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Summary

Flooding is a vast problem in many parts of the world, including Europe. It occurs mainly
due to extreme weather conditions (e.g. heavy rainfall and snowmelt) and the consequences
of flood events can be devastating. Flood risk is mainly defined as a combination of the
probability of an event and its potential adverse impacts. Therefore, it covers three major
dynamic components: hazard (physical characteristics of a flood event), exposure (people
and their physical environment that being exposed to flood), and vulnerability (the elements
at risk). Floods are natural phenomena and cannot be fully prevented. However, their risk
can be managed and mitigated. For a sound flood risk management and mitigation, a proper
risk assessment is needed. First of all, this is attained by a clear understanding of the flood
risk dynamics. For instance, human activity may contribute to an increase in flood risk.
Anthropogenic climate change causes higher intensity of rainfall and sea level rise and
therefore an increase in scale and frequency of the flood events. On the other hand,
inappropriate management of risk and structural protection measures may not be very
effective for risk reduction. Additionally, due to the growth of number of assets and people
within the flood-prone areas, risk increases. To address these issues, the first objective of
this thesis is to perform a sensitivity analysis to understand the impacts of changes in each
flood risk component on overall risk and further their mutual interactions. A multitude of
changes along the risk chain are simulated by regional flood model (RFM) where all
processes from atmosphere through catchment and river system to damage mechanisms are
taken into consideration. The impacts of changes in risk components are explored by
plausible change scenarios for the mesoscale Mulde catchment (sub-basin of the Elbe) in
Germany.

A proper risk assessment is ensured by the reasonable representation of the real-world
flood event. Traditionally, flood risk is assessed by assuming homogeneous return periods
of flood peaks throughout the considered catchment. However, in reality, flood events are
spatially heterogeneous and therefore traditional assumption misestimates flood risk
especially for large regions. In this thesis, two different studies investigate the importance
of spatial dependence in large scale flood risk assessment for different spatial scales. In the
first one, the “real” spatial dependence of return period of flood damages is represented by
continuous risk modelling approach where spatially coherent patterns of hydrological and
meteorological controls (i.e. soil moisture and weather patterns) are included. Further the
risk estimations under this modelled dependence assumption are compared with two other
assumptions on the spatial dependence of return periods of flood damages: complete
dependence (homogeneous return periods) and independence (randomly generated
heterogeneous return periods) for the Elbe catchment in Germany. The second study
represents the “real” spatial dependence by multivariate dependence models. Similar to the
first study, the three different assumptions on the spatial dependence of return periods of
flood damages are compared, but at national (United Kingdom and Germany) and
continental (Europe) scales. Furthermore, the impacts of the different models, tail
dependence, and the structural flood protection level on the flood risk under different spatial
dependence assumptions are investigated.

The outcomes of the sensitivity analysis framework suggest that flood risk can vary
dramatically as a result of possible change scenarios. The risk components that have not
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received much attention (e.g. changes in dike systems and in vulnerability) may mask the
influence of climate change that is often investigated component.

The results of the spatial dependence research in this thesis further show that the damage
under the false assumption of complete dependence is 100 % larger than the damage under
the modelled dependence assumption, for the events with return periods greater than
approximately 200 years in the Elbe catchment. The complete dependence assumption
overestimates the 200-year flood damage, a benchmark indicator for the insurance industry,
by 139 %, 188 % and 246 % for the UK, Germany and Europe, respectively. The
misestimation of risk under different assumptions can vary from upstream to downstream
of the catchment. Besides, tail dependence in the model and flood protection level in the
catchments can affect the risk estimation and the differences between different spatial
dependence assumptions.

In conclusion, the broader consideration of the risk components, which possibly affect
the flood risk in a comprehensive way, and the consideration of the spatial dependence of
flood return periods are strongly recommended for a better understanding of flood risk and
consequently for a sound flood risk management and mitigation.
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Zusammenfassung

Hochwasser sind ein groBes Problem und treten hauptséchlich aufgrund extremer
Wetterbedingungen (z. B. starker Regen und Schneeschmelze) auf. Die Folgen von
Hochwasserereignissen konnen verheerend sein. Das Konzept des Hochwasserrisikos
beinhaltet die drei Komponenten: Gefahr, Exposition und Vulnerabilitidt. Hochwasser sind
natiirliche Phinomene und kdnnen nicht sicher verhindert werden. Das Risiko kann jedoch
gesteuert und gemindert werden. Fiir ein solides Hochwasserrisikomanagement und die
Minderung des Risikos ist eine ordnungsgemiBe Risikobewertung und ein klares
Verstindnis der Hochwasserrisikodynamik erforderlich. Beispielsweise verursacht der
anthropogene Klimawandel eine hohere Intensitéit der Niederschldge und einen Anstieg des
Meeresspiegels und damit eine Zunahme des AusmalBles und der Héaufigkeit von
Hochwasserereignissen. Andererseits konnen unangemessene strukturelle
Schutzmalinahmen, das Anwachsen von Vermdgenswerten und eine steigende Anzahl
betroffener Personen in den hochwassergefdhrdeten Gebieten das Risiko erhohen. Um
diese Probleme zu adressieren, besteht ein Ziel dieser Arbeit aus der Durchfiihrung einer
Sensitivititsanalyse, um die  Auswirkungen von Anderungen in  jeder
Hochwasserrisikokomponente auf das Gesamtrisiko und deren Wechselwirkungen
untereinander zu verstehen.

Eine angemessene Risikobewertung wird auch durch die korrekte k Darstellung des
realen Hochwasserereignisses erreicht. Traditionell wird das Hochwasserrisiko bewertet,
indem homogene Wiederkehrintervalle von Hochwasserspitzen im gesamten
Einzugsgebiet angenommen werden. In der Realitdt sind Hochwasserereignisse jedoch
rdaumlich heterogen, weshalb die traditionelle Annahme von Homogenitit das
Hochwasserrisiko insbesondere fiir gro3e Einzugsgebiete falsch einschétzt. In dieser Arbeit
wird die Bedeutung der rdumlichen Abhédngigkeit bei der Bewertung des
Hochwasserrisikos in groem Maf3stab in zwei Studien fiir verschiedene rdumliche Skalen
untersucht. In der ersten Untersuchung wird die ,,reale* rdumliche Abhingigkeit durch
einen kontinuierlichen Risikomodellierungsansatz dargestellt. Zusétzlich werden die
Risikoabschédtzungen unter dieser modellierten Abhéngigkeitsannahme mit zwei weiteren
Annahmen zur rdumlichen Abhédngigkeit der Wiederkehrintervalle von Hochwasser
verglichen: vollstindige Abhingigkeit und Unabhéngigkeit fiir das Elbeeinzugsgebiet in
Deutschland. Die zweite Studie reprisentiert die ,,reale raumliche Abhéngigkeit durch ein
copula-basiertes Abhéngigkeitsmodell. In dhnlicher Weise werden die drei verschiedenen
Annahmen zur rdumlichen Abhéngigkeit der Wiederkehrintervalle von Hochwasser auf
nationaler und kontinentaler Ebene verglichen. AuBerdem wird der Einfluss von ,,Tail-
dependences* im Modell sowie von HochwasserschutzmaBBnahmen auf die rdumliche
Abhingigkeit untersucht.

Die Ergebnisse dieser Arbeit unter Anwendung des Sensitivititsanalyse-Frameworks
zeigen, dass das Hochwasserrisiko aufgrund moglicher Anderungsszenarien dramatisch
variieren kann. Der Einfluss des Klimawandels kann durch Anderungen anderer
Risikokomponenten (z. B. Anderungen der Deichsysteme und der Vulnerabilitit)
tiberdeckt werden. Die Untersuchung zur rdumlichen Abhdngigkeit zeigen, dass der
Schaden unter der Annahme vollstindiger Abhédngigkeit fiir Ereignisse mit
Wiederkehrintervalle von mehr als ungefdhr 200 Jahren im Elbeeinzugsgebiet 100 %
grofler als der Schaden unter modellierter Abhédngigkeit. Die Annahme vollstindiger
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Abhiéngigkeit liberschétzt den 200-jdhrigen Hochwasserschaden, einen Referenzindikator
fiir die Versicherungsbranche, um 139 %, 188 % und 246 % fiir Vereinigte Konigreich,
Deutschland und Europa. Die Fehleinschitzung des Hochwasserrisikos kann unter
verschiedenen Annahmen von Abhéngigkeit zwischen Oberlauf und Unterlauf eines
Einzugsgebietes stark variieren. Zudem kdénnen ,,Tail-dependences® im Modell sowie der
Hochwasserschutz im Einzugsgebiet die Ergebnisse der Risikoabschitzung, unter
verschiedenen Annahmen der rdumlichen Abhingigkeit, beeinflussen.

Abschliefend wird eine umfangreiche Berlicksichtigung der Risikokomponenten und
insbesondere der rdumlichen Abhdngigkeit von Wiederkehrintervallen stark empfohlen,
um das Hochwasserrisiko und damit dessen Management und Minderung besser verstehen
zu konnen.
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Chapter 1 — Introduction

Natural hazards result in serious and extensive consequences. In Europe, flooding is one of
the major natural hazards which causes far-reaching damages and disruptions. Over the
period 1998-2018, around €60 billion of total economic damage and around 520 fatalities
were recorded in Europe due to catastrophic flood events (Munich Re, 2019). The costliest
flood events occurred in 2002 and 2013 in the central Europe. In August 2002, the total
economic damage was estimated around €15 billion where Germany was the hardest hit,
experiencing a damage of €9 billion (Munich RE, 2004). During the 2002 event,
approximately 600,000 people were affected with around 80 fatalities in 11 countries (EEA,
2003). In June 2013, flooding caused a total economic damage of €12 billion, majority of
which belonged to Germany, and 25 people lost their lives (Munich RE, 2013).

Owing to the destructive consequences of floods, the areas exposed and vulnerable to
flood risk should be carefully identified and managed. It is commonly stated that flood risk
depends on three dynamic components: hazard, exposure and vulnerability (Kron, 2005;
Cardona et al., 2012; UNISDR, 2013). Hazard refers to magnitude and frequency of natural
or anthropogenic flood events that possibly have negative impacts on exposed and
vulnerable elements. Although, hazard has been perceived the same meaning as risk by
time, at present it is well recognized that it is a component of risk. Exposure refers to people
and assets which possibly experience the flood event. Vulnerability refers to susceptibility
of people and assets at risk and the coping capacity to handle adverse impacts of flood
event. Often, the usage of exposure and vulnerability is mistakenly combined. In fact, they
are different. For instance, being exposed but not vulnerable to flood event is possible,
however being vulnerable definitely requires being exposed to flood event.

It is obvious that flood risk changes over time due to its dynamic components. It is likely
to see a considerable change in flood risk in the next few decades. At present, climate
change is more pronounced than even before, and flood hazard is expected to occur more
frequently in the future (IPCC, 2019). On the other hand, according to UN-DESA (2019),
urban population grew more than 4-fold and it will continue to increase. Therefore, an
effective flood risk assessment and then a sound flood risk management gain high
importance.

Flood risk management is defined as comprehensive and continuous societal analysis,
assessment and mitigation of flood risk (Schanze et al., 2006). In the past, traditional risk
management mainly aimed to reduce risk by river training and construction of structural
defences. However, this often overlooked that structural measures can alter public risk
perception (e.g. Su et al., 2017). For instance, people feel safe and they settle along the
river valley. This decreases flood awareness and precaution. Over past two or three decades,
with the necessity of a holistic way of risk management, a shift has been observed by also
including non-structural measures (e.g. flood warning systems, land use regulations, flood
emergency preparedness plans, flood-proofing of buildings, and insurance) in the risk
management. This integration in risk management can be seen in the European Floods
Directive (EC, 2007) which provides a legal framework for risk management for all waters
across European Union. For example, the reason for reduced damage in 2013 event is
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indicated by the improvement in flood risk management on many levels after 2002 event
(Thieken et al., 2016). These improvements were especially observed in (1) spatial planning
and urban development, (i1) individual level mitigation and preparedness measures, (iii)
flood warnings and coordination of disaster response and (iv) maintenance of flood
defences.

1.1. Changes in flood risk

During last few decades, economic damages due to floods have considerably increased (e.g.
EEA, 2019). This increase is often attributed to increasing number of people and assets,
also called socio-economic trends leading to an increase in flood exposure (e.g. Barredo,
2009; IPCC, 2012).

In fact, human activity can have adverse impact also on hazard component, in addition
to increase in flood exposure. For instance, urbanization and deforestation decreases
infiltration into the soil; improper waste disposal blocks the drainage systems. These can
increase and accelerate surface runoff during a flood event (e.g. Kundzewicz and
Schellnhuber, 2004; Kundzewicz, 2012). Besides, due to some river training measures (e.g.
construction of flood protection measures), which may accelerate the propagation of a flood
along the river network, the natural floodplain for peak discharges (flood retention areas)
may reduce (e.g. Skublics et al., 2016) and for a certain discharge, higher water levels can
be observed.

In addition, anthropogenic climate change may affect the hazard component. This may
increase heavy precipitation events as a result of warmer atmosphere. Although there is no
clear evidence that climate change influences the increase in flood damages (e.g. Barredo,
2009; Bouwer, 2011), climate change may still affect flood risk. Increase in heavy
precipitation may also have a role on increasing damage (e.g. Jongman et al., 2012; EEA,
2019). Flood risk is affected by various drivers at the same time, and hence it is hard to
conceive their individual impacts on flood risk. For example, the effect of climate change
can be masked by improved early warning systems, strengthened protection measures or
better private precaution (e.g. Di Baldassarre et al., 2015; Jongman et al., 2015).

Previous studies used various approaches to understand changes in flood risk. For
example, Kreibich et al. (2017) used the approach of paired flood events where consecutive
flood events in the same region were compared. They presented that lower damage by the
second event is mainly due to significant reductions in vulnerability (e.g. improved risk
awareness, preparedness, and organizational emergency management). In another
approach, loss normalization studies have been conducted by correcting loss time series for
growth in population and wealth, and inflation (e.g. Barredo, 2009; Bouwer, 2011; Visser
etal., 2014). These studies suggested that socio-economic development can be the principal
driver of the increasing flood damage in Europe. Besides, other data-based approaches
focused on the understanding of the impact of single risk drivers. Kreibich et al. (2005) and
Bubeck et al. (2012) investigated the role of the implementation of private precaution
measures on flood risk by surveying households. Both studies revealed that the
implementation of private precaution measures reduced the damage significantly. All of
these data-based approaches are useful to better understand change in flood risk; however,
they cannot provide detailed information on the impact of each risk driver and their relative
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contributions to total risk. Therefore, for more detailed analysis, simulation-based
approaches are preferred. With the simulation-based approaches contributions of different
drivers and past or future changes in flood risk can be estimated by scenario runs. Further,
the outcomes highly depend on the case study and scenarios selected. Most of the
simulation-based studies focus on changes in hazard (e.g. climate change) and exposure
(e.g. changes in land use and assets). They often address climate change as the dominant
driver (e.g. Arnell and Gosling, 2016; Bouwer et al., 2010; Feyen et al., 2012; Hattermann
et al., 2014; Te Linde et al., 2011). However, in some cases, change in land use and GDP
(gross domestic product) can mask the impact of climate change (e.g. Elmer et al., 2012;
Muis et al., 2015; Winsemius et al., 2015). In addition, the combination of climate change
and socio-economic development scenarios can be more dominant and may lead to
significant increases in risk (e.g. Alfieri et al., 2015b; Budiyono et al., 2016; Hall et al.,
2003; Lung et al., 2013; Rojas et al., 2013). However, for a more comprehensive analysis
with simulation-based approach, change in vulnerability should also be included (UNISDR,
2015; Kreibich et al., 2017).

1.2. Spatial dependence in risk assessments

In order to manage and mitigate flood risk, there should be a comprehensive analysis and
an assessment of risk (Meyer et al., 2009). The common concept for a risk assessment often
starts with a flood hazard assessment which mainly includes discharge-frequency analysis
and/or rainfall-runoff modelling, and hydraulic modelling. The discharge-frequency
analysis and rainfall-runoff modelling are used to estimate maximum flood discharges for
different return periods. Following this, hydraulic modelling is used to determine flood
hazard and risk at the given spatial scale by simulating the flood depths and the extent of
flooded area. The complexity of hydraulic models can vary depending on the scale of the
analysis from simple interpolation methods to sophisticated and spatially detailed models
(Apel et al., 2009). Further, for the risk assessment, hazard information is combined with
information on exposure (land-use and asset values) and vulnerability. In this step, different
damage models can be used to estimate flood damage (Olesen et al., 2017). The simplest
damage assessment considers average unit cost for the inundated area. For a more complex
damage assessment, damage model is applied where depth-damage curves are often taken
into consideration. The most complex assessment approach calculates damage on an object
level. As a final step, by combining the information on flood damage and its corresponding
event probability, risk (exceedance probability) curve is constructed. The area under this
curve is often estimated to express risk as the expected annual damage (EAD).

The results of flood risk assessment are often in the forms of flood hazard maps and
flood risk maps. These communicate flood risk to different target audience such as water
management authorities, municipalities or civil protection agencies and broader public
(Spachinger et al., 2008). Flood hazard maps include the information on flood
characteristics such as flood water depth and inundation extent for certain return periods.
Flood risk maps additionally include the information on the consequences of a flood event
(e.g. economic damage, number of people affected). However, while producing these maps,
the biggest challenge is to satisfy spatial consistency during a flood event, especially for
large scale assessment. The traditional approach assumes a number of spatially
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homogeneous scenarios for certain return periods (e.g. Rhine Atlas (ICPR, 2015)). That is
to say, during a flood event with T-year return period, all flooded areas experience T-year
flood. Typically, these local T-year flood estimates, based on extreme value statistics at
particular gauges, are pieced together to construct flood maps.

Many studies at the global scale (e.g. Ward et al., 2013; Winsemius et al., 2015), at the
European scale (e.g. Rojas et al., 2013; Bubeck et al., 2019 ) and at the national scale (e.g.
Hall et al., 2005; Dumas et al., 2013) are based on this traditional assumption of
homogeneity. However, in the real world, flood events are spatially heterogeneous due to
strongly varying flood generation processes in atmosphere, catchment and river network
(e.g. Nied et al., 2017; Vorogushyn et al., 2018). The traditional approach tends to
overestimate discharge probabilities at individual gauges over large areas (Thieken et al.,
2015).

In the context of flood risk assessment, spatial dependence of flood return periods can
be considered using the following approaches. The first one is an event-based simulation
approach where stochastic rainfall events are generated as an input to the hydrological
model (e.g. Rodda, 2001; Jankowfsky et al., 2016). However, in this approach the return
periods of discharge and rainfall are assumed to be equal which is not plausible all the time.
The second approach is the application of multivariate distribution functions to estimate
the spatial dependence of flood peak discharges at multiple areas (e.g. Keef et al., 2009;
Quinn et al., 2019). In this approach, synthetic hydrographs, only based on flood peaks, are
produced to estimate inundated areas. These hydrographs may be spatially inconsistent
which can be a disadvantage. The third approach is the piece-wise combination of
inundation maps and risk estimation for heterogeneous return periods where previously
derived homogeneous return period maps are interpolated (Alfieri et al., 2015a, 2016a,
2017). Although, this approach represents spatial dependence, due to the piece-wise
combination of inundation maps may result in inconsistencies. The last approach is a long-
term continuous simulation of hydrological and hydrodynamic processes considering
synthetic time-series of meteorological variables (e.g. Falter et al., 2015). This approach
may require high computational costs, but it allows to model spatially consistent flood
events. Another advantage of this approach is that flood risk is directly derived from the
damage time series instead of time series of peak discharges, hence the difficulties while
translating peak discharge probabilities to damage probabilities are resolved.

1.3. Objectives and outline

In a changing world, an effective flood risk management and mitigation can be achieved
by performing comprehensive flood risk assessment. This requires detailed research on
flood risk dynamics. In this regard, this thesis aims to expand the understanding of changing
flood risk and risk assessment through investigating the role of risk components and
comparing risk under different spatial dependence assumptions. The role of risk
components on overall flood risk is investigated for the Mulde catchment in Germany. The
different spatial dependence assumptions are compared for the Elbe catchment in Germany
and for Europe.

The above-mentioned objectives of this thesis are addressed in three main chapters. This
thesis includes an introductory chapter, three main chapters and a concluding chapter.
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Figure 1.1 shows the structure of this thesis, including specific purposes and considered
spatial scales in three main chapters. Chapters 2, 3 and 4 are in the form of manuscripts
where all of them have been published in peer-reviewed journals.

Chapter 1
Background, objectives and outline of the thesis

/ The role of risk components \

Chapter 2
How do changes along the risk chain affect flood risk?
Representation of a comprehensive sensitivity analysis considering changes along the complete flood risk

chain to understand how changes in different drivers affect flood risk.
Scale: Mulde catchment (Germany)

/ The role of spatial dependence \

N/ Chapter 4
Biases in national and continental flood risk
assessments by ignoring spatial dependence

Chapter 3
The role of spatial dependence for large-
scale flood risk estimation
Indication of how important is to represent spatial

dependence of flood peaks and damages for risk
assessments.

in flood risk estimation over national and
continental scales focussing on flood protection and

Investigation of the impacts of spatial dependence i

~
’1/‘ “\\
\

. . tail dependence.
Scale: Elbe catchment (Germany) /N Scales: United Kingdom, Germany and Europe j
'\
Chapter 5
Findings of this thesis, discussion and recommendations and conclusions
\ J

Figure 1.1: Structure of the thesis

While the reason of changing flood hazard in the past and the possibility of changes in
the future are widely investigated, studies on changes in flood risk are limited to certain
risk components such as climate change or land use change. In the light of flood risk
definition, change in flood risk ought to be investigated comprehensively considering
whole spectrum of risk components. Therefore, first, the contribution of risk components
to the change in flood risk is described in Chapter 2. This aims to help improved flood risk
assessment and decision-making process. The following research questions are addressed
in Chapter 2.

+» How and to what extent do the changes in risk components propagate through risk
chain and affect flood risk?

% How is the overall flood risk affected by the changes in risk components for
different locations and seasons?
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The many studies assess flood risk by assuming spatially homogeneous return periods
of flood peaks. However, this assumption is not an appropriate representation of the real-
world case. Therefore, the second and third studies investigate the effect of spatial
dependence on flood risk estimates at different spatial scales. This is crucial for a thorough
flood risk assessment. Chapter 3 considers spatial dependence by continuous modelling of
the entire risk chain. Estimated flood risk under this modelled dependence assumption
(spatially dependent heterogenous return periods) is compared with flood risk estimates
under two different assumptions (limit cases): complete dependence (homogeneous return
periods) and complete independence (randomly generated heterogeneous return periods).
In this study, the effect of spatial dependence is investigated for the Elbe catchment.
Chapter 4 represents spatial dependence by using copula-based dependence models.
Similar to the second study, risk estimates under three different assumptions are compared.
Contrary to the second study, the effect of spatial dependence is investigated on European
scale where results on national scale (for the UK and Germany) are also provided. Because
continuous modelling is difficult at the European scale, this study provides insights into the
risk estimates with different copula-based dependence models of loss at multiple locations.
In addition, the impact of the structural flood protection level is investigated in Chapter 4.
The following are addressed in Chapters 3 and 4:

*» What is the bias in risk estimates under the “false” assumptions of spatial
dependence of return periods of damages?

+» What is the role of spatial scale, tail dependence in the multivariate dependence
model and structural flood protection level on flood risk under the different
assumptions of spatial dependence?

1.4. Author contributions

The main chapters of this thesis are produced with a collaboration between the author of
this thesis and the co-authors who are represented with their initials. Manuscripts and their
author contributions are as follows:

Chapter 2: How do changes along the risk chain affect flood risk?

Authors: Ayse Duha Metin (ADM), Nguyen Viet Dung (NVD), Kai Schréter (KS), Bjorn
Guse (BG), Heiko Apel (HA), Heidi Kreibich (HK), Sergiy Vorogushyn (SV), and Bruno
Merz (BM)

ADM, BM, NVD, and SV developed the concept. BM conceived and supervised the study.
ADM, NVD, and KS performed simulations. ADM analysed the results. ADM prepared
the paper with contributions from all the co-authors. All authors made a substantial
contribution to the interpretation of results and provided important ideas to further improve
the study.
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Chapter 3: The role of spatial dependence for large-scale flood risk estimation
Authors: ADM, NVD, KS, SV, BG, HK, and BM

ADM, BM, NVD, and SV developed the concept. BM conceived and supervised the study.
ADM, NVD, and KS performed simulations. ADM analysed the results. ADM prepared
the paper with contributions from all the co-authors. All authors made a substantial
contribution to the interpretation of results and provided important ideas to further improve
the study.

Chapter 4: Biases in national and continental flood risk assessments by ignoring
spatial dependence

Authors: NVD, ADM, Lorenzo Alfieri (LA), SV and BM

NVD, BM, SV and ADM developed the concept. BM conceived and supervised the study.
NVD, ADM and LA performed simulations. ADM analysed the results. ADM prepared the
paper with contributions from all the co-authors.






Chapter 2

How do changes along the risk chain affect flood risk?

Authors: Ayse Duha Metin, Nguyen Viet Dung, Kai Schroter, Bjorn Guse, Heiko Apel,
Heidi Kreibich, Sergiy Vorogushyn, Bruno Merz

Abstract

Flood risk is impacted by a range of physical and socio-economic processes. Hence, the
quantification of flood risk ideally considers the complete flood risk chain, from
atmospheric processes through catchment and river system processes to damage
mechanisms in the affected areas. Although it is generally accepted that a multitude of
changes along the risk chain can occur and impact flood risk, there is a lack of knowledge
how and to what extent changes in influencing factors propagate through the chain and
finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis
which considers changes in all risk components, i.e. changes in climate, catchment, river
system, land use, assets and vulnerability. The application of this framework to the
mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as
consequence of plausible change scenarios. It further reveals that components that have not
received much attention, such as changes in dike systems or in vulnerability, may outweigh
changes in often investigated components, such as climate. Although the specific results
are conditional on the case study area and the selected assumptions, they emphasise the
need for a broader consideration of potential drivers of change in a comprehensive way.
Hence, our approach contributes to a better understanding of how the different risk
components influence the overall flood risk.

Published as: Metin, A. D., Nguyen, V.D., Schréter, K., Guse, B., Apel, H., Kreibich,
H., Vorogushyn, S., and Merz, B.: How do changes along the risk chain affect flood risk?,
Nat. Hazards Earth Syst. Sci., 18, 3089-3108, https://doi.org/10.5194/nhess-18-3089-2018,
2018.
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2.1. Introduction

Globally, floods affect more people than any other natural hazard, and the global average
annual flood loss has been estimated to amount to more than USD 100 billion (UNISDR,
2015). Flood risk is defined as the likelihood of losses and depends on three factors: hazard,
exposure and vulnerability (IPCC, 2012; UNISDR, 2013). Hazard is related to the physical
processes with the potential to cause harm ranging from atmospheric via catchment
processes to river routing, whereas exposure refers to the elements at risk of flooding.
Vulnerability is defined as the susceptibility of the elements at risk to be adversely affected.
Typically, exposure is quantified as the number of people and the assets in flood-prone
areas, and vulnerability is represented as the damage ratio, i.e. the degree to which
elements-at-risk are damaged given hazard impacts. Consequently, flood risk assessments
ideally need to consider the entire flood risk chain from the atmospheric processes, through
the catchment and river system processes to the damage mechanisms in the affected areas.

It is now well acknowledged that flood risk can change substantially in time, since all
three risk factors are dynamic (e.g. Kreibich et al., 2017). The causes of these changes are
manifold; they range from human-induced climate change and natural climate variability
on decadal or centennial time scales to changes in vulnerability that may act on much
shorter time scales (Merz et al., 2010a). The spatial and temporal interdependencies among
hazard, exposure and vulnerability and interactions within these risk chain compartments
should be considered in flood risk assessment (Merz et al., 2014a; Vorogushyn et al.,
2017).

In their study of paired flood events, Kreibich et al. (2017) looked into consecutive flood
events that occurred in the same region and attempted to understand what drove the changes
in the observed impact. Their collection of case studies revealed the essential role of
vulnerability reduction in losses, for instance, via improved risk awareness, preparedness
and organizational emergency management. Conversely, they emphasized that different
risk drivers act simultaneously; for instance, structural measures can be complemented by
non-structural measures.

Another approach to understand changes in flood risk is loss normalization using
observed damage data (e.g. Visser et al., 2014). Time series of flood damages usually show
increasing trends. To separate the effect of socio-economic development, the original loss
time series are corrected for growth in population and wealth, and for inflation. For
example, Barredo (2009) normalized losses of large river floods aggregated at the scale of
31 European countries between 1970 and 2006. Since the normalization removed the
increasing trend in the original loss values, this study suggested that socio-economic
development was the dominant driver of increasing flood damage in Europe. Similar
conclusions have been drawn from other loss normalization studies for weather-related
hazards (IPCC, 2012; Neumayer and Barthel, 2011; Bouwer, 2011; Visser et al., 2014).

Other data-based studies attempted to understand the influence of single drivers. For
instance, Bubeck et al. (2012) surveyed 752 households along the Rhine and found that the
implementation of private mitigation measures developed gradually over time with severe
floods leading to a stepwise increase in mitigation. They concluded that an improved
preparedness triggered by a severe flood in 1993 led to substantial damage reduction during
a second flood with similar hazard characteristics in 1995. A survey of 1200 households
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affected by the Elbe flood in 2002 in Germany suggested that private precautionary
measures reduced the damage to the buildings and their contents on the order of 50 % for
the most effective measures, i.e. flood-adapted use and adapted interior fitting (Kreibich et
al., 2005).

Although data-based approaches have helped to better understand flood risk changes, it
is hard to conceive how the causes of flood risk changes and their relative contributions
could be deciphered from empirical data only. A major problem is the superposition of
several drivers of risk changes. It is easily conceivable that adaptation measures, such as
improved early warning systems, strengthened flood protection, or better private
precaution, have masked the effect of climate change (Handmer et al., 2012; Di Baldassarre
et al., 2015; Jongman et al., 2015; Mechler and Bouwer, 2015). Hence, conclusions from
normalization studies, such as there is no evidence for the effect of human-induced climate
change on the loss trend (e.g. Barredo, 2009), need to be taken with care. Another limitation
of data-based approaches results from the lack of reliable loss data. Loss data are often not
available, or are available only for standard economic sectors in developed countries, and
large uncertainties reside in reported or reconstructed loss records (Handmer et al., 2012;
Merz et al., 2010a; Wirtz et al., 2014).

Simulation-based approaches offer the advantage that the contributions of different
drivers can be estimated via scenario runs. Table 2.1 compiles simulation-based studies that
investigated past or future changes in river flood risk. The various studies that addressed
changes in flood hazard only, for instance as a consequence of climate and land use change,
are not included. This selection of studies results from a comprehensive literature search
using the following search terms (both in combination and separately) in the IST Web of
Knowledge database: flood risk, change, damage, climate and socioeconomic scenarios in
October 2017. The identified articles were checked for forward and backward citations. We
would like to point out that studies focussing on the uncertainties in estimation of hazard,
exposure, vulnerability, and their effect on risk estimates were not in the focus of this
review.

Table 2.1 shows that all studies addressed climate change. Other changes in flood hazard
have not been investigated with the exception of land subsidence by Budiyono et al. (2016).
Almost all studies look at changes in exposure, most often in terms of land use change.
Changes in asset values are also addressed frequently. In terms of risk indicators, the
majority of studies are limited to EAD (expected annual damage).

There is no unanimous conclusion across these simulation-based studies. The results
highly depend on the case study and the drivers and scenarios selected. Yet, 5 out of 13
studies conclude that climate change was the dominant driver leading to an increase in flood
risk. The other studies indicate different drivers and combinations as more dominant. (For
a detailed assessment of these studies see the Supplementary for Chapter 2.)

Although there is a wealth of studies on how and why flood hazard has changed in the
past and might change in the future (IPCC, 2012), studies on changes in flood risk are
scarce. Data-based approaches are strongly limited due to data availability and
methodological problems. Simulation-based studies on changes in flood risk have been
limited to climate and land use change and have primarily focussed on future scenarios
rather than understanding past changes. Other drivers of risk, such as flood protection
measures, have been neglected. This gap is particularly severe in terms of the effects of
changes in vulnerability (Merz et al., 2014a; Mechler and Bouwer, 2015). Our systematic
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literature search did not result in a single simulation-based study which included changes
in vulnerability. We can conclude that knowledge about the underlying processes and their
contribution to changes in flood risk is still scarce (UNISDR, 2015; Kreibich et al., 2017),
and there is a lack of comprehensive studies that take into account the whole spectrum of
drivers.

Our study is a contribution to fill this research gap. It analyses how different drivers,
including all three components of risk, affect flood risk. Changes in flood risk are evaluated
for the catchment scale and two typical up- and downstream sub-basins and for summer
and winter seasons. We quantify the sensitivity of flood risk to changes along the flood risk
chain, considering all components of the chain. This includes changes in the atmosphere,
catchment, river system and affected floodplain areas. Specifically, we consider climate
change, implementation of reservoirs in the catchment, flood protection along the rivers,
land use change, change in asset values and changes in the vulnerability of flood-affected
objects. For each of the six factors, two scenarios with increasing and decreasing change
with symmetric deviation from a baseline scenario are derived. Hence, the sensitivity
analysis consists of 729 (3°) scenarios.

This sensitivity analysis is combined with the derived flood risk analysis (DFRA)
proposed by Falter et al. (2015). DFRA consists of an end-to-end flood risk assessment
based on continuous simulation. A model chain representing the catchment, river network
and damage processes is driven by a multi-site stochastic weather generator. DFRA is an
extension of the derived flood frequency analysis based on continuous simulation, which
has found increasing attention recently (e.g. Haberlandt and Radtke, 2014). A major
advantage of DFRA is that all processes, from the flood-triggering precipitation to the
damage, are simulated in a spatially consistent way, respecting the spatial dependence of
the different processes. Another advantage is the derivation of flood risk directly from the
damage time series, generated by the model chain, instead of the discharge time series.

The sensitivity analysis is performed for the Mulde catchment in Germany, which was
severely hit by flooding in 2002 and 2013. We use the model chain implemented and
calibrated by Falter et al. (2015) for the Mulde catchment. A total of 4000 years of spatial
weather fields at daily resolution are generated and used to force the model chain, resulting
in daily and spatially explicit fields of streamflow, inundation and damage throughout the
catchment. From these datasets, the risk curve (or loss-probability curve) and EAD are
calculated. Introducing the change scenarios for the six factors leads to 729 damage time
series of 4000 years, which again are used to calculate the flood risk.

The paper is structured in six sections. Section 2.2 describes the study area. Section 2.3
introduces the simulation model chain and the approach used in the sensitivity analysis
including the change scenarios. Section 2.4 presents the results of the sensitivity analysis
including sub-basin and sub-annual variations. Sections 2.5 and 2.6 provide discussions
and conclusions.
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2.2. Study area

Our study area, the Mulde catchment (7115 km?), is a sub-basin of the Elbe River in
Germany, which is one of the largest rivers in central Europe. The Mulde River drains the
northern part of the Ore Mountains. The Mulde and its major tributaries have a length of
around 380 km. The catchment elevation varies between 52 m and 1213 m a.s.l. (above sea
level). Approximately 10 % of the catchment area is covered by urban structures. Anhalt-
Bitterfeld, located downstream in the Mulde catchment, and Zwickau, located upstream,
have been selected as two districts for more detailed analyses (Fig. 2.1). The annual
precipitation ranges from 500 to 1100 mm. Although the majority of floods in the Mulde
catchment occur in winter, extreme floods tend to occur in summer due to widespread and
intensive precipitation. Reservoirs in the Mulde catchment (14 of them have a storage
capacity greater than 1 million m?) are generally used for drinking water supply, but they
also have the storage capacity for flood protection (Schédler et al., 2012).

The most extreme floods during the last decades in Germany were observed in August
2002 and June 2013 (Schroter et al., 2015). While the 2002 flood has been the most
expensive disaster for Germany to date, the 2013 event has been the most severe flood in
hydrological terms in the last 6 decades. Both floods also had severe impacts in the Mulde
catchment. A total of 115 and 24 dike failures were observed in the Mulde catchment in
2002 and 2013, respectively (Thieken et al., 2016). Historical documents, going back to the
ninth century, show that the Mulde catchment has been hit by large floods associated with
high damages before (Petrow et al., 2007). The repeated occurrence of extreme flooding
associated with high damages is the primary reason for selecting it as the study area.
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Figure 2.1: Study area of the Mulde catchment, including the main tributaries, reservoirs,
and river gauges. The inset shows the location of the catchment within Germany.
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2.3. Methods
2.3.1. Flood risk simulation model chain

To simulate the complete flood risk chain, the Regional Flood Model (RFM) is used. RFM
consists of a weather generator, rainfall-runoff model, 1-D channel routing model, 2-D
hinterland inundation model, and flood loss estimation model for residential buildings. The
results of one model are used as input for the next model. Figure 2.2 shows the model chain
and gives the most important information on the input data and the characteristics of the
different modules. Details about the model chain are given in Falter et al. (2015). The
computational demand of the different modules is as follows: 8% Regional Weather
Generator (RWG) (coverage: Germany+), 10% Soil and Water Integrated Model (SWIM),
80% Regional Inundation Model (RIM), 2% FLEMOps. Please note that RIM runs on a
mixed infrastructure CPU + GPU. The other components run on CPU only.

The model set-up follows the concept of derived flood risk analysis based on continuous
simulation proposed by Falter et al. (2015). A weather generator provides spatially
consistent meteorological fields which propagate through the entire model chain. In our
study, the chain is run on a daily time step for 40 realizations of 100 years resulting in a
total time series of 4000 years. Risk estimates are then derived directly from the time series
of damage generated by the model chain.

A derived flood risk analysis based on continuous simulation has a number of
advantages compared to event-based flood risk estimates. For instance, due to the
continuous simulation the antecedent catchment conditions are implicitly considered in the
flood generation, and the approach provides the complete flood hydrograph on a daily base.
Since all models within the chain are spatially explicit, the approach provides spatially
consistent flood events including the river-floodplain and damage processes. Hence, spatial
consistency of losses across the catchment is also taken into account. A further advantage
is that risk is estimated using the space-time fields of damage. Hence, this approach follows
the definition of risk, in which risk is understood as the probability of exceeding a given
damage. In contrast, traditional flood risk analyses use the probability of discharge as a
proxy for the probability of damage. For a comprehensive discussion see Falter et al.
(2015).

Note that our model set-up is the same as in Falter et al. (2015). The only difference is
that we consider reservoirs in the rainfall-runoff module. The different modules along the
risk model chain are described in the following.
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Figure 2.2: Flood risk model chain: regional flood model (RFM).

2.3.1.1. Regional weather generator RWG

The meteorological input is obtained from the multi-site, multi-variate weather generator
RWG (Regional Weather Generator) proposed by Hundecha et al. (2009) and further
developed by Hundecha and Merz (2012). This model is designed to generate synthetic
weather at the regional scale, i.e. several tens of thousands to hundreds of thousands of
square kilometres. It creates daily time series of climatic variables at multiple sites in two
steps: generation of daily precipitation series through a multivariate autoregressive model
(which uses a mixed gamma and generalized Pareto distribution) and generation of daily
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maximum, minimum, and mean temperature and solar radiation using Gaussian
distribution. Both temperature and solar radiation depend on the state of precipitation.

The weather generator is set up for the whole of Germany, including the upstream areas
of the Elbe, Danube and Rhine catchments outside of Germany. It is used to generate long
synthetic meteorological data considering daily climate observations for the period from
1951 to 2003 at 528 climate stations.

All the single-site input parameters (six parameters of the mixed gamma-Pareto
distribution for non-zero precipitation and two parameters of the Gaussian distribution for
the other variables) have been estimated for each of 528 stations of the dataset and for each
of the 12 months separately. The RWG has been successfully tested and validated for the
reproduction of daily and longer-term statistics of the six climatic variables at individual
sites and the reproduction of the temporal and spatial pattern observed in the dataset. The
validation results illustrate that the RWG is capable of generating long-term synthetic
meteorological fields, capturing both regular and extreme events well. The detailed
description of the implementation of the RWG would be extensive. Hence, for the sake of
simplicity and balance of the paper structure, it will not be elaborated here. The readers are
referred to Falter et al. (2015) for more details.

2.3.1.2. Rainfall-runoff model SWIM

The semi-distributed hydrological model SWIM (Soil and Water Integrated Model,
Krysanova et al., 1998) simulates the hydrological cycle on a daily basis. SWIM uses three
levels of spatial disaggregation: the river basin is divided into sub-basins which are further
subdivided into hydrotopes. Water fluxes are computed at the hydrotope level, then
aggregated on the sub-basin level. SWIM routes total runoff from sub-basin to sub-basin
using the Muskingum routing method.

In this study, the Mulde catchment was divided into 77 sub-catchments based on Shuttle
Radar Topography Mission digital elevation maps provided by the Federal Agency for
Cartography and Geodesy in Germany (BKG). Hydrotopes were formed using soil and land
use data from the soil map of Germany (BUK 1000 N2.3) from Bundesanstalt fiir
Geowissenschaften und Rohstoffe, the European Soil Database map from the European
Commission’s Land Management and Natural Hazards unit, and the CORINE (Coordinated
Information on the Environment) land cover map.

To be able to assess the sensitivity of flood risk to the implementation of reservoirs, we
added a reservoir component in SWIM. The specific operational strategy for each reservoir
depends on a number of considerations. For example, after the disastrous flood in 2002, the
storage reserved for flood retention has been increased at the expense of other purposes
such as water supply for some reservoirs in Germany. The operational rules for reservoirs
are expected to vary in time and from reservoir to reservoir based on local considerations.
Further, it may be difficult to reconstruct them for reservoirs which have been in operation
for decades. In this SWIM version, a simplified routine was integrated for simulating the
retention effect of reservoirs automatically. Each modelled reservoir is linked to the sub-
basin in which it is located and only the volume dedicated for flood control is implemented.
When the flow at the sub-basin node exceeds the 100-year discharge (HQioo), the
streamflow beyond this threshold is stored in the reservoir, i.e. the hydrograph is cut at
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HQi100, as long as the required storage volume is available. When the flow falls below the
threshold value of HQ100, the reservoir starts releasing water so that the flow maintains the
level of HQ100 as long as the active volume allows. If the storage capacity is filled before
the inflow discharge falls below HQ1o0, excess flow is routed downstream. Reservoirs
operated in this way are very effective in reducing the peaks of extreme flood events. In
total, 25 reservoirs (Fig. 2.1) within the Mulde catchment are integrated in the SWIM model
set-up. The necessary information for reservoirs such as locations and flood storage
capacities of reservoirs was adapted from Séchsisches Landesamt fiir Umwelt und Geologie
(2002).

The new SWIM model set-up with reservoirs needed to be recalibrated and revalidated
using the identical dataset, global optimization algorithm (SCE-UA, Duan et al., 1992) and
objective function mNSE (based on the modified Nash-Sutcliffe efficiency measure giving
more emphasis on higher flow) mentioned in Falter et al. (2015). The calibration and
validation periods remain the same as well (calibration: from 1 January-1981 to 31-
December-1989; validation: from 1-January-1951 to 31-December-2003 excluding the
calibration period). The calibration and validation results illustrate an improvement in this
new model set-up compared to the version used in Falter et al. (2015). At the upstream
station Lichtenwalde, Nash-Sutcliffe efficiency (NSE) values of 0.81 (calibration) and 0.83
(validation) are achieved for the new set-up against 0.77 and 0.81 for the old one. At the
downstream Mulde station Bad Diiben, the corresponding values are 0.89 and 0.86 against
0.89 and 0.83. Overall, a modest difference in model performance between the two model
set-ups is found looking at the obtained NSE values and the plots in Fig. 2.3. However,
with the new set-up, the SWIM model is able to represent the cut-off process of the extreme
flood events due to the implementation of reservoirs. The modelled peak flow of the August
2002 flood fits well to the observed peak flow (Fig. 2.3).
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Figure 2.3: Model performance of SWIM at selected gauging stations.

2.3.1.3. Regional inundation model RIM

With the hydrological routing, SWIM calculates wave propagation without explicit
consideration of the river channel geometry. However, to predict dike overtopping and
simulation of hinterland inundation, water level information along the river network is
needed which is provided by the Regional Inundation Model (RIM). It consists of a 1-D
hydrodynamic channel routing model for the domain between river dikes and a 2-D
hydrodynamic inundation model for the dike hinterland. Both models are coupled, i.e. the
1-D model gives the overtopping flow as a boundary condition to the 2-D model, and the
hinterland water levels computed by the 2-D model are used as boundary conditions for the
1-D model. The channel routing model solves the 1-D diffusive wave equation using an
explicit finite difference solution scheme and it simulates only the flood flows exceeding
the bankfull discharge. To this end, the river cross-section geometry was simplified
including the overbank river geometry and the elevation of flood protection dikes.
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Whenever the water level reaches the dike crest level, overtopping flow into the hinterland
is calculated using the broad-crested weir equation. Hinterland inundation processes are
simulated with a 2-D raster-based model based on the inertia implementation of Bates et
al. (2010). The 2-D inundation model was implemented in CUDA Fortran on graphical
processor units to increase the computational speed.

River cross-section profiles, dike heights and locations, and Manning’s roughness values
are necessary for setting up the 1-D model. The main data source for the geometric
characteristics is the 10 m resolution digital elevation model (DEM) supplied by the BKG.
Additionally, information on channel width and dike location was obtained from the digital
basic landscape model (Base DLM) provided by BKG. The river profiles were manually
extracted perpendicular to the flow direction with about 500 m in spacing. Since the
resolution of DEM 10 m tends to provide too low of dike heights and additional dike
information is not available, a threshold was introduced as a global correction value for the
minimum dike height. Following the study of Falter et al. (2015), the minimum height was
assumed to be 1.8 m. The Manning’s coefficient of n=0.03 was adopted constant over the
entire river network. The 2-D raster-based model uses a 100 m resampled computational
grid from DEM 10 m, which was found to be an acceptable compromise for representation
of inundation characteristics and computation time (Falter et al., 2013).

Falter et al. (2015) validated the 1-D hydrodynamic model at five gauging stations
(Fig.2.1) in the Mulde catchment with observed data over the period 1951-2003. Although
there was a tendency to underestimate the number of observed peak flows exceeding the
bankfull depth, the general performance was acceptable. Validation of hinterland
inundation is harder due to the lack of information about inundation depth and extent. In
our study area, observed inundation is only available for the extreme flood of August 2002,
provided by the German Aerospace Center (DLR). While inundation areas are simulated
well for the eastern tributary Freiberger Mulde, only around 50% of the flood extent is
correctly simulated for the entire catchment due to neglected dike breaches in the model
chain. Although there is an underestimation of inundation extents, the model is suitable to
assess changes in risk for the mesoscale Mulde catchment. The actual damage estimates for
the catchment area are not primarily targeted for this study. Details can be found in Falter
et al. (2015).

2.3.1.4. Flood Loss Estimation Model FLEMOps

The Flood Loss Estimation Model for the private sector (FLEMOps) is used to calculate
direct economic damage to residential buildings for each inundation event using the
maximum water level information provided by RIM. The base version of FLEMOps uses
five inundation depth classes, three building types, two building quality classes, three water
contamination classes, and three private precaution classes as inputs (Thieken et al., 2008).
Due to the fact that less damage occurs if people are regularly affected by flood, the
advanced version additionally considers the return period of the inundation at the flooded
buildings as damage-influencing factor (Elmer et al., 2010, 2012). FLEMOps provides the
damage ratio, i.e. the relative damage. The monetary damage is calculated by multiplying
the damage ratio with the asset values of the exposed elements.
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FLEMOps uses spatially detailed information about asset values, building types, and
building quality. All gridded input data were resampled to 100 m spatial resolution. The
damage calculation is carried out for 100x100 m? cells and then aggregated to the level of
municipalities. Asset values of the regional stock of residential buildings were
characterized considering standard construction costs (BMVBW, 2005). These asset values
were spatially distributed according to the CORINE land cover classes 111 (continuous
urban fabric) and 112 (discontinuous urban fabric). Municipal-scale information on
building type and quality was provided by Infas Geodaten GmbH (2009). The composition
of building types is defined using a cluster centre approach. In total five clusters are defined
differentiating the share of single-family houses, semi-detached/detached houses, and
multi-family houses. Average building quality is aggregated to two classes: high quality
and medium/low quality (Thieken et al., 2008). The flooding impact is characterised by
inundation depth and return period of peak flows. The latter is calculated at the SWIM sub-
basin level by fitting a generalized extreme value distribution to the annual maximum
discharge series obtained from 4000 years of continuous SWIM simulation. In addition to
inundation depth, return period, building type, and quality, contamination (none, medium
and heavy) and private precaution (none, good and very good) are also taken into account
in the damage model. The overall effect of contamination and private precaution is
quantified by scaling factors. Building type and quality are assessed on municipality level;
further municipal asset data are disaggregated with the help of a dasymetric mapping
approach. Loss estimation is carried out on a raster level by determining loss ratio by the
inundation depth in that cell and the underlying municipality which is linked to a building
types and quality (Thieken et al., 2008).

The flood loss estimation was evaluated by Falter et al. (2015) for the 19 affected
communities in the state of Saxony in Germany during the flood event of August 2002. The
sum of damages to residential buildings for all communities was officially reported as EUR
240 million, and it was calculated as EUR 67 million from the model chain. The simulated
affected residential areas match about 30% of the observed affected residential areas. This
underestimation may be explained by uncertainty in asset values and their spatial
distribution, the differences in simulated and observed inundation patterns, and uncertainty
in the damage model. For details we refer to Falter et al. (2015). In the current model set-
up with reservoir implementation, the calculated damage value is smaller, about EUR 61
million. That is because the inundation depth at some locations is slightly decreased in the
set-up with reservoirs, although simulated affected residential areas in the two set-ups are
similar for the flood event August 2002.

2.3.2. Sensitivity analysis
2.3.2.1. Outline of the sensitivity analysis

We investigate the sensitivity of risk to changes in the flood risk chain components. To
represent the entire flood risk chain, we analyse the effects of changes in the following six
components: atmosphere (A), catchment (C), river system (R), exposure related to land use
(EL), exposure related to asset values (EA), and vulnerability (V).
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The most comprehensive approach for understanding model sensitivity is global
sensitivity analysis in which regression methods, screening-based, variance-based and
meta-modelling approaches are widely used (van Griensven et al., 2006; Pianosi et al.,
2016; Song et al., 2015). Global sensitivity analysis evaluates the effects of all input
parameters and their combinations on the output based on a large number of model runs.
However, this approach cannot be combined with the derived flood risk analysis based on
continuous simulation in our case study due to the massive computational time that would
be required. Therefore, we use a much less demanding approach, the logic tree approach,
to identify the contribution of each component to changes in flood risk and to understand
interaction effects by analysing all possible combinations.

For each component, we limit the sensitivity analysis to three scenarios, a baseline
scenario and two symmetric change scenarios. The baseline scenario represents the current
state. The change scenarios represent plausible deviations from the baseline. This set-up
leads to 729 (3°) scenarios. The combinations of six components are shown in Fig. 2.4.

Hazard
Atmosphere Catchment River System LandUse Asset Values Vulnerability

A ) ) )

[Ac-a1-Az2 | cocic2 | ROR1-R2 | ELO-EL1-EL2\EAQ-EAT-EAZ I vulnerability

Exposure

/ _—
/ ./ >— 729 scenarios
/ _—
\ T~

—

Figure 2.4: Conceptual scheme of combinations for six components (atmosphere,
catchment, river system, land use, asset values and vulnerability). For each component,

there is one baseline (denoted by 1) and two symmetric change scenarios (denoted by 0 and
2).

The variables that are changed for each component and their values for the baseline and
change scenarios are described in the following sections and summarized in Table 2.2. It
has to be noted that for a given component different types of changes would be possible.
We have focussed our analysis on those types of changes that we consider most important
for flooding in our study region. For example, changes in catchment hydrology are
represented by changes in reservoir storage. Other changes, such as changes in agricultural
practice possibly leading to changes in infiltration behaviour and runoff coefficients, are
not considered. Further, the amount of change assumed for each component reflects another
subjective choice. Finally, it should be noted that the change scenarios do not necessarily
change the flood risk in the same direction. For example, scenario 2 of the catchment
component represents increased flood retention capacity and hence reduced flood risk.
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Conversely, scenario 2 of the vulnerability component assumes lower precaution compared
to the baseline scenario and hence higher flood risk.

Each of the 729 scenarios consists of a continuous, spatially distributed simulation of the
entire risk chain for 4000 years. From these resulting space-time fields of damage two risk
indicators are analysed, namely the risk curve and the expected annual damage (EAD). The
risk curve is obtained by plotting losses against their probability of occurrence. EAD is
calculated by integrating over the risk curve. In this paper, we provide the results in
aggregated form for the complete Mulde catchment, although the spatially explicit
modelling set-up allows the derivation of the sensitivity for each sub-catchment.

2.3.2.2. Change in climate

For the baseline scenario, the weather generator is calibrated using observation data from
1951 to 2003. We defined two plausible change scenarios considering seasonally different
changes in precipitation and temperature. To apply these changes to the precipitation and
temperature time series of the baseline scenario, we used the delta change method. For
precipitation, the baseline time series of 4000 years of daily precipitation was multiplied
by a change factor. For temperature, the change factor was added to the daily temperature
time series of the baseline scenario (Table 2.2). The change factors were derived from
observed changes in mean seasonal precipitation and temperature across Germany and are
roughly representative for the past 50 years (Umweltbundesamt 2017a, b). Scenario A2
represents a warmer climate and A0 a colder climate.

2.3.2.3. Change in catchment hydrology

Flood generation may be affected by a variety of mechanisms. Examples are land use
changes, such as conversion of agricultural areas into settlements or changes in infiltration
behavior due to soil compaction as consequence of more heavy machinery. We limit our
analysis to changes in flood retention storage in reservoirs, which we consider to be the
most important influence for the catchment component. Flood control by reservoirs is one
of the dominant flood risk management strategies in Germany. In upstream sub-basins of
the Mulde catchment, a flood retention capacity of around 106 million m® has been
implemented from 1825 to 2001 by constructing 25 reservoirs.

The baseline scenario C1 considers these 25 reservoirs. They were integrated into SWIM
at their locations shown in Fig. 2.1. As change scenarios, we consider the catchment without
reservoirs (scenario C0) and with double storage capacity (scenario C2). In the latter case,
we doubled the storage volume for each of the 25 reservoirs at the respective sub-basin.
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Table 2.2: Baseline and change scenarios for the sensitivity analysis. For each component
the variables that are changed in the sensitivity analysis and their scenario values (S1:
baseline; SO, S2: change scenarios) are given.

Component  Variable Scenario values Explanation
(S0 /S1/82)
Atmosphere  Precipitation Winter: (-19.0/0 Daily precipitation is multiplied by
(A) [mm] +19.0) change factor (1 + A, /p°) where p0 is
Spring: (-8.1 the mean precipitation amount for the
/0/48.1) baseline scenario series and A, is the
Summer: (+1.1/0/ seasonal change in mean precipitation
-1.1) over the 50 years period. A, values are
Autumn: (3.9 /0 given in the third column.
/+5.9)
Temperature ~ Winter: (-0.49/0/  Change in mean temperature over the 50
[°C] +0.49) years is added to daily temperature
Spring: (-0.45/0/  value on seasonal basis.
+0.45)
Summer: (-0.45/0
/ +0.45)
Autumn: (-0.38/0
/+0.38)
Catchment Reservoir 0/106/212 Current capacity is doubled and
©) capacity completely removed.
[Mio m?]
River system Dike height  (-0.5m/0/+0.5 Current dike height is changed by 0.5 m.
R) [m] m)
Land use Residential 560/ 672 /784 Current residential land use area is
(EL) area [km?] changed by 112 km?.
Value of Building 0.66/1/1.34 Current index is changed by 34 %.
assets (EA) price index
Vulnerability Scaling 0.71/0.95/1.20 Scaling factor of medium level
V) factor of precaution is increased and decreased by
relative 26 %, for the cases of no precautionary
damage measure and high precaution level,

respectively.
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2.3.2.4. Changes in the river system

For the river system, we focus on the effects of dikes on flood risk because dikes are the
most extensively used flood protection measure along rivers in Germany. The baseline
scenario R1 represents the current situation with the existing dikes.

To create change scenarios, we needed to define reasonable changes in dike height. The
current height was decreased (scenario R0O) and increased (scenario R2) by 0.5 m. This
increment is based on studies about potential dike heightening in the Netherlands.
Zwaneveld and Verweij (2014) considered 0.6 m dike heightening, and Hoekstra and Kok
(2008) compared two dike-heightening strategies and for the better performing approach
they assumed dike heightening in the range of 0.48 m to 0.71 m.

2.3.2.5. Land use change

Since the flood risk model chain used in this study considers only damage to private
households, we limit the effect of land use change to residential areas. The baseline scenario
(EL1) considers the CORINE land cover classes 111 (continuous urban fabric) and 112
(discontinuous urban fabric) for the year 2012. Land use change scenarios were created
based on increase in residential areas between the years 1990 and 2012 by randomly
changing the state of single pixels. The change scenario EL2 is based on the increase in
area of two land cover classes from 672 to 784 km? between 1990 and 2012 for which the
change area was added to baseline scenario. To obtain the symmetric change scenario ELO,
the same change in area (112 km?) was subtracted from the situation in 2012. Pixels (100
x 100 m?) of the classes 111 and 112 were assigned to residential land cover classes and all
other classes were assigned to non-residential land cover classes (i.e. agricultural areas and
semi-natural areas).

2.3.2.6. Change in asset values

For the baseline scenario (EA1), the building values from Kleist et al. (2006) for the year
2000 were converted to 2012 to be consistent with the baseline land use map. This
conversion was based on the building price index (BPI), which represents the growth in
construction prices compared to a reference year for Germany (Baupreisindex-BPI,
DESTATIS, 2012). In agreement with the change scenarios for land use, we generated the
change scenarios for asset values by scaling the baseline scenario with the relative change
in BPI between 1990 and 2012. Hence, the change scenario EA2 represents a situation with
a 34 % increase in asset values, and EAQ represents a 34 % decrease compared to EA1.

2.3.2.7. Change in vulnerability

Vulnerability of private households is influenced by a variety of dimensions such as social,
economic and institutional, and it is challenging to quantify the relation between these
dimensions and the damage ratio (Merz et al., 2010a). Therefore, in the present study, we
focus on the economic dimension of vulnerability. To represent changes in vulnerability,
we use FLEMOps, which was derived from comprehensive surveys of flood damage in
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Germany (Thieken et al., 2008, Elmer et al., 2010). These surveys show that, in addition to
flood and building characteristics, contamination and precaution are significant factors in
determining the damage. Since contamination is in many cases imposed externally on
households, for example by contamination through sewage water, we focus our analysis on
the effects of precaution.

The three vulnerability scenarios are defined by scaling the relative damage according
to the level of precaution at the household level. For medium contamination, the scaling
factors are 1.20 and 0.71 for ‘no precautionary measures’ and ‘very good precautionary
measures’, respectively (Biichele et al., 2006). Hence, the change scenario V2 with a
scaling factor of 1.20 represents a situation without precautionary measures, and VO a
situation with very good precaution (scaling factor 0.71). To obtain symmetrical changes,
the scaling factor of the baseline scenario V1 is set to 0.95.

2.4. Results

2.4.1. Sensitivity of flood risk at the catchment scale

The impact of each component on flood risk is illustrated in Figure 2.5 in terms of EAD,
aggregated to the whole Mulde catchment. Changes in each risk component are represented
by three box plots, whereas each box plot is derived from 243 scenarios for the change
scenario 0, 1 and 2 of that risk components.

One of the most striking results is observed for the change in the river system. The
median values for different dike heights are EUR 1.2 million, 0.8 million, and 0.3 million
for scenarios 0, 1 and 2, respectively. Hence, there is a very strong reduction in EAD with
dike heightening. The maximum EAD value for the high-dike scenario is EUR 1.1 million
which is very low compared to the EAD values obtained across all scenarios. Another
remarkable result is the rather small increase in the median values for changes in the
atmosphere (A) from scenarios 0 to 2 (from EUR 0.6 million to 0.8 million), despite the
realistic assumptions on average changes in climate variables. This result indicates that
changes in climate might not be the dominant ones along the risk chain, contrary to the
prevailing perception. Although our model does not capture complex change patterns such
as changes in duration of wet spells or clustering of events, we believe this would not
dramatically change the magnitude of climate-induced changes. For the catchment (C)
component, the median value for scenarios without a storage capacity (C0) is EUR 1
million, while it is around EUR 0.6 million for scenarios with both baseline storage capacity
and double storage capacity. This non-symmetry in the effects of the catchment component
is explained by the specific implementation of the reservoir capacity: implementing a
capacity of 106 million m® reduces the EAD significantly, but doubling this reservoir
capacity at the same locations does not further reduce the risk substantially because the
reservoir capacity in the baseline scenario is already sufficient to capture floods above
HQi00. For changes in land use (EL) and in vulnerability (V), median values of EAD
increase from scenarios 0 to 2 (from EUR 0.5 million to 0.9 million). Similar increases are
obtained for the component asset values (EA). These results imply that the assumed
changes in land use, asset values and vulnerability have considerable impacts on flood risk,
only topped by the change in dike heights.
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Figure 2.5: Box plots of EAD, aggregated at the catchment scale, for changes in six
components: atmosphere (A), catchment (C), river system (R), land use (EL), asset values
(EA), and vulnerability (V). The box plots show the median values (red lines), the 25" and
75 percentiles (top and bottom of boxes) and the range (whiskers). Outliers are shown by
wp

Figure 2.6 shows the effects of the different components on the risk curve. This
representation illustrates the effect of changes in risk components across the whole
spectrum of probabilities, whereas the EAD gives aggregated information. For each
component, the baseline scenario is compared to the two symmetric scenarios, whereas
only the respective component is changed and all other components are fixed at their
baseline state. The upper left plot of Fig. 2.6 shows the effect of change in the atmosphere
(A). Differences among the risk curves are only visible for high-probability events, whereas
for extreme events the risk curves are similar for different climate scenarios. This is
explained by the interplay of the flood regime in the Mulde catchment and the seasonal
variations applied in the climate change scenarios. Most of the floods occur in winter;
however, the most extreme events tend to occur in summer. Since the change scenarios,
based on past observations, assume a strong increase in precipitation in winter and almost
no change in summer (see Table 2.2), climate change manifests itself mainly for high-
probability events.

Changes in catchment (C) have the opposite effect on the risk curves, i.e. they affect
only low-probability events. This is a consequence of the threshold process applied in the
reservoir implementation in which the 100-year discharge (HQ100) is used to cut off the
extreme flood flow. The reduction in EAD is modest compared to the effect of other
components, such as dike heightening. This can be explained by the small contribution of
extreme events to EAD. Merz et al. (2009) have shown that EAD is dominated by ‘“high
probability-low damage” events and that “low probability-high damage” events play a
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small role, because their low probabilities overcompensate their high damages. They have
further argued that extreme events are more important for the affected societies than is
expressed by their contribution to EAD. Hence, EAD is rather insensitive to changes in
reservoir capacity in our case study, and the use of EAD as risk indicator might undervalue
the risk-reducing effect of reservoirs. This discussion also provides a note of caution on a
higher level: the relative contribution of different components to changes in risk varies
across the probability spectrum, and changes that affect mainly low-probability events may
be undervalued by EAD which has been used almost exclusively in the studies to date
(Table 2.1).

Changes in the river system (R) and in land use (EL) have a substantial impact across
the whole probability spectrum, whereas the impact of changes on asset values (EA) and
on vulnerability (V) tends to increase from high-probability to low-probability events.
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Figure 2.6: Risk curves, for damages aggregated to the catchment scale, for changes in six
components: atmosphere (A), catchment (C), river system (R), land use (EL), asset values
(EA) and wvulnerability (V) under baseline conditions. Baseline represents baseline
scenarios for each component, which is denoted by AICIRI1IELIEA1V1. All change
scenarios vary only in the respective component. For example, A0 means
AOCIRI1ELIEA1VI.
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2.4.2. Sensitivity of flood risk for selected upstream and downstream locations

To get a better understanding of changes in risk and of their spatial heterogeneity within
the catchment, two districts located upstream (Zwickau) and downstream (Anhalt-
Bitterfeld) in the catchment are analysed in more detail. Their risk curves for changes in
the six components, compared to the baseline, are given in Fig. 2.7. The change in the
atmospheric component (A) shows a behaviour in these two sub-basins similar to in the
whole catchment. Regarding the change in catchment hydrology (C), change in flood
storage capacity has a more dominant impact upstream, which is explained by the reservoir
locations (see Fig. 2.1). The (upstream) reach around Zwickau is directly downstream of a
large reservoir. However, doubling the capacity of this reservoir does not result in risk
changes. At the downstream region influenced by several river branches, aggregated impact
from various reservoirs upstream is observed. It seems that for very large events doubling
of reservoir capacity still exerts a small impact on the risk downstream. Change in river
system (R) strongly impacts risk both upstream and downstream. While the difference
between scenarios with low dike height (R0O) and baseline dike height (R1) is small
upstream, there is a significant difference in the risk curves between these scenarios at the
downstream location for high probability events. One potential reason for this is the
influence of topography on the number of exposed asset values. It is likely that under the
assumption of equal value per exposed asset unit, steep upstream and flat downstream
reaches are affected differently by the same flood magnitudes. In flat downstream areas
changes in dike heights result in great differences of damage values since more assets are
flooded. From the risk curves of different land use scenarios, it should be noted that the
increased urban area scenario (EL2) increases risk upstream for high-probability events and
downstream for low-probability events. The difference between ELO and EL2 scenarios is
high upstream for high-probability events because reservoirs do not affect flows below the
100-year discharge. When they start to operate, risk for different land use scenarios
becomes similar. However, the baseline land use scenario (EL1) and the EL2 scenario
behave almost identical upstream, which depends on the rules adopted for increasing the
urban area and changes in the flood extent for different return periods. It can also be
explained by the steep topography in which the additional residential buildings for the EL2
scenario might be located at steeper areas, and thus they are not exposed to floods.
Conversely, the difference between the risk curves of EL1 and EL2 is high for extreme
events at the downstream location. Risk curves of ELO and EL1 scenarios are almost
identical downstream. Similar to the identical behaviour of the ELL1 and EL2 scenarios
upstream, this can be explained by the specific set-up of the residential buildings added in
EL1, which are not exposed to floods. The last two components, change in asset values
(EA) and vulnerability (V), have a similar impact on the risk curves at both upstream and
downstream locations.

For the downstream district, abrupt (vertical) changes in the risk curves are observed
around 500-year or greater return period events. In fact, events around this abrupt change
have different peaks corresponding to different return periods but they show similar flood
volumes. Therefore, they result in similar inundation depths and similar damage values for
different probabilities.
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Figure 2.7: Risk curves for changes in six components: atmosphere (A), catchment (C),
river system (R), land use (EL), asset values (EA), and vulnerability (V), under baseline
conditions at districts Zwickau (upstream) and Anhalt-Bitterfeld (downstream).

2.4.3 Seasonal effects on changes in risk curves

To understand the temporal pattern of changes in risk, risk curves for summer and winter
seasons are illustrated in Fig. 2.8. Only the results for the atmosphere, catchment, and river
system components are shown because they directly affect the peak flows in different
seasons. It can be concluded that events in the summer season cause higher losses for the
same return periods. We can observe different sensitivities in the winter and summer
seasons. First, for change in atmosphere (A), differences among change scenarios are
observed throughout the whole probability range in the winter season. In summer, changes
are very small. This is related to the much larger variation in precipitation values in winter
compared to summer (Table 2.2). Second, change in catchment system (C) affects the risk
curve for events with return periods higher than 500 years in winter, while differences can
be observed already for the 100-year event in summer. This can be explained by the
reservoir operation rule and the magnitude of events in different seasons. For example, the
100-year event in summer and the 800-year event in winter are of a similar magnitude
corresponding to the 100-year flood of the annual time series, which is the threshold for
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reservoir operation. Finally, differences in risk curves across the whole probability range
are visible for change in river system (R) for both seasons.
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Figure 2.8: Risk curves for changes in three components, atmosphere (A), catchment
system (C), and river system (R), under the baseline conditions for winter (blue colours)
and summer (red colours).

2.4.4. Relative influences of different components on flood risk

For a better visualization of the combined or opposed effects of different risk components
on EAD, parallel-coordinate plots are used in Figure 2.9-2.11. These plots consist of seven
parallel axes whereas the first six axes represent the different risk components, i.e. from
left to right, changes in atmosphere (A), catchment system (C), river system (R), land use
(EL), assets (EA), and vulnerability (V). The seventh axis shows EAD obtained from
different combinations of risk components: the scenarios are indicated by 0, 1 and 2 on the
parallel coordinates, and each combination of components is represented by a different
colour. In this way, combinations of risk components that result in a certain EAD interval
are easily visualized.

In Fig. 2.9 a subset of change scenarios is highlighted that results in very high EAD
values above EUR 2.5 million. It is interesting to note that all these scenarios contain the
low-dike height scenario (R0). As soon as another river system scenario (R1 and R2) is
selected, EAD falls below EUR 2.5 million. Increasing the dike height seems to be the most
effective measure to keep the damage below a predefined threshold irrespective of changes
in other risk components.
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Figure 2.9. Parallel-coordinates plot showing combinations of flood risk components that
result in a certain EAD interval. From left to right, the six parallel coordinates represent
changes in the flood risk components (A, C, R, EL, EA and V), and parallel coordinate on
the right-hand side shows EAD (million EUR) obtained from different combinations of risk
component scenarios. Change scenarios are indicated by 0, 1 and 2 on the parallel
coordinates. Each highlighted scenario is represented by a different colour.

In order to understand the impact of climate change on EAD, the baseline scenario for all
components and six different combinations with a warmer climate scenario (A2) are
analyzed (Fig. 2.10). Particularly, we looked which other components can offset the effect
of the atmospheric component. Under the fixed A2 scenario, five scenario combinations
are highlighted, each time altering a different component from its baseline value. For
instance, in order to understand the relation between atmosphere and catchment changes,
we compared the baseline scenario and the scenario of a warmer climate and increased
storage capacity (A2C21), for which subscript 1 denotes that all other components are kept
in their baseline state. Scenario A2C2; causes an increase in EAD compared to the baseline
EAD value, meaning that climate change has a more dominant impact than catchment
changes. Consequently, one could argue that changes in catchment system cannot
compensate for the impact of climate change under the selected assumptions. In the case of
river system changes, the A2R2; scenario decreases EAD to the value of EUR 0.3 million,
compared to the baseline scenario of EUR 0.7 million. Hence, increased dikes can offset
the adverse effect of the warming climate on flood risk. Changes in land use, asset values
and vulnerability (A2EL0; A2EA01, A2V0) result in EAD below the baseline scenario,
thus compensating for the effect of climatic changes.

To compensate for the adverse effects of climatic changes, management options in all
other risk chain components can be adopted. They are, however, associated with different
implementation costs, a different degree of feasibility, or varying public acceptance. For
instance, increase in dike heights along extended river networks can be very costly.
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Construction of additional reservoirs might adversely affect the ecological state of the river
or be simply not feasible. We thus explored the set of scenarios, in which changes in the
catchment and river systems were kept constant. Asset values were kept at the baseline
level or were allowed to increase. By changing the land use and vulnerability values, the
EAD was retained in the range from EUR 0.5 million to 2 million (Fig. 2.11). Under these
assumptions, it is possible to restrain the effect of climate change and increasing asset
values on flood risk without implementing technical flood protection measures.
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Figure 2.10: Parallel-coordinates plot representing the baseline scenario (Scenario 1) for
all components and six combinations of flood risk components with warmer climate
scenario (A2): A21, A2C2;, A2R2y, A2EL0O1, A2EAO0:, and A2V0; where subscript ‘1’
shows that all other unwritten components are in their baseline condition.
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Figure 2.11: Parallel-coordinates plot representing EAD for change in land use (EL) and
vulnerability (V) under fixed baseline catchment and river system scenarios and increasing
atmosphere and asset values.
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2.5. Discussion

The main purpose of this study is to fill the research gap on changes in flood risk, for which
consideration of the entire risk chain is generally missing. Taking into account all risk
components allowed us to explore the effect of changes in the individual risk chain
components and their mutual interactions.

To the authors’ knowledge, this study is the most comprehensive analysis on the
influences of different drivers of flood risk, including hazard, exposure and vulnerability
drivers. The combination of sensitivity analysis with the DFRA approach overcomes a
number of limitations of event-based risk assessments. Although our change scenarios have
subjective assumptions, we used the best available data and options to create these
scenarios. The expected annual damage reaches a maximum of EUR 4 million in our case,
and for extreme events we obtain maximum absolute losses of around EUR 100 million.
For extreme events, changes in all risk components, except in the atmospheric component,
have an impact on the damage. The impact of climate change is mostly visible for high-
probability flood events. This was explained by seasonal variations in precipitation change
between scenarios in combination with the specific flood regime of the Mulde catchment.

The presented results are subject to limitations related to the flood risk chain model and
the subjective assumptions for the reasonable change scenarios. Each model along the risk
chain has limitations and uncertainties. For instance, water level calculation in the 1-D
hydrodynamic model strongly depends on river geometry estimated by the simplified river
cross sections. Neglected dike breaches (only overflow is considered) are another limitation
in the representation of hydraulic processes. Further, flood damage estimation is sensitive
to inundated areas and exposed assets, both based on coarse DEMs. High uncertainties also
pertain to flood damage modelling; they can have a larger contribution to uncertainties in
risk estimates than uncertainties in hydrological and hydraulic components (Apel et al.,
2009; de Moel and Aerts, 2011; Vorogushyn et al., 2012). More detailed discussion on
limitations of the flood risk model chain can be found in Falter et al. (2016).

The impact on flood risk highly depends on the defined change scenarios of the risk
components. In the sensitivity analysis, there is some subjectiveness in their selection. The
assumed change amounts for each component and the methods to create plausible change
scenarios reflect different subjective choices. For instance, the climate change scenarios
were generated based on observed past changes. Due to anthropogenic climate change, the
effects on temperature and precipitation will likely be different. However, in order to
explore the effect of reasonable changes in climate on flood risk, we consider this
assumption acceptable, as this study does not attempt to evaluate flood risk under various
climate projections available to date. In the catchment change scenarios, we used large
changes such as doubling the reservoir storage capacity. Yet, we observed comparatively
small effects for the particular case study area given the implemented operation rules.
Scenarios for river system were determined based on possible changes in dike heights
adopted from the literature. Conditional on our assumptions, change in dike height is able
to compensate for the risk-increasing impact of other components. In the land use change
scenarios, the selection of the time period as well as the spatial distribution of changes in
individual pixels is obviously subjective. The latter can potentially be overcome by
considering multiple scenarios of spatial distribution of changes in pixel state in relation to
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distance to the river and thus propensity for inundation. In the vulnerability scenarios, we
only focused on the impact of private precautionary measures. Other aspects, such as
awareness and preparedness, can also alter vulnerability. However, between the disastrous
floods in 2002 and 2013 in Germany, private households and companies substantially
adopted precautionary measures (Kreibich et al., 2017). Therefore, our scenarios are
reasonable to represent changes in vulnerability.

These subjective assumptions do not influence the main conclusion of our study, namely
the need to analyse changes in flood risk by considering the whole range of drivers. This
effort is still to be undertaken to fully understand the risk and to devise appropriate
measures for risk reduction going beyond technical flood protection and focussing only on
adverse consequences of climatic changes. Using the proposed blue print, the effect of
different measures under more elaborated and specific assumptions can be explored at other
sites, possibly accompanied by cost-benefit analyses.

2.6. Conclusions

In this study, a comprehensive sensitivity analysis was performed considering six different
components related to hazard, exposure and vulnerability. The sensitivity analysis was
combined with the “derived flood risk analysis based on continuous simulation (DFRA)”
proposed by Falter et al. (2015). This framework was applied to the mesoscale Mulde
catchment in Germany in order to explore the effects of plausible changes in flood risk
chain components on risk estimates and to understand interactions among different
components.

Our study finds that the largest contribution to flood risk changes comes from the change
in river system considering heightening of river dikes. In this case, EAD (expected annual
damage), aggregated at the catchment scale, is at most EUR 1.1 million. Interestingly,
climate change impacts would be offset by these river system changes. However, dike
rising might not be a feasible option because it is costly, requires space, and has long
implementation times. Alternatively, changes in land use and vulnerability could be
considered to reduce economic damage and were shown to be capable of compensating for
adverse impacts of climatic changes. In terms of feasibility, vulnerability reduction is more
realistic; decrease in settlement areas is a long-term approach and rarely implemented even
in highly flood-prone areas, as additional factors other than the actual flood risk play a role
in the decision to resettle an area. The effect of climatic changes on flood risk is modest in
our setting. This is a consequence of climatic changes being out of phase with flood
generation: large floods occur in summer when precipitation change is small. The majority
of floods occur in winter where climatic change is substantial; however, these floods are
typically small and do not cause large damage. Change in catchment system has a visible
impact in the upstream reaches because most of the reservoirs are located there.
Implementing storage capacity has a surprisingly modest effect on EAD. This results from
the operational setting, as only floods higher than the 100-year event are influenced by the
reservoirs, and the fact that EAD is typically dominated by the contribution of smaller
floods.

Although the results are specific to the case study and depend to some extent on our
choices in the implementation of this framework, some general conclusions can be derived.
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The risk, quantified as EAD, varied by a factor of 40, from EUR 0.1 million to 4 million,
across the range of change scenarios. This is a very high variation given the fact that our
change scenarios represent possible changes that can occur within a few decades. This
result points to the significant volatility that can be associated with flood risk. It underscores
the necessity to monitor changes in risk regularly.

Our literature analysis revealed that past studies on changes in flood risk have almost
exclusively focused on effects of climate change and land use change. Our analysis
demonstrates that other components that have been neglected can be even more important.
Hence, the study calls for more comprehensive analyses of changes in flood risk.

The effects of external drivers, i.e. drivers which cannot be controlled within the
catchment (in our case climate change and increase in asset values), can be offset by internal
factors. This points to the options of local stakeholders to counteract flood risk growth due
to climate change and economic growth by flood risk management.

Almost all past studies on changes in flood risk have used EAD as a risk indicator. Since
EAD is typically dominated by the contribution of small and medium floods, management
options which reduce the damage for large floods are penalized by this limitation to EAD.
A more comprehensive investigation, e.g. by considering effects across the risk curve,
seems necessary.

Data availability

The data used in this paper are not publicly accessible; however, the authors can be
contacted by email (duhametin@gmail.com, dung@gfz-potsdam.de, kai.schroeter@gfz-
potsdam.de) for help in acquiring such data.
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Chapter 3

The role of spatial dependence for large-scale flood risk
estimation

Authors: Ayse Duha Metin, Nguyen Viet Dung, Kai Schréter, Sergiy Vorogushyn,
Bjorn Guse, Heidi Kreibich, Bruno Merz

Abstract

Flood risk assessments are typically based on scenarios which assume homogeneous return
periods of flood peaks throughout the catchment. This assumption is unrealistic for real
flood events and may bias risk estimates for specific return periods. We investigate how
three assumptions about the spatial dependence affect risk estimates: (i) spatially
homogeneous scenarios (complete dependence), (ii) spatially heterogeneous scenarios
(modelled dependence) and (iii) spatially heterogeneous but uncorrelated scenarios
(complete independence). To this end, the model chain RFM (regional flood model) is
applied to the Elbe catchment in Germany, accounting for the spatio-temporal dynamics of
all flood generation processes, from the rainfall through catchment and river system
processes to damage mechanisms. Different assumptions about the spatial dependence do
not influence the expected annual damage (EAD); however, they bias the risk curve, i.e.
the cumulative distribution function of damage. The widespread assumption of complete
dependence strongly overestimates flood damage of the order of 100% for return periods
larger than approximately 200 years. On the other hand, for small and medium floods with
return periods smaller than approximately 50 years, damage is underestimated. The
overestimation aggravates when risk is estimated for larger areas. This study demonstrates
the importance of representing the spatial dependence of flood peaks and damage for risk
assessments.

Published as: Metin, A. D., Nguyen, V.D., Schroter, K., Vorogushyn, S., Guse, B.,
Kreibich, H., and Merz, B.: The role of spatial dependence for large-scale flood risk
estimation, Nat. Hazards Earth Syst. Sci., 20, 967-979, https://doi.org/10.5194/nhess-20-
967-2020, 2020.
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3.1. Introduction

Floods frequently occur as destructive events throughout the world. In the period 1995-
2015, there were around 3100 flood events which affected 2.3 billion people worldwide
with overall damages of USD 662 billion (CRED and UNISDR, 2015). It is commonly
stated that flood risk has increased rapidly in the past and will continue to increase in future
due to the combined effects of climate change and socio-economic development (e.g. Rojas
et al., 2013). In order to mitigate the destructive impacts of floods, sound flood risk
assessment and management are essential.

During the last decades, flood risk management has gained considerable attention and
has shifted from a hazard-focused approach to the broader risk-based perspective covering
both physical and societal processes (e.g. Merz et al., 2010b, 2014a; Bubeck et al., 2016;
Thieken et al., 2016). For instance, the EU Flood Directive (EC, 2007) was adopted in
October 2007 to launch a flood risk assessment and management framework in Europe
considering all aspects of flood risk, including the impacts on society.

Conceptually, flood risk is defined as the probability of the adverse consequences within
a specified time period. It depends on three components: hazard, exposure and vulnerability
(IPCC, 2012; UNISDR, 2013). Following this definition, flood risk assessment starts with
quantifying the hazard. By combining hazard and socio-economic information, such as land
use and asset values, exposure is assessed. Vulnerability is included by adding information
on how flood-affected objects would be damaged. Overall, flood risk assessment attempts
to estimate the characteristics, e.g. inundation depth and flood extent, of a range of potential
flood events, the exceedance probabilities of these events and their consequences (e.g.
Winsemius et al., 2013; de Moel et al., 2015). The results of flood risk assessments are
often presented in maps, which exist in many different forms depending on their purpose
(Merz et al., 2007; de Moel et al., 2009). Flood hazard maps contain flood characteristics,
e.g. inundation extent, water depth, for given return periods. Flood risk maps additionally
consider the adverse consequences, e.g. economic damage and number of affected people.

Flood mapping is typically based on a number of spatially uniform (or homogeneous)
scenarios with given return periods (e.g. Rhine Atlas; ICPR, 2015). The scenario with T-
year return period is composed of all flooded areas within the study area, whereas each
location shows the T-year flood. Hence, the T-year flood map is produced by piecing
together or mosaicking estimates of the local T-year flood based on extreme value statistics
at individual gauges, assuming complete dependence between different locations. Based on
this assumption, Ward et al. (2013) and Winsemius et al. (2013, 2015) estimated flood
hazard and risk at the global scale, assuming homogeneous return period scenarios within
regions. At the European scale, flood hazard and risk were assessed based on spatially
homogeneous scenarios by Feyen et al. (2012), Rojas et al. (2013), Alfieri et al. (2014) and
Bubeck et al. (2019). At the national scale, Dumas et al. (2013) investigated future flood
risk in France, and Hall et al. (2005) assessed current and future flood risk in England and
Wales by assuming uniform return periods for all flooded areas. Similarly, te Linde et al.
(2011) estimated current and future flood risk along the river Rhine. Real flood events are,
however, spatially heterogeneous as the flood generation depends on a range of processes
in the atmosphere, catchment and river network, which vary strongly in space (e.g. Nied et
al., 2017; Vorogushyn et al., 2018). The analysis of historical floods shows that return
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periods of peak discharges are typically very heterogeneous for a given event (Lammersen
et al., 2002; Uhlemann et al., 2010; Merz et al., 2014b; Schroter et al., 2015).

Some studies consider the spatial variability of return periods of floods. One approach
applies multi-variate distribution functions to represent the dependence between flood
peaks at multiple sites (e.g. Keef et al., 2009; Lamb et al., 2010; Ghizzoni et al., 2012;
Thieken et al., 2015; Quinn et al., 2019). Based on a stochastic dependence model, spatially
heterogeneous scenarios are generated and used for the risk assessment. This approach
provides, however, only flood peaks, whereas the transformation of peaks into inundation
areas requires event hydrographs. Hence, synthetic hydrographs are associated with the
peaks, which is an additional source of uncertainties and errors (Grimaldi et al., 2013).
These hydrographs are spatially inconsistent, i.e. not mass conservative, (though peaks are
spatially consistent) and can be used for hydraulic calculations only for a limited river
stretch. Another approach, proposed by Alfieri et al. (2015a, 2016a, 2017), combines
inundation maps and resulting risk for heterogeneous return periods piecewise by
interpolating between previously derived homogeneous return period maps. The spatially
variable discharges are derived from a hydrological model driven by observations or
climate models. This approach considers spatial dependence but still suffers from
inconsistencies of inundation maps mosaicked piecewise. Further, an event-based
simulation approach, where stochastic precipitation events are generated as input to a
hydrological model, has been used (e.g. Rodda, 2001; Jankowfsky et al., 2016). The
hydrological model simulates spatially dependent discharge hydrographs, which are then
used by the hydrodynamic model to map inundated areas. A disadvantage of this approach
is that the return period of discharge is assumed to be equal to the return period of
precipitation, an assumption that does not necessarily hold. An alternative approach is a
continuous hydrological-hydrodynamic simulation driven by long-term synthetic climate
time series (e.g. Falter et al., 2015; Grimaldi et al., 2013). This approach is computationally
expensive; however, it has a number of advantages, as discussed by Falter et al. (2015).
Within the context of this paper, its most relevant advantage is that spatially consistent
flood events can be modelled by considering the spatial dependence of the precipitation
and of the flood generation processes in the catchment and river network.

According to our literature review, only a few studies consider spatial dependence when
assessing flood risk. The large majority assume spatially homogeneous scenarios. This
assumption is also the basis for flood hazard mapping, for instance, in Europe (de Moel et
al., 2009), in Iowa in the US (Gilles et al., 2012), in Bangladesh (Tingsanchali and Karim,
2005) and in Honduras (Mastin, 2002). The assumption of complete dependence is
appropriate for local risk estimates, but it may bias the risk estimates for larger areas. The
purpose of our paper is to investigate this bias. To understand the effect of spatial
dependency on risk estimates, we compare three assumptions of spatial dependence: (i)
spatially dependent flood events with homogeneous return periods (complete dependence),
(i1) spatially dependent events with heterogeneous return periods (modelled dependence),
and (ii1) spatially independent events with heterogeneous, i.e. randomly selected, return
periods (complete independence). We explore the variation in the dependence effect with
spatial scale and flood magnitude with respect to resulting flood damage.

To the best of our knowledge, our study is the first in-depth analysis of this bias at the
scale of a large river basin. Lamb et al. (2010) and Wyncoll and Gouldby (2015) compared
risk estimates for these three assumptions for smaller regions in the UK only (Leeds, York:
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around 12 000 km?; northeast England: around 15 000 km? in the former; Eden catchment:
approximately 2400 km? in the latter); the effect of spatial dependence over large regions
has not been studied. Further, they statistically generated spatially dependent peak flows
and did not consider the spatial dependence of the flood generation processes, as it is
possible with the continuous simulation approach of Falter et al. (2015). Jongman et al.
(2014) assessed the effect of spatial dependence of flood peaks on flood damage in Europe
but considered only modelled dependence versus full independence. They did not analyse
the widespread assumption of homogeneous return periods.

To realistically represent the spatial dependence of the different flood processes, we use
the derived flood risk analysis (DFRA) based on continuous spatially consistent modelling
of the entire flood process chain (Falter et al., 2015). The model chain includes all processes
from the precipitation through the catchment and river system to the damage mechanisms.
The effect of spatial dependence is investigated for the Elbe catchment in Germany.

This paper is organized into six sections. Section 3.2 introduces the study area. Section
3.3 describes the model chain and how the risk estimates are obtained for the three
dependence assumptions. Section 3.4 illustrates the risk estimation results under three
spatial dependence assumptions. Further, we discuss these results in Section 3.5 and draw
conclusions in Section 3.6.

3.2. Study Area: the Elbe catchment

The river Elbe is located in central Europe, with a length of 1094 km and total catchment
area of 148 268 km?. It can be subdivided into three parts: the upper Elbe, the middle Elbe
and the lower Elbe. The upper Elbe mainly belongs to the Czech Republic and is dominated
by mountains. In Germany, the upper Elbe reaches the northern German lowlands at Castle
Hirschstein, followed by the middle Elbe reaching the weir Geesthacht. The lower Elbe
starts downstream of Geesthacht and forms the Elbe estuary. Approximately two-thirds of
the catchment belong to Germany, with the main tributaries Black Elster, Mulde, Saale and
Havel (Fig. 3.1). In the present study, the analyses are presented for 29 sub-basins located
within Germany. The complete Elbe catchment receives 628 mm precipitation per year,
and the characteristic runoff regime is the rain-snow type (Nied et al., 2017).

Floods occur mainly in winter and spring, often as snowmelt or rain-on-snow floods.
However, the largest floods tend to occur in summer. Heavy precipitation events associated
with Vb cyclones have caused disastrous floods, such as the events in August 2002 and
June 2013. The 2002 (EUR 8.9 billion damage) and 2013 flood events (EUR 5.2 billion)
were the most severe flood events in the Elbe River basin in Germany for the last few
decades (IKSE, 2015). Besides this, the river basin was affected by smaller floods in 2006,
2010 and 2011.
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Figure 3.1: Study area in the Elbe catchment, including the main tributaries and sub-basins.
The inset shows the location of the catchment within Germany. Data sources of figure:
BKG (2012).
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3.3. Methods

3.3.1. Regional flood model (RFM) for Germany

The regional flood model (RFM) has been developed for large-scale flood risk assessments,
i.e. for areas of up to several 100 000 km?. RFM is composed of a weather generator,
rainfall-runoff model, 1-D channel routing model, 2-D hinterland inundation model and
flood damage estimation model. The output from one model is used as input for the next
model (Fig. 3.2). All processes along the entire flood risk chain are continuously simulated
in a distributed manner. Consequently, spatially coherent precipitation patterns and flood
preconditions of the catchment, including their influence on discharge peaks, water levels,
inundation areas and damages, are considered.

In this study, RFM is run for time series of 10 000 years (100 realization of 100 years)
on a daily time step. Synthetic meteorological time series at multiple sites are provided by
a multi-variate weather generator. Further, continuous flood hydrographs at the sub-basin
scale are calculated by a hydrological model, where antecedent catchment conditions are
implicitly considered. The flow hydrographs are used as a boundary condition for the
calculation of water levels in the river channels and inundation depths with a coupled 1D-
2D hydrodynamic model considering levee overtopping. Finally, damage time series using
a multi-variate flood loss estimation model for residential buildings are simulated. In this
way, spatially consistent time series of flood damages at the SWIM sub-basin scale (196
sub-basins) are derived. The final risk results are represented at the grouped sub-basin scale
(29 sub-basins). The model components are briefly described in the following. Details
about RFM and calibration and validation results of the model components can be found in
Falter et al. (2015, 2016) and Metin et al. (2018).

3.3.1.1. Regional Weather Generator RWG

The regional weather generator (RWG), proposed by Hundecha et al. (2009) and further
developed by Hundecha and Merz (2012), generates synthetic weather at the regional scale.
This multi-site, multi-variate auto-regressive model generates daily time series of
meteorological variables, taking into account the spatial correlation structure. First, it
generates daily precipitation series using the mixed gamma-Pareto distribution fitted to the
observed data. Further, the model generates daily maximum, minimum, and mean
temperature and solar radiation using Gaussian distributions conditioned on precipitation.
RWG was set up for the area covering the entire Elbe, Rhine, Danube and Ems rivers using
the observed climate data at 528 climate stations between the year 1951 and 2003 and was
shown to capture daily precipitation extremes and seasonal precipitation patterns well
(Hundecha et al., 2009).



The role of spatial dependence for large-scale flood risk estimation 47

Regional Flood Model (RFM)
1
1 BASIC INPUT COMPONENT SPATIALITY

Regional Weather Generator (RWG)

Hydro-meteorological data - o _ -
or fraining the model: mulfi-variate, multi-site, mixed distribution, @l station-based
precipitation, temperature, et auto-correlation, spatial correlation,

1
1
1
1
1
1
1
daily resolution, regional scale !

long-term spatial
consistent meteorological series

long-term spatial
consistent river discharge series

River network routing:
1D channel network model
Routing flow along the river network
in case of dike overtoppin?.
compuftation of dike overflow with
weir equation

interland inundation level

Channel's network, cross
section profile and roughness
disfribution

1
1
1
1
|
1
1
1
1
|
1
1
1
1
1
1
1
: 1
river reaches [
1

dike overtopping discharge

Hinterland Inundation:
2D Raster-based Inertial model

1
1
1
|
1
1
1
1
raster-based :

DEM and roughness distribution

Simulation of hinterland inundation
and calculation of inundation depth

Regional Inundation Meodel (RIM)

Inundation depth, duration

Flood Loss Estimation Model (FLEMOps-+r)

1
1
1
1
1
1
1
fAsset values, land use data, 1
[JPuilding characteristics, Calculation of direct damage to residential f§ "oster-based :
1
1
1
il

[jrrecaution and contaminationd |5 jidings on basic of water depth,
1 refurn period, building type and quality

Flood Risk Assessment Economic damage

i)Complete dependence iilModelled dependence iii)Complete independence

Return periods of damages Damages (at the sub-basin Damages at the sub-basin
(at the sub-basin level) level) are aggregated level are shuffled for the
are derived. T-year flood across the considered individual flood events.
damage for the considered spatial unit for individual Shuffled damages are

spatial unif is calculated by flood events. Then, return aggregated across the
aggregating the T-year periods of aggregated considered spatial unit and
damages af the sub-basin damages are derived for then return periods of
level. the considered spatial unif. agg. damages are derived.

Figure 3.2: Workflow for the derived flood risk assessment (DFRA) with the Regional
Flood Model (RFM).

3.3.1.2. Rainfall-Runoff Model SWIM

Discharge time series on a daily basis are derived with the semi-distributed hydrological
model SWIM (Krysanova et al., 1998). The model has a three-level structure of spatial
disaggregation: basins, sub-basins and hydrotopes. A hydrotope is a set of disengaged
elementary units within the sub-basins, which are homogeneous in terms of land use and
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soil type. The hydrological processes, such as evapotranspiration, infiltration and snow
melt, and different types of runoff are computed at the hydrotope level. The outputs from
hydrotopes are integrated (area-weighted average) for each sub-basin. An average sub-
basin area is in a range of 10 to 100 km?. The runoff is routed by the Muskingum routing
method between individual sub-basins and is aggregated at the basin scale.

The Elbe catchment was discretized into 2268 sub-basins in the watershed delineation
of the SWIM model (SWIM sub-basins). A detailed soil map (BUK 1000 N2.3, generated
by the Bundesanstalt fiir Geowissenschaften und Rohstoffe, Hannover) and land use data
(the CORINE land cover map) were used. The model was calibrated using observed daily
climate data for the period 1981-1989. It was validated with observed discharge data on 20
gauging stations in the Elbe catchment for 1951-2003 (Falter et al., 2015; 2016; Metin et
al., 2018). While discharge is simulated well in most parts of the Elbe catchment, peak
flows are over- and underestimated in the range of + 5% throughout most of the catchment
(Falter et al., 2016). Discharge is mainly underestimated in Mulde and Black Elster and is
overestimated in Saale. The model shows a poor performance for a few small SWIM sub-
basins in the upstream part of the Saale catchment, likely due to not capturing reservoir
effects. In addition, the poor performance at these mountainous sub-basins can occur due
to the consideration of flood processes on a daily basis. In fact, the travel time of flood
peaks can be smaller than 1 d at these sub-basins. Therefore, these areas are excluded in
the present study (Fig. 3.1).

3.3.1.3. Regional Inundation Model RIM

The RIM simulates the water level along the river network and hinterland inundation
depths. RIM consists of two-way coupled models: a 1-D hydrodynamic channel-routing
model based on the diffusive wave equation and a raster-based 2-D hydrodynamic
inundation model based on the inertia formulation (Metin et al., 2018). The overtopping
flow is calculated by the 1-D model and is used as boundary condition for the 2-D model,
which is back-coupled to the 1-D model. The overtopping is considered only at the main
river network and higher-order tributaries that have a drainage area of 600 km? or more.
This river network is explicitly modelled with the 1-D diffusive wave hydrodynamic model.
The flood routing in smaller tributaries with drainage area below the above-mentioned
threshold is done by the Muskingum routing within the SWIM model. The river geometry
is described by simplified cross sections which include the overbank river geometry and
dike crest elevation derived from the 10 m DEM provided by the Federal Agency for
Cartography and Geodesy in Germany (BKG). Whenever the water level overtops the dike
crest elevation, the overtopping flow is computed using the broad-crested weir equation.

The river profiles were manually extracted perpendicular to the flow direction every 500
m. Due to the low resolution of the 10 m DEM in relation to the dike geometry, the derived
dike heights tend to be lower than in reality. Hence, a minimum dike height of 1.8 m was
used for the river Elbe. The constant Manning’s roughness of 0.03 m™*s was assumed in
the river network. For the 2-D raster-based model, the 10 m DEM was resampled to 100 m
computational grid found to represent the inundation characteristics with suitable
computation time well (Falter et al., 2013).

The 1-D hydrodynamic channel-routing model was validated with observed data for
1951-2003 at eight gauging stations in the Elbe catchment (Falter et al., 2015; 2016). The
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performance of the 1-D model is acceptable even though there is a tendency to
underestimate observed peak flows exceeding the bankfull depth. The simulated inundation
areas were compared to the extreme flood in August 2002, the only event for which
inundation depth and extent are available. Although the model tends to underestimate
inundation extents, since it neglects dike breaches, it provides plausible inundation patterns.

3.3.1.4. Flood Loss Estimation Model FLEMOps-+r

The direct economic damage to residential buildings is estimated by the Flood Loss
Estimation Model for the private sector (FLEMOps+r). The model considers five
inundation depth classes, two building quality classes (high quality or medium-low
quality), three building types (single-family, semi-detached and detached, or multi-family
houses) and three return period classes to estimate damage (Elmer et al., 2012). The model
provides the damage ratio which is multiplied with the asset values of the inundated
residential buildings to obtain the monetary damage.

Besides inundation depths and return periods, the model requires spatially detailed
information on building qualities, building types and asset values. The mean building
quality and cluster of building type composition was estimated on the municipal level on
basis of INFAS Geodaten GmbH (2009). The asset values were determined considering the
standard construction costs (BMVBW, 2005) and were spatially disaggregated using the
digital basic landscape model ATKIS Basis DLM (BKG GEODATENZENTRUM, 2009).
Municipal asset data were disaggregated by means of a dasymetric mapping approach
(Wiinsch et al.,, 2009). The damage was estimated according to output from the
hydrodynamic model on a raster level by calculating the damage ratio according to the
inundation depth and return period in the corresponding cell and the underlying information
for building types and qualities per municipality (Thieken et al., 2008).

The model was validated on the micro- and meso-scale on basis of empirical damage
data of the August 2002 flood in the state of Saxony in Germany (Elmer et al., 2010; Falter
et al., 2015).

3.3.2. Flood Risk Assessment for Different Dependence Assumptions

We compute flood risk for three spatial dependence assumptions (Fig. 3.3): (1) complete
dependence or homogeneous return periods across the river basin, (2) modelled dependence
or heterogeneous return periods, and (3) complete independence, where flood peaks and
associated return periods are randomly sampled. In scenarios (1) and (3) the discharges,
inundation areas and damages are spatially inconsistent; i.e. they are mosaicked from the
continuous simulations by selecting events and damages for corresponding return periods.
The spatial variation in damages within the catchment depends on the spatio-temporal
patterns of meteorological, hydrological and hydraulic processes. For instance, the flood
damage downstream of the confluence of two tributaries depends on the superposition of
the flood waves from these tributaries. The damage results of the modelled dependence
should lie between the results of the two other assumptions, as they span the whole range
from complete dependence to complete independence. Further, the modelled dependence
results should be similar to those of the complete dependence for small areas and should
move towards complete independence as the spatial scale becomes large.



50 The role of spatial dependence for large-scale flood risk estimation

(a) (b) (©) OElbe Subbasins

Figure 3.3: Conceptual representation of the three assumptions on spatial dependence: (a)
complete dependence; (b) modelled dependence; and (c) complete independence. Return
periods of damage are color-coded at the sub-basin level.

We characterize flood risk by the probability of damage (risk curve) and by the expected
annual damage (EAD) computed as the integral of the risk curve. Damage values are
calculated at the 100 m grid resolution for individual inundation events of the 10 000-year
continuous flood simulation with RFM. An event requires that flood defences are
overtopped at least at one location and that it affects residential assets, i.e. a non-zero
damage occurs. If anywhere in the entire catchment overtopping occurs after at least 10 d
of non-overtopping, this is defined as the start of a new event. Empirical return periods for
damages aggregated for specific spatial units (e.g. sub-catchments) are determined using
Weibull plotting positions. Damage at the level of the sub-basins (SWIM sub-basins) is
then aggregated to larger spatial units (e.g. aggregation of sub-basins or the entire
catchment) for individual flood events. These pairs, i.e. damage and associated return
period, are used to construct risk curves and to calculate the EAD (Falter et al., 2015).

Under the assumption of complete dependence, all sub-basins within the considered
spatial unit, e.g. the entire river basin, are assumed to experience a T-year flood damage at
the same time. Hence, the T-year flood damage is calculated by aggregating the T-year
damage values of all sub-basins estimated from individual (not necessarily concurrent)
events. In the following, we refer to a T-year flood event as an event resulting in the T-year
damage. This definition of a T-year flood event is different when compared to the
traditional way based on the peak return period.

Under the modelled dependence assumption, damages are aggregated for individual
flood events across the considered spatial unit, and return periods of aggregated damages
are derived directly for this spatial unit. This approach aims to represent the true spatial and
temporal dependencies of real-world flood situations. For example, for a T-year flood loss
over the entire catchment, the return periods of damages in individual sub-basins are
expected to be different from sub-basin to sub-basin. Furthermore, these return periods are
expected to show a certain spatial pattern dictated by the spatial correlation of the flood
generation processes.
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Under the assumption of complete independence, the spatial correlations between
damages of different sub-basins are destroyed. Damages of individual flood events are
shuffled at the SWIM sub-basin level and aggregated for the considered spatial units.
Return periods of these aggregated damages are determined for the spatial unit considered.
As the aggregated damage and the risk curve depend on the specific realization of the
shuffling, this procedure is repeated 1000 times. From this sample, the median is used to
construct the risk curve, and additionally the 95 % confidence range is computed.

The risk curves and EAD are derived at the grouped sub-basin level (29 sub-basins in
total, see Fig.3.1), as a higher resolution would lead to many instances where the number
of damaging floods would be too low to construct meaningful empirical risk curves.

3.4. Results

3.4.1. Damage Estimations under three Dependence Assumptions for the Entire
Catchment

The aggregated economic damages to residential buildings for the Elbe catchment and their
corresponding return periods are illustrated in Fig. 3.4 for the three dependence
assumptions. While the economic damage of the 1000-year event is estimated at around
EUR 620 million under the assumption of complete dependence, it is around EUR 360
million for the modelled dependence scenario (70 % overestimation under the assumption
of complete dependence). A strong overestimation is also given for smaller return periods
down to approximately 150 years. Moreover, the assumption of complete independence
may underestimate damage by 50 %. The extreme assumption of complete independence
represents the lower limit for large return periods. For smaller return periods, however, we
see the opposite effect. The damage is underestimated under the assumption of complete
dependence for events with return periods smaller than 87 years.

The point where the risk curves of modelled dependence and complete dependence
intersect is called the “intersection point” in the following. For return periods up to this
intersection point, the complete dependence assumption underestimates the damage
compared to modelled dependence; all sub-basins show either no or small damages, as the
flood peaks are mostly below the flood defences. However, for the assumption of modelled
dependence, the return periods vary, and a small to medium return period event at the scale
of the entire Elbe catchment may be composed of many sub-basins without any damage
but a few sub-basins with large damage because in these sub-basins the flood defences are
overtopped. A similar explanation holds for the situation beyond the intersection point: the
complete dependence assumption leads to events where all sub-basins tend to show large
damages, as flood defences are overtopped everywhere. In contrast, under the modelled
dependence assumption many sub-basins show large damages as defences are overtopped;
however, there are also sub-basins without damage as a consequence of spatial variability.
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Figure 3.4: Risk curves for the Elbe catchment for three dependence assumptions
(complete dependence, complete independence and modelled dependence). The left panel
zooms in the risk curves up to the 100-year return period of damage.

The underestimation (overestimation) for small (large) return periods under the
complete dependence assumption is a consequence of the strong link between the damages
of the different sub-basins. For better understanding, Fig. 3.5 illustrates the spatial
distribution of damages at the sub-basin level for the three dependence assumptions that
lead to the 20- and 200-year event at the catchment scale. For the 20-year event, under the
complete dependence assumption, all sub-basins show either no damage or small to
medium damage, leading to comparatively small damage at the scale of the entire basin
(Fig. 3.5a). The 20-year event for the modelled dependence assumption consists mainly of
sub-basins without any damage, but due to dike overtopping single sub-basins may
experience large damage. These sub-basins are clustered, in this case in the northwest of
the Elbe catchment, illustrating the effect of spatial dependence. In contrast, the damages
are not clustered under the complete dependence and independence assumptions. For the
200-year event (Fig. 3.5b), almost all sub-basins indicate large damage under the complete
dependence assumptions, resulting in the overestimation under complete dependence
assumption for the entire catchment.
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Figure 3.5: Distribution of damages at the sub-basin level for (a) the 20-year event and (b)
200-year event for three dependence assumptions.

3.4.2. Variation in damage estimations with spatial scale under three dependence
assumptions

To understand how the risk estimates for the three dependence assumptions vary with
spatial scale, the risk curves for aggregations of sub-basins from upstream to the entire
catchment are given in Fig. 3.6. As a general rule, smaller regions should be characterized
by stronger spatial dependence of damage. This should lead to (1) an increasing difference
between the risk curves of the three dependence assumptions with increasing scale and (2)
a shift of the modelled dependence risk curve from the complete dependence towards
independence with increasing scale. Both effects are seen in Fig. 3.6.

The intersection point shifts from return periods of a few hundred years for smaller
aggregation areas, i.e. sub-basins 1 to 8 (up to 11 800 km?; upper panels in Fig. 3.6), to
approximately 90 years for the larger areas. The intersection point is mainly affected by the
threshold where damage occurs, i.e. by the flood protection or elevated banks. This strong
shift in the intersection point is, however, not a consequence of very different flood defence
standards in the up- and downstream parts of the Elbe catchment but rather results from
data and modelling errors. In particular, the small-scale variability in precipitation extremes
appeared to be insufficiently well captured by the weather generator in some sub-basins
due to varying station density used for parameterization. Sub-basins 1 to 8 (Mulde and
Black Elster rivers) experience very small damage even for high return periods, while the
opposite is true for sub-basins 9 to 14 (Saale River). This is explained by the
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underestimation of damage for the Mulde and Black Elster rivers and overestimation for
the Saale River.
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Figure 3.6: Sub-basins in the Elbe catchment (left) and risk curves of aggregations of sub-
basins (right) under complete dependence, modelled dependence and independence. The
aggregated sub-basins are ordered along increasing scale and are denoted by the green
colour within each risk curve and the colon (:) between start and end sub-basin numbers.

3.4.3. Errors in expected annual damage (EAD) and in 200-year damage under
‘false’ assumptions of spatial dependence

Besides the risk curve, the EAD and the damage for a T-year return period are important
risk measures. We assess here the 200-year return period damage, which is particularly
important for the insurance sector. Their percentage error under the complete dependence
and independence assumptions, compared to the modelled dependence assumption, is given
in Fig. 3.7 for the entire Elbe catchment. The false assumptions about spatial dependence
do not impact the EAD estimation. The EAD is the sum of 29 random variables, i.e. the
damages for the 29 sub-basins. As the mean value of a sum of random variables is not
influenced by the correlation between the variables, the spatial correlation can be neglected
when one is only interested in EAD. However, correlation influences the variance of a sum
of random variables. Hence, for other values, such as the 200-year event, it is crucial to
include the ‘true’ spatial dependence pattern. In our case, the damage for the 200-year event

is overestimated (underestimated) under complete dependence (independence) by around
40 %.
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Figure 3.7: Percentage error in expected annual damage (EAD) (left) and in economic
damage for the 200-year event (right) under the assumptions of complete dependence and
complete independence for the entire Elbe catchment.

3.5. Discussion

This study investigates the effects of spatial dependence of flood generation processes on
risk estimates. It compares the “true” dependence scenario to the two endpoints, i.e.
complete dependence and complete independence. It is shown that the assumption of
complete spatial dependence, which is often used in risk assessments, leads to under- and
over-estimation of flood risk for small and large return periods, respectively.

Although several papers have suspected that the complete dependence assumption may
bias risk estimates, this bias has been investigated by the two studies of Lamb et al. (2010)
and Wyncoll and Gouldby (2015) only. As these studies are limited to small and medium
study areas up to 15 000 km?, our study is the first investigation for a large-scale river basin.
In addition, our study uses a more elaborate setup, as the spatial dependence of all processes
along the flood risk chain, from the precipitation to the damage, is included. The larger
study area allows us to investigate how the differences in risk estimates change with
increasing scale. The modelled dependence estimate tends to be similar to the complete
dependence scenario for smaller areas and to shift towards the independence scenario when
the scale is increased. However, this shift is not very prominent. We assume that the variety
of processes that are involved in the generation of damage blurs a clear signal when going
from smaller to larger scales. The spatio-temporal dynamics of flood damage events is
influenced not only by the spatio-temporal dynamics of the triggering rainfall event and
antecedent catchment conditions but also by the topology of the river network, flood wave
superposition, structural flood defences, and the spatial distribution of the asset values and
their vulnerability. More work is needed to better understand how the spatial dependencies
of different processes along the risk process chain influence the mismatch between
modelled and complete dependence. If simple rules can be derived, they could be used to
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decide whether the spatial dependence of the damage-generating processes needs to be
taken into account or whether a simplified analysis neglecting spatial dependence would
suffice.

We are not aware of any study which discussed the intersection point between modelled
and complete dependence. We show that the overestimation of risk by the complete
dependence assumption that has been reported by Lamb et al. (2010) and Wyncoll and
Gouldby (2015) applies to large return periods only. For small return periods the complete
dependence assumption underestimates risk. This behaviour, and the location of the
intersection point, is mainly affected by the damage threshold controlled by the flood
defence level or elevated banks.

Although each model in RFM has some limitations, RFM represents well the spatial
patterns of the different flood generation processes (Falter et al., 2016, Metin et al., 2018).
For this study, the model limitations of hydrologic, hydraulic and damage model accuracy
are not seen as major concerns because the different assumptions on spatial dependence are
investigated by using the same model chain. The spatial performance of the weather
generator with regards to precipitation, however, can have an effect on the final results. It
is also more challenging for the weather generator than capturing the local statistics as
previously discussed in the literature (e.g. Serinaldi and Kilsby, 2014). The spatial
dependence of high precipitation is often overestimated due to the use of isotropic
covariance function (Serinaldi and Kilsby, 2014) as also applied in our case. Although this
limitation would presumably translate into the higher dependence of discharge peaks, we
believe, this is not critical for the presented study. The results of modelled dependence are
located between complete dependence and complete independence for high return periods.
With an ideal weather generator, they would be closer to the complete independence. Thus,
our estimates for the difference between the assumption of complete dependence and
modelled dependence can be regarded as conservative. Hence, the major conclusion
challenging the assumption of homogeneous return periods (complete dependence) still
holds. Another limitation is the assumption that dikes can only be overtopped but do not
breach. In reality, dike breaches may lead to significant reductions of flood peaks
downstream of breach locations, and larger outflow volumes can be observed in the
inundated area compared to the no-breach case. However, the modelling of dike breaching
requires high computational time because the prediction of breach locations is difficult, and
hence a stochastic approach including multiple Monte Carlo runs would be needed. In this
study, the consideration of dike breaching would increase the computational time, which is
already high. Hence, the number of inundation events and damages may be underestimated.
This could affect the intersection point, i.e. the point where the underestimation of the
complete dependence turns into overestimation. Including dike breaches in the model might
shift the intersection point to smaller return periods.

As expected from statistical reasoning, our study confirms that the EAD is not biased by
false assumptions on spatial dependence. If one is only interested in the EAD, spatial
dependence can be neglected, which drastically simplifies the analysis. However, EAD is
a rather limited indicator of risk, as discussed, for instance, by Merz et al. (2009). Further,
specific purposes demand assessments of certain risk scenarios for which spatial
dependence is crucial. According to Article 101 of the European Solvency II Directive,
insurance companies are required to prove that they can cover at least damage events with
a return period of 200 years (EC, 2009). The spatial dependence in damage is also highly
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relevant for disaster management or large-scale, strategic flood planning. It is important,
for instance, to understand the disaster management resources that are needed for large-
scale floods.

3.6. Conclusions

This paper analysed the impact of spatial dependence in flood damage generation on risk
estimates for the large-scale Elbe River basin in Germany. The “true” spatial dependence
was simulated with the continuous flood risk modelling approach proposed by Falter et al.
(2015), where all processes, including their spatial dependence, from the flood triggering
rainfall to the damage processes, are considered. The bias between the widespread but false
assumption of complete dependence and the modelled dependence was investigated as a
function of spatial scale.

Our results show that for extreme events the economic damage can be strongly
overestimated when homogeneous return periods are assumed across the catchment. For
the Elbe river basin, damage is overestimated by about 40 % for the 200-year event and by
almost 100 % for the 500-year event. On the other hand, for events with small to medium
return periods, the complete dependence assumption underestimates damage. The
intersection point where the underestimation turns into an overestimation depends mainly
on the damage threshold, i.e. on the flood defence level in protected areas.

The spatial scale, for which a risk estimate is sought, decides whether the modelled
dependence assumption is closer to complete dependence or independence, respectively.
The modelled dependence risk curve is closer to complete dependence for the upstream
areas comprising the Mulde and Black Elster rivers; with increasing scale it shifts towards
the independent case. Consequently, the overestimation under the complete dependence
assumption increases with larger areas. As a general rule, the true dependence might be
approximated by the complete dependence assumption for smaller regions, whereas for
larger regions the independence assumption might serve as an approximation in a rough
analysis when including the spatial dependence seems too costly or demanding. However,
our study does not allow specifying in a generic way the scales at which a certain
assumption might serve as approximation. More systematic analyses are necessary to
answer this question.

If one is only interested in the expected annual damage (EAD), then false assumptions
on spatial dependence do not bias its estimate. Although the EAD is an important risk
indicator, for example for cost-benefit analyses of flood mitigation or in the insurance
sector, we strongly advocate considering the complete risk curve, as it gives a much richer
perspective on the risk and the effects of mitigation measures. Hence, we conclude that it
is of highest relevance to realistically represent the spatial dependence of flood damage for
large-scale risk estimates.

Data availability
The data used in this paper are not publicly accessible; however, the authors can be

contacted by email (duhametin@gmail.com, dung@gfz-potsdam.de, kai.schroeter@gfz-
potsdam.de) for help in acquiring such data.
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Biases in national and continental flood risk assessments by
ignoring spatial dependence
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Bruno Merz

Abstract

Recently, flood risk assessments have been extended to national and continental scales.
Most of these assessments assume homogeneous scenarios, i.e. the regional risk estimate
is obtained by summing up the local estimates, whereas each local damage value has the
same probability of exceedance. This homogeneity assumption ignores the spatial
variability in the flood generation processes. Here, we develop a multi-site, extreme value
statistical model for 379 catchments across Europe, generate synthetic flood time series
which consider the spatial correlation between flood peaks in all catchments, and compute
corresponding economic damages. We find that the homogeneity assumption overestimates
the 200-year flood damage, a benchmark indicator for the insurance industry, by 139 %,
188 % and 246 % for the United Kingdom (UK), Germany and Europe, respectively. Our
study demonstrates the importance of considering the spatial dependence patterns,
particularly of extremes, in large-scale risk assessments.

Published as: Nguyen, V.D., Metin, A.D., Alfieri, L., Vorogushyn, S., and Merz, B.:
Biases in national and continental flood risk assessments by ignoring spatial dependence,
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4.1. Introduction

Flooding is a major hazard, with global average annual flood loss estimated to USD 104
billion (UNISDR, 2015). Flood damages have been increasing in the last decades
(Winsemius et al., 2015) and are projected to increase further, mainly due to a combination
of climate change and socio-economic development (e.g. expansion of urban areas and
economic growth in flood hazard zones) (Alfieri et al., 2017; Dottori et al., 2018). In
Europe, observed data suggest that climate change has already significantly altered flood
magnitude, timing and extent. Bloschl et al. (2019) demonstrate clear regional patterns of
both increase and decrease in observed river flood discharges in the past few decades.
Bloschl et al. (2017) additionally, finds the changing climate shifts timing of European
floods. Furthermore, Kemter et al. (2020) highlight the trends in flood extent, i.e. the area
simultaneously experiencing peak flows at multiple gauges. They demonstrate the
alignment of trends in magnitude and extent. Disaster risk reduction requires to assess flood
risk, defined as the relation between the likelihood of flood events and their potential
adverse consequences (IPCC, 2012; UNISDR, 2013; Kreibich et al., 2017). In the last
decade, flood risk assessments have been extended to the national and continental scale
(e.g. Feyen et al., 2012; Ward et al., 2013; Rojas et al., 2013; Winsemius et al., 2015).
These large-scale assessments have often assumed spatially homogeneous flood scenarios,
where each area within the large-scale region is subject to an event with the same
exceedance probability or return period (Metin et al., 2020). For instance, Ward et al.
(2013) and Winsemius et al. (2015) at the global scale and Feyen et al. (2012), Rojas et al.
(2013) and Bubeck et al. (2019) at the European scale, and Te Linde et al. (2011) at the
scale of the Rhine basin estimate flood risk in terms of expected annual damage (EAD)
and/or expected annual affected population (EAP) under the assumption of homogeneous
return periods. Other studies quantify risk in terms of damage or affected population for
specific return period floods. Hirabayashi et al. (2013) provide the number of people
exposed to 100-year flood assuming homogeneous scenarios at the global scale. For the
USA, Wing et al. (2018) estimate damages and number of people exposed to present and
future 50-, 100- and 500-year floods. Hall et al. (2005) and Dumas et al. (2013) quantify
economic damage and/or number of people exposed to the 100-year flood apart from EAD
for England and Wales and for France, respectively. Furthermore, Winsemius et al. (2013)
assess economic damages for the 15- and 30-year floods in Bangladesh.

In contrast to the homogeneity assumption, floods show substantial spatial variability in
the associated atmospheric, catchment and river network processes, and as a consequence,
the return periods of discharge peaks vary considerably along the river, across the
catchment and across larger regions (e.g. Schroter et al. 2015). This interplay of different
processes in the generation of floods leads to distinct flood regimes, i.e. flood timing and
magnitude, and spatially heterogeneous dependence patterns in flood peaks (Nied et al.,
2017; Merz et al., 2018; Vorogushyn et al., 2018). Therefore, the assumption of
homogeneous return periods is an unrealistic representation of the flood behaviour (Lamb
et al., 2010; Metin et al., 2020). This may not be a problem for smaller areas where flood
peaks at different locations may be highly correlated. However, at the national or
continental scale, the homogeneity assumption may bias regional risk estimates. Given the
recent rapid developments in large-scale floods risk assessments and the widespread use of
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the homogeneity assumption, it is an urgent question whether this assumption introduces
significant biases.

There are very few studies which have discussed the effect of spatial dependence on
flood risk estimates. Lamb et al. (2010), Wyncoll and Gouldby (2015) and Metin et al.
(2020) compare three spatial dependence assumptions: (1) complete dependence, i.e.
spatially homogeneous flood scenarios, (2) modelled dependence, i.e. spatially dependent
scenarios, attempting to represent the real-world spatial dependence, and (3) complete
independence, i.e. flood magnitudes vary randomly in space. These studies suggest that the
often-used complete dependence assumption overestimates flood damages for large return
periods and underestimate damages for small return periods, whereas the EAD values are
marginally affected by spatial dependence according to Metin et al. (2020). However, these
studies are limited in scale, as Lamb et al. (2010) and Wyncoll and Gouldby (2015)
investigate small regions in England (up to 15 000 km?) and Metin et al. (2020) analyze the
Elbe catchment in Germany (around 150 000 km?). Further, Alfieri et al. (2016b) and
Jongman et al. (2014) compare risk estimates for the modelled dependence and complete
independence assumptions for several European countries and for Europe, respectively.
However, they do not explore the widespread assumption of complete dependence.
Regional flood risk estimates may also be affected by tail dependence between flood peaks
at different locations. If tail dependence exists, for instance, weak correlation between mean
values of the random variables but strong correlation between extremes, it needs to be
incorporated in multivariate risk assessments (Ganguli and Merz, 2019). However, the
effects of tail dependence have not been sufficiently investigated for regional flood risk
assessments.

Here, we develop a multivariate, copula-based statistical model to generate 10 000 years
of spatially dependent time series of AMS (Annual Maximum Streamflow) at 379 stations
across Europe (“Methods”). These synthetic time series are transferred into inundation
areas and economic damages, using the simulation results of Alfieri et al. (2015a). Regional
risk curves, relating the damage within a given region to its probability of exceedance or
return period, are then derived for the three spatial dependence assumptions, i.e. complete
dependence, modelled dependence and complete independence. Risk estimates are given
for three regions, Europe, Germany and the UK. The latter two are selected due to the high
density of discharge stations in these areas. To investigate the effect of tail dependence, we
use three copula models with different degree of tail dependence.

4.2. Methods

4.2.1. Multivariate dependence model

We adopt a copula-based multivariate model to represent the spatial dependence structure
of annual maximum streamflow (AMS) of daily discharge at multiple locations over
Europe. The copula approach is based on Sklar’s theorem (Sklar, 1959), which sets up a
link between a joint distribution and its marginal distribution functions. One key advantage
of the approach is that it can separate the dependence structure from the marginal
distributions (Joe, 1997; Genest and Favre, 2007). Among the different classes of copulas,
elliptical copulas offer convenience in model construction and computation of high
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dimensional problems and have close relation to the classical multivariate method (Renard
and Lang, 2007; Okhrin et al., 2017). We apply the Gaussian and Student-t copulas which
are the most widely used elliptical copulas. Both are symmetrical copulas. The Gaussian
copula is completely determined by the correlation matrix as its mere parameter which is
relatively simple to estimate. However, it lacks tail dependence which measures the co-
movement in the tail parts of the distribution. To overcome this shortcoming, the Student-
t copula can be seen as an extension of the Gaussian copula as it retains the use of
correlation structure and introduces an additional parameter, the degree of freedom (df)
which supports the co-movement in extreme behaviour. The Student-t copula therefore has
tail dependence. The tail dependence of the Student-t copula gets weaker with a higher df.
In the limiting case where df approaches infinity, Student-t copula becomes Gaussian
copula.

In this study, the correlation matrix of the Gaussian copula is estimated by the method
of moments based on Kendall’s tau. For the Student-t copula, we use the method of Mashal
and Zeevi (Mashal and Zeevi, 2002), which combines the method of moments based on
Kendall’s tau for estimating the correlation matrix and the maximum pseudo-likelihood-
like estimation for determining the number of degrees of freedom. Particularly for a large
number of variables, as in our case, the correlation matrix can be estimated incorrectly (not
positive definite) due to the truncation error and/or missing data. Therefore, we correct the
correlation matrix by the algorithm nearPD (nearest positive definite matrix (Higham,
2002)) available in the package Matrix of the R programming language.

For marginal distributions, we fit the Gumbel distribution to 379 AMS time series using
the maximum likelihood method (Coles, 2001) then test the goodness-of-fit using
Anderson-Darling (AD) test (Marsaglia and Marsaglia, 2004) and Cramer-von Mises
(CvM) test (Csorgd and Faraway, 1996). Gumbel distribution is preferred due to its simple
structure. At 372 stations the fitting passes the tests. We then fit the Generalized Extreme
Value (GEV) distribution to data at the remaining 7 stations. Supplementary Fig.4.1 shows
that all testing p-values are larger than the significance level of 0.05 (with median p-value
of 0.81 for the CvM test and 0.84 for the AD test) indicating good fitting at all stations.

4.2.2. Discharge data and simulation of AMS at multiple locations

Based on daily discharge data with at least 50 years of continuous data from the Global
Runoff Data Centre (GRDC, 2020), we derive AMS time series for a common, 31-year
time period (1968-1999). We consider 379 gauging stations in 21 European countries (Fig.
4.1a). The station geo-location is matched to the 5-km gridded river network of the
European Flood Awareness System (EFAS, see Thielen et al. (2009)), using criteria based
on proximity, naming, and a maximum error between modelled and official upstream area
of 20%. In addition, stations with upstream area smaller than 500 km? are excluded, so that
discharge peaks can be linked to the corresponding inundated area at 100 m resolution for
different return periods (Alfieri et al., 2014, 2015a). The area threshold of 500 km? is the
minimum upstream area simulated in the considered JRC European inundation maps,
which we use for damage estimation. The copula-based model is used to generate 10 000
years (100 realizations x 100 years) of AMS at the 379 stations.



Biases in national and continental flood risk assessments by ignoring spatial dependence 63

4.2.3. Damage calculation from AMS series

The 10 000-year synthetic AMS are used to calculate flood damage. In a first step, AMS
values are associated with the maps of flood depth and extent at 100 m resolution. For this,
the relation between discharge peaks and return periods are estimated by the Gumbel
distribution using the L-moments approach for parameter estimation (Hosking, 1990). Only
discharge peaks exceeding the 2-year return period, which is a good proxy for bankfull
discharge (Carpenter et al., 1999), are taken into account for damage estimation. The
linkage between discharge peaks and inundation depths is obtained from previous 2D
hydraulic simulations with the LISFLOOD-FP model (Alfieri et al., 2015a). The maximum
water depths for selected flood return periods are computed using synthetic flood
hydrographs consistent with the flow duration curve at each 5 km river section along the
European river network. Flood depth and flood extent at 100 m resolution are estimated on
the basis of the CCM Digital Elevation Model (Vogt et al., 2007). Roughness coefficients
for the LISFLOOD-FP model are linked to the 100 m resolution land use map of Europe
Batista e Silva et al. (2013).

In a second step, direct economic damage for all economic sectors (i.e. residential,
commerce, industry, transport, infrastructure, agriculture) is estimated using the flood maps
and country-specific depth-damage functions, given by Huizinga (2007) for different land
use classes. Regional differences in asset values for a given land use class are considered
by rescaling the depth-damage functions with the GDP (Gross Domestic Product)
Purchasing Power Standards of 2007. The damage for selected return periods (T = 10, 20,
50, 100, 200, 500 years) is assessed at 100 m resolution and then aggregated to 5 km
resolution through the method of Areas of Influence (Aol), described in Alfieri et al.
(2015a). Flood damage is calculated upstream of each river station for two scenarios, i.e.
with and without flood protection. For the scenarios with flood protection, the damage is
set to zero if the return period of the discharge peak is smaller than the flood protection
level for the corresponding river section. For details on the economic impact assessment
(see Alfieri etal. (2015a; 2016b)). Finally, we calculate economic damages on the European
scale over 10 000 years by interpolating and extrapolating for AMS values with return
periods larger than 500 years. Our damage estimates do not consider the complete European
area (1) as the flood maps cover only river catchments larger than 500 km?, (2) as the impact
model cannot be run due to data limitations in some parts of Europe, e.g. in Iceland,
Switzerland, Russia and a few countries in the Balkans, and (3) as significant parts of
Europe are not covered by observational gauge data in GRDC database. Hence, our damage
estimates cover part of the three regions the UK, Germany and Europe which are selected
for the presentation of the results.

4.2.4. Flood risk assessment for different spatial dependence assumptions

We compute direct flood damages and risk curves for three regions (the UK, Germany,
Europe) and for three spatial dependence assumptions: modelled dependence, complete
dependence, and complete independence. The modelled dependence assumption mimics
the real-world spatial variability of flood peaks and damages across Europe. For each year
of the synthetic time series (10 000 years) generated with the copula-based, spatial
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dependence model, the damage values within the considered region are aggregated. The
risk curve of the region is then derived from the empirical cumulative distribution function
of these aggregated damage values. Hence, the damage values are directly used to calculate
exceedance probabilities, or return periods, shown as regional risk curves in Figs. 4.3 and
4.4. This step, i.e. the derivation of the risk curves, is performed in the same way for the
other two scenarios. However, for the complete dependence and complete independence
scenarios, the simulated spatial correlation is destroyed before aggregating the catchment
damage values to regional values. For the complete dependence scenario, it is assumed that
in a given year each river station experiences a flood with the same return period at the
respective discharge gauge. To this end, the damage values at each gauge are ranked
according to their magnitude, and then aggregated for each year. The complete
independence scenario assumes that there is no spatial correlation between the flood
magnitudes at different stations. Hence, the damages for the 10 000-year time series at each
river station are independently shuffled before aggregation. Because this regional estimate
depends on the shuffling, we repeat this procedure 100 times. To represent the risk curve,
we use the median of the 100 realizations.

Regional flood risk curves are calculated for three dependence models (Gaussian and
Student-t copulas, the latter with two variants regarding the number of degrees of freedom),
for three regions (the UK, Germany and Europe) and for two protection scenarios (with and
without flood protection). The tail dependence affects only the regional risk curves of the
modelled dependence assumption, but has no influence on the risk curves for the complete
dependence and complete independence assumptions. For the special case, where one is
only interested in the EAD, the spatial dependence can be ignored (Metin et al., 2020). The
scenario without flood protection gives an estimation of the maximum damage under
failure of all flood protection measures. Although this scenario grossly overestimates the
risk, it indicates the exposed assets protected by flood defences. The scenario with flood
protection provides the damage when the flood defences work up to their design levels.
Flood protection levels are taken from Jongman et al. (2014).

4.3. Results and Discussion

4.3.1. Evaluation of the multivariate dependence model

Annual maximum streamflow (AMS) series at 379 gauging stations (Fig. 4.1a) are
extracted from the observational data for the period 1968-1999. These series are used to
construct the copula-based multivariate model. The Student-t copula is parameterized using
the (379 x 379) correlation matrix and the number of degrees of freedom df. The estimated
value (df = 11.4) indicates a moderate tail dependence in the AMS dataset. The pairwise
correlation between AMS series, quantified by Kendall’s tau, varies between -0.557 and
0.982 with a rapid decline with distance (Fig. 4.1c). However, there are pairs of stations
which are significantly correlated even though they are up to 2000 km apart. The pairwise
correlations are visualized exemplarily for nine selected stations (Fig. 4.1a). We use the
Student-t copula model to generate 10 000 years of synthetic AMS series. The agreement
between simulated and observed correlation is very good (Fig. 4.1b and 4.1¢).
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We fit the Gumbel and the GEV (Generalized Extreme Value) distribution to the
observed AMS series at the 379 locations (Methods). Two goodness-of-fit tests, Anderson-
Darling and Cramer-non Mises, indicate very good fits to the observed AMS series
(Supplementary Fig.4.1). The multivariate dependence model, i.e. the combination of
copulas and marginal distributions, shows good agreement with observations. Fig. 4.2a
shows a plausible range of the maximum simulated peak flows over 31-year period at most
gauging stations as 87% of confidence range bars cross and the rest deviates slightly from
the identity line. Also, the flood frequency curves derived from observed and synthetic
discharge correspond well, with the observed flood frequency curves mostly located within
the 95% confidence bounds of simulated curves (Fig. 4.2b).
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Figure 4.1: Study area and dependence structure (a) with locations of 379 gauging stations
(red dots) and pairwise correlation (coloured lines) of nine selected stations over Europe;
(b) Comparison of observed and simulated correlation for all stations. Note the increase of
density from yellow to red; (¢) Correlation versus distance between stations, i.e.
correlogram, for observed data (density increases from yellow to red) and simulated data
(contour lines); (b-c¢) Simulated values are generated by the Student-t copula with df=11.4.
All figures created in this chapter are based on the free software environment R for
statistical computing and graphics (https://www.r-project.org/).
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Figure 4.2: Evaluation of the multivariate dependence model (a) Maximum observed
versus simulated peak flow over 31-year period at all stations. Blue dots represent the
median of the pink 95% confidence range corresponding to 322 model realizations of 31
years length. Black line represents the identity (1:1) line. (b) Flood frequency for nine
selected stations (see location in Figure 4.1): observations (blue curves) and 95%
confidence range (shaded ribbons) corresponding to 100 model realizations of 100 years
length.

4.3.2. Risk estimates for the three dependence assumptions

The regional risk curves, i.e. the relation between aggregated flood damages and return
periods for the considered regions, are strongly affected by the dependence assumption
(Fig. 4.3). The complete dependence assumption overestimates regional flood risk for large
return periods but underestimates risk for small to medium return periods. The shift from
underestimation to overestimation, in the following termed the intersection point, occurs
roughly around the flood protection levels, i.e. between return periods of 80 to 120 years
for the three regions. The misestimation of risk is explained by the assumption of
homogeneity. The complete dependence assumption assigns the same return period
discharge peaks to all gauges and to corresponding damages in the adjacent areas. If this
return period is smaller than the flood protection level for all (or most of the) areas, the
aggregated damage for the region is zero (or small). If it is higher than the protection level,
on the other hand, it causes damages in all areas as the protection is overtopped throughout
the region. In reality, represented by the modelled dependence assumption, the spatial
variability of flood peaks causes damages at some locations even when the regional return
period of this event, i.e. the return period of the total aggregated damage, is clearly below
the protection level (Supplementary Fig.4.2). Hence, the spatial variability leads to a
smoothly increasing regional risk curve, compared to the rather threshold-like curve for the
complete dependence assumption. The bias by the complete dependence assumption is
substantial (Fig. 4.3). For the 200-year return period, damage is overestimated by 139%,
188% and 246% for the UK, Germany and Europe, respectively. The 50-year damage is
underestimated by 93%, 69% and 42%, respectively. The intersection points between the
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complete independence and the modelled dependence curves have the return period of 38,
15 and 12 years for three regions respectively. The risk curve of the complete independence
behaves differently as it shifts from overestimation to underestimation of flood damage at
the intersection point compared to modelled dependence moving from low to high return
period level. The 200-year flood damage is underestimated by 27%, 60% and 61%,
respectively, for the three regions. The regional 50-year damage is still underestimated by
12%, 48% and 52%. However, the 10-year damage is found to be overestimated by 75%,
69% and 14% respectively.

Alfieri et al. (2015a) estimate the economic damage for the 100-year flood event as EUR
1.5 billion for the UK, EUR 15 billion for Germany and EUR 120 billion for Europe. Our
estimates are somewhat higher at the national scale (EUR 2.6 billion for the UK, EUR 20
billion for Germany), but much lower at the continental scale (EUR 52 billion for Europe).
The grid-based simulation model of Alfieri et al. (2015a) considers entire Europe, whereas
our estimate is limited to the catchments associated with the 379 gauges. Since many areas
in Europe are not covered by observational data in GRDC (2020), our regional risk
estimates consider only part of the entire area for the UK, Germany and Europe,
respectively. For the UK and Germany, where we have a high density of stations, our
estimates are much closer to the results of Alfieri et al. (2015a).
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Figure 4.3: Regional risk curves, i.e. flood damages and their corresponding return periods
under the assumptions of complete dependence, modelled dependence and complete
independence for the UK, Germany and Europe for the scenario with flood protection and
without flood protection.
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The main influence on the intersection point, i.e. where underestimation turns into
overestimation for the complete dependence assumption, is the flood protection level (Fig.
4.3). For a scenario without protection, the intersection point corresponds to a return period
of 3 years. The damage model assumes that there is no damage for discharge peaks below
the 2-year flood, which is a good proxy for bankfull conditions (Carpenter et al., 1999).
Hence, the risk curves for the complete dependence assumption show damages only for
events larger than 2 years. In contrast, the modelled and complete independence
assumptions estimate damage also for the 2-year return period, as the spatial variability
causes some locations to have peaks higher than the 2-year flood.

4.3.3. Effects of tail dependence on regional risk estimates

To understand how the tail dependence affects the regional risk estimates and the biases of
the different dependence assumptions, we fit two additional copula models to the AMS
data: The Gaussian copula, which does not include tail dependence, and the Student-t
copula with df=4. This value is chosen to represent strong tail dependence. A stronger tail
dependence leads to higher damage estimates for large return periods, moving the regional
risk curve of the modelled dependence assumption closer to the complete dependence
assumption (Fig. 4.4). For the 200-year regional damage, for instance, the overestimation
of 139%, 188% and 246% for the UK, Germany and Europe is reduced to 113%, 140% and
180%, respectively, for the scenario with strong tail dependence and increases to 171%,
240% and 298% when removing the tail dependence by assuming the Gaussian copula.
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Figure 4.4: Influence of tail dependence on regional risk curves, i.e. flood damages and
their corresponding return periods for the UK, Germany and Europe for the three
dependence assumptions. The Gaussian copula does not include tail dependence, while the
Student-t copula with df=4 represents rather strong tail dependence.
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4.4. Conclusions

The study highlights a potential misestimation of flood risk at national and continental
scales. We find that the widespread homogeneity assumption overestimates the regional
200-year damage, which is a benchmark indicator for the insurance industry, by 139%,
188% and 246% for the UK, Germany and Europe, respectively. For small return periods,
it underestimates flood risk. The intersection point, where underestimation turns into
overestimation, depends on the threshold beyond which damages steeply increase, i.e. on
the flood protection level. We further show that tail dependence can substantially influence
regional risk estimates. The numbers suggest that the misestimation increases with
increasing spatial scale. Hence, our study demonstrates the importance of including the
spatial dependence of flood peaks and particularly of tail dependence in national and
continental risk assessments.

Data availability

The GRDC discharge dataset was obtained from the Global Runoff Data Centre, 56068
Koblenz, Germany (https://www.bafg.de/GRDC/EN, last access: October 2017) and was
recently made available for online download via https://portal.grdc.bafg.de. Flood hazard
maps for the European Union can be downloaded from
http://data.jrc.ec.europa.eu/collection/floods. Flood protection levels are taken from
Jongman et al. (2014).
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Supplementary Figure 4.1: p-values of goodness-of-fit tests for fitting the distribution
(Gumbel/GEV) to the AMS data. The null hypothesis Ho is that the data follow the
distribution. The alternative hypothesis Ha is that the data do not follow the distribution.
The significance level is set at 0.05.
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Chapter 5 — Synthesis

5.1. Findings of this thesis

In this thesis, the main objective is to understand the impact of changes in flood risk
components and the importance of spatial dependence in flood risk estimations. Chapter 2
aims to overcome the problem of lacking comprehensive studies that consider the entire
spectrum of drivers to understand change in flood risk. Therefore, a sensitivity analysis is
conducted to quantify the sensitivity of flood risk to changes along the risk chain
considering continuous simulation of this chain. Chapter 3 and 4 aim to illustrate the
misestimation in risk under the false assumptions of spatial dependence at different spatial
scales. Chapter 3 quantifies this misestimation using continuous simulation of flood risk
for the Elbe catchment. Chapter 4 applies multivariate dependence model based on flood
discharges over national (United Kingdom and Germany) and continental (Europe) scales
and highlights the misestimations in risk. The key findings obtained from three main
chapters are listed below. In this section, main outcomes are summarized with respect to
the specific research questions framed in the introduction chapter.

Key findings

= The adverse impact of climate change on flood risk can be masked by dike
heightening or reduced vulnerability such as high level of uptake of precautionary
measures.

= The impacts of change in catchment hydrology, in river system, and in land use can
show variability across catchment upstream and downstream.

= Climate change impact can be significant for certain seasons where large variations
in precipitation are observed.

= The assumption of homogeneous return period scenarios in the Elbe catchment can
cause up to 100 % overestimation in economic damage for large return periods.

= The discrepancy between the risk curves of homogeneous return period (complete
dependence) and heterogeneous return period (modelled dependence) scenarios
may increase with an increasing spatial scale.

= Flood risk can be overestimated by 139 %, 188 % and 246 % for 200-year return
period in UK, Germany (national scale) and Europe (continental scale),
respectively.

= There is also an underestimation under the assumption of complete dependence for
smaller return periods.

= The Expected Annual Damage (EAD) does not differ too much under the different
spatial dependence assumptions.

= The risk estimation under the consideration of spatial dependence can be affected
by the structural flood protection level and copula-based multivariate model.
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+» How and to what extent do the changes in risk components propagate through risk
chain and affect flood risk?

To evaluate the propagation of changes in risk components and its influence on overall
flood risk, a comprehensive sensitivity analysis is performed in Chapter 2. In this
comprehensive analysis, changes in all risk components, i.e. changes in climate, catchment,
river system, land use, assets, and vulnerability are considered for the mesoscale Mulde
catchment in Germany. For each component, a baseline and two symmetric change
scenarios within a range of plausible values are created and combined for six components
leading to 729 scenarios in total. Each of these scenarios contain 4000-year continuous
simulation of risk chain. The results are indicated by two risk indicators: risk curve and
EAD. The first outcome of this sensitivity analysis is that the change in river system (dike
heightening) has the largest contribution to flood risk change (strong reduction in EAD).
Besides, maximum EAD values are always obtained with low dike height scenarios. On the
other hand, climate change shows the minimum contribution among the other risk
components, although it is often addressed as the most influential component. Further,
decrease in the reservoir capacity of the catchment increases risk substantially. However,
increase in the reservoir capacity do not reduce risk significantly because the damage
mostly occurs at other locations within the catchment. The changes in assets, land use and
vulnerability show similar impact on flood risk changes and these impacts are significant.

The relative effects of various risk components on overall risk are also investigated in
Chapter 2. By selecting a subset of change scenarios, the combined or opposed influences
of risk components are analysed. It is concluded that the effect of climate change can be
compensated by all other risk components except for change in reservoir storage capacity
where the most compensation is observed by dike heightening. With a selection of different
sets of scenarios, the interaction between climate change and the change in land use and
vulnerability, by allowing only increase in asset values, is investigated. It is perceived that
under the climate change scenario, the range of EAD can be capped between EUR 0.5
million to EUR 2 million, by altering only land use and vulnerability. With this outcome,
it can be inferred that the effect of climate change and increasing asset values on flood risk
can be counteracted using measures other than structural protection.

+» How is the overall flood risk affected by the changes in risk components for
different locations and seasons?

For a better understanding of the effect of changes in risk components at different locations,
all possible change scenarios are analysed for selected upstream (Zwickau) and
downstream (Anhalt-Bitterfeld) sub-basins in the catchment. The impacts of change in
climate, asset values and vulnerability upstream and downstream are similar to the impacts
in the entire catchment. However, the impacts of change in flood storage capacity, river
system and land use show some differences upstream and downstream. Regarding the
change in reservoirs, most of the reservoirs are located upstream of the catchment and the
largest reservoir is located upstream of the reach around Zwickau. Hence, doubling of
reservoir storage capacity has only minor impacts on the downstream risk for very large
events. Change in river system shows different behaviour upstream and downstream. This
is explained by the impact of topography on the number of exposed asset values. For
instance, steep upstream and flat downstream regions are affected differently given the
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same magnitude of flood event. Different land use scenarios also cause different behaviour
upstream and downstream. The increase in residential areas results in higher risk upstream
for frequent flood events, but at the downstream region, it increases risk for extreme events.
The change in risk upstream under the different land use scenarios is mainly explained by
the reservoir operation rules. Since reservoirs start to operate above the 100-year discharge,
they cannot affect flows for frequent flood events. When the operation starts, risk becomes
similar for different land use scenarios. On the other hand, the change in risk downstream
for different land use scenarios is explained by the topography and specific set-up of
residential buildings. For instance, additional residential areas in land use scenarios might
not be exposed to floods. Also, if the residential buildings are located at steeper areas, they
are not exposed to floods.

To understand the effect of changes in risk components during different seasons, all
scenarios concerning components of atmosphere, catchment and river system are analysed
for winter and summer seasons. The effect of change in atmosphere is significant in the
winter season because of the large variation in precipitation values. The change in
catchment system primarily contributes to risk for return periods higher than 500-year in
winter, and for the return periods higher than 100-year in summer. This is mainly explained
by the reservoir operation rule and the magnitude of events in different seasons. Finally,
the risk curves under the change in river system show similar patterns and great importance
for both seasons.

% What is the bias in risk estimates under the ‘false’ assumptions of spatial
dependence of return periods of damages?

To investigate the bias in risk estimates under the false assumptions of spatial dependence,
first, real spatial and temporal dependencies are approximated by 10 000-year continuous
flood simulation. This modelled dependence assumption (heterogeneous return periods) is
compared with the false assumptions of spatial dependence: complete dependence
(homogeneous return periods) and complete independence (randomly sampled return
periods) for the Elbe catchment in Chapter 3. This comparison revealed that the flood
damage is vigorously overestimated (up to 100 %) by the widely used assumption of
complete dependence for return periods higher than 200 years in the Elbe catchment. On
the other hand, for return periods smaller than approximately 90 years, flood damage is
underestimated under the assumption of complete dependence. In addition, under the
assumption of complete independence, there can be up to 50 % underestimation indicating
the lower limit for the damage estimations for large return periods.

The investigation of the role of spatial dependence in the large-scale risk assessment is
extended to European scale in Chapter 4. Since implementing continuous modelling for
such a large scale is challenging, copula-based multivariate dependence models are used to
compare three assumptions on spatial dependence. The modelled dependence is based on
the spatial dependence of annual maximum series of discharge data across 379 gauging
stations over Europe. One of the important outcomes from Chapter 4 is that under the
assumption of homogeneous return periods, there is a possibility of overestimating risk in
Europe by 246 % for the 200-year return period of event. The lower limit for the risk
estimates for the same return period of event is determined by the assumption of complete
independence and results in approximately 60 % underestimation.
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If the risk is represented by the EAD, Chapter 3 confirms that spatial dependence can be
neglected. The reason for this is that the damages are averaged and weighted by their
probabilities. Therefore, EAD does not depend on the assumed dependence scenario.

“* What is the role of spatial scale, tail dependence in the multivariate dependence
model and structural flood protection level on flood risk under the different
assumptions of spatial dependence?

The wvariation in risk estimates with an increasing spatial scale is investigated by
aggregation of the risk curves from upstream regions to the entire catchment. In Chapter 3,
for the three spatial dependence assumptions risk curves are obtained at 12 different spatial
scales by aggregating sub-basins from upstream to downstream. Remarkably, under three
assumptions, the discrepancy between the risk curves increases with increasing scale. As is
well known, the spatial dependence of damage in smaller areas is often stronger. Hence,
not much difference is expected between the risk curves of complete dependence and
modelled dependence. However, the model dependence curve shifts toward complete
independence curve with increasing scale.

The risk estimations under the three assumptions on spatial dependence are compared
by considering different spatial extents, multivariate dependence models for Gaussian and
Student-t copulas and different levels of structural flood protections in Chapter 4. For a
better understanding of the role of spatial extent on risk estimation, results are provided for
two national scales (UK and Germany) in addition to continental scale risk analysis. Only
slight differences are observed in overestimation at three different spatial extent and
overestimation changes between approximately 135 % and 250 % for 200-year return
period at both national and continental scales. No clear trend of the impact of spatial extent
on flood risk was detected.

To understand the role of tail dependence, results with Gaussian copula (tail
independent), fitted Student-t copula (moderate tail dependence) and Student-t copula with
low degree of freedom (strong tail dependence) are compared. Tail dependence indicates
the dependence between damages of extreme events. As expected, under the consideration
of strong tail dependence, modelled dependence risk curve shifts toward the complete
dependence curve. Therefore, while overestimation reduces under complete dependence,
underestimation increases under complete independence.

The impact of flood protection on risk under three spatial dependence assumptions is
investigated by comparing the resulting damages with and without flood protection. The
overestimation increases if flood protection is considered. For instance, there is up to 50 %
overestimation in economic damage under no flood protection. However, damage is
overestimated by up to 246 % in Europe for the existence of flood protection. This is
because some frequent events up to the level of flood protection are prevented. Therefore,
total damage is reduced at each return period in the presence of flood protection. On the
other hand, the point where underestimation turns to overestimation (so-called intersection
point) is observed at around 3- and 100-year return periods under without and with flood
protection conditions, respectively. Since no damage is observed up to level of protection,
overestimation starts only when flood events start to exceed the protection level. Therefore,
intersection point is strongly dependent on the level of flood protection.
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5.2. Discussion and recommendations

In Chapters 2 and 3, continuous flood risk modelling with different modules is implemented
and used. Each of the modules have their own limitations and uncertainties which might
add up or overlap through the model chain. For instance, it is challenging to capture spatial
dependence of precipitation for a weather generator. Spatial dependence of high
precipitation can be overestimated because of the isotropic covariance function (Serinaldi
and Kilsby, 2014) in the used auto-regressive model. This may result in highly dependent
discharge peaks. Besides this, although hydrological model SWIM shows reasonable
discharge estimations, discharges may be overestimated at few mountainous locations such
as upstream of the Saale catchment due to the consideration of daily-scale flood processes
instead of hourly scale. In fact, at some locations travel time of the flood peaks can be
shorter than a day. This presumably causes an overestimation of inundation extent
estimated by the hydraulic models. On the other hand, the inundation extent can be
underestimated at some other regions due to neglected dike breaches in the hydraulic
processes. These are some of the important limitations of the model. Although simulations
of dike breaches increase the computation time enormously, it is recommended to
implement a probabilistic approach for dike breaching for more accurate damage results.
In addition to uncertainties coming from these modules, the damage model also contains
uncertainties in exposure and vulnerability estimates. Therefore, large errors may be
prevalent in the damage estimations.

The study investigated in Chapter 2 is the most comprehensive sensitivity analysis which
considers entire range of flood risk components with the continuous modelling approach.
However, this analysis is limited to three change scenarios for each risk component. The
change in risk highly depends on these scenarios. Although the scenario selection is
subjective, the best available data and options are used. For example, river system scenarios
are created based on the possible changes in dike heights taken from the literature. Besides,
scenarios of change in climate, reservoir storage capacity, land use and asset values are
created based on historical data. Nevertheless, some increase scenarios might not hold in
the real world. For example, changes in precipitation and temperature will probably be
different due to human-induced climate change. Similarly, increase in land use may vary
in reality. Notwithstanding the subjectiveness in some of the scenarios, the sensitivity
analysis provides a better perception of risk and risk reduction measures by considering the
entire range of risk components. Since the aim of Chapter 2 is not to evaluate the exact
damage values under different scenarios, the assumptions are acceptable for performing a
sensitivity analysis.

Chapter 2 provides an insight into the possible risk reduction measures going beyond
structural flood protection measures which are not always feasible options. For instance,
dike heightening along the river network can be very expensive. In addition, construction
of structural measures can pose some threats to the ecosystem. Therefore, alternative risk
reduction measures are of great importance in flood risk assessment and management. The
sensitivity analysis in Chapter 2 shows that, in addition to dike heightening, changes in land
use and vulnerability can also mask adverse impact of climate change and reduce flood
risk. Vulnerability reduction is more feasible than change in settlement areas (relocation)
as it requires considerable period of time. However, the sensitivity analysis in this thesis
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only focuses on changes in private precautionary measures as vulnerability scenarios.
However, vulnerability scenarios can be influenced by awareness and preparedness, as
well. A reasonable explanation for this is that mainly precautionary measures were taken
by private households and companies in Germany between hazardous flood events in 2002
and 2013. Nevertheless, the impact of other risk reduction measures which reduce the
vulnerability (e.g. risk awareness, flood early warning) should be included with more
specific assumptions for different regions to elaborate the understanding of risk and risk
reduction measures in future research. Additionally, since vulnerability reduction is a great
alternative to reduce flood risk, it should definitely be considered in risk assessment and
management.

The spatial variability in return periods of floods is often considered by multivariate
statistical models where the spatial dependence of flood peaks is considered in the
literature. In order to simulate inundated areas, the entire hydrograph (e.g. shape, duration
and volume) is required. However, in this approach, flood hydrographs are not mass
conservative since only flood peaks are considered. Therefore, this approach may result in
some uncertainties and errors.

In Chapter 3, on the other hand, the spatial variability is considered by end-to-end flood
risk assessment. The bias in risk is estimated by considering the spatial dependence of all
processes along the risk chain. This approach requires high computational time but it is
advantageous as the complete flood event throughout the entire catchment is modelled in a
consistent way, including antecedent processes. Therefore, the study in Chapter 3 provides
a more realistic representation of the spatial dependence throughout a river basin.

Chapter 3 allows for understanding the variations in risk estimates with different spatial
scales from upstream to downstream. For smaller upstream areas, the risk curves under
complete and modelled dependence assumptions tend to be similar. The risk estimation
under complete dependence becomes larger than the modelled dependence and the
difference between modelled dependence and independence curves decreases with
increased spatial scale. Yet, these variations with increased scale can be vague and different
processes of damage generation mechanisms such as catchment topology, structural flood
protection, flood wave superposition and spatial distribution of the assets and their
vulnerability can blur the impact of increasing spatial scale. Therefore, further analysis on
the impact of spatial dependences of different damage-generating processes on the risk
estimates is recommended. This may aid in understanding the contribution of several
damage-generating processes and thereby helps to decide which processes needs to be
considered or can be neglected in a general way.

In addition to the variability in risk estimates, the intersection point shifts from return
period of few hundred years to nearly 90 years with increasing spatial scale. Although,
intersection point is primarily affected by the damage threshold (i.e. level of flood
protection), this change in intersection point is not a consequence of different flood
protection standards in the up- and down-stream of the Elbe catchment. This is likely
caused by the modelling and data errors. The small-scale variability of precipitation
extremes is insufficiently captured by the weather generator in some sub-basins due to
varying station density used for parametrization. Consequently, damage is underestimated
for the Mulde and Black Elster rivers and is overestimated for the Saale River.

If the main concern is the expected annual damage (EAD) in flood risk assessment, the
spatial dependence does not bias its estimate (Chapter 3). The EAD is the sum of the
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damages weighted by their probabilities for each sub-basin in the Elbe catchment. Since
the mean value of a sum of random variables is not affected by the correlations between
the variables, the spatial correlation is not significant while calculating EAD. Therefore,
the EAD does not differ under both complete and modelled dependence assumptions.
However, the EAD is a rather limited measure of risk (e.g. Merz et al 2009). Flood risk
assessment and management may require specific risk scenarios for different purposes
where spatial dependence is crucial. According to Article 101 of the European Solvency II
Directive (EC, 2009), it should be proved that at least damage events with 200-year return
period is covered by insurance companies. Therefore, it is crucial to include the ‘true’
spatial dependence pattern in the risk analyses.

For an improved understanding of the role of spatial dependence, Chapter 4 compares
three spatial dependence assumptions at larger scales, including the role of tail dependence
and flood protection. Tail dependence might be of great importance in flood risk
assessment. Because tail dependence indicates the dependence between extreme events, the
small and large differences between the risk curves under complete and modelled
dependence assumptions are expected for high and low tail dependence, respectively. Since
the risk curve under modelled dependence changes with respect to the complete
dependence risk curve, the intersection point can also be affected by tail dependence.
Nevertheless, the impact of tail dependence on the intersection point is small and hence this
impact is of minor importance.

The flood protection level substantially influences risk estimation and intersection point.
In the presence of structural flood protection, many frequent and low-magnitude flood
events are prevented. Therefore, the damage estimation is rather smaller in the presence of
flood protection compared to no flood protection.

With no flood protection, there is no damage under 2-year return period because it
represents bankfull discharge condition. When flood protection is considered, no damage
is observed up to the corresponding protection level. Under the assumption of complete
dependence, all stations are assumed to experience homogenous return period of damage.
Therefore, there is no damage up to 2-year return period without flood protection and there
is no damage up to mean protection level with flood protection. However, under the
assumptions of modelled dependence and complete independence, due to heterogenous
return period of damage within the region, damages may still occur below flood protection
level. On the other hand, above this level, damage under the complete dependence
assumption becomes larger than the damages under modelled dependence and complete
independence.

The mean flood protection level can be different from country to country. For example,
the mean protection level in UK is mostly higher than in Germany (Gall and Gerber, 2014).
Accordingly, compared to Germany, the intersection point is observed at higher return
periods in UK in Chapter 4. Yet, the relation between flood protection level and intersection
point should be treated with caution since the information on flood protection standards is
globally limited whilst estimating flood risk (e.g. neglected protection standards or crude
assumptions on flood protection levels).
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5.3. Conclusions

This thesis has improved the understanding of the role of various risk components on flood
risk. The sensitivity analysis with continuous simulation approach reveals that flood risk
can vary widely across the range of all possible change scenarios, within a few decades.
The risk is strongly sensitive to change in structural protection level and less sensitive to
climate change. The uncontrolled risk components, such as climate change and increase in
asset values, can be masked by risk components which can be controlled. This provides
options for local stakeholders to control the increasing flood risk due to climate change and
economic growth by flood risk management. The technical flood protection measures are
often devised to reduce flood risk. However, not only river system changes but also changes
in land use and vulnerability can diminish the adverse impact of climate change. This
outcome proves the role of alternative risk mitigation measures such as reduced
vulnerability with high level of private precaution instead of taking structural protection
measures. Also, the importance of an integrated analysis of risk components to combat
flood losses in the risk management is highlighted.

The sensitivity of flood risk to each risk component can vary for different regions and
seasons. The main reasons for this variation are the different topographies and the uneven
distributions of reservoirs and residential buildings within the catchment. Therefore, the
role of change in reservoirs, protection levels and land use on flood risk are different for
upstream and downstream of the Mulde catchment. Besides, the change in the impacts of
risk components for the different seasons is attributed to the large differences in
precipitation and temperature for winter and summer seasons. Although floods are frequent
in winter, the most extreme ones have occurred in summer. Furthermore, climate change
impacts manifest itself for high-probability events due to strong increase in precipitation in
winter and almost no change in summer. It should be noted that spatial and temporal
variations can strongly influence the impacts of risk components and therefore it is crucial
to consider them during risk assessment.

The misestimation of spatial variability in return periods of floods can cause bias in large
scale risk assessment. One of the best ways to consider spatial variability is continuous
hydrological-hydrodynamic simulation. The advantage of this approach is that all
hydrological processes which affects the runoff are implicitly considered and the entire
flood event is modelled including antecedent catchment processes. However, it is
computationally expensive, and may not always be applicable. For this reason, while
continuous modelling approach is used for the Elbe catchment, copula-based multivariate
dependence model is developed for the European scale. It is also reasonable approach to
consider heterogeneity in the catchment where it relies on the spatial dependence between
discharge peaks at multiple sites.

When spatially homogeneous return period (complete dependence) scenarios are
assumed, damage is always computed larger than the heterogeneous return period
(modelled dependence) scenarios for high return periods (i.e. beyond the intersection point)
of events. This overestimation reaches up to 100 % in the Elbe catchment, 139 % in UK,
188 % in Germany and 246 % in Europe. On the other hand, the complete dependence
scenarios estimate smaller damage than the modelled dependence scenarios for events with
small to medium return periods. The influencing factors of the intersection point where the
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underestimation turns to an overestimation are further investigated and it is found that the
flood protection level plays a significant role on the intersection point.

The misestimation of risk may also differ for the upstream and downstream areas within
the catchment. The modelled dependence assumption is closer to complete dependence for
the upstream areas of the Elbe catchment. This implies that for small spatial scales,
complete dependence assumption is appropriate. However, with an increasing spatial scale
towards downstream, modelled dependence assumption is closer to independence
assumption. This is due to the higher heterogeneity in large spatial scales for a single flood
event. Yet, more systematic analysis is required to derive a general statement about the
precise scales where certain assumptions might serve as an approximation.

In the multi-variate dependence model, the risk estimation under modelled dependence
is heavily impacted by the tail dependence. The discrepancy between the risk curves under
the complete dependence and modelled dependence assumptions can vary for different
copulas. The modelled dependence is closer to complete dependence when copula with
high tail dependence is considered. This highlights the importance of the reliable estimation
of the tail dependence while representing spatial dependence in the risk assessment.
Besides, the consideration of flood protection level substantially affects risk estimation and
the discrepancy between complete and modelled dependence assumptions is high in the
presence of flood protection.

If the risk is only expressed with expected annual damage (EAD), the risk estimates are
similar under the assumptions of both complete and modelled dependence. However, this
is not surprising since EAD is a mean value of damages and is not affected by the
correlations between variables. Yet, I strongly recommend to consider complete risk curves
since it offers more broader perspective on risk and impacts of mitigation measures. For
complete risk curves, the consideration of spatial dependence of return periods has utmost
importance.
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