4κ(t−t′) (B.24)

into the ocean bottom at z = zB . This heat flux can be cancelled by positioning an

image of the heat source with temperature TS(t) at depth z = 2zB . The imaginary

heat source below the ocean floor emulates the larger warming of the bottom layer

due to the fact that no heat can penetrate the bottom. It induces, however, a larger

warming at the mixed-layer boundary so that the upper Dirichlet boundary condition

is violated. The additional warming at z = 0 is also produced by an additional heat

source with temperature TS(t) at z = −2zB above the surface. Hence, we can substract

the contribution of such a third heat source from the warming induced by the first two

heat sources to restore the boundary condition at z = 0. Substracting a heat source

is equivalent to adding a heat sink, which leads to a cooling of the water column.

However, now we are again in violation of the Neumann boundary condition at z = zB ,

since the cooling induces a heat flux from the ocean floor. But this heat flux is much
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Figure B.4: Analytical solution with and without bottom correction term compared to the
numerical “bucket” ocean solution.

smaller in magnitude than the heat flux introduced by the original heat source at

z = 0, which can be seen by replacing zB in Expression (B.24) with 3zB , i.e. the

distance from the imaginary heat sink at z = −2zB to the ocean floor. Therefore, we

have gained something from introducing an imaginary heat source below the bottom

and an imaginary heat sink above the surface. To cancel the remaining heat flux from

the ocean floor, we can repeat the procedure by introducing another imaginary heat

sink at z = 4zB . The resulting additional cooling of the mixed-layer boundary can

be eliminated by an imaginary heat source at z = −4zB . By introducing heat sources

and sinks below the bottom and above the surface infinetely many times to restore the

boundary coundations, we arrive at the following exact solution to Problem (B.23):

T (z, t) = TS(t)−
∫ t

0
TS,t′(t

′) Erf

(
z

2
√
κ(t− t′)

)
dt′ (B.25)

+
+∞∑

n=1

(−1)n
∫ t

0
TS,t′(t

′)

(
Erf

(
2nzB − z

2
√
κ(t− t′)

)
− Erf

(
2nzB + z

2
√
κ(t− t′)

))
dt′

FO(t) = cV

√
κ

π

∫ t

0

TS,t′(t
′)√

t− t′

(
1 + 2

+∞∑

n=1

(−1)n e
− n2z2B
κ(t−t′)

)
dt′ (B.26)

For an ocean depth of zB = 4000 m, Series (B.25) and (B.26) converge very fast.

Fig. (B.4) illustrates the enormous improvement that can be achieved by considering

only the first order bottom correction term. The resulting estimates for the ocean

temperature anomaly profiles are now in good accordance with the numerical “bucket”

ocean solution, and the analytically and numerically derived heat fluxes begin to deviate

from each other only after 2500 years.



Appendix C

A Survey of Imprecise

Probability Theory

C.1 Basic concepts of imprecise probability

A fairly general theory of imprecise probability can be based on convex sets of proba-

bilities (Good, 1962; Levi, 1980), or coherent lower previsions (Walley, 1991)1. For the

reader used to Kolmogorovian probability on event spaces, convex sets of probabilities

are intuitively easiest to access. Consider a measurable space (Ω,A) with universal

set Ω and a field (or σ-field) A of subsets of Ω2. The field A constitutes the space of

events, on which a probability measure is defined. We recall the well-known axioms of

probability (Kolmogorov 1933; deviating from Kolmogorov, we also include the case of

finitely additive probability below).

Definition C.1 A (finitely or countably) additive probability measure P on (Ω,A)

is a set function P : A→ [0, 1] with

1. P (A) ≥ 0 for all A ∈ A,

2. P (Ω) = 1, and

1 Walley (2000) points out that theories based on sets of desirable gambles (Walley, 1991) and
partial preference orderings (Giron and Rios, 1980; Seidenfeld et al., 1995) lead to an even more general
uncertainty model than can be derived from convex sets of probabilities and lower previsions. The
more general theory allows to condition on events with probability zero, and to distinguish preference
between gambles whose outcomes agree almost everywhere, i.e., except on a subset with measure zero.
Like classical probability theory, models based on convex sets of probabilities and lower previsions
cannot capture such boundary cases adequately. A discussion of theories based on sets of desirable
gambles and partial preference orderings is beyond the scope of this thesis.

2 A collection of subsets of Ω is called a field, or algebra, if it contains Ω itself and is closed under
the formation of complement and finite union. A field is called a σ-field, or σ-algebra if it is closed
not only under the formation of finite unions, but also of countably infinite unions (Billingsley, 1995).
Finitely additive probabilities are defined on fields, while countably additive probabilities are defined
on σ-fields. Hence, the type of field constituting a measurable space depends on the type of additivity
of the measure.

XXXIX
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3. P (∪iAi) =
∑

i P (Ai) for any (finite or countably infinite) collection of disjoint

sets Ai ∈ A.

These axioms suffice to derive the well-known properties that the probability of an

event constitutes a value in the unit interval [0, 1], P (∅) = 0, and the probability over

every partition of the universal set Ω adds to unity.

Definition C.2 A convex set of probabilities, M, is constituted by an arbitrary

collection of (finitely or countably) additive probability measures P : A→ [0, 1] with the

property that for any two probabilities P,Q ∈ M and an arbitrary λ ∈ (0, 1), also the

mixture probability R = λP + (1− λ)Q (pointwise addition on the field A) is contained

in M.

If a collection C of probability measures is not convex, it is always possible to construct

its convex hull M = co(C) by adding all possible mixture probabilities to it. The

requirement of convexity is imposed for mathematical convenience. It does not impose

an additional restriction, since a collection C has the same behavioural implication in a

decision making context than its convex hull (as long as the decision maker’s values for

the outcomes are determinate). Sets of probabilities have also been called credal sets

in the literature (Levi, 1980).

The concept of lower prevision stands in the tradition of the theory of linear previ-

sions by de Finetti (1937). While probabilities are defined on event spaces, previsions

exist on the space of real-valued gambles X : Ω → R. In a behavioural context, gam-

bles are associated with acts under uncertainty linking each uncertain state of the world

ω ∈ Ω with the utility X(ω) from performing action X in state ω. In the frequentist

context, gambles constitute random variables. A gamble is called A-measurable if the

events {ω : X(ω) < x} and {ω : X(ω) > x} are contained in the field A for all x ∈ R.

Let K(A) be the (function) space of all A-measurable gambles that are bounded, i.e.,

for which there exist real numbers x1 and x2 with x1 < X < x2. This space contains

the subset of indicator gambles IA for all measurable events A ∈ A, with IA(ω) = 1 if

ω ∈ A, and IA(ω) = 0 otherwise. In the context of game theory, the indicator gambles

are called unanimity games.

Definition C.3 A linear prevision Pr on K(A) is a functional Pr : K(A) → R,

which fulfils

1. Pr(X + Y ) = Pr(X) + Pr(Y ) for any two gambles X,Y ∈ K(A), and

2. Pr(X) ≥ infω∈Ω X(ω) for all gambles X ∈ K(A).

The two conditions imply Pr(λX) = λPr(X) for all X ∈ A and λ ∈ R (de Finetti,

1974, Section 3.1.5). In particular, Pr is self-conjugate, i.e., Pr(−X) = −Pr(X). It

can be shown that the value of a linear prevision for a gamble X is nothing else than

the expectation value E(X) :=
∫∞
−∞ xdFP,X(x) for some probability P : A → [0, 1] on

the event space A, where FP,X is the distribution function of X under P defined by
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FP,X(x) := P ({ω : X(ω) ≤ x}) (de Finetti, 1974). In particular, it is Pr(IA) = P (A)

for the indicator gambles IA. Hence, linear previsions on the space of A-measurable

gambles, and additive probability measures on the space of events are in one-to-one

correspondence. Knowledge of Pr uniquely determines P (via the indicator gambles),

and knowledge of P uniquely determines Pr (via the expectation operation).

Since linear previsions and additive probabilities contain the same information, it

is natural to try to base a theory of imprecise probabilities on a generalisation of linear

previsions. The resulting theory is presented in Walley (1991).

Definition C.4 A coherent lower prevision Pr on a linear space of bounded gam-

bles3, K, is a functional Pr : K → R, which fulfils

1. Pr(X + Y ) ≥ Pr(X) + Pr(Y ) for any two gambles X,Y ∈ K (superadditivity),

2. Pr(λX) = λPr(X) for λ > 0 and X ∈ K, and

3. Pr(X) ≥ infω∈Ω X(ω) for all gambles X ∈ K.

It is evident that lower previsions generalize de Finetti’s concept of prevision by drop-

ping the linearity condition. The conjugate upper prevision is defined by Pr(X) :=

−Pr(−X). Due to superadditivity of Pr, it is Pr(−X) + Pr(X) ≤ 0, and therefore

Pr(X) ≥ Pr(X). Moreover, since Pr is superadditive, Pr is subadditive. It can be

shown that a lower (upper) prevision is self-conjugate, i.e., Pr(X) = −Pr(−X) for all

X ∈ K, if and only if it is a linear prevision (Walley, 1991, Section 2.8). If the lower

prevision is strictly smaller than the conjugate upper prevision for some gamble X, the

captured information contains imprecision. Obviously, a theory of imprecise probability

can be equally build on coherent lower or upper previsions.

It was the achievement of Peter Walley to provide a simple behavioural foundation

for coherent lower previsions in terms of axioms for desirability of gambles (Walley,

1991, Section 2.2.3). The behavioural foundation transfers to convex sets of probabili-

ties, because they are in one-to-one correspondence to coherent lower previsions - just

like additive probabilities and linear previsions. To see this let us note that every lower

prevision defines a closed convex set PR(Pr) of linear previsions by

PR(Pr) := {Pr : ∀ X ∈ K Pr(X) ≤ Pr(X) }

It can be shown that Pr is the lower envelope of PR(Pr), i.e.,

∀ X ∈ K Pr(X) = inf
Pr∈PR(Pr)

Pr(X)

if and only if it is coherent, i.e., if and only if it fulfils Definition C.4 (Walley, 1991,

Theorem 3.3.3). Moreover, every closed convex set PR of linear previsions equals

3 Walley (1991, Section 2.5) provides a general definition of coherent lower prevision for arbitrary
spaces of gambles X : Ω → R. For the purpose of this exposition, it suffices to consider the simplest
case of linear subspaces (X ∈ K, Y ∈ K, λ ∈ R, then λX ∈ K and X + Y ∈ K). The space K(A) of
A-measurable gambles is linear, if A is a σ-field.
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a set PR(Pr) for some coherent lower prevision Pr, and therefore can be uniquely

represented by Pr (Walley, 1991, Theorem 3.6.1). Since linear previsions determine

additive probabilities and vice versa, every closed convex set PR of linear previsions

corresponds to a closed convex setM of probabilities, and therefore the representation

in terms of Pr extends to M.

To illustrate the introduced concepts and the further concepts of more specialized

versions of imprecise probability theory, we present the nice football example of Walley

(1991, 1996b). A football game has three possible outcomes for the home team, W(in),

(D)raw, and L(oss), which constitute the universal set Ωf = {W,D,L} (the subscript

f stands for football). The set of all possible probability distributions for the outcome

of the game is a two-dimensional simplex in the unit cube [0, 1]3, defined by p(W ) +

p(D) + p(L) = 1.

We now ask a gambler to put his stakes on a finite set of gambles about the outcome

of the game. Let IA be the indicator gamble of the event A ⊆ Ωf . The gambler indicates

that she (marginally) desires the following three gambles:

1. X1 = ID,L − IW , indicating that she (marginally) believes the home team not to

win rather than to win. Hence, Prf (ID,L − IW ) = 0.

2. X2 = IW − ID, indicating that she (marginally) believes the home team to win

rather than to play a draw. Hence, Prf (IW − ID) = 0.

3. X3 = ID − IL, indicating that she (marginally) believes the home team to draw

a match rather than to lose. Hence, Prf (ID − IL) = 0.

The choice of (marginally) desirable gambles specifies a set of three constraints for

the gambler’s coherent lower prevision Prf on the space K (P(Ωf )) of all possible

gambles. In the absence of any further statements, this is all we know about the

gambler’s assessment of the outcome of the football game. The corresponding closed

convex set PR(Prf ) contains all linear previsions which fulfil Prf (ID,L) ≥ Prf (IW ),

Prf (IW ) ≥ Prf (ID), and Prf (ID) ≥ Prf (IL) simultaneously. This corresponds to

a closed convex set of probabilities M(Prf ) including all probability measures with

P ({D,L}) ≥ P ({W}), P ({W}) ≥ P ({D}), and P ({D}) ≥ P ({L}).
Since the coherent lower prevision Prf is the lower envelope of the convex set

PR(Prf ) of linear previsions, we can use PR(Prf ) to find the value of Prf for gam-

bles X ∈ K (P(Ωf )) that were not considered by the gambler. Consider, e.g., the

gamble IW,D. It is Prf (IW,D) = infp∈M(Prf ) ( p(W ) + p(D) ) = 2
3 . Hence, the gam-

bler’s assessment implied that she believes the home team not to lose rather than to

lose. In this way, an assessment for a finite set of gambles, which will be everything

what is available in practice, implies a unique extension onto the entire space K (P(Ωf ))

of possible gambles.

Definition C.5 The natural extension of a lower prevision Pr specified on some

(possibly finite) set K of gambles is the minimal coherent lower prevision E on the space
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of all A-measurable gambles K(A) that dominates Pr on K, i.e., ∀ X ∈ K E(X) ≥
Pr(X). “Minimal” means in this context that whenever some other coherent lower

prevision Pr† dominates Pr on K, it also dominates E on the entire space K(A).

The natural extension will always exist if the lower prevision Pr is dominated by at

least one linear prevision on K. If this is not the case, PR(Pr) = ∅, and M(Pr) = ∅.
In this situation, Pr does not avoid sure loss, i.e., the marginally desirable gambles

X − Pr(X) in K can be combined in such a way that the gambler always incurs a

loss (Walley, 1991, Section 2.4). The revealed belief underlying the choice of lower

previsions is unreasonable.

The concept of natural extension is a cornerstone of Walley’s theory of coherent

lower previsions. Most problems of statistical reasoning, including conditioning, updat-

ing and combining information can be framed in terms of natural extension. Consider,

for example, the set of all possible values of climate sensitivity, e.g., ΩT2x = [0.5 K, 10 K].

Assume that there are assessments available for the (lower or precise) probability pi of

the event that T2x ∈ Ai for a finite number of subsets Ai ⊂ ΩT2x . For the sake of this

argument, let us assume that the absolute amount of global mean temperature increase

in the 21st century depends solely on climate sensitivity and the range ΩQ of future

scenarios for the anthropogenic interference with the climate system. We are now ask-

ing the question: Given those assessments about climate sensitivity, what is the lower

probability that the warming in the year 2100 lies in the range [1.4 K, 5.8 K], which was

specified by the IPCC in its Third Assessment Report? This is a problem of natural

extension. To show this, let us convert the assessments about climate sensitivity into

marginally desirable gambles IAi − pi with Pr(IAi) = pi. On the basis of some reputed

climate model, we can try to find the set B ⊂ ΩT2x ×ΩQ, for which the warming in the

year 2100, indeed, lies in the range [1.8 K, 5.6 K]. Knowledge of the set B enables us to

construct the IPCC-gamble XIPCC = IB which pays a good reputation (1 “reputation

point”) if the IPCC projection included the realised warming, and a bad reputation

otherwise (0 “reputation points”). Hence, we need to find the natural extension from

the marginal desirable gambles IAi − pi onto the lower prevision Pr(XIPCC), which

specifies the lower probability that the IPCC was right given the available assessments

of climate sensitivity.

This particular problem of natural extension will be very hard to implement in

practice, of course, not the least due to the intricate task of identifying the gamble

XIPCC . We wanted to point out, however, that lower previsions and their natural

extension are fairly general concepts that can be employed to questions of statistical

inference seemingly remote from the concept of gambles and previsions. Walley (1991,

Section 3.1.1) provides an operational definition of natural extension in terms of a linear

program for previsions. Utkin and Kozine (2001) have shown that Walley’s definition

is the dual form of an intuitively more accessible but often more difficult program to

solve, which consists in finding the probability distribution that minimises the prevision

Pr(X), while observing the constraints Pr(Xi) ≥ Pr(Xi).
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No matter what form is used, the calculation of the natural extension becomes

increasingly difficult with growing complexity of the universal set, and an increasing

number of constraining previsions. In this situation, it is useful to identify a subset of

the closed convex setM(Pr) of probabilities, and PR(Pr) of linear previsions, respec-

tively, on which the statistical reasoning can be restricted without loss of generality.

Definition C.6 The set of extreme points extM(Pr) ( extPR(Pr) ) contains the

elements of a closed convex set M(Pr) ( PR(Pr) ) of probabilities (linear previsions)

which cannot be written as a convex combination of other elements. Hence, M(Pr)

( PR(Pr) ) constitutes the convex hull co(extM(Pr)) ( co(extPR(Pr)) ) of the

set of extreme points. If the number of extreme points is finite, the set extM(Pr)

( extPR(Pr) ) is called finitely generated.

It can be shown that for every gamble X ∈ K there exists an extreme point Pext ∈
extM(Pr), or equivalently Pr ext ∈ extPR(Pr), which fulfils Pr ext(X) = Pr(X)

(Walley, 1991, Theorem 3.6.2). Due to this property, it suffices to perform operations

like natural extension, Bayesian updating of information, and decision making, on the

set of extreme points extM(Pr), or equivalently extPR(Pr) (see, e.g., Walley, 1991,

Sections 3.6.2, 8.4.8). If the number of extreme points is small, the statistical reasoning

with imprecise probabilities is greatly simplified. In our football example, the gambler

has specified a closed convex setM(Prf ) of probabilities with just three extreme points:

p1 = {1
3 ,

1
3 ,

1
3}, p2 = {1

2 ,
1
2 , 0}, and p3 = {1

2 ,
1
4 ,

1
4}. The extreme points of the corre-

sponding set PR(Prf ) of linear previsions are determined by the three (marginally)

desirable gambles that were specified by the gambler. In general, the extreme points

of convex sets of linear previsions are generated by (marginally) desirable gambles that

are linear combinations of indicator gambles. However, not all convex sets need to be

finitely generated.

The reader might ask why we have emphasized coherent lower previsions Pr on the

space of measurable gambles K(A) as the representation of closed convex sets M(Pr)

of probabilities, but have not yet paid attention to the lower envelope ofM(Pr) on the

event space A itself. From a historical perspective, this is indeed an omission since the

lower envelope on the event space has received much more attention in the literature.

Definition C.7 A coherent lower probability on (Ω,A) is a set function P : A →
[0, 1] constituting the lower envelope of a convex set M of additive probabilities on

(Ω,A), i.e.,

∀ A ∈ A P (A) = inf
P∈M

P (A) .

In contrast to coherent lower previsions, it does not seem possible to characterize co-

herent lower probabilities by a set of “Kolmogorov style” axioms. A necessary, but

not sufficient condition for the coherence of lower probabilities is superadditivity, i.e.,

for any two disjoint sets A,B ∈ A, it is P (A ∪ B) ≥ P (A) + P (B) (Walley, 1991,

Section 2.7.4). It can be seen from the definition of P that the upper envelope P of the
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convex set of probabilities is the conjugate set function to P , i.e., P (A) = 1−P (Ac) for

all A ∈ A. Since P is superadditive, P needs to be subadditive. Due to the conjugacy

relationship, coherent lower and upper probabilities contain the same information (if

specified on the entire event space A), so that it suffices to consider only one of the two

envelopes.

A coherent lower prevision Pr uniquely determines a coherent lower probability

A by use of the indicator gambles, i.e., P (A) := Pr(IA) for all A ∈ A. However,

the inverse is not true! There exists no unique way to calculate the lower expected

value Pr(X) of a gamble X from knowledge of just the coherent lower probability. By

the same token, closed convex sets M of probabilities, which were shown to uniquely

determine Pr, cannot be fully represented by coherent lower probabilities. There exist

subclasses of closed convex sets M which have the same lower envelope on the event

space. Only the largest set in this subclass can be reconstructed from knowledge of a

coherent lower probability.

Definition C.8 A structure Γ is a closed convex set of additive probabilities on (Ω,A)

that is generated by a coherent lower probability P on (Ω,A) by

Γ(P ) := {P : ∀ A ∈ A P (A) ≤ P (A) }

We have borrowed the term “structure” from the theory of interval probability of We-

ichselberger (2000, 2001). In the context of Weichselberger’s theory, coherent lower

probabilities are called F-probabilities, and convex subsets M ⊂ Γ with the lower en-

velope of the structure Γ are called prestructures. Weichselberger (2000) showed that

every convex set M of probabilities has a unique extension to a structure Γ by con-

structing its lower envelope, and using Definition C.8 to generate Γ from it. In general,

this operation involves a loss of information, because Γ might include more additive

probabilities than were included in the original set M.

As an example, take the convex setM(Prf ) of probabilities that specifies the gam-

bler’s belief about the outcome of the football game for the home team. It is not a struc-

ture. This can be seen by constructing its lower envelope on the power set P({W,D,L}).
Since the power set only contains the sets {W}, {D}, {L}, {W,D}, {W,L}, {D,L} be-

side the empty and the universal set, it suffices to specify the lower envelope in terms

of lower and upper probabilities on the elementary events {W}, {D}, {L}. The upper

probability on the elementary events determines the lower probability on the com-

plementary events {W,D}, {W,L}, {D,L} by the conjugacy relationship. Considering

the set of extreme points p1 = {1
3 ,

1
3 ,

1
3}, p2 = {1

2 ,
1
2 , 0}, and p3 = {1

2 ,
1
4 ,

1
4}, we find

immediately

P f ({W}) =
1

3
, P f ({D}) =

1

4
, P f ({L}) = 0 (C.1)

P f ({W}) =
1

2
, P f ({D}) =

1

2
, P f ({L}) =

1

3
.
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Equalities (C.1) fully determine the coherent lower probability P f which is the lower

envelope of the convex set M(Prf ) of probabilities. The associated structure Γ(P f )

contains all probability distributions p = {p(W ), p(D), p(L)} with P f ({W}) ≤ p(W ) ≤
P f ({W}), P f ({D}) ≤ p(D) ≤ P f ({D}), and P f ({L}) ≤ p(L) ≤ P f ({L}). Γ(P f )

has five extreme points: p1, p2, p3 of M(Prf ), and in addition p4 = {1
3 ,

1
2 ,

1
6}, and

p5 = { 5
12 ,

1
4 ,

1
3}. Clearly, the structure Γ(P f ) is a true superset of the convex set

M(Prf ) of probabilities.

Hence, the one-to-one correspondence between linear previsions on the space of gam-

bles and additive probabilities on the space of events no longer persists when moving

to coherent lower previsions and coherent lower probabilities. Coherent lower previ-

sions are more informative then coherent lower probabilities, and constitute the only

candidate to represent all closed convex sets of additive probabilities adequately. As a

rule, uncertainty assessments involving comparative probability statements like, e.g., the

gambler’s belief that the home team will win the football game rather than drawing the

match, can be represented only by coherent lower previsions, but not by coherent lower

probabilities. Therefore, it is often argued that the concept of previsions for gambles

is more fundamental for describing epistemic uncertainty than the concept of probabil-

ities on events. The fixation on the concept of probability in the tradition of Laplace

(1812) and Kolmogorov (1933) might have been a major obstacle to the construction

of satisfactory theories of epistemic uncertainty which have matured only in the last

decade.

C.2 Special classes of imprecise probability

The general concepts of closed convex sets of probabilities and coherent lower previsions

include a variety of uncertainty models as special cases (Walley, 1996b, 2000). To see

this, it is useful to consider the following class of set functions.

Definition C.9 A Choquet capacity µ on (Ω,A) is a set function µ : A → R which

is monotone, i.e., µ(A) ≤ µ(B) when A ⊆ B. A normalised Choquet capacity µ : A →
[0, 1] assigns the value µ(∅) = 0 to the smallest element, and the value µ(Ω) = 1 to the

largest element in the field A.

Choquet capacities were characterised by Choquet (1953) in his theory of capacities.

Since coherent lower probabilities are monotone due to their superadditivity, they con-

stitute a special case of normalised Choquet capacities. The same is true for coherent

upper probabilities, whose monotonicity can be shown by their conjugacy relationship

with lower probabilities. However, not every normalised Choquet capacity is necessar-

ily the lower or upper envelope of a convex set of probabilities, or even dominated by

a single additive probability. Nevertheless, the lower/upper probability interpretation

constitutes the most important source of interest about Choquet Capacities. They have

been employed in classical statistics (Huber, 1973; Huber and Strassen, 1973; Augustin,

1998), robust Bayesian analysis (Berger, 1993), decision theory (Gilboa, 1987; Schmei-

dler, 1989) and game theory, where they are called monotone games (Shapley, 1971).



C.2 Special classes of imprecise probability XLVII

Choquet capacities have also been used under the name fuzzy measure in fuzzy measure

theory (Wang and Klir, 1992). A summary of the mathematical theory on capacities

can be found in Denneberg (1994).

The value of Choquet capacities is threefold. They allow for a characterisation of

non-additive set functions that provides a hierarchy of lower probability models. They

allow the definition of an integral with respect to non-additive measures. And they

exhibit an additive representation. A Choquet capacity can be characterised by the

relationship between its value for a union of sets and the sum of its values for the

individual sets and their intersections.

Definition C.10 A Choquet capacity µ : A → [0, 1] is called n-monotone if and only

if

µ(∪ni=1 Ai) ≥
∑

I⊆{1,...,n}
(−1)|I|+1 µ(∩i∈I Ai) for all Ai ∈ A , 1 ≤ i ≤ n ,

and n-alternating if and only if

µ(∪ni=1 Ai) ≤
∑

I⊆{1,...,n}
(−1)|I|+1 µ(∩i∈I Ai) for all Ai ∈ A , 1 ≤ i ≤ n .

If the property of n-monotonicity can be extended to arbitrary n ∈ N, a Choquet ca-

pacity µ is called ∞-monotone or totally monotone. Similarly, if the property of

n-alternation can be extended to arbitrary n ∈ N, µ is called ∞-alternating or totally

alternating.

The definition is intuitively easiest to access when considering the simplest case of

2-monotonicity, which requires µ(A ∪ B) ≥ µ(A) + µ(B) − µ(A ∩ B). 2-monotone

capacities have also been called supermodular, or convex capacities in the literature. If

µ is a probability measure, left and right hand side of the n-monotonicity condition,

and consequently also of the n-alternation condition, are equal to each other. Additive

probabilities are the only type of Choquet capacities which are totally monotone and

totally alternating.

It has been shown that n-monotone capacities constitute special cases of coherent

lower probabilities. The condition of 2-monotonicity is sufficient, but not necessary,

for a set function to be the lower envelope of some convex set of probabilities (Walley,

1981). In his theory of interval probability, Weichselberger (2000, 2001) introduces 2-

monotone lower probabilities under the name C-probabilities. Since n+ 1-monotonicity

implies n-monotonicity, the monotonicity property induces a hierarchy of imprecise

probability models, with the class of n+ 1-monotone lower envelopes being included in

the more general class of n-monotone lower envelopes. The conjugate upper probability

of an n-monotone lower probability is n-alternating.

2-monotone capacities are the most general class of coherent lower probabilities,

whose coherence can be checked without showing that they constitute the lower envelope

of a convex set of probabilities. They are also the most general class of coherent
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lower probabilities, which can be extended uniquely to a coherent lower prevision. The

extension is performed on the basis of a generalised integral proposed by Choquet

(1953).

Definition C.11 The Choquet integral of an A-measurable gamble X : Ω→ R with

respect to a normalised Choquet capacity µ : A → [0, 1] is given by

Eµ(X) =

∫ ∞

0
µ({ω|X(ω) > x}) dx+

∫ 0

−∞
(µ({ω|X(ω) > x}) − 1 ) dx .

In terms of the conjugate capacity defined by µc(A) = 1 − µ(Ac) for all events A ∈ A,

the Choquet integral reads

Eµ(X) =

∫ ∞

0
( 1− µc({ω|X(ω) ≤ x}) ) dx−

∫ 0

−∞
µc({ω|X(ω) ≤ x}) dx .

The Choquet integral generalises the expectation formation about the outcome of a

gamble from additive probabilities to Choquet capacities. If µ is an additive probability,

the Choquet integral collapses to the usual expectation operation. In the context of

fuzzy measure theory, the Choquet integral is employed under the name Sugeno or

fuzzy integral (Sugeno, 1974).

As mentioned in the preceding section, there exists no one-to-one correspondence

between coherent lower probabilities and coherent lower previsions in general. However,

it has been shown (Huber, 1981; Walley, 1981) that the extension of 2-monotone lower

probabilities P : A → [0, 1] onto the space of A-measurable gambles K(A) by use of

the Choquet Integral equals the natural extension (Definition C.5; note that a coherent

lower probability determines the lower prevision for the indicator gambles). For coher-

ent lower probabilities that are not 2-monotone the application of the Choquet integral

is too conservative. It would yield an extension onto the space K(A) that is strictly

dominated by the natural extension, i.e., Eµ(X) < E(X) for some gamble X.

Consider once more the football example. For universal sets with only three ele-

ments, as contained in Ωf = {W,D,L}, every coherent lower probability is 2-monotone.

This can be derived from superadditivity of the lower probability, and the fact that ei-

ther A ∩ B = ∅, A ⊆ B or B ⊂ A for any pair A,B in the power set P(Ωf ). Hence,

the coherent lower probability P f described by the Equalities C.1 is 2-monotone. If we

want to calculate its natural extension for some gamble on the outcome of the football

game, we can use the Choquet integral. Consider the gamble X = 3 IW + ID, which

gives the home team three points if they win, one point if they draw the match and

nothing if they lose. This is the typical gamble faced by European football teams in

their national leagues. Taking the coherent lower probability as a representation of the

epistemic uncertainty about the outcome of the game, the lower expected value of the

points received by the home team is given by

EP f (X) = 1 · P f ({W,D}) + (3− 1) · P f ({W}) =
4

3
.
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The equality between Choquet integration and natural extension for the special class

of 2-monotone lower probabilities is not a trivial result. It can greatly simplify the use of

imprecise probabilities in the statistical inference process as well as in decision analysis.

Therefore, 2-monotone capacities have constituted the dominant imprecise probability

model in economic applications (see Mukerji and Tallon 2004 for an overview). An

early application to the economics of climate change can be found in Lange (2000).

Although the hierarchic classification of Choquet capacities proves useful in identi-

fying special classes of lower probabilities with favourable properties, there is still the

need for simplifying the representation on the event space. Simplified representations

have been studied in particular on finite universal sets Ωn = {ω1, ..., ωn}, for which the

space of all possible events A ⊆ Ωn is constituted by the power set P(Ωn) containing 2n

elements. Therefore, we will restrict ourselves to finite universal sets in the following.

Since climate change assessments usually involve uncertain quantities on uncountable

universal sets Ω, this will require transforming the uncountable Ω to a finite partition

Ωn = {A1, ..., An} with n atoms4. The choice of the partition depends on the appli-

cation, and we have explained our particular choice for this analysis in Section 3.4.1.

Finite partitions of continuous spaces have to be used in any numerical calculation. For

instance, non-parametric probability distributions for climate sensitivity in the litera-

ture are constituted by histogrammed data on a finite partition.

It was shown by Shafer (1976, Chapter 2) that any set function µ : Pn → R on a

finite power set Pn := P(Ωn) has an additive representation in terms of another set

function ν : Pn → R.

Definition C.12 The Möbius inverse ν : Pn → R of a set function µ : Pn → R is

uniquely defined by

∀A ∈ Pn ν(A) :=
∑

B⊆A
(−1)|A−B| µ(B) .

In turn, a set function µ : Pn → R is represented by its Möbius inverse ν : Pn → R as

follows (Shafer, 1976):

∀A ∈ Pn µ(A) :=
∑

B⊆A
ν(B) . (C.2)

The properties of the Möbius inverse have been studied in Chateauneuf and Jaffray

(1989) and Gilboa and Schmeidler (1994). For a generalisation of the Möbius represen-

tation to uncountable spaces see Gilboa and Schmeidler (1995). If a set function µ is

normalised, it is µ(Ωn) :=
∑

B∈A ν(B) = 1, i.e., the Möbius inverse adds to unity over

the event space A. A set function µ is a Choquet capacity if and only if ν({ωi}) ≥ 0

for all ωi ∈ Ωn (Chateauneuf and Jaffray, 1989, Proposition 2). The Möbius inverse

provides an efficient representation of a capacity if it is sparse, i.e., if it contains non-

zero values ν(A) 6= 0 only for a limited number k of events A in the power set Pn
(k � 2n − 1; ν(∅) = 0 iff µ(∅) = 0). The Möbius inverse of a probability measure, for

4 A collection of sets {A1, ..., An} is a finite partition of Ω, if ∪ni=1 Ai = Ω, and Ai∩Aj = ∅ for i 6= j.
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instance, has only non-zero values ν({ωi}) > 0 on the elementary events ωi ∈ Ωn. In

this case, the Möbius inverse coincides with the probability mass function.

Consider once more the football example. Since the universal set Ωf contains only

three elements, the Möbius inverse of the 2-monotone lower probability P f defined by

equalities (C.1) can be easily calculated by use of Definition C.12. We find

νf ({W}) =
1

3
, νf ({D}) =

1

4
, νf ({L}) = 0 , νf ({W,D}) =

1

12

νf ({W,L}) =
1

6
, νf ({D,L}) =

1

4
, νf ({W,D,L}) = − 1

12
. (C.3)

The power set P(Ωf ) contains 6 out of 8 elements with non-zero Möbius inverse.

Therefore, the Möbius representation does not provide a large improvement over the

coherent lower probability representation in this particular case. However, it can sim-

plify the evaluation of the Choquet integral considerably . The Choquet integral of a

Pn-measurable gamble X : Ωn → R with respect to a normalised Choquet capacity

µ : Pn → [0, 1] reads (e.g., Chateauneuf and Jaffray, 1989, Corollary 4)

Eµ(X) =
∑

B∈Pn
ν(B) inf

ω∈B
X(ω) (C.4)

in terms of the Möbius inverse ν : Pn → [0, 1] of µ. In the case of the football example,

we find once more Eµ(X) = 3 νf ({W}) + νf ({D}) + νf ({W,D}) = 4
3 for the gamble

X = 3 IW + ID.

The concept of the Möbius inverse becomes particularly valuable if the Choquet

capacity is totally monotone (see Definition C.10).

Definition C.13 A totally monotone Choquet capacity bel : A → [0, 1] is called a

belief function. Its conjugate totally alternating capacity pl : A → [0, 1] is called a

plausibility function.

Belief and plausibility functions are the least general class of coherent lower and upper

probabilities that encompass additive probability as special case. It has been shown by

Shafer (1976) that a Choquet capacity µ : Pn → [0, 1] on a finite event space Pn is a

belief function if and only if its Möbius inverse ν : Pn → R contains only non-negative

values, i.e., ν(A) ≥ 0 for all A ∈ Pn. Since also bel(Ω) :=
∑

A∈Pn ν(A) = 1, the

Möbius inverse of a belief function has been called a probability mass assignment in the

literature. In contrast to additive probability, it is not defined on elementary events

ωi ∈ Ωn, but on events A ⊆ Ωn.

The concept of belief and plausibility functions has emerged in the context of the

Dempster-Shafer theory of evidence, which encompasses a variety of uncertainty models

with different semantics. The original idea was proposed by Dempster (1967) who

considered a probability mass assignment on an underlying space Ψ = {ψ1, ..., ψn}
that is transferred onto a field A by means of a multivalued mapping K : Ψ → A.

Later on, belief functions were given a non-probabilistic interpretation by Shafer (1976).
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The last two decades have seen more variants of semantic models for belief functions,

most notably the transferable belief model by Smets and Kennes (1994). Hence, the

interpretation of belief functions needs to be considered carefully when studying their

applications. An early application to climate change on the basis of Dempster’s model

was provided by Luo and Caselton (1997). In this analysis, we interpret belief functions

exclusively as a special class of coherent lower probabilities.

Definition C.14 Let bel : Pn → [0, 1] a belief function on a finite event space, and

ν : Pn → [0, 1] its Möbius inverse. The events E ∈ Pn with non-zero Möbius inverse

ν(E) > 0 are called focal elements. The collection of focal elements along with their

Möbius assignment is called a (finite support) focal set or random set (E , ν) :=

{ (E1, ν1 := ν(E1)) , ..., (Ek, νk := ν(Ek)) }.
The random set contains the full information of the Möbius inverse ν of bel. By means

of Equation (C.2), it completely determines belief and plausibility function.

bel(A) :=
∑

B⊆A
ν(B) =

∑

i |Ei⊆A
νi , (C.5)

pl(A) :=
∑

B∩A6=∅
ν(A) =

∑

i |Ei∩A6=∅
νi . (C.6)

Equations (C.5) and (C.6) will be used frequently in this analysis to calculate lower

and upper probabilities from a random set representation of the uncertainty.

Random sets are the preferable choice for representing the special class of imprecise

probability models that can be described by a totally monotone lower probability. This

is particularly true if the number k of focal elements is much smaller than the number

of events in the power set Pn (k � 2n). We will show in this analysis that the use

of random sets simplifies the statistical reasoning with belief functions by allowing for

rather simple algorithms to combine, update and project their information content. In

addition, they can be interpreted as a probability mass assignment on the focal elements.

We are only able to assign probability masses with a level of precision described by the

focal elements, but not on a smaller, more precise scale. Within a focal element, the

probability mass can be arbitrarily distributed on the elementary events contained

in it. This interpretation has been backed formally by the results of Chateauneuf

and Jaffray (1989, Proposition 5 and Corollary 3). They showed that a probability

distribution dominates a belief function if and only if it can be determined by a set of

unit weighting functions on the focal elements and the probability mass assignment.

Given this interpretation, how much mass will be contained in an arbitrary set A ⊂ Pn?

In the best case, every focal element which intersects A will have its probability mass

located entirely in the intersection (upper probability, Equation C.6). In the worst case,

every focal element that is not fully enclosed by A will have its mass situated outside

the intersection (lower probability; Equation C.5).

As mentioned above, belief functions are the simplest representation of imprecise

probabilities that incorporate classical probabilities as a special case. Assume that all
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focal elements of the random set are disjoint. Then the random set reduces to a prob-

ability mass distribution on the elementary events ωi ∈ Ωn, and belief and plausibility

functions collapse into one additive probability measure. There exists another interest-

ing special case, which is rather complementary to classical probability theory. Assume

that the focal elements are nested, i.e., there exists a chain E1 ⊆ ... ⊆ Ek. In this case,

the imprecision in the uncertainty representation is very large. If an event A does not

intersect all focal elements, it includes none of them. Hence,

pl(A) < 1 ⇒ bel(A) = 0 ⇔ bel(A) > 0 ⇒ pl(A) = 1 .

If the entire random set is constituted by a chain of nested focal elements, the

plausibility function becomes a possibility measure Π : Pn → [0, 1] (Dubois and Prade,

1990).

Definition C.15 A possibility measure Π : P → [0, 1] on the power set of a (possibly

uncountable) universal set Ω is defined by

Π(∪i∈IAi) = sup
i∈I

Π(Ai)

for any index set I and any family of subsets Ai ⊆ P. Its conjugate set function is

called a necessity measure N : P → [0, 1].

Possibility and necessity measures are the primitives of possibility theory (Zadeh, 1978;

Dubois and Prade, 1988; de Cooman, 1997). It is mathematically convenient in the sense

that the set functions Π and N can be represented by a single possibility distribution

π : Ωn → [0, 1],

∀A ∈ Pn Π(A) = sup
ω∈A

π(ω) . (C.7)

Here, the convention supω∈∅(.) := 0 has been silently assumed. The possibility distri-

bution π is normalized by the condition that there exists a ω ∈ Ω with π(ω) = 1. Thus,

formally it represents a normal fuzzy set.

Possibility theory has been proposed by Zadeh (1978) in order to provide an un-

certainty model for fuzzy sets. Since then, possibility theory has received considerable

attention (Dubois and Prade, 1998), but was rarely given an imprecise probability inter-

pretation. Possibility measures as a special case of totally monotone upper probabilities

have been analysed in Dubois and Prade (1992) and de Cooman and Aeyels (1999).

They can play only a little role as imprecise probability model since they represent the

upper envelope of a rather artificial type of structure ΓΠ := {P | ∀A ∈ A P (A) ≤
Π(A)}. Due to relationship (C.7) in combination with the normalisation of possibility

distributions, ΓΠ has to contain at least one Dirac measure representing complete infor-

mation about the true state of the world. We have studied such structures in Kriegler

and Held (2003), but a discussion of this work is beyond the scope of this thesis. Since

possibility measures constitute only a very limited model of imprecise probability, we

will not consider them any further here.
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We summarise our survey of imprecise probability theory by recapitulating the hi-

erarchy of imprecise probability models. The most general models that were discussed

are closed convex set of probabilities and coherent lower previsions. Both models are

equivalent to each other. They are the only models that can capture comparative prob-

ability statements. A special class of these models are coherent lower probabilities,

which are also a special type of Choquet capacity. Mathematical tractability is con-

siderably improved when restricting coherent lower probabilities further to 2-monotone

lower probabilities. Among 2-monotone probabilities, belief functions have a particu-

larly accessible representation in terms of their Möbius inverse. Belief functions are the

least general class that generalises additive probability. They also encompass possibil-

ity theory when the latter is interpreted as an imprecise probability model (which it

usually is not).
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Proof of Propositions

Proof of Lemma 3.1:

(I) Since at least one index i ∈ {1, ..., n}, j ∈ {1, ...,m} is raised by one in each

iteration, the algorithm enters step (2) at most n+m− 1 times before it stops.

(II) Since the indices i ∈ {1, ..., n}, j ∈ {1, ...,m} are either raised by one or remain

unchanged in each iteration, i(k) ≤ i(l) and j(k) ≤ j(l) for iterations k < l. Thus,

x∗j(k) ≤ x∗j(l) and x∗i(k) ≤ x∗i(l) for iterations k < l.

(III) Consider an arbitrary x ∈ R.

Belief function: If x < x∗1, then there exists no focal element with Ek ⊆
(−∞, x]. Therefore, we have bel(−∞, x] = SF (x) = 0. If x ≥ x∗n, then all fo-

cal elements have the property Ek ⊆ (−∞, x]. Therefore, we have bel(−∞, x] =

SF (x) = 1. Assume x∗1 ≤ x < x∗n. Let El = (x∗l , x∗l] be the focal element

with x∗l ≤ x < x∗l+1. Then, we have belE (−∞, x] :=
∑

k|Ek⊆(−∞,x] νk =
∑

k≤l νk
due to (II). By construction of the algorithm,

∑
k≤l νk = pl := SF (x∗l). Since

x∗l ≤ x < x∗l+1, we have SF (x∗l) = SF (x).

Plausibility function: If x ≤ x∗1, then all focal elements have the property

Ek ∩ (−∞, x] = ∅. Therefore, we have pl(−∞, x] = SF (x) = 0. If x > x∗m,

then all focal elements have the property Ek ∩ (−∞, x] 6= ∅. Therefore, we have

pl(−∞, x] = SF (x) = 1. Assume x∗1 < x ≤ x∗m. Let El = (x∗l , x∗l] be the focal

element whith x∗l < x ≤ x∗l+1. Then, we have plE(−∞, x] :=
∑

k|Ek∩(−∞,x]6=∅ νk =∑
k≤l νk due to (II). By construction of the algorithm,

∑
k≤l νk = pl := SF (x∗l+1).

Since x∗l < x ≤ x∗l+1, we have SF (x∗l+1) = SF (x). 2

Proof of Theorem 3.1:

Step 1: The random set E has Property (III), Lemma 3.1. Hence, we have PX(A) =

LIV
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belE(A) for every event A = (−∞, x], x ∈ R. Likewise, we have PX(∅) = belE(∅) = 0,

and PX(R) = belE (R) = 1.

Step 2: Consider an arbitrary half closed interval (a, b] ⊂ R, a < b. we have to show

that PX(a, b] = belE (a, b].

PX(a, b] = max[ 0, SF (b)− SF (a)] = max[ 0,
∑

i |Ei⊆(−∞,b]
νi −

∑

j |Ej∩(−∞,a]6=∅
νj ] .

If SF (b) < SF (a), there exists a focal element Ê = (x̂∗, x̂∗] ∈ E with Ê∩(−∞, a] 6= ∅
and Ê 6⊆ (−∞, b]. Assume now that an É ∈ E with É = (x́∗, x́∗] ⊆ (a, b] would exist.

Then, a ≤ x́∗ < x́∗ ≤ b, and x̂∗ < x́∗ < x́∗ < x̂∗. The latter, however, contradicts

Property (II) in Lemma 3.1, and we conclude that such an É ∈ E does not exist.

Hence, belE (a, b] = 0.

Assume, vice versa, that there exists a focal element Ê ∈ E with Ê ∩ (−∞, a] 6= ∅
and Ê 6⊆ (−∞, b]. Let E be an arbitrary focal element with E ⊆ (−∞, b]. Then

either E ⊆ (a, b] or E ∩ (−∞, a] 6= ∅. It was shown in the last paragraph that the

existence of Ê excludes E ⊆ (a, b]. Hence, all Ei ⊆ (−∞, b] ∈ E intersect (−∞, a], and

SF (b) < SF (a). Therefore, if SF (b) ≥ SF (a), there is no such focal element Ê ∈ E ,

i.e., for all focal elements Ei 6⊆ (−∞, b]⇒ Ei ∩ (−∞, a] = ∅. Then,

PX(a, b] =
∑

s(i) |Es(i)⊆(a,b]

νs(i) +
∑

t(i) |Et(i)∩(−∞,a]6=∅
νt(i) −

∑

j |Ej∩(−∞,a]6=∅
νj = belE(a, b] .

Step 3: Consider an arbitrary Borel set B ∈ R. Let E1, ..., En be the focal elements

that are fully contained in B, and En+1, ...Ek the remaining focal elements of E . Due to

Property (I), Lemma 3.1, E = ∪ni=1Ei is a union of m ≤ n disjoint half-closed intervals

E = (a1, b1] ∪ ... ∪ (am, bm], a1 < b1 < ... < am < bm, where no pair of half-closed

intervals exhibits common accumulation points. Choose a CDF F ′ : R → [0, 1] with

F ′(a1) = min[SF (a1), SF (b1)], F ′(b1) = SF (b1), ..., F ′(am) = min[SF (am), SF (bm)],

F ′(bm) = SF (bm). Since F ′(a1) ≤ F ′(b1) ≤ ... ≤ F ′(am) ≤ F ′(bm), such a CDF does

exist, and is contained in ΓX(SF , SF ). Given this probability specification, we have

P ′(E) = F ′(bm)− F ′(am) + ...+ F ′(b1)− F ′(a1)

= max[0, SF (bm)− SF (am)] + ...+ max[0, SF (b1)− SF (a1)]

= PX(am, bm] + ...+ PX(a1, b1] .

Since the lower envelope PX is super-additive on a union of disjoint sets (Walley, 1991,

Ch. 2.7.4), we have PX(E) = P ′(E). Since PX(ai, bi] = bel(ai, bi] as shown in Step 2,

and each focal element contained in E is contained in exactly one interval (ai, bi],

PX(E) =

m∑

i=1

∑

j|Ej⊆(ai,bi]

νj =
∑

j|Ej⊆
mS
i=1

(ai,bi]

νj = belE(E) .
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Since a lower envelope PX is a monotone set function, we have

PX(B) ≥ PX(E) = belE(E) = belE (B) .

Step 4: Consider an arbitrary Borel set B ∈ R. Let E1, ..., En be the focal elements

that are fully contained in B, and En+1, ..., Ek the remaining focal elements of E .

Choose a right-continuous step function SF ∗ : R → [0, 1] as follows. For each focal

element Ei 6⊆ B, n < i ≤ k, introduce a step of height νi at a point xi ∈ Ei, xi 6∈ B.

For each focal element Ei ⊆ B, 1 ≤ i ≤ n introduce a step of height νi at an arbitrary

point xi ∈ Ei. Since
∑k

i=1 νi = 1, SF ∗ so defined is a CDF of some Dirac δ-measure

P ∗. Moreover, we have

∀x ∈ R SF ∗(x) ≥
∑

j |Ej⊆(−∞,x]

νj = bel(−∞, x] = SF (x) ,

SF ∗(x) ≤
∑

j |Ej∩(−∞,x]6=∅
νj = pl(−∞, x] = SF (x) ,

so that P ∗ ∈ ΓX(SF , SF ). Clearly, P ∗(B) =
∑n

i=1 νi =
∑

i |Ei⊆B νi = belE (B).

Since we have established PX(B) ≥ belE (B) for arbitrary Borel sets B in Step 3, it is

PX(B) = belE (B). 2

Proof of Corollary 3.1:

Show ΓX(belE) ⊆ ΓX(SF , SF ) :

Choose an arbitrary probability PX ∈ ΓX(belE ).
⇒ ∀ x ∈ R PX(−∞, x] ≥ belE (−∞, x] and PX(−∞, x] ≤ plE(−∞, x].

⇒ PX ∈ ΓX(SF , SF ) by definition.

Show ΓX(belE) = ΓX(SF , SF ), if (E, ν) has Properties (I) and (II):

Use Algorithm 3.1 to construct a random set (E ′,m′) from SF and SF . (E ′,m′) and

(E , ν) both have Properties (I) to (III), Lemma 3.1. This implies, inter alia, that for any

half-closed interval (a, b] on the real line we have belE ′ = belE := max[0, SF (b)−SF (a)]

(see Step 1 in Proof of Theorem 3.1). Since both random sets contain only half-closed

intervals, it follows (E ′,m′) = (E , ν). Hence, belE = belE ′ , and according to Theorem 3.1,

belE is the lower envelope of ΓX(SF , SF ).

Show ΓX(belE) = ΓX(SF , SF ), only if (E, ν) has Properties (I), (II):

Assume that (E , ν) does not fulfil property (I) or (II) in Lemma 3.1. Let (E ′,m′)
be the random set constructed from SF , and SF by Algorithm 3.1, and belE ′ the

associated belief function. According to Lemma 3.1, (E ′,m′) has properties (I) to

(III). Then, (E , ν) 6= (E ′,m′), and bel′E 6= belE . According to Theorem 3.1, bel′E is

the lower envelope of ΓX(SF , SF ). Hence, belE cannot be the lower envelope, and

ΓX(belE ) 6= ΓX(SF , SF ). 2
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Proof of Lemma 3.2:

Step 1: Let B = {(−∞, x1], ..., (−∞, xm], (y1,∞), ..., , (ym′ ,∞), A1, ..., Ak} be the col-

lection of sets, on which the defining lower probability constraints of the p-box Γ(SF , SF )

and the ε-contamination model Γ(p) are specified. {A1, ..., Ak} constitutes a partition

of S, and x1 < ... < xm, y1 < ... < ym′ ∈ R, Let P |B be a lower probability on B that

is defined by the joint constraints of Γ(SF , SF ) and Γ(p), i.e.,

P (−∞, xi] := SF (xi) , P (yi′ ,∞) := 1− SF (yi′) , P (Aj) = p
j
.

P |B generates a convex set of probabilities M(P |B) := {P | ∀ B ∈ B P (B) ≥ P (B)}.
Clearly, it is M(P |B) ⊇ Γ(SF , SF , p), because every P ∈ Γ(SF , SF , p) dominates P

on B, and therefore needs to be included in M(P |B). In turn, every P ∈ M(P |B)

dominates belE on the events (−∞, xi], 1 ≤ i ≤ m, and (yi′ ,+∞), 1 ≤ i′ ≤ m′. It also

dominates belp on the events Aj , 1 ≤ j ≤ k. Therefore, it will be included in Γ(SF , SF )

and Γ(p) by definition of these sets of probabilities. Hence, M(P |B) = Γ(SF , SF , p).

Since Γ(SF , SF ) and Γ(p) are compatible, it is Γ(SF , SF , p) = Γ(SF , SF )∩Γ(p) 6=
∅. It follows from the Natural Extension Theorem of Walley (1991, Theorem 3.4.1)

that the natural extension PE : R → [0, 1] of the lower probability P |B : B → [0, 1] is

the lower envelope of Γ(SF , SF , p) on the entire Borel field R.

By assumption, belE is the lower envelope of Γ(SF , SF ) (see also Theorem 3.1), and

belP the lower envelope of Γ(p). Hence,

PE(A) ≥ max[belE (A), belp(A)] for all A ∈ R .

Moreover, since the natural extension is a coherent lower probability (Walley, 1991,

Theorem 3.1.2), it is in particular superadditive on the union A ∪ B of two disjoints

sets A,B ∈ R (Walley, 1991, Section 2.7.4). Hence,

PE(A∪B) ≥ max[belE (A), belp(A)] + max[belE (B), belp(B)] for all disjoint A,B ∈ R .

Consider an arbitrary A ∈ R which does not contain a focal element Ei ∈ E . Then,

PE(A) ≥ max[belE(A), belp(A)] = belp(A) = P ∗(A) .

Consider now an event A ∈ R which contains at least one focal element Ei ∈ E . For an

arbitrary union E ∈ U of focal elements with E ⊆ A, it follows from super-additivity

of PE that

PE(A) ≥ max[belE (E), belp(E)] + max[belE (A ∩Ec), belp(A ∩Ec)]

≥ max[belE (E) + belp(A ∩Ec), belp(A)] + max[belE (A ∩Ec)− belp(A ∩Ec), 0]

≥ max[belE (E) + belp(A ∩Ec), belp(A)] .
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Since this is true for arbitrary E ⊆ A, we find

PE(A) ≥ max
E∈U ,E⊆A

(
max[belE (E) + belp(A ∩Ec), belp(A)]

)
= P ∗(A) . 2

Proof of Lemma 3.3:

Step 1: Consider an arbitrary union Es
i(s) ∈ U of focal elements Ei ∈ E with an

arbitrary hierarchy level s. By construction of Algorithm 3.2, a level s-set Es
i(s) will

contain only such focal elements G ∈ G as true subsets that are either atoms or level-

s′-sets Es′
i(s′) ∈ U with s′ < s. Assuming the contrary that s′ ≥ s would lead to a

contradiction. Then Es′
i(s′) needed to contain more or an equal number of unions E ∈ U

than Es
i(s) (see Step 4). But this is impossible because Es′

i(s′) ⊂ Esi(s). Hence,

∑

l|Gl⊆Esi(s)

ν∗l =
∑

l|Gl∈Gs−1

Gl⊆Esi(s)

ν∗l + ν∗i(s) =: P ∗(Esi(s)) ,

by construction of the Möbius assignment ν∗i(s) in Step 6. Note that this is also true for

the focal elements Ei ∈ E themselves, since they constitute level-1-sets.

Step 2: Consider an arbitrary A ∈ R. Let E ∈ U be the union of all focal ele-

ments Ei ∈ E that are contained in A (possibly empty). Let A1, ..., Al be the collection

of atoms that are contained in A ∩Ec (possibly none). Then,

∑

l|Gl⊆A
ν∗l =

∑

l|Gl⊆E
ν∗l +

l∑

j=1

p
j

= P ∗(E) + belp(A ∩Ec) ,

where we have made use of Assumption 3.1 to establish the first equality, and utilised

the result from Step 1 of this proof to establish the second equality. Assuming first that

A contains no focal element Ei ∈ E . Then E = ∅, and
∑

l|Gl⊆A ν∗l = belp(A) = P ∗(A).

Assuming next that A contains all focal elements Ei ∈ E . Then E = ∪ni=1Ei, and

P ∗(E) = 1. Moreover, compatibility of Γ(SF , SF ) and Γ(p) requires belp(Aj) ≤ plE(Aj)
for all atoms Aj ∈ {A1, ..., Ak}, which implies that every atom with p

j
> 0 needs to

be contained in at least one focal element Ei ∈ E . Hence, belp(A ∩ Ec) = 0, and∑
l|Gl⊆A ν∗l = P ∗(E) = 1 and P ∗(A) = P ∗(E) = 1.

Consider now the remaining non-trivial case that A contains some, but not all focal

elements Ei ∈ E . Then, A cannot contain the support S = A1∪ ...∪Ak of the partition,

because Assumption 3.1 implies S ⊇ E1 ∪ ... ∪En. If A 6⊇ S, then it is

belp(A) = belp(E) + belp(A ∩Ec) ,
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since each atom Aj ⊆ A is either contained in E or in A∩Ec because of Assumption 3.1.

The same holds true for any other two disjoint subsets B1, B2 of A, when at least one

of these subsets is contained in the power set P(A1, ..., Ak). Hence,

∑

l|Gl⊆A
ν∗l = P ∗(E) + belp(A ∩Ec)

= max
Ẽ∈U , Ẽ⊆E

(
max[belE (Ẽ) + belp(E ∩ Ẽc), belp(E)]

)
+ belp(A ∩Ec)

= max
Ẽ∈U , Ẽ⊆E

(
max[belE(Ẽ) + belp(E ∩ Ẽc) + belp(A ∩Ec), belp(A)]

)

= max
Ẽ∈U , Ẽ⊆E

(
max[belE(Ẽ) + belp(A ∩ Ẽc), belp(A)]

)
,

where the last equality follows from additivity of belp on E ∩ Ẽc, A ∩ Ec (see above).

Since E is the union of all focal elements in A, every union Ẽ ⊆ A also needs to be

contained in E. Therefore, we find

∑

l|Gl⊆A
ν∗l = max

Ẽ∈U , Ẽ⊆A

(
max[belE (Ẽ) + belp(A ∩ Ẽc), belp(A)]

)
= P ∗(A) . 2

Proof of Lemma 3.4:

Step 1: We begin by showing that P ∗ : R→ [0, 1] is additive for two arbitrary disjoint

sets E ∈ U and F ∈ U .

P ∗(E) + P ∗(F ) = max
Ẽ∈U , Ẽ⊆E

(
max[belE (Ẽ) + belp(E ∩ Ẽc), belp(E)]

)
+

max
F̃∈U , F̃⊆F

(
max[belE (F̃ ) + belp(F ∩ F̃ c), belp(F )]

)

= max
Ẽ, F̃∈U,

Ẽ⊆E , F̃⊆F

(
max[belE (Ẽ) + belp(E ∩ Ẽc), belp(E)] +

max[belE (F̃ ) + belp(F ∩ F̃ c), belp(F )]
)

= max
Ẽ, F̃∈U,

Ẽ⊆E , F̃⊆F

(
max[ belp(E) + belp(F ) ,

belE(Ẽ) + belp(E ∩ Ẽc) + belp(F ) ,

belp(E) + belE (F̃ ) + belp(F ∩ F̃ c) ,

belE(Ẽ) + belp(E ∩ Ẽc) + belE(F̃ ) + belp(F ∩ F̃ c) ]
)
,
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where we have converted the sum of the individual max-operations between belD(D̃) +

belp(D ∩ D̃c) and belp(D), D ∈ {E,F}, to a max-operation over all four possible cases.

Since E and F are disjoint, we also have Ẽ ∩ F̃ = ∅. It was discussed in the proof of

Lemma 3.3 that belp is additive on two disjoint sets, if their union does not include the

support S of the partition, and if at least one of them is contained in the power set of

the partition P(A1, ..., Ak). This is true for all E ∈ U due to Assumption (3.1). Hence,

belp(E) + belp(F ) = belp(E ∪ F ) ,

belp(E ∩ Ẽc) + belp(F ) = belp( (E ∩ Ẽc) ∪ F ) = belp( (E ∪ F ) ∩ Ẽc ) ,

belp(E) + belp(F ∩ F̃ c) = belp(E ∪ (F ∩ F̃ c) ) = belp( (E ∪ F ) ∩ F̃ c ) ,

belp(E ∩ Ẽc) + belp(F ∩ F̃ c) = belp( (E ∩ Ẽc) ∪ (F ∩ F̃ c) )

= belp( (E ∪ F ) ∩ (Ẽ ∪ F̃ )c ) ,

where the second equalities follow from the fact that

Ẽc ⊇ (E)c ⊃ F ⊇ F ∩ F̃ c , F̃ c ⊇ (F )c ⊃ E ⊇ E ∩ Ẽc ,

due to E ∩ F = ∅, and Ẽ ⊆ E and F̃ ⊆ F . Moreover, since all focal elements Ei ∈ E
are intervals of the real-line (see Lemma 3.1), and Ẽ, F̃ are disjoint, each focal element

Ei ⊆ Ẽ ∪ F̃ is either contained in Ẽ or in F̃ . Hence, belE is additive on the two sets,

i.e.,

belE (Ẽ) + belE(F̃ ) = belE (Ẽ ∪ F̃ ) .

By including all these identities into the expression for P ∗(E) + P ∗(F ), we find

P ∗(E) + P ∗(F ) = max
Ẽ, F̃∈U,

Ẽ⊆E , F̃⊆F

(
max[ belp(E ∪ F ) ,

belE(Ẽ) + belp( (E ∪ F ) ∩ Ẽc ) ,

belE(F̃ ) + belp( (E ∪ F ) ∩ F̃ c ) ,

belE(Ẽ ∪ F̃ ) + belp( (E ∪ F ) ∩ (Ẽ ∪ F̃ )c ) ]
)
,

By definition, the set E ∪ F contains all Ẽ, F̃ ∈ U with Ẽ ⊆ E and F̃ ⊆ F , and all

their unions Ẽ ∪ F̃ . Moreover, it contains no other E ′ ∈ U . This follows from the fact

that E ∪ F is non-convex and all focal elements Ei ∈ E are half-closed intervals of the

real line. Therefore, every non-convex E ′ ∈ U must be a union of convex constituents,

and these can only be contained in either E or F . Hence, we find

P ∗(E) + P ∗(F ) = max
D̃∈U,
D̃⊆E∪F

(
max[ belp(E ∪ F ) , belE (D̃) + belp( (E ∪ F ) ∩ D̃c ) ]

)

= P ∗(E ∪ F ) .
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Step 2: We proof the lemma by induction over the level of hierarchy s of the unions

of focal elements E ∈ U . The level-1-sets cannot fulfil the condition of the Lemma

because they contain no other set E ∈ U by definition. Hence, we start the induction

with hierarchy level s = 2. Consider an arbitrary level-2-set E2
i(2) which is the union of

two level-1-sets E∗, E∗∗ with E∗ ∩E∗∗ = ∅. Then,

ν∗i(2) = P ∗(E2
i(2))−

∑

l| Gl∈G1

Gl⊆E2
i(2)

ν∗l

= P ∗(E2
i(2))−

∑

l|Gl⊆E∗
ν∗l −

∑

l′|Gl′⊆E∗∗
ν∗l′ = P ∗(E2

i(2))− P ∗(E∗)− P ∗(E∗∗) ,

where the last equality follows from Lemma 3.3. Since the level-1-sets E∗ and E∗∗ are

disjoint, and it is E2
i(2) = E∗ ∪E∗∗, it follows from Step 1 of the proof that ν∗i(2) = 0.

Step 3: Let s = r. Let the proposition be true for all level-s-sets with a smaller hier-

archy level s < r. Consider an arbitrary r-union Er
i(r) = Es

′
∗ ∪Es

′′
∗∗ with Es′

∗ ∩Es
′′
∗∗ = ∅.

Then,

ν∗i(r) = P ∗(Eri(r))−
∑

l|Gl∈Gr−1

Gl⊆Eri(r)

ν∗l

= P ∗(Eri(r))−




r−1∑

s̃=2

∑

i(s̃) |
Es̃
i(s̃)
⊂Er

i(r)

Es̃
i(s̃)
∩Es′∗ 6=∅

Es̃
i(s̃)
∩Es′′∗∗ 6=∅

ν∗i(s̃)




−
∑

l|Gl⊆Es′∗

ν∗l −
∑

l′|Gl′⊆Es
′′
∗∗

ν∗l′ ,

where the sum of the Möbius masses of the focal elements Gl ⊂ Eri(r) has been divided

into three subsums. We note that the first of these three subsums runs over the level-s̃

sets E s̃i(s̃) contained in Gr−1 that intersect both Es′
∗ and Es

′′
∗∗ . Since the latter two sets

are disjoint, the intersect of their union with E s̃
i(s̃) will also be disjoint. Since their

union constitutes Er
i(r) which contains E s̃

i(s̃), it is also

E s̃i(s̃) =
(
E s̃i(s̃) ∩Es

′
∗
)
∪
(
E s̃i(s̃) ∩Es

′′
∗∗
)
.

Hence, E s̃
i(s̃) is non-convex. Since the focal elements Ei ∈ E constitute half-closed

intervals of the real line (see Lemma 3.1), E s̃i(s̃) cannot be a level-1-set E1 ∈ U . By the

same token it needs to be a union of two disjoint sets E s̃′
∗ and E s̃

′′
∗∗ ∈ U . Since s̃ < r,

it is ν∗i(s̃) = 0 by assumption. Hence, the first of the three subsums is identical to zero,
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and the expression simplifies to

ν∗i(r) = P ∗(Eri(r))− P ∗(Es
′
∗ )− P ∗(Es′′∗∗ ) ,

where we have used the result from Lemma 3.3. Since the sets Es′
∗ and Es

′′
∗∗ are dis-

joint, and it is Er
i(r) = Es

′
∗ ∪Es

′′
∗∗ , it follows from Step 1 of the proof that ν∗i(r) = 0. 2

Proof of Lemma 3.5:

Step 1: We begin the proof by considering the case of an arbitrary level-1-set E 1
i(1).

Since it contains no other set E ∈ U , we have

ν∗i(1) = P ∗(E1
i(1))−

∑

l| Gl∈G0

Gl⊆E1
i(1)

ν∗l = max[belE (E
1
i(1)), belp(E

1
i(1))]−

∑

j|Aj⊆E1
i(1)

p
j
≥ 0 .

It remains to consider the case of level-s-sets Es
i(s) with hierarchy level s ≥ 2. Lemma 3.4

has established ν∗i(s) = 0 for arbitrary level-s-sets Es
i(s), s ≥ 2, that can be separated

into Es
i(s) = Es

′
∗ ∪Es

′′
∗∗ with Es′

∗ ∩Es
′′
∗∗ = ∅.

Step 2: Consider the remaining case of an arbitrary level-s-set E s
i(s), s ≥ 2, that cannot

be separated into Es
i(s) = Es

′
∗ ∪Es

′′
∗∗ with Es′

∗ ∩Es
′′
∗∗ = ∅. We know from Lemma 3.1 that

each focal element Ei ⊆ E is a half-closed interval on the real line, i.e., Ei = (x∗,i, x∗i ]
for some x∗,i, x∗i ∈ R. Hence, Es

i(s) = ∪mi=1 (x∗,i, x∗i ] will be a half-closed interval as well.

Moreover, Property (II) in Lemma 3.1 implies that the lower and upper bounds of the

focal intervals have the same weak order on the real line, i.e., for all Ei, Ej , we have

x∗,i ≤ x∗,j if and only if x∗i ≤ x∗j , and at least one inequality is strict. Hence, we can

construct a strict order of the focal elements E1 < ... < Em that are contained in Es
i(s).

Use, e.g., the lower bound as primary ordering criterion. If x∗,i = x∗,j , then the upper

bound will serve as a secondary criterion that assures a strict ordering of Ei and Ej .

E1 is the element with the lowest bound x∗,1 = infx∈Es
i(s)

x and Em the element with

the largest bound x∗m = maxx∈Es
i(s)

x, respectively. Hence, Es
i(s) = (x∗,1, x∗m]. Define

the sets EL := ∪m−1
i=1 Ei = (x∗,1, x∗m−1], and ER := ∪mi=2Ei = (x∗,2, x∗m], which are true

subsets of Es
i(s). Then,

ν∗i(s) = P ∗(Esi(s))−
∑

l|Gl∈Gs−1

Gl⊆Esi(s)

ν∗l =

P ∗(Esi(s)) −
s−1∑

s̃=2

∑

i(s̃) |
Es̃
i(s̃)
⊂Es

i(s)

Es̃
i(s̃)
6⊆EL

Es̃
i(s̃)
6⊆ER

ν∗i(s̃) −
∑

l|Gl⊆EL
ν∗l −

∑

l′|Gl′⊆ER
ν∗l′ +

∑

l∗|Gl∗⊆EL∩ER
ν∗l∗ ,
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where the sum over the Möbius masses of the focal elements Gl ⊂ Esi(s) has been

separated into three subsums. The first subsum runs over the Möbius masses of the

level-s̃-sets E s̃
i(s̃) with s̃ < s that are contained in Es

i(s), but neither in EL nor in ER.

Hence, these E s̃
i(s̃) need to contain the sets E1 and Es. As a consequence of the ordering

of the focal elements, E s̃
i(s̃) has lower bound x∗,1 and upper bound x∗s. Assuming that

E s̃i(s̃) was convex. Then, E s̃
i(s̃) = (x∗,1, x∗s] = Esi(s). This is impossible, because Es

i(s)

has been declared a level-s-set with s > s̃ (see Step 2 in Algorithm 3.2). Hence, the

sets E s̃i(s̃) cannot be convex. Since E s̃
i(s̃) ∈ G is also a union of focal elements Ei ∈ E ,

it needs to constitute a union of two disjoint subsets Es′
∗ ∈ U and Es′′

∗∗ ∈ U . It follows

from Lemma 3.4 that ν∗i(s̃) = 0, and the first of the three subsums is identical to zero.

Hence,

ν∗i(s) = P ∗(Esi(s))− P ∗(EL)− P ∗(ER) + P ∗(EL ∩ER) ,

where we used the result of Lemma 3.3.

Step 3: To simplify the notation, we set E := Es
i(s) in the following.

P ∗(EL) + P ∗(ER) = max
Ẽ∈U , Ẽ⊆EL

(
max[belE (Ẽ) + belp(EL ∩ Ẽc), belp(EL)]

)
+

max
F̃∈U , F̃⊆ER

(
max[belE (F̃ ) + belp(ER ∩ F̃ c), belp(ER)]

)

= max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
max[belE (Ẽ) + belp(EL ∩ Ẽc), belp(EL)] +

max[belE (F̃ ) + belp(ER ∩ F̃ c), belp(ER)]
)

= max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
max[ belp(EL) + belp(ER) ,

belE(Ẽ) + belp(EL ∩ Ẽc) + belp(ER) ,

belp(EL) + belE(F̃ ) + belp(ER ∩ F̃ c) ,

belE (Ẽ) + belp(EL ∩ Ẽc) + belE(F̃ ) + belp(ER ∩ F̃ c) ]
)
,

where we have converted the sum of the individual max-operations between belD(D̃) +

belp(D ∩ D̃c) and belp(D), D ∈ {EL, ER}, to a max-operation over all four possible

cases.
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We now investigate each case separately. Assuming first that P ∗(EL) + P ∗(ER) =

belp(EL) + belp(ER). Then,

P ∗(EL) + P ∗(ER) = belp(EL) + belp(ER)

= belp(E) + belp(EL ∩ER)

≤ P ∗(E) + P ∗(EL ∩ER) ,

where the second equality follows from the fact that belp is additive on disjoint sub-

sets of E, if at least one of these subsets constitutes an element of the power set

P(A1, ..., Ak) (see proof of Lemma 3.3 for details). E, EL, ER, and EL ∩ ER are

elements of P(A1, ..., Ak) due to Assumption 3.1.

Assume now the second of the four cases in the max-operation.

P ∗(EL) + P ∗(ER) = max
Ẽ∈U , Ẽ⊆EL

(
belE(Ẽ) + belp(EL ∩ Ẽc) + belp(ER)

)

= max
Ẽ∈U , Ẽ⊆EL

(
belE(Ẽ) + belp(EL ∩ Ẽc) + belp(ER ∩ EL) + belp(ER −EL)

)

= max
Ẽ∈U , Ẽ⊆EL

(
belE(Ẽ) + belp( (EL ∩ Ẽc) ∪ (ER −EL) ) + belp(ER ∩ EL)

)

= max
Ẽ∈U , Ẽ⊆EL

(
belE(Ẽ) + belp( (EL ∪ ER) ∩ Ẽc ) + belp(ER ∩ EL)

)

where we have used again the additivity of belp for the disjoint sets considered here.

The last equality follows from the fact that Ẽ ⊆ EL, and therefore Ẽc ⊃ ER − EL.

Inserting E = EL ∪ER, we find

P ∗(EL) + P ∗(ER) ≤ max
Ẽ∈U , Ẽ⊆E

(
belE(Ẽ) + belp(E ∩ Ẽc) + belp(ER ∩EL)

)

≤ P ∗(E) + P ∗(EL ∩ER) .

By a completely analogous argument, it is found for the third case in the max-operation

P ∗(EL) + P ∗(ER) = max
F̃∈U , F̃⊆ER

(
belp(EL) + belE (F̃ ) + belp(ER ∩ F̃ c)

)

≤ P ∗(E) + P ∗(EL ∩ER) .

Consider finally the remaining case in the max-operation.

P ∗(EL) + P ∗(ER) = max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
belE(Ẽ) + belp(EL ∩ Ẽc) + belE(F̃ ) + belp(ER ∩ F̃ c)

)

= max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
belE(Ẽ) + belE(F̃ )

+ belp( (EL ∩ER) ∩ Ẽc ) + belp( (EL ∩EcR) ∩ Ẽc )

+ belp(ER ∩ (F̃ c ∩ Ẽ) ) + belp(ER ∩ (F̃ c ∩ Ẽc) )
)
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= max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
belE(Ẽ) + belE(F̃ )

+ belp( ((EL ∩ ER) ∩ Ẽc) ∪ (ER ∩ (F̃ c ∩ Ẽ)) )

+ belp( (ER ∩ (F̃ c ∩ Ẽc)) ∪ ((EL ∩EcR) ∩ Ẽc) )
)
,

where we have used again the additivity of belp for the disjoint sets considered here.

By noting that Ec
R ⊆ F̃ c, we find

(ER ∩ (F̃ c ∩ Ẽc)) ∪ ((EL ∩EcR) ∩ Ẽc) = (ER ∩ (F̃ c ∩ Ẽc)) ∪ ((EL ∩EcR) ∩ (Ẽc ∩ F̃ c))
= (ER ∪ (EL ∩EcR)) ∩ (Ẽc ∩ F̃ c)
= (ER ∪EL) ∩ (Ẽ ∪ F̃ )c .

Moreover, by noting that (F̃ c ∩ Ẽ) ⊆ EL, we also find

((EL ∩ER) ∩ Ẽc) ∪ (ER ∩ (F̃ c ∩ Ẽ)) = ((EL ∩ER) ∩ Ẽc) ∪ ((EL ∩ER) ∩ (F̃ c ∩ Ẽ))

= (EL ∩ER) ∩ (Ẽc ∪ (F̃ c ∩ Ẽ))

= (EL ∩ER) ∩ (Ẽc ∪ F̃ c)
= (EL ∩ER) ∩ (Ẽ ∩ F̃ )c .

By inserting these two identities into the expression for P ∗(EL) + P ∗(ER), we find for

the remaining case of the max-operation

P ∗(EL) + P ∗(ER) = max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
belE (Ẽ) + belE(F̃ )

+ belp( (ER ∪EL) ∩ (Ẽ ∪ F̃ )c ) + belp( (EL ∩ER) ∩ (Ẽ ∩ F̃ )c )
)
.

Since belE is a belief function, it is in particular two-monotone (see Appendix C). Hence,

P ∗(EL) + P ∗(ER) ≤ max
Ẽ, F̃∈U,

Ẽ⊆EL , F̃⊆ER

(
belE (Ẽ ∪ F̃ ) + belE(Ẽ ∩ F̃ )

+ belp( (ER ∪EL) ∩ (Ẽ ∪ F̃ )c ) + belp( (EL ∩ER) ∩ (Ẽ ∩ F̃ )c )
)

≤ max
C̃, D̃∈U,

C̃⊆E , D̃⊆EL∩ER

(
belE(C̃) + belE(D̃)

+ belp( (E ∩ C̃c ) + belp( (EL ∩ER) ∩ D̃c )
)

≤ P ∗(E) + P ∗(EL ∩ER) ,

where the second inequality follows from the fact that belE (Ẽ ∩ F̃ ) = belE(D̃), where

D̃ ∈ EL∩ER is the union of all focal elements contained in Ẽ ∩ F̃ . Hence, we also have

D̃c ⊇ (Ẽ ∩ F̃ )c, and therefore belp( (EL ∩ER) ∩ D̃c ) ≥ belp( (EL ∩ER) ∩ (Ẽ ∩ F̃ )c ).
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We conclude that P ∗(E) +P ∗(EL ∩ER) ≥ P ∗(EL) +P ∗(ER) in any case. Together

with the result from Step 2 of the proof, it follows that ν∗i(s) ≥ 0. 2

Proof of Theorem 3.2:

Step 1: We show first that P ∗ is a belief function. Shafer (1976) has proved for finite

spaces Ωn that a set function P ∗ : P(Ωn)→ [0, 1] is an ∞-monotone belief function, if

and only if its Möbius inverse ν∗ : P(Ωn)→ R fulfils ν∗(A) ≥ 0 for all A ∈ P(Ωn). The

property of ∞-monotonicity extends to an infinite field R, if the belief function can be

fully described on a finite subfield P(Ωn), i.e.,

∀ B ∈ R ∃ A ∈ P(Ωn), A ⊆ B with bel(B) = bel(A) .

This can be seen easily for the case of 2-monotonicity. Consider arbitrary sets B1, B2 ∈
R and let A1, A2 be their subsets in the finite field P(Ωn) with bel(B1) = bel(A1) and

bel(B2) = bel(A2). Then,

bel(B1) + bel(B2) = bel(A1) + bel(A2) ≤ bel(A1 ∪A2) + bel(A1 ∩A2)

≤ bel(B1 ∪B2) + bel(B1 ∩B2) ,

where the first inequality follows from 2-monotonicity on the finite field, and the second

inequality from B1∪B2 ⊇ A1∪A2 and B1∩B2 ⊇ A1∩A2. The same result for the case

of ∞-monotonicity can be obtained by induction over the number n of unions ∪i=1Bi.

In our case, the set function P ∗ : R → [0, 1] is fully described on the power set

P (A1, ..., Ak) of the partition {A1, ..., Ak}, since it contains all focal elements G of the

Möbius inverse ν∗ : R → [0, 1] with Möbius assignments ν∗(G) 6= 0 (see Lemma 3.3).

Hence, it suffices to show that all focal elements G collected in the random set (G, ν ∗)
have Möbius masses ν∗(G) > 0.

By definition of Algorithm 3.2, all focal elements G ∈ G are either atoms Aj of the

partition {A1, ..., Ak} or unions E ∈ U of focal elements Ei ∈ E . The atoms Aj con-

tained in (G, ν∗) carry Möbius masses ν∗(Aj) = p
j
> 0 (see Step 1 of the Algorithm).

Moreover, we have established in Lemma 3.5 that it is also ν∗(E) ≥ 0 for all E ∈ U .

Therefore, all focal elements G ∈ G must carry Möbius masses ν ∗(G) > 0. We conclude

that P ∗ : R→ [0, 1] is a belief function.

Step 2: We show next that P ∗ : R→ [0, 1] is the lower envelope of Γ(SF , SF , p). Since

P ∗ is a belief function, it is in particular a coherent lower probability (see Appendix C).

It follows from the Lower Envelope Theorem of Walley (1991, Theorem 3.3.3) that P ∗

is the lower envelope of a convex set of probabilities P ∗, i.e.,

∀ A ∈ R P ∗(A) = inf
P∈P∗

P (A) .
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We now from Lemma 3.2 that P ∗ is also a lower bound of Γ(SF , SF , p). Therefore,

Γ(SF , SF , p) ⊆ P∗. On the other hand, we find for each P ∈ P∗,

P (A) ≥ max
Ẽ∈U , Ẽ⊆A

(
max[belE (Ẽ) + belp(A ∩ Ẽc), belp(A)]

)
≥ belp(A)

P (A) ≥ max
Ẽ∈U , Ẽ⊆A

(
max[belE (Ẽ) + belp(A ∩ Ẽc), belp(A)]

)
≥ belE(E) = belE (A) ,

where E ⊆ A is the union of all focal elements Ei ∈ E that are subsets of A. As a con-

sequence, P ∈ P is contained in the p-box Γ(SF , SF ) as well as in the ε-contamination

model Γ(p), and hence also in Γ(SF , SF , p) = Γ(SF , SF ) ∩ Γ(p). Therefore, we also

find P∗ ⊆ Γ(SF , SF , p). It follows that P∗ = Γ(SF , SF , p), and P ∗ : R → [0, 1] is the

lower envelope of Γ(SF , SF , p). 2

Proof of Lemma 4.1:

We note first that bel(·||∗ŷ) : A(Ω)→ [0, 1] is indeed a belief function, since
∑n

i=1 ν∗,i =

1, and ν∗,i ≥ 0 for all 1 ≤ i ≤ n. The latter is true because L∗,i ≥ 0 (the likelihood

cannot be negative), νi > 0 (bel is a belief function), and
∑n

i=1 L∗,i νi = CP (L) > 0 by

assumption.

It remains to show that P (A||∗ŷ) = bel(A||∗ŷ) for all sets A ∈ A(Ω). Consider an

arbitrary such A. Then,

P (A||∗ŷ) :=
CP (LA)

CP (L)
=

∑
Ej⊆A L∗,j νj∑n
i=1 L∗,i νi

=
∑

Ej⊆A
ν∗,j = bel(A||∗ŷ) . 2
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Proof of Lemma 4.2:

We need to show that P (A||∗ŷ) = pl(A||∗ŷ) for all sets A ∈ A(Ω). Consider an arbitrary

such A. Let 1 ≤ i ≤ n be the running index over the focal elements Ei ∈ E . Let

1 ≤ j ≤ k be the running index over the atoms Aj of the partition {A1, ..., Ak}, the

constant likelihood values L∗j on Aj, and the associated j-cuts Cj of the likelihood

function. Define L∗0 = 0. Then,

P (A||∗ŷ) :=
CP (L′A)

CP (L′) =

∑
i |Ei∩A6=∅

sup
θ∈Ei∩A

L′(θ; ŷ) νi

∑n
i′=1 sup

θ∈Ei′
L′(θ; ŷ) νi′

=

∑
i |Ei∩A6=∅

sup
j |Aj∩(Ei∩A)6=∅

L∗j νi

∑n
i′=1 sup

j′ |Aj′∩Ei′ 6=∅
L∗j′ νi′

=

∑
i |Ei∩A6=∅

(∑
j |Cj∩(Ei∩A)6=∅ L∗j −L∗j−1

)
νi

∑n
i′=1

(∑
j′ |Cj′∩Ei′ 6=∅ L

∗
j′ −L∗j′−1

)
νi′

=

∑
ij | (Cj∩Ei)∩A6=∅

(
L∗j −L∗j−1

)
νi

∑n
i′=1 L∗l(i′) νi′

=
∑

ij |Eij∩A6=∅

(
L∗j −L∗j−1

)
νi

∑n
i′=1 L∗l(i′) νi′

= pl(A||∗ŷ) . 2

Proof of Theorem 4.1:

1. Show P (·||∗ŷ) = bel(·||∗ŷ): Since L′i,∗ := infθ∈Ei L′(θ|ŷ) νi for 1 ≤ i ≤ n (see Defini-

tion 4.16), it is 0 < C(L′) =
∑n

i=1 L∗,i νi by assumption. Hence, the construction of the

random set (E , ν)||∗ŷ associated with the belief function bel(·||∗ŷ) in Lemma 4.1 is defined

(Denominator larger than zero). It follows from Lemma 4.1 that P (·||∗ŷ) = bel(·||∗ŷ),

where P (·||∗ŷ) is given by Definition 4.15.

2. Show P (·||∗ŷ) = pl(·||∗ŷ): Since the likelihood function L′(·|ŷ) is assumed to

be constant on the atoms of the partition {A1, ..., Ak} of Ω, it is supθ∈A L′(θ|ŷ) νi =

maxj |Aj∩A6=∅ L∗j for arbitrary A ∈ A(Ω) (recall Definition 4.18 of L∗j). In particular, it

is supθ∈Ei L′(θ|ŷ) νi = L∗l(i) for 1 ≤ i ≤ n, since the latter constitutes the supremum

likelihood value that can be achieved on any atom intersecting Ei (see Algorithm 4.1).

Hence, 0 < C(L′) ≤ C(L′) =
∑n

i=1 L∗l(i) νi, and the construction of the random set

(E , ν)||∗ŷ associated with the belief function bel(·||∗ŷ) in Algorithm 4.1 is defined (De-
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nominator larger than zero).

Moreover, L′(·|ŷ) fulfils the condition of Lemma 4.2. Hence, it follows from Lemma 4.2

that P (·||∗ŷ) = pl(·||∗ŷ), where P (·||∗ŷ) is given by Definition 4.15.

3. Show Equation (4.19): The prior belief function is ∞-monotone. It follows

from the theorem of Wasserman and Kadane (1990) that

P (A|ŷ) =
CP (LA)

CP (LA) + CP (LAc)
for all A ∈ A(Ω)

According to Definition (4.15), it is

CP (LA) = C(L′)P (A||∗ŷ), CP (LAc) = C(L′)P (A||∗ŷ) for all A ∈ A(Ω) .

Equation (4.19) follows from these identities, and Part 1 and 2 of the proof. 2

Proof of Lemma 5.1:

The following properties hold in general for inverse images f−1(B) = {x | f(x) ∈ B}
(Billingsley, 1995, A8): f−1(∪θ Bθ) = ∪θ f−1(Bθ), f

−1(∩θ Bθ) = ∩θ f−1(Bθ) for arbi-

trary (possibly uncountable) unions and intersections, and B1 ∩B2 = ∅ ⇒ f−1(B1) ∩
f−1(B2) = ∅.
Part (a): F ⊆ Rn follows from the definition of F , the measurability of f and the fact

that Rg(f) is a Borel set. F is a σ-field on Rn, if

1. Rn ∈ F : True, since Rn = f−1(Rg(f)) and Rg(f) ∈ Rm ∩Rg(f).

2. A ∈ F ⇒ Ac ∈ F : Consider an arbitrary A ∈ F . By definition of F , it exists

B ∈ Rm∩Rg(f) with A = f−1(B). Define B ′ = Rg(f)−B, B ′ ∈ Rm∩Rg(f). It is

f−1(B∪B′) = f−1(B)∪f−1(B′) = A∪f−1(B′). Since B∩B ′ = ∅, A∩f−1(B′) = ∅.
Since f−1(B ∪B′) = Rn, Ac = f−1(B′). Thus, Ac ∈ F .

3. For any collection Ai ∈ F , it is ∪iAi ∈ F : For each Ai in F , it exists Bi ∈
Rm ∩ Rg(f) with Ai = f−1(Bi). Thus, ∪iAi = ∪i f−1(Bi) = f−1(∪iBi). Since

for any collection Bi ∈ Rm ∩ Rg(f) it is also ∪iBi ∈ Rm ∩ Rg(f), we have

∪iAi ∈ F .

Part (b): {f−1(y) | y ∈ Rg(f)} is the set of atoms of F , if

1. f−1(y) ∩ f−1(y′) = ∅ for y 6= y′: True, since {y} ∩ {y′} = ∅, if y 6= y′.

2. For all A ∈ F , there exists a set B ∈ P(Rm) ∩ Rg(f) with A = ∪y∈B f−1(y):

True, since by definition of F , there exists a set B ∈ Rm ∩ Rg(f) for all A ∈ F
with A = f−1(B) = f−1(∪y∈B y) = ∪y∈B f−1(y).
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Part (c): Note that PX|F (A) := PY (f(A)) is always defined on F , since Rg(f) is a

Borel set, and ∀A ∈ F f(A) ∈ Rm ∩ Rg(f) by definition of F . PX|F is a countably

additive probability measure on F , if

1. For all A ∈ F PX|F (A) ≥ 0: True, by definition of PX|F , and the fact that PY is

a probability measure.

2. PX|F (Rn) = 1: True, since f(Rn) = Rg(f) is a Borel set, and PY (Rg(f)) = 1.

3. For any collection Ai ∈ F with Ai ∩ Aj = ∅ for i 6= j, it is PX|F (∪iAi) =∑
i PX|F (Ai):

We have PX|F (∪iAi) := PY (f(∪iAi)) = PY (∪i f(Ai)). It follows from Part (b)

that Ai = f−1(f(Ai)). Hence, we have Ai = f−1(∪y∈f(Ai) y) = ∪y∈f(Ai) f
−1(y).

Then, Ai ∩ Aj = ∅ for i 6= j implies f(Ai) ∩ f(Aj) = ∅ for i 6= j. Thus,

PY (∪i f(Ai)) =
∑

i PY (f(Ai)) =:
∑

i PX|F (Ai), since PY is a countably additive

probability measure. 2

Proof of Theorem 5.1:

Part (a): Consider an arbitrary probability PY ∈ f(ΓX(belE )). There exists a prob-

ability PX ∈ ΓX(belE ) with PY (B) = PX(f−1(B)) for all B ∈ Rm. For arbitrary

B ∈ Rm, we have

PY (B) = PX(f−1(B)) ≥ belE (f−1(B)) =
∑

Ei⊆f−1(B)

νi

=
∑

f(Ei)⊆B
νi = belf(E)(B) . Thus, PY ∈ ΓY (belf(E)) .

Part (b): Consider an arbitrary probability PX|F ∈ f−1(ΓY (belf(E))). There exists a

probability PY ∈ ΓY (belf(E)) with PX|F (A) = PY (f(A)) for all A ∈ F . For arbitrary

A ∈ F , we have

PX|F (A) = PY (f(A)) ≥ belf(E)(f(A)) =
∑

f(Ei)⊆f(A)

νi

=
∑

Ei⊆f−1(f(A))

νi = belE (A) ,

since A = f−1(f(A)) by definition of F . Thus, PX|F ∈ ΓX|F (belE ). 2
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Bruckner, T., G. Petschel-Held, F. L. Tóth, H. M. Füssel, C. Helm, M. Leimbach, and H. J.

Schellnhuber (1999). Climate change decision support and the tolerable windows approach.

Environmental Modeling and Assessment 4, 217–234. 146

Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the earth.

Tellus 21, 611–619. 10

Casadesus-Masanell, R., P. Klibanoff, and E. Ozdenoren (2000). Maxmin expected utility over

Savage acts with a set of priors. Journal of Economic Theory 92, 35–66. 144

Chateauneuf, A. and J. Y. Jaffray (1989). Some characterization of lower probabilities and other
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